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Preface

The present volume is a collection of papers devoted to current research topics in
mathematical analysis, probability and applications, including the topics in math-
ematical physics and numerical analysis. It originates from plenary lectures given at
the 10th International ISAAC Congress, held during 3–8 August 2015 at the
University of Macau, China.

The papers, authored by eminent specialists, aim at presenting to a large audi-
ence some of the attractive and challenging themes of modern analysis:

• Partial differential equations of mathematical physics, including study of the
equations of incompressible viscous flows, and of the Tricomi, Klein–Gordon
and Einstein–de Sitter equations. Governing equations of fluid membranes are
also considered in this volume.

• Fourier analysis and applications, in particular construction of Fourier and
Mellin-type transform pairs for given planar domains, multiplication and com-
position operators for modulation spaces, harmonic analysis of first-order sys-
tems on Lipschitz domains.

• Reviews of results on probability, concerning in particular the bi-free extension
of the free probability and a survey of Brownian motion based on the Langevin
equation with white noise.

• Numerical analysis, in particular sparse approximation by greedy algorithms,
and theory of reproducing kernels, with applications to analysis and numerical
analysis.

The volume also includes a contribution on visual exploration of complex
functions: the technique of domain colouring allows to represent complex functions
as images, and it draws surprisingly mathematics near the modern arts.

v



Besides plenary talks, about 300 scientific communications were delivered
during the Macau ISAAC Congress. Their texts are published in an independent
volume. On the whole, the congress demonstrated, in particular, the increasing and
major role of Asian countries in several research areas of mathematical analysis.

Taipa, Macao Tao Qian
Turin, Italy Luigi G. Rodino
March 2016
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A Review of Brownian Motion Based Solely
on the Langevin Equation with White Noise

L. Cohen

Abstract We give a historical and mathematical review of Brownian motion based
solely on the Langevin equation. We derive the main statistical properties with-
out bringing in external and subsidiary issues, such as temperature, Focker-Planck
equations, the Maxwell–Boltzmann distribution, spectral analysis, the fluctuation-
dissipation theorem, amongmany other topics that are typically introduced in discus-
sions of the Langevin equation. The method we use is the formal solution approach,
which was the standard method devised by the founders of the field. In addition, we
give some relevant historical comments.

Keywords Brownianmotion ·Langevin equation ·History ·Einstein ·White noise

1 Introduction

The two seemingly simple equations (as originally written)

∂f (x, t)

∂t
= D

∂2f (x, t)

∂x2
(1)

and

m
d2x

dt2
= −6πμa

dx

dt
+ X (2)

revolutionized our understanding of the of the universe and ushered an incredible
number of physical and mathematical ideas [11]. The first equation is due to Einstein
[13], whose aim was to show that atoms exist; the second is due to Langevin [26],
who brought forth a new perspective regarding both the physics and mathematics of
Einstein’s idea.
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2 L. Cohen

It is often said that Brown [3] discovered Brownian motion, Einstein explained it,
Langevin simplified it, and Perrin [31] proved it; this listing misses totally the moti-
vations and wonderful history of the subject [11]. Brown did not discover Brownian
motion, but did study it extensively. Einstein was not aware of Brownian motion;
he predicted Brownian motion to obtain a macroscopic manifestation of atoms that
could be measured. Equation (1) is the equation for the probability density for the
Brownian particle at position x and time t. He derived the standard deviation of the
visible Brownian particle that could be experimentally verified if indeed atoms exist.
He solved explicitly for the standard deviation of position,

λx =
√
x2 = √

2Dt (3)

and connected the parameters with the temperature of the medium, and the yet
unnamed Avogadro number, a number that few believed in, and had never been
measured or estimated at that time. Of course, Eq. (1) was known for 100 years
before Einstein; it is the famous heat equation first derived by Fourier. However that
is not relevant. What is important is that Einstein derived the probability density for
position of the Brownian particle. Perrin had already been working on the issue of
the existence of atoms, and his motivation was certainly heightened by Einstein’s
results. He experimentally verified Eq. (3), and hence verified the Einstein idea that
the random “invisible” microscopic atoms can manifest a macroscopic effect which
can be measured [31].

Equation (2) was the start of the field of random differential equation and is now
called the Langevin equation. The way it stands, it is Newton’s equation of motion
where the left hand is mass times the acceleration, the first term on the right is the
force of “friction” which is proportional to the velocity, and the second term, X, is
an additional force. In Langevin’s words: “X is indifferently positive and negative”.
X is what we now call the random force. Langevin’s insight was to realize that to
obtain the main result of Einstein, Eq. (3), one does not have to solve and derive the
probability density, but one can obtain the second moment simply from Newton’s
equation and moreover that one can obtain it in a relatively simple manner. The
Langevin equation has been applied to numerous fields and to a wide variety of
physical situations. Random differential equations have become standard in many
branches of science and has produced rich mathematics [7, 21–23, 27, 28, 35, 36,
39, 45].

1.1 The Aim of This Article

The author’s involvement with Brownian motion [1, 2, 8] started with his attempt to
understand and apply the theory of Chandrasekhar and vonNeumann [4–6] regarding
the randommotion of stars, a subject that is fundamental in stellar dynamics, because
it is the randommotion that is important in the evolution of a collection of stars, such
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as globular clusters. In reading the review articles of that time I found considerable
difficulty in that the articles mixed in a plethora of ideas which depended both
on the interests of the author writing the article and relevant field of the article.
Typically, historical and recent review articles and books mix together the Langevin
equation with Fokker–Planck equations, temperature, mobility, master equations,
the Maxwell–Boltzmann distribution, spectral analysis, Wiener processes, random
walks, the fluctuation-dissipation theorem, white noise, Gaussian with noise, among
many other topics. Of course, these are important to specific fields, but inmy opinion,
often detract from understanding the Langevin equation and its consequences as it
stands. The aim of this article is to review and derive the relevant results of the
Langevin equation without the encumbrance of other ideas. We give derivations of
the main results based solely on the Langevin equation where the random force is
taken to be white noise (not Gaussian white noise). Of course, most of the results we
derive are known, but we hope that the presentation and derivations are of interest.

1.2 Notation

Expectation values of quantities that depend on timewill be denoted in two equivalent
ways

〈x(t)〉 = 〈x〉t (4)

Which notation is used is motivated by aiming at clarity of the equation and the
historical usage.

We use the delta function, δ(t), routinely. The basic property is,

∫ b

a
f (t)δ(t − s)dt = f (s) a < s < b (5)

If s is one of the end points then we will take half the value,

∫ b

a
f (t)δ(t − a)dt = 1

2
f (a) a < b (6)

1.3 Deterministic and Random Initial Conditions

There is considerable variation in articles on Brownian motion regarding the initial
conditions for the velocity v(t), and position, x(t). The two general approaches
is to take them to be deterministic or random. When they are taken to be random,
which is important in some fields, one very often averages over the initial conditions;
this produces results which are seemingly different than if one takes them to be
deterministic. We shall take them to be symbolically random, but we will not do any
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averaging over them. The deterministic case can be obtained from the random case
in a manner that we now discuss. Our notation for the random initial conditions
shall be, for example 〈v(0)〉 or 〈v〉0. With this notation, to go to the deterministic
case one just lets 〈v(0)〉 → v0, where v0 is the deterministic initial condition, etc.
For

〈
v2(0)

〉 → v2
0 and for standard deviation of velocity σ 2

v (0) → 0. Similarly for
position.

2 The Langevin Equation with a White Noise Driving Force

In modern notation, the Langevin equation is generally written as

dv(t)

dt
= −βv(t) + F(t) (7)

It is a random differential equation for the velocity v(t), but depending on the field,
it could be any random variable that satisfies Eq. (7). The term F(t) is called random
force, and since it is random, the unknown v(t) will also be random. The main issue
is: given the statistical properties of F(t), what are the statistical properties of v(t).
The standard statistical properties of F are taken to be

〈F(t)〉 = 0 (8)

and 〈
F(t′)F(t′′)

〉 = 2Dδ(t′ − t′′) (9)

The first indicates that the average at any one time of the random force is zero, and
the second is that the force at two different times are uncorrelated except for equal
times. Random processes that satisfy Eq. (9) are called white noise. Very often it is
assumed that the statistical properties of the force are what is called Gaussian white
noise. We will not assume so, and limit ourselves to results that follow only from
Eqs. (7)–(9). We point out that a general view is that Eq. (9) implies a stationary
process for the random force. That is not so. One can construct random process that
satisfy Eq. (7) but are non-stationary.

How can one solve for v(t)? By solve we mean to obtain the statistical properties
of v(t). Historically, the first method was to solve the Langevin equation as if it were
an ordinary differential equation, and then take appropriate expectation values. This
method was implied by Langevin and developed by others, in particular, Ornstein,
Uhlenbeck, Wang, and Chandrasekhar, among others. This is the procedure we will
follow, andwediscuss it further inSect. 3.11.However, historically certain difficulties
were pointed out and the first to do so was Doob [12].
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Position. One also wants to study the statistical properties of position, x(t), which is
related to the velocity by

dx(t)

dt
= v(t). (10)

There are two approaches one can take. One is to first obtain the statistical properties
of v(t), and then consider Eq. (10) as a random differential equation for x(t). Alter-
natively, one can combine Eqs. (7) and (10) to obtain a single differential equation
for x(t), namely

d2x(t)

dt2
= −β

dx(t)

dt
+ F(t) (11)

and consider it a random differential equation with a driving force F(t). Both
approaches are interesting and are used.

It is important to appreciate that historically the calculation of
〈
x2(t)

〉
was the

focus, because it was the only measurable quantity of the Brownian particle.

3 Comments and Historical Notes

In this section we discuss some historical issues, motivations, and contributions of
the many authors that developed the field of Brownian motion that was initiated by
Einstein. This section may be skipped, as none of the results and discussions here
are explicitly used in the subsequent derivations.

3.1 The Classic Review Articles

There are three classic historical review articles which are still the best review arti-
cles. In order of appearance, the first is by Uhlenbeck and Ornstein [38], titled “On
the theory of Brownian motion” [38]; the second is the monumental article by Chan-
drasekhar [6], “Stochastic problems in Physics and Astronomy” [6]; and the third
is that of Wang and Uhlenbeck [41], “On the theory of Brownian motion II” [41].
All these articles are much more than review articles, because they addressed new
approaches and obtained new results.

Ornstein was among the first to solve the Langevin equation, and the paper by
Uhlenbeck and him extended and simplified some of the results [38]. We discuss the
Chandrasekhar paper below. The paper by Wang and Uhlenbeck, while having the
same title as the paper by Uhlenbeck and Ornstein, is much more than a review of
Brownian motion. It is a formulation of stochastic processes in general and a careful
discussion of the Focker-Planck formulation.

The above three papers and three other important papers are collected in Selected
Papers onNoise andStochasticProcesses, edited byNelsonWax [42]. The three other
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papers are “Mathematical Analysis of Random Noise” by Rice [33]; “RandomWalk
and the Theory of Brownian Motion”, by Kac [24]; and “The Brownian Movement
and Stochastic Equations” by Doob [12]. At one time, ownership of this book was
mandatory for anyone interested in stochastic process. The book is still in print.

We also mention that Einstein’s five papers on Brownian motion were collected in
a very short book, in 1926, edited by Furth [16]. The book is short because all of the
Einstein articles are very short. The book was translated and published in English in
1956 and continues to be available. We also point out that Einstein published many
papers on what we now call time series and stochastic processes. In fact, what is
commonly called theWiener-Khinchine theoremwas first given by Einstein in 1914,
in twopapers entitled “AMethod for theStatisticalUse ofObservations ofApparently
Irregular, Quasiperiodic Process” and “Method for the Determination of Statistical
Values ofObservationsRegardingQuantities Subject to IrregularObservations” [14].

3.2 Chandrasekhar

Chandrasekhar was one of the greatest scientists and astronomers of the last century,
and received the Nobel Prize for the remarkable discovery of electron degeneracy
in stars. He made monumental contributions to almost all fields of astronomy. He
was one of the clearest scientific writers ever and while his famous article is often
considered a review article, it is much more than that. It is perhaps one of the most
remarkable articles written on the subject of stochastic process. The range is remark-
able, ranging from the random walk to the recurrence theorem of Poincare.

Chandrasekhar wrote many articles on Brownian motion, but what is particularly
important is that to the best ofmy knowledge, hewas the first to derive the statistics of
the random forces for the appropriate physical situation; in his case, the random force
on a star. Subsequently, he and von Newman derived additional statistical properties
for the random force, such as the two-time autocorrelation function.

While in his 1943 article, he derives the main results Brownian motion, most of
the article concerns the issue of fluctuations, probability, and stochastic processes in
general. Unlike previous works, he considers the three-dimensional case. He derives
a number of new results regarding the transition from the Langevin equation to the
problem of obtaining the probability densities. He obtains, in a very simple and
elegant way the probability densities of position and velocity, and the equations of
motion they satisfy. Moreover, he derives and discusses the joint position-velocity
distribution, derives the partial differential equation that satisfies it, and gives a num-
ber of ways to solve it. Another part is a comprehensive discussion of the Langevin
equation with an additional external force. Further, he makes connections between
the Boltzmann equation, stochastic processes, Poincare cycles, and the fundamental
deterministic equation of dynamics, the Liouville equation.
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3.3 Smoluchowski

Smoluchowski developed the theory of Brownian motion and in fact he did consid-
erably more than Einstein [37]. However he published his results in 1906, a year
later than Einstein. He was the first to consider Brownian motion when there are
external forces and in particular he considered Brownian motion under the influence
of gravity. This was very important for the experimental procedures used by Perrin.
He developed many of the mathematical issues. In the words of Chandrasekhar “The
theory of density fluctuations as developed by Smoluchowski represents one of the
most outstanding achievements...” [6].

3.4 White Noise, Gaussian White Noise, and Non-stationary
White Noise

The power spectrum measures the intensity as a function of frequency. If the power
spectrum is uniform, then it is called white noise. The power spectrum corresponding
to Eq. (9) is indeed independent of frequency, and hence uniform [32]. White noise is
called white because at one time it was thought that for the white light we perceive,
the intensity as a function of frequency is more or less uniform. Of course that is not
strictly the case, but the phrase has stuck.

If the statistics of the random force are Gaussian, then one says that we have
Gaussian white noise. It is generally assumed that white noise is stationary. That
is not necessarily the case. A process is stationary (more precisely, a second order
stationary process) if the autocorrelation function depends on the difference of the
two times,

〈X(t1)X(t2)〉 = R(t2 − t1) (a function of t2 − t1) (12)

However white noise as defined by Eq. (12) is not necessarily a stationary process.
Explicitmethods for constructing non-stationary processes that are nonethelesswhite
noise are given in [20].

3.5 The O-U Process

What has come to be called the Ornstein-Uhlenbeck process is the random process
governed by the Langevin equation. The reason for the name is that Ornstein and
later Ornstein and Uhlenbeck are the ones that derived the main results. However, we
point out that depending on the field, the statistics of the standard driving force may
be white noise, Gaussian white noise, or indeed, an arbitrary correlation function.
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3.6 Brownian Motion: Stationary or Non-stationary?

The Langevin equation considered as a deterministic equations clearly produces a
time dependent solution for v(t) and x(t), which of course depends on the time-
dependence of the driving force. Considering it as a random differential equation
also produces random quantities that evolve in time. In fact, Brownian motion is
perhaps themost important and simplest example of a non-stationary randomprocess.
Nonetheless theorems which only apply to a stationary process, such as the Weiner
Khinchine theorem, are often applied. The justification, often unstated, is that for
large times, the autocorrelation function for the Brownian motion process does go
to an autocorrelation that implies a stationary process. This will be further discussed
in subsequent sections.

3.7 Spectral Properties

One of the major advances of noise theory is the work of Rice [33], who emphasized
the spectral properties of a stochastic process. Wang and Uhlenbeck understood the
importance of the spectral point of view, and calculated the power spectrum for
velocity as given by the Langevin equation. Their often quoted result is that the
power spectrum of velocity, S(ω), goes as [38]

S(ω) ∼ 1

β2 + ω2
(13)

Since S(ω) does not depend on time, the implication is that the process is stationary,
but as we have discussed above Brownian motion is not stationary. Equation (13) is
achieved by waiting an infinite amount of time, and this was achieved historically
be starting the motion at minus infinity in time; hence for any finite time an infinite
amount of time, will have already passed. Alternatively, the system is started at
a finite time, and then one lets time go to infinity. This will be discussed further
in Sect. 8, where we obtain the time-dependent power spectrum as defined by the
Wigner distribution.

3.8 Brownian Motion in a Force Field

If in addition to the frictional force and the random force we have an external deter-
ministic force which may be space and time dependent then the Langevin equation
becomes [25, 37],
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dv(t)

dt
= −βv(t) + F(t) + K(x(t), t) (14)

dx(t)

dt
= v(t) (15)

The equations are now coupled. We can no longer consider the velocity process by
itself.

3.9 Focker-Planck Equations and Random Differential
Equations

Focker-Planck equations are partial differential equations for evolution for the prob-
ability density [17, 34]. Einstein’s equation, Eq. (1) is a Focker-Planck equation
for position. The relation of the probability density to the Langevin equation is
fundamental. A probability distribution is determined by its moments (except for
some unusual circumstances), and hence if the Langevin equation can give us all the
moments, say for the velocity, then indeed we could obtain the probability density
of velocity. What moments can one obtain from the Langevin equation depends on
the statistics of the random force. If one assumes white noise only, that is Eq. (7),
then the probability distribution cannot be obtained, because only a few moments of
velocity may be determined from the Langevin equation with white noise. However
if one assumes that the random force is Gaussian white noise, then all the moments
may be obtained, and hence so may the probability density.

3.10 Weiner and the Weiner Process

Weiner was not only a great mathematician, but also made major contributions to
physics and engineering, and indeed is one the founders of noise theory and of
modern electrical engineering. Weiner was a child prodigy, and as a young man
aimed at making a contribution commensurate with his child prodigy status. He
followed the major developments of his time both in mathematics and physics and
was particularly interested in the then exciting development of Brownian motion and
in so called pathological functions; functions that are continuous everywhere but
differentiable nowhere. These functions were considered totally irrelevant to the real
world. However, based on a hint by Perrin, he realized that the path of a Brownian
particle may be a pathological function! So, he defined a mathematical idealization
of Brownian motion based on measure theory [43]. To quote Wiener: “There were
fundamental papers by Einstein and Smoluchowski that covered it, but whereas
these papers concerned what was happening to any given particle at a specific time,
or the long-time statistics of many particles, they did not concern themselves with the
mathematical properties of the curve followed by a single particle. Here the literature
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was very scant, but it did include a telling comment by the French physicist Perrin in
his book Les Atomes, where he said in effect that the very irregular curves followed
by particles in the Brownian motion led one to think of the supposed continuous
non-differentiable curves of the mathematicians. He called the motion continuous
because the particles never jump over a gap, and non-differentiable because at no
time do they seem to have a well-defined direction of movement.”

What is currently called the “Wiener process”, W (t), is defined in various ways.
Most commonly it is defined as a process governed by

dW (t)

dt
= F(t) (16)

where F(t) is white noise, or sometimes Gaussian white noise. Hence we see that it
is the Langevin equation without friction. One can also define it as process where
the mean is zero and where the variance of W (t) − W (t′) is proportional to t − t′,
and further that for t1 < t2 ... < tn, thenW (t2) − W (t1), ... , W (tn) − W (tn−1), are
mutually independent.

3.11 The Wiener–Khinchine Theorem

The so called theWiener–Khinchine theorem, originally derived by Einstein in 1914,
relates the autocorrelation to the power spectrum. The theorem applies only to a
stationary processes. In particular, if X(t) is a stationary random process where the
autocorrelation function depends only on the difference in times

〈X(t1)X(t2)〉 = R(t2 − t1) (17)

then the power spectrum is given by

S(ω) = 1

2π

∫
R(τ ) e−iωτ dτ (18)

Often this theorem is applied to the Langevin equation, but that is not strictly proper
because in the case ofBrownianmotionwedonot have a stationary process.However,
for large times, it does become a stationary process. See Sect. 8.

3.12 The Formal Solution Approach

The fundamental method of solution, that is, finding the statistical properties of v(t)
from the Langevin equation is to pretend it is an ordinary deterministic equation, and
after solving it as such, one takes expectation values of the appropriate quantities.
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This method was implied in Langevin’s paper, but was developed by Ornstein, and
Wang and Ornstein, Chandrasekhar, and others. This will be the general approach
that will be taken in subsequent sections.

3.13 Brownian Motion Applied to Extended Bodies
and Random Partial differential Equations

Vibrations of structures due to random forces is of great practical and theoretical
interest. For example the vibrations of structures due to wind, earthquakes, etc., are
often modeled as the response to random forces. Historically, most of the work on
Brownian motion was on the random motion of a single particle, or more generally,
one degree of freedom. van Lear and Uhlenbeck extended the results of standard
Brownian motion to the case of a string, where the random force acts on each point
of the string [40]. One can view this as the beginning of random partial different
equations. For example, for the string one has

∂2s(x, t)

∂x2
−∂2s(x, t)

∂t2
= F(x, t) (19)

where the driving random force F(x, t) is given statistically.

3.14 Generalized Langevin Equation

In the standard Langevin equation, the friction term βv(t) is directly proportional to
the velocity at time t only, that is, it has no memory. One way to generalize it, is to
make the friction coefficient β a function of time β(t), so that the past is taken into
account,

dv(t)

dt
= −

∫ t

−∞
β(t − τ)v(τ )dτ + F(t) (20)

3.15 Derivations of the Langevin Equation

Of fundamental importance is the derivation of the Langevin equation from first
principles. There have been many approaches, and perhaps the first was that of Ford
et al. [15]. The general idea is to start with the most fundamental equations of motion
for N coupled particles, and focus on one of them. The rest are considered as the
“heat bath”. One then averages over the particles in the heat bath and aims to obtain
the equation of motion for the particle we are focused on [30]. This continues to be
an active area of research for both the classical and quantum case.
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4 Statistical Properties of Velocity

Considering
dv(t)

dt
= −βv(t) + F(t) (21)

as an ordinary differential equation, the formal solution is (See Appendix 1)

v(t) = e−βtv(0) + e−βt
∫ t

0
eβt′F(t′)dt′ (22)

where v(0) is the initial velocity. We obtain the statistical properties of v(t) by
manipulating Eq. (22) and then taking averages.

4.1 Average Velocity

We take the mean of both sides of Eq. (22) and assume that the averaging operator
can be brought inside the integral; then we have

〈v〉t = 〈v〉0 e−βt + e−βt
∫ t

0
eβt′ 〈F(t′)

〉
dt′ (23)

Using Eq. (8), we have that
〈v〉t = 〈v〉0 e−βt (24)

The limits of 〈v〉t at zero and infinity are,

〈v〉t→∞ → 0 (25)

〈v〉t→0 ∼ 〈v〉0 (1 − βt) (26)

4.2 Second Moment

Toobtain the secondmoment,we square the deterministic solution, Eq. (22), to obtain

v2(t) = e−2βtv2(0) + e−2βt
∫ t

0
eβt′F(t′)dt′

∫ t

0
eβt′′F(t′′)dt′′ + 2e−2βtv(0)

∫ t

0
eβsF(t′)dt′

(27)

and again take expectation values of both sides, which yields

〈
v2

〉
t
= e−2βtv2(0) + e−2βt

∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′dt′′ + 2e−2βt

∫ t

0
eβs 〈

v(0)F(t′)
〉
dt′

(28)
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Assuming that 〈
v(0)F(t′)

〉 = 0 (29)

then 〈
v2

〉
t = e−2βt

〈
v2

〉
0 + e−2βt

∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′dt′′ (30)

Evaluation of the second term is done in Appendix 2,

e−2βt
∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′dt′′ = D

β
(1 − e−2βt) (31)

Substituting this result in Eq. (30) we have

〈
v2

〉
t = e−2βt

〈
v2

〉
0 + D

β
(1 − e−2βt) (32)

which can also be written as

〈
v2

〉
t
= D

β
+

(〈
v2

〉
0 − D

β

)
e−2βt (33)

Limits. The limiting value for time going to infinity is

〈
v2

〉
t→∞ −→ D

β
(34)

For small times we have

〈
v2

〉
t→0 → D

β
+

(〈
v2

〉
0 − D

β

)
(1 − 2βt) = v2

0 − 2βt

(〈
v2

〉
0 − D

β

)
(35)

giving 〈
v2

〉
t→0 → 〈

v2
〉
0 (1 − 2βt) + 2Dt (36)

Derivative of
〈
v2

〉
t . We will see in Sect. 4.6 that the derivative of

〈
v2

〉
t plays an

important role. We calculate it here. Differentiation of Eq. (33) gives

d

dt

〈
v2

〉
t = −2β

(〈
v2

〉
0 − D

β

)
e−2βt (37)

and we note that
d

dt

〈
v2

〉
t
→ 0 as t → ∞ (38)
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4.3 Standard Deviation

The standard deviation of velocity at time t is defined by

σ 2
v (t) = 〈

(v(t) − 〈v〉t)2
〉 = 〈

v2
〉
t
− 〈v〉2t (39)

Using the values given by Eqs. (33) and (24), we have

σ 2
v (t) = D

β
+

(
v2
0 − D

β

)
e−2βt − 〈v〉20 e−2βt (40)

or

σ 2
v (t) = D

β

(
1 − e−2βt

)
(41)

Limits. The limit for infinite time is

σ 2
v (t) → D

β
t → ∞ (42)

It is important to appreciate that indeed σ 2
v (t) goes to a constant for infinite time.

This is important because the standard deviation of velocity is proportional to tem-
perature. The fact that σ 2

v (t) goes to constant value is consistent with what is called
the equipartition theorem. In this case, it implies that the Brownian particles achieve
the same value as that of the atoms that are causing the movement of the Brownian
particle.

For the small time limit we have

σ 2
v (t) ∼ 2Dt t → 0 (43)

Deviation from initial velocity. It is also of interest to define the deviation from the
initial velocity. We define it by way of

λ2
v0

= 〈
(v(t) − 〈v〉0)2

〉 = 〈
v2〉

t − 2 〈v〉t 〈v〉0 + 〈v〉20 (44)

Using Eqs. (33) and (24) we obtain

λ2
v0

= e−2βt
〈
v2

〉
0 + D

β
(1 − e−2βt) − 2 〈v〉0 e−βt + 〈v〉20 (45)

= e−2βt
〈
v2

〉
0 + 〈v〉20

(
1 − 2e−βt

) + D

β
(1 − e−2βt) (46)

and therefore

λ2
v0

= e−2βt
〈
v2

〉
0 − 〈v〉20

(
2e−βt − 1

) + D

β
(1 − e−2βt) (47)
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4.4 Correlation and Covariance of Velocity

If two random variables are independent, then the joint probability distribution is the
product of the individual distributions for each of the variables. A cruder but more
accessible measure is the expected value of the product of the two random variables,
〈XY〉, where X and Y are the random variables. If the probability distribution is a
product of the two distributions, one says that the two variables are independent, in
which case, 〈XY〉 = 〈X〉 〈Y〉. Therefore, a measure of dependence is the excess of
〈XY〉 over 〈X〉 〈Y〉. This is called the covariance

Cov(X,Y) = 〈XY〉 − 〈X〉 〈Y〉 (48)

We point out that zero covariance does not necessarily imply that the two variables
are independent, but the covariance does give a measure of the dependence of two
variables.

For our case we take the two variables as the velocities at two different times,
namely at time t and time s. We write

Cov(v(t), v(s)) = 〈v(t)v(s)〉 − 〈v〉t 〈v〉s (49)

When we have a stochastic process such as the one we are considered here, quantities
such as 〈v(t)v(s)〉 are called two-time autocorrelation functions.

Writing Eq. (22) for times t and s, and multiplying the two expressions we have

v(t)v(s) =
(
e−βtv(0) + e−βt

∫ t

0
eβt′F(t′)dt′

) (
e−βsv(0) + e−βs

∫ s

0
eβt′′F(t′′)dt′′

)

(50)

Taking expectation values gives

〈v(t)v(s)〉 = 〈
v2〉

0 e
−β(t+s) + e−β(t+s)

∫ t

0

∫ s

0
eβt′eβt′′ 〈F(t′)F(t′′)

〉
dt′dt′′ (51)

In Appendix 3 we evaluate the second term of Eq. (51) to give

∫ t

0

∫ s

0
eβt′eβt′′ 〈F(t′)F(t′′)

〉
dt′dt′′ = D

β

{(
e2βs − 1

)
t > s(

e2βt − 1
)
t < s

(52)

Therefore

〈v(t)v(s)〉 = e−β(t+s)
〈
v2

〉
0 + D

β
e−β(t+s)

{(
e2βs − 1

)
t > s(

e2βt − 1
)
t < s

(53)

= e−β(t+s)
〈
v2〉

0 + D

β

{(
e−β(t−s) − e−β(t+s)

)
t > s(

e−β(s−t) − e−β(t+s)
)
t < s

(54)
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This can be written as

〈v(t)v(s)〉 = e−β(t+s)
〈
v2

〉
0 + D

β

(
e−β(|t−s| − e−β(t+s)

)
(55)

For t positive, we have
〈v(t)v(0)〉 = e−βt

〈
v2

〉
0 (56)

It is sometimes useful to consider 〈v(t)v(t + τ)〉 which can be obtained form
Eq. (55) by setting

s = t + τ (57)

in which case we have

〈v(t)v(t + τ)〉 = e−β(2t+τ)
〈
v2

〉
0 + D

β

(
e−β|τ | − e−β(2t+τ)

)
(58)

which may also be written as

〈v(t)v(t + τ)〉 = e−β(2t+τ)
〈
v2

〉
0 + D

β

{ (
eβτ − e−β(2t+τ)

)
τ < 0(

e−βτ − e−β(2t+τ)
)

τ > 0
(59)

Limits. Consider the large time limit. Taking t → ∞ in Eq. (59) we obtain

〈v(t)v(t + τ)〉t→∞ = D

β

{
eβτ τ < 0
e−βτ τ > 0

(60)

which shows that for large times, the autocorrelation function becomes independent
of time.

The covariance. Using Eqs. (54) and (24) we have that

Cov(v(t), v(s)) = 〈v(t)v(s)〉 − 〈v〉t 〈v〉s (61)

= e−β(t+s)
〈
v2

〉
0 + D

β

(
e−β(|t−s| − e−β(t+s)

) − 〈v〉20 e−β(t+s) (62)

giving

Cov(v(t), v(s)) = e−β(t+s)σ 2
v (0) + D

β

(
e−β(|t−s| − e−β(t+s)

)
(63)

where we have defined the standard deviation of velocity at time zero as

σ 2
v (0) = (〈

v2
〉
0 − 〈v〉20

)
(64)
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We also have

Cov(v(t), v(t + τ)) = e−β(2t+τ)σ 2
v (0) + D

β

{ (
eβτ − e−β(2t+τ)

)
τ < 0(

e−βτ − e−β(2t+τ)
)

τ > 0
(65)

For large times

Cov(v(t), v(t + τ))t→∞ = D

β

{
eβτ τ < 0
e−βτ τ > 0

(66)

4.5 Correlation of Velocity and Force

It is particularly interesting to evaluate the two-time cross correlation of force and
velocity. Langevin implied that it is zero, but Manoliu and Kittel showed it is not
[29]. Multiplying the velocity equation, Eq. (22), at time t, by the force at time t′, we
have

v(t)F(t′) = e−βtv(0)F(t′) + e−βt
∫ t

0
eβ ′t′′F(t′′)F(t′)dt′′ (67)

Taking expectation values we have

〈
v(t)F(t′)

〉 = e−βt
〈
v(0)F(t′)

〉 + e−βt
∫ t

0
eβ ′t′′ 〈F(t′′)F(t′)

〉
dt′′ (68)

Assuming that
〈
v(0)F(t′)

〉 = 0, we have

〈
v(t)F(t′)

〉 = e−βt
∫ t

0
eβ ′t′′ 〈F(t′′)F(t′)

〉
dt′′ (69)

= 2De−βt
∫ t

0
eβ ′t′′δ(t′ − t′′)dt′′ (70)

Clearly ∫ t

0
eβ ′t′′δ(t′ − t′′)dt′′ = eβ ′t′ 0 < t′ < t (71)

and therefore 〈
v(t)F(t′)

〉 =
{
2De−β(t−t′) 0 < t′ < t

0 otherwise
(72)

Consider now 〈v(t)F(t + τ)〉 with τ positive. Accordingly

〈v(t)F(t + τ)〉 = 0 τ > 0 (73)
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This a reflection of causality in that a future force has no effect on the present velocity.
Now consider

〈v(t)F(t − τ)〉 =
{
2De−βτ 0 < τ < t

0 otherwise
(74)

which shows that as long as the force acts at a time earlier than t, the velocity is
affected by it.
The equal time case: For the equal time case, it is better to redo the calculation. In
Eq. (67), take t = t′,

v(t)F(t) = e−βtv(0)F(t) + e−βt
∫ t

0
eβt′F(t′)F(t)dt′ (75)

and therefore

〈v(t)F(t)〉 = e−βt
∫ t

0
eβt′ 〈F(t′)F(t)

〉
dt′ (76)

= 2De−βt
∫ t

0
eβt′δ(t − t′)dt′ (77)

We take ∫ t

0
eβt′δ(t − t′)dt′ = 1

2
eβt (78)

to yield,
〈v(t)F(t)〉 = D (79)

4.6 Energy Balance

For deterministic systems that obey Newton’s law, one attempts to obtain a conser-
vation law or an equation for energy flow by the following procedure, as applied to
the Langevin equation. Multiply the Langevin equation by v(t) to obtain

v(t)
dv(t)

dt
= −βv2(t) + v(t)F(t) (80)

and rewrite it as
1

2

dv2(t)

dt
= −βv2(t) + v(t)F(t) (81)

The kinetic energy (per unit mass) is defined by

T = 1

2
v2(t) (82)
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The change in T is therefore

d

dt
T = −2βT + v(t)F(t) (83)

Taking expectation values of both sides we have

d

dt
〈T〉 = −2β 〈T〉 + 〈v(t)F(t)〉 (84)

This shows that the change in 〈T〉 is governed by two terms. The term 〈v(t)F(t)〉
increases it and the term−2β 〈T〉 decreases it. One says that 〈v(t)F(t)〉 is the average
work done and −2β 〈T〉 is the dissipation.

If we use Eq. (79)
〈v(t)F(t)〉 = D (85)

then we have that
d

dt
〈T〉 = −2β 〈T〉 + D (86)

Now if we assume that
d

dt
〈T〉 = 0 t = ∞ (87)

then

〈T〉 = D

2β
t = ∞ (88)

Equation (87) was assumed by Langevin. It is reasonable on statistical mechanics
grounds. However, Eq. (87) follows directly from the Langevin equation as was seen
in Sect. 4.2 and was first shown by Uhlenbeck and Ornstein.

