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Preface

Researchers are conducting cutting-edge investigations in the area of unmanned
systems to inform and improve how humans interact with robotic platforms. Many
of the efforts are focused on refining the underlying algorithms that define system
operation and on revolutionizing the design of human–system interfaces. The
multifaceted goals of this research is to improve ease of use, learnability, suitability,
and human–system performance, which in turn, will reduce the number of per-
sonnel hours and dedicated resources necessary to train, operate, and maintain the
systems. As our dependence on unmanned systems grows along with the desire to
reduce the manpower needed to operate them across both military and commercial
sectors, it becomes increasingly critical that system designs are safe, efficient, and
effective. Optimizing human–robot interaction and reducing cognitive workload at
the user interface requires research emphasis to understand what information the
operator requires, when they require it, and in what form it should be presented so
they can intervene and take control of unmanned platforms when it is required.
With a reduction in manpower, each individual’s role in system operation becomes
even more important to the overall success of the mission or task at hand.
Researchers are developing theories as well as prototype user interfaces to under-
stand how best to support human–system interaction in complex operational
environments. Because humans tend to be the most flexible and integral part of
unmanned systems, the human factors and unmanned systems’ focus considers the
role of the human early in the design and development process in order to facilitate
the design of effective human–system interaction and teaming.

This book will prove useful to a variety of professionals, researchers, and stu-
dents in the broad field of robotics and unmanned systems who are interested in the
design of multi-sensory user interfaces (auditory, visual, and haptic), user-centered
design, and task-function allocation when using artificial intelligence/automation to
offset cognitive workload for the human operator. We hope this book is informa-
tive, but even more so that it is thought-provoking. We hope it provides inspiration,
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leading the reader to formulate new, innovative research questions, applications,
and potential solutions for creating effective human–system interaction and teaming
with robots and unmanned systems.

We would like to thank the editorial board members for their contributions.

M. Barnes, USA
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Iterative Interface Design for Robot
Integration with Tactical Teams

K.M. Ibrahim Asif, Cindy L. Bethel and Daniel W. Carruth

Abstract This research investigated mobile user interface requirements for robots
used in tactical operations and evaluated user responses through an iterative par-
ticipatory design process. A longitudinal observational study (five sessions across
six months) was conducted for the iterative development of robot capabilities and a
mobile user interface. Select members of the tactical team wore the mobile interface
and performed operations with the robot. After each training an after-action review
and feedback was received about the training, the interface, robot capabilities, and
desired modifications. Based on the feedback provided, iterative updates were made
to the robotic system and the user interface. The field training studies presented
difficulties in the interpretation of the responses due to complex interactions and
external influences. Iterative designs, observations, and lessons learned are pre-
sented related to the integration of robots with tactical teams.

Keywords Human-robot interaction � Mobile user interface � Human factors �
SWAT � Robot integration
This research was sponsored by the U.S. Army Research Laboratory Under Grant
W911NF-13-1-0481. The views and conclusions contained in this document are those of the
author’s and should not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

K.M. Ibrahim Asif (&) � C.L. Bethel � D.W. Carruth
Department of Computer Science and Engineering, Mississippi State University,
Mississippi State, MS 39762, USA
e-mail: kia13@msstate.edu

C.L. Bethel
e-mail: cbethel@cse.msstate.edu

D.W. Carruth
e-mail: dwc2@cavs.msstate.edu

C.L. Bethel
Center for Advanced Vehicular Systems, Mississippi State University,
Mississippi State, MS 39762, USA

© Springer International Publishing Switzerland 2017
P. Savage-Knepshield and J. Chen (eds.), Advances in Human Factors in Robots
and Unmanned Systems, Advances in Intelligent Systems and Computing 499,
DOI 10.1007/978-3-319-41959-6_1

3



1 Introduction

The focus of this paper was to iteratively design and evaluate a mobile interface for
control and communication with ground robots for use in law enforcement tactical
team operations. This was investigated through the research efforts of Mississippi
State University’s Social, Therapeutic, and Robotics Systems (STaRS) Laboratory
and the Starkville (Mississippi) Special Weapons and Tactics (SWAT) team. The
research team was given access to monitor the SWAT team’s activities and
incorporate the use of the robot within the team’s monthly training exercises. Select
members of the tactical team wore the mobile user interface to perform different
operations using the robot. After each training session, the team members com-
pleted an after-action review and provided feedback about the training, robot, and
the mobile user interface. Based on the information provided by the team, modi-
fications were made to the interface and/or the robot prior to the next training
session and then reevaluated.

The members of law enforcement tactical teams have one of the most dangerous
civilian occupations. Their tasks are challenging because of the need to operate in
dynamic, unpredictable, and often unknown environments. The primary purpose of
SWAT teams is to ensure safety and to save lives in a systematic approach in
different high-risk situations, such as engaging with active shooters, subduing
barricaded suspects, rescuing hostages, and similar incidences [1]. They want to
take all possible actions to minimize danger during their mission responses.

The background and motivation for this paper is presented in Sect. 2. Related
work is presented in Sect. 3. The methodology for the research is included in
Sect. 4 of the paper. Section 5 includes details regarding the design and develop-
ment of the iterative user interfaces using a participatory design process. In Sect. 6
challenges and lessons learned are presented, followed by conclusions and future
work in Sect. 7.

2 Background and Motivation

Robots such as unmanned ground vehicles (UGV) are ideal for integration with
tactical teams such as SWAT. The United States, Department of Defense (DoD),
defines a UGV as “a powered physical system with (optionally) no human operator
aboard the principal platform, which can act remotely to accomplish assigned tasks”
[2]. UGVs can be programmed extensively to operate semi-autonomously in dif-
ferent terrains [3]. The U.S. Army’s 30-year unmanned ground systems
(UGS) campaign plan is expected to decrease the workloads on warfighters both
physically and cognitively as well as increase their combat capabilities [2]. The
same statement applies for SWAT teams, who have to operate in the civilian
environment. For the rest of the paper, the term robot will be used specifically
instead of UGV for ease of reading.
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Historically, robots are imagined as ideal for jobs that have one or more of the
three Ds: dirty, dull, or dangerous [4]. Takayama et al. state that this simplistic
notion has changed over time in the last ten years [5]. Their analysis indicates that
people now consider robots for jobs where memorization, strong perceptual skills,
and service-orientation are key factors. Human-robot teaming is the collaboration
between humans and intelligent robots to perform specific tasks. Woods et al. point
out that in such teaming both the human and the robot contribute unique qualities
[6]. While a robot may be equipped with advanced sensing capabilities superior to a
human, today’s robots require human intervention to understand and act on the
information.

SWAT officers envision the possibility that robots may be able to make their
jobs safer. However, they do not have a good understanding of the strengths,
weaknesses, and operational requirements needed to incorporate robots into their
activities. Robots could be a significant addition to SWAT and increase their
capabilities. One of the most significant benefits of integrating robots into tactical
environments is the minimization of risk to the lives of the SWAT team members.
Robots could be sent into the environment ahead of rest of the team giving them the
ability to have “eyes” on the scene first before having to directly encounter potential
threats. The following are some other benefits for integrating robots into SWAT
operations:

i. For scouting to gain critical intelligence about the environment and potential
threats.

ii. For guarding a specific room or hallway, while the team conducts slow and
methodical searches in other directions.

iii. For diverting the attention of threats when encountered and providing team
members with an advantage in these types of situations.

When a robot is used in SWAT operations, it is often considered as a camera on
wheels [7–9]. Another common use of robots in law enforcement is for explosive
ordnance disposal [10, 11]. How a robot could potentially be integrated as a
member of the team instead of just another piece of equipment was initially
explored in [12].

3 Related Work

In 1999, the Defense Advanced Research Project Agency (DARPA) was interested
in research for tactical robots since it was evident that military conflicts would occur
in urban areas with a large amount of building infrastructure and civilians [13].
Since this time, research has been conducted for the development of this type of
robots and methods of communication with these robots. While the focus was on
military operations, it also applied to other tactical teams such as SWAT teams,
who have to operate in a similar manner in the civilian environment. Researchers
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have discussed with SWAT team members, issues related to the integration of
robots into tactical environments such as SWAT operations [10, 14].

Over time, robots have been successfully integrated and used in different
instances with law enforcement teams for explosive ordnance disposal [10, 11] or as
remote cameras to provide intelligence [7, 9, 15]. While some of these robots are
small in size, which helps operators maneuver the robots more easily, sometimes
law enforcement teams prefer larger robots, because they feel these robots could
provide improved protection and enhanced capabilities that may save lives. Hence,
they are willing to compensate for the challenges that may occur with these robots
(e.g., large size, battery life, sound generation, etc.).

There has been limited research in the area of integrating these robots as
teammates instead of considering the robot as a tool for performing one specific
task with tactical teams such as SWAT [10, 11, 14, 15]. When deploying a robot
with a SWAT team, it is usually thought of as an adjunct to the team or a tool to
operate remotely. The issue with this concept is the team member who is operating
the robot is practically unable to perform his own tasks as he is now acting solely as
an operator for the robot. A typical operator control unit (OCU) is large in size and
often the person using it cannot perform any additional tasks that would be part of
their typical responsibilities as a SWAT team member. Moreover, OCUs have a
high associated cost from both the hardware and software perspectives. This is a
challenge for any SWAT teams as they try to use minimal manpower to respond to
most tactical situations. Also there are challenges associated with the use of robots
with SWAT teams, such as the robots being considered a distraction to SWAT
operations and potentially slowing down the team in specific types of responses,
especially with dynamic entry [14]. Research has been performed to identify the
potential roles a robot could fulfill within a SWAT team, serving as a team member,
and the acceptance of a robot integrated as part of a SWAT team [12].

Over the years, researchers have come up with different user interface
(UI) concepts to interact with robots [16–19]. Some of these interfaces would not be
feasible for use in a tactical environment. Researchers also have explored the use of
telepresence, multimodal displays, and the effects of temporal latency in the effort
to create a better OCU for military environments [20]. Traditionally, these OCUs
require larger hardware and expensive software, which makes the operating cost of
the robots very high. As the overall budget for the U.S. DoD will be reduced by
$489 billion over next ten years [2], DoD is investigating affordable, interoperable,
integrated, and technologically advanced robots. The increasing popularity of low
cost mobile devices and wearables in recent years has provided a great opportunity
to use such devices as OCUs to communicate with different types of robots espe-
cially in tactical team responses. Moreover, the familiarity of using these devices
among the members of the tactical response teams is a significant benefit. While
mobile phones has been used previously as an OCU, it has only been considered as
an alternative controller to joysticks [21]. Very limited research has been done to
identify mobile interfaces as a completely viable OCU approach for implementa-
tion. The goal of the research presented in this paper is to identify the viability of
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using mobile interface to control and communicate with the robots in SWAT team
and how an iterative design process could help with achieving this.

4 Methodology

The method used in this study involved the development of a mobile interface to
control and communicate with a ground robot for use with SWAT teams. In SWAT
trainings, a robot was deployed in different runs to perform different scenarios and
training/response operations. The training sessions were held in different locations
such as a large multi-story building, an abandoned house, open air police training
facility, and a controlled testbed facility designed as a small two-bedroom apart-
ment similar to locations commonly investigated in SWAT responses. Initially, a
basic concept interface was designed and an ethnographic interview was conducted
with one of the SWAT team leaders. Based on the input, a working prototype was
built to use during future SWAT team trainings. Training was held approximately
once a month at these locations. After each training an after-action review was
performed and feedback was solicited about the training, robot, and interface, with a
focus on requested modifications. Based on feedback from the officers, iterative
modifications were made to the robot platforms and the interface prior to the next
training, when additional feedback was requested.

4.1 Hardware

A Jaguar V4 robotic platform from Dr. Robot is used in this research [22].
Modifications were made and additional components were added to address the
requirements of the SWAT team, such as cameras, LED lighting features, and a
speaker system for distraction sounds. An Arduino board was installed inside the
robot to control the lights and sounds. A Lenovo laptop was used to run the robot.
A PicoStation from Ubiquiti Networks was used to increase the range for con-
trolling and communicating with the robot from a distance [23]. Android smart-
phones (both Nexus 5 and Nexus 6) were used to serve as the operator control unit
(OCU) for this robot and to activate the lights and sounds diversion device.
Logitech game controller and Wii remote with Nunchuck controller were addi-
tionally used for teleoperation of the robot.

4.2 Software

The software architecture was designed as a distributed control system to support a
high degree of modularity for adding and/or removing hardware and software
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control components as required for the control of the robot, sensors, and onboard
distraction devices. It was implemented using the Robot Operating System (ROS).
An Android application was developed to control and communicate with the robot.
Over time, different iterations of this interface was introduced to address the
requirements of the SWAT team. The following functionalities were implemented
within the interface:

i. Display live streaming video feeds broadcasted from the robot.
ii. Toggle between the two different camera feeds on the robot: drive camera and

top camera.
iii. Control the onboard strobe lights and diversion sounds.
iv. Drive the robot through the interface.

5 Iterative Interfaces

The traditional mechanism for driving the Jaguar V4 robot was using a laptop as an
OCU, which was not feasible for use with the SWAT teams because of different
factors such as size and weight. The use of a laptop strapped onto someone’s chest
and having him or her constantly looking at the screen completely negates any
effectiveness of that member as part of the team. Other than operating the robot, the
member would not be able to participate in the response operations at all. This is not
ideal, because most SWAT teams are small in numbers and having a team member
unusable because of the robot defeats the purpose of using a robot as a teammate to
serve as a force multiplier and to increase the team’s capabilities.

This prompted the researchers to develop a better solution that would allow the
SWAT team to control and communicate with the robot effectively without com-
promising one of the team members. In the think aloud discussion with members of
the team, they wanted a mechanism that would fit perfectly with their current
equipment and would not be a distraction. Familiarity with the device and common
interfaces and reduced learning curve were important to them as well. A smart
phone strapped on their non-dominant arm with an armband (Fig. 4a) seemed a
viable solution to this problem. This approach required significant development
efforts on both the hardware and software aspects because there was no existing
codebase for this robotic system that could be used as a starting point for the
development of a mobile interface.

The researchers had to design and build the interface from scratch. As part of the
process to develop a functional prototype, an ethnographical interview with one of
the SWAT team leaders to identify the requirements for this type of an interface was
performed. Since the SWAT team members had not used this type of an interface
before and their technical knowledge was limited in terms of the design process, the
two main requirements was a) no glare from the screen if possible to minimize
distraction and b) to perform operations as easily as possible. It was determined that
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the team members would wear the interface on their non-dominant arm and that the
interface would stay in landscape mode only.

Driving in different directions, activating different lights/strobes and sounds,
switch between cameras, etc. are defined as different operations that can be carried
out through the interface. Similar operations were grouped together and considered
as functionalities within the interface. The four functionalities were: driving the
robot, activating lights/strobes, activating sounds, and switching between camera
feeds. An iterative process of designing the mobile interface over time through a
participatory design process was followed with feedback received from the SWAT
team members after each training session. Three major iterations were performed
and implemented during this six-month series of training exercises.

5.1 First Interface Iteration

For the first iteration the researchers decided to use a tabbed interface approach. The
interface functionalities were in different tabs (Camera, Drive, Lights, and Sounds
as shown in Fig. 1). The default view would provide the operator with a camera
feed that could be toggled between different cameras with a single tap (Fig. 1a). For
activating lights (Fig. 1c) or playing a sound (Fig. 1d), the operator could select the
desired function and specific operation in the interface and it would activate
immediately. To deactivate the operation, the operator would tap again the specific
operation indicator. This was helpful as the officers could activate multiple lights
and deactivate them using one action as long as the operator remained on the lights
function panel.

The researchers then tested this interface in two training sessions and while the
officers’ responses were positive overall, their most requested change was to be able

Fig. 1 First interface iteration: a broadcast panel from top camera, b drive controls panel, c lights
and strobes options panel, and d diversion sound options panel
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to perform operations while simultaneously being able to watch the video feed from
the onboard cameras. This feedback directed the researchers’ efforts to develop a
second iteration of the interface.

5.2 Second Interface Iteration

As requested by the SWAT team, the researchers redesigned the interface to be able
to broadcast the video from the cameras while having the ability to perform other
operations. This interface resulted in a three-pane system: (1) the left pane con-
tained all of the available functionalities, (2) the center pane contained the video
feed(s), and the right pane contained the operations, such as lighting, sound, and
drive commands (refer to Fig. 2). It was natural to put the video pane in the center,
for the other two panes the researchers did a heuristic evaluation for usability
inspection [24]. Since the team members would often wear the interface on their left
arms, it was easier to access needed buttons and features on the right side of the
interface compared to the left as that would a further reach and closer to the body
limiting access. In general, it was determined that Operations would be performed
more frequently compared to selection of basic functionalities. Hence, the
researchers designed the pane setup using this approach.

The researchers also wanted to test incorporating another function and set of
operations—access to additional sensors on the robot and as a placeholder for a
future expected enhancement. To accommodate this addition, the lights and sounds
functionalities were combined and assigned in the interface to a button named
Utilities. This added an extra layer of required actions forcing the team members to
select the utilities panel, select desired operations, and activate specific buttons for
the desired lights (Fig. 2c) and sounds (Fig. 2d) to activate them. An improvement

Fig. 2 Seconds interface iteration—camera broadcast always visible: a drive controls, b light and
sound control as utilities, c lights and strobes options, and d diversion sounds options
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from the previous interface iteration was the ability toggle between the cameras on
the robot without having to change the current operation pane.

The researcher tested this iteration of the interface during the next two training
sessions. The overall response from the SWAT team was more positive compared
to the response to the first interface iteration. The team was happy to be able to view
the video feed and simultaneously access specific operations. The researchers also
queried the SWAT team about their thoughts on having the functionalities on the
right side of the interface and the operations on the left with a minor adjustment to
the screen. Most of the team members stated they preferred the current setup in the
second interface iteration that located the functionality buttons on the left and the
operation buttons on the right. The biggest disadvantage they revealed in this
iteration was having to perform additional actions to activate the lights and sounds
when needed and while under high stress. Their feedback was to accomplish a
desired task with fewer required actions and in a more informative way if possible.
This led the researchers to design and develop a third interface iteration, which is
the current version used in training.

5.3 Third and Current Interface Iteration

The researchers tried to address the concerns expressed by the members of the
SWAT team and developed the current (third) iteration for the interface. Since,
there was no actual additional sensory data to show in the interface at this time, it
was decided to return lights and sounds functions to individual buttons on the
functionality pane of the interface and to remove the Utilities and Sensor func-
tionality buttons from this version of the interface (see Fig. 3). This change allowed
the lights (Fig. 3b) and sounds (Fig. 3c) functions (buttons) to be activated through
direct operations. All of the operations were set as toggle buttons that allowed the

Fig. 3 Current iteration—camera broadcast always visible: a drive controls, b lights and strobes
options, c diversion sounds options, and d toggled camera showing drive camera
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SWAT team to be able to activate and deactivate any specific light or sound by
tapping once when the appropriate function panel was selected. This reduced the
number of actions required to activate an operation by 1. Toggling between cameras
(see Fig. 3d) was modified to indicate which camera would be displayed on acti-
vation of the button.

The researchers evaluated the current (third) interface iteration over the next
three training sessions and it seems the SWAT team really likes how the operations
are more intuitive now. As possible minor modifications, the researchers explored
the idea of being able to view both of the camera feeds at simultaneously by having
them side by side or up and down in the center pane of the interface. The responses
from the team were not supportive of this approach. They preferred the single
camera view as it was easier to obtain scene understanding with the single video
feed instead of the small frames displaying the two camera feeds. The size of
display was an important factor in this decision.

During each iterations, the researchers explored the use of different controllers as
well as virtual controller within the interface for teleoperation of the robot. This was
to identify the acceptability and usability for teleoperation. SWAT officers seem to
prefer physical controller in compare to virtual one. Moreover, Wii remote with
Nunchuk was preferred compared to Logitech game controller as it can be operated
with just grabbing and with the thumb. The researchers still exploring different
mechanisms for teleoperation of the robot.

The researchers continue to evaluate and integrate small updates to the current
iteration of the interface. The SWAT team has been using this iteration of the
mobile interface to control and communicate with the robot in their training ses-
sions (see Fig. 4).

Fig. 4 Use of current interface in SWAT training a team member with the interface b robot
entering the apartment, c robot checking the hallway with activated strobe and sound, and d robot
assists in capturing the suspected threat
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6 Challenges Faced and Lessons Learned

The initial discussion of system capabilities and requirements was limited by a lack
of experience with the proposed system. In some cases, this is inherent in the early
stages of design: a potential user cannot interact with a system that does not yet
exist. In the researchers’ case, the law enforcement officers initially had limited
experience with controlling the robot and little to no knowledge of the robot’s
capabilities. This led to difficulty in identifying concrete requirements for the user
interface.

The initial mobile device (Nexus 5) selected had a 4.95″ screen with a
1920 × 1080 resolution. This provided limited space for the display of camera
feeds and buttons for the activation of available operations. The subsequent mobile
device (Nexus 6) has a 5.96″ screen with a 2560 × 1440 resolution. While the
increased size improved the available space for the camera display and controls, it
has also negatively affected comfort. There is a clear tradeoff between comfort and
the effectiveness of the display area, which is directly impacted by the size of the
device. To accommodate all of the desired operations, we explored hierarchical
menus in the second iteration to discover that the tradeoff of an increased number of
actions per operation versus the total number of available operations. In the current
case, the SWAT team members did not consider this to be an effective solution.

In addition to difficulties with providing effective access to light and sound
operations, using digital (on/off) buttons to drive the robot was not effective. During
the evaluation of the interfaces, the SWAT team members were also provided an
external controller based on a Wii Nunchuk to provide analog control of the robots
movements. This provided the team members with a single-handed controller that
was well received and allowed for better control of the robot. It was able to be
attached to their current gear and did not impede the performance of tasks by the
officers.

Training was performed in a number of different scenarios that revealed different
types of challenges for the SWAT team members. The variation in scenarios
affected officer responses to the robot and the provided interfaces. While it would be
tempting to control the scenario, the current study sought to observe integration in a
range of training scenarios defined by the officers to understand the complexities of
designing a user interface that would be effective in many scenarios commonly
faced by law enforcement. A custom interface or robot for each scenario is not a
practical solution for robot operations in law enforcement. The iterative design
process provided the SWAT team members with repeated exposure to the robot and
interfaces leading to increased experiences with the robot and increased under-
standing of robot and interface capabilities. This, in turn, significantly improved the
quality of feedback and the ability for the SWAT team members to provide effective
recommendations for modifications needed in the interface.
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7 Conclusion and Future Work

The development and evaluation of a mobile interface for use as an OCU with
tactical teams has not received significant attention from the research community.
The importance of such interface is significant because it could help with the
integration of robots with SWAT teams without the need to sacrifice a team
member to serve as a dedicated robot operator. The process was challenging
because the officers must function in different types of responses that require dif-
ferent capabilities in the robot and functionalities in the interface. The ability to
provide an interface that can be easily used by officers operating in high stress
environments, requires significant participatory design to develop both high
usability as well as a positive user experience. Through a process of multiple
training and three interface iterations, we have developed an interface that meets the
current needs of the officers.

Because lives are dependent on the robot and the interface working to meet the
needs of the officer, the involvement of the officers in different training exercises
was critical to this project. It was discovered that what may work in one scenario
(e.g., slow and methodical building searches) may not work for another scenario or
response type such as fast, dynamic entry. It is important to consider what func-
tionality is needed when an officer is in a safe location versus in immediate threat of
danger. It is also important to consider what happens when the officers must work in
low-to-no light conditions versus a daytime response. An immediate concern
related to the latest version of the interface is backlighting the officers due to the
ambient light from the display in a low-to-no light response, the officers could be
placed in danger because they would be the focus of attention. This research will be
ongoing and will continue to enhance all aspects of the robot functionality in
addition to the necessary changes required in the interface to support tactical
operations that include the integration of robots into tactical teams.

The focus for future work in this research is to collect and analyze data from two
different user studies that address the usability and the acceptability of the mobile
interface developed while continuing the iterative process of development for the
interface. Two large studies have already been developed and performed in spring
2016. Future interface enhancements may include the use of tactic buttons or
interfaces that do not require ambient lighting and may be safer and provide a better
user experience.
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Context Sensitive Tactile Displays
for Bidirectional HRI Communications

Bruce Mortimer and Linda Elliott

Abstract Tactile displays have shown high potential to support critical commu-
nications, by relaying information, queries, and direction cues from the robot to the
Soldier in a hands-free manner. Similarly, Soldiers can communicate to the robot
through speech, gesture, or visual display. They could also respond to robot mes-
sages by pressing a button to acknowledge or request a repeat message. A series of
studies have demonstrated the ability of Soldiers to interpret tactile direction and
information cues during waypoint navigation in rough terrain, during day and night
operations. The design of tactile display systems must result in reliable message
detection. We have proposed a framework to ensure salience of the tactile cues. In
this presentation we summarize research efforts that explore factors affecting the
efficacy of tactile cues for bidirectional soldier-robot communications. We will
propose methods for changing tactile salience based on the symbology and context.

Keywords Human factors � Tactile � Adaptive � Salience � Communication

1 Introduction

Tactical situation awareness (SA) is critical for ensuring the Warfighters situational
dominance, especially during combat. SA can improve security, survivability and
optimize lethality. Combat environments can subject Warfighters to extreme con-
ditions, testing the limits of both their physical and cognitive abilities. So, while
there have been considerable advancements in military and commercial efforts to
integrate and display context sensitive SA information, displaying this information
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and interacting with the system remains a challenge on the battlefield. One of the
general problems in all sensory perception is information overload. Tactile cueing
has proven to be a particularly effective means of conveying direction and spatial
orientation information and, when implemented effectively, can increase perfor-
mance (e.g., speed, accuracy) and lower cognitive workload [1–5].

Tactile communication is as old as human communication itself. Touch is also a
natural information channel that complements our sight, hearing, and the sense of
balance. Tactile displays have been investigated as a sensory or cognitive aug-
mentation mechanism for delivering feedback to users. Tactile cueing can also be
used to convey information [6]. However, there is a difference between feeling a
stimulus and identifying its meaning. While body-referenced tactile orientation is a
natural or intuitive representation of spatial information, tactile communication
signals and their associations must first be learnt and then detected and interpreted
by the user. The maximum information rate for the auditory channel, extrapolated
from the perception of normal rate speech, is estimated at 75 bits/s. The tactile
channel is typically lower, with rates of 25–50 bits/s possible for highly experi-
enced Braille users [7]. Despite this limitation, the transfer of tactile information can
potentially occur on many different levels or “channels”. Combat ground soldiers
do not need the same type that higher echelons need—too much information may
be a distraction and induce cognitive overload [8]. Therefore complex tactile lan-
guage constructs that require concentration are not likely to be useful.

Several studies have shown that there are a range of touch variables that can be
used to convey useful information to Soldiers [9]. We have recently demonstrated a
Navigation and Communication system, NavCom, that includes GPS driven tactile
navigation cues. In field trials, NavCom reduced mission times and increased
navigation accuracy [10]—Soldiers reported being more aware of their surround-
ings and having better control of their weapon. In one specific trial, Soldiers using
NavCom during a 300 m navigation task at night checked their visual (map) display
on average 1.2 times, verses 17.7 times for those without NavCom; one demon-
stration of how NavCom can improve effectiveness and lower cognitive workload,
effort, and frustration. We also showed that tactile navigation cuing and tactile
coding for messages could be presented simultaneously. NavCom was also fielded
at the 2016 AEWE exercise in Ft Benning.

Although task performance enhancements have been demonstrated, care must be
taken when considering transitioning from one tactile display mode to another. For
example, the usual construct for tactile cuing may be to alert the wearer of an
impending threat through the use of a body-referenced vibrotactile stimulus in a
particular sector. The same touch variable may be used in navigation where the
tactile cuing may be in terms of a tactile “instruction” to head towards a particular
sector. Clearly, in this example the two modes are ambiguous and could in fact be
contradictory! The effective transition from tactor display modes or context remains
a challenge.

Typically, tactile stimuli are defined by dimensions such as the frequency,
intensity, force, location, and duration of the signal. However, these definitions and
their associated thresholds, in isolation, are of little value if one does not consider
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characteristics of the user or situational context. Potential contributions of tactile
cues may be obscured through inattention to moderating factors, fuzzy construct
definitions, or imprecise measures. A common limitation of investigations of tactile
cues is over-reliance on performance or workload outcomes, without consideration
or measurement of mediating factors such as the ease by which tactile cues can be
perceived and interpreted. We have introduced a framework for describing and
quantifying the performance of tactile systems [11].

As unmanned assets become more autonomous, Soldier-robot communications
will evolve from tele-operation and focused oversight to more tactical, multimodal,
critical communications. Therefore the requirements for tactile and Soldier multi-
modal displays will need careful analysis and optimization to meet these expanded
needs. In this paper, we discuss our research towards designing context sensitive
and adaptive displays using our salience model.

2 Tactile Salience

One of the general problems in all sensory perception is information overload, but
we humans are adept at using selective attention to quickly prioritize large amounts
of information and give attention to what is most important. Salience is the property
of a stimulus that allows it to stand out and be noticed. Salience is widely used in
describing visual system performance of humans and in computational models that
drive computer vision [12, 13] but has not been extensively or systematically
applied to the tactile modality.

Tactile salience can be simply defined as the probability that the tactile cue will
be detected. In controlled laboratory settings, salience can often be modeled as a
function of tactor engineering and the vibratory stimuli characteristics—i.e. phys-
ical characteristics of the signal itself, when context, or “noise”, is very low.
However, as context becomes more complex, additional factors become significant
[14].

2.1 Tactile Salience Construct

It is clear that tactile salience is affected or moderated by many factors in addition to
engineering characteristics of the factors. While issues of tactor engineering are
clearly important to the concept of salience, the salience of any tactile cue or tactor
will be affected, perhaps to a great extent, by many factors, including body location,
characteristics of the user, the task demands, and the environment in general.

Perhaps even more important, these factors interact with each other, such that the
interactions may be more highly predictive than particular characteristics per se.
Predictions of operator performance in naturalistic settings require the consideration
of these characteristics as they interact in a particular setting. To better emphasize
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the interplay of these factors, Fig. 1 shows the construct of tactile salience as
mediated by three core factors—characteristics pertaining to the user, the tech-
nology, and the environment—and their interactions. The effect of any one char-
acteristic cannot be precisely predicted without consideration and/or control of
other core factors.

The three main sources of influences on tactile salience, as shown in Fig. 1 are:

• Technology characteristics/capabilities. Many studies have addressed a multi-
tude of features related to the design of tactile stimulators and the construction of
the stimulus signal. There is no doubt that these factors affect salience, and can
predict user perception, localization, and interpretation, in controlled settings.
For example, abrupt onset (or changes) in stimuli and high frequency (200–
300 Hz) tone burst vibrations are known to be naturally salient. Effects of
characteristics such as amplitude, frequency, and ISI are well summarized in a
number of publications [15–17].

• Individual/User differences. Salience can also be affected by characteristics of
the user. These include sensory and perceptual characteristics common to all
operators, such as sensory processing limitations that limit tactile discrimination
and body location [18]. These can also include individual differences in cog-
nitive abilities, personality, training, experience, age, or posture. Differences can
always occur with regard to user motivation or focus of attention.

• Environmental factors and task demands. It has been shown that factors such as
physical demands and workload can significantly affect tactile cue perception. In
addition, a variety of contextual aspects, such as operational tempo, physical
demands, nature and type of distracters, level of threat, and consequences of
failure should be considered. Features such as environmental noise can certainly
impact the perception, recognition and thus effectiveness of tactile signals.

Fig. 1 Core factors and interactions affecting tactile salience
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While each category can act as a main effect on tactile salience, interactions
among the categories are also important.

Interactions between the user and the environment/task context produce factors
such as perceptions of stress, workload, or fatigue that are likely to affect attention,
the need for alerts, and/or the ability of the user to attend to alerts. As an example,
individuals with higher levels of neuroticism, emotional reactivity, and/or lower
stress tolerance are likely to experience work situations more intensely [19]. While
simple direction cues may prove valuable when the user is stressed or fatigued,
more complex cues may be less likely to be attended to. Thus, map-based visual
information and complex audio information (e.g., turn north after the second street
on your left) can become much less effective than tactile direction cues (e.g., go this
way). One can see that issues regarding multisensory integration would fit here.

Interactions between environmental/task context and technology include the
degree of match between the operational context and technology features or capa-
bilities. Basic examples include situations that require factors that are very quiet (ex,
covert communications), or that augment attention management (complex decision
making), or that are very easily perceived (e.g., during strenuous movements).

Interactions between the user and technology basically address the traditional
domain of human factors engineering. The mismatch between user and technology
characteristics can result in poor performance, when technology does not address
operator norms that affect their ability to perceive and easily interpret tactile signals.

Thus, it is reasonable to posit that tactile salience depends on main effects and
interactions among characteristics of the user, the technology, and the environment.

Tactile salience depends on the user, the technology, and the environment. To be
salient for diverse users, tactile display technology should provide a wide range of
recognizable touch characteristics, and do so in a small lightweight, efficient system
that is not limited by the mounting or usage. Research has shown that features such
the abrupt onset (or changes) in stimuli and high frequency (200–300 Hz) tone
burst vibrations are known to be naturally salient, while lower frequency tone burst
vibrations are typically less salient. A complete consideration of tactile salience is
essential to accomplish successful critical signaling, through three fundamental
steps: (1) perception: the signal must get their attention, (2) the signal must provide
recognizable and distinct stimuli (patterns, locations, areas, changes in patterns,
timing, tempo, melody) and (3) provide some confidence or support that substan-
tiates the selection (either repeat or give multimodal so that their identification is
confirmed).

2.2 Adaptive Salience

The requirements for tactile salience are therefore complex and situation-dependent.
We have identified the need for technology that meets requirements for adaptable
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salience [20]. In visual salience, the spotlight of attention is based on both
exogenous properties of the object (bottom-up saliency) as well as cognitive pro-
cesses (top-down) [21]. Top-down attention is usually associated with the com-
pletion of a specific task, while bottom-up saliency is a fixed characteristic of the
stimuli and does not vary with changes in task or situation [22]. Similarly, we can
expect that some aspects of tactile salience will be naturally salient, and other
aspects will vary as a function of context (e.g., noise, competing demands for
attention).

The concept of salience can contribute to perception and effectiveness, partic-
ularly when adapted to dynamic situations. Tactile salience can represent priority,
such that more salient signals communicate higher importance or urgency [23].
A signal could start at a low level and move to higher salience if not attended to, or
if priority increases.

While single tactor cueing can vary in salience depending on tactor character-
istics and context, the issue of salience becomes more complex when using
multi-tactor arrays which can vary along a number of features. Controlled com-
parisons showed some patterns to be more salient than others [11]. In addition to
tactor characteristics and context, multi-tactor arrays vary along additional
dimensions that can also affect salience. For example, these arrays may commu-
nicate a pattern through sequential activation—such that an illusion of movement
can be communicated (e.g., activating factors around the torso would be felt as a
circling movement, in the same way that sequential activation of visual cues can
create an illusion of movement—e.g., neon signs). Other patterns may be based on
simultaneous activation of factors, which may be a single burst, or repeated. It’s
been shown that tempo of sequential activations create “melody” type of sensations
that are easily recognized and distinguished based on their rhythmic features [24].
Simply changing the frequency of activation from slower to faster can change
perceptions of urgency [23]. Patterns may be communicated across multiple body
locations, such that an additional cue in a particular location can increase salience
and indicate urgency.

As understanding accumulates, tactile patterns can be developed to different
levels of salience, and to automatically change levels of salience as the situation
changes, or until an action is taken. From a user perspective, operators have indi-
cated they would want the ability to control, to some degree, the salience of
incoming communications, and be able to “turn down the volume” when the
operator is in quiet conditions, while turning it up as needs arise.

2.3 Design Guidance for Tactile Displays

Salience will vary depending on the specific stimulus characteristics associated with
the task at hand. For example, factors found to be effective when users are standing
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still have been found to be much less effective when the users are engaged in
strenuous activity [25], whereas factors more specifically engineered for salience
were more readily perceived regardless of activity. As another example, a tap on the
shoulder from a tactile navigational aid can mean different things to a helicopter
pilot than to an infantryman clearing an urban area.

Ideally, tactile displays should be salient and readily interpretable. For example,
localized mechanical vibration to the front of the torso will probably be salient
because it is not usually experienced. Saliency can be increased further by using a
vibration frequency that maximally stimulates the Pacinian corpuscles. Even though
deep in abdominal tissue, the exquisite sensitivity of the Pacinian receptors to high
frequency (*250 Hz) stimuli allows appropriate vibration stimuli to be detected
readily [26]. The interpretability of tactile displays can be ensured by intuitive
somatotopic mapping of direction and spatial orientation information [27, 28].
Usable stimulation patterns can be generated by placing multiple factors on many
different body sites and providing a wide range of tactile stimuli, such as vibration,
temperature, and light touch.

The engineering challenge is to develop efficient actuators that can display such
a wide range of touch qualities in a small, lightweight package that is not adversely
affected by variations in mounting or skin attachment. To preserve salience, input
characteristics should be adjusted as changes occur in external factors. This
adjustment is similar to environmental or cognitive forms of masking, or habitua-
tion, except that less is known about tactile masking.

Tactile displays have typically been implemented as an “artificial” language that
has no natural relationship between the spatial and temporal elements of the original
information and the display output. To decrease the required training time and
increase the probability of correct interpretation, the language needs to be related to
the user’s task and be intuitive. An example of an intuitive set of tactile commands
was the TACTICS system developed by UCF and EAI [9]. Tactile messages were
created using four standard Army arm and hand signals, as described in the Army
Field Manual FM 21–60 chapter 2. The five signals chosen for the experiment were,
“Attention”, “Halt”, “Rally”, “Move Out”, and “NBC”. Overall accuracy rates
depended on training but were high in spite of minimal subject training and even
when tested in a stressed environment (subjects were led with full kit on an obstacle
course). A key design factor that contributed to the success of these particular tactile
messages was that the tactile patterns had a temporal and spatial similarity to the
original visual representation of the particular hand signal. For example, the hand
signal for “Rally” is a circular motion by the hand over the head. Similarly, the
tactile signal for “Rally” is a circular motion around the torso. The hand signal for
“NBC” is for arms and hands to touch the left and right side of the head. Similarly,
the tactile signal for “NBC” are sharp simultaneous signals to the left and right of
the torso. Given this approach to design, naïve participants were able to correctly
guess the meaning of each signal 51 % of the time, and a group given five minutes
of training were accurate 75 % across all five signals. Thus, it is clear that the
design of tactile hand-signal messages should attempt to use the visual reference
where relevant.
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3 Experiments

In addition to human-human communications, tactile displays can be used to
enhance human-robot critical communications. A recent experiment [11] explored
this concept in two ways. Several multi-tactor cues were developed that varied in
tactor and tactor pattern features, to represent alerts and status updates that could be
received by a robotic squad member. In one approach, experimenters used paired
comparisons with forced-choice and independent scaled ratings of various multi-
factor patterns. Results showed significant differences due to tactor design char-
acteristics, such that the EAI C-3 actuator was consistently perceived as more
salient. However, participants also had no problem perceiving the EAI EMR fac-
tors, which have the advantage of a low frequency stimulus, low acoustic signature,
and higher efficiency regarding power usage. Significant differences in salience
were also associated with different factions, such that some factions were more
salient. In addition interaction effects suggest that differences in salience due to
tactor type can vary among different factions. While forced-choice approaches to
measurement of salience can reliably identify differences, the number of paired
comparisons becomes quite large when comparing more than a few factions; thus
the use of independent ratings based on 5 pt response scales offer a more efficient
approach to measurement.

While the investigation above was based on participants who were stationery, a
corresponding effort presented factions while participants were on the move, during
night operations. For this experiment, participants received two types of signals.
Navigation direction cues were presented using lower frequency EMR factors,
which continually indicated the direction to the next navigation waypoint, and also
indicated when participants needed to avoid an exclusion zone. During this navi-
gation task (e.g., 3 waypoints, totaling 900 m), participants also received four
different factions indicating threat or status updates. Participants indicated each time
they perceived an incoming tactor and identify the nature of the communication.
Responses were 93 % accurate, which was very high given that they were given
each signal only once, with no warning signal and no repeats.

4 Discussion

Tactile displays have been shown to enhance performance and reduce workload
across a range of performance domains. In this report we discuss some fundamental
issues with regard to the conceptualization, measurement, and usefulness of tactile
salience. Recent experiments with Soldiers proved that tactile displays, engineered
to present salient signals, can significantly enhance navigation and critical com-
munication. This underlines the need for systematic investigations of tactile sal-
ience, its measurement, and moderators. We propose a framework to guide such
investigations. It is clear that the design of tactile display systems must achieve
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effective levels of salience. As a further step, tactile displays can be engineered to
be adaptive, such that levels of salience can adapt to levels of operator activity,
environmental factors, and task demands. Salience can thus increase to demand an
operator response, or decrease, either automatically or upon request.

5 Conclusion

The design of tactile displays should be guided by systematic consideration of
operator characteristics, environmental and task demands, and technology options,
in order to achieve necessary levels of tactile salience for that situation—one size
does not fit all. The notion of adaptive salience is predicted to further enhance the
contribution of tactile cueing in dynamic circumstances.
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An Initial Investigation of Exogenous
Orienting Visual Display Cues
for Dismounted Human-Robot
Communication

Julian Abich IV, Daniel J. Barber and Linda R. Elliott

Abstract The drive to progress dismounted Soldier-robot teaming is toward more
autonomous systems with effective bi-directional Soldier-robot dialogue, which in
turn requires a strong understanding of interface design factors that impact
Soldier-robot communication. This experiment tested effects of various exogenous
orienting visual display cues on simulation-based reconnaissance and communi-
cation performance, perceived workload, and usability preference. A 2 × 2 design
provided four exogenous orienting visual display designs, two for navigation route
selection and two for building identification. Participants’ tasks included signal
detection and response to visual prompts within a tactical multimodal interface
(MMI). Within the novice non-military sample, results reveal that all display
designs elicited low perceived workload, were highly accepted in terms of usability
preference, and did not have an effect on task performance regarding responses to
robot assistance requests. Results suggest inclusion of other factors, such as indi-
vidual differences (experience, ability, motivation) to enhance a predictive model of
task performance.
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1 Introduction

A picture is worth a thousand words…but at what cost? Visual displays offer the
ability to convey a vast amount of information in a temporally succinct manner within
a relatively economical real-estate [1]. The manner in which content is presented on a
visual display can greatly influence the amount of attention allocation required to scan
and process the information [2], having an impact on task performance [3], perceived
workload [3], and usability preference [4]. Orienting of visual attention is governed by
an interaction between internal (endogenous) goals and external (exogenous)
demands [5]. Endogenous mechanisms involve “more purposeful and effortful ori-
enting” (e.g. searching for a tumor in an x-ray image), while exogenous mechanisms
are “triggered reflexively by a salient sensory event” (e.g. attending to a pulsating
light) [6]. The focus here is on designing visual cues that trigger exogenous orientation
within a visual display to facilitate the conveyance of information from a robot to a
human teammate.

As the implementation of unmanned systems, such as autonomous robots, con-
tinues to transcend operational domains, specifically military, it is imperative to
investigate the factors that contribute to effective human-robot communication
(HRC) [7]. The military has a growing interest in equipping dismounted Soldiers
(i.e. Soldiers conducting operations on foot) with personal mobile technology [8],
which can serve as a potential interface for HRC [9]. The major caveat is that visual
displays will allocate visual attention away from other tasks, therefore visual dis-
plays must be designed to present pertinent information in a way that supports timely
information gathering without adding to the cognitive burden of other tasks, ulti-
mately enabling efficient human-robot team communication.

1.1 Experimental Aim

The purpose for this experiment was to explore unidirectional communication
transaction from a robot to a dismounted teammate through a visual display during
a surveillance task. The specific goal was to investigate the effects of exogenous
orientating visual display cues within robot-generated assistance request reports on
participant’s task performance, perceived workload, and usability preference.
Specifically, this study explored how the manner in which exogenous orienting
visual cues are designed affect the (1) task performance regarding response to visual
reports, (2) level of perceived workload while interacting with a visual display and
(3) ratings for usability preference. The exploratory approach taken utilized high-
lighting as an exogenous cue in two types of visual reports which required human
intervention to support robot decision-making: (1) choose a navigational route
based on environmental features and (2) identify the correct target (i.e. building) to
monitor for potential threats. Additionally, using a non-military novice sample
provides a comparison group for a follow-on study with a military-based sample to
evaluate population differences regarding responses to the above stated factors.
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2 Methods

2.1 Participants

Fifty-six university students, 33 males and 23 females (mean age = 20.5, SD = 3.9)
participated in the experiment. Participation in the experiment was completely
voluntary and compensation was awarded in the form of class credit. Participants all
had normal or corrected to normal vision. None of the participants had prior
experience with the simulated environment or multimodal interface. The responses
to the demographic questionnaire indicate participants were familiar with video
games (e.g. first person shooter and multiplayer games) but had little knowledge
about robotics technology. Almost all participants had no prior military experience
except for three males (two were National Guardsmen and one was in the U.S. Air
Force Reserve Officer Training Corps).

2.2 Experiment Task

Apparatus. The simulation was presented using a standard desktop computer or
laptop with equal specifications (3.2 GHz, Intel Core i7 processor) connected to a
22″ (16:10 aspect ratio) monitor. Responses to the tasks were collected using the
left mouse button and keyboard.

Simulation. The experimental scenario was performed within the Mixed
Initiative eXperimental test bed (MIX) [10]. The scenario simulated a reconnais-
sance and surveillance task where the Soldier and robot were traveling along
separate non-overlapping routes within the same urban environment.

Threat Detection (TD) Task. The MIX test bed was customized to represent the
first-person perspective of a Soldier traveling through a generic Middle Eastern
urban environment (Fig. 1, left). The Soldier’s route was pre-planned and did not
require the participants to control the Soldier’s movement. The participants’ pri-
mary role was to identify potential threats that populated the environment (i.e. a
signal detection task) by capturing photos to help populate a robot teammate’s
database with examples so it can more effectively carry out mission tasks auton-
omously. There were four categories of characters (i.e. events) within the envi-
ronment: friendly Soldiers, friendly civilians, enemy Soldiers, and insurgents
(Fig. 1, right), and each category included at least five different types of characters.
Enemy Soldiers and insurgents were classified as threats (i.e. signals) and an equal
number of each were presented. Equal number of each category of non-threats were
also present. All threats were identified by left-clicking with a mouse on the
character within the environment. No feedback was provided regarding accuracy of
detection, but participants did hear the sound of a camera shutter to indicate they
were capturing photos. The event rate of the TD task was a presentation of 30 per
minute with a signal probability of 13.33 % based on previous research [11].
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Performance on the TD task was assessed as the overall percentage of correct
responses.

Robot Assistance (RA) Task. While participants were performing the TD task,
visual prompts randomly appeared and required participants to respond to RA
queries generated by a robot teammate. The visual prompts were a virtual repre-
sentation of the visual display component of a Multimodal Interface (MMI) for
human-robot communication (Fig. 2). The contextual application told to partici-
pants was the robot was traveling a separate route and may need assistance if it
cannot deduce the best option based on its limited intelligence capabilities.
Participants responded to reports by left-clicking on one of the buttons located at
the top of the screen indicating their choice to the robot’s query (Fig. 2). No
feedback was provided to the participants regarding accuracy of choices made.
Performance was assessed as providing the correct response to the RA queries and
as the average reaction time to respond.

RA Reports. The types of assistance the robot requested was regarding
(1) navigational routes and (2) building identification (Figs. 3 and 4). The navi-
gation assistance requests asked participants to decide the best travel route for the
robot to avoid obstacles. The building identification assistance requests asked
participants which building a robot should monitor. The information needed to
make a decision for the robot was gathered from the MMI. Every MMI prompt was
comprised of two images: (1) the right image represented the point-of-view
(POV) of the robot traveling through the environment and (2) the left image rep-
resented an aerial view of the operational area (Fig. 2). Both images represented the
same scene but from different angles and therefore, the RA queries could be
answered by gathering the pertinent information from either image. The research
interest here lies in evaluating the response performance, workload impact, and
preference of visual display format by comparing the types of display formats for
each query (i.e. Navigation A vs. B & Building A vs. B).

Fig. 1 (Left) This is a screenshot of the MIX test bed representing the first person perspective of
the Soldier traveling through the Middle Eastern urban environment. (Right) Example of characters
used within the threat detection task. From left to right: friendly soldier, friendly civilian, enemy
soldier, and insurgent (armed civilian)
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Fig. 2 This image represents the virtual multimodal interface as a prompt on the screen within the
MIX environment

Fig. 3 These two images represent the navigation robot assistance query display formats
presented in the MMI. The image on the left has extended directional arrows (Navigation A). The
image on the right has short bold directional arrows (Navigation B)

Fig. 4 These two images represent the building robot assistance query display formats presented
in the MMI. The image on the left has highlighted boxes around the buildings (Building A). The
image on the right has highlighted boxes around the buildings with modifications to the scene and
aerial images (Building B)
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2.3 Questionnaires

Demographics. This questionnaire was developed in-house and gathered back-
ground information regarding age, gender, visual acuity, academic education,
military experience, computer use, video game exposure/experience, and robotics
knowledge.

NASA-Task Load Index (TLX). The TLX [12] is comprised of six perceived
workload subscales. Each subscale rating used a 100-point sliding scale with
five-point increments. The unweighted-TLX was administered by computer at the
end of each block throughout each scenario.

System Usability Scale (SUS). This 10-item questionnaire focused on perceived
usability of the system (i.e. hardware, software, equipment) [13]. Ratings were
indicated using 5-point Likert items. The composite score of the items provided a
single number representing the overall usability of the system and ranged from 0 to
100. These questions were focused on the interaction with the device during the
scenario and was administered by computer at the end of each block.

Free Response Questionnaire. This 6-item open-ended questionnaire covered
positive and negative aspects of the participant’s interaction with the simulated
multimodal interface device, their preference for display design, and suggestions for
improvement. These questions were focused on the interaction with the device
during the scenario and was presented to participants after completing the whole
scenario.

2.4 Procedure

When participants arrived they were instructed to first read over the informed
consent. Upon consent, they then completed the demographics form and cube
comparisons test. Task training followed completion of the pre-study questionnaires.
An 18-min narrated PowerPoint presentation was used to support consistency of
training for each participant. Training was accomplished in two phases. The first
phase was 12-min and it instructed participants about the continuous task they were
to perform (i.e. TD task) and how to respond to the TLX. They were then given the
chance to ask any questions pertaining to the task, practice performing the task for
about 1-m and responding to the TLX. The next phase continued in the same format.
The second phase was 6-min and concentrated on explaining the purpose and ele-
ments of the four different RA query display formats. It also provided instructions on
how to respond to the usability and free response questionnaires. They were then
given the chance to ask any questions pertaining to the task and practice responding
to two display formats of RA queries to clearly illustrate the way they would be
presented and to make sure they understood how to respond to the queries.
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3 Results

Paired-sampled t-tests were used to assess the impact of various RA query designs
on task performance, perceived workload, and usability preference. Cohen’s d ef-
fect sizes using the conventional scale of 0.2, 0.5, & 0.8 (small, medium, & large,
respectively) are also reported for specific comparisons of RA query designs.
A bivariate correlation was run to find relationships among demographic charac-
teristics, performance, perceived workload, and usability preference. After remov-
ing outliers the sample size for all analyses was n = 49.

3.1 TD Performance

Two t-tests were run to assess the effects of responding to navigation and building
RA report design separately on TD task performance accuracy. Results show a
significant difference was found when responding to navigation RA reports, but not
for building reports (p > 0.15; Table 1).

3.2 Robot Assistance (RA) Performance

A series of t-tests were run to assess the effects of RA report designs on RA
response accuracy and response time. Results show no statistically significant
results were found for the difference in percent of correct responses and for reaction
time to RA reports (Table 2).

3.3 TLX

A series of t-tests were run to assess the effects of RA report designs on perceived
mental workload. Results show no statistically significant results were found for

Table 1 Results of t-tests for threat detection task performance for both navigation and building
display designs

M SD M SD t-test d

Threat detection accuracy (%
correct)

Navigation A Navigation B

95.24 9.07 97.28 7.00 −2.274* 0.25

Building A Building B

95.69 8.43 97.51 6.52 −1.478 0.24

*Note: p < 0.05
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either display type (p > 0.17). Only global workload means and standard deviations
are reported because they show the trend for all subscales (Table 3).

3.4 SUS

Two t-tests were run to assess the effects of responding to navigation and building
RA report design separately on usability preference. Results show no significant
difference was found for either navigation or building display formats separately
(Table 4).

Table 2 Results of t-tests for robot assistance response accuracy and reaction time for both
navigation and building display designs

M SD M SD t-test d

Correct response accuracy (% correct) Navigation A Navigation B

62.25 20.17 64.03 20.35 −0.516 0.09

Building A Building B

52.04 23.15 58.67 22.13 −1.139 0.29

Average reaction time (s) Navigation A Navigation B

4.58 2.64 4.00 1.63 1.308 0.26

Building A Building B

3.99 2.21 4.61 2.89 −1.271 0.24

Note: p > 0.15

Table 3 Results of t-tests for global workload for both navigation and building display designs

M SD M SD t-test d

Global TLX ratings Navigation A Navigation B

17.24 17.43 16.56 15.62 0.599 0.04

Building A Building B

16.75 17.32 16.58 15.31 0.170 0.01

Note: p > 0.17

Table 4 Results of t-tests for usability preference ratings for both navigation and building display
designs

M SD M SD t-test d

SUS ratings Navigation A Navigation B

82.53 13.70 82.00 15.70 0.512 0.04

Building A Building B

82.59 14.27 82.45 14.45 0.185 0.01

Note: p > 0.6
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3.5 Free Response Questionnaire

Three independent raters conducted an evaluation of the data for common themes
across participant responses to each item. Raters began by organizing the textual
responses into common ideas and then comparing the frequency with which certain
themes occurred in the text for each item. Common themes that were identified as
being mentioned by at least three respondents for each item were retained. The three
assessments were then compared for overlapping patterns identified by all three
raters. Table 5 shows the results from the assessment. Within the table are the
common themes identified, the number of participants that made that comment, and
an example response they provided.

3.6 Bivariate Correlations

Bivariate correlations were run to find relationships among demographics charac-
teristics, task performance, perceived workload, and usability preference. To clarify
the significant variables listed in Table 6 refer to how often participants use a
computer, how much experience they have working with any type of video game,
reaction time when responding to the RA reports, global TLX associated with
responding to RA reports, and RA report design usability preference. The RA
response accuracy and reaction time, global TLX and SUS ratings were averaged
across both display format types separately since the t-test showed no significant
differences.

Table 5 Table of common themes among participant responses to the Free Response
Questionnaire regarding the robot assistance display formats

Item/question Theme Example response

Positive aspects of
the device

(a) Ease of use (28)
(b) Multiple views (10)
(c) Representation of
environment

(a) It is straightforward and easy to use
(b) There was more than one view to make
decisions with
(c) The two views give a clear representation
to make decisions

Negative aspects of
the device

(a) Diversion (12)
(b) Ambiguous (10)

(a) Device requires full attention of the user
(b) The information was not detailed enough

Navigation
information

(a) No preference for
layout (9)
(b) Aerial view
preference (17)

(a) It did a really good job at providing
information
(b) Both views provided info but the aerial
view was most helpful

Building
identification

(a) Clarity of
information (7)
(b) Ease of use

(a) All of the information was available in a
clear view
(b) It was surprisingly easy to use

The numbers in parentheses next to each theme represent the number of participants that reported
each theme. An example of each theme response is provided
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The correlation matrix shows relationships among video game experience,
including first person shooters and multiplayer games, seemed to correlate posi-
tively with SUS ratings and correct response to RA Navigation queries, but neg-
atively with correct response to RA Building queries.

4 Discussion

The goal for the study was to evaluate the effects of various exogenous orientation
visual cues within robot-generated visual reports on a mobile-based platform to
convey squad-level information to a teammate in a dismounted scenario. Findings
show that based on responses from a novice non-military based sample, all display
design types elicited low levels of perceived mental workload, were highly accepted
in terms of usability preference, and had little effect on performance related to RA
report responses. Correlations reveal individual differences, such as video game
experience, could factor into task performance and usability ratings.

The first finding shows that TD task performance differed when participants
responded to navigation RA reports but not for building ones. This difference
should not be dwelled upon because task performance for all conditions was above
95 % (Table 1). It was expected that this task would not be hindered by the
interaction with the MMI since the TD task was kept at a constant event rate and in
the past shown to result in the same level of performance [11]. Also, the TD task
was paused when the RA reports were automatically prompted, therefore the MMI
did not occlude the user’s visual field while simultaneously performing the TD task.

Table 6 Bivariate correlation matrix for statistically significant relationships among demograph-
ics, task performance, global workload, and usability preference

1 2 3 4 5 6

1. Video game experience

2. First person shooter
game experience

0.813**

3. Multiplayer video game
experience

0.794** 0.879**

4. Average correct RA
response for Navigation
display

0.363* 0.414** 0.374**

5. Average correct RA
response for Building
display

−0.287* −0.343* −0.273 −0.285*

6. SUS average rating for
Navigation display

0.363* 0.343* 0.278 0.147 0.066

7. SUS average rating for
Building display

0.332* 0.296* 0.191 0.177 0.115 0.956**

Note: *p < 0.05, **p < 0.01
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In order to quantify the performance costs associated with the time spent viewing a
visual display, future research should focus on the effects of interacting with the
MMI while the primary task (e.g. TD task) is continuously occurring.

Looking next at the performance associated with responding to the RA reports
shows no differences were found for performance accuracy or response time.
Although on average it took participants about 4.3 s to respond to any type of
report, the average accuracy of their responses was just above 50 % (Table 2). This
raises concern that participants were either unable to decipher the correct answer
based on the visually displayed information or they may simply have been guessing
when presented with the RA generated queries. Since there is a difference in their
navigation and building response accuracy, with the former having a higher
accuracy (average 63 %), it can be argued that participants were contributing a level
of effort as indicated by their TLX ratings. The detailed results of the TLX sub-
scales were not reported but effort and mental demand were the two largest factors
associated with both display types (i.e. navigation and building reports).
Performance could have also been effected by the lack of feedback regarding their
response to the RA queries. Although the lack of feedback was ecologically valid, a
follow up study might want to assess the effects of immediate feedback regarding
response accuracy since it has been shown to impact task performance [13].

The subjective measures will be discussed together. Overall, all of the display
designs elicited low perceived workload, in accordance with past research that
found low cognitive demands associated with exogenous attention [14].
Contrastingly, the usability preference for all display designs was high. Indicating,
any design could be implemented and the outcome would be the same regarding
task performance, perceived workload, and usability preference. Hence, deciding
which of the exogenous orienting visual cues for navigation route selection or
building identification should be generated could alternatively be based on com-
puter processing capabilities. Meaning, if the robot is processing large amounts of
intelligence and sensory data but needs to send a report to a Soldier teammate then
the most efficient, or easiest to process programmatically, way to display the cues
should be executed.

Theoretical contributions indicate that perceived assessment of subjective state
might not be fully indicative of task performance, and therefore interface design
evaluations should not rely solely on subjective measures. Practical applications
show that various interface display design types could be generated to provide the
same type of information to a human teammate, therefore if other constraints such
as battery life or processing power is limited, the interface display design that is
more energy efficient could be utilized. Additionally, individual differences in
experience and exposure to computer technology can moderately affect workload
and usability responses during interaction through computerized visual displays
indicating a potential selection criteria for human-robot team personnel.
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Five Requisites for Human-Agent Decision
Sharing in Military Environments

Michael Barnes, Jessie Chen, Kristin E. Schaefer, Troy Kelley,
Cheryl Giammanco and Susan Hill

Abstract Working with industry, universities and other government agencies, the
U.S. Army Research Laboratory has been engaged in multi-year programs to
understand the role of humans working with autonomous and robotic systems. The
purpose of the paper is to present an overview of the research themes in order to
abstract five research requirements for effective human-agent decision-making.
Supporting research for each of the five requirements is discussed to elucidate the
issues involved and to make recommendations for future research. The require-
ments include: (a) direct link between the operator and a supervisory agent,
(b) interface transparency, (c) appropriate trust, (d) cognitive architectures to infer
intent, and e) common language between humans and agents.
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1 Introduction

Combat by its very nature is volatile and unpredictable. Greater use of autonomous
systems promises to change the battlefield equation. Fewer soldiers exposed to
enemy fire, larger force to soldier ratios, and improved capabilities are some of the
objectives of the U.S. Department of Defenses’ autonomy research programs [1–4].
An important advantage of autonomy is the possibility of improving friendly force
ratios by increasing the number of unmanned vehicles (UVs) controlled per oper-
ator. Unfortunately, the first generation of UVs has not reduced the ratio of soldiers
to systems. In many instances, the results have been quite the opposite: the Shadow
unmanned aerial vehicle (UAV) requires a crew of 2–3 operators per UV and also
requires a larger force for maintenance and security [4]. Even with increased
autonomy, the ratio of systems to humans is not always favorable because of human
cognitive limitations and degradations due to the “fog of war” [2–5]. Lewis [6]
reviewed various UV control approaches that use scheduling algorithms based on
the characteristics of the UV (average neglect time without negative consequences)
and the operator (average time the operator interacts with an UV). The metrics’
purposes are to develop a method of optimally assigning operator attentional focus
per UV and to determine a method to compute “fan-out” (limits to the number of
UVs assigned per operator or crew). Even with more sophisticated assumptions
about variance, individual differences, and multitasking the metrics predict per-
formance under ideal conditions (UV independence and near uniform neglect time
during a mission). In reality, uncertainty and UVs interactions with each other and
with manned systems make these assumption impractical for many combat situa-
tions [4]. On the contrary, systems must be able to respond to each other and change
tactics as the mission unfolds. Unfortunately, human span of control does not
necessarily improve as n-systems are automated [5]. Operators must maintain
overall situation awareness (SA), multitask, and respond to changes during periods
of increased volatility while at the same time supervise more than one system. The
purpose of this paper is to discuss the implications of a general class of mixed
initiative solutions [5] that involve shared decision making between an intelligent
agent (IA) and a human operator.

Our definition of an IA is a software agent that acts autonomously, responds to
environmental changes, and is able to compute a course of action (COA) to achieve
its objectives [7]. We are assuming a class of agents that interact with other agents
including its human supervisor. However, IAs are not a solution in themselves.
There are various research issues that must be addressed before human-agent teams
can take full advantage of the synergy between the algorithmic precision of IAs and
the flexibility of humans [5]. The problem set that U.S. Army Research Laboratory
researchers are addressing include how to interact with multiple systems without
overwhelming the operator, how to develop appropriate trust and transparency
between the IA and its human supervisor, and how to build mutual understanding
between humans and software agents that results in a human-to-human like natural
dialogue.
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The themes are interrelated by the assumption that an IA acts as an assistant that
is able to monitor UVs thus freeing its human supervisor to focus on the combat
situation. This requires transparency between the operator and the IA enabling the
operator to trust the IA to perform its functions but also to know when to intervene.
A transparency model and the implications of our empirical evaluations of the
model are discussed as the basis for calibrating trust. However, because trust is an
important variable aside from transparency issues, additional research efforts related
to trust are discussed below. Transparency needs to be bi-directional to achieve a
nuanced partnership between humans and agents. In this regard, we review two
technical research areas that enhances the humans and agent’s capability to have
similar knowledge structures (cognitive architectures) and permits two-way com-
munications that enable an IA to infer meaning based on context (controlled
English).

2 IA As an Interface

Lewis [6] delineated the control space of human operators (O) to UVs as O(1), O(n)
and O(>n) or one-to-one, additive or complex (interactive elements). Chen and her
colleagues proposed using an IA as an interface to dampen the effects of complex
interactions so the resulting paradigm is closer to a one-to-one control environment
[5, 8, 9]. They simulated a mixed initiative paradigm wherein a single agent
(RoboLeader) acts as an intermediate supervisor to multiple partially autonomous
UVs [5, 7–11]. The main impetus of the research is the human factors issues
involved in having a single IA interface directly with the operator and also with
multiple UVs. Issues explored included system factors (number of UVs, error rate
and type, degrees of autonomy and mission parameters) and operator factors
(multitasking and individual differences). IA errors affected performance but the
effects of false alarms were minimized if the situation display allowed the operator
to quickly rectify errors [7]. Not surprisingly, the advantages of the IA were more
manifest when the tasking environment became more difficult and the operator was
involved in multitasking [11]. Individual differences in spatial abilities, gaming
experience, perceived attentional control, etc. proved to be important determinates
of how operators interacted with an IA, suggesting that IAs should be tuned to
individual attributes [5, 7–10]. The RoboLeader paradigm takes advantage of
hierarchy among agents by letting UVs conduct their mission including interacting
with both manned and unmanned elements while the supervisory IA interacts with a
human to suggest changes as events unfolded [5]. For example, during the
RoboLeader experiments simulating convoy operations, the operator supervised a
manned vehicle, a UAV and an unmanned ground vehicle while conducting 360°
threat monitoring around his or her own vehicle. The results indicated that as
complexity and the possibility of RoboLeader errors increase, operator transparency
into the IA’s reasoning process becomes an important consideration.
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3 Transparency Model

The key to developing an effective teaming relationship is a mutual understanding
of each other’s assumptions as well as an understanding the objectives of the
mission [5]. Lee and his colleagues suggested basic tenants of automation trans-
parency arguing the operator should understand the purpose, process and perfor-
mance of the automated system in order to interact effectively with the system
[12, 13]. Chen et al. developed a Situation awareness-based Agent Transparency
(SAT) model that adapted concepts from Mica Endsley’s SA model to fully
articulate the shared knowledge necessary for humans to gain insight into the IA’s
purpose, planning and process [12–15]. As Fig. 1 illustrates, the SAT model posits
that human SA of autonomous systems has three levels (L): L1—understanding of
the IA’s intentions-plan, L2—comprehension of the IA reasoning, and L3—pro-
jection of the IA’s expected outcomes [14, 15]. ARL researchers were able to
evaluate SAT as part of the Intelligent Multi-UxV Planner with Adaptive
Collaborative/Control Technologies (IMPACT) project funded by the U.S.
Department of Defense’s Autonomy Research Pilot Initiative program [16, 17].

The purpose of the IMPACT program is to develop a suite of intelligent systems
to aid in the planning and execution of multiple heterogeneous UV missions. ARL’s
function is to develop and verify transparency concepts for the IMPACT program.
We examined various visualization concepts and evaluated their efficacy in terms of
the three SAT levels over two experiments [18, 19]. The experimental paradigm
consisted of a comparison of two IA generated plans detailing the type of UVs and
their routing plans during 24 base defense vignettes. Updates, during the simulated
mission, supported either the IA’s favored option A (in 5/8th of the vignettes) or its

Fig. 1 The SAT model [15]
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alternative option B (in 3/8th of the cases). The results were assessed in terms of
correct usage (when A was the better option and correct rejections (when B was the
better option).

Taken together, the research supports the SAT model’s premise that adding
levels of SAT of the IA’s intent, reasoning, and projected outcomes help to calibrate
operator reliance on courses of actions suggestions from an imperfect IA. The
results also indicate that the visualization techniques do matter. The positive
findings for the addition of L3 information in the second experiment were partially
due to display improvements of outcome projections developed by Air Force
researchers [7, 18, 19]. In summary, using an IA as an intermediate supervisor
proved to be effective strategy for controlling multiple heterogeneous UVs during
varied combat simulations given that the IA’s intentions were transparent to the
operator.

4 Trust

ARL’s research on trust is connected to our research on transparency but trust is
also separate research domain. Trust is the attitude of the operator towards auton-
omy but it also relates to an operator’s behavior (calibration of reliance and com-
pliance).There is not always a one-to-one correspondence between trust and
transparency. Thus even when automated system are reliable and transparent, an
operator may over-ride autonomy because of a basic mistrust in automation or
conversely the operator may over-rely on autonomy because of a bias towards
automation [12, 13]. An important focus of ARL researchers is to improve
human-agent teaming especially for the supervision of ground robots. As robotic
systems with increased intelligence and decision-making capability continue to be
designed to function successfully as an integrated part of a Soldier-agent team, the
issue of soldier trust becomes a key priority. Without appropriate trust, there is an
increased probability that the technology will underutilized or even used inappro-
priately which can negatively impact the mission [12, 13, 20, 21]. The key priorities
of this work began with developing a broader understanding of the trust domain,
identification and evaluation of trust measurement techniques, and experimentation
supporting specific Army applications.

To understand the trust and teaming problem space, large scale literature reviews
and meta-analyses were conducted in the areas of human-robot interaction
(HRI) [22], human-automation interaction (HAI) [23], and human-animal interac-
tion [24]. Findings pointed to the importance of trust antecedents relating to the
human, the partner (robot/agent, automation, or animal), and the environment.
Overall, results of the meta-analyses provided insight into the known variables of
importance (e.g., reliability of the system), as well as a number of areas of needed
exploration (e.g., human states, transparency, errors/failures, and communication).

Research experimentation in both simulation and upcoming field studies will be
used to further understand the process of trust development and calibration across a
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number of Army applications. This research addresses key barriers related to
achieving adequate levels of Soldier-robot integration and trust through developing
appropriate methods for real-world reliable communication across different types of
Soldier-robot teams. Overall, the development of accurate and effective user
interfaces support the development of a common ground and a shared under-
standing of the mission space which can then be designed to engender appropriate
trust in the system. For example, previous research has shown the importance of the
relationship between trust and user interfaces for both base operations and field
vehicles [25–27].

5 Cognitive Architectures for IAs

As part of the DOD emphasis on increased autonomy, ARL is investigating various
architectures that improve autonomous control capabilities [28]. A traditional
problem with both transparency and communications between humans and IAs is
the lack of a common knowledge structure. The underlying logic of an optimization
algorithm may be opaque to an operator. Developing knowledge structures using
cognitive architectures ameliorates problems related to the operator not under-
standing the underpinning of the IA’s algorithms [2, 5]. Cognitive architectures
have been used successfully for robotics manipulation and control [28, 29]. The
advantage of using a cognitive architecture for robotics control is that a cognitive
architecture represents problem solving in much the same way that humans rep-
resent problem solving. This similarity allows for interactions with IAs to be more
seamless and robust. ARL has developed the Symbolic and Sub-symbolic Robotics
Intelligence Control System (SS-RICS), which is based on previous cognitive
architectures [28]. To emulate human decision making, SS-RICS uses goals for the
representations of behaviors. This goal structure has been particularly valuable for
expressing the actions of the robot under a variety of different situations.

Our experimentation with SS-RICS continues to determine the best represen-
tation of goal based behavior. One investigation for this representation is that the
robotics architecture expresses goals as generalizable behavior. For example, if the
goal is presented from the operator to the robot as “Go Around the Building” the
goal is represented internally to the robot as “Go Around Object” with the building
being the object of interest. This can be communicated to the operator from the
robot as “I am going around the building” or “I am going around the object of
interest”. Either one might be appropriate depending on the situation. Additionally,
we have found two other critical types of information, in addition to the goal, for
reporting to an operator, so that the operator can infer the intent of the robot. These
are the time associated with the execution of a goal, and the strategy used for the
execution of the goal. The length of time associated with the goal may be a clue that
the goal is taking too long given the current strategy and that the robot may be
having problems solving the goal of going around an object.
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However, there is a problem with operators understanding strategies involved
with problem solving, especially if the strategy is not a typical one or is not intuitive
to the situation. For example, perhaps a robot should not report that it is using the D
* algorithm for planning and search since the operator might not know the
advantages and disadvantages of the algorithm. The operator would have to learn
the advantages and disadvantages in order to interact with the robot. Additionally,
the operator needs some understanding of the strategy in order to make accurate
decisions involving the strategy selection. Perhaps edge detection as a strategy takes
a long time to execute? Perhaps the end state in edge detection is difficult to define?
What is D *? Knowledge of strategies and how they apply in different situations is
critical for the efficient execution of goal based behavior between robots and
operators. Choosing effective strategies is simplified if the IA understands the
operator’s intent and bi-directional communications permits the IA to query the
operator in order to explain the advantages of specific strategies.

6 Language Processing

Although compatibility of knowledge structures is important for communication,
compatibility by itself is not sufficient for two way communications. Language does
not require either text or spoken dialogue; it does requires syntax, semantics and
pragmatics to convey meaning during two way communications [5]. However, the
pragmatics of creating a dialogue may make open-ended natural language pro-
cessing impractical. For example, the implications of intelligence means something
quite different in every day speech than in military applications. The purpose of the
following research is to develop a framework for language processing that translates
text in terms of the context of the phrases, not simply in terms of their literal
interpretations. This research is the precursor to systems that generate dialogues
between IAs and humans that are sensitive to military context and objectives.

A fully realized system will mean that IAs can query its human partner and ask
for clarifications as the mission unfolds, emulating the peer-to-peer relationships of
soldiers engaged in combat [5]. Controlled English (CE) is a natural language
representation to support human-machine interaction developed by alliance mem-
bers within ARL and UK Ministry of Defence International Technology Alliance in
Network and Information Sciences. CE is a human writable and machine readable
representation of the English language based on domain semantics and First Order
Predicate Logic. The user’s conceptual model is written in CE as concepts, facts
and logical inference rules representing things and their relationships, properties,
and attributes.

Our research uses DELPH-IN linguistic resources, the English Resource
Grammar (ERG) and Minimal Recursion Semantics (MRS) in combination with the
CE system [30]. The ERG system is used to deep parse natural language sentences
for syntactic structure, which is output as MRS predicates and arguments repre-
senting the linguistic semantics. The linguistic semantics are transformed into
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generic semantics (situations and roles), then mapped to domain semantics for
output as CE facts within the CE system. Our research with the ERG/MRS and CE
systems illustrates how CE can be used as a common language to support
human-machine communication and reasoning. It is important to note that CE can
be used to capture rationale as a set of reasoning steps leading to inferences [31,
32]. Logical inference rules can be applied to extract CE facts and assumptions and
represent them in a rationale graph or “proof table” as the reasoning steps leading to
conclusions. The CE system may be used to test multiple hypotheses, detecting
incompatible conclusions based on inconsistent assumptions [33]. The International
Technology Alliance Collaborative Planning Model (CPM) was developed using
CE to assist coalition planners in the management of dynamic plans and to facilitate
automated reasoning of mundane tasks [34]. CPM enabled coalition planners to
exchange task specific planning information (subplans) contained within an overall
plan representation for use within various automated planning tools.

CE has also been used to develop domain models with logical inference rules for
solving logic problems similar to those used in training Intelligence Analysts [31].
It is worth noting that the representation of hypotheses and assumptions using CE
aids in the identification of cognitive biases such as “mirroring” in which the
analyst assumes others share his world view. In our current research, we are using
CE to develop a civil-military domain model for fact extraction and reasoning about
civil considerations [35]. This CE domain model may be used in future research to
support natural language processing and reasoning within the Security and Stability
Operations Training Technology, an Intelligent Tutoring System being developed
for the Civil Affairs community. However, the general utility of the research goes
beyond specific applications. CE and similar paradigms form the basis for devel-
oping future intelligent teams part-human and part-artificially intelligent.

