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Abstract. The set covering problem is a classical optimization bench-
mark with many industrial applications such as production planning,
assembly line balancing, and crew scheduling among several others. In
this work, we solve such a problem by employing a recent nature-inspired
metaheuristic based on the black hole phenomena. The core of such a
metaheuristic is enhanced with the incorporation of transfer functions
and discretization methods to handle the binary nature of the prob-
lem. We illustrate encouraging experimental results, where the proposed
approach is capable to reach various global optimums for a well-known
instance set from the Beasley’s OR-Library.

Keywords: Meta-heuristics · Soft computing · Black Hole Algorithm ·
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1 Introduction

The Set Covering Problem (SCP) is a classic benchmark in the subject of com-
binatorial optimization that belongs to the NP-complete class of problems [19].
The purpose of the SCP is to find a set of solutions that cover a range of needs at
the lowest possible cost. The SCP can be applied to many real-world problems,
such are airline crew scheduling [14], network discovery [10], plant location [12],
and service allocation [6] among others. Different algorithms have been devel-
oped to solve the classic SCP, ranging from classic exact methods to more recent
bio-inspired metaheuristics. Exact methods can be applied to solve SCPs [1,2],
the main problem is when the instance size increases the algorithm is commonly
unable to reach a solution in a reasonable amount of time. Approximate meth-
ods such as the well-known metaheuristics tackle this concern, being capable
to generally provide good enough local optimums in a limited time interval.
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In this context a large list of metaheuristics have been proposed to solve the
SCP [4,5,8,9,17,20].

In this paper, a new approach for SCPs based on the black hole algorithm is
presented. The Black Hole Algorithm (BHA) is a population-based metaheuristic
based on the gravitational force that has a black hole to attract everything
that is around it. The core of the BHA is enhanced with the incorporation of
binarization through transfer and discretization functions in order to handle
the binary nature of the SCP. Repairing operators are also employed to rapidly
discard the unfeasible solutions and as a consequence to alleviate the search.
We present promising results on 40 well-known pre-processed instances from
the Beasley’s OR-Library, where a considerable amount of global optimums are
reached.

This paper is organized as follows: In Sect. 2, we describe the SCP. Next
section presents the BHA including binarization and repairing. Section 4 provides
the experimental results, followed by conclusions and future work.

2 The Set Covering Problem

The Set Covering Problem consists in finding a set of solutions at the lowest
possible cost to cover a set of needs. Formally, we define the problem as follows:
Let A = (aij) be a binary matrix with m–rows × n–columns, and let C = (cj)
be a vector representing the cost of each column j, assuming that cj > 0 for
(j ∈ N). So we can say that column (j ∈ N) cover a row i that exists in M if
aij = 1. The mathematical model is as follows:

min (z) =
n∑

j=1

cjXj

Subject to:

n∑

j=1

aijxj ≥ 1 ∀i ∈ M xj =
{

1 j ∈ S
0 if not

∀ j ∈ N

3 The Black Hole Algorithm

A black hole is a region of space that has so much mass concentrated in it that
there is no way for a nearby object to escape its gravitational pull [15]. Anything
falling into a black hole, including light, cannot escape. The BHA is inspired on
this phenomena [11].

Similar to other population-based metaheuristics, The BHA begins by ran-
domly generating a population of candidate solutions, called stars, which are
placed in the search space of some problem or function. After initialization, the
fitness values of the population are evaluated and the best candidate, which has
the best fitness values is introduced as black hole and the other solutions are
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selected as normal stars. Then, all the stars commence moving towards the black
hole due of the power absorbing of the black hole.

The absorption of stars by the black hole is formulated as follows: xi(t+1) =
xi + rand ∗ (xbh − xi(t)) ≥ 1 for i = {1, 2, 3, . . . , N}. Where xi(t + 1) is the
location of the ith star at the iteration t+1, Rand is a random number between
zero and one, xbh is the location of the black hole in the search space, and N
is the number of solutions (stars). In addition, there is a distance between stars
and black hole, the stars that crosses the event horizon of the black hole will
be absorbed by the black hole, in carrying out this event another candidate
solution (star) is born and distributed randomly in the search space and starts
a new iteration, this is known as probability of crossing the event horizon. This
is done to keep the number of candidate solutions constant.

The radius of the event horizon in the black hole algorithm is calculated by
using the following equation: E = fBH/

∑N
i=1 fi. Where fbh is the fitness value

of the black hole, fi is the fitness value of the ith star, and N is the number of
candidate solutions (stars). When the distance from the black hole with the star
is less than the radio, or in other words when the difference in fitness between
the black hole and the star is less than the radio, that star is swallowed by the
black hole.

3.1 Binarization

When the star moves toward the black hole, the algorithm generates a real
number which must be transformed to a binary domain due to the nature of
the problem treated. To this end, we firstly employ a transfer function, which
map a real value to a [0, 1] real interval. As transfer function we employ the
V-shaped-V4 (Eq. 1), which is was the best-performing one among the 8 tested
transfer functions (4 S-shaped and 4 V-shaped) [8,13]. Then, the resulting value
from the transfer function is discretized via the half method depicted in Eq. 2 in
order to obtain a binary value.