5 Statistical Properties of Position

We now obtain the statistical properties of position, x(t), that is governed by

dx(t)

dt
= v(t) (89)

There are three approaches one may take:

Approach 1. Solving symbolically Eq. (89) we have,

x(t) = x(0) +
∫ t

0
v(t′) dt′ (90)
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Since we have derived the statistical properties of v(t), we can obtain the statistical
properties of x(t). Note that once we have the statistical properties of v(t), we do not
need the statistical properties of F(t).

Approach 2. Combing Eqs. (22) and (89) we have the differential equation

d2x(t)

dt2
= −β

dx(t)

dt
+ F(t) (91)

This a second order differential equation whose formal solution is given by (see
Appendix 1)

x(t) = x(0) + v(0)

β
(1 − e−βt) + 1

β

∫ t

0

(
1 − eβ(t′−t)

)
F(t′)dt′ (92)

We can now use the same methods we used for the Langevin equation for velocity
but of course we need the statistical properties of F(t′).

Approach 3. It is also of interest to write x(t) in terms of v(t) directly. In Appendix
A we show that

x(t) = x(0) − 1

β
(v(t) − v(0)) + 1

β

∫ t

0
F(t′) (93)

This explicitly expresses x(t) in terms of v(t) and hence the statistical properties of
the two can be directly related.

5.1 Average Position

Taking the expectation value of Eq. (90)

〈x〉t = 〈x〉0 +
∫ t

0

〈
v(t′)

〉
dt′ (94)

and using Eq. (24)
〈v〉t = 〈v〉0 e−βt (95)

we have

〈x〉t = 〈x〉0 + 〈v〉0
∫ t

0
e−βt′ dt′ (96)

giving the expectation value of position at time t,

〈x〉t = 〈x〉0 + 〈v〉0
β

(1 − e−βt) (97)
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Limits. The limits at infinity and zero are

〈x〉t→∞ → 〈x〉0 + 〈v〉0
β

(98)

〈x〉t→0 → 〈x〉0 + 〈v〉0 t (99)

5.2 Standard Deviation of Position

We shall first evaluate the standard deviation of position at time t, defined by

σ 2
x (t) = 〈

(x(t) − 〈x〉t)2
〉

(100)

In Appendix 4 we show that

σ 2
x (t) = σ 2

x (0) +
∫ t

0

∫ t

0

D

β

(
e−β|t′−t′′| − e−β(t′+t′′)

)
dt′dt′′ (101)

and we further show that

∫ t

0

∫ t

0

D

β

(
e−β(|t′−t′′| − e−β(t′+t′′)

)
dt′dt′′ = 2D

β2
t + D

β3

(
4e−βt − 3 − e−2βt

)

(102)
Therefore

σ 2
x (t) = σ 2

x (0) + 2D

β2
t + D

β3

(
4e−βt − 3 − e−2βt

)
(103)

5.3 Second Moment of Position

Writing Eq. (103) explicitly

〈
x2

〉
t − 〈x〉2t = 〈

x2
〉
0 − 〈x〉20 + 2D

β2
t + D

β3

(
4e−βt − 3 − e−2βt

)
(104)

and squaring Eq. (97)

〈x〉2t = 〈x〉20 + 〈v〉20
β2

(1 − e−βt)2 + 2
〈x〉0 〈v〉0

β
(1 − e−βt) (105)
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we have that

〈
x2

〉
t = 〈

x2
〉
0 − 〈v〉20

β2
(1 − e−βt)2 − 2

〈x〉0 〈v〉0
β

(1 − e−βt) (106)

+ 2D

β2
t + D

β3

(
4e−βt − 3 − e−2βt

)
(107)

5.4 Limits

For the limits of Eq. (103) we have

σ 2
x (t) ∼ 2D

β2
t t → ∞ (108)

which is Einstein’ result. Also

σx(t) ∼
√
2D

β2
t t → ∞ (109)

which is not differentiable at zero, but of course it does not hold at zero. Historically,
Eq. (109) was derived by different methods and the fact that the derivative does not
exist at zero was taken as a criticism. But of course Einstein was aware that his result
only held for large times.

For small times one obtains that

σ 2
x (t → 0) ∼ D

3
t3 (110)

which is differentiable at zero.

5.5 Deviation from Initial Position

It is also of interest to calculate the deviation from the initial position

λ2
x0(t) = 〈

(x(t) − x(0))2
〉

(111)

Starting with Eq. (92)

x(t) = x(0) + v(0)

β
(1 − e−βt) + 1

β

∫ t

0

(
1 − eβ(t′−t)

)
F(t′)dt′ (112)
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we have

(x(t) − x(0))2 = v2(0)

β2 (1 − e−βt)2 + 1

β2

∫ t

0

∫ t

0

(
1 − eβ(t′−t)

) (
1 − eβ(t′′−t)

)
F(t′)F(t′′)dt′dt′′

+ 2
v(0)

β2 (1 − e−βt)

∫ t

0

(
1 − eβ(t′−t)

)
F(t′)dt′ (113)

Taking expectation values

λ2x0 (t) =
〈
v2

〉
0

β2 (1 − e−βt)2 + 1

β2

∫ t

0

∫ t

0

(
1 − eβ(t′−t)

) (
1 − eβ(t′′−t)

) 〈
F(t′)F(t′′)

〉
dt′dt′′

(114)

In Appendix 5 we show that

1

β2

∫ t

0

∫ t

0

(
1 − eβ(t′−t)

) (
1 − eβ(t′′−t)

)
F(t′)F(t′′)dt′dt′′ = D

β3

[
2βt − 3 + 4e−βt − e−2βt]

(115)

and therefore

λ2
x0(t) =

〈
v2

〉
0

β2
(1 − e−βt)2 + 2D

β2

[
t − 3 − 4e−βt + e−2βt

2β

]
(116)

Using Eqs. (103) and (116), we obtain the relation between σ 2
x (t) and the deviation

from the initial position λ2
x0(t),

σ 2
x (t) = λ2

x0(t) −
〈
v2

〉
t

β2
(1 − e−βt)2 (117)

5.6 Correlation of Position and Force

We now consider the two-time cross-correlation between position and force at dif-
ferent times,

〈
x(t)F(t′)

〉
. Starting with Eq. (92),

x(t) = x(0) + v(0)

β
(1 − e−βt) + 1

β

∫ t

0

(
1 − eβ(t′′−t)

)
F(t′′)dt′′ (118)

and multiplying by the force at time t′, we have

x(t)F(t′) = x(0)F(t′) + v(0)

β
(1 − e−βt)F(t′) + 1

β

∫ t

0

(
1 − eβ(t′′−t)

)
F(t′′)F(t′)dt′′

(119)
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Taking expectation values

〈
x(t)F(t′)

〉 = 2D

β

∫ t

0

(
1 − eβ(t′′−t)

)
δ(t′′ − t′)dt′′ (120)

which evaluates to

〈
x(t)F(t′)

〉 = 2D

β

{
1 − e−β(t−t′) 0 < t′ < t

0 otherwise
(121)

Note that the correlation between position and the force at a later time is zero,

〈x(t)F(t + τ)〉 = 0 τ > 0 (122)

The reason for this is that if the force acts at a time later than the position time, it
will have had no affect on the position. However

〈x(t)F(t − τ)〉 = 2D

β

{
1 − e−βτ 0 < τ < t

0 otherwise
(123)

For equal times,
〈x(t)F(t)〉 = 0 (124)

6 Correlation of Velocity and Position

We now calculate the two time cross correlation function of position and velocity.
Starting with Eq. (90)

x(t) = x(0) +
∫ t

0
v(t′) dt′ (125)

and multiplying by v(t′), we have

x(t)v(t′) = x(0)v(t′) +
∫ t

0
v(t′)v(t′′) dt′′ (126)

Taking expectation values

〈
x(t)v(t′)

〉 = 〈
x(0)v(t′)

〉 +
∫ t

0

〈
v(t′)v(s)

〉
ds (127)

= 〈x〉0
〈
v(t′)

〉 +
∫ t

0

〈
v(t′)v(s)

〉
ds (128)



A Review of Brownian Motion Based Solely on the Langevin Equation … 25

Consider the integral term in Eq. (128). Using Eq. (55) we have

∫ t

0

〈
v(t′)v(s)

〉
ds = 〈v〉20

∫ t

0
e−β(t′+s)ds + D

β

∫ t

0

(
e−β(|t′−s| − e−β(t′+s)

)
ds (129)

But

D

β

∫ t

0

(
e−β(|t′−s| − e−β(t′+s)

)
ds = D

β2

(
2 − 2e−βt′ − e−β(t−t′) + e−β(t+t′)

)
(130)

and also

〈v〉20
∫ t

0
e−β(t′+s)ds = 1

β
〈v〉20 e−βt′(1 − e−βt) (131)

Therefore

∫ t

0

〈
v(t′)v(s)

〉
ds = 1

β
〈v〉20 e−βt′(1 − e−βt) + D

β2

(
2 − 2e−βt′ − e−β(t−t′) + e−β(t+t′)

)

(132)
and hence

〈
x(t)v(t′)

〉 = 〈
x(0)v(t′)

〉 + 〈v〉20
1

β
e−βt′(1 − e−βt)

+ D

β2

(
2 − 2e−βt′ − e−β(t−t′) + e−β(t+t′)

)
(133)

or

〈
x(t)v(t′)

〉 = 〈x(0)v(0)〉 e−βt′ + 2D

β2
+ e−βt′

( 〈v〉20
β

− 2D

β2

)

+
(
D

β2
− 〈v〉20

β

)
e−β(t+t′) − D

β2
e−β(t′−t) (134)

For t = t′,

〈x(t)v(t)〉 = 〈x(0)v(0)〉 e−βt + 2D

β2
+ e−βt

( 〈v〉20
β

− 2D

β2

)

+
(
D

β2
− 〈v〉20

β

)
e−2βt − D

β2
(135)

7 How Did Langevin Solve His Equation?

Langevin’s insight was that the important Einstein result, the expectation value of
the second moment
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〈
x2

〉
t ∼ t t → ∞ (136)

can be obtained without the differential equation for the probability density. He aims
to obtain a ordinary differential equations for

〈
x2

〉
t . Starting with

dv(t)

dt
= −βv(t) + F(t) (137)

he multiplies by x, giving

x(t)
dv(t)

dt
= −βx(t)v(t) + x(t)F(t) (138)

Simple manipulation gives

1

2

d2x2

dt2
= v2 − β

2

dx2

dt
+ F(t)x (139)

This is an equation for x2 which is the quantity hewants. Unfortunately, it is not solely
an equation for x2 because there is a v2 term. Nonetheless he takes expectation values

1

2

d2

dt2
〈
x2

〉 = 〈
v2

〉 − β

2

d

dt

〈
x2

〉 + 〈F(t)x(t)〉 (140)

Again, this equation cannot be solved because
〈
v2

〉
and 〈F(t)x(t)〉 are unknown. But

on physical grounds, he argues that for large times

〈
v2

〉 = constant = c t → ∞ (141)

Of course,weknow that is correct since itwas derived inSect. 4.2.However, Langevin
knew it had to be the case because of a theorem in statistical mechanics called
the equipartition theorem which states that in equilibrium, the temperature of two
constituents of a gas are the same. In this case, the Brownian particle would reach
the same temperature as the atoms surrounding it, and hence have constant velocity
squared. He takes 〈F(t)x〉 it to be zero

〈F(t)x(t)〉 = 0 (142)

with the explanation “evidently null by reason of the irregularity of”.
Putting Eqs. (141) and (142) into Eq. (140), we have

1

2

d2

dt2
〈
x2

〉 = c − β

2

d

dt

〈
x2

〉
(143)

or
d2

dt2
〈
x2

〉 + β
d

dt

〈
x2

〉 = 2c (144)
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Therefore he obtains an equation containing only
〈
x2

〉
. It follows that

d

dt

〈
x2

〉 = 2c

β
+ e−βt (145)

He now further argues that for long times e−βt ∼ 0 in which case

d

dt

〈
x2

〉 ∼ 2c

β
(146)

and therefore (with
〈
x2

〉
0 = 0) we have

〈
x2

〉
t
= 2c

β
t (147)

This is Einstein’s result, derived from a random differential equation and without
knowing the probability density of x. This is the first time that a random differential
equation was solved.

It is of some interest to see if we can use Eq. (140) to obtain the exact answer
for

〈
x2

〉
assuming that we know

〈
v2

〉
t and 〈F(t)x(t)〉 exactly. Considering zero initial

conditions, we know from Eqs. (124) and (33) that (exactly)

〈F(t)x(t)〉 = 0 (148)

and 〈
v2〉

t = D

β

(
1 − e−2βt) (149)

Putting these values into Eq. (140) we have that

1

2

d2

dt2
〈
x2

〉 + β

2

d

dt

〈
x2

〉 = D

β

(
1 − e−2βt) (150)

The solution is 〈
x2

〉
t = 2D

β2
t + D

β3

(
4e−βt − 3 − e−2βt) (151)

which is Eq. (107) with zero initial conditions

8 Non-stationary Power Spectrum of Velocity

The power spectrum gives an indication of the intensities of frequency that exist in a
time function. Wang and Uhlenbeck were the first to consider the power spectrum of
the velocity bywayof theLangevin equation.However, the power spectrum is defined



28 L. Cohen

only for a wide sense stationary processes which means that the autocorrelation
function

〈X(t)X(t + τ)〉 = R(τ ) (152)

is only a function of the difference of the two times. For such a situations, the power
spectrum of the stochastic process X(t) is

S(ω) = 1√
2π

∫
R(τ )e−iτωdτ (153)

Can we apply this theorem to velocity? Examining Eq. (59), which we repeat here,

〈v(t)v(t + τ)〉 = e−β(2t+τ)
〈
v2

〉
0 + D

β

(
e−β|τ | − e−β(2t+τ)

)
(154)

we see that it is not stationary, that is, it is not only a function of τ only. Therefore,
we cannot use Eq. (153). However for large times

〈v(t)v(t + τ)〉t→∞ = D

β

{
eβτ τ < 0
e−βτ τ > 0

(155)

which shows that for large times, the autocorrelation function is just a function of τ .
Therefore in some sense, Eq. (153) can be used. Wang and Uhlenbeck obtained the
following power spectrum for v(t)

Sv(ω) = 1√
2π

N0

β2 + ω2
(156)

which holds only for large times.
Galleani and Cohen obtained the time dependent spectrum for velocity [18, 19].

The time dependent spectrum is defined by way of the Wigner spectrum, W (t, ω),
which is commonly called the instantaneous spectrum,

W (t, ω) = 1

2π

∫
〈v(t − τ/2)v(t + τ/2)〉 e−iτωdτ (157)

It is the ensemble average of theWigner distribution [9, 10, 44]. TheWigner spectrum
is a function that describes the intensity in both time and frequency. The exactW (t, ω)

has been calculated and is given by

W v(t, ω) = 1

π

(〈
v2
0

〉 − D

β

)
e−2βt sin 2ωt

ω
+ D

π

1

β2 + ω2

− D

π

e−2βt

β2 + ω2
(cos 2ωt − ω/β sin 2ωt) t ≥ 0
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For the infinite time limit,

lim
t→0

W v(t, ω) = 2D

β2 + ω2
(158)

which is the classical Wang-Uhlenbeck result.

Appendix 1: Formal Solutions

Treating the Langevin equation as an ordinary differential equation with a driving
force F(t), the solution, with initial condition v(0) is

v(t) = e−βtv(0) +
∫ t

0
eβ(t′−t)F(t′)dt′ (159)

This can be verified by direct substitution. Since

x(t) = x(0) +
∫ t

0
v(t′) dt′ (160)

we have

x(t) = x(0) +
∫ t

0

[
e−βt′v(0) +

∫ t′

0
eβ(t′′−t′)F(t′′)dt′′

]
dt′ (161)

= x(0) + v(0)

β
(1 − e−βt) +

∫ t

0

∫ t′

0
eβ(t′′−t′)F(t′′)dt′′dt′ (162)

But

∫ t

0

∫ t′

0
eβ(t′′−t′)F(t′′)dt′′dt′ =

∫ t

0
e−βt′

∫ t′

0
eβt

′′
F(t′′)dt′′ dt′ (163)

= − 1

β
e−βt

∫ t

0
eβsF(t′)dt′ + 1

β

∫ t

0
F(t′)dt′ (164)

= − 1

β

∫ t

0

(
eβ(t′−t) − 1

)
F(t′)dt′ (165)

Therefore

x(t) = x(0) + v(0)

β
(1 − e−βt) + 1

β

∫ t

0

(
1 − eβ(t′−t)

)
F(t′)dt′ (166)

Also, rewrite Eq. (159) as

∫ t

0
eβ(t′−t)F(t′)dt′ = v(t) − e−βtv(0) (167)
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and substitute it into Eq. (166) to obtain

x(t) = x(0) + v(0) − v(t)

β
+ 1

β

∫ t

0
F(t′)dt′ (168)

This gives a direct relation between x and v.
In addition

(x(t) − x(0))β + (v(t) − v(0)) =
∫ t

0
F(t′)dt′ (169)

and squaring gives

(x(t) − x(0))2β2 + (v(t) − v(0))2 + (x(t) − x(0))(v(t) − v(0))2β =
(∫ t

0
F(t′)dt′

)2

(170)
and using

β(x(t) − x(0)) = −(v(t) − v(0) +
∫ t

0
F(t′)dt′ (171)

gives

(x(t) − x(0))2β2 = (v(t) − v(0))2 − 2(v(t) − v(0))
∫ t

0
F(t′)dt′ +

(∫ t

0
F(t′)dt′

)2

(172)

This gives a direct relation between x2(t) and v2(t).

Appendix 2: Evaluation of
∫ t
0

∫ t
0 e

β(t′+t′′) 〈
F(t′)F(t′′)

〉
dt′dt′′

Consider the evaluation of

∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′dt′′ (173)

Using 〈
F(t′)F(t′′)

〉 = 2Dδ(t′ − t′′) (174)

we have

∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′′dt′ = 2D

∫ t

0

∫ t

0
eβ(t′+t′′)δ(t′ − t′′)dt′′dt′ (175)

The inner integral gives

∫ t

0
eβ(t′+t′′)δ(t′ − t′′)dt′′ =

{
2De2βt

′
0 < t′ < t

0 otherwise
(176)
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Hence

∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′dt′′ = 2D

∫ t

0
e2βt

′
dt′ = D

β
(e−2βt − 1) (177)

Multiplying both sides by e−2βt we have

e−2βt
∫ t

0

∫ t

0
eβ(t′+t′′) 〈

F(t′)F(t′′)
〉
dt′dt′′ = D

β
(1 − e−2βt) (178)

which is Eq. (31) of the main text.

Appendix 3: Evaluation of
∫ t
0

∫ s
0 eβt′eβt′′ 〈F(t′)F(t′′)

〉
dt′dt′′

We evaluate ∫ t

0

∫ s

0
eβt

′
eβt

′′ 〈
F(t′)F(t′′)

〉
dt′dt′′ (179)

which enters in the valuation of 〈v(t)v(s)〉 as per Eq. (51). We have

∫ t

0

∫ s

0
eβt

′
eβt

′′ 〈
F(t′)F(t′′)

〉
dt′dt′′ =

∫ t

0

∫ s

0
eβt

′
eβt

′′
δ(t′ − t′′)dt′dt′′ (180)

= 2D
∫ t

0
e2βt

′
dt′ 0 < t′ < s (181)

Imposing the constraint 0 < t′ < s on the remaining integral we have that

∫ t

0
e2βt

′
dt′ =

⎧
⎨
⎩

1
2β

(
e2βs − 1

)
t > s

1
2β

(
e2βt − 1

)
t < s

(182)

Therefore

∫ t

0

∫ s

0
eβt

′
eβt

′′ 〈
F(t′)F(t′′)

〉
dt′dt′′ = D

β

⎧
⎨
⎩

(
e2βs − 1

)
t > s(

e2βt − 1
)
t < s

(183)

Appendix 4: Standard Deviation of x(t)

We obtain the standard deviation of position,

σ 2
x (t) =

〈(
x(t) − 〈x〉t

)2〉 = σ 2
x (0) + 2D

β2 t + D

β3

(
4e−βt − 3 − e−2βt

)
(184)
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Staring with

x(t) = x(0) +
∫ t

0
v(t′) dt′ (185)

and

〈x〉t = 〈x〉0 + 1

β
〈v〉0 (1 − e−βt) (186)

and subtracting Eq. (186) from Eq. (185) we have

x(t) − 〈x〉t = x(0) − 〈x〉0 − 1

β
〈v〉0 (1 − e−βt) + x(0) +

∫ t

0
v(t′) dt′ (187)

=
∫ t

0
v(t′) dt′ − 1

β
〈v〉0 (1 − e−βt) (188)

Squaring and taking expectation values yields

σ 2
x (t) = σ 2

x (0) +
∫ t

0

∫ t

0

〈
v(t′)v(t′′)

〉
dt′dt′′ + 1

β2
〈v〉20 (1 − e−βt)2 − 2

β
〈v〉0 (1 − e−βt)

∫ t

0

〈
v(t′)

〉
dt′

(189)

Using Eq. (24), we have that

∫ t

0

〈
v(t′)

〉
dt′ =

∫ t

0
〈v〉0 e−βt′ dt′ = 1

β
〈v〉0 (1 − e−βt) (190)

Therefore

σ 2
x (t) = σ 2

x (0) +
∫ t

0

∫ t

0

〈
v(t′)v(t′′)

〉
dt′dt′′ − 1

β2
〈v〉20 (1 − e−βt)2 (191)

But we know from Eq. (55) that

〈v(t)v(s)〉 = e−β(t+s)
〈
v2

〉
0

+ D

β

(
e−β(|t−s| − e−β(t+s)

)
(192)

and therefore

σ 2
x (t) = σ 2

x (0) + 〈
v2

〉
0

∫ t

0

∫ t

0
e−β(t′+t′′)dt′dt′′ + D

β

∫ t

0

∫ t

0

(
e−β(|t′−t′′| − e−β(t′+t′′)

)
dt′dt′′

(193)

− 1

β2
〈v〉20 (1 − e−βt)2 (194)

But clearly 〈
v2

〉
0

∫ t

0

∫ t

0
e−β(t′+t′′)dt′dt′′ = 1

β2
〈v〉20 (1 − e−βt)2 (195)

and therefore
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σ 2
x (t) = σ 2

x (0) + D

β

∫ t

0

∫ t

0

(
e−β(|t′−t′′| − e−β(t′+t′′)

)
dt′dt′′ (196)

We now evaluate the integral in Eq. (196). First consider

∫ t

0

(
e−β(|t′−t′′|) dt′ =

∫ t′′

0

(
e−β(t′′−t′)

)
dt′ +

∫ t

t′′

(
e−β(t′−t′′)

)
dt′ (197)

= 1

β
e−βt′′ (eβt

′′ − 1) − eβt
′′ 1
β

(e−βt − e−βt′′ ) (198)

= 1

β

(
1 − e−βt′′ − e−βteβt

′′ + 1
)

(199)

or ∫ t

0

(
e−β(|t′−t′′|) dt′ = 1

β

(
2 − e−βt′′ − e−βteβt

′′)
(200)

Integrating over t′′ we obtain
∫ t

0

1

β

(
2 − e−βt′′ − e−βteβt

′′)
dt′′ = 1

β

1

β

(
2t + 1

β
(e−βt − 1) − 1

β
e−βt(eβt − 1)

)

(201)

= 1

β2

(
2t + 2

β
(e−βt − 1)

)
(202)

Giving ∫ t

0

∫ t

0

(
e−β(|t′−t′′|) dt′dt′′ = 1

β2

(
2t + 2

β
(e−βt − 1)

)
(203)

The second integral is

∫ t

0

∫ t

0
e−β(t′+t′′) dt′dt′′ = 1

β2 (e−βt − 1)2 (204)

Subtracting Eq. (203) from Eq. (204) and multiplying by D
β we have

D

β

∫ t

0

∫ t

0

(
e−β(|t′−t′′| − e−β(t′+t′′)

)
dt′dt′′ = D

β

[
1

β2

(
2t + 2

β
(e−βt − 1)

)
− 1

β2 (e−βt − 1)2
]

(205)

which simplifies to

D

β

∫ t

0

∫ t

0

(
e−β(|t′−t′′| − e−β(t′+t′′)

)
dt′dt′′ = 2D

β2 t + D

β3

(
4e−βt − 3 − e−2βt

)
(206)
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Appendix 5: Evaluation of Eq. (115)

We show Eq. (115) of the text. We have that

1

β2

∫ t

0

∫ t

0

(
1 − eβ(t′−t)

) (
1 − eβ(t′′−t)

)
F(t′)F(t′′)dt′dt′′ (207)

= 1

β2

∫ t

0

∫ t

0

(
1 − eβ(t′−t)

) (
1 − eβ(t′′−t)

)
2Dδ(t′ − t′′)dt′dt′′ (208)

= 2D

β2

∫ t

0

(
1 − eβ(t′−t)

)2
dt′ (209)

= 2D

β2

∫ t

0

[
1 − 2eβ(t′−t) + e2β(t′−t)

]
dt′ (210)

= 2D

β2

[
t − 2

β
eβ(t′−t) + 1

2β
e2β(t′−t)

]
|t0 (211)

= 2D

β2

[
t − 2

β
+ 1

2β
+ 2

β
e−βt − 1

2β
e−2βt

]
(212)

Therefore

1

β2

∫ t

0

∫ t

0

(
1 − eβ(t′−t)

) (
1 − eβ(t′′−t)

)
F(t′)F(t′′)dt′dt′′ = D

β3

[
2βt − 3 + 4e−βt − e−2βt

]

(213)
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Geometry-Fitted Fourier-Mellin
Transform Pairs

Darren Crowdy

Abstract The construction of novel Fourier/Mellin-type transform pairs that are
tailor-made for given planar regions within the special class of circular domains is
surveyed. Circular domains are those having boundary components that are either
circular arcs or straight lines. The new transform pairs generalize the classical Fourier
and Mellin transforms. These geometry-fitted transform pairs can be used to great
advantage in solving boundary value problems defined in these domains.

Keywords Fourier transform · Mellin transform · Geometric function theory

1 Introduction

This article surveys some of the mathematical ideas laid out in the author’s plenary
lecture at 10th International ISAAC Meeting in Macau in 2015. The topic is the
construction of novel Fourier-Mellin type transform pairs that are “tailor-made” for
given planar domains within a special class.

The class of domains amenable to the construction—at the time of writing at
least—is the class of circular domains, either simply or multiply connected, having
boundary components made up of straight lines, arcs of circles, or a mixture of both.
Figure1 shows examples: a simply connected convex quadrilateral (a polygon), a
simply connected lens-shaped domain (a circular polygon), and the “disc-in-channel”
geometry (a doubly connected circular domain) that arises in many applications.

The author’s recent results in this area have been inspired by the extensive body
of mathematical work over the last few decades pioneered by A.S. Fokas and col-
laborators, and now commonly referred to as the Fokas method [11, 12]. That work
describes a unified transform approach to initial and boundary value problems for
both linear and nonlinear integrable partial differential equations. In one strand of
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Fig. 1 Example circular domains: a convex polygon, a lens-shaped circular-arc domain, and the
“disc-in-channel” geometry

this work a new constructive approach to the solution of boundary value problems
for Laplace’s equation in convex polygons has been described by Fokas and Kapaev
[10] with the extension to biharmonic fields made by Crowdy and Fokas [9]. That
work was based on an analytical formulation involving the spectral analysis of a
Lax pair and use of Riemann-Hilbert methods. The new approach outlined here—
and described in more detail in [2, 3]—has a more geometrical flavour and has led
the way to generalization of results previously pertaining only to simply connected
convex polygons to the much broader class of circular domains, including multiply
connected cases.

We first review the results described in [2, 3]. Given a bounded N -sided con-
vex polygon with straight line edges {Sn|n = 1, ..., N } inclined at angles {χn|n =
1, ..., N } to the positive real axis (e.g., the quadrilateral shown in Fig. 1)we can derive
the following transform pair to represent a function f (z) analytic in the polygon:

f (z) = 1

2π

N∑
j=1

∫

L
ρ j j (k)e

−iχ j eie
−iχ j kzdk, ρmn(k) =

∫

Sn

f (z′)e−ie−iχm kz′
dz′, (1)

where L is the ray along the positive real axis in the k-plane (see Fig. 2) and
where the spectral functions (or “transforms”) satisfy the so-called global relations
[2, 11, 12]

N∑
n=1

ρmn(k) = 0, k ∈ C, m = 1, ..., N . (2)

Only the diagonal elements of what we call the spectral matrix ρmn(k) appear in the
inverse transform formula for f (z).

In precise analogy, given a bounded convex N -sided circular polygon with edges
that are arcs of circles with centres {δn|n = 1, ..., N } and radii {qn|n = 1, ..., N }
(e.g., the lens-shaped domain of Fig. 1) we can derive the following transform pair
to represent a function f (z) analytic in it:
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f (z) = 1

2πi

N∑
j=1

{∫

L1

ρ j j (k)

1 − e2πik

[
z − δ j

q j

]k

dk +
∫

L2

ρ j j (k)

[
z − δ j

q j

]k

dk

+
∫

L3

ρ j j (k)e2πik

1 − e2πik

[
z − δ j

q j

]k

dk

}
,

ρmn(k) = 1

qm

∫

Cn

[
z′ − δm

qm

]−k−1

f (z′)dz′, (3)

where L1, L2 and L3 are the contours in the k-plane (see Fig. 2) andwhere the spectral
functions satisfy the global relations

N∑
n=1

ρmn(k) = 0, k ∈ −N, m = 1, ..., N . (4)

Again, only the diagonal elements of spectral matrix ρmn(k) appear in the inverse
transform formula for f (z).

The plan of the article is as follows. First, in Sects. 2 and 3, we discuss the geo-
metrical construction of the transform pairs (1) and (3). In Sect. 4 we combine those
general ideas to construct a useful Fourier-Mellin type transform pair for the dou-
bly connected disc-in-channel geometry of Fig. 1. Finally, Sect. 5 illustrates how the
transform pairs can be used in practice by solving an accessory parameter prob-
lem in conformal mapping theory and finding a useful conformal mapping function
associated with the disc-in-channel geometry of Fig. 1.

Fig. 2 The basic geometrical units in the z-plane, shown left, with the corresponding integration
contours in the k-plane shown to the right (0 < r < 1)
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2 Geometrical Approach to Transform Pairs

Suppose a point z′ lies on some finite length slit on the real axis and z is in the
upper-half plane (the left schematic of Fig. 3) then

0 < arg[z − z′] < π. (5)

It follows that ∫

L
eik(z−z′)dk =

[
eik(z−z′)

i(z − z′)

]∞

0

= 1

i(z′ − z)
(6)

or,
1

z′ − z
= i

∫

L
eik(z−z′)dk, 0 < arg[z − z′] < π. (7)

It is easy to check that the contribution from the upper limit of integration vanishes
for the particular choices of z′ and z to which we have restricted consideration.

On the other hand, suppose z′ lies on some other finite length slit making angle
χ with the positive real axis and suppose that z is in the slanted half plane shown
shaded in Fig. 3 (the half plane “to the left” of the slit as one follows its tangent with
uniform inclination angle χ). Now the transformation

z′ �→ e−iχ(z′ − α), z �→ e−iχ(z − α), (8)

for example, where the (unimportant) constant α is shown in Fig. 3, takes the slit to
the real axis, and z to the upper-half plane, and

0 < arg[e−iχ(z − α) − e−iχ(z′ − α)] < π. (9)

Fig. 3 Geometrical positioning of z and z′ for the validity of (6) and (11)
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Hence, on use of (7) with the substitutions (8), we can write

1

e−iχ(z′ − α) − e−iχ(z − α)
= i

∫

L
eik(e

−iχ(z−α)−e−iχ(z′−α))dk, (10)

or, on cancellation of α and rearrangement,

1

z′ − z
= i

∫

L
eie

−iχk(z−z′)e−iχdk. (11)

Now consider a bounded convex polygon P with N sides {Sj | j = 1, . . . , N }.
Figure4 shows an example with N = 3. For a function f (z) analytic in P , Cauchy’s
integral formula provides that for z ∈ P ,

f (z) = 1

2πi

∮

∂P

f (z′)dz′

z′ − z
(12)

or, on separating the boundary integral into a sum over the N sides,

f (z) = 1

2πi

N∑
j=1

∫

Sj

f (z′)
1

(z′ − z)
dz′. (13)

But if side Sj has inclination χ j then (11) can be used, with χ �→ χ j , to reexpress
the Cauchy kernel, that is 1/(z′ − z), uniformly for all z ∈ P and z′ on the respective
sides

Fig. 4 A convex polygon P as an intersection of N = 3 half planes with N angles {χ j | j = 1, 2, 3}.
Formula (11) can be used in the Cauchy integral formula with χ = χ j when z′ is on side S j (for
j = 1, 2, 3)
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f (z) = 1

2πi

N∑
j=1

∫

Sj

f (z′)
{
i
∫

L
eie

−iχ j k(z−z′)e−iχ j dk

}
dz′. (14)

On reversing the order of integration we can write

f (z) = 1

2π

N∑
j=1

∫

L
ρ j j (k)e

−iχ j eie
−iχ j kzdk, (15)

where, for integers m, n between 1 and N , we define the spectral matrix [2] to be

ρmn(k) ≡
∫

Sn

f (z′)e−ie−iχm kz′
dz′, (16)

and where L = [0,∞) is the fundamental contour [2] for straight line edges shown
in Fig. 2. We have then arrived at the transform pair (1).

The spectral matrix elements have their own analytical structure. Observe that,
for any k ∈ C, and for any m = 1, ..., N ,

N∑
n=1

ρmn(k) =
N∑

n=1

∫

Sn

f (z′)e−ie−iχm kz′
dz′ =

∫

∂P
f (z′)e−ie−iχm kz′

dz′ = 0, (17)

where we have used Cauchy’s theorem and the fact that f (z′)e−ie−iχm kz′
(for m =

1, ..., N ) is analytic inside P .

Special case: How does the traditional Fourier transform pair fit into this geometrical
view? Transform pairs for unbounded polygons, such as strips and semi-strips, can
be derived with minor modifications: the only difference is that the global relations
are now valid in restricted parts of the spectral k-plane where the spectral functions
are well defined. If P is the infinite strip −l < Im[z] < l then, geometrically, it is
the intersection of two half planes, so N = 2, with χ1 = 0 and χ2 = π. For any f (z)
analytic in this strip the transform representation derived above is

f (z) = 1

2π

∫

L
ρ11(k)e

ikzdk − 1

2π

∫

L
ρ22(k)e

−ikzdk, (18)

where the spectral functions are

ρ11(k) =
∫ ∞

−∞
f (z)e−ikzdz, ρ12(k) =

∫ −∞+il

∞+il
f (z)e−ikzdz, (19)

ρ21(k) =
∫ ∞

−∞
f (z)eikzdz ρ22(k) =

∫ −∞+il

+∞+il
f (z)eikzdz.
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The global relations in this case are

ρ11(k) + ρ12(k) = 0, ρ21(k) + ρ22(k) = 0, k ∈ R (20)

which, in contrast to the case of a bounded convex polygon (where the global relations
are valid for all k ∈ C), are only valid for k ∈ R. It is clear from their definitions that

ρ22(−k) = ρ12(k) (21)

implying, after a change of variable k �→ −k in the second integral of (18), that we
can write

f (z) = 1

2π

∫

L
ρ11(k)e

ikzdk + 1

2π

∫ −∞

0
ρ12(k)e

ikzdk. (22)

On use of the first global relation in (20) we can eliminate ρ12(k):

f (z) = 1

2π

∫

L
ρ11(k)e

ikzdk − 1

2π

∫ −∞

0
ρ11(k)e

ikzdk = 1

2π

∫ ∞

−∞
ρ11(k)e

ikzdk.