7 Conclusions

The purpose of this paper is to discuss requisites for human-agent shared decision
making. We reviewed research that indicated that an IA which supervised n-less
capable UVs could reduce the operator’s workload and improve overall perfor-
mances. The research also indicated that a successful partnership requires that the
IA’s intent, reasoning, and projected outcomes be transparent to its human super-
visor. However, to be successful transparency must be bi-directional.; ARL
researchers collaborating with researchers from the academic and international
communities are investigating technologies whose purpose is to develop a more
natural teaming relationship among IAs and humans. Research efforts discussed
include better understanding of human-agent trust, IA architectures designed to
emulate human cognitive process, and the use of Controlled English as a basis for a
natural dialogue between humans and their IA assistants.
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Initial Performance Assessment
of a Control Interface for Unmanned
Ground Vehicle Operation Using
a Simulation Platform

Leif T. Jensen, Teena M. Garrison, Daniel W. Carruth,
Cindy L. Bethel, Phillip J. Durst and Christopher T. Goodin

Abstract The successful navigation of Unmanned ground vehicles (UGV) is
important as UGVs are being increasingly integrated into tactical and reconnais-
sance operations. Not only is there the possibility of winding environments but also
the narrow passage of obstacles. This study investigated a participant’s ability to
navigate a maze environment incorporating narrow hallways, with two different
user interfaces, using human in the loop simulation. Participants used a game
controller and customized user interface to navigate a simulated UGV through a
simulated maze environment. Results indicated that the video-plus-map interface
displaying both video and LiDAR data required more time to complete compared to
an interface displaying video-only data.
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1 Introduction

Increasing integration of unmanned ground vehicles (UGV) into tactical and
reconnaissance operations has altered the control requirements for navigating the
UGV from the established domains of urban search and rescue and bomb disposal.
While using UGVs, operators face the challenge of navigation and task perfor-
mance, requiring a combination of cognitive, perceptual, and motor skills [1].
Operators must track the task while avoiding losses of mobility or incurring damage
to the UGV platform [2]. However, in comparison to established domains, UGV
inclusion in tactical operations also necessitates a more balanced approach between
operation precision and speed than most previous applications, in which operator
and bystander safety are paramount. In response to increased time pressure and
broader control demands, an increasing number of sensors and information sources
have been provided to operators. While additional sensors may support navigation
and task performance, they may also place greater situation awareness (SA)
demands on the operator.

With these challenges facing the operator, the ability of the user interface to
allow the operator to maintain acceptable SA is increasingly important. The
human-robot interaction (HRI) definition of SA had been adapted from the popular
definition of SA by [3]. This definition focuses on the awareness the operator has of
the robot’s location, status, activities, and surroundings as well as the robot’s
interpretation of operator input in the current context [2, 4].

These problems have been the focus of several research projects using both
real-world environments and simulation environments [5–8]. UGV navigation is
difficult, thus producing interface features that allow the participant to successfully
navigate and explore any given environment is essential. Video-centric interfaces
are the most common type of interface and are used in most commercially available
robots [5]. However, the placement of the camera on UGV platforms often does not
allow the operator to see the sides of the UGV, including the tracks or wheels which
extend several inches beyond the camera’s field of view. This has been shown to
cause a majority of collisions as the operator interprets what they can see in the
video feed as being the bounds of the UGV [5]. In order to help in navigation,
map-only interfaces or video-plus-map interfaces have been used to improve
navigation and reduce collisions [6]. While the addition of maps and other sensors
can prove helpful, they also have the potential to overload the user [8].

Test environments previously used, based off the National Institute of Standards
and Technology (NIST) USAR test arena, do not indicate the incorporation of
narrow hallways in their test environment [5]. These narrow passages help simulate
obstacles, such as doorways, that a UGV may encounter. Passing through these
obstacles present additional challenges to navigation that may not be sufficiently
addressed with existing interfaces. This study was designed to test the effectiveness
of two web-based video-centric user interfaces, using video-only and
video-plus-map, ability to allow participants to pass through narrow hallways.
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2 Methods

2.1 UGV and Test Environment

The experiment was conducted in a simulated environment, using a simulated
UGV. This study used the Autonomous Navigation Virtual Environment
Laboratory (ANVEL) simulation software package in conjunction with the
ANVEL-ROS (Robot Operating System) plug-in [9]. Participants used a game
controller and customized web-based user interface (see Figs. 2 and 3) to navigate a
simulated UGV through a maze like environment. All data in the user interface was
provided through simulation using the ANVEL platform. The UGV was modeled
after the Jaguar V4 platform [10]. The Jaguar V4 is a tracked UGV with four
articulated flippers that were set at approximately a 45° angle during participant’s
drives. Measurements of the UGV in this configuration are 30″ long, 27.6″ wide,
and 7″ high.

Participants were tasked with driving through a maze-like course with 13 90°
turns (see Fig. 1). There was a single entrance and single exit in the course and
participants were told to drive from the entrance until they exited the environment.
The environment contained four narrow hallway sections of various size (Fig. 1a–d),
which the participants were required to navigate through. The normal sections of the

 

 E
ntrance 

 Exit 

B C 

D 

Fig. 1 Maze-like environment that was used for participants to drive the UGV through. Narrow
sections: a (36″), b (34″), c (34″), and d (32″)
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course measured 48″ wide. Narrow sections ranged from 32″ to 36″ wide providing
the UGV between 4″ and 8″ of total clearance when passing thorough a hallway.
This provided tight tolerances for the UGV’s passage in these sections of the
environment.

Participants’ controlled the UGV using a Logitech gamepad controller. This
controller has a directional pad on the left side, two analog sticks, two left and two
right shoulder buttons, four buttons on the right, and in the middle of the controller
a start, mode, back and vibration button. For this study input was limited to the right
analog stick which was used to provide directional input. When the participant
moved the right analog stick, forward and backward provided longitudinal move-
ment of the UGV while right and left rotated the UGV.

2.2 User Interface

Two versions of a web-based user interface were used in this study. The user
interfaces were custom implementations based on previously published interface
designs [5]. The video-only interface (Fig. 2) consisted of two video feeds. A large
forward-facing video feed was placed in the center of the interface. A smaller
rear-facing video feed was placed in the upper right. A direction indicator pad

 

Fig. 2 Basic video-only user interface, showing main drive forward-facing video feed, and
rearview video feed
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changed arrow colors to indicate directional inputs received from the controller.
Robot status indicators, such as battery status and motor temperatures, were placed
on the left side of the main video display.

The video-plus-map user interface contains all of the same features as the
video-only interface while including the addition of two LiDAR maps. The first
LiDAR map gives a top down view of the robot, in a window of similar size to the
rear facing camera, and is located in the upper left. The second LiDAR map is
located below the main video screen and is a chase map positioned just behind the
robot. Both of the LiDAR maps are updated with the sensor information as the
robot proceeds through the environment.

2.3 Study Procedures

Twenty-four participants were recruited for the study. Of the twenty-four partici-
pants twelve were male and eleven female, one did not provide demographic
information. Participants were given a brief introduction to the UGV, workstation,
simulation environment, and study requirements. Participants were asked to fill out
a motion sickness/simulator sickness questionnaire (MS/SSQ) to establish a base-
line. After completing the appropriate forms, the participant was given the con-
troller and instructed on the controls as well as familiarized with the interface
layout. Each participant drove a familiarization and a trial run for each of the two
user interfaces resulting in a total of 4 runs. Presentation order of the interfaces was
counter-balanced. Participants filled out the MS/SSQ and additional surveys not
reported here after completing the runs for each interface. After completing all 4
runs through the environment the participant completed a vehicle comparison, and
user interface/user experience survey.

Of the twenty-four participants that were recruited for this study, three partici-
pants did not complete all four drives and were removed from the analysis. Of these
three participants, one participant did not complete their drives due to technical
difficulties, one was unable to complete the four drives in the allotted time (1 h),
and one voluntarily withdrew. Two additional participants with data greater than
two standard deviations from the mean on multiple dependent variables were also
removed from the analysis. Results are presented for the remaining nineteen par-
ticipants. Two primary measures were recorded from each participant’s trial runs
through the environment: number of collisions and completion time.

Collisions were counted via observation through video play back by a single
individual. A collision was considered to have occurred any time a participant hit a
wall or obstacle with any part of the UGV. If a participant hit a wall, which stopped
forward progress on the UGV, then stopped giving controller input indicated by the
UGV tracks no longer trying to move, then gave a command to move the UGV in
the blocked direction, this was counted as a second collision. Time started at the
participant’s first forward movement, time stopped when the participant exited the
course.
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3 Results

Overall average time to complete a run through themazewas 210.47 s (SD = 131.8 s).
Results indicated that the video-plus-map interface required more time to complete
the task (M = 255.2 s, SD = 157.77 s) compared to the video-only interface
(M = 165.73 s, SD = 74.55 s, F[1, 18] = 6.299, p < 0.05, Cohen’s f = 0.591)
(Figs. 3 and 4).

Not only was the completion time greater using the video-plus-map interface but
the number of collisions was also greater (M = 57.89, SD = 42.72) compared to the
video-only interface (M = 30.84, SD = 12.53, F[1, 18] = 8.884, p < 0.05, Cohen’s
f = 0.702) (Fig. 5).

The results of the user interface/user experience survey, consisting of questions
designed for this study as well as the system usability questionnaire and semantic
differential scale [5, 11], indicated that participants reported no significant differ-
ences in perception of the interfaces despite the poorer performance given with the
video-plus-map interface (Table 1).

Fig. 3 Video-plus-map interface showing LiDAR map displays in addition to the main drive
forward-facing video feed and rearview video feed
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Fig. 4 Time to complete course for the video-plus-map interface is showing to be significantly
larger than the video-only interface. Error bars show standard error

Fig. 5 Number of collisions for video-plus-map interface is significantly greater than in the
video-only interface. Error bars show standard error

Table 1 User interface/user
experience survey results
showing no significant
difference in UI perception

User experience survey Mean Standard deviation

Video-plus-map 2.3846 0.9892

Video-only 2.2802 0.7778
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4 Conclusions

The results were opposite from what we expected to find, based on previous
findings from published studies, as the video-plus-map interface with LiDAR map
data, resulted in poorer performance than the video-only interface [5, 6]. There are
several factors that may have contributed to the lack of performance in the
video-plus-map interface when compared with the video-only interface. First the
LiDAR chase map, in the video-plus-map interface, sometimes provided slightly
inaccurate data, indicating that the UGV was closer or farther away from a wall or
obstacle than it actually was. This potentially resulted in an increase in collisions if
participants relied on the map interface. An interesting observation occurred when
this happened; most of the participants realized that the LiDAR map was not
completely accurate, verbally commenting to that effect either during or after their
run. However, successive collisions in the same location indicated participants still
continued to rely heavily on the LiDAR map even after verbally commenting on its
inaccuracy. The continued focus on the map could be due to participant’s dislike of
not being able to see the sides of the UGV, which was commented on both verbally
and written on the user experience survey. Another possible contributor to the
reduced performance with the video-plus-map interface is the use of narrow hall-
ways in the environment. The narrows sections appear to cause a large number of
collisions. Previous studies did not include varying narrow sections for participants
to traverse [5, 6]. Because of the tight tolerances required to pass through these
sections even small inaccuracies in the LiDAR map could hinder the participant’s
ability to pass without collision.

Future studies will explore these issues, comparing the results of using the same
environment minus the narrow hallways. Also exploring further enhancements to
the user interface such as various safe path indicators to reduce the number of
collisions as well as decreasing participant’s completion times.

Acknowledgments Material presented in this paper is a product of the CREATE-GV Element of
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Abstract Small unmanned aircraft systems (sUAS) represent a significant instru-
ment for improving task efficiency and effectiveness across numerous industries and
operational environments. However, concern has grown regarding potentially
irresponsible operation and public apprehension to potential privacy loss. These
concerns, combined with unique sUAS human factors challenges, may lead to
unwanted and dangerous results, including reduction of safety, property damage,
and loss of life. Such challenges include lack of command, control, and commu-
nication (C3) standardization; detection, tracking, and managing operations; and
human perceptual and cognitive issues. Issues and concerns could be significant
barriers to permitting routine and sustainable operations in the National Airspace
System (NAS), but by closely examining these factors may be possible to devise
strategies to better support future application. This exploratory study seeks to
provide a review of relevant exigent literature as well as condense findings into sets
of recommendations and guidelines for human factors in sUAS adoption and use.
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1 Introduction

Small unmanned aircraft systems (sUAS) represent a significant instrument for
improving efficiency and effectiveness of task performance in a variety of industries
and operational environments. However, concern regarding potentially irresponsi-
ble operation, including disregard for federal and local regulations, laws, and
guidance governing their safe use, is growing [1–3]. In addition, there has been
significant public apprehension to potential personal privacy loss during sUAS
operations [4–6]. These concerns, combined with unique sUAS human factors
challenges, present situations that may lead to unwanted and dangerous results,
including reduction of safety, property damage, and loss of life. Such challenges
include lack of command, control, and communication (C3) standardization [7];
detecting, tracking, and managing operations in permissible airspace (B-E, and G)
[8]; and human perceptual and cognitive issues [9]. These challenges could be
significant barriers to permitting routine and sustainable unmanned aircraft opera-
tions in the National Airspace System (NAS), beyond requirements already spec-
ified in existing and proposed regulations for operation and certification of sUAS.
By closely examining these issues, it may be possible to devise strategies to better
support future beyond visual line of sight (BVLOS), cargo or external load trans-
port, and emergency response applications and commercial operations. It will be
through safe performance of these potential uses where true economic and societal
gains will be achieved. Therefore, the human factors affecting their implementation
and realization warrant further investigation and analysis. This exploratory study
seeks to provide a review of relevant exigent literature as well as condense findings
into sets of recommendations and guidelines for human factors in sUAS adoption
and use.

2 sUAS-Related Issues and Concerns

sUAS operations are increasing worldwide at an explosive pace. The sUAS oper-
ational community is rapidly expanding, both in absolute numbers and in the
spectrum of operators, resulting from ever-expanding sUAS accessibility, which
itself is both the result of, and feeds, significantly decreased costs to both enter into
and participate in sUAS operations [10, 11]. This presents many issues and con-
cerns. Many of these derive from a self-feeding cycle of ever-expanding sUAS
technological capability, which results in the continued innovation and expansion
of sUAS applications, which in turn results in continually increasing conflicts
surrounding such operations. This, then, leads to expanding regulatory challenges
surrounding the use of sUAS and their associated technologies. All of this has
caught most involved parties insufficiently prepared.
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2.1 Growing Operational Community and sUAS
Accessibility

Until now the largest component of the sUAS market has been military/civil
market. But new technologies and regulations are resulting in a rapidly expanding
commercial sUAS industry [11]. sUAS can range from hobbyist models that fly
short distances for brief time periods on one charge and cost as low as $200 US to
commercial level configurations that fly for extended periods of time and cost
upwards of $10 K US [10]. As prolific as sUAS manufacturing has become in the
U.S., it is China that is currently the leading manufacturer of sUAS [12]. Estimates
for future market growth universally show this trend accelerating. Various research
estimates the trend in sUAS sales to exceed between $6B and $8.4B worldwide by
the 2018/2019 timeframe, and approaching $14B US in 10 years. By 2019 it is
estimated that the commercial sUAS sector will command the majority of the
market, holding roughly five times that of the prosumer/hobby market and two to
three times that of the military/civil market [10], [11]. These estimates have fueled
significant investment in sUAS manufacturers, further fueling this growth cycle.
The only apparent throttles to this remarkable growth are cost-effective techno-
logical progress and uncertainty regarding regulatory framework.

In an initial response to operational concerns stemming from this market growth,
particularly in the prosumer/hobby sector, numerous public outreach campaigns
have been developed to educate operators new to the market in safe sUAS oper-
ations. Perhaps among the most notable of these is Know Before You Fly, a joint
consumer education campaign founded by the Association for Unmanned Vehicle
Systems International (AUVSI), the Academy of Model Aeronautics (AMA), and
the U.S. FAA [13]. The FAA has also established its own, independent educational
outreach program called No Drone Zone [14]. Even commercial retailers who sell
sUAS have begun to support educational outreach, including Best Buy with the Fly
Responsibly section of its Drone Buying Guide [15].

2.2 Increasing Technological Capability

As a growing consumer technology, sUAS advancements are being pushed by both
progression in complimentary technologies, as well as customer-driven develop-
ment efforts. Improving performance characteristics, such as speed, range, and
endurance, combined with enhanced functionality of C3, remote sensing and pro-
cessing, as well as affordability and availability, are increasing the potential
applications supported using these systems. Such expanding capabilities enable
sUAS to fly further, faster, carrying greater loads, while also being simpler to
operate due to intuitive human-machine-interfaces (HMI) featuring integrated
autopilot and flight stability control, system state, and positioning [16, 17].
However, with increased operational ease the potential increases for users to
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become overconfident in flight [18], without understanding or having gained
experience with a degraded operational state (e.g., loss of stability assist from GPS
signal loss) or upset inducing conditions. Such a combination could result in
damage, injury, or death, if improper recovery is performed or attempted. In
addition, lack of a standardized format for system control HMI necessitates unique
operational training or practice for each specific platform or family of platforms
manufactured by a vendor. Furthermore, with the wide availability of platforms,
lack of current sUAS specific certification or training requirements, and prolifera-
tion of similar consumer options, the potential is high for improper, possibly illegal,
operations, as well as user confusion or inappropriate control response in operation.
As consumer sUAS use continues to grow, it will be imperative to ensure a base
level of knowledge, skills, and abilities (KSAs) and guidance resources relating to
their operation exists among the user community, especially for those with little
training, knowledge, or experience in aviation settings [19].

2.3 Regulatory Change

Per the FAA Modernization and Reform Act of 2012, the agency was required by
Congress to establish regulations for the commercial use of UAS by September 30,
2015. Initial response by the FAA was laggard and after several years of limited
action and strict regulation the reigns on UAS operation have begun to loosen.
Currently (as of February 2016), the FAA does not require specific approval for
recreational or hobby use of UAS as long as it weighs under 55 lb (unless certified
by a modeling community-based organization) and requires all such vehicles to be
registered if they weigh more than 0.55 lbs. For those wanting to operate UAS for
non-recreational purposes, specific approval is required. There are four ways to
achieve this approval from the FAA, Special Airworthiness Certificates—
Experimental Category (SAC-EC), Restricted Category UAS type and airworthi-
ness certificates, to petition for an exemption with a Certificate of Waiver
Authorization (COA), or to petition for a Section 333 exemption. Section 333 and
COAs are also awarded with a nationwide blanket COA for operations below
200 feet and additional restrictions on operations around airports, restricted air-
space, and over populated areas. The FAA states that the Section 333 exemption
process takes approximately 120 days while a COA may take from 60 to 90 days
[20].

As of December 21, 2015, all sUAS from 0.55 lbs to less than 55 lbs must be
registered and the owner must be 13 years or older and a US citizen or legal
permanent residents (those under 13 must have someone at least 13 register the
sUAS). Additional registration requirements exist for those using their aircraft for
commercial purposes, other than hobby and recreation, if UAS weigh more than
55 lbs, or if flying outside U.S. The registration is valid for three years and the
registration number provided must be marked on the sUAS. This requirement also
includes Section 333 aircraft. Additionally, Section 333 operators must hold an
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FAA airman certificate. For- hire operations currently require a commercial pilot
certificate [21].

In early 2015, the FAA unveiled their plan for the creation of Part 107 of Federal
Regulations which would cover sUAS. This proposed regulation provides more
flexibility as to how, where, and by who sUAS can be operated. This proposed
regulation outlines operator requirements, platform certification, registration
requirements, and operational limitations.

Also released in 2015 was a Presidential Directive that mandates Federal
agencies to be more transparent about data collection from aerial surveillance to
ameliorate public concern about invasion of privacy. It is expected that similar
guidance to be provided in the new sUAS rules once released. Additional concerns
to sUAS operators are state and local legislation. According to the Association of
Unmanned Vehicle Systems International (AUVSI), 21 states have active or passed
bills restricting UAS operations. Some of these actions have focused on privacy as
well [22]. Even more confounding, some municipalities have added their own
limitations and in some cases outright prohibiting UAS operations within city limits
[23]. Thankfully for UAS operators, it is surmised that such restrictions will not be
valid once Federal standards are in place, although it will likely take time for the
local entities to realize this, most likely within a courtroom [24].

3 Human Factors Challenges

While sUAS operations share many human factors challenges with manned air
vehicle operations and with larger UAS operations, they also engender some unique
challenges founded in human cognitive performance and limitations. These result
from sUAS size, relative technological complexity, and from the experience level of
the population of operators. The latter is a result of the relatively low cost and
availability of sUAS, which opens entry into the operational environment available
to an increasingly broad spectrum of the population. This results in unique sUAS
challenges associated with C3 functions, detection, tracking, and management of
operations, and with HMI.

3.1 Command, Control, and Communication

The human element has always been a priority concern in all aspects of manned
aviation, and unmanned systems are no different. The term unmanned system is a
misnomer in itself, since there is a human operator inherent to the system, but not
collocated in the vehicle. As the FAA and other entities begin to acknowledge the
impending proliferation of UAS in the NAS, identifying the proper balance of
human interaction and autonomous control in the C3 of UAS has become an issue
of extreme importance [25]. Among sUAS, lack of standardization of control
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stations and interfaces creates confusion, increases cost for training, and increases
safety and control issues. For local visual line of sight devices (VLOS), control
devices can vary from small, smartphone and tablet devices to handheld dedicated
control units. For BVLOS, control devices become larger, more capable, and more
complex due to the need to control and communicate with a vehicle which can no
longer be seen.

Ground control stations (GCS) of UAS range from commercial off-the-shelf
(COTS) controllers, to sophisticated specific-purpose interfaces housed in trailers or
ground facilities [26]. A considerable challenge has been to design interfaces that
provide salient information capable of maintaining situational awareness in UAS
that are capable of BVLOS operation. The absence of rich perceptual cues available
to pilots of conventional manned aircraft has resulted in debate concerning proper
design of control stations, level of automation needed, transparency of automation
time de-lays in control and communication, and challenges of maintaining pilot
vigilance and engagement during extended periods of low workload resulting from
high degrees of automation and autonomy embedded within command and control
systems [26, 27].

3.2 Detection, Tracking, and Management of SUAS
Operations

Air Traffic Control (ATC) personnel have described the task of integration of UAS
into the NAS as “the hardest things we have ever done” [28, p. 1]. Tracking sUAS
can be challenging. See and avoid principles have been employed in manned
aviation for many years in ATC, but with the advent and proliferation of UAS in
general and specifically sUAS, visual detection and tracking can be difficult, if not
impossible. New technologies, including sense and avoidance, are available and
must be implemented in all UAS from the beginning, if smooth and safe integration
with manned aircraft in the NAS is the objective. Response to ATC instructions by
UAS also present a challenge as communications are often delayed because mes-
sages must be relayed via operators on the ground before the necessary control
inputs are made [28].

The goal of safely integrating UAS without segregating, delaying, or diverting
other aircraft and other users of the system presents significant challenges for ATC
[29]. Existing standards ensure safe operation by pilots actually on board the air-
craft. Removing the pilot from the aircraft creates a series of performance con-
siderations between manned and unmanned aircraft that need to be fully researched
and understood to determine acceptability and potential impact on safe operations
in the NAS [29].

Two technological areas present specific human factors challenges to UAS pilots
and ATC: Sense and Avoid capability and C3 system performance requirements.
Sense and avoid capability must provide for self-separation and collision avoidance
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protection between UAS and other aircraft analogous to the current “see and avoid”
operation of manned aircraft [29]. This coupled with potential limitations of C3
including datalink reliability and lag time in communications presents potential
safety issues that need to be overcome before true integration into the NAS with
manned aircraft can be implemented.

3.3 sUAS-Specific Human-Machine Interfaces

sUAS HMIs should be designed to take best advantage of human performance
capabilities (primarily cognitive and biomechanical) while overcoming human
performance limitations in order to promote the efficiency, effectiveness, and safety
of flight operations. Cognitively this means HMI design and operation specifics
should support human perceptual (primarily visual), memory, risk assessment,
problem solving, and decision making processes. Control HMIs will vary between
systems employing internal and external operators and dependent upon the level of
automation. For those systems providing any level of manual control or for the
ability of the pilot to override the automation a standardized flight control system
should be developed. Whether that be a stick and rudder system, a cyclic and
collective system, joysticks, or some other system, the key is to standardize that
control system across sUAS platforms as much as possible [30, 31]. Without
standardization the effectiveness, efficiency, and safety of operations are all reduced
due to the additional cognitive processing demands a variety of non-standardized
systems would place on operators [31]. To this end, certain control types should
also be standardized for specific non-flight control functions?

Similarly, sUAS operations would benefit from standardization of operator
displays, but doing so requires answering numerous questions. All but line-of-sight
operations will rely on imagery developed from onboard sensor data for manual
vehicle control. The quality of the display may be degraded due to datalink
bandwidth limits and spatial resolution. Such degradations include poor spatial and
temporal resolution, poor field of view (FOV), and low visual and data update rates
[32]. These, in turn, will impact both vehicle control and detection of other air
traffic, as well as safety of operations, through their impact on operator cognitive
performance [31]. What, then, should be the standards developed for these opera-
tional parameters? Can tools such as augmented reality displays and synthetic
visual systems be used to support cognitive processing and thus compensate for
these degradations [30]? Unlike pilots of manned aircraft, sUAS operators are
deprived of a range of sensory cues, such as ambient visual input,
kinesthetic/vestibular information, and sound, important to cognitive processing
related to the flight operations. It is therefore important for sUAS to provide dis-
plays and alarms that will compensate for this missing information and keep
operators well informed of system status [31]. Perhaps multimodal display systems
can successfully accomplish this. If so, what data should be available to the pilot
and when? How, and to what extent, should this data and display presentation be
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standardized across sUAS platforms? Should sUAS displays be similar to manned
aircraft? How should payload and other non-flight operations data be displayed and
integrated? Should certain information always be available to the operator while
other data is menu-driven? These are among the questions that must be answered in
order for sUAS operations to reap the benefits of operational efficiency, effective-
ness, and safety derived from HMI standardization.

4 Technological and Procedural Advances

The increased level of civilian interest in sUAS use is contributing to knowledge
discovery and improvement, challenging members of the stakeholder community
and peripheral fields to extend capabilities, while increasing safety and effectiveness
of the underlying technology. While many of the innovative advancement are
directly tied to technological development, procedural changes and regulatory
requirements are also significantly impacting how sUAS are employed. These
efforts, including individual and collaborative pursuits among government, indus-
try, and academia, provide the potential for substantial economic, educational, risk
mitigation, and altruistic gains.

Variability among sUAS platform options has changed substantially from the
introduction of vertical take off and landing (VTOL) designs, such a multirotors.
While performance limited, compared to fixed-wing options (i.e., reduced speed,
range, and endurance), these platforms afford expanded maneuverability and rapid
reorientation. Such capabilities enhance the capture of imagery from an aerial
perspective, especially for localized VLOS infrastructure inspection, aerial filming
and photography, and exploratory investigation and intelligence gathering [33].
A substantial number of consumer multirotor platforms are available as COTS,
produced by vendors able to leverage economies of scale and process efficiency in
manufacturing [34]. Construction of sUAS and their constituent components has
also been affected by the availability of novel new materials and production tech-
niques, such as additive layer manufacturing (e.g., 3D printing). The development
of new composites has led to the integration of lighter and stronger structures,
beneficial thermal properties (e.g., de-icing), micro-actuation, electrical conduc-
tivity, and the possibility for enhanced detection (e.g., increased radar signature)
and self-repair [35, 36]. The availability of consumer 3D printing equipment, with
design media shared across among user communities and low-cost consumable
material purchasable from local and online retailers, has also continued to grow.
The affordability and increased access to such technology has resulted in sub-
stantially varied design options, conceptualized and immediately fabrication (i.e.,
rapid prototyping), by a diverse population ranging from casual hobbyists to
experienced professionals [37].
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A critical challenge of integrating sUAS technology into the NAS is ensuring
“see and avoid” capability, which is mandated by current Federal regulations, can
be maintained among all aircraft operators (i.e., pilots). By the inherent nature of the
design sUAS pilots are unable to see, unless they are within VLOS of the aircraft
[38]. Using sensing technology, a pilot can sense or detect, and subsequently avoid
(DSA), potential obstacles, aircraft, and objects, given a sufficient sensor fidelity.
This use of technology, to replicate and improve upon human perception limita-
tions, provides a potential solution to improve avoidance response and overall
operational safety within the NAS. Sensing technology is also being improved
through development of lower weight and sized components that increase accuracy
and fidelity (e.g., greater resolution, depth, and field of view) with decreased power
consumption, further extending the operational endurance or usability of platforms.
Increased fidelity and accuracy of captured data, using such sensors, translates to
the creation of more precise models, databases, and information. Improved man-
ufacturing techniques, coupled with economic competition, has decreased cost,
while increasing accessibility and use. Current areas of sensing advancement
include active onboard distance sensing (sonar), ground-based sensing (e.g., radar),
data processing and categorization algorithms, optical sensing (machine-vision),
and alternative localization to support operations in GPS denied environments [39].

Improvements to C3 infrastructure, including the HMI (command and control)
and communication capabilities, can improve overall efficiency and effectiveness of
the system. Intuitive graphical user interfaces (GUIs) and controls are simplifying
operator interaction and programmability of autonomous functions, while common
(universal) architecture in both defense, as well as consumer options, enable control
of multiple types of UAS with expandable features mapped to platform type.
Integration with touch-sensitive smart devices, such as phones as tablets, are
replacing or augmenting discrete physical controls and information display. Novel
interfaces, such as electroencephalography, support mapping control commands to
thought patterns [40]. Multi-nodal (peer-to-peer) and cellular networking are pro-
viding new pathways for data distribution and exchange, with users potentially able
to share high-fidelity or resolution imagery and telemetry among platforms, pilots,
and ground-based assets. These networks also provide primary or secondary (re-
dundant) interoperability for command and control, decreasing potential for
lost-link. Other areas of communications R&D include enhanced security (en-
cryption) for protection of data exchange and investigation into exotic topics, such
as quantum and plasmonic technologies [41, 42]. The potential gains expected from
such research include improved speed and encryption (reduced latency) and
reduced power consumption.

Power and propulsion sources affect overall speed, endurance, and range of a
platform, which can limit or support the end usability of the overall system.
Specifically, the size of operational coverage area, payload capacity, speed of
response, and time aloft (i.e., mission time) [34]. A number of R&D efforts are being
conducted to extend and improve the power and propulsion of unmanned systems,
with some advances coming from manned transportation (e.g., electric automobile)
and portable computing industries. At the forefront is the development and use of

Examining Human Factors Challenges of Sustainable … 69



alternative or enhanced power storage and conversion (motor) options. Researchers
have developed new or modified fuel cell formats (e.g., solid, lightweight
non-compressed hydrogen and solid oxide fuel cell [SOFC]) to improve energy
density over conventional options [43, 44, 45]. Increased storage potential and life of
batteries are also being studied, with promising discoveries associated with the
incorporation of silicon, graphene, and solid electrolyte to improve stability, life, and
energy density [46, 47, 48]. Research to apply supplemental power delivery for
operational recharge using improved solar cells and laser energy transmission also
indicate potential to reduce weight and and increase efficiency [49].

R&D advances are not isolated to technological subsystem improvements; a
number of projects are being conducted to better understand how to safely incor-
porate, manage, and apply sUAS within the NAS. Topics include airspace inte-
gration, BVLOS operations, airworthiness testing, training and certification, risk
reduction, and maintenance. The Federal government, including the FAA and the
National Space and Aeronautics Administration (NASA), has sponsored initiatives,
such as the Pathfinder program, UAS Traffic Management (UTM), and individual
projects conducted through the Test Sites and Center of Excellence to gather data
and develop results that will be used to guide future regulatory requirements [50–
53]. It is expected that future research ventures, which are currently conducted under
COAs (public entities) and Section 333 Grants of Waiver, will continue to increase
with improved access to airspace under proposed sUAS operational rules [54].

5 Conclusions and Recommendations

This exploratory study examined the human factors challenges of sustainable sUAS
operations. Specifically, this research explored the ways that task efficiency and
effectiveness can be augmented among a variety of operational environments and
circumstances. Many of the issues identified in the implementation of sUAS are
similar to issues present in manned flight operations, including human factors
issues, level of automation and autonomy, and interface design. The primary
challenges to sUAS are lack of standardization among C3 and HMI, in addition to
limitations on detecting, tracking, and managing operations. These are known
challenges that have been present and acknowledged for at least the last decade, and
yet little has been accomplished to resolve these issues. With the rapid expansion
and availability of sUAS, it has been identified that limitations must be mitigated to
safely and effectively integrate these systems into the airspace operational envi-
ronment. Clearly, sense and avoid as well as C3 issues must be resolved in order to
achieve this goal.

Moreover, standardizing sUAS controls and operator displays will augment
safety and inter-utilization in all types of operations particularly in light of the wide
range of users either currently or potentially operating these devices. A primary
concern of the FAA is and has always been the safe implementation of UAS into
the NAS. This focus has not changed and will only proliferate in the future as UAS
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become more viable as commercial alternatives for current applications. Further
research and development activities in power, propulsion, construction, and
application will also bolster the industry. With all of these efforts and advances
coupled together, sUAS have the ability to provide extremely beneficial utilities to a
range of industries and entities, as well as to overall mankind.
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Mission Capabilities—Based Testing
for Maintenance Trainers: Ensuring
Trainers Support Human Performance

Alma M. Sorensen, Mark E. Morris and Pedro Geliga

Abstract Historically, Unmanned Aerial Systems (UAS) Training Device
(TD) testing emphasized meeting performance specification with an insignificant
level of attention paid towards mission capabilities-based requirements. Recent
research focusing on effectiveness and efficiency of UAS TDs in supporting
learning of critical skills has brought mission capabilities-based requirements
testing to the forefront. This paper provides a review of the process and results of
the MQ-8B Fire Scout Avionics Maintenance Trainer (AMT) MCT event. The Fire
Scout AMT MCT event produced qualitative and quantitative data associated with
the AMT’s ability to support teaching of tasks/Learning Objectives (LOs) specific
to maintenance. The multi-competency test team collected two types of data; one
type measuring the capability of TD to provide critical attributes to support each
task/LO and the other measuring the capability of TD to facilitate task/LO
completion.

Keywords Training � Training devices � Mission capabilities � Maintenance

1 Introduction

Throughout history Naval aviation has been at the forefront dominating the air
environment and remaining a critical component of military strategy and success.
Within recent years, naval aviation has evolved from manned air systems to
Unmanned Aerial Systems (UAS). With the steady and increasing reliance on UAS
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to extend our military’s eyes and improve targeting of aircraft and helicopters [1]
UAS training is critical to ensure the United States’ military power maintains a
competitive edge. Due to the complexity of UAS, the military is turning to the
acquisition of full fidelity simulators, training devices (TD), and part task trainers to
ensure mission readiness. This training paradigm adds a complexity to the training
environment resulting in the need to change the Navy evaluates full fidelity sim-
ulators, TDs, and part task trainers. Historically, emphasis has been placed on
ensuring a TD meets performance specification (e.g., a light turns red when it is
supposed turn red), while an insignificant level of attention has been granted
towards evaluating the mission capabilities-based requirements (e.g., the light
turning red during the executing of a troubleshooting task lead a student to com-
plete the procedure correctly). Within recent years, initiatives to ensure mission
capabilities-based requirements are met have been brought to the forefront as
research focuses on how effective and efficient the systems are in supporting
learning of critical skills. To accomplish this, the Department of Defense (DoD) has
begun to change its system of evaluation to better support capabilities-based testing
(Davis 2002). One area of focus includes conducting mission capabilities-based
testing (MCT) of TDs to determine if they support learning and enable transfer and
retention of learning. Successful completion of MCT assists in TD certification and
allows for identifying potential deficiencies and future upgrade recommendations.
To date, the focus has been on conducting MCT on aircraft operators TDs.
However, MCT of a TD for aircraft maintenance is equally critical. This paper
describes the recent successful completion of the MQ-8B Fire Scout Avionics
Maintenance Trainer (AMT) MCT event and provides initial results of MCT data
specific to an aircraft maintenance TD.

2 MCT Process Utilized

The six-phased process employed for test planning, execution, and report. Figure 1
provides a graphical illustration of the process discussed in the following sections.

Fig. 1 MCT process
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2.1 Phase 1. Prepare Test Plan

Phase 1 consisted of writing a test plan. The test plan documented the scope,
methods, and limitations for validating the capabilities of the AMT to support the
MQ-8B Fire Scout Electronic Technician course. The test plan provided a systematic
approach to planning and ultimately conducting an effective and safe test event. Prior
to commencing any test event the Navy requires an approved Test Plan [2].

2.2 Phase 2. Prepare for Criticality Workshop

Phase 2 focused on preparing for the criticality workshop. First, instructional
analysts reviewed training analysis data documented during the MQ-8B Fire Scout
Maintenance Electronics Technician Front-End Analysis (FEA) (e.g., Media
Report) to determine which Learning Objectives (LOs) would be designated to be
taught, practiced, and/or assessed via the AMT. Once this was established,
instructional analysts reviewed previous specification and regression-testing results
to determine initial priority list for MCT. If a test procedure not completed during
specification testing traced to a LO, then the LO received higher priority to ensure
testing during MCT. After reviewing the training analysis data, Instructional ana-
lysts identified eight categories consisting of 22 simulator attributes for relevancy
towards the AMT. Figure 2 identifies the baseline simulator attributes considered.
The Integrated Product Team (IPT) down-selected the attributes based on functional
requirements of the AMT. The IPT determined the following attributes (shown in
bold font in Fig. 2) applied to the AMT MCT event: appearance, tactile feel, haptic

Fig. 2 Categories and simulator attributes
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cues, system response, system delay, audible signals, and Instructor Operating
Station (IoS). Finally, instructional analysts derived a criticality scale using a Likert
Rating Scale, where 0 = Not Applicable, 1 = Not Critical, 2 = Nice But NOT
Critical, 3 = Critical, 4 = Highly Critical, and 5 = Absolutely Critical and created
the corresponding data collection tool.

2.3 Phase 3. Conduct Criticality Workshop

Phase 3 involved conducting the criticality workshop. A virtual criticality work-
shop, organized and facilitated by members of the Fire Scout IPT, utilized Fire
Scout fleet maintainers with prior deployment experience and included represen-
tation of the Fire Scout maintenance schoolhouse. Subject Matter Experts (SMEs)
systematically rated each attribute for each LO using the established criticality scale
mentioned Phase 2. Based upon the criticality rating received, instructional analysts
revaluated priority levels ensuring LO requiring multiple attributes received higher
priority during the MCT event.

2.4 Phase 4. Prepare for MCT

Phase 4 concentrated on preparations for the MCT event. Preparing for the testing
event included developing test cards for each LO that listed procedures copied from
the Interactive Electronic Technical Manuals (IETMs); those manuals maintenance
personnel use to perform preventive and corrective maintenance.. Simultaneously,
instructional analysts developed two questionnaires using a Likert Rating Scale,
where 1 = Completely Incapable, 2 = Marginally Incapable, 3 = Moderately
Capable, 4 = Effectively Capable, and 5 = Fully Capable. The first questionnaire
measured the TD’s ability to replicate the critical attributes identified for each LO
during the criticality attribute workshop. The second questionnaire, developed
using a modified-Cooper Harper [3, 4] questionnaire, assessed the TDs overall
capability to execute the LO. Instructional analysts developed a testing manual
consisting of a test card and the two questionnaires for each LO.

2.5 Phase 5. Conduct MCT

Phase 5 involved conducting MCT. SMEs, consisting of both fleet maintainers
(2) with deployment experience and schoolhouse instructors (3), executed each test
procedure by system (e.g., Communications, Vibration Monitor, Navigation) in
accordance with the test cards and IETMs. Upon completion of each test card,
instructional analysts facilitated data collection by utilizing the two questionnaires
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developed in Phase 4. Instructional analysts collected supplemental data regarding
rationale for each Likert Scale rating collected requiring courseware specific
instructor interventions related to any identified lack of TD capability. The data
collected via the questionnaires also allowed the Test Director to determine and
issues list related to the TD’s capability and report, officially, within an Interim
Summary Report (ISR) as part Phase 6.

2.6 Phase 6. Report Results

Instructional analysts reviewed the data collected during MCT. Instructional ana-
lysts provided the data, raw and analyzed, to the Test Director to support issue
identification, lessons learned, and recommendations. The Test Director consoli-
dated the issues, lessons learned, and recommendations into an ISR and promul-
gated it up through the NAVAIR Test Directorate and the MQ-8 Fire Scout
program office for review and approval. Issues identified in the ISR are processed
and published into Deficiency Reports (DRs) and reviewed, approved, and pro-
mulgated via a Report of Test Results (RTR). in accordance with Test Reporting
Policy for Air Vehicles, Air Vehicle Weapons, and Air Vehicle Installed
Systems NAVAIRINST 3905.1 [5].

3 Results

The following subsections discuss the results of the two data gathering events: the
Criticality Attribute Workshop and the MCT event.

3.1 Criticality Attribute Workshop Results

The criticality attribute workshop focused on identifying which of seven attributes
the TD should replicate for all 65 LOs to facilitate transfer of knowledge. The data
collected during the criticality attribute workshop allowed analysts to prioritize the
LOs for the MCT event. Table 1 illustrates the percentage of LOs by rating for
criticality attribute (n = 8). Analysts collected data via consensus.

Table 1 identifies the three highest rated attributes critical to the TD facilitating
and promoting knowledge of transfer are appearance, tactile feel, and haptic cues.
The highest rated attributes, appearance, tactile feel, and haptic cues, received a 5
rating (Absolutely Critical) for 55 (82 %) of the LOs while 12 (18 %) of the LOs
received a 3 (Critical) rating. The next highest rated attribute, Systems Response
Interaction, received a 5 (Absolutely Critical) rating for 45 (67 %) of the LOs while
21 (31 %) of the LOs received a 2 (Nice But NOT Critical) rating. The third highest
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rated attribute, System Delay, received a 5 (Absolutely Critical) rating for 33
(49 %) of the LOs, a 3 (Critical) rating for 2 (3 %) of the LOs, a 2 (Nice But NOT
Critical) rating for 10 (15 %) of the LOs, a 1 (Not Critical) for 1 (1 %) of the LOs,
and a 0 (Not Applicable) rating for 21 (31 %) of the LOs. Next, the IoS attribute
received a 5 (Critical) rating for 14 (21 %) of the LOs, a 3 (Critical) rating for 29
(43 %) of the LOs, and a 0 (Not Applicable) rating for 24 (36 %) of the LOs. The
lowest rated attribute, Audible Signals, received a 2 (Nice But NOT Critical) rating
for 2 (3 %) of the LOs while the rest of the LOs, 65 (97 %) received a 0 (Not
Applicable) rating.

The attribute criticality results can be understood by considering the behavior of
the LOs relevant to Fire Scout maintenance. The majority of the LOs, 21 (31 %)
required the removal and installation of the AV’s components. Using the TD as a
media to facilitating knowledge transfer of LOs focusing on removal and installation
of components requires those components to have the physical properties, touch
sensation, and kinesthetic responses of the real AV. The next highest grouping of
LOs corresponds to troubleshooting or testing components on the AV. LOs requiring
troubleshooting or testing each totaled 12 (18 %). Using the TD as a media to
facilitate knowledge transfer of LOs focusing on troubleshooting and testing an AV’s
components required accurate systems responses and system delay in receiving data.
Combined, these three (3) types of LOs, removal and installation, troubleshooting,
and testing, accounted for 45 (67 %) of the LOs, as shown in Table 2.

Instructional analysts updated the LOs testing prioritization to ensure testing of
critical LOs occurred during the MCT event timeframe. The re-prioritization of LOs
considered the frequency of ratings received during the criticality attribute
workshop. LOs with four (4) or more attributes receiving a 5 (Absolutely Critical)
rating received Priority I re-classification. LOs with three (3) attributes receiving a 5
(Absolutely Critical) rating received Priority II re- classification. LOs with fewer
than three (3) attributes receiving a 5 (Absolutely Critical) rating received
Priority III re-classification. Using the re-prioritized list of LOs, analysts conducted
the MCT event. The following subsection discusses the results of the MCT event
and the two types of data, Critical Attribute Results and TD Capability Results,
collected.

Table 1 LOs percentage results for criticality attribute ratings

Attribute Likert scale rating

5 (%) 4 (%) 3 (%) 2 (%) 1 (%) 0 (%)

Appearance (physical properties) 82 0 18 0 0 0

Tactile feel (touch sensation) 82 0 18 0 0 0

Haptic cues (kinesthetic response) 82 0 18 0 0 0

Systems Response Interaction 67 0 0 31 0 0

System delay 49 0 3 15 1 31

IoS 21 0 0 43 0 36

Audible signals 0 0 0 3 0 97
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3.2 MCT Event—Critical Attribute Results

The critical attribute results focused on how well the TD represented the specific
attribute in such a way that transfer and retention of knowledge occurred. At a high
level, of the LOs tested, 31 (46 %) LOs received a rating of 5 (Fully Capable) for all
attributes, seven (10 %) LOs received no 5 (Fully Capable) rating at all, and the
mode rating was 3 (Moderately Capable) (n = 5). During testing analysts did not
collect data on five LOs; the five LOs, removed due to their removal from the
corresponding course are listed below.

• Clean Boresight Module
• Power up Air Data Subsystem
• Replace Coastal Battlefield Reconnaissance and Analysis (COBRA) Airborne

Payload System (CAPS) Payload Housing Group (PHG)
• Replace COBRA CAPS Payload Support Mount

Because some attributes, during the criticality attribute workshop, received TD
capability ratings below three (3), analysts did not collect data on all attributes for
each LO. Taking into account the removal of the five (5) LOs identified above the
maximum number of LOs tested equaled 62; for some attributes analysts collected
no, or minimal, data. Table 3 identifies the number of LOs for which analysts

Table 2 Breakdown
between LO behavior and
number of LOs/percentage

LO action Number of
LOs

Percentage
(%)

Removal and
installation

21 31

Troubleshoot 12 18

Test 12 18

Monitor 3 4

Adjust 1 1

Backup 1 1

Calibrate 1 1

Clean 1 1

Conduct 1 1

Configure 1 1

Power up 2 3

Utilize 1 1

Verify 2 3

Download 1 1

Shut down 2 3

Load 3 4

Operate 1 1

Perform 2 3
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collected data, by attribute. Table 4 provides a breakdown of the TD’s attributes
representation capability by attribute.

As Table 4 indicates the appearance and tactile feel attributes received the
highest ratings, followed closely by the haptic cues attribute. For the appearance
and tactile feel attributes, data analysis yielded identical results. Of the 62 LOs
tested, the appearance and tactile feel attributes received a 5 rating (Fully Capable)
on 55 (89 %) LOs, a 4 (Effectively Capable) rating on one (2 %) LO, a 3
(Moderately Capable) rating on three (5 %) LOs, a 2 (Marginally Incapable) rating
on one (2 %) LO, and a 1 (Completely Incapable) rating on two (3 %) LOs. Closely
following appearance and tactile feel is the haptic cues attribute. For haptic cues, 49
(79 %) of the 62 LOs tested received a 5 (Fully Capable) rating, two (3 %) LOs
received a 4 (Effectively Capable) rating, three (5 %) LOs received a 3 (Moderately
Capable) rating, three (5 %) LOs received a 2 (Marginally Incapable) rating, and
five (8 %) LOs received a 1 (Completely Incapable) rating. After haptic cues,
system delay is the highest rated attribute. Per the results of the criticality attribute
workshop and the removal of the above listed LOs, analysts only collected data for
the system delay attribute for 33 LOs. Of the 33 LOs tested for system delay, 27
(44 %) received a 5 (Fully Capable) rating. Of the remaining eight LOs, one (2 %)
LO received a 2 (Marginally Incapable) rating, and five (8 %) LOs received a 1
(Completely Incapable) rating. After the system delay attribute, the highest rated
attribute is systems response interaction. Because of the results of the criticality

Table 3 Breakdown of attribute by LO

Attribute Number of LOs

Appearance (physical properties) 62

Tactile feel (touch sensation) 62

Haptic Cues (kinesthetic response) 62

Systems response interaction 43

System delay 33

IoS 14

Audible signals 0

Table 4 Percent of LOs the TD adequately replicates by attribute

Attribute Likert scale rating percentage

5 (%) 4 (%) 3 (%) 2 (%) 1 (%)

Appearance (physical properties) 89 2 5 2 3

Tactile feel (touch sensation) 89 2 5 2 3

Haptic Cues (kinesthetic response) 79 3 5 5 8

Systems response interaction 29 13 16 2 10

System delay 44 0 0 2 8

IoS 6 0 16 0 0

Audible signals 0 0 0 0 0
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workshop and the removal of the aforementioned LOs, analysts only collected data
associated with the systems response interaction attribute on 43 LOs. Of the 43 LOs
tested, 18 (29 %) received a 5 (Fully Capable) rating, eight (13 %) LOs received a 4
(Effectively Capable), 10 (16 %) LOs received a 3 (Moderately Capable) rating,
one (2 %) LO received a 2 (Marginally Incapable) rating, and six (10 %) LOs
received a 1 (Completely Incapable) rating. After system response interaction, the
next highest attribute is IoS. Because of the criticality workshop results analysts
collected data associated with the IoS attribute on only 14 LOs. Of the 14 LOs
tested, four (4) (6 %) LOs received a 5 (Fully Capable) rating and 10 (16 %) LOs
received a 3 (Moderately Capable) rating. Based on the criticality workshop data
analysis results, analysts did not collect attribute data on any LOs related to audible
signals. Review of the data identifies the highest rated LOs are related to tasks
requiring removal and installation of AV components and are closely followed by
those LOs associated with troubleshooting and testing AV components. The critical
attribute results indicated the TD is capable of supporting the execution of the LOs
in a learning environment either fully as currently built or with minimal compen-
sation. There are some LOs, more specifically associated with the Systems
Response Interaction LOs, that require considerable compensation or workarounds,
but few contain severe deficiencies or detractions from realistic execution and only
two tasks are completely unsupported by the TD.

3.3 MCT Event—TD Capability Results

Analysts also evaluated the TD’s capability to support overall LO execution. To do
this, analysts used a modified-Cooper Harper scale to ask the SMEs if, using the
TD, (1) they completed the task, (2) they complete portions of the task, (3) com-
plete the task with workarounds, and/or (4) the TD contains the fidelity and
functionality of a Non Fully Mission Capable (NFMC) MQ-8B Fire Scout. Table 5
provides a breakdown of the ratings received through execution of the
modified-Cooper Harper questionnaire.

Of the 62 LOs tested, 34 (55 %) of the LOs received a 5 (Fully Capable) rating
indicating the TD contains the fidelity and functionality of a NFMC MQ-8B Fire
Scout and is fully capable of providing training specific to the LO with no departure
from realism and requires no compensation to support LO execution. Five (8 %) of
the 62 LOs received a 4 (Effectively Capable) rating indicating the TD contains the
fidelity and functionality of a NFMC MQ-8B Fire Scout and is reasonably capable
of providing training specific to the LO with minor, but annoying deficiencies,
requiring minimal compensation to support LO execution. Five (8 %) of the 62 LOs
tested received a 3 (Moderately Capable) rating indicating the task was completed
but required workarounds and the TD is borderline capable of providing training
specific to the LO with moderate deficiencies requiring considerable compensation
to support LO execution. The list below identifies examples of the workarounds
executed.
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• Lack of Consumables: Instructors provided direction to student maintainers for
steps requiring the use of materials not available for test execution (e.g., iso-
propyl alcohol, self-leveling sealant, electromagnetic interference gasket)

• Lack of Equipment: Instructors provided direction to student maintainers for
steps requiring specific test equipment not available for test execution (e.g., test
sets and torque wrench)

• Lack of Functionality: Instructors provided direction to student maintainers for
steps related to a lack of functionality in AMT sub-systems not designed to
provide the haptic cues, system responses, and systems delays representative of
a fleet AV (e.g., corrode components, no power).

Of the 62 LOs tested, 16 (26 %) received a 2 (Marginally Incapable) rating
indicating SMEs only completed portions of the LO and the TD is marginally
incapable of providing training specific to the LO and has severe deficiencies which
detracts appreciably from realistic LO execution. Two (3 %) of the 62 LOs tested
received a 1 (Completely Incapable) rating indicating SMEs were unable to

Table 5 Rating, definition, task complete, LOs, and percentage breakdown

Rating Definition Task completed LOs %

5—fully
capable

Training device is fully capable
of providing training specific to
the LO with no departure from
realism and requires no
compensation to support LO
execution

Yes, training device contains
the fidelity and functionality of
a NFMC MQ-8B Fire Scout

34 55

4—effectively
capable

Training device is reasonable
capable of providing training
specific to the LO with minor,
but annoying deficiencies,
requiring minimal compensation
to support LO execution

Yes, training device contains
the fidelity and functionality of
a NFMC MQ-8B Fire Scout

5 8

3—moderately
capable

Training device is borderline
capable of providing training
specific to the LO with
moderate deficiencies requiring
considerable compensation to
support LO execution

Yes, but with work arounds 5 8

2—marginally
incapable

Training device is marginally
incapable of providing raining
specific to the LO with sever
deficiencies and detracts
appreciable from realistic LO
execution

No, only portions of task
completed

16 26

1—completely
incapable

Training device is completely
incapable of providing training
specific to the LO as presented
and precludes LO execution

No 2 3
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complete the task and that the TD is completely incapable of providing training
specific to the LO as presented and precludes LO execution. Overall, the majority
(76 %) of tasks/LOs requiring removal and installation supported learning via the
AMT whereas nearly half (41 %) of the tasks/LOs focusing on testing or trou-
bleshooting were unable to fully support learning via the AMT.

4 Lessons Learned

Table 6 provides lessons learned identified in association with development of
future MCT events.

Table 6 Lessons learned and explanation

Lesson learned Explanation

Create test book for all future testing
events

The test team created a comprehensive test book that included a
specific test procedure followed by the correlating questionnaires
that covered that test procedure. This increased efficiencies and
ensured pertinent data did not get lost, omitted, or skipped

Use mission-based testing where
applicable

Group multiple objectives and or test procedures in one test to
increase efficiency and replicate actual task performance. For
instance, performing a troubleshooting procedure may include
performing a test that leads to a remove and replace

Have courseware available if possible Reviewing courseware while conducting test procedures will ensure
courseware aligns to training device capability and mitigates
potential problems that may emerge while piloting or beginning a
course

Have robust test cards Test cards should include the following in addition to the procedure
and procedures manual location:
• Media type along with corresponding courseware location
(section/page number)

• A column for notes pertaining to alignment of courseware and
steps

• A column for notes identifying if an instructional workaround was
needed

• A courseware note block at the end of each test card for quick
reference related to courseware issues/changes

Increase usability of attribute
questionnaire

Optimize the questionnaire through:
• Remove the rating definitions from the questionnaire
• Change orientation to landscape for increased note taking space
• Create laminated quick reference sheets for both the rating and
attribute definitions

Conduct pre-test briefs to increase
attribute rating reliability

Prior to conduct of each test, brief the participants on the relevant
attributes so they are thinking about the properties data will be
collected on

Tailor attribute definitions Tailor the attribute definitions to the specific platform and the
specific roles of the testers to increase reliability of ratings

Create a communication plan prior to
testing event

The plan should include at a minimum: stakeholders to maintain
contact with, frequency of contact, and form of communication
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5 Conclusion

With increased complexity and demand for UAS use within the Fleet, a corre-
sponding demand for TDs to train UAS maintainers has brought MCT to the
forefront. The paradigm shift emphasizing MCT events focuses on ensuring both
operator- and maintainer-based TDs meet system performance specifications and
mission requirements. The successful completion of the MQ-8B Fire Scout AMT
MCT event constitutes the first maintenance-based MCT event of its kind. The
teamwork and processes incorporated build a bridge for similar efforts in the future.
The high-level framework described in the paper provides a foundation for other
maintenance-based UAS IPTs to conduct maintenance-based MCT events. The data
collection workshop and data collection tools used for the MQ-8B Fire Scout AMT
MCT event also provide a systematic approach for conducting maintenance-based
MCT events for the U.S. Navy.
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Detecting Deictic Gestures for Control
of Mobile Robots

Tobias Nowack, Stefan Lutherdt, Stefan Jehring, Yue Xiong,
Sabine Wenzel and Peter Kurtz

Abstract For industrial environments esp. under conditions of “Industry 4.0” it is
necessary to have a mobile and hands-free controlled interaction solution. Within
this project a mobile robot system (for picking, lifting and transporting of small
boxes) in logistic domains was created. It consists of a gesture detection and
recognition system based on Microsoft Kinect™ and gesture detection algorithms.
For implementing these algorithms several studies about the intuitive use, executing
and understanding of mid-air-gestures were processed. The base of detection was to
define, if a gesture is executed dynamically or statically and to derive a mathe-
matical model for these different kinds of gestures. Fitting parameters to describe
several gesture phases could be found and will be used for their robust recognition.
A first prototype with an implementation of this technology also is shown in this
paper.
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1 Introduction

Since motion capturing systems are available for about 200 €, the use of mid-air
gestures will yet be interesting in industrial environments. For human-to-human
interaction people use several different gestures like pointing to inform others where
to search for anything or waving to call somebody with intention to force the other
one to come over or even to follow. For interaction within technical systems like
mobile robotic systems, it is necessary to have or create equivalent intuitive ges-
tures to control these systems.

The first communication channel is of course speech, which is underlined by
gestures to bring more emphasizes into it. At the same time these used gestures also
will be additionally declared or precise the intention of gestures by the context
information given by speech.

For phone or office applications, technical speech recognition is well developed
and broadly used. But the use of speech recognition in industrial environments with
noise levels up to 85 dB(A), which are allowed by German laws for production
areas [1], is not applicable or only realizable with additional microphones (in front
of the mouth or larynx).

Primary and most beneficial applications for human-robot-collaboration in the
field of “Industry 4.0” are aided “manufacturing by hand”. These tasks necessarily
needs flexible interaction between the human being and the technical system
“robot” and should not be interfered by an additionally handling of microphones or
other input devices.

2 Propaedeutics

All types of locomotion may be divided into three main parts [2]. For speech
attended gestures Kendon [3] called this three main parts preparation, stroke and
recovery. McNeill [4] has classified types of gesture movements during the stroke
phase in the four major categories: iconic, metaphoric, deictic (pointing) and beat
gestures. Metaphoric gestures will be a good choice for interacting purposes
between human and machine if the involved staff can learn the special commands
like a special language for their job. Diving staff or members of Special Forces use
this kind of gestures for communication and controlling. For interacting with robots
and real objects from the environment in collaborative tasks deictic gestures should
be the preferred way. It prevents from undesirable failures and minimizes the
learning effort of workers.

Kendon [3] describes gestures as speech attended, so gestures only attend
additional information, the main content will presented on the acoustic channel. But
if gestures should be used for controlling robots in noisy industrial environments,
these main information have to be transferred only by gestures. Speech attended
gestures are introduced by the speaker and the audience is already focused on this
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main actor. For technical systems, in this case robots, the focus problem is similar to
“the live mic problem” [5] of speech recognition. To start the “gesture control” a
“wake up” and “identify the user” algorithm is needed. If control user and robot are
paired, the main recognition algorithm e.g. pointing detection can work. With the
cognitive performance of human beings, this wake up event could be detected
implicitly. Also during other periods of gesture recognition humans use their
cognitive performance and additional environmental (context) information to get a
precise understanding of the command. E.g. if somebody searches a book and the
communication partner points to bookshelf, then for orientation it is only necessary
to know the rough direction (given by the arm and finger). The recipient is already
able to detect the right one in detail by an intuitive knowing of the meaning of these
gesture.

Another example for this intuitive identifying of gesture meaning in industrial
environment is, if an apprentice watch to the master and know which tool is needed
to complete the task successfully when the master point to the toolbox. As far as
these context detection is not realized for technical systems, the gesture must
contain all necessary information to specify the command.

Additional to the three main phases one up to three more phases are necessary to
describe the complete gesture sequence. Figure 1 shows the two optional static
moments pre- and post-stroke hold. Pavlovic [6] defined the preparation phase
already as leaving the resting position and move the hand to the starting point. The
recovery phase can be defined in the same behavior as leaving the gesture area and
returning to the resting position.

When using the definition of the resting phase (home position) as hands on the
hips, the preparation phase could be easily detected by leaving the home position
(gesture start). Reentering the home position finishes the gesture (gesture end). The
user presents the gesture above the hip, in front or beside the users body.

There are two different sensors available to detect the joints on the users body.
For the mobile robotic system, an ASUS Xtion (similar technic like the Kinect 1™)
with up to 15 frames per second (fps) and 15 joints, detected by OPEN NI (NITE)
library, is used. With the new Microsoft Kinect 2™ sensor now 25 joints (see
Fig. 2) can be re-corded with 30 fps.

To detect the user, the robot moves the ASUSsensor, mounted on a pan-tilt
moving head. Because skeleton detection with the OPEN NI (NITE) library is very
slow, a face detecting algorithm works on before and supports adjusting the camera

Fig. 1 Gesture phases [7]
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system. To identify the user when more than one worker is in field of view the user
lifts the arm on the height of or above the head (pre-stroke hold, see Fig. 8 left).

With the Kinect 2™ sensor the detection and representation as a skeleton is fast
enough that without searching for users up to six persons in the field of view can
recognized already in the home position. An additional pre-stroke hold for identi-
fying the control user is not implemented jet. Right now, the new sensor is only
used for testing and upgrading the gesture identification algorithm.

Pavlovic [6] mentioned that “human gestures are a dynamic process, it is
important to consider the temporal characteristics of gestures”. The moving speed
during the different gesture phases will characterize the gesture. See in Fig. 1 rapid
moves describe the preparation and recovery phase, whereas the stroke phase will
be slower and more precise. In tests in 2015 79 % of the 90 participants preferred a
static body posture to represent the command SELECT (pointing) [7]. Following the
definition that the stroke phase is a dynamic process the post-stroke hold contained
the information of a deictic gesture.

3 Gesture Description

As explained in Chap. 2 there are two general ideas how to describe the pointing
gesture. There are a static definition, only recognized during the post-stroke hold
and a dynamic definition, right now recognizing four parts of the gesture.

Fig. 2 Joints detected by
Microsoft Kinect 2™

90 T. Nowack et al.

http://dx.doi.org/10.1007/978-3-319-41959-6_2


3.1 Static Gesture Description

Figure 3 shows the static definition (post-stroke hold) of pointing. After leaving the
home position and register as user to control the robot, user will reach a static
position of pointing. This body posture is defined as interaction area is reached
(shoulder elevation α > 30°) and arm is stretched (elbow extension β > 160°). The
hold is characterized as a static period, minimum duration of 0.5 s.

During the period of static hold the difference of median filtered “shoulder
angle” and “elbow angle” will not more than 5° each and median filtered “hand
point” should not move more than 50 mm.

3.2 Dynamic Gesture Description

Defining a gesture as a dynamic process, it has to be discussed, what does exactly
dynamic means? In mechanics, dynamics is concerning about the relationship
between motion of bodies and the forces acting on the bodies. [8, 9]. There are two
branches: kinematics and kinetics. Kinematics deals with observing motions and
kinetics study motion and its relation to forces. The dynamic gesture description
only deals with the kinematics.

To divide a gesture into different parts, descriptions for each part are needed.
A threshold of an angle on a single frame describes some parts, like the static
description; the curve shape during a sequence of frames will define other phases.
The full gesture sequence contains (1) resting position, (2) start of gesture,
(3) pointing, (4) recovery and (5) end of gesture.

The reference for all calculated angles is a vector between the
spine-shoulder-joint and the spine-base-joint, detected with the Kinect 2™ sensor.
For the resting position, a second vector was defined between the hand and the

Fig. 3 Static definition of
pointing
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shoulder (see Fig. 4 left). If the hand is in the resting position both vectors should
be parallel; for kinematics based on the human movement it makes sense to use a
threshold value for angle α as less than 11° between the suggested vectors. With
this vector definition all kind of arm position are possible, independent of the elbow
angle. With about 10 experimentees and several experiments all threshold values
are determined and an ongoing development will precise them.

A gesture starts in that moment angle α increases above 11° with an angular
velocity β more than 2° per frame (see Fig. 4 right). The angel β is between the
reference vector (torso) and the forearm, which is described by the hand and the
elbow joints. The recovery phase finishes at the same moment, when angle α
decreases under 11°, and reentering the resting position. Even though most of the
probands had a great variety by executing the pointing gesture. It could be derived
that all of them had used their forearm for this gesture (actually were reviewed data
of about 10 experimentees). With this it is obvious to use this moving and posi-
tioning of forearm to detect (and describe) the pointing gesture even if it is executed
in different ways like shown in Fig. 5.

The post-stroke hold contains the pointing part of the gesture (see Fig. 5). As
explained in Chap. 2, this motionless phase contains the main information of a
pointing gesture. Motionless means an angular velocity β less than 2° per frame
kept holding at minimally five frames. As shown in Fig. 5 right this description fits
both on pointing gestures performed with the stretched arm, similar to body posture
works with the static description, as well as with a pointing gesture with bent elbow
like shown in the Fig. 5 left.

It is necessary that in the chronological sequence (see Fig. 6) the recovery phase
is followed directly by the pointing part (post-stroke hold). When working with
such a short holding time (5 frames) it is possible to detect a pointing phase also if
the user performs a wave gesture (command come over [7]) with a pre-stroke hold

Fig. 4 Dynamic definition of a gesture
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similar to the pointing phase definition. During the recovery phase the hand joint
leaves the position and moves with a monotonous decreasing of the elbow angle β
until reaching the resting position.

After the occurrence of a complete sequence, the dynamic way of pointing can
be confirmed.

3.3 Evaluation

A first group of six experimentees performed 122 gestures, 77 pointing gestures and
45 other, mainly wave gestures. These gestures had been recorded with a Kinect
2™ Sensor and evaluated in SciLab with algorithms according to the before
introduced static and dynamic descriptions.

As shown in Fig. 7 the detection rate increases by using the dynamic definition
from 54 % up to 68 %. The detection of pointing only increases by 5 % and the
wrong detection of other gestures decreases by 9 %.

Fig. 5 Pointing (post-stroke hold)

Fig. 6 Flow chart of dynamic gesture recognition sequence
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4 Robot Control Concept

The static gesture recognition is used to control an assisting system for lifting and
carrying goods, called KLARA. This system will support older or partially disabled
workers to handle small containers up to 60 cm × 40 cm with a maximum weight of
50 kg. The main target group, elderly user with limited mobility in working envi-
ronments should be able to command the system intuitively in three steps (see Fig. 8).

• Step 1: Register as the active user (register phase and pre-stroke hold).
• Step 2: Preselect an area with a container by using the pointing gesture (stroke

phase and post-stroke hold).
• Step 3: Confirm the command on a touch screen.

Fig. 7 Detection results of 122 gestures

Fig. 8 Control sequence of the KLARA-robot-system: left register as an active user, middle
preselect a container with a pointing gesture, right confirm the choice on touch screen
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The KLARA-system has three control lights to support the users during the
pointing sequence (Step 1 and 2). When the system is waiting for a command and
searching the active user, a red light is on. Afterwards the system indicates that the
active user was detected and is tracked. Now, indicated by a yellow light, the
system signalizes that it is ready to recognize the pointing phase. During the
post-stroke hold the system informs the user that the body posture of pointing is
recognized and the system proves the period of holding an additional green light
switched on. If the holding time is over the control light switch to green, the pan-tilt
moving head turn the ASUS sensor in pointing direction and determine the selected
container. Now the user can release the arm and should step forward to KLARA to
confirm that this container on the touch screen is the chosen one.

After this confirmation, the system will move automatically forward and picks
up the specified container autonomously.

5 Summary and Outlook

Gestures to control assisting systems for lifting and carrying small containers in
industrial environments will allow a hands-free human-robot-interaction. Because
gestures, especially pointing gestures, are common to enhance speech in
human-to-human interaction the usage in human-robot-interaction can be intuitively
for elderly user. However the context information in human-to-human interaction,
for example the attended speech or other circumstances which could be recognized
by cognitive skills, it have to be replaced by a technical description of body pos-
tures during the execution sequence.

The dynamic description including all gesture phases is the logical continuation
from the static definition. Between gesture start and finish, also other gestures for
example waving will be describable. For waving with fore- and upper arm, a sinus
curve might characterize the angular movement of the elbow during the stroke
phase, even when the pre- and post-stroke hold will be performed and detected
similar to the post-stroke definition of pointing.

The next step to increase the detection rate for the pointing gesture will be a
more precise identification of the threshold values in the definition. An important
question in this case is, if the threshold values might be dynamically adaptable for
each user. A detection rate of more than 80 % is achieved.
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Effects of Time Pressure and Task
Difficulty on Visual Search

Xiaoli Fan, Qianxiang Zhou, Fang Xie and Zhongqi Liu

Abstract The process of pilot constantly checking the information given by
instruments was examined in this study to detect the effects of time pressure and
task difficulty on visual searching. A software was designed to simulate visual
detection tasks, in which time pressure and task difficulty were adjusted. Two-factor
analysis of variance, simple main effect, and regression analyses were conducted on
the accuracy and reaction time obtained. Results showed that both time pressure
and task difficulty significantly affected accuracy. Moreover, an interaction was
apparent between the two factors. In addition, task difficulty had a significant effect
on reaction time, which had a linearly increasing relationship with the number of
stimuli. By contrast, the effect of time pressure on reaction time was not so apparent
under high reaction accuracy of 90 % or above. In the ergonomic design of a
human-machine interface, a good matching between time pressure and task diffi-
culty is key to yield excellent searching performance.

Keywords Visual search � Time pressure � Task difficulty � Reaction time �
Accuracy

1 Introduction

In the future, tactical aircrafts are predicted to operate in a significantly more
demanding environment than they do today. With the advancements in aviation
science and technology, tactical aircrafts have been enhanced with advanced fea-
tures, particularly the display interface of aircraft cockpits [1]. An aircraft cockpit is
a highly complex human-machine interaction system, and its display interface is
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one of the most essential devices for pilot–aircraft interaction. Given the increased
requirements for flight altitude, speed, and endurance time, as well as the
automation of display systems, all tasks related to flight are now being concentrated
on only one or a few pilots to accomplish. Such responsibilities cause tremendous
physiological and psychological pressure on pilots. Consequently, ergonomics
problems have become critical factors that restrict flight security [2, 3]. Data
analysis of reasons for space flight failures indicated that 70–80 % of such cases
were ascribed to the poor design of human-machine interfaces [4]. Cognitive
compatibility is an important aspect in the design of the aircraft display interfaces.
In other words, the structure of a human-machine interface should match the
cognitive structures of its operators [5].

Vision is the key cognitive sensory channel of humans to interact with the world
around them. Approximately 80 % of the perceived information is obtained through
a person’s vision [4]. Information detection tasks are an essential part of a
human-machine system, and these activities invariably involve visual search [6]. In
visual detection tasks during flight, the central nervous system and visual organ of
pilots often suffer from strain as a result of focusing too much attention on the
aircraft’s operation process, which consists of continuous information gathering,
analysis, judgment, and issuing commands, among others, ultimately causing visual
and central nervous system fatigue [7]. Therefore, the work efficiency and flight
safety of pilots and aircrafts largely depend on the matching degree between the
visual display interface and the visual cognition characteristics of humans [8, 9].
Thus, the visual cognition of human operators should be examined to develop an
optimized pilot–aircraft display interface [10, 11].

Aside from monitoring environmental changes, pilots must be aware of the
situation of the aircraft itself while conducting missions. Numerous system
parameters, such as performance, input, and work condition parameters, among
others, are obtained from the display instruments. Pilots must monitor the target
instruments by visually searching the instrument clusters constantly, and on the
basis of which, they must render judgment and perform appropriate operations.
However, the number of cockpit instruments has significantly increased with the
improvement of aircraft performance; thus, the task difficulty of visual detection
had also increased accordingly. Although electro-optic display systems have been
widely applied and have played a significant role in reducing the number of display
instruments, the task difficulty remains unresolved [12]. As such, pilots tend to feel
pressure to act quickly, as time is a critical factor in the visual search process during
missions. The pressure brought about by the time limit and the task difficulty
largely affects the physiology and psychology of pilots, which may lead to a
degraded search performance [13, 14]. The same situation exists in many other
human-machine systems.

Existing ergonomic studies on aircraft display interfaces have mostly focused on
coding information, such as character, symbol shape, size, color, background,
luminance, and contrast; these works have helped improve the efficiency of identi-
fying and improving the interface layout by visual area zoning [15–17]. Other works
have explored the mental workload and situation awareness of operators [18, 19].
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However, limited studies are available on visual search characteristics. As displays
have increased in variety and complexity, the study of target visual detection tasks is
becoming an increasingly popular research topic. The more accurate is the reaction
of people to the target information in the time available, the more efficient the search
would be. Therefore, an effective and efficient visual detection task should be
designed to understand the factors involved in the visual search process and their
relationships to the search performance.

This study developed a software to simulate the target visual detection task
display in human-machine systems. The search performance of the subjects was
then examined by setting different time pressure and task difficulty levels. These
processes would provide scientific bases for the ergonomic design of a human–
machine display interface, particularly for aircrafts.

2 Material and Method

2.1 Subject

A total of 10 college students from the Beijing University of Aeronautics and
Astronautics, comprising six males (60 %) and four females (40 %), voluntarily
participated in this experiment. Their ages ranged from 20 to 28 years old. They all
have normal or corrected to normal visual acuity. Most of the subjects often spent
between two and eight hours a day using personal computers for various purposes.
None of them have had any experience with this type of experiment. All of the
subjects were right-handed and were capable of flexibly using a mouse.

2.2 Apparatus and Software

The experiment for the visual detection task was conducted using a custom-made
software developed on Visual Studio 2010. The software was run on a desktop
computer with a 15-inch resolution (1280 × 1024 pixels) and luminance
(68 cd/m2) display monitor (Fig. 1). Figure 1 shows that the middle gray region on
the software interface is for the visual search picture, and the symbols represent
different virtual instruments in the human-machine system. Among these symbols
, denotes the target stimuli, whereas , , , , , and represent

different distractive stimuli. The parameter values of display time and number of
stimuli, which includes both target stimuli and distractive stimuli, are both adjus-
table. The display time refers to the presentation time of each search picture. The
visual search picture is divided into n × n small squares, with each square con-
taining an instrument symbol. Therefore, the number of stimuli can be changed by
adjusting the n-value. In the experiment, the different display times represented
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different levels of time pressure, whereas the different numbers of stimuli repre-
sented different levels of task difficulty. The visual search picture changes once at a
specified time interval. The symbols randomly appear in the different squares of the
picture. Each search picture has two situations: “having a target” or “not having a
target.” The probability of each situation is 50 %.

When the experiment begins and the search pictures appear, the subjects have to
execute the following relevant actions:

I. If the target is discovered, then the left button of the mouse should be pressed
immediately.

II. If the user is certain that there is no target by visual searching, then the right
button of the mouse should be pressed immediately.

III. If the user is unsure as to whether a target is present within the specified time,
then no mouse button should be pressed.

After the experiment, the software automatically records the accuracy and
reaction time.

2.3 Experiment Condition Control

In the visual field of anthropology, different space positions led to different search
performances [20]. Therefore, to avoid any influence in the experiment, the visual
search picture was placed in the optimum visual working area of the screen, and its
size and position were kept constant. When different n-values were selected to
divide the search picture, only the small square number was changed. In other
words, the number and density of stimuli were changed, and the task difficulty
changed with the change in n-value. The experiment was conducted under an

Fig. 1 Sample interface for visual detection task. Display time = 1 s. Number of stimuli = 16
(n-value = 4). Changing times of search picture = 100. All stimuli are refreshed and arranged
randomly once the search picture changes. Each picture has at most only one target stimuli
(appearance probability is 50 %), but two or more of the same distractive stimuli can appear
simultaneously
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undisturbed environment with good illumination. To decrease the influence of
fatigue in the experiment, the subjects can freely adjust their sitting posture, mouse
placement, and screen angle.

