
3D Protein Structure Prediction
with BSA-TS Algorithm

Yan Xu, Changjun Zhou, Qiang Zhang(&), and Bin Wang

Key Laboratory of Advanced Design and Intelligent Computing,
Dalian University, Ministry of Education, Dalian, China

zhangq26@126.com

Abstract. Three-dimensional protein spatial structure prediction with the
amino acid sequence can be converted to a global optimization problem of a
multi-variable and multimodal function. This article uses an improved hybrid
optimization algorithm named BSA-TS algorithm which combines Backtracking
Search Optimization Algorithm (BSA) with Tabu Search (TS) Algorithm to
predict the structure of protein based on the three-dimensional AB off-lattice
model. It combines the advantage of BSA which has a simple and efficient
algorithm framework, less control parameters and less sensitivity to the initial
value of the control parameters and the advantage of TS which has a strong
ability for the global neighborhood search, and can better overcome the short-
comings of traditional algorithms which have slow convergence rate and are
easy to fall into local optimum. At last we experiment in some Fibonacci
sequences and real protein sequences which are widely used in protein spatial
structure prediction, and the experimental results show that the hybrid algorithm
has good performance and accuracy.
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1 Introduction

The study of protein structure helps us understand the function of proteins and to
understand how they exercise their biological function, and understanding
protein-protein interaction (or other molecules) is very important for biology, medicine
and pharmacy [1]. In recent years, although the test methods for the determination of
protein structures develop well, it’s still time-consuming, expensive, and not applied
for some proteins difficult to crystallize. Therefore, we need to develop the theoretical
analysis. With the development of computer technology, it has gradually become an
important tool for processing large data of protein molecule.

Theoretical Prediction of protein three-dimensional structure is mainly divided into
the following three steps: Firstly, the mathematical model proposed should reflect the
interaction among the amino acid residues; Secondly, we have to establish a simple
calculated energy function which can also distinguish correctly between natural pro-
teins and other proteins based on the thermodynamic hypothesis, Thirdly, we have to
find the appropriate global optimization methods on the corresponding model to find
the minimum of energy function. Owing to the efforts of researchers, we have had lots
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of achievements about the above steps. There are two widely used models named
hydrophobic-polar (HP) model [2] and AB off-lattice model [3].The HP-lattice model
uses two types of residues to present the amino acid chains which are hydrophobic
(H) or non-polar residues and polar (P) or hydrophilic residues, and the residues on the
vertices of stack cubic lattices are linked sequentially by unit-length chemical bonds
[4–6]. This model is simple but it neglects local interactions which are important in
protein folding [7]. The AB off-lattice model is more accurate than HP-lattice model,
because the bond angles are free-to-rotate and it takes torsional energy of each pair of
bonds into account [8]. Though this model neglects the effect of side chains and
provides only a coarse-grained approximation to the real proteins, its off-lattice con-
struction still reflects some basic features of real proteins [9, 10]. Due to the complexity
of protein folding, it’s difficult to establish an accurate protein energy function. So
many simplified energy functions are proposed as in [1, 11, 12], etc. And in this paper
we use one of the most widely used energy function which is the same as that of [11] to
predict the protein 3D structure. As for the global optimization methods, many algo-
rithms have been proposed. Today, many algorithms have been proposed to predict
protein structure using HP-lattice model, such as Multi-Self-Overlap Ensemble
(MSOE), Ant Colony Optimization (ACO) [13], Multi-crossover and mutation Partial
Swarm Optimization-Tabu Search algorithm (MCMPSO-TS) [14], etc. The MOSE
algorithm uses a heuristic bias function to help the theoretical protein structure form a
hydrophobic core, but it is only efficient for the proteins of simple folding [13].
The ACO algorithm’s inspiration is from the observation of ants’ behavior of searching
for food, and the algorithm structure can be divided into three parts: construct ants
solutions, update pheromone, and daemon actions [13]. The MCMPSO-TS algorithm is
a hybrid search algorithm which combines the particle swarm optimizer (PSO) algo-
rithm and tabu search (TS) algorithm to get better global optimization ability [14]. The
used algorithms to predict protein structure with the AB off-lattice model are as fol-
lows, PSO, Tabu Search-Particle Swarm Optimization (TPSO) [15], Levy Flight Par-
ticle Swarm Optimizer (LPSO) [16], Genetic-Particle Swarm Optimization-Tabu
Search algorithm (PGATS) [17], Artificial Bee Colony algorithm (ABC) [18], etc.
The PSO algorithm is put forward on the basis of information transmission process of
migrating birds that every bird can not only remember the best place to find the
distance of the food but also know the optimal location found by the population of all
the birds [15]. The TPSO algorithm combines PSO and TS to take advantage of each
algorithm to improve the search precision and the ability to jump out local optimal [15].
The LPSO algorithm adds a random process named levy flight to PSO algorithm to
improve algorithm’s precision [16]. The PGATS algorithm is proposed on the basis of
GA-PSO algorithm which is a hybrid algorithm using the strategy of updating
parameter to guarantee the diversity of population in the late run of algorithm, while
enhanced TS algorithm and particle mutation strategy are combined to jump out the
local minimum [17]. The ABC algorithm is inspired from the behavior of bees, and the
main feature of the algorithm is that it doesn’t need to know the special information of
the problem while it only needs to compare the merits of the solutions [18]. Since the
algorithms aim to predict the structure of proteins, the most important criterion is the
lowest energy value of corresponding protein energy function. And this paper focuses
on getting lower energy value. We propose a hybrid optimization algorithm based on
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improved BSA and TS algorithm. It’s not only less sensitivity to initial values of
parameters but also more efficient than the algorithms above. Experiments using AB
off-lattice model shows that it can get lower energy value than nearly all the algorithms
above can get.

