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Abstract The theoretical study of complex configurations of fluid membranes is
reported on the basis of the Helfrich functional. Series of analytical results on the
governing equations of closed lipid vesicles and open lipid vesicles with holes are
surveyed. The concepts of stress tensor and moment tensor in fluid membranes are
investigated from two different viewpoints: the balance of forces (moments) and the
generalized variational principle of free energy. Several examples on new applica-
tions of the Helfrich functional in understanding the growth mechanism of some
mesoscopic structures are illustrated.
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1 Introduction: From Soap Films to Red Blood Cells

There exist many structures whose one dimension is much smaller than the other two
in our world. This kind of structures are usually called membranes, which may be
thought of as 2-dimensional (2D) smooth surfaces in 3-dimensional (3D) Euclidean
space. The identities formed by membranes display a variety of configurations. For
example, soap bubbles at rest are always spherical; Human red blood cells are of
biconcave discoid under the normal physiological condition.

The issue of equilibrium configurations of membranes has attracted much atten-
tion of mathematicians and physicists. As early as in 1803, Plateau investigated a
soap film attaching to a metallic ring when the ring passed through soap water [1].
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He proposed that equilibrium configuration of the soap film corresponds to the min-
imum surface area of the film, which is mathematically equivalent to minimizing the
functional

F =
∫
M
dA, (1.1)

whereM and dA represent themembrane surface and the area element of the surface,
respectively. The first-order variation of the Plateau functional (1.1) leads to a mini-
mal surfacewith vanishingmean curvature H = 0. From1805 to 1806,Young [2] and
Laplace [3] studied soap bubbles. They proposed that the equilibrium configuration
of a soap bubble corresponds to minimizing the surface area of the bubble for given
volume enclosed in the bubble, which is mathematically equivalent to minimizing
the functional

F = λ

∫
M
dA + p

∫
dV, (1.2)

where λ and p represent the surface tension of the membrane and the osmotic pres-
sure (pressure difference between the outer and the inner sides) of a soap bubble,
respectively. dV represents the element of volume enclosed by the bubble. The first-
order variation of the Young–Laplace functional (1.2) leads to a surfacewith constant
mean curvature H = p/2λ. The reason that we canmerely observe spherical bubbles
is ascribed to the Alexandrov theorem—an embedded compact surface with constant
mean curvature in 3D Euclidian space must be a spherical surface [4].

In 1812, Poisson [5] considered a solid shell and put forward an energy functional

F =
∫
M
H 2dA. (1.3)

This functional was deeply investigated by Willmore [6, 7], thus, it is now called
the Willmore functional in mathematics. Since the Willmore functional (1.3) is an
invariant under conformal transformations, any configuration and its images under
conformal transformations correspond to the same energy. The first-order variation
of the Willmore functional (1.3) leads to

∇2H + 2H(H 2 − K ) = 0, (1.4)

a equation satisfied by the Willmore surfaces. The symbol K represents the Gauss
curvature of the surface. The symbol ∇2 represents the Laplace operator of the first
kind defined on a 2D surface. Willmore showed that round spheres (as well as their
images under conformal transformations) correspond to the least minimum of the
Willmore functional (1.3) among all compact surfaces in 3DEuclidian space. In other
words, all compact surfaces in 3DEuclidian spacemake theWillmore functional (1.3)
to take values no less than 4π. Willmore further conjectured that all compact surfaces
of genus one in 3DEuclidian spacemake theWillmore functional (1.3) to take values
no less than 2π2, where the least minimum corresponds to the Willmore tori (as well
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as their images under conformal transformations), which are special tori with the
ratio of their two generation radii being

√
2 [8]. Recently, the Willmore conjecture

has been proved by Marques and Neves via min-max theory [9].
Human red blood cells are unique since there are no internal cellular organelles

inside the cells. They may be regarded as closed vesicles enclosed by cell mem-
branes. In the energy scale of physiological condition, cell membranes are almost
inextensible, and the volumes of red blood cells are hardly compressed. To explain the
biconcave discoidal shape of red blood cells, Canham argued that the biconcave con-
figuration might minimize the bending energy of membranes under the constraints
of fixed area of membranes and fixed volume of the cells [10].

The cellmembrane consists of lipidmolecules and proteins,where lipidmolecules
form a bilayer while proteins are mosaicked in the bilayer [11]. In 1973, Helfrich
recognized that the lipid bilayer is in the liquid crystal state at the physiological
temperature. According to the elastic theory of liquid crystals, he proposed that the
bending energy of the bilayer could be expressed as a functional

FH =
∫
M

[(kc/2)(2H + c0)
2 + k̄K ]dA, (1.5)

where kc > 0 and k̄ are two bending moduli of the bilayer [12]. The parameter c0
represents the spontaneous curvature of the lipid bilayer, which reflects the asym-
metric factors in the two leaflets of the bilayer. The numerical results implied that
the biconcave configuration indeed minimizes the bending energy of the membrane
under the constraints of fixed area of the membrane and fixed volume of the vesi-
cle [13]. Henceforth, the elastic theory of lipid membranes based on the Helfrich
functional (1.5) began to flourish [14–16]. In this review, we will survey several key
theoretical results during the development of the elastic theory of lipid membranes
according to our personal preferences. In Sect. 2, we will introduce a mathemati-
cal preliminary—calculus of variation in a deformable surface. In Sect. 3, we will
present some theoretical results on configurations of closed lipid vesicles. In Sect. 4,
we will present some theoretical results on configurations of open lipid vesicles with
holes. In Sect. 5, we will discuss the concepts of stress tensor and moment tensor
in fluid membranes. In Sect. 6, we will probe into new applications of the Helfrich
functional and understand the growth mechanism of some mesoscopic structures. In
the last section, we will give a brief summary and propose some perspectives.