3 Procedure

3.1 Pre-experiment

The pre-experiment adopted 6 × 6 a within-subjects design. To ensure experiment
rationality and data volume, three subjects were randomly selected to participate in
the pre-experiment. Different values of display time (1, 2, 3, 4, 5, 6/s) and number
of stimuli (1, 4, 9, 16, 25, 36) were set. The valid range of display time and number
of stimuli in this study were determined in consideration of the human factors, such
as visual perception, mental workload, and so on. The actual experiment was
divided into six stages because of its long duration (approximately 4 h in total);
each stage consisted of several blocks that depend on the different values of display
time and number of stimuli (Fig. 2). Each subject was given three days, with two
stages per day, to complete the experiment. Such an arrangement avoids the effect
of fatigue on search performance.

3.2 Actual Experiment

The subjects were required to familiarize themselves with the experimental process
and train in advance. Before each block, the person conducting the experiment had
to set the display time, n-value (number of stimuli = n × n), and the number of

Fig. 2 Experimental design.
The entire experiment is
divided into six stages
according to the different
numbers of stimuli. Each
stage consisted of several
blocks that depend on the
different display times. The
entire experiment consists of
30 blocks, which require
approximately 4 h to finish.
All values of display time and
the numbers of stimuli are
based on the results of the
pre-experiment
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search pictures changed (each block in this study is set 100 times) in advance. To
begin the block, the subjects had to stare at the center of the visual search region,
where a red “+” symbol was displayed. They would then click “Start,” which was
displayed on the screen, by pressing the mouse button. The stimuli were displayed
on the center of the screen once the subject clicked “Start.” Memorizing the target
symbol, the subjects were asked to scan the search picture by visual searching, and
then react as quickly and as accurately as possible. After the first search picture
disappeared, another one immediately appeared, with the stimuli being rearranged
at random. To avoid lower motivation to engage in deep, deliberate, and systematic
processing of information, the subjects under the time-pressure condition were told
that they are on a tight schedule and reminded at intervals during the task to “hurry
up” and “work harder”. When the block was finished, the accuracy and reaction
time during this process were recorded by using a computer. The subjects can then
make adjustments and rest.

3.3 Performance Measures

Search performance was investigated by assessing the accuracy and reaction time to
complete a detection task. In this study, time pressure and task difficulty were
considered the two main factors that affect the search performance. For statistical
testing, two-factor ANOVA was performed using SPSS 19.0.

4 Results

4.1 Effects of Display Time and Number of Stimuli
on Accuracy

The results shown in Table 1 were obtained by analyzing the data using two-factor
ANOVA in which display time and number of stimuli are the two factors. This
analysis indicates that the effects of both display time and number of stimuli on
accuracy are significant (for display time: F = 157.2, P < 0.05; and for number of
stimuli: F = 140.166, P < 0.05). This analysis also indicates that an interaction is
apparent between display time and number of stimuli (F = 18.069, P < 0.05).
Simple main effect analysis was then conducted by programing based on
within-subject factor experiment. Table 2 shows that display time significantly
differed at different levels of number of stimuli (all P < 0.05), whereas number of
stimuli significantly differed at different levels of display time (all P < 0.05).

Figure 3 was constructed using number of stimuli as abscissa and accuracy as
ordinate. For each given display time, the search accuracy shows a downtrend with
the number of stimuli. However, the decrease in the amplitude of the curves differs
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for different display times. By using nonlinear regression analysis, the functions of
curve fitting were derived with high fitting coefficients, as shown in Table 3. All
curves are expressed in quadratic equations. To a certain extent, there are |y6′| < |
y5′| < |y4′| < |y3′| < |y2′| < |y1′|, which indicates that a longer display time corre-
sponds to a smaller effect of the number of stimuli on visual search accuracy.

Table 1 Effect analysis of accuracy at different display times and number of stimuli

Source Sum of squares df F P

Display time 65414.3 5 157.2 0.0

Number of stimuli 58309.5 5 140.2 0.0

Display time * number of stimuli 28563.1 19 18.1 0.0

Table 2 Simple effect analysis between different display times and number of stimuli

Source Sum of squares df F P

Display time VS.1 729.93 5 12.0 0.0

Display time VS.4 29483.73 5 189.3 0.0

Display time VS.9 39520.00 5 199.9 0.0

Display time VS.16 59497.33 5 212.9 0.0

Display time VS.25 57287.53 5 210.5 0.0

Display time VS.36 54765.40 5 110.6 0.0

Number of stimuli VS.1s 59584.80 5 266.1 0.0

Number of stimuli VS.2s 73105.13 5 522.4 0.0

Number of stimuli VS.3s 416126.93 5 272.0 0.0

Number of stimuli VS.4s 16900.33 5 47.9 0.0

Number of stimuli VS.5s 9238.73 5 24.8 0.0

Number of stimuli VS.6s 3478.40 5 12.2 0.0

Fig. 3 Number of stimuli/accuracies at different display times. The general trend of accuracy
decreases with the increase in the number of stimuli in visual searching. However, the decrease in
the amplitude of the curves differs for different display times. A longer display time corresponds to
a smaller effect of the number of stimuli on visual search accuracy

Effects of Time Pressure and Task Difficulty on Visual … 103



Moreover, this result also verifies the interaction between display time and number
of stimuli.

Figure 4 shows the display time/accuracy curves for different numbers of
stimuli. The curves show that accuracy tends to initially increase and then tends to
stabilize. Several small decreases in values can be observed in the middle section.
For example, in the single stimuli discrimination task with only one stimuli symbol
appearing each time, the search accuracy is significantly low when the display time
is 1 s. The reason is that the display time is too short, thereby causing a high level
of time pressure. In addition, errors occur in the process because the subjects cannot
follow the pace of the search picture switching in terms of using the eyes and
implementing the operations. Accuracy is stable at approximately 98 % when the
display time reaches 2 s or longer. Moreover, accuracy reaches the maximum when
the display time is 3 s but is slightly lower when the display time continues to
increase. The reason is that the presentation time of each search picture is too long;
thus, the subjects spread their attention easily during the blocks. The same rules are
applied in the multi-stimuli discrimination task. Table 4 shows the data of the
maximum number of stimuli and optimum number of stimuli that can be dis-
criminated at different display times under accuracy of 90 % or above. Figure 5
shows the comparisons between the display time and the maximum number of
stimuli with a linear regression line, a correlation coefficient (R2 = 0.9365), and a

Table 3 Regression
functions of reaction accuracy
at different display times

Display time(s) Optimal approximation function R2

1 y1 = 108 − 25.62x + 1.81x2 1.00

2 y2 = 105.01 − 5.53x + 0.113x2 0.98

3 y3 = 102.3 − 2.31x + 0.003x2 0.998

4 y4 = 100.29 − 1.08x − 0.008x2 0.983

5 y5 = 98.28 − 0.37x − 0.017x2 0.996

6 y6 = 97.69 − 0.18x − 0.012x2 0.992

Fig. 4 Display time/accuracies at different number of stimuli. The curves show that accuracy
tends to initially increase and then tends to stabilize. However, several small decreases in accuracy
can be observed in the stable section (e.g., stimuli number = 1, display time = 3 s; number of
stimuli = 9, display time = 5 s)
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linear fitting equation (y = −6.2 + 3.5x). If x = m, the number of stimuli N only
satisfies the condition N ≤ 3.5m − 6.2, and a good search performance can be
obtained. The polynomial fitting curve between the display time and the optimum
number of stimuli is also presented in Fig. 5, with a correlation coefficient
(R2 = 0.8095), which suggests that the optimum number of stimuli is not directly
proportional to the display time. Therefore, in the design of a human-machine
interface, the best matching of display time and number of stimuli is necessary.

4.2 Effects of Display Time and Number of Stimuli
on Reaction Time

Inherent connection and trade-off exist between reaction speed and accuracy [21].
The study of reaction speed is meaningless when reaction accuracy is too low. If the
matching between the display time and the number of stimuli exceeds the normal
scope of human visual cognition, then it will lead to low accuracy. Therefore, the
influence of display time and number of stimuli on reaction time is analyzed in this
study under accuracy of 90 % or above. Table 1 shows the related reaction time
data. Two-factor ANOVA was conducted, and the results are shown in Table 5.

Table 4 Relative number of stimuli threshold at different display times

Display time(s) Maximum number of stimuli Optimum number of stimuli

2 1 1

3 4 1

4 9 4

5 9 4

6 16 4

Fig. 5 Regression relationship between display time and maximum/optimum number of stimuli.
Comparison between the display time and the maximum number of stimuli with a linear regression
line (R2 = 0.9365), and comparison between the display time and the optimum number of stimuli
with a polynomial fitting curve (R2 = 0.8095)
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The main effect of display time on reaction time is insignificant (F = 1.438,
P > 0.05), whereas the main effect of number of stimuli is significant (F = 213.132,
P < 0.05). The interaction between display time and number of stimuli is
insignificant (F = 0.435, P > 0.05).

With the use of the reaction time data in Table 1, the curves with display time
and number of stimuli were designated as abscissa and accuracy as ordinate (Figs. 6
and 7). Figure 6 shows that reaction time increases linearly with the increase in
number of stimuli. By conducting linear regression analysis, functions of curve
fitting were derived with high fitting coefficients, as shown in Table 6. The four
functions were considered comprehensively, with each additional stimuli extending
the reaction time by 154 ms. Figure 7 shows that the mean reaction time remains
generally stable despite the increase in display time in the visual search task with
the same number of stimuli. However, the reaction time of several subjects was
found to slightly increase with the increase in display time. The reason is that the

Table 5 Effect analysis of reaction time at different display times and number of stimuli

Source Sum of squares df F P

Display time(s) 0.313 4 1.4 0.226

Number of stimuli(s) 23.171 2 213.1 0.000

Display time * number of stimuli 0.118 5 0.4 0.823

Fig. 6 Number of
stimuli/reaction time at
different display times.
Reaction time increases
linearly with the increase in
the number of stimuli

Fig. 7 Display times/reaction times at different number of stimuli. Mean reaction time remains
generally stable despite the increase in display time in the visual search task with the same number
of stimuli
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display time was too long for the subjects, causing lower time pressure. The
inattention of the subjects leads to longer reaction time.

5 Discussion

In this study, different display times represent different levels of time pressure,
whereas different numbers of stimuli represent different task difficulties. The
experimental results revealed that the effects of display time and number of stimuli
on accuracy were both significant at the 0.05 level. Moreover, their interaction was
also significant; that is, the two factors may work together on visual search accu-
racy. Simple main effect analysis revealed that the display time significantly dif-
fered at different levels of the number of stimuli; and that number of stimuli
significantly differed at different levels of display time. The highest reaction
accuracy in the search task would be obtained when the two factors reach the best
matching.

Under the given time pressure, accuracy decreases as a result of the increase in
the number of stimuli. The gradual development process can be described, as
follows: (1) judge correctly and operate correctly; (2) judge correctly but operate
wrongly or have no time to operate; (3) judge wrongly and the operation falls
behind; (4) brain response cannot keep up with the changing search pictures and has
no time to judge. For the given number of stimuli, accuracy increases as the time
pressure decreases, and then tends to stabilize after reaching a certain point. Before
that point, wrong judgments and operations easily resulted because of limitations in
cognizing capacity, physiology, and emotion, among others, of the advanced nerve
center caused by higher pressure [22]. When such point is reached, time pressure
had no significant effect on accuracy. However, a slight rebound phenomenon was
noted among several subjects. This phenomenon was due to their excessive
relaxation, which caused wrong judgments and operations [23].

The current study analyzed the effects of display time and number of stimuli on
reaction time under high accuracy because inherent connection and trade-off exist
between reaction speed and accuracy. The results indicated that the main effect of
display time on reaction time was insignificant, whereas the effect of the number of
stimuli was significant. When the time pressure was given, the reaction time was
linear with number of stimuli; this finding is inconsistent with the theory of log
proposed by Merkel (1885) [24]. The two reasons for such difference are as follows:

Table 6 Regression function
of reaction accuracy at
different display times

Display time (s) Optimal approximation function R2

3 y = 0.621 + 0.171x 1.000

4 y = 0.73 + 0. 143x 0.995

5 y = 0.721 + 0.141x 0.996

6 y = 0.732 + 0.164x 0.999
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(1) the stimuli material was different, which led to a different task difficulty; (2) the
two situations of “having target” and “not having target” were considered one case
without distinction. However, such consideration would not affect the visual search
law in the current study.

6 Conclusion

In this study, the effects of time pressure and task difficulty on visual search were
studied during a simulated visual detection task. As expected, task difficulty
demonstrated a significant effect not only on search accuracy but also on reaction
time. Time pressure exhibited a significant effect only on search accuracy.
Moreover, their integrated effect on search accuracy is very significant. Therefore,
the two factors should be comprehensively considered when designing a
human-machine interface, particularly the dashboard design. Instrument number
and cognitive difficulty should be decided reasonably based on the order of
importance and urgency of instrument monitoring tasks and cognitive characteris-
tics of humans. For instruments that need an immediate reaction, the dashboard
should be designed with little search difficulty by reducing the number of instru-
ments or other measures. Time pressure is relative with task difficulty; thus, the best
matching of time pressure and task difficulty can produce good search performance.

Although several valuable findings involving visual search laws were obtained,
several limitations were also noted in this study. First, the number of participants in
the experiment was small because of the long course. Second, except for time
pressure and task difficulty, other factors, such as target location, were not con-
sidered in the experiment, which also has effects on search performance. Third, the
task difficulty was not only related to number of stimuli but also related to the shape
and size characteristics of the stimuli [25]. Finally, in the actual human-machine
systems, there are always more than one target in the visual detection tasks. In
future studies on visual search laws, all of these factors should be considered to
guide the ergonomic design of human-machine interfaces.
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Part III
Human-Agent Teaming



Operator-Autonomy Teaming Interfaces
to Support Multi-Unmanned Vehicle
Missions

Gloria L. Calhoun, Heath A. Ruff, Kyle J. Behymer
and Elizabeth M. Mersch

Abstract Advances in automation technology are leading to the development of
operational concepts in which a single operator teams with multiple autonomous
vehicles. This requires the design and evaluation of interfaces that support
operator-autonomy collaborations. This paper describes interfaces designed to
support a base defense mission performed by a human operator and heterogeneous
unmanned vehicles. Flexible operator-autonomy teamwork is facilitated with
interfaces that highlight the tradeoffs of autonomy-generated plans, support
allocation of assets to tasks, and communicate mission progress. The interfaces
include glyphs and video gaming type icons that present information in a concise,
integrated manner and multi-modal controls that augment an adaptable architecture
to enable seamless transition across control levels, from manual to fully autono-
mous. Examples of prototype displays and controls are provided, as well as
usability data collected from multi-task simulation evaluations.

Keywords Flexible automation � Adaptable automation � Unmanned systems �
Autonomous vehicles � Operator-Autonomy � Interfaces � Multi-modal control �
Display symbology � Human factors
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1 Introduction

Agility in tactical decision-making, mission management, and control is the key
attribute for enabling human and heterogeneous unmanned vehicle (UV) teams to
successfully manage the “fog of war” with its inherent complex, ambiguous, and
time-pressured conditions. In support of an Assistant Secretary of Defense for
Research and Engineering (ASD(R and E)) Autonomy Research Project Initiative
(ARPI), a tri-service team led by the Air Force Research Laboratory (AFRL) is
developing and evaluating an “Intelligent Multi-UV Planner with Adaptive
Collaborative/Control Technologies” (IMPACT) system. Additionally, AFRL leads
development of a new interface paradigm by which the operator teams with
autonomous technologies. This effort involves designing intuitive human-autonomy
interfaces which will enable: (a) operators to monitor and instruct autonomy in
response to dynamic environments and missions and (b) the autonomy to make
suggestions to the operator and provides rationale for generated plans. Facilitating
operator-autonomy interaction is a key challenge for achieving trusted,
bi-directional collaboration.

To guide the design of human-autonomy interfaces for multi-UV missions,
defense mission scenarios for a military base were generated based on inputs from a
cognitive task analysis (CTA) [1]. One UV scenario involved a single operator
managing 4 air UAVs, 4 ground UGVs, and 4 surface USVs (watercraft) from a
ground control station. (Each vehicle type in the simulation was programmed to
emulate an existing vehicle (e.g., UAV: Boeing’s ScanEagle)). The operator’s
responsibility was to work with the autonomy such that the UVs monitored the
military base as well as responded to any potential threats. For a normal defense
posture, each UV patrolled a portion of the base with the autonomy determining the
specific routes, areas, and relevant parameters (e.g., UV speed). When a potential
threat was detected, the operator changed the UVs’ patrol state to highly mobile,
resulting in the autonomy modifying the routes to intensify defensive tactics (e.g.,
schedule UVs to patrol the base’s border in order to maintain the integrity of its
perimeter). Threat detections could also prompt specific requests from a com-
mander, communicated through chat to the operator, to position a sensor on a
specific location (“Get eyes on the ammo dump”). This entailed re-tasking one or
more UVs from the ongoing patrol (with the autonomy reallocating the remaining
UVs on patrol segments for continued base defense).

It is important to note that the operator’s responsibility in these scenarios was to
manage the movement and tasking of the UVs. While the operator was presented
with simulated imagery from each UV’s sensor (as well as symbology of each
sensor’s field-of-view on the map), the tasks to monitor and interpret the sensor
imagery were assigned to a (simulated) remotely located sensor operator.
Information about the sensor imagery assessment (from the sensor operator and/or
commander) was communicated to the operator via chat and/or radio.

This paper provides an overview of the operator-autonomy interfaces developed
to support the above mission scenario. These interfaces were implemented in a
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ground control station [2] that consists of four monitors (three: 26 × 18 1/2 in and
one touch-sensitive: 29 17/32 × 17 3/8 in), keyboard, mouse, headset, and foots-
witch (Fig. 1). To date, the research has focused on the center monitors (top: real
time tactical map; bottom: sandbox tactical map) and right monitor (each UV’s
sensor imagery and state data). This IMPACT simulation is an instantiation of a
Fusion framework [2] that employs a Sphinx speech recognition system, cooper-
ative planners, intelligent agents, and autonomics monitoring services [1]. Before
describing individual controls and displays, an explanation of the overarching
design approach will be provided.

2 Flexible Goal-Based Control Architecture

Operations with multiple highly automated vehicles raise many questions con-
cerning the balance of systems’ autonomy with human interaction for optimal
situation awareness and mission effectiveness [3]. Moreover, the application of
autonomy can have negative impacts besides reduced operator situation awareness:
for instance, inappropriate trust, unbalanced workload, decision biases, vigilance
decrements, and complacency [4]. Thus, a control architecture that supports the
flexible allocation of tasks and employs interfaces that promote operator-autonomy
shared situation awareness is required. In this manner, the operator is more involved
in explicitly invoking automation for certain tasks, UVs, mission events, or a
unique combination of these dimensions. This extension of a delegation approach to
provide finer-grain control lessens the unpredictability of changes in autonomy
level and presumably the associated negative effects (e.g., “automation surprises”)
[5].

With flexible control architectures, the number of automated tasks, as well as
their degree of automation varies at any given time to optimize the tradeoff between
operator involvement and workload. This entails the instantiation of a wide spec-
trum of control methods, whereby some UVs are performing tasks using higher
level automated control modes leaving the operator more time to dedicate attention
to a particular vehicle that requires more precise and timely control inputs (e.g.,

UV Sensor Feeds 

Sandbox Tactical Map & 
Play-Related Interfaces

Real-time Tactical Map 

Fig. 1 Illustration of IMPACT simulation for single operator and multi-UV teaming
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temporary manual control) [6]. Intermediate levels [7] that involve a mix of manual
and autonomy inputs are also useful (Fig. 2). The interfaces must support seamless
transitions between more detailed manual inputs for precisely commanding a
specific UV’s movement to concise commands that initiate high level “plays.”

This paper will focus on our interface designs that support the more autonomous
level involving plays. UV-associated plays are similar to a sports team’s plays such
that quick commands result in rapid and efficient delegation as well as the capability
to modify plays (i.e., sports “audibles”) as needed [7, 8]. In our instantiation of this
adaptable automation approach, only a few commands are required for the majority
of likely base-defense plays (i.e., tasks). An efficient goal-based approach is also
accommodated whereby the operator simply has to specify key parameters: “what”
(inspect with sensor) and “where” (location). All the other parameters can be
determined by the autonomous team partner, for example “who” (which UV(s)) and
“how” (route, speed, etc.). However, to better match a play to the specific
requirements of a dynamically changing environment, the interfaces also support
efficient inputs by which the operator can specify any or all play-related details.
Moreover, a multi-modal control approach is supported such that the commands
can be issued with push-to-talk speech commands and/or manual (touch or mouse)
inputs.

3 Design of UV Play Interfaces

This section provides an overview of interfaces designed to support the delegation
control aspect of our architecture, namely, the plays performed by highly autono-
mous UVs. This includes the interfaces by which the operator calls plays, specifies
play details, views tradeoffs of autonomy-generated plans for plays, and monitors
plays. Figure 3 illustrates the UV/play icon symbology employed across interfaces.

Fig. 2 Illustration of flexible control architecture for tasks and UVs with interface technologies
supporting transition between any control level [9]
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3.1 Sandbox Tactical Map Overview

The play-related interfaces overlay the map on the bottom monitor (Fig. 1). Each
can be repositioned with the mouse to avoid obscuring map information. Figure 4
shows a normal full coverage patrol (NFCP) in effect, with the UVs monitoring the
base and specific named areas of interest (NAIs). The NFCP is indicated by the
white route lines and gray UV icons (air: diamond, ground: wheeled rectangle, and
surface: finned pentagon) within the (yellow dashed) base’s area of responsibility.
An exception is a UAV that has been pulled off NFCP to inspect Point Bravo (e.g.,
in response to the report of a suspicious watercraft). Plays are color-coded to be
distinguished from patrol states (here, orange is used for the UV symbol and its
route/loiter). To help illustrate specific play-related interfaces in the following
sections, assume that the commander has concluded that the UAV’s imagery is
inadequate and that the potential threat also needs to be viewed by a USV. Thus, the
operator’s task is to call a play that positions a surface vehicle’s sensor on Point
Bravo.

3.2 Calling Plays

There are three interfaces that support calling a play (versus manual control) that
can position a USV to inspect Point Bravo. With one, the operator issues a speech
command “Surface Inspect Point Bravo” and consent. In another, a Play radial
menu appears when either a location (Fig. 5a) or UV symbol (Fig. 5b) is clicked or
touched. This interface filters plays such that only the options relevant to that

ICONS:
Center denotes play type: sensor used 
to inspect/search/surveil

• point (plus sign)
• route (line)
• area (square)
• cordon/blockade (double circle) 
• overwatch (target reticle)
• scout ahead (sensor footprint)
• escort (vehicle symbol)

Overlaid on outer circle to denote UV 
type to perform play:

• air (upper left, plane form)
• ground (lower left, wheeled rectangle)
• surface (lower right, finned pentagon)

Fig. 3 Icons that specify plays and UV types
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location or UV are presented (e.g., menu does not include ground plays for Point
Bravo as it is located in the water). In a third Play Calling interface, all the plays
listed in Fig. 3 are represented and the operator clicks or touches the desired play
icon (Fig. 5c; upper left of Fig. 4). Icons can be arranged by either vehicle type or
play type and in Fig. 5c are arranged by play type (point, route, area, and then
‘target plays’ (non-threat versus potential threats)) [10]. The icons that include
outlined UV symbols provide the operator with the option of calling a play type and
having the autonomy suggest which one or more UV types should perform it. The
play symbols with no UV symbols enable the operator to edit which icons are
presented in each row to customize the interface.

Play Calling 
Interface

Glyphs depict
UV status (fuel, 
play, etc.)

UAV pulled off 
normal patrol to 
inspect Point 
Bravo

Fig. 4 Overview of sandbox tactical map (bottom) shows eleven UVs on a normal full coverage
patrol and one UAV inspecting a potential water threat

c)a) b)

Fig. 5 Interfaces to specify play and UV type with mouse or touch
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3.3 Reviewing Play Plans and Changing Play Parameters

Designation of a play type/location with speech or manual inputs results in changes
on the sandbox to reflect the autonomy’s generated proposed plan for the play. This
includes dashed symbology on the map to indicate the proposed USV and route, as
well as the addition of a two-page Play Workbook interface (Fig. 6). The infor-
mation on the Play Workbook’s left page reflects the play called and location
specified. This information, together with the map symbology, depicts the proposed
plan (UV and route) to accomplish the play. Note: the color of this new play (in this
case blue) differs from the color of the existing UAV play and patrol. If the operator
agrees with the plan, a consent input (speech command or checkmark selection)
initiates the play and the dashed symbology becomes solid on the sandbox map and
also appears on the real-time map. Thus, only three commands (what play, where,
and consent) are required to initiate a play. Buttons on the left workbook page (or
associated speech commands) also provide the operator other functionality (e.g., to
call up more information on why the autonomy chose that plan). Moreover, the
highlighted (selectable) icons on the right Workbook page indicate the factors that
the autonomy prioritized in determining its recommended plan (e.g., “stopwatch”
icon indicates that the plan was optimized on time). Each of these factors was
determined via a CTA to provide constraints that the autonomy considers when
generating a plan for a play. By selecting different icons, the operator can prompt
the autonomy to re-plan. For instance, if the operator knows from the sensor
operator that there is cloud cover, the operator can change that environment factor
by selecting the “cloud” icon (or via speech), and the autonomy will generate a new
play plan which has a more appropriate sensor. Tabs at the bottom of Page 2 call up

Play Workbook

Dashed blue line 
shows autonomy’s 
recommended plan: 
have USV leave 
NAI patrol to inspect 
at Point Bravo.

Fig. 6 Sandbox map showing autonomy’s proposed UV and route to add a USV to inspect a
suspicious watercraft at Point Bravo and close up of Play Workbook
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other pages for the operator to specify which UV should perform the play or other
play details (e.g., size of loiter).

3.4 Understanding Autonomy’s Rationale for Proposed Play
Plan

Besides noting the factors in the Play Workbook that are used by the autonomy to
generate a proposed plan for a play, two other interfaces illustrated in Fig. 7 provide
insight into the autonomy’s reasoning. Figure 7a presents text that appears adjacent
to the Workbook to provide further rationale, such as that the plan represents the
best option for optimizing on time and how communication range was taken into
account in UV choice. A plan comparison plot (Fig. 7b) illustrates the tradeoffs
across play plans according to mission factors (see [11] for more detail).

3.5 Monitoring Play Execution

Once the operator makes a consent response to accept the autonomy’s proposed
plan for the play, the dashed route lines (Fig. 6) on the sandbox map turn solid
(Fig. 8). The operator can monitor the play’s progress by observing the movement
of the UV symbols along routes. Additionally, other interfaces help monitor play
progress.

The Active Play Table on the left (Fig. 9) lists all active plays (play type and
UV) as well as the current patrol state (NFCP or highly mobile) at the bottom. Note:
each play’s symbol and text in the table is a distinct color that matches the play’s
route and UV symbol on each map. (For each multi-UV play, all associated UVs,
routes, and tabular information would be the same color.) Rows in the Active Play
interface are also selectable, resulting in the Workbook displayed on the sandbox
map to provide more information and serve as a guide for revising the play during

a) b)

Fig. 7 Interfaces for operator to view autonomy’s rationale for proposed play plan(s)

120 G.L. Calhoun et al.



its execution, if needed, with either manual Workbook selections or speech com-
mands. More information on the patrol state is visible with the scrolling function
highlighted in blue at the bottom. Functionality to cancel or pause the play is
available to the right of the UV symbols.

The color coded vertical bar for each play (green, yellow, or red for normal,
caution, or warning states) matches the most severe state indicated in the Play
Quality matrix page available through the Workbook (on the right). Here the status
of the play’s progress is presented, as measured by autonomics monitoring services.

Blue line turns 
solid when 
USV leaves
NAI patrol to 
inspect at 
Point Bravo

Active 
Play 
Table

Play Quality Matrix

Fig. 8 Sandbox map showing both air and surface UVs on plays to inspect suspicious watercraft
at Point Bravo and other UVs on normal full coverage patrol

Fig. 9 Close up of Active Play Table (left) and Play Quality Matrix (right)
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This example plots three parameters (estimated time enroute, fuel available, and UV
speed). A normal state (green) is shown in the left two columns and deviations from
that (yellow or red) and the respective direction of the more saturated color cell (far
right column) indicates whether the parameter is above or below its expected
operating range. (See [12] for more detail.)

3.6 Managing Multiple Plays

Considering 12 UVs are involved in the example scenario, it is likely that the
operator will call many plays when there are multiple potential threats to the base.
Moreover, for several base defense tactics, multiple UVs team on the same plays,
such as a UAV scanning ahead to scout the route that a ground UV will take, or a
UAV serving as a link for a surface UV that has a limited communication range.
Multiple UVs are also involved if it is necessary to block an intersection of a road.
The intelligent agents that reason among domain knowledge sources track each UV
in order to determine the optimal UV assignment when generating proposed play
plans. The intelligent agents’ reasoning takes into account multiple factors
including UV type, sensor capability, location, and whether or not the UV is already
performing a play [11].

Given the complexity of multiple UVs and plays, an additional interface was
implemented to supplement the Active Play interface. Figure 10 shows the Inactive
Play interface that contains two tables. The “Not Ready” table contains plays that
are called by the operator, but cannot be activated yet because they are waiting on a
certain resource (e.g., specific sensor type or UV type). This interface also serves as
a record of plays that the operator has called with the intent of activating them later
in the mission. Once the needed resource is available for the play in the Not Ready
Table, that play automatically moves to the “Ready” table. Here the play resides

a)

b)

Fig. 10 Close up of Active Play Table (left) and Inactive (Not Ready and Ready) Play Tables
(right)
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until the operator either cancels the play or consents for it to begin. The Ready
Table also includes any active plays that were paused by the operator. Similarly,
plays in the Ready Table, whose UV asset is reassigned to a different play, would
move to the Not Ready Table.

These management interfaces (Active, Not Ready and Ready Play Tables)
provide the operator with buttons (to the right) to quickly pause, initiate and cancel
plays, separate from their respective Play Workbooks. Selection of a row in the
Inactive Play Table also calls up candidate plans for that inactive play. Moreover,
there are methods by which the operator can chain plays, such that a play will
become active, once another play has been completed. For certain plays deemed
critical in the Not Ready Table that are waiting on a resource, the operator can
designate it to automatically become active when an asset becomes available,
without it first moving to the Ready Table to await operator input. This function-
ality was provided to alleviate the operator from constantly monitoring the Inactive
Plays to initiate a critical play. These play management interfaces, with modifica-
tion, can also support the presentation of autonomy suggested plays.

4 Evaluation of UV Play Interfaces

The interfaces described above are part of an ongoing evaluation. A summary of
key results will be available for the presentation. For this evaluation, personnel
familiar with base defense and/or UV operations are serving as experimental par-
ticipants, performing the mission scenario described herein. Both quantitative and
qualitative data are being collected for two (within-subjects) conditions: one that
employs these operator-autonomy interfaces (and supporting autonomy compo-
nents), as well as a condition where multi-UV navigation, mission planning, and
loiter management are accomplished with only defined keyboard and mouse inputs
(similar to what is described in [13]). The baseline condition has less autonomy
support and does not employ the flexible delegation control architecture, including
the interfaces illustrated in Figs. 5–10.

Preliminary data from the current evaluation suggests that the results will be
aligned with an earlier evaluation that employed a less complex scenario (only 13
plays and 6 UVs) [1]. Moreover, the previous evaluation did not have the interfaces
illustrated in Figs. 5a, b, and 7. The other interfaces were less refined too.
Nevertheless, the first version of the IMPACT simulation was well received by the
six participants who completed training, a 20-minute experimental trial, and
extensive questionnaires in 3.25 h sessions. On a 5-point Likert scale (ranging from
No Aid to Great Aid), five of the six participants strongly agreed that the approach
for operator-autonomy teaming for UV defense missions has potential value and
helps aid workload. Four participants rated it an aid to situation awareness as well.
(All ratings were “4” or “5.”).

For this earlier study, the results were similar when the rating scale was applied
to specific elements of the simulation: play calling, autonomy, feedback, and
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control station. Ratings on the usability of IMPACT’s approach to multi-UV
operations were also positive. Ratings averaged 4.0 or higher (5-point scale) on an
item “like to use this system frequently.” Similar ratings showed that participants
felt the system was easy to learn, easy to use, well integrated, and that they were
confident in using the system without the need for support personnel. Participants in
this earlier evaluation did, however, have many suggestions on how the system
could be improved. Since the current IMPACT simulation has addressed the
majority of the comments recorded from the initial evaluation, as well as added a
map-based play calling radial menu, included interfaces for the operator to view the
autonomy’s rationale for proposed play plans, and expanded play management
interfaces, it is expected that the results from the ongoing evaluation will also be
favorable.

5 Summary

The results of this research and development demonstrate that operator-autonomy
teamwork can be supported with delegation control interfaces that enable an
operator to quickly call plays that determine the automatic actions of one or more
UVs. This capability, as well as the ability to employ a wide spectrum of control
and multiple control modalities, will help support future multi-UV operations. At
one extreme of this flexible adaptable approach, the operator can quickly task UVs
by simply specifying play type and location, and the autonomy determines all other
task-related details. At the other, the operator can exert manual control or build
plays from the ground up, specifying detailed parameters. Our approach facilitates
efficient support of the operator’s current desired level of control by making the
parameters most likely to be adjusted more accessible. This also assists operator
communication with autonomy on mission factors key to optimizing play param-
eters (e.g., target size and current visibility). Additionally, concise and integrated
interfaces that highlight the tradeoffs of autonomy-generated plans, support allo-
cation of assets to tasks, and communicate mission progress are important for
shared operator-autonomy situation awareness.

The authors anticipate that the advantages of our approach for implementing
adaptable automation for tasks involving heterogeneous UVs in a base mission
defense scenario will generalize to other applications. Nevertheless, for any new
application, the desired operator-autonomy interactions would need to be identified
to serve as the basis of interface designs for control and display of plays and the
provision of a wide spectrum of multi-modal control. Application of a flexible
interaction approach should be useful for a variety of domains promoting
operator-autonomy collaboration and teamwork to enable agile responses in
dynamic environments.
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Shaping Trust Through Transparent
Design: Theoretical and Experimental
Guidelines

Joseph B. Lyons, Garrett G. Sadler, Kolina Koltai, Henri Battiste,
Nhut T. Ho, Lauren C. Hoffmann, David Smith, Walter Johnson
and Robert Shively

Abstract The current research discusses transparency as a means to enable trust of
automated systems. Commercial pilots (N = 13) interacted with an automated aid
for emergency landings. The automated aid provided decision support during a
complex task where pilots were instructed to land several aircraft simultaneously.
Three transparency conditions were used to examine the impact of transparency on
pilot’s trust of the tool. The conditions were: baseline (i.e., the existing tool
interface), value (where the tool provided a numeric value for the likely success of a
particular airport for that aircraft), and logic (where the tool provided the rationale
for the recommendation). Trust was highest in the logic condition, which is con-
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sistent with prior studies in this area. Implications for design are discussed in terms
of promoting understanding of the rationale for automated recommendations.

Keywords Trust � Transparency � Automation

1 Introduction

Advanced technology has great promise to support improved task performance
across a variety of domains. Yet, advances in technologies such as automation,
while beneficial to performance in stable (high-reliability) states, can have detri-
mental effects when they fail [1]. One paradoxical reason why automation can be
devastating is that humans may form inappropriate reliance strategies when
working with automation [2, 3]. Thus, the issue of trust in automation has emerged
as an important topic for human factors researchers [4, 5]. Trust is a critical process
to understand because trust has implications for reliance behavior—i.e., using or
“relying” on a system when that reliance matters most. The trust process as it relates
to automation is complex because the factors that influence trust range from
human-centric factors such as dispositional influences (e.g. predisposition to trust)
and experiential influences (learned trust aspects), to situational features [see 5 for a
recent review]. Failure to establish appropriate trust can result in performance errors
due to over-trust in technology where a human places unwarranted reliance on a
technology, or alternatively, humans can under-trust technology by failing to use
technology when that reliance is warranted. One key for researchers is to identify
the set of variables that influences the trust process and to provide humans with the
appropriate information to drive appropriate reliance decisions. The current paper
discusses one such influence, the role of transparency and its influence on the trust
process by presenting experimental data related to different transparency manipu-
lations in a high-fidelity, immersive commercial aviation task environment
involving automation support to a pilot.

Transparency represents a method for establishing shared awareness and shared
intent between humans and machines [6]. Transparency is essentially a way for the
human and the machine to be on the same page with regard to goals, processes,
tasks, division of labor within tasks, and overall intent-based approach toward the
interaction. Lyons [6] outlines several dimensions of transparency: intent, envi-
ronment, task, analytic, team, human state, and social intent. The intent dimension
involves understanding the overall purpose of the technology and how well this
purpose matches the expectations of the human partner. Human expectations can be
driven by naming schemes, physical appearance or other symbols, as well as by
descriptions of the technology and prior experiences with similar technologies. The
environment component involves educating the human (either through training or
real-time display features) about how the technology senses information in the
environment. The task dimension involves communicating the technology’s limi-
tations, capabilities, and task completion information to the human. The analytic
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dimension involves sharing details about the rationale for behaviors taken or rec-
ommendations provided by the system as well as providing the human with an
understanding of the programming of the technology (i.e., “how it works”). The
team component involves understanding the division of labor between the human
and the technology. The human state dimension involves communicating infor-
mation about the human operator (e.g., stress, fatigue) to the technology. Finally,
the social intent facet of transparency involves communicating information to the
human regarding the planned pattern of interactions (e.g., style, timing, etiquette,
etc.) between the human and the technology.

Previous research has found that transparency is beneficial to humans interacting
with automated decision aids [7–9]. Transparency in these contexts has been shown
to influence trust by conveying necessary information about the limitations, logic,
or intent of a system. Transparency has also been explored in the context of
automation for commercial aviation. Lyons and colleagues [9] systematically
manipulated different levels of transparency in NASA’s Emergency Landing
Planner tool (ELP) [10]. The ELP was designed as an automated aid to support
rapid decisions for commercial pilots to support effective diversion decisions. They
sought to examine the potential benefits of added rationale for recommendations
provided by the ELP by creating two additional display features to augment the
existing ELP infrastructure. The first feature, termed value, added a numeric value
reflecting the calculated probability for a successful landing for that particular
diversion airport on the first attempt (i.e., without requiring a “go-around”). This
subtle (but in no way simple) calculation was believed to increase the credibility of
an option and provide the pilots with a quick estimate on the feasibility of a landing
option. However, to make the ELP more transparent to the pilots, the study authors
added a second feature which explained the rationale, termed logic, for the rec-
ommendation. This added information communicated the reasons why this diver-
sion airport was a good or bad option. Using a static, low-fidelity task scenario, the
authors found that trust was rated highest when the pilots were given the highest
level of transparency for the ELP (i.e., the logic condition). It was unknown
however, whether these same benefits would transfer to a more realistic task
environment characterized by complexity and time constraints. The same design
principles used in the aforementioned study (i.e., value and logic transparency)
were used as a template for the current study, though the current study used a
high-fidelity task environment to examine the effects of transparency on trust.

2 Method

2.1 Participants

The participants were 13 commercial transport pilots experienced with
glass-cockpit instruments and with flight management systems (FMS). Participants
were recruited locally from the San Francisco Bay Area through the San Jose State
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University Research Foundation in conjunction with the Human Systems
Integration Division at NASA Ames Research Center. They all had over 10000 h of
flight experience as line pilots with the exception of a single participant who had
between 3001 to 5000 h of experience. All participants had real-world experience
making diversions from their filed flight plans for a variety of reasons including bad
weather, traffic issues, mechanical failure, and/or medical emergencies. Participants
were either employed by their airlines as Captains (66.7 %) or as First Officers
(33.3 %). Two-thirds of participants had prior military flying experience.
A majority of pilots (75 %) indicated that they were either “somewhat familiar,”
“familiar,” or “very familiar” with flying in the study’s simulated geographical area
(Colorado-Utah-Wyoming).

2.2 Experimental Design

We used a within subject factorial design with three levels of transparency. The
levels of the Transparency corresponded to providing the participant with no
explanation (baseline) for the automation’s diversion recommendation, just success
probability (value), and success probability plus explanation (logic) for the
automation’s recommendation. This additive manipulation of transparency facets is
consistent with similar methods in prior research [7].

Six experimental scenarios were constructed with six aircraft in each scenario,
and presented to the participants in a singular fixed order. Each scenario was
designed such that the best available landing options afforded a high success
probability to three of the aircraft, but only a low success probability to the other
three aircraft. The order in which the aircraft diversions occurred was experimen-
tally prescribed for each of the six scenarios such that, when collapsed over par-
ticipants, each scenario had an equal number of landings affording high and low
Success Probability. Finally, the order of presentation of the transparency condi-
tions was also counterbalanced. Each Transparency condition was presented in
blocked fashion, with three blocks and two scenarios per block. This provided six
potential block orderings, with each of these orderings given to at least two
participants.

2.3 Task/Apparatus

A dynamic commercial simulation environment was used for the current study in
which an operator at an advanced ground station monitored and produced diver-
sions for aircraft. This study utilized a subset of the functionalities of the whole
prototype ground station, specifically six principal components: a Traffic Situation
Display (TSD), an Aircraft Control List (ACL), Automatic Terminal Information
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Service (ATIS) broadcasts, FAA-issued approach plates and airport charts, and
pop-up windows containing evaluations of specific diversions provided by the
Autonomous Constrained Flight Planner (ACFP) recommender system, and the
ACFP itself (see Fig. 1). The ACFP is a tool being designed to support flight path
monitoring and re-routing for NASA’s Reduced Crew Operations (RCO) project
[11], and which directly incorporated the ELP algorithm [10], served as the auto-
mated diversion recommendation aid during a complex landing scenario. Each of
these diversions specified a runway at a specific airport, along with the route to that
runway. The TSD provided participants with a visual display of the geographic
area, convective weather cells, turbulence boxes, icons representing the locations of
available airports, and information related to each aircraft’s current state: location,
heading, altitude, and indicated airspeed. Using the ACL, participants were able to
toggle focus between the six simulated aircraft in the TSD and look up the selected
aircraft’s type (e.g., Boeing 747, Airbus A340, etc.). Local airport weather condi-
tions were available to participants by requesting (from a menu accessed in the
TSD) the ATIS broadcast for the corresponding landing site. Approach plate

Fig. 1 Example experimental ground station
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information allowed participants to look up a schematic diagram for each available
approach at a given airport in addition to legal requirements (e.g., weather ceiling
minimums) necessary for the landing. Finally, the ACFP pop-up window interface
provided participants with ACFP’s recommendation for a landing site together with
varying degrees and kinds of transparency information depending on the scenario’s
transparency condition (detailed below). In the scenario, participants were
instructed to land all aircraft under their control, this resulted in the need to land 6
aircraft in each trial.

Following the examples set forth in [9] information presented to the participant
in the ACFP window varied across scenarios using three hierarchical levels of
transparency, identified here as baseline, value, and logic. In the baseline trans-
parency condition (Fig. 2), participants were provided a recommendation from
ACFP displaying the recommended landing site (airport and runway number),
runway length (in feet), approach name/type, and distance to the landing site (in
nautical miles). The value transparency condition (Fig. 2) included, in addition to
the information presented in the baseline transparency condition, a “risk statement”
that provided ACFP’s evaluation of the probability of success for landing on the
first attempt (e.g., “There is a 55 % chance that you will be able to successfully
complete the approach and landing under current conditions”). It is important to
note that a success probability of 55 % means that there is a 45 % chance of having
to perform a “go-around” or follow-up attempts of the approach, not a 45 % chance
of crashing. Finally, the logic transparency condition (Fig. 2) included all infor-
mation presented in the low and medium conditions as well as statements to explain
the ACFP’s rationale behind its recommendation. These statements gave descrip-
tions of relevant factors along the enroute, approach, and landing phases of flight
that led to its determination for the recommendation See Figs. 3 and 4.

Fig. 3 Screen capture of the value transparency condition

Fig. 2 Screen capture of the baseline transparency condition
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2.4 Measures

Trust was measured using a 7-item scale to gauge pilot’s intentions to be vulnerable
to the ACFP [9]. Participants rated their agreement with the items using a 7-point
Likert scale. Trust measures were taken after each transparency condition and the
scale evidenced high reliability with alphas ranging from .88–.92. Example items
included: “I think using the [ACFP] will lead to positive outcomes,” “I would feel
comfortable relying the recommendations of the [ACFP] in the future,” and “when
the task was hard I felt like I could depend on the [ACFP].”

3 Results

The order of transparency conditions was counterbalanced within a repeated
measures design to maximize statistical power. To explore potential order effects of
the transparency conditions over time, a repeated measures analysis was conducted.
While there was no main effect of order, nor a main effect of time on trust (all p′
s >0.05), there was a significant time by order interaction, F(5, 7) = 12.44, p <0.05.
As depicted in Fig. 5, the interaction effect follows a quadratic trend such that
participants tend to report higher trust when they interact with the logic form of
transparency either early (e.g., 5) or later in the task (e.g., 3 and 1). It is also clear
that participant interactions with the baseline transparency resulted in lower trust

Fig. 4 Screen capture of the logic transparency condition
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when it followed either the logic or value transparency (e.g., 4 and 6). Given that
the order of the transparency conditions did have an influence on trust overtime, we
used a repeated measures ANCOVA to examine the impact of transparency con-
dition on trust while including order as a covariate. As shown in Fig. 6, trust was
highest in the logic condition and lowest in the baseline condition. These

Fig. 5 Time by order interaction predicting trust

Fig. 6 Means for trust by condition
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differences were reliable, F(2, 22) = 4.39, p <0.05, demonstrating that trust was
influenced by transparency condition and that the highest level of trust was asso-
ciated with the logic-based form of transparency.

4 Discussion

Trust of automated systems remains a highly pertinent topic for researchers given
the burgeoning nature of advanced technology. Technology offers the promise of
improved performance and reduced workload for human users/managers of tech-
nology, yet these benefits will only be realized when the technology is designed in
such a way as to foster appropriate reliance. One such method involves adding
transparency features to automated systems. The present research explored the
impact of transparency on trust using a high-fidelity simulation involving an
automated aid in commercial aviation.

Consistent with prior research, the current study demonstrated that higher levels
of transparency engender higher trust of automation. Specifically, the use of
logic-based explanations for the recommendations was found to promote trust. This
is consistent with a prior study that used similar transparency manipulations [9],
however that previous study was conducted using low-fidelity methods. The current
results naturally extend prior research by demonstrating the benefits of logic-based
transparency in a high-fidelity task simulation using commercial pilots as the
human operators. Clearly, when automated aids offer recommendations to humans
they should include information related to the rationale or the key drivers of the
recommendation, as this will help to foster trust in the automation. The rationale
provided by the automation will help to reduce uncertainty on behalf of the human.

Future research should continue to explore the impact of transparency on the
trust process. Future studies might consider a variety of different forms of trans-
parency. The SA-based model of transparency highlights the importance of per-
ception, comprehension, and projection and their additive effects [7]. Perhaps most
importantly, Mercado and colleagues [7] found that higher levels of transparency
modulated trust with no detriment to cognitive workload. This is critical as added
information has the potential for overloading operators, which is counterproductive.
Further, future research should explore an expanded view of transparency as out-
lined in [6].

References

1. Onnasch, L., Wickens, C.D., Li, H., Manzey, D.: Human performance consequences of stages
and levels of automation: an integrated meta-analysis. Hum Factors 56, 476–488 (2014)

2. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum Factors 46,
50–80 (2004)

Shaping Trust Through Transparent Design: Theoretical and … 135



3. Lyons, J.B., Stokes, C.K.: Human-human reliance in the context of automation. Hum Factors
54, 111–120 (2012)

4. Chen, J.Y.C., Barnes, M.J.: Human-agent teaming for multirobot control: a review of the
human factors issues. IEEE Transactions on Human-Machine Systems, 13–29 (2014)

5. Hoff, K.A., Bashir, M.: Trust in automation: integrating empirical evidence on factors that
influence trust. Hum Factors 57, 407–434 (2015)

6. Lyons, J.B.: Being transparent about transparency: a model for human-robot interaction. In:
Sofge, D., Kruijff, G.J., Lawless, W.F. (eds.) Trust and Autonomous Systems: papers from the
AAAI spring symposium (Technical Report SS-13-07). AAAI Press, Menlo Park, CA (2013)

7. Mercado, J.E., Rupp, M.A., Chen. J.Y.C., Barnes, M.J., Barber, D., Procci, K.: Intelligent agent
transparency in human-agent teaming for multi-UxV management. Human Factors (in press)

8. Wang, L., Jamieson, G.A., Hollands, J.G.: Trust and reliance on an automated combat
identification system. Hum Factors 51, 281–291 (2009)

9. Lyons, J.B., Koltai, K.S., Ho, N.T., Johnson, W.B., Smith, D.E., Shively, J.R.: Engineering
trust in complex automated systems. Ergon in Design 24, 13–17 (2016)

10. Meuleau, N., Plaunt, C., Smith, D., Smith, C.: Emergency landing planner for damaged
aircraft. In: Proceedings of the Scheduling and Planning Applications Workshop (2008)

11. Brandt, S.L., Lachter, J., Battiste, V., Johnson, W.: Pilot situation awareness and its
implications for single pilot operations: analysis of a human-in-the-loop study. Procedia
Manufacturing 3, 3017–3024 (2015)

136 J.B. Lyons et al.



A Framework for Human-Agent Social
Systems: The Role of Non-technical
Factors in Operation Success

Monika Lohani, Charlene Stokes, Natalia Dashan, Marissa McCoy,
Christopher A. Bailey and Susan E. Rivers

Abstract We present a comprehensive framework that identifies a number of
factors that impact human-agent team building, including human, agent, and
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support successful human-agent operations. We conclude by discussing implica-
tions and next steps to evaluate and expand our framework with the aim of guiding
future attempts to create efficient human-agent teams and improve mission
outcomes.
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1 Introduction

Social interactions are the basis of successful team building. Human-agent (H-A)
interactions may share similar characteristics to interactions between humans in
ways that impact the formation of team building between a human and an agent. We
present a comprehensive framework for human-agent social systems, which is
informed by organization behavior, non-technical training work, as well as
human-systems interaction literature. We integrate existing empirical work that
provide initial evidence to support the proposed components in our framework that
are critical to accomplish successful H-A operations. Specifically, we discuss the
effect of non-technical skills on H-A team effectiveness. We conclude by identi-
fying the next steps to further evaluate and expand our framework with the aim of
guiding future attempts to create efficient H-A teams and improve operation
outcomes.

2 Human-Agent Team Effectiveness for Operation Success

An agent is a sophisticated computer system that is situated in some environment
and can act autonomously and flexibly to solve a growing number of complex
problems [1]. This general category may include, but is not limited to agents in
virtual environments (virtual agents) and agents with integrated perception, cog-
nition, and action (robotic agents). A H-A team refers to a set of two or more
members who have each been assigned specific roles or functions to perform and
they interact dynamically, interdependently, and adaptively toward a common and
valued goal. H-A teams can perform different tasks and operate in various contexts,
e.g., military, aviation, and search and rescue teams. Team-outcomes are the
resulting consequences and end products of team work. These may depend on the
team-goal specific to the mission and may include performance (e.g., successful
search and rescue missions). Successful completion of team goals will result in
team-operation success.

Which elements can influence H-A team operation success? Recent reviews [2,
3] found a number of factors that affect team building, including human, agent, and
environmental factors can influence trust between a human and his/her agent
teammate and impact operation success. Numerous models have also been pro-
posed that focus on one or more elements that may influence H-A teams e.g., [4, 5].
Although these models have demonstrated the relevance of many factors that
should be considered, the existing literature does not have existing framework that
inform researchers to build H-A teams. In the context of H-A interaction, both
human and team characteristics can influence team work. No framework to our
knowledge provides a comprehensive framework that includes agent-related,
human-related, and H-A team related factors as inputs to lead to H-A operation
success.
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In the current paper, we sketch a framework that integrates findings from
humans interacting with computers, machines, virtual characters, and robots that
could guide future research that aims to develop H-A teams. Of course, there are
many overlaps across domains but also significant differences. With the growth of
all these sub-fields, it is important to understand how these areas of research may
converge. This is not to say that these areas are the same or that the findings from
one are generally applicable to all others. On the other hand, these areas have an
important overlap that can help inform each other that can help build an under-
standing of how humans interact with them.

3 A Framework for the Human-Agent Social Systems

We have developed a comprehensive framework that incorporates elements that
may collectively influence how well H-A teams may perform together. Figure 1
presents our framework. We have used an input-process-outcome approach [6] for
examining team effectiveness. Team-inputs are factors that allow and limit H-A
team interactions. Inputs include individual team member characteristics (e.g.,
agent’s and human’s physical features, personality), individual member capabilities
(e.g., agent’s and human’s technical expertise, task-management ability, situation
awareness, decision-making ability), and team-level factors (e.g., H-A team’s
rapport, communication, cooperation, team management). Contextual factors are
indicated by the grey elliptical shape around H-A factor, which may also signifi-
cantly influence and define team-level factors (e.g., setting the H-A team is working
in, environmental complexity and uncertainties).

Fig. 1 A framework for human-agent social systems for operation success
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Input-level factors integrate and determine team-processes (e.g., calibrated trust,
reliance, and operation capabilities), which ultimately lead to output (e.g., H-A
operation success). Team-outcomes are the resulting consequences and end prod-
ucts of team work. These may depend on the team-goal specific to the mission and
may include performance (e.g., successful search and rescue mission). Successful
completion of these goals will result in team-operation success.

When working together in operations with high stakes, a H-A team must work
effectively even under highly complex, stressful, and time-sensitive conditions. But
how do we create a team that works effectively? Which components are essential to
consider when trying to build effective H-A teams? The goal of the current paper
was to assemble a framework that can guide developers and researchers to build
successful H-A teams. We incorporated existing evidence to support this frame-
work and identified gaps that need to be addressed in future work. We presented a
testable theoretical framework with factors that may influence H-A teams. This
framework is a working model that will be improved by empirical testing with the
ultimate goal of developing guidelines for developing efficient H-A team
performance.

Table 1 provides details on each component of the framework. Both, the human
and agent have characteristics and resources that contribute to team outcomes.
While human-specific factors certainly are important to consider, these are beyond
the scope of this paper. Much theoretical and empirical work in H-A research has
explored design-based approaches to inform H-A interactions. For instance, in order
for a human to perceive an agent as a peer (i.e., equal to oneself, similar in ability),
the agent should express its motives and goals through complex behavioral and
social characteristics that are similar to those of humans [7, 8]. For example, a
humanoid robot that demonstrates gaze, eye contact, and utilitarian emotions is
more likeable and facilitate team dynamics [9]. Many technical capabilities built
into the agent have tremendously improved technical capabilities, situation
awareness, and decision making [10]. These may include artificial cognition, speech
recognition, natural language understanding & generation, dialogue management,
emotion modeling, question response managers, speech generation, and non-verbal
behavior. Unlike H-A team goals, much theoretical and empirical progress has been
made with these components. Accordingly, in this paper, we specifically focus on
how non-technical skills play a critical role in H-A team success after we briefly
discuss agent’s characteristics and capabilities.

4 Human-Agent Team Goals—Supporting Evidence

Non-technical skills include cognitive, social, and emotional abilities that are fun-
damental in team functioning. Non-technical skills, more so than technical abilities,
have been recognized as leading contributors to accidents, errors, and low quality
outcomes in human teams as well as H-A teams [11]. Evidence suggests that certain
nontechnical aspects of performance can enhance or, if lacking, contribute to
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Table 1 Components and underlying elements of human-agent social systems framework

Component
Element

Definition Description of
sub-components included

1 Human-Agent team goals
1.1 Rapport A flow in an interaction

marked by harmony,
synchrony, and
connectedness

Behaviors indicating positive
emotions (head nods or
smiles, mutual attentiveness
(e.g. mutual gaze),
coordination (e.g., postural
mimicry or synchronized
movements)

1.2 Communication Establishing shared
understanding

Exchanging information;
establishing roles and
responsibilities; expressing
vulnerability

1.3 Coordination Coordinating task activities Delegating tasks, mutual
performance monitoring,
minimizing idle time, giving
implicit and explicit
commands;

1.4 Team management Interactions directed toward
task accomplishment
(planning/preparation);
Prioritizing; Exercising
leadership and followership;
Engaging in adaptive and
supportive behavior (team
members step in and help
when needed, dynamically
reallocate workload, ask for
assistance when needed)

Negotiating; using authority,
assertiveness, critical
judgment (when applicable);
assessing capabilities;
supporting others; tactical
questioning; perspective
tasking; conflict
management; Coping with
pressure

2 Agent’s capabilities
2.1 Technical expertise Task-dependent capabilities

to support mission
Artificial cognition;
Language generation and
understanding

2.2 Situation awareness Recognizing the need for an
action, having common
expectations, actively seeking
information, and taking
corrective actions

Gathering information;
Anticipating future state;
Calling for help

2.3 Decision making Providing important input to
make critical mission-related
decisions

Identifying options; selecting
and communicating options;
implementing and reviewing
decisions; balancing risks and
benefits; Reevaluating

(continued)
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deterioration of H-A team outcomes [2, 3]. Non-technical skills are critical in
effective team building, emotion management, and performance [12–15].

Previous literature on team building processes among human team members has
found that numerous factors are critical for team performance and effective team-
work, such as communication, coordination, decision-making, conflict manage-
ment, and performance feedback, for e.g., [13–15]. After a thorough literature
review, we have identified a few elements that have been consistently found to be
critical in team work. Our framework incorporates elements of these non-technical
skills as researched in human teams to H-A teams. In the sections below, we discuss
empirical evidence supporting the importance of these elements in a H-A teams.

4.1 Rapport

Rapport is a feeling of mutual harmony, or being “in sync” with a teammate and it
has been argued to “lead to communicative efficiency, better learning outcomes,
improved acceptance of medical advice and successful negotiations.” [16]. This
idea of rapport has been discussed both in the Human-Human interaction literature
and in the Human-Robot interaction literature. Research has been conducted on the
specifics of establishing report through the manipulation of these three elements:
attention, positivity, and coordination. For example, rapport with virtual agents is
many times broken due to the agent’s speech patterns. Furthermore, for rapport to
be established, there has to be a “tight sense-act loop that has been traditionally
lacking in embodied conversational agents” [17]. It is not enough for virtual agents
to simply talk to their human counterparts. It is vital for the agent to appear to be
responding to the human. In an experiment, it was shown that contingency, not just
frequency of positive feedback was needed to create rapport [18]. It must seem as if
the agent is reacting to you personally and quickly. This sort of feedback (“envelope
feedback,” which includes head nods, gaze, and mutual beat gestures) has been
shown even more important in building rapport than emotional feedback (which
includes gestures such as smiling or showing puzzlement) [19]. Social cueing not
only improves likeability of the agent, but enables agents to work as partners [7, 9,
10, 20].

Table 1 (continued)

Component
Element

Definition Description of
sub-components included

3 Agent’s characteristics
3.1 Physical design Mission dependent design Anthropomorphic features;

speech qualities; posture
shifts

3.2 Attitude/Personality Adopting context-suitable
attitudes

Agreeableness;
Conscientiousness
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4.2 Communication

Rapport alone is not enough to foster effective teamwork: humans-agent teams must
not only act in synchrony, but they must also be able to exchange ideas with each
other. Communication is different from rapport in that rapport is generally felt by
the parties, but is difficult to observe, whereas communication is an observable
exchange of information and sentiments. Encouraging peer-to-peer dialogue
between humans and agents such that they communicate and coordinate with each
other as human teams do may also influence performance [9]. This kind of ongoing
dialogue engenders contextual and situational awareness between the H-A teams
and may build a support system for both. Socially communicative agents relative to
less social ones gain more acceptance as a conversational partner [20, 21].

According to [16], an agent’s communication can be altered in several ways, one
of which is through modeling of emotional state. If an agent is aware of another’s
emotional state (such as if somebody is frowning, or raises their voice in anger),
then the agent will alter its communication to ask what is wrong and try to remedy
the situation (if an agent is unable to perceive shifts in emotional states then it
would not alter what it does or what it says). The role of emotion detection in
communication is high. Some potential roles of emotions for artificial agents
include: alarm mechanisms, action selection, adaptation, learning, motivation,
social regulation, goal management, strategic processing, memory control, infor-
mation integration, attention focus, and self-modelling [22]. Communication about
intentions facilitates task performance [23], and will likely minimize information
overload.

Several attempts are underway to improve social agent architecture by incor-
porating verbal and non-verbal cues to encourage social interactions and cooper-
ation, social acceptance, and bidirectional intent recognition [9, 10, 24].
Transparency shown by the agents, even when the agent has low reliability and
performance, can lead to better reliance highlighting the importance of
non-technical factors, such as communication, in trust development [2, 3].

4.3 Coordination

Within a team, it is important for team members to coordinate who does what task
and when. Even if there is a high degree of rapport between team members, a team
can be unproductive if they fail to coordinate. Coordination involves activities such
as giving commands, expressing intent to proceed with an action, fluidly timing the
actions, incorporating unexpected requests and actions into the workflow, and
doing the action. Without proper coordination, team members would likely perform
the same tasks needlessly, spend too much time doing nothing, spend too much
time on irrelevant tasks, or be confused.
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A framework of coordination [25] between teammates suggests a series of
algorithms based not on stages of expected behavior and subgoals, but on ensuring
fluid coordination between teammates. This framework is based on key results from
Human-teamwork studies and included algorithms to minimize idle time, prefer-
ence implicit commands to the near future (and preference explicit commands to be
completed immediately), and manage multiple agents [25]. These factors are
important in creating workplace flexibility, establishing who will do which task,
and in managing on-the-fly decisions. For better coordination, effective teammates
communicate often as to the progress of the task, consider the consequences of their
actions on others, and anticipate another’s needs. They also consider other people’s
capabilities into their own action planning [26] and try to minimize everyone’s idle
time. The most effective team members also use both implicit and explicit com-
mands when making requests because these two types of commands have different
properties [8, 25]. Explicit commands nearly always elicit an immediate response,
whereas implicit commands usually imply a more flexible time response. Thus,
implicit commands require a lower switching cost than explicit commands by
allowing the command to be smoothly incorporated into the original workflow.
Previous research has shown that teams exhibit more implicit coordination as
time-pressure increases, and that more implicit coordination leads to better per-
formance outcomes. One way to be an effective implicit communicator is to peri-
odically assess the situation [27].

4.4 Team Management

Within a team, rapport is needed to create synchrony and positive feelings, which
lead to trust. Coordination is needed in order to complete immediate tasks.
Something else is needed to ensure that everything runs smoothly and that small
tasks aid in the completion of a larger goal. Problems can occur when either a
human or agent partner miscommunicates regarding its goals and intentions, when
external factors change and render the current goals useless, when mood changes,
or when one partner has to unexpectedly pick up a task from another (either due to a
situational change or an emotional change, such as lack of or breach of trust). Team
management is the factor of effective teams that is needed to plan, anticipate
conflict, solve problems, allow for performance feedback, and ensure team success.

One aspect of team management is negotiation. Sometimes the human and the
virtual agent may disagree, and to resolve the conflict, it is essential that an
agreed-on and effective conflict resolution system be in place. According to one
framework, the negotiator should balance three different goals to be successful:
solving problems, gaining trust, and managing the interaction [28]. Team negoti-
ation can be represented by a sequence of negotiation stances: the agent who holds
the stance, the action that this stance is about, the stance the agent holds toward the
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action, the audience (a set of agents) that the agent has made the stance in front of,
the reason for holding the stance, and the time at which the stance was made [29].
An agent or a human can accept, reject, explain, or counter propose a negotiation
stance. There are numerous elements are essential for team management as listed in
Table 1, such as critical judgment and conflict management, which we are unable to
go into details because of space limitations. Recent work is exploring ways to
include team management skills in H-A team setup. For instance, benefits of
self-disclosure, expressivity, social bonds [30–35] can be used to create a dialog
between the team such that the members can empathize, reassure, motivate, and
support their team.

4.5 Conclusion

In sum, the H-A interactions could be framed to develop rapport, communication,
collaboration, and team management skills. In systematic reviews, non-technical
factors such as team collaboration and communication have a moderate to large
effect on H-A trust [3]. Socioemotional skills can serve as a bonding mechanism for
teams as they can promote trust. Adopting this team-building approach, we found
that socioemotional interaction of a virtual agent as a teammate vs. a tool led to
higher reports of the ability to cope with stress, acceptance of physiological
assessment sensors, and it moderated the relationship between trust and reliance
[30]. Another study showed that a robot can be programmed to provide different
kinds of support to its human interaction partner in ways that effectively managed
stress [33]. Past studies that have explored the effects of an agent’s social abilities
and social dialogue with a human increases acceptance and communication [8, 9,
30, 35]. Thus, limited, but promising studies illustrate that agents can provide
non-technical support to their teammates.

5 Implications and Future Directions

Putting it together, our framework provides a comprehensive integration of
agent-relevant, human-relevant, and H-A team-relevant factors that may contribute
to successful team outcomes. We argue that traditional climate management and
training techniques derived from the organization and education literature can be
leveraged to foster a team atmosphere. The current framework is a working model
that will evolve with new research. Based on the new evidence, many aspects may
need to be added or revised. This framework was intentionally kept broad to
maintain its applicability to most contexts in which H-A teams can work together.
With further validation and improvement, this framework should help reduce the
burden of humans and significantly improve H-A performance.
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Much work is needed for an agent to be able to operate with a human teammate
in complex and uncertain environments and perform in cooperation with human
team members. Our framework provides key factors that are essential to develop
future applications of agent technologies to be able to interactions with non-expert
humans and play the role of a teammate and provide assistance to humans in
high-stakes situations, such as warfighters in combat operations. Such
teammate-support is very relevant for people exposed to high stress and high
workload conditions, such as warfighters and intelligence analysts, where techno-
logically savvy agents could provide technical expertise to help reduce the work-
load and also provide non-technical skills to improve stress coping by being a
helpful teammate.
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Intelligent Agent Transparency
and Uncertainty
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Abstract This paper discusses two studies testing the effects of agent transparency
in joint cognitive systems involving supervisory control and decision-making.
Specifically, we examine the impact of agent transparency on operator performance
(decision accuracy), response time, perceived workload, perceived usability of the
agent, and operator trust in the agent. Transparency has a positive impact on
operator performance, usability, and trust, yet the depiction of uncertainty has
potentially negative effects on usability and trust. Guidelines and considerations for
displaying transparency in joint cognitive systems are discussed.
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1 Background

As warfighting environments become more complex, operators will increasingly
collaborate with intelligent agents (IAs) to manage teams of robotic systems [1].
However, increased autonomy may come with a cost: operators may have difficulty
understanding IA rationale during mixed-initiative decision-making [2]. Mixed
initiative decision-making is not only a requirement for effective operations in
war-fighting environments, but also an inherent behavior of all Joint Cognitive
Systems [3]. Therefore, operational environments demand not only autonomy and
flexibility, but also collaborative interaction between system cognitive actors (hu-
man operators and IAs) to reach optimized performance. As a whole, the overall
system should support operators’ recognition of the state of the world, anticipation
of the consequences of state changes in the world, and appropriate adaptation of
system means and goals. This can aid in operators’ general performance, as well as
management of abnormal system-wide events [4, 5]. To facilitate this support, an
operator’s display should be designed with resilient operations in mind [6]—that is,
buffering, to absorb the information processing deficits of a human cognition;
flexibility, rather than brittleness, to adapt to dynamic events; and appropriate
trade-off mechanisms that solve conflicting goal and/or competing resource
allocations.

Additionally, collaborative work between IAs and human operators in a system
presupposes a priori roles for effective organizational automation. Generally, these
roles may exist along a continuum of supervisory control [7, 8]. While both IAs and
humans process, reason, and communicate, such processing must be explicit to the
human in order to avoid confusion, instill trust, and structure action [9, 10]. Thus, if
an operator is to make informed decisions, a system display must make explicit
what the IA knows, does not know, reasons, and projects about its operation context
and its goals.

1.1 Situation Awareness in Mixed Initiative
Decision-Making

The construct of situation awareness (SA) formalizes human interaction within a
given context [11, 12]. Whether conceptualized as a processes or product, SA
explicates situational human cognition for decision-making, as it represents an
operator’s awareness of the immediate situation, comprehension of the situation,
and prediction of future possibilities [13, 14]. The most commonly relied upon
model parses SA into three levels [11]: perception of the situation elements,
comprehension of these elements, and projection as it relates to the perceiver and
situation elements in the future. IAs possess a similar computational ability for
sensing, reasoning, and projecting about their environment.
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In this sense, both humans and IAs are data driven and concept driven. That is,
human-cognition and computational-cognition are each concerned with a means and
an end to accomplish a purpose. For example, both perceive or sense the environ-
ment and are able to utilize data in addition to planning and modifying that data to
accomplish a goal. Separate, both are entities whose performance may improve
through an external intervention. However, a paradigm that accounts for collabo-
rative and coordinated human-agent interaction would allow for a unified cognitive
system that integrates human and IA cognitive processes and outcomes [15, 16].

1.2 Transparency and Supervisory Control
of Intelligent Agents

In addition to information sharing between an operator and an IA, as well as
coordination of both of their respective activities, it has been suggested that col-
laborative work must acknowledge that each part of a system possesses partial and
overlapping information relevant to the fulfillment of the overall system purpose
[16]. To benefit from that information, a collaborative work system must provide a
means for a transparent field of view of each agent’s unique perspective. In this
regard, increasing transparency in IA interfaces can improve operator performance
[9], provided it gives an understandable representation of the mission environment
and constraints, and the IA’s knowledge, intent, and limitations [17, 18].

Not only will IA transparency increase operator SA by giving insight into the
IA’s current action and intent, its relevant knowledge of the state of the world and
situational constraints, but it will additionally engender trust between the IA and the
operator, who must rely on the IA’s reasoning and projections to make decisions [9,
10]. Transparency specifically facilitates appropriate calibration of trust for the
operator. Such calibrated trust should lead to appropriate reliance on the IA [19]. As
opposed to under-reliance (IA disuse) or over-reliance (IA misuse), which impede
overall system effectiveness [20], establishing appropriate reliance can increase
overall performance in the human-machine system [19].

1.3 Situation Awareness-Based Agent Transparency

In an effort to meet the above needs and guide the design of transparency in IA,
Chen et al. [10] proposed the Situation awareness-based Agent Transparency
(SAT) model. By applying underlying theoretical assumptions inherent to the
understanding of both SA and agent transparency, this model can facilitate effective
mixed-initiative decision-making (Fig. 1). The model functions as a corollary to the
three levels of individual SA [11], yet is particularly relevant to the domain of
human-IA teaming.
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The SAT model provides a useful theoretical framework to guide design efforts
of requisite IA display elements that support the operator’s SA and facilitating
appropriate trust calibration. While recognizing the danger in assigning human
attributes to a computational agent, it is helpful to borrow such terms for clarity.
Display requirements for human-supervisory control with IA thus correspond to the
three levels of SA in humans. Each level seeks to provide the answer to three
implicit questions of operator:

1. What is the agent trying to achieve?
2. Why is the agent doing it?
3. What should the operator expect to happen?

Implicit in the cognitive and computational process captured in Level 3 of the
SAT model is the notion of uncertainty, specifically the fact that no future event can
be absolutely known. Although an IA can make sense of the world, it does not
necessarily know all parameters that may affect its actions. It is important for the IA
to communicate this uncertainty as part of its interaction with the human for col-
laborative planning and decision-making. Thus, the IA must share its uncertainty
concerning its reasoning and projections with the operator. For example, in order to
make a suggestion, the IA often must “fill in the blank” regarding missing infor-
mation—the IA must make an assumption. A transparent IA must then commu-
nicate the nature of that uncertainty and the assumption made by the IA to the
operator.

This model is not solely a human model, nor is it a model only for the IA.
Instead, it relates the IA cognitive process and products back to the human’s
supervisory purview. Level 1 communicates the IA’s desires and intentions [21] as

Fig. 1 SA-based agent transparency model diagram [10]
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they relate to its environmental, operational, and organizational context. As part of a
goal-directed team, the IA examines its environment for data needed to algorith-
mically reason what actions are needed to achieve optimum system performance;
such communicated reasoning is Level 2. Finally, the IA makes projection of the
dynamic nature of the situation; Level 3 information provides the operator this
insight.

1.4 Design of Transparency Displays for Heterogeneous
UxV Management

The application of the above theoretical positions is particularly important in the
study of multi-unmanned vehicle (UxV) management, where mixed-initiative
decision making is integral to mission success. Increasingly, research is focusing on
the development of IAs that can work with operators to manage teams of UxVs [1,
22]. One of those efforts is the Intelligent Multi-UxV Planner with Adaptive
Collaborative/Control Technologies (IMPACT) project currently funded by the U.
S. Department of Defense’s Autonomy Research Pilot Initiative [23, 24]. IMPACT
is investigating issues associated with human-machine interaction in military con-
texts [24], and flexible “play-calling,” such as that done in football [25, 26]. Such
“play-calling,” whereby a person chooses from a set of options or plans in a
“playbook,” can be applied in many warfighting contexts where warfighters are
frequently required to make diplomatic decisions based on a limited set of options.
It may be particularly useful in UxV management [25].

As part of this effort, and to explore the SAT model’s utility for UxV man-
agement, the SAT model served as a guideline in the design of two separate IA
interfaces evaluated in two consecutive studies (Figs. 2 and 3, referred to as
Interface 1 and Interface 2, respectively). These interfaces were adapted from the U.
S. Air Force Research Laboratory-developed IMPACT/Fusion interface [22, 27],
and were further developed to convey three different conditions of SAT for each
interface. These conditions and descriptions of their corresponding graphical dis-
plays are given in Table 1.

2 Study Design and Implementation

We examined the above interfaces separately in a pair of consecutive studies [28,
29]. Both studies sought to test a series of predictions regarding whether the
aforementioned implementation of the SAT model was successful in facilitating
UxV management. Specifically, we wanted to examine the impact of information
sharing on several performance parameters critical to the success of multi-UxV
management. For example, while additional transparency can improve performance
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Fig. 2 Interface 1: displaying information according to the SAT model

Fig. 3 Interface 2: displaying information according to the SAT model

Table 1 Manipulation of agent transparency using SAT levels to form experiment conditions.
Each condition contains the components introduced in the prior condition

Interface 1 Interface 2

SAT level Display components SAT level Display components

L1 Map icons, plan details
icon, and path show basic
information

L1 + 2 Map icons, path, line graph,
and text show basic
information

L1 + 2 Pie graph and text add
reasoning information to
display

L1 + 2 + 3 Sliding points on line graph
and extra text add reasoning
and projection

L1 + 2 + 3 Opacity of sprocket pie
graph varied and extra text
add projections including
uncertainty

L1 + 2 + 3 + U Opacity of map icons and
graph points varied, and
extra text add assumptions
and uncertainty
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[10], it is important to consider the impact that this extra information has on
response time and increased workload [30]. Furthermore, the usability of the
interface may affect trust in machines [31]. Finally, as stated above, it has been
suggested that additional transparency can improve trust on behalf of the human
counterpart [9, 10].

To test these theoretical positions, we designed two studies, each with three
conditions of transparency (see Table 1). During the corresponding experiments,
participants took on the role of a UxV system operator whose task was to monitor
and direct vehicles to carry out missions given to them by a simulated commander.
Operators managed a team of six unmanned vehicles (UxVs): two unmanned aerial
vehicles (UAVs), two unmanned ground vehicles (UGVs) and two unmanned
surface vehicles (USVs), as well as an IA, which communicated plan options for
completing the mission. To complete missions, operators needed to interpret their
commander’s intent, understand vehicle and environmental constraints, and ulti-
mately decide whether to follow the IA’s play-calling recommendation. The IA
always suggested two options: Plan A as the most viable plan (which was its
primary recommendation), and Plan B as the back-up plan. For 3 out of every 8
events, the IA’s recommendation was incorrect due to information it did not have
access to—updated commander’s intent or other intelligence.

