Human-Autonomy Teaming Using
Flexible Human Performance Models:
An Initial Pilot Study

Christopher J. Shannon, David C. Horney, Kimberly F. Jackson
and Jonathan P. How

Abstract Recent advances in autonomy have highlighted opportunities for tight
coordination between humans and autonomous agents in many current and future
applications. For operations involving cooperating humans and robots, autonomous
teammates must have flexibility to respond to the inherently unpredictable behavior
of their human counterparts. To investigate this issue in detail, this paper uses an
unmanned aerial vehicle (UAV) simulation to evaluate flexible human performance
models over traditional static modeling approaches for multi-agent task allocation
and scheduling. Additional comparisons are drawn between adaptive human
models, which are adjusted in real-time by the autonomous planner according to
realized human performance, and adaptable human models, where the human
operator is given sole authority over model adjustments. Results indicate that
adaptive human performance models significantly increase total mission reward
over both the baseline static modeling framework (p = 0.0012) as well as the
adaptable modeling technique (p = 0.0028) for this system.
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1 Introduction

Traditional approaches to multi-agent planning typically view agents as indepen-
dent, autonomous vehicles. However, a variety of modern and future applications
require highly coordinated efforts between humans and autonomous systems [1].
Planning for humans in the loop presents several key challenges, including the
difficulties associated with adequately modeling actual human capabilities. In par-
ticular, reliable prediction of human task performance can be hard, and even
well-established models from the human factors community are subject to inter-
personal differences—such as experience and skill—as well as dynamic intraper-
sonal factors like distraction and fatigue [2]. These challenges motivate human
performance models that can be updated in real-time to ensure better consistency
between predictive planning and actual execution.

A promising strategy for human modeling is to use an adaptive approach in
which actual human performance is leveraged as feedback for autonomous
adjustments to models throughout mission execution. Adaptive autonomy has been
steadily gaining traction in human-robot interaction (HRI) applications over recent
years [3]. State-of-the-art autonomous systems that are able to reason on, and
respond to, the needs and intentions of a person present new opportunities for close
synergy between people and autonomy [4]. Recent studies have produced planners
that enable a single robot to dynamically execute a shared plan with a human [5],
while other efforts have developed intelligent task management strategies for
human operators that regulate and optimize over human workload parameters [6, 7].
Additionally, adaptive levels of automation have shown promise for human
supervisory control of multiple robots [8].

Apart from feedback based on realized human performance, an adaptable
autonomy construct can provide information to the planner directly from the user.
Examples include actively changing mission objective functions in real-time [9] as
well as adjusting levels of automation [8]. This can enhance the user’s control of the
environment, which has been shown to help in terms of change detection, system
transparency, and overall user satisfaction within a variety of domains [10].
However, since adaptable autonomy requires deliberate user feedback, it can
increase workload and draw attention away from the main task at hand. In addition,
relying on human interaction may be less optimal than a well-designed adaptive
framework [3].

Drawing from these strategies, this pilot study focuses on an evaluation of
adaptive and adaptable human performance models for the allocation and
scheduling of joint human-robot tasks amongst a heterogeneous, dynamic
human-robot team. Models for the human operators’ predicted task durations and
workload thresholds are used to investigate the advantages and drawbacks of
adaptive and adaptable human modeling in the context of these highly coordinated
multi-agent systems. Results from the human subject experiment (n = 12) provide
insights into the use of flexible human performance models for human-autonomy
teaming.
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2 Background

For this pilot study, the human participant’s role within the multi-agent mission is to
classify a series of discrete pieces of imagery. These imagery classifications are
time-critical: the values of accurate imagery information acquisition are functions of
time (e.g. time-windows and exponential time-decays). Therefore, the amount of
time an operator needs for correct classification and the rate at which he can be
presented with new demands are important for the allocation and scheduling of
tasks.