2 3D AB Off-Lattice Model

3D AB off-lattice model was proposed by Stillinger et al. [3] on the basis of
two-dimensional AB off-lattice model, which considers that the main reason for resi-
dues chain to fold into a specific spatial structure is the hydrophobicity of amino acid
residues. In this model, we divide the amino acid residues into hydrophobic (A) and
hydrophilic (B) two types. So, protein sequences can be simplified as sequences
consisted of only A and B [19, 20], and we can predict native structure of the proteins
by the relation between bond angles and bond energy of corresponding amino acids.

In the 3D space of this model, the residues of amino acid sequences are sequentially
connected into the polymer with no direction keys of unit length. We’d take the bond
angles between adjacent keys and the torsional angles of the two planes constituted by
the adjacent three key vectors into consideration when the model is used as 3D
structure of a protein [21–23]. Thus, the 3D structure of n residues is determined by
n� 2 bond angles h1; h2:. . .; hn�2 and n� 3 torsional angles b1; b2; . . .; bn�3. We set
the condition �p� hi; bi � p. hi and bi are positive when the angles clockwise rotate.
Otherwise, the angles are negative. Figure 1 is the configuration diagram of AB
off-lattice model.

The energy function of AB off-lattice model consists of bending energy and
potential energy of the Lennard-Jones type [24–27]. The energy function (E) of a
sequence of n residues is expressed as Eq. (1) [28]:

E ¼
Xn�2

i¼1

1
4
ð1� cos hiÞþ

Xn�2

i¼1

Xn
j¼iþ 2

4½r�12
ij � Cðni; njÞr�6

ij � ð1Þ

The first part is bending potential energy which is only associated with bond angles.
The second part is gravitational potential energy of any two non-adjacent residues
which is not only related to polarity but also the distance of them. Here, rij represents
spatial distance of non-adjacent residues, ni represents the category of different resi-
dues. If the i� th residue is A, ni ¼ 1, if it is B, ni ¼ �1.

