
Insights into Human-Agent Teaming:
Intelligent Agent Transparency
and Uncertainty

Kimberly Stowers, Nicholas Kasdaglis, Michael Rupp, Jessie Chen,
Daniel Barber and Michael Barnes

Abstract This paper discusses two studies testing the effects of agent transparency
in joint cognitive systems involving supervisory control and decision-making.
Specifically, we examine the impact of agent transparency on operator performance
(decision accuracy), response time, perceived workload, perceived usability of the
agent, and operator trust in the agent. Transparency has a positive impact on
operator performance, usability, and trust, yet the depiction of uncertainty has
potentially negative effects on usability and trust. Guidelines and considerations for
displaying transparency in joint cognitive systems are discussed.
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1 Background

As warfighting environments become more complex, operators will increasingly
collaborate with intelligent agents (IAs) to manage teams of robotic systems [1].
However, increased autonomy may come with a cost: operators may have difficulty
understanding IA rationale during mixed-initiative decision-making [2]. Mixed
initiative decision-making is not only a requirement for effective operations in
war-fighting environments, but also an inherent behavior of all Joint Cognitive
Systems [3]. Therefore, operational environments demand not only autonomy and
flexibility, but also collaborative interaction between system cognitive actors (hu-
man operators and IAs) to reach optimized performance. As a whole, the overall
system should support operators’ recognition of the state of the world, anticipation
of the consequences of state changes in the world, and appropriate adaptation of
system means and goals. This can aid in operators’ general performance, as well as
management of abnormal system-wide events [4, 5]. To facilitate this support, an
operator’s display should be designed with resilient operations in mind [6]—that is,
buffering, to absorb the information processing deficits of a human cognition;
flexibility, rather than brittleness, to adapt to dynamic events; and appropriate
trade-off mechanisms that solve conflicting goal and/or competing resource
allocations.

Additionally, collaborative work between IAs and human operators in a system
presupposes a priori roles for effective organizational automation. Generally, these
roles may exist along a continuum of supervisory control [7, 8]. While both IAs and
humans process, reason, and communicate, such processing must be explicit to the
human in order to avoid confusion, instill trust, and structure action [9, 10]. Thus, if
an operator is to make informed decisions, a system display must make explicit
what the IA knows, does not know, reasons, and projects about its operation context
and its goals.

1.1 Situation Awareness in Mixed Initiative
Decision-Making

The construct of situation awareness (SA) formalizes human interaction within a
given context [11, 12]. Whether conceptualized as a processes or product, SA
explicates situational human cognition for decision-making, as it represents an
operator’s awareness of the immediate situation, comprehension of the situation,
and prediction of future possibilities [13, 14]. The most commonly relied upon
model parses SA into three levels [11]: perception of the situation elements,
comprehension of these elements, and projection as it relates to the perceiver and
situation elements in the future. IAs possess a similar computational ability for
sensing, reasoning, and projecting about their environment.
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In this sense, both humans and IAs are data driven and concept driven. That is,
human-cognition and computational-cognition are each concerned with a means and
an end to accomplish a purpose. For example, both perceive or sense the environ-
ment and are able to utilize data in addition to planning and modifying that data to
accomplish a goal. Separate, both are entities whose performance may improve
through an external intervention. However, a paradigm that accounts for collabo-
rative and coordinated human-agent interaction would allow for a unified cognitive
system that integrates human and IA cognitive processes and outcomes [15, 16].

1.2 Transparency and Supervisory Control
of Intelligent Agents

In addition to information sharing between an operator and an IA, as well as
coordination of both of their respective activities, it has been suggested that col-
laborative work must acknowledge that each part of a system possesses partial and
overlapping information relevant to the fulfillment of the overall system purpose
[16]. To benefit from that information, a collaborative work system must provide a
means for a transparent field of view of each agent’s unique perspective. In this
regard, increasing transparency in IA interfaces can improve operator performance
[9], provided it gives an understandable representation of the mission environment
and constraints, and the IA’s knowledge, intent, and limitations [17, 18].

Not only will IA transparency increase operator SA by giving insight into the
IA’s current action and intent, its relevant knowledge of the state of the world and
situational constraints, but it will additionally engender trust between the IA and the
operator, who must rely on the IA’s reasoning and projections to make decisions [9,
10]. Transparency specifically facilitates appropriate calibration of trust for the
operator. Such calibrated trust should lead to appropriate reliance on the IA [19]. As
opposed to under-reliance (IA disuse) or over-reliance (IA misuse), which impede
overall system effectiveness [20], establishing appropriate reliance can increase
overall performance in the human-machine system [19].