Figure 1 shows the two human performance models used in this pilot study.
Pew’s model (Fig. 1a) predicts that the correctness of a decision in a binary choice
increases as a sigmoidal function of time spent on the task [11]. In order to predict
or allocate task durations, probability of success may be optimized [7] or chosen (as
in this case) depending on requirements for speed versus accuracy. The workload
threshold model (Fig. 1b) moderates the rate at which tasks appear by incurring a
cost on proposed schedules that exceed the prescribed threshold. This model,
derived from the Yerkes-Dodson Law [13], uses the utilization metric defined as
operator busy time over total mission time in order to keep the human at a desirable
level of workload [12].

In our recent work, we have created a fast algorithm called ASSIST that inte-
grates humans into the traditional task allocation and scheduling problem to pro-
duce plans for tightly coupled (i.e. synchronized joint-task) heterogeneous
human-robot teams [14]. ASSIST can be embedded into a closed-loop replanning
framework—in which humans are treated as dynamic agents—in order to adapt
human and environment models in real-time. This pilot study evaluates the ASSIST
planning framework and its various feedback mechanisms through actual
human-autonomy teaming experiments.
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Fig. 1 Human performance models for operator’s imagery classification tasks. a Pew’s model for
task duration [11]. b Workload threshold model [12]
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3 Aim of the Pilot Study

The quantitative hypotheses tested in this experiment compare static (baseline
open-loop approach), adaptive, and adaptable modeling strategies using an overall
mission reward metric. This reward is calculated as the summation of all suc-
cessfully completed tasks’ values at their respective execution times, and incorrect
imagery classifications result in zero reward for a task. Thus overall reward rep-
resents a measure of timely, accurate task completion as well as efficiency in the
allocation and scheduling of the tasks among the multi-agent team to optimize
execution in terms of specified mission goals. Subjective trends from
post-experiment participant questionnaires—plus other recorded measures such as
classification accuracy, mission makespan (total duration), and total vehicle dis-
tance traveled—supplement the evaluation.

We hypothesize that adaptive human performance modeling will result in the
most overall mission reward, with adaptable modeling resulting in the second most
reward, and static modeling resulting in the least. Autonomous adjustments of the
models based on realized performance from actual mission execution in real-time
should alleviate mismatches between the planning phase’s models and the humans’
actual ability. For the adaptable mode, the user’s adjustment of these models should
also mitigate model mismatches, albeit less efficiently than the autonomous adap-
tive mode. Additionally, the baseline static modeling case will likely illuminate the
issues of rigid, one-size-fits-all open-loop approaches to modeling human agents.

We also hypothesize that the adaptable human performance modeling strategy
will be the most preferred by users, with adaptive modeling being the second most
preferred, and static modeling being the least preferred. We predict that giving the
human operator authority over the models that predict his own performance (and
thus drive the allocation and scheduling of his tasks) will result in higher user
satisfaction than if the adjustments were made by the autonomous system instead.
We further predict that the adaptive mode will be preferable to the static mode due
to multi-agent plans that have flexibility and are more conformed to each partici-
pant’s actual ability.

4 Experimental Methods

The human-autonomy teaming mission consists of discrete surveillance tasks in
distinct locations throughout a map. Points of interest may have differing priorities
or time-criticalities which correspond to their respective task values. The ASSIST
planner allocates and schedules coupled human-robot pairs to the tasks, optimizing
plans for maximum task value while adhering to human operator heuristics and
constraints. The architecture uses the Robot Operating System [15] for a
high-fidelity multi-vehicle simulation. Participants interact with a standard laptop
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(2 GHz Intel Core i7 processor, 8 GB RAM) using a keyboard and mouse to
accomplish missions.

4.1 User Interface

The full interface is illustrated in Fig. 2. Multi-agent plans from the ASSIST
algorithm are executed by the human-robot team with the UAVs flying to task
locations and providing imagery to the human operator. The top right portion of the
interface provides an overhead mission view that allows the operator to anticipate
vehicles arriving to their specified survey waypoints. The top-left command line
prompts the user to alert him to incoming imagery. The bottom of the interface
shows the live, top-down video feeds from simulated on-board UAV cameras that
present the imagery to be classified.