(23)
Dropping the (now unnecessary) subscripts on ρ11(k), we arrive at the well-known
Fourier transform pair

f (z) = 1

2π

∫ ∞

−∞
ρ(k)eikzdk, ρ(k) =

∫ ∞

−∞
f (z)e−ikzdz. (24)

In retrieving the classical Fourier transform in this way we see how our derivation
generalizes it to produce “geometry-fitted” transform pairs for any simply connected
convex polygon.

3 Transform Pairs for Circular Polygons

It is natural to ask if the construction extends to other domains beyond convex poly-
gons. The answer is in the affirmative, and the author [2] has recently shown how to
extend the construction to the much broader class of so-called circular domains, or
circular polygons, including multiply connected ones [3]. The simple convex poly-
gons just considered are a subset of this more general class.

A key step is to establish [2] the following formula valid for |z| < 1:

1

1 − z
=

∫

L1

1

1 − e2πik
zkdk +

∫

L2

zkdk +
∫

L3

e2πik

1 − e2πik
zkdk. (25)

This is the basic identity that replaces the result (7) in the construction of transform
pairs for circular polygons. The fundamental contour (for circular-arc edges [2]) is
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now made up of three components labelled L1, L2 and L3 and shown in Fig. 2. The
parameter r is arbitrary but must be chosen so that 0 < r < 1. In an appendix to [2]
the author shows how to derive (25) in a natural way from the results of the previous
section. We omit details here noting only that the appearance of the expressions zk

in (25) remind us of the classical Mellin transform.
Suppose, more generally, that z is a point inside some circle C j with centre

δ j ∈ C and radius q j ∈ R. Suppose too that z′ is a point on the circle C j . Then
|z − δ j | < |z′ − δ j | and, on use of (25), the Cauchy kernel for z′ on C j and z inside
C j has the spectral representation

1

z′ − z
= 1

(z′ − δ j ) − (z − δ j )

= 1

(z′ − δ j )

1

[1 − (z − δ j )/(z′ − δ j )]
=

∫

L1

1

1 − e2πik
(z − δ j )

k

(z′ − δ j )k+1
dk +

∫

L2

(z − δ j )
k

(z′ − δ j )k+1
dk

+
∫

L3

e2πik

1 − e2πik
(z − δ j )

k

(z′ − δ j )k+1
dk. (26)

It is important, especially for numerical implementations, to write this as

1

z′ − z
=

∫

L1

1

1 − e2πik
1

q j

(
z − δ j

q j

)k [
z′ − δ j

q j

]−k−1

dk

+
∫

L2

1

q j

(
z − δ j

q j

)k [
z′ − δ j

q j

]−k−1

dk

+
∫

L3

e2πik

1 − e2πik
1

q j

(
z − δ j

q j

)k [
z′ − δ j

q j

]−k−1

dk. (27)

Just as a convex N -sided polygon was interpreted geometrically as the intersection
of N half plane regions, a convex N -sided circular polygon can be viewed as the
intersection of N circular discs. Figure5 shows an example circular polygon D with
N = 3 bounded by circular arcs denoted by C1,C2 and C3. The Cauchy integral
formula for a function f (z) analytic in this region is

f (z) = 1

2πi

∮

∂D

f (z′)
z′ − z

dz′ = 1

2πi

N∑
j=1

∫

C j

f (z′)
z′ − z

dz′, (28)

where ∂D denotes the boundary of D and where, in the second equality, the integral
around ∂D has been separated into the N separate integrals around the individual
circular arcs {C j | j = 1, ..., N }.

Now for z ∈ D we can substitute (27) into the Cauchy integral formula (28) when
z′ sits on each of the separate boundary arcs {C j | j = 1, ..., N } to find
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Fig. 5 A circular polygon D
with N = 3 sides denoted by
C1,C2 and C3

δ1

δ2

δ3

C1

C2

C3

q3

q2

q1 D

f (z) = 1

2πi

N∑
j=1

{∫

L1

ρ j j (k)

1 − e2πik

[
z − δ j

q j

]k

dk +
∫

L2

ρ j j (k)

[
z − δ j

q j

]k

dk

+
∫

L3

ρ j j (k)e2πik

1 − e2πik

[
z − δ j

q j

]k

dk

}
, (29)

where we have swapped the order of integration and introduced the N -by-N spectral
matrix

ρmn(k) ≡ 1

qm

∫

Cn

[
z′ − δm

qm

]−k−1

f (z′)dz′. (30)

Global relations for this system are

N∑
n=1

ρmn(k) = 0, k ∈ −N (31)

for anym = 1, 2, . . . , N . There are N such global relations but each is an equivalent
statement of the analyticity of f (z) in the domain D. In this way, we have constructed
the “tailor-made” transform pair (3) for a circular polygon.

4 Disc-in-Channel Geometry

The geometrical construction can be extended tomultiply connected circular domains
[3], and to domains whose boundaries are a combination of straight line and circular-
arc edges. An example geometry, important in applications [4, 5, 13, 15, 16], is the
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disc-in-channel geometry of Fig. 2. The transform representation of a function χ̂(z)
that is analytic and single-valued in such a domain can be shown [3] to be

χ̂(z) = 1

2π

∫ ∞

0
ρ11(k)e

ikzdk + 1

2π

∫ −∞

0
ρ33(k)e

ikzdk
︸ ︷︷ ︸

Fourier−type transform

− 1

2πi

{∫

L1

ρ22(k)

1 − e2πik
1

zk+1
dk +

∫

L2

ρ22(k)
1

zk+1
dk +

∫

L3

ρ22(k)e2πik

1 − e2πik
1

zk+1
dk

}

︸ ︷︷ ︸
Mellin−type transform

,

(32)

where the simultaneous appearance of both “Fourier-type” and “Mellin-type” con-
tributions naturally reflects the hybrid geometry of the domain (and motivates the
designation “Fourier-Mellin transforms” [2]). The elements of the spectral matrix
are defined as follows:

ρ11(k) =
∫ +∞−il

−∞−il
χ̂(z)e−ikzdz = ρ31(k) ρ22(k) = −

∮

|z|=1
χ̂(z)zkdz, (33)

and

ρ33(k) =
∫ −∞+il

∞+il
χ̂(z)e−ikzdz = ρ13(k), (34)

with

ρ21(k) =
∫ +∞−il

−∞−il
χ̂(z)zkdz, ρ23(k) =

∫ −∞+il

∞+il
χ̂(z)zkdz, (35)

and

ρ12(k) = ρ32(k) = −
∮

|z|=1
χ̂(z)e−ikzdz. (36)

The functions appearing in the spectral matrix satisfy the global relations

ρ11(k) + ρ12(k) + ρ13(k) = 0, k ∈ R,

ρ31(k) + ρ32(k) + ρ33(k) = 0, k ∈ R, (37)

which are equivalent, and

ρ21(k) + ρ22(k) + ρ23(k) = 0, k ∈ −N. (38)

As discussed in [3], the doubly connected nature of the domain means that both (37)
and (38) must be analysed to find the unknown spectral functions.
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5 Application to Conformal Mapping

Suppose an application demands the solution for a harmonic field satisfying some
boundary value problem in the disc-in-channel geometry of Fig. 1. If that boundary
value problem is conformally invariant one might think to make use of conformal
mapping. Even so, this is more easily said than done. The domain is doubly con-
nected so a suitable pre-image domain is some annulus ρ < |ζ| < 1 in a parametric
complex ζ-plane (see Fig. 6); the conformal modulus ρ must be found as part of the
construction of the conformal mapping. The domain is also a circular-arc domain
and the construction of conformal mappings from the unit disc, say, to simply con-
nected circular-arc domains is treated in standard texts [1, 14]. The extension of that
theory to doubly connected domains (relevant to this example) has been presented
more recently by Crowdy and Fokas [6], with the extension to arbitrary multiply
connected domains given by Crowdy, Fokas and Green [7]. A well-known difficulty
in all these conformal mapping constructions is solving for the accessory parameters
[1, 6, 7, 14]. In this example ρ is one such accessory parameter.

Wenowshowhow that accessoryparameter problemcanbe conveniently solved—
linearized, in fact—by the generalized Fourier-Mellin transform pairs derived earlier.
The main idea is to use the transformmethod to construct not the conformal mapping
z = z(ζ), say, from the annulus ρ < |ζ| < 1 to the given disc-in-channel geometry,
but its inverse, which we denote by ζ = ζ(z). Actually, the latter function is often
more useful in applications since if a conformally invariant boundary value problem
can be solved in the more convenient annulus geometry ρ < |ζ| < 1 then knowledge
of the transformation ζ = ζ(z) allows immediate solution of the boundary value
problem in the original disc-in-channel geometry.

To proceed with the construction we define the subsidiary function

χ(z) ≡ log ζ(z). (39)

Fig. 6 Conformal mapping problem: to construct the mapping ζ = ζ(z) from the disc-in-channel
geometry to the concentric annulus ρ < |ζ| < 1
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It is reasonable to assume, on grounds of symmetry, that ζ = 1 maps to the end of
the channel as x → ∞ and ζ = −1 maps to x → −∞. We can write

χ(z) = log tanh
(πz

4l

)
+ χ̂(z), (40)

where χ̂(z) → 0 as x → ±∞. The first term is just the logarithm of the conformal
mapping of the channel (without the circular hole) to a unit disc; the latter is eas-
ily derived using elementary considerations (e.g., the classical Schwarz-Christoffel
formula [1, 8]). Since the boundary conditions on χ(z) are

Re[χ(z)] =
{
0, on y = ±l,
log ρ, on |z| = 1,

(41)

then, on use of (40), the following boundary conditions on χ̂(z) pertain:

Re[χ̂(z)] =

⎧
⎪⎪⎨
⎪⎪⎩

log
∣∣∣coth

(πz

4l

)∣∣∣, on y = ±l,

log ρ + log
∣∣∣coth

(πz

4l

)∣∣∣, on |z| = 1.

(42)

Recall that ρ is not known in advance and must be found.
By the symmetries of the proposed mapping between regions we expect that if a

point ζ = eiθ on the upper-half unit circle corresponds to z = x + il then the point
ζ will correspond to z = x − il. This means that, for each x ,

χ(x + il) = log ζ = iθ = −χ(x − il), (43)

implying the relation
χ(z + 2il) = −χ(z). (44)

Since the first term in (40) also satisfies this identity then we infer

χ̂(z + 2il) = −χ̂(z). (45)

It follows that

χ̂ =
{−G(x), on y = l,
G(x), on y = −l,

(46)

for some (purely imaginary) function G(x). On |z| = 1 we will write

χ̂(z) = r(z) + iH(z) (47)
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where

r(z) = log ρ + log
∣∣∣coth

(πz

4l

)∣∣∣ , H(z) = a0 +
∑
m≥1

amz
m + am

zm
, (48)

and where the coefficients a0 ∈ R, {am ∈ C|m ≥ 1} are to be found. We also expect,
on grounds of symmetry,

χ(z) = χ(z), on z = z (49)

implying that

r(z) − iH(z) = r(z) + iH(z), or H(z) = −H(z). (50)

This condition implies a0 = 0 and

an = ibn, (51)

for some real set {bn}. We will make use of these facts later.
The key observation is this: the function χ̂(z) is single-valued and analytic in the

fluid region D. It therefore has a transform representation of the form (32). To find
it, we must determine the unknown spectral functions. This can be done by analysis
of the global relations (37) and (38).

Now (37) and (38) give, respectively,

∫ ∞

−∞
G(x)e−ikx

[
e−kl + ekl

]
dx −

∮

|z|=1
e−ikzχ̂(z)dz = 0, k ∈ R, (52)

∫ ∞

−∞
G(x)

[
1

(x − il)n
+ 1

(x + il)n

]
dx −

∮

|z|=1
χ̂(z)

dz

zn
= 0, n ∈ N. (53)

Equation (52) implies that

2 cosh(kl)G(k) = B(k) + R1(k), (54)

where

G(k) ≡
∫ ∞

−∞
G(x)e−ikxdx (55)

and

B(k) ≡
∮

|z|=1
iH(z)e−ikzdz, R1(k) ≡

∮

|z|=1
r(z)e−ikzdz. (56)
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It follows that

G(k) = B(k) + R1(k)

2 cosh(kl)
(57)

and the inverse Fourier transform provides

G(x) = 1

2π

∫ ∞

−∞

[
B(k) + R1(k)

2 cosh(kl)

]
eikxdk. (58)

The second global relation (53) implies that, for n ∈ N,

∮

|z|=1

iH(z)

zn
dz + R2(n − 1) =

∫ ∞

−∞
G(x)

[
1

(x − il)n
+ 1

(x + il)n

]
dx, (59)

where we define

R2(n) ≡
∮

|z|=1

r(z)

zn+1
dz. (60)

It is easy to show that for n ≥ 1,

∮

|z|=1

iH(z)

zn
dz = −2πan−1. (61)

Equation (59) then implies that

an−1 = − 1

2π

∫ ∞

−∞
G(x)

[
1

(x − il)n
+ 1

(x + il)n

]
dx + R2(n − 1)

2π
. (62)

On substitution of (58) for G(x), we find

an−1 =
∫ ∞

−∞
J (k, n − 1)

[
B(k) + R1(k)

2 cosh(kl)

]
dk + R2(n − 1)

2π
, n ≥ 1, (63)

where we define

J (k, n) ≡ − 1

4π2

∫ ∞

−∞
eikx

[
1

(x − il)n+1
+ 1

(x + il)n+1

]
dx . (64)

Some residue calculus reveals that for n ≥ 1,

J (k, n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− ie−kl(ik)n

2πn! , k ≥ 0,

iekl(ik)n

2πn! , k < 0,

(65)
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and, for n = 0,

J (k, 0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− ie−kl

2π
, k > 0,

0, k = 0,

iekl

2π
, k < 0.

(66)

It follows that, for n ≥ 1,

an−1 =
∫ ∞

−∞
J (k, n − 1)B(k)

2 cosh(kl)
dk +

∫ ∞

−∞
J (k, n − 1)R1(k)

2 cosh(kl)
dk + R2(n − 1)

2π
. (67)

But

B(k) =
∮

|z|=1
e−ikz iH(z)dz =

∮

|z|=1
ie−ikz

[
a0 +

∑
m≥1

amz
m + am

zm

]
dz

= −2π
∑
m≥1

am(−ik)m−1

(m − 1)! . (68)

Hence
an−1 +

∑
m≥1

An−1,mam = En−1, n ≥ 1, (69)

where

An,m = π

∫ ∞

−∞
J (k, n)(−ik)m−1

(m − 1)! cosh(kl)dk,

En =
∫ ∞

−∞
J (k, n)R1(k)

2 cosh(kl)
dk + R2(n)

2π
. (70)

Finally, on use of (51), system (69) becomes the system of real equations

∑
m≥1

A0mbm = iE0, (71)

bn −
∑
m≥1

Anmbm = −iEn, n ≥ 1. (72)

It can be checked easily that E0 is the only quantity that depends on the unknown
log ρ. We can therefore solve (72) for the set of coefficients {bn|n ≥ 1} and then
use (71) a posteriori to determine log ρ. With the coefficients determined from this
simple linear system all the spectral functions needed in the representation (32) of
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the required function χ̂(z) can be found. The required inverse conformal mapping
ζ(z) then follows.

The construction above was originally presented in an appendix to [5] where it
was used as a check on a solution given there.

6 Summary

It is hoped that this article provides a useful overview of recent developments con-
cerning these “geometry-fitted” Fourier-Mellin transform pairs, and how to make
constructive use of them. The author has recently employed the new transform pairs
described here in a number of different applications [2–5] with much earlier work
on solving various PDEs in convex polygons carried out by other authors [11, 12].
We believe that the full scope and implications of the method for applications, and
its various extensions, have yet to be explored.
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First Order Approach to L p Estimates
for the Stokes Operator on Lipschitz
Domains

Alan McIntosh and Sylvie Monniaux

Abstract This paper concerns Hodge-Dirac operators DH = d + δ acting in
L p(�,�) where � is a bounded open subset of Rn satisfying some kind of Lip-
schitz condition,� is the exterior algebra ofRn, d is the exterior derivative acting on
the de Rham complex of differential forms on �, and δ is the interior derivative with
tangential boundary conditions. In L2(�,�), d ′ = δ and DH is self-adjoint, thus
having bounded resolvent {(I + itDH )}{t∈R} as well as a bounded functional calcu-
lus in L2(�,�). We investigate the range of values pH < p < pH about p = 2 for
which DH has bounded resolvents and a bounded holomorphic functional calculus
in L p(�,�).

Keywords Hodge-Dirac operator ·Lipschitz domains ·Stokes operator ·First order
approach · Hodge boundary conditions

1 Introduction

At the ISAAC meeting in Macau, the first author discussed the harmonic analysis of
first order systems on bounded domains, with particular reference to his current joint
research with the second author concerning the L p theory of Hodge-Dirac operators
on Lipschitz domains, with implications for the Stokes’ operator on such domains
with Hodge boundary conditions. In this article, we present an overview of this
material, staying with the three dimensional situation. Full definitions and proofs
in higher dimensions can be found in [14]. In other papers with Marius Mitrea, the
second author has pursued applications to the Navier-Stokes equation on Lipschitz
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domains. We will not comment further on that here, except to mention that the non-
linear applications depend on having results for the linear Stokes operator in the case
p = 3 or possibly p = 3/2 (the dual exponent to 3).

Harmonic analysis =⇒ First order systems

Hodge-Dirac systems
on bounded domains

⇓

Potential Application ⇐= Second order equations

Navier-Stokes equation Hodge-Laplacian;
with Hodge Hodge-Stokes Operator
boundary conditions

2 Hodge-Dirac operators

Our aim is to investigate the L p theory of the first order Hodge-Dirac operator

DH = d� + δ�

acting on a bounded domain � ⊂ R
3 satisfying some kind of Lipschitz condition.

Here d� is the exterior derivative acting on differential forms in L p(�,�), and
δ� is the adjoint operator which includes the tangential boundary condition

ν � u|∂� = 0

i.e. the normal component of u at the boundary ∂� is zero, at least on that part of
the boundary where it is well defined. This is effectively half a boundary condition
for DH , which is what is expected for a first order system.

Let us now define our terms.

3 Lipschitz domains

Henceforth � denotes a bounded connected open subset of R3, and B denotes the
unit ball in R3. We say that

• � is very weakly Lipschitz if � = ∪N
j=1(ρ j B) for some natural number N , where

each map ρ j : B → ρ j B ⊂ R
3 is uniformly locally bilipschitz, and
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1 = ∑N
j=1 χ j on �, where each χ j : � → [0, 1] is a Lipschitz function with

sppt�(χ j ) ⊂ ρ j B ;
• � is strongly Lipschitz if, locally, the boundary ∂� of� is a portion of the graph of
a Lipschitz function g : R2 → R (with respect to some rotated coordinate system),
with � being to one side of the graph;

• � is smooth if each such function g is smooth.

In the above, sppt�(χ j ) denotes the closure of {x ∈ � ; χ j (x) 
= 0} in �.
Every strongly Lipschitz domain is weakly Lipschitz (which we shall not dis-

cuss further, but refer the reader to [5]) and every weakly Lipschitz domain is very
weakly Lipschitz. A weakly Lipschitz domain which is not strongly Lipschitz is the
well known two brick domain (consisting of one brick on top of another, pointing in
orthogonal directions), and a very weakly Lipschitz domain which is not weakly Lip-
schitz is the unit ball with the half-disk {(x1, x2, x3) ∈ B ; x3 = 0, x1 > 0} removed.

In a strongly Lipschitz domain (and indeed in a weakly Lipschitz domain), there
is a well-defined outward-pointing unit normal ν(y) for almost every y ∈ ∂�. In fact
ν ∈ L∞(∂�;R3). As can be seen from the above example, the unit normal is not
necessarily defined on the whole boundary of a very weakly Lipschitz domain.

4 Exterior Algebra

• The exterior algebra on R
3 with basis e1, e2, e3 is

� = �0 ⊕ �1 ⊕ �2 ⊕ �3 ≈ C ⊕ C
3 ⊕ C

3 ⊕ C

u = u0 + u1 + u2 + u3 where

�0 = C

�1 = C
3 : u1 = u11e1 + u12e2 + u13e3

�2 ≈ C
3 : u2 = u22,3 e2 ∧ e3 + u23,1e3 ∧ e1 + u21,2 e1 ∧ e2

�3 ≈ C : u3 = u31,2,3 e1 ∧ e2 ∧ e3 (ek ∧ e j = −e j ∧ ek)

• L p(�,�) = L p(�,C) ⊕ L p(�,C3) ⊕ L p(�,C3) ⊕ L p(�,C)

• If a = ∑
j a j e j ∈ R

3, u ∈ ��, then a ∧ u = ∑
j a j e j ∧ u ∈ ��+1

• If also v ∈ ��+1 then a � v ∈ �� and 〈a ∧ u , v〉 = 〈u , a � v〉
• du = ∇ ∧ u = ∑

j e j ∧ ∂ j u, δu = −∇ � u = −∑
j e j � ∂ j u

• The exterior product ∧ and the contraction � can be represented by scalar multi-
plication, dot products and cross products.
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5 The de Rham Complex on � ⊂ R
3

Suppose that � denotes a bounded open subset of R3 and 1 < p < ∞.
The exterior derivative d� defined on � can be expressed as follows:

d� : 0 → L p(�,C)
∇�−→ L p(�,C3)

curl�−→ L p(�,C3)
div�−→ L p(�,C) → 0

(noting that curl is sometimes written as rot or ∇×, and div as ∇.).
As an operator, d� : D p(d�) → L p(�,�) is an unbounded operator with domain

D p(d�) = {u ∈ L p(�,�) ; d�u ∈ L p(�,�)}.
Note that d�

2 = 0 because curl�∇� = 0 and div�curl� = 0, or as we can see
directly, d�

2u = ∑
j,k e j ∧ ek∂ j∂ku = 0 by the skew-symmetry of the wedge prod-

uct.
Hence the range of d� is contained in the null-space of d�, i.e.Rp(d�) ⊂ N p(d�)

whereRp(d�) = {v ∈ L p(�,�) ; v = d�u for some u ∈ D p(d�)} andN p(d�) =
{u ∈ D p(d�) ; d�u = 0}.

If � is very weakly Lipschitz, then Rp(d�) = Rp(d�) and the codimension of
Rp(d�) in N p(d�) is finite dimensional. We return to these facts in Sect. 19.

6 The Dual de Rham Complex

With � and p as above, let q = p′ (i.e. 1
p + 1

q = 1).
The dual of the exterior derivative d� : Dq(d�) → Lq(�,�) :

d� : 0 → Lq(�,C)
∇�−→ Lq(�,C3)

curl�−→ Lq(�,C3)
div�−→ Lq(�,C) → 0

is δ� : D p(δ�) → L p(�,�) :

0 ← L p(�,C)
−div�←− L p(�,C3)

curl�←− L p(�,C3)
−∇�←− L p(�,C) ← 0 : δ�

where the domainD p(δ�) is the completion ofC∞
c (�,�) in the graph norm ‖u‖p +

‖δ�u‖p.
Again, δ�

2 = 0, i.e. Rp(δ�) ⊂ N p(δ�).
If � is very weakly Lipschitz, thenRp(δ�) = Rp(δ�), with finite codimension in

N p(δ�).
If� is strongly Lipschitz, then the normal component of u ∈ D p(δ�) at the bound-

ary is zero, i.e.

D p(δ�) = {u ∈ L p(�,�) ; δ�u ∈ L p(�,�), ν � u|∂� = 0} .
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Remark 6.1 The condition ν � u|∂� = 0 is to be understood in the following sense:
for u ∈ L p(�,�) such that δ�u ∈ L p(�,�) in a strongly Lipschitz domain, the
normal component at the boundary ν � u|∂� is defined as a functional on traces of
differential forms v ∈ W 1,p′

(�,�) (where 1
p′ + 1

p = 1) by the integration by parts
formula:

〈ν � u, v〉∂� = 〈u, dv〉� − 〈δu, v〉�.

Since Tr|∂�

(
W 1,p′

(�,�)
) ⊆ Bp′,p′

1/p (∂�,�), we obtain that ν � u ∈ Bp,p
−1/p

(∂�,�). For more details, we refer to [16, Sect. 2.3].

Remark 6.2 Somecare needs to be takenwhen consulting references, in that different
authors use different sign conventions for δ and �.

Remark 6.3 The definitions and results concerning very weakly Lipschitz domains
in R3 can be adapted to domains in a Riemannian manifold with very little effort.

7 Hypothesis

For the rest of this article, � denotes a very weakly Lipschitz domain in R
3.

8 The Hodge-Dirac Operator DH = d� + δ� in L2(�,�)

First we consider the case p = 2. Then the exterior derivative d� and adjoint interior
derivative δ� are unbounded operators in L2(�,�) which satisfy

• d�
2 = 0 , δ�

2 = 0 , d�
∗ = δ� , δ�

∗ = d�.

In L2(�,�), define the Hodge-Dirac operator with tangential boundary con-
dition DH := d� + δ� with D2(DH ) = D2(d�) ∩ D2(δ�). It is straightforward to
check the following properties (using the properties of d� and δ� just described)

• The Hodge-Dirac operator DH = d� + δ� is self-adjoint in L2(�,�);
• N 2(DH ) = N 2(d�) ∩ N 2(δ�) is finite dimensional;
• The Hodge decomposition of L2(�,�) takes the form

L2(�,�) = N 2(d�)
⊥⊕ R2(δ�)

∪ ∩
L2(�,�) = R2(d�)

⊥⊕ N 2(δ�) and so

L2(�,�) = R2(d�)
⊥⊕ R2(δ�)

⊥⊕ N 2(DH ) .
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• In particular, on restricting to the space of square integrable vector fields,
L2(�,�1) = L2(�,C3), we have

L2(�,�1) = N 2(curl�)
⊥⊕ R2(curl�)

∪ ∩
L2(�,�1) = R2(∇�)

⊥⊕ N 2(div�) = H2 and so

L2(�,�1) = R2(∇�)
⊥⊕ R2(curl�)

⊥⊕ N 2(DH )

where H2 := N 2(div�) ⊂ L2(�,�1).

In the case when� is strongly Lipschitz,H2 is the space of divergence-free square
integrable vector fields which satisfy the tangential boundary condition ν.u|∂� = 0.

9 The Hodge-Laplacian −�H = DH
2

In L2(�,�), define the Hodge-Laplacian −�H := DH
2 = d�δ� + δ�d� with

D2(�H ) = D2(d�δ�) ∩ D2(δ�d�). This is called theHodge-Laplacianwith absolute
or generalised boundary conditions. We remark that �H has the sign convention
�Hu = ∂1

2u + ∂2
2u + ∂3

2u, u ∈ D2(�H ).
It is straightforward to check the following properties:

• The Hodge-Laplacian −�H = d�δ� + δ�d� is nonnegative self-adjoint in
L2(�,�);

• N 2(�H ) = N 2(DH ) = N 2(d�) ∩ N 2(δ�);
• The Hodge-Laplacian preserves each of the spaces L2(�,�k), 0 ≤ k ≤ 3, and so
splits as a direct sum of its restrictions to these spaces, as can be seen from the
expression −�H = d�δ� + δ�d� with

d� : 0→
← L2(�,C)

∇�

→
←

−div�

L2(�,C3)

∪
H2

curl�
→
←

curl�

L2(�,C3)

div�

→
←

−∇�

L2(�,C)
→
← 0 : δ�

−�H = −div�∇� ⊕ (−∇�div� + curl�curl�) ⊕ (curl�curl� − ∇�div�) ⊕ −div�∇�

(= −�Neumann) (= −�Dirichlet)

Indeed it also preserves each component of theHodge decomposition, in particular
H2 = L2(�,�1) ∩ N 2(δ�) = N 2(div�).
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10 The Hodge-Stokes Operator SH = −�H |H2

In H2, define the Stokes operator with Hodge boundary conditions by SHu =
−�Hu = curl�curl�u, u ∈ H2 (i.e. div�u = 0) with D2(SH ) = {u ∈ L2(�,�1) ;
div�u = 0, curl�curl�u ∈ L2(�,�1)}. It is straightforward to check the following
properties:

• The Hodge-Stokes operator SH = curl�curl� is nonnegative self-adjoint in H2;
• N 2(SH ) = N 2(DH ) ∩ L2(�,�1)=N 2(curl�)∩N 2(div�) is finite dimensional;

If� is stronglyLipschitz andu ∈ D2(SH ), then the tangential boundary conditions
ν.u|∂� = 0; ν × curlu|∂� = 0 hold. See, e.g., [17, Sect. 3].

11 L2 Results for DH , �H and SH

To summarise, we have the following properties:

• L2(�,�) = R2(d�)
⊥⊕ R2(δ�)

⊥⊕ N 2(DH );
• Hodge-Dirac operator DH = d� + δ� is self-adjoint in L2(�,�);
• Hodge-Laplacian −�H = DH

2 = d�δ� + δ�d� is nonnegative self-adjoint in
L2(�,�);

• Hodge-Stokes operator SH = −�H |H2 is nonnegative self-adjoint in H2

= N 2(div�).

So DH , �H , SH all have resolvent bounds, e.g.

‖(I + i t DH )−1u‖2 ≤ ‖u‖2 ∀u ∈ L2(�,�) , ∀ t ∈ R \ {0}
‖(I − t2�H )−1u‖2 ≤ ‖u‖2 ∀u ∈ L2(�,�) , ∀ t > 0

‖(I + t2SH )−1u‖2 ≤ ‖u‖2 ∀u ∈ H2 , ∀ t > 0

and all have functional calculi of self-adjoint operators, in particular

‖DHu‖2 = ‖ sgn(DH )
√−�H u‖2 = ‖√−�H u‖2 ∀u ∈ D2(DH ) = D2(

√−�H ) .

12 L p Questions for DH , �H and SH , 1 < p < ∞

Whether or not the L p versions of these properties hold, depends on � and p. Of
course, we no longer have orthogonality of the Hodge decomposition, and the con-
stants in the resolvent bounds and the functional calculi may depend on p. Allowing
for this, when � is smooth, all of the properties hold for all p ∈ (1,∞).
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In our situation, namely when � is a very weakly Lipschitz domain, we list the
main properties and then discuss their relationship with one another, and conditions
under which they hold.

(Hp) DH has an L p Hodge decomposition: L p(�,�) = Rp(d�) ⊕ Rp(δ�) ⊕
N p(DH );

(Rp) DH is bisectorial in L p, in particular ‖(I + i t DH )−1u‖p ≤ C‖u‖p ∀ t ∈
R \ {0};

(Fp) DH has a bounded H∞(Soμ) functional calculus in L p(�,�) for all μ > 0:
‖ f (DH )u‖p ≤ Cμ‖ f ‖∞‖u‖p ∀ f ∈ H∞(Soμ), in particular, ‖DHu‖p ≈
‖√−�H u‖p.

Here Soμ = {z ∈ C; | arg z| < μ or | arg(−z)| < μ}, 0 < μ < π/2.
Let us note that:

• (Fp) =⇒ (Hp): Exercise.
• (Fp) =⇒ (Rp) =⇒ Hodge-Laplacian is sectorial in L p(�,�), in particular �H

has the L p resolvent bounds

‖(I − t2�H )−1u‖p = ‖(I + i t DH )−1(I − i t DH )−1u‖p ≤ C2‖u‖p ∀ t > 0 .

• (Fp) =⇒ Hodge-Laplacian has a bounded H∞(Soμ) functional calculus ∀μ > 0
=⇒ maximal regularity results for the parabolic equation (see Sect. 13)

∂t F(t, . ) − �H F(t, . ) = h(t, . ) ∈ Lq((0, T ); L p(�,�)) , t > 0

F(0, . ) = 0 .

13 Background on Bisectorial Operators and Holomophic
Functional Calculus

If the reader maintains attention on the resolvent bounds stated for the Hodge-Dirac
operator, the Hodge-Laplacian and the Hodge-Stokes operator, then this material is
not needed. But wewill briefly describe the above-mentioned concepts for those who
are interested.

Let 0 ≤ ω < μ < π
2 . Define closed and open sectors and double sectors in the

complex plane by

Sω+ := {z ∈ C : | arg z| ≤ ω} ∪ {0} , Sω− := −Sω+ ,

Soμ+ := {z ∈ C : z 
= 0, | arg z| < μ} , Soμ− := −Soμ+ ,

Sω := Sω+ ∪ Sω− , Soμ := Soμ+ ∪ Soμ− .
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Let 0 ≤ ω < π
2 . A closed operator D acting on a closed subspaceX p of L p(�,�)

is called bisectorial with angle ω if its spectrum σ(D) ⊂ Sω , and for all θ ∈ (ω, π
2 )

there exists Cθ > 0 such that

‖λ(λI − D)−1u‖p ≤ Cθ‖u‖p ∀λ ∈ C \ Sθ ,∀u ∈ X p .

In (Rp), we really mean that DH is bisectorial with angle 0, and present the
particular resolvent bounds for λ = i/t with t real.

Let 0 ≤ ω < π. A closed operator D acting on X p is called sectorial with angle
ω if σ(D) ⊂ Sω+, and for all θ ∈ (ω,π) there exists Cθ > 0 such that

‖λ(λI − D)−1u‖p ≤ Cθ‖u‖p ∀λ ∈ C \ Sθ+ ,∀u ∈ X p .

For the Hodge-Laplacian, we really mean sectorial with angle 0, and present the
particular resolvent bounds for λ = −1/t2 with t > 0.

Denote by H∞(Soμ) the space of all bounded holomorphic functions on Soμ, and by
�(Soμ) the subspace of those functions ψ which satisfy |ψ(z)| ≤ C min{|z|α, |z|−α}
for some α > 0. Similarly define H∞(Soμ+) and �(Soμ+).