1.3 Situation Awareness-Based Agent Transparency

In an effort to meet the above needs and guide the design of transparency in IA,
Chen et al. [10] proposed the Situation awareness-based Agent Transparency
(SAT) model. By applying underlying theoretical assumptions inherent to the
understanding of both SA and agent transparency, this model can facilitate effective
mixed-initiative decision-making (Fig. 1). The model functions as a corollary to the
three levels of individual SA [11], yet is particularly relevant to the domain of
human-IA teaming.
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The SAT model provides a useful theoretical framework to guide design efforts
of requisite IA display elements that support the operator’s SA and facilitating
appropriate trust calibration. While recognizing the danger in assigning human
attributes to a computational agent, it is helpful to borrow such terms for clarity.
Display requirements for human-supervisory control with IA thus correspond to the
three levels of SA in humans. Each level seeks to provide the answer to three
implicit questions of operator:

1. What is the agent trying to achieve?
2. Why is the agent doing it?
3. What should the operator expect to happen?

Implicit in the cognitive and computational process captured in Level 3 of the
SAT model is the notion of uncertainty, specifically the fact that no future event can
be absolutely known. Although an IA can make sense of the world, it does not
necessarily know all parameters that may affect its actions. It is important for the IA
to communicate this uncertainty as part of its interaction with the human for col-
laborative planning and decision-making. Thus, the IA must share its uncertainty
concerning its reasoning and projections with the operator. For example, in order to
make a suggestion, the IA often must “fill in the blank” regarding missing infor-
mation—the IA must make an assumption. A transparent IA must then commu-
nicate the nature of that uncertainty and the assumption made by the IA to the
operator.

This model is not solely a human model, nor is it a model only for the IA.
Instead, it relates the IA cognitive process and products back to the human’s
supervisory purview. Level 1 communicates the IA’s desires and intentions [21] as

Fig. 1 SA-based agent transparency model diagram [10]
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they relate to its environmental, operational, and organizational context. As part of a
goal-directed team, the IA examines its environment for data needed to algorith-
mically reason what actions are needed to achieve optimum system performance;
such communicated reasoning is Level 2. Finally, the IA makes projection of the
dynamic nature of the situation; Level 3 information provides the operator this
insight.

1.4 Design of Transparency Displays for Heterogeneous
UxV Management

The application of the above theoretical positions is particularly important in the
study of multi-unmanned vehicle (UxV) management, where mixed-initiative
decision making is integral to mission success. Increasingly, research is focusing on
the development of IAs that can work with operators to manage teams of UxVs [1,
22]. One of those efforts is the Intelligent Multi-UxV Planner with Adaptive
Collaborative/Control Technologies (IMPACT) project currently funded by the U.
S. Department of Defense’s Autonomy Research Pilot Initiative [23, 24]. IMPACT
is investigating issues associated with human-machine interaction in military con-
texts [24], and flexible “play-calling,” such as that done in football [25, 26]. Such
“play-calling,” whereby a person chooses from a set of options or plans in a
“playbook,” can be applied in many warfighting contexts where warfighters are
frequently required to make diplomatic decisions based on a limited set of options.
It may be particularly useful in UxV management [25].

As part of this effort, and to explore the SAT model’s utility for UxV man-
agement, the SAT model served as a guideline in the design of two separate IA
interfaces evaluated in two consecutive studies (Figs. 2 and 3, referred to as
Interface 1 and Interface 2, respectively). These interfaces were adapted from the U.
S. Air Force Research Laboratory-developed IMPACT/Fusion interface [22, 27],
and were further developed to convey three different conditions of SAT for each
interface. These conditions and descriptions of their corresponding graphical dis-
plays are given in Table 1.