The participant performs classification by inputting into the command line “c”
for circle imagery or “s” for square imagery as well as the count of moving images.
In all modes, this imagery flashes yellow to give the human operator an indication
as to when he is exceeding the duration allotted for the task by the planner. Overall
mission reward accumulates with timely, accurate completion of the joint
human-robot tasks. The user continues the process of classifying images throughout
the duration of the mission, cross-checking the overhead view for increased situ-
ational awareness and looking to the command line for incoming tasks and feed-
back on his performance.

Overhead [ & IB2
2| Mission View (S

Fig. 2 Full user interface for human-robot teaming mission
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4.2 Experiment Conditions

There are three conditions in this experiment which relate to the modeling of human
performance. Static modeling is a baseline control condition that uses open-loop
modeling of humans with planning parameters set a priori. Adaptive modeling
leverages actual human performance as feedback throughout each mission to
autonomously adjust models. Finally, adaptable modeling uses inputs from the
human operator to adapt his performance models during the mission. Replanning is
conducted at 15 s intervals in all modes with their respective models.

Static Modeling. The static modeling mode provides a baseline open-loop
approach to the representation of human performance. In this mode, humans are
considered to be homogeneous agents whose predicted task performance is
equivalent among different individuals. Moreover, they are assumed to be static,
modeled by rigid functions throughout the length of the mission. As illustrated in
Fig. 1, Pew’s model for predicted task duration and the utilization model for pro-
jected workload threshold are specified a priori. For this pilot study, predicted task
duration was set to 6.4 s, derived from the average length of time required for
novice operators to complete a task in preliminary testing. Projected workload
threshold was set to 70 %, consistent with previous studies involving human
operators and multiple UAVs [12] and aligning with subjective responses from
novice operators interacting with the current system.

Adaptive Modeling. The adaptive modeling mode leverages realized human
performance throughout mission execution to adjust the planner’s underlying
models in real-time. Human operators are treated as heterogeneous, dynamic agents
in that the specified models are adapted to fit the skills of each individual and
remain flexible to track actual human performance throughout the mission. Pew’s
model is initially set to 6.4 s for predicted task duration and the utilization model
originally specifies 70 % as the operator workload threshold. These values are then
updated in real-time based on actual performance by the operator.

The two human performance models are autonomously adapted by the
closed-loop system after each task. The actual time from the imagery’s appearance
to the operator’s task completion becomes the new predicted task duration for
future human-robot surveillance tasks. If the operator’s inputs are correct, the uti-
lization workload threshold is increased by 5 %, functioning as a heuristic to allow
more demand on a successful operator. If the classification or count is incorrect, the
utilization threshold is decreased by 15 %, decreasing overall workload on the
operator in the near future. In this mode, replanning not only alleviates discrep-
ancies between the current system state and past projections, but also leverages
up-to-date realized agent performance to generate plans that more closely mirror the
actual behavior of the multi-agent system. This closed-loop modeling strategy
alleviates model mismatches arising from heterogeneous human operators (e.g. a
model that is appropriate for one person may be ill-fitting for another) as well as
dynamic, stochastic human performance.
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Adaptable Modeling. As an alternative to the autonomous system providing
feedback of realized performance to the planner, an adaptable mode was developed
in which the human operator had sole authority over the adjustment of his per-
formance models. This strategy shifts responsibility of model updates from the
autonomy to the human operator in attempts at providing insights into both the
objective effects on multi-agent teaming as well as the subjective perceptions of the
user.

Adaptable adjustments are accomplished through the use of additional operator
inputs into the user interface. First, each human-robot surveillance task requires the
usual “c” or “s” classification input along with specifying the number of images.
Following these two inputs, the command line prompts the subject to “Enter ‘z’ if
too busy, ‘r’ if too bored (else, hit enter).” Inputting “z” decreases the operator
utilization workload threshold by 10 %, while “r” increases it by 10 %. The
command line then prompts the operator to “Enter ‘1’ for less allotted task time, ‘m’
for more allotted task time (else, hit enter).” Entering “I” shifts Pew’s model to
decrease predicted task duration by three seconds, whereas “m” moves it in the
opposite direction to increase predicted task duration by three seconds. These
discrete adjustment values were chosen from a range of possibilities upon
demonstrating satisfactory objective and subjective performance in preliminary
testing with novice users.