For D bisectorial with angle ω in X p and ψ ∈ �(Soμ), ω < μ < π
2 (or sectorial

with angleω andψ ∈ �(Soμ+),ω < μ < π) defineψ(D) through the Cauchy integral

ψ(D)u = 1

2πi

∫

γ

ψ(z)(z I − D)−1u dz, u ∈ X p ,

where γ denotes the boundary of Sθ (or Sθ+) for some θ ∈ (ω,μ), oriented counter-
clockwise. Then D is said to have a bounded holomorphic functional calculus with
angle μ, or a bounded H∞(Soμ) (or H∞(Soμ+)) functional calculus in X p if there
exists C > 0 such that

‖ψ(D)u‖p ≤ Cp‖ψ‖∞‖u‖p ∀u ∈ X p ,∀ψ ∈ �(Soμ) (or �(Soμ+)) .

For such an operator, the functional calculus extends to all f ∈ H∞(Soμ) (or
H∞(Soμ+)) on defining

f (D)u = lim
n→∞ ψn(D)u, u ∈ X p,

where the functions ψn ∈ �(Soμ) are uniformly bounded and tend locally uniformly
to f . (We are implicitly taking f (0) = 0 here.)

We list some properties.

• If D is bisectorial of angle ω < π/2, then D2 is sectorial of angle 2ω < π.
• If D has a bounded H∞(Soμ) functional calculus, then D

2 has a bounded H∞(So2μ+)

functional calculus.



64 A. McIntosh and S. Monniaux

• If D is a bisectorial operator with a bounded holomorphic functional calculus in
X p, then ‖ sgn(D)u‖p ≤ Cp‖u‖p for all u ∈ X p where

sgn(z) =

⎧
⎪⎨
⎪⎩

−1 z ∈ Soμ−
0 z = 0

+1 z ∈ Soμ+

and so D has Riesz transform bounds in X p:

‖Du‖p = ‖ sgn(D)
√
D2 u‖p ≤ Cp‖

√
D2 u‖p

‖
√
D2 u‖p = ‖ sgn(D)Du‖p ≤ Cp‖Du‖p , u ∈ D(D) = D(

√
D2) .

• If S is a sectorial operator with a bounded holomorphic functional calculus of
angle < π/2 in X p, and 1 < q < ∞, 0 < T ≤ ∞, then the parabolic equation

∂t F(t, . ) + SF(t, . ) = h(t, . ) ∈ Lq((0, T );X p) , t > 0

F(0, . ) = 0

has maximal regularity in the sense that

{∫ T

0
‖F(t, . )‖p

q dt
}1/q +

{∫ T

0
‖SF(t, . )‖p

q dt
}1/q≤ Cp,q

{∫ T

0
‖h(t, . )‖p

q dt
}1/q

.

For further details on the above material, see [2, 8, 13] or the lecture notes
[1, 12].

Solution to Exercise. Show that (Hp) is a consequence of ‖DHu‖p ≈ ‖√−�H u‖p.
We need ‖DHu‖p ≈ ‖d�u‖p + ‖δ�u‖p, or equivalently ‖d�u‖p � ‖DHu‖p.
Write u = ∑3

k=0 u
k , uk ∈ L p(�,�k), then

‖d�u‖p ≈
3∑

�=0

‖(d�u)�‖p =
3∑

k=0

‖d�(uk)‖p ≤
3∑

k=0

‖DH (uk)‖p ≈
3∑

k=0

‖√−�H (uk)‖p

=
3∑

k=0

‖(√−�H u)k‖p ≈ ‖√−�H u‖p ≈ ‖DHu‖p .

(The bound ‖d�(uk)‖p ≤ ‖d�(uk) + δ�(uk)‖p holds because d�(uk) ∈ L p(�,

�k+1) and δ�(uk) ∈ L p(�,�k−1).) The idea for this result comes from
[3, Sect. 5]. �
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14 L p Hodge Decomposition

It is a consequence of the interpolation properties of the spacesRp(d�) andRp(δ�)

(see Remark19.2) that property (Hp) is stable in p in the following sense.

Theorem 14.1 There exist Hodge exponents pH , pH = pH ′ with 1 ≤ pH < 2 <

pH ≤ ∞ such that the Hodge decomposition (Hp)

L p(�,�) = Rp(d�) ⊕ Rp(δ�) ⊕ N p(DH )

holds in the L p norm if and only if pH < p < pH .

This is proved in [14, Sect. 4], following a similar proof in [11, Sect. 3.2].
It is well known that, when � has smooth boundary, then pH = 1 and pH =

∞. See, e.g. [18, Theorems2.4.2–2.4.14] for the general case of smooth compact
Riemannian manifolds with boundary.

If � is a strongly Lipschitz domain in R
3, then pH < 3/2 < 3 < pH . See, e.g.,

[15, Theorem1.1]. In [14] we reprove this result, with the new techniques having
the advantage of providing a new result in higher dimensions, namely that pH <

2n/(n + 1) < 2n/(n − 1) < pH when � is a bounded strongly Lipschitz domain
in R

n . In fact we show that DH has a bounded holomorphic functional calculus in
L p(�,�) for some p < 2n/(n + 1) (and hence, by duality, in L p′

(�,�)), and apply
the Exercise in Sect. 12.

15 L p Results for DH , �H and SH , pH < p < pH

In [14], we prove that for all p in the Hodge range, the Hodge-Dirac operator has a
bounded holomorphic functional calculus. We do not include a proof here, but say a
little more in Sect. 23.

Theorem 15.1 Suppose that � is a very weakly Lipschitz domain in R
3, and that

pH < p < pH , i.e. (Hp) L p(�,�) = Rp(d�) ⊕ Rp(δ�) ⊕ N p(DH ). Then

(Rp) The Hodge-Dirac operator DH is bisectorial in L p(�,�),
in particular ‖(I + i t DH )−1u‖p ≤ C‖u‖p ∀ t ∈ R \ {0}, ∀u ∈ L p(�,�);

(Fp) DH has a bounded H∞(Soμ) functional calculus in L
p(�,�) for allμ > 0, in

particular, ‖DHu‖p ≈ ‖√−�H u‖p for all u ∈ D p(DH ) = D p(
√−�H ).

Corollary 15.2 (i) The Hodge-Laplacian −�H = DH
2 = d�δ� + δ�d� is L p sec-

torial with a bounded holomorphic functional calculus, in particular,
‖(I − t2�H )−1u‖p ≤ C2‖u‖p ∀ t > 0, ∀u ∈ L p(�,�).
(ii) The Hodge-Stokes operator SH = −�H |Hp is sectorial with a bounded holo-
morphic functional calculus inHp := {u ∈ L p(�,�1) ; div�u = 0}, in particular,
‖(I + t2SH )−1u‖p ≤ C2‖u‖p ∀ t > 0, ∀u ∈ Hp.
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In the case of a bounded strongly Lipschitz domain, it was shown in [17] that−�H

and SH are L p sectorial for p in an open interval containing [ 32 , 3] in dimension 3.
To our knowledge, the fact that they have a functional calculus is new, due to [14].
It was proved in [10] that for the same range of p the Riesz transforms d�(−�H )− 1

2

and δ�(−�H )− 1
2 are bounded in L p(�,�), again in the case of a bounded strongly

Lipschitz domain.
Again: If � is a very weakly Lipschitz domain in R

3, and pH < p < pH , then
DH , �H , SH all have L p resolvent bounds,

‖(I + i t DH )−1u‖p ≤ C‖u‖p ∀u ∈ L p(�,�), ∀ t ∈ R \ {0}
‖(I − t2�H )−1u‖p ≤ C2‖u‖p ∀u ∈ L p(�,�), ∀ t > 0

‖(I + t2SH )−1u‖p ≤ C2‖u‖p ∀u ∈ Hp, ∀ t > 0

and all have corresponding holomorphic functional calculi.
In fact, DH cannot have a functional calculus in L p(�,�) for p outside the

interval (pH , pH ), as shown in the Exercise in Sect. 12.
But SH CAN, and DOES, at least for max{1, pH S} < p ≤ pH where pH S is the

Sobolev exponent below pH i.e. 1
pH S

= 1
pH

+ 1
3 .

Note: (i) Since pH < 2, it is easily computed that pH S < 6/5.
(ii) If � is strongly Lipschitz, then pH < 3/2, and so pH S < 1.

16 L p Result for Hodge-Stokes Operator SH ,
pH S < p < pH

Theorem 16.1 Suppose � is a very weakly Lipschitz domain in R
3, and max

{1, pH S} < p < pH . Then the Hodge-Stokes operator SH = −�H |Hp is sector-
ial with a bounded holomorphic functional calculus in Hp = {u ∈ L p(�,�1) ;
div�u = 0}. In particular,

‖(I + t2SH )−1u‖p ≤ C2‖u‖p , ∀u ∈ Hp, ∀t > 0 .

Corollary 16.2 Suppose � is a strongly Lipschitz domain in R3, and 1 < p < pH .
Then SH is sectorial with a bounded holomorphic functional calculus in Hp.

These results are proved in [14]. Here we will not look further into functional
calculi, but will indicate how to apply the fact that the Hodge-Dirac operator has
Lq resolvent bounds when pH < q < pH , to derive L p resolvent bounds for the
Hodge-Stokes operator when pH S < p ≤ pH .

The proofs depend on the theory of regularised Poincaré and Bogovskiı̆ potential
operators as developed in [7, 16] for the case when� is starlike or strongly Lipschitz.
Here we start with the special case of the unit ball B ⊂ R

3, and then derive what we
need for very weakly Lipschitz domains.
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17 Potential Operator on the Unit Ball

Let

• B = B(0, 1), the unit ball in R
3, centred at the origin;

• θ ∈ C∞
c ( 12 B,R) with

∫
θ = 1;

• RB : L p(B,�) → W 1,p(B,�), the regularised Poincaré potential operator
defined by RBu = ∑3

k=1 RBuk ,

RBu
k(x) =

∫

B
θ(a)(x − a) �

∫ 1

0
t k−1uk(a + t (x − a)) dt da (k = 1, 2, 3) ,

u = ∑3
k=0 u

k ∈ L p(B,�) = ⊕3
k=0L

p(B,�k).

dB : 0→←

u0

∈
L p(B,C)

∇B−→←−
RB

u1

∈
L p(B,C3)

curlB−→←−
RB

u2

∈
L p(B,C3)

divB−→←−
RB

u3

∈
L p(B,C)

→← 0

Then RB : L p(B,�) → W 1,p(B,�) is bounded, RB : L p(B,�) → L p(B,�) is
compact, and

dB RBu + RBdBu +
(∫

θu0
)
1 = u ∀ u ∈ L p(B,�)

(where 1 denotes the constant function 1 ∈ L p(�,�0)). We write this as

dB RBu + RBdBu + KBu = u

where KBu = (
∫

θu0)1 and note that KB : L p(B,�) → L∞(B,�0) is bounded,
and KB : L p(B,�) → L p(B,�0) is compact. The operator KB compensates for
the fact that the above sequence for dB misses out on being exact, due to the gradient
map ∇B having a one dimensional null-space consisting of constant functions in
L p(B,�0).

Moreover, if 1 < p = qS < q < ∞, where p = qS is the Sobolev exponent below
q, i.e.

1
p = 1

q + 1
3

then the potential map RB : L p(B,�) → Lq(B,�) is bounded.
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18 Potential Operator on Bilipschitz Transformation
of the Unit Ball

Suppose ρ : B → ρB ⊂ R
3 is a uniformly locally bilipschitz transformation. Then

the pull-back ρ∗ : L p(ρB,�) → L p(B,�) is bounded, and

dρB = (ρ∗)−1dBρ∗;

recall that (ρ∗u)(x) = (ρ
x
)∗u(ρ(x)) where ρ

x
is the Jacobian matrix of ρ at x .

Define RρB : L p(ρB,�) → Lq(ρB,�) and KρB : L p(ρB,�) → L∞(ρB,�)

by
RρB = (ρ∗)−1RBρ∗ and KρB = (ρ∗)−1KBρ∗

so that
dρB RρBu + RρBdρBu + KρBu = u .

dρB : 0→← L p(ρB,C)

∇ρB→←
RρB

L p(ρB,C3)

curlρB→←
RρB

L p(ρB,C3)

divρB→←
RρB

L p(ρB,C)→← 0

The operators RρB and KρB have the same boundedness and compactness prop-
erties as RB and KB .

19 Potential Operators on Very Weakly Lipschitz Domains

• 1 < p < q < ∞ ( 1p = 1
q + 1

3 ).

• � is very weakly Lipschitz, i.e. � = ∪N
j=1(ρ j B) where each ρ j : B → ρ j B ⊂ R

3

is uniformly locally bilipschitz, and
• 1 = ∑N

j=1 χ j on �, where each χ j : � → [0, 1] is a Lipschitz function with
sppt�(χ j ) ⊂ ρ j B.

• Define R� = ∑N
j=1 χ j Rρ j B and K�u = ∑N

j=1(χ j Kρ j Bu − (∇χ j ) ∧ Rρ j Bu).

d� : 0→←

u0

∈
L p(�,C)

∇�−→←−
R�

u1

∈
L p(�,C3)

curl�−→←−
R�

u2

∈
L p(�,C3)

div�−→←−
R�

u3

∈
L p(�,C)

→←0

It is straightforward to apply the properties mentioned in the previous two sections
to prove the following result.
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Theorem 19.1 The exterior derivative d� has a potential map R� : L p(�,�) →
Lq(�,�) satisfying

d�R�u + R�d�u + K�u = u ∀u ∈ L p(�,�) ,

where K� : L p(�,�) → Lq(�,�). Moreover K� and R� are compact operators
in L p(�,�).

Remark 19.2 Although we will not use this fact in the coming sections, we remark
than R� can be modified in such a way that d�R�u = u for all u ∈ Rp(d�).

Using this modification, we have that d�R� : L p(�,�) → Rp(d�) is a bounded
projection for all p, 1 < p < ∞, and as a corollary, the spacesRp(d�) (1 < p < ∞)

are closed subspaces of L p(�,�) which interpolate by the complex method.

In this case, R� is a true potential operator. For example, if u1 is a gradient vector
field, then w0 = R�u1 ∈ Lq(�,C) is its potential, because ∇�w0 = d�R�u1 = u1.

Remark 19.3 With a modified R� as in Remark19.2, define Z p = K�(N p(d�)).
Then N p(d�) = Rp(d�) ⊕ Z p with decomposition u = d�R�u + K�u for all
u ∈ N p(d�). So the spaces in the decomposition are closed, and Z p is finite dimen-
sional, on account of the compactness of K�. Thus Rp(d�) has finite codimension
in N p(d�), as claimed in Sect. 5.

In the following section T� could be similarly modified to give u = δ�T�u for
all u ∈ Rp(δ�).

20 Dual Potential Operators

• 1 < p < q < ∞ ( 1p = 1
q + 1

3 );

• T� : L p(�,�) → Lq(�,�) is dual to R� : Lq ′
(�,�) → L p′

(�,�);
• L� : L p(�,�) → Lq(�,�) is dual to K� : Lq ′

(�,�) → L p′
(�,�).

Then, dual to the equation d�R�u + R�d�u + K�u = u, is

u = δ�T�u + T�δ�u + L�u

so that T� is a potential operator for δ�, called the Bogovskiı̆ operator

0←→ L p(�,C)
−∇�←−−→
T�

L p(�,C3)
curl�←−−→
T�

L p(�,C3)
−div�←−−→
T�

L p(�,C)←→ 0 : δ�
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21 L p Results for �H on N p(δ�), pHS < p < pH

Suppose that � is a very weakly Lipschitz domain. We have stated in Theorem15.1
that when pH < q < pH , the Hodge-Dirac operator DH = d� + δ� is bisectorial
with a bounded holomorphic funtional calculus in Lq(�,�). Our aim now is to
extend this result as follows.

Theorem 21.1 Suppose that

• pH < q < pH ;
• max{1, qS} ≤ p ≤ q where qS is the lower Sobolev exponent of q, i.e.

1
qS

= 1
q + 1

3 .

Then the Hodge-Laplacian −�H is sectorial with a bounded holomorphic func-
tional calculus in N p(δ�) = {u ∈ L p(�,�) ; δ�u = 0}. In particular,

‖(I − t2�H )−1u‖p ≤ C2‖u‖p , ∀u ∈ N p(δ�), ∀t > 0 . (1)

Similar resolvent bounds also holds onN (d�) and hence onR(δ�) and onR(d�).
On restricting to L p(�,�1), we obtain Theorem16.1 as a corollary.
For the results on functional calculi, we refer the reader to [14]. We do not fully

prove the resolvent bounds either, but give the spirit of the method by outlining the
estimates in the case when p = qS .

22 L p Resolvent Bounds for �H on N p(δ�), p = qS,
pH < q < pH

• � is very weakly Lipschitz and pH < q < pH , p = qS > 1.
• The idea is to modify the techniques of Blunck-Kunstmann [6], but there is still
quite a bit to do, because we are working on the subspace N p(δ�). We will not
consider the functional calculus here, but will outline a proof of resolvent bounds.

• The easy part: When t ≥ 1, and δ�u = 0, then

‖(I − t2�H )−1u‖p � ‖(I − t2�H )−1u‖q (because � is bounded)

= ‖(I − t2�H )−1(δ�T� + L�)u‖q
≤ t‖δ�(I − t2�H )−1T�u‖q + ‖(I − t2�H )−1L�u‖q
� ‖t DH (I + t2DH

2)−1T�u‖q + ‖(I + t2DH
2)−1L�u‖q

� ‖T�u‖q + ‖L�u‖q
� ‖u‖p

(using Hodge decomposition in Lq(�,�) in line 4, and resolvent bounds for DH

in Lq(�,�) in line 5).
• Henceforth take 0 < t < 1.
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• Cover �: Let Qt
j
( j ∈ J ) be the cubes in R

3 with side-length t and corners at

points in tZ3, which intersect �. Let Qt
j = 4Qt

j
∩ �. Then � = ∪Qt

j . Write

1 = ∑
j∈J η2

j on�, where η j ∈ C1
c (4Q

t
j
, [0, 1]) and ‖∇η j‖∞ ≤ 1/t . The “cubes”

Qt
j have finite overlap, in fact

∑
j∈J 1Qt

j
≤ 64. (Here 1Qt

j
denotes the functionwith

value 1 on Qt
j and zero elsewhere on Q.)

• Lq off-diagonal bounds in dist(Qt
j , Q

t
k) = inf{|x − y|; x ∈ Qt

j , y ∈ Qt
k} are a

consequence of the Lq resolvent bounds. See [14, Sect. 5], or adapt the L2 proofs
in [4]. We need the following two bounds.

For each N ∈ N, there exists CN such that, when sppt( f ) ∈ Qt
k , then

‖1Qt
j
(I − t2�H )−1 f ‖q ≤ CN

(
t

t+dist(Qt
j ,Q

t
k )

)N ‖ f ‖q and

t‖1Qt
j
(I − t2�H )−1δ� f ‖q ≤ CN

(
t

t+dist(Qt
j ,Q

t
k )

)N ‖ f ‖q .

• Decompose u ∈ N p(δ�) (using δ�(ηk f ) − ηkδ� f = (∇ηk) � f ):

u =
∑
k∈J

ηk
2u =

∑
k∈J

ηk I ηku

=
∑
k∈J

(ηk δ�T� ηku + ηk T� δ� ηku + ηk L� ηku)

=
∑
k∈J

(δ�(ηkT� ηku) − (∇ηk) � T� ηku + ηkT�(∇ηk) � u + ηk L� ηku)

=
∑
k∈J

(δ� wk + 1
t vk) where

wk = ηkT� ηku and

vk = −(t∇ηk) � T� ηku + ηkT�(t∇ηk) � u + t ηk L� ηku .

• On using the L p − Lq bounds on T� and L�, we obtain

‖wk‖q � ‖ηku‖p � ‖1Qt
k
u‖p with sppt(wk) ⊂ Qt

k and

‖vk‖q � (1 + t)‖1Qt
k
u‖p � ‖1Qt

k
u‖p with sppt(vk) ⊂ Qt

k .

Here now is the resolvent estimate. Suppose δ� u = 0. Then
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‖(I − t2�H )−1u‖p ≤
⎡
⎣∑

j∈J

∫

Qt
j

|(I − t2�H )−1u|p
⎤
⎦

1
p

=
⎡
⎣∑

j∈J

(‖1Qt
j
(I − t2�H )−1u‖p)

p

⎤
⎦

1
p

≤
⎡
⎣∑

j∈J

(‖1Qt
j
(I − t2�H )−1u‖q |Qt

j |
1
3 )p

⎤
⎦

1
p

( 1
p = 1

q + 1
3 )

�

⎡
⎣∑

j∈J

(
∑
k∈J

‖1Qt
j
(I − t2�H )−1(δ� wk + 1

t vk)‖q t)p
⎤
⎦

1
p

�

⎡
⎣∑

j∈J

(
∑
k∈J

(
t

t+dist(Qt
j ,Q

t
k )

)4
(‖wk‖q + ‖vk‖q))p

⎤
⎦

1
p

(∗)

�

⎡
⎣∑

j∈J

(
∑
k∈J

(
t

t+dist(Qt
j ,Q

t
k )

)4‖1Qt
k
u‖p)

p

⎤
⎦

1
p

�
(
sup
j

∑
k∈J

(
t

t+dist(Qt
j ,Q

t
k )

)4)[∑
k∈J

‖1Qt
k
u‖p

p
] 1

p
(∗∗)

�
[∑
k∈J

‖1Qt
k
u‖p

p
] 1

p =
[∑
k∈J

∫

Qt
k

|u|p
] 1

p
(∗∗∗)

=
(∫

�

∑
k∈J

1Qt
k
|u|p

) 1
p � ‖u‖p (∗∗∗∗)

as claimed.

• In (*) we used the off-diagonal bounds with N = 4 ;
• In (**) we used the Schur estimate in �p(J ), with A j,k = (

t
t+dist(Qt

j ,Q
t
k )

)4
and

βk = ‖1Qt
k
u‖p:

[∑
j

|
∑
k

A j,kβk |p
] 1
p ≤ (

sup
j

∑
k

|A j,k |
) 1

p′
(
sup
k

∑
j

|A j,k |
) 1

p
(∑

k

|βk |p
) 1

p

= (
sup
j

∑
k

|A j,k |
)(∑

k

|βk |p
) 1

p when A j,k = Ak, j ;
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• In (***) we used that, given Qt
j ,

∑
k

(
t

t+dist(Qt
j ,Q

t
k )

)4 � C0 +
∞∑

M=0

∑

{k;2M t≤dist(Qt
j ,Q

t
k )<2(M+1)t}

1
24M

� C0 +
∞∑

M=0

23M 1
24M = C0 +

∞∑
M=0

1
2M ≤ C ;

• In (****) we used the finite overlap of the cubes.

This completes the proof of (1) in the case when p = qS . The proof of L p sectori-
ality when qS ≤ p < q requires minor modification. To show that SH has a bounded
holomorphic functional calculus requires further work, using a Calderón–Zygmund
decomposition of �. For this, the reader is referred to [14].

23 Remarks on Obtaining Resolvent Bounds in the Hodge
Range

In the previous section we applied Theorem15.1. But suppose we just start with the
L2 resolvent bounds. Then a similar procedure to that described above, can be used
to obtain resolvent bounds for DH on N p(δ�) when 6/5 = 2S ≤ p ≤ 2. Moreover,
use of the potential operators R� will lead to resolvent bounds on N p(d�), also
when 6/5 ≤ p ≤ 2. Now, if p is also in the Hodge range, we then obtain resolvent
bounds on all of L p(�,�), i.e. we obtain resolvent bounds for DH on L p(�,�)

when max{6/5, pH } < p ≤ 2. Repeating this procedure once more if necessary, we
obtain resolvent bounds on L p(�,�) for pH < p ≤ 2 (as (6/5)S < 1). A duality
argument then gives resolvent bounds when 2 ≤ p < pH . In this way, the statement
(Rp) can be proved when pH < p < pH , as stated in Theorem15.1. See [14] for
details.

We remark that such an iteration method has been used previously in [9] in the
study of more general first order systems on R

n . A similar iteration procedure has
been used also in [10, 17].

24 Parabolic Equations

Asmentioned in Sect. 13, operators with a bounded holomorphic functional calculus
on a closed subspaceX p of L p(�,�), also satisfy maximal regularity. So, on taking
X p = Hp, we obtain:

Theorem 24.1 Suppose that � is a very weakly Lipschitz domain in R
3, that

max{1, pH S} < p < pH , and that 1 < q < ∞, 0 < T ≤ ∞. Suppose also that
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∂t F(t, . ) + SH F(t, . ) = h(t, . ) ∈ Lq((0, T );Hp) , t > 0

F(0, . ) = 0 .

Then

{∫ T

0
‖F(t, . )‖pq dt

}1/q +
{∫ T

0
‖SF(t, . )‖pq dt

}1/q ≤ Cp,q

{∫ T

0
‖h(t, . )‖pq dt

}1/q
.
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The Study of Complex Shapes of Fluid
Membranes, the Helfrich Functional
and New Applications

Zhong-Can Ou-Yang and Zhan-Chun Tu

Abstract The theoretical study of complex configurations of fluid membranes is
reported on the basis of the Helfrich functional. Series of analytical results on the
governing equations of closed lipid vesicles and open lipid vesicles with holes are
surveyed. The concepts of stress tensor and moment tensor in fluid membranes are
investigated from two different viewpoints: the balance of forces (moments) and the
generalized variational principle of free energy. Several examples on new applica-
tions of the Helfrich functional in understanding the growth mechanism of some
mesoscopic structures are illustrated.

Keywords Helfrich functional · Configuration · Membrane
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1 Introduction: From Soap Films to Red Blood Cells

There exist many structures whose one dimension is much smaller than the other two
in our world. This kind of structures are usually called membranes, which may be
thought of as 2-dimensional (2D) smooth surfaces in 3-dimensional (3D) Euclidean
space. The identities formed by membranes display a variety of configurations. For
example, soap bubbles at rest are always spherical; Human red blood cells are of
biconcave discoid under the normal physiological condition.

The issue of equilibrium configurations of membranes has attracted much atten-
tion of mathematicians and physicists. As early as in 1803, Plateau investigated a
soap film attaching to a metallic ring when the ring passed through soap water [1].
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He proposed that equilibrium configuration of the soap film corresponds to the min-
imum surface area of the film, which is mathematically equivalent to minimizing the
functional

F =
∫

M
dA, (1.1)

whereM and dA represent themembrane surface and the area element of the surface,
respectively. The first-order variation of the Plateau functional (1.1) leads to a mini-
mal surfacewith vanishingmean curvature H = 0. From1805 to 1806,Young [2] and
Laplace [3] studied soap bubbles. They proposed that the equilibrium configuration
of a soap bubble corresponds to minimizing the surface area of the bubble for given
volume enclosed in the bubble, which is mathematically equivalent to minimizing
the functional

F = λ

∫

M
dA + p

∫
dV, (1.2)

where λ and p represent the surface tension of the membrane and the osmotic pres-
sure (pressure difference between the outer and the inner sides) of a soap bubble,
respectively. dV represents the element of volume enclosed by the bubble. The first-
order variation of the Young–Laplace functional (1.2) leads to a surfacewith constant
mean curvature H = p/2λ. The reason that we canmerely observe spherical bubbles
is ascribed to the Alexandrov theorem—an embedded compact surface with constant
mean curvature in 3D Euclidian space must be a spherical surface [4].

In 1812, Poisson [5] considered a solid shell and put forward an energy functional

F =
∫

M
H 2dA. (1.3)

This functional was deeply investigated by Willmore [6, 7], thus, it is now called
the Willmore functional in mathematics. Since the Willmore functional (1.3) is an
invariant under conformal transformations, any configuration and its images under
conformal transformations correspond to the same energy. The first-order variation
of the Willmore functional (1.3) leads to

∇2H + 2H(H 2 − K ) = 0, (1.4)

a equation satisfied by the Willmore surfaces. The symbol K represents the Gauss
curvature of the surface. The symbol ∇2 represents the Laplace operator of the first
kind defined on a 2D surface. Willmore showed that round spheres (as well as their
images under conformal transformations) correspond to the least minimum of the
Willmore functional (1.3) among all compact surfaces in 3DEuclidian space. In other
words, all compact surfaces in 3DEuclidian spacemake theWillmore functional (1.3)
to take values no less than 4π. Willmore further conjectured that all compact surfaces
of genus one in 3DEuclidian spacemake theWillmore functional (1.3) to take values
no less than 2π2, where the least minimum corresponds to the Willmore tori (as well
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as their images under conformal transformations), which are special tori with the
ratio of their two generation radii being

√
2 [8]. Recently, the Willmore conjecture

has been proved by Marques and Neves via min-max theory [9].
Human red blood cells are unique since there are no internal cellular organelles

inside the cells. They may be regarded as closed vesicles enclosed by cell mem-
branes. In the energy scale of physiological condition, cell membranes are almost
inextensible, and the volumes of red blood cells are hardly compressed. To explain the
biconcave discoidal shape of red blood cells, Canham argued that the biconcave con-
figuration might minimize the bending energy of membranes under the constraints
of fixed area of membranes and fixed volume of the cells [10].

The cellmembrane consists of lipidmolecules and proteins,where lipidmolecules
form a bilayer while proteins are mosaicked in the bilayer [11]. In 1973, Helfrich
recognized that the lipid bilayer is in the liquid crystal state at the physiological
temperature. According to the elastic theory of liquid crystals, he proposed that the
bending energy of the bilayer could be expressed as a functional

FH =
∫

M
[(kc/2)(2H + c0)

2 + k̄K ]dA, (1.5)

where kc > 0 and k̄ are two bending moduli of the bilayer [12]. The parameter c0
represents the spontaneous curvature of the lipid bilayer, which reflects the asym-
metric factors in the two leaflets of the bilayer. The numerical results implied that
the biconcave configuration indeed minimizes the bending energy of the membrane
under the constraints of fixed area of the membrane and fixed volume of the vesi-
cle [13]. Henceforth, the elastic theory of lipid membranes based on the Helfrich
functional (1.5) began to flourish [14–16]. In this review, we will survey several key
theoretical results during the development of the elastic theory of lipid membranes
according to our personal preferences. In Sect. 2, we will introduce a mathemati-
cal preliminary—calculus of variation in a deformable surface. In Sect. 3, we will
present some theoretical results on configurations of closed lipid vesicles. In Sect. 4,
we will present some theoretical results on configurations of open lipid vesicles with
holes. In Sect. 5, we will discuss the concepts of stress tensor and moment tensor
in fluid membranes. In Sect. 6, we will probe into new applications of the Helfrich
functional and understand the growth mechanism of some mesoscopic structures. In
the last section, we will give a brief summary and propose some perspectives.

2 Calculus of Variation in a Deformable Surface

In this section, we introduce the theory of surfaces and the variation problem in a
deformable surface, which are based on the method of moving frames.



80 Z.-C. Ou-Yang and Z.-C. Tu

2.1 Theory of Surfaces Based on the Method
of Moving Frames

Consider a 2D surface in 3D Euclidean space. Any point on the surface may be
represented by a position vector r. At point r we may construct a right-handed
orthonormal frame {e1, e2, e3} with e3 being the normal vector at that point. The set
{r; e1, e2, e3} is called a moving frame.

The differentiation of the frame may be defined as [17]:

dr = ω1e1 + ω2e2, (2.1)

and
dei = ωi je j , (i = 1, 2, 3) (2.2)

where ω1, ω2, and ωi j = ω j i (i, j = 1, 2, 3) are 1-forms, and ‘d’ is the exterior
differential operator. The repeated subscripts in this paper abide by the Einstein
summation convention.

The area element can be expressed as [17]:

dA ≡ ω1 ∧ ω2. (2.3)

The structure equations of the surface can be expressed as [17]:

⎧
⎨
⎩
dω1 = ω12 ∧ ω2,

dω2 = ω21 ∧ ω1,

dωi j = ωik ∧ ωk j (i, j = 1, 2, 3),
(2.4)

and (
ω13

ω23

)
=

(
a b
b c

) (
ω1

ω2

)
. (2.5)

Then we can define a curvature tensor as

C = ae1e1 + be1e2 + be2e1 + ce2e2, (2.6)

where eie j (i, j = 1, 2) represents the dyad of ei and e j . The mean curvature and
the Gauss curvature are respectively defined as

H = tr(C)/2 = (a + c)/2, (2.7)

and
K = det(C) = ac − b2. (2.8)
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For a curve on the surface, at each point in the curve we can construct the tangent
vector t. The normal curvature, the geodesic curvature, and the geodesic torsion of
the curve may be expressed as

κn = a cos2 φ + 2b cosφ sin φ + c sin2 φ, (2.9)

τg = b cos 2φ + (c − a) cosφ sin φ (2.10)

κg = (dφ + ω12)/ds (2.11)

respectively, where φ represents the angle between t and e1.

2.2 Calculus of Variations Based on the Method
of Moving Frames

Calculus of variation based on the method of moving frames was developed in the
previouswork by the present authors [18–20]. Themain ideas are sketched as follows.

Any infinitesimal deformation of a surface can be achieved by a displacement
vector

δr ≡ � = �iei (2.12)

at each point on the surface, where δ can be understood as a variational operator. The
frame is also changed due to the deformation of the surface. Its variation is denoted as

δei = �i je j (i = 1, 2, 3), (2.13)

where�i j = −� j i (i, j = 1, 2, 3).�23,�31, and�12 correspond to the infinitesimal
rotation of the frame around direction e1, e2, and e3, respectively.

From δdr = dδr, δde j = dδe j , we can derive:

δω1 + ω2�21 = d� · e1 = d�1 + �2ω21 + �3ω31, (2.14)

δω2 + ω1�12 = d� · e2 = d�2 + �1ω12 + �3ω32, (2.15)

�13ω1 + �23ω2 = d� · e3 = d�3 + �1ω13 + �2ω23, (2.16)

δωi j = d�i j + �ilωl j − ωil�l j . (2.17)

These equations are the essential equations of the variational method based on
the moving frames.

With essential Eqs. (2.14)–(2.17), we may derive

δdA = (∇ · � − 2H�3)dA, (2.18)

δ(2H) = [∇2 + (4H 2 − 2K )]�3 + ∇(2H) · �, (2.19)
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δK = ∇ · ∇̃�3 + 2K H�3 + ∇K · �. (2.20)

In the above equations, the gradient operators and the Laplace operators are
defined according to the differential operator, the Hodge star, and their general-
izations as follows.