2 Study Design and Implementation

We examined the above interfaces separately in a pair of consecutive studies [28,
29]. Both studies sought to test a series of predictions regarding whether the
aforementioned implementation of the SAT model was successful in facilitating
UxV management. Specifically, we wanted to examine the impact of information
sharing on several performance parameters critical to the success of multi-UxV
management. For example, while additional transparency can improve performance
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Fig. 2 Interface 1: displaying information according to the SAT model

Fig. 3 Interface 2: displaying information according to the SAT model

Table 1 Manipulation of agent transparency using SAT levels to form experiment conditions.
Each condition contains the components introduced in the prior condition

Interface 1 Interface 2

SAT level Display components SAT level Display components

L1 Map icons, plan details
icon, and path show basic
information

L1 + 2 Map icons, path, line graph,
and text show basic
information

L1 + 2 Pie graph and text add
reasoning information to
display

L1 + 2 + 3 Sliding points on line graph
and extra text add reasoning
and projection

L1 + 2 + 3 Opacity of sprocket pie
graph varied and extra text
add projections including
uncertainty

L1 + 2 + 3 + U Opacity of map icons and
graph points varied, and
extra text add assumptions
and uncertainty
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[10], it is important to consider the impact that this extra information has on
response time and increased workload [30]. Furthermore, the usability of the
interface may affect trust in machines [31]. Finally, as stated above, it has been
suggested that additional transparency can improve trust on behalf of the human
counterpart [9, 10].

To test these theoretical positions, we designed two studies, each with three
conditions of transparency (see Table 1). During the corresponding experiments,
participants took on the role of a UxV system operator whose task was to monitor
and direct vehicles to carry out missions given to them by a simulated commander.
Operators managed a team of six unmanned vehicles (UxVs): two unmanned aerial
vehicles (UAVs), two unmanned ground vehicles (UGVs) and two unmanned
surface vehicles (USVs), as well as an IA, which communicated plan options for
completing the mission. To complete missions, operators needed to interpret their
commander’s intent, understand vehicle and environmental constraints, and ulti-
mately decide whether to follow the IA’s play-calling recommendation. The IA
always suggested two options: Plan A as the most viable plan (which was its
primary recommendation), and Plan B as the back-up plan. For 3 out of every 8
events, the IA’s recommendation was incorrect due to information it did not have
access to—updated commander’s intent or other intelligence.

During each of these decisions, operators’ performance (based on the criteria in
Table 2), and response time were monitored by the simulation. After each block of
events, we surveyed participants for information including their perceived work-
load, perceived interface usability, and their trust in the IA.

2.1 Study 1: Interface 1

Results from study 1 [28] indicated that proper IA use and correct rejection were
both significantly greater when participants were presented with SAT L1 + 2 + 3
and L1 + 2 compared to L1. The greatest rates of proper IA use (when the IA’s
recommendation was correct) and correct rejection (when the IA’s recommendation
was incorrect) were found in L1 + 2 + 3, suggesting that operators were more
likely to make correct decisions when presented with all three levels of SAT
information. We found no significant differences for response time or workload,
indicating that operators did not take longer to complete each decision nor did
operators experience more effort as the amount of information to support agent
transparency increased.

Table 2 Performance criteria according to IA and operator choice of plans

Performance criterion Correct plan IA suggestion Operator choice

Proper IA use A A A

Correct IA rejection B A B
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We analyzed operator trust in the IA after the first block of interactions, and
examined it across two contexts: the IA’s analysis of the information, and the IA’s
ability to suggest and make decisions. There were no significant differences across
SAT level for trust in the IA’s ability to analyze information. However, we found
that operator’s trust in the IA’s ability to suggest and make decisions significantly
increased as transparency increased. Specifically, participants felt the IA made
decisions that were more accurate when presented with L1 + 2 + 3 as compared to
L1 + 2 or L1. We also found a significant effect of SAT level on the perceived
usability of the IA, where the IA was perceived to be the most usable when
presented with L1 + 2 + 3.

While this study differentiated basic information, reasoning, and future projec-
tions according to the SAT model, we only examined uncertainty as part of SAT
Level 3 information and not on its own. Thus, the role of uncertainty in affecting
operator decision making remained unclear. Study 2 filled this gap by setting up
different conditions whereby the final condition parsed out uncertainty from other
Level 3 information (see Table 1).