Fig. 1. Configuration diagram of AB off-lattice model
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Where:

Cðni; njÞ ¼
þ 1 ni ¼ 1; nj ¼ 1

þ 0:5 ni ¼ �1; nj ¼ �1

�0:5 ni 6¼ nj

8><
>: ð2Þ

We can see from Eq. (2) [28] that the pairs of residues AA has strong gravity, the
pairs of residues BB has less gravity, and AB has weak repulsion. It reflects the true
characteristic of real protein to a certain extent that hydrophobic cores form due to
larger gravitational between hydrophobic residues when the protein fold into a spatial
structure, at the same time, hydrophilic residues are excluded to the outside.

Therefore, the problem of protein structure prediction in the AB off-lattice model
becomes the problem to find the n� 2 bond angles and n� 3 torsional angles to
minimize the protein energy function E, as Eq. (3) [17]:

min
hi;bi2 �p;p�ð

E h1; h2; . . .; hn�2; b1; b2; . . .; bn�3ð Þ ð3Þ

3 BSA-TS Algorithm

3.1 BSA

Backtracking Search Optimization Algorithm (BSA) [29] was put forward by Pinar
Civicioglu in 2013 for solving real-valued numerical optimization problems. Unlike
many evolutionary algorithms, BSA only has one control parameter, and the initial
value of the parameter has limited impact on the problem-solving performance. BSA
has a simple but effective structure which enables it to easily solve multimodal
problems.

3.1.1 BSA’s General Algorithm Framework
The algorithm framework of BSA is analogous to differential evolution algorithms, and
it can be explained by dividing its functions into five parts: initialization of population,
selection-I, mutation, crossover, and selection-II [29, 30]. Figure 2 is BSA’s general
algorithm framework:

It has two new crossover and mutation operators to generate a trial population, and
the strategy for controlling the search-space boundaries and amplitude of the
search-direction matrix enables it to have very strong exploitation capabilities.

3.1.2 Improved Strategies of BSA
(1) At the end of crossover strategy, we use two randomly choices to update the
individuals beyond the search-space limits. One is the standard method that we
regenerate the j� th element of individual Mi beyond the search-space limits using
Mij ¼ rand � ðupj � lowjÞþ lowj, where upj means the upper bound and lowj means
the lower bound of the j� th component of problem; another boundary control method
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is that if the value of trial population is greater than the upper bound, Mij will be set as
upj, and if the value of Mij is less than lowj, Mij will be set as lowj.

(2) Since BSA’s convergence speed is slow, this paper will use Penalty strategy to
replace Selection-II strategy: First, we sort the parent population P in ascending order
according to the fitness value, then we take its first half as R and combine R and the trial
population T obtained after the operation of crossover as a new population Mu. Sec-
ondly, the Euclidean distance dij between the individuals of Mu is calculated, and if dij
is less than D (experience value, related to the length of protein sequence), the greater
fitness value between Mui and Muj will be replaced by Penalty (experience value, this
paper take 1013), and then we sort the individuals of Mu in ascending order according
to the fitness value and take the first popsize individuals to update population P.

3.2 TS Algorithm

TS algorithm was put forward by Fred Glover in 1986 [31–33] based on the local
neighborhood search algorithm. Considering that the local neighborhood search is too
greedy for a local search which is easy to lead to falling into local minimum, tabu
strategy is used in TS to gain more search space to jump out of a local optimal solution
(not completely abandoned) and the good individuals can avoid to be missed with the
application of aspiration criterion.

3.2.1 Description of TS
The process of TS can be described as follows:

Step 1: Set the algorithm parameters, initialize the current solution randomly and
set tabu list blank.

Step 2: Judge whether the termination criterion is satisfied; if it is, jump to step 6.
Step 3: Generate the neighborhood solutions of the current solution, and determine

the candidate solutions.
Step 4: Judge whether the aspiration criterion is satisfied; if it is, set the solution as

the current solution, put its fitness into tabu list, update the optimal state, and jump to
step 2.