The 2D Hodge star operator (∗) satisfies ∗ω1 = ω2 and ∗ω2 = −ω1 [21]. The
generalized Hodge star operator (∗̃) satisfies ∗̃ω13 = ω23 and ∗̃ω23 = −ω13 [19]. The
generalized differential operator (d̃) satisfies d̃ f = f1ω13 + f2ω23 if d f = f1ω1 +
f2ω2 [19]. Then, we may define the gradient operator (of the first kind) and the
gradient operator of the second kind as [19]:

∇ f · dr = d f, (2.21)

and
∇̃ f · ∗dr = ∗̃d̃ f, (2.22)

respectively. Simultaneously, we may define the Laplace operator (of the first kind)
and the Laplace operator of the second kind as [19]:

(∇2 f ) dA = d ∗ d f, (2.23)

and
(∇ · ∇̃ f ) dA = d∗̃d̃ f, (2.24)

respectively.
Let us consider, a functional which depends on the mean curvature and the Gauss

curvature of a surface. In general, the functional may be expressed as the following
form:

FG =
∫

M
G(2H, K )dA, (2.25)

where G = G(2H, K ) is a function of 2H and K . It is not hard to calculate the
first-order variation of functional (2.25) by using Eqs. (2.18)–(2.20). From tedious
calculations, we obtain

δFG =
∫

M
[∇2G2H + ∇ · ∇̃GK + (4H2 − 2K )G2H + 2HKGK − 2HG]�3dA

+
∮

∂M
(G2H ∗ d�3 − �3 ∗ dG2H + GK ∗̃d̃�3 − �3∗̃d̃GK + G ∗ � · dr). (2.26)

where G2H and GK represent the partial derivatives of G with respect to 2H and K ,
respectively.

∮
∂M represents the integration along the boundary of surface M , which

is vanishing for a closed surface.



The Study of Complex Shapes of Fluid Membranes, the Helfrich … 83

3 Configurations of Closed Lipid Vesicles

As a model system, we will investigate configurations of a closed vesicle formed by
a lipid bilayer. First, we will introduce the general shape equation for closed vesicles.
Second, we will discuss the shape equation for axisymmetrical vesicles and its first
integral. Finally, we will present several special solutions to the shape equation.

3.1 Energy Functional and the Corresponding
Euler–Lagrange Equation

The bending energy of a closed vesicle may be described by the Helfrich functional
(1.5). Since the area of lipid bilayer is almost inextensible and the volume of the
closed vesicle is hardly compressed, we may introduce two Lagrange multipliers
λ and p to replace these constraints. The extended energy functional of the closed
vesicle may be expressed as

F =
∫

M
[(kc/2)(2H + c0)

2 + k̄K + λ]dA + pV, (3.1)

where V represents the total volume enclosed in the vesicle. The Lagrange multi-
plier λ can be physically interpreted as the surface tension of the lipid bilayer. The
Lagrange multiplier p can be regarded as the osmotic pressure of the vesicle, i.e.,
the pressure difference between the outer side and the inner side of the vesicle.

To derive the Euler–Lagrange equation corresponding to functional (3.1), we
assume G = (kc/2)(2H + c0)2 + k̄K + λ. Substituting it into (2.26) and consider-
ing δV = ∫

M �3dA, one can obtain

δF =
∫

M
[p − 2λH + kc(2H + c0)(2H

2 − c0H − 2K ) + 2kc∇2H ]�3. (3.2)

The equilibrium configurations satisfy δF = 0, which leads to

p − 2λH + kc(2H + c0)(2H
2 − c0H − 2K ) + 2kc∇2H = 0. (3.3)

This equation was first derived by Ou-Yang and Helfrich [22, 23]. Now it is
called the shape equation of lipid vesicles. Obviously, if kc = 0, the above equation
degenerates into the Young–Laplace equation p − 2λH = 0. If p = 0 and λ = 0,
the above equation degenerates into the Willmore Eq. (1.4).
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3.2 Axisymmetrical Closed Vesicles

An axisymmetrical vesicle may be generated by its outline which is represented by
z = z(ρ)with ρ being the revolution radius. Take φ as the rotation angle and ψ as the
tangent angle of the outline. The axisymmetrical vesicle may be parameterized as

x = ρ cosφ, y = ρ sin φ, z =
∫

tanψ(ρ)dρ. (3.4)

According to Sect. 2, we can derive the mean curvature

H = −(ρ sinψ)′/2ρ, (3.5)

the Gauss curvature
K = (sin2 ψ)′/2ρ, (3.6)

and the Laplace operator

∇2 = 1

ρ2
∂2

∂φ2
+ cosψ

ρ

∂

∂ρ

(
ρ cosψ

∂

∂ρ

)
. (3.7)

Substituting the above three equations into the general shape Eq. (3.3), one can
derive the shape equation for axisymmetrical vesicles:

− cosψ

ρ

{
ρ cosψ

[
(ρ sinψ)′

ρ

]′}′
− 1

2

[
(ρ sinψ)′

ρ

]3

+ (ρ sinψ)′
(
sin2 ψ

)′

ρ2
− c0

(
sin2 ψ

)′

ρ
+ λ̃ (ρ sinψ)′

ρ
+ p̃ = 0, (3.8)

where λ̃ ≡ λ/kc + c20/2 and p̃ ≡ p/kc. In addition, the prime represents the deriva-
tive with respect to radius ρ. The above equation is a third-order ordinary differential
equation, which was first derived by Hu and Ou-Yang [24]. It is found that the
above equation is integrable [25]. This equation may be further transformed into a
second-order ordinary differential equation:

�3 − �(ρ� ′)2

2ρ
− ρ(1 − �2)

[
(ρ�)′

ρ

]′
− c0�

2 + λ̃ρ� + p̃ρ2

2
= η0, (3.9)

where � ≡ sinψ and η0 being the first integral.
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3.3 Analytical Special Solutions

The shape Eq. (3.3) and its axisymmetrical counterparts (3.8) and (3.9) are nonlin-
ear differential equations, to which one cannot achieve general solutions. Till now,
researchers have known some special solutions to these equations, such as minimal
surfaces (including catenoid, helicoid, etc.), surfaces with constant mean curvature
(including sphere, cylinder, unduloid [26, 27], etc.), Willmore surfaces (including
Clifford torus [28], Dupin Cyclide [29], inverted catenoid [30], etc.), cylinder-like
surfaces [31–33], and circular biconcave discoid [34, 35]. Among these solutions,
only sphere, Clifford torus, Dupin cyclide, and circular biconcave discoid correspond
to closed vesicles without self-intersections.

3.3.1 Sphere

The mean curvature and the Gauss curvature of a spherical surface with radius R are
H = −1/R and K = 1/R2, respectively. Substituting them into the shape Eq. (3.3),
one can derive

p̃R2 + 2λ̃R − 2c0 = 0. (3.10)

This equation gives the relation between the radius R, the spontaneous curvature
c0, the reduced osmotic pressure p̃ ≡ p/kc, and the reduced surface tension λ̃ ≡
λ/kc + c20/2.Obviously, if λ̃

2 + 2c0 p̃ < 0, there is no spherical vesicle satisfying the
shape equation. If λ̃2 + 2c0 p̃ = 0, theremerely exists one spherical vesicle satisfying
the shape equation. If λ̃2 + 2c0 p̃ > 0, there are two spherical vesicles satisfying the
shape equation, which might correspond to the exocytosis or endocytosis of cells.

3.3.2 Clifford Torus

The Clifford torus is a revolution surface generated by a circle with radius r
which rotates around an axis in the same plane of the circle. The revolution
radius R should be larger than r . The torus may be parameterized as {(R +
r cosϕ) cosφ, (R + r cosϕ) sin φ, r sinϕ}. The mean curvature and the Gauss cur-
vature are H = −(R + 2r cosϕ)/2r(R + r cosϕ) and K = cosϕ/r(R + r cosϕ),
respectively. Substituting them into the shape Eq. (3.3), one can derive λ̃ = 2c0/r ,
p̃ = −2c0/r2, and

R/r = √
2. (3.11)

That is, there exists a lipid torus with the ratio of its two generation radii being√
2 [28], which was confirmed in the experiment [36]. This kind of Clifford torus is

called the Willmore torus [8] in mathematics. It is also found that nonaxisymmetric
tori [37] constructed from conformal transformations of the Willmore torus also
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satisfy the shape equation. In addition, it is not hard to check that η0 = −2c0 − 1/r
from equation (3.9) when λ̃ = 2c0/r , p̃ = −2c0/r2, and R/r = √

2.

3.3.3 Dupin Cyclide

The Dupin cyclide may be expressed as

(x2 + y2 + z2 + a2 − c2 − μ2)2 = 4(ax − cμ)2 + 4(a2 − c2)y2, (3.12)

where a > μ > c are three real parameters. Ou-Yang [29] found that the Dupin
cyclide could satisfy the shape Eq. (3.3) when p = 0, λ = 0, c0 = 0 and μ2 =
(a2 + c2)/2. This kind of lipid vesicles were also observed in the experiment by
Fourcade and his coworkers [38]. The Dupin cyclide and conformal transformations
of theWillmore torus mentioned above are two classes of the few known asymmetric
solutions to the shape Eq. (3.3) up to now.

3.3.4 Circular Biconcave Discoid

Naito et al. [34, 35] found that the parametric equation

{
� ≡ sinψ = −c0ρ ln(ρ/ρB)

z = z0 + ∫ ρ

0 tanψdρ
(3.13)

corresponds to the contour line of a circular biconcave discoid when 0 < |c0ρB | <

e. Substituting it into Eq. (3.9), one obtains p̃ = 0, λ̃ = c20/2, and η0 = −2c0 �=
0. Fitting the experimental results by Evans and Fung [39], Naito et al. obtained
c0R0 = −1.618 where R0 is the reduced radius of a red blood cell [35], i.e., 4πR2

0
corresponds to the surface area of the red blood cell. It is quite interesting that
c0R0 = −1.618 = −1/0.618 happens to correspond the golden ratio.

4 Configurations of Open Lipid Vesicles with Holes

Open bilayer configurations can be stabilized by some proteins [40]. This experi-
mental fact gave rise to investigating the configurations of lipid membranes with free
exposed edges based on the Helfrich functional [18, 41–45].
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Fig. 1 An open smooth
surface (M) with a boundary
curve (C)

l

tC

M

4.1 Energy Functional and the Corresponding
Euler-Lagrange Equation

A lipid vesicle with a hole (i.e., a free edge) may be expressed as an open smooth
surface M with a boundary curve C = ∂M shown in Fig. 1. t represents the unit
tangent vector of curve C . l is a unit vector which is perpendicular to t and the
normal vector of the surface.

Based on the Helfrich functional, the energy functional for a lipid bilayer with a
free edge may be expressed as

F =
∫

M
[(kc/2)(2H + c0)

2 + k̄K + λ]dA + γ

∮

C
ds, (4.1)

where γ represents the line tension due to energy cost of the exposed edge. ds is the
arc length element of curve C . According to the variational method in Sect. 2, from
δF = 0 we can obtain the shape equation

2kc∇2H + kc(2H + c0)(2H
2 − c0H − 2K ) − 2λH = 0, (4.2)

and three boundary conditions [18, 41]

[
kc(2H + c0) + k̄κn

]
C = 0, (4.3)[

2kc∂H/∂l + k̄dτg/ds + γκn
]
C = 0, (4.4)[

(kc/2)(2H + c0)
2 + k̄K + λ + γκg

]
C

= 0, (4.5)

where κn , κg , and τg are the normal curvature, geodesic curvature, and geodesic
torsion of the boundary curve, respectively. The above boundary conditions represent
the force balance and the moment balance at each point in boundary curve C . They
are also available for vesicles with more than one hole.
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4.2 Axisymmetrical Situation

Consider an axisymmetric surface generated by a planar curve z = z(ρ), which may
be expressed as a vector form r = {ρ cosφ, ρ sin φ, z(ρ)} where ρ and φ are the rota-
tion radius and azimuth angle, respectively. Under the axisymmetrical situation, the
shape Eq. (4.2) is just the same as (3.8) with vanishing p. This equation is integrable
and can be further transformed into

�3 − �(ρ� ′)2

2ρ
− ρ(1 − �2)

[
(ρ�)′

ρ

]′
− c0�

2 + λ̃ρ� = η0, (4.6)

which is just the same as Eq. (3.9) with vanishing p̃.
For the boundary point C , we define a sign function σ = t · ∂r/∂φ. The above

boundary conditions (4.3)–(4.5) may be transformed into [18, 42]:

� ′|C = c0 − (1 + k̃)(�/ρ)|C , (4.7)

� ′′|C =
[

γ̃�

ρσ cosψ
+ (2 + k̃)

�

ρ2
− c0

ρ

]

C

, (4.8)

[
c0k̃

(
�

ρ

)
− k̃

(
1 + k̃

2

) (
�

ρ

)2

− σγ̃
cosψ

ρ

]

C

= c20
2

− λ̃, (4.9)

where k̃ ≡ k̄/kc, γ̃ ≡ γ/kc, � ≡ sinψ, and λ̃ ≡ λ/kc + c20/2. Since the boundary
point is also in the surface, Eq. (4.6) should still hold for the boundary point C .
From Eqs. (4.8) and (4.9) we can eliminate γ̃ and obtain the expression of � ′′|C .
Substituting it and Eq. (4.7) into (4.6), we obtain a compatibility condition between
the shape equation and boundary conditions for axisymmetrical open lipid vesicles:

η0 = 0. (4.10)

Under this condition, the above boundary conditions are not independent of each
other. We may keep Eqs. (4.7) and (4.9) as boundary conditions. The shape equation
may be expressed as (4.6) with vanishing η0.

4.3 Analytical Special Solutions

Since the shape equation and boundary conditions are nonlinear, one may take the
following procedure to find analytical special solutions: (i) finding a surface satisfy-
ing the shape equation; (ii) finding a curve C on that surface such that the boundary
conditions are satisfied; (iii) the domain enclosed by boundary curve C on that sur-
face being the solution. However, for a given surface satisfying the shape equation,
we may not always find a curve C on that surface such that the boundary conditions
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are satisfied. On what kind of surface satisfying the shape equation can we find a
curve C such that the boundary conditions are satisfied? This issue was named as
compatibility between the shape equation and boundary conditions [42]. For exam-
ple, the compatibility condition for axisymmetrical solutions is just Eq. (4.10), i.e.,
the vanishing first integral.

In general case without axisymmetry, we may obtain the compatibility condi-
tion [42]

2
∫

M
(c0H + λ̃)dA + γ̃

∮

C
ds = 0. (4.11)

through scaling analysis. Here, we do not exclude the possibility to achieve the other
compatibility conditions through specificmethod.Using the compatibility conditions
(4.10) and (4.11), we can verify a theorem of nonexistence [42, 45]: For finite line
tension, there does NOT exist an open membrane being a part of surfaces with
nonvanishing constantmean curvature (including sphere, cylinder, andunduloid etc.),
Willmore surfaces (including Willmore torus, Dupin cyclide, and inverted catenoid
etc.), and circular biconcave discoid.

The above theorem of nonexistencemerely leaves a small window for the surfaces
simultaneously satisfying the shape equation and the boundary conditions that we
have known till now. When c0 is vanishing, the shape equation holds for minimal
surfaces. Three boundary conditions (4.3)–(4.5) are degenerated to

κn = 0, κg = −λ/γ = constant, (4.12)

which implies that the boundary should be an asymptotic curve with constant geo-
desic curvature. A domain in a minimal surface with a smooth boundary being an
asymptotic curve with constant geodesic curvature is called a minimal geodesic disk.
Obviously, a planar circular disk is a trivially minimal geodesic disk since a plane
is a special minimal surface with vanishing Gauss curvature. We have conjecture
that a planar disk is the unique minimal geodesic disk [46, 47]. This conjecture is
probably true. Recently, we have noted that, following the work on flat points of
minimal surfaces by Koch and Fischer [48], Giomi andMahadevan argued that there
does not exist a simple domain bounded by a smooth asymptotic curve in a minimal
surface with nonvanishing Gauss curvature [49]. If their argument is true, then our
conjecture is straightforward since a circle in a plane is the unique planar curve with
constant geodesic curvature.

5 Stress Tensor and Moment Tensor in Fluid Membranes

The concepts of stress tensor and moment tensor in fluid membranes were mainly
developed by Guven and his coworkers [50–53]. These concepts may be used to
derive the boundary conditions of an open lipid vesicle with a hole [41] and the
linking conditions of a lipid vesicle with two-phase domains [54].
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Fig. 2 Force and moment
loaded on a domain cut from
a fluid membrane

e1

e2

n

f

m

t

l

p

C

M

5.1 Balances of Local Forces and Moments

The concepts of stress tensor and moment tensor come from the force balance and
the moment balance for any domain in a lipid membrane. As shown in Fig. 2, we cut
a domain D bounded by a curve C from the lipid membrane. {e1, e2,n} is a right-
handed orthogonal frame with n ≡ e3 being the unit normal vector of the surface.
A pressure p is loaded on the surface against the normal direction. The notations
of t and l are the same as those in the above section. Vectors f and m, respectively
represent the density of force and the density of moment loaded on curve C by the
lipids outside the domain.

According to Newtonian mechanics, the force balance and the moment balance
may be expressed as

∮

C
fds −

∫
pndA = 0, (5.1)

∮

C
mds +

∮

C
r × fds −

∫
r × pndA = 0. (5.2)

If defining two second-order tensors S and M such that

S · l = f, and M · l = m, (5.3)
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one can derive the equilibrium equations [20]:

div S = pn, (5.4)

div M = S1 × e1 + S2 × e2, (5.5)

with S1 ≡ S · e1 and S2 ≡ S · e2 from the Stokes theorem. The tensors S and M
are called the stress tensor and the moment tensor, respectively.

5.2 Explicit Expressions of Stress Tensor and Moment Tensor

Onemay understand the equilibrium configuration of the cut lipid domain D in Fig. 2
from the point of energy view. That is, the equilibrium configuration abides by the
following generalized variational principle [54]:

δ

∫

D
[(kc/2)(2H + c0)

2 + k̄K + λ]dA

+
∫

D
pn · �dA −

∮

C
f · �ds −

∮

C
m · �ds

+
∮

μ[�1ω2 − �2ω1 − �1ω13 − �2ω23 − d�3] = 0 (5.6)

The first line of the above equation represents the variation of bending energy of
the lipid bilayer. The second line of the above equation reflects the potential energy
increment due to the external loads. In the third line of the above equation, μ is a
Lagrange multiplier due to the geometric constraint (2.16). The angular vector is
defined as � ≡ �iei ≡ �23e1 + �31e2 + �12e3.

Using the variational method mentioned in Sect. 2 and considering the defini-
tion (5.3), one can derive the explicit expressions of stress tensor and moment tensor
as follows [54]:

S = [(kc/2)(2H + c0)
2 + λ]I − kc(2H + c0)C − 2kcn∇H − (μC − n∇μ) × n,

(5.7)
and

M = μI − [kc(2H + c0)I + k̄C] × n, (5.8)

where I ≡ e1e1 + e2e2 represents the unit tensor, and C is the curvature tensor (2.6).
It is not hard to verify that (5.5) automatically holds from the above two equations
while Eq. (5.4) is equivalent to the shape Eq. (3.3). Substituting Eqs. (5.7) and (5.8)
into (5.3), one may obtain the force and moment on the boundary C [54]:

f = [kc(2H + c0)τg − μκn]t + [∇μ · t − 2kc∇H · l]n
+ [kc(2H + c0)(c0/2 − H + κn) + λ + μτg]l, (5.9)
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and
m = −[kc(2H + c0) + k̄κn]t + (μ + k̄τg)l, (5.10)

where κn and τg represents the normal curvature and the geodesic torsion of the
boundary, respectively.

Here two remarks should be mentioned. First, we only present the expressions of
S,M, f , andm based on the Helfrich functional. Their general forms can be found
in Ref. [54]. Second, there is a Lagrange multiplier μ in the above expressions, which
comes from the geometric constraint (2.16). Its physical meaning is still unknown.
The terms related to μ in the expressions of S,M, f , andm have not been included
in the previous researches [20, 47, 50–53].

5.3 Simple Applications of Stress Tensor and Moment Tensor

Here, we will survey two applications of the concepts of stress tensor and moment
tensor. One is the derivation of the boundary conditions of an open lipid vesicle with
a hole [41]; another is the derivation of the linking conditions of a lipid vesicle with
two-phase domains [54]. The basic ideas are as follows.

Consider a string loaded by a force density f and a moment density m. The line
tension γ induces a stretching force along the tangent vector of the string. From
the force balance and the moment balance, one can easily derive two equilibrium
equations [54]:

γκ(s)N + f(s) = 0, (5.11)

m(s) = 0, (5.12)

where s is the arc length parameter of the string. κ(s) is the curvature of the string
at s.

Now cut a very thin ribbon along the edge from the membrane as shown in Fig. 3.
t and ti represent the tangent vector of the boundary curve and that of the cutting
line, respectively. l is perpendicular to the normal vector of membrane surface and
the tangent vector of the boundary curve. li is perpendicular to the normal vector of
membrane surface and the tangent vector of the cutting line. f and m represent the
force density and the moment density induced by the membrane, respectively. Since
ti = −t and li = −l, according Eqs. (5.9) and (5.10), we have

f = −[kc(2H + c0)τg − μκn]t − [∇μ · t − 2kc∇H · l]n
− [kc(2H + c0)(c0/2 − H + κn) + λ + μτg]l, (5.13)

and
m = [kc(2H + c0) + k̄κn]t − (μ + k̄τg)l. (5.14)
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Fig. 3 Thin ribbon cut from
the membrane along the edge
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Substituting Eq. (5.14) into (5.12), we can obtain

μ = −k̄τg, (5.15)

and the boundary condition (4.3). If we substituting Eqs. (4.3) and (5.15) into (5.13),
the force density is transformed into

f = −[(kc/2)(2H + c0)
2 + k̄K + λ]l + [k̄dτg/ds + 2kc∂H/∂l]n. (5.16)

In the above derivation, we have used dτg/ds = ∇τg · t, ∂H/∂l = ∇H · l, and
(2H − κn)κn − τ 2

g = K . Substituting Eq. (5.16) into (5.11) and considering κn =
κn · N and κg = −κl · N, we can obtain the boundary conditions (4.4) and (4.5).

Similar procedure is also available to derive the linking conditions of a lipid vesicle
with two-phase domains as shown in Fig. 4. The separation line between domain I
(DI) and domain II (DII) is denoted as curve C . t is the tangent vector of curve C . lI

is perpendicular to t and the normal vector of surface. Different from Fig. 1, lI points
to the side of domain I. The definition of lII is similar. The subtle difference is that
lII points to the side of domain II. Assume that the membrane surface is so smooth
that lII = −lI.

An axisymmetrical vesicle with two-phase domains was investigated by Jülicher
and Lipowsky [55] many years ago. The general cases without the axisymmetrical

Fig. 4 A lipid vesicle with
two-phase domains
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precondition have also been discussed by several researchers in recent years [19,
54, 56]. Following the Helfrich functional, the free energy of a lipid vesicle with
two-phase domains may be expressed as [55]

F =
II∑
i=I

∫

Di

[(kic/2)(2Hi + ci0)
2 + k̄i K i + λi ]dAi + pV + γ

∮

C
ds, (5.17)

where superscript i labels the quantities of domain i (i = I, II). The linking conditions
of separation curve C may also be derived from the concepts of stress tensor and
moment tensor, which are listed as follows [54]:

kIc(2H
I + cI0) + k̄Iκn = kIIc (2H II + cII0 ) + k̄IIκn, (5.18)

∂
[
kIc(2H

I + cI0)
]

∂lI
+ ∂

[
kIIc (2H II + cII0 )

]

∂lII
= (k̄I − k̄II)

dτg
ds

+ γκn, (5.19)

and

kIc
2

(4H I2 − cI20 ) − kIIc
2

(4H II2 − cII20 ) + (k̄I − k̄II)
(
κ2
n + τ 2

g

) = λI − λII + γκg.

(5.20)
It should be noted that the mean curvature could be discontinuous across the

separation curve. Using the above linking conditions, the Jülicher-Lipowsky con-
jecture on the general neck condition for the limit shape of budding vesicles was
verified [54].

6 Understanding the Growth Mechanism of Some
Mesoscopic Structures Based on the Helfrich Functional

The growth of mesoscopic structures is different from that of macroscopic structures.
Macroscopic structures usually correspond to the least minimal free energy. But in
the mesoscopic scale, there is no enough time for the structures to release energy as
heat. Thus most mesoscopic structures exist in a metastable state where the different
kinds of energies are balanced each other. With the consideration of the Helfrich
functional, this idea has been used to explain the formation of focal conic domain in
smectic-A liquid crystals [57, 58], the pitch angle of helices of multi-walled carbon
nanotubes [59], and the reversible transition between peptide nanotubes and spherical
vesicles [60].
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6.1 Focal Conic Domain in Smectic-A Liquid Crystals

In Smectic-A (SmA) liquid crystals [61], the molecules are stacked layer-by-layer.
In each layer, the orientations of all molecules are aligned to the normal of the layer.
Generally, the flat configuration is energetically favorable. However, Dupin cyclides
are usually formed when liquid crystals cool from the isotropic (Iso) phase to the
SmA phase. Series of Dupin cyclides constitute a focal conic domain. Bragg argued
that “There must be a reason why the cyclides are preferred, and it must be based
on energy considerations” [62]. Natio et al. proposed that the relieved energy of the
difference in the Gibbs free energy of Iso-SmA transition must be balanced by the
curvature elastic energy of the smectic layers [58].

The formation energy of a focal conic domain includes three kinds of contribu-
tions. First is the volume free energy change due to the Iso-SmA transition [57]:

FV = −g0

∮
(D − D2H + D3K/3)dA, (6.1)

where g0 > 0 is the difference in the Gibbs free energy density between SmA and
Iso phases. H and K represent the mean and Gauss curvatures of the inner surface,
respectively. Second is the surface energy of inner and outer SmA-Iso interfaces [58]:

FA = λ

∮
(1 + |1 − 2DH + D2K |)dA, (6.2)

where λ is the surface energy per area. Third is the curvature elastic energy, which is
the sum of the energy (in the Helfrich form) of each layers. In the continuum limit,
the curvature elastic energy may be expressed as [58]:

Fc = kc

∮ √
H 2 − K ln

(
1 − DH + D

√
H 2 − K

1 − DH − D
√
H 2 − K

)
dA + k̄D

∮
KdA. (6.3)

Then the total formation energy may be expressed as F = FV + FA + Fc
∮

�

(H, K , D)dA with

�(H, K , D) ≡ kc
√
H 2 − K ln

(
1 − DH + D

√
H 2 − K

1 − DH − D
√
H 2 − K

)
+ k̄DK

+λ(1 + |1 − 2DH + D2K |) − g0(D − D2H + D3K/3). (6.4)

From δF = 0, Natio et al. obtained

(∇2/2)�H + ∇ · ∇̃�K + (2H 2 − K )�H + 2HK�K − 2H� = 0 (6.5)
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and ∮
�DdA = 0, (6.6)

where �H ≡ ∂�/∂H , �K ≡ ∂�/∂K , and �D ≡ ∂�/∂D. ∇2 and ∇ · ∇̃ are the
Laplace operators mentioned in Sect. 2. Natio et al. showed that the growth of the
focal conic domain in SmA liquid crystals could bewell explained by using the above
two equations [58].

6.2 Helices of Multi-walled Carbon Nanotubes

The formation mechanism of a multi-walled carbon nanotube is similar to that of
focal conic domain in SmA liquid crystals mentioned above. The formation energy
of the multi-walled carbon nanotube also consists of three terms: (i) the volume term
which may be expressed in the same form of (6.1); (ii) the surface term which may
be expressed as the same form of (6.2); (iii) the curvature energy which may be
expressed as the same form of (6.3) since the bending energy of a single layer of
graphene was proven to have the Helfrich form [59]. If considering that the radius
of the carbon nanotube is much smaller than the curvature radius of the central axis
of the carbon nanotube, the total formation energy may be transformed into

F = m
∫

ds + α

∫
κ2ds, (6.7)

where m and α are two elastic constants. κ and s represent the curvature and the
arc length of the central axis of the carbon nanotube, respectively. The first-order
variation δF = 0 yields the equilibrium-shape equations of a string [63]:

2d2κ/ds2 + κ3 − 2κτ 2 − (m/α)κ = 0, (6.8)

κ2τ = constant. (6.9)

One solution to the above shape equations is a straight multi-walled carbon nan-
otube with vanishing κ and τ . The other solution to the above shape equations is
a helix with pitch angle θ. From Eqs. (6.8) and (6.7), one may calculate the total
formation energy for the helix

F = ml[1 + 1/(1 − 2 tan2 θ)], (6.10)

where l represents the total length of the central axis of the helix. The threshold
condition for formation of helix is F = 0, which requires θ = π/4. This value is in
a good agreement with the pitch angle observed in the experiment [64].
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6.3 Reversible Transition Between Peptide Nanotubes
and Spherical Vesicles

In recent work, Yan et al. have observed the reversible transition between peptide
nanotubes and vesicle-like structures [60]. It was found that the dilution of a peptide-
nanotube dispersion solution results in the formation of vesicle-like structures, which
can be reassembled into the nanotubes by concentrating the solution [60]. The mech-
anism underlying these phenomena is the same as the formation of the focal conic
domain in SmA liquid crystals mentioned above.

As shown in reference [57], the outward growth of a layer with small thickness h
on the top of the outermost equilibrium dipeptide aggregate (the nanotube or vesicle-
like structure) leads to three kinds of free energy accumulations. First is the increment
of the volume free energy:

FV = −g0

∮
(h − h2H + h3K/3)dA, (6.11)

where H and K are the mean curvature and the Gauss curvature of the outer sur-
face of the dipeptide aggregate, respectively. g0 is the difference in the Gibbs free
energy density between the solution phase and the aggregate phase. Its value could
be estimated with the ideal gas model, which reads

g0 = CAkBT ln(CA/CS), (6.12)

where CA and CS are the concentrations of dipeptide in the aggregate phase and
the solution phase, respectively [60]. kB and T are the Boltzman constant and the
temperature of the solution. Second is the extra interfacial free energy:

FA = λ

∮
(−2hH + h2K )dA, (6.13)

where λ is the surface energy per area of the solution/aggregate interface. Third is
the extra curvature elastic energy, which can be expressed as the Helfrich form [57]:

Fc = k1h

2

∮
(2H)2dA + k5h

∮
KdA, (6.14)

where k1 and k5 are related to the elastic constants of liquid crystals.
The equilibrium shape of the aggregate should satisfy ∂F/∂h = 0, which leads

to the Weingarten equation

2k1H
2 + k5K − g0 − 2λH = 0. (6.15)
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It is easy to verify that a sphere of radius r0 and a cylinder of radius ρ0 are two
solutions to Eq. (6.15) provided that

r0 = 2k1 + k5√
λ2 + g0(2k1 + k5) − λ

≈ 2λ

g0
, (6.16)

and

ρ0 = k1√
λ2 + 2g0k1 − λ

≈ λ

g0
. (6.17)

The approximations in the above two equations have been done according to the
experiment conditions [60]. From these equations, one can calculate the formation
energy of sphere and tube, respectively. The results are Fshpere = −(g30h

3/12λ2 +
g20h

2/4λ) and Ftube = −g20h
2/2λ. Thus, the condition for transition from a tube-to-a

spherical structure is Ftube > Fshpere, that is, g0h > 3λ. Substituting g0h = 3λ into
Eq. (6.12) one can obtain the critical concentration for tube-to-vesicle-transition [60]

C∗ = CA exp(−3λ/CAhkBT ). (6.18)

When CS < C∗, peptide nanotubes will transform into spherical vesicle-like struc-
tures.

7 Conclusion

In the above discussions, we have presented several theoretical investigations based
on the Helfrich functional (1.5). The configurations of closed lipid vesicles and open
lipid vesicles with holes, and the concepts of stress tensor and moment tensor in fluid
membranes were surveyed in detail. It was shown that the Helfrich functional could
be extended to understand the growth mechanism of some mesoscopic structures.

The study of theWillmore functional (1.3) enters the epilog stage as theWillmore
conjecture has been proved [9]. We believe that the times of studying the Helfrich
functional is coming soon. Although the aforementioned theoretical achievements
based on the Helfrich functional have been made in recent years, the substantial
researches on the Helfrich functional are still in their infancy. If c0 > 0, it is not hard
to verify that among all compact embedded surfaces of genus 0, the round spherewith
radius R = 2/c0 corresponds to the least minimum of the Helfrich functional (1.5)
from the Alexandrov theorem [4]. In other words, all compact embedded surfaces of
genus 0 have energies no less than 4πk̄ for positive c0. What will happen for c0 < 0
or for embedded surfaces of nonvanishing genus? This is still an open question.

We are lack of good enough mathematical tools to deal with the Helfrich func-
tional since the Helfrich functional, different from the Willmore functional, is not an
invariant under conformal transformations. However, every coin has two sides. The
breaking of conformal invariance also brings benefit to us. The critical configuration
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corresponding to the minimal value of the Helfrich functional should have the spe-
cific size. Introduce a scaling transformation r → �r, where r represents the position
vector of point on the critical configuration. Under the scaling transformation, the
Helfrich functional is transformed into

FH (�) =
∫

M
[(kc/2)(2H)2 + k̄K ]dA

+ 2kcc0�
∫

M
HdA + (kcc

2
0/2)�

2
∫

M
dA. (7.1)

The critical configuration corresponds to � = 1, which implies that FH (�) takes
minimal value when � = 1. If c0 �= 0, we may derive the necessary condition of the
critical configuration:

H̄ ≡
∫
M HdA∫
M dA

= −c0
2

. (7.2)

This necessary condition is quite similar to the known Minkowski formula [65]. In
addition, the critical configuration of the Helfrich functional should also satisfy the
shape Eq. (3.3) with vanishing p and λ. Integrating this equation and considering the
Stokes theorem, we can obtain

∫

M
H(4H 2 − 4K − c20)dA = 4πc0χ(M), (7.3)

where χ(M) is the characteristic number of surface M . The above Eqs. (7.2) and
(7.3) might be helpful to the further study of the Helfrich functional.
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Multiplication and Composition in Weighted
Modulation Spaces

Maximilian Reich and Winfried Sickel

Abstract We study the existence of the product of twoweightedmodulation spaces.
For this purpose, we discuss two different strategies. The more simple one allows
transparent proofs in various situations. However, our second method allows a closer
look onto associated norm inequalities under restrictions in the Fourier image. This
will give us the opportunity to treat the boundedness of composition operators.

Keywords Weightedmodulation spaces ·Short-timeFourier transform ·Frequency-
uniform decomposition · Multiplication of distributions · Multiplication algebras ·
Composition of functions
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1 Introduction

Since modulation spaces have been introduced by Feichtinger [7] they have become
canonical for both time-frequency and phase-space analysis. However, in recent
time modulation spaces have been found useful also in connection with
linear and nonlinear partial differential equations, see e.g., Wang et al. [35–38],
Ruzhansky et al. [26], or Bourdaud et al. [5]. Investigations of partial differential
equations require partly different tools than used in time-frequency and phase-space
analysis. In particular, Fourier multipliers, pointwise multiplication and composition
of functions need to be studied. In our contribution, we will concentrate on pointwise
multiplication and composition of functions. Already Feichtinger [7] was aware of
the importance of pointwise multiplication in modulation spaces. In the meanwhile
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several authors have studied this problem, we refer, e.g., to [6, 13, 29, 30, 32]. In
Sect. 3, we will give a survey about the known results. Therefore, we will discuss
two different proof strategies. The more simple one, due to Toft [30, 32] and Sugi-
moto et al. [29], allows transparent proofs in various situations, in particular one can
deal with those situations where the modulation spaces form algebras with respect
to pointwise multiplication. As a consequence, Sugimoto et al. [29] are able to deal
with composition operators onmodulation spaces induced by analytic functions. Our
second method, much more complicated, allows a closer look onto associated norm
inequalities under restrictions in the Fourier image. This will give us the possibility to
discuss the boundedness of composition operators on weighted modulation spaces
based on a technique which goes back to Bourdaud [3], see also Bourdaud et al.
[5] and Reich et al. [23]. Our approach will allow to deal with the boundedness of
nonlinear operators T f : g �→ f ◦ g without assuming f to be analytic. However, as
the case of Ms

2,2 shows, our sufficient conditions are not very close to the necessary
conditions. There is still a certain gap.