2 Calculus of Variation in a Deformable Surface

In this section, we introduce the theory of surfaces and the variation problem in a
deformable surface, which are based on the method of moving frames.
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2.1 Theory of Surfaces Based on the Method
of Moving Frames

Consider a 2D surface in 3D Euclidean space. Any point on the surface may be
represented by a position vector r. At point r we may construct a right-handed
orthonormal frame {e1, e2, e3} with e3 being the normal vector at that point. The set
{r; e1, e2, e3} is called a moving frame.

The differentiation of the frame may be defined as [17]:

dr = ω1e1 + ω2e2, (2.1)

and
dei = ωi je j , (i = 1, 2, 3) (2.2)

where ω1, ω2, and ωi j = ω j i (i, j = 1, 2, 3) are 1-forms, and ‘d’ is the exterior
differential operator. The repeated subscripts in this paper abide by the Einstein
summation convention.

The area element can be expressed as [17]:

dA ≡ ω1 ∧ ω2. (2.3)

The structure equations of the surface can be expressed as [17]:

⎧⎨
⎩
dω1 = ω12 ∧ ω2,

dω2 = ω21 ∧ ω1,

dωi j = ωik ∧ ωk j (i, j = 1, 2, 3),
(2.4)

and (
ω13

ω23

)
=

(
a b
b c

) (
ω1

ω2

)
. (2.5)

Then we can define a curvature tensor as

C = ae1e1 + be1e2 + be2e1 + ce2e2, (2.6)

where eie j (i, j = 1, 2) represents the dyad of ei and e j . The mean curvature and
the Gauss curvature are respectively defined as

H = tr(C)/2 = (a + c)/2, (2.7)

and
K = det(C) = ac − b2. (2.8)
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For a curve on the surface, at each point in the curve we can construct the tangent
vector t. The normal curvature, the geodesic curvature, and the geodesic torsion of
the curve may be expressed as

κn = a cos2 φ + 2b cosφ sin φ + c sin2 φ, (2.9)

τg = b cos 2φ + (c − a) cosφ sin φ (2.10)

κg = (dφ + ω12)/ds (2.11)

respectively, where φ represents the angle between t and e1.

2.2 Calculus of Variations Based on the Method
of Moving Frames

Calculus of variation based on the method of moving frames was developed in the
previouswork by the present authors [18–20]. Themain ideas are sketched as follows.

Any infinitesimal deformation of a surface can be achieved by a displacement
vector

δr ≡ � = �iei (2.12)

at each point on the surface, where δ can be understood as a variational operator. The
frame is also changed due to the deformation of the surface. Its variation is denoted as

δei = �i je j (i = 1, 2, 3), (2.13)

where�i j = −� j i (i, j = 1, 2, 3).�23,�31, and�12 correspond to the infinitesimal
rotation of the frame around direction e1, e2, and e3, respectively.

From δdr = dδr, δde j = dδe j , we can derive:

δω1 + ω2�21 = d� · e1 = d�1 + �2ω21 + �3ω31, (2.14)

δω2 + ω1�12 = d� · e2 = d�2 + �1ω12 + �3ω32, (2.15)

�13ω1 + �23ω2 = d� · e3 = d�3 + �1ω13 + �2ω23, (2.16)

δωi j = d�i j + �ilωl j − ωil�l j . (2.17)

These equations are the essential equations of the variational method based on
the moving frames.

With essential Eqs. (2.14)–(2.17), we may derive

δdA = (∇ · � − 2H�3)dA, (2.18)

δ(2H) = [∇2 + (4H 2 − 2K )]�3 + ∇(2H) · �, (2.19)
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δK = ∇ · ∇̃�3 + 2K H�3 + ∇K · �. (2.20)

In the above equations, the gradient operators and the Laplace operators are
defined according to the differential operator, the Hodge star, and their general-
izations as follows.

The 2D Hodge star operator (∗) satisfies ∗ω1 = ω2 and ∗ω2 = −ω1 [21]. The
generalized Hodge star operator (∗̃) satisfies ∗̃ω13 = ω23 and ∗̃ω23 = −ω13 [19]. The
generalized differential operator (d̃) satisfies d̃ f = f1ω13 + f2ω23 if d f = f1ω1 +
f2ω2 [19]. Then, we may define the gradient operator (of the first kind) and the
gradient operator of the second kind as [19]:

∇ f · dr = d f, (2.21)

and
∇̃ f · ∗dr = ∗̃d̃ f, (2.22)

respectively. Simultaneously, we may define the Laplace operator (of the first kind)
and the Laplace operator of the second kind as [19]:

(∇2 f ) dA = d ∗ d f, (2.23)

and
(∇ · ∇̃ f ) dA = d∗̃d̃ f, (2.24)

respectively.
Let us consider, a functional which depends on the mean curvature and the Gauss

curvature of a surface. In general, the functional may be expressed as the following
form:

FG =
∫
M
G(2H, K )dA, (2.25)

where G = G(2H, K ) is a function of 2H and K . It is not hard to calculate the
first-order variation of functional (2.25) by using Eqs. (2.18)–(2.20). From tedious
calculations, we obtain

δFG =
∫
M

[∇2G2H + ∇ · ∇̃GK + (4H2 − 2K )G2H + 2HKGK − 2HG]�3dA

+
∮

∂M
(G2H ∗ d�3 − �3 ∗ dG2H + GK ∗̃d̃�3 − �3∗̃d̃GK + G ∗ � · dr). (2.26)

where G2H and GK represent the partial derivatives of G with respect to 2H and K ,
respectively.