During each of these decisions, operators’ performance (based on the criteria in
Table 2), and response time were monitored by the simulation. After each block of
events, we surveyed participants for information including their perceived work-
load, perceived interface usability, and their trust in the IA.

2.1 Study 1: Interface 1

Results from study 1 [28] indicated that proper IA use and correct rejection were
both significantly greater when participants were presented with SAT L1 + 2 + 3
and L1 + 2 compared to L1. The greatest rates of proper IA use (when the IA’s
recommendation was correct) and correct rejection (when the IA’s recommendation
was incorrect) were found in L1 + 2 + 3, suggesting that operators were more
likely to make correct decisions when presented with all three levels of SAT
information. We found no significant differences for response time or workload,
indicating that operators did not take longer to complete each decision nor did
operators experience more effort as the amount of information to support agent
transparency increased.

Table 2 Performance criteria according to IA and operator choice of plans

Performance criterion Correct plan IA suggestion Operator choice

Proper IA use A A A

Correct IA rejection B A B
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We analyzed operator trust in the IA after the first block of interactions, and
examined it across two contexts: the IA’s analysis of the information, and the IA’s
ability to suggest and make decisions. There were no significant differences across
SAT level for trust in the IA’s ability to analyze information. However, we found
that operator’s trust in the IA’s ability to suggest and make decisions significantly
increased as transparency increased. Specifically, participants felt the IA made
decisions that were more accurate when presented with L1 + 2 + 3 as compared to
L1 + 2 or L1. We also found a significant effect of SAT level on the perceived
usability of the IA, where the IA was perceived to be the most usable when
presented with L1 + 2 + 3.

While this study differentiated basic information, reasoning, and future projec-
tions according to the SAT model, we only examined uncertainty as part of SAT
Level 3 information and not on its own. Thus, the role of uncertainty in affecting
operator decision making remained unclear. Study 2 filled this gap by setting up
different conditions whereby the final condition parsed out uncertainty from other
Level 3 information (see Table 1).

2.2 Study 2: Interface 2

Results from study 2 [29] indicated that proper IA use and correct rejection were
both significantly greater when SAT L1 + 2 + 3 + U was presented compared to
L1 + 2. The greatest rates of proper IA use and correct rejection were found with
L1 + 2 + 3 + U, suggesting that operators were more likely to make correct
decisions when they were presented with all three levels of transparency, as well as
uncertainty. As was the case in study 1, no significant difference was found for
workload, indicating that operators did not experience more effort as the amount of
information to support agent transparency increased. However, unlike study 1, there
was a significant difference in response time between L1 + 2 and L1 + 2 + 3 + U,
with L1 + 2 + 3 + U taking the longest for participants to complete. This was not
unexpected, as an increase in information on the display should naturally take
longer to process.

Contrary to study 1, in which we only analyzed trust after a single interaction
with the interface, for study 2 we analyzed operator trust as it developed over time
while also controlling for the effect of pre-existing implicit associations [32]. There
was a significant difference across SAT level for trust in both the IA’s ability to
analyze information and the IA’s ability to suggest and make decisions.
Specifically, participants trusted the IA’s ability to analyze information most when
presented with L1 + 2 + 3 + U, while they trusted the IA’s ability to suggest
decisions most when presented with L1 + 2 + 3. We also found a significant effect
of SAT level on the perceived usability of the IA, where the IA was perceived to be
the most usable when displaying L1 + 2 + 3 and the least usable when displaying
L1 + 2 + 3 + U. This perception of usability is somewhat consistent with the
participants’ trust in the IA’s ability to make decisions, where their trust and
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perceived usability peaked at L1 + 2 + 3 and tapered off when uncertainty was
added to the interface. This finding adds further support to the idea that usability
impacts trust [31]. It also raises several questions about the display of uncertainty
[33], which will be discussed next.

3 Discussion

Overall, we found evidence supporting the use of the SAT model to improve
operator performance, increase trust in the IA, and increase perceived usability of
the system, while minimizing potential costs of workload. Displaying SAT
L1 + 2 + 3 information provided the most benefits to operators’ trust and percep-
tion of the agent’s usability, while displaying L1 + 2 + 3 + U provided the most
benefits to operators’ performance. Due to these findings, we recommend that
similar automated decision aid systems incorporate information displays that pro-
vide the operator with both information regarding the reasoning of each decision
provided, as well as displays of possible future states and sources of potential
uncertainties that might affect their decisions. Our results suggest a number of
aspects that designers of human-machine systems should consider.

First, how can we utilize SAT-based displays to improve decision-making
performance while minimizing the impact on response time? It makes sense that
response time may increase when more information is presented. Increased
response time may not always be problematic, but in time-critical tasks, millisec-
onds may make the difference between success and failure. In such contexts, it is
important to design interfaces that communicate vital information to the user while
minimizing the amount of processing required to make a decision. If we aim to
make truly flexible machines that can adapt to the environment [6], we must also
consider how this flexibility applies to the display of SAT-based information.

Next, how can we best display uncertainty in a way that is both useful and usable
to the operator? Such optimization of the interface may have effects on not just
usability, but trust and performance, as well. Our interfaces displayed uncertainty
both graphically and in text, but we did not statistically differentiate the usability of
each of these components. Further analysis of such component parts may yield
information and best practices about the display of uncertainty. For example, it is
possible that intuitive graphical representations will be perceived as more usable—
and may even result in lower processing time—than textual representations.
Furthermore, trust and perceived usability may change when the IA presents its
uncertainty in different ways. For example, reporting percentages of certainty (e.g.
“80 % probable”) may lead to drastically different perceptions and outcomes in the
operator than more ambiguous graphical representations, and these potential dif-
ferences must be considered [34].

Finally, are the results we found here generalizable? We argue that the outcomes
examined here depend on the task and the context. This position is supported by
prior research and theoretical discussions positing that both task and environment
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influence overall human-machine performance [35]. The studies presented in this
paper examined the management of UxVs in a military environment. As such, our
findings are most applicable to similar mixed initiative decision-making tasks. What
remains to be seen is the validity of these parameters in entirely different contexts.

Future studies should examine the display of SAT-based information in new
contexts, and thus refine our understanding of the usefulness of agent transparency
in human-machine interaction. Furthermore, future studies should more thoroughly
examine the role of uncertainty as a key to achieving appropriate levels of trans-
parency. While the display of uncertainty may have tradeoffs, it should not be
eliminated from displays [34]. It is wholly necessary, as are the other facets of
transparency, to the successful performance of overall human-machine systems.
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Displaying Information to Support
Transparency for Autonomous Platforms

Anthony R. Selkowitz, Cintya A. Larios, Shan G. Lakhmani
and Jessie Y.C. Chen

Abstract The purpose of this paper is to summarize display design techniques that
are best suited for displaying information to support transparency of communication
in autonomous systems interfaces. The principles include Ecological Interface
Design, integrated displays, and pre-attentive cuing. Examples of displays from two
recent experiments investigating how transparency affects operator trust, situational
awareness, and workload, are provided throughout the paper as an application of
these techniques. Specifically, these interfaces were formatted using the Situation
awareness-based Agent Transparency model as a method of formatting the infor-
mation in displays for an autonomous robot—the Autonomous Squad Member
(ASM). Overall, these methods were useful in creating usable interfaces for the
ASM display.

Keywords Agent-Transparency � Human-Robot � Interaction � Ecological
interface design � Cognitive engineering

1 Introduction

With the rise of autonomous agents on and off the battlefield, they are taking on more
tasks. As the number of tasks increases, autonomous agents’ complexity and inde-
pendence also increases. If there is an increase in the independence of autonomous
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agents, then there is also an increase in the necessity that their operator, supervisor,
or teammate have an accurate understanding of autonomous agent’s actions, envi-
ronment, reasoning, projections, and uncertainty calculations. Making this infor-
mation accessible to the user is a concept known as agent transparency [1]. Providing
the operator with information to support agent transparency supports the operator’s
ability to maintain an accurate understanding of their environment and the autono-
mous agent. This allows the operator to accurately calibrate their trust in the
autonomous agent. Since providing information to support agent transparency is
critical in human-agent interactions [2], the display of this information mediates the
operator’s ability to interpret the information [3]. A poorly designed display could
obfuscate the meaning behind the information and render the information useless
[4]. The purpose of this article is to examine display design techniques that are best
suited for displaying information to support agent transparency in autonomous
agents, as well as two studies that implemented these techniques. First, we will
review the Situation awareness-based Agent Transparency model (SAT model),
which is a framework to serve as a basis to guide the format of the information
provided by the autonomous agent to promote agent transparency. Second, we
review the design principles of Ecological Interface Design, pre-attentive cuing, and
integrated displays, and their application to the SAT model-based Autonomous
Squad Member (ASM) interface. Lastly, we review two studies that demonstrate the
benefit of including SAT model-based information.

2 SAT Model

The Situation awareness-based Agent Transparency model (SAT model) is a model
of transparency that supports the operator’s situation awareness [5] of the auton-
omous agent and its environment [1]. The SAT model is founded on the principles
of situation awareness [5], the Beliefs, Desires, and Intentions Agent framework [6]
and the 3 P’s (Purpose, Process, and Performance) proposed to increase system
transparency by Lee and See [16]. Endsley [5] proposed that one’s knowledge of
the state of a dynamic environment comprises situational awareness (SA). Endsley
[5] defined SA in three levels: (1) the perception of basic elements of the envi-
ronment, (2) comprehension of the current situation, and (3) projection of the future
status. The creators of the SAT model theorize that by supporting the operator’s SA
of the autonomous agent’s actions, environment, reasoning, projections, and the
uncertainty associated with these elements, the operator can properly calibrate trust
in the autonomous agent and reduce workload associated with monitoring the
autonomous agent [1]. As seen in Fig. 1 below, the SAT model comprises three
levels of transparency that are meant to support different aspects of the operator’s
SA of the autonomous agent.

Level 1 of the SAT model supports the operator’s understanding of the auton-
omous agent’s goals and its perception of the status of its environment.
For example, an autonomous agent could provide the operator with its current path
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or resource levels. In Level 2, the autonomous agent displays information to support
the operator’s understanding of why the agent is performing its actions and rea-
soning behind its projections. For example, the autonomous agent may alert the
operator that it has chosen its new route because fuel is a priority and the new route
is more fuel-efficient. For Level 3 of the SAT model, the autonomous agent sup-
ports the operator’s ability to make projections based on the autonomous agent’s
current actions and reasoning. For example, the autonomous agent may indicate that
its new route projects to save three units of fuel, but it is uncertain about the amount
of time the new route will take.

The following sections will review the principles used to design two displays
from recent studies examining the effects of presenting SAT model-based infor-
mation on operator trust in the autonomous agent, situation awareness, and per-
ceived workload. Study 1 examined the effects of displaying SAT model-based
information while the operator monitored the ASM completing a route. Study 2
implemented SAT model-based information in a version of the scenario from Study
1 in which the operator had to monitor multiple displays. In Study 2, there was an
emphasis on the operator’s ability to gain information at a glance.

3 Ecological Interface Design

Ecological Interface Design (EID) is a design methodology based on the principles
of ecological psychology [7]. EID was developed by Vicente and Rasmussen [8] as
a means to support the operator’s direct perception of the system they are operating
by enabling the “transparency” of the interface. The primary function of EID is to
promote the visualization of the work domain that the display represents.
Traditionally, in EID, this is accomplished through performing an Abstraction
Hierarchy detailing all aspects and functions that the system interacts with and the
effects that the system has on the environments [8]. Bennett and Flach [9] rec-
ommend not only designing the interface to support the display of the environ-
mental domain constraints, but also supporting the knowledge constraints

Fig. 1 The SAT model (Chen et al., 2014)
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imposed-on the operator using the system. This principle aligns well with the
display of information to support agent transparency because knowing the infor-
mation constraints that the operator receives is crucial to being able to interpret the
information displayed. For example, if the autonomous agent displays that energy is
a priority in its reasoning process and it does so by displaying an icon that repre-
sents energy (Fig. 2), then the operator must be able to interpret correctly that icon
and its meaning. This leads to the support of metaphor-based representations in an
interface.

A metaphor-based representation describes the use of a symbol to represent an
abstract concept in the interface [9]. For instance, instead of displaying an actual
picture of an antenna or information system to represent signal strength, the display
may draw upon the user’s prior knowledge and utilize iconography that commu-
nicates the same information with symbology that is familiar to the user. For an
example, please see the Fig. 3.

The use of metaphorical based representations is especially suited to the displays
promoting agent transparency, because much of the information used to support
agent transparency is abstract in nature. Representing abstract information with the
use of metaphor-based iconography allows the user to process the information using
information and relationships already known to the user. However, the concepts
needed to be displayed may be too complex, do not have an easy to represent
symbol to be used, or simply space does not allow a symbol to be distinguished. In
this instance, a propositional based icon is quite suitable for autonomous agent
interface design (Fig. 4).

Fig. 2 Metaphorical
representation of fuel in ASM
Study 1

Fig. 3 Metaphorical
representation of signal
strength from ASM Study 2

Fig. 4 Propositional Iconography from ASM Study 2
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Propositional-based representations includes icons using alphanumeric symbol-
ogy to represent the different information that the system is presenting to the user
[9]. For instance, a propositional-based symbol was used to represent the ASM’s
current action in Study 2. In Study 2, the ASM’s current actions were complex and
the symbology needed to represent different maneuvers that the ASM would per-
form. A maneuver such as Duck and Cover is not easily summed up in a single
symbol, thus the propositional representation of the letter “D” was used to represent
this information. More examples of the propositional symbology can be seen in
Fig. 7, below. In addition to the principles of Ecological Interface Design, another
display design principle well suited to the display of information is the use of
integrated displays.

4 Integrated Displays

The use of integrated displays is based on the proximity compatibility principle
developed by Wickens and Carswell [10]. The proximity compatibility principle
proposes that proximally displaying pieces of information that are conceptually
related to one another can enhance the operator’s ability to process the information
[10]. Integrated displays are especially relevant to displays to support agent
transparency, because often the displays have limited space requirements, such as
automated global positioning systems. In other words, integrated displays not only
reduce the operator’s cognitive processing in using the display, but also aid in
designing displays with size constraints. Integrated displays will often use different
perceptual properties to distinguish different types of information.

Shown in Fig. 5 is the icon representing the ASM in the integrated display from
Study 2. Within the icon is the ASM’s current action. The arrow in front of it
represents the ASM’s current heading and its position on the map represents the
ASM’s current location. This display integrates the ASM’s position, heading, and
current action. This allows the operator to gain multiple pieces of information about
the ASM in one location.

Fig. 5 Integrated display
from ASM Study 2
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5 Pre-Attentive Cues and Ecological Psychology

Using displays that uphold direct perception, humans are able to effortlessly tune
into visual information based on characteristics that are visually salient [7] allowing
them to detect differences in stimuli based on these features. In particular, EID
forms spatial metaphors or emergent features that show the interaction between
familiar concepts and actions [6, 11]. Displays that are impoverished in natural
visual cues may cause slow response times and errors for operators who need to
monitor systems for long periods of time. Thus, displays must reinforce natural
perceptual competences by having simple element and symbology arrangements so
that the operator can process critical system relationships. Certain features, such as
color, orientation, or shape, have been shown to be able to be perceived for a short
time period without the effort of serial search [12]. This type of visualization hones
into pre-attentive cue-based processing (pre-attentive cues) [13]. Examples of
pre-attentive cues examined in unmanned automation and automated decision aids
include opacity (i.e. shading), graphs, color, shape, lines, icon size, and spatial
synchronization (i.e. egocentrism view). The use of pre-attentive cuing was
extensive in both ASM Study 1 and Study 2. This was done to promote the ease of
processing complex information in the operator. For example, as seen in Fig. 6, in
Study 2, the concepts of size and opacity were used to denote the ASM’s uncer-
tainty about the location of the obstacle that was being encountered.

In Study 1, the concept of shape and color were used to dual code the differences
between types of hazards and areas that provided benefits. For instance, if the area
had terrain that provided an advantage to the squad, then it was displayed using a
green triangle border (Fig. 7), but if the area was an ambush hazard, then it was
displayed using a red circle based border as seen below (Fig. 8). The color indicated

Fig. 6 In the left image, the
ASM is indicating that it is
certain about the location of
the obstacle, and in the image
on the right, the ASM is
indicating that it is uncertain
about the location of the
obstacle

Fig. 7 Study 1 Beneficial
Terrain icon
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whether it was a hazard or beneficial area and the border indicated what type of
hazard or beneficial area it was (Figs. 9 and 10).

In Study 2, the principle of opacity was used to denote uncertainty. In this case,
it was the uncertainty that the ASM expressed when it was unsure of the projected
severity of loss it would experience due to the obstacle it encountered. The lighter
colored bars indicated that the ASM is uncertain whether it will experience that
level of resource loss. In the interface, one bar indicated that the ASM projected that
it would experience low resource loss, two bars indicated that the ASM projected
that it would experience moderate resource loss, and three bars indicated that the
ASM projected that it would experience severe resource loss. The dark colored bars
were used to denote the ASM’s certainty of that level of resource loss.

5.1 SAT Model Based Studies

A recent study has shown the benefits of incorporating SAT model based informa-
tion. Mercado and colleagues (in press) implemented SAT model-based information
in the interface for an autonomous agent that coordinated and supervised several
subordinate unmanned autonomous agents. The participants’ task was to choose
between competing plans proposed by the autonomous agent supervising other
autonomous agents. It was shown that when participants were presented with SAT
model-based information, from all three SAT levels, their performance increased and
they had more appropriate trust calibration than when presented with information
from only Level 1 or Levels 1 and 2. In addition, when users were presented
with more levels of SAT-based information, their workload did not increase. This is

Fig. 8 Study 1 Ambush Icon

Fig. 9 Certain and uncertain
projected signal loss

Fig. 10 All three bars
indicated that the ASM was
certain about severe signal
loss in the near future
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important because it demonstrates that when information to support transparency is
implemented using design techniques that do not overload the operator, the infor-
mation can aid the operator monitoring the system in maintaining situation
awareness.

Two further studies, conducted by the present authors and reviewed in this
article, also found similar results when implementing SAT model-based informa-
tion in the user interface for the ASM robot [14, 15]. The ASM is an autonomous
ground-based unmanned vehicle, which follows its fellow squad members and
provides them with information about its status. The squad members rely upon the
ASM to inform them of its status. Additionally, the ASM acts as a robotic mule
carrying the squad members’ supplies. The ASM system is currently in develop-
ment, so the studies reviewed in the present article were conducted with operators
monitoring simulations of the ASM system in virtual environments.

5.2 Study 1

In Study 1, operators monitored the ASM as it completed a route. Along the route,
the ASM had to reach numbered rally points in order. Although the goal was to take
the shortest path possible, the ASM would deviate from the shortest possible route
if it encountered an area with a hazard or an area that would provide benefit to its
squad members. Examples of environments that would provide benefits include: an
area that would provide cover or enhanced point of view, an area that would be easy
to traverse, or an area that had good signal coverage. Periodically, the operator was
asked questions to assess the operator’s situation awareness of the ASM’s resources
and the ASM’s route. Operators were presented with different levels of SAT
model-based information according to the experimental condition to which they
were assigned. An example of the interface, presenting the highest level of infor-
mation, can be seen in Fig. 2. Operators with access to SAT Level 1 information
were informed of the ASM’s current heading and current resource levels. Operators
with access to SAT Level 2 information had all of the information presented in SAT
Level 1; in addition, they received information about the reasoning behind why the
ASM would alter its heading. Operators who received SAT Level 3 information,
had access to all of the previous levels of information, were informed about the
ASM’s uncertainty associated with its reasoning behind altering its route and in
addition also received the ASM’s predicted resource levels that were a result of it
altering its route. In Fig. 11 the icons with the red borders represent hazards and the
icons with the green borders represent beneficial areas. The blue line indicates the
ASM’s current route. The figure on the blue line represents the ASM’s current
position on its route. The circular green figure in the lower right hand corner of the
interface represents the ASM’s current resource status and the circular figure in the
upper right hand corner represents the ASM’s predicted resource usage. The dif-
ference in opacity of the hazards and beneficial areas represents the ASM’s
uncertainty of whether it will encounter that area. The greater the opacity represents
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that the ASM is certain that it will encounter the area and the lower opacity
represents that it is uncertain. Overall, when compared to the other experimental
conditions, it was shown that operators who received SAT Level 2 information but
not Level 3 information had higher trust in the ASM, but not higher workload and
did not rate the interface more highly in terms of usability. This supports the notion
that by using the principles of Ecological Interface Design, pre-attentive cuing, and
integrated displays, one can increase the information displayed on an interface, but
not increase the workload encumbered by the operator. A detailed description of the
study’s findings can be found in Selkowitz, Lakhmani, Chen, and Boyce [14].

5.3 Study 2

Although Study 2 was similar to Study 1, it expanded upon Study 1 by incorpo-
rating the aspects of dual tasking that would be present in the ASM’s operational
environment. Study 2 had the operator take the role of a squad member whose
function was to monitor the ASM and identify obstacles presented in the virtual
environment. Similar to Study 1, the ASM and squad would proceed along a route
to reach each rally point. During Study 2, in addition to monitoring the ASM, the
operator monitored a second screen for obstacles that the squad and ASM would
encounter. The ASM presented the operator with four different levels of informa-
tion in a within-subjects experimental design. The operator monitored the ASM
presenting Level 1, Level 1 + 2, Level 1 + 2+3 or Level 1 + 2+3 + uncertainty,
SAT model-based information.

Level 1 incorporated SAT model Level 1 based information. This included the
ASM’s current action, its understanding of the squad’s current action, the obstacle

Fig. 11 Interface from ASM Study 1 displaying all 3 levels of SAT model-based information
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in the environment that the squad and ASM were encountering, its current resource
levels, its progress along the route, and the element of its environment that was
currently influencing its actions. An example of this display is in Figs. 12 and 13,
below.

Fig. 12 ASM Display from Study 2 with Level 1, 2, and 3 information without uncertainty

Fig. 13 ASM Display from Study 2 with Level 1, 2, and 3 information including uncertainty

170 A.R. Selkowitz et al.



Level 2 SAT model-based information detailed the ASM’s reasoning behind its
current action. The ASM’s reasoning could be to conserve either energy,
mechanical integrity, time, or signal strength. The ASM’s current and previous
actions determined which resources it would conserve. As shown in Figs.12 and
13. Level 2 information consisted of the Clock iconography with the green shield.

Level 3 SAT model-based information included the ASM’s predictions of its
projected time to the next rally point and the predicted loss of resources based on its
current action, environment, and reasoning. For example, if the ASM and squad
were encountering a sniper attack and the ASM decided that mechanical integrity
was a priority, it may perform avoidance maneuvers to avoid the sniper fire,
ensuring it would not receive damage. However, this course of action may cause the
ASM to use extra energy during these maneuvers, which would result in future
energy loss. In Fig. 3, below, the battery icon with red blocks next to it and the red
box with the clock icon represented Level 3 SAT-model based information.

For Study 2, the display of the two types of Level 3 SAT model-based infor-
mation, projections and displaying uncertainty, were separate conditions. In this
condition (Level 1 + 2+3 + uncertainty), the ASM indicated its uncertainty about
the location of obstacles and projections of resource expenditures. Examples of the
display with uncertainty and without indicating uncertainty can be seen in Fig. 12
and Fig. 13 below

Preliminary results from Study 2 indicate that the additional levels of SAT
model-based information did not have an impact on the operator’s trust in the ASM,
but Level 3 SAT model-based information did aid the operator in maintaining Level
3 situational awareness without increasing the operator’s self-reported workload.
A more detailed description of these results is available in Selkowitz, Lakhmani,
Larios, and Chen (in press).

6 Conclusions

This article presented two recent displays to promote agent transparency in the
Autonomous Squad Member system. Overall, the principles of display design
discussed here proved to be useful in the development of the ASM displays. Future
studies, and applications using autonomous agents, should consider the use of
Ecological Interface Design, integrated displays, and pre-attentive cuing in their
display design efforts.

One area that these display design principles, and the applications developed in
the studies reviewed, would be applicable to is in autonomous automobiles. As
manufacturers integrate more autonomous features in vehicles, it is imperative that
the operators have an accurate understanding of the systems lest they fall into the
perils of misuse and disuse of the system. Recent examples of autonomy imple-
mented in vehicles include autonomous collision avoidance systems in which the
vehicle will detect an upcoming collision and attempt to avoid it. Though this
feature is only one-step to implementing full autonomy in automobiles, the
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implementation of SAT model-based information, using the display principles
outlined in this article, would still have merit. For instance, alerting the operator that
the system is uncertain that the collision avoidance system is available due to
uncertainty in its sensor system caused by weather conditions would allow the
operator to know whether they can trust the system at that time. Displaying the
current status of the system and its environment would constitute SAT model-Level
1 information, and displaying the reasoning behind its current status would con-
stitute SAT model-Level 2 information. The above scenario is only one example of
when one could implement SAT model-based information to improve the opera-
tor’s understanding of autonomous systems.

Overall, this article presented the methodologies used to develop two novel
interfaces for an autonomous agent, the ASM. The use of Ecological Interface
Design, integrated displays, and pre-attentive cues produced usable interfaces.
Study 1 results indicated an increase in operator trust, and Study 2 indicated an
increase in situation awareness of the ASM, both without increasing the operator’s
perceived workload.
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The Relevance of Theory to Human-Robot
Teaming Research and Development

Grace Teo, Ryan Wohleber, Jinchao Lin
and Lauren Reinerman-Jones

Abstract In many disciplines and fields, theories help organize the body of
knowledge in the field and provide direction for research. In turn, research findings
contribute to theory building. The field of human-robot teaming (HRT) is a rela-
tively new one, spanning only over the last two decades. Much of the research in
this field has been driven by expediency rather than by theory, and relatively little
effort has been invested in using HRT research to advance theory. As the field of
HRT continues to expand rapidly, we find it increasingly necessary to relate the-
ories to the research so that one can inform the other. As an initial effort, the current
work will discuss and evaluate two broad research areas in human-robot teaming,
and identify theories relevant to each area. The areas are (i) human-robot interfaces,
and (ii) specific factors that enable teaming. In identifying the relevant theories for
each area, we will describe how the theories were used and if findings supported the
theories.
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1 Introduction

As research in human-robot teaming (HRT) continues to advance, it is important to
consider the role of theory in the field. In addition to the diverse contexts and
domains in which HRT occurs, there is also the variability in robot design, com-
munication mode, and functionality, which make it difficult to identify theories that
can generalize across different human-robot teams. For this reason, many have
questioned the relevance of theory in the field of human-robot teaming [1] and some
researchers have resorted to using qualitative methods (e.g. [2]) and case-based
usability research for direction in developing robots (e.g., [3]). While these
approaches are essential for individual applications, they do less to consolidate and
build on the field’s knowledge base compared to theory-based approaches, which
can guide subsequent research efforts. The present work begins with an overview of
some of the applications of theory in HRT work and ends with a discussion of the
role of theory in HRT and the implications of increasing that role.

2 Background

2.1 The Role of Theory in Research

Theory is a system of knowledge that depicts generalized relationships about how
the world works, which enables predictions to be made. In most fields of study,
theory provides a framework for organizing and guiding research. It frames
observations and links a single study to a broader, common base of knowledge to
which other researchers contribute. Gaps in understanding can be identified from
such an organization of knowledge, which in turn, drive future research [4, 5].

There are different levels of theories corresponding to their level of abstraction.
General theories are highly abstract and are almost unlimited in scope, while
middle-range theories explain a less comprehensive set of phenomenon. Theories at
a lower level of abstraction are generalized statements that account for a more
restricted range of empirical observations with limited application [6]. It is possible
that newer areas of research, such as human-robot teaming, will have a greater
number of lower level theories. This is especially true since much of the research in
HRT has been driven by expediency [7] and the need to understand the impact of
the use and application of human-robot teams to increasingly more areas in our
work and lives.
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2.2 The Field of Human-Robot Teaming

There are several research areas related to the field of HRT, the closest being
Human-Robot interaction (HRI). Domains of application for HRI research include
the military, healthcare, manufacturing, and others. For instance, robots have been
deployed in the military in bomb disposal as well as search and rescue missions. In
healthcare, there are surgical assistant robots with high-definition 3D vision systems
and dexterous robotic arms that help with surgeries [8], and service robots that
allow caregivers to monitor and communicate with homebound patients [9]. Robots
are also developed to facilitate rehabilitation regimens and provide therapy [10].
Finally, robots have been used in manufacturing because their ability to manipulate
materials and objects with great speed and precision boosts productivity [11].

Apart from HRI, other areas related to HRT include automation,
human-computer interaction (HCI), psychology, and neuroscience. Human-robot
teaming research has benefited from research on automation (e.g., the unintended
effects of inappropriate automation use), while HCI research has informed the
design of interfaces that facilitate human-robot teaming (e.g., [12]). On the other
hand, cognition, neuroscience, systems theory, control theory, and others have
informed the design of architecture and mechanisms underlying human-robot teams
(e.g., [13]).

2.3 Non-theoretical Development of Human-Robot Teaming

Non-theoretical techniques for developing robots and their interactions with
humans are available and in common use. These techniques take a targeted
approach typically informed by watching interactions and applying tried-and-true
rules to the design of interfaces. For example, Clarkson and Arkin developed a
heuristic evaluation (HE), or a set of guidelines for evaluators to use to identify
human factors issues, for HRT. They based their HE on previous evaluations used
for human-computer interface (HCI) and computer-supported cooperative work
(CSCW) domains. They modified items from these earlier evaluations and added
new items by brainstorming, consulting subject matter experts, and other informal
techniques. They then validated the list by testing its performance, thus evaluating
HRIs. In addition, Michaud et al. utilized focus groups and usability test scenarios
in the development of a homecare tele-assistive mobile robot [14].

2.4 Applications of Theory in Human-Robot Teaming

Theory can be used to optimize or to enhance human-robot teaming. To optimize
human-robot interactions, it is important to use theory to understand how humans
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perceive, think, and act in relevant situations so that robots can be designed in such
a way that increases the efficiency of interactions, while minimizing errors. This
encompasses work on the interface for human-robot communication. It encom-
passes studies on the effects of robot appearance and form, input methods and
modalities, displays, and adaptive interfaces and displays on human social behavior
and cognitive processes.

Second, theory can be used to enhance human-robot teaming by augmenting the
abilities of the robot. Specifically, theories of human perception, cognition, and
action can be used to identify and implement advanced capabilities to facilitate
human-robot teaming. This area relates to the social or teaming aspect of HRT, and
includes capabilities and features of robots that specifically enables them to function
as a teammate. Research is likely to model HRT after human teams as humans
naturally team with other humans. Hence, to develop robots that can team, the robot
would need to be more human-like. Studies also address research questions such as
how to organize a human-robot team for various task and missions.

3 Theories Related to Human-Robot Teaming Research

We will review two broad areas of HRT research and will identify the relevant
theories and discuss the role of theory within the area. The areas pertain to the
research and development of (i) Human-Robot interfaces and (ii) capabilities that
would help a robot team.

3.1 Theories Related to Research on Human-Robot
Interfaces

Several theories that are used to optimize HRT are used in older fields such as HCI
and their application is modified to address the unique challenges of HRT. Gillan
and colleagues identified three areas that are of particular importance to HRT:
situation awareness (SA), spatial cognition and mental maps, and task switching,
which relates to executive functioning [15]. SA relates to how well the robot can
support the human teammate’s ability to perceive a situation, interpret it, and
project a future state. Spatial cognition relates to the ability of a human teammate to
ascertain the robots orientation and build a mental map of its environment. Task
switching is important because the human teammate will need to perform relevant
tasks and keep track of the robots state and location. Task switching ability is
especially important when there are multiple robot teammates. A theoretical
understanding of how humans switch tasks can help robot designers facilitate the
calling of human teammate’s attention appropriately.
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The modalities utilized in the human-robot communication interface is also an
important factor in HRT. Wickens’ Multiple Resources Theory postulates that the
human attentional capacity can be thought of as multiple “resource pools”. These
“pools” loosely correspond to encoding and response modalities, as well as stages
of information processing. In a multi-tasking context, performance on the tasks
undertaken simultaneously would be better if the tasks drew upon different resource
pools than if the tasks required resources from the same resource pool [16]. The
theory would predict that human-robot interfaces that enable tasks to be performed
with various modalities would be more advantageous than interfaces with limited
modalities. This has largely been supported by research, which found that inter-
acting with robots that have multimodal interfaces can result in a reduction in
human cognitive load especially when multiple tasks have to be performed con-
currently (e.g., [17–21]).

Such predictions from theory have contributed to the recent focus on multimodal
communications in robots, which encompasses visual displays, gestures, speech,
non-speech audio and haptics [22]. Inclusion of speech and gesture detectors in
interfaces can facilitate human robot teaming as these are modalities associated with
natural language processing and do not require translational input devices like a
keyboard or mouse. Such studies on robot interfaces with speech and gesture in
teaming have motivated work in speech and gesture recognition and classification
(e.g., [23]).

Some theories relate specifically to HRI research. The type of physical nature of
a robot can influence the nature of the human-robot interaction. Humans may
perceive robot behavior and interact with robots more effectively with those that
have a human-like appearance than those more mechanical-looking. They may be
more inclined to talk to a robot or smile at it if the robot has a human face or
appears to understand speech [17]. In fact, research has shown that a robot’s
appearance affects the expectations humans have of its capabilities and function
[24]. This finding suggests that humans are more likely to team with a robot that
resembles a human. Furthermore, the more human-like the robot is in appearance,
the more likely it would be accepted by the human as a teammate. However, as
robot appearance becomes more and more human, the trend reverses, and the robot
becomes repulsive because the appearance and functionality are incongruent. This
is the “Uncanny Valley” in Mori’s theory, named for the dip in the graph that plots
level of acceptance against anthropomorphism.

Mori’s Uncanny Valley theory was proposed directly from empirical research on
human-robot interaction. The theory predicts that the robot’s appearance can impact
its practical application [25]. For instance, robots tending to trapped victims were
perceived as “creepy” and not reassuring [26]. As a result of studies related to the
Uncanny Valley theory, [27] argued that a robot with more human like appearance
and behavior would be more acceptable and interact with people more effectively so
long as the degree of robot anthropomorphism stops short of the uncanny valley.
The quality of HRI and by extension performance in HRT, even with the most
efficient and easy-to-use robot, can be jeopardized if the human teammate dislikes,
distrusts, doubts, or resents the robot [28]. The United Theory of Acceptance and
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Use of Technology (UTAUT) combines many of the above themes into a com-
prehensive look at factors that bear on acceptance. UTAUT identifies four factors
that contribute to technology acceptance: effort expectancy, performance expec-
tancy, social influence, and facilitating conditions [29]. The first two factors refer to
traditional HCI considerations. Effort expectancy refers to the ease of use or
usability of the robotic system and performance expectancy refers to the benefits of
working with the robot. Social influence involves the approval of the human
teammate’s peers on his use of the robot teammate in a given situation. Finally,
facilitating conditions refers to the extent that the human teammate believes that the
organizational and technological infrastructure is in place to facilitate their use of
the robot teammate.

3.2 Theories Related to Research on Characteristics
that Help Robots Team

Human-robot teaming research departs from HCI and HRI research in that HRT
seeks to develop robots with which humans can team. This necessarily entails
having a human teammate collaborate with the robot to work towards a common
goal. In such a situation, the robot is less of a tool and more of a partner or
teammate. Much of the research in this area has drawn upon the factors affecting
human-to-human relationships and human teams, as the premise is that humans are
more likely to team with robots if robots possessed the characteristics that allow
humans to team with other humans. These characteristics encompass (i) attributes
of the robot that directly facilitate teaming, or (ii) factors that promote emergent
characteristics that contribute to teaming.

Attributes that Directly Facilitate Teaming. There is a line of HRT research
on the social-cognitive mechanism and processes required to design robots that can
team. Several studies have proposed that robot teammates need to possess the
human attribute of having theory of mind (ToM), which allows humans to coop-
erate and team with other humans (e.g., [30–34]. ToM involves inferring other’s
mental states (i.e., thoughts, beliefs, intents) from their behaviors such as speech,
actions, facial expressions, and gestures [35]. The cognitive mechanisms implicated
in ToM relate to Simulation Theory, which posit that we, humans, infer the other
person’s mental states by thinking as if we are the other person, i.e., we simulate the
other’s actions and stimuli they experience in our own minds, using our own
cognitive mechanisms, to predict what they are thinking [36]. Together with ToM,
Simulation theory has provided HRT researchers some direction in terms of the
social-cognitive mechanisms that robots should possess. For example, robots
should be able to discern where its human teammate’s attention is directed by
following his/her eye gaze. This notion has been investigated in a number of studies
(e.g., [37–40]).
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Another human characteristic that supports teaming is the ability to possess joint
intent. The Joint Intention Theory postulates that teammates need a set of shared
beliefs so that they can work together towards a common goal. The theory includes
the concepts of joint activity and joint commitment. Joint activity results from the
sharing of specific mental properties, while joint commitment is prioritizing the
common goal above individual goals, as well as having a mutual belief about the
status of the goal [41]). Ideas of the theory have been investigated in HRT research
(e.g., [42–45], and have been implemented in models and frameworks such as
STEAM (Shell for Teamwork) and GRATE* [46]. Another line of research related
to the Joint Intention Theory is the work on shared mental models (SMMs) between
humans and agents or robots. These studies include developing a research approach
to measure and evaluate SMMs in human-robot teams [47], testing if SMM
achieved in the planning phase can benefit teamwork in the execution phase [48],
understanding how SMM can inform design of agents capable of teaming [49], and
specifying requirements for a robot’s computational mental model of the task and
teammate [50].

Factors that Promote Emergent Characteristics that Contribute to
Teaming. A substantial amount of HRT research has been in trust in human-robot
teams. In HRT, trust refers to the human’s “attitude that an agent will help achieve
an individual’s (the human’s) goals in a situation characterized by uncertainty and
vulnerability” [51]. Unlike communication capabilities and computational mental
models, trust cannot be “built” into a robot, but is an emergent property of the
human-robot relationship. The level of trust the human has in the robot can
determine whether or not the human uses and relies on the robot [52].
A meta-analysis on trust in human-robot teams identified the following classes of
factors [53]:

• Human-related

– self-confidence [54]
– inclination to trust [55]
– expertise [56]
– familiarity and understanding of robot functioning [57]

• Robot-related

– robot reliability, predictability [57]
– proximity [58]
– robot personality [59]
– anthropomorphism

• Environmental factors

– culture [60]

The Uncertainty Reduction theory, which postulates that humans act to reduce
uncertainty in their interactions, accounts for a few of these factors. For instance,
the Uncertainty reduction theory is supported by the factor relating to being familiar
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and having an understanding of robot functioning, i.e., trust in the robot is more
likely when the human understands how the robot works, when the robot’s
mechanisms and algorithms are transparent to the human. Research in the effects of
robot transparency as related to trust indicate that transparency is related to per-
ceived predictability [61, 62], another factor that impacts trust. Robot reliability and
predictability denotes a high degree of consistency in robot performance, which
minimizes the uncertainty experienced by the human. Hence, the theory appears to
be supported by the results of the meta-analysis.

4 Conclusion

The review in the current paper indicates that theory is still an important part of
HRT research. In areas reviewed, there are middle abstraction level theories that can
still inform direction of research and explain certain observations. Findings from
HR teaming research can still be informative for theory building because as
researchers reverse engineer human capabilities in robots, they should be able to
test and contribute to theories of human social behavior and cognitive processes.
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Classification and Prediction of Human
Behaviors by a Mobile Robot

D. Paul Benjamin, Hong Yue and Damian Lyons

Abstract Robots interacting and collaborating with people need to comprehend
and predict their movements. We present an approach to perceiving and modeling
behaviors using a 3D virtual world. The robot’s visual data is registered with the
virtual world to construct a model of the dynamics of the behavior and to predict
future motions using a physics engine. This enables the robot to visualize alter-
native evolutions of the dynamics and to classify them. The goal of this work is to
use this ability to interact more naturally with humans and to avoid potentially
disastrous mistakes.

Keywords Virtual world � Soar cognitive Architecture

1 Introduction

The ADAPT project (Adaptive Dynamics and Active Perception for Thought) is a
collaboration of three university research groups at Pace University, Brigham
Young University, and Fordham University to produce a robot cognitive archi-
tecture that integrates the structures designed by linguists and cognitive scientists
with those developed by robotics researchers for real-time perception and control.
ADAPT is under development on Pioneer robots in the Pace University Robotics
Lab and the Fordham University Robotics Lab. Publications describing ADAPT are
[1–4].
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2 The ADAPT Architecture

Our approach is fundamentally different from other projects, which typically
attempt to build a comprehensive system by connecting modules for each different
capability: learning, vision, natural language, etc. Instead, we are building a
complete cognitive robotic architecture by merging RS [5–7], which provides a
model for building and reasoning about sensory-motor schemas, with Soar [8],
a cognitive architecture that is under development at a number of universities.
RS possesses a sophisticated formal language for reasoning about networks of port
automata and has been successfully applied to robot planning. Soar is a unified
cognitive architecture [9] that has been successfully applied to a wide range of
tasks.

Soar’s model of problem solving utilizes a single mechanism of subgoaling and
chunking to explain human problem solving performance; utilizing Soar as the
basis of ADAPT permits us to unify the mechanisms underlying perception, lan-
guage and planning. Furthermore, it permits us to explore possible interrelation-
ships between learning in these areas, e.g. how learning language and learning
perception may be related. Finally, it permits us to test our architecture on robotic
versions of well-known cognitive tasks and explore how robot learning might be
related to human learning.

RS provides a powerful representational language for the system’s dynamics,
language and percepts; however, RS does not provide a mechanism for synthesizing
the dynamics. Furthermore, RS lacks demonstrated cognitive plausibility, and in
particular lacks a learning method.

We have implemented RS in Soar to take advantage of Soar’s cognitively
plausible problem-solving and learning mechanisms. Soar uses universal subgoal-
ing to organize its problem solving process into a hierarchy of subgoals, and uses
chunking to speed and generalize that process. Universal subgoaling permits Soar
to bring all its knowledge to bear on each subgoal. Chunking stores generalized
preconditions for search control decisions, so that in future tasks similar search
control decisions are made in a single step.

3 Visualization and Prediction of Human Behaviors

We believe that the comprehension of human movements and intentions requires
the ability to visualize human movements and predict possible future movements.
We view visualization as consisting of both a perceptual component and a rea-
soning component. The perceptual component is performed using the same per-
ceptual mechanism that the robot uses to perceive its environment; the difference is
that visualization perceives a simulation of the environment. Visual reasoning
manipulates and superimposes representations that consist of a combination of
symbolic knowledge and 3D animations. This approach to comprehension requires
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the robot to be able to create different situations in which it can generate behaviors
of robots, people and physical systems, and perceive the results of these behaviors.
This requires implementing a virtual world that the robot can control.

ADAPT’s virtual world is a multimedia simulation platform capable of realistic
simulations of physical phenomena. It combines the various forms of map infor-
mation found in most robots: topological, metric and conceptual information.
ADAPT completely controls this virtual world, and can create arbitrary objects and
behaviors in it, including nonexistent objects and behaviors that were not actually
observed. Central to ADAPT’s use of its virtual world is its ability to view these
constructions from any point. This enables ADAPT to create visual representations
with desired properties.

In the current implementation, ADAPT’s world model is PhysX. PhysX gives
the robot the ability to create a detailed and dynamic virtual model of its envi-
ronment, by providing sophisticated graphics and rendering capabilities together
with a physics engine based on the PhysX physics engine. PhysX models a wide
variety of dynamic environments, including modeling other agents moving and
acting in those environments.

This world model is used to represent the important entities and behaviors in the
environment. The built-in physics capability of PhysX is then used to predict what
is going to happen in the immediate future. Let’s examine how ADAPT uses the
virtual world together with its vision system to model and predict the environment.
ADAPT’s vision system consists of two main components, a bottom-up component
that is always on, and a top-down goal-directed component controlled by Soar.

The bottom-up component is simple and fast. It does this by not producing much
detail. The idea is for it to produce a basic stereo disparity map, a coarse-grained
image flow, and color segmentation in real time. It runs on the robot’s onboard
computer using Intel’s open vision library, and segments the visual data from the
robot’s two frame-grabbers. These “blobs” are transmitted together with stereo
disparity data and optical flow to the off-board PC that is running Soar, where it is
placed into working memory. This component is always on, and its output is
task-independent.

The top-down component executes the more expensive image processing
functions, such as object recognition, sophisticated image flow analysis, and
application of particular filters to the data. These functions are called in a
task-dependent and goal-dependent manner by Soar operators. This greatly reduces
their frequency of application and speeds the operation of the vision system sig-
nificantly. These two components are not connected to each other; instead, the
output of the bottom-up component is used by Soar to determine when to call the
top-down operations. Soar compares the bottom-up output to the visual data pre-
dicted by the virtual world.

The virtual world can display the view that the virtual copy of the robot “sees” in
the virtual environment. The output of this graphics “camera” in PhysX is seg-
mented and sent to the MMD (Match-Mediated Difference), together with distance
information and motion information. The MMD tests for significant differences
between the expected view and the actual view, e.g. the appearance of a large new
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blob or a large change in optical flow. It aligns the real and virtual images with an
affine map, then finds a set of matched key points and place a normalized Gaussian
at each of them. The normalized match quality is the inverse of the distance
between matched points divided by the sum of all match errors. We use this as a
coefficient of the Gaussians to create the MMD measure. Any significant difference
is placed in Soar’s working memory, where it can cause an operator to be proposed
to attend to this difference.

Soar controls all major aspects of perceptual processing, with the goal of con-
structing a virtual model of the environment that can be used in task planning.
These aspects include focusing on regions of interest, choosing the depth of field,
and deciding on the degree of detail for each part of the virtual model. For example,
if a new blob appears, an abstract operator will be proposed to focus on this blob
and try to recognize it. If this operator is selected (if there is no more important
operator to do at the moment) then RS/Soar will instruct the robot to turn its

Fig. 1 The two point clouds at top are registered and joined to create the bottom cloud, which is
transformed into a PhysX mesh
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cameras towards this blob, focus at the appropriate depth, and obtain a point cloud
from the visual input. Keypoints are extracted from the point cloud and used both in
object recognition and to create a mesh that is registered with surrounding meshes.

Figure 1 shows two point clouds of a kitchen counter by this vision system.
These are transformed into meshes. By joining small meshes together, the system
can create larger meshes when necessary. Portions of the world that are not relevant
to task goals are not rendered, greatly increasing efficiency.

This approach also works for people, as shown in Fig. 2. People are skeletonized
in a manner similar to that used by the Kinect, and the skeleton is covered with
mesh. Our initial work was with the Kinect, but now uses only stereo vision.

Once an object is recognized or rendered, a virtual copy is created in PhysX. The
object does not need to be recognized again; as long as the blobs from the object
approximately match the expected blobs from PhysX, ADAPT assumes it is the
same object. Recognition becomes an explicitly goal-directed process that is much

Fig. 2 Point clouds for a face, registered and joined to create a 3D mesh for a skeleton. The two
point clouds at top are joined to create the cloud seen below, frontal view at left and from above at
right
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cheaper than continually recognizing everything in the environment. The frequency
with which these expensive operations are called is reduced, and they are called on
small regions in the visual field rather than on the whole visual field.

Thus, ADAPT’s vision system spends most of its time verifying hypotheses
about its environment, instead of creating them. The percentage of its time that it
must spend attending to environmental changes depends on the dynamic nature of
the environment; in a relatively static environment (or one that the robot knows well
from experience) there are very few unexpected visual events to be processed, so
visual processing operators occupy very little of the robot’s time.

Figure 3 shows the overall flow of control of our vision system [10, 11]. The real
and synthetic images of the scene as viewed by the robot are compared. If the
scenes are considered the same but from different viewpoints, then the viewpoint of
the camera in the simulation is changed, and the simulation generates an image
taken by the camera at the new location. If an unexpected object is seen in the real
image, an object is introduced at the corresponding position in the simulated scene.
The region of the real image responsible for the difference is used as video texture
on the object and a new synthetic image generated. The information on whether
there is no difference, an unexpected object, or an object missing between the image
pairs is made available to action planning.

This loop of difference detection and simulation modification is used to keep the
simulation synchronized to the observed environment. For prediction purposes, the

Fig. 3 The input from the physical world (left above) is parsed, classified and rendered into the
virtual world (below right). The MMD compares both inputs, detects differences and updates the
virtual world
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simulation can be allowed to ‘fast forward’ in time, so that the expected position,
for example, of a target can be calculated and then compared to observations.

4 Summary

We have sketched the overall design of a new approach to the comprehension of
behavior that is part of a robotic cognitive architecture. A powerful 3D multimedia
world model is used to render the behaviors in the environment. This gives the
robot the ability to visualize alternative evolutions of the dynamics and to classify
them. The implementation of the basic components is complete.

Further information on this work, including video clips showing the robot
moving under the control of schemas and the use of the world model, can be
downloaded from the website for the Pace University Robotics Lab: http://csis.pace.
edu/robotlab
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The Future of Human Robot Teams
in the Army: Factors Affecting a Model
of Human-System Dialogue Towards
Greater Team Collaboration

A. William Evans, Matthew Marge, Ethan Stump, Garrett Warnell,
Joseph Conroy, Douglas Summers-Stay and David Baran

Abstract Understanding of intent is one of the most complex traits of highly
efficient teams. Combining elements of verbal and non-verbal communication along
with shared mental models about mission goals and team member capabilities,
intent requires knowledge about both task and teammate. Beginning with the tra-
ditional models of communication, accounting for teaming factors, such as situation
awareness, and incorporating the sensing, reasoning, and tactical capabilities
available via autonomous systems, a revised model of team communication is
needed to accurately describe the unique interactions and understanding of intent
which will occur in human-robot teams. This paper focuses on examining the issue
from a system capability viewpoint, identifying which system capabilities can
mirror the abilities of humans through the sensor and computing strengths of
autonomous systems, thus creating a team environment which is robust and
adaptable while maintaining focus on mission goals.

Keywords Human-robot teaming � Intent understanding � Shared mental model �
Human-robot communication

1 Introduction

Much like ‘trust’ or ‘mind’, ‘intent’ is a term that is easy to understand but difficult
to define. For operational purposes, Webster-Dictionary [1] defines intent as ‘the
things you plan to do or achieve: an aim or purpose.’ Understanding intent is a
critical component to creating an efficient team. As commands or instructions are
given, all team members need to have an understanding of the team goals, as well as
the processes being directed toward achieving those goals. This becomes even more
important in task environments where team communications become degraded,
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such as those in which military operations often occur. Vague or incomplete
instructions related to command intent must still be executed in a timely and
effective manner, and misunderstandings can have dire consequences.
Understanding command intent is a difficult enough task in human-only teams, and
incorporating autonomous systems into the team structure only serves to further
complicate the issue.

In such human-robot teams, supervisory control solutions have become a
prominent model. A key requirement for such solutions to enable greater
human-robot integration is that each autonomous system in the team must be able to
determine their own individual tactical behaviors based upon inferences made about
the human supervisor’s intent, rather than by direct response to specific command
inputs. Previous research [2] supports this concept, finding that mixed initiative
teams, with some decisions made by human controllers and some by autonomous
systems, outperformed both fully manually controlled and fully autonomous teams
while completing a search task. As autonomous systems become more capable and
more integrated in teams with human teammates, their ability to communicate
effectively becomes more important. Moving away from traditional joystick con-
trols to speech control is a first step, but more may be required to allow autonomous
systems to function as peers within a team structure. Autonomous systems will need
to not only respond to structured language protocols, but will also need to under-
stand natural language and participate in a dialogue with human teammates,
incorporating language, gestures, eye gaze, mission and environmental factors.

For the last decade, human-robot teaming research has focused on the concept of
moving the team structure from many humans controlling one robot, to one human
controlling one robot, and for the future one human controlling many robots [3].
The motivation behind this concept was that a single Soldier can push their area of
influence out further with each additional autonomous system they are able to
control [4]. Realizing such a concept is not without its challenges. Current
human-robot interactions typically require users to provide direct input of specific
commands to the autonomous systems they control. Research and technology
advances have helped to reduce the workload and cognitive demands imposed on
the user of individual autonomous system [5, 6]. However, having to provide
different commands to each individual system inherently places a limit on the
number of entities that could be controlled by a single operator and represents a
significant deviation from the processes seen in effective human-only teams.
Previous research on RoboLeader, an agent for controlling multiple robots, has
shown that distributed supervisory, rather than direct, control reduces overall user
cognitive burden and may provide a unique avenue for multiple autonomous sys-
tems to observe and operate collaboratively within a human-robot team structure in
more natural ways [7].

A new research program at the Army Research Laboratory is investigating how
to use team dialogue as a way to enable autonomous systems to understand Soldier
intent. Dialogue, in this case, is being defined as all of the communications (both
verbal and non-verbal) that can reduce uncertainty about a command’s intent. This
can include spoken and text speech, eye gaze, position and heading, hand gestures,
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environmental cues, etc., all of which can contain important tactical or contextual
information. For the purposes of this program, a heterogeneous team of autonomous
systems will be utilized to collectively observe human teammates, as well as the
environment, to gather as much information as possible to aid in the understanding
of the natural command language, eye gaze behavior, and gestures used in present
day human squad activities. The information that the autonomous systems collect
will then be utilized to infer intent and determine actions in the form of tactical
behaviors, the specification of which will assist the squad in completing their
objectives. This paper will focus on the factors associated with existing teamwork
and communication models to determine which model(s) could support the inclu-
sion of autonomous system capabilities. Additionally, a review of the factors that
affect team performance, specifically shared mental models, verbal communication,
and non-verbal communication will be discussed. Finally, a discussion is presented
about how these factors can be translated to autonomous system capabilities, which
can lead to the creation of a new model of human-robot team interaction.

2 Models of Communication

Here we consider classical models of communication and how they can inform the
needs of a new Human-Robot Team Communication model. Communication has
been a topic of research since the late 1940s and continues to be widely studied in
this century, reaching out across domains like marketing, psychology, mathematics,
business, and more. Osgood and Schramm’s [8] circular model of communication
(Fig. 1), is still relevant and the basis of more advanced communications models
today. This model expresses communication in simple ideals of a continuous loop,
which involves encoding and decoding messages between two entities.

While Schramm’s model is used to explain the process of communication,
Berlo’s model of communication [9] explains the components that fit that process in
more detail (Fig. 2). It is through this model that we can see that communication is
much more than simply a verbal passing of information. Every component from the
‘source’, through the ‘message’ and ‘channel’, to the ‘receiver,’ is affected by a
number of various factors.

Fig. 1 Osgood and
Schramm’s model of
communication
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Berlo’s model is useful because it not only accounts for explicit means of
communication, such as communication skills, but also implicit factors, such as
existing knowledge, social norms, and cultural bias, which can all affect the
understanding of intent. Considering this model for human-robot interaction allows
for the use of cues beyond simple direct commands and can help enhance the
interpretation of the information found within vague command requests. Expanding
on this model by also including factors that more easily incorporate non-verbal
communications (such as eye gaze) could add valuable information to the intent
understanding capabilities of autonomous systems.

A new Human-Robot Team Communication model will need to incorporate
more implicit communication factors to allow autonomous systems to take
advantage of more of the information that is available within the team environment.
For more natural dialogue between human and autonomous system, autonomous
systems will need to fully utilize components of communication, such as knowl-
edge (i.e., mission goals, mission space, etc.) and culture (i.e., local norms, team
norms, etc.).

Team communication and/or team performance models often build on the
principles of the Osgood and Schramm and Berlo models, by incorporating a
situation awareness component to help account for team processes toward a com-
mon goal. Situation awareness (SA) can be described in terms of overall team SA or
individual team member SA, which is comprised of separate and overlapping
elements [10]. Overlapping and correct SA for individual team members is a critical
factor to creating high performing teams and leads to efficient and effective team
communication patterns, as well as the development of shared mental models [11].

3 Shared Mental Models

Here we consider the importance of establishing a shared mental model to overall
team performance, especially as it relates to communication. Team performance has
been shown to be influenced by many factors [12, 13]. Of those factors, one of the
most closely related to the understanding of intent and enabling high performing
teams is the presence of shared mental models [14–17]. Shared mental models
allow team members to understand the context within which actions or

Fig. 2 Berlo’s component
model of communication
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communications are being executed and which actions or communications signif-
icantly affect decision making, planning, and coordination [18]. Shared mental
models can allow teammates to efficiently divide tasks toward the achievement of a
common goal [19], and can also allow teammates to more correctly predict
behaviors of other teammates based on fewer cues providing less or incomplete
information, which in turn creates a more productive, more efficient team. These
cues can be team member based (e.g., a head nod, a point, or eye movements), task
based (e.g., specific team behaviors based on situation), or environmentally based
(e.g., changes in environmental condition) and are often non-verbal in nature.
Shared mental models, along with the previously mentioned cues, could also pro-
vide context and clarity to ambiguous statements or commands. Based on mission
goals, Soldiers in well-functioning teams will understand their Sergeant’s order to
“take that building” to mean ‘breach and clear the third building on the left side of
the road’, if accompanied by correct cues about gaze direction, semantic under-
standing, existing mission knowledge, and evaluation of the current environment.

The establishment of shared mental models in human-only teams is often created
via education, training, and familiarity. The introduction of autonomous systems
into the team structure yields some obstacles to the creation of shared team mental
models. While goal-based concepts might be easily understood by autonomous
systems, more abstract or vague communications, which are widely used in high
performance team processes, produce a barrier in the human-autonomous system
team communication process. In addition, assessing shared mental models of
human-robot teams could be difficult. Some recent success has been found by
Nikolaidis and Shah [20] in exploiting task procedure assessments to evaluate
autonomous system mental models. While this research focused on a more struc-
tured manufacturing setting, this approach might prove viable for more complex
military tasks. The application of procedural knowledge could be leveraged to
enable autonomous systems to engage in the use of set tactical behaviors in a
variety of configurations. Utilizing tactical behaviors in this way could help to
increase not only the capabilities of the system but potential areas for overlap with
human mental models about the associated tasks.

4 Verbal Communication

Humans accomplish tasks by communicating, where they often use dialogue to
achieve a mutual understanding of information [21]. Verbal communication is
governed by the communicative acts that dialogue partners select to establish and
maintain a shared mental model. These actions consist of anything that a dialogue
partner does to make others understand his or her intentions, like declaring infor-
mation to or requesting information from a dialogue partner, reporting problems, or
correcting a misunderstood belief. These actions can be in the form of verbal
behaviors, like speech or vocal gestures, or in the form of non-verbal behaviors like
pointing and gaze. In a conversation between Alice and Bob, Alice is either
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presenting a communicative act to Bob, or accepting one from Bob. Generally,
when Alice accepts a communicative act from Bob, new information has been
grounded (i.e., added to Alice’s perceived common ground of information with
Bob). Dialogue is the vehicle by which two or more dialogue partners establish this
mutual understanding of information.

A long-standing challenge in artificial intelligence research has been to develop
conversational interfaces that are user-friendly and useful for people. Following
existing psycholinguistic principles, like grounding in communication [22], helps
us move towards these goals. At the same time, advances in technologies like
automatic speech recognition and speech synthesis have allowed conversational
interfaces called spoken dialogue systems to run on mobile devices like smart-
phones and tablet computers (e.g., Siri on iOS). The traditional focus for dialogue
system developers has been on tasks that link to a structured database or computer
application. Generally, these systems are best equipped to handle
structurally-defined tasks like travel booking.

There are many recent advances in robotics, computer vision, and navigation.
Their emergence as potential team members in a variety of tasks has also entailed
the need to communicate with them effectively. Natural language is one potential
form of communication. Natural language dialogue provides an intuitive and
flexible way for people to communicate with robots. Dialogue between people and
robots is physically situated [23]—it refers to the environment: a streaming source
of information that is often crucial for processing plans and accomplishing tasks.
Dialogue systems can allow people to communicate with robots at a more abstract
task level than typical command-and-control devices. However, such dialogue
cannot be treated like the dialogue systems used to book travel; interactions will
often require dynamic reference to the robot’s surroundings. To this end, there have
been several human-to-robot dialogue systems developed for unmanned ground
vehicles, unmanned aerial vehicles, and virtual agents [24, 25].

The nature of physically situated interaction yields a relatively unexplored set of
problems that sets it apart from traditional human-computer dialogue. Interactions
with robots may fail due to a robot’s dependency on specific environment infor-
mation, or if its path to a goal is obstructed [26]. People engaged in dialogue with
such a robot can help; in existing human-human navigation dialogues, Skantze [27]
showed that people ask proactive, task-relevant questions instead of simply indi-
cating task failure. Dialogue enables people to supplement a robot’s representation
of the world and allow it to complete tasks. Robots could issue clarification
questions to human partners, or those same partners could interrupt a robot’s current
task with time-critical information. Verbal communication using natural language
provides a hands-free method to engage in a dialogue with robots.
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5 Non-verbal Communication

Non-verbal communication is an important component in many types of human
collaboration and teaming. The ‘messages’ in non-verbal communication, like
gestures or glances, can be thought of as symbols, which help to pair meaning and
form [28]. The meanings gained from this type of communication are largely
dependent on context. One of the most-studied ways in which it is done is through
eye gaze behavior. Baron-Cohen et al. [29] showed that humans utilize knowledge
of eye-gaze direction when attempting to understand the mental states of others.
That is, when one human can determine where another is looking, implicit infor-
mation, such as whom another person is addressing, what another person is
referring to, or even some level of what another is thinking about, can be more
accurately inferred by the observer. Clearly, then, the ability to know where other
humans are looking is an important factor in generating an accurate shared mental
model among teammates. For example, for the specific collaborative task of
one-on-one learning from demonstration, it has been argued that both the instructor
and the learner must each be able to follow the eye gaze of their partner in order to
form a shared or joint attention model that affords them critical spatial and feedback
information [30, 31]. Strabala et al. [32] showed that even for the seemingly simple
collaborative task of one human handing an object to another, eye gaze is a critical
non-verbal cue that allows the team to successfully complete the handoff. Further,
Huang et al. [33] have shown that analyzing the eye gaze of humans can be useful
in predicting human intent, such as desired objects. Therefore, based on this evi-
dence from the study of human-human teams, we argue here that endowing an
autonomous system with the ability to extract human eye gaze information will give
it a greater chance of being an effective teammate in a human-robot team.

6 Consideration of Autonomous Teammates

Here we consider the specific capabilities of modern unmanned vehicles and what
technologies we can use to address the issues of communication discussed above
and incorporate these vehicles into Human-Robot Teams.

6.1 Unmanned Vehicle Capabilities

For Army field operations, autonomous vehicles useful at a tactical level fall into
two classes: aerial and ground. Aerial robotic vehicles are well-suited for appli-
cations requiring speed and a top-down point of view. Common applications now
include examples such as crop analysis, 3D digital terrain mapping, search and
rescue, and wildlife monitoring [34]. Ground robotic vehicles are well-suited for
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applications that require long-duration operation and more extensive payload
options. They have routinely been deployed in situations that require standoff, such
as explosive ordnance disposal.

Aerial robotic platforms are highly desired for military applications as agents for
intelligence, surveillance, and reconnaissance. They suffer, however, from a poverty
of payload, which limits power, processing capabilities, and sensor options. These
constraints lead to lower average data bandwidth, possible communications drop-
outs or delays, and limited on-board intelligence. On the other hand, because the
payload capacity of ground robotic platforms can be as high as several tens of
kilograms, they can be outfitted with cameras, ranging sensors, manipulators, and
significant computing power, as required for their mission.

Because robotic platforms can operate at long distances from their operators, it
becomes possible to perceive the world from a completely different viewpoint,
complicating the correspondence problem between the human’s point-of-view and
that of the robot. However, real-time estimates of pose (3D position and orientation
in a global reference frame) are now ubiquitous in robot systems, making it possible
to present information to operators within a third-person view.

While current systems are typically flown and driven either manually or via
global positioning system (GPS) waypoint navigation, support for a true dialogue
with a human requires some degree of autonomous operation. Primarily, the vehicle
must exhibit a capability for reliable obstacle avoidance. Several current research
implementations and a few commercial implementations support some level of
generic obstacle avoidance, thus enabling the possibility of exploration algorithms
and point-to-point travel in cluttered environments. Furthermore, current research
systems can support many common on-board video/image processing functions,
such as object recognition and target tracking, thus enabling the vehicle to imple-
ment some degree of autonomous perception, 3D vision-based mapping, target
recognition and tracking. Memory and data storage has become miniaturized to the
point that research-grade systems can support hundreds of gigabytes (for aerial
platforms), or several terabytes (for ground platforms), of data storage to support
large databases representing their world model. This world model tracks all of the
spatial information that each system has collected, forming a basis for the shared
mental model that could exist within the autonomous system.

6.2 Verbal Communications

The dialogue-based view of verbal communication forms the basis for our general
semantic reasoning engine that considers higher-level mission goals communicated
by the Soldier and decides upon the commanded actions that will best support them.
Goals may be permanent, mission-specific (delivered as an explicit “statement of
intent”), or implicit in the ongoing dialogue. Commanded actions can often be
fulfilled in a variety of ways, some of which will be faster, less risky, or less costly
than others.
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Ultimately, robots must make decisions when given a command, and the process
of decoding incoming data into information, comparing information with desired
goals, and selecting an action is called planning. Dialogue enables robots to have
collaborative communication about their plans. Planning has been considered a
form of abductive reasoning, whereby an autonomous system attempts to generalize
a new observation according to a hypothesis, and determines what to do next [35].
Autonomous systems could observe the Soldier performing a series of actions, and
then follow the observed actions by engaging in a particular plan of their own. This
would result in the robots performing actions complementary to the Soldier’s.
Robots could ask the Soldier a clarification question, which relies on reasoning.
Conducting a dialogue with the Soldier involves selecting a communicative action
that could resolve an inconsistency in the robot’s plan. This type of interaction
indicates to both the Soldier and robot teammates that the higher level mission is
being followed. For real-world situations, this capability requires an in-depth
knowledge of the possible plans and how they can vary, and the ability to robustly
determine what actions are being performed.

Toward achieving this goal, we will make use of existing common sense rea-
soning technology. Common sense reasoners attempt to define a “core” set of
knowledge that humans possess, that could potentially be transferred to artificial
agents like robots. More specifically, we will use Cyc, software which encapsulates
a common sense knowledge base to relate goals, events, and causes. Existing
predicates built-into Cyc (e.g., the action Preconditions predicate, which defines
what must happen before executing an associated action) allow us to express how
any particular type of event can have effects that either further or harm the goals of
an agent. We also plan to make use of analogical and approximate reasoning in Cyc
by incorporating representations of assertions and predicates.

Each action that an autonomous agent can deliberately perform will be char-
acterized in terms of some direct effects that it is likely bring about. These events, in
turn, will be characterized in terms of what effects they might bring about and under
what conditions. If the robot is able to deductively reason that one of its actions will
set in motion a chain of events (i.e., a plan) that will further the goals of its team and
another will harm those goals, it will choose the beneficial option.

6.3 Non-verbal Communications

We focus on the use of human eye gaze as our primary channel for collecting
non-verbal information to augment the dialogue and help develop our shared mental
model. Human eye gaze has been studied by the autonomous systems community in
several different capacities. For a learning from demonstration task, Lockerd and
Breazeal [31] gave a robot learner the ability to exhibit human gaze behavior as a
way to provide nonverbal feedback to a human instructor. Conversely, Hoffman
et al. [30] autonomously estimated human gaze direction from video, and used this
information to better accomplish a similar learning task. Sakita et al. [36] also used
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video to estimate human eye gaze during a joint human-robot construction task, and
proposed several interesting collaborative behaviors that relied on this information,
including “taking over” or “settlement of hesitation.” In the computer vision
community, Park et al. [37] have argued that estimating social saliency, or what
regions of space draw human attention, is a critical component of autonomous
scene understanding and they present a technique to compute this quantity based on
the head pose information of humans in the scene.

The success of the above techniques belies the difficulty associated with accu-
rate, automatic estimation of both head-pose and eye-gaze information. Park and
Shi [38] discuss the shortcomings of these techniques when estimating gaze from
both third- and first-person cameras, and propose a technique for estimating social
saliency using the spatial distribution of humans in the scene instead of eye-gaze
information. In fact, the topic of accurately estimating eye gaze from third-person
video is still quite active [37]. In contrast with these techniques, we extract gaze
information from a different modality: eye-tracking glasses (e.g., the Tobii Glasses
2). These devices provide both egocentric (i.e., first-person) video and very robust
estimates of the wearer’s eye gaze location as overlaid onto this video. We believe
that acquiring gaze information in this fundamentally different way will allow us to
overcome many third-person gaze estimation issues, and thereby pave the way for
us to extend the previously-discussed human-robot teaming successes from the
laboratory to more natural environments.

6.4 Mapping Plans into Vehicle Actions

In our envisioned system, we have two systems that support the human: (1) the
reasoning system that interacts with the human through both verbal and non-verbal
communication channels to infer their intent and render a general plan to accom-
plish this intent; and (2) the heterogeneous system of autonomous vehicles that can
be tasked to carry out primitive maneuvers and collect raw sensor data. We imagine
that we may not want the reasoning system to be endowed with knowledge of the
specific capabilities of the vehicles that are being tasked; the job of the reasoning
system is to decide what should be done to respect the user’s intent, not exactly
how. In this case, how can we be assured that the reasoning system will produce
plans that can actually be realized by the physical systems?

Our answer lies in the use of formal language as way of constraining the domain
of plans to those that are realizable. State machines, or automata, have long been
used in the engineering of systems as a way to model the relationships between
input signals, output signals, and sequenced operations that need to be performed.
There is an intimate connection between automata that can respond to a sequence of
input signals and the formal grammars used to produce strings in a formal language
[39]. One way of exploiting this connection is to take the plan language that is
output from the reasoning system and learning the mapping from the plan semantics
to the actions that the physical robots can perform, as has been done for a controlled
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natural language [40]. Another way would be to begin from the capabilities of the
system and design the language that matches these capabilities, as was done with
Motion Grammars [41]. The first represents engineering the physical systems to
match the language, and the second represents engineering the language to match
the physical systems. A middle ground would be to use an intermediate repre-
sentation, such as statements in a process logic, that incorporates the capabilities of
the platforms as primitives and that we can expand the plan language into [42]. In
any case, the reasoning system can issue plans without specifically referring to the
platform capabilities, because either the plan language can be mapped on to them
later or the plan language can only express capabilities that are available.

7 Toward a Human-Robot Team for Intent
Understanding

Conceptually, a number of factors have been identified, which could be used to
create a new model of human-robot team communication mirroring long established
models from the human communication literature. Incorporating autonomous sys-
tem sensor and reasoning capabilities, any future model need to be descriptive in
the means to which autonomous systems can acquire and utilize data. Ultimately
the goal of this model will be to provide guidelines about how autonomous systems
can utilize data gathered from verbal and non-verbal means to disambiguate
information about the operational space and execute plans of action in complex and
dynamic environments. Moving forward, matching human models of communi-
cation with engineering framework models of autonomous processing will provide
the basis to begin testing new models of human-robot team communication.
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Human-Autonomy Teaming Using
Flexible Human Performance Models:
An Initial Pilot Study

Christopher J. Shannon, David C. Horney, Kimberly F. Jackson
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Abstract Recent advances in autonomy have highlighted opportunities for tight
coordination between humans and autonomous agents in many current and future
applications. For operations involving cooperating humans and robots, autonomous
teammates must have flexibility to respond to the inherently unpredictable behavior
of their human counterparts. To investigate this issue in detail, this paper uses an
unmanned aerial vehicle (UAV) simulation to evaluate flexible human performance
models over traditional static modeling approaches for multi-agent task allocation
and scheduling. Additional comparisons are drawn between adaptive human
models, which are adjusted in real-time by the autonomous planner according to
realized human performance, and adaptable human models, where the human
operator is given sole authority over model adjustments. Results indicate that
adaptive human performance models significantly increase total mission reward
over both the baseline static modeling framework (p = 0.0012) as well as the
adaptable modeling technique (p = 0.0028) for this system.
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1 Introduction

Traditional approaches to multi-agent planning typically view agents as indepen-
dent, autonomous vehicles. However, a variety of modern and future applications
require highly coordinated efforts between humans and autonomous systems [1].
Planning for humans in the loop presents several key challenges, including the
difficulties associated with adequately modeling actual human capabilities. In par-
ticular, reliable prediction of human task performance can be hard, and even
well-established models from the human factors community are subject to inter-
personal differences—such as experience and skill—as well as dynamic intraper-
sonal factors like distraction and fatigue [2]. These challenges motivate human
performance models that can be updated in real-time to ensure better consistency
between predictive planning and actual execution.

A promising strategy for human modeling is to use an adaptive approach in
which actual human performance is leveraged as feedback for autonomous
adjustments to models throughout mission execution. Adaptive autonomy has been
steadily gaining traction in human-robot interaction (HRI) applications over recent
years [3]. State-of-the-art autonomous systems that are able to reason on, and
respond to, the needs and intentions of a person present new opportunities for close
synergy between people and autonomy [4]. Recent studies have produced planners
that enable a single robot to dynamically execute a shared plan with a human [5],
while other efforts have developed intelligent task management strategies for
human operators that regulate and optimize over human workload parameters [6, 7].
Additionally, adaptive levels of automation have shown promise for human
supervisory control of multiple robots [8].

Apart from feedback based on realized human performance, an adaptable
autonomy construct can provide information to the planner directly from the user.
Examples include actively changing mission objective functions in real-time [9] as
well as adjusting levels of automation [8]. This can enhance the user’s control of the
environment, which has been shown to help in terms of change detection, system
transparency, and overall user satisfaction within a variety of domains [10].
However, since adaptable autonomy requires deliberate user feedback, it can
increase workload and draw attention away from the main task at hand. In addition,
relying on human interaction may be less optimal than a well-designed adaptive
framework [3].

Drawing from these strategies, this pilot study focuses on an evaluation of
adaptive and adaptable human performance models for the allocation and
scheduling of joint human-robot tasks amongst a heterogeneous, dynamic
human-robot team. Models for the human operators’ predicted task durations and
workload thresholds are used to investigate the advantages and drawbacks of
adaptive and adaptable human modeling in the context of these highly coordinated
multi-agent systems. Results from the human subject experiment (n = 12) provide
insights into the use of flexible human performance models for human-autonomy
teaming.
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2 Background

For this pilot study, the human participant’s role within the multi-agent mission is to
classify a series of discrete pieces of imagery. These imagery classifications are
time-critical: the values of accurate imagery information acquisition are functions of
time (e.g. time-windows and exponential time-decays). Therefore, the amount of
time an operator needs for correct classification and the rate at which he can be
presented with new demands are important for the allocation and scheduling of
tasks.

Figure 1 shows the two human performance models used in this pilot study.
Pew’s model (Fig. 1a) predicts that the correctness of a decision in a binary choice
increases as a sigmoidal function of time spent on the task [11]. In order to predict
or allocate task durations, probability of success may be optimized [7] or chosen (as
in this case) depending on requirements for speed versus accuracy. The workload
threshold model (Fig. 1b) moderates the rate at which tasks appear by incurring a
cost on proposed schedules that exceed the prescribed threshold. This model,
derived from the Yerkes-Dodson Law [13], uses the utilization metric defined as
operator busy time over total mission time in order to keep the human at a desirable
level of workload [12].

In our recent work, we have created a fast algorithm called ASSIST that inte-
grates humans into the traditional task allocation and scheduling problem to pro-
duce plans for tightly coupled (i.e. synchronized joint-task) heterogeneous
human-robot teams [14]. ASSIST can be embedded into a closed-loop replanning
framework—in which humans are treated as dynamic agents—in order to adapt
human and environment models in real-time. This pilot study evaluates the ASSIST
planning framework and its various feedback mechanisms through actual
human-autonomy teaming experiments.