4.3 Procedure

Twelve individuals were selected to participate in the pilot study. Each experiment
began with the subject reading an instruction document that explained the study’s
purpose, the responsibilities of the participant, and the interaction procedures for the
user interface. Each subject was then guided through two full mission trials (with
three autonomous vehicle teammates and 15 surveillance tasks) for training pur-
poses. The first practice trial was conducted in the adaptive human performance
modeling mode to allow the subject to become familiar with his primary task. The
second practice trial was performed in the adaptable human performance modeling
mode in order for the subject to become familiar with providing feedback to the
planner. Upon completion of the two practice missions, the participant completed a
human-robot teaming mission in each of the static, adaptive, and adaptable human
performance modeling modes. The ordering of modes was counterbalanced among
the twelve participants (using the six possible combinations of mode ordering for
two participants each) in order to mitigate potential confounding variables of
learning and fatigue. The process required less than an hour of each participant’s
time, and all testing took place over a two week period.

Objective mission metrics were recorded throughout each trial. Total makespan
(or mission duration) and total vehicle distance traveled were noted. The start time,
duration, and accuracy of each task was recorded and used to compute overall
mission reward, average operator accuracy, and average task duration. All model
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shifting inputs in the adaptable mode (“too busy,” “too bored,” “less time,” “more
time”’) and their associated input times were also logged. This level of detail into all
relevant aspects of the mission allowed analysis of underlying reasons for
human-robot team performance trends, such as temporally overloaded operators,
model discrepancies between the planning phase and mission execution, and
dynamic human performance.

Upon completing all trials, each participant filled out a questionnaire. The survey
was used to evaluate situational awareness, team fluency, user interface satisfaction,
and human performance modeling mode preference. Specific questions relating to
the feedback modes (e.g. which was “most efficient in helping you complete the
task” and which mode “you most enjoyed using”) were included in the survey. In
order to garner as much information as possible from the pilot study, all questions
and choices were open-ended and prompted the subject to specify why they felt a
certain way. Participants’ subjective inputs provided insight into trends in the
objective metrics and aided in future system development after pilot study
completion.

5 Results

After all testing was completed, data were investigated both qualitatively and
quantitatively to evaluate the effects of the various human modeling strategies on
team performance and operator satisfaction. Primarily, statistical analysis of overall
mission rewards and evaluations of user mode preferences were used to compare
the three modes.

5.1 Objective Analysis

A one-way balanced ANOVA F-test was used to test whether there exists any
statistically significant differences among the three modes’ associated mission
rewards (Fig. 3). Based on the data and using a 95 % confidence interval, there is
reason to believe that there exists significant variation between the three modes in
terms of overall mission reward (F,3; = 8.645, p < 0.001). Therefore, direct
comparisons between each pair of modes using post hoc paired t-tests with
Bonferroni corrections [16] are appropriate.

Comparing adaptive human performance modeling against the baseline static
approach shows that average mission reward for the adaptive mode (M = 8116.25,
SD = 933.80) is significantly different than the static mode’s (M = 6649.21,
SD = 1372.39) average reward (#(11) = 4.353, p = 0.0012). With mean overall
reward being much higher for the adaptive case, results indicate that adaptive
human performance models significantly increase total mission reward over the
static modeling framework in the context of this experiment. A second paired t-test
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Fig. 3 Overall mission rewards between human modeling modes with standard error bars

comparing adaptable human operator modeling against the baseline static modeling
strategy gives no indication that mission reward from adaptable modeling
(M = 6311.36, SD = 1036.45) is significantly distinct from reward with static
modeling (M = 6649.21, SD = 1372.39) in this pilot study (#(11)= 0.631,
p > 0.05). A final paired t-test examines adaptive and adaptable human perfor-
mance modeling, demonstrating that adaptive human performance models
(M = 8116.25, SD =933.80) result in statistically significant improvement of
overall mission reward in comparison to adaptable models (M = 6311.36,
SD = 1036.45) for this experiment (#(11) = 3.826, p = 0.0028).