2.2 Study 2: Interface 2

Results from study 2 [29] indicated that proper IA use and correct rejection were
both significantly greater when SAT L1 + 2 + 3 + U was presented compared to
L1 + 2. The greatest rates of proper IA use and correct rejection were found with
L1 + 2 + 3 + U, suggesting that operators were more likely to make correct
decisions when they were presented with all three levels of transparency, as well as
uncertainty. As was the case in study 1, no significant difference was found for
workload, indicating that operators did not experience more effort as the amount of
information to support agent transparency increased. However, unlike study 1, there
was a significant difference in response time between L1 + 2 and L1 + 2 + 3 + U,
with L1 + 2 + 3 + U taking the longest for participants to complete. This was not
unexpected, as an increase in information on the display should naturally take
longer to process.

Contrary to study 1, in which we only analyzed trust after a single interaction
with the interface, for study 2 we analyzed operator trust as it developed over time
while also controlling for the effect of pre-existing implicit associations [32]. There
was a significant difference across SAT level for trust in both the IA’s ability to
analyze information and the IA’s ability to suggest and make decisions.
Specifically, participants trusted the IA’s ability to analyze information most when
presented with L1 + 2 + 3 + U, while they trusted the IA’s ability to suggest
decisions most when presented with L1 + 2 + 3. We also found a significant effect
of SAT level on the perceived usability of the IA, where the IA was perceived to be
the most usable when displaying L1 + 2 + 3 and the least usable when displaying
L1 + 2 + 3 + U. This perception of usability is somewhat consistent with the
participants’ trust in the IA’s ability to make decisions, where their trust and

156 K. Stowers et al.



perceived usability peaked at L1 + 2 + 3 and tapered off when uncertainty was
added to the interface. This finding adds further support to the idea that usability
impacts trust [31]. It also raises several questions about the display of uncertainty
[33], which will be discussed next.

3 Discussion

Overall, we found evidence supporting the use of the SAT model to improve
operator performance, increase trust in the IA, and increase perceived usability of
the system, while minimizing potential costs of workload. Displaying SAT
L1 + 2 + 3 information provided the most benefits to operators’ trust and percep-
tion of the agent’s usability, while displaying L1 + 2 + 3 + U provided the most
benefits to operators’ performance. Due to these findings, we recommend that
similar automated decision aid systems incorporate information displays that pro-
vide the operator with both information regarding the reasoning of each decision
provided, as well as displays of possible future states and sources of potential
uncertainties that might affect their decisions. Our results suggest a number of
aspects that designers of human-machine systems should consider.

First, how can we utilize SAT-based displays to improve decision-making
performance while minimizing the impact on response time? It makes sense that
response time may increase when more information is presented. Increased
response time may not always be problematic, but in time-critical tasks, millisec-
onds may make the difference between success and failure. In such contexts, it is
important to design interfaces that communicate vital information to the user while
minimizing the amount of processing required to make a decision. If we aim to
make truly flexible machines that can adapt to the environment [6], we must also
consider how this flexibility applies to the display of SAT-based information.

Next, how can we best display uncertainty in a way that is both useful and usable
to the operator? Such optimization of the interface may have effects on not just
usability, but trust and performance, as well. Our interfaces displayed uncertainty
both graphically and in text, but we did not statistically differentiate the usability of
each of these components. Further analysis of such component parts may yield
information and best practices about the display of uncertainty. For example, it is
possible that intuitive graphical representations will be perceived as more usable—
and may even result in lower processing time—than textual representations.
Furthermore, trust and perceived usability may change when the IA presents its
uncertainty in different ways. For example, reporting percentages of certainty (e.g.
“80 % probable”) may lead to drastically different perceptions and outcomes in the
operator than more ambiguous graphical representations, and these potential dif-
ferences must be considered [34].

Finally, are the results we found here generalizable? We argue that the outcomes
examined here depend on the task and the context. This position is supported by
prior research and theoretical discussions positing that both task and environment
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influence overall human-machine performance [35]. The studies presented in this
paper examined the management of UxVs in a military environment. As such, our
findings are most applicable to similar mixed initiative decision-making tasks. What
remains to be seen is the validity of these parameters in entirely different contexts.

Future studies should examine the display of SAT-based information in new
contexts, and thus refine our understanding of the usefulness of agent transparency
in human-machine interaction. Furthermore, future studies should more thoroughly
examine the role of uncertainty as a key to achieving appropriate levels of trans-
parency. While the display of uncertainty may have tradeoffs, it should not be
eliminated from displays [34]. It is wholly necessary, as are the other facets of
transparency, to the successful performance of overall human-machine systems.
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