(a) Pew’s model for task duration [11] (b) Workload threshold model [12]

Fig. 1 Human performance models for operator’s imagery classification tasks. a Pew’s model for
task duration [11]. b Workload threshold model [12]
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3 Aim of the Pilot Study

The quantitative hypotheses tested in this experiment compare static (baseline
open-loop approach), adaptive, and adaptable modeling strategies using an overall
mission reward metric. This reward is calculated as the summation of all suc-
cessfully completed tasks’ values at their respective execution times, and incorrect
imagery classifications result in zero reward for a task. Thus overall reward rep-
resents a measure of timely, accurate task completion as well as efficiency in the
allocation and scheduling of the tasks among the multi-agent team to optimize
execution in terms of specified mission goals. Subjective trends from
post-experiment participant questionnaires—plus other recorded measures such as
classification accuracy, mission makespan (total duration), and total vehicle dis-
tance traveled—supplement the evaluation.

We hypothesize that adaptive human performance modeling will result in the
most overall mission reward, with adaptable modeling resulting in the second most
reward, and static modeling resulting in the least. Autonomous adjustments of the
models based on realized performance from actual mission execution in real-time
should alleviate mismatches between the planning phase’s models and the humans’
actual ability. For the adaptable mode, the user’s adjustment of these models should
also mitigate model mismatches, albeit less efficiently than the autonomous adap-
tive mode. Additionally, the baseline static modeling case will likely illuminate the
issues of rigid, one-size-fits-all open-loop approaches to modeling human agents.

We also hypothesize that the adaptable human performance modeling strategy
will be the most preferred by users, with adaptive modeling being the second most
preferred, and static modeling being the least preferred. We predict that giving the
human operator authority over the models that predict his own performance (and
thus drive the allocation and scheduling of his tasks) will result in higher user
satisfaction than if the adjustments were made by the autonomous system instead.
We further predict that the adaptive mode will be preferable to the static mode due
to multi-agent plans that have flexibility and are more conformed to each partici-
pant’s actual ability.

4 Experimental Methods

The human-autonomy teaming mission consists of discrete surveillance tasks in
distinct locations throughout a map. Points of interest may have differing priorities
or time-criticalities which correspond to their respective task values. The ASSIST
planner allocates and schedules coupled human-robot pairs to the tasks, optimizing
plans for maximum task value while adhering to human operator heuristics and
constraints. The architecture uses the Robot Operating System [15] for a
high-fidelity multi-vehicle simulation. Participants interact with a standard laptop
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(2 GHz Intel Core i7 processor, 8 GB RAM) using a keyboard and mouse to
accomplish missions.

4.1 User Interface

The full interface is illustrated in Fig. 2. Multi-agent plans from the ASSIST
algorithm are executed by the human-robot team with the UAVs flying to task
locations and providing imagery to the human operator. The top right portion of the
interface provides an overhead mission view that allows the operator to anticipate
vehicles arriving to their specified survey waypoints. The top-left command line
prompts the user to alert him to incoming imagery. The bottom of the interface
shows the live, top-down video feeds from simulated on-board UAV cameras that
present the imagery to be classified.

The participant performs classification by inputting into the command line “c”
for circle imagery or “s” for square imagery as well as the count of moving images.
In all modes, this imagery flashes yellow to give the human operator an indication
as to when he is exceeding the duration allotted for the task by the planner. Overall
mission reward accumulates with timely, accurate completion of the joint
human-robot tasks. The user continues the process of classifying images throughout
the duration of the mission, cross-checking the overhead view for increased situ-
ational awareness and looking to the command line for incoming tasks and feed-
back on his performance.

Fig. 2 Full user interface for human-robot teaming mission
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4.2 Experiment Conditions

There are three conditions in this experiment which relate to the modeling of human
performance. Static modeling is a baseline control condition that uses open-loop
modeling of humans with planning parameters set a priori. Adaptive modeling
leverages actual human performance as feedback throughout each mission to
autonomously adjust models. Finally, adaptable modeling uses inputs from the
human operator to adapt his performance models during the mission. Replanning is
conducted at 15 s intervals in all modes with their respective models.

Static Modeling. The static modeling mode provides a baseline open-loop
approach to the representation of human performance. In this mode, humans are
considered to be homogeneous agents whose predicted task performance is
equivalent among different individuals. Moreover, they are assumed to be static,
modeled by rigid functions throughout the length of the mission. As illustrated in
Fig. 1, Pew’s model for predicted task duration and the utilization model for pro-
jected workload threshold are specified a priori. For this pilot study, predicted task
duration was set to 6.4 s, derived from the average length of time required for
novice operators to complete a task in preliminary testing. Projected workload
threshold was set to 70 %, consistent with previous studies involving human
operators and multiple UAVs [12] and aligning with subjective responses from
novice operators interacting with the current system.

Adaptive Modeling. The adaptive modeling mode leverages realized human
performance throughout mission execution to adjust the planner’s underlying
models in real-time. Human operators are treated as heterogeneous, dynamic agents
in that the specified models are adapted to fit the skills of each individual and
remain flexible to track actual human performance throughout the mission. Pew’s
model is initially set to 6.4 s for predicted task duration and the utilization model
originally specifies 70 % as the operator workload threshold. These values are then
updated in real-time based on actual performance by the operator.

The two human performance models are autonomously adapted by the
closed-loop system after each task. The actual time from the imagery’s appearance
to the operator’s task completion becomes the new predicted task duration for
future human-robot surveillance tasks. If the operator’s inputs are correct, the uti-
lization workload threshold is increased by 5 %, functioning as a heuristic to allow
more demand on a successful operator. If the classification or count is incorrect, the
utilization threshold is decreased by 15 %, decreasing overall workload on the
operator in the near future. In this mode, replanning not only alleviates discrep-
ancies between the current system state and past projections, but also leverages
up-to-date realized agent performance to generate plans that more closely mirror the
actual behavior of the multi-agent system. This closed-loop modeling strategy
alleviates model mismatches arising from heterogeneous human operators (e.g. a
model that is appropriate for one person may be ill-fitting for another) as well as
dynamic, stochastic human performance.
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Adaptable Modeling. As an alternative to the autonomous system providing
feedback of realized performance to the planner, an adaptable mode was developed
in which the human operator had sole authority over the adjustment of his per-
formance models. This strategy shifts responsibility of model updates from the
autonomy to the human operator in attempts at providing insights into both the
objective effects on multi-agent teaming as well as the subjective perceptions of the
user.

Adaptable adjustments are accomplished through the use of additional operator
inputs into the user interface. First, each human-robot surveillance task requires the
usual “c” or “s” classification input along with specifying the number of images.
Following these two inputs, the command line prompts the subject to “Enter ‘z’ if
too busy, ‘r’ if too bored (else, hit enter).” Inputting “z” decreases the operator
utilization workload threshold by 10 %, while “r” increases it by 10 %. The
command line then prompts the operator to “Enter ‘l’ for less allotted task time, ‘m’
for more allotted task time (else, hit enter).” Entering “l” shifts Pew’s model to
decrease predicted task duration by three seconds, whereas “m” moves it in the
opposite direction to increase predicted task duration by three seconds. These
discrete adjustment values were chosen from a range of possibilities upon
demonstrating satisfactory objective and subjective performance in preliminary
testing with novice users.

4.3 Procedure

Twelve individuals were selected to participate in the pilot study. Each experiment
began with the subject reading an instruction document that explained the study’s
purpose, the responsibilities of the participant, and the interaction procedures for the
user interface. Each subject was then guided through two full mission trials (with
three autonomous vehicle teammates and 15 surveillance tasks) for training pur-
poses. The first practice trial was conducted in the adaptive human performance
modeling mode to allow the subject to become familiar with his primary task. The
second practice trial was performed in the adaptable human performance modeling
mode in order for the subject to become familiar with providing feedback to the
planner. Upon completion of the two practice missions, the participant completed a
human-robot teaming mission in each of the static, adaptive, and adaptable human
performance modeling modes. The ordering of modes was counterbalanced among
the twelve participants (using the six possible combinations of mode ordering for
two participants each) in order to mitigate potential confounding variables of
learning and fatigue. The process required less than an hour of each participant’s
time, and all testing took place over a two week period.

Objective mission metrics were recorded throughout each trial. Total makespan
(or mission duration) and total vehicle distance traveled were noted. The start time,
duration, and accuracy of each task was recorded and used to compute overall
mission reward, average operator accuracy, and average task duration. All model
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shifting inputs in the adaptable mode (“too busy,” “too bored,” “less time,” “more
time”) and their associated input times were also logged. This level of detail into all
relevant aspects of the mission allowed analysis of underlying reasons for
human-robot team performance trends, such as temporally overloaded operators,
model discrepancies between the planning phase and mission execution, and
dynamic human performance.

Upon completing all trials, each participant filled out a questionnaire. The survey
was used to evaluate situational awareness, team fluency, user interface satisfaction,
and human performance modeling mode preference. Specific questions relating to
the feedback modes (e.g. which was “most efficient in helping you complete the
task” and which mode “you most enjoyed using”) were included in the survey. In
order to garner as much information as possible from the pilot study, all questions
and choices were open-ended and prompted the subject to specify why they felt a
certain way. Participants’ subjective inputs provided insight into trends in the
objective metrics and aided in future system development after pilot study
completion.

5 Results

After all testing was completed, data were investigated both qualitatively and
quantitatively to evaluate the effects of the various human modeling strategies on
team performance and operator satisfaction. Primarily, statistical analysis of overall
mission rewards and evaluations of user mode preferences were used to compare
the three modes.

5.1 Objective Analysis

A one-way balanced ANOVA F-test was used to test whether there exists any
statistically significant differences among the three modes’ associated mission
rewards (Fig. 3). Based on the data and using a 95 % confidence interval, there is
reason to believe that there exists significant variation between the three modes in
terms of overall mission reward (F2,33 = 8.645, p < 0.001). Therefore, direct
comparisons between each pair of modes using post hoc paired t-tests with
Bonferroni corrections [16] are appropriate.

Comparing adaptive human performance modeling against the baseline static
approach shows that average mission reward for the adaptive mode (M = 8116.25,
SD = 933.80) is significantly different than the static mode’s (M = 6649.21,
SD = 1372.39) average reward (t(11) = 4.353, p = 0.0012). With mean overall
reward being much higher for the adaptive case, results indicate that adaptive
human performance models significantly increase total mission reward over the
static modeling framework in the context of this experiment. A second paired t-test
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comparing adaptable human operator modeling against the baseline static modeling
strategy gives no indication that mission reward from adaptable modeling
(M = 6311.36, SD = 1036.45) is significantly distinct from reward with static
modeling (M = 6649.21, SD = 1372.39) in this pilot study (t(11) = 0.631,
p > 0.05). A final paired t-test examines adaptive and adaptable human perfor-
mance modeling, demonstrating that adaptive human performance models
(M = 8116.25, SD = 933.80) result in statistically significant improvement of
overall mission reward in comparison to adaptable models (M = 6311.36,
SD = 1036.45) for this experiment (t(11) = 3.826, p = 0.0028).

The data suggest that adaptive human performance models can promote more
effective coordination between humans and autonomous agents than traditional
open-loop modeling approaches. Leveraging feedback from actual human perfor-
mance can alleviate model mismatches at both the system level (e.g. workload
thresholds for difficult vs. routine missions) and the individual level (e.g. different
experience and skill between operators). Assuming humans to be homogeneous
agents with one-size-fits-all models can be detrimental to overall team performance.
In fact, average task duration varied by as much as 87.5 % between participants in
this pilot study. A histogram of participants’ average task durations in Fig. 4 shows
a Gaussian-like distribution with substantial variance between subjects.

The advantages of adaptive modeling for heterogeneous human agents are fur-
ther illustrated in Fig. 5, which shows mission timelines for a single participant in
each of the three modes. This subject generally accomplishes tasks more quickly
than the predicted task duration of 6.4 s set a priori, which causes a model mis-
match for the static open-loop modeling approach. The adaptive human perfor-
mance modeling mode, on the other hand, is able to adjust to the operator’s realized

Fig. 3 Overall mission rewards between human modeling modes with standard error bars
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performance once the mission begins. As an additional advantage for adaptive
modeling, the human’s dynamic behavior during this trial—which takes the form of
decreasing durations as the mission progresses—is tracked by the closed-loop
system.

Fig. 4 Histogram of average task duration for each mission trial

(a) Static modeling mode                                (b) Adaptive modeling mode

(c) Adaptable modeling mode

Fig. 5 Planning phase’s predicted human operator task duration from underlying models versus
actual task duration over the course of one participant’s trials in each mode. a Static modeling
mode. b Adaptive modeling mode. c Adaptable modeling mode
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Results also indicate (within the context of this system) that incorporating
real-time autonomous adjustments of human performance models provides quan-
titative advantages over relying on human input for adjustments. This finding may
be explained as the result of two main causes. First, the adaptable mode required
slightly more workload than the static and adaptive modes. Figure 4 shows the
adaptable trials favor the right side of the distribution, and a paired t-test confirms
that the adaptable mode’s additional inputs resulted in significantly longer average
task durations (M = 7.246, SD = 0.997) over the adaptive approach (M = 5.617,
SD = 0.986) in this pilot study (t(11) = 3.745, p = 0.00324). Second, the human
operator may be worse than the autonomous system at adjusting his model
appropriately to minimize model mismatches between the planning phase and
actual mission execution. Figure 5c illustrates that the subject fails to track actual
performance accurately. Even more so, at times throughout the trial his adjustments
increase model discrepancies rather than mitigate them.

Other aspects of human-robot team performance among the feedback modes
were analyzed to supplement comparisons of overall mission reward. Mission
makespan, or total mission duration, indicates that adaptive human performance
modeling significantly reduces total mission time (F2,33 = 10.729, p < 0.001) over
both baseline static (t(11) = 6.710, p < 0.001) and adaptable modeling approaches
(t(11) = 4.563, p < 0.001). This further signifies adaptive modeling’s ability to
mitigate model discrepancies between the planning and execution phases, resulting
in more efficient task allocations and schedules amongst the human-robot team.
Additionally, overall vehicle distance was longer in the adaptable modeling mode
than both the static (t(11) = 1.976, p = 0.0738) and adaptive (t(11) = 2.012,
p = 0.0594) strategies (F2,33 = 2.656, p < 0.085), pointing again to suboptimal
multi-agent plans for the adaptable case.

5.2 Subjective Measures

Post-experiment questionnaires allowed subjects to provide qualitative feedback on
their perceptions of the autonomous system, the user interface, and the various
human performance modeling modes. All participants provided positive comments
on the general system, specifically citing the efficiency of the interface under
temporal pressure. In addition, real-time feedback was said to be especially useful
in terms of helping operators stay motivated throughout the mission and allowing
them to self-correct after errors. Finally, subjects enjoyed having the overhead view
available for team-wide situational awareness and projections of incoming
surveillance tasks.

Participant responses to questions on mode preference align with objective
findings, as 92 % of subjects chose adaptive human performance modeling as the
“most efficient” mode of the three tested. Additionally, 83 % of users stated that
they “most enjoyed using” the adaptive scheme, describing it as “stimulating,”
“well-tuned,” and “most engaging.” This autonomous closed-loop modeling
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approach was generally perceived as being more effective than the baseline static
case, and its lower workload requirements relative to the adaptable strategy allowed
users to focus on the primary classification task without distraction.

6 Discussion

The increase in overall mission reward for adaptive human performance modeling
over both the baseline static case and the adaptable approach may be attributed to
the adaptive strategy’s ability to minimize model mismatches between the planning
phase and actual human ability. Proper prediction of human operator performance
within the human-robot teaming missions is important for effective multi-agent
planning towards achieving specified mission goals. The ASSIST algorithm is
allocating and scheduling tasks amongst the vehicles with the aim of maximizing
mission reward. Again, this reward metric is calculated by totaling all successfully
completed tasks’ values at their execution times, and these time-varying task score
functions may take various functional forms.

When the planning phase over-predicts operator task duration (Fig. 5a), ASSIST
imposes a longer scheduling constraint on future tasks. This may lead to allocations
in which other vehicles travel longer distances in order to reach higher-value tasks
around the time the human is expected to become available. However, if the
operator finishes the task more quickly than predicted, he may then be forced to
wait idly for an undesirable amount of time before the next task arrival. If, on the
other hand, the planning phase under-predicts operator task duration (Fig. 5c),
ASSIST may allocate tasks in an overly-optimistic fashion. A vehicle may be
required to stay committed to a task longer than expected due to the human
operator, thus resulting in the vehicle arriving later-than-expected to subsequent
tasks. This can lead to both inefficient scheduling throughout the multi-agent team
(e.g. two vehicles each arriving to their tasks at the same time, requiring one to wait
an extended period of time for the human) as well as “missed rendezvous” (e.g.
missing a task time window).

In addition to task durations, predicting the human operator’s workload
threshold is important for the heuristics of the algorithm. Ideally, an operator would
be able to achieve 100 % accuracy on imagery classification tasks while remaining
as busy as possible in order to reduce scheduling constraints on task execution
times and minimize overall mission duration. With this in mind, adaptive workload
thresholds were increased following accurate imagery classifications to reflect the
fact that the operator was able to succeed at the prescribed workload. Upon task
failures, adaptive workload thresholds were decreased to allow the user to gather
himself for subsequent demands. Instead of this heuristic approach, future experi-
ments will incorporate secondary tasks to analyze and adjust the operator’s
workload threshold in a more direct fashion.

In terms of subjective data, the majority of participants preferring adaptive
modeling over the adaptable approach is contrary to original predictions which
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assumed that providing the human operator with more control over the system
would result in greater user satisfaction. However, these results align with other
findings in the literature. Specifically, Gombolay et al. [17] showed that humans
generally prefer to work within an efficient team rather than have a heightened role
in the planning process if that increased role is detrimental to overall team per-
formance. In the current pilot study, allowing human operators to adjust their own
performance models imposes additional workload requirements and generally
produces larger model mismatches and thus less efficient multi-agent plans.

7 Conclusions

Closed-loop planning approaches in which the autonomous system adapts flexible
human models throughout mission execution can improve overall mission perfor-
mance for tightly coordinated human-robot teams. The challenges of unpredictable,
heterogeneous human agents with dynamic, stochastic behavior can be addressed
through responsive replanning that leverages realized execution information. Also,
while adaptable human modeling failed to demonstrate improved mission perfor-
mance over the baseline open-loop approach, future work concerning efficient input
methodologies and comprehensive interface feedback—particularly as it relates to
model mismatches—may reveal added benefits.

This human-robot teaming pilot study highlights many potential avenues for
future work, such as testing longer missions to capture more dynamic human
performance and utilizing more comprehensive subjective questionnaires and
workload assessments. Additional work could be done to test more complicated
feedback modes, such as improving adaptable adjustment mechanisms and incor-
porating stochastic averaging [18], filtering [19], and learning techniques [20] into
the adaptive approach. A hybrid “adaptablive” mode could be created to investigate
whether building on both adaptive and adaptable strengths can be synthesized. This
could also distinguish effects of additional workload versus model discrepancies to
help explain the adaptive mode’s advantageous performance over the adaptable
strategy in this work.
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Self-scaling Human-Agent Cooperation
Concept for Joint Fighter-UCAV
Operations

Florian Reich, Felix Heilemann, Dennis Mund and Axel Schulte

Abstract In this article, we describe human automation integration concepts that
allow the guidance and the mission management of multiple UCAVs (Unmanned
Combat Aerial Vehicles) from aboard a manned single-seat fighter aircraft. The
conceptual basis of our approach is dual-mode cognitive automation. This concept
uses two distinct modes of human-agent cooperation, a hierarchical relationship
with agents working in delegation mode, and a heterarchical relationship with an
agent working in assistance mode. For the hierarchical relationship we suggest three
delegation modes (team-, intent-, and task-based). The agent in heterarchical rela-
tionship, i.e. the assistant system, adapts the operator-assistant system cooperation
and the guidance of UCAVs according to the named delegation modes. The
adaptation is shaped by the assessment of the operator’s mental state and external
situation features. Thereby, we aim at balancing the operator’s activity and work
demands. Future research at our institute will concentrate on developing a software
prototype for human-in-the-loop experiments.

Keywords Self-scaling automation � Human-agent cooperation � Dual-mode
cognitive automation � Assistant system � Multiple UCAV guidance � Delegation
modes � Operator-centered automation adaption

F. Reich (&) � F. Heilemann � D. Mund � A. Schulte
Institute of Flight Systems (IFS), Universität der Bundeswehr Munich (UBM),
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
e-mail: florian.reich@unibw.de

F. Heilemann
e-mail: felix.heilemann@unibw.de

D. Mund
e-mail: dennis.mund@unibw.de

A. Schulte
e-mail: axel.schulte@unibw.de

© Springer International Publishing Switzerland 2017
P. Savage-Knepshield and J. Chen (eds.), Advances in Human Factors in Robots
and Unmanned Systems, Advances in Intelligent Systems and Computing 499,
DOI 10.1007/978-3-319-41959-6_19

225



1 Introduction

In this article, we present our concept of self-scaling human-agent cooperation,
which is supposed to enable a single-seat fighter pilot to perform joint
fighter-UCAV missions with multiple UCAVs. In such operations, the pilot’s range
of responsibility includes the operation of the own fighter aircraft as well as the
guidance and the mission management of multiple cooperating UCAVs in a
dynamic air warfare environment. As a consequence, the task of flying the own
fighter aircraft is in conflict with the operation of the UCAVs. State of the art armed
medium-altitude long-endurance unmanned aerial vehicles such as the MQ9-Reaper
(General Atomics) are operated by a two-man team, consisting of a pilot and a
sensor and weapon operator [1]. The operation of multiple UCAVs from aboard a
single-seat fighter aircraft therefore requires an appropriate automation concept for
effective joint operations, since the UAV to operator ratio increases considerably.
Our automation integration concept is supposed to enable such operations and,
beyond this, to balance the operator’s activity-related work demands, and to address
automation-induced shortfalls in human-system interaction.

In the following section, we first summarize the findings from former own
studies on multiple UCAV operations with highly-automated agents and joint
fighter-UCAV operations. Then, we identify key issues of human-machine system
design. Chapter 4 gives a detailed overview of our concept. In Chap. 5 we analyze
our approach with regard to similar international work. Finally, in Chap. 6, we
conclude and provide an outlook on open conceptual issues.

2 Background

The Institute of Flight Systems (IFS) investigates joint fighter-UCAV operations in
future air warfare scenarios, in which we expect a mix of manned and unmanned
combat aircraft to be deployed (compare [2]). In the first phase of our research, we
mainly examined the capabilities of highly automated cognitive and cooperative
agents operating multiple UCAVs in joint air-to-ground attack missions. For this
purpose, a desktop simulation was developed in that artificial cognitive agents
autonomously operated the associated UCAVs on the basis of high-level abstract
goals, without the need of further human involvement [3]. A key feature of this
solution was the ability of the agents to negotiate the allocation of the tasks to be
performed during the mission between each other based on explicit goals for
cooperation and rules of coordination and communication.

In the second phase of our research, we focused on the realization of a mixed
manned-unmanned fighter-UCAV team. Therefore, we replaced the on-board agent
of one UCAV by a human pilot, who used a simple desktop human-machine
interface to control the aircraft and to communicate with the other agent-guided
UCAVs [4]. In human in-the-loop experiments, we could show the applicability of
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human-agent cooperation to joint fighter UCAV operations. For a more realistic
evaluation of the human-machine cooperation, in a next step the agents of the
desktop simulation were modified and integrated in a generic single-seat fighter
cockpit simulator [5–7]. For this setup and the following human-in-the-loop
experiments, a high level of automation was chosen for the UCAV agents. This
team-based cooperative guidance only required an absolute minimum of inter-
ventions by the pilot. The cooperative allocation of tasks between the UCAVs (i.e.,
suppression of enemy air defense, target reconnaissance, target designation, battle
damage assessment, and fighter escort) was performed by the agents fully auto-
mated, based upon negotiation mechanisms. This high level of automation pro-
duced the need for an associative assistant system, which consisted of a Team
Coordination Module (TCM) [5], and a Self-Explanation Capability Module
(SECM) [7]. The assistant system informed the operator about the behavior of the
unmanned team members, and thereby, ensured a required minimum of Situation
Awareness (SA) and trust in the automation. The TCM operated in an associative
assistance mode, which provided the pilot with spatial and temporal coordination
information of the UCAVs, and in a few use cases also in an alerting assistance
mode that directed the pilot’s attention in the case of coordination conflicts.
Additionally, the agents routinely explained the UCAVs’ behavior to the pilot, and
provided further information upon request. To evaluate the joint fighter-UCAV
system, an experimental study with German Air Force pilots was conducted. These
experiments included air-to-ground missions, where the manned fighter was sup-
ported by three UCAVs. The main tasks of these missions were the reconnaissance,
the designation and the engagement of a high priority target, the suppression of
ground-based enemy air defense, and the protection of the manned fighter in
general. To accomplish these tasks, the UCAVs and the manned aircraft had dif-
ferent capabilities and payloads such as High-Speed Anti-Radiation Missiles
(HARM) for Suppression of Enemy Air Defense (SEAD), Laser-Guided Bombs
(LGB) for the target destruction, cameras for reconnaissance, and laser designators.
The manned fighter aircraft could only perform the high-level mission goal, the
engagement of high-priority targets, after a visual verification of reconnaissance
pictures, provided by one of the UCAVs. All other mission-relevant tasks were
autonomously anticipated by the UCAVs’ agents according to their capabilities and
the dynamic environment. Throughout the mission, the UCAV agents proactively
pursued the overall mission goal. The experiments showed, that the cognitive
agent-controlled UCAVs could adapt to the changing environment and to unfore-
seen situations (e.g., pop-up threats) effectively. The assistant system, consisting of
the TCM and SECM, was considered as helpful and could slightly increase the SA.
However, a significant increase of trust in the unmanned members could not be
shown [7]. The study also indicated that the constant high level of automation
temporarily led to mental under-load of the pilots and was lacking in adaptability to
balance the operator’s activity and work demands over the course of the mission.
The experimental subjects further expressed the desire to be able to assign specific
tasks to the UCAVs during mission execution, especially in less demanding
situations.
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Generally speaking, the experiments approved that high-level automation in the
form of cooperating cognitive agents is realizable and suitable for multi-UCAV
guidance as well as for joint fighter-UCAV operations in demanding future air
warfare scenarios. However, the study also showed the need to balance the oper-
ator’s workload in higher as well as in less demanding situations.

3 Key Aspects of Automation in Human-Machine Systems

Due to severe human-induced system errors in highly-automated civil aviation
aircraft, researchers invested considerable effort to identify negative effects corre-
lated to automation in complex human-machine systems. In this chapter, we want to
summarize important aspects that may also negatively affect joint fighter-UCAV
operations. Afterwards we derive some basic guidelines for the design of our
system.

The first issue, called human-out-of-the-loop performance, is attributed to sev-
eral factors. These factors include vigilance decrements, complacency,
over-reliance, under-reliance, loss of SA, automation surprise, inappropriate feed-
back, and skill degradation, which are closely coupled to each other. Inappropriate
automation in human-machine systems may initiate vigilance decrements or
reduced operator alertness and as a consequence undetected system failures,
especially for systems where the human has a supervising role. Out-of-the-loop
issues due to operator vigilance are in many cases closely linked to complacency
and over-reliance on automation (compare [8, p. 438, 9, p. 544]). According to [9,
p. 544] detection and SA problems, as well as skill degradation can be negative
consequences of automation-induced complacency. In [10, p. 192, 11] the authors
also identify over-reliance as a negative effect of automation. At the same time
under-reliance on automation as a result of system unreliability (or automation
surprises) may also be a shortfall of automation [9, p. 543, 12]. Another important
source of errors in human-machine systems is the loss of SA. According to [13] SA
is mainly affected by complacency and vigilance, active-passive role switching, and
system feedback. Out-of-the-loop issues related to automation surprise base on
automation complexity, where the human operator may not be able to understand
the system behavior [9, p. 542, 14]. Another automation-induced
out-of-the-loop-performance issue is skill degradation. In [13] the authors link
skill degradation to changed operator vigilance and complacency. In [8, p. 438, 10,
p. 195, 11, 15] the authors also name automation-induced skill degradation as a
general drawback of automation.

A second aspect, which is associated to automation problems in human-machine
systems is unbalanced mental workload. According to [8, p. 438] automation may
increase as well as decrease mental workload, which can cause mental over-load as
well as mental under-load. In over-load situations the human operator is not able to
cope with the situation, under-load situations can be linked to the named
out-of-the-loop issues. Another problem with regard to workload is “clumsy
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automation” [10, p. 193], which affects the operator’s mental workload counter-
productively. In low-workload situations the workload is reduced, in high-workload
situations the operator’s workload may even be increased.

Based on these theoretical underpinnings, we identified approaches such as
human-centered automation (compare [10]), adaptable and adaptive automation
(e.g., [16]), and cognitive and cooperative automation (compare [17]) as key design
elements for our concept.

4 The Concept of Self-scaling Human-Agent Cooperation

To achieve the aforementioned capabilities, we suggest a human automation inte-
gration concept that features adaptable and adaptive human-agent cooperation. The
concept bases on dual-mode cognitive automation [17], which has already been
applied successfully in ground-based UAV guidance [18] and multi-UAV guidance
from aboard a helicopter cockpit (compare [19, 20]).

4.1 Framework for Automation Design in Complex
Human-Machine Systems

According to [17, 21] the starting point of sophisticated automation in
human-machine systems is the definition of a work process (WProc), the associated
work objective (WObj), the associated work process output (WPOut), and the
affected work object (WO). Furthermore, other work processes, the environment
(Env), supplies (Sup), and information (Inf) are considered. After defining the
WProc, the physical system running the WProc is considered. This system is called
a work system (WSys). Within a WSys, in principle, two roles are distinguished—
the Worker and the Tools role [21] (see Fig. 1).

• Worker: The Worker knows, understands, and pursues the WObj by own ini-
tiative. By definition a WSys cannot exist without a human Worker.

• Tools: The Tools receive tasks from the Worker and only perform them when
told to do so. Hence, the Worker has a hierarchical relationship to the Tools.

WObj

Env, Sup, Inf

WPOut
WOWorker Tools

Fig. 1 Work system with
worker and tools roles
according to [21]
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In order to describe highly automated work systems involving human-cognitive
agent teaming the authors in [21] suggest a symbolic language that allows
describing a small number of building blocks. These are the human Worker, the
Tool, and the Cognitive Agent blocks. Cognitive Agents are entities providing
higher cognitive capabilities and can exist in the role of a Worker or a Tool. In
addition, to describe the relation between these entities, hierarchical relationship,
heterarchical relationship, and teambuilding symbols are used (see Fig. 2).

One approach to facilitate automation in complex work systems is dual-mode
cognitive automation as suggested by Onken and Schulte [17]. This concept is
supposed to overcome the drawbacks of conventional automation by incorporating
Cognitive Agents into the WSys. The second key aspect of this approach concerns
the design of human-agent relationships. Dual-mode cognitive automation applies
two modes of relationship in the form of (1) a hierarchical and (2) a heterarchical
link between the human Worker and the Cognitive Agents.

4.2 Work System Design for Joint Fighter-UCAV
Operations

To integrate self-scaling human-agent cooperation in the fighter-UCAV system we
define the WProc “Perform Fighter-UCAV Mission”, the WO “Target”, and the
highly abstract WObj “Perform Fighter-UCAV Mission” as presented in Fig. 3.
This WProc is initiated by the WProc “Command & Control Operation”, which
represents the WProc of a superior command and control authority (e.g., Air
Operation Center), as well as the variables Env (e.g., weather conditions in target

human
Worker

Cogni ve
Agent Tool

Hierarchical Heterarchical Teambuilding

Fig. 2 Symbolic building
blocks following [21]

 

Command & Control 
Opera on

WProc
WObj

Perform Fighter-
UCAV Mission

Env, Sup, Inf
Informa on

Status

Target

WO
WPOut 
A ack
RECCEPerform Fighter-

UCAV Mission

WProcWObj
C2 Opera on

Fig. 3 WProc “Perform Fighter-UCAV Mission” with WO “Target”, WPOut “Attack/RECCE”,
and WObj “Perform Fighter-UCAV Mission”
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area), Sup (e.g., fuel), and Inf (e.g., status of reconnaissance of target area). By
introducing the human Worker (fighter pilot), the Tools (manned aircraft and
UCAVs), and Cognitive Agents, the WProc is afterwards materialized as a work
system.

As a conceptual basis of our automation integration concept, we choose the
aforementioned dual-mode cognitive automation. For the heterarchical relationship
we incorporate a Cognitive Agent in the form of an assistant system, which
cooperates with the human Worker. Furthermore, we incorporate Cognitive Agents
controlling the unmanned aircraft. The human Worker and the assistant system have
a hierarchical relationship towards these agents, although these UCAV agents are
supposed to hold a Worker role. The hierarchical relationship is realized in the form
of three delegation modes, featuring team-based, intent-based, and task-based
guidance of the UCAVs. These modes are used to scale the hierarchical relations
between the pilot and the assistant system agent towards the UCAVs as well as the
cooperation among the UCAV agents.

1. Team-based guidance (Fig. 4a): This delegation level comprises multiple
UCAVs pursuing a highly abstract mission goal as a team, e.g., a coordinated
target attack. Therefore, each agent needs to have the capabilities to anticipate
tasks in consultation with other team members. Furthermore, the team members

Fighter-UCAV 
Mission

WSys

Worker Tools

Assistance

Fighter

UCAV1

UCAV2

UCAV3

Team-Based

Fighter-UCAV 
Mission

WSys

UCAV1

UCAV2

UCAV3

Multiple
Intent-Based

Worker Tools

Fighter-UCAV 
Mission

WSys

UCAV1

UCAV2

UCAV3

Multiple
Task-Based

Fighter-UCAV 
Mission

WSys

UCAV1

UCAV2

UCAV3

Mixed
Team + Intent-Based

a) b)

c) d)

Fighter

Fighter Fighter

Assistance

Assistance Assistance

Fig. 4 Work system configurations. a Team-based guidance, b Multiple intent-based guidance,
c Multiple task-based guidance, and d Mixed team + intent-based guidance
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need to cooperate effectively within the team to keep the team plan and
schedule, but also to cooperate with other UCAVs/UCAV teams. This delega-
tion mode may be applied in high workload situations, where the pilot is not
able to guide and manage individual UCAVs on an intent- or task-based level.

2. (Multiple) intent-based guidance (Fig. 4b): Here a single UCAV is supposed to
pursue a mid-level goal, e.g., the observation of a target area. Therefore, the
associated agent needs to be able to autonomously plan and schedule towards
the mid-level goal. Although the UCAV pursues an individual task, the asso-
ciated agent cooperates with other UCAVs/UCAV teams to avoid conflicts with
regard to the high-level mission goal. This delegation mode is supposed to be
appropriate for balanced workload.

3. (Multiple) task-based guidance (Fig. 4c): The unmanned team member receives
a low-level task, e.g., taking a recce picture. For this delegation mode the
associated UCAV agent must provide low-level task assignment and execution.
This mode is supposed to balance low workload phases by increasing the
operator’s delegation tasks. It might as well be used for tasks, where immediate
action or ethically responsible decision (e.g., weapon deployment) implemen-
tation is required that shall not be left to the automation.

Besides these levels, the delegation of the UCAVs could also be applied in a
mixed manner (Fig. 4d), where e.g., a sub-team of UCAVs shall suppress the
enemy air defense in the target area, while one UCAV shall reconnoiter the egress
route.

The delegation modes correlate to a two-dimensional definition of automation.
As suggested in [22], we want to take into account the ability of an entity to take
care of itself (self-sufficiency) and the freedom from outside control (self-direct-
edness). In our application the Cognitive Agents operating the UCAVs are sup-
posed to have a high self-sufficiency (high-level skills), but are restricted in their
self-directedness according to the delegation modes team-based, intent-based, and
task-based. In contrast, the assistant system (heterarchical component) has a high
self-sufficiency and a high self-directedness. For the definition of the
operator-assistant system relationship, we introduce a third dimension of automa-
tion, which we call assistance. This dimension provides alarming, supporting, and
cooperating functionalities, which enable the assistant system to vary between
attention guidance, proposal of task modifications, and task adaptions (due to
ethical issues, task adaptions may require human approval).

4.3 Self-scaling Capabilities

To enable our system to work effectively in joint fighter-UCAV operations, our
automation integration concept is supposed to actively balance the operator’s
mental state, and to address automation-induced negative effects. Therefore, the
heterarchical and the hierarchical relationship between the human Worker and the
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Cognitive Agents feature scalability. The hierarchical relationship (the guidance of
the UCAVs) is scaled according to the proposed delegation modes, whereas the
heterarchical relationship (operator-assistant system cooperation) is scaled by
adapting the mode of assistance and the Human-Machine Interface (HMI).

As the assistant system is able to initiate system adaptions autonomously, it
represents the key component of our automation concept. To trigger system
adaptations, we intend to pursue an operationalization of the pilot’s mental work-
load similar to the approach in [23]. The operationalization of mental workload
considers the operator’s tasks, activities, and related mental resource demands, as
well as observable variations in behavior patterns.

Although the assistant system primarily initiates system adaptations (system-
initiated adaption mode), the pilot is able to intervene and to directly assign tasks to
the UCAVs in case of faulty system behavior or when such interaction is desired
(operator-initiated adaption mode). That implies that our assistant system allows
two modes of cooperation with the human Worker. In case of direct operator task
assignment not only the delegation of the UCAVs is adapted, but also the HMI and
the mode of assistance. Nevertheless, the assistant system is still able to propose
system adaptations when working in the operator-initiated adaption mode. If the
human operator accepts such a proposal, the assistance, the HMI, and the delegation
of UCAVs is adapted according to the pilot’s mental state and the environmental
situation (as in the system-initiated adaption mode). By monitoring operator inputs
and mixed-initiative capabilities we want to enable the assistant system to solve
evolving conflicts in the operator-initiated adaption mode interactively with the
human operator.

4.4 Relations Between Human Worker
and Cognitive Agents

In this section we want to particularize the relations between the Cognitive Agents
and the human Worker. We intend to design effective human-agent cooperation by
taking account of the four requirements basic compact (to work together), main-
tenance of a common ground, directability, and predictability as suggested in the
joint-activity concept for effective team work in [24].

To achieve a basic compact for common-grounding activities, all team members
need to understand and accept their role in the work system. In the context of our
military application the Cognitive Agents shall not be able to refuse operator
commands, unless the situation does not allow the execution of the mission or any
subtasks due to ethical reasons (e.g., the bombing of a target or an air defense
position, where civilians may be affected).

To maintain a common ground, we intend to use shared knowledge in the form
of a blackboard, and Cognitive Agents, which are enabled to model the human
Worker and other Cognitive Agents. The use of a blackboard is supposed to
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permanently provide appropriate information on the status, actions, and intentions
of all team members. By linking all agents to the blackboard they are able to
observe the other team members. Understanding of this information shall be
enabled by incorporating appropriate agent knowledge. The assistant system agent
is supposed to pertinently interpret information on the blackboard and thereby shall
be enabled to manage attention, e.g., by informing the human Worker about con-
flicts and problems which may negatively influence the mission. In addition, we
want to incorporate reasoning capabilities in our agents, which take individual goals
and mutual impact on actions into account. Our assistant system is supposed to act
de-conflicting and enable goal negotiation by mixed-initiative strategies. To reduce
coordination costs we want to build up our system on a Multi-Agent System
(MAS) which offers sufficient coordination.

Mutual directability shall be assured by applying the aforementioned hierar-
chical delegation modes, mutual predictability shall be generated with the black-
board, which is accessible and understandable by each team member.

5 Related Work

In the following we present selected works which are closely linked to our concept.
In the context of multiple UAV guidance we identified resemblances with the works
of [25, 26]. In [25] an assistant system with mixed-initiative planning and execution
capabilities was incorporated in a future mountain search and rescue system. Their
approach made use of hierarchical delegation modes to enable a co-located operator
to guide and manage multiple UAVs on adjustable levels of automation. In [26] a
manned fighter aircraft was accompanied by three simulated and one real UCAV in
mixed-reality flight tests. In their scenarios the pilot largely took on a supervisory
control role after defining mission goals taken from a “pool” of goals. In their
previous work the authors had recognized the need for team-based task allocation to
UCAVs due to operator over-load issues. The self-organized task allocation among
participating UCAVs was realized with a MAS, in which four different types of
agents cooperated (user, group, specialist planning, and UAV agent). Although, the
named concepts both bear a resemblance with our approach, they lack of
self-scaling capabilities to autonomously adapt to the operator’s mental state and
the environment. Related works with respect to adaptability and/or adjustability are
numerous (e.g. [16, 27]). However, such works often apply system- and
user-initiated dynamic function allocation whereas the scaling in our approach aims
at adapting human-agent and agent-agent cooperation. Besides the abovementioned
workload operationalization method [23], there exist further approaches, which are
used to trigger adaptive automation. The authors of [28] correlated the mental
workload to eye fixation time in combat management scenarios with different
cognitive task load. Further works base on EEG (electroencephalography) mea-
surements. In [29] a subject-specific discrimination of two workload levels was
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achieved with artificial neural networks. The cross-subject training and testing of a
hierarchical Bayes model in [30] enabled the separation of three workload levels.

6 Conclusion

In this article, we propose a human-automation integration concept, which is
supposed to enable a single-seat fighter pilot to guide and manage multiple UCAVs
from aboard the cockpit in joint fighter-UCAV operations. In a first step, we define
the associated work process, in which we incorporate Cognitive Agents, Tools, and
the pilot as a human Worker to instantiate a work system. The allocation of
Cognitive Agents in the work system bases on the concept of dual-mode cognitive
automation. We make use of an assistant system and multiple UCAV guidance on
the basis of three different delegation modes (team-based, intent-based, and
task-based). The conceptual core of our approach is the self-scaling human-agent
cooperation, which features human-centricity, adaptivity, and cognitive and coop-
erative automation. Thereby, we intend to balance the operator’s mental state, and
to address automation-induced negative effects. In general, system adaptions are
initiated by the assistant system on the basis of the operator’s mental state and the
dynamic battlefield environment. To intervene in faulty system behavior or when
desired, our approach also allows operator-initiated system adaptions.

Although the named capabilities are supposed to allow effective and efficient
joint fighter-UCAV operations, we identified some open issues which show the
need for further investigations. The first essential point we identified is the choice of
an appropriate cognitive (multi-)agent software. Another challenge will be the
design of the Human-Machine Interface in the cockpit. It must enable effective
interaction between the human operator and the automation for changing system
configurations.

To investigate the proposed concept, we intend to implement a software pro-
totype in our single-seat fighter simulator for experimental studies in the mid-term
future.
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Experimental Analysis of Behavioral
Workload Indicators to Facilitate
Adaptive Automation for Fighter-UCAV
Interoperability

Dennis Mund, Felix Heilemann, Florian Reich, Elisabeth Denk,
Diana Donath and Axel Schulte

Abstract In this article, we present an experimental study investigating the oper-
ationalization of behavioral indicators of pilots’ mental workload in a military
manned-unmanned teaming scenario. For the identification of such behavioral
workload indicators, we conducted an explorative experimental campaign. We
chose an air-to-ground low-level flight mission with multiple target engagements.
To further increase the task load of the pilots, we introduced an embedded sec-
ondary task, i.e. the classification of target pictures delivered by remote UCAVs.
This is a typical task, which we expect in future manned-unmanned teaming setups.
The examination of the subjective ratings shows that high individual workload
states were achieved. In these high workload situations, the subjects used various
behavioral adaptations to keep a high performance level while regulating their
subjective workload. As these behavioral adaptations occur prior to grave perfor-
mance decrements, we consider to use behavioral changes as indicator for high
workload and as trigger for adaptive support.
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1 Introduction

With manned-unmanned teaming being realized in airborne helicopter cockpits like
the Apache E, in which unmanned vehicles are controlled from aboard the heli-
copter [1], we anticipate similar applications in the fighter jet domain in the near
future, as for example [2]. This will be especially challenging for single-seated
fighter aircraft. Although it is expected that these aircraft will be equipped with
high-level onboard automation, their pilots will be additionally burdened with
certain tasks concerning the supervision and handling of unmanned assets, which
may lead to unbalanced workload conditions.

Depending on the given situation, this supervisory control task results in high
variations of task-load for the human pilot. In combination with individual
parameters, such as experience and training, these variations in task-load will entail
a massive fluctuation of the mental workload of the pilot. In order to support pilots
adequately, we suggest using adaptive automation techniques as part of an assistant
system to alleviate peaks of workload (as in e.g. [3]). Therefore, a continuous
determination of the mental workload of the pilot is required. Considering the
available workload measurement methods, i.e. subjective ratings, psychophysio-
logical-, performance-, situation based-, and behavior measurements, only a subset
of these methods may be suited for continuous individual workload state gathering
[4]. Subjective ratings rely on questionnaires and thus the workload is not acces-
sible continuously. In contrast, situation based measurements can be accessed, but
use generalized models, which makes them insensitive to individual factors of the
given subject. The remaining methods are appropriate, but each of them has its
benefits and drawbacks. While physiological measurements allow conclusions
about the cognitive workload by using parameters like heart rate or the electrical
resistance of the skin, these methods do not consider information about the task
responsible for the high workload. Performance measures indicate high workload
situations and the associated task context, but this information is only available after
performance already declined. Similar to human operator performance, human
behavior is also task specific and indicates high workload situations before per-
formance decrements occur. The reason for this is that humans adapt their behavior
according to their perceived workload situation to cope with high workload situ-
ations and to maintain their performance on a high level as long as possible (see
[5]). By taking advantage of these objectively observable behavioral adaptations as
indicator for high workload situations within future adaptive assistant systems,
these systems might be able to offer task specific support prior to grave performance
decrements.

In order to identify such regulating behaviors we conducted experiments in our
fighter aircraft research simulator to identify behavioral adaptations. We use
fighter-UCAV manned-unmanned teaming missions as application context. The
remainder of this section describes the behavioral adaptations in more detail, fol-
lowed by a description of our experimental setup in section two. The results of our
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experimental campaign are presented in section three. The final section summarizes
our findings and presents open issues which need for further investigation.

1.1 Behavior in High Workload Situations

Many publications indicate that human performance depends on the subjective
mental workload a person is exposed to (e.g. [6]). In low workload situations, the
performance may be also low, due to boredom and complacency effects. In contrast
high workload situations require additional effort of the human to retain a certain
level of performance compared to a normal workload situation, in which the human
reaches a high performance without difficulties. Figure 1 illustrates this relationship
between performance and workload. The limits between low, normal, and high
workload depend on individual factors that include, but are not limited to training
and experience, and also are influenced by behavioral precursors like health state or
fatigue (see [6]). One expression of a person spending effort is the self-adaptation of
behavioral patterns in high workload situations, where the human deviates from
regular task execution, in order to execute tasks more efficiently at the expense of
performance (see [7]). Suchlike adaptations in behavioral patterns are, in principle,
accessible to technical measurement, and can be exploited as indicator for high
workload situations [8]. According to [9] they are called self-adaptive strategies and
can be separated into two classes:

• Load-sharing: A task or subtask is assigned to another person/crew-member or
to automation in order to distribute the task load over multiple operators.

• Load-shedding: A task is executed more efficiently at the expense of the per-
formance. By load-shedding the performance is slightly decreased, but the task
can be performed more efficiently.
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Fig. 1 Schematic relation between workload and performance
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2 Experimental Setup

To identify such self-adaptive strategies we conducted experiments with German
Air Force pilots in our generic jet fighter research simulator cockpit. We expected
behavioral changes between situations of low-subjective workload and those of
high workload. The experiments contained four military low-level flight missions
for behavioral data acquisition. Each of these missions consisted of five segments
with different levels of complexity, mainly determined by the frequency of the
embedded secondary task. In order to distribute known and unknown individual
disturbances uniformly over the group of subjects, we chose a duplex randomized,
partial, within subject experimental design. The randomization varied the sequence
of missions to be accomplished by the subjects and within each mission the
sequence of levels of difficulty.

The primary task of each mission was the engagement of four targets along a
predefined route in an air-to-ground combat scenario. In order to increase the
workload of the subjects they had to meet given mission-specific constraints with
respect to the primary task. Therefore, we used low-flight level constraints defining
the minimum and maximum flight altitude (minimum flight altitude: 100 ft AGL,
maximum flight altitude: 300 ft AGL). This task was impeded by a high threat level
evoked by multiple Surface to Air Missile (SAM)-Sites in the mission area.
Furthermore the subjects had to meet Time-over-Target (TOT) intervals for each
target engagement (TOT ± 5 s).

We additionally charged the subjects with an embedded secondary task, the
classification of objects regarding type (i.e. vehicle, person, building, SAM-site)
and hostility (i.e. friend/foe) using sensor images provided to the test subjects
during their primary task execution (see Fig. 2 middle and right). This secondary
task is expected to occur in future manned-unmanned teaming setups, where the
unmanned assets are operated on Level-of-Interoperability (LoI) II/III, which
includes amongst others the receipt, monitoring and evaluation of UAV (sensor)
payload data. In order to increase the workload, the density of the object classifi-
cation tasks were varied between each mission segment and hence over the course
of mission.

Fig. 2 Left: Setup of our simulation environment; Middle: Exemplary image that had to be
classified as a friendly Building; Right: Exemplary image that had to be classified as an enemy
vehicle
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To capture human behavior during mission accomplishment, the simulator (see
Fig. 2 left) was equipped with Smart Eye Pro®, a contact free, video-based eye
movement measurement system. Additionally, the manual interactions of the pilot
(throttle-, stick-, and display/button interactions) were recorded. In order to relate
the operators’ behavioral adaptations to his subjective workload, we additionally
gathered subjective workload ratings and performance measurements. To assess the
subjective workload ratings we used the NASA-Task Load Index [10], because it is
common in the flight domain. The questionnaires were presented directly after each
target attack. The measurement of the operator performance referred to the primary
and the secondary task comprising the following performance and behavior
parameters:

• Primary task related parameters: number of successful target attacks, violation of
the given low-level flight constraints, violation of the specified TOT tolerances.

• Secondary task related parameters: number of accomplished object classification
tasks, number of errors in the object classification task, required time for the task
accomplishment (i.e., interaction time), and the time between the appearing of
the task and the beginning of the execution of the task (i.e., wait time).

The experiments were distributed over a span of two days per subject. The first
day began with an introduction to the simulation environment, the methods for
subjective and behavioral data acquisition (i.e., subjective ratings and eye-tracking
measurement). Afterwards, the primary and secondary tasks were introduced in four
trainings missions, and the day ended with the first mission for data acquisition. On
the second day, a refresher training was offered to the subjects before conducting
three further missions for behavioral data acquisition. The experiments were run
with six German Air Force fighter pilots with a minimum age of 29 and a maximum
age of 56 years. This results in an average age of 42.3 years with a standard
deviation of 23.86 years.

3 Experimental Findings

This section describes the findings from our experiments with German Air Force
pilots. First the results of the subjective workload assessment are presented.
Afterwards the performance and the observed behavioral adaptations (self-adaptive
strategies) are investigated.

The performance measures for the primary as well as the secondary task do not
show any clear correlation with the density of images that had to be classified by the
pilot. This indicates that the image density is insufficient as a sole driver for the
difficulty of a mission segment. We identified the structure of the encountered
terrain, approximated by the standard deviation of the terrain altitude, as a second
important driver for the difficulty of a mission segment. Based on these findings, the
mission segments were grouped into three clusters of similar terrain difficulty and
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increasing image density (low, medium, high) and one cluster with medium image
density and high terrain difficulty (see Fig. 3). Using these clusters, it is possible to
evaluate the effects of increased image density, as well as increased terrain difficulty
on gathered workload and performance independently of each other.

3.1 Subjective Workload Ratings

The combined workload ratings from the NASA TLX questionnaires in Fig. 4 show
medium to high workload demands across all experiments. This is a good indication
that the experimental setup stimulated the workload range as intended.
Additionally, we observed an insignificant increase in workload ratings with
increased image density (Easy-Easy ≥ Easy-Medium ≥ Easy-Hard). On the other
hand, there is no change in the subjective workload ratings between the clusters
with different terrain difficulty (Easy-Medium vs. Hard-Medium). The mean, as
well as the median, of these ratings are similar for both clusters. Figure 4 shows
boxplots of the workload ratings attributed to the four different clusters. The
whiskers depict the extreme values (Minimum, Maximum) of the given ratings.

Fig. 3 Clusters of varying difficulties. MX-SegY is a short hand notation for mission X
segment Y
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3.2 Performance Evaluation

All subjects succeeded in engaging the mission targets, with the exception of one
subject missing its first target in its first mission. We assume the one failed target
attack to be connected to a lack of training. Concerning the given time constraints,
in general, there were only very few deviations from the demanded TOT intervals.
An exception was mission two segment three, in which all but one subject missed
the timing interval. The third performance criterion for the primary task, i.e. the
adherence of the altitude range, shows a correlation with the density of the sec-
ondary task. A higher density of this classification task results in an increased
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violation of the altitude range, as shown in the mean values for the clusters
Easy-Easy, Easy-Medium, and Easy-Hard in Fig. 5 Similarly the comparison
between the Easy-Medium and the Hard-Medium cluster shows a strong negative
influence of the terrain difficulty on the adherence of the altitude range.

Regarding the secondary task, all subjects were able to process the 56 images per
mission that were provided by the UAVs. The average processing time for one
identification task was affected neither by the terrain difficulty nor by the image
density as shown in Table 1. In contrast, the time between the appearance of a
classification task and the start of its processing increased significantly with
increasing task frequency from a mean of 7.5 s (sample size = 180; std. devia-
tion = 6.3 s) in the Easy-Easy to 9.41 s (sample size = 450; std. deviation = 8.4 s)
in the Easy-Hard cluster. As observed for the processing time, this performance
measure is not affected by the terrain difficulty.

3.3 Behavioral Adaptations

In a second step, we performed a more in depth analysis of the experimental data in
order to detect behavioral changes induced by subjective workload effects. In the
following, we will describe the identified self-adaptations.

Deliberate Relaxation of Flight Constraints. The first strategy refers to the
relaxation of the given flight altitude constraints (lower flight limit: 100 ft AGL,
upper flight limit: 300 ft AGL). We observed that some of the subjects relaxed this
constraint right from the beginning in order to prevent critical workload conditions
by freeing mental resources, otherwise required for the low-level flight within the
limits. Other subjects tried to stay within the given flight constraints. The inten-
tional use of this strategy was confirmed by the subjects in a debriefing at the end of
the experiments.

Delay in Object Classification Task. In this strategy, subjects delayed singular
image processing tasks (object classification) in favor of other tasks. The use of this
strategy was frequently observed, especially when the subject encountered situa-
tions of increased difficulty in the primary task, e.g. during navigational turns at
route waypoints, or during attack runs. Figure 6 shows the execution of the object
classification task during a navigational turn (grey area) compared to regular task
execution. Each task performance is depicted by using the three task-relevant times:
the time when the task appears first (circle), the time when the pilot starts working
on the task (diamond), and the time of task completion (square). The time of the

Table 1 Mean and standard deviation of the average secondary task execution per cluster

(Sec) Easy-easy Easy-medium Easy-hard Hard-medium

Mean 4.53 4.23 3.91 4.19

Std. deviation 2.05 1.34 0.94 1.07
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task appearance (Task appearance) is defined by the point in time, when the sensor
image is received. Task performance starts (TaskProc—Start), when the pilot opens
the image browser. Finally the task is completed (TaskProc—End), when the pilot
presses the submit button to enter the classification result to the system.
Images 233, 234, 236, and 237 were processed routinely, while image 235 was
delayed, because of a navigational turn.

Reprioritization. Within this behavioral adaptation, the subjects interrupted
their working on the secondary task (i.e., object identification task) and focused on
the primary task for a short duration, to the primary task in order to avoid violations
of the aforementioned constraints (flight altitude, flight path, TOT-Times). After
resolving any violations, the subjects switched directly back to the processing of the
object identification task. As this strategy comes along with attentional switching it
can be identified and quantified using eye-movement analysis. Figure 7 visualizes
the regular behavior for the object identification task on the left side, and the
reprioritization strategy on the right side. The upper graphs visualize the test sub-
jects’ attention allocation to the cockpit displays and the out-the-window view. For
the object identification task, the subjects had to focus their attention on MHDD1
(Multifunctional Head-Down Display), as this was the display where they received
the sensor images. The lower graphs in Fig. 7 visualize the time line of the
simultaneous secondary task performance of the object classification task (Task
appearance (circle), TaskProc—Start (diamond), and TaskProc—End (square), as
described earlier). During a regular object classification task (left side), the subject’s
visual attention remained on MHDD1 during the whole task performance. The task
duration was about 4.22 s in average. In cases where the test subjects applied the
reprioritization strategy (right side), they started with an attention switch to
MHDD1 and then started the task. Afterwards the subjects interrupted this sec-
ondary task to check constraint violations in the primary task in the out-the-window

Fig. 6 Timing information for secondary task execution. The grey area shows task execution
with the delay strategy due to a navigational turn opposed to regular execution in the non-gray
areas
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view (attention on Visual Middle), and finally switched their attention back to
MHDD1 to finalize the object classification task. Due to the reprioritization the
object classification task performance took about twice as long as regular.

Batch Processing. This strategy, we interpret as a combination of the strategies
deliberate relaxation of flight constraints and delay in object classification task. The
test subjects postpone the secondary task performance until there is a batch of them.
Then they heavily abandon from the primary task to temporarily reallocate atten-
tional resources to the secondary task and process the whole batch at once. This
reduces the amount of attention switching costs [11] and consequently reduces the
overall cognitive work demands. The upper half of Fig. 8 plots the flight altitude
over time as well as the terrain elevation, whereas the bottom half shows the

Fig. 7 Example of regular task execution (left) compared to the reprioritization strategy (right) for
test subject 3. The upper images show the attention allocation of the subject towards the displays
(cockpit displays and visuals), the lower images show the execution timeline of the object
classification task

Fig. 8 Example of regular task execution (left) versus batch processing (right) for test subject 6.
The upper plots show the flight altitude and the terrain elevation, the lower plots show the events
in the object classification task
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execution of the image classification task over the same time span. On the left hand
side, the regular task execution is depicted, while the right side shows the task
execution with the batch processing strategy.

3.4 Findings on Usage of Strategies

In general, the utilization of self-adaptive strategies was increased with a rising
density of object classification tasks. This was particularly evident for the batch
processing strategy, which was not used in any mission segment of the easy-easy
cluster, but frequently in the hard-easy cluster. In contrast, a comparison between
the easy-medium and the hard-medium cluster shows a less frequent usage of the
strategies batch processing, reprioritization, and delay in object classification task
with a more challenging terrain. This may be linked to an excessive usage of the
deliberate relaxation of flight constraints strategy, as the altitude violation increased
substantially in the hard-medium cluster, and the according subjective workload
ratings were not influenced by the terrain. This means that the subjects decreased
their performance in the primary task to a level, so that the object classification task
could be performed without reaching excessive work demands.

4 Conclusions

Investigating data from our workload experiments with German Air Force pilots,
we identified several behavioral adaptions. These adaptations were used by the test
subjects to sustain high performance levels in high workload situations. In the
mid-term future we want to examine the identified strategies in more detail to
integrate the recognition of self-adaptive strategies into automated human machine
systems. Therefore, we will need to generate machine runnable models of measured
behavior patterns, e.g. by using machine-learning methods. This will allow for
objective, non-intrusive, and context-sensitive assessment of workload for the use
in adaptive assistant systems.
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Part V
Supporting Sensor and UAV Users



Model-Driven Sensor Operation
Assistance for a Transport Helicopter
Crew in Manned-Unmanned Teaming
Missions: Selecting the Automation Level
by Machine Decision-Making

Christian Ruf and Peter Stütz

Abstract One of the research fields at the Institute of Flight Systems (IFS) of the
University of the Armed Forces (UniBwM) focuses on the integration of recon-
naissance sensor operation support in manned-unmanned teaming (MUM-T) heli-
copter missions. The purposive deployment of mission sensors carried by a team of
unmanned aerial vehicles (multi-UAV) in such missions is expected to bring in new
and impactful aspects, especially in workload-intensive situations. Paradigms of
variable automation in the sensor domain and cognitive assistant systems are
intended to achieve an operationally manageable solution. This paper provides an
overview of the sensor assistant system to be deployed in a MUM-T setup. To
manage sensor deployment automation functions, a machine decision making
process represented by an agent system will be described. Depending on a workload
state input, a suitable level of automation will be chosen from a predefined set.
A prototype system of such agent with its capability to react on varied stimuli will
be demonstrated in a reduced toy problem setup.

Keywords MUM-T �Multi-UAV �Mission sensors � Human operator � Assistant
system � Adaptive automation � Machine decision making � Rational agent

1 Introduction

The R&D project CASIMUS (Cognitive Automated Sensor Integrated Unmanned
Mission System) deals with the challenge to support the crew of a two-seated military
transport helicopter with sensor equipped unmanned aerial vehicles (UAVs).
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The MUM-T—approach ensures that no further chains of command are involved as
these UAVs are directly deployed during missions by the helicopter crew. They shall
enable the crew to reconnoiter the intended routes of flight and to survey certain
regions of interest such as operation areas or potential landing zones. To achieve such
nearby and time-critical reconnaissance, the UAVs and their payload sensor systems
have to be scheduled, controlled and sensor output needs to be monitored by the
helicopter crew. This is expected to influence the crews’ workload through the
extension of the crews’ task spectrum and a higher overall mission complexity.
To counter this potential workload increase, an adaptive, cognitive assistant system
[1, 2] provides situation-adapted support by continuous crew supervision and aims to
balance crew workload. For UAV platform guidance, a high-level task-based-
guidance paradigm has been proposed [3]. Similarly, a corresponding automation
layer will be proposed in this paper for the domain of mission sensor deployment,
where human centered adaptive automation is expected to reduce and simplify
reconnaissance tasks, regarding technical limits of the automated system functions.
To select a suitable level of automation, an agent system suggests the automation
level by reweighting the current user needs and the available technical capabilities.
The sensor assistance system developed in this context is prototyped and tested in
simulated MUM-T transport helicopter missions at the Institute of Flight Systems
(UniBwM).

2 Problem Scope

2.1 Automation as a Solution

The nature of the UAV reconnaissance system used in CASIMUS, containing
multiple distributed sensor carrying platforms directly guided from an airborne
manned helicopter, differs in many ways from conventional UAV systems. In
conventional systems, the platforms are controlled and monitored from a ground
control station (GCS), where a dedicated payload operator monitors and controls
the sensor system, while the UAV pilot controls and operates the vehicle itself. In
the MUM-Teams considered, one of the helicopters crew members has to take on
these tasks, most likely the pilot-not-flying (PNF). A task spectrum similar to the
GCS’ payload operator ones would be added to the PNF’s regular tasks. The need
to control multiple UAVs and monitor their sensor output by only one operator
further aggravates the situation, which may eventually lead to an excessive amount
of workload. Moreover, the resulting operative workstation environment differs
substantially from those of conventional UAV systems.

A higher degree of process automation would be the classical way to deal with
these problems resulting from intensive user involvement, continuous monotonous
activity or high human workload. To efficiently incorporate the new sensor oper-
ation activities in the regular task range of a PNF, machine perception capabilities
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integrated into the sensor systems should to be on his hand as supporting, auto-
mated high-level functionality.

2.2 Automation as a Problem

In today’s cockpit environments, human crews are used to work with highly
automated systems, characterized by reliable and deterministic behavior. Still,
complex automation can lead to out-of-the-loop—effects of the crew [4], misin-
terpretation of automation states (“Opacity-effect” [5, 6]) or relying without ques-
tion in automation systems (“Over-Reliance” [7]). Wrong belief about the
automation systems state and capability is known to be a reason for human failure.
Distrust in automation will occur when automation systems don’t work in a reliable
way. The operators’ degree of “trust in automation” is a criterion whether to use
automation support at all or perform the task in person [8].

When it now comes to offer automated functions in the domain of mission sensor
deployment and data assessment, the problem may be further aggravated due to
domain specific technical circumstances. Software based exploitation of data
acquired by mission sensors bears the vulnerability to fail or deliver non-reliable
results under changing circumstances (e.g. false positive or true negative detec-
tions). Mainly, environmental changes (daytime, weather, nature of ground, illu-
mination conditions and signal-to-noise-ratio) are affecting the correctness of
delivered output. Specifically computer vision algorithms have system inherent
uncertainties that yield to technical result imperfection, especially under a wide
operational range. Knowledge about critical conditions for successful usage is often
hidden or reserved to expert users.

Furthermore, mission sensor systems carried on UAVs have performance limits,
based on physical measurement principle and sensor resolution. Again, expert user
knowledge is necessary to cope with these features. To take this into account, the
probability of failure [9] during operation must be considered when automatic
sensor data processing is employed.

2.3 General Approach

From the above one can summarize that sensor data evaluation can be performed
alternatively by machine based automation systems or by the human operator.
Machine-based evaluation can process data with high bandwidth, works
fatigue-proof, but can’t ensure perfect detection performance. Man-based evalua-
tion is exhausting, causes high human workload, only on limited bandwidth, but
brings in very high cognitive human capabilities.

Main requirement for a technical system which tackles this antagonism is to
achieve a balance between tolerable human workload and necessary reconnaissance
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performance. Thus, in our context, the proposed assistant system has to deal with
the occurrence of human workload as well as reliability of complex technical
systems’ automation. To achieve this goal, variable, situation-dependent levels of
automation are proposed to be used in this domain to represent adaptive machine
capabilities combined with different stages of human involvement.

3 Related Work

This chapter aims to relate the proposed approach to background paradigms and
previous work.

In [10], three basic requirements for assistant system behavior were proposed to
be applied by assistant systems for crew support. Here the assistant system acts on a
stepped de-escalation scheme. It ranges from guiding the crews’ attention to the
most urgent task over transferring a complex task situation in a manageable one up
to allocating specific automated means for the execution of tasks that are not
accomplishable by the crew [1]. Applying these design requirements to a sensor
assistant system fosters the idea of situation-dependent crew support and
machine-process execution. In this context the paradigm of a variable degree in
automation is referred to as adaptive automation or variable automation. Different
level arrangements result in stepped involvement of the human operator [11, 12].
Adaptive automation systems select a suitable level of automation or choose a
situation-adequate mode depending on the current context [13]. Changes in
automation degree can be initiated by both, the human operator and the technical
system. The system is specified as adaptable (if the user invokes changes) or
adaptive (change initiative by automation itself) [14]. As pointed out above,
offering variable levels of automation shall be used in the proposed sensor assistant
system to counteract work-load intensive situations.

The guidance of multiple UAVs out of a helicopter cockpit with support of an
cognitive assistant system was successfully demonstrated in simulated missions [2]
in a past R&D project. However there, idealized sensor deployment was assumed,
which did not require the crew to interact with the UAVs sensor system. The
assistant system proposed in this paper now should also support the crew when
operating more state-of-the-art payload systems.

Also in [2] an error-free, nearly fully automated target recognition (ATR) system
approximated sensor data processing. In CASIMUS now data processing will be
aspired which includes typical artefacts and imperfections, in order to investigate on
the reliability issue discussed above. Therefore, a “Sensor- and Perception-
Management System” framework [15, 16] (SPMS) shall be integrated which hosts
mission sensor data processing algorithms. This framework administers environ-
ment—and context-adapted machine perceptive capabilities by selection and
application of appropriate image processing algorithms. High level capabilities
realized this way can be applied for typical airborne surveillance tasks such as aerial
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mapping as well as object detection and tracking. In addition, each algorithm is
accompanied by a “trustworthiness” figure which assesses its reliability in the given
circumstances.

4 Sensor Assistant System

Figure 1 gives an overview of the system blueprint for offering sensor deployment
support, implemented along the requirements set out above. The figure shows three
divisions:

• Automation Functions: a repository of installed machine-performable automa-
tion functionality in the domain of Computer Vision and Gimbal Control

• Management: A decision mechanism to determine the appropriate automation
degree depending on different input conditions. Results are forwarded to the
operator or, under specific conditions executed automatically.

• Knowledge Models: models of human working processes and their costs of
human resources allocated occurring during performance for different automa-
tion levels (“Sensor Taskmodel”) like illustrated in [17]; model of automation
levels (“LOA”)

The sensor assistant system receives several inputs. Two are of main interest, the
workload measure of the human operator (provided by an external system [18]) and
the computer vision algorithms’ trustworthiness (provided by the “Sensor- and
Perception-Management” System [15, 16]). These inputs are model-based values;
the workload is a taskmodel-based construct, and the trustworthiness is delivered by
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a reliability estimation process. The sensor assistant systems’ goal is to allocate the
best fitting automation function setup for varying task, workload and automation
trustworthiness parameters. To react on this input signals, an agent system was
designed, which is able to propose changes in the automation level. These level
suggestions can be verified by superordinate authorities, before the automation
allocation for those levels takes place.

4.1 Sensor Automation Functions

In this chapter the available automation functions are explained in more detail.
“Computer Vision.” Automated functions in this group are intended to relieve

the human operator from perceptive-cognitive activity (e.g. interpreting acquired
sensor data), which demands high user involvement, specifically when it comes to
monitoring parallel data sources from teaming UAVs. Therefore, a spectrum of
different task-related algorithms from the computer vision domain has been
implemented and integrated. The implementation of the algorithms follows the
modular scheme as laid out in [16]. Further, variations of sensor data access and
data visualization functions are available (e.g. mosaicking of aerial images).

“Gimbal Controller.” The mission sensors onboard the UAVs considered are
typically attached to a cardanic mount (gimbal) to enable dynamic sensor gaze
control during flight. The degrees of freedom of the two axis demand for continuous
user steering when special ground tracks or ground patterns are required to be
scanned. An automated gimbal control application was developed to decrease the
humans’ sensorimotor activity when operating the gimbal. The automation func-
tions offer several control modes that are useful for the existing task spectrum.

4.2 Levels of Automation

As described in Sect. 2.3, the two aspects human workload and technical system
reliability should be balanced. For this purpose, different levels of automation from
the repertoire of automated functions described above had to be laid out. According
to the scheme of “Levels of Automation” [11, 12], several levels with different
depth of user involvement are suggested. This ensures, that the distribution of task
load can be varied between man and machine purposefully.

Motivated by the aspect of human workload reduction during task performance,
the level design proposed foresees in one direction an increasing automated support
which potentially results in workload reduction. However high-levels of automation
through computer vision bear the potential of high machine unreliability. This
aspect indicates to prefer lower level of automation and therefore more robust data
processing. This leads to the assumption that moving towards lower level of
automation increases trustworthiness but also increases workload and vice versa.
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This interrelation leads to the effect, that human workload can be reduced as long as
systems’ reliability does not undercut a certain value. In the opposite direction, the
fallback in lower levels, induced primarily by low automation trustworthiness,
involves the human tighter, but ensures that the automation delivers more trustable
results.

Automation Levels for Sensor Data Evaluation. Figure 2 shows the
arrangements and composition of image processing and information presentation
functionalities as levels. These levels can be mapped on the left side scale indicating
the abstraction level and presentation properties of resulting surveillance data.

With upwards level steps, data will be transformed from signal (image) data to
abstract information, similar as pointed out in [19]. This efficiently can reduce the
bandwidth of data to be analyzed by the operator and supports their spatial cor-
relation to deduce mission relevant results. Further, the representation form of data
can be varied from an “image stack” (chronology of images/Full Motion Video) to a
spatial map representation by either image stitching (level 2) or spatial arranged
object information on a tactical map (level 3). The red/blue schematic in above
figure thereby symbolizes the expected “workload” division between human and
machine system.

In terms of trustworthiness, moving on levels upwards introduces machine
imperfections step by step. Applying computer vision methods to detect objects on
level 1 may be prone to high false-positive and true negative detections. Additionally
when moving to level 3, false classifications can contribute to a further reduction in
trustworthiness.

In contrast, the selective level adaption in downwards direction is aimed to
involve the operator when automated functions appear to fail, thus introducing a
more intense cognitive fusion performance on human side [9], where preprocessed
data and information provided by maximally exploited automation capabilities are
delivered to the crew for confirmation and/or further information extraction.

Automation Levels for Gimbal Controlling. The domain of payload steering
also offers variable automation, Fig. 3 shows the automation functions’ usage
graded in four levels.
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Fig. 2 Levels of automation in data evaluation
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The automated sensor control functions offer the capability to scan ground
patterns of routes and areas automatically (level 1). In higher levels, system initiated
zoom adaptations update the sensors’ ground sample distance (GSD) automatically
(level 2). The highest automation level (level 3) issues navigational requests to the
platform’s FMS (flight management system), requesting platform repositioning.
These levels should reduce the human’s sensorimotor activity, control process
complexity, system process supervision times and intervention demands.

5 Machine Decision Making for Selecting the Automation
Level

5.1 Working Method

When using the suggested automation levels in a (simulated) surveillance UAV
scenario, the critical parameters that initiate the automation level adaption need to
be observed as base for the decision process. Figure 4 shows the functional core
that is aimed to determine the necessary change of the automation degree based on
the two main input variables. First of all, the humans’ workload is considered as the
main indicator for the decision process to act. In addition, also the automation
functions trustworthiness has to be taken into regard, as motivated above, to find the
best available solution (automation level) from the predefined set to satisfy the
workload reduction request.

The core of the automation management consists of an artificial agent system,
which utilizes of aMarkov Decision Process (MDP). With regard to modelling, this
method was chosen because the problem comprises full control ability about the
state transitions (in contrast to Markov Chain or Hidden Markov models) and, in
this first prototype, completely observable states were assumed (in contrast to
Partially Observable MDP). Such agent system, according to [20], can be classified
as: an artificial, controlled, reactive, individualistic, conservative, nonreasoning no
perception and no memory agent.
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First, a manageable state scenario had to be found, on which the MDP operates.
The MDP consists of set of such internal states S, a set of actions A to transfer
between the states when they are applied, a transition model T (which defines the
transition probabilities between the states) and a reward model R (defines rewards
for applying actions in the states).

By this a state space model was build (Fig. 5). The five states S represent the
impact of automation usage on the HC-Crew and the consequence of imperfect
automation. The available agent actions A describe five different modifications of
the automation degree. The agent states and actions were defined as:
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Fig. 5 State space transition model
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• S = {S1, S2, S3, S4, S5} = {“no Support”, “untrusted automation”,
“over-support”, “optimal automation”, “under-support”}

• A = {A1, A2, A3, A4, A5} = {“start Automation”, “stop Automation”,
“increase level”, “decrease level”, “keep current state”}

Figure 5 shows the state space transition model with the feasible transitions
(emitting specified agent actions) between the states. The states regard human
workload (blue marked in Fig. 5) and automation trustworthiness (orange marked
in Fig. 5) aspects. The actions are affiliated with specified rewards, directing the
desired agent decision behavior.

The solution of this MDP—problem produces a policy that yields to the highest
reward for action application. This policy is a list of optimal agent actions that are
applied in the different states.

On stimulation, the agent’s inner system state is updated by an observation. The
state interpreter in Fig. 4 determines a current state. On this state S, a specified
action A is applied, and a subsequent state S’ will be reached. The agents’ objective
is now to reach the inner target state S4 “optimal support” by applying selected
actions, which is aimed to transform the environment observed by the agent system
(human workload) to an optimized range (minimized workload). The following
chapter shows the automation management system described above working in a
reduced toy problem setup.

5.2 Proof of Concept in a Toy Problem Setup

During mission performance, the human workload is assumed to vary over time,
mainly depending on the performance of tasks for mission fulfilment. When using
automated sensor systems in mission environments, the productivity and efficiency
of machine recce capabilities may change (expressed by the automation trustwor-
thiness), caused by varying environment conditions, viewing distances, viewing
angles. Hence, the best fitting automation level has to be determined online
whenever such changes occur.

To demonstrate the sensor assistant systems’ capability to handle such situations,
a set of input variables was created, comprising a trend of measures of human
workload and automation trustworthiness (Fig. 6). In this trend, a fixed threshold
(“minAutomationTrustworthiness” in Fig. 6) of 75 % is assumed to classify
automation as suitable to support.