T (x) =
∣∣∣∣
2
π

arctan
(π

2
x
)∣∣∣∣ (1)

xi(t + 1) =

⎧
⎨

⎩

1 if rand > 0.5

0 otherwise
(2)

3.2 Repairing

The BHA, as most metaheuristics do, generates a random population with solu-
tions that violate the constraints, i.e., solutions holding uncovered rows. Repair-
ing operators are responsible for turning unfeasible solutions on feasible ones.
To this end, we incorporate a heuristic operator that achieves the generation of
feasible solutions, and additionally eliminates column redundancy [3].
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To make all feasible solutions we compute a ratio based on the sum of all the
constraint matrix rows covered by a column cj/Nuc, where Nuc is the amount of
uncovered columns. The unfeasible solution are repaired by covering the columns
of the solution that had the lower ratio. After this, a local optimization step is
applied, where column redundancy is eliminated. A column is redundant when
it can be deleted and the feasibility of the solution is not affected.

4 Experiment Results

The performance of the proposed black hole algorithm was experimentally eval-
uated by using 40 preprocessed instances of the SCP from the Beasley’s OR-
Library1. This algorithm has been implemented in Java and the experiments
have been launched on a 2.3 Ghz Intel Core i3 with 4 GB RAM machine run-
ning Windows 7. We employ an initial population of 20 stars, 4000 iterations
and 20 executions per instance. The results are given in Table 1 where column 1

Table 1. Results obtained by BHA for the tested SCP instances.

Instance Opt Best Avg RPD Instance Opt Best Avg RPD

4.1 429 430 430.25 0.23 6.1 138 140 142.95 1.45

4.2 512 512 512 0.0 6.2 146 147 149.1 0.68

4.3 516 516 517.2 0.0 6.3 145 145 147.7 0.0

4.4 494 495 495.25 0.20 6.4 131 131 131 0.0

4.5 512 514 514.9 0.39 6.5 161 161 163.5 0.0

4.6 560 560 560.9 0.0 A.1 253 253 255.5 0.0

4.7 430 430 431.1 0.0 A.2 252 253 257.35 0.39

4.8 492 493 496.3 0.20 A.3 232 233 235.65 0.43

4.9 641 644 648.05 0.46 A.4 234 234 234.95 0.0

4.10 514 514 515.05 0.0 A.5 236 236 236.7 0.0

5.1 253 253 255.6 0.0 B.1 69 69 70.3 0.0

5.2 302 305 306.2 0.99 B.2 76 76 77.6 0.0

5.3 226 228 228 0.88 B.3 80 80 80.9 0.0

5.4 242 242 242.25 0.0 B.4 79 79 80.1 0.0

5.5 211 211 211.4 0.0 B.5 72 72 72.3 0.0

5.6 213 213 213.15 0.0 C.1 227 229 231.25 0.88

5.7 293 293 295.05 0.0 C.2 219 219 221.4 0.0

5.8 288 288 289 0.0 C.3 243 245 250.7 0.82

5.9 279 279 282.35 0.0 C.4 219 219 222.7 0.0

5.10 265 265 265.1 0.0 C.5 215 215 216.6 0.0

1 Available at http://www.brunel.ac.uk/∼mastjjb/jeb/info.html.

http://www.brunel.ac.uk/~mastjjb/jeb/info.html


A Black Hole Algorithm for Solving the Set Covering Problem 859

shows the SCP instance, column 2 depicts the best known optimum for the
instance, column 3 provides the best optimal value found by the algorithm, while
columns 4 and 5 show average of results and the relative percentage deviation,
respectively. The relative percentage deviation (RPD) is computed as follows:
RDP = (Z −Zopt)/Zopt × 100, where Z is the best optimum value found by the
metaheuristic and Zopt depicts the best known optimum value for the instance.

In Table 2, the proposed approach is compared with three recently reported
metaheuristics for the SCP, namely, shuffled frog leaping algorithm (SFLA) [7],
XOR-based artificial bee colony (xABC) [16], and a binary firefly algorithm
(BFF) [8]. Table 3 depicts the amount of global optimums reached by each algo-
rithm. BHA is able to reach 27 global optimums, while the results for the remain-
ing 13 instances stay very near to the global optimum (RPDs around 1 %). The