Fig. 2. BSA’s general algorithm framework
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Step 5: Judge the taboo attributes of candidate solutions, set the optimal state of
candidate solutions which is not in tabu list as current solution, and jump to step 2.

Step 6: Output the optimization results.

3.2.2 Improved Strategy of TS
TS algorithm is used in the second part of BSA-TS hybrid optimization algorithm so
that the algorithm can jump out of a local optimal solution. In this paper, we use a
mutation operator to generate the neighborhoods of current solution. On the one hand,
the mutation operator can guarantee the diversity of particles in the early stage of the
algorithm; on the other hand, it produces less disruption to the current solution to
ensure the global convergence of the algorithm. The strategy is as follows:

Select the k � th element of individual x, then perform mutation operator, the k � th
element of new individual xnew after mutation is as follows [31]:

xknew ¼ xk þ 2 � p � f ðrÞ � c � ratei ð4Þ

Where c is a random number between 0 and 1, rate is scale factor, i is the current
iteration the range of which is from 0 to K-1 (K is the size of neighbors). In this paper,
we set rate as 0.95 which is the same as that in reference [31]. f ðrÞ is the correlation
coefficient which is defined with Eq. (5) [17]:

f ðrÞ ¼ 1; r� 0:5

�1; r\0:5

(
ð5Þ

Where r is a random number between 0 and 1.

3.3 BSA-TS Algorithm

3.3.1 Parameters
In this paper, the BSA-TS algorithm is realized through MATLAB R2012a in Win-
dows 7 system. According to the references and the experience of experiment, the
parameters are set as follows: the population size popsize is 200; the maximum number
of iterations of the part of BSA maxcycle is 3000; crossover rate mixrate is 0.88;
Penalty is 1013 (appropriate adjustments are needed according to different sequence
lengths). The size of neighborhood K is 800 during the part of TS algorithm; the
maximum iteration of the part of TS W is 2000; tabu length tabulength is 10 + N, and
rate is 0.95.

3.3.2 Initialization
It’s need to initialize the coordinates of each individual when we calculate the corre-
sponding fitness value. The coordinates are all calculated with Eq. (6).
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ðxi; yi; ziÞ ¼

ð0; 0; 0Þ i ¼ 1

ð0; 1; 0Þ i ¼ 2

ðcos h1; sin h1; 0Þ i ¼ 3

ðxi�1 þ cosðhi�2Þ cosðbi�3Þ; yi�1 þ sinðhi�2Þ cosðbi�3Þ; zi�1 þ sinðbi�3ÞÞ 4� i� n

8>>>><
>>>>:

ð6Þ

3.3.3 Description of BSA-TS Algorithm
During the BSA-TS algorithm based on AB off-lattice model, the first step is to
initialize each parameter, and generate population P and population Pold randomly
which both contain N individuals whose range is �p; p½ �. Then the improved BSA
algorithm is used to obtain the local optimal solution. At last, the result gained by
improved BSA is used as the initial solution of TS algorithm in order to avoid the low
efficiency of search caused by casual initialization.

The algorithm framework of BSA-TS is as Fig. 3:

Fig. 3. Algorithm framework of BSA-TS
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As we can see from Fig. 3, the process of BSA-TS can be briefly described as
follows:

Step 1: Set algorithm parameters and initialize the population P and Pold randomly.
Step 2: Judge the termination criterion of the part of BSA that whether

epk\maxcycle; if it does, continue execution, else jump to step 4.
Step 3: Execute the Selection-I, mutation, crossover, boundary control, and penalty

sequentially.
Step 4: Set global optimal solution obtained by BSA as the initial current solution

and set the tabu list blank.
Step 5: Execute the part of improved TS, and output the optimization result when

the termination criterion of TS is met.

4 Experimental Results and Discussion

4.1 Prediction with Fibonacci Sequences

Fibonacci Sequences [34] usually used in the protein structure prediction are defined as
follows:

S0 ¼ A; S1 ¼ B; . . .; Siþ 1 ¼ Si�1 � Si ð7Þ

where ‘*’ is a connection symbol, A denotes a hydrophilic amino acid and B denotes a
hydrophobic amino acid.