In the toy problem setup, the received input triggered automation level adaption
activities. From the trend in Fig. 6, four typical use cases (1–4) were taken that were
to be handled and solved by the agent at discrete time steps. The agents’ actions
were applied on these use cases and the automation level adaption took place.

The assistant systems’ outputs are presented in Fig. 7. Depicted in magenta are
the agents’ decisions and the consequential changes between the automation levels.
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In this setup, a high base workload of the HC-Crew was assumed, so the sensor
automation runs already in level 3 of 4 from the beginning.

As shown in Figs. 6 and 7, the agent automatically reacts to the varying input
parameters mentioned above. High human workload initiates automation degree
increase, as long asminimum trustworthiness margin is not undercut (use case 1). Too
low automation reliability decreases the automation level (use case 2) or prevents
from changing to an automation level that potentially induces higher automation
failure rates (use case 3). At last, the assistant system notices the return of sufficient
automation trustworthiness and initiates a level increase if necessary (use case 4).

1)
WL high,
TW acceptable

Use cases:
2)
TW undercuts
minimum

3)
WL high
TW too low

4)
WL high
TW over min.

Fig. 6 Timeline of schematic input signals, use cases, a value threshold and activity peaks
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3)
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4)
Increase level

Fig. 7 Timeline representation of agent actions and resulting automation levels
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With the application of the agent decisions on the use cases illustrated above it
can be demonstrated that the agent systems’ models and actions are suitable to
handle the different situations occurring in this problem field.

6 Realization Process and Future Work

After this first functionality proof of the decision making core, the transfer of the
concept in an executable implementation will follow. Therefore, the system will be
interfaced to make use of the combined task-, resource—and interaction model
(“Sensor Taskmodel” in Fig. 1) to regard task-specific differences.

For functional demonstration of the holistic HC-assistant system applying sensor
automation with usage of the proposed sensor assistant system, a
closed-loop-operation will be realized. Finally, the evaluation of the concept and
the effects on operator performance will follow in human-in-the-loop experiments
with transport helicopter crews.
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Using Natural Language to Enable
Mission Managers to Control Multiple
Heterogeneous UAVs

Anna C. Trujillo, Javier Puig-Navarro, S. Bilal Mehdi
and A. Kyle McQuarry

Abstract The availability of highly capable, yet relatively cheap, unmanned aerial
vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial
activities. This research is developing methods beyond classical control-stick pilot
inputs, to allow operators to manage complex missions without in-depth vehicle
expertise. These missions may entail several heterogeneous UAVs flying coordi-
nated patterns or flying multiple trajectories deconflicted in time or space to pre-
defined locations. This paper describes the functionality and preliminary usability
measures of an interface that allows an operator to define a mission using speech
inputs. With a defined and simple vocabulary, operators can input the vast majority
of mission parameters using simple, intuitive voice commands. Although the
operator interface is simple, it is based upon autonomous algorithms that allow the
mission to proceed with minimal input from the operator. This paper also describes
these underlying algorithms that allow an operator to manage several UAVs.
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1 Introduction

Small unmanned aerial vehicles (sUAV) are starting to become ubiquitous because
they are relatively cheap and are fairly easy to fly while the potential immediate
productivity gain is large for applications such as photography, inspection, and
package delivery. As more people find innovative ways to employ sUAVs [1]—
such as crop monitoring [2], photography [3], filming [4], package delivery [5],
pipeline inspection [6], search and rescue (SAR) [7], and fire monitoring [7] just to
name a few—the way humans interact with them will become critical. Current
interaction methods typically include manual controllers [8, 9], smartphones [10]
and tablets [11], or graphical ground control stations (GCS) [12, 13]. Interacting
with all these types of controllers requires the operator to learn and understand the
specifics of the controller and also the sUAV’s dynamic behavior rather than having
a more natural and higher level teaming relationship with each vehicle. A lack of
teaming typically results in increased workload, decreased situation awareness, and
trust issues among all active agents. However, with the possibility of communi-
cating with various types of unmanned vehicles (UxVs) by more natural language
(NL) methods, such as speech and gestures, the teaming aspect may come to full
fruition. NL may also decrease workload [14] and increase situation awareness [15].

Using speech recognition to give commands is becoming pervasive, especially
as speech commands move from controlled to natural language. Many people are
now comfortable with speech commands beyond the primitive phone tree systems,
such as Apple’s Siri, Microsoft’s speech recognition system, and Google’s Now.
Great progress has been made in these systems to understand human speech without
training [16–19]. However, the word error rate is still rather high for typical con-
versational speech recognition especially in noisy environments [20]. Various
methods to improve on this have been implemented [21] but have only been par-
tially successful.

An area that may benefit from speech recognition is a dispatch scenario with a
dispatcher scheduling multiple package deliveries to a defined neighborhood. This
application highlights several aspects regarding UAV control by untrained UAV
operators. Allowing UAV operators or mission managers with no UAV pilot
expertise to control multiple vehicles is critical to fully realize the new missions that
UAVs enable; however, more importantly, the inherent ease to control and the
stability of many off-the-shelf small UAVs enable casual users to command and
control these vehicles without the need for knowledge of aerodynamics, stability
and control, weight and balance, etc. Thus, the goal of this research is allowing an
inexperienced UAV pilot, an operator, to define and manage a mission. This
mission may entail several heterogeneous UAVs flying coordinated patterns or
flying multiple trajectories deconflicted in time or space to locations defined by a
dispatcher. This mission may be accomplished with a relatively simple interface.
For the package dispatcher, this interface allows a dispatcher to easily define
locations for packages to be delivered to and then to easily generate and inspect the
deconflicted flight paths to ensure on-time delivery.
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This paper describes the functionality and preliminary usability measures of an
interface that allows an operator, in this case a dispatcher, to define a mission of
delivering packages with multiple coordinated UAVs and then to start the mission.
This interface includes using natural language, in this case speech, to make inputs
beyond the traditional input methods of keyboard, mouse, and touchscreen. With a
relatively well-defined, simple vocabulary and using open-source speech-
recognition software, the mission manager can input the vast majority of the mis-
sion parameters using simple, intuitive voice commands. Furthermore, although the
interface is simple, underneath are autonomous algorithms that allow the mission to
proceed with minimal operator input. On-going work at NASA Langley Research
Center’s Autonomy Incubator and the University of Illinois at Urbana-Champaign
regarding the underlying algorithms that allow an operator to manage several UAVs
is also described.

2 Initial Voice Usability Experiment

An experiment was conducted to begin to measure the efficacy and user acceptance
of using voice commands to define a multi-UAV mission and to provide high-level
vehicle control commands such as “takeoff” and “land.”

2.1 Independent Variables

The primary independent variables were input type (voice or mouse) and order
used. Half of the subjects used the mouse input method first and then used voice,
while the other half of the subjects first used voice input and then the mouse.

Subject was included as an independent variable because so few were run
because this was an exploratory effort. None of the subjects had used a speech
recognition system for input before besides traditional phone trees.

2.2 Dependent Variables

The primary dependent variables consisted of the correctness of the mission
parameter inputs and the time needed to make all inputs. Other dependent variables
were NASA-TLX workload ratings [22] and subjective ratings on a final ques-
tionnaire. The NASA-TLX and subjective questionnaire ratings were all normalized
to a 100-point scale and all measures were continuous within that scale.
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2.3 Procedure

The experiment required each subject to fill in an online form that contained
comparable required information that would be needed for a package dispatcher to
deliver packages (Fig. 1). The input screen was programmed in Matlab 2015b®.1

For each run, subjects typed in a simple numeric code for the package code. Then,
they defined the initial starting position (“From”), the delivery location (“To”), and
the return location (“Return”) using either pull-down menus or voice input. Voice
input was accomplished using CMU Sphinx4-5prealpha [23] for speech recogni-
tion. Next, they inputted the length of the package, which are detailed in Table 1. If
another package was to be added, they indicated that by the “Add Another
Package” or if done entering packages, the subject indicated “Done.” The subject
had the system “Calculate Trajectory” and then “Takeoff” once the trajectory was
calculated. Later, the subject used “Land” to finish the run. These last commands
(i.e., “Add Another Package”, etc.) were considered command fields.

After the voice and mouse input experiment runs, all subjects completed a
NASA-TLX. At the conclusion of all runs, subjects completed a questionnaire
asking them about their experience in inputting the mission parameters, and starting
and stopping the mission using both mouse and voice input.

Fig. 1 Package delivery setup screen. The pull down menus and the length input were options.
The commands were the pushbuttons such as “Done” and “Takeoff.”

1The use of trademarks or names of manufacturers in the report is for accurate reporting and does
not constitute an official endorsement, either expressed or implied, of such products or manu-
facturers by the National Aeronautics and Space Administration.
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3 Results

Because this was a preliminary experiment to test the methodology, only four
subjects were run. Therefore, only averages and standard errors of the means will be
reported with comments on trends.

3.1 Parameter Input Accuracy

All subjects inputted the parameters for the package delivery specification (i.e.,
“To”, “From”, “Return”, and “Length”) with minimal errors. Out of the 288 inputs,
there were only five errors (<2 % error rate) split between mouse and voice inputs.
Therefore, both methods of input appear to be accurate.

However, this initial test was done in a quiet environment with a
limited/restricted/controlled vocabulary (see Table 1) and no homophones. Thus,
the accuracy of the speech recognition was high [24]. In a noisier environment,
possibly with multiple persons talking simultaneously, using push-to-talk headsets
or a key word to wake up the system [25] may limit inadvertent voice activation.c

3.2 Input Time

Input Specifications. In general, subjects used slightly more time to input package
information using voice input (Figs. 2a, b and 3). The required times for voice input

Table 1 Option fields
accepted inputs

Option field Possible inputs

Package code Integer 1–9

From Current location
Forest
Net
Red house
Yellow house
Green house

To Red house
Green house
Yellow house

Return Round trip
Forest
Net
South lake
Red house
Green house
Yellow house

Length Integer 1–9
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Fig. 2 a Time required for each subject to input popup menu information by input type. Popup
menu information was to, from, and return information b Time required for each subject to input
package length information by input type

Fig. 3 Total time needed to input all package information for each subject by input type

272 A.C. Trujillo et al.



may have been influenced by the length of the phrase. Some of the “From” and
“Return” phrases were up to three words while the “To” phrases were always two
words. The speech recognition system’s parsing times for these longer phrases may
have increased those times overall.

Command Input. The time required by subjects to input commands was gen-
erally greater when using voice commands (Fig. 4). Also seen in Fig. 4, the same
pattern for each subject when using mouse input was repeated for voice input
except it took more time for voice input. Therefore, for commands that are mission
critical or safety related (e.g., the requirement to land immediately), it may be
necessary to include some type of screen input—such as mouse or touchscreen—in
these cases. Lastly, once again the longer phrases (in this case, “Calculate
Trajectory”) took more time to register when using voice input.

3.3 Workload

The workload in using mouse and voice commands were relatively equal with the
voice commands requiring slightly less workload for inputs (Fig. 5). The temporal
demand and frustration level between the two input methods were essentially equal.
This may have been due to the time it took the voice recognition system to parse the

Fig. 4 Input command times for each subject by input type. The input commands consisted of
“Calculate Trajectory,” “Takeoff,” and “Land.”
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voice input and the timing of the input screen in checking if there was a new voice
command. Furthermore, the subjects had no immediate indication on the input
screen regarding the voice recognition system and its output until it registered on
the screen in one of the input fields. Therefore, to decrease the temporal demand
and frustration level when using voice input, some type of feedback from the voice
recognition system may be required.

3.4 Subjective Preferences

In general, subjects rated using mouse input as slightly easier than voice input when
inputting options (e.g., “From”) and commands (e.g., “Takeoff”), and in the general
ease of use (Fig. 6). For critical input, such as “Land,” subjects preferred using
mouse input. Again, this may have been due to the responsiveness and time
required for the speech recognition system. Surprisingly, subjects indicated that the
responsiveness of the mouse was slower than that of voice input. Some subjects
indicated that it was tedious to move the mouse around to input the package
information. This may have contributed to the mouse input being slower than the
voice input. Lastly, subjects had a slight preference for using mouse input.
However, their preference of using the mouse for critical input may have swayed

Fig. 5 NASA-TLX ratings across all subjects by input method
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this overall preference. Therefore, voice input may be acceptable for non-critical
input such as when vehicles are not yet airborne; whereas, direct screen input may
be better for critical commands that must be executed immediately.

4 Coordinated Flight Path Generation and Following

4.1 Trajectory Generation

Once the packages have all been entered into the system, the system must be able to
generate multiple trajectories that consider each vehicle’s dynamics and operating
characteristics, ensure collision-free maneuvers, and guarantee the desired
inter-vehicle coordination for the specific mission [26]. An example algorithm that
considers each vehicle’s dynamics and coordinates the vehicles in space and time in
order to generate each vehicle’s trajectory is detailed in [27–30] (Fig. 7). This
methodology employs Pythagorian-Hodograph Bézier curves that guarantee satis-
faction of boundary conditions, dynamic constraints, and timing schedule of each
vehicle. Consequently, the trajectories are provably correct and ensure a safety
inter-vehicle distance. Also, the path-following and time-coordination algorithms
that complement this autonomous framework have known stability guarantees [31,
32]. These guarantees may engender a higher level of trust in the mission operator
that the UAVs will safely arrive at their destinations. This trust will enable a higher

Fig. 6 Questionnaire data
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functioning system and will facilitate teaming amongst all the autonomous agents
whether they are human or machine.

4.2 Collision Avoidance

Once the vehicles takeoff, they must have the ability to replan their trajectories
avoid obstacles. Example algorithms that guarantee avoidance along with satis-
faction of mission constraints and vehicle dynamic constraints are presented in [33–
35] (Fig. 8). In general, these algorithms must first predict a collision and then
replan the vehicle’s trajectory to avoid the collision. Furthermore, these algorithms
are able to avert a possible collision with cooperative or uncooperative obstacles
without foreknowledge of the trajectory but with only an online, inaccurate pre-
diction of the obstacle’s trajectory. In fact, collision avoidance can be achieved with
only the knowledge of the line-of-sight angle only [33].

4.3 Intervehicle Communication

Vehicles will need to coordinate with one another to arrive at a destination at the
same time, at prespecified times, or in a time window so as to meet given temporal
separation requirements [36] (Fig. 9). In this case, the communications network
must ensure adequate communication between the vehicles [32, 37]. In general, the
vehicles communicate over a time-varying network, where the quality of service

Fig. 7 Three-dimensional temporally deconflicted flight trajectories of 7 mulitrotors
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inevitably determines the performance bounds of the coordination algorithm. Once
again, performance guarantees may engender a higher level of trust with the mis-
sion operator; thus enabling a higher functioning system.

5 Conclusions

The availability of highly capable, yet relatively cheap, unmanned aerial vehicles
(UAVs) is opening up new areas of use for hobbyists and for commercial activities.
The goal of this research is a relatively inexperienced operator to define and manage
a mission using voice commands. This mission may entail several heterogeneous
UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time
or space to predefined locations.

Fig. 8 Illustration of the collision avoidance algorithm: first panel shows the original trajectory
(curved line) along with that of the obstacle (straight line). The separation curve, shown in the
second panel, overlaps with the obstacle region (circle) indicating a collision. The third panel
shows the replanned trajectory (curved line) that ensures collision avoidance. The corresponding
separation curve is shown in the fourth panel. Notice that this separation curve remains outside the
obstacle region

Fig. 9 a Five UAVs arrive at
the beginning of glide path
within pre-specified arrival
windows and separated by
approximately 30 s
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In general, the usability of using voice commands is acceptable. With a relatively
well-defined and simple vocabulary, the operator can input the vast majority of the
mission parameters using simple, intuitive voice commands. However, voice input
may be more applicable to initial mission specification rather than for critical
commands such as the need to land immediately due to time and feedback
constraints.

Furthermore, although the interface is simple, autonomous algorithms that
function transparently to the operator allow the mission to proceed with minimal
operator input. This methodology employs algorithms that generate trajectories,
coordinate vehicles and avoid collisions with cooperative and uncooperative
obstacles using only an online, inaccurate prediction of the trajectory of the
obstacles. These algorithms provide rigorous proofs of their performance guaran-
tees. To achieve coordination, vehicle will utilize a wireless communication net-
work, the quality of service of which determines the guaranteed performance
bounds of the aforementioned time-coordination algorithm. These guarantees may
engender a higher level of trust with the mission operator. This trust will enable a
higher functioning system and will facilitate teaming amongst all the autonomous
agents whether they are human or machine.

Using voice input for mission specification and using either voice or screen input
for commanding the mission combined with guaranteed performance bounds for
coordinated flight path generation and following will enable mission operators,
rather than UAV pilots, to define and oversee UAV missions. Follow-on research
will measure the efficiency and acceptability of using voice or screen input for both
mission specification and mission control with multiple coordinated sUAVs flying
their missions initially in simulation and then in actual flight tests.
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Adaptive Interaction Criteria for Future
Remotely Piloted Aircraft

Jens Alfredson

Abstract There are technical trends and operational needs within the aviation
domain towards adaptive behavior. This study focus on adaptive interaction criteria
for future remotely piloted aircraft. Criteria that could be used to guide and evaluate
design as well as to create a model for adaptive interaction used by autonomous
functions and decision support. A scenario and guidelines from the literature, used
as example criteria, was presented in a questionnaire to participants from
academia/researchers, end users, and aircraft development engineers. Several
guidelines had a wide acceptance among the participants, but there was also aspects
missing for the application of supporting adaptive interaction for remotely piloted
aircraft. The various groups of participants contributed by different aspects supports
the idea of having various stakeholders contributing with complementary views.
Aspects that the participants found missing includes, predictability, aviation domain
specifics, risk analysis, complexity and how people perceive autonomy and attribute
intentions.

Keywords Adaptive � Aircraft � Air systems � Interaction � Pilot � Remotely
piloted

1 Introduction

There is a long term technical trend towards more automated and autonomous
systems and functions within the aviation domain. Also, future remotely piloted
aircraft will most likely adapt technical trends towards increased levels of automa-
tion and autonomy. This will lead to new design challenges when developing future
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manned as well as unmanned aircraft, for instance concerning intelligent adaptive
automation. Although design guidance for intelligent adaptive automation has long
been available [1] there are major challenges and research questions remaining. For
instance, complacency and automation bias occur in the use of imperfect automation
[2] and automation has been found to affect pilots through subsystems for man-
agement, workload and awareness [3].

There are not only technical trends that call for design challenges. Also, there are
operational needs in civil and military aviation towards adapting to dynamic chains
of events that might best be met by adaptive aiding. It has been shown that psy-
chophysiologically based real-time adaptive aiding significantly aids performance
in a complex remotely air vehicle task [4] and also coadaptive aiding (i.e. both
system and user adapts) has been demonstrated in a remotely piloted aircraft
setting [5].

In this study adaptive interaction criteria for future remotely piloted aircraft has
been in focus. That is, criteria for making design decisions related to development
of adaptive interaction for future remotely piloted aircraft. The reason for this
interest is the idea that if criteria can be identified, structured and prioritized it could
be used:

• To guide the design of adaptive interaction
• When evaluating specific design or concepts related to adaptive interaction
• To create a model for adaptive interaction that could be integrated into future

unmanned aircraft, to be used by autonomous functions and decision making.

Even though the need for adaptive interaction criteria may be just as high in
other domains it is not possible to wait for the corresponding work of other domains
to fill the need for identifying, structuring and prioritizing adaptive interaction
criteria and hoping to apply the results to the domain of unmanned aircraft since the
criteria is domain specific. The reason for it being domain specific is that each
domain has unique user needs and requirements and for the aviation domain also
specific technical context. For the aviation domain examples could include real time
decision making of highly dynamic spatially problems of for example traffic
avoidance or collision avoidance. Examples of technical context could be regarding
state-of-the-art communication technology for the aviation domain or on-board
sensor capabilities.

In a broad sense, adaptive interaction criteria could include aspects such as
usability, coherency, transparency, fidelity, validity and performance aspects
including function allocation, guidance of multimodal interaction, and decision
support, since that is all aspects potentially affecting design decisions that could be
applied to the design process of a future remotely piloted aircraft. By applying
criteria to the design process lessons learned will be gained and iteratively feedback
will be available to refine the identification, structuring and prioritization of better
suited criteria. As a starting point of this study a scenario was defined, including
some technical assumptions. Also, a literature review was conducted aiming for
initial criteria to be used in the study.
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The scenario included a high workload reconnaissance mission, inspired by a
study of adaptive automation for human supervision of multiple uninhabited
vehicles [6]. The system includes adaptive automation to support target identifi-
cation, route planning, communications and change detection (so that the pilot of
the remotely piloted aircraft do not miss anything of importance on the displays),
for the remotely piloted aircraft.

Also, the scenario concerned a future where remotely piloted aircraft is flying
together with manned aircraft. The remotely piloted aircraft is equipped with a
detect and avoid system that know where other aircraft are and have the ability to
avoid them, heavily inspired by a former study [7].

As initial criteria a set of eight design principles for adaptive automation and
aiding was used proposed by earlier research as design guidelines [8]:

(1) “Adaptive function allocation to the operator should be used intermittently.
Intermittent allocation can improve performance in monitoring tasks.

(2) Energetic human qualities should be considered in design. For example,
degrees of challenge can be automatically adjusted with artificial tasks.

(3) Emotional requirements of the human operator must be considered. The
human operator should not feel unnecessary to the system as a whole.

(4) The system should be calibrated to the individual operating it. Individual
differences factor into the human operator portion of a human-system pairing
and thus should be incorporated into the design.

(5) Task transformation should be used to simplify tasks for operators. A task that
is partitioned and transformed can be handled piecemeal instead of as a
whole.

(6) The environmental context of the system should be used to determine alloca-
tion. Environmental stressors such as heat, vibration, and gravitational force
affect human performance and should be addressed.

(7) Tasks should be partitioned when both the human and the system can con-
tribute effectively. A true human-system collaboration operates as a pairing
instead of a dichotomy of effort. Performance is improved when the most
effective attributes of each part are employed.

(8) Adaptation should be controlled by the system but be open to human inter-
vention when the system fails to recognize new conditions or demands. In
order to reduce task load on the human operator and improve general per-
formance, the system should allocate tasks. To improve satisfaction and
motivation, the human operator should retain control, or perceived control, of
the system.”

2 Method

A questionnaire was designed to facilitate the discussions with the participants of
this study. The questionnaire contained three parts:
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• Description of context. Including the scenario described in the introduction
section of this paper.

• Questions about the importance of the above guidelines. Each criteria were to be
rated on a seven point Likert-scale, where the rating of one corresponded to “not
important” and seven corresponded to “very important”. There were also open
questions, and comments were asked for.

• Background questions, such as age, gender, education level, and professional
experience.

After a group of participants had filled in the questionnaire individually there
was an opportunity for a group discussion/mini-workshop, to open up for reflec-
tions both on the answers provided, but also on the design of the questionnaire itself
to gather feedback useful for potential future workshops.

There were 26 participants in this study, of which 23 were male and three
female. They were between 26 and 66 years old, with a mean age of 41.

There were three groups of participants in this study, reflecting the various
backgrounds of:

• Academia/research (A/R)
• End users (EU)
• Aircraft development engineers (ADE)

The participants from various backgrounds was used to extract knowledge
regarding adaptive interaction criteria for future remotely piloted aircraft, through a
qualitative analysis of their response.

The group from academia/research consisted of 10 persons, mainly researchers
within computer and information science at various levels (2 B.Sc., 4 Ph.D.
Students, 4 Ph.D.). The group of end users consisted of 3 pilots that all were very
experienced as pilots, one as a fighter pilot, one as commercial pilot, and the third
with experience as both fighter pilot as well as commercial pilot. They had also
been former participants in a simulator study of earlier workshops performed in a
European detect and avoid project [7], and were familiar with the detect and avoid
part of the scenario. The group of aircraft development engineers consisted of 13
persons that were all active professionals.

3 Results

Although the mean ratings (see Fig. 1) did not reveal much differences between the
participants, individual ratings were sometimes used in the discussion after filling in
the questionnaire.

For instance, one of the pilots (EU3) had ranked both design guidelines #1 and
#2 with the lowest rank (1), and in the discussion he explained why. For #1 his
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concern was that it would lead to a less predictable behavior of the system, and for
#2 it was the “artificial tasks” that he could not accept when controlling a remotely
piloted aircraft. Also, he made an additional comment about #8 and said that he
thought it was important that “the human operator should retain control”, but that it
should not only be “perceived control”.

Also, the workshop with the aircraft development engineers revealed that they
think it is important that the guidelines guide design decisions that are hard to make,
for the guidelines to be useful. It was debated if #7 is really fulfilling that or if the
fact that “tasks should be partitioned when both the human and the system can
contribute effectively” even if it is true might not help to be specifically aware of
when performing actual design. Also, remarks were made regarding:

• If it would be possible to apply a principle of automating everything except what
is better suited for a remote pilot to perform.

• To let the remote pilot adjust changes of priority in the system.
• That it might take longer time to learn if you as a remote pilot do not perform

detailed tasks.
• Would it add stress to the pilot to know that the system is regarding the pilot as

stressed?
• Concerns that adaption would not support (or even counteract) drastic transi-

tions between automation levels.
• That it is important that guidelines are well formulated.

Fig. 1 Mean ratings for each of the eight design guidelines. The blue bars (left) represents the
response from the end users (EU), the brown (middle) represents the aircraft development
engineers (ADE), and the grey (right) represents the participants from academia/research (A/R)
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Results from the open questions and comments include:

• Missing aspects:
• Complexity (A/R4)
• How people perceive autonomy and attribute intentions (A/R2)
• System transparency and predictability (ADE1, ADE4, EU3)
• Aviation domain specifics (ADE11)
• Level of automation (ADE7)
• Risk analysis (ADE2)
• Biometrics (ADE8)
• How automation affects pilot understanding and need for regular practice

(ADE2)
• Comments to Guideline #5: Is it always good to simplify, or is there a risk to

loose overall view(ADE3)?

Also, there was comments about ambiguity and wordings for some of the
guidelines:

• #2 (EU3)
• #3 (A/R8, EU3, ADE1)
• #5 (A/R3)
• #6 (ADE7, A/R7)
• #8 (EU3)

4 Discussion

The focus of this study has been adaptive interaction criteria for future remotely
piloted aircraft, with the idea that criteria can be identified, structured, and priori-
tized to guide and evaluate design as well as for creating a model for adaptive
interaction for future unmanned aircraft, for enhanced decision making potentially
aided by autonomous functions. Participants from academia/researchers, end users,
and aircraft development engineers has contributed by reflecting on a sample of
design guidelines that was used as an examples of possible criteria.

The results show that several of the guidelines had a wide acceptance among the
participants, but that there was also aspects missing in the design guidelines for the
application of supporting adaptive interaction for remotely piloted aircraft, given
the scenario provided to the participants.

The feedback from the pilots, representing the end users, were mostly focused
towards sharp end aspects, such as properties of a future system, for example, that
the system should be transparent, predictable, and not include artificial tasks and
that the pilot should be in control. The reason that the end users stressed properties
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of a system might be since they have own experiences of interaction with automated
systems to relate to and know its importance by experience.

The feedback from the aircraft development engineers were in a large extent
directed towards the guidelines as such, and comments on missing aspects of the set
of guidelines. For instance, it was pointed out that the design guidelines should be
written so that it supports design decisions, and that aspects such as aviation domain
specifics, risk analysis, and putting values into the system concerning learning and
training are regarded. The reason that the aircraft development engineers stress
these aspects more than the end users might be due to that they are used to regard
these type of aspects in their daily work. It supports the idea that criteria can be used
to guide design and evaluate concepts for this application.

The feedback from the participants from academia/research were reflecting that
this field is not fully matured, such as comments related to complexity and how
people perceive autonomy and attribute intentions. The reason that the participants
from academia/research stress these matters might be since they are used to do
research within this or other fields.

That the various types of participants provided different feedback supports the
idea of having various stakeholders contributing with complementary views.

There was comments about ambiguity and wordings from some participants
from all the various backgrounds, concerning five of the eight guidelines, and
during the workshop some of the aircraft development engineers noted the
importance of well formulated guidelines.

It would be interesting for future research to fuse the complementary views from
various stakeholders to iteratively continue to study identification, structuring and
prioritization of adaptive interaction criteria for future remotely piloted aircraft, to
create a model for adaptive interaction that could be integrated into future
unmanned aircraft, to be used by autonomous functions and decision making.

If the same or similar criteria that is modelled in such a system is also used to
design the system:

• Guidelines could contribute to design so that unwanted situations would not be
so frequent or severe, than for a less good design, and

• If unwanted situations occur, a system with adaptive interaction could cope with
the situation by adaptive aiding, decision support and display considerations
such as multimodal considerations. Also, lessons learned could be fed back to
the design of future systems by adaptation of the criteria and design guidelines.

Such a system could include missions monitoring, operator aspects, autonomy,
states of the world, and the mission [9]. Biometrics was one of the mission aspects
that was brought up, as well as aviation domain specifics. Earlier research con-
cerning operator workload has found that “…guidelines should be created that
specify the required measurement technology sensitivity for optimal dynamic task
allocation in specific operational settings” [10]. By assessments made on pilot,
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system, and context interpretations could be conducted and fed into a situation
assessment module. The situation is assessed by comparing the information origi-
nated from pilot, system and context with reference situations. When the situation is
categorized and the related to a reference situation this information is fed to an
adaptive module. The adaptive module assesses the current display options and
determines how the information about the situation should be displayed, based on a
set of pre-defined plans and updated information from the flight management
system. This includes multi modal considerations, and function allocation.

5 Conclusions and Future Work

This study has studied adaptive interaction criteria for future remotely piloted air-
craft. Also, the applicability of the criteria to development of future adaptive sys-
tems has been studied. The adaptive interaction criteria may be used to aid the
design of future piloted aircraft as well as for evaluation of concepts and design.
Also, the criteria may contribute to a model for adaptive interaction that could be
integrated into future unmanned aircraft, to be used by autonomous functions and
decision making.

This study has found that participants form the groups of end users,
academia/researchers, and aircraft development engineers widely accepted a set of
guidelines provided by earlier research [8]. However, aspects that the participants
though was missing includes, system transparency and predictability, aviation
domain specifics, risk analysis, complexity, and how people perceive autonomy and
attribute intentions. Also, design guidelines should be well formulated and written
so that it supports design decisions, and putting values into the system concerning
learning and training.

The various group of participants stressed different aspects. End users mostly
focused sharp end aspects, such as properties of a future system, the aircraft
development engineers mainly reflecting on the guidelines and how they can
support design, and the participants from academia/research reflected on that this
field is not fully matured. That the various types of participants provided different
feedback supports the idea of having various stakeholders contributing with com-
plementary views.

Future work, could include fusion of the complementary views from various
stakeholders to iteratively continue to study identification, structuring and priori-
tization of adaptive interaction criteria for future remotely piloted aircraft, to create
a model for adaptive interaction.

Acknowledgments This project is financially supported by the Swedish Foundation for Strategic
Research.
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Confidence-Based State Estimation:
A Novel Tool for Test and Evaluation
of Human-Systems

Amar R. Marathe, Jonathan R. McDaniel, Stephen M. Gordon
and Kaleb McDowell

Abstract Test and evaluation (T&E) of complex human-in-the loop systems has
been a challenge for system developers. Traditional methods for T&E rely on
questionnaires given periodically in combination with task performance measures
to quantify the effectiveness of a given system. This approach is inherently
obtrusive and interferes with natural system interaction. Here, we propose a method
to leverage unobtrusive wearable technology to create a system for continuously
assessing human state. Previous efforts at this type of assessment have often failed
to generalize beyond controlled laboratory environments due to increased vari-
ability in signal quality from both the wearable sensors and in human behavior. We
propose a method to account for this variability using measures of confidence to
create robust estimates of state capable of dynamically adapting to changes in
behavior over time. We postulate that the confidence-based approach can provide
high-resolution estimates of state that will augment T&E of complex systems.
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1 Introduction

Test and evaluation (T&E) of complex human-in-the loop systems has been a
challenge for system developers in recent years. In general, traditional methods for
T&E rely on the use of questionnaires given periodically in combination with
overall task performance measures to quantify the effectiveness and usability of a
given system. However, human assessment through surveys and questionnaires is
inherently obtrusive and interferes with natural system interaction and task per-
formance. Furthermore, such an approach does little to address the fact that com-
plex, human-in-the-loop systems may fail for a number of reasons including poor
system design, system malfunction, or operator error.

Recently, the National Research Council recommended that the T&E commu-
nity adopt less obtrusive human assessment techniques, such as those provided by
wearable technology [1]. These technologies would both mitigate the negative
impact on natural system interaction and provide access to less subjective measures
of operator state, which may provide a more accurate perspective into specific
failure instances. Unfortunately, interpreting data from wearable sensors into valid
measures of state remains a challenge. There has been prior work in estimating
human state using behavioral and physiological signals [2–13]; however, most of
these approaches fail to generalize beyond the controlled environment of typical
laboratory-based experiments. When laboratory-based constraints are relaxed, sig-
nal variability often increases leading to changes in the relationship between the
recorded signal and human state.

Borrowing ideas from the control systems literature, we argue the use of con-
fidence measures can improve overall state estimation for human state assessment
systems. We also propose that confidence values are applicable when not only
interpreting the raw, measured signals, but also when evaluating the individual
components of the system, one of which is the human. Such a measurement system
would enable robust measures of state that dynamically adapt over time as signal
quality, human behavior, task or environment varies as well as make inferences
about the state, such as whether or not the human is even capable of performing
well on the given task. We postulate that the confidence-based approach would
provide a powerful tool to enhance T&E of human-in-the-loop systems by pro-
viding accurate, high resolution estimates of state, which, when combined with
overall task performance measures and questionnaire data, will provide a wealth of
information; enabling system designers to better identify sources of errors through
minimally intrusive techniques.

The remainder of this paper is organized as follows. Sect. 2 provides anoverviewof
the proposed T&E system. Sect. 3 provides an overview of research needed to enable
the development of such a system. In particular, this section includes an in-depth
discussion regarding the construct of confidence as we propose to apply it to human
assessment, and presents proof-of-concept simulations that demonstrate how the use
of confidence can improve reliability of state estimates. Finally, Sect. 4 concludeswith
a discussion about how the confidence-based approach will augment T&E.
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2 Towards a Tool for Test and Evaluation

Standard methods for T&E often rely on the use of questionnaires given periodi-
cally in combination with overall task performance measures to quantify the
effectiveness and usability of a given system. These tools provide a low-resolution
estimate of human-system performance. We argue that utilizing modern human
assessment techniques in place of periodic questionnaires would allow both the
measurement of human state in real-time as well as confidence-based inferences
about that state. For instance, we know that systems fail for a number of reasons
such as poor system design, system malfunction, or operator error. However,
precisely identifying the source of such failures is a challenge. We posit that a
system that robustly tracks human operator state (as shown in Fig. 1) will generate
high-resolution information regarding the human-system interaction that can help
evaluators disambiguate the source of operational failures and precisely identify the
time and context of such failures during the T&E process.

The proposed system would be used when an operator is brought into work with
a new technology during the T&E process. Traditionally, in this type of scenario,
the operator would start with a battery of pre-assessment questionnaires, followed
by training on the new system evaluated that day. After training, the operator would
fill out another battery of questionnaires and then carry out the mission designed for
the current evaluation. During the course of the mission, the operator would be
interrupted periodically to provide feedback to the T&E team about specific issues
with the new technology. Upon completion of the mission, the operator would then
complete a final battery of questionnaires, and provide any additional feedback to

Fig. 1 Proposed T&E System for robustly tracking human operator state to generate
high-resolution information regarding the human-system interaction. Critical research areas are
highlighted & numbered within red circles
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the T&E team that may be pertinent to system operation. The questionnaires,
coupled with mission performance metrics would then be used to evaluate the
effectiveness of the new technology.

With the proposed system, the T&E session would proceed slightly differently.
The operator would start with a series of pre-assessment questionnaires, followed
by training on the new technology to be evaluated that day. After completing
training and any additional questionnaires, the operator would then be outfitted with
an array of behavioral and physiological sensors. These body-worn sensors would
be coupled with a suite of environmental and task based sensors (Step 1 in Fig. 1).
The operator would carry out the mission designed for the current evaluation.
During the course of the mission, data from the entire sensor suite (both body worn
and environmental) would be used to estimate changes in the operator (Step 2 in
Fig. 1). Information about specific states such as fatigue, attention, workload, stress
would be continuously estimated on the basis of the recorded data. Periodically,
when the state estimation algorithms were unable to confidently estimate a par-
ticular state on the basis of the sensor suite, the operator would be momentarily
interrupted to provide feedback to the state estimation system (Step 3 in Fig. 1).
This feedback would provide the state estimation algorithms information needed to
quickly improve their estimates. By periodically infusing external information
about the human’s state, the system would be better able to dynamically track state
over long periods of time. Additionally, the operator is rarely interrupted to
explicitly provide feedback to the T&E team during mission execution, thereby
enabling more natural interaction with the technology. Upon completion of the
mission, the operator would then complete another set of questionnaires, and
provide any additional feedback to the T&E team that may be pertinent to the
system operation. The questionnaires, coupled with mission performance metrics
and the continuous state estimates derived from the recorded data would then be
used to evaluate the effectiveness of the new technology.

We argue that the addition of these state estimates to the data record would
provide a wealth of new information regarding the onset and offset of a variety of
changes in the operator that may have influenced mission performance. This new
information can then be used to better identify design elements or features that also
may have significantly impacted performance (positively or negatively). This
information can help evaluators disambiguate the source of operational failures and
precisely identify the time and context of such failures and, thus, would have a
tremendous effect on T&E of future systems. To realize this type of system, three
critical research areas must be addressed:

1. State estimation and sensor fusion methods that combine information from
multiple sensor modalities to estimate human state.

2. Confidence measures to maintain robustness.
3. Measurement improvement techniques.

These areas are covered in more detail in the following section.
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3 Enabling the Future of Test and Evaluation

3.1 State Estimation and Sensor Fusion

The first element in our proposed system is estimating state from multi-modal
sensors. Recently, the state assessment community has seen unparalleled
advancements in sensor and analysis technologies that provide new insights into
different facets of human behavior and performance. Methods exist to extract
information related to fatigue [2–4], stress [5], workload [6–8], vigilance [9–11],
and even target identification [12, 13] from individuals based on data from phys-
iological sensors.

Concurrently, there have been substantial improvements in sensor fusion tech-
niques across a variety of domains. A detailed review of this literature can be found
in [14]. In general, the fusion of multiple heterogeneous information sources is
divided into two main categories: (i) building a joint model by integrating multiple
approaches and (ii) fusing the output of multiple approaches. While modeling the
dependencies across multiple approaches that have been built using different design
principles is effective [15, 16], it is often infeasible. When modeling dependencies
across multiple approaches is not possible, fusion can be performed over the out-
puts of each approach instead. Approaches have ranged from weighted-sum tech-
niques [17], Bayesian fusion [18], and Dempster-Shafer based approaches [19–21].

3.2 Confidence

Once state estimates are generated, confidence measures are needed to quantify the
reliability of those state estimates in near real-time. The importance of confidence in
systems with low signal-to-noise properties has long been understood in decision
theory [22–24] and control communities [25, 26], and thus we believe it is also a
critical component for robust human state assessment systems. While it is well
understood that human psychological and physiological states vary widely, both
across and within individuals [27, 28], it less well understood how to predict the
expected variability given an observed state in a specific operator working within a
particular task environment. This is due in large part to an incomplete under-
standing of how operator states change over time and across subjects.

These challenges are further exacerbated by variability in current human sensing
techniques that produce estimates of operator state that are often either inconsistent,
invalid, or both when applied in real-world circumstances [29]. As such, the myriad
available measures based on human-sensed data, including behavioral and psycho-
physiological signals, are not yet widely used [27, 30]. Thus, confidence-based
approaches should be used when assessing signal quality and integrating, or fusing,
multiple modalities.
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In addition to this traditional use of confidence, however, we also argue for the
purposes of T&E that confidence should be used to reason about the human’s state
and the potential effects of that state within the context of overall system perfor-
mance. For instance, human feedback is often treated as having little or no noise or
it is constrained to a level that is presumed to be effectively without noise [31–34].
In the context of T&E, this may apply to subjective questionnaires or the human’s
self-evaluation of the overall system’s performance. Therefore, in our proposed
framework, we consider confidence on multiple levels:

1. As traditionally used in control systems, confidence can be used to measure the
reliability or validity of signals recorded from specific sensors.

2. As we integrate sensor information to estimate state, we can infer confidence in
the state estimate based on a multitude of factors including: a combination of the
underlying signal reliability, information from sensor modalities not directly
associated with the state estimate, and context.

3. As we increase our ability to measure human state, we can infer a confidence
value in all the system components (including the human) in order to either best
diagnose the causes for specific system successes or failures (e.g. T&E), or
dynamically leverage information from each agent over time (Human-
Autonomy Interaction applications).

Examples of thefirst two approaches to confidence can be found in recent advances
from the field of brain-computer interaction (BCI) technologies. Efforts in that field
have illustrated that state-of-the-art human sensing technologies can be leveraged and
that real-time estimates of measurement confidence can support improved integration
of human-sensed data [35, 36]. Examples of the third approach to confidence can be
found in our own previous work, which pursues a unique extension to the established
methods [37, 38]. Much of this work focuses on establishing confidence methods on
the basis of neural data on a short time scale; however future extensions to these
approaches will consider contributions of non-neural and long time scale factors.

3.3 Confidence Measures from Short Term Neural Data

Figure 2 demonstrates the utility of the confidence-based approach using data from
one participant performing a visual target identification task in collaboration with a
computer vision autonomy [37] (details of the human experiment can be found in
[39]). This exemplar data highlights three important points. First, the confidence-
based approach is effective at fusing human-sensed information. In Fig. 2a, the
target-detection performance of the confidence-based fusion approach outperforms
each of the individual target detectors, as well as the non-confidence-based
approach. Second, the confidence-based approach also works well at integrating
human and non-human sensed data. In Fig. 2b, the target detection performance of
the confidence-based fusion approach outperforms both the human and computer
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vision target detection as well as the non-confidence-based fusion method. This
result also demonstrates that while confidence can improve the accuracy of the
estimates, the accuracy of the underlying data streams will ultimately dictate the
accuracy of the fused data. Again, in Fig. 2b, as the performance of both the human
and computer vision target detection decrease, the performance of the confidence
based fusion approach also decreases.

We believe the example results presented in Fig. 2 highlight the potential utility
of a confidence-based approach; however when operating in an open-loop fashion,
this initial confidence-based approach cannot provide the needed robustness over
time if the underlying signals, themselves, are not robust over time. To address this
latter point, there are two methods to improve overall performance. First, the
confidence measures themselves can be improved by employing better estimation
techniques as well as leveraging data from a greater variety of sources. Second,
rather than using the confidence-based approach in an open-loop fashion, the
system should be closed loop and seek additional information when confidence
decreases (as shown in Fig. 1). Methods for improving confidence measures are
discussed in the following section, and following that, we discuss ideas for closing
the loop.

Fig. 2 Comparison of target detection performance over time using confidence and
non-confidence based fusion approaches. a illustrates the combination of multiple
human-sensed measures to detect target stimuli. b shows the combination of human target
detection with computer vision-based target detection
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3.4 Confidence Measures from Non-Neural
and Long Term Factors

The previously discussed study (Fig. 2) employed confidence measures that used
only information from neural data on a short (1 s) time scale; however there is a
large amount of information from other sources that could potentially improve the
estimate of confidence. Ideally, when assessing human state, one should not only
measure central nervous activity but also peripheral and autonomic system func-
tions [40]. This includes behavioral or physiological information streams such as
eye tracking, heart rate, skin conductance, or respiration rate. For example, if a
system were estimating an individual’s attention level using electroencephalogra-
phy (EEG), confidence in the EEG based estimate could be derived from concur-
rently recorded eye tracking data. In this case, if the eye tracking indicated a gaze at
the appropriate location, confidence in the EEG based assessment would be high
(unless contraindicated by other factors), while if eye tracking behavior indicated
that the individual was not focused on the appropriate location, confidence in EEG
based attention measure would be low. Similar approaches may be applied to a
wide range of human sensed data. Additionally, long-term factors might further
augment estimates of confidence. For example, chronic sleep deprivation often
results in a greater probability of fatigue, stress, frustration and a variety of other
states. In this case, knowledge of an individual’s sleep history could be used as an
integral part of deriving confidence in human state estimates.

An accurate estimate of confidence in particular human state estimates will likely
require a combination of a number of the approaches above. Ongoing and future
studies should examine specific methods for combining different approaches to
improve our confidence estimates. When available, improved confidence estimates
will enable detection of performance degradation, and enable systems to trigger
mechanisms to improve state estimates.

3.5 Measurement Improvement

The final piece of the confidence-based tool for T&E is a measurement improve-
ment component. This component is necessary to enable the system to find ways to
improve classification performance when confidence in state estimates begins to
decrease. The most straightforward approach to improve the confidence in the
measurement is to get more information from the user in order to update the current
state estimation techniques. This approach has been successfully leveraged through
a technique known as Active Learning [41] which uses a iterative process to query
human users to provide minimal amounts of information to maximally improve
classifier performance. Active Learning has been successfully applied to several
domains including: speech recognition and annotation [42]; image and video
classification [43]; document categorization and text classification [44]; and EEG
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classification [45–47]. A similar technique, where the system probes the user for the
most important information, can be used within the proposed T&E application. The
challenge inherent in this approach is to extract enough information from the
operator to improve classification of state, while minimizing the frequency and
duration of interruption to natural task interaction.

Another similar approach for measurement improvement would be to incorpo-
rate more information as a means to estimate state. In this case, rather than querying
the user for additional information, the system would actively seek other sources of
information to improve the reliability of state estimates. For example, when using
such minimally intrusive techniques as EEG or heart rate, large movements from
increased activity may contaminate the signals and introduce artifacts into the data.
This would lead to low confidence in EEG- or HR-based estimates while movement
persists. However, the source and frequency of the movement artifacts may provide
information relating to subject stress that can be used as a surrogate while the
primary measures (EEG and HR) are considered invalid. While the movement
artifacts persist, the state assessment system would continue to produce stress
estimates by ignoring the contaminated signals and focusing on the new informa-
tion. Thus, by appropriately leveraging and dynamically integrating multiple signal
modalities, the system can provide a more robust measure over time.

Another example of incorporating additional information within team-based
tasks, would be to adaptively switch between multiple human agents to account for
variability in human performance. Figure 3 shows examples of how such a system
might work. These data represent target detection accuracy from several subjects as
they moved through a virtual environment [48, 49]. In this experiment, participants
would periodically enter an environment with dense fog that would impede target
detection performance. Across all subjects, target detection accuracy in the presence
of fog would decrease by an average of 23.26 % (Std Dev 5.7 %) and reaction time

Fig. 3 Demonstration of the effectiveness of a measurement improvement system that incorpo-
rates environmental information to dynamically integrate information from multiple sources. a and
b each show performance of a target detection task that leverages information from two subjects
across normal and degraded visual environments. Dotted gray line represents Subject C in both
plots. Dotted black line represents Subject A and B in a and b respectively
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would slow by 225 ms (Std Dev 41.12 ms). As expected, some participants per-
formed better at target detection in the normal visual environment, but struggled in
the fog. Other participants performed average in the normal visual environment, but
excelled relative to their peers in the fog environment. Using this data, we can
employ measures of confidence in each individual’s ability to perform the task as a
means to dynamically combine target detection performance across multiple indi-
viduals to leverage their unique strengths. This dynamic combination of multiple
individuals demonstrates how the confidence-based approach coupled with a
measurement improvement system can improve overall target detection perfor-
mance. Figure 3 illustrates two examples of the joint performance of two partici-
pants using an optimal fusion method (prior knowledge of when the fog turns
on/off) and classifier based fusion method (classifying the presence of the fog based
on changes in the recorded EEG signals from the participants). For both pairs of
participants, fusing the information based on the presence of the fog improves target
detection performance over either individual (Dotted gray line represents perfor-
mance of Subject C in both a and b. Dotted black line represents performance of
Subject A and Subject B in a and b respectively). In this situation, the measurement
improvement system enables the system to achieve higher performance across
changes in environmental conditions.

4 Conclusion

This paper proposes a framework for a novel tool to augment T&E of complex
human-in the loop systems. The framework couples measures of confidence to
human-sensed data with an array of closed-loop approaches for dynamically
improving classifier reliability to create robust measures of state capable of adapting
to changes in the signals over time. As such, this framework can provide a powerful
tool to enhance T&E of human-in-the-loop systems by providing accurate, high
resolution estimates of state, which, when combined with overall task performance
measures and questionnaire data, will provide a wealth of information enabling
system designers to better identify sources of errors through minimally intrusive
techniques.

The potential viability of the individual components of the confidence-based
system for T&E are demonstrated through exemplar data collected from various
studies. While these data provide evidence that such a system should be possible,
future work will focus on experimentally validating these claims and developing a
proof-of-concept system capable of robustly estimating human state, and thus
creating a novel tool for T&E of human-systems.
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Human Robots Interactions: Mechanical
Safety Data for Physical Contacts

Alberto Fonseca and Claudia Pires

Abstract In a world that relies heavily on technology, the industry invests heavily
to developing solutions that focus on the positive interaction between people and
machines and the isolation of physical or immaterial infrastructure as a method of
protection. An approach based on strategy must be followed to change the paradigm
of human machine interaction, researchers must look to the machine as a co-worker
and as such it may not pose a risk to other colleagues. So the challenge for
designers and machine developers must therefore turn to “minimization of force” as
a key to reach the safety of the machine/equipment. Considering these questions
and having into account that existing data about this issue is scattered, focused in
specific applications and cannot easily be transferred to different or more complex
applications the International Technical Committee ISO/TC 199—Safety of
machinery decided to create a Study Group—ISO/TC 199 SG01—with a purpose
of prepare an International Standard that would support the design, development
and use of machines that will interact with people.

Keywords Safety of machinery � Human-machine interactions � Safe contact �
Safety data

1 Introduction

Market and industrial needs are forcing technological developments and leading to
a new working paradigm in which humans and machines will be sharing the same
working place at the same time collaborating on the same tasks.
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This may sounds not very new but if we add that for doing those tasks will be
not possible to have physical or immaterial barriers, between people and the
machine in order to prevent human injuries due to the contact and ensure the
adequate level of safety, we will realise that in a near future humans and machines
have to find out how to work side by side in a friendly and safely way.

This raises a need to develop new machine design concepts based on active
safety and define a set of vital data and test methods to help machine designers and
manufacturers on achieving the adequate safety level for the new human-machine
collaborative working situation.

Although there is some information available it is very scattered and not always
supported by scientific studies to see it as reliable and applicable to the safety
objectives needed.

Based on this finding it appears important to work in the compilation of infor-
mation that allows a set of a statistically or experimentally proven data in view of
the development of harmonized solutions to prevent the risks associated with
human/machine contact.

Shown that there is a remarkable interest in the human/machine contact issue
from the market and industrial sides the International Technical Committee for
Standardization ISO/TC 199—Safety of Machinery is about of setting up a new
Working Group in charge of elaboration a new standardization document to
establish mechanical safety data for physical contacts.

The Study Group has defined the following work phases: identify information on
the subject in other fields; definition of parameters to be considered when designing
a machine (speed, power, contact dimensions, contact location, geometry…);
identify possible solutions centered on human-robot interaction and considers
broader aspects, such as human behavior a towards collaboration with robotic
systems.

The Group has already proposed the approach to define Safe Contact and
introduced these two essential aspects: risk level and machine complexity.

Now, the project transcended of possible contribution to an effective creation of
norm. Perspective to future meetings to will be identify the most relevant aspects to
be included in this framework as the definition of contact forces against a set of
different parameters.

2 Literature Review

The first step in the development of a normative framework is the investigation of
other references that could serve as a basis. In this situation there was the existence
of the following references:

• ISO/WD. 8—Safety of Machinery [1]
• ISO 10218–1:2011 [2]
• ISO 10218–2:2011 [3]
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• ISO 12100: 2010—Safety of machinery [4]
• BS EN 16005: 2012—Power operated pedestrian doorsets [5]
• ISO 14120: 2002—Safety of machinery. Guards [6]
• ISO/TS 15066:2016—Robots and robotic devices—Collaborative robots [7]
• EN 71–1:2014—Safety of toys [8]
• EN 71–8: 2011 Safety toys [9]
• CEN/TC 122—prCEN/TR 20442 [10]

The parameters to be considered in the development of the standard are iden-
tified through an analysis process. This process includes the examination of orga-
nizational management factors, facility layout, job design, tools, equipment
machinery, information transfer and personal factors. Besides these aspects it is still
considered the physical impact of collaborative robots in humans and their effects.
Desmoulin and Anderson [11] conducted a study to know the effects of mechanical
action of bruises on living beings. Thus, it was possible to determine the parameters
involved and their impact of mechanical action in humans.

The ISO 13482:2014 [12] relates situations or hazardous events. However,
warns of dangers related to the impact are not yet known, because not exist until the
time of publication of the standard data recognized and validated about this
situation.

The contact possibility in the interaction between man and robot exists and can
be considered normal. However, what is necessary to safeguard is that there is no
harm to humans. The ISO/TS 15066:2016 specifies safety requirements for
industrial robot systems and the collaborative work environment, being funda-
mental at this time the definition of the contact forces between humans and robots.

3 Description of the Problem/Situation

Currently there is the presence of robots in companies of any industrial sector.
This constant presence raises a number of questions for researchers. The first

question to ask is: work together (man-robot) will be safe? We must ward off
humans from robots? Or should we consider robots as part of employees of a
company?

With this and other questions, the International Technical Committee for
Standardization ISO/TC 199—Safety of machinery constituted in 2014 a Study
Group—designated ISO/TC 199—Study Group 1 in order to reflect on the
man-machine interaction, their implications and identifying possible limits forces to
respect whenever foreseeable contact between the machine and the person to be
regarded as dangerous.

From this study aims to define a regulatory framework to support the design,
development and use of machines that interact with humans in order to prevent
hazards associated with the man-machine contact. The purposes of the normative
document that this working group aims to develop relate to the fulfillment of a
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fundamental principle of security machines, established in the ISO 12100:2010,
which calls for the identification of risks and the definition of measures to prevent
the amount, i.e., at the design stage and construction of machinery.

The definition of the safety limits of the contact forces with the human body is
not as linear as it sounds. You need to consider a number of factors that influence
the final result. The age, physical condition, pain perception, as well as the area of
the body affected alters the limit values of the contact force. Apart of the related
situations the human being, one has to consider factors associated with equipment
such as the frequency and duration of contact, geometry, strength of materials,
among others (Safety of Machinery—Mechanical safety data for physical contacts
between moving machinery and people—ISO TC 199/SC, 2015).

The development of the regulatory framework aims to provide to designers and
manufacturers of machinery, values force of contact to ensure safety of collabo-
rator, without creating excessive constraints or undermine productivity.

4 Methodology

The development of this normative reference includes the following steps: forma-
tion of the study group; the feasibility and relevance of normative reference; cre-
ation of the working group and development of normative reference.

The ongoing project is to develop a normative reference for defining the contact
forces between man and robot (Fig. 1).

The first step was the definition of the study group; ISO/TC 199—Study Group
1; which holds regular meetings in order to aggregate information collected by
members, share ideas and bring together the basic elements for decision-making
regarding the possibility of developing the reference normative.

Develop Normative Reference Normative Reference
Studies

investigations
Other relevant standards

Human resources

Node: A-0 N.º 1

A0

Constraints/ Limitations  / Difficulty in obtaining 
information

Fig. 1 Level 1—IDEF0 representation of the phases of the project
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After this step, the study group will becomes work group that will conduct a
compilation of data and information; it is the beginning of the development of the
reference normative.

The Work Group focuses on the collection of information on international
standards from different sectors (some of Them Referred below) of industrial
activities and on works and scientific studies in this area.

For that the SG1 contacted several other international standardization commit-
tees (almost 30), may be interested in this work, in order to achieve the largest
possible participation and contribution of different areas of knowledge and make.

The study takes into account parameters associated with human-machine inter-
action, particularly the human condition (age, gender, affected part of the body, pain
perception) and conditions of use of equipment (strength of materials, force,
duration and frequency of the contact force application, contact surface geometry)
and different forms of contact such as sliding, abrasion, pinching and crushing.

The Figs. 1 and 2 represent, using the IDEF0 tool, the functions or activities of
the system developed to obtain the desired result.

The last phase is to get the values of physical contact forces between man and
robot be translated on a reference normative, which will provide support to man-
ufacturers and users of equipment.

5 Results

The ISO working group of TC 199 was preceded by a study group that researched
and concluded about the existence of information on mechanical contact forces
between people and machines. Also concluded that the existing data related with

Analyse  feasibility 
and relevance 

Studies
investigations
Other relevant 

standards

Human 

Analyse information 
and data

Set values for the 
human-robot 

Node: A0 N.º 2

A1

A2

A3

Standardization 

Data /
information
Creation 
work 
group 

Data /
information

Constraints /
Limitations

Fig. 2 Level 2—IDEF0 representation of the phases of the project
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human/machines contact is available in several published standards but all of them
are specifically targeted to certain types of machines.

There are also publications with physical contact data that designers can use but
this data is not yet harmonized and readily accessible in a usable form.

In order to make the data harmonized and usable worldwide the working group
expects:

• Aggregate the data scattered across multiple sources and create a unifying
document.

• Support new types of mobile/autonomous robots that will be deployed outside
of industrial settings as well as within industry, including new types of
human/machine contacts.

• Specify safe contact limits for new types of deployment, while still covering the
traditional approach of preventing contacts.

Fig. 3 Dimensions for analysis of safe contact forces
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• Supplement existing standards that include human contact information that has
no known root in the scientific literature with well-founded and reference data.

At the moment the reference standard is in development stage.
The limit values of contact forces are being set, based on studies and research

carried out at existing values and weighting and consideration of different results.
With a view to defining Safe Contact the Work Group presents a proposal for

analysis of safe contact forces, based on two dimensions (see Fig. 3): Risk Group
and the Machine Complexity Level (ISO/WD. 6, 2015).

The group see with great interest the definition and inclusion in the standard of a
type test—safety test—which aims to complement existing information, particularly
in complex situations where the type of the contact is not clear, or it can be an
alternative to an analysis based on established limits. Within the group there is a
consensus that this test must be simple, easy to implement and incorporate material
that simulates the response of a person to contact such as “artificial flesh” or other
“instrumented biological material” [13].

The study of a set of standards that has being the basis for defining the limit
values of contact forces suggests that these values may be expressed in the way that
is exemplified in Fig. 4:

Fig. 4 Example of limit values of contact forces. (ISO TC 199/SC N; Date 2015-03-05; ISO/WD
.8 ISO TC 199/SC/WG)
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6 Conclusion

Since the study group shown that there is a need of coherent, well-founded and
harmonized information about human-machine mechanical contacts the members of
International Standardization Committee ISO/TC 199—Safety of Machinery
approved by majority to set up a new working group for developing a standard in
this subject. Under the ISO rules this working group has to do it within the next
48 months.

The work program is to be prepared and agreed in the kickoff meetings but is
foreseen that the first step will be the compilation of the existing data scattered
across different sources and prove the consistency of the values by scientific or
statistical data.

Is also intended that the standard should give test methods to prove and con-
solidate by experiments the limit values for human machine contacts.

By the end is expected to publish a standard with vital information to help the
designers and manufactures to designing and making machines more friendly-using,
inherently safe and increase significantly their productivity.

After preparation of the standard is expected to have a standardized framework
that provides reference values to machine designers, in order to promote the safe
use of production equipment by users and ensure the development and production
of safe machines.

In the future it is intended that this project transposing the theoretical field barrier
and be carried out the consolidation/validation of the results obtained by experi-
ments, using measuring instruments and production equipment.
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Droning on About Drones—Acceptance
of and Perceived Barriers to Drones
in Civil Usage Contexts

Chantal Lidynia, Ralf Philipsen and Martina Ziefle

Abstract The word “drone” is commonly associated with the military. However, the
same term is also used for multicopters that can be and are used by civilians for a
multitude of purposes. Nowadays, drones are tested for commercial delivery of goods
or building inspections. A survey of 200 people, laypersons and active users, on their
acceptance and perceived barriers for drone use was conducted. In the present work,
user requirements for civil drones in different usage scenarios with regard to
appearance, routing, and autonomy could be identified. User diversity strongly
influences both acceptance and perceived barriers. It was found that laypeople rather
feared the violation of their privacy whereas active drone pilots saw more of a risk in
possible accidents. Drones deployed for emergency scenarios should be clearly
recognizable by their outward appearance. Also, participants had clear expectations
regarding the routes drones should and should not be allowed to use.

Keywords Civil drones � Usage contexts � User requirements � Barriers �
Technology acceptance � Piloting experience � Human factors

1 Introduction

Sometimes, there are many names for the same concept. Unmanned aerial system,
unmanned aerial vehicle (UAV), remotely piloted aircraft system, multicopter, or
drone; they all describe the same or at least very similar pieces of airborne
technology.
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The word “drone,” almost regardless of continent, be it Europe, North America,
or even Australia, is often associated with the military and even (covert) observa-
tion missions or espionage, e.g., [1, 2]. And while this technology has its roots in
military and warfare, see, e.g., [3–5], its applications have entered the civilian realm
of useful tools and gadgets, especially since the technological development facili-
tated ever decreasing sizes of drones that are no longer lethal. Consequently, the
term “drone” is also used for multicopters that can be and are used by civilians for a
multitude of non-threatening purposes. For one, scale model pilots use them as a
different kind of remote-controlled model aircraft. Sport enthusiasts document their
own outdoor-activities, especially in regard to extreme-sports. Unmanned aerial
systems with either rotors or fixed wings are deployed for precision farming, e.g.,
[6, 7], or wildlife preservation [8].

Additionally, multicopters have attracted the interest of commercial users who
plan to deploy these gadgets to transport and deliver goods, e.g., [9, 10], inspect the
structural integrity of buildings, e.g., [11], record documentaries or movie
sequences, see, e.g., [12], or even send them out in cases of natural disasters to
locate survivors or remaining hazards.

All of these different uses have an impact on the general population. The attitude
toward and acceptance of unmanned flying aircrafts is instrumental in establishing
this technology as valid option for future civilian applications.

As far as the authors of this paper know, up until now, there has been very little
research done on human factors that influence the acceptance of this technology.
Sandbrook [8] also commented on the lack of research on social factors concerning
drone deployment in non-military contexts. For the most part, technological aspects
are the focal points of research, e.g., [11, 13, 14]. Of almost equal interest is the
legal side of drone usage: Where am I allowed to deploy my multicopter, how much
altitude is allowed for these aircrafts, and what zones are completely out of question
for me to fly over? This varies considerably across different countries. Even though
the European Union has guidelines on civil drone use above 150 kg, each indi-
vidual nation has instated their own regulations and laws, some more lenient than
others, when it comes to UAVs lighter than 150 kg, see among others [4, 15, 16].

2 Related Work

Only little research has been conducted about the requirements that civilians, i.e.,
the general public, have so that drones or multicopters can be used as
non-threatening “helpers” or useful tools. The author of [17] used differently
worded questionnaires to gauge the social acceptance of drones as means of cargo
or passenger transportation. Her study showed that the information given to the
participants had an impact on how this new technology was perceived. The better
informed about the risks and possible benefits, the more favorable the acceptance of
remotely piloted aircrafts.
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In [1], the authors investigated the perception of risks pertaining the comparison
of unmanned aerial vehicles and conventionally piloted vehicles in Australia. They
came to the conclusion that the risks associated with either type of aerial vehicle did
not differ. They also examined if a different naming of the system had any impact
on the perceived risk, using the options ‘manned aircraft,’ ‘drone,’ ‘unmanned
aircraft,’ ‘autonomous aircraft,’ and ‘remotely piloted aircraft’ in their study. Again,
they could find no difference in the risk associated with each of these systems.

Boucher, see [2] and [18], has conducted qualitative studies to establish a basis
of what people associate when first confronted with the topic of civil drones and
their non-military deployment. To do so, he used several focus groups, in the UK
and Italy, to get an insight into the first associations people have when asked about
drones. Two of the main aspects he found out were that privacy, especially fear of
its loss, plays a major role in the perception of drones, and use of drones that yields
benefits to others (society, wildlife, etc.) was accepted while benefits to the pilot
alone (fun, mementos, etc.) were considered unacceptable and this use needs careful
monitoring and regulations.

The overview of existing research showed that although larger payloads, such as
passengers or bigger deliveries, are better suited for drones with fixed wings,
multi-rotor systems are more readily available and used by hobby and commercial
pilots. Also, they possess more maneuverability and require less space for take-off
and landing. Therefore, these systems are also more likely to be encountered by
laypersons.

So far, there is still a decided lack of research on the acceptance of and
requirements for drones and the factors that might influence these concepts. One
German research centers on a specific user-group, namely firefighters, and their
acceptance of drones as tools for their job, especially disaster management and
prevention [19]. It might also be of interest if there are significant differences in the
evaluation of drones and drone use by those who actively use it, early adopters still,
or those who have had none or only passive exposure to drones, especially con-
sidering that technological developments and changes in the legal regulations
indicate a spread of drone use in civil contexts in the not so distant future [15].
Therefore, these are the starting points of the present study.

3 Method

The method section is structured as follows: First, the findings from previous focus
group studies on which the present work is based will be shortly introduced.
Second, the development of the measurement instrument, i.e., the questionnaire,
will be presented. Subsequently, there will be a summary of the data acquisition and
analyses, followed by a description of the gathered sample.
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3.1 Previous Focus Group Studies

In the run-up to the present study, focus group discussions with experienced drone
users and laypeople had been conducted, because, apart from diverse privacy
concerns, little was known about concrete requirements on and attitudes toward
civil drone technology. Consequently, an explorative approach was needed as a first
step. The focus groups aimed at identifying potential usage scenarios, requirements
on design and control of drones, and perceived barriers and benefits.

Usage Scenarios. Participants distinguished between three usage contexts:
(1) drone use as leisure activity, e.g., model flight or private aerial photography,
(2) commercial use, e.g., courier services or inspection of large technical installa-
tions, and (3) emergency use, e.g., locating missing persons or aerial reconnaissance
at disaster scenes. Depending on the scenario, the participants’ requirements on
drones varied.

Requirements on Drones. Requirements regarding two main aspects of drones
could be identified: (1) flight characteristics and control, e.g., the used route, the
possible flight radius, or the level of automation regarding the piloting, and
(2) identifiability, as in adapting the structural shape and the color to the purpose of
use, as well as giving the drone the means to identify itself by, for example, sending
an identification code per wireless communication if requested by anyone.

Perceived Benefits and Barriers. Although many advantages of civil drones
were mentioned in the focus groups, e.g., pleasure of flying, new perspectives for
photography, or access to hardly accessible places, several barriers to drones could
be identified that mainly concern privacy issues. In particular, a possible surveil-
lance and unwarranted intrusion into the private sphere were perceived as barrier to
acceptance. Also, the overflight of private territory was considered as critical.

3.2 Questionnaire

To quantify the findings from the focus group discussions with a larger sample, a
questionnaire was developed. It consisted of four parts, one dealing with user
factors and three concerning thematic issues.

Demography and Further User Factors. The first part of the questionnaire
collected demographical information, e.g., age, gender, educational level, or
occupation. Furthermore, Beier’s inventory to measure technical self-efficacy [20]
was used to gain an impression of the participants’ technical affinities. At last,
previous experience with civil drones in terms of usage and passive contact, i.e.,
having watched flying drones, was gathered for both private and professional
contexts.

Evaluation of and Requirements in Different Usage Scenarios. The ques-
tionnaire’s second section addressed the participants’ requirements on drones in
three different usage contexts using a within-subject design. Each participant had to
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answer questions regarding the requirements on drones in the following contexts:
(1) hobby, (2) commercial, and (3) emergency. Short scenario-based introductions
with examples derived from the focus groups were given for each context to handle
unequal knowledge levels and possible gaps regarding the awareness of concrete
purposes of drone use.

The requirements on drones were gathered in a dichotomous way by using
questions with polarized, mutually exclusive answer options, whereby one was
generally restrictive and one offered more freedom regarding appearance and flights
of drones. Table 1 gives an overview of the drone attributes and the related
selectable characteristics.

General Evaluation of Civil Drone Technology. The second thematic section
dealt with a general evaluation of civil drone technology regardless of a concrete
usage scenario. Exemplarily, the following statements used for evaluation shall be
mentioned: “Basically, I find drone technology useful” or “What bothers me is that
there is no way to identify whether the drone is filming.” A full listing of presented
statements will only be shown in the result section to avoid redundancies. Even
numbered Likert-scales (min = 0: “Strongly disagree”; max = 5: “Strongly agree”)
were used to compel participants to make more differentiated choices.

Barriers. In the last section, participants had to rank several barriers to drones
derived from focus groups from 1 (“most important”) to 5 (“least important”). The
questioned barriers included violation of privacy, pilot’s anonymity, risk of acci-
dents, noise, and the missing inference to the purpose of use from the appearance.

3.3 Participant Acquisition, Data Preparation, and Analyses

The survey was realized as online questionnaire. Participants were acquired at the
university, in the social environment of the authors, and by using social networks.
In addition, expert forums dealing with civil drones, in particular multicopters, were
used to address experienced users.

A total of 253 participants started to fill in the questionnaire. The dropout rate
was 20.1 %. Therefore, 53 participants who did not answer at least the first thematic
section of the questionnaire were removed from the dataset. The remaining data was

Table 1 Queried drone attributes and given answer options

Drone Attribute Unrestrictive option Restrictive option

Form Customizable Standardized concerning usage

Color Customizable Standardized concerning usage

Flight route Free choice of user Approval by authorities

Flight radius Outside the pilot’s visual range Within the pilot’s visual range

Piloting (Temporarily) autonomous Permanent human control

Identification No identification needed Wireless identification ability
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analyzed by both parametric and non-parametric statistical methods. Two-tailed
tests were used for significance testing and the level of significance was set to
α = 0.05.

3.4 Sample

A total of N = 200 participants have completed the questionnaire. 126 (63.0 %) of
them were male, 74 (37 %) female. The age in the sample ranged between 15 and
74 years, the mean was 38.21 years (SD = 13.38). The participants’ level of edu-
cation was rather high: the most-often stated educational attainment was a university
degree (42.5 %, n = 81), followed by graduation from high school (27.0 %, n = 53)
and vocational trainings (23.0 %, n = 46). The remaining participants completed
secondary school (9.0 %, n = 18) or had not achieved a school-leaving qualification
yet (.5 %, n = 1). 62.5 % (n = 125) of the participants pursued an occupation, while
27.0 % (n = 54) were pupils, students, or apprentices. The technical self-efficacy in
the sample was rather high with M = 3.63 (SD = 1.33, scale min = 0, scale
max = 5).

Drone Usage. 45 participants (22.5 %) had previously used civil drones in
private or professional contexts. The sample’s typical drone user is male (95.6 %,
n = 43) and has a high technical self-efficacy (M = 4.62, SD = 0.62). Concerning
this attribute, the difference between users and non-users (M = 3.35, SD = 1.35)
was significant with t(198) = −6.117; p <0.001; d = −1.036. In contrast, no sig-
nificant differences between the user groups could be revealed (p >0.05) regarding
age and the level of education. 60.6 % (n = 94) of the non-users stated that they
have watched the use of a civil drone at least once before.

4 Results

The presentation of the results is structured as follows: First, the requirements on
drones in the three exemplary usage contexts will be presented. Second, the general
assessments of and attitudes toward civil drone use will be outlined. The section
closes with the presentation of findings gathered from the ranking task.

4.1 Requirements on Drones in Different Usage Contexts

The requirements on drones varied to a great extent depending on the usage context.
The differences between them were significant with p <0.05 for all requirements,
except where otherwise specified in the following. As can be seen in Fig. 1, a
majority of the participants stated that drones in the hobby context can have a
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customizable color and form and thus pleaded for unrestrictive rules. In contrast,
there was a slight preference for a standardized appearance of commercial and
emergency drones. There were no significant differences regarding the latter two
use cases on requirements for the drone’s form.

Concerning the flight paths, participants would allow both private and emer-
gency drones (n.s. differences) to use routes freely chosen by their pilots, whereas
flight plans of commercial drones should be approved by authorities. With regard to
the other flight parameters, a reversed response behavior compared to the
requirements on the drone’s appearance was revealed. More specifically, partici-
pants requested more restrictive rules for the flights of hobby drones. They were
required to fly within the pilot’s visual range and under permanent control of a
human pilot. While the participants’ opinions regarding these requirements on
commercial drones were rather indecisive, a majority stated that emergency drones
should be treated less restrictive and be allowed to operate at least temporarily
autonomously and outside the visual range of a pilot.

Finally, one requirement was completely independent from the respective usage
context (n.s. differences): the drone’s ability to identify itself per wireless com-
munication was stated as mandatory by a majority of participants for all contexts.

Concerning previous experience with drones, several differences between users
and non-users were revealed in their individual requirements on the usage in the
presented scenarios. Most of them were significant with p <0.001. The only
exceptions to this trend were piloting in the hobby context; flight radius and color in
commercial context; and flight radius, form, and color in the emergency use case,
for which users’ and non-users’ requirements did not differ significantly.

A full overview of users’ requests can be found in Fig. 2. A representation of
non-users’ requirements will be forgone here because it did not significantly differ

Fig. 1 Percent approval rates of all participants to requirements on drones in different usage
contexts
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from the total sample (see Fig. 1). Two aspects of users’ response behavior stuck
out: First, drone users tended to less restrictive requirements. Although the main
effects of the scenarios are comparable, the majority of users leaned towards more
freedom regarding drones’ appearance and flight parameters in all usage contexts.
Second, in contrast to non-users, the majority of drone users did not request
identification capability in the hobby context, whereas such ability is wanted for
commercial and emergency use.

4.2 General Evaluation and Attitudes

The general assessment of civil drone technology revealed that the participants did
neither fear injuries from accidents with drones nor drones in general. The fear
related statements were the only ones rejected on average. In contrast, for the
remaining statements, a rather neutral to slightly consenting attitude must be
assumed. This applies in particular to concerns about the anonymity of the pilots,
the missing possibility to infer the drone’s usage from its looks as well as for the
willingness to generally permit drone use and private piloting. Higher approval
rates were revealed regarding the unwillingness to accept flights over one’s own
property, the perceived usefulness of drones, and the wish for identifiability of
ongoing film or photography activities. See Fig. 3 for a complete overview of
participants’ average evaluations.

When looking at the differences between users and non-users, it becomes clear that
opinions differ significantly regarding all presented items (p <0.001 and absolute
values of Cohen’s d >0.7 for all t-tests). These differences are particularly evident in

Fig. 2 Percent approval rates of active drone pilots to requirements on drones in different usage
contexts
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the following statements: First, users strongly support the permission of private and
general drone use (M approaches the maximum agreement rating), while non-users
take a rather neutral position (tgeneral_use(196) = −6.566; p <0.001; d = −1.113
respectively tprivate_use(197) = −7.528; p <0.001; d = −1.276). Second, users con-
sidered the missing identifiability of the pilot, the purpose of use, and ongoing
film activities as unproblematic, while non-users are worried about these
issues(tpilot(194) = 4.204; p <0.001; d = 0.72, tpurpose(197) = 6.892; p <0.001;
d = 1.168, and tfilming(197) = 9.805; p <0.001; d = 1.662). Last, non-users do not
want air traffic over their private territory, whereas users would allow it
(tair_traffic(194) = 5.439; p <0.001; d = 0.924). See Table 2 for the complete com-
parison of the user groups.