The paper is organized as follows. In Sect. 2, we collect what is needed about the
weighted modulation spaces we are interested in. The next section is devoted to the
study of pointwise multiplication. In particular, we are interested in embeddings of
the type

Ms1
p,q · Ms2

p,q ↪→ Ms0
p,q ,

where s1, s2, p and q are given and we are asking for an optimal s0. These results will
be applied to problems around the regularity of composition of functions in Sect. 4.
For convenience of the reader we also recall what is known in the more general
situation

Ms1
p1,q1 · Ms2

p2,q2 ↪→ Ms0
p,q .

Special attention will be paid to the algebra property. Here, the known sufficient
conditions are supplemented by necessary conditions, see Theorem 3.5. Also only
partly new is our main result in Sect. 3 stated in Theorem 3.22. Here we investigate
multiplication of distributions (possibly singular) with regular functions (which are
not assumed to be C∞). Partly we have found necessary and sufficient conditions
also in this more general situation. Finally, Sect. 4 deals with composition operators.
As direct consequences of the obtained results for pointwise multiplication we can
deal with themappings g �→ g�, � ≥ 2, see Sect. 4.1. In Sect. 4.4, we shall investigate
g �→ f ◦ g, where f is not assumed to be analytic. Sufficient conditions, either in
terms of a decay for F f or in terms of regularity of f , are given.

Notation

We introduce some basic notation. As usual, N denotes the natural numbers,
N0 := N ∪ {0}, Z the integers and R the real numbers, C refers to the complex num-
bers. For a real number a, we put a+ := max(a, 0). For x ∈ R

n we use ‖x‖∞ :=
max j=1,... ,n |x j |. Many times we shall use the abbreviation 〈ξ〉 := (1 + |ξ|2) 1

2 ,
ξ ∈ R

n .
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The symbols c, c1, c2, . . . , C, C1, C2, . . . denote positive constants which are
independent of the main parameters involved but whose values may differ from
line to line. The notation a � b is equivalent to a ≤ Cb with a positive constant C .
Moreover, by writing a  b we mean a � b � a.

Let X and Y be two Banach spaces. Then the symbol X ↪→ Y indicates that
the embedding is continuous. By L(X, Y ) we denote the collection of all linear
and continuous operators which map X into Y . By C∞

0 (Rn) the set of compactly
supported infinitely differentiable functions f : Rn → C is denoted. Let S(Rn) be
the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions onRn . The topological dual, the class of tempered distributions, is denoted
by S ′(Rn) (equipped with the weak topology). The Fourier transform on S(Rn) is
given by

Fϕ(ξ) = (2π)−n/2
∫

Rn

eix ·ξ ϕ(x) dx , ξ ∈ R
n .

The inverse transformation is denoted by F−1. We use both notations also for the
transformations defined on S ′(Rn).

Convention. If not otherwise stated all functions will be considered on the Euclid-
ean n-space Rn . Therefore Rn will be omitted in notation.

2 Basics on Modulation Spaces

2.1 Definitions

A general reference for definition and properties of weighted modulation spaces is
Gröchenig’s monograph [10, Chap. 11].

Definition 2.1 Let φ ∈ S be nontrivial. Then the short-time Fourier transform of a
function f with respect to φ is defined as

Vφ f (x, ξ) = (2π)−
n
2

∫

Rn

f (s)φ(s − x)e−is·ξ ds (x, ξ ∈ R
n).

The function φ is usually called the window function. For f ∈ S ′ the short-time
Fourier transform Vφ f is a continuous function of at most polynomial growth on
R

2n , see [10, Theorem 11.2.3].

Definition 2.2 Let 1 ≤ p, q ≤ ∞. Let φ ∈ S be a fixed window and assume s ∈ R.
Then the weighted modulation space Ms

p,q is the collection of all f ∈ S ′ such that

‖ f ‖Ms
p,q

=
( ∫

Rn

( ∫

Rn

|Vφ f (x, ξ) 〈ξ〉s |pdx
) q

p
dξ

) 1
q

< ∞

(with obvious modifications if p = ∞ and/or q = ∞).



106 M. Reich and W. Sickel

Formally these spaces Ms
p,q depend on the window φ. However, for different

windows φ1,φ2 the resulting spaces coincide as sets and the norms are equivalent,
see [10, Proposition 11.3.2]. For that reason we do not indicate the window in the
notation (we do not distinguish spaces which differ only by an equivalent norm).

Remark 2.3 (i) General references with respect to weighted modulation spaces are
Feichtinger [7], Gröchenig [10, Chap. 11], Gol’dman [9], Guo et al. [11], Toft [30–
32], Triebel [34] and Wang et al. [38] to mention only a few.

(ii) There is an important special case. In case of p = q = 2 we obtain Ms
2,2 = H s

in the sense of equivalent norms, see Feichtinger [7], Gröchenig [10, Proposi-
tion 11.3.1]. Here H s is nothing but the standard Sobolev space built on L2, at
least for s ∈ N. In general H s is the collection of all f ∈ S ′ such that

‖ f ‖H s :=
( ∫

Rn

(1 + |ξ|2)s |F f (ξ)|2 dξ
)1/2

< ∞.

For us of great use will be another alternative approach to the spaces Ms
p,q . This

will be more close to the standard techniques used in connection with Besov spaces.
We shall use the so-called frequency-uniform decomposition, see e.g., Wang [37].
Therefore, let ρ : Rn �→ [0, 1] be a Schwartz function which is compactly supported
in the cube

Q0 := {ξ ∈ R
n : −1 ≤ ξi ≤ 1, i = 1, . . . , n} .

Moreover, we assume

ρ(ξ) = 1 if |ξi | ≤ 1

2
, i = 1, 2, . . . , n.

With ρk(ξ) := ρ(ξ − k), ξ ∈ R
n , k ∈ Z

n , it follows

∑
k∈Zn

ρk(ξ) ≥ 1 for all ξ ∈ R
n .

Finally, we define

σk(ξ) := ρk(ξ)
( ∑

k∈Zn

ρk(ξ)
)−1

, ξ ∈ R
n , k ∈ Z

n .

The following properties are obvious:

• 0 ≤ σk(ξ) ≤ 1 for all ξ ∈ R
n;

• suppσk ⊂ Qk := {ξ ∈ R
n : −1 ≤ ξi − ki ≤ 1, i = 1, . . . , n};

•
∑
k∈Zn

σk(ξ) ≡ 1 for all ξ ∈ R
n;

• There exists a constant C > 0 such that σk(ξ) ≥ C if maxi=1,...,n |ξi − ki | ≤ 1
2 ;• For all m ∈ N0 there exist positive constants Cm such that for |α| ≤ m
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sup
k∈Zn

sup
ξ∈Rn

|Dασk(ξ)| ≤ Cm .

We shall call the mapping

�k f := F−1 [σk(ξ)F f (ξ)] (·), k ∈ Z
n, f ∈ S ′ ,

frequency-uniform decomposition operator.
As it is well-known there is an equivalent description of the modulation spaces

by means of the frequency-uniform decomposition operators.

Proposition 2.4 Let 1 ≤ p, q ≤ ∞ and assume s ∈ R. Then the weighted modula-
tion space Ms

p,q consists of all tempered distributions f ∈ S ′ such that

‖ f ‖∗
Ms

p,q
=

( ∑
k∈Zn

〈k〉sq‖�k f ‖q
L p

) 1
q

< ∞ .

Furthermore, the norms ‖ f ‖Ms
p,q

and ‖ f ‖∗
Ms

p,q
are equivalent.

We refer to Feichtinger [7] or Wang and Hudzik [37]. In what follows, we shall
work with both characterizations. In general, we shall use the same notation ‖ · ‖Ms

p,q

for both norms.

Lemma 2.5 (i) The modulation space Ms
p,q is a Banach space.

(ii) Ms
p,q is independent of the choice of the window ρ ∈ C∞

0 in the sense of equivalent
norms.
(iii) Ms

p,q is continuously embedded into S ′.
(iv) Ms

p,q has the Fatou property, i.e., if ( fm)∞m=1 ⊂ Ms
p,q is a sequence such that

fm ⇀ f (weak convergence in S ′) and

sup
m∈N

‖ fm ‖Ms
p,q

< ∞ ,

then f ∈ Ms
p,q follows and

‖ f ‖Ms
p,q

≤ sup
m∈N

‖ fm ‖Ms
p,q

< ∞ .

Proof For (i), (ii), (iii) we refer to [10].
We comment on a proof of (iv). Therefore, we follow [8] and work with the norm

‖ · ‖∗
Ms

p,q
. From the assumption, we obtain that for all k ∈ Z

n and x ∈ R
n ,

F−1 [σk F fm](x) = (2π)−n/2 fm(x − ·)(σk) → f (x − ·)(σk) = F−1 [σk F f ](x)
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as m → ∞. Fatou’s lemma yields

∑
|k|≤N

( ∫

Rn

|F−1 [σk F f ](x)|pdx
) q

p

≤ lim inf
m→∞

∑
|k|≤N

( ∫

Rn

|F−1 [σk F fm](x)|pdx
) q

p
.

An obvious monotonicity argument completes the proof. �

2.2 Embeddings

Obviously the spaces Ms
p,q are monotone in s and q. But they are also monotone

with respect to p. To show this we recall Nikol’skij’s inequality, see e.g., Nikol’skij
[21, 3.4] or Triebel [33, 1.3.2].

Lemma 2.6 Let 1 ≤ p ≤ q ≤ ∞ and f be an integrable function with suppF f ⊂
B(y, r), i.e., the support of the Fourier transform of f is contained in a ball with
radius r > 0 and center in y ∈ R

n. Then it holds

‖ f ‖Lq ≤ Crn( 1
p − 1

q )‖ f ‖L p

with a constant C > 0 independent of r and y.

This implies ‖�k f ‖Lq ≤ c ‖�k f ‖L p if p ≤ q with c independent of k and f
which results in the following corollary (by using the norm ‖ · ‖∗

Ms
p,q
).

Corollary 2.7 Let s0 > s, p0 < p and q0 < q. Then the following embeddings hold
and are continuous:

Ms0
p,q ↪→ Ms

p,q , Ms
p0,q ↪→ Ms

p,q

and
Ms

p,q0 ↪→ Ms
p,q ;

i.e., for all p, q, 1 ≤ p, q ≤ ∞, we have

Ms
1,1 ↪→ Ms

p,q ↪→ Ms
∞,∞ .

Of some importance are embeddings with respect to different metrics. To find
sufficient conditions is not difficult when working with ‖ · ‖∗

Ms
p,q
. A bit more tricky

are the necessity parts. We refer to the recent paper by Guo et al. [11].



Multiplication and Composition in Weighted Modulation Spaces 109

Proposition 2.8 Let s0, s1 ∈ R and 1 ≤ p0, p1 ≤ ∞. Then

Ms0
p0,q0 ↪→ Ms1

p1,q1

holds if and only if either

• p0 ≤ p1 and s0 − s1 > n
(

1
q1

− 1
q0

)

• or p0 ≤ p1, s0 = s1 and q0 = q1.

Remark 2.9 Embeddings ofmodulation spaces are treated at various places, we refer
to Feichtinger [7], Wang and Hudzik [37], Cordero and Nicola [6], Iwabuchi [13]
and Guo et al. [11].

The weighted modulation spaces Ms
p,q cannot distinguish between boundedness

and continuity (asBesov spaces). LetCub denote the class of all uniformly continuous
and bounded functions f : R

n → C equippedwith the supremumnorm. If f ∈ Ms
p,q

is a regular distribution it is determined (as a function) almost everywhere. We shall
say that f is a continuous function if there is one continuous function g which equals
f almost everywhere.

Corollary 2.10 Let s ∈ R and 1 ≤ p, q ≤ ∞. Then the following assertions are
equivalent:

• Ms
p,q ↪→ L∞;

• Ms
p,q ↪→ Cub;

• Ms
p,q ↪→ M0∞,1;

• either s ≥ 0 and q = 1 or s > n/q ′.

Proof We shall work with ‖ · ‖∗
Ms

p,q
.

Step 1. Sufficiency. By Proposition 2.8 it will be enough to show M0∞,1 ↪→ Cub.
From the definition of M0∞,1 it follows that

∑
k∈Zn

�k f (x)

is pointwise convergent (for all x ∈ R
n). Furthermore, since �k f ∈ C∞, there is a

continuous representative in the equivalence class f , given by
∑

k∈Zn �k f (x). In
what follows, we shall work with this representative. Boundedness of f ∈ M0∞,1 is
obvious, we have

| f (x)| = |
∑
k∈Zn

�k f (x)| ≤ ‖ f ‖M0∞,1
.

It remains to prove uniform continuity. For fixed ε > 0 we choose N such that

∑
|k|>N

‖�k f ‖L∞ < ε/2 .
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In case |k| ≤ N we observe that

|�k f (x) − �k f (y)| ≤ ‖∇(�k f ) ‖L∞|x − y| .

It follows from [33, Theorem 1.3.1] that

‖∇(�k f ) ‖L∞ ≤ c1 ‖ (M�k f ) ‖L∞

with a constant c1 independent of f and k. Here M denotes the Hardy–Littlewood
maximal function. In the quoted reference, the assumption�k f ∈ S is used. A closer
look at the proof shows that �k f ∈ L�oc

1 satisfying

∫

Qk

|�k f (x)| dx ≤ c2 (1 + |k|)N , k ∈ Z
n ,

for some N ∈ N is sufficient. Since �k f ∈ L∞ this is obvious. Consequently we
obtain

|�k f (x) − �k f (y)| ≤ c1 ‖ (M�k f ) ‖L∞ |x − y| ≤ c1 ‖�k f ‖L∞ |x − y|
≤ c2 ‖ f ‖L∞ |x − y| ,

where in the last step we used the standard convolution inequality ‖ g ∗ h ‖L∞ ≤
‖ g ‖L1‖ f ‖L∞ . This implies uniformcontinuity of�k f and therefore of

∑
|k|≤N �k f .

In particular, we find

| f (x) − f (y)| =
∣∣∣
∑
k∈Zn

(�k f (x) − �k f (y))

∣∣∣

≤
∑

|k|>N

(|�k f (x)| + |�k f (y)|) + c2 ‖ f ‖L∞ |x − y|
∑
|k|≤N

1

≤ ε + c2 ‖ f ‖L∞ |x − y| (2N + 1)n .

Choosing δ = (c2 ‖ f ‖L∞ (2N + 1)n)−1 ε we arrive at

| f (x) − f (y)| < 2 ε if |x − y| < δ .

Step 2. Necessity. Let ψ ∈ S be a real-valued function such that ψ(0) = 1 and

suppFψ ⊂ {ξ : max
j=1,...,n

|ξ j | < ε} with ε < 1/2.

We define f by
F f (ξ) :=

∑
k∈Zn

ak Fψ(ξ − k) .
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Clearly,
�k f (x) = ak eikx ψ(x) , k ∈ Z

n .

Substep 2.1. Let s = 0 and 1 ≤ p ≤ ∞. The above arguments imply f ∈ M0
p,q if

and only if (ak)k ∈ �q . On the other hand,

f (x) = ψ(x)
∑
k∈Zn

ak eikx (2.1)

which implies that f is unbounded in 0 if
∑

k∈Zn ak = ∞. Choosing

ak :=
{

(k1 log(2 + k1))−1 if k1 ∈ N , k = (k1, 0, . . . 0) ;
0 otherwise;

then f ∈ M0
p,q \ L∞, q > 1, follows.

Substep 2.2. Let 1 ≤ p ≤ ∞ and q = ∞. Then we choose ak := 〈k〉−n . It follows
f ∈ Mn

p,∞ but f (0) = +∞.
Substep 2.3.Let 1 ≤ p ≤ ∞, 1 < q < ∞ and s = n/q ′. Then,with δ > 0,we choose

ak :=
{ 〈k〉−n (log〈k〉)−(1+δ)/q if |k| > 0 ;
0 otherwise.

It follows

‖ f ‖
Mn/q′

p,q
= ‖ψ‖L p

⎛
⎝∑

|k|>0

〈k〉−nq+nq/q ′
(log〈k〉)−(1+δ)

⎞
⎠

1
q

= ‖ψ‖L p

⎛
⎝∑

|k|>0

〈k〉−n (log〈k〉)−(1+δ)

⎞
⎠

1
q

< ∞ .

On the other hand, we have

f (0) =
∑
|k|>0

〈k〉−n (log〈k〉)−(1+δ)/q = ∞

if (1 + δ)/q ≤ 1. Hence, for choosing δ = q − 1 the claim follows. �

Remark 2.11 Sufficient conditions for embeddings ofmodulation spaces into spaces
of continuous functions can be found at several places, in particular in Feichtinger’s
original paper [7]. We did not find references for the necessity.
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3 Pointwise Multiplication in Modulation Spaces

We are interested in embeddings of the type

Ms1
p,q · Ms2

p,q ↪→ Ms0
p,q ,

where s1, s2, p and q are given and we are asking for an optimal s0. These results will
be applied in connection with our investigations on the regularity of compositions
of functions in Sect. 4. However, several times we shall deal with the slightly more
general problem

Ms1
p1,q · Ms2

p2,q ↪→ Ms0
p,q ,

1

p
= 1

p1
+ 1

p2
.

In view of Corollary 2.7 this always yields

Ms1
p1,q · Ms2

p2,q ↪→ Ms0
p,q ,

1

p
≤ 1

p1
+ 1

p2
.

For convenience of the reader we also recall what is known in the more general
situation

Ms1
p1,q1 · Ms2

p2,q2 ↪→ Ms0
p,q .

At first we shall deal with the algebra property. Afterwardswe turn to the existence
of the product in more general situations.

3.1 On the Algebra Property

Themain aimconsists in givingnecessary and sufficient conditions for the embedding
Ms

p,q · Ms
p,q ↪→ Ms

p,q . To prepare this we recall a nice identity due to Toft [30], see
also Sugimoto et al. [29].

Lemma 3.1 Let ϕ1,ϕ2 ∈ S be nontrivial. Let f, g ∈ L�oc
2 such that there exist c > 0

and M > 0 with
∫

Qk

| f (x)|2 + |g(x)|2 dx ≤ c (1 + |k|)M , k ∈ Z
n .

For all x, ξ ∈ R
n the following identity takes place

Vϕ1 ·ϕ2( f g)(x, ξ) = (2π)−n/2
∫

Vϕ1( f )(x, ξ − η) Vϕ2(g)(x, η) dη . (3.1)
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Proof The main tool will be the Plancherel identity. Observe, that for any fixed
x ∈ R

n the functions f (t)ϕ1(t − x), g(t)ϕ2(t − x) belong to L2 and therefore their
Fourier transforms as well. For brevity we put

I :=
∫

Vϕ1( f )(x, ξ − η) Vϕ2(g)(x, η) dη .

Applying the Plancherel identity, we conclude

I =
∫

F( f (t)ϕ1(t − x) e−iξt )(−η)F(g(t)ϕ2(t − x))(−η) dη

=
∫

f (t)ϕ1(t − x) e−iξt g(t)ϕ2(t − x)) dt

=
∫

f (t) g(t)ϕ1(t − x)ϕ2(t − x) e−iξt dt

= (2π)n/2 Vϕ1·ϕ2( f g)(x, ξ) .

The proof is complete. �

Remark 3.2 It is clear that the assertion does not extend very much. For example, if
f, g ∈ L�oc

p for some p < 2 then the above claim is not true. We may take

f (x) = g(x) = ψ(x) |x |−n/2 , x ∈ R
n ,

where ψ is a smooth and compactly supported cut-off function s.t. ψ(0) = 1. Then
f · g is not longer a distribution, i.e., the integral

Vϕ1 ·ϕ2( f g)(x, ξ) = (2π)−
n
2

∫

Rn

f (s) g(s)ϕ1(s − x)ϕ2(s − x) e−is·ξ ds

does not make sense in general.

In [29, 30], the identity (3.1) is applied either in case f, g ∈ S or f, g ∈ L∞.
Here, we shall apply it in the wider context of Lemma 3.1.

Lemma 3.3 Let 1 ≤ p, q ≤ ∞ and assume Ms
p,q ↪→ M0∞,1. Then there exists a

constant c such that

‖ f · g ‖Ms
p,q

≤ c
(
‖ f ‖M0∞,1

‖ g‖Ms
p,q

+ ‖ f ‖Ms
p,q

‖ g‖M0∞,1

)

holds for all f, g ∈ Ms
p,q .

Proof The main idea in the proof consists in the fact that the modulation space can
be characterized by different window functions. Since M0∞,1 ↪→ L∞ we know that
f, g satisfy the conditions in Lemma 3.1. Hence
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‖ f · g ‖Ms
p,q

=
{ ∫ [ ∫ ∣∣∣Vϕ2( f · g)(x, ξ)

∣∣∣
p
dx

]q/p〈ξ〉sqdξ
}1/q

(3.2)

≤
{ ∫ [ ∫ ∣∣∣

∫
Vϕ f (x, ξ − η)Vϕg(x, η)dη

∣∣∣
p
dx

]q/p〈ξ〉sqdξ
}1/q

.

We split the integration with respect to η into two parts

�ξ := {η : |ξ − η| ≥ |η|} and �ξ := {η : |ξ − η| < |η|} , ξ ∈ R
n . (3.3)

It follows
‖ f · g ‖Ms

p,q
≤ 2s (A + B) ,

where

A :=
{ ∫ [ ∫ ∣∣∣

∫

�ξ

Vϕ f (x, ξ − η) (1 + |ξ − η|2)s/2Vϕg(x, η) dη
∣∣∣

p
dx

]q/p
dξ

}1/q

and

B :=
{ ∫ [ ∫ ∣∣∣

∫

�ξ

Vϕ f (x, ξ − η) Vϕg(x, η) (1 + |η|2)s/2dη
∣∣∣

p
dx

]q/p
dξ

}1/q
.

We continue by applying the generalized Minkowski inequality, see [18, Theo-
rem 2.4]. This yields

A ≤
∫ { ∫ [ ∫

|Vϕ f (x, ξ − η) 〈ξ − η〉s Vϕg(x, η) |p dx
]q/p

dξ
}1/q

dη

≤
∫ (

sup
x∈Rn

|Vϕg(x, η)|
) { ∫ [ ∫

|Vϕ f (x, ξ − η) 〈ξ − η〉s |p dx
]q/p

dξ
}1/q

dη

= ‖ g ‖M0∞,1
‖ f ‖Ms

p,q
.

Analogously one can prove

B ≤ ‖ f ‖M0∞,1
‖ g ‖Ms

p,q
.

The proof is complete. �

Remark 3.4 (i) We proved a bit more than stated. In fact, we have shown

‖ f · g ‖Ms
p,q

≤ 2s
(
‖ f ‖M0∞,1

‖ g‖Ms
p,q

+ ‖ f ‖Ms
p,q

‖ g‖M0∞,1

)

But here one has to notice that the norm on the left-hand side is generated by the
windowϕ2, whereas the norms on the right-hand side are generated by thewindowϕ.
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(ii) Lemma 3.3 has been proved by Sugimoto et al. [29]. For partial results with a
different proof we refer to Feichtinger [7].

Next, we turn to necessary and sufficient conditions for the algebra property.

Theorem 3.5 Let 1 ≤ p, q ≤ ∞ and s ∈ R. Then Ms
p.q is an algebra with respect

to pointwise multiplication if and only if either s ≥ 0 and q = 1 or s > n/q ′.

Remark 3.6 (i) By Corollary 2.10 the Theorem 3.5 can be reformulated as

Ms
p.q is an algebra ⇐⇒ Ms

p.q ↪→ L∞ .

This is in some sense natural because otherwise one could increase local singu-
larities by pointwise multiplication.
(ii) Theorem 3.5 has a partial counterpart for Besov spaces. Here one knows that
Bs

p,q is an algebra if and only if Bs
p,q ↪→ L∞ and s > 0. We refer to Peetre [22,

Theorem 11, p. 147], Triebel [33, Theorem 2.8.3] (sufficiency) and to [25, Theo-
rem 4.6.4/1] (necessity).

To prepare the proof, we need the following lemma which is of interest for its
own.

Lemma 3.7 Let 1 ≤ p, q < ∞ and s ∈ R. Let f ∈ S ′ and let there exists a constant
c > 0 such that

‖ f · g‖Ms
p,q

≤ c ‖g‖Ms
p,q

holds for all g ∈ S. Then f ∈ L∞ follows.

Proof Let T f (g) := f · g, g ∈ S. Let M̊s
p,q denote the closure of S in Ms

p,q .
Hence, there is a unique extension of T f to a continuous operator belonging to
L(M̊s

p,q , Ms
p,q). Next we employ duality. We fix p, q and s (1 ≤ p, q ≤ ∞, s ∈ R).

Let (g, h) denote the standard dual pairing on S ′ × S. Then

‖g‖ := sup
{
|(g, h)| : h ∈ S, ‖h‖M−s

p′,q′ ≤ 1
}

is an equivalent norm on Ms
p,q , see Feichtinger [7] or Toft [30]. In view of this

equivalent norm our assumption on T f implies L(M−s
p′,q ′ , M−s

p′,q ′). Next we continue
by complex interpolation. Let 0 < � < 1. It is known that

Ms
p,q = [Ms1

p1,q1 , Ms2
p2,q2 ]�

if 1 ≤ p1, q1 < ∞, 1 ≤ p2, q2 ≤ ∞, s1, s2 ∈ R and

s := (1 − �)s1 + � s2 ,
1

p
:= 1 − �

p1
+ �

p2
,

1

q
:= 1 − �

q1
+ �

q2
,
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see Feichtinger [7]. Thanks to the interpolation property of the complex method we
conclude

T f ∈ L
(
[M̊s

p,q , M−s
p′,q ′ ]1/2, [M̊s

p,q , M−s
p′,q ′ ]1/2

)
.

Because of M̊s
p,q = Ms

p,q if max(p, q) < ∞ we find

T f ∈ L
(

M0
2,2, M0

2,2

)
= L

(
L2, L2

)
.

But this implies f ∈ L∞. �

Proof of Theorem 3.5.
Step 1. Sufficiency is covered by Lemma 3.3.
Step 2. Necessity in case 1 ≤ p, q < ∞ and s ∈ R. In view of Lemma 3.7 the embed-
ding Ms

p,q · Ms
p,q ↪→ Ms

p,q implies Ms
p,q ⊂ L∞.

Step 3. To treat the remaining cases max(p, q) = ∞ we argue by using explicit
counterexamples.

Substep 3.1. Let 1 ≤ p ≤ ∞, s = 0 and 1 < q ≤ ∞. We assume that M0
p,q is an

algebra. This implies the existence of a constant c > 0 such that

‖ f · g ‖M0
p,q

≤ c ‖ f ‖M0
p,q

‖ g ‖M0
p,q

(3.4)

holds for all f, g ∈ M0
p,q . Let

f (x) = ψ(x)

∞∑
k=1

ak eikx1 , x = (x1, . . . , xn) ∈ R
n ,

be as in (2.1). Then, as shown above,

‖ f ‖M0
p,q

= ‖ψ‖L p ‖(ak)k‖�q

follows. Let

fN (x) := ψ(x)

N∑
k=1

ak eikx1 , x = (x1, . . . , xn) ∈ R
n , N ∈ N .

Obviously fN ∈ S. We assume that

suppFψ ⊂ {ξ : max
j=1,...,n

|ξ j | < ε} with ε < 1/4.
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Then, because of

fN (x) · fN (x) = ψ2(x)

2N∑
m=2

( m−1∑
k=1

ak am−k

)
eimx ,

we conclude

‖ fN · fN ‖M0
p,q

= ‖ψ2‖L p

( 2N∑
m=2

∣∣∣
m−1∑
k=1

ak am−k

∣∣∣
q
)1/q

.

Inequality (3.4) implies

( 2N∑
m=2

∣∣∣
m−1∑
k=1

ak am−k

∣∣∣
q
)1/q

≤ c
‖ψ‖2L p

‖ψ2‖L p

( N∑
k=1

|ak |q
)2/q

.

Clearly, in case q > 1 this is impossible in this generality. Explicit counterexam-
ples are given by

ak := k−1/q if 1 < q < ∞

and
ak = 1 if q = ∞ .

In case 1 < q < ∞ (3.4) yields

‖ fN · fN ‖M0
p,q

 N 1−1/q and ‖ fN ‖2M0
p,q

 (log N )2/q .

For q = ∞ we obtain

‖ fN · fN ‖M0
p,∞  N and ‖ fN ‖2M0

p,∞
 1 .

For N → ∞ we find a contradiction in both situations.

Substep 3.2. Let 1 ≤ p ≤ ∞, q = ∞ and 0 < s ≤ n. We argue as in Substep 3.1 and
assume Ms

p,∞ is an algebra with respect to pointwise multiplication. This leads to
the existence of a constant c > 0 such that

‖ f · g ‖Ms
p,∞ ≤ c ‖ f ‖Ms

p,∞ ‖ g ‖Ms
p,∞

holds for all f, g ∈ Ms
p,∞. We choose

f (x) = g(x) = fN (x) := ψ(x)
∑

‖k‖∞≤N

ak eikx , x ∈ R
n ,
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and obtain

‖ fN ‖Ms
p,q

= ‖ψ‖L p

( ∑
‖k‖∞≤N

|ak 〈k〉s |q
)1/q

,

‖ fN · fN ‖Ms
p,q

= ‖ψ2‖L p

( ∑
‖m‖∞≤2N

〈m〉sq
∣∣∣

∑
k: ‖k‖∞≤N
‖m−k‖∞≤N

ak am−k

∣∣∣
q
)1/q

.

In case s < n we choose ak := 1 for all k and obtain

‖ fN · fN ‖Ms
p,∞  N n+s and ‖ fN ‖2Ms

p,∞  N 2s .

This yields a contradiction if s < n. For s = n we consider ak := 〈k〉−n for all k.
This yields

log N � ‖ fN · fN ‖Mn
p,∞ and ‖ fN ‖2Mn

p,∞  1 ,

yielding a contradiction as well.

Substep 3.3. Let s < 0 and 1 ≤ p, q ≤ ∞. We choose ak := 〈k〉2|s| for all k and
obtain

N 3|s|+n+n/q � ‖ fN · fN ‖Ms
p,q

and ‖ fN ‖2Ms
p,q

 N 2|s|+2n/q .

For N → ∞ this implies |s| + n ≤ n/q. Since |s| > 0 this is impossible. The
proof is complete. �

Corollary 3.8 Let 1 ≤ p, q ≤ ∞ and s ≥ 0. Then Ms
p,q ∩ M0∞,1 is an algebra with

respect to pointwise multiplication and there exist a constant c such that

‖ f · g ‖Ms
p.q

≤ c
(
‖ f ‖M0∞,1

‖ g‖Ms
p,q

+ ‖ f ‖Ms
p,q

‖ g‖M0∞,1

)

holds for all f, g ∈ Ms
p,q ∩ M0∞,1.

Proof The same arguments as in Lemma 3.3 apply. �

Remark 3.9 Corollary 3.8 has a counterpart for Besov spaces. Here, one knows
that Bs

p,q ∩ L∞ is an algebra if 1 ≤ p, q ≤ ∞ and s > 0. We refer to Peetre [22,
Theorem 11, p. 147] and to [25, Theorem 4.6.4/2].

3.2 More General Products of Functions

Here, we consider the problem
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Ms1
p1,q1 · Ms2

p2,q ↪→ Ms
p,q .

As a first result, we mention a generalization of Lemma 3.3.

Lemma 3.10 Let 1 ≤ p1, p2, q ≤ ∞ and s ≥ 0. We put 1/p := (1/p1) + (1/p2).
If p ∈ [1,∞], then there exists a constant c such that

‖ f · g ‖Ms
p.q

≤ c
(
‖ f ‖M0

p1 ,1
‖ g‖Ms

p2 ,q
+ ‖ f ‖Ms

p1 ,q
‖ g‖M0

p2 ,1

)

holds for all f ∈ Ms
p1,q ∩ M0

p1,1 and all g ∈ Ms
p2,q ∩ M0

p2,1.

Proof We argue similar as above but using Hölder’s inequality with respect to p
before applying the generalized Minkowski inequality. �

Remark 3.11 Observe that M0
p1,1, M0

p2,1 ↪→ M0∞,1 ↪→ L∞.

Lemma 3.12 Let 1 ≤ p1, p2, q ≤ ∞ and s ≤ 0. We put 1/p := (1/p1) + (1/p2).
If p ∈ [1,∞], then there exists a constant c such that

‖ f · g ‖Ms
p.q

≤ c ‖ f ‖M |s|
p1 ,1

‖ g ‖Ms
p2 ,q

(3.5)

holds for all f ∈ M |s|
p1,1, g ∈ Ms

p2,q such that g satisfies g ∈ L�oc
2 and

∫

Qk

|g(x)|2 dx ≤ C (1 + |k|)M , (3.6)

for some C > 0 and M > 0 independent of k ∈ Z
n.

Proof Point of departure is the formula (3.2). Instead of the splitting in (3.3) we use
now the elementary inequality

1 + |η|2 ≤ 2 (1 + |ξ|2) (1 + |ξ − η|2)

which implies

(1 + |ξ|2)s/2 ≤ 2|s|/2 (1 + |ξ − η|2)|s|/2 (1 + |η|2)s/2 .

This leads to the estimate

‖ f · g ‖Ms
p.q

�
{ ∫ [ ∫ ∣∣∣

∫
Vϕ f (x, ξ − η) 〈ξ − η〉|s| Vϕg(x, η) 〈η〉s dη

∣∣∣
p
dx

]q/p
dξ

}1/q

=
{ ∫ [ ∫ ∣∣∣

∫
Vϕ f (x, τ ) 〈τ 〉|s| Vϕg(x, ξ − τ ) 〈ξ − τ 〉s dτ

∣∣∣
p
dx

]q/p
dξ

}1/q
.
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We continue by applying the generalized Minkowski inequality and Hölder’s
inequality (with respect to p) and obtain

‖ f · g ‖Ms
p,q

�
∫ { ∫ [

‖Vϕ f (x, τ ) 〈τ 〉|s|‖L p1
‖Vϕg(x, ξ − τ ) 〈ξ − τ 〉s‖L p2

]q
dξ

}1/q
dτ

�
∫

‖Vϕ f (x, τ ) 〈τ 〉|s|‖L p1
dτ ‖g‖Ms

p2 ,q

� ‖ f ‖M |s|
p1 ,1

‖ g ‖Ms
p2 ,q

.