∮
∂M represents the integration along the boundary of surface M , which

is vanishing for a closed surface.
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3 Configurations of Closed Lipid Vesicles

As a model system, we will investigate configurations of a closed vesicle formed by
a lipid bilayer. First, we will introduce the general shape equation for closed vesicles.
Second, we will discuss the shape equation for axisymmetrical vesicles and its first
integral. Finally, we will present several special solutions to the shape equation.

3.1 Energy Functional and the Corresponding
Euler–Lagrange Equation

The bending energy of a closed vesicle may be described by the Helfrich functional
(1.5). Since the area of lipid bilayer is almost inextensible and the volume of the
closed vesicle is hardly compressed, we may introduce two Lagrange multipliers
λ and p to replace these constraints. The extended energy functional of the closed
vesicle may be expressed as

F =
∫
M

[(kc/2)(2H + c0)
2 + k̄K + λ]dA + pV, (3.1)

where V represents the total volume enclosed in the vesicle. The Lagrange multi-
plier λ can be physically interpreted as the surface tension of the lipid bilayer. The
Lagrange multiplier p can be regarded as the osmotic pressure of the vesicle, i.e.,
the pressure difference between the outer side and the inner side of the vesicle.

To derive the Euler–Lagrange equation corresponding to functional (3.1), we
assume G = (kc/2)(2H + c0)2 + k̄K + λ. Substituting it into (2.26) and consider-
ing δV = ∫

M �3dA, one can obtain

δF =
∫
M

[p − 2λH + kc(2H + c0)(2H
2 − c0H − 2K ) + 2kc∇2H ]�3. (3.2)

The equilibrium configurations satisfy δF = 0, which leads to

p − 2λH + kc(2H + c0)(2H
2 − c0H − 2K ) + 2kc∇2H = 0. (3.3)

This equation was first derived by Ou-Yang and Helfrich [22, 23]. Now it is
called the shape equation of lipid vesicles. Obviously, if kc = 0, the above equation
degenerates into the Young–Laplace equation p − 2λH = 0. If p = 0 and λ = 0,
the above equation degenerates into the Willmore Eq. (1.4).
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3.2 Axisymmetrical Closed Vesicles

An axisymmetrical vesicle may be generated by its outline which is represented by
z = z(ρ)with ρ being the revolution radius. Take φ as the rotation angle and ψ as the
tangent angle of the outline. The axisymmetrical vesicle may be parameterized as

x = ρ cosφ, y = ρ sin φ, z =
∫

tanψ(ρ)dρ. (3.4)

According to Sect. 2, we can derive the mean curvature

H = −(ρ sinψ)′/2ρ, (3.5)

the Gauss curvature
K = (sin2 ψ)′/2ρ, (3.6)

and the Laplace operator

∇2 = 1

ρ2
∂2

∂φ2
+ cosψ

ρ

∂

∂ρ

(
ρ cosψ

∂

∂ρ

)
. (3.7)

Substituting the above three equations into the general shape Eq. (3.3), one can
derive the shape equation for axisymmetrical vesicles:

− cosψ

ρ

{
ρ cosψ

[
(ρ sinψ)′

ρ

]′}′
− 1

2

[
(ρ sinψ)′

ρ

]3

+ (ρ sinψ)′
(
sin2 ψ

)′

ρ2
− c0

(
sin2 ψ

)′

ρ
+ λ̃ (ρ sinψ)′

ρ
+ p̃ = 0, (3.8)

where λ̃ ≡ λ/kc + c20/2 and p̃ ≡ p/kc. In addition, the prime represents the deriva-
tive with respect to radius ρ. The above equation is a third-order ordinary differential
equation, which was first derived by Hu and Ou-Yang [24]. It is found that the
above equation is integrable [25]. This equation may be further transformed into a
second-order ordinary differential equation:

�3 − �(ρ� ′)2

2ρ
− ρ(1 − �2)

[
(ρ�)′

ρ

]′
− c0�

2 + λ̃ρ� + p̃ρ2

2
= η0, (3.9)

where � ≡ sinψ and η0 being the first integral.
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3.3 Analytical Special Solutions

The shape Eq. (3.3) and its axisymmetrical counterparts (3.8) and (3.9) are nonlin-
ear differential equations, to which one cannot achieve general solutions. Till now,
researchers have known some special solutions to these equations, such as minimal
surfaces (including catenoid, helicoid, etc.), surfaces with constant mean curvature
(including sphere, cylinder, unduloid [26, 27], etc.), Willmore surfaces (including
Clifford torus [28], Dupin Cyclide [29], inverted catenoid [30], etc.), cylinder-like
surfaces [31–33], and circular biconcave discoid [34, 35]. Among these solutions,
only sphere, Clifford torus, Dupin cyclide, and circular biconcave discoid correspond
to closed vesicles without self-intersections.

3.3.1 Sphere

The mean curvature and the Gauss curvature of a spherical surface with radius R are
H = −1/R and K = 1/R2, respectively. Substituting them into the shape Eq. (3.3),
one can derive

p̃R2 + 2λ̃R − 2c0 = 0. (3.10)

This equation gives the relation between the radius R, the spontaneous curvature
c0, the reduced osmotic pressure p̃ ≡ p/kc, and the reduced surface tension λ̃ ≡
λ/kc + c20/2.Obviously, if λ̃

2 + 2c0 p̃ < 0, there is no spherical vesicle satisfying the
shape equation. If λ̃2 + 2c0 p̃ = 0, theremerely exists one spherical vesicle satisfying
the shape equation. If λ̃2 + 2c0 p̃ > 0, there are two spherical vesicles satisfying the
shape equation, which might correspond to the exocytosis or endocytosis of cells.