Table 1 shows the trial Fibonacci Sequences. Table 2 shows the comparison of
lowest energy values of the 3D structures of corresponding Fibonacci Sequences
gained by PSO, TPSO, LPSO, PGATS, ABC and BSA-TS.

We can see from the Table 2 that the lowest energy values of the Fibonacci
Sequences gained by BSA-TS are lower than those obtained by PS0, TPSO, LPSO,
PGATS and ABC except the sequence length of 13. The detailed description is as

Table 2. Lowest energy values of Fibonacci Sequences

Length E(PSO [15]) E(TPSO [15]) E(LPSO [16]) E(PGATS [17]) E(ABC [18]) E(BSA-TS)

13 −1.2329 −4.7284 −4.6159 −0.6914 −0.8875 −1.3852
21 −2.7268 −8.7379 −6.6465 −7.2423 −8.1083 −9.9878
34 −4.6756 −10.7983 −7.3375 −8.9361 −10.3953 −11.3741
55 −6.9587 −13.0352 −13.0487 −18.3413 −22.4172 −23.1124

Table 1. Fibonacci Sequences

Length Sequence

13 ABBABBABABBAB
21 BABABBABABBABBABABBAB

34 ABBABBABABBABBABABBABABBABBABABBAB
55 BABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB
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follows. When the sequence length is 13, the lowest energy value BSA-TS get is
−1.3852 while the lowest energy value TPSO gets is −4.7284 and the lowest energy
value LPSO gets is −4.6159 which means the 3D structure we get is less stable than
TPSO and LPSO gets but more stable than the ones other algorithms can get. Addi-
tionally, when the sequence length is 21, the lowest energy value BSA-TS gets is
−9.9878 while the lowest energy value other algorithms can get is −8.7379, and when
the sequence length is 34 or 55, the lowest energy values BSA-TS get are −11.3741
and −23.1124 correspondingly while the lowest energy values others get are only
−10.3953 and −22.4172 correspondingly. Therefore, we can conclude that the BSA-TS
algorithm can effectively predict the 3D structure of protein using Fibonacci Sequen-
ces. In addition, Table 3 lists the bond angles and torsional angles of the corresponding
lowest energy configurations predicted by BSA-TS algorithm.

Table 3. The bond angles and torsional angles of the Fibonacci Sequences

Length Bond angles Torsional angles

13 -0.3628 0.7875 -0.7895 0.7097 -0.6639 -0.0994
1.2286  -0.2492 -0.1753 -0.1750 -0.1601

2.8530 -0.3179 -2.8831 2.8440 -1.7237 0.3422  
-2.7739  1.9743 0.4938  2.2847

21 1.7060 -0.2291 -1.6908 -0.1045 -1.4767 -1.5979  
0.2081 -1.1960 0.2501 -0.7140 -1.6455 -3.0239
1.6622 0.5601 -2.3997 0.2236 0.5165 0.0623 
1.3040

-2.9754 0.0819 2.4444  -2.9474 2.1367  -0.5892 
2.9450  -2.5439 -0.6408  -2.8518 2.9076  3.0691  
-1.2841  0.1008 -2.0082 2.7850 1.2461 -3.0852

34 -0.4068 0.4435 -0.0085 -0.3523 -0.1423 1.1838  
0.2099 -0.5724 -0.0215 0.1309 -0.8883 -2.1602  
2.4730 1.4351 2.3091 0.3918 0.6735 -0.0749
-1.8545 0.6571 -0.3539 1.3239 -0.8056 2.6495
-0.0305 -0.0302 -1.4765 0.4551 -0.1490 -0.9108
-0.3853  -0.3279

2.1896  1.6225  3.1086 -1.6649 3.1415 -0.8286  
-0.8557 -1.4109  -0.6137 -2.8643 2.5595  2.9795
1.1119 -3.0203  1.9413 -2.8573 -1.2443 0.12009
-1.2598 -0.8768 -0.2696  1.9029 3.1141 -0.9851
-0.4882 2.8255 -1.7022 2.8262  1.9140  1.9823  
0.1182