The data suggest that adaptive human performance models can promote more
effective coordination between humans and autonomous agents than traditional
open-loop modeling approaches. Leveraging feedback from actual human perfor-
mance can alleviate model mismatches at both the system level (e.g. workload
thresholds for difficult vs. routine missions) and the individual level (e.g. different
experience and skill between operators). Assuming humans to be homogeneous
agents with one-size-fits-all models can be detrimental to overall team performance.
In fact, average task duration varied by as much as 87.5 % between participants in
this pilot study. A histogram of participants’ average task durations in Fig. 4 shows
a Gaussian-like distribution with substantial variance between subjects.

The advantages of adaptive modeling for heterogeneous human agents are fur-
ther illustrated in Fig. 5, which shows mission timelines for a single participant in
each of the three modes. This subject generally accomplishes tasks more quickly
than the predicted task duration of 6.4 s set a priori, which causes a model mis-
match for the static open-loop modeling approach. The adaptive human perfor-
mance modeling mode, on the other hand, is able to adjust to the operator’s realized
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performance once the mission begins. As an additional advantage for adaptive
modeling, the human’s dynamic behavior during this trial—which takes the form of
decreasing durations as the mission progresses—is tracked by the closed-loop
system.
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Results also indicate (within the context of this system) that incorporating
real-time autonomous adjustments of human performance models provides quan-
titative advantages over relying on human input for adjustments. This finding may
be explained as the result of two main causes. First, the adaptable mode required
slightly more workload than the static and adaptive modes. Figure 4 shows the
adaptable trials favor the right side of the distribution, and a paired t-test confirms
that the adaptable mode’s additional inputs resulted in significantly longer average
task durations (M = 7.246, SD = 0.997) over the adaptive approach (M = 5.617,
SD = 0.986) in this pilot study (#(11) = 3.745, p = 0.00324). Second, the human
operator may be worse than the autonomous system at adjusting his model
appropriately to minimize model mismatches between the planning phase and
actual mission execution. Figure 5c illustrates that the subject fails to track actual
performance accurately. Even more so, at times throughout the trial his adjustments
increase model discrepancies rather than mitigate them.

Other aspects of human-robot team performance among the feedback modes
were analyzed to supplement comparisons of overall mission reward. Mission
makespan, or total mission duration, indicates that adaptive human performance
modeling significantly reduces total mission time (F; 33 = 10.729, p < 0.001) over
both baseline static (#(11) = 6.710, p < 0.001) and adaptable modeling approaches
(#(11) = 4.563, p < 0.001). This further signifies adaptive modeling’s ability to
mitigate model discrepancies between the planning and execution phases, resulting
in more efficient task allocations and schedules amongst the human-robot team.
Additionally, overall vehicle distance was longer in the adaptable modeling mode
than both the static (#(11) = 1.976, p = 0.0738) and adaptive (#(11) = 2.012,
p = 0.0594) strategies (F 33 = 2.656, p < 0.085), pointing again to suboptimal
multi-agent plans for the adaptable case.

5.2  Subjective Measures

Post-experiment questionnaires allowed subjects to provide qualitative feedback on
their perceptions of the autonomous system, the user interface, and the various
human performance modeling modes. All participants provided positive comments
on the general system, specifically citing the efficiency of the interface under
temporal pressure. In addition, real-time feedback was said to be especially useful
in terms of helping operators stay motivated throughout the mission and allowing
them to self-correct after errors. Finally, subjects enjoyed having the overhead view
available for team-wide situational awareness and projections of incoming
surveillance tasks.

Participant responses to questions on mode preference align with objective
findings, as 92 % of subjects chose adaptive human performance modeling as the
“most efficient” mode of the three tested. Additionally, 83 % of users stated that
they “most enjoyed using” the adaptive scheme, describing it as “stimulating,”
“well-tuned,” and “most engaging.” This autonomous closed-loop modeling
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approach was generally perceived as being more effective than the baseline static
case, and its lower workload requirements relative to the adaptable strategy allowed
users to focus on the primary classification task without distraction.