3.3.2 Clifford Torus

The Clifford torus is a revolution surface generated by a circle with radius r
which rotates around an axis in the same plane of the circle. The revolution
radius R should be larger than r . The torus may be parameterized as {(R +
r cosϕ) cosφ, (R + r cosϕ) sin φ, r sinϕ}. The mean curvature and the Gauss cur-
vature are H = −(R + 2r cosϕ)/2r(R + r cosϕ) and K = cosϕ/r(R + r cosϕ),
respectively. Substituting them into the shape Eq. (3.3), one can derive λ̃ = 2c0/r ,
p̃ = −2c0/r2, and

R/r = √
2. (3.11)

That is, there exists a lipid torus with the ratio of its two generation radii being√
2 [28], which was confirmed in the experiment [36]. This kind of Clifford torus is

called the Willmore torus [8] in mathematics. It is also found that nonaxisymmetric
tori [37] constructed from conformal transformations of the Willmore torus also
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satisfy the shape equation. In addition, it is not hard to check that η0 = −2c0 − 1/r
from equation (3.9) when λ̃ = 2c0/r , p̃ = −2c0/r2, and R/r = √

2.

3.3.3 Dupin Cyclide

The Dupin cyclide may be expressed as

(x2 + y2 + z2 + a2 − c2 − μ2)2 = 4(ax − cμ)2 + 4(a2 − c2)y2, (3.12)

where a > μ > c are three real parameters. Ou-Yang [29] found that the Dupin
cyclide could satisfy the shape Eq. (3.3) when p = 0, λ = 0, c0 = 0 and μ2 =
(a2 + c2)/2. This kind of lipid vesicles were also observed in the experiment by
Fourcade and his coworkers [38]. The Dupin cyclide and conformal transformations
of theWillmore torus mentioned above are two classes of the few known asymmetric
solutions to the shape Eq. (3.3) up to now.

3.3.4 Circular Biconcave Discoid

Naito et al. [34, 35] found that the parametric equation

{
� ≡ sinψ = −c0ρ ln(ρ/ρB)

z = z0 + ∫ ρ

0 tanψdρ
(3.13)

corresponds to the contour line of a circular biconcave discoid when 0 < |c0ρB | <

e. Substituting it into Eq. (3.9), one obtains p̃ = 0, λ̃ = c20/2, and η0 = −2c0 �=
0. Fitting the experimental results by Evans and Fung [39], Naito et al. obtained
c0R0 = −1.618 where R0 is the reduced radius of a red blood cell [35], i.e., 4πR2

0
corresponds to the surface area of the red blood cell. It is quite interesting that
c0R0 = −1.618 = −1/0.618 happens to correspond the golden ratio.

4 Configurations of Open Lipid Vesicles with Holes

Open bilayer configurations can be stabilized by some proteins [40]. This experi-
mental fact gave rise to investigating the configurations of lipid membranes with free
exposed edges based on the Helfrich functional [18, 41–45].
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Fig. 1 An open smooth
surface (M) with a boundary
curve (C)

l

tC

M

4.1 Energy Functional and the Corresponding
Euler-Lagrange Equation

A lipid vesicle with a hole (i.e., a free edge) may be expressed as an open smooth
surface M with a boundary curve C = ∂M shown in Fig. 1. t represents the unit
tangent vector of curve C . l is a unit vector which is perpendicular to t and the
normal vector of the surface.

Based on the Helfrich functional, the energy functional for a lipid bilayer with a
free edge may be expressed as

F =
∫
M

[(kc/2)(2H + c0)
2 + k̄K + λ]dA + γ

∮
C
ds, (4.1)

where γ represents the line tension due to energy cost of the exposed edge. ds is the
arc length element of curve C . According to the variational method in Sect. 2, from
δF = 0 we can obtain the shape equation

2kc∇2H + kc(2H + c0)(2H
2 − c0H − 2K ) − 2λH = 0, (4.2)

and three boundary conditions [18, 41]

[
kc(2H + c0) + k̄κn

]
C = 0, (4.3)[

2kc∂H/∂l + k̄dτg/ds + γκn
]
C = 0, (4.4)[

(kc/2)(2H + c0)
2 + k̄K + λ + γκg

]
C

= 0, (4.5)

where κn , κg , and τg are the normal curvature, geodesic curvature, and geodesic
torsion of the boundary curve, respectively. The above boundary conditions represent
the force balance and the moment balance at each point in boundary curve C . They
are also available for vesicles with more than one hole.



88 Z.-C. Ou-Yang and Z.-C. Tu

4.2 Axisymmetrical Situation

Consider an axisymmetric surface generated by a planar curve z = z(ρ), which may
be expressed as a vector form r = {ρ cosφ, ρ sin φ, z(ρ)} where ρ and φ are the rota-
tion radius and azimuth angle, respectively. Under the axisymmetrical situation, the
shape Eq. (4.2) is just the same as (3.8) with vanishing p. This equation is integrable
and can be further transformed into

�3 − �(ρ� ′)2

2ρ
− ρ(1 − �2)

[
(ρ�)′

ρ

]′
− c0�

2 + λ̃ρ� = η0, (4.6)

which is just the same as Eq. (3.9) with vanishing p̃.
For the boundary point C , we define a sign function σ = t · ∂r/∂φ. The above

boundary conditions (4.3)–(4.5) may be transformed into [18, 42]:

� ′|C = c0 − (1 + k̃)(�/ρ)|C , (4.7)

� ′′|C =
[

γ̃�

ρσ cosψ
+ (2 + k̃)