�
Remark 3.13 Observe that M |s|

p1,1 ↪→ M |s|
∞,1 ↪→ L∞. In addition we would like to

mention that the constant c in (3.5) does not depend on the constant C in (3.6).

We recall a final result of Cordero and Nicola [6] concentrating on s = 0. These
authors study M0

p1,q1 · M0
p2,q2 ↪→ M0

p,q .

Proposition 3.14 Let 1 ≤ p1, p2, q1, q2 ≤ ∞. Then M0
p1,q1 · M0

p2,q2 ↪→ M0
p,q

holds if and only if

1

p
≤ 1

p1
+ 1

p2
and 1 + 1

q
≤ 1

q1
+ 1

q2
.

Remark 3.15 (i) Proposition 3.14 shows that in case s = 0 in Lemma 3.12we proved
an optimal estimate.
(ii) Necessity of the restrictions in Proposition 3.14 is shown by studying products of
Gaussian functions. For extensions of Proposition 3.14 to the case of products with
more than two factors we refer to Guo et al. [11] and Toft [30].

3.3 Products of a Distribution with a Function

Up to now, we considered only products of either L∞-functions or L�oc
2 -functions

with L∞-functions. But now we turn to the product of a distribution with a function
which is not assumed to be C∞. This requires a definition.

The Definition of the Product in S ′

Let ψ ∈ S be a function in C∞
0 such that ψ(ξ) = 1 in a neighbourhood of the origin.

We define
S j f (x) = F−1[ψ(2− jξ)F f (ξ)](x), j = 0, 1, . . . .

The Paley-Wiener theorem tells us that S j f is anentire analytic function of expo-
nential type. Hence, if f, g ∈ S ′ the products S j f · S j g makes sense for any j .
Further,
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lim
j→∞F−1[ψ(2− jξ)F f (ξ)](·) = f (convergence in S ′)

for any f ∈ S ′.

Definition 3.16 Let f, g ∈ S ′. We define

f · g = lim
j→∞ S j f · S j g

whenever the limit on the right-hand side exists in S ′. We call f · g the product of f
and g.

Remark 3.17 In defining the product we followed a usual practice, see e.g., [22],
[33, 2.8], [14, 15] and [25, 4.2]. For basic properties of this notion, we refer to [14,
15] and [25, 4.2].

Theorem 3.18 Let 1 ≤ p1, p2, q ≤ ∞ and s ≤ 0. We put 1/p := (1/p1) + (1/p2).
If p ∈ [1,∞], then there exists a constant c such that

‖ f · g ‖Ms
p,q

≤ c ‖ f ‖M |s|
p1 ,1

‖ g ‖Ms
p2 ,q

)

holds for all f ∈ M |s|
p1,1 and g ∈ Ms

p2,q .

Proof We have to show that the limit of (S j f · S j g) j exists in S ′. The remain-
ing assertions, lim j→∞ S j f · S j g ∈ Ms

p,q and the norm estimates will follow by
employing the Fatou property, see Lemmas 2.5 and 3.12.
Step 1. Let 1 ≤ q < ∞. We have

lim
j→∞ ‖S j f − f ‖Ms

p,q
= 0 for all f ∈ Ms

p,q .

In addition it is easily seen that

sup
j∈N0

‖S j f ‖Ms
p,q

≤ ‖F−1ψ‖L1 ‖ f ‖Ms
p,q

(3.7)

holds for all f ∈ Ms
p,q . Hence, we conclude by means of Lemma 3.12

‖Sk f Sk g − S j f S j g‖Ms
p,q

≤ ‖(Sk f − S j f ) Sk g‖Ms
p,q

+ ‖S j f (Sk g − S j g)‖Ms
p,q

≤ c (‖ Sk g ‖Ms
p2 ,q

‖ Sk f − S j f ‖M |s|
p1 ,1

+ ‖ Sk g − S j g ‖Ms
p2 ,q

‖ S j f ‖M |s|
p1 ,1

)

the convergence of (Sk f · Sk g)k in Ms
p,q and therefore in S ′, see Lemma 2.5.

Step 2. Let q = ∞ and suppose p = 1. Let ψ,ψ∗ ∈ C∞
0 be functions such that

ψ(ξ) = 1, |ξ| ≤ 1, ψ(ξ) = 0 if |ξ| > 3/2 and ψ∗(ξ) = 1, |ξ| ≤ 6. Then checking the
Fourier support of the product Sk f Sk g and using linearity of F we conclude



122 M. Reich and W. Sickel

〈
Sk f Sk g − S j f S j g,ϕ

〉

=
〈
Sk f Sk g − S j f S j g,F−1[(ψ∗(2kξ) − ψ∗(2 jξ))Fϕ(ξ)]( · )

〉
.

For brevity we put

h1 := Sk f Sk g − S j f S j g and h2 := F−1[(ψ∗(2kξ) − ψ∗(2 jξ))Fϕ(ξ)]( · ) .

h1, h2 are smooth functions with compactly supported Fourier transform. Hence,

h1 =
∑
k∈I1

�kh1 and h2 =
∑
k∈I2

�kh2 ,

where I1, I2 are finite subsets of Zn . This allows us to rewrite
〈
Sk f Sk g − S j f S j g,

ϕ
〉
as follows

〈
Sk f Sk g − S j f S j g,ϕ

〉
=

∑
k∈I1

∑
�∈I2

∫
�kh1(x)��h2(x) dx

=
∑
�∈I2

∑
k∈I1: Qk∩Q� �=∅

∫
�kh1(x)��h2(x) dx .

Application of Hölder’s inequality yields

∣∣∣
〈
Sk f Sk g − S j f S j g,ϕ

〉∣∣∣ ≤ 2n sup
k∈Zn

〈k〉s‖�kh1 ‖L p1

( ∑
�∈Zn

〈�〉−s‖��h2 ‖L p2

)

≤ 2n ‖ h1 ‖Ms
p1 ,∞ ‖ h2 ‖M−s

p2 ,1
. (3.8)

By means of Lemma 3.12 and (3.7) we know that

‖ h1 ‖Ms
p1 ,∞ = ‖ Sk f Sk g − S j f S j g ‖Ms

p1 ,∞

≤ c1 sup
j∈N0

‖ S j g ‖Ms
p2 ,q

‖ S j f ‖M |s|
p1 ,1

≤ c2 ‖ g ‖Ms
p2 ,q

‖ f ‖M |s|
p1 ,1

.

On the other hand, if j ≤ k, a standard Fourier multiplier argument yields

‖ h2 ‖M−s
p2 ,1

= ‖F−1[(ψ∗(2kξ) − ψ∗(2 jξ))Fϕ(ξ)]( · ) ‖M−s
p2 ,1

≤ C
∑

A 2 j ≤|�|≤B 2k

〈�〉−s ‖��ϕ ‖L p2
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for appropriate positive constants A, B, C independent of j, k andϕ. Sinceϕ ∈ S ⊂
M−s

p2,1 we conclude that the right-hand side tends to 0 if j → ∞. This finally proves

∣∣∣
〈
Sk f Sk g − S j f S j g,ϕ

〉∣∣∣ < ε if j, k ≥ j0(ε) .

Hence (Sk f Sk g)k is weakly convergent in S ′. Now, Lemma 3.12 yields the claim
also for q = ∞.
Step 3. Let q = ∞ and suppose 1 < p ≤ ∞. We employ (3.8) with p1 = ∞ and
p2 = 1 and afterwards Proposition 2.8. It follows

∣∣∣
〈
Sk f Sk g − S j f S j g,ϕ

〉∣∣∣ ≤ 2n ‖ h1 ‖Ms∞,∞ ‖ h2 ‖M−s
1,1

≤ c1 ‖ h1 ‖Ms
p,q

‖ h2 ‖M−s
1,1

.

Now we can argue as in Step 2. �

Remark 3.19 For a partial result concerning Theorem 3.18 we refer to
Feichtinger [7].

3.4 One Example

We consider the Dirac δ distribution. Since

Fδ(ξ) = (2π)−n/2 , ξ ∈ R
n ,

it is easily seen that δ ∈ M0
p,∞ for all p. Also not difficult to see is that M0

1,∞ is the
smallest space of type Ms

p,q to which δ belongs to. Theorem 3.18 yields

‖ f · δ ‖M0
p,∞ ≤ c ‖ δ ‖M0

p,∞ ‖ f ‖M0∞,1

with some c independent of f ∈ M0∞,1. With other words, we can multiply δ with a
modulation space Ms

p,q if this space is embedded into Cub, see Corollary 2.10. This
looks reasonable.

3.5 The Second Method

Finally, we would like to investigate also the cases min(s1, s2) ≤ n/q ′. For deal-
ing with this special situation we turn to a different method which will allow a
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better localization in the Fourier image. Therefore we shall work with the frequency-
uniform decomposition (σk)k . Recall that suppσk ⊂ Qk := {ξ ∈ R

n : −1 ≤ ξi −
ki ≤ 1, i = 1, . . . , n}. For brevity we put

fk(x) := F−1[σk(ξ)F f (ξ)](x) , x ∈ R
n , k ∈ Z

n .

Then, at least formally, we have the following representation of the product f · g
as

f · g =
∑

k,l∈Zn

fk · gl .

In what follows we shall study bounds for related partial sums.

Lemma 3.20 Let 1 ≤ p1, p2 ≤ ∞, 1 < q ≤ ∞ and s0, s1, s2 ∈ R. Define p by 1
p :=

1
p1

+ 1
p2

. If p ∈ [1,∞], 0 ≤ s0 ≤ min(s1, s2) and s2 + s1 − s0 > n/q ′, then there
exists a constant c such that

‖
∑

k,l∈Zn

fk · gl‖M
s0
p,q

≤ c ‖ f ‖M
s1
p1 ,q

‖g‖M
s2
p2 ,q

holds for all f, g ∈ S ′ such that suppF f and suppFg are compact. The constant c
is independent from suppF f and suppFg, respectively.

Proof Later on, we shall use the same strategy of proof as below in slightly different
situations. For this reason and later use we shall take care of all constants showing
up in our estimates below.
Step 1. Preparations. Determining the Fourier support of f j · gl we see that

suppF( f j · gl) = supp (F f j ∗ Fgl)

⊂ {ξ ∈ R
n : ji + li − 2 ≤ ξi ≤ ji + li + 2, i = 1, . . . , n}.

Hence, the term F−1(σkF( f j · gl)) vanishes if ‖k − ( j + l)‖∞ ≥ 3. In addition,
since suppF f and suppFg are compact, the sum

∑
j,l∈Zn f j · gl is a finite sum. We

obtain

σkF( f · g) = σkF
( ∑

j,l∈Zn

f j · gl

)
= σkF

( ∑
j,l∈Zn ,

ki −3< ji +li <ki +3,
i=1,...,n

f j · gl

)

[r= j+l]=
∑

r∈Zn ,
ki −3<ri <ki +3,

i=1,...,n

∑
l∈Zn

σkF
(

fr−l · gl
)
.
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Consequently

∥∥F−1
(
σkF( f · g)

)∥∥
L p

≤
∑

r∈Zn ,
ki −3<ri <ki +3,

i=1,...,n

∑
l∈Zn

‖F−1
(
σkF( fr−l · gl)

)‖L p

[t=r−k]=
∑
t∈Zn ,

−3<ti <3,
i=1,...,n

∑
l∈Zn

‖F−1(σkF( ft−(l−k) · gl)
)‖L p .

Step 2. Norm estimates. These preparations yield the following estimates

( ∑
k∈Zn

〈k〉s0q‖F−1
(
σkF( f · g)

)‖q
L p

) 1
q

≤
( ∑

k∈Zn

〈k〉s0q

[ ∑
t∈Zn ,

−3<ti <3,
i=1,...,n

∑
l∈Zn

‖F−1
(
σkF( ft−(l−k) · gl)

)‖L p

]q) 1
q

≤
∑
t∈Zn ,

−3<ti <3,
i=1,...,n

(∑
k∈Zn

〈k〉s0q

[∑
l∈Zn

‖F−1
(
σkF( ft−(l−k) · gl)

)‖L p

]q) 1
q

.

Observe

‖F−1
(
σkF( ft−(l−k) · gl)

)‖L p = (2π)−n/2‖(F−1σk) ∗ ( ft−(l−k) · gl) ‖L p

≤ (2π)−n/2‖F−1σk ‖L1 ‖ ft−(l−k) · gl ‖L p

= (2π)−n/2‖F−1σ0 ‖L1 ‖ ft−(l−k) · gl ‖L p ,

where we used Young’s inequality. We put c1 := (2π)−n/2‖F−1σ0 ‖L1 . This implies

( ∑
k∈Zn

〈k〉s0q‖F−1
(
σkF( f · g)

)‖q
L p

) 1
q

≤ c1
∑
t∈Zn ,

−3<ti <3,
i=1,...,n

(∑
k∈Zn

〈k〉s0q

[∑
l∈Zn

‖ ft−(l−k) · gl‖L p

]q) 1
q

.
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We continue by using Hölder’s inequality to get

( ∑
k∈Zn

〈k〉s0q‖F−1
(
σkF( f · g)

)‖q
L p

) 1
q

≤ c2 max
t∈Zn ,

−3<ti <3,
i=1,...,n

(∑
k∈Zn

〈k〉s0q

[∑
l∈Zn

‖ ft−(l−k)‖L p1
‖gl‖L p2

]q) 1
q

with c2 := c1 5n . Since s0 ≥ 0 elementary calculations yield

〈k〉s0
[ ∑

l∈Zn

‖ ft−(l−k)‖L p1
‖gl‖L p2

]

≤ 2s0
∑
l∈Zn ,

|l|≤|l−k|

〈k − l〉s0‖ ft−(l−k)‖L p1
‖gl‖L p2

+2s0
∑
l∈Zn ,

|l−k|≤|l|

‖ ft−(l−k)‖L p1
〈l〉s0‖gl‖L p2

.

Both parts of this right-hand side will be estimated separately. We put

S1,t,k :=
∑
l∈Zn ,

|l|≤|l−k|

〈k − l〉s1‖ ft−(l−k)‖L p1
〈l〉s2‖gl‖L p2

〈k − l〉s0−s1 〈l〉−s2 ;

S2,t,k :=
∑
l∈Zn ,

|l−k|≤|l|

〈k − l〉s1 ‖ ft−(l−k)‖L p1
〈l〉s2 ‖gl‖L p2

〈k − l〉−s1 〈l〉s0−s2 .

With 1
q + 1

q ′ = 1 we find

S1,t,k
[ j=l−k]=

∑
j∈Zn ,

| j+k|≤| j |

〈 j〉s0‖ ft− j‖L p1
‖g j+k‖L p2

≤
( ∑

j∈Zn ,
| j+k|≤| j |

(〈 j〉s1‖ ft− j‖L p1
〈 j + k〉s2‖g j+k‖L p2

)q
)1/q

×
( ∑

j∈Zn ,
| j+k|≤| j |

(〈 j〉s0−s1 〈 j + k〉−s2)q ′) 1
q′

.
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Substep 2.1. Our assumptions s0 ≤ s1, s2 ≥ 0 and s1 + s2 − s0 > n/q ′ imply

( ∑
j∈Zn ,

| j+k|≤| j |

∣∣∣〈 j〉s0−s1 〈 j + k〉−s2
∣∣∣
q ′) 1

q′ ≤
( ∑

m∈Zn

〈m〉(s0−s1−s2)q ′) 1
q′ =: c3 < ∞ .

Inserting this in our previous estimate we obtain

( ∑
k∈Zn

Sq
1,t,k

)1/q ≤ c3

( ∑
k∈Zn

∑
j∈Zn ,

| j+k|≤| j |

〈 j〉s1q‖ ft− j‖q
L p1 〈 j + k〉s2q‖g j+k‖q

L p2

)1/q

≤ c3

( ∑
j∈Zn

〈 j〉s1q‖ ft− j‖q
L p1

∑
k∈Zn

〈 j + k〉s2q‖g j+k‖q
L p2

) 1
q

.

Because of 1 + | j |2 ≤ 1 + 8n + | j − t |2 we know

max
t∈Zn ,

−3<ti <3,
i=1,...,n

sup
j∈Zn

〈 j〉s1

〈 j − t〉s1
≤ (1 + 8n)s1/2 =: c4 < ∞ .

This implies ( ∑
k∈Zn

Sq
1,t,k

)1/q ≤ c3 c4 ‖g‖M
s2
p2 ,q

‖ f ‖M
s1
p1 ,q

, (3.9)

where c3, c4 are independent of f, g and t .

Substep 2.2. Because of 0 ≤ s0 ≤ s1, s0 ≤ s2 and s1 + s2 − s0 > n/q ′ we con-
clude

( ∑
l∈Zn ,

|l−k|≤|l|

∣∣∣〈k − l〉−s1 〈l〉s0−s2
∣∣∣
q ′) 1

q′ ≤
( ∑

m∈Zn

〈m〉(s0−s1−s2)q ′) 1
q′ =: c5 < ∞ .

This leads to the estimate

( ∑
k∈Zn

Sq
2,t,k

)1/q ≤ c5c6 ‖g‖M
s2
p2 ,q

‖ f ‖M
s1
p1 ,q

(3.10)

with some constants c6 independent from f and g. Combining the inequalities (3.9)
and (3.10) we have proved the claim. �

Remark 3.21 Some basic ideas of the above proof are taken over from [5], see also
[23].

Of course the abovemethod of proof works as well for q = 1. But all spaces Ms
p,1,

s ≥ 0, are algebras.
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Theorem 3.22 Let 1 ≤ p, p1, p2 ≤ ∞ and s0, s1, s2 ∈ R. Let 1/p ≤ (1/p1) +
(1/p2), 1 < q ≤ ∞, 0 ≤ s0 ≤ min(s1, s2) and s1 + s2 − s0 > n/q ′. There exists a
constant c such that

‖ f · g ‖M
s0
p,q

≤ c ‖ f ‖M
s1
p1 ,q

‖g‖M
s2
p2 ,q

holds for all f ∈ Ms1
p1,q and all g ∈ Ms2

p2,q .

Proof We only comment on the case 1/p = (1/p1) + (1/p2), see Corollary 2.7. It
will be enough to prove the weak convergence of (Sk f · Sk g)k in S ′. The claimed
estimate will then follow from Lemma 3.20. We employ the method and the notation
used in proof of Theorem 3.18 (Steps 2 and 3). There we have proved

∣∣∣
〈
Sk f Sk g − S j f S j g,ϕ

〉∣∣∣ ≤ c1 ‖ h1 ‖M
s0
p,q

‖ h2 ‖M
−s0
1,1

with c1 independent of f, g, k and j . By means of Lemma 3.20 we know the uniform
boundedness of ‖ h1 ‖M

s0
p,q
in k and j . The estimate of ‖ h2 ‖M

−s0
1,1

can be done as above.
It follows

‖ h2 ‖M
−s0
1,1

≤ ε

if j, k ≥ j0(ε). This guarantees the weak convergence of (Sk f · Sk g)k in S ′. �

Our sufficient conditions are not far away from necessary conditions.

Lemma 3.23 Let 1 ≤ p1, p2, p, q ≤ ∞ and s0, s1, s2 ∈ R. Suppose that there exists
a constant c such that

‖ f · g ‖M
s0
p,q

≤ c ‖ f ‖M
s1
p1 ,q

‖g‖M
s2
p2 ,q

(3.11)

holds for all f, g ∈ S.
(i) It follows s0 ≤ min(s1, s2), s1 + s2 ≥ 0 and s1 + s2 − s0 ≥ n/q ′.
(ii) If1 ≤ p2 = p < ∞and1 ≤ q < ∞, then either q = 1and s1 ≥ 0or1 < q < ∞
and s1 > n/q ′.

Proof Part (ii) is an immediate consequence of Lemma 3.7. Concerning the proof
of (i) we shall work with the same test functions as used in Step 2 of the proof of
Corollary 2.10, see (2.1).
Step 1. We choose ak := δk,�, k ∈ Z

n , for a fixed given � ∈ Z
n and put bk := δk,0,

k ∈ Z
n . Then we define

f (x) := ψ(x) ei�x and g(x) := ψ(x) .

We obtain
‖ f ‖M

s1
p1 ,q

· ‖g‖M
s2
p2 ,q

= ‖ψ‖L p1
‖ψ‖L p2

〈�〉s1
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as well as
‖ f · g‖M

s0
p,q

= ‖ψ2‖L p 〈�〉s0 .

Hence, (3.11) implies s0 ≤ s1. Interchanging the roles of f and g leads to the
conclusion s0 ≤ s2.
Step 2. Let � ∈ Z

n be fixed. We choose ak := δk,�, k ∈ Z
n , and bk := δk,−�, k ∈ Z

n .
Then we define

f (x) := ψ(x) ei�x and g(x) := ψ(x) e−i�x .

It follows
‖ f ‖M

s1
p1 ,q

· ‖g‖M
s2
p2 ,q

= ‖ψ‖L p1
‖ψ‖L p2

〈�〉s1+s2

as well as
‖ f · g‖M

s0
p,q

= ‖ψ2‖L p .

Hence, (3.11) implies s1 + s2 ≥ 0.
Step 3. Let ε1, ε2 ≥ 0. These two numbers will be chosen such that

min(s1 + ε1 + n/q, s2 + ε2 + n/q) > 0 and s0 + ε2 + ε1 + n > 0 .

We choose ak := 〈k〉ε1 , k ∈ Z
n , and bk := 〈k〉ε2 , k ∈ Z

n . Then we define

f (x) := ψ(x)
∑

‖k‖∞≤N

ak eikx and g(x) := ψ(x)
∑

‖k‖∞≤N

bk eikx .

By means of the same arguments as used in Substep 3.1 of the proof of Theorem
3.5, we conclude

‖ f ‖M
s1
p1 ,q

 N s1+ε1+n/q and ‖g‖M
s2
p2 ,q

 N s2+ε2+n/q .

In addition, we have

‖ f · g‖M
s0
p,q


( ∑

‖m‖∞≤2N

〈m〉s0q
∣∣∣

∑
k: ‖k‖∞≤N
‖m−k‖∞≤N

ak bm−k

∣∣∣
q
)1/q

≥ 1

2n

( ∑
‖m‖∞≤N

〈m〉(s0+ε2)q
∣∣∣

∑
k: ‖k‖∞≤‖m‖∞/2

〈k〉ε1
∣∣∣
q
)1/q

≥ C1

( ∑
‖m‖∞≤N

〈m〉(s0+ε2+ε1+n)q

)1/q

≥ C2 N s0+ε2+ε1+n+n/q
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for some C1, C2 independent of N , see Substep 3.2 of the proof of Theorem 3.5. The
inequality (3.11) yields

s0 + ε2 + ε1 + n + n/q ≤ s1 + ε1 + n/q + s2 + ε2 + n/q

which proves the claim. �

The duality argument used in the proof of Lemma 3.7 allows to treat the case
s0 < 0.

Theorem 3.24 Let 1 ≤ p, p1, p2 ≤ ∞ and s0, s1, s2 ∈ R. Let 1/p ≤ (1/p1) +
(1/p2), 1 ≤ q < ∞, s0 ≤ s2 ≤ 0, 0 ≤ s1 + s2 and s1 + s2 − s0 > n/q. There exists
a constant c such that

‖ f · g ‖M
s0
p,q

≤ c ‖ f ‖M
s1
p1 ,q′ ‖g‖M

s2
p2 ,q

holds for all f ∈ Ms1
p1,q ′ and all g ∈ Ms2

p2,q .

Remark 3.25 Theorems 3.18 and 3.24 have some overlap.

3.6 Some Further Remarks to the Literature

Here, we recall results of Iwabuchi [13] and Toft et al. [32]. As Cordero and Nicola
[6] also Iwabuchi considered the more general situation Ms1

p1,q1 · Ms2
p2,q2 ↪→ Ms0

p,q .
This greater flexibility with respect to the tripel q, q1, q2 allows to treat cases not
covered by Theorems 3.22, 3.24.

Proposition 3.26 (Iwabuchi [13])
Let 1 ≤ p, p1, p2 ≤ ∞, 1 < q, q1, q2 < ∞ and 0 < s0 < n/q.
(i) If q ≥ q1,

1

p
≤ 1

p1
+ 1

p2
and 1 + 1

q
−

( 1

q1
+ 1

q2

)
= s0

n
, (3.12)

then there exists a constant c such that

‖ f · g ‖M
−s0
p,q

≤ c ‖ f ‖M0
p1 ,q1

‖g‖M0
p2 ,q2

holds for all f ∈ M0
p1,q1 and all g ∈ M0

p2,q2 .
(ii) Assume q ≥ max(q1, q2) and (3.12). Then, there exists a constant c such that

‖ f · g ‖M
s0
p,q

≤ c ‖ f ‖M
s0
p1 ,q1

‖g‖M
s0
p2 ,q2

holds for all f ∈ Ms0
p1,q1 and all g ∈ Ms0

p2,q2 .
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Remark 3.27 Let us take q = q1 = q2. Then (3.12) reads as s0 = n/q ′. In combina-
tion with 0 < s0 < n/q this yields 1 < q < 2. Hence, (i) reads as

‖ f · g ‖
M−n/q′

p,q
≤ c ‖ f ‖M0

p1 ,q
‖g‖M0

p2 ,q
,

whereas (ii) gives
‖ f · g ‖

Mn/q′
p,q

≤ c ‖ f ‖
Mn/q′

p1 ,q1
‖g‖

Mn/q′
p2 ,q2

.

Toft et al. [32] also consider the situation Ms1
p1,q1 · Ms2

p2,q2 ↪→ Ms0
p,q . Recall, M̊s0

p,q
denotes the closure of S in Ms0

p,q .

Proposition 3.28 (Toft et al. [32])
Let 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞ and s0, s1, s2 ∈ R.
(i) We suppose

(a) 1 + 1
p − 1

p1
− 1

p2
≤ 1;

(b) 0 ≤ 1 + 1
q − 1

q1
− 1

q2
≤ 1/2;

(c) s0 ≤ min(s1, s2);
(d) s1 + s2 ≥ 0;

(e) s1 + s2 − s0 − n
(
1 + 1

q − 1
q1

− 1
q2

)
≥ 0;

(f) s1 + s2 − s0 − n
(
1 + 1

q − 1
q1

− 1
q2

)
> 0 if 1 + 1

q − 1
q1

− 1
q2

> 0 and either s1

or s2 or −s0 equals n
(
1 + 1

q − 1
q1

− 1
q2

)
.

Then there exists a constant c such that

‖ f · g ‖M
s0
p,q

≤ c ‖ f ‖M
s1
p1 ,q1

‖g‖M
s2
p2 ,q2

(3.13)

holds for all f ∈ M̊s1
p1,q1 and all g ∈ M̊s2

p2,q2 .
(ii) If (3.13) holds for all f, g ∈ S, then (c), (d) and (e) follow.

Remark 3.29 Again we consider the case q = q1 = q2. Then (b) implies 1 ≤ q ≤ 2
and (e) reads as s1 + s2 − s0 − n/q ′ ≥ 0. Hence, if we restrict us to 1 < q ≤ 2,
Proposition 3.28 is slightly more general than Theorem 3.22 and Theorem 3.24.
However, for our purpose, see the next section on composition of functions, Theorem
3.22 is already sufficient. Let us mention that Proposition 4.5 below, which is nothing
but a modification of Lemma 3.20, is of central importance for the applications to
composition operators we have in mind.

3.7 An Important Special Case

We consider Ms
2,2. A simple argument, based on the frequency-uniform decomposi-

tion yields Ms
2,2 = H s in the sense of equivalent norms, see Remark 2.3. For these

Sobolev spaces H s almost all is known.
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• H s is an algebra with respect to pointwise multiplication if and only if s > n/2,
see Strichartz [28], Triebel [33, 2.8] or [25, Theorem 4.6.4/1]. This coincides with
Theorem 3.5.

• Let E be a Banach space of functions. By M(E)we denote the set of all pointwise
multipliers of E , i.e., the set of all f such that T f , defined as T f (g) = f · g, maps
E into E . We equip M(E)with the norm ‖ f ‖M(E) := ‖T f ‖L(E). For a description
of M(H s) one needs the classes H s,�oc. Here H s,�oc denotes the collection of all
distributions f ∈ S ′ such that f · ϕ ∈ H s for allϕ ∈ C∞

0 . In case s > n/2 it holds

M(H s) =
{

f ∈ H s,�oc : ‖ f ‖∗
M(H s ) := sup

λ∈Rn
‖ψ( · − λ) f ‖H s < ∞

}

in the sense of equivalent norms. Here ψ is a smooth nontrivial cut-off function
supported around the origin. For all this we refer to Strichartz [28].

• In case 0 ≤ s < n/2 also characterizations of M(H s) are known, this time more
complicated, based on capacities. For all details we refer to the monograph of
Maz’ya and Shaposnikova [20, Theorem 3.2.2, pp. 86].

• Nowwe concentrate on the situation described in Theorem 3.22 in case 0 < s < n
2 .

As it is well-known, there exists a constant c such that

‖ f · g ‖H 2s−n/2 ≤ c ‖ f ‖H s ‖g‖H s

holds for all f, g ∈ H s , see e.g., [25, Theorem 4.5.2]. In Theorem 3.22 we proved
that for any ε > 0 there exists a constant cε such that

‖ f · g ‖M2s−n/2−ε
1,2

≤ cε ‖ f ‖H s ‖g‖H s

holds for all f, g ∈ H s . We conjecture that M2s−n/2−ε
1,2 and H 2s−n/2 are incompa-

rable.

4 Composition of Functions

There are some attempts to investigate composition of functions in the framework
of modulation spaces, i.e., we consider the operator

T f : g �→ f ◦ g, g ∈ Ms
p,q , (4.1)

and ask for mapping properties. Of course, we used the symbol T f before with a
different meaning, but we hope that will not cause problems. Within Sect. 4 T f will
have the meaning as in (4.1). Based on pointwise multiplication one can treat f to
be a polynomial or even the more general case of f being an entire function.
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4.1 Polynomials

We consider the case

f (z) :=
m∑

�=1

a� z� , z ∈ C ,

where m ∈ N, m ≥ 2, and a� ∈ C, � = 1, . . . , m. For brevity we denote the associ-
ated composition operator by Tm . In addition we need the abbreviation

tm(s) := s + (m − 1)(s − n/q ′) , m = 2, 3, . . . .

Theorem 4.1 Let 1 ≤ p, q ≤ ∞ and m ∈ N, m ≥ 2.
(i) Let either s ≥ 0 and q = 1 or s > n/q ′. Then Tm maps Ms

p,q into itself. There
exists a constant c such that

‖ Tm g ‖Ms
p,q

≤ c ‖ g ‖Ms
p,q

m∑
�=1

|a�| ‖ g ‖�−1
M0∞,1

holds for all g ∈ Ms
p,q .

(ii) Let 1 < q ≤ ∞, 0 < s ≤ n/q ′ and tm(s) > 0. If p ∈ [m,∞] and t < tm(s), then
there exists a constant c such that

‖ Tm g ‖Mt
p/m,q

≤ c
m∑

�=1

|a�| ‖g‖�
Ms

p,q

holds for all g ∈ Ms
p,q .

(iii) Let q = 1 and s ≥ 0. If p ∈ [m,∞], then there exists a constant c such that

‖ Tm g ‖Ms
p/m,1

≤ c
m∑

�=1

|a�| ‖g‖�
Ms

p,1

holds for all g ∈ Ms
p,1.

Proof Step 1. Both parts, (i) and (ii), can be proved by induction based on Theorem
3.5 or Theorem 3.22. We concentrate on the proof of (ii). Let m = 2. Then by
assumption t2(s) = 2s − n/q ′ > 0. Hence, we may apply Theorem 3.22 with p1 =
p2 = p and s1 = s2 and obtain

‖ g2 ‖Mt
p/2,q

≤ c ‖g‖2Ms
p,q

for any t < 2s − n/q ′ = t2(s). Now we assume that part (ii) is correct for all natural
numbers in the interval [2, m]. We split the product gm+1 into the two factors gm
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and g. By assumption gm ∈ Mt
p/m,q for any t < tm(s). We put s1 = t = tm(s) − ε,

s2 = s, p1 = p/m and p2 = p, where we assume that ε > 0 is sufficiently small.
This guarantees

s1 + s2 − n

q ′ = s + (m − 1)
(

s − n

q ′
)

− ε + s − n

q ′ = tm+1(s) − ε > 0 .

Hence, we may choose s0 by

s0 < min(s1, s2, tm+1(s) − ε) = tm+1(s) − ε .

Since ε > 0 is arbitrary, any value < tm+1(s) becomes admissible for s0. An
application of Theorem 3.22 yields

‖ gm · g ‖M
s0
p/(m+1),q

≤ c ‖ gm ‖Mtm −ε
p/m,q

‖g‖Ms
p,q

.

Step 2. Part (iii) is an immediate consequence of Lemma 3.10. �

Remark 4.2 For the case s = 0 we refer to Cordero, Nicola [6], Toft [30] and Guo
et al. [11].

4.2 Entire Functions

We consider the case of f being an entire analytic function on C, i.e.,

f (z) :=
∞∑

�=0

a� z� , z ∈ C ,

where a� ∈ C, � ∈ N0. Clearly, we need to assume f (0) = a0 = 0. Otherwise T f g
will not have global integrability properties. Let

f0(r) :=
∞∑

�=1

|a�| r � , r > 0 .

Theorem 4.3 Let 1 ≤ p, q ≤ ∞ and let either s ≥ 0 and q = 1 or s > n/q ′. Let f
be an entire function satisfying f (0) = 0. Then T f maps Ms

p,q into itself. There exist
two constants a, b, independent of f , such that

‖ T f g ‖Ms
p,q

≤ a f0(b ‖ g ‖Ms
p,q

)

holds for all g ∈ Ms
p,q .
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Proof The constant c in Theorem 4.1 (i) depends on m. To clarify the dependence
on m we proceed by induction. Let c1 be the best constant in the inequality

‖ g1 · g2 ‖Ms
p,q

≤ c1 (‖ g1 ‖Ms
p,q

‖ g2 ‖M0∞,1
+ ‖ g2 ‖Ms

p,q
‖ g1 ‖M0∞,1

) , (4.2)

see Lemma 3.3. Further, let c2 be the best constant in the inequality

‖ g1 · g2 ‖M0∞,1
≤ c2 ‖ g1 ‖M0∞,1

‖ g2 ‖M0∞,1
, (4.3)

see also Lemma 3.3. By c3 we denote max(1, c1, c2). Our induction hypothesis
consists in: the inequality

‖ gm ‖Ms
p,q

≤ cm−1
3 m ‖ g ‖Ms

p,q
‖ g ‖m−1

M0∞,1

holds for all g ∈ Ms
p,q and all m ≥ 2. This follows easily from (4.2) and (4.3). Next

we need the best constant, denoted by c4, in the inequality

‖ g ‖M0∞,1
≤ c4 ‖ g ‖Ms

p,q
, g ∈ Ms

p,q .