6 Discussion

The increase in overall mission reward for adaptive human performance modeling
over both the baseline static case and the adaptable approach may be attributed to
the adaptive strategy’s ability to minimize model mismatches between the planning
phase and actual human ability. Proper prediction of human operator performance
within the human-robot teaming missions is important for effective multi-agent
planning towards achieving specified mission goals. The ASSIST algorithm is
allocating and scheduling tasks amongst the vehicles with the aim of maximizing
mission reward. Again, this reward metric is calculated by totaling all successfully
completed tasks’ values at their execution times, and these time-varying task score
functions may take various functional forms.

When the planning phase over-predicts operator task duration (Fig. 5a), ASSIST
imposes a longer scheduling constraint on future tasks. This may lead to allocations
in which other vehicles travel longer distances in order to reach higher-value tasks
around the time the human is expected to become available. However, if the
operator finishes the task more quickly than predicted, he may then be forced to
wait idly for an undesirable amount of time before the next task arrival. If, on the
other hand, the planning phase under-predicts operator task duration (Fig. 5c),
ASSIST may allocate tasks in an overly-optimistic fashion. A vehicle may be
required to stay committed to a task longer than expected due to the human
operator, thus resulting in the vehicle arriving later-than-expected to subsequent
tasks. This can lead to both inefficient scheduling throughout the multi-agent team
(e.g. two vehicles each arriving to their tasks at the same time, requiring one to wait
an extended period of time for the human) as well as “missed rendezvous” (e.g.
missing a task time window).

In addition to task durations, predicting the human operator’s workload
threshold is important for the heuristics of the algorithm. Ideally, an operator would
be able to achieve 100 % accuracy on imagery classification tasks while remaining
as busy as possible in order to reduce scheduling constraints on task execution
times and minimize overall mission duration. With this in mind, adaptive workload
thresholds were increased following accurate imagery classifications to reflect the
fact that the operator was able to succeed at the prescribed workload. Upon task
failures, adaptive workload thresholds were decreased to allow the user to gather
himself for subsequent demands. Instead of this heuristic approach, future experi-
ments will incorporate secondary tasks to analyze and adjust the operator’s
workload threshold in a more direct fashion.

In terms of subjective data, the majority of participants preferring adaptive
modeling over the adaptable approach is contrary to original predictions which
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assumed that providing the human operator with more control over the system
would result in greater user satisfaction. However, these results align with other
findings in the literature. Specifically, Gombolay et al. [17] showed that humans
generally prefer to work within an efficient team rather than have a heightened role
in the planning process if that increased role is detrimental to overall team per-
formance. In the current pilot study, allowing human operators to adjust their own
performance models imposes additional workload requirements and generally
produces larger model mismatches and thus less efficient multi-agent plans.

7 Conclusions

Closed-loop planning approaches in which the autonomous system adapts flexible
human models throughout mission execution can improve overall mission perfor-
mance for tightly coordinated human-robot teams. The challenges of unpredictable,
heterogeneous human agents with dynamic, stochastic behavior can be addressed
through responsive replanning that leverages realized execution information. Also,
while adaptable human modeling failed to demonstrate improved mission perfor-
mance over the baseline open-loop approach, future work concerning efficient input
methodologies and comprehensive interface feedback—particularly as it relates to
model mismatches—may reveal added benefits.

This human-robot teaming pilot study highlights many potential avenues for
future work, such as testing longer missions to capture more dynamic human
performance and utilizing more comprehensive subjective questionnaires and
workload assessments. Additional work could be done to test more complicated
feedback modes, such as improving adaptable adjustment mechanisms and incor-
porating stochastic averaging [18], filtering [19], and learning techniques [20] into
the adaptive approach. A hybrid “adaptablive” mode could be created to investigate
whether building on both adaptive and adaptable strengths can be synthesized. This
could also distinguish effects of additional workload versus model discrepancies to
help explain the adaptive mode’s advantageous performance over the adaptable
strategy in this work.
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