�

ρ2
− c0

ρ

]
C

, (4.8)

[
c0k̃

(
�

ρ

)
− k̃

(
1 + k̃

2

) (
�

ρ

)2

− σγ̃
cosψ

ρ

]

C

= c20
2

− λ̃, (4.9)

where k̃ ≡ k̄/kc, γ̃ ≡ γ/kc, � ≡ sinψ, and λ̃ ≡ λ/kc + c20/2. Since the boundary
point is also in the surface, Eq. (4.6) should still hold for the boundary point C .
From Eqs. (4.8) and (4.9) we can eliminate γ̃ and obtain the expression of � ′′|C .
Substituting it and Eq. (4.7) into (4.6), we obtain a compatibility condition between
the shape equation and boundary conditions for axisymmetrical open lipid vesicles:

η0 = 0. (4.10)

Under this condition, the above boundary conditions are not independent of each
other. We may keep Eqs. (4.7) and (4.9) as boundary conditions. The shape equation
may be expressed as (4.6) with vanishing η0.

4.3 Analytical Special Solutions

Since the shape equation and boundary conditions are nonlinear, one may take the
following procedure to find analytical special solutions: (i) finding a surface satisfy-
ing the shape equation; (ii) finding a curve C on that surface such that the boundary
conditions are satisfied; (iii) the domain enclosed by boundary curve C on that sur-
face being the solution. However, for a given surface satisfying the shape equation,
we may not always find a curve C on that surface such that the boundary conditions
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are satisfied. On what kind of surface satisfying the shape equation can we find a
curve C such that the boundary conditions are satisfied? This issue was named as
compatibility between the shape equation and boundary conditions [42]. For exam-
ple, the compatibility condition for axisymmetrical solutions is just Eq. (4.10), i.e.,
the vanishing first integral.

In general case without axisymmetry, we may obtain the compatibility condi-
tion [42]

2
∫
M

(c0H + λ̃)dA + γ̃

∮
C
ds = 0. (4.11)

through scaling analysis. Here, we do not exclude the possibility to achieve the other
compatibility conditions through specificmethod.Using the compatibility conditions
(4.10) and (4.11), we can verify a theorem of nonexistence [42, 45]: For finite line
tension, there does NOT exist an open membrane being a part of surfaces with
nonvanishing constantmean curvature (including sphere, cylinder, andunduloid etc.),
Willmore surfaces (including Willmore torus, Dupin cyclide, and inverted catenoid
etc.), and circular biconcave discoid.

The above theorem of nonexistencemerely leaves a small window for the surfaces
simultaneously satisfying the shape equation and the boundary conditions that we
have known till now. When c0 is vanishing, the shape equation holds for minimal
surfaces. Three boundary conditions (4.3)–(4.5) are degenerated to

κn = 0, κg = −λ/γ = constant, (4.12)

which implies that the boundary should be an asymptotic curve with constant geo-
desic curvature. A domain in a minimal surface with a smooth boundary being an
asymptotic curve with constant geodesic curvature is called a minimal geodesic disk.
Obviously, a planar circular disk is a trivially minimal geodesic disk since a plane
is a special minimal surface with vanishing Gauss curvature. We have conjecture
that a planar disk is the unique minimal geodesic disk [46, 47]. This conjecture is
probably true. Recently, we have noted that, following the work on flat points of
minimal surfaces by Koch and Fischer [48], Giomi andMahadevan argued that there
does not exist a simple domain bounded by a smooth asymptotic curve in a minimal
surface with nonvanishing Gauss curvature [49]. If their argument is true, then our
conjecture is straightforward since a circle in a plane is the unique planar curve with
constant geodesic curvature.

5 Stress Tensor and Moment Tensor in Fluid Membranes

The concepts of stress tensor and moment tensor in fluid membranes were mainly
developed by Guven and his coworkers [50–53]. These concepts may be used to
derive the boundary conditions of an open lipid vesicle with a hole [41] and the
linking conditions of a lipid vesicle with two-phase domains [54].



90 Z.-C. Ou-Yang and Z.-C. Tu

Fig. 2 Force and moment
loaded on a domain cut from
a fluid membrane
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5.1 Balances of Local Forces and Moments

The concepts of stress tensor and moment tensor come from the force balance and
the moment balance for any domain in a lipid membrane. As shown in Fig. 2, we cut
a domain D bounded by a curve C from the lipid membrane. {e1, e2,n} is a right-
handed orthogonal frame with n ≡ e3 being the unit normal vector of the surface.
A pressure p is loaded on the surface against the normal direction. The notations
of t and l are the same as those in the above section. Vectors f and m, respectively
represent the density of force and the density of moment loaded on curve C by the
lipids outside the domain.

According to Newtonian mechanics, the force balance and the moment balance
may be expressed as

∮
C
fds −

∫
pndA = 0, (5.1)

∮
C
mds +

∮
C
r × fds −

∫
r × pndA = 0. (5.2)

If defining two second-order tensors S and M such that

S · l = f, and M · l = m, (5.3)
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one can derive the equilibrium equations [20]:

div S = pn, (5.4)

div M = S1 × e1 + S2 × e2, (5.5)

with S1 ≡ S · e1 and S2 ≡ S · e2 from the Stokes theorem. The tensors S and M
are called the stress tensor and the moment tensor, respectively.