55 2.2460 1.6626 0.4867 0.0342 -2.6134 0.3197 
0.0549 -0.3452 1.1502 3.0766 0.7785 0.2919  
0.8690 0.4825 -0.3523 0.5528 0.0061 0.7276 
-0.1749 1.0492 0.0944 -1.1531 0.3756 -1.4246
-0.0682 -0.8392 -0.0050 0.1595 -0.4820 -0.8138  
0.3366 1.8634 -1.0231 -0.6281 -0.4771 0.8827 
-0.7381 -0.4107 1.9268 0.5257 1.7866 0.0016
0.5750 0.8842 0.6126 0.2646 0.6930 -2.5114 
-0.5513 -0.8263  0.0431 -0.0702 0.8027

-0.7226 -3.0247 -1.4403 -3.1272 -0.3214 1.6093
-0.1444 -2.6634 0.5139 3.0125 2.3433 2.5964
-2.7821 -0.5445 -0.5445 0.8094 2.4836 0.3339
-2.9688 -0.9562 -2.2109 -2.0836 0.4244 2.1284
2.3701 2.8072  -1.5283 2.9689 2.5052 1.9350
-2.8566 -0.7047 -0.8226 0.8132 -2.8299 0.0178
-1.4940 -0.0431 -2.1355 0.2835 -1.5955 -2.0911
-3.0494 1.3662 1.6923 0.9561 0.3247 0.0241
-1.1321 -1.7392 -1.5901 0.2267

Table 4. Fibonacci Sequences

Name Real protein sequences

2KGU GYCAEKGIRCDDIHCCTGLKCKCNASGNCVCRKK

1CRN TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN

2KAP KEACDAWLRATGFPQYAQLYEDFLFPIDISLVKREHDFLDRAIEALCRRLNTLNKCAVMK

1PCH AKFSAIITDKVGLHARPASVLAKEASKFSSNITIIANEKQGNLKSIMNVMAMAIKTGIEITIQADGNDADQAIQAIKQTMIDTALIQG
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4.2 Prediction with Real Protein Sequences

In this section, we use the real protein sequences which are the same as those in
reference [16]. These protein sequences can be downloaded from PDB database. The
real protein sequences used in this paper are as follows:

In Table 4 above, A, C, G, I, L, P, M and V are hydrophobic amino acids, and D, E,
F, H, K, N, Q, R, S, T, W and Y are hydrophilic amino acids.

Table 5 shows the lowest energy values of real protein sequences.

We can see from Table 5 that the lowest energy values of the real protein sequences
obtained by BSA-TS are lower than all those gained by PSO, TPSO, LPSO, PGATS
and ABC. When the real protein sequence is 2KGU, 1CRN, 2KAP or 1PCH, the
lowest energy values BSA-TS get are −34.2979, −57.6271, −36.1682 and −64.2034
correspondingly while the lowest energy values others get are −32.2599, −52.3249,
−30.3643 and −63.4272 correspondingly. So we can conclude that our algorithm is
feasible and effective to predict the 3D structure of real proteins.

Tables 2 and 5 show us that BSA-TS algorithm is efficient especially in real protein
3D structure prediction. When we predict protein 3D structure using Fibonacci
Sequences, our algorithm is better-behaved as the sequence length is longer.

Table 6 lists the bond angles and torsional angles of the real protein sequences.
The following Figs. 4, 5, 6 and 7 show the 3D structures of real protein sequences

predicted by BSA-TS algorithm and the real 3D protein structures downloaded from
PDB database. We can conclude that the 3D structures predicted by BSA-TS algorithm
are similar to the native structures of real protein sequences.