This proves that
‖ gm ‖Ms

p,q
≤ cm−1

3 m cm−1
4 ‖ g ‖m

Ms
p,q

(4.4)

holds for all g ∈ Ms
p,q and all m ≥ 2. Hence

‖ T f g ‖Ms
p,q

≤
∞∑

m=1

|am |cm−1
3 m cm−1

4 ‖ g ‖m
Ms

p,q

= 1

c3 c4

∞∑
m=1

|am | m (c3 c4 ‖ g ‖Ms
p,q

)m .

Since
sup
m∈N

m1/m = 31/3

the claimed estimate follows. �

Remark 4.4 Theorem 4.3 is essentially known, see e.g., Sugimoto et al. [29] or
Bhimani [1].

4.3 One Example

The following example has been considered at various places. Let f (z) := ez − 1,
z ∈ C. For appropriate constants a, b > 0 it follows that
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‖ eg − 1 ‖Ms
p,q

≤ a eb ‖ g ‖Ms
p,q (4.5)

holds for all g ∈ Ms
p,q .

It will be essential for our approach to non-analytic composition results that we
can improve this estimate.

4.4 Non-analytic Superposition Operators

There is a famous classical result by Katznelson [17] (in the periodic case) and by
Helson, Kahane, Katznelson, Rudin [12] (nonperiodic case) which says that only
analytic functions operate on the Wiener algebra A. More exactly, the operator
T f : u �→ f (u) maps A into A if and only if f (0) = 0 and f is analytic. Here,
A is the collection of all u ∈ C such that Fu ∈ L1. Moreover, a similar result is
obtained for particular standard modulation spaces. Bhimani and Ratnakumar [2],
see also Bhimani [1], proved that T f maps M1,1 into M1,1 if and only if f (0) = 0
and f is analytic. Therefore, the existence of non-analytic superposition results for
weighted modulation spaces is a priori not so clear.

We shall concentrate on the algebra case. Our first aim consists in deriving a better
estimate than (4.5).

To proceed we need some preparations. An essential tool in proving our main
result will be a certain subalgebra property. Therefore, we consider the following
decomposition of the phase space. Let R > 0 and ε = (ε1, . . . , εn) be fixed with
ε j ∈ {0, 1}, j = 1, . . . , n. Then a decomposition ofRn into (2n + 1) parts is given by

PR := {ξ ∈ R
n : |ξ j | ≤ R, j = 1, . . . , n}

and
PR(ε) := {ξ ∈ R

n : sign (ξ j ) = (−1)ε j , j = 1, . . . , n} \ PR .

For given p, q, s, ε = (ε1, . . . , εn) and R > 0 we introduce the spaces

Ms
p,q(ε, R) := { f ∈ Ms

p,q : suppF f ⊂ PR(ε)} .

Proposition 4.5 Let 1 ≤ p1, p2 ≤ ∞, 1 < q ≤ ∞ and s0, s1, s2 ∈ R. Define p by
1
p := 1

p1
+ 1

p2
. Let R > 2. If p ∈ [1,∞], s0 ≤ min(s1, s2), s1, s2 ≥ 0 and s1 + s2 −

s0 > n/q ′, then there exists a constant c such that

‖ f · g ‖M
s0
p,q

≤ c (R − 2)−[(s1+s2−s0)−n/q ′] ‖ f ‖M
s1
p1 ,q

‖g‖M
s2
p2 ,q

holds for all f ∈ Ms1
p1,q(ε, R) and all g ∈ Ms2

p2,q(ε, R). The constant c is independent
from R > 2 and ε.
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Proof In order to show the subalgebra property we follow the same steps as in
the proof of Lemma 3.20. We start with some almost trivial observations. Let f ∈
Ms

p1,q(ε, R) and g ∈ Ms
p2,q(ε, R). By

supp (F f ∗ Fg) ⊂ {ξ + η : ξ ∈ suppF f, η ∈ suppFg}

we have suppF( f g) ⊂ PR(ε). Let

P∗
R(ε) :=

{
k ∈ Z

n : ‖k‖∞ > R − 1 , sign (k j ) = (−1)ε j , j = 1, . . . , n
}
.

Hence, if suppσk ∩ PR(ε) �= ∅, then k ∈ P∗
R(ε) follows. Now we continue as in

proof of Lemma 3.20, Step 2, and obtain

( ∑
k∈P∗

R(ε)

〈k〉s0q‖F−1
(
σkF( f · g)

)‖q
L p

) 1
q

≤
∑
t∈Zn ,

−3<ti <3,
i=1,...,n

( ∑
k∈P∗

R(ε)

〈k〉s0q
[ ∑

l∈Zn :
t−l+k,l∈P∗

R (ε)

‖F−1
(
σkF( ft−(l−k) · gl)

)‖L p

]q
) 1

q

.

This implies

( ∑
k∈P∗

R(ε)

〈k〉s0q‖F−1
(
σkF( f · g)

)‖q
L p

) 1
q

≤ c1
∑
t∈Zn ,

−3<ti <3,
i=1,...,n

( ∑
k∈P∗

R(ε)

〈k〉s0q
[ ∑

l∈Zn :
t−l+k,l∈P∗

R (ε)

‖ ft−(l−k) · gl‖L p

]q
) 1

q

≤ c2 max
t∈Zn ,

−3<ti <3,
i=1,...,n

( ∑
k∈P∗

R(ε)

〈k〉s0q
[ ∑

l∈Zn :
t−l+k,l∈P∗

R (ε)

‖ ft−(l−k)‖L p1
‖gl‖L p2

]q
) 1

q

with c2 and c1 as above. We put

S1,t,k :=
∑

l∈Zn : t−l+k,l∈P∗
R(ε),

|l|≤|l−k|

〈k − l〉s1‖ ft−(l−k)‖L p1
〈l〉s2‖gl‖L p2

〈k − l〉s0−s1 〈l〉−s2 ;

S2,t,k :=
∑

l∈Zn : t−l+k,l∈P∗
R(ε),

|l−k|≤|l|

〈k − l〉s1 ‖ ft−(l−k)‖L p1
〈l〉s2 ‖gl‖L p2

〈k − l〉−s1 〈l〉s0−s2 .
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Hölder’s inequality leads to

S1,t,k ≤
( ∑

j∈Zn ,
| j+k|≤| j |

(〈 j〉s1‖ ft− j‖L p1
〈 j + k〉s2‖g j+k‖L p2

)q
)1/q

×
( ∑

j∈Zn :t− j, j+k∈P∗
R(ε)

| j+k|≤| j |

(〈 j〉s0−s1 〈 j + k〉−s2)q ′) 1
q′

.

Our assumptions s0 ≤ s1, s2 ≥ 0 and s1 + s2 − s0 > n/q ′ and j + k ∈ P∗
R(ε)

imply

( ∑
j∈Zn ,

| j+k|≤| j |

∣∣∣(〈 j〉s0−s1 〈 j + k〉−s2)

∣∣∣
q ′) 1

q′ ≤
( ∑

m∈P∗
R(ε)

〈m〉(s0−s1−s2)q ′) 1
q′

≤
(
2−n

∫

‖x‖∞>R−2
(1 + |x |2)(s0−s1−s2)q ′/2 dx

)1/q ′

≤
(
2−n

∫

|x |>R−2
|x |(s0−s1−s2)q ′

dx
)1/q ′

≤
( 2−n

(s1 + s2 − s0)q ′ − n

)1/q ′
(R − 2)−[(s1+s2−s0)−n/q ′] .

With c3 :=
(

2−n

(s1+s2−s0)q ′−n

)1/q ′
we insert this in our previous estimate and obtain

( ∑
k∈Zn

Sq
1,t,k

)1/q ≤ c3 (R − 2)−[(s1+s2−s0)−n/q ′]

×
( ∑

k∈Zn

∑
j∈Zn ,

| j+k|≤| j |

〈 j〉s1q‖ ft− j‖q
L p1 〈 j + k〉s2q‖g j+k‖q

L p2

)1/q

≤ c3 c4 (R − 2)−[(s1+s2−s0)−n/q ′] ‖g‖M
s2
p2 ,q

‖ f ‖M
s1
p1 ,q

.

Here, c3, c4 are independent of f, g, ε and R. For the second sum the estimate

( ∑
k∈Zn

Sq
2,t,k

)1/q ≤ c5 (R − 2)−[(s1+s2−s0)−n/q ′] ‖g‖M
s2
p2 ,q

‖ f ‖M
s1
p1 ,q

follows by analogous computations. The proof is complete. �

Of course, the above arguments have a counterpart in case q ′ = ∞.
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Proposition 4.6 Let 1 ≤ p1, p2 ≤ ∞, q = 1 and s1, s2 ∈ R. Define p by 1
p := 1

p1
+

1
p2

. Let R > 2. If p ∈ [1,∞], s1, s2 ≥ 0 and s0 := min(s1, s2), then there exists a
constant c such that

‖ f · g ‖M
s0
p,1

≤ c (R − 2)−(s1+s2−s0) ‖ f ‖M
s1
p1 ,1

‖g‖M
s2
p2 ,1

holds for all f ∈ Ms1
p1,1(ε, R) and all g ∈ Ms2

p2,1(ε, R). The constant c is independent
from R > 2 and ε.

As a consequence of Nikol’kij’s inequality, see Lemma 2.6, Proposotion4.5 (with
s0 = s1 = s2 and p1 = p, p2 = ∞) and Corollary 2.7 we obtain the following.

Proposition 4.7 Let 1 ≤ p ≤ ∞ and R > 2.
(i) Let 1 < q ≤ ∞ and s > n/q ′. Then there exists a constant c such that

‖ f · g ‖Ms
p,q

≤ c (R − 2)−(s−n/q ′) ‖ f ‖Ms
p,q

‖g‖Ms
p,q

holds for all f, g ∈ Ms
p,q(ε, R). The constant c is independent from R > 2 and ε.

(ii) Let q = 1 and s ≥ 0. Then there exists a constant c such that

‖ f · g ‖Ms
p,1

≤ c (R − 2)−s ‖ f ‖Ms
p,1

‖g‖Ms
p,1

holds for all f, g ∈ Ms
p,1(ε, R). The constant c is independent from R > 2 and ε.

Note that in the following, we assume every function to be real-valued unless it is
explicitly stated that complex-valued functions are allowed. To make this more clear
we switch from g ∈ Ms

p,q to u ∈ Ms
p,q .

Next we have to recall some assertions from harmonic analysis. The first one
concerns a standard estimate of Fourier multipliers, see e.g., [33, Theorem1.5.2].

Lemma 4.8 Let 1 ≤ r ≤ ∞ and assume that s > n/2. Then there exists a constant
c > 0 such that

‖F−1[φFg]( · )‖Lr ≤ c ‖φ‖H s ‖g‖Lr

holds for all g ∈ Lr and all φ ∈ H s.

The next lemma is taken from [5].

Lemma 4.9 Let N ∈ N and suppose a1, a2, . . . , aN to be complex numbers. Then,
it holds

a1 · a2 · . . . · aN − 1 =
N∑

l=1

∑
j=( j1,..., jl ),

0≤ j1<...< jl≤N

(a j1 − 1) · . . . · (a jl − 1).

In our approach the next estimate will be fundamental.
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Proposition 4.10 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s > n/q ′. Then there exists a
positive constant C such that

‖eiu − 1‖Ms
p,q

≤ C ‖u‖Ms
p,q

(
1 + ‖u‖Ms

p,q

)(s+n/q)(1+ 1
s−n/q′ )

holds for all real-valued u ∈ Ms
p,q .

Proof This proof follows ideas developed in [5], but see also [23].
Step 1. Let u be a nontrivial function in Ms

p,q satisfying suppFu ⊂ PR for some
R ≥ 2.

First we consider the Taylor expansion

eiu − 1 =
r∑

l=1

(iu)l

l! +
∞∑

l=r+1

(iu)l

l!

resulting in the norm estimate

‖eiu − 1‖Ms
p,q

≤
∥∥∥

r∑
l=1

(iu)l

l!
∥∥∥

Ms
p,q

+
∥∥∥

∞∑
l=r+1

(iu)l

l!
∥∥∥

Ms
p,q

.

For brevity we put

S1 :=
∥∥∥

r∑
l=1

(iu)l

l!
∥∥∥

Ms
p,q

and S2 :=
∥∥∥

∞∑
l=r+1

(iu)l

l!
∥∥∥

Ms
p,q

.

The natural number r will be chosen later on.Nextwe employ the algebra property,
in particular the estimate (4.4) with C1 := 2 c3 c4. We obtain

S2 ≤
∞∑

l=r+1

1

l! ‖ul‖Ms
p,q

≤ 1

C1

∞∑
l=r+1

(C1 ‖u‖Ms
p,q

)l

l! .

Now we choose r as a function of ‖u‖Ms
p,q

and distinguish two cases:

1. C1 ‖u‖Ms
p,q

> 1. Assume that

3C1 ‖u‖Ms
p,q

≤ r ≤ 3C1 ‖u‖Ms
p,q

+ 1 (4.6)

and recall Stirling’s formula l! = �(l + 1) ≥ lle−l
√
2πl. Thus, we get
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∞∑
l=r+1

(C1‖u‖Ms
p,q

)l

l! ≤
∞∑

l=r+1

(r

l

)l ( e

3

)l 1√
2πl

≤
∞∑

l=r+1

( e

3

)l ≤ 3

3 − e
.

2. C1 ‖u‖Ms
p,q

≤ 1. It follows

∞∑
l=r+1

(C1 ‖u‖Ms
p,q

)l

l! ≤ C1 ‖u‖Ms
p,q

∞∑
l=1

1

l! ≤ C1 e ‖u‖Ms
p,q

.

Both together can be summarized as

S2 ≤ C2 ‖u‖Ms
p,q

, C2 := max
(

e,
3

C1(3 − e)

)
.

To estimate S1 we check the support of Fu� and find

S1 =
∥∥∥

r∑
l=1

(iu)l

l!
∥∥∥

Ms
p,q

=
( ∑

k∈Zn

〈k〉sq
∥∥∥�k

( r∑
l=1

(iu)l

l!
)∥∥∥

q

L p

) 1
q

=
( ∑

k∈Zn ,
−Rr−1<ki <Rr+1,

i=1,...,n

〈k〉sq
∥∥∥�k

( r∑
l=1

(iu)l

l!
)∥∥∥

q

L p

) 1
q

≤
( ∑

k∈Zn ,
−Rr−1<ki <Rr+1,

i=1,...,n

〈k〉sq‖�k(e
iu − 1)‖q

L p

) 1
q + S2 .

Concerning S2 we proceed as above. To estimate the first part we observe that

C3 := sup
k∈Zn

‖σk ‖H t = ‖σ0 ‖H t < ∞ ,

see Lemma 4.8. Furthermore, cos, sin are Lipschitz continuous and consequently we
get

‖�k(e
iu − 1)‖L p ≤ C3 ‖eiu − 1‖L p

≤ C3 (‖ cos u − cos 0‖L p + ‖ sin u − sin 0‖L p )

≤ 2C3 ‖u − 0‖L p .
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This implies

( ∑

k∈Zn,
−Rr−1<ki<Rr+1,

i=1,...,n

〈k〉sq ‖�k(e
iu − 1)‖q

L p

) 1
q

≤ 2C3 ‖ u ‖L p

( ∑

k∈Zn,
−Rr−1<ki<Rr+1,

i=1,...,n

〈k〉sq
) 1

q
.

Clearly,

∑
k∈Zn ,

−Rr−1<ki <Rr+1,
i=1,...,n

〈k〉sq ≤
∫

‖ x ‖∞<Rr+1
〈x〉sq dx

≤
∫

|x |<√
n(Rr+1)

〈x〉sq dx

≤ 2
πn/2

�(n/2)

∫ √
n(Rr+1)

0
(1 + τ )n−1+sq dτ

≤ 2
πn/2

�(n/2)

1

n + sq
(
√

n(Rr + 2))n+sq .

To simplify notation we define

C4 :=
(
2

πn/2

�(n/2)

1

n + sq

√
n

n+sq
)1/q

.

In addition we shall use in case 1 < q ≤ ∞

‖u‖L p ≤ C5 ‖u‖Ms
p,q

, C5 :=
( ∑

k∈Zn

〈k〉−sq ′)1/q ′

which follows from Hölder’s inequality and in case q = 1

‖u‖L p ≤ ‖u‖Ms
p,1

as a consequence of triangle inequality. Summarizing we have found

‖eiu − 1‖Ms
p,q

≤
(
2C2 + 2 max(C5, 1) C4 C3 (Rr + 2)s+n/q

)
‖u‖Ms

p,q
.
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Next we apply (4.6) which results in

‖eiu − 1‖Ms
p,q

≤ C6 ‖u‖Ms
p,q

(
1 + R ‖u‖Ms

p,q

)s+n/q
, (4.7)

valid for all u ∈ Ms
p,q satisfying suppFu ⊂ PR and with positive constant C6 not

depending on u and R ≥ 2.
Step 2.This timewe consider u ∈ Ms

p,q without any restriction on the Fourier support.
Here we need the restriction 1 < p < ∞. For those p the characteristic functions χ
of cubes are Fourier multipliers in L p by the famous Riesz Theorem and therefore
also in Ms

p,q . In addition we shall make use of the fact that the norm of the operator
f �→ F−1χF f does not depend on the size of the cube. Below we shall denote this
norm by C7 = C7(p). We refer to Lizorkin [19] for all details. For decomposing u
on the phase space we introduce functions χR,ε and χR , that is, the characteristic
functions of the sets PR(ε) and PR , respectively. By defining

uε(x) = F−1[χR,ε(ξ)Fu(ξ)](x), x ∈ R
n ,

u0(x) = F−1[χR(ξ)Fu(ξ)](x) , x ∈ R
n ,

we can rewrite u as
u(x) = u0(x) +

∑
ε∈I

uε(x), (4.8)

where I is the set of all ε = (ε1, . . . , εn) with ε j ∈ {0, 1}, j = 1, . . . , n. Hence

‖u‖Ms
p,q

≤ ‖u0‖Ms
p,q

+
∑
ε∈I

‖uε‖Ms
p,q

and
max

(
‖u0‖Ms

p,q
, ‖uε‖Ms

p,q

)
≤ C7 ‖ u ‖Ms

p,q
.

Due to the representation (4.8) and using an appropriate enumeration Lemma 4.9
leads to

eiu − 1 =
2n+1∑
l=1

∑
0≤ j1<...< jl≤2n

(eiu j1 − 1) · . . . · (eiu jl − 1) .

The algebra property, in particular the estimate (4.4) with C1 := 2 c3 c4, yields

‖eiu − 1‖Ms
p,q

≤
2n+1∑
l=1

Cl−1
1

∑
0≤ j1<...< jl≤2n

‖eiu j1 − 1‖Ms
p,q

· . . . · ‖eiu jl − 1‖Ms
p,q

.

(4.9)
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By Proposition 4.7 and (4.7) it follows

‖eiu jk − 1‖Ms
p,q

=
∥∥∥

∞∑
l=1

(iu jk )
l

l!
∥∥∥

Ms
p,q

≤ Rs−n/q ′

c

(
ec ‖u jk ‖Ms

p,q
/Rs−n/q′

− 1
)

≤ (R − 2)s−n/q ′

c

(
ec C7 ‖u‖Ms

p,q
/(R−2)s−n/q′

− 1
)
, (4.10)

as well as

‖eiu0 − 1‖Ms
p,q

≤ C6 C7 ‖u‖Ms
p,q

(
1 + R C7‖u‖Ms

p,q

)s+n/q
, (4.11)

where we used the Fourier multiplier assertion mentioned at the beginning of this
step. The final step in our proof is to choose the number R as a function of ‖u‖Ms

p,q

such that (4.10) and (4.11) will be approximately of the same size.
Substep 2.1. Let ‖u‖Ms

p,q
≤ 1. We choose R = 3. Then (4.9) combined with (4.10)

and (4.11) results in the estimate

‖eiu − 1‖Ms
p,q

≤ C8 ‖u‖Ms
p,q

,

where C8 does not depend on u.
Substep 2.2. Let ‖u‖Ms

p,q
> 1. We choose R ≥ 3 such that

(R − 2)s−n/q ′ = ‖u‖Ms
p,q

.

Now (4.9), combined with (4.10) and (4.11), results in

‖eiu − 1‖Ms
p,q

≤ C9 ‖u‖Ms
p,q

(
1 + ‖u‖Ms

p,q

)(s+n/q)(1+ 1
s−n/q′ )

, (4.12)

with a constant C9 independent of u. �

Remark 4.11 The restriction of p to the interval (1,∞) is caused by our decom-
position technique, see Step 2 of the preceding proof. We do not know whether
Proposition 4.10 extends to p = 1 and/or p = ∞.

Next, we need again a technical lemma.

Lemma 4.12 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s > n/q ′.
(i) The mapping u �→ eiu − 1 is locally Lipschitz continuous (considered as a map-
ping of Ms

p,q into Ms
p,q ).

(ii) Assume u ∈ Ms
p,q to be fixed and define a function g : R �→ Ms

p,q by g(ξ) =
eiu(x)ξ − 1. Then the function g is continuous.
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Proof Local Lipschitz continuity follows from the identity

eiu − eiv = (eiv − 1) (ei(u−v) − 1) + (ei(u−v) − 1) , (4.13)

the algebra property of Ms
p,q and Proposition 4.10.

To prove the continuity of g we also employ the identity (4.13). The claim follows
by using the algebra property and Proposition 4.10. �

Now we are in position to prove the main result of this section.

Theorem 4.13 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s > n/q ′. Let μ be a complex mea-
sure on R such that

L :=
∫ ∞

−∞
(1 + |ξ|)1+(s+n/q)(1+ 1

s−n/q′ ) d|μ|(ξ) < ∞ (4.14)

and such that μ(R) = 0. Furthermore, assume that the function f is the inverse
Fourier transform of μ. Then f is a continuous function and the composition operator
T f : u �→ f ◦ u maps Ms

p,q into Ms
p,q .

Proof Equation (4.14) yields
∫
Rn d|μ|(ξ) < ∞. Thus, μ is a finite measure and

μ(R) = 0 makes sense. Now we define the inverse Fourier transform of μ

f (t) = 1√
2π

∫

Rn

eiξt dμ(ξ).

Moreover, since

(s + n/q)
(
1 + 1

s − n/q ′
)

> n

we conclude that
∫
R

|(iξ) j | d|μ|(ξ) < ∞, j = 1, . . . , n + 1, which implies f ∈
Cn+1. Due to μ(R) = 0 we can also write f as follows:

f (t) = 1√
2π

∫

R

(eiξt − 1) dμ(ξ).

Sinceμ is a complexmeasure we can split it up into real partμr and imaginary part
μi , where each of them is a signed measure. Without loss of generality we proceed
our computations only with the positive real measure μ+

r . For all measurable sets E
we have μ+

r (E) ≤ |μ|(E).
Let u ∈ Ms

p,q and define the function g(ξ) = eiu(x)ξ − 1 analogously to Lemma
4.12. Then g is Bochner integrable because of its continuity and taking into account
that the measure μ+

r is finite. Therefore we obtain the Bochner integral

∫ ∞

−∞

(
eiu(x)ξ − 1

)
dμ+

r (ξ) =
∫ ∞

−∞
g(ξ) dμ+

r (ξ)
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with values in Ms
p,q . By applying Minkowski inequality it follows

∥∥∥
∫ ∞

−∞

(
eiu(·)ξ − 1

)
dμ+

r (ξ)
∥∥∥

Ms
p,q

≤
∫ ∞

−∞

∥∥eiu(·)ξ − 1
∥∥

Ms
p,q

d|μ|(ξ).

Using the abbreviation ‖u‖ := ‖u‖Ms
p,q
, Proposition 4.10 together with equation

(4.14) yields

∫

|ξ|‖u‖≥1

∥∥eiu(·)ξ − 1
∥∥

Ms
p,q

d|μ|(ξ)

≤ C ′ ‖ u ‖1+(s+n/q)(1+ 1
s−n/q′ )

Ms
p,q

∫

|ξ|‖u‖≥1
|ξ|1+(s+n/q)(1+ 1

s−n/q′ ) d|μ|(ξ)
< ∞.

In a similar way the remaining part |ξ| ≤ 1/‖u‖ of the integral can be treated.
The same estimates also hold for the measures μ−

r , μ+
i and μ−

i . Thus, the result is
obtained by

‖√2π f (u(x))‖Ms
p,q

=
∥∥∥

∫ ∞

−∞
g(ξ) dμ+

r −
∫ ∞

−∞
g(ξ) dμ−

r + i
∫ ∞

−∞
g(ξ) dμ+

i − i
∫ ∞

−∞
g(ξ) dμ−

i

∥∥∥
Ms

p,q

≤
∫ ∞

−∞
‖g(ξ)‖Ms

p,q
d|μ+

r | +
∫ ∞

−∞
‖g(ξ)‖Ms

p,q
d|μ−

r |

+
∫ ∞

−∞
‖g(ξ)‖Ms

p,q
d|μ+

i | +
∫ ∞

−∞
‖g(ξ)‖Ms

p,q
d|μ−

i | ,

where every integral on the right-hand side is finite. Thus, the statement is
proved. �

A bit more transparent sufficient conditions can be obtained by using Szasz the-
orem, see Peetre [22, pp. 9–11] and [27, Proposition 1.7.5]. By Bs

p,q(R) we denote
the Besov spaces on R, see e.g., [33] or [25] for details.

Lemma 4.14 Let t ≥ 0 and suppose f ∈ Bt+1/2
2,1 (R). Then the Fourier transform of

f is a regular distribution and

∫ ∞

−∞
(1 + |ξ|2)t/2|F f (ξ)| dξ ≤ c ‖ f ‖Bt+1/2

2,1 (R)

follows with some c independent of f .

Based on Lemma 4.14 and Theorem 4.13 one obtains the next result.

Corollary 4.15 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s > n/q ′. Let f ∈ Bt
2,1(R) for

some
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t ≥ 3

2
+ (s + n/q)

(
1 + 1

s − n/q ′
)

and suppose f (0) = 0. Then the composition operator T f : u �→ f ◦ u maps real-
valued functions in Ms

p,q boundedly into Ms
p,q .

Proof Boundedness of T f follows from Proposition 4.10, the proof of Theorem 4.13
and Lemma 4.14. �

Remark 4.16 Let t > 0 be given. A function f : R → R, m-times continuously
differentiable, compactly supported and satisfying f m ∈ Lipα for some α ∈ (0, 1],
belongs to Bt

2,1(R) if t < m + α.

4.5 One Example

Ruzhansky, Sugimoto, and Wang [26] suggested to study the operator Tα associated
to fα(t) := t |t |α, t ∈ R, with α > 0. This function belongs locally to the Besov
space Bα+1+1/p

p,∞ (R), 1 ≤ p ≤ ∞, see [25, Lemma 2.3.1/1] for a related case. Let
ψ ∈ C∞

0 (R) be a smooth cut-off function such that ψ(x) = 1 if |x | ≤ 1. Then the
function

f̃α,λ(t) := ψ(t/λ) · fα(t), t ∈ R ,

belongs to Bα+1+1/p
p,∞ for any p, 1 ≤ p ≤ ∞, and any λ > 0. Applying Corollary 4.15

and
u(x) |u(x)|α = f̃α,λ(u(x)) , x ∈ R

n , λ := ‖u‖L∞ ,

we find the following.

Corollary 4.17 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s > n/q ′. Let α be a positive real
number such that

(s + n/q)
(
1 + 1

s − n/q ′
)

< α .

Then the composition operator Tα : u �→ u |u|α maps real-valued functions in
Ms

p,q boundedly into Ms
p,q .

4.6 The Special Case p = q = 2

Finally, we will have a look onto the special case Ms
2,2 = H s , s > n/2. In Bourdaud,

Moussai, S. [4] the set of functions f such that T f : g �→ f ◦ g maps H s into itself
has been characterized.

Proposition 4.18 Let s > 1
2 max(n, 3). For a Borel measurable function f : R →

R the composition operator T f acts on H s if and only if f (0) = 0 and f ∈ H s,�oc(R).
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Concerning our example Tα treated above this yields the following: Tα maps H s

into itself if and only if α > s − 3/2 (instead of α > s + n
2 + s+n/2

s−n/2 as required in
Corollary 4.17).

Corollary 4.15 and Corollary 4.17 may be understood as first results about suffi-
cient conditions, not more.

4.7 A Final Remark

The method employed here has been used before in connection with composition
operators on Gevrey-modulation spaces and modulation spaces of ultradifferentiable
functions, see Bourdaud [3], Bourdaud et al. [5], Reich et al. [5], and Reich [24], for
Hörmander-type spaces Bp,k we refer to Jornet and Oliaro [16]. It would be desirable
to develop this method more systematically.
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General Applications
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Abstract In this paper, some essences of the general theory of reproducing kernels
from the viewpoint of general applications and general interest will be introduced
by our recent results, that are presented in the plenary talk.
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In this paper, some general essences from the viewpoint of general applications
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1 What Is a Reproducing Kernel?

First of all of the talk, What is Mathematics? and Mystery of Mathematics were
introduced, simply.

Now, letH be a Hilbert (possibly finite-dimensional) space, and consider E to be
an abstract set and h a Hilbert H-valued function on E . Then, a very general linear
transform from H into the linear space F(E) consisting of all the complex-valued
functions on E will be given by

f (p) = (f,h(p))H, f ∈ H, (1.1)

in the framework of Hilbert spaces.
In general, a complex-valued function k : E × E → C is called a positive definite

quadratic form function on the set E , or shortly, positive definite function, when it
satisfies the property that, for an arbitrary function X : E → C and for any finite
subset F of E , ∑

p,q∈F

X (p)X (q)k(p, q) ≥ 0.

In order to investigate the linear mapping (1.1), we form a positive definite
quadratic form function K (p, q) on E × E defined by

K (p, q) = (h(q),h(p))H on E×E . (1.2)

Then, the following fundamental results are valid:

Proposition 1.1 (I) The range of the linear mapping (1.1) by H is character-
ized as the reproducing kernel Hilbert space HK (E) admitting the reproduc-
ing kernel K (p, q) whose characterization is given by the two properties: (i)
K (·, q) ∈ HK (E) for any q ∈ E and, (i i) for any f ∈ HK (E) and for any
p ∈ E, ( f (·), K (·.p))HK (E) = f (p).

(II) In general, the inequality
‖ f ‖HK (E) ≤ ‖f‖H

holds. Here, for any member f of HK (E) there exists a uniquely determined
f∗ ∈ H satisfying

f (p) = (f∗,h(p))H on E

and
‖ f ‖HK (E) = ‖f∗‖H. (1.3)
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(III) In general, the inversion formula in (1.1) in the form

f �→ f∗ (1.4)

in (II) holds, by using the reproducing kernel Hilbert space HK (E).

The typical ill-posed problem (1.1) becomes a well-posed problem, because the
image space of (1.1) is characterized as the reproducing kernel Hilbert space HK (E)

with the isometric identity (1.3), which may be considered as a generalization of the
Pythagorean theorem.

However, this viewpoint is a mathematical one and is not a numerical one and not
easy to deal with analytical and numerical problems.

Recently, by a great contribution by Y. Sawano, we were able to obtain a general
concept of the generalized delta function as a generalized reproducing kernel and,
as a general reproducing kernel Hilbert space, we can consider all separable Hilbert
spaces consisting of functions. We will refer to the new concepts.

2 Generalized Reproducing Kernels, Generalized Delta
Functions, and Generalized Reproducing Kernel Hilbert
Spaces

We will consider a family of any complex-valued functions {Un(p)}∞n=0 defined on
an abstract set E that are linearly independent. Then, we consider the form:

KN (p, q) =
N∑

n=0

Un(p)Un(q). (2.1)

Then, KN (p, q) is a reproducing kernel in the following sense:
We will consider the family of all the functions, for arbitrary complex numbers

{Cn}N
n=0

F(p) =
N∑

n=0

CnUn(p) (2.2)

and we introduce the norm

‖F‖2 =
N∑

n=0

|Cn|2. (2.3)

The function space forms a Hilbert space HKN (E) determined by the kernel
KN (p, q) with the inner product induced from the norm (2.3), as usual. Then, we
note that, for any y ∈ E

KN (·, q) ∈ HKN (E) (2.4)
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and for any F ∈ HKN (E) and for any q ∈ E

F(q) = (F(·), KN (·, q))HKN (E) =
N∑

n=0

CnUn(q). (2.5)

The properties (2.4) and (2.5) are called a reproducing property of the kernel
KN (p, q) for the Hilbert space HKN (E).

We introduce a pre-Hilbert space by

HK∞ :=
⋃

N�0

HKN (E).

For any F ∈ HK∞ , there exists a space HKM (E) containing the function F for
some M � 0. Then, for any N such that M < N ,

HKM (E) ⊂ HKN (E)

and, for the function F ∈ HKM ,

‖F‖HKM (E) = ‖F‖HKN (E).

Therefore, there exists the limit:

‖F‖HK∞ := lim
N→∞ ‖F‖HKN (E).

Denote by H∞ the completion of HK∞ with respect to this norm. Then, we obtain:

Theorem 2.1 Under the above conditions, for any function F ∈ H∞ and for FN

defined by
FN (p) = 〈F, KN (·, p)〉H∞ ,

FN ∈ HKN (E) for all N > 0, and as N → ∞, FN → F in the topology of H∞.

Theorem 2.1 may be looked as a reproducing kernel in the natural topology and
by the sense of Theorem 2.1, and the reproducing propertymay bewritten as follows:

F(p) = 〈F, K∞(·, p)〉H∞ ,

with

K∞(·, p) ≡ lim
N→∞ KN (·, p) =

∞∑
n=0

Un(·)Un(p). (2.6)
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Here the limit does, in general, not need to exist, however, the series are nonde-
creasing, in the sense: for any N > M , KN (q, p) − KM(q, p) is a positive definite
quadratic form function.

The function (2.6) may be looked as a generalized Delta function.
Any reproducing kernel (separable case) may be considered as the form (2.6) by

arbitrary linear independent functions {Un(p)} on an abstract set E , here, the sum
does not need to converge. Furthermore, the property of linear independence is not
essential.

The completion H∞ may be found, in concrete cases, from the realization of the
spaces HKN (E).

The typical case is that the family {Un(p)}∞n=0 is a complete orthonormal system
in a Hilbert space with the norm

‖F‖2 =
∫

E
|F(p)|2dm(p) (2.7)

with a dm measurable set E in the usual form L2(E, dm). Then, the functions (2.2)
and the norm (2.3) are realized by this norm and the completion of the space HK∞(E)

is given by this Hilbert space with the norm (2.7).
For any separable Hilbert space consisting of functions, there exists a complete

orthonormal system, so, by our generalized sense, for the Hilbert space there exists
an approximating reproducing kernel Hilbert space and therefore, the Hilbert space
is the generalized reproducing kernel