4.3 Barriers

Table 3 gives an overview of barriers to the acceptance of civil drones and their
median ranks for the complete sample. The potential violation of privacy was
revealed as most important and significantly differing from the other barriers
(Z = −5.916; p <0.001), followed by the pilot’s anonymity and missing possibility
to infer the drone’s purpose of use from its appearance. In the latter two cases,
there was no significant difference between the barriers’ rankings (p >0.05). The
risk of accidents and the drone’s noisiness were rated even more unimportant.
Although the median ranks of these items did not differ, there was a significant
difference concerning the ranking (Z = −3.370; p <0.001);

Fig. 3 Average agreement on evaluation statements (min = 0, max = 5). The dashed line
indicates the arithmetical neutral level of agreement
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Concerning previous experience, privacy loses importance. As shown in
Table 4, drone users ranked the risk of accidents as most important barrier, whereas
non-users did not differ from the complete sample. Both the risk of accidents
(U = 1705; p <0.001; r = −0.35) and the drone’s noisiness (U = 2297; p = 0.002;
r = −0.22) were significantly ranked as more important by users than by non-users.
In contrast, the violation of privacy (U = 1973; p <0.001; r = −0.30) and missing
possibility to infer the drone’s purpose of use from its visual appearance

Table 3 Perceived barriers and median ranks (1 = “most important; 5 = “least important”)

Barrier Median rank

Violation of privacy 2

Pilot’s anonymity 3

Missing inference to the purpose of use from the appearance. 3

Risk of accidents 4

Noise 4

Dashed lines indicate significant differences between the ranked items

Table 4 Most and least important barriers with regard to experience groups

Importance Barrier

Users Non-users

Most important Risk of accidents (Mdn = 2) Violation of privacy
(Mdn = 1)

Least important Missing inference to the purpose of use from the
appearance. (Mdn = 4)

Noise (Mdn = 4)

Table 2 Average agreement on evaluation statements (min = 0, max = 5) and related standard
deviations with regard to experience groups

Users Non-users

Statement M SD M SD

“Private persons should be allowed to use drones.” * 4.53 0.97 2.56 1.67

“Basically, I find drone technology useful.” * 4.42 0.99 3.40 1.35

“Drones should generally be allowed.” * 4.07 1.30 2.30 1.66

“I want no flights over my property.” * 2.16 1.80 3.60 1.49

“The anonymity of pilots worries me more than data
protection.” *

1.98 1.64 3.07 1.50

“What bothers me is that there is no way to identify whether
the drone is filming.” *

1.93 1.86 4.19 1.18

“What bothers me is that I cannot infer the purpose of use
from the appearance.” *

1.36 1.76 3.32 1.66

“I fear injuries from an accident with a drone.” * 0.80 1.06 1.75 1.60

“Drones scare me.” * 0.22 0.60 1.84 1.62

A * indicates significant differences with p <0.001
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(U = 2068; p <0.001; r = −0.27) were rated more important by non-users than
users. There was no significant difference between the user groups concerning the
evaluation of the pilot’s anonymity.

5 Discussion

The ever increasing development of technology for unmanned aerial vehicles and
their possible deployment in civil usage contexts prompts questions about the social
acceptance of these aircrafts, possible barriers to their use, and likely factors that
influence these issues. As current research is still sparse or even nonexistent, the
presented study aimed at providing a first insight into the influence of different
usage contexts and expertise or prior experience with drone technology on the
perceived barriers and requirements people have.

A comparison of different usage scenarios for drones showed that the context of
the deployment is important. Different types of usage result in different require-
ments concerning, for example, looks or flight path. This holds also true for legal
regulations that vary depending on the usage context. While this study could not
detect a clear position concerning commercially used drones, UAVs used in hobby
or emergency contexts evoke clear opinions on what is wanted or needed for their
acceptable use. While drones for leisure usage can be less restricted in their look
and design, their handling and flight paths are to be carefully observed. For
emergency drones, the opposite holds true with their design clearly identifying their
purpose but given carte blanche as to where they are allowed to fly.

In general, though, this study could not detect any fear of this technology. On the
contrary, its beneficial uses were appreciated. Nevertheless, it was also shown that
drones evoke a lot of concerns about the safety of one’s privacy, especially in
regard to visual recordings, which mirrors results from other studies such as [18].

The factor of expertise, the status of active drone user or non-user, yielded a lot of
opposing opinions and results. Non-users are very concerned for their privacy, about
who is piloting the drone, and if they are filmed without their knowledge. Although
they do not fear the aircraft itself, they are not sure about its use, especially in the hands
of hobbypilots.Another big problem for laypeople is the overflight of private property.

Drone pilots, on the other hand, are less concerned for their privacy. They are
more worried about the risk of accidents, even though they are more accustomed to
the technology. Unsurprisingly, active drone operators have less restrictive
requirements on drones in civil usage contexts than the general public with little or
no contact to this technology. To facilitate a better acceptance of this novel tech-
nology use, in accordance to previous results, [17], a better information of the
public and framing of drones is necessary. Clear regulations, which are either
recently in place or at least in development, and a more transparent use of drones
are needed to satisfy both advocating pilots and concerned laypeople who are
warier of unpermitted recordings of their person and property than they are of
injuries caused by crashing aerial vehicles.
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6 Limitations and Outlook

The questioned sample was rather educated and should have been more hetero-
geneous. Based on this and the source of acquired participants, the results presented
here cannot accurately describe the opinion of the general public. Although possible
barriers to civil drone use have been ranked, the results based on this method do not
disclose absolute significance. Therefore, further studies need to be conducted. For
one, tradeoffs for drone deployment in civil usage contexts should be examined via
conjoint analysis: Under what terms are users and/or civilians willing to accept
impediments, especially concerning privacy issues? Is it necessary to have infor-
mation about the pilot’s identity or the reason for UAV deployment? How
important are personal benefits/advantages?

Furthermore, other user factors such as age (especially the status of digital native
or digital immigrant), gender, or the personal attitude concerning privacy and data
security should be examined in regard to their influence on the acceptance of
UAVs. Does the opinion change when it is no longer only early adopters who use
the technology and the people coming into contact with drones are more diverse
regarding, for example, gender, education, or technology self-efficacy?

The most controversially viewed possibility of UAVs is that of autonomous
flight. Our sample mostly rejected it for hobby pilots and, in Germany it is currently
prohibited, but the delivery of goods, for example, would rely heavily on this aspect
and, therefore, a change in its acceptance is needed. For this, possible factors could
be the pervasiveness but also a more reliable technology to prevent in-air collisions
or crashes. This should be examined in further studies.

Another very interesting component is the cultural bias. The present study only
included participants from Germany. Other qualitative studies, [2, 18], have already
shown different privacy concerns from citizens of the UK, who are used to CCTV
surveillance, and Italians, who do not have a lot of CCTV and therefore are a lot
more skeptical about drones and the possibility of being filmed or recorded, with or
without their knowledge.
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Factors Affecting Performance
of Human-Automation Teams

Anthony L. Baker and Joseph R. Keebler

Abstract Automated systems continue to increase in both complexity and capacity.
As such, there is an increasing need to understand the factors that affect the per-
formance of human-automation (H-A) teams. This high-level review examines
several such factors: we discuss levels and degrees of automation, the reliability of
the automated system, human trust of automation, and workload transitions in the
H-A system due to off-nominal events. The influence that each of these factors has
on the H-A team dynamic must be more completely understood in order to ensure
that the team can perform to its maximum potential. Thorough understanding of this
dynamic is especially important to ensuring that H-A teams can succeed safely and
effectively in critical contexts.

Keywords Automation � Human-systems integration � Human-Automation
teams � Team performance � Reliability � Trust of automation � Off-nominal events

1 Introduction

Since the dawn of the industrial revolution, automation has held the promise of
vastly improving the work efficiency of humankind. Within the last few decades, we
have seen the human-automation (H-A) relationship change, moving the role of
automation from tool to teammate in order to drive and sustain this change. The
proliferation of automation has come with the task of understanding how automation
fits into the existing puzzle of human working relationships, and there has been
much research to guide the process of placing that puzzle piece. This review dis-
cusses some of that research.
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To put this research into an appropriate context, we will consider the environ-
ment that can perhaps place the most demand on an H-A team: the void of space.
Considered an ICE—isolated, confined, and extreme—environment, space and
future travel through it will require a shift in the way we think about H-A teams.
The next frontier in human space exploration is a mission to Mars. With current
technology, it would take a human crew about six months to get there, and then six
months to return. A mission to land crew on Mars may have to last for several
months at the minimum, perhaps more, depending on when the orbits of Earth and
Mars provide for favorable launch windows. This long-duration spaceflight (LDSF)
means that mission parameters for the human operators will be different from
previous missions. The long communication time between mission control on Earth
and the astronauts (radio signals can take up to 20–30 min to travel between the
planets) means that astronauts will be expected to perform within “bounded
autonomy”, meaning that they are free to perform most functions as they see fit,
with lightly-interspersed input from mission control at critical junctures [1].
Any LDSF mission must consider all of these extra constraints when designing the
H-A system, in order to achieve safe, effective, efficient performance.

To this extent, this paper will review several factors that affect the performance
of H-A systems. Levels and degrees of automation will be reviewed and considered
and the performance impact of reliability of automated systems will be assessed.
The human side of the H-A team will be considered, with specific emphasis on
factors guiding human trust of automation. We will also consider the consequences
of failures in the H-A system, and we will investigate factors that improve per-
formance outcomes after failures. Finally, we will draw conclusions about ways to
improve the overall performance of H-A teams, and we will provide directions for
future research.

2 Stages and Levels of Automation

Automation is defined by the manner in which it carries out its tasks, and by the
extent to which it is given certain types of tasks. Before going further, it would be
best to define what we mean by automation, because the term can be used many
different ways. We will use “automation” to refer to a computerized or mechanical
system used to carry out a role or a type of work performed by humans.

Automated systems can be differentiated in a few ways. There are generally two
schools of thought when it comes to describing levels of automation. The first
school of thought arose several decades ago with a seminal paper by Sheridan and
Verplank [2], which discussed the teleoperation of submersible vehicles and work
platforms. The article further discusses control hardware (such as sensors, com-
munication, controls, and the workstation) and how it affects performance of the
human operator. This was one of the earlier works which assessed the performance
of H-A teams. In order to characterize the automated assets used by the operators,
the authors outlined a model to describe different levels of automation that were
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possible, with each level of automation providing a different level of support to the
human’s operation of the system. The model is provided in Table 1.

Our original definition of automation referred to the complete or partial
replacement of human operation of a task with an automated system. In contrast, the
model in Table 1 implies that automation is not all-or-none, but rather that there are
distinct levels with various amounts of automation. As the level of automation
increases, the amount of work entrusted to the human operator is reduced, as task
demands are increasingly offloaded to the automated system. At the 10th level, an
automated system is in full control of all decisions and does not inform human
operators. Rarely are systems automated to this extent; generally, some level of
input from a human, or some ability to inform human operators of task outcomes, is
always useful to have.

The second school of thought in defining automation is more recent, and
coincides with the rise of information-processing research. Notably, Parasuraman
et al. [3] created a model of automation that grounds automation levels in an
information-processing paradigm. It is helpful to first consider a simplified model of
an information-processing task. An example is provided in Fig. 1.

In the first stage of the model, acquisition, information about the environment
and the state of the system is gathered and synthesized from multiple sources. In a
human operator, this is done via the senses, while an automated entity will make

Table 1 10 levels of automation, from Sheridan and Verplank [2]

Automation
level

Automation description

1 The computer offers no assistance; human must take all decision and
actions

2 The computer offers a complete set of decision/action alternatives, or

3 Narrows the selection down to a few, or

4 Suggests one alternative, and

5 Executes that suggestion if the human approves, or

6 Allows the human a restricted time to veto before automatic execution, or

7 Executes automatically, then necessarily informs humans, and

8 Informs the human only if asked, or

9 Informs the human only if it, the computer, decides to

10 The computer decides everything and acts autonomously, ignoring the
human

Fig. 1 Information-processing model. While this is a gross simplification of the complexity of
human (or machine) information processing, it is useful in understanding the process of going from
data acquisition to action execution
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use of sensors. This stage includes the allocation of attention and cognitive
pre-processing of information. The second stage of the model, analysis, involves
working memory to a large extent. Here, the human or automated system will
consciously perceive, manipulate, and process retrieved information. In the third
stage, cognitive processing is used to derive an appropriate response about the
information gathered. In the fourth stage, the decision is acted upon.

What Parasuraman, Sheridan, and Wickens did was to take this four-stage model
and describe how each of the stages could have its own levels of automation. This
stands in contrast to Sheridan and Verplank’s model, which only considers how the
automated systems come to their decisions. In this newer model, the entire
information-processing process is considered, and each stage can be automated at a
different level. This accounts for a multitude of modern computerized systems that
are specialized for acquiring and analyzing massive amounts of information very
quickly, as well as synthesizing it into a set of choices to be made for a human
operator to decide on. As one example, the proliferation of internet-usage data
allows companies to collect large amounts of data about how their customers use
their sites. Systems are able to harness this information, analyze traffic and purchase
patterns, and provide information about what parts of the site are making money, so
that the operators can decide on how to capitalize on this information.

Returning to our LDSF context, let us imagine the existence of an automated
system which can control power allocation to various systems of a hypothetical
spaceship. To what extent should the system be automated? In other words, should
all power allocation actions be made as the system deems appropriate? Should
actions only be taken when there is a near-perfect chance that the power allocation
will not result in failure? What if those conditions are not always met, and the
automated system is not able to do much in the way of allocating power, despite its
tasking?

The question of the extent of automation is a difficult one. The best solution
(and, unfortunately, the one that provides the least amount of guidance at face
value) is that a system needs to be automated “just the right amount”. If the
automated system is only capable of very little, or is only entrusted with menial
tasks, human operators are not likely to trust the automated system [4]. However, if
the automated system has a very large amount of responsibility, there is potential of
a significant “lumberjack effect” [5]. The system is like a large tree in a forest: the
bigger it is, the harder it will fall, or in automation terms, the more responsibility the
automation has, the greater the performance decrement when the system fails.
Onnasch et al. [5] evidence for the existence of a point, called a, at which
automation should not be given further responsibility, as crossing this point results
in significantly worse post-failure performance. The authors provide a chart,
reproduced in Fig. 2, which shows the relationships between human operator sit-
uational awareness, operator workload, system failure performance, and system
routine performance, each as a factor of degree of automation.

Being cognizant of a is not enough. System designers for LDSF are given the
difficult task of getting as close to a as possible without unduly jeopardizing the
performance of the human-automation team when a failure in the automated system
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occurs. The system performance benefits and reductions in operator workload are
non-negligible and are the drivers that demand that the degree of automation used is
as extensive as is safely possible.

3 Reliability of Automated Systems

Reliability of the automated system is a factor that plays a large role in how the
human operator actually uses the system, and in turn, how the system is able to
perform. In essence, reliability is the rate at which an automated system performs
properly and predictably. Understandably, greater automation leads to greater
performance by an H-A team. However, an unreliable automated system places
greater task demands on the human operator, who must then compensate for
potentially incorrect information, analyses, decisions, or executions of action. Yeh
and Wickens [6] assessed the performance of participants on a target-detection task
using a cue-detection system that changed in its reliability. Starting off as reliable,
the system became unreliable at a certain point in the task. The authors found that
participants adjusted their usage of the system to compensate for perceived flaws in
the system, with users relying more on their own judgments than those of the
system when they believed that the system was unreliable.

User adjustments are not the only outcome of an unreliable system. Rovira et al.
[7] conducted a study assessing participants’ response times in which they were

Fig. 2 Several variables as a factor of degree of automation [5]. Note the sharp drop in failure
performance after the system is automated past a
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tasked with deciding whether targets were enemy or friendly. Participants had the
support of an automated system, which aided their identification of the targets. This
system became similarly unreliable at certain points. The authors found that par-
ticipant response times were slower when dealing with the unreliable level of
automated support, which provides more evidence for the idea that an automated
system that is not consistently reliable induces a performance decrement on the
human-automation system.

4 Trust of Automation

Predictability of the automated system’s choices, actions, and capabilities is
important to the human side of the team: as the human’s understanding of the
automated asset’s purpose and abilities increases, the potential performance of the
team increases as well [8]. This is referred to as having a shared mental model of the
task at hand, in that the user’s mental model of the task and the automation fits with
the model of what the automation perceives and is capable of. Lee and See [9], who
reviewed the existing literature on human trust of automated systems, further
inform this congruence between automation capability (i.e. trustworthiness) and
operator understanding of the automation. The authors illustrated several concepts
that are not new to the field, but which are very useful in understanding the complex
relationship of the H-A team (Fig. 3).

User trust of an automated system is considered calibrated when it matches the
system’s capabilities, and calibrated trust is conducive to effective performance of

Fig. 3 Relationship between automation capability and user trust [9]. The diagonal indicates an
appropriate calibration of trust. Areas above and below the diagonal result in overtrust or distrust
of the system, respectively
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the human-automation team, as it results from a good understanding of the auto-
mated system’s capabilities. Calibrated trust has good resolution, as a certain range
of system capabilities matches with a certain range of user trust. Poor resolution
(and poor calibration) results when capability does not match user trust.
Parasuraman and Riley [10] provide more insight into the errors committed by
human operators with poorly calibrated trust. The authors explain that humans can
make inappropriate use of an automated system via misuse or disuse. Misuse refers
to detrimental overreliance on the automated system (as when the system is inca-
pable of performing to the operator’s expectations). Disuse refers to detrimental
underreliance on the automated system (as when the human is incapable of per-
forming to expectations, and needs the automated system to perform better). Thus, a
strong H-A team demands that operators have a clear understanding of the auto-
mated system’s capabilities, and that they understand the situations in which the
system’s is most useful.

5 Workload Transition: When Automation Fails

Automation failure is not a question of if, but when. If LDSF is to succeed, the H-A
system must be capable of handling these failures swiftly, appropriately, and
effectively. The point at which automation fails is referred to as a workload tran-
sition [11] referring to the transition of workload that was previously managed by
the automated system onto the human operator. This process is also euphemistically
referred to as an off-nominal event. Understandably, workload transition places a
large demand on the human operator, who must now manage not only the auto-
mated system’s tasks but the repair procedures as well.

The CODDMAN Factors that determine performance of the H-A system after a
workload transition are largely related to the design of the automated system itself:
going back to the lumberjack effect, a system that is highly automated and has very
much responsibility will fail in a more catastrophic way than will a system with less
tasking or automation. In addition, as explained earlier, systems that are better
understood by their operators are better able to manage workload transitions.
However, several human factors affect performance after workload transition, and
most of those factors are related to cognitive ability and performance (such as
working memory capacity, knowledge of repair procedures, resistance to stress, etc.).

Sebok et al. [12] investigated the process of a workload transition, as well as
how various human-automation interaction (HAI) factors were affected by
automation at each stage of the information-processing model. The model further
considers how fatigue affects various operator tasks and abilities (Fig. 4).

The CODDMAN model [12] provides a simple way of representing a large
number of factors that relate to various stages of information processing. In this
model, a workload transition occurs between the Detection stage and the Diagnosis
stage. Notably, we can see a few of the effects that we have so far covered. System
reliability significantly reduces operator monitoring of the system. DOA refers to
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degrees of automation, and in this case, is not in contrast with the lumberjack effect:
rather, this refers to research which has shown that more highly-automated systems
(independent of how much responsibility they are tasked with) can provide better
support for operators after a failure, which improves fault diagnosis [5]. As a further
point, the authors of the CODDMAN model note that the SEEV model [13], which
predicts general performance of human operators in multi-modality situations,
further validates several of the factors within the CODDMAN model. In sum, each
of the factors within the CODDMAN model, and how they relate to the perfor-
mance of an H-A team undergoing a workload transition, is critical to informing the
development of appropriate H-A teams and tasking for LDSF.

6 Conclusions: Designing Automation for Effective
H-A Team Performance

We have reviewed several of the factors that affect performance of the H-A team,
especially as applied to the context of long-duration spaceflight. In order to prevent
or mitigate the risks of off-nominal events, each of these factors must be thoroughly
considered during the design of automated systems. Our concluding recommen-
dations for H-A system design are as follows:

1. An automated support system must have an appropriate level of automation so
as not to put the team at excessive risk when it fails, in line with the lumberjack
effect.

Fig. 4 Complacency Effects on Detection, Diagnosis, and Fault Management (CODDMAN) [12].
Pluses indicate that the relevant stage (e.g. monitoring, detection, etc.) of human tasking is
improved by the features with pluses. Minuses indicate that those features reduce the effectiveness
of the stage. For the Fatigue row, the effects of fatigue reduce each of the abilities or activities
listed in each stage
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2. The system must be reliable, which will inspire calibrated trust of it by the
human operators, which in turn will allow for better performance of the H-A
team due to the congruence of their shared mental models.

3. The system should be designed to avoid causing operator misuse or disuse.
4. The system must be designed to allow the operators to swiftly and accurately

diagnose and manage faults in the event of workload transition. Such steps may
include improving transparency of the system (via improving display ecology),
adding checklist support to the fault management step, or improving operator
training on system repair and management.

With appropriate consideration of each point, we can give a team of humans
with automated assets the best chance to perform to their fullest capabilities and
survive the unforgiving demands of LDSF. While LDSF is a special case where the
H-A system must be implemented with extreme care, these points can be applied to
any H-A system in order to best support the performance of the H-A team.
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A Neurophysiological Examination
of Multi-robot Control During NASA’s
Extreme Environment Mission
Operations Project

John G. Blitch

Abstract Previous research has explored the use of an external or “3rd person”
view in the context of augmented reality, video gaming, and robot control. Few
studies, however, involve the use of mobile robot to provide that viewpoint, and
fewer still do so in dynamic, unstructured, high stress environments. This study
examined the cognitive state of robot operators performing complex search and
rescue tasks in a simulated crisis scenario. A solo robot control paradigm was
compared with a dual condition in which an alternate (surrogate) perspective was
provided via voice commands to a second robot employed as a highly autonomous
teammate. Subjective and neurophysiological measurements indicate an increased
level of situational awareness was achieved in the dual condition along with a
reduction in workload and decision oriented task engagement. These results are
discussed in the context of mitigation potential for cognitive overload in complex
and unstructured task environments.

Keywords Human robot interaction � Cognitive state � Situational awareness �
Workload � Decision making � Robot assisted rescue

1 Surrogate Perspective(s) for Robot Control

The integration of an omniscient or “3rd Person” perspective into the video game
and augmented reality industry has inspired a variety of research that is directly
relevant to multi-robot control. Salamin and colleagues, for example, report that
many video gamers prefer to use a third person perspective for moving an avatar
through an artificial environment, but usually switch back to a 1st person viewpoint
from within the avatar itself to perform “thin” tasks where dexterous manipulation
is required [1]. Similar preferences have been reported in teleoperation of mobile
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robots [2, 3] and the use of augmented reality for remote grasping and manipulation
[4, 5].

Despite an abundance of research published on Human Robot Interaction
(HRI) there appears to be a dearth of literature documenting the use of a robotic
team mate to provide this 3rd “person” perspective. Note that since an external
offset of this nature can be provided by any number of non-human devices, the term
“surrogate perspective” is used in lieu of the “3rd” (or 4th) person label. In turbulent
conditions where sediment, dust or other obscurants interfere with the primary
robot’s sensors, a mobile offset or “surrogate” perspective can potentially save the
mission from total failure by finding a gap in the obscurant cloud to exploit and
guide the primary platform and/or its manipulator(s) from a different angle. This
approach has the potential to enable and expand upon an otherwise ineffective
object identification or retrieval task. Multiple perspectives also present the
potential for stereo-sensing approaches that offer far more capability in handling
dynamic targets and environments than mono-sensing.

Given these considerations, this investigation reflects a seedling investment in
the SPAARC, or Surrogate Perspective for Adaptive and Agile Robot Control
concept. Its goal was to determine quantitative measures of surrogate perspective
value (or burden as the case may be) derived from teaming a highly autonomous
robotic teammate with a human teleoperator in a challenging survey and manipu-
lation task. This particular effort explored the SPAARC concept in an underwater
context with Remotely Operated Vehicles (ROVs) in order to slow down human
robot interactions for close examination in a relatively viscous operating realm
while exploiting the inherent risks and stressors associated with NASA’s Extreme
Environment Mission Operations (NEEMO) project.

2 Research Environment and Expectations

This investigation took place at sea aboard a 40’ research vessel supporting the
Aquarius Reef Base (ARB)—a unique underwater habitat operated by Florida
International University and often used by NASA’s NEEMO program office to
simulate the confined quarters that astronauts often have to endure while working in
space. Unlike other simulations and Mars analog research endeavors, NEEMO
astronauts living and working aboard the ARB do so under the substantial risk and
stress associated with saturation diving and confined quarters—often for weeks at a
time. That level of risk and discomfort, while manageable and minimal compared to
combat, presented the military with an excellent opportunity to investigate cogni-
tive function under stress in a dynamic, unstructured environment.

The simulation vignette using used in this research was a modified version of the
robot assisted rescue scenario enacted by Blitch and colleagues during the 2001
Mars Flashline project [6]. This simulation involves a stationary habitat (simulated
by the Aquarius Reef Base) and a manned rover (simulated by a stack of air tanks
located approximately 50’ away from the ARB) that were simultaneously hit by a
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micro-meteorite storm that punctured protective shielding and caused precious
gases and fluids to leak outside at an alarming rate thereby threatening the humans
inside. Meteorite shrapnel from the impact also hit several crewmembers in each
environment. Subsequent life-threatening injuries obviously demanded immediate
attention by fellow crewmembers making robotic assistance crucial to crew sur-
vival. Small rovers with sophisticated end effectors (simulated by the Video Ray
submersibles and two jaw grippers) were called upon to survey confined spaces too
small for humans to penetrate. Their task was to locate the leaks (simulated by
punctured bicycle tubes placed strategically around the Aquarius Reef Base) by
support divers, and then complete an ad hoc repair of each leak by applying a rapid
curing epoxy patch through break-away tubes imbedded in each gripper jaw
(simulated by multi-colored electrical tape wrapped around the puncture site on
each bicycle inner tube).

Returning now to relevant HRI literature, an abundance of research on cognitive
demand associated with multi-robot control calls into question which way the cost
benefit scale might tip if surrogate perspective(s) were implemented in the form of
mobile robots [7–9]. The majority of this literature, however, endorses the role of
adaptive automation as a powerful ally in mitigating the mental workload and
attentional demands associated with multi-robot control [9, 10]. With that in mind,
the second robot intermittently injected into this rescue scenario was simulated at a
high level of autonomy and artificial intelligence sufficient to respond effectively to
voice commands.

Given the naturalistic interface between human and robotic team mate imple-
mented above, it was expected that the ROV operators attempting this challenging
rescue mission in the SOLO condition would work harder, exhibit reduced situa-
tional awareness, and present a much more intensive engagement profile for choice
selection and decision making than when the surrogate perspective was made
available in the DUAL condition. It was obviously expected that overall mission
performance would improve in the DUAL condition as well.

3 Method

3.1 Participants

Four male military personnel from the 88th Security Forces Squadron at Wright
Patterson Air Force base were selected from a field of 13 other volunteers to
participate in this research based on their performance during a four hour assess-
ment and selection process described below. As active duty military service
members, these participants ranged in age from 21–30 years of age, had normal
hearing and normal or fully corrected eyesight, and received no monetary incentive
beyond standard travel reimbursements.
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3.2 Apparatus

The mobile robot manipulators used for this experiment were Video Ray Pro-III
Remotely Operated Vehicles (ROVs). Each of these was equipped with a simple
two Degree Of Freedom (DOF) gripper for object retrieval. Each ROV was also
upgraded with powerful GTO thrusters prior to deployment for enhanced mobility
in high currents. Neurophysiological data was collected with a wireless brainwave
(or EEG for ElectroEncephaloGraphy) monitoring device called the X-10 B-Alert
system manufactured by Advanced Brain Monitoring Inc. EEG and ECG data were
recorded on ruggedized Getac V110 laptops. Video data of participant control
activity was captured on 2ea QSEE color cameras mounted on each ROV control
console as well as Google Glass headsets worn by participants (as indicated in
Fig. 1).

3.3 Measures

This investigation endeavored to examine the influence of a secondary robot’s
surrogate perspective in terms of the operator’s cognitive state and workload. For
the purposes of this research, cognitive state was taken to represent how involved
the operator is with the task environment whereas workload represented the nature
and intensity of effort applied to the task. Given the non-invasive real time
advantages of neurophysiological measurement promoted by Parasuraman and
Wilson [11] as well as recent findings by Matthews and colleagues that measures of

Fig. 1 Data collection and ROV control setup at sea aboard the R/V Sabina support vessel
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cognitive load don’t necessarily converge [12], a combination of subjective and
EEG based methods were used to examine cognitive state and workload.

Neurophysiological data was collected using the B-Alert system mentioned
above. This headset acquires 9 channels of EEG collected along the scalp at
standard locations: Fz, Cz, POz, F3, F4, C3, C4, P3, and P4. The proprietary
acquisition software used in this process includes artifact decontamination algo-
rithms for eye blink, muscle movement, and environmental/electrical interference
such as spikes and saturations. This software also contains a cognitive state and
workload classification package that compares EEG collected in field conditions
with baseline data acquired while participants perform a series of computer based
vigilance tasks lasting from 15–30 min under nominal conditions in a controlled
setting.

The first baseline task requires the participant to remain vigilant while choosing
between different symbols presented on a laptop display. The second task requires a
simple keyed response to a single stimulus (a red circle appearing on the screen)
without any choice or decision-making process involved. The third task requires the
participant to respond in a similar fashion to the second task, but with an auditory
stimulus presented while their eyes were closed.

EEG classification for this experiment was conducted post hoc via comparisons
with three baseline profiles and a large EEG database of typical human sleep and
distraction patterns. These classifications are presented as second by second
probabilities that each epoch (or second) of data matched the participant’s Hi (or
decision based) engagement state established in the first (3-choice) baseline task, a
Lo (or awareness based) engagement state observed during the second (eyes open)
baseline task, or a distracted state determined by the third (eyes closed) baseline
task. EEG workload classification was conducted in a similar fashion by comparing
elements from each participant’s 3-choice baseline task with a large data base of
typical human performance on forward and backward span tasks. See Berka et al.
[13] for more detail on this classification process.

Subjective measures of cognitive state were collected using a popular situational
awareness survey validated by Adams and colleagues on behalf of the U.S. Navy
called the China Lake Situational Awareness (CLSA) scale [14]. This survey
essentially asks the participant to rate their awareness of what was going on around
them during recent activity based on a variety of criteria categorized on a 5 point
scale from 1 (Very Good) to 5 (Very Poor).

Subjective measurement of workload was measured in a similar fashion using
the NASA Task Load Index or TLX—a popular instrument in the human factors
field for more than two decades [15]. Both of these instruments were administered
to participants immediately upon completion of each ROV training/evaluation trial
and field session. Scores were then normalized to a common 100-point system
following a higher-as-better paradigm for consolidated graphing with other metrics.
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3.4 Design and Procedure

Upon completion of informed consent documentation, participants were adminis-
tered a standard spatial ability battery [16] and spatial orientation survey developed
[17]. Evaluations were conducted commensurate with the findings of Blitch and
colleagues that these instruments were effective in predicting robot teleoperation
effectiveness for semi-autonomous mobile robots engaged in a similar rescue ori-
ented task during the NASA Haughton Mars Project in 2001 [6]. Participants were
then outfitted with a B-Alert device and asked to perform the baseline tasks
described above before performing 8 training/evaluation trials in an underwater
obstacles course set up in a local pool. The top four performers from that session
were chosen for deployment to the FIU facility in Florida.

Upon embarkation aboard the research vessel and arrival in the vicinity of the
Aquarius Reef Base (ARB), operators were provided with a visual orientation of the
area and allowed a single familiarization dive lasting approximately 15 min in order
to identify various obstacles and hazards in the area before beginning their rescue
mission sessions. Each mission commenced with a simulated radio call (conveyed
via a role player on board) from the habitat and rover explaining the nature of the
crisis and asking for immediate assistance. The role player then worked through a
series of scripted radio calls (with increased urgency and emotion in order to inject
stress into the scenario) describing which leaks were progressing at what rate on
various gauges, as well as health status of injured crew members, etc.

Each participant completed two missions in a solo or dual condition (counter
balanced in sequence and lasting approximately 45 min each) before switching
roles with the other operator. The secondary ROV operator was required to simulate
a highly autonomous and intelligent robot. As such, the surrogate operator was not
allowed to speak to the primary operator at any time, and was only allowed to
activate the controls on his ROV in the DUAL condition when the primary operator
spoke instructions from a set of simple scripted commands such as descend, ascend,
turn right/left, forward/backward, etc.

4 Results

Given that data was collected on the same participants across two temporal phases,
initial analysis was performed using a paired t-test with a relaxed alpha set at 0.10 to
accommodate the inherent variance involved with data collected in dynamic
unstructured environments. The EEG data was averaged across all epochs in each
simulation session and analyzed alongside subjective survey data (as illustrated in
Figs. 2, 3 and Table 1).

Considering cognitive state first, participants recorded a significantly higher
probability of engagement in the “Hi” or “choice” based metric for the SOLO
condition than when a teammate with a surrogate perspective was present in the

346 J.G. Blitch



DUAL condition. This data was also accompanied by a large effect size, suggesting
a high magnitude of difference between conditions. Although Lo Engagement data
fell short of statistical significance, average CLSA scores increased substantially
after the surrogate perspective was made available in the DUAL condition sug-
gesting that a beneficial increase in situational awareness was obtained. Analysis of

Fig. 2 EEG based engagement and subjective situational awareness (with error bars plotted on
90 % confidence intervals)

Fig. 3 Workload measured with the NASA TLX and B-Alert EEG system (with error bars
plotted on 90 % confidence intervals)
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workload data showed a prominent drop in Mental Demand, Time Demand,
Performance, and Effort whenever the surrogate perspective was made available in
the DUAL condition. There were no statistically significant differences observed,
however, in Physical Demand, Frustration, or EEG based probability of a Hi
Workload classification. Unfortunately radical current shifts and subsequent
umbilical entanglement challenges made it impractical to score comprehensive
mission trials equitably so hypothesis testing of mission effectiveness had to be
abandoned.

5 Discussion

The EEG and subjective data presented above support all three of the hypothesis
expectations expressed above. TLX scores provide evidence of significantly higher
workload recorded in the SOLO condition across four of the six components
measured, thereby supporting the notion that a surrogate perspective can substan-
tially moderate the demand for cognitive resources in complex and challenging
situations where risk of cognitive overload is prominent. Higher CLSA scores
recorded in the DUAL condition also suggest that a substantial benefit was achieved
in terms of increased situational awareness provided by the robotic teammate’s
surrogate perspective.

It is interesting that the EEG based workload metric did not show any substantial
difference between conditions. As such, these results are consistent with those of
Matthews and colleagues in finding that cognitive load metrics do not always
converge across measurement instruments [12]. Given that the workload classifier
for this particular EEG device is derived primarily from human performance on
high and low digit span tasks, it is possible that it only captures the working

Table 1 Engagement, awareness and workload statistics

SOLO DUAL t(3) p d

M SD M SD

EEG Hi Eng 0.488 0.102 0.414 0.122 −1.786 0.086 0.66
EEG Lo Eng 0.450 0.122 0.556 0.152 −1.290 0.144 −0.79

CLSA Score 44 38 56 24 −1.615 0.099 0.70
TLX MD 55 25 33 19 −3.855 0.009 0.94
TLX PD 8 5 8 4 0.961 0.196 −0.09

TLX TD 58 33 48 35 −2.507 0.033 0.31
TLX Pf 69 34 44 27 −3.429 0.013 0.79
TLX Ef 59 35 36 29 −1.546 0.099 0.70
TLX Fr 50 36 48 19 −0.961 0.196 0.07

EEG Wkld 0.734 0.123 0.745 0.107 −1.008 0.194 −0.18

Significant values shown underlined in bold type with a relaxed alpha of 0.10
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memory component of mental demand and thus leaves other aspects of cognitive
load unaddressed.

The EEG based cognitive state metrics provide perhaps the most interesting
results of all. The “Hi” or decision based engagement metric decreased significantly
when the surrogate perspective was introduced in a trend similar to the subjectively
measured workload metric, while the “Lo” or awareness based engagement metric
followed an opposite trend in the same direction as the situational awareness scores
(albeit with a variance that fell beyond an acceptable level of statistical significance).

6 Conclusions and Future Work

Taken across both neurophysiological and subjective measures, the data collected in
this investigation provide a modicum of support for the stated hypothesis on all
three counts. Not only did the addition of a surrogate perspective provided by the
second ROV result in reduced workload across four of the six TLX components,
but it also increased participants’ situational awareness scores in the CLSA data.
The EEG based Hi Engagement data indicate a much lower choice intensity was
involved in the DUAL condition which presents an important advantage when
controlling robots under stress in a critical scenario that could easily be imagined to
induce cognitive overload. That said, it must be pointed out that statistical support
for this claim is weak in terms of sample size, a relaxed alpha, and the lack of any
correction for familywise error. Despite this acknowledged increase in likelihood of
committing a Type I error, the relatively large effect sizes observed suggest that
replication would be quite worthwhile in a manner consistent with Wickens’
Common Sense Statistics [18].

Although real time cognitive state classifications were not used in this study, the
B-Alert system is capable of providing them in near real time (with a 1–5 s delay
depending on signal characteristics and display options). Detection of brain state
changes in this manner presents a powerful mitigation option in that intervention
strategies can be cued and implemented before performance suffers from cognitive
overload or before complacency becomes evident in operator behavior.

It may also be of interest to NASA and others that the magnitude of cognitive
workload, engagement, and stress measurements collected during this research
suggest that the relatively viscous and occluded underwater environment that
submersible ROVs operate in presents a far more daunting challenge to mobile
robots than sample collection conducted via “wireless” aerial and ground platforms
in terms of current effects, umbilical management, sediment interference, etc. As
such, the procedures adopted for even the most realistic and appropriate space
exploration analogs like this one may actually turn out to be overly conservative in
terms of robot effectiveness. In others words, NASA may be too hard on itself when
conducting operational simulations underwater when it comes to mobile robot
effectiveness and agility evaluations—especially in consideration of the human
factors involved.
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Assuming that the SPAARC concept is eventually validated beyond this initial
investigation and/or expanded to include air-ground collaborative systems, the
implications can be profound for multi-robot control. Not only do these findings
provide ample room for optimism regarding resilient and adaptive human robot
team performance in stressful, unstructured environments but they also show pro-
mise for the pursuit of enhanced trust and confidence between humans and
machines championed by Hancock and colleagues [8].

Despite such optimism, an abundance of confounding issues lurk in the shad-
ows. Fatigue, fitness, comfort, emotional valence, and a number of other variables
will continue to threaten the validity of future “naturalistic” research just as it did
here. It is only with continued ventures beyond the cozy and predictable laboratory
environment, however, that we can truly understand the most complicated aspects
of human cognition as they adapt to chaotic factors that abound in the “real” world.
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A Comparison of Trust Measures
in Human–Robot Interaction Scenarios

Theresa T. Kessler, Cintya Larios, Tiffani Walker, Valarie Yerdon
and P.A. Hancock

Abstract When studying Human–Robot Interaction (HRI), we often employ
measures of trust. Trust is essential in HRI, as inappropriate levels of trust result in
misuse, abuse, or disuse of that robot. Some measures of trust specifically target
automation, while others specifically target HRI. Although robots are a type of
automation, it is unclear which of the broader factors that define automation are
shared by robots. However, measurements of trust in automation and trust in robots
should theoretically still yield similar results. We examined an HRI scenario using
(1) an automation trust scale and (2) a robotic trust scale. Findings indicated
conflicting results coming from these respective trust scales. It may well be that
these two trust scales examine separate constructs and are therefore not inter-
changeable. This discord shows us that future evaluations are required to identify
scale appropriate context applications for either automation or robotic operations.

Keywords Human–Robot interaction � Trust � Trust scale � Trust measures

1 Introduction

Robots are now pervasive across diverse occupational fields. These range from
manufacturing operations, assistive surgical units, search and rescue, space
exploration, and unmanned vehicle agents to name but a few [1–5]. Their capa-
bilities have been widely influential in human exploration, across within experi-
mental and applied settings. Parasuraman and Riley reminded us that automation is
not merely replacing human labor, but rather, changing the nature of it in which
humans work alongside these entities [6]. The overlap across automation and robots
is considerable and often difficult to disentangle [7]. To date, robots have primarily
been grouped under the umbrella of automation. Thus, automation-related measures
have consistently been applied to robot experimentation. However, it is possible
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that erroneous conclusions are being drawn to human–robot scenarios from these
automation based metrics. We here evaluate theories and metrics of automation that
have and are being applied to robot experimentation. Most especially we compare
robot metrics related to trust. Among the presence or absence of a malfunction (i.e.,
performance reliability), and transparency (level of information) provided to the
operator. These factors were tested due to their importance in facilitating effective
human–robot interaction [8]. Metrics of trust related to both automation and robots
also exist, and comparisons across these are crucial to establish further empirical
understanding of their relationship.

2 Trust

Trust has been defined as “the attitude that an agent will help achieve an indi-
vidual’s goals in a situation characterized by uncertainty and vulnerability” [9],
and as “the reliance by an agent that actions prejudicial to their well-being will not
be undertaken by influential others” [10]. However, trust can adopt many different
meanings and can be interpreted differently within diverse contexts. Empirically,
trust has been noted as an important dimension in preserving relationships among
humans and robots. It becomes a critical issue when robots are being assigned
critical roles in perilous circumstances in which an operator’s life is at stake, and the
success of the mission is contingent upon the cooperation between man and
machine. There may also be a heighten ease of trusting robots when the human is
physically and cognitively incapacitated [8]. Parasuraman and Riley elaborated on
inappropriate levels of trust that can lead to detriment when using automation.
Misuse brings about overreliance on the system, thereby, operators may fail to
monitor and recognize warning signs when the automation is wrong [6]. Disuse
brings about distrust to the system, thus, operators fail to let automation perform at
the expense of exhausting their own vigilance and amplifying their task load. Abuse
brings about erroneous control of automation and poor human performance.
Applying these automation precepts, trust must therefore be appropriately calibrated
to match the intentions of the designer and user of the robot [9].

Hancock and colleagues conducted a quantitative meta-analysis examining
precursors of trust in human–robot collaboration [8]. They recognized that these
factors fall within three respective categories: (a) Robot-related, (b) Human-related,
and (c) Environment-related. They found that Robot-related factors were consis-
tently associated with trust in HRI across all measures. More specifically,
Robot-related factors were subcategorized into two groups: (1) robot
performance-based factors and (2) robot attribute-based factors. Robot
performance-based factors were more significantly related to the development of
trust and maintenance of that trust. This trend implies that trust can be regulated
through the influence of a robot’s performance. Although trust is an important
concept to consider, operators sometimes doubt the efficacy of the robot’s behavior
and intentions due to difficulties in perceiving its state [11, 12]. With respect to this
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concern, our work also focuses on dimensions of robot performance that involve the
robot’s level of transparency.

3 Transparency

Transparency is the level of information presented to the operator, guiding com-
prehension about the agent’s reasoning process and potential future actions [13].
Transparency has been listed as one of the factors that influences trust development
[8]. There have been several notions that pertain to transparency in automation and
robot interaction. A more recent theory associated with autonomous agents is the
Situation Awareness-based Agent Transparency model (SAT model) [13]. The SAT
model consists of three main categories. In SAT Level 1, the operator is able to
acknowledge the agent’s goals and suggested actions. In SAT Level 2, the operator
is provided with information about the agent’s reasoning behind its actions. In SAT
Level 3, the operator has an awareness the agent’s possible success. Should a robot
exhibit all three levels or only one based on the nature of the task, the operator will
have an adequate understanding of the robot’s intentions and will allow the operator
to make informed decisions.

The goal of designing a transparent interface is to attain proper use of the system.
With transparent interfaces, having knowledge of the system when it is and isn’t
reliable can assist in shaping the operator trust. Having appropriate trust calibration
is linked to high reliability [14]. It is critical, however, to note that higher levels of
transparency do not equal higher levels of trust as appropriate levels of information
need to be assessed [9, 13]. For example, providing extensive amounts of extra-
neous information in an interface might overwhelm the operator [15, 16]. Also,
should an interface provide an abundance of information about its unreliability, then
the operator reacts competently by not trusting the robot [13]. Therefore, trans-
parency should engender appropriate levels of trust. Besides transparency,
manipulating the behavior of a robot can also facilitate trust. Without meaningful
action, transparency fails to sustain an operator’s trust.

4 Malfunction

Within automation, various characteristics of performance affect reliability, pre-
dictability, and capabilities of the system [13]. Performance reliability has been
constantly identified as a primary influence for trust in robots [8]. Therefore, it is
critical to understand what kinds of reliability change contributes to the loss of trust.
One example would be to study the effects of mechanical malfunctions in a robot to
observe whether a user experiences a decrease or increase in trust in the robot.
Sometimes, the user might perceive a behavior to be a malfunction when, in fact, it
was not. If the user is not given enough information concerning the robot’s actions,
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then the user may interpret the robot’s actions to be an error [17]. Therefore,
transparency is important in mitigating these misconceptions. On the other hand, if
a user is provided with redundant information, they might interpret the robot’s
behavior to be erroneous [18]. Transparency must then provide adequate amounts
of information to support user trust, but avoid repetitive information. It is crucial to
evaluate these constrains among different robotic systems in order to facilitate to
future robot design. We therefore need qualitative and quantitative assessments in
order to gauge the attitude of users. One such method is the use of subjective
apperception of scales.

5 Convergent Validity of Scales

In the taking of evaluative scales, to ensure that calculation errors remain at a min-
imum, we must determine whether a scale is accurate and stable [19]. Here, we
examine convergent validity, which is “meant to establish the extent to which the new
measure adheres to other related indicators of the construct it is designed to epit-
omize” [20]. Convergence in validity is able to help clarify whether the construct has
a strong relationship between the measures and it authenticates the scale by providing
an adequate assessment criteria of the related construct. Thus, scales with convergent
validity are able to translate important theoretical and empirical predictions about the
related construct based on results that are collected from the measure.

In trying to formulate a survey related to trust in robots, one would expect to relate
to other measures that co-vary with trust in robots. If this covariation does not hold,
then (1) the scale is not an adequate measure of the construct, or (2) the scale is valid,
but the theory underlying these covariates does not hold, thus, no relationship should
be expected [20]. If the relationship holds, then there is a likelihood that this supports
the scale’s convergent validity. Of relevance here, we review two primary scales that
are used in human–robot interaction to measure trust. Their convergent validity is
being called into question due to their precise nature in testing for robot-specific and
automation-specific trust. Robots have consistently been grouped within automation
metrics, but can these metrics adequately test robot trust? If two scales converge
upon the same construct, then it stands to reason that they can be used inter-
changeably. Provided below is an overview of these trust scales.

6 Trust Scales

One of the most significant challenges for successful collaboration between humans
and robots is the development of appropriate levels of mutual trust [21, 22]. Due to
fast paced technological advancement, the need for understanding trust in human–
robot interactions is crucial to future success. Our present study focuses on simi-
larities and scores elicited by two individual trust scales: (1) the Human Robot Trust
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Scale [23] and (2) the Trust in Automation Scale [24]. The Trust in Automation
Scale and the Human Robot Trust Scale can be seen to have similar properties;
however, they also differ in important ways. The Trust in Automation Scale focuses
more on the operator, while the Human Robot Trust Scale focuses on the change in
an individual’s trust over time. Below we describe each scale, providing further
comparison.

The Trust in Automation Scale [24] extended from previous trust scales. Jian and
colleagues took to an empirical approach rather than a theoretical approach to
construct a multidimensional scale in the hopes of identifying various components
of trust. The main focus of their scale was to develop a measure that enabled
researchers to better predict trust patterns toward automation, based on the
assessment of the operators. The scale distinguished between three potentially
different types of trust: human-human trust, human-machine trust, and trust in
general [24]. Our overall goal was to determine what were the potential similarities
and/or differences between these concepts. Jian and colleagues found similar pat-
terns among all three trust relationships that indicated trust is perceived equally
across these multiple domains. Therefore, the Trust in Automation Scale provides a
baseline model for assessing trust between human and machines in regard to the
operator’s perception. This scale is thought to be most reliable when it is used to
understand trust in automated systems.

Regardless of the domain of application, the environment or task, a human’s
trust in their non-human collaborator is an essential element required to ensure that
any functional relationship will ultimately be effective [23]. Schaefer focused on
many of these contributing factors believed to affect trust as well as their design.
The Human Robot Trust Scale derives from Scholtz’s [25] theory that there are five
different types of human roles within HRI. In addition, it reflects Jian’s [26] Trust
Scale. The Human Robot Trust Scale was created in order to provide a method that
would measure an individual’s trust towards robots specific to HRI that focused on
the antecedents and measurable factors mentioned above. In addition, it measures
the changes in trust over time. It acknowledges both the physical form and func-
tional capabilities that determine the classification of the robot which are essential
to trust development. The overall goal of the scale is to derive a more sensitive and
accurate test score as compared to Jian et al’s Human Automation Trust Scale
specifically as it relates to human–robot interaction [23].

7 Automation Versus Robotics

When looking at the aspects of trust in HRI, the lines defining a machine as
automation or robot need to be clarified. Specifically, the question arises in how we
define the terms automation and robotics and where the line of differentiation
resides. Sheridan [27] defined levels of automation using a scale from 1 to 10. The
scale begins at level one where a machine has no decision making power, and
extends to level 10 where the machine makes decisions and takes actions without
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conferring the user [and see 28, 29]. These describe levels of autonomy, but not all
robots are autonomous, so this would not be ubiquitously applicable in defining a
robot apart from automation. In use, automation is known for completing repetitive,
structured, and controlled tasks efficiently and effectively [23]. Merriam Webster
broadly defines automation as controlled operation of an apparatus process, or
system by mechanical or electronic devices taking the place of human labor [30].
However, this does not necessarily distinguish between these two terms which one
often used interchangeably. Hancock and colleagues [8] highlight the shared fun-
damental similarities, but recognize a number of inherent differences in
human-automation and human–robot trust. These observations provide the foun-
dation for the present comparison.

In order to more appropriately define what a robot is and differences with
automation, we look to an early known use of the word robot. One of these
examples is the use of the term “roboti” [31], which was used to describe auton-
omous artificial people made from synthetic organic material. By 1923 the word
was translated into thirty languages and the term “robot” entered the vernacular and
psyche of cultures across the globe. This same theme was repeated in I, Robot,
which added the Three Laws of Robotics: (1) A robot may not injure a human being
or, through inaction, allow a human being to come to harm; (2) A robot must obey
orders given it by human beings except where such orders would conflict with the
First Law; (3) A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law [32]. While the Laws of Robotics
were the work of science fiction, for now Law Two persists as robots cannot
currently program themselves. In addition to this, Siciliano pointed out it is hard to
determine how one definition of the term robot could be expansive enough to cover
the broad cultural use of the term, especially considering its different applications in
research and development [33]. More recently, the word robot has been defined by
Wikipedia as “a mechanical or virtual artificial agent, usually an electro-me-
chanical machine that is guided by a computer program or electronic circuitry,”
[34] and as a mechanical or virtual artificial agent guided by a computer program or
electronic circuitry, [35].

In analyzing the concepts of automation and robotics, a quadrant design was
used to categorize technology through intelligence and autonomy [7]. The X axis
represented automation and the Y intelligence level. The four quadrants represent
functions of high/low automation paired with high/low intelligence. Quadrant IV
holds the characteristics of high automation and high intelligence, but specifically
describes robots as having lower levels of both characteristics versus artificial
intelligence. Thus, they describe robots as existing at a specific point of automation
and intelligence which theoretically could be parsed out from other types of
automation.

Following the same theme, we investigate the differences in trust scales which
pose questions specific to automation (the Trust in Automation Scale) and to robots
(the Human Robot Trust Scale). The purpose of this study is to uncover the sim-
ilarities and differences in trust ratings resulting from the use of these scales in our
HRI study.

358 T.T. Kessler et al.



8 Methods

8.1 Participants and Materials

Study participants consisted of 58 University students (15 males and 43 females)
who were (M = 20.43, SD = 5.99) years old. Participants were recruited through
the University participant pool, Sona System. Compensation for participation was
provided in the form of extra credit in class. All participation was voluntary.

For the purposes of this experiment, a Lego Mindstorms EV3STORM robot was
used. The robot was located in a 32 square foot environment with a large filing
cabinet (see Fig. 1). Finally, a desktop computer with internet access was used to
deploy questionnaires. Questionnaires consisted of a demographics questionnaire,
the Trust in Automation Scale [24], the Negative Attitudes Towards Robots Scale
(NARS) [35], as well as the Human Robot Trust Scale [23].

8.2 Design and Procedure

The study design consisted of a 2 (Transparency Level: High vs. Low) × 2
(Malfunction Presence: Present versus Absent) × 2 (Autonomy Level: High vs.
Low) between participants design with trust as the dependent measure. When
participants arrived at the test facility they were greeted and asked to read and sign
the informed consent. Next, they completed the demographic and NARS ques-
tionnaires. Following this, participants were shown the robot that they would be
working with, as well as asked to complete the Trust in Automation Scale [24] and
the Human Robot Trust Scale (Pre) [23]. They were informed of their objectives

Fig. 1 Experimental set up
from the view of the
participant
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and trained on their required performance tasks. For this, they were required to
assist the robot in completing its mission, which was to drive around the operational
space while scanning the area for threats and notifying the participant of its status.
Participants were asked to assist the robot if it encountered any problems and was
unable to resolve any such issue on its own. The experimenter answered questions
any the participants may have had about their duties and the trial began.

In the malfunction condition, the robot incurred an error and either corrected its
problem (high autonomy) or required assistance (low autonomy), while providing
high levels of information (high LOI) or low levels of information (low LOI) to the
participant about its status. In the no malfunction conditions, the same things
occurred except that the robot did not incur any errors. The experiment was
completed when the robot reached the back of the area it was scanning. Participants
were then again asked to complete the Trust in Automation Scale and the Human
Robot Trust Scale.

9 Results

Two separate analysis of covariance were performed using a 2 (Malfunction
Presence vs. Absence) × 2 (Transparency Levels) × 2 (Autonomy Levels) design
measuring change in the Trust in Automation Scale and the Human Robot Trust
Scale. The covariates consisted of the three subscales of the Negative Attitudes
Toward Robots Scale: (i) Negative Attitude toward Situations of Interaction with
Robots, (ii) Negative Attitude toward Social Influence of Robots, and (iii) Negative
Attitude toward Emotions in Interaction with Robots. No assumptions were found
to be violated and the covariates were moderately correlated with one another and
to both of the dependent variables.

The first analysis of covariance was conducted using the Trust in Automation
Scale as the dependent variable. This demonstrated that difference in trust scores
varied significantly with malfunction, F(1,47) = 7.39, p < 0.01, ηp

2 = 0.136. In
addition, the difference of the scores between pre and posttests of trust also varied
significantly with level of information in conjunction with malfunction presence or
absence, F(1, 47) = 4.90, p < 0.05, ηp

2 = 0.094. Finally, pairwise comparison
showed the Trust in Automation Scale difference scores proved to be higher when
no malfunction was present (M = 15.02) versus when there was a malfunction
present (M = 7.68) (see Fig. 2). There were no significant effects pertaining to the
autonomy level of the robot.

The second analysis of covariance used the Human Robot Trust Scale difference
scores. They were found to change significantly with level of information and
malfunction, F(1, 47) = 10.19, p < 0.01, ηp

2 = 0.178. Additionally, pairwise com-
parisons showed that trust scores, were higher when the level of information was
high with a malfunction present (M = 5.71) versus when no malfunction was present
(M = 2.41). Finally, trust scores were also higher when the level of information was
low and there was no malfunction (M = 7.30) versus when a malfunction was
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present (M = 2.50). It is interesting to note that the two different trust measures
yielding conflicting results. In particular, the interaction of level of information and
malfunction presence demonstrated differing results (see Fig. 3). There were no
significant differences contingent upon the autonomy level of the robot.

The Human Robot Trust Scale showed larger increases in trust when the level of
information provided by the robot was high versus low during a malfunction
condition. Additionally, trust was also higher when the level of information pro-
vided was low versus high during the no malfunction condition. In contrast with
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this, the Trust in Automation Scale demonstrated small differences in trust when
there was a robot malfunction, despite the level of information provided. However,
this scale did show trust levels to be highest when there was no malfunction and
high levels of information versus low.

10 Discussion

Our results demonstrate that the Human Robot Trust Scale and the Trust in
Automation Scale exhibit differing effects on the manipulations on trust. Results
suggest that these scales are measuring constructs that are sufficiently different from
one another that the scales cannot be used interchangeably without consequence.
This may be in part due to the nature of each scale’s questions. For example, the
Human Robot Trust Scale features questions based more directly on the behaviors
of the robot which are predominately quantitative (e.g. What percent of the time did
this robot: act consistently, meet the needs of the mission, and perform as
instructed). Conversely, the Trust in Automation Scale features questions which are
more qualitative in nature (e.g., Rate the following on a scale of one to seven: the
system has integrity, I am familiar with the system, and I am suspicious of the
system’s intent, action, or outputs). In addition to the differing nature of the
questions on the two scales, others have proposed that the concept of robots exist on
a continuum as a function of automation and intelligence [7]. Automation rather, is
a broad and encompassing construct that can be used to describe all machines and
programs, but the definitions of those machines and programs do not effectively
describe automation in its entirety. This further supports the notion that different
scales should be used to measure trust in robots versus trust in automation as a
whole.

Specific to this aim, we recommend the Trust in Automation Scale be used for
the broader context of automation that cannot be defined specifically as a robot,
whereas the Human Robot Trust Scale should be used in contexts where the user
interacts with a definable robot. In order to achieve this, in cases of automation
ambiguity, we should use both scales while also collecting data on the participants’
perceptions of whether the device is in the category of automation or more
specifically robotic in nature.

We recommend that future investigations should consider the evolving nature of
the concept of a robot in our global culture and perception of the term which is
clearly varying across time. Thus, any scale which measures human–robot trust will
need on-going re-appraisal in order to assess the validity of its outcomes across
place and time.
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Human-Robot Interaction: Proximity
and Speed—Slowly Back Away
from the Robot!

Keith R. MacArthur, Kimberly Stowers and P.A. Hancock

Abstract This experiment was designed to evaluate the effects of proximity and
speed of approach on trust in human-robot interaction (HRI). The experimental
design used a 2 (Speed) × 2 (Proximity) mixed factorial design and trust levels
were measured by self-report on the Human Robot Trust Scale and the Trust in
Automation Scale. Data analyses indicate proximity [F(2, 146) = 6.842, p < 0.01,
partial ŋ2 = 0.086] and speed of approach [F(2, 146) = 2.885, p = 0.059, partial
ŋ2 = 0.038] are significant factors contributing to changes in trust levels.

Keywords Human factors � Human-robot interaction � HRI � Human-robot trust �
Proximity � Proxemics � Speed � Psychological experiments � Human robot trust
scale � Trust in automation scale

1 Introduction

Human-robot interaction, the branch of science that evaluates how people interact
with autonomous robotic entities, is becoming increasingly relevant as robotic
platforms are progressively being integrated into many social environments. For
example, robots now play a critical role in healthcare, entertainment, and education.
As such, we must examine the acceptance and integration of these robotic entities
across domains. A critical part of this examination is the consideration and eval-
uation of key factors such as social norms, relationships, and trust [1].
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1.1 Trust in Robots

Trust can be defined in multiple ways. It is most easily defined as the willingness to
be vulnerable to another, and has been defined as the belief that others (human or
non-humans) will help in uncertain situations [2]. Trust is a critical factor in the
acceptance of automated machines or robots among the general public, as it shapes
the successful perpetuation and efficacy of collaborative relationships both in
human-human relationships and in human-nonhuman relationships [3].
Furthermore, ongoing research indicates that human trust in automated machines
may directly and indirectly affect human-machine interaction outcomes such as
safety and performance [4]. However, trust is not the exclusive creator of successes
or failures in such interactions. Instead, trust interacts with several additional factors
as part of the larger human-machine system, making it necessary to examine the
many factors that influence trust as a predictor of human-machine performance.

In Hancock et al. [5] identified such additional factors that influence trust in robots
including: robot attributes such as proximity of the robot to the human, and human
attributes such as degree of comfortwith the robot.When considering an attribute such
as comfort, it is also prudent to considerwhat factors affect such comfort. For example,
do we feel more comfortable when we and those around us adhere to social norms?

Social norms are the rules of behavior considered acceptable by a group or society
in a given context [6].We argue that adherence to social norms is indeed a predictor of
trust in human-robot relationships. Social norms are typically addressed in completely
human relationships, but they may also provide useful guidance in human-robot
relationships as well. While there are differences when comparing human-human and
human-robot interaction, overtime these will diminish and become similarities as
technological advances reduce the shortcomings in robotics [7]. Specifically, we
aimed to address this gap by examining the influence of two factors deemed important
in social norms: proximity and speed of movement. Research concerning the social
norms and expectations of human-robot relationship informed our approach.

1.2 Proxemics

One important social norm is the use of interpersonal space, the scientific discipline
that addresses this concept is proxemics, which evaluates the unconscious
requirements of personal space and crowd density on behavior [8–10]. Hall’s [8]
seminal research on proxemics classified multiple nonverbal factors that contribute
to acceptable interpersonal proximity (e.g., proximity, touching, and eye-contact).
Proxemics can be applied to human-robot interaction; however, Hall’s non-verbal
factors will need to be evaluated based on the degree to which technology has
advanced to provide for those factors (i.e., can your robot touch or have eyes?). The
exploration of proxemics in human-robot interaction has only become systematic in
the last decade [1, 11, 12].
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Other areas of research have used proxemics experimentally to evaluate inter-
personal space as it relates to their particular field. Virtual reality is one such area,
evaluating the interpersonal distance of participants to human-avatars
(human-controlled) and agent-avatars (computer-controlled) in a virtual environ-
ment [13, 14]. Although findings from the aforementioned research indicate that
people respond differently to agents than humans, it creates a foundation for the use
of proxemics to empirically evaluate interpersonal distance to a non-human agent.

1.3 Speed of Approach

A human walking down the road, when confronted with an obstacle, will alter their
course and speed in avoidance [15]. This adjustment of speed and trajectory, two
fundamental aspects of movement, originate as a safety precaution. The develop-
ment of cities and metropolises have generated a cornucopia of walking spaces,
leading to the inclusion of movement into human social norms.

If robotic entities are going to be successfully integrated into human environ-
ments they will be expected to conform to the social norms of movement. For
example, robots are expected to modify their paths and speed to accommodate
people as they approach [16]. High speeds of approach with low interpersonal
distance may be tolerated by a human, if the robot signals the intention to pass [17].
However, research also indicates that humans prefer robots to move slower than
1 m per second or just under the average human walking speed [18].

1.4 Hypotheses

Proximity, interpersonal distance, rate of speed, and movement have an effect on
human-human systems, and previous research has also evaluated these factors on
human non-human systems. Our hypotheses were based on personal theories of
human-robot interaction in regards to proximity and speed of approach.

• H1: participants will report lower trust when the robotic entity moves quickly
• H2: participants will report lower trust when the robotic entity’s proximity is

closer.

2 Method

We used a ‘Wizard of Oz’ paradigm in the present experiment [19]. Participants
were under the belief that the robotic entity was fully autonomous and followed
pre-programmed instructions whereas it was in fact controlled by a hidden operator.
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2.1 Participants

One hundred and forty-eight students (55 males and 93 females), ranging in age
from 18 to 31 years (M = 18.82, SD = 1.62), from the University of Central
Florida’s undergraduate population participated in the present study. Students were
recruited via Sona, the university’s anonymous recruitment service, which provides
students the opportunity to participate in research. In an effort to mitigate any
potential bias from the incentive to participate in research in exchange for course
credit, Sona allows students to write an essay in substitution. The University of
Central Florida’s Institutional Review Board approved the use of human partici-
pants in this experiment.

All participants reported to have either normal or corrected-to-normal vision. No
participants reported any hearing impairments. One participant reported having
post-traumatic stress disorder, and was the only participant to report having military
experience. Forty participants reported having interacted with a robot prior to the
experiment, fifteen reported having built a robot before, and twenty reported having
controlled a robot in the past. The majority of individuals who reported controlling
a robot before reported using a videogame or remote control interface (Table 1).

2.2 Design

The present study utilized a 2 (speed) × 2 (proximity) mixed factorial design, and
block randomization to control for primacy effects. To assess trust in the physical
presence of the robotic entity, we manipulated the proximity of the robot to the
participant as well as the rate of speed at which the robot moved. Dependent
measures of trust included scores on the Human Robot Trust Scale [20], the Trust in
Automation Scale [21, 22], and the Interpersonal Trust Questionnaire [23].
Additionally, the Negative Attitude Towards Robots Scale was included to evaluate
participants’ predispositions toward robots [24]. Baseline scores for both the
Human-Robot Trust Scale and Trust in Automation Scale were collected utilizing a
photograph of the robotic entity prior to any interaction or observation.

Table 1 Participant
demographic information

Age x̄ = 18.82

Ethnicity

Caucasian n = 80

African-American n = 23

Hispanic n = 30

Asian n = 8

Hawaiian/Pacific Isl. n = 1

Other n = 5
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2.3 Apparatuses

A custom crafted robot-like entity was built using a Traxxas Stampede XL-5 series
remote controlled truck and a foam-core constructed exterior, painted silver (see
Fig. 1). A camera mount was affixed to the top of the base unit, and a dummy web
camera attached to the top to give the illusion that the robot had the ability to “see”
the environment.

A maintenance hallway, a public area on the second floor of the University of
Central Florida’s Orlando campus psychology building, was used as the experi-
mental space (see Fig. 2); allowing for an area sufficient to maneuver the robotic
entity and allow a confederate (i.e., robot operator) to blend into the student
population.

Fig. 1 Custom-designed and
custom-built robot used in the
present study

Fig. 2 Map of the
experimental space,
delineating the starting
position of the robot, the
confederate’s vantage point,
and the proximal condition
tracks
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2.4 Procedure

Two researchers were needed to conduct this experiment. One researcher to guide
and instruct the participant, and the other to surreptitiously control the robotic entity
so as to afford it the necessary simulacrum of autonomy. When participants signed
up for the experiment they were instructed to meet at the first floor entrance to the
research laboratory. Participants were greeted by one of the researchers and sub-
sequently escorted, via a stairwell within the laboratory, to the second floor. The
second researcher, pretending to be a student studying, was pre-positioned on a
bench in the hallway at location C in Fig. 2, prior to the participant’s arrival.
Participants were only in the hallway during the practice trial and experimental
conditions; informed consent and administration of surveys were conducted within
the laboratory. The informed consent document was given to the participant for
their review, and both researcher and participant were required to sign it. Once
consent was granted, the participant was instructed to complete the demographics
portion of the survey which was comprised of the Interpersonal Trust Questionnaire
[23], the Negative Attitude Towards Robot Scale [24], the Human-Robot Trust
Scale [20], and the Trust in Automation Scale [21, 22]. Participants were then
escorted into the experimental space, and seated in a classroom chair located at P in
Fig. 2. Participants first observed a sample trial to acclimatize them to the robotic
entity. Immediately after the sample trial, the participant observed the first exper-
imental condition. After each of the experimental conditions participants were
escorted back to the laboratory and completed the Human Robot Trust Scale and
Trust in Automation Scale in reference to the trial they had just observed. Upon
completing all of the experimental conditions, participants were thanked for their
time and dismissed.

3 Results

Surveys were scored according to common practices and a mixed-design ANOVA
using a within-subject factor of condition (quick-near, quick-far, slow-near,
slow-far) was conducted. Analyses indicate proximity as a significant factor con-
tributing to changes in trust scores [F(2, 146) = 6.842, p < 0.01, partial
ŋ2 = 0.086]. These findings were observed in both the Human-Robot Trust Scale
(F = 13.212, p < 0.001, partial ŋ2 = 0.082) and the Trust in Automation Scale
(F = 11.099, p = 0.001, partial ŋ2 = 0.07). Our hypotheses were thus supported.
A Bonferroni corrected pairwise comparison of proximity (near-far) presented a
mean difference of −4.73 in the Human Robot Trust Scale, and a mean difference of
−0.19 in the Trust in Automation Scale. This indicates participants rated higher
trust scores in conditions where the robot was further from them, supporting our
second hypothesis.
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The speed of approach was also a significant factor contributing to changes in
trust scores [F(2, 146) = 2.885, p = 0.059, partial ŋ2 = 0.038]. A Bonferroni cor-
rected pairwise comparison of speed of approach (fast-slow) presented a mean
difference of −0.702 in the Human Robot Trust Scale, and a mean difference of
−0.12 in the Trust in Automation Scale. Support for the effects of speed on trust
were found only in the Trust in Automation Scale (F = 4.149, p = 0.043, partial
ŋ2 = 0.027) and not the Human Robot Trust Scale (F = 0.572, p = 0.451, partial
ŋ2 = 0.004). This indicates participants rated higher trust scores on the Trust in
Automation Scale in conditions where the robot moved slower, supporting our first
hypothesis. There was no significant interaction between speed of approach and
proximity [F(2, 146) = 1.654, p = 0.195, partial ŋ2 = 0.022].

The Negative Attitude Towards Robots Scale is comprised of three subscales
measuring negative attitudes toward: situations of interaction with robots
(M = 15.32, SD = 3.98), social influence of robots (M = 15.18, SD = 3.6), and
emotions in interaction with robots (M = 8.66, SD = 2.3).

The Interpersonal Trust Questionnaire contains three subscales: Fear of disclo-
sure (M = 86.17, SD = 16.15), Social coping (M = 24.31, SD = 6.68), and Social
intimacy (M = 13.76, SD = 3.58).

4 Discussion

The present experiment was designed to evaluate the effects of a robotic entity’s
proximity and speed of approach on the levels of trust held by humans for robotic
entities as measured by the Human Robot Trust Scale and the Trust in Automation
Scale. Results support both hypotheses that proximity and speed of approach have a
significant effect on trust levels. The difference in support of the two trust measures
for the speed of approach factor may be related to the difference in the intended
purposes of the two trust measures.

Our results add to the foundation of current literature in the area of proxemics
and movement as they apply to field of non-human or human-robot interaction.
Studies of this nature are critical for the further integration of robotic entities into
the everyday lives of humans. Understanding how and why trust changes in
response to a robotic entity’s physical presence, will ultimately decide if and when
robotic entities are widely accepted. Proximity and speed of approach are only two
of many social norms that roboticists will have to consider while designing the
physical structure of robotic entities and developing the software intelligence.

Limitations of our study and its experimental design include the following
issues: (a) robot autonomy, (b) robot morphology and materials, and (c) participant
pool. For the purpose of our research, we defined a robot as a machine that can
perform the work of a human and work autonomously or controlled by pre-existing
computer programming. Our use of the ‘Wizard of Oz’ paradigm precluded the
robot-like entity in our experiment from meeting this definition of a robot which led
to complications. During the protocol, students, staff, or faculty passing through the
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hallway would stop and ask the confederate researcher about the experiment thus
potentially divulging their researcher role to the participant sabotaging the illusion
of robotic autonomy. In these situations, the participant continued the experiment to
completion and would be politely asked if they become aware of the confederate’s
control of the robotic entity. Those participants who answered in the affirmative
were excluded from the data set, as they were aware that the robot was not
autonomous.

As mentioned previously, the robot-like entity was built from a Traxxas
(Traxxas, Plano, TX, United States) Stampede XL-5 remote controlled monster
truck with a maximum speed of 25 miles per hour. The exterior was constructed
from foam-core poster board, hot glue, and silver spray paint. A Logitech C525
(Logitech International S.A., Romanel-sur-Morges, Switzerland) web camera was
affixed to the top of the vertical extension to simulate a sensor by which the robot
could detect the environment. Subjective testimony from colleagues had mixed
responses regarding the physical appearance of our robot-like entity. Some
Opinions were split as to how realistic a portrayal of a robot the device was. Future
research may want to consider the construction of their robot and its conformity to
participant expectations, as the morphology and material composition may be a
confounding factor.

The range of participants spans from 18 to 31 years of age, however, the mean
age was only 18.82 years indicating that the majority of participants were quite
young. The lack of middle aged and senior participants reduces the generalizability
of the findings to the general population. Such difficulty in generalizing these
findings may delay the acceptance and integration of robotic entities into the daily
lives of humans.

Future research in the field of human-robot interaction should consider proximity
as a factor that contributes to trust levels; and speed of motion, should the robot
have mobility, as a possible contributing factor. Further research needs to be
conducted on a robotic entity’s speed of approach to determine, to what degree, it
effects trust levels.
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Human Factors Issues for the Design
of a Cobotic System

Théo Moulières-Seban, David Bitonneau, Jean-Marc Salotti,
Jean-François Thibault and Bernard Claverie

Abstract We present a new approach for the design of cobotic systems. It is based
on several steps with increasing complexity: Activity analysis, basic design,
detailed design and realization. A particular attention is paid to human factors and
human systems interactions. Different simulation levels are required to provide
flexibility and adaptability.

Keywords Human factors � Cobotics � Ergonomics � Robotics � Cognitics �
Workstation design

1 Introduction

Cobot is a neologism formed by the “collaborative” and “robot” terms. It has been
used for the first time in 1999 by Peshkin and Colgate to conceptualize the direct
interaction between a robot and a human on a dedicated workstation [1]. Its
meaning evolved towards different definitions depending on the context of the
application [2]. In the present study, a cobot is defined as a robot that has been
designed and built to collaborate with humans. A workstation in which a robot and
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a human are collaborating is called a cobotic system. Cobotics is defined by the
science and methods of designing, building, studying and evaluating cobotic
systems.

A robot may have typical mechanical and hardware components for a possible
collaboration with humans but if it is used in full autonomy, it is considered that it is
not part of a cobotic system even if it can be called a cobot. Conversely, a standard
industrial robot collaborating with an operator (by remote control for instance), is
considered the part of a cobotic system.

This paper firstly presents a characterization of cobotic systems, then proposes a
methodological approach to introduce cobotic systems on workstations. A use case
of a cobotic workstation design at Safran illustrates this approach.

2 Cobotic Systems

Characterization of cobotic systems is very important for industry in order to
understand the feasibility, the efficiency and the relevance of designing and
implementing a new cobotic system for an industrial application.

A cobotic system includes a robot and a human collaborating in synergy to
perform a task in the context of a workstation. In order to characterize a cobotic
system, it is necessary to pay attention to the human operator, to the task, to human
system interactions and to the robot. Several humans and several robots may be
involved in a cobotic system but for the sake of simplicity, we will focus here on a
simple cobotic system that involves a unique robot and a unique human operator.

2.1 Task Characterization

A task is defined by numerous variables [3]. The first one is the domain of
application (industrial, domestic, medical, military, etc.). The proposed study is
restricted to the industrial domain. Examples of tasks considered in this study are
transporting, moving and carrying objects, assembling, surface processing, welding,
cutting engraving, etc. The task can also be described by its variability and its
necessary adaptation to new applications. Another important variable is the possible
impact of a dysfunction or damage on the whole production process [4]. If there is
an important risk of failure or a risk to human health, the use of a cobotic system
might not be appropriate.
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2.2 Role of Operator

In the past, only experts in robotics were using robots. Nowadays, more and more
people are used to robots and it sometimes happens that newcomers have to interact
with industrial robots without training. However, knowledge and know how greatly
influence our perception and representation of robots, and our understanding of
what they can do and what they cannot. It is of primary importance for the industry
to design robots that anyone can easily work and interact with after very short
training periods. The complexity of the interaction mainly depends on the role of
the person at the workstation [5]:

• Operator: He pilots the robot (locally or remotely). The robot usually has a weak
autonomy or even no autonomy at all.

• Coworker: He works with the robot on the same object.
• Supervisor: He provides instructions and checks the work of the robot.
• Bystander: He is present in the working zone of the robot without interaction.