Table 5. Lowest energy values of real protein sequences

Length E(PSO
[15])

E(TPSO
[15])

E(LPSO
[16])

E(PGATS
[17])

E(ABC
[18])

E
(BSA-TS)

2KGU −8.3635 −21.725 −20.9633 −32.2599 −31.9480 −34.2979
1CRN −20.1826 −53.249 −28.7591 −49.6487 −52.3249 −57.6271
2KAP −8.0448 − −15.9988 −28.1052 −30.3643 −36.1682
1PCH −18.4408 − −46.4964 −49.5729 −63.4272 −64.2034

Fig. 4. Comparison of 2KGU
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Fig. 5. Comparison of 1CRN

Table 6. The bond angles and torsional angles of the real protein sequences

Length Bond angles Torsional angles
2KGU -0.1669 -2.1412 0.5268 1.0975 0.6641 -0.6898  

-0.0870 -0.9542 1.2376 -0.5065 1.2986 0.1739  
0.9168 -0.5940 0.1924 -0.7341 -2.1755 -0.1885
-0.2038 -1.6865 1.4663  -0.0153 1.9151  0.3536  
-0.8108 -0.5097 -0.8404 -0.3395 -0.4083 -0.0663
0.2804 -0.0695

-0.2863 -2.4203 -0.8223 0.6329 0.3648 -0.4762 
-2.8107 -2.2882 -2.7528 0.6952 -0.8064 1.0594
3.0347 2.2126 -0.0201 3.0931 1.9193 -0.0871
0.2158 -1.4376 -0.4826 0.1887 -0.8352 2.9711 
2.8954 0.8762 0.4116 2.3652 2.6159 3.1284  
-2.0677

1CRN -1.0309 1.3664 2.6891 3.1397 2.3024 -0.2724
3.0375 0.4026 0.7938 0.1767 -0.9387 0.5290  
-2.5929 2.8024 1.0391 -1.3766 -1.3262 -2.1526
-1.3986 -0.9282 -0.1275 1.8422 0.4736 2.2159  
1.3804 -3.0722 -2.7121 3.1415 -1.3889 3.0151 
-2.7292 0.7079 0.8372 2.7774 -1.0847 2.8761 
-1.2265 0.0101 2.9683 2.3007 1.5776 0.0646 
-0.4970 -0.2516

-2.8446 -3.1320 -3.0271  1.1321 3.0215 0.1266
2.9643  3.0683  -1.6614  -0.1102  0.6941  -3.1415
3.0557  2.9317 2.3983  3.0544  -3.1379 2.9053
1.0244 3.0738  -2.9137  -2.9375 3.0696 1.0664
1.3315 2.2323 -2.3403 -1.9422 -1.8556 3.0852  
-1.8929 -3.0891  -2.9064 1.8116 -2.92622  0.6080
-2.9443  -0.6404  0.7859 2.0981  1.7601 1.1664  
2.9888

2KAP -0.8093 -2.6397 -1.4801 2.7926 -0.9642 1.1006 
0.5790 -2.4767 -0.6579 -0.1268 1.5880 0.5674 
-0.1187 -0.0890 3.1111 -1.3020 0.3872 -0.1273
3.0466 -0.1876 -0.6100 0.6134 -0.2001 -2.2949
0.0518 0.4158 -1.0209 0.6070 -0.5793 -0.4586
-0.6472 1.5600 1.6117 -0.0652 -0.0821 1.3515
-0.8105 0.3333 2.4782 -0.2398 1.3061 -0.2418
-2.5771 1.8776 -0.1988 -0.0387 1.1343 -1.8387
2.8144 0.8608 0.0760 -2.6360 0.1188 0.4682
-0.6844 1.6049  -1.8006 -2.8131