5.2 Explicit Expressions of Stress Tensor and Moment Tensor

Onemay understand the equilibrium configuration of the cut lipid domain D in Fig. 2
from the point of energy view. That is, the equilibrium configuration abides by the
following generalized variational principle [54]:

δ

∫
D
[(kc/2)(2H + c0)

2 + k̄K + λ]dA

+
∫
D
pn · �dA −

∮
C
f · �ds −

∮
C
m · �ds

+
∮

μ[�1ω2 − �2ω1 − �1ω13 − �2ω23 − d�3] = 0 (5.6)

The first line of the above equation represents the variation of bending energy of
the lipid bilayer. The second line of the above equation reflects the potential energy
increment due to the external loads. In the third line of the above equation, μ is a
Lagrange multiplier due to the geometric constraint (2.16). The angular vector is
defined as � ≡ �iei ≡ �23e1 + �31e2 + �12e3.

Using the variational method mentioned in Sect. 2 and considering the defini-
tion (5.3), one can derive the explicit expressions of stress tensor and moment tensor
as follows [54]:

S = [(kc/2)(2H + c0)
2 + λ]I − kc(2H + c0)C − 2kcn∇H − (μC − n∇μ) × n,

(5.7)
and

M = μI − [kc(2H + c0)I + k̄C] × n, (5.8)

where I ≡ e1e1 + e2e2 represents the unit tensor, and C is the curvature tensor (2.6).
It is not hard to verify that (5.5) automatically holds from the above two equations
while Eq. (5.4) is equivalent to the shape Eq. (3.3). Substituting Eqs. (5.7) and (5.8)
into (5.3), one may obtain the force and moment on the boundary C [54]:

f = [kc(2H + c0)τg − μκn]t + [∇μ · t − 2kc∇H · l]n
+ [kc(2H + c0)(c0/2 − H + κn) + λ + μτg]l, (5.9)
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and
m = −[kc(2H + c0) + k̄κn]t + (μ + k̄τg)l, (5.10)

where κn and τg represents the normal curvature and the geodesic torsion of the
boundary, respectively.

Here two remarks should be mentioned. First, we only present the expressions of
S,M, f , andm based on the Helfrich functional. Their general forms can be found
in Ref. [54]. Second, there is a Lagrange multiplier μ in the above expressions, which
comes from the geometric constraint (2.16). Its physical meaning is still unknown.
The terms related to μ in the expressions of S,M, f , andm have not been included
in the previous researches [20, 47, 50–53].

5.3 Simple Applications of Stress Tensor and Moment Tensor

Here, we will survey two applications of the concepts of stress tensor and moment
tensor. One is the derivation of the boundary conditions of an open lipid vesicle with
a hole [41]; another is the derivation of the linking conditions of a lipid vesicle with
two-phase domains [54]. The basic ideas are as follows.

Consider a string loaded by a force density f and a moment density m. The line
tension γ induces a stretching force along the tangent vector of the string. From
the force balance and the moment balance, one can easily derive two equilibrium
equations [54]:

γκ(s)N + f(s) = 0, (5.11)

m(s) = 0, (5.12)

where s is the arc length parameter of the string. κ(s) is the curvature of the string
at s.

Now cut a very thin ribbon along the edge from the membrane as shown in Fig. 3.
t and ti represent the tangent vector of the boundary curve and that of the cutting
line, respectively. l is perpendicular to the normal vector of membrane surface and
the tangent vector of the boundary curve. li is perpendicular to the normal vector of
membrane surface and the tangent vector of the cutting line. f and m represent the
force density and the moment density induced by the membrane, respectively. Since
ti = −t and li = −l, according Eqs. (5.9) and (5.10), we have

f = −[kc(2H + c0)τg − μκn]t − [∇μ · t − 2kc∇H · l]n
− [kc(2H + c0)(c0/2 − H + κn) + λ + μτg]l, (5.13)

and
m = [kc(2H + c0) + k̄κn]t − (μ + k̄τg)l. (5.14)
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Fig. 3 Thin ribbon cut from
the membrane along the edge
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Substituting Eq. (5.14) into (5.12), we can obtain

μ = −k̄τg, (5.15)

and the boundary condition (4.3). If we substituting Eqs. (4.3) and (5.15) into (5.13),
the force density is transformed into

f = −[(kc/2)(2H + c0)
2 + k̄K + λ]l + [k̄dτg/ds + 2kc∂H/∂l]n. (5.16)

In the above derivation, we have used dτg/ds = ∇τg · t, ∂H/∂l = ∇H · l, and
(2H − κn)κn − τ 2

g = K . Substituting Eq. (5.16) into (5.11) and considering κn =
κn · N and κg = −κl · N, we can obtain the boundary conditions (4.4) and (4.5).

Similar procedure is also available to derive the linking conditions of a lipid vesicle
with two-phase domains as shown in Fig. 4. The separation line between domain I
(DI) and domain II (DII) is denoted as curve C . t is the tangent vector of curve C . lI

is perpendicular to t and the normal vector of surface. Different from Fig. 1, lI points
to the side of domain I. The definition of lII is similar. The subtle difference is that
lII points to the side of domain II. Assume that the membrane surface is so smooth
that lII = −lI.

An axisymmetrical vesicle with two-phase domains was investigated by Jülicher
and Lipowsky [55] many years ago. The general cases without the axisymmetrical

Fig. 4 A lipid vesicle with
two-phase domains
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precondition have also been discussed by several researchers in recent years [19,
54, 56]. Following the Helfrich functional, the free energy of a lipid vesicle with
two-phase domains may be expressed as [55]

F =
II∑
i=I

∫
Di

[(kic/2)(2Hi + ci0)
2 + k̄i K i + λi ]dAi + pV + γ

∮
C
ds, (5.17)

where superscript i labels the quantities of domain i (i = I, II). The linking conditions
of separation curve C may also be derived from the concepts of stress tensor and
moment tensor, which are listed as follows [54]:

kIc(2H
I + cI0) + k̄Iκn = kIIc (2H II + cII0 ) + k̄IIκn, (5.18)

∂
[
kIc(2H

I + cI0)
]

∂lI
+ ∂

[
kIIc (2H II + cII0 )

]
∂lII

= (k̄I − k̄II)
dτg
ds

+ γκn, (5.19)

and

kIc
2

(4H I2 − cI20 ) − kIIc
2

(4H II2 − cII20 ) + (k̄I − k̄II)
(
κ2
n + τ 2

g

) = λI − λII + γκg.