Table 2. Results obtained using BHA for instances SCP

Instance Opt BHA SFLA xABC BFF Instance Opt BHA SFLA xABC BFF

4.1 429 430 430 430 429 6.1 138 140 140 142 138

4.2 512 512 513 512 517 6.2 146 147 147 147 147

4.3 516 516 519 519 519 6.3 145 145 147 148 147

4.4 494 495 501 495 495 6.4 131 131 131 131 131

4.5 512 514 514 514 514 6.5 161 161 166 165 164

4.6 560 560 563 561 563 A.1 253 253 255 254 255

4.7 430 430 431 431 430 A.2 252 253 160 257 259

4.8 492 493 497 493 497 A.3 232 233 237 235 238

4.9 641 644 656 649 655 A.4 234 234 235 236 235

4.10 514 514 518 517 519 A.5 236 236 236 236 236

5.1 253 253 254 254 257 B.1 69 69 70 70 71

5.2 302 305 307 309 309 B.2 76 76 76 78 78

5.3 226 228 228 229 229 B.3 80 80 80 80 80

5.4 242 242 242 242 242 B.4 79 79 79 80 79

5.5 211 211 211 211 211 B.5 72 72 72 72 72

5.6 213 213 213 214 213 C.1 227 229 229 231 230

5.7 293 293 297 298 298 C.2 219 219 223 222 223

5.8 288 288 291 289 291 C.3 243 245 253 254 253

5.9 279 279 281 280 284 C.4 219 219 227 231 225

5.10 265 265 265 267 265 C.5 215 215 217 216 217

Table 3. Optimums reached for the 40 instances

BHA SFLA xABC MBFF

Opt. reached 27/40 10/40 7/40 11/40
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results also illustrate that BHA greatly outperforms its competitors, which were
unable to reach more than 12 optimum values from the 40 tested instances.
Let us also note the robustness of the proposed BHA, whose averages for 20
executions remain very close to the best optimum value found.

5 Conclusions

In this paper we have presented a new approach for solving SCPs based on the
black hole algorithm. We have incorporated a transfer function and a discretiza-
tion method in order to handle the binary nature of the problem. Repairing oper-
ators are also employed to avoid unfeasible solutions and column redundancy.
We have tested 40 non-unicost instances from the Beasley’s OR-Library where
the quality of results clearly outperform very recent reported metaheuristics for
the SCP. The proposed approach is also robust able to provide averages very
near to global optimums. As future work, we plan to test larger instances of the
SCP as well as to incorporate adaptive capabilities to the BHA for performing
parameter tuning during solving as exhibited in [18].

References

1. Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound proce-
dure for set covering. Locat. Sci. 5(3), 203–203 (1997)

2. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1),
85–93 (1987)

3. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J.
Oper. Res. 94(2), 392–404 (1996)

4. Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supple-
ment a simulated annealing heuristic for cost and coveragecorrelated set covering
problems. Ann. Oper. Res. 86, 611–627 (1999)

5. Caserta, M.: Tabu search-based metaheuristic algorithm for large-scale set covering
problems. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl,
R.F., Reimann, M. (eds.) Operations Research/Computer Science Interfaces Series,
vol. 39, pp. 43–63. Springer, New York (2007)

6. Ceria, S., Nobili, P., Sassano, A.: Annotated Bibliographies in Combinatorial Opti-
mization. Wiley, Chichester (1997)

7. Crawford, B., Soto, R., Peña, C., Palma, W., Johnson, F., Paredes, F.: Solv-
ing the set covering problem with a shuffled frog leaping algorithm. In: Nguyen,
N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9012, pp. 41–50.
Springer, Heidelberg (2015)

8. Crawford, B., Soto, R., Riquelme-Leiva, M., Peña, C., Torres-Rojas, C., Johnson,
F., Paredes, F.: Modified binary firefly algorithms with different transfer functions
for solving set covering problems. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K.,
Prokopova, Z., Silhavy, P. (eds.) Software Engineering in Intelligent Systems. AISC,
vol. 349, pp. 307–315. Springer, Heidelberg (2015)

9. Cuesta, R., Crawford, B., Soto, R., Paredes, F.: An artificial bee colony algorithm
for the set covering problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy,
P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science.
AISC, vol. 285, pp. 53–63. Springer, Switzerland (2014)



A Black Hole Algorithm for Solving the Set Covering Problem 861

10. Grossman, T., Wool, A.: Computational experience with approximation algorithms
for the set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997)

11. Hatamlou, A.: Black hole: a new heuristic optimization approach for data cluster-
ing. Inf. Sci. 222, 175–184 (2013)

12. Krarup, J., Bilde, O.: Plant location, set covering and economic lot size: an 0 (mn)-
algorithm for structured problems. In: Collatz, L., Meinardus, G., Wetterling, W.
(eds.) Numerische Methoden bei Optimierungsaufgaben. International Series of
Numerical Mathematics, vol. 36, pp. 155–180. Birkhuser, Basel (1977)

13. Mirjalili, S., Hashim, S., Taherzadeh, G., Mirjalili, S., Salehi, S.: A Study of Differ-
ent Transfer Functions for Binary Version of Particle Swarm Optimization. CSREA
Press, Las Vegas (2011)

14. Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary
particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

15. Ruffini, R., Wheeler, J.A.: Introducing the black hole. Phys. Today 24(1), 30 (1971)
16. Soto, R., Crawford, B., Lizama, S., Johnson, F., Paredes, F.: A XOR-based

ABC algorithm for solving set covering problems. In: Gaber, T., Hassanien, A.E.,
El-Bendary, N., Dey, N. (eds.) Proceedings of the 1st International Conference on
Advanced Intelligent System and Informatics (AISI). AISC, vol. 407, pp. 208–218.
Springer, Switzerland (2016)
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