2.7281 2.5670  1.2743  1.9036 3.0824 1.0521 
2.6126  -1.1302 -1.1949 2.6947 3.1385  -2.2617  
-1.5645  0.2669  -0.8673  2.5987  1.5325 2.7385
-0.3973 -1.7132 2.8115  -1.4590 -2.6958 -1.4388
2.8513  -0.5225 2.1355  2.9261 2.7558 2.1957
1.9057  2.8829  0.6679  -0.8247 -1.8422 3.0278
-2.8976 -2.1764  -0.1172  -2.8647 -1.4149 2.6605
1.8947  1.5988 1.6319  1.2730 2.6464  -2.6444  
-0.3847  -0.6969  -1.1354  3.1373  -2.4517 -0.9580
-3.1240 1.9528 2.4207

1PCH 2.3837 0.1135  2.6722  1.9575  -0.5914 0.2811  
-3.1011 -1.3585 2.6625 -0.7666 -0.7084 -1.7524  
0.2117 -0.5654 -2.8569 2.7067 0.4575 -0.5063
-0.8123 -0.1471 -2.8126 2.5275 -3.1160 -2.5324  
0.4686 -0.4004 -0.5082 0.6098 1.8765 2.6603
-1.5606 2.6624 1.5806 1.0635 -0.0267 3.0000 
-0.1611 1.7959 2.1088 -0.0154 2.9183 -1.1740
-0.2116 -0.1058 -2.9054 3.0543 -1.1305 -0.5472  
0.8016 -0.1468 0.2492 -2.1617 -1.7842 3.0632
-1.5919 -2.8640 -1.4369 -0.3443 1.0223 2.9372
-0.5600 -1.0349 0.1674 -1.6850 -0.5322 -1.9706
-0.1369 -1.0825 0.7210 2.5296 1.5400 -1.3621  
0.2749  0.1890 0.0591  1.4680 -1.8232  2.9289  
3.0575  2.3969 0.9394  2.3725 1.3217 -1.5052
0.6403  1.8016

1.5935 2.9751 -2.8858 1.7250 1.6557 2.7454
-2.8892 -1.1813 -0.7274 -1.7867 -2.8427 1.8842
-3.0660 2.1229 3.0021 0.8008 -3.1403 -2.7152
-1.6630 -2.0733 2.8908 1.3000 -3.0625 -0.9310
-2.6517 -0.8686 -3.1177 -1.8400 -2.4446 -2.8957
-2.8986 -3.1346 1.1236 1.6356 0.6595 1.3642 
1.8976 -3.1415 -1.8336 3.0343 -1.8864 -1.4394 
-1.8338 -1.9093 -3.1348 -2.4358 2.6950 -1.7528
-2.6725 1.6564 -3.0195 -2.8017 2.9032 -0.0004
-2.6430 -2.4618  -0.9320 2.9721  -2.9941  -0.0785  
-2.0973  -2.6544 2.7631  -1.9588  3.0461 1.2265  
-3.0795 0.3000  3.0480  3.0234  0.9044  -2.5036  
-1.2303 -1.7681 -0.9573 2.3549  2.1931  -2.9392
-3.0481  2.7907 0.4025 0.4407  -2.5874  0.1971  
-3.1274
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5 Conclusion

Due to the importance of 3D protein structure prediction, many theoretical prediction
algorithms are proposed. But on account of the complexity of prediction, the present
algorithms’ accuracy is usually unsatisfactory. Since the most important criterion is the
accuracy of algorithm, we focus on getting more stable structure with some widely
used Fibonacci Sequences and real protein sequences.

This paper proposes a BSA-TS hybrid optimization algorithm which integrates the
advantages of BSA that it has an efficient, fast structure, less control parameters and
powerful search capability and the advantage of TS that it has strong local search
capability and high precision of search. Additionally, the addition of penalty method
can effectively reduce the probability of falling into local optimum caused by general
BSA’s Selection-II strategy. Then we use BSA-TS to predict the structure of protein
based on the 3D AB off-lattice model. The experimental result shows that BSA-TS can
get more stable structures which have lower energy compared with the structures
gained by other algorithms. That indicates the feasibility of BSA-TS on protein
structure prediction problem.

Fig. 6. Comparison of 2KAP

Fig. 7. Comparison of 1PCH
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