(5.20)
It should be noted that the mean curvature could be discontinuous across the

separation curve. Using the above linking conditions, the Jülicher-Lipowsky con-
jecture on the general neck condition for the limit shape of budding vesicles was
verified [54].

6 Understanding the Growth Mechanism of Some
Mesoscopic Structures Based on the Helfrich Functional

The growth of mesoscopic structures is different from that of macroscopic structures.
Macroscopic structures usually correspond to the least minimal free energy. But in
the mesoscopic scale, there is no enough time for the structures to release energy as
heat. Thus most mesoscopic structures exist in a metastable state where the different
kinds of energies are balanced each other. With the consideration of the Helfrich
functional, this idea has been used to explain the formation of focal conic domain in
smectic-A liquid crystals [57, 58], the pitch angle of helices of multi-walled carbon
nanotubes [59], and the reversible transition between peptide nanotubes and spherical
vesicles [60].
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6.1 Focal Conic Domain in Smectic-A Liquid Crystals

In Smectic-A (SmA) liquid crystals [61], the molecules are stacked layer-by-layer.
In each layer, the orientations of all molecules are aligned to the normal of the layer.
Generally, the flat configuration is energetically favorable. However, Dupin cyclides
are usually formed when liquid crystals cool from the isotropic (Iso) phase to the
SmA phase. Series of Dupin cyclides constitute a focal conic domain. Bragg argued
that “There must be a reason why the cyclides are preferred, and it must be based
on energy considerations” [62]. Natio et al. proposed that the relieved energy of the
difference in the Gibbs free energy of Iso-SmA transition must be balanced by the
curvature elastic energy of the smectic layers [58].

The formation energy of a focal conic domain includes three kinds of contribu-
tions. First is the volume free energy change due to the Iso-SmA transition [57]:

FV = −g0

∮
(D − D2H + D3K/3)dA, (6.1)

where g0 > 0 is the difference in the Gibbs free energy density between SmA and
Iso phases. H and K represent the mean and Gauss curvatures of the inner surface,
respectively. Second is the surface energy of inner and outer SmA-Iso interfaces [58]:

FA = λ

∮
(1 + |1 − 2DH + D2K |)dA, (6.2)

where λ is the surface energy per area. Third is the curvature elastic energy, which is
the sum of the energy (in the Helfrich form) of each layers. In the continuum limit,
the curvature elastic energy may be expressed as [58]:

Fc = kc

∮ √
H 2 − K ln

(
1 − DH + D

√
H 2 − K

1 − DH − D
√
H 2 − K

)
dA + k̄D

∮
KdA. (6.3)

Then the total formation energy may be expressed as F = FV + FA + Fc
∮

�

(H, K , D)dA with

�(H, K , D) ≡ kc
√
H 2 − K ln

(
1 − DH + D

√
H 2 − K

1 − DH − D
√
H 2 − K

)
+ k̄DK

+λ(1 + |1 − 2DH + D2K |) − g0(D − D2H + D3K/3). (6.4)

From δF = 0, Natio et al. obtained

(∇2/2)�H + ∇ · ∇̃�K + (2H 2 − K )�H + 2HK�K − 2H� = 0 (6.5)
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and ∮
�DdA = 0, (6.6)

where �H ≡ ∂�/∂H , �K ≡ ∂�/∂K , and �D ≡ ∂�/∂D. ∇2 and ∇ · ∇̃ are the
Laplace operators mentioned in Sect. 2. Natio et al. showed that the growth of the
focal conic domain in SmA liquid crystals could bewell explained by using the above
two equations [58].

6.2 Helices of Multi-walled Carbon Nanotubes

The formation mechanism of a multi-walled carbon nanotube is similar to that of
focal conic domain in SmA liquid crystals mentioned above. The formation energy
of the multi-walled carbon nanotube also consists of three terms: (i) the volume term
which may be expressed in the same form of (6.1); (ii) the surface term which may
be expressed as the same form of (6.2); (iii) the curvature energy which may be
expressed as the same form of (6.3) since the bending energy of a single layer of
graphene was proven to have the Helfrich form [59]. If considering that the radius
of the carbon nanotube is much smaller than the curvature radius of the central axis
of the carbon nanotube, the total formation energy may be transformed into

F = m
∫

ds + α

∫
κ2ds, (6.7)

where m and α are two elastic constants. κ and s represent the curvature and the
arc length of the central axis of the carbon nanotube, respectively. The first-order
variation δF = 0 yields the equilibrium-shape equations of a string [63]:

2d2κ/ds2 + κ3 − 2κτ 2 − (m/α)κ = 0, (6.8)

κ2τ = constant. (6.9)

One solution to the above shape equations is a straight multi-walled carbon nan-
otube with vanishing κ and τ . The other solution to the above shape equations is
a helix with pitch angle θ. From Eqs. (6.8) and (6.7), one may calculate the total
formation energy for the helix

F = ml[1 + 1/(1 − 2 tan2 θ)], (6.10)

where l represents the total length of the central axis of the helix. The threshold
condition for formation of helix is F = 0, which requires θ = π/4. This value is in
a good agreement with the pitch angle observed in the experiment [64].
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6.3 Reversible Transition Between Peptide Nanotubes
and Spherical Vesicles

In recent work, Yan et al. have observed the reversible transition between peptide
nanotubes and vesicle-like structures [60]. It was found that the dilution of a peptide-
nanotube dispersion solution results in the formation of vesicle-like structures, which
can be reassembled into the nanotubes by concentrating the solution [60]. The mech-
anism underlying these phenomena is the same as the formation of the focal conic
domain in SmA liquid crystals mentioned above.