There is, however, a preliminary risk assessment to make sure that there is no
risk with the current task.

• Maintenance operator: He checks and eventually updates mechanical parts,
hardware or software components.

• Designer/programmer: Expert in robotics, he designs, builds or develops soft-
ware tools and advanced behaviors for the robot.

An important characteristic of the human role concerns the decision process. It
can be the result of a common planning, an order, a consensus between the cobot and
the human, or an autonomous decision. Parasuraman and Sheridan propose 10 levels
for the decision process, ranging from full assistance to no assistance at all [6].

2.3 Human System Interactions

The design of a cobotic system involves a clear understanding of the possible
human robot interactions, both needs, both constraints and the type of robotic
system [2].

The proximity between the operator and the robot is a crucial parameter for
obvious security reasons. Ergonomic reasons must also be taken into account. The
robot can be in contact with the operator (comanipulation for instance), nearby, or
very far. Sometimes, the robot can be carried by the user (exoskeleton) or the user
can be carried by the robot (robotic vehicle) [7]. Interactions may occur in real time
with immediate feedback or be differed. In addition, the interaction can be brief,
e.g., pushing a button, or continuous (comanipulation). Yanco and Drury propose to
characterize the cobotic system by the type of interaction and the type of interface
[4]. The sensor used for the interaction has an important impact on the abstraction
of the message that is exchanged between the operator and the robot.
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The operator can remotely interact with the robot by several means:

• Physically: button, joystick, mouse, handling a robot or end effector replica.
• Using touch-sensitive surfaces: screen or simple touch-sensitive surfaces.
• Visually (information for visual feedback): screen, glasses (virtual or augmented

reality), by distance measurements.
• Using motion capture: eyetracking, fingertracking, arm motion tracking, or full

body motion tracking.
• Soundly: voice recognition, alarm, oral communication.

In artificial intelligence, computer vision and speech recognition techniques
allow high level interactions. However, in industrial applications, the complexity
and robustness of these techniques are still considered not appropriate. Object
recognition by humans is typically more efficient than computer vision techniques.
For that reason, efficient cobotic systems are often made of a robotic manipulator
that is directly operated by a person, who is in charge of the perception of the
environment.

2.4 Classification of Robots

The traditional classification of robots is based on their morphology, which usually
allows a visual and functional representation of their use:

• Robotic arm: Made of a serial kinematic chain.
• Parallel robot: Robot with ending components linked to the base by several

independent kinematic chains.
• Cartesian robot: Robot with prismatic articulations in which axes are located

according to Cartesian coordinates.
• Mobile robot: Unmanned vehicles.
• Exoskeleton: Robot worn by a human to improve its performance or mitigate his

handicap.
• Hybrid robot: Combination of the above morphologies.

There are other classification methods [8, 9]. One of them is based on the
“intelligence” level of the robot, as it is proposed by the American Robotic
Industries Association and the JIRA (Japan Industrial Robot Association). The
basic robot is an open loop command system and the most sophisticated is able to
elaborate a complex planning process. Another classification has been proposed by
Coiffet, see Table 1. It is an interesting approach that takes the environment and
humans into account. However, there is no reference to the morphology of the
robot.
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2.5 Scheme to Describe a Cobotic System

We propose a characterization scheme. It is based on the information flow among
the three components of a cobotic system: the environment of the workstation, the
human and the robot. The generic scheme is presented in Fig. 1.

Interestingly, different cobotic systems have in general different schemes rep-
resenting the information flow. Figures 2 and 3 are two representative examples of
the differences among the cobotic systems:

Table 1 Robots classification

Entity Human Control system Robot Environment

Features affecting
performances during the
execution of task

Continuous
action

Open loop Fixed Known

Intermittent
action

Regulation Mobile Partially
known

No action Regulation and
reflex

Unknown

Regulation,
reflex and
decision

Fig. 1 Standard scheme of a cobotic system
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Fig. 2 Scheme of a teleoperating system

Fig. 3 Scheme of an exoskeleton system
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• For a remotely controlled system, the flow of information between the envi-
ronment of the task and the operator systematically goes through the robotic
system, the operator does not interact directly with the environment;

• In the last example, an exoskeleton assists the operator without any interaction
with the environment.

A given scheme describing an information flow does not always match with a
unique type of cobotic system. Another important parameter is the abstraction level
of information. If it is simple (data) or complex (object identification by vision for
instance) the scheme might be the same but the role of each component might be
completely different. A complementary idea is to use different types of links to
provide the abstraction level.

3 Practical Case and Methodological Approach

A dedicated human centered design approach is proposed to determine the func-
tional specifications of a cobotic system. The method is currently implemented
within a Safran cobotic project (tank cleaning) with the collaboration of researchers
from the Cognitics and Human Engineering team of the IMS laboratory and Ecole
Nationale Supérieure de Cognitique. The previous cobotic systems’ characterization
is a valuable tool that enables a classification of all cobotic solutions in order to
match the requirements of the workstation.

Let us consider an application. Nowadays, cleaning viscous and sticky chemical
product off huge propellant tanks is carried out manually. An operator scrubs the
tank using simple tools (kinds of spade). For a long time, operating at this work-
station has been an issue because it is hard, tiresome and performed in a hazardous
environment. As the task is long, complex and variable, a full automation is con-
sidered very difficult. The current objective is to design a cobotic system for that
task. The idea is to minimize the presence of the operator at the station to reduce
operational risks and improve working conditions to preserve operator’s health.

3.1 Task, Environment and Context Analysis

The first step is the analysis of the current activity: the task, the environment and the
context. A preliminary work is the study of other similar projects eventually with
existing solutions.

The main work consists in interviewing the operators, their manager, anyone that
is involved in the project. Then, it is crucial to observe the accomplishment of the
task itself. The objective of this analysis is to explicit how the task is really per-
formed, and the reason why it is performed this way to understand the workstation
stakes. As many variables (concerning the product, the environment, the tools, the
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communication among the operators, etc.) as possible have to be identified. In order
to assist the operator with a cobotic system, it is important to identify his skills and
experience, and the phases for which he has no or few expertise.

The output of this step is a document including the detailed functional specifi-
cations of the system. This document allows the first exchanges with experts in
automation, the proposal of possible solutions (only the basic principles) and
possible suppliers. If the technology readiness level (TRL) of the proposed solution
is too low, the feasibility has to be checked by means of technical tests.

3.2 Example: Safran’s Cobotic Project

The cleaning tank analysis led to the different products and their state, the different
tank’s dirtiness, and the different techniques of the operator to clean the tank. Two
solution’s principles were considered: robotic scrubbing and hydrogomming. The
tests revealed that the hydrogomming, which had a low TRL, was a heavy going
process, inappropriate to the shape of the tank. The robotic scrubbing has been
chosen. Testing it permitted to decide its size and strength.

3.3 Basic Design

Here, the solution is to design and realize scenarios and mockups. At first, they
cannot be accurate, but once implemented, they can be corrected and improved
again and again, until they are validated by everyone involved in the project.

The mockup should present the best tradeoff between the time it takes to develop
it and update possible solutions, and the distance to the industrial process. Virtual
reality tools can be used [10]. Two benefits are expected with the mockup: it allows
anticipating errors by testing design hypothesis, and it helps the operators, the
designers and the decision-makers to share the same representation of the future
workstation. The second point is important because it improves the acceptability of
the system. An operator may indeed be afraid of losing his job.

The outputs of the basic design are the specifications for a prototype.
The mockup also allows increasing the TRL of the proposed systems and sub-

systems to level 5 or 6.

3.4 Example: Safran’s Cobotic Project

In the cleaning tank project, we realized an interactive mockup of a teleoperation
system. We simulated a workstation with three camera views and a data screen.
Along the half-automated cycle, we could test different ways to interact with the
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simulated robot: a joystick, a haptic device, etc. (Fig. 4). Several operators tried the
simulator and we are currently validating the mockup.

3.5 Detailed Design

The detailed design is the logic next step after the basic design: the principle is to
design the solution using a prototype (temporary version of the final system). A first
imprecise design is done, then tested. After that, corrections and improvements can be
done and tested again, etc., until everyone involved in the project validates it. Thus,
the operators can try their future way of performing their task, and help improving it.
Simulating these interactions is decisive when designing a cobotic system.

The TRL increases to level 7 or 8.
The outputs of this step are the technical specifications for the final system,

coming to a solicitation of offers from suppliers.

3.6 Example: Safran’s Cobotic Project

When the base design is finished, we plan to realize a prototype at supplier’s test
facility and experiment with it. The results of the experiments will lead us to the
technical specifications of the cobotic system.

3.7 Production and Adjustment

Once the suppliers have answered the solicitation, at this step, the best one is
selected according to several criterions (quality of the solution, cost, experience,
etc.), and realizes the cobotic system, followed up by the project team. Then, the
supplier and possibly the concerned department of the enterprise, install, adjust and

Fig. 4 Picture and screenshot of the mockup realized for the cleaning tank project
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validate it before it is put in service. The project team has to make sure that the
cobotic workstation is adapted to all the operators and the production cycle, and that
the operators are trained enough to work with the system (Table 2).

4 Conclusion

The proposed methodological approach has to be carried out and achieved with the
current use case and then tested on other use cases to validate, correct and complete it.

This approach is global and can be adapted to most cobotic situations. A specific
emphasis is placed on the analysis of human/robot interactions. Different elements
have to be considered depending on the exact interaction scheme. Several experts
from three different disciplines are involved in the project: ergonomics for the
analysis of the workstation the variability of the tasks, cognitive engineering to
design the human robot interactions and robotics for the robot itself. This multi-
disciplinary aspect is a source of wealth for the project.
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A Natural Interaction Interface for UAVs
Using Intuitive Gesture Recognition

Meghan Chandarana, Anna Trujillo, Kenji Shimada
and B. Danette Allen

Abstract The popularity of unmanned aerial vehicles (UAVs) is increasing as
technological advancements boost their favorability for a broad range of applica-
tions. One application is science data collection. In fields like earth and atmospheric
science, researchers are seeking to use UAVs to augment their current portfolio of
platforms and increase their accessibility to geographic areas of interest. By
increasing the number of data collection platforms, UAVs will significantly
improve system robustness and allow for more sophisticated studies. Scientists
would like the ability to deploy an available fleet of UAVs to traverse a desired
flight path and collect sensor data without needing to understand the complex
low-level controls required to describe and coordinate such a mission. A natural
interaction interface for a Ground Control System (GCS) using gesture recognition
is developed to allow non-expert users (e.g., scientists) to define a complex flight
path for a UAV using intuitive hand gesture inputs from the constructed gesture
library. The GCS calculates the combined trajectory on-line, verifies the trajectory
with the user, and sends it to the UAV controller to be flown.
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1 Introduction

Rapid technological advancements to unmanned aerial systems foster the use of
these systems for a plethora of applications [1] including but not limited to search
and rescue [2], package delivery [3], disaster relief [4], and reconnaissance [5].
Many of these tasks are repetitive or dangerous for a human operator [6].
Historically, unmanned aerial vehicles (UAVs) are piloted remotely using radio
remotes [7], smartphones [8], or ground control systems. This is done at the control
surface level and requires a deep understanding of the extensive workings of the
internal controller (much like a pilot) and the various algorithms used for system
autonomy. Recently, advances in autonomy have enabled UAVs to fly with pre-
programmed mission objectives, required trajectories, etc.

As their manufacturing costs decrease so does the cost of entry, thereby making
UAVs more accessible to the masses. UAVs have also gained traction due to more
robust wireless communication networks, smaller and more powerful processors,
and embedded sensors [9]. Although these systems have the potential to perform a
myriad of intricate tasks whose number increases with the complexity of the
technology, very few people possess the required skills and expert knowledge to
control these systems precisely.

1.1 Atmospheric Science Mission

Researchers are leveraging these autonomous vehicles to transition from traditional
data collection methods to more autonomous collection methods in fields such as
environmental science. Currently, environmental scientists use satellites, air bal-
loons, and manned aircrafts to acquire atmospheric data. Although many studies
require the analysis of correlative data, traditional collection methods typically only
deploy individual, uncoordinated sensors, thereby making it difficult to gather the
required sensor data. The current methods are also costly in terms of time and
equipment [11]. Many systems such as remotely operated aerial vehicles require
expert users with extensive training for operation. In addition, the possibility of
sensors being lost or damaged is high for unpredictable methods like aerosondes
and balloons.

Atmospheric scientists are interested in using UAVs to collect the desired data to
fill the data gaps seen in current methods while giving scientists the capability to
perform more elaborate missions with more direct control [12]. The portability of
many sensors (Fig. 1) engenders each UAV to carry its own—potentially unique—
sensor payload, thereby generating a larger density of accumulated in situ data.
Each enhanced—high density—data set would provide the necessary supplemental
information for conducting more sophisticated environmental studies.
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Ideally, scientists would like to deploy multiple UAVs to fly desired flight paths
(while simultaneously taking sensor data) without being obligated to understand the
underlying algorithms required to coordinate and control the UAVs. This mission
management centered role requires the implementation of a Ground Control System
(GCS) interface that can accurately map seemingly simplistic operator inputs into
fully defined UAV maneuvers. Figure 2 depicts an example mixed-reality envi-
ronment where the operator is able to manage the mission by naturally interacting
with a fleet of vehicles whose geo-containment volume has been defined by the
operator.

Systems which simulate human-human communication increase their accessi-
bility to non-expert users [13]. These systems utilize natural interaction-based

Fig. 1 Example ozone
sensor used on a UAV for
collecting atmospheric data
[10]

Fig. 2 Artist’s representation of the future vision for an outdoor, mixed-reality environment in the
context of an atmospheric science mission with multiple UAVs
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interfaces. Previous researchers explored the operators’ informational needs [14]
and how human operators can collaborate with autonomous agents using speech
and gestures [15].

The remainder of this paper will outline a natural interaction interface for a GCS
in the context of an atmospheric science mission and is outlined as follows.
Section 2 describes gesture-based human-robot interaction. Section 3 explains the
developed natural interaction interface and the system modules. Section 4 examines
the results. Section 5 draws some conclusions and discusses future work.

2 Gesture-Based Human-Robot Interaction

Using a more “natural” input is intuitive and increases system efficiency [16, 17].
However, natural interaction systems are often difficult to develop as some inter-
pretation is required to computationally recognize their meaning. In the context of
generating trajectory segments for an atmospheric science mission, gestures are an
effective input method as humans naturally use gestures to communicate shapes and
patterns amongst themselves [18, 19].

In the past, researchers have used a variety of gesture input methods in order to
simulate interaction between an operator and a computer. Many of these input
methods required the operator to hold or wear the sensor [20–22]. These input
devices tended to restrict the operator’s hand movements, thereby reducing the
natural feel of the interface. Over time, researchers developed systems where
sensors were no longer mounted or attached to the operator. Some of these systems
focused on using full body gestures to control mobile robots [23], while others used
static gestures to program a robot’s pose by demonstration [24, 25] or even encode
complex movements [26]. Neither type of system focused on using unmounted
sensors to map simple, dynamic hand gestures to complex robot movements.

The Leap Motion™ controller (Fig. 3) is used to track the 3D gesture inputs of
the operator. This controller uses infrared-based optics to produce gesture and
position tracking with sub-millimeter accuracy. Each individual bone’s position
within all ten fingers of the operator are estimated (Fig. 4). User’s fingertips are
detected at up to 200 frames per second at 0.01 mm accuracy. Three infrared
cameras work together to provide 8 ft3 volume of interactive space [27].

Fig. 3 Leap MotionTM

controller

390 M. Chandarana et al.



3 Ground Control System Framework

A natural interaction interface for a GCS using gesture recognition was developed
to allow non-expert operators to quickly and easily build a desired flight path for an
autonomous UAV by defining trajectory segments. The developed system
addresses several key requirements.

i. The gesture inputs shall be intuitive and make the operator feel as if he/she
were naturally interacting with another person.

ii. The interface shall be simple to walk through so as to reduce the required
training time and increase the usability for non-experts.

iii. There shall be ample user feedback for decision making.
iv. The system shall abstract the operator away from the complexity of the

low-level control operations, which are performed autonomously, and allow
them instead to have a high-level mission management role.

The system’s interface is broken down into several key modules (Fig. 5):

A. volume definition module
B. gesture module
C. trajectory generation module

Fig. 4 Visual representation
of the Leap MotionTM

controller’s estimate of the
operator’s finger locations

Fig. 5 Diagram of the interface’s process flow between modules
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D. validation module
E. flight module

The first module asks the operator to define the size of the desired operational
volume. The operator can then build the flight path by gesturing one of twelve
trajectory segments currently defined in the intuitive gesture library (Fig. 6). The
interface allows the operator to build up a path with any number of segments. Once
the operator has fully defined the flight path, the system combines the trajectory
segments with first order continuity before taking the operator through a validation
step. This combined trajectory is then sent to the vehicle controller and the operator
may then send takeoff and land commands. Throughout each step, the interface
provides the operator with feedback displays so as to increase the efficiency of
decision making, as well as, provide a logical progression through the system.

3.1 Volume Definition Module

The operator is able to define a desired operational volume for the UAV using the
volume definition module. This operational volume can demarcate the operational
area, as well as, a geo-containment zone and may be set as a hard boundary for the
vehicle’s position in the onboard controller. As a safety measure, if the vehicle were
to leave the geo-containment area, the vehicle controller can immediately command
the vehicle to land. Once the user creates the geo-containment volume, all defined
trajectories are restricted to this volume. Currently, this is done by manually
defining the lengths and orientations of the segments such that they are guaranteed

Fig. 6 Library of gesture inputs
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to stay within the boundary. This can be extended to automatically scale and orient
the segments by using the size and shape of the boundary as parameters.

In order to aid the operator in defining a volume, the interface displays multiple
2D viewpoints of the working environment so as to accurately display the full 3D
shape of the volume. These viewpoints are planar diagrams of the total available
working volume which, when put together give the operator a 3D understanding.
A representation of the desired operational volume (to scale) in an indoor setting is
overlaid on the viewpoints (Fig. 7). These viewpoints allow the operator to visu-
alize the entire volume as shown in Fig. 7 (top). Figure 2 shows an example
volume overlay in an outdoor setting. The operator can use an intuitive pinching
gesture to expand or compress the volume to the desired size. This example uses a
cylindrical volume represented in Imperial units. The units used to define the
operational volume are tailorable.

3.2 Gesture Module

By using the defined gesture library (Fig. 6) the operator is able to employ a variety of
trajectory segments. The gesture module is responsible for characterizing the raw
sensor data from the LeapMotion™ controller into desired trajectory segment shapes.

Fig. 7 Top view (middle) and front view (bottom) representations shown in the interface for use
in volume definition
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Gesture Library. Based on feedback from subject matter experts, the gesture
library was developed to define flight paths that would be of interest to scientists for
collecting various sensor data. The library is composed of twelve gestures ranging
from simple linear gestures to more complex diagonal and curved gestures: for-
ward, backward, right, left, up, down, forward-left, forward-right, backward-left,
backward-right, circle, and spiral.

The intuitive nature of the gesture library lends itself to applying several of the
gestures in other aspects of the interface, in addition to path definition. This is done
by breaking the flow of the interface into several modes. After building a trajectory
segment, the Message Mode gives the operator the ability to use the right and left
gesture inputs to navigate a menu questioning if they have taught all desired tra-
jectory segments. Additionally, the up and down gesture inputs are adopted for
sending takeoff and land commands to the UAV controller in the Flight Mode,
which occurs after the operator has built all their desired segments.

3D Gesture Characterization. The operator’s gesture input is characterized as
one of the twelve gestures in the defined library using a Support Vector Machine
(SVM) model. As opposed to a simplistic threshold separation, the SVM model
provides a more robust classification by reducing biases associated with any one
user.

Data from eleven subjects was used to train the SVM model using a linear kernel
[28]. Each subject provided ten labeled samples per gesture in the library. Features
were extracted from each pre-processed input sample. The features used for training
included the hand direction movement throughout the gesture, as well as, the
eigenvalues of the raw hand position data.

3.3 Trajectory Generation Module

BðtÞ ¼
Xn

i¼0

n
i

� �
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Once the operator has defined all the desired trajectory segments, the trajectory
generation module translates each segment into a set of fifth order Bézier splines
[29] represented by Eq. 1. The system then automatically combines the spline sets
into a complete path by placing the Bézier splines end-to-end in order of their
definition. Transitions between splines are smoothed with first order continuity so
that any sudden direction and velocity changes are eliminated. This produces a
continuous, flyable path for the UAV. Each combined trajectory includes the
necessary time, position, and velocity data required by the UAV controller. Using a
data distribution service (DDS) middleware, the trajectory information can be
transmitted on-line to the UAV controller [30].
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3.4 Validation Module

Prior to transferring the combined trajectory data taught by the operator to the UAV
controller, the system displays a 3D representation of the flight path. The rendered
flight path is presented to the operator so that they can validate and approve the
proposed path of the UAV before flight. Figure 8 depicts an example of a rendered
flight path where the operator taught the following trajectory segments (in order):
left, spiral, forward-left, and circle. This flight path simulates a UAV collecting data
as it spirals up to a desired altitude, moves to a new region of interest, and circles
around a target while collecting more data.

3.5 Flight Module

After the UAV controller receives the flight data, the operator is able to initiate and
end path following using the features of the flight module. In the current setup, Up
and Down gestures are translated into takeoff and land commands respectively. The
commands are sent directly to the UAV controller using the DDS middleware.
Once a takeoff command is sent and executed, the UAV autonomously begins
traversing the newly defined flight path using the transferred data. Immediately
upon completing its defined path, the UAV hovers in place until the operator sends
a land command.

4 Results

A straightforward system setup (Fig. 9 left) exudes the sense of effortless execution
to the operator. The system requires just two components: (1) a flat surface to place
the Leap MotionTM Controller and (2) a display with the interface loaded and a

Fig. 8 Sample rendered 3D combined trajectory built by the operator (right) with input gestures
(left)
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USB port to connect the Leap MotionTM Controller. In the context of an atmo-
spheric science mission, the operator is situated such that they have a frame of
reference for building the trajectory segments for the UAV while maintaining a safe
separation (Fig. 9 right). The operator uses the gesture library to intuitively walk
through the steps required to build desired trajectory segments. There is no limit
placed on the number of segments the operator can teach.

Each time the operator uses the natural interaction interface, the system calcu-
lates the combined trajectory and discretizes every segment’s set of Bézier splines
[6] for visualization in the validation module on-line. The system is able to accu-
rately transmit the complete trajectory data to the UAV controller such that the
UAV flies a recognizable implementation of the path generated by the operator.
Figure 10 depicts a resulting sample flight path generated by employing the
developed gesture-based interface. For this example, the operator used the devel-
oped interface to generate a trajectory for a single UAV with the following
directions (in order): left, forward and spiral. The position of the UAV as it tra-
verses the complete trajectory was overlaid on one image for easier understanding.
A light blue line is used to trace the path of the UAV. Although not depicted, the
operator was also able to perform an Up gesture to send a takeoff command to the
vehicle and a Down gesture to land the vehicle.

Fig. 9 System setup for operator use (left) and view of UAV operational volume from operator’s
perspective (right)

Fig. 10 Sample flight path after trajectory data was sent to the controller and a takeoff command
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5 Conclusion and Future Work

A GCS for autonomous UAV data collections was developed. The system utilizes a
gesture-based natural interaction interface. The intuitive gesture library allows
non-expert operators to quickly and easily define a complete UAV flight path
without needing to understand the low-level controls. There are several planned
extensions that can be made to this work to augment its efficacy and applicability.

1. The interface can be extended to include the definition of additional geometric
constraints if necessary (e.g., clockwise vs counterclockwise direction on a
circle).

2. The gesture library can be extended (e.g., spiral forward).
3. Gesture segmentation: A user may wish to define a complete square shape

instead of teaching each segment one-by-one.
4. Extending the system to include real-time mission supervision and trajectory

modification.
5. Perform user studies to fully validate the methodology.
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An Analysis of Displays for Probabilistic
Robotic Mission Verification Results

Matthew O‘Brien and Ronald Arkin

Abstract An approach for the verification of autonomous behavior-based robotic
missions has been developed in a collaborative effort between Fordham University
and Georgia Tech. This paper addresses the step after verification, how to present
this information to users. The verification of robotic missions is inherently proba-
bilistic, opening the possibility of misinterpretation by operators. A human study
was performed to test three different displays (numeric, graphic, and symbolic) for
summarizing the verification results. The displays varied by format and specificity.
Participants made decisions about high-risk robotic missions using a prototype
interface. Consistent with previous work, the type of display had no effect. The
displays did not reduce the time participants took compared to a control group with
no summary, but did improve the accuracy of their decisions. Participants showed a
strong preference for more specific data, heavily using the full verification results.
Based on these results, a different display paradigm is suggested.

Keywords Display of uncertainty � Decision support system � Formal verifica-
tion � Behavior-based robotics

1 Introduction

Robotics has the potential to be a key technology for combating weapons of mass
destruction [1]. This domain presents new challenges for autonomous robotic
systems. In these types of missions, failure is not an option. Human operators must
be confident in the success of a robotic system before the technologies can be
applied. To address these problems our research, conducted for the Defense Threat
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Reduction Agency (DTRA), has successfully developed the methods and software
to perform robotic mission verification [2].

While robotic mission verification is similar to traditional software verification,
there are several additional complications. The real world is continuous, and both
robotic sensors and actuators are noisy. The robotic controller is only one piece, and
the result of a mission is also determined by the physical robot and its interaction
with the environment, and modeling of both will always be imperfect. This means
any verification is fundamentally probabilistic.

This presents a new challenge. People do not use all the available data or
systematic methods when assessing probabilistic data. Instead, heuristics are
applied to simplify the analysis, which can lead to systematic errors and bias [3].
The methods of displaying the information must ensure an operator can easily and
accurately interpret the data. This paper explores methods to achieve this goal.

2 Related Work

Research on the presentation of probabilistic data and uncertainty has shown that
participant’s decisions in various tasks are not significantly affected by the format
the data is presented in (graphical, numerical, or verbal) [4]. Though numeric
statements offer more precision and consistency than linguistic phrases, it’s
hypothesized that people treat all probabilities in a vague manner, utilizing mem-
bership functions [5].

These results were extended in [6] where both display format and specificity
level were varied. Display formats included linguistic, numeric, and multiple
graphical icons. Specificity level was the size of the range of probabilities repre-
sented by a single icon or expression. Results agreed with previous research,
showing that display format had no significant effects. However, specificity did
have significant effects on performance in a simulated stock purchasing task.

This work expands on these results in two ways related to the application of
robotic mission verification. First, participants in this study have access to more
information than a single measure of probability. Success in a robotic mission is
tied to multiple criteria, such as time to completion or allowable distance from a
goal location, whose values may have some variability. The full verification results
have probabilities of achieving each criterion independently over a range of values.
This information is important to operators, and will affect their decisions, so it must
be included. Secondly, the context of the tasks is significantly different. Participants
were asked to make decisions on high-risk missions, where lives are (hypotheti-
cally) at risk. These types of risks/costs are difficult to quantify and participants may
resort to different methods of reaching a decision.
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3 VIPARS—The Verification Tool

VIPARS, or Verification in Process Algebra for Robot Schemas, is a robot mission
verification tool [7] designed for use with MissionLab, a graphical programming
environment for behavior-based robots [8]. Informally, VIPARS determines how
likely a robot mission is to succeed. In formal terms it takes as input a
behavior-based robotic controller (software), models of the robot hardware and
environment, and performance criteria. With this information, VIPARS can cal-
culate and return a probability of success. All of these components are descriptions
of the physical system except for performance criteria, which define what a suc-
cessful mission is. The two most fundamental criteria, and those used for this study,
are time (how long a robot may take to achieve its goal) and space (how far from a
goal a robot may be).

VIPARS achieves verification by defining the state of the system as a set of
random variables. Flow functions, created from the robot’s behaviors and the
environmental models, describe how these random variables map from one time
step to the next. This allows VIPARS to avoid the state-space explosion, caused by
the continuous dynamics and noisy sensing/actuation of the real world, that plague
traditional verification techniques such as model checking [9]. This paper will not
go deeper into the description of VIPARS. For a thorough description of the ver-
ification process please see [2].

Though VIPARS can produce a single probability for specific performance
criteria, a more complete understanding of a mission can be gathered from
observing how the probability changes over a range of criteria. See Fig. 1 for the

Fig. 1 Example verification results compared to empirical validation from real robots. Rmax is
the spatial criterion, or the max distance from the goal location that still counts as a successful
mission. The y-axis is the probability that both robots, r1 and r2, meet their spatial criterion
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results of a multi-robot mission verification from [7]. The red curve is the VIPARS
verification result, while the blue curve is experimental data gathered from real
executions of the robot mission for validation purposes. Results can be broken
down into three regions. In the Unsuccessful region, the performance criterion is so
strict that success is impossible, i.e., the precision or speed demands exceed the
capabilities of the system. In the Successful region, the criteria are easy enough to
guarantee success (ignoring unmodeled possibilities). Both of these regions are
high-confidence, where it is certain the actual mission probability will match the
verification results. In between lies the uncertain region, where uncertainty is
introduced in two ways. First, the results are between 0 and 100 %, so mission
success is uncertain even with a perfect verification. Second, in this region small
errors or simplifications in modeling can create moderate differences between the
predicted and actual probability of success. Thus, the results of the verification itself
are low-confidence. With a basic understanding of VIPARS and the data it pro-
duces, the experiment described in this paper and the displays used can be
discussed.

4 Experimental Design

4.1 Task

Participants were asked to make decisions on whether to execute high risk auton-
omous robotic missions based on situational information and the verification
results. Participants were presented scenarios appropriate for a mobile robot mis-
sion. They were given access to the VIPARS graphical interface via a laptop under
the assumption the robot (hardware) and controller (software) had been decided and
are fixed. The participants reviewed information on a scenario (robot’s task, risk
factors, time or spatial constraints) and then executed the VIPARS verification.
Using the information VIPARS provided, the participant made a decision on
whether to execute the robot mission or defer to a human team, and rated their
confidence in both the mission and their decision. Scenarios included some limited
information about the performance and risk for human teams.

Each participant was presented five total scenarios. The scenarios were divided
into two categories. Certain scenarios were made to have a clear correct decision,
with probabilities of success either being 0 % or 100 %, and high confidence in the
verification. There were three certain scenarios, two successful and one unsuc-
cessful. The uncertain scenarios had probabilities of success at 30 and 70 %, as well
as low confidence in the verification.
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4.2 Independent Variable—The Displays

Participants were divided into four conditions. Every condition had the low-level
display available, which showed the full verification results. For three conditions
(A-C), subjects were presented a variant of a high-level display and could switch to
the low-level display at will, while in the control condition (D) subjects could only
view the low-level display.

The Low-Level Display. The low-level display provides the full probabilistic
information given by VIPARS. This display is based on the validation graphs
discussed in Sect. 3. The graph is a cumulative distribution function (CDF) for the
probability of achieving a performance criterion over a range of values. Figure 2
shows an example of the graph. It is augmented in several ways to aid a user. Areas
with 0 % or 100 % success probabilities make up the “high-confidence success” or
“high-confidence failure” regions. These are colored for rapid identification. The
threshold a user has selected for the specific criteria is marked with a dashed line. In
addition, the scales of the presented graph are selected relative to this threshold;
from zero to twice the value. This presentation is limited to one criterion at a time,
so a user must manually switch which criteria they are viewing.

The High-Level Displays. The high-level display summarizes the verification
results in two ways. First, only the probability at the selected criteria value is used.
This means information on the effect of changes in mission criteria is lost. Second,
the results of all criteria are combined to give a total probability of success. This
removes mental calculations from the user, but hides potential causes of failure.
Three display types were chosen that vary with respect to type and specificity.

Fig. 2 Example low-level display for a spatial criterion set at 10 m
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At the high end of the specificity scale is a simple numeric display of the final
mission probability, which can be considered the most basic approach. A less precise
means of displaying a percentage is graphically, using a bar. A bar was selected
because reading position along a common scale has been shown to be the most
accurate task for extracting quantitative information from a graphical representation
[10] and it is commonly used in decision support systems (e.g. [11, 12]). At the lowest
level of specificity, a symbolic system only presenting three options (success, failure,
and uncertain) could be used for the high-level display. This scheme takes advantage
of the current predictions of VIPARS which typically have low confidence in
probabilities between 0 and 100 %. In this symbolic system a green thumbs up
represents success, a red thumbs down represents failure, and a question mark rep-
resents uncertain results. Figure 3 presents the options along a scale of specificity.

4.3 Dependent Variables

For each scenario five dependent variables were recorded, shown in Table 1. The first
three variables were automatically recorded by the software, while the last two are
selected by the participant. Mission and decision confidence were presented as Likert

Fig. 3 The high-level displays. The numeric display was used for condition A, the graphic for B,
and symbolic for C. Condition D was the control group

Table 1 The five dependent variables recorded in the study

User-decision Binary choice on whether to execute the robotic mission

Time-to-decision The time between VIPARS execution and final decision

Time-on-raw-data Time spent viewing the low-level display

Mission-confidence Confidence the robotic mission would be successful if ran

Decision-confidence Confidence the user’s decision (to execute or not) is correct
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scales with values ranging from 1 to 9. For participants in the control group, time-to-
decision is equal to time-on-raw-data, as they can only view the low-level display.

4.4 Hypotheses

Based on the related work discussed previously, three hypotheses were formed.
This section covers the hypotheses and their predictions on the dependent variables.

• Hypothesis 1: Displays summarizing VIPARS results can improve the com-
prehension accuracy and speed of users over the direct display of VIPARS
output.

Hypothesis 1 predicts that time-to-decision and time-on-raw-data will be
reduced when using high level displays versus the control case, and that the
accuracy of user-decision will increase for certain scenarios. If participants in the
control cases achieve perfect accuracy (i.e. always select correct decision) for
certain scenarios, then it will be assumed that perfect accuracy on the high-level
displays validates this hypothesis.

• Hypothesis 2: Various representations of the VIPARS output will provide
similar understanding of the mission probability.

Hypothesis 2 predicts that between the high level displays, user-decision will not
vary significantly for uncertain scenarios.

• Hypothesis 3: More precise representations of probability will bias operators
towards interpreting higher certainty in the result.

Hypothesis 3 predicts that decision-confidence will increase as the specificity of
the high-level display increases.

Finally, additional analysis is performed to look for effects that do not have
explicit hypotheses. For example, if one particular display has a higher time-on-
raw-data on the average, it may indicate that users find the representation inade-
quate for decision making.

4.5 Execution Details

A total of 45 participants were tested. Participants were screened for color blindness
with a shortened version of the Ishihara colorblind test, two failed and were
excluded. In addition, two participants performed the tasks incorrectly,1 their data

1Participants used prior situational information for new scenarios.
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was also excluded. The results include 41 participants, 23 male and 18 female, with
an average age of 24.3 (range from 18 to 54).

Each participant first went through a tutorial session that introduced the VIPARS
system and allowed them to try an example scenario. Afterwards, they were given
information on one scenario at a time by the proctor. The proctor was nearby and
available for questions, but not able to view the computer or participant’s choices.
Sessionswere video recorded, and the time taken for questions and answers during the
test was removed from the measurements of time-to-decision and time-on-raw-data.

5 Results

5.1 Hypothesis 1

The first hypothesis made two predictions. First, that users would make faster
decisions when provided with the high-level displays, lowering time-to-decision
and time-on-raw-data. The second was that the accuracy of user’s decisions on
certain scenarios would be improved when using high-level summaries. First we
examine the data on time-to-decision and time-on-raw-data.

Both time-to-decision and time-on-raw-data were analyzed using one-way
ANOVA over the four conditions. For time-to-decision, or the total time a user
took, there was no significant difference between display types when all scenarios
were averaged together (P = 0.688). Scenarios were also tested independently, and
showed no significant differences. Figure 4 shows the time-to-decision for each
display type. In contrast, there was a statistically significant difference between

Fig. 4 Average time-to-decision per display type for all scenarios plotted with 95 % confidence
intervals
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time-on-raw-data (P = 0.012). Post hoc tests using Games-Homell showed only
display A had a significant reduction (alpha = 0.05) compared to the control
(means = 32.22, 56.84, SD = 24.47, 41.27) (Fig. 5).

For decision accuracy, uncertain scenarios were excluded as no correct decision
could be assumed. This left the three certain scenarios. For each user and display, a
correct decision was an “execute” for missions with 100 % probability of success,
and a “do not execute” for missions with a 0 % probability of success. The table of
decisions for each display is shown in Table 2. The reader can see that the control
case D has a larger number of incorrect decisions. As the table is sparsely popu-
lated, Fisher’s exact test was used to test for statistical significance. A significant
difference between display types was found (P = 0.026). Thus hypothesis one is
partially confirmed; the accuracy of users improved with the high-level displays,
but their times to decisions were not reduced.

5.2 Hypothesis 2

The second hypothesis predicted that between the high level displays, the under-
standing of mission probability and thus user-decision, would not vary significantly

Fig. 5 Average time-on-raw-data per display type for all scenarios plotted with 95 % confidence
intervals

Table 2 All decisions for the
certain-scenarios, sorted by
condition

Display type

A B C D

Decision Correct 28 33 32 22

Incorrect 2 0 1 5
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for uncertain scenarios. As these scenarios had different probabilities of success (70
and 30 %) they will be analyzed separately. The decisions for each scenario are
broken down in Tables 3 and 4, and a Fisher’s exact test reported the difference
between display types was not statistically significant. (P = 0.906, 0.526 for sce-
narios one and two, respectively). Thus hypothesis two is confirmed.

5.3 Hypothesis 3

The final hypothesis predicted that more precise representations of probability will
bias operators towards interpreting higher certainty in the results, thus decision-
confidence will increase as the precision of the high-level display increases. This
hypothesis needs to be tested per scenario, as different risks and probabilities with
each scenario should affect the confidence of the user. Performing an ANOVA for
decision-confidence versus display type showed no significant differences between
displays. Table 5 and Fig. 6 display the P values and average values for each
scenario. Thus hypothesis three is rejected.

6 Discussion

This section will cover the key results from this study, and how they have impacted
the design of the VIPARS interface.

Table 3 User-decisions for the first uncertain scenario, total probability of success = 70 %

Display type

A B C D

Decision Execute 6 8 8 7

Don’t 4 3 3 2

Table 4 User-decisions for the second uncertain scenario, total probability of success = 30 %

Display type

A B C D

Decision Execute 5 5 6 7

Don’t 5 6 5 2

Table 5 ANOVA results for decision-confidence versus display type for each scenario

Scenario 1 2 3 4 5

P value 0.56 0.48 0.09 0.49 0.52
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1. Users wanted the most detail possible
Almost all users in high-level display conditions heavily utilized the low-level
display as well. The author predicted the high-level displays would decrease the
time a user needs, but the opposite was true. Users in the control condition had
the lowest time-to-decision, though it was not statistically significant. The rea-
son is obvious from test data, users spent time reviewing both levels of displays
when they were available. As seen in Sect. 5.1, only condition group A (having
the most specific high-level display) had a statistically significant reduction in
time-on-raw-data compared the control group. This is consistent with previous
work which found preferences for higher specificity [6].

2. The type of high-level display had almost no effect
There was no significant difference between the numeric, symbolic, or graphical
displays except for time-on-raw-data. This is consistent with the previous work
[4, 6] that showed display format has little impact, but in this experiment
specificity was also varied. Does this disagree with previous results that showed
specificity had a significant effect? The authors do not believe so. In this
experiment, users had access to a more specific information source in the
low-level display. As most participants heavily utilized the low-level display, it
seems likely that the variance in specificity at the high-level was overshadowed
by the information from the low-level display.

3. The high-level displays helped reduce errors
Due to either misinterpreting the low-level graphs, or improperly combining the
results of multiple criteria, more mistakes were made in the control group. While
in a more realistic setting users would have additional training (reducing the
likelihood of errors), the actual situations may be more complex and include
several extra criteria (increasing the likelihood of errors).

Fig. 6 Average decision-confidence per display type, per scenario, and plotted with 95 %
confidence intervals
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Initial designs for the VIPARS user interface, and the prototype display for this
experiment, utilized a layered system, where a user is presented with a high-level
summary first, and would only view low-level detailed information if necessary.
These results indicate that while a summary of results is useful, it likely should not
be the primary focus. Instead, the complete verification results should be the pri-
mary output, with automatic summaries displayed alongside as a mental check for
users. See Fig. 7 for an example design. The choice of display format for the
summary is not critical, as no option showed superior performance, however results
suggest users may prefer the numerical display due to its greater precision.

7 Conclusion

This paper has presented research on the display of uncertainty towards robotic
mission verification. A human study on the display of probabilistic data for robot
missions was performed. Three high-level summaries were chosen to present the
results of a mission verification software toolkit. Surprisingly, the high-level
summaries did not affect the time a user took, or their confidence with their deci-
sion. Instead, participants preferred to utilize the low-level detailed results. The
control group, without access to the summarized data, made more mistakes. This
implies some value in the high-level displays for the purpose of ensuring a user has
accurately interpreted the verification results. The outcomes of this study have
improved the design paradigm of the VIPARS interface; helping to ensures users
will be able to quickly and accurately interpret the probabilistic information.

Fig. 7 New example display
design that combines the
high-level summary with the
complete low-level results
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A Neurophysiological Assessment
of Multi-robot Control During NASA’s
Pavilion Lake Research Project

John G. Blitch

Abstract A number of previous studies have explored the value of an external or
“3rd person” view in the realm of video gaming and augmented reality. Few
studies, however, actually utilize a mobile robot to provide that viewpoint, and
fewer still do so in dynamic, unstructured environments. This study examined the
cognitive state of robot operators performing complex survey and sample collection
tasks in support of a time sensitive, high profile science expedition. A solo robot
control paradigm was compared with a dual condition in which an alternate (sur-
rogate) perspective was provided via voice commands to a second robot employed
as a highly autonomous teammate. Subjective and neurophysiological measure-
ments indicate an increased level of situational awareness was achieved in the dual
condition along with a reduction decision oriented task engagement. These results
are discussed in the context of mitigation potential for cognitive overload and
automation induced complacency in complex and unstructured task environments.

Keywords Human robot interaction � Cognitive state � Situational awareness �
Workload � Decision making � Robot assisted rescue

1 Surrogate Perspective(s) for Robot Control

The integration of an omniscient or “3rd Person” perspective into the video game
and augmented reality industry has inspired a volume of research that is directly
relevant to multi-robot control. Salamin and colleagues, for example, report that
many video gamers prefer to use a third person perspective for moving an avatar
through an artificial environment, but usually switch back to a 1st person viewpoint
from within the avatar itself to perform “thin” tasks where dexterous manipulation
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is required [1]. Similar preferences have been reported in teleoperation of mobile
robots [2, 3] and the use of augmented reality for remote grasping and manipulation
[4, 5].

Despite an abundance of research published on Human Robot Interaction
(HRI) there appears to be a dearth of literature documenting the use of a robotic
team mate to provide this 3rd “person” perspective. Note that since an external
offset of this nature can be provided by any number of non-human devices, the term
“surrogate perspective” is used in lieu of the “3rd “(or 4th) person label. In turbulent
conditions where sediment, dust or other obscurants interfere with the primary
robot’s sensors, a mobile offset or “surrogate” perspective can potentially save the
mission from total failure by finding a gap in the obscurant cloud to exploit and
guide the primary platform and/or its manipulator(s) from a different angle. This
approach has the potential to enable and expand upon an otherwise ineffective
object identification or retrieval task. Multiple perspectives also present the
potential for stereo-sensing approaches that offer far more capability in handling
dynamic targets and environments than mono-sensing.

Given these considerations, this investigation reflects a seedling investment in
the SPAARC, or Surrogate Perspective for Adaptive and Agile Robot Control
concept. Its goal was to determine quantitative measures of surrogate perspective
value (or burden as the case may be) derived from teaming a highly autonomous
robotic teammate with a human tele-operator in a challenging survey and manip-
ulation task. This particular effort explored the SPAARC concept in an underwater
context with Remotely Operated Vehicles (ROVs) in order to slow down human
robot interactions for close examination in a relatively viscous operating realm
while exploiting the inherent risks and stressors associated with NASA’s Pavilion
Lake Research Project (PLRP).

2 Research Environment and Expectations

This research was conducted in an underwater obstacle course set up in the diving
pool at the Wright State University Natatorium in Dayton OH and aboard a 24’
research vessel on Canada’s Pavilion Lake located in British Columbia between the
between the towns of Lillooet and Cache Creek. This unique glacial feature has
been investigated by NASA and the Canadian Space Agency (CSA) for more than a
decade, primarily because of its role in hosting the development of microbialite
colonies that are of direct interest as an extremophile species analog for exploration
missions of Mars and other heavenly bodies. For more details on this prominent
research endeavor see Lim et al. 2011 [6].

Unlike other Mars analog simulations and research endeavors that involve mock
sample collection and “analysis” of placeholder objects, the Pavilion Lake Research
Project (PLRP) involves a challenging operational profile conducted against a
backdrop of “real” scientific activity. The ambitious research carried out in this
project creates a situation where the many scientists, astronauts, and NASA
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engineers involved in it depend upon actual technical analysis results obtained for
published research and professional stature. As such, the need for delicate handling
of samples collected and minimal disturbance of the environment creates a daunting
challenge for robot operators attempting to support the project with Remotely
Operated Vehicles (ROVs).

The self-imposed stress for robot operators trying to impress world renown
scientists, astronauts and engineers with their dexterity in handling delicate tasks of
this nature is of direct interest to the military commensurate with minimally inva-
sive demands for special reconnaissance and covert sample collection activity in
denied areas. In that context, this investigation offered an unprecedented opportu-
nity for the Air Force Research Laboratory to examine the cognitive state and
mental workload experienced by mobile robot operators performing complex tasks
under stressful conditions in and unstructured environment far beyond what is
typically available in a laboratory setting.

The simulation vignette used in this research was a modified version of the robot
assisted sample collection mission enacted by Blitch and colleagues during the
2001 Mars Flashline project [7]. This simulation involved a robot assisted sample
collection EVA (Extra Vehicular Activity) in which rovers were first used to survey
an area of interest and collect (i.e. pick up) readily available samples in the
immediate vicinity of the target. It is important to note that the term “readily
available” in this context refers to sample collection that did not involve highly
sensitive procedures requiring human dexterity or tactile intuition such as gently
prying protrusions loose from rock strata, or lightly chipping away samples with a
geologist’s pick. Human exploration parties then proceeded into the same area by
manned rovers (simulated by ATVs) with limited environmental resources to focus
their intuitive sample collection and in situ analysis efforts on specific items of
interest established by examination of data obtained during the robotic pre-cursor
missions.

A 24’ research vessel (modified pontoon boat) was used to simulate a local
habitat on Mars (or in orbit) from which rovers (simulated by submersible ROVs)
were dispatched commensurate with mission objective stated above. An Earth
based command and control center was simulated by NASA KSC’s Mobile Mission
Control Center (MMCC) located on land along the northeastern shoreline of
Pavilion Lake. Data transfer delays and bandwidth limitations replicating typical
positional accuracy challenges associated with space exploration operations of this
magnitude were simulated by a sophisticated software package and communica-
tions network connecting the MMCC with the forward research base (pontoon boat)
and shuttle craft (simulated by other boats) carrying manned EVA teams (divers)
between various exploration sites. The reader is directed once again to Lim et al.
2011 for details of this setup [6].

Returning now to relevant HRI literature, an abundance of research on cognitive
demand associated with multi-robot control calls into question which way the cost
benefit scale might tip if surrogate perspective(s) for a delicate sample collection
operation were implemented in the form of mobile robots. The majority of this
literature, however, endorses the role of adaptive automation as a powerful ally in
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mitigating the mental workload and attentional demands associated with
multi-robot control [8, 9]. With that in mind, the second robot intermittently
injected into this rescue scenario was simulated at a high level of autonomy and
artificial intelligence sufficient to respond effectively to voice commands.

Given the naturalistic interface between human and robotic teammate imple-
mented above it was expected that ROV operators attempting challenging sample
collection tasks in dynamic, unstructured environments would perform better when
a surrogate perspective from that teammate was offered in a DUAL condition
compared to singular robot trials made in a SOLO condition. In addition to this
primary (H1) hypothesis, it was expected that operators in the DUAL condition
would also report increased situational awareness (H2) and a reduction in mental
demand (H3) compared to the SOLO condition. It was also expected that neuro-
physiological measures would echo the self-reported increase in awareness (H4)
and cognitive workload (H5). Given the inherent difficulties associated with
unpredictable and unstructured field environments, undesirable drops in perfor-
mance (H6) and situational awareness (H7) were expected during operations con-
ducted on Pavilion Lake along with an increase in workload (H8) compared to pool
measurements—all of which would be mitigated in the DUAL condition as evi-
dence of surrogate perspective value.

3 Method

3.1 Participants

Four male military personnel from the 88th Security Forces Squadron at Wright
Patterson Air Force base were selected from a field of 13 other volunteers to
participate in this research based on their performance during a 4-h assessment and
selection process described below. As active duty military service members, these
participants ranged in age from 21 to 30 years of age, had normal hearing and
normal or fully corrected eyesight, and received no monetary incentive beyond
standard travel reimbursements.

3.2 Apparatus

The mobile robot manipulators used for this experiment were Video Ray sub-
mersibles equipped with a simple two Degree Of Freedom (DOF) gripper and an
Outland 1000 ROV fitted with 3-jawed claw for small object retrieval. Details and
performance specifications for each of these platforms are available at each com-
pany’s website. The Outland ROV was also fitted with a Tracklink Transponder
that communicated its relative position underwater to a monitor aboard the research
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vessel. Neurophysiological data was collected with a wireless brainwave (or EEG
for ElectroEncephaloGraphy) monitoring device called the X-10 B-Alert system
manufactured by Advanced Brain Monitoring Inc. This data was recorded on
ruggedized Getac V110 laptops. Video data of participant control activity was
captured on 2ea QSEE color cameras mounted on each ROV control console as
indicated in Fig. 1.

3.3 Measures

This investigation endeavored to examine the influence of a secondary robot’s
surrogate perspective in terms of the cognitive state—a representation of how
involved the operator was with the task environment, and mental workload which
exemplifies cerebral intensity. Given the non-invasive real time advantages of
neurophysiological measurement promoted by Parasuraman and Wilson [10] as
well as recent findings by Matthews and colleagues that measures of cognitive load
don’t necessarily converge [11], a combination of subjective and EEG based
methods were used to examine these aspects of cognition.

Neurophysiological data was collected using the B-Alert system described above.
This headset acquires 9 channels of EEG collected along the scalp at standard
locations: Fz, Cz, POz, F3, F4, C3, C4, P3, and P4. The proprietary acquisition
software used in this process includes artifact decontamination algorithms for eye
blink, muscle movement, and environmental/electrical interference such as spikes

Fig. 1 Video Ray Pro-III Submersible and B-Alert wireless EEG system worn by ROV operators
supporting NASA’s Pavilion Lake Research Project (shown during pool and field phases on the left
and right respectively)
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and saturations. The software also contains a cognitive state and workload classi-
fication package that compares EEG collected in field conditions with baseline data
acquired while participants perform a series of computer-based vigilance tasks
lasting from 15 to 30 min under nominal conditions in a controlled setting.

The first baseline task requires the participant to remain vigilant while choosing
between different symbols presented on a laptop display. The second task requires a
simple keyed response to a single stimulus (a red circle appearing on the screen)
without any choice or decision-making process involved. The third task requires the
participant to respond in a similar fashion to the second task, but with an auditory
stimulus presented while their eyes were closed.

EEG classification for this experiment was conducted post hoc via comparisons
with these three baseline profiles and a large EEG database of typical human sleep
and distraction patterns. Classifications are presented as second by second proba-
bilities that each epoch (or second) of data matched the participant’s Hi (or decision
based) engagement state established in the first (3-choice) baseline task, a Lo (or
awareness based) engagement state observed during the second (eyes open) base-
line task, or a distracted state determined by the third (eyes closed) baseline task.
EEG workload classification is conducted in a similar fashion by comparing ele-
ments from each participant’s 3-choice baseline task with a large data base of
typical human performance on forward and backward span tasks. See Berka et al.
2004 for more detail on this classification process [12].

Subjective measures of cognitive state were collected using a popular situational
awareness survey validated by Adams and colleagues on behalf of the U.S. Navy
called the China Lake Situational Awareness (CLSA) scale [13]. This survey
essentially asks the participant to rate their awareness of what was going on around
them during recent activity based on criteria categorized on a 5-point scale from 1
(Very Good) to 5 (Very Poor). Subjective measurement of workload was measured
in a similar fashion using the first (Mental Demand) factor of the NASA Task Load
Index or TLX—a popular instrument in the human factors field for more than two
decades [14]. Both of these instruments were administered to participants imme-
diately upon completion of each ROV training/evaluation trial and field session.
Scores were then normalized to a common 100-point system following a
higher-as-better paradigm for consolidated graphing with other metrics.

3.4 Design and Procedure

Upon completion of informed consent documentation, participants were adminis-
tered a standard spatial ability battery [15] and spatial orientation survey [16].
Evaluations were conducted commensurate with the findings of Blitch and col-
leagues that these instruments were effective in predicting robot teleoperation
effectiveness for semi-autonomous mobile robots engaged in a similar mission set
during the NASA Haughton Mars Project in 2001 [7]. Participants were then
outfitted with a B-Alert device and asked to perform the baseline tasks described
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above before performing 8 training/evaluation trials in an underwater obstacles
course set up in a local pool (see Fig. 1.). Each evaluation trial required the par-
ticipant to “fly” their ROV through the underwater obstacle course, retrieve a target
object (4″ cylindrical buoy with a weight attached by fishing line) sitting on the
bottom at the opposite corner of the pool. They were then required to return through
the obstacle course and drop the target inside a bucket located at the pool corner
near the start point.

Every participant completed eight trials alternating between SOLO and DUAL
conditions. These trials were also counterbalanced in sequence between participants
to avoid experiential bias. The surrogate ROV operator in the DUAL condition was
required to simulate a highly autonomous and intelligent robot in support of the
primary operator’s target retrieval/sample collection tasks. As such, the surrogate
operator was not allowed to speak to the primary operator at any time, and was only
allowed to activate the controls on his ROV in the DUAL condition when the primary
operator spoke instructions from a set of simple scripted commands such as descend,
ascend, turn right/left, forward/backward, etc. Due to a critical equipment mal-
function experienced early in the assessment and selection process at the pool,
evaluation trials under the DUAL condition had to be conducted with a hand held
pan/tilt video camera walked along the side of the pool to simulate the surrogate ROV
maneuvering back and forth and/or holding station above a sample collection site.

The top four performers from these evaluation sessions were chosen for
deployment to Canada in support of NASA’s sample collection and scientific
analysis efforts at Pavilion Lake. Participants were fitted with neurophysiological
instruments and administered baseline tasks before embarking upon the simulated
habitat research boat for a 30-min ride to whatever portion of the lake was chosen
for survey/study by the science analysis team in the MMCC. Upon arrival at the
survey site, each operator received instructions from the IV (Inside Vehicle)
supervisor responsible for the particular EVA mission at hand. ROV operators (or
“pilots”) were asked to fly over and around obstacles taking extra care to avoid
tether entanglement with a variety of underwater hazards as well as diver (astro-
naut) umbilical cables that were required to simulate typical EVA radio commu-
nications from underwater. ROVs were occasionally used to retrieve survey
markers as well, but the vast majority of biological samples of interest to the science
team were deemed far too fragile and friable to handle with mechanical grippers.

4 Results

4.1 Assessment and Selection (Pool) Phase

Unfortunately a combination of equipment malfunctions, umbilical entanglements,
and synchronicity challenges made it impractical to evaluate operator performance
on a rigorously quantitative (trial time) basis. It was possible however, to account
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for these anomalies in the EEG and subjective instrument data (albeit to a slightly
lesser degree with the latter due to recency bias potential). The EEG data was
averaged across all epochs in each simulation session and analyzed alongside
subjective survey data as indicated in Table 1.

Given that all data was collected on the same participants across temporal phases
with and without a robotic teammate, initial analysis was performed using a paired
t-test with a relaxed alpha set at 10 to accommodate the inherent variance involved
with data collected under the anomalous “noisy” circumstances described above.
Considering cognitive state first, participants recorded a moderately higher proba-
bility of engagement in the “Hi” or “choice” based metric for the SOLO condition
than when a teammate with a surrogate perspective was present in the DUAL
condition. The data collected also indicate a slightly higher probability that ROV
operators were engaged in the “Lo” or “awareness” cognitive state with a small
effect size. This trend was followed in the subjective situational awareness data as
well, with higher CLSA scores recorded in the DUAL condition, again with a
moderate effect size. No significant differences in subjective or EEG based work-
load was observed between groups.

4.2 Field Phase at Pavilion Lake

The biological research objectives that dominate NASA’s Pavilion Lake Research
Project typically create a dynamic and unstructured environment for ROV operators
providing robotic survey, sample collection, and astronaut (diver) assistance.
Although it was hoped that a sufficient number of dives pursued at Pavilion Lake
would be similar enough in scope, environment, and task conditions to perform
SOLO v. DUAL comparisons of operator cognitive state and workload, that turned
out not to be the case. Enough similar lake dives were conducted in the SOLO
condition, however, to enable an isolated comparison between the relatively well
organized pool environment and the dynamic, unstructured NASA operating
environment in Canada. Given the independent nature of the data collected under
these conditions, analysis was conducted via the MANOVA process with statistics

Table 1 Engagement, awareness and workload statistics for pool phase

Solo Dual Cohen’s

M SD M SD t(15) p d

EEG Hi Eng. 0.536 0.150 0.513 0.142 2.298 0.036 0.159
EEG Lo Eng. 0.302 0.043 0.321 0.046 1.989 0.065 0.425
CLSA Score 75 18 81 17 1.865 0.082 0.354
TLX MD 49 18 50 17 1.101 0.288 −0.080

EEG Wkld. 0.658 0.064 0.657 0.059 0.770 0.453 0.012

(Significant values shown underlined in bold type with a relaxed alpha of 0.10)
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listed in Table 2. While no significant differences in engagement data were noted, a
substantial decrease in situational awareness and prominent increase across both
workload metrics was observed in the transition from pool to lake environment with
moderately large effect sizes throughout.

5 Discussion, Conclusions, and Future Work

Although none of the data collected in either phase provided any support for the
primary performance improvement hypotheses (−H1, −H6), the pool data provided
substantial evidence that a desirable increase in situational awareness (+H2, +H4) is
possible with implementation of the SPAARC concept. While a reduction in the
EEG Hi Engagement suggests that a lower probability of choice-based neurological
activity was evident in the DUAL condition, the lack of any appreciable difference
in subjective workload (−H3) or EEG based workload (−H5) precludes any direct
support for the claim that a surrogate perspective can reduce cognitive load. It is
interesting, however, that a prominent increase in all three decision/workload ori-
ented metrics was evident in the transition to the dynamic and unstructured Pavilion
Lake environment. This suggests the possibility that an early learning plateau
reached during repetitive trials administered in the assessment phase may have
prevented such an advantage to be revealed in the pool setting. Unfortunately, the
lack of a crisp performance comparison (−H7) provides no direct support for that
notion beyond anecdotal observation. The prominent drop in situational awareness
recorded in the transition to the lake condition, however, provides optimism that
more support for SPAARC is possible if a SOLO/DUAL comparison can be
conducted in unstructured and unpredictable environments.

Taken across both phases, the neurophysiological and subjective data support
approximately half of the expected results, thereby providing a modicum of evi-
dence for SPAARC concept value. That said, it must be pointed out that statistical
support for this claim is weak in terms of sample size, and a relaxed alpha invoked
during analysis of pool data to accommodate equipment malfunctions and tether
drag issues mentioned above. Despite this acknowledged increase in likelihood of
committing a Type I error during this initial investigation, the relatively large effect

Table 2 Engagement, awareness and workload statistics SOLO condition in lake and pool phases

Lake Pool Partial

M SD M SD F(1) p eta2

EEG Hi Eng. 0.454 0.246 0.536 0.150 0.848 0.369 0.043

EEG Lo Eng. 0.308 0.128 0.302 0.043 0.029 0.866 0.002

CLSA Score 50 31 75 18 5.170 0.035 0.214
TLX MD 68 15 49 18 8.849 0.008 0.318
EEG Wkld. 0.781 0.126 0.658 0.064 4.740 0.042 0.200
(Significant values shown underlined in bold type with alpha of 0.05)
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sizes observed suggest that replication would be quite worthwhile in a manner
consistent with Wickens’ Common Sense Statistics [17].

Assuming that the SPAARC concept is eventually validated and/or expanded
beyond this effort to include air-ground collaborative systems, the implications can
be profound for multi-robot control. Not only do these findings provide ample room
for optimism regarding resilient and adaptive human robot team performance in
stressful, unstructured environments, but they also show promise for the pursuit of
enhanced trust and confidence between humans and machines championed by
Hancock and colleagues [18]. It should also be noted that although real time
cognitive state classifications were not used in this study, the B-Alert system is
capable of providing them in near real time (with a 1–5 s delay depending on signal
characteristics and display options). Detection of brain state changes in this manner
presents a powerful mitigation option in that intervention strategies can be cued and
implemented before performance suffers from cognitive overload or before com-
placency becomes evident in operator behavior.
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A Method for Neighborhood Gesture
Learning Based on Resistance Distance

Paul M. Yanik, Anthony L. Threatt, Jessica Merino, Joe Manganelli,
Johnell O. Brooks, Keith E. Green and Ian D. Walker

Abstract Multimodal forms of human-robot interaction (HRI) including
non-verbal forms promise easily adopted and intuitive use models for assistive
devices. The research described in this paper targets an assistive robotic appliance
which learns a user’s gestures for activities performed in a healthcare or aging in
place setting. The proposed approach uses the Growing Neural Gas
(GNG) algorithm in combination with the Q-Learning paradigm of reinforcement
learning to shape robotic motions over time. Neighborhoods of nodes in the GNG
network are combined to collectively leverage past learning by the
group. Connections between nodes are assigned weights based on frequency of use
which can be viewed as measures of electrical resistance. In this way, the GNG
network may be traversed based on distances computed in the same manner as
resistance in an electrical circuit. It is shown that this distance metric provides faster
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convergence of the algorithm when compared to shortest path neighborhood
learning.

Keywords Machine learning � Gesture recognition � Human-Robot interaction �
Resistance distance

1 Introduction

Multimodal human-robot interaction (HRI) including non-verbal forms comprises a
very active area of research with relevance in ubiquitous computing and assistive
robotics. In particular, assistive devices are seen as critical to meeting the needs of
unskilled, impaired, or aging individuals whose abilities are changing over time.
Communication modalities such as gesture and eye gaze offer natural, intuitive, and
easily adoptable use models. The work described in this paper is motivated by
presence of few viable systems in this problem space. The Assistive Robotic
Table (ART) project begun at Clemson University is an effort which seeks to
develop a class of intelligent devices that are well-integrated into the built envi-
ronment and that supports users whose abilities may be evolving with age. ART is a
robotic over-the-bed table as may be found in a healthcare setting (Fig. 1).

(a)

(b)

Fig. 1 a The non-verbal communication loop between the Assistive Robotic Table and the user.
ART adapts to the desires of the user through repeated interaction via gesture. b A recent project
artifact. ART has three degrees of freedom including a vertical lifting column, a horizontal sliding
table top, and a tilting work surface [1]
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Typically, designers of such systems implement detection schemes for inter-
personal communication messages by comparing them to one of a known gallery of
prescribed message forms. However, in order to accommodate the changing abil-
ities of the candidate user population, a communication interface must be capable of
learning new unchoreographed message types while recognizing those already
learned as the user’s ability to perform them evolves. This paper extends past work
by the authors in the area of gesture learning and recognition as a means of
non-verbal HRI.

The approach and experimentation described herein extend previous work by the
authors [1] to incorporate resistance distance to the learning of three candidate
gestures: come closer, go away, and stop. Gesture forms are selected from the
American Sign Language dictionary for repeatability across the pool of participant
volunteers. However, as previously stated, no specific choreography is required. It
is shown that this metric yields favorable results over a simple a shortest path
distance calculation using Floyd’s algorithm [2]. This gesture-based interface
construct is seen as the basis of a future task-learning paradigm which recalls
sequences of configurations to assist the user through daily activities and to track
changes in behavior so as to prevent injury and to inform care planning.

This paper is organized as follows. Sect. 2 discusses related past research in the
area of machine learning and its influence on the present research. Section 3 dis-
cusses key algorithms used for experimentation, the data collection fixture used to
capture gestures, and the simulation platform used to test the approach. Section 4
discusses experimentation and results. Conclusions are presented in Sect. 5.

2 Related Work

Human gesture in the form of hand and arm gesticulation accounts for some 90 %
of gesture-based communication [3]. As such, the use of gesture as the foundation
of a robot command interface offers the prospect of a natural communication
modality between assistive devices and their users.

In order for an assistive device to make use of gesture, it must possess a
vocabulary of recognized gestures and map them to specific robotic configurations
or motion sequences. This mapping between a sensed event and a motor actuation
(termed sensorimotor mapping) has been used successfully in previous research.
Even common gestures, however, are typically performed with high variability
across the user population, or even by an individual user. Methods for making crisp
classifications in such widely varying sensory input have frequently made use of
neural network based approaches. Ritter et al. [4] and Martinetz [5] made use of
Kohonen’s Self-Organizing Feature Map (SOFM) to discretize the input space into
receptive fields surrounding neurons (reference nodes). Each reference node was
mapped to a distinct motor actuation.

Because of the nature of the SOFM to preserve topological relationships between
input variations, the network learns faster than conventional neural networks.
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This owes to the idea that similar inputs should tend to produce similar outputs.
Hence, topological neighbors in an SOFM which encode similar sensor input pat-
terns can be collectively made to learn desired output actuations as a group. Walter
and Schulton made use of this concept applying the similar Neural Gas
(NG) algorithm with softened Gaussian receptive fields for smoother learning [6].
These approaches, however, presuppose a simple and specific actuation for each
mapping.

In dealing with gestures, the desired actions of the robotic agent may not be
known a priori. Hence, a learning phase for the actions themselves must be
undertaken. Reinforcement Learning (RL) techniques are also applied to the
problem of robot control and are applicable to these situations where the desired
action is unknown. In particular, the RL framework of Q-Learning [7] is often used
for its ease of implementation, and because the system design is not required to
maintain a model of the environment. With Q-Learning, an agent in a particular
state s may choose an action a from of a set of available actions. Following each
operating trial, state-action pairs which resulted in desirable outcomes are assigned
a reward. Rewards accumulate (as the Q value) over multiple trials so that an
operating policy develops to maximize total reward. State-action pairs with the
highest Q values are expected to yield the most successful outcomes.

Touzet [8] combined the features of Kohonen’s SOFM with Q-Learning in the Q-
Kohon approach. By preserving the topological relationships of input data space,
neighborhoods of states may leverage past learning by members of the group so as to
speed convergence to an appropriate input-output mapping across varied input
patterns. When a gesture sample falls within the receptive field of a given reference
node, all nodes within the same neighborhood may be examined to find actions with
the highest Q value. The approach used in this paper adapts Q-Kohon using the
Growing Neural Gas (GNG) algorithm [9]. GNG is adopted for its capability of
adding and subtracting nodes (as gestures may be added or subtracted to an agent’s
learning base) and to track a nonstationary distribution of input gesture forms.

Neighborhoods of reference nodes may be formed in various ways. Typically,
Euclidean distance between input samples is used (nearest neighbor approach).
However, the connectivity of the GNG network and its ability to allow connections to
age with lack of use provides another avenue for determining neighbors. In this
research, two graph-based algorithms are compared for their ability to locate neigh-
bors whose state-action mapping is most worth emulating: Floyd’s shortest path
algorithm [2], and Klein and Randic’s [10] resistance distance algorithm. These are
described in detail in Sect. 3. Graph-based approaches show promise in their ability to
consider complex network topology in the search for high-reward state-action pairs.

3 Method

This section describes the laboratory fixture used to collect gesture samples, the
system constructed to process samples, and the learning algorithms employed.
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3.1 Sensing

Gesture samples were collected using the Microsoft Kinect RGB-D sensor [11].
The RGB-D sensor type was selected for its ability to collect gesture data
non-intrusively (preserving user privacy) and to work in darkness. Gestures were
performed by volunteer participants who completed informed consent forms in
accordance with an IRB-approved study procedure. The Kinect was used to capture
3D coordinates of each participant’s left hand over a 5-s interval at 30 Hz for a total
of 150 data points per gesture performed.

3.2 Gestures

The gestures performed included come closer, go away, and stop. These were
selected for their relevance to common commands which might be useful for any
mobile assistive device. Motion models for these gestures were taken from the
American Sign Language video dictionary [12]. Although no specific choreography
of gestures was required, the ASL dictionary provided a template for participants to
perform the gestures in a roughly consistent manner. Goal configurations of the
robotic agent are given by Table 1. These configurations represent the three degrees
of freedom of the ART appliance. For simulation purposes, they were visualized as
final configurations in the Robot Operating System (ROS) Turtlesim environment
and are scaled accordingly. Turtlesim is a facility within ROS for developing simple
robot control programs with the same three degrees of freedom: translation in 2D
space (x, y) and angle of approach h.

3.3 Data Representation (Feature Extraction)

Motion features based on maxima of acceleration known as Dynamic Instants
(DI) as described in were used to generate compact feature vectors for each gesture
sample. DIs have been shown to be view-invariant. Gesture data was first smoothed
using a discrete Gaussian kernel:

G ¼ 1; 4; 6; 4; 1½ �=16: ð1Þ

Table 1 Goal configurations
for gestures

Gesture type Goal configuration (x, y, h)

Come closer 3.95 m, 3.95 m, 45°

Go away 3.95 m, −3.95 m, 315°

Stop −3.95 m, −3.95 m, 225°
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A moving average (evolution time) of 7 was also used as an added smoothing
step. A feature vector consisting of the (x, y, z) coordinates of five DIs of greatest
magnitude (scaled to [0,1]), plus their temporal frame numbers, were constructed to
represent each gesture sample (a 20 × 1 feature vector).

3.4 The Growing Neural Gas (GNG) Algorithm

The basic GNG algorithm was first proposed by Fritzke [9]. The GNG network is a
variant of the SOFM with the added capability to add or remove reference nodes
based on their frequency of activation with a given input distribution. Our adap-
tation of GNG also includes a configuration field for each node in the network node
list. This field is interpreted as the desired configuration for the robot in response to
a given input gesture. In this way, our implementation avoids the task of labeling
gestures in favor of a mapping that develops over time in response to user pref-
erence. The assignment of user preference is described below.

3.5 Q-Learning

In a reinforcement learning framework, an agent attempts to learn an optimal policy
of mapping its current states to optimal actions that will yield the greatest rewards
through a chain of state-action pairs. In our implementation of the Q-Learning
paradigm, a simple good/bad indicator is used as reward with numerical values +1
or −1 respectively.

A third reward value of 0 is also used when a given state is fully trained and
requires no more updates. The reward is added as a linear step in physical con-
figuration space of the robot. Thus, accumulated reward is interpreted as a vector
into the configuration space from a global origin. Longer vectors are indicative of
greater reward as assigned by the user. Vectors for which the agent has moved
farther from the goal than they had in the past receive a reward of −1, and thus, an
exploration (randomized) step is applied. The reward function can be stated as:

Q s; að Þtþ 1 r stepLengthð ÞþmaxaQt s
0; að Þ: ð2Þ

where r is reward, stepLength is 0.1 m and Q is the expected reward for a given
state s and action a.
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3.6 Floyd’s Shortest Path Algorithm

Application of Floyd’s algorithm [2] returns a matrix of shortest paths between all
vertex pairs (Dn×n) in an undirected graph. In our implementation, vertices are
reference nodes in the GNG network, and the age parameter for each connection
between nodes is used as the edge length. The algorithm is given by the pseudocode
below.

3.7 Resistance Distance

The resistance distance algorithm [10] returns a matrix of path lengths between all
pairs of vertices in an undirected graph. Distances are computed as the electrical
resistance between points where edge lengths are interpreted as resistances. As with
Floyd’s algorithm, vertices are reference nodes in the GNG network, and the age
parameter for each connection is the resistance. The resistance distance (X) is
computed as

Xij ¼
Lþii þ Lþjj � 2Lþij ; i 6¼ j

1; i ¼ j

(
ð3Þ

where L+ is the Moore-Penrose generalized inverse of the graph Laplacian L

L ¼ K � Av ð4Þ

Av is the admittance matrix

Avij ¼
1
rij
; i 6¼ j

0; i ¼ j

�
ð5Þ

where r is the edge length between vertices. K is the degree matrix

K ¼ diag
Xn
z¼1

1
rxz

 !
ð6Þ
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3.8 Reward Generation

Gestures are submitted to a simulated robotic agent. The GNG algorithm is executed
and an action is selected from a neighborhood of candidate actions as previously
described. The candidate whose action is selected is that of the nearest node having a
Q value greater than the reference node for the sample. A simulated user observes the
action and issues a reward of +1 (the agent moved closer to the desired goal), −1 (the
agent moved farther from the desire goal), or 0 (the agent has reached the goal and
the node is fully trained). Based on the reward, the appropriate action vector in the
GNG reference node is updated accordingly. This process is repeated for all gesture
samples according to the experimentation procedure described below.

3.9 Data Collection, Experimentation and Results

Five volunteer participants each performed 50 samples for each of the three can-
didate gestures (come closer, go away, and stop). This yielded a data set of
5 × 3 × 50 = 750 total samples. The data set was randomly divided into two
groups. The first group consisting of 300 samples (100 of each gesture type) was
used to pretrain the GNG network to the topology of the input data space. No action
learning occurred during this pretraining phase.

A second group consisting of the remaining 450 samples (150 of each
gesture type) was applied to the system. All 450 samples were applied as an
epoch. For each sample, a candidate action was selected and performed, award
was generated by the simulated user, and the action vector for the reference
node associated with each input pattern was updated. The error for each
sample was computed as the difference between the updated configuration of
the simulated agent and the known goal for the gesture type. Following each
epoch, the average error and cumulative error for each gesture type were also
calculated. In this way, 250 epochs were conducted. The process was repeated
using both Floyd’s algorithm and the resistance distance method.

4 Results and Discussion

Results for simulations using Floyd’s algorithm and the resistance distance metric
are shown in Fig. 2. Although both methods are seen to converge to a low error
between the desire goal configuration and the robotic agent’s actions, Floyd’s
algorithm yields slowest convergence for the go and stop gestures. Resistance
distance yields slowest convergence for the come gesture. Fewer perturbations (i.e.
greater stability of results) in later epochs are seen for resistance distance. Speed
and stability of convergence are seen as a key metric given the application with
human users who may become fatigued or otherwise burdened by the need to
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provide extensive supervisory feedback to the system. Further, resistance distance
produces the smallest cumulative error over the training session: 1253.6 m for
resistance distance; 1423.3 m for Floyd’s algorithm (a 13.5 % disparity).

Fig. 2 Error curves for Floyd’s algorithm (top) and resistance distance (bottom)

A Method for Neighborhood Gesture Learning Based … 435



It is noted that, for well-separated data, network distance metrics outperform
Euclidean distance metrics. However, given the wide variation in human perfor-
mance of gesture (i.e. poor separation), past research [9] has shown that network
distance metrics may underperform Euclidean metrics. This work shows general
promise for neighborhood learning and suggests the need for improved
edge-weighting schemes.

5 Conclusions

A method for neighborhood gesture learning in a graph-based data topology has
been introduced. A novel extension of the GNG algorithm with Q-Learning makes
use of the concept of resistance distance to locate neighboring nodes for which past
rewards are most promising. Results show the network distance metric of resistance
distance offers a significant improvement over Floyd’s algorithm when using the
same edge weighting method. Future work will concentrate on development of
improved edge-weighting schemes so as to circumvent the overall slowness in
convergence due to poor separation in the input data set.
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