As shown in reference [57], the outward growth of a layer with small thickness h
on the top of the outermost equilibrium dipeptide aggregate (the nanotube or vesicle-
like structure) leads to three kinds of free energy accumulations. First is the increment
of the volume free energy:

FV = −g0

∮
(h − h2H + h3K/3)dA, (6.11)

where H and K are the mean curvature and the Gauss curvature of the outer sur-
face of the dipeptide aggregate, respectively. g0 is the difference in the Gibbs free
energy density between the solution phase and the aggregate phase. Its value could
be estimated with the ideal gas model, which reads

g0 = CAkBT ln(CA/CS), (6.12)

where CA and CS are the concentrations of dipeptide in the aggregate phase and
the solution phase, respectively [60]. kB and T are the Boltzman constant and the
temperature of the solution. Second is the extra interfacial free energy:

FA = λ

∮
(−2hH + h2K )dA, (6.13)

where λ is the surface energy per area of the solution/aggregate interface. Third is
the extra curvature elastic energy, which can be expressed as the Helfrich form [57]:

Fc = k1h

2

∮
(2H)2dA + k5h

∮
KdA, (6.14)

where k1 and k5 are related to the elastic constants of liquid crystals.
The equilibrium shape of the aggregate should satisfy ∂F/∂h = 0, which leads

to the Weingarten equation

2k1H
2 + k5K − g0 − 2λH = 0. (6.15)
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It is easy to verify that a sphere of radius r0 and a cylinder of radius ρ0 are two
solutions to Eq. (6.15) provided that

r0 = 2k1 + k5√
λ2 + g0(2k1 + k5) − λ

≈ 2λ

g0
, (6.16)

and

ρ0 = k1√
λ2 + 2g0k1 − λ

≈ λ

g0
. (6.17)

The approximations in the above two equations have been done according to the
experiment conditions [60]. From these equations, one can calculate the formation
energy of sphere and tube, respectively. The results are Fshpere = −(g30h

3/12λ2 +
g20h

2/4λ) and Ftube = −g20h
2/2λ. Thus, the condition for transition from a tube-to-a

spherical structure is Ftube > Fshpere, that is, g0h > 3λ. Substituting g0h = 3λ into
Eq. (6.12) one can obtain the critical concentration for tube-to-vesicle-transition [60]

C∗ = CA exp(−3λ/CAhkBT ). (6.18)

When CS < C∗, peptide nanotubes will transform into spherical vesicle-like struc-
tures.

7 Conclusion

In the above discussions, we have presented several theoretical investigations based
on the Helfrich functional (1.5). The configurations of closed lipid vesicles and open
lipid vesicles with holes, and the concepts of stress tensor and moment tensor in fluid
membranes were surveyed in detail. It was shown that the Helfrich functional could
be extended to understand the growth mechanism of some mesoscopic structures.

The study of theWillmore functional (1.3) enters the epilog stage as theWillmore
conjecture has been proved [9]. We believe that the times of studying the Helfrich
functional is coming soon. Although the aforementioned theoretical achievements
based on the Helfrich functional have been made in recent years, the substantial
researches on the Helfrich functional are still in their infancy. If c0 > 0, it is not hard
to verify that among all compact embedded surfaces of genus 0, the round spherewith
radius R = 2/c0 corresponds to the least minimum of the Helfrich functional (1.5)
from the Alexandrov theorem [4]. In other words, all compact embedded surfaces of
genus 0 have energies no less than 4πk̄ for positive c0. What will happen for c0 < 0
or for embedded surfaces of nonvanishing genus? This is still an open question.

We are lack of good enough mathematical tools to deal with the Helfrich func-
tional since the Helfrich functional, different from the Willmore functional, is not an
invariant under conformal transformations. However, every coin has two sides. The
breaking of conformal invariance also brings benefit to us. The critical configuration



The Study of Complex Shapes of Fluid Membranes, the Helfrich … 99

corresponding to the minimal value of the Helfrich functional should have the spe-
cific size. Introduce a scaling transformation r → �r, where r represents the position
vector of point on the critical configuration. Under the scaling transformation, the
Helfrich functional is transformed into

FH (�) =
∫
M

[(kc/2)(2H)2 + k̄K ]dA

+ 2kcc0�
∫
M
HdA + (kcc

2
0/2)�

2
∫
M
dA. (7.1)

The critical configuration corresponds to � = 1, which implies that FH (�) takes
minimal value when � = 1. If c0 �= 0, we may derive the necessary condition of the
critical configuration:

H̄ ≡
∫
M HdA∫
M dA

= −c0
2

. (7.2)

This necessary condition is quite similar to the known Minkowski formula [65]. In
addition, the critical configuration of the Helfrich functional should also satisfy the
shape Eq. (3.3) with vanishing p and λ. Integrating this equation and considering the
Stokes theorem, we can obtain

∫
M
H(4H 2 − 4K − c20)dA = 4πc0χ(M), (7.3)

where χ(M) is the characteristic number of surface M . The above Eqs. (7.2) and
(7.3) might be helpful to the further study of the Helfrich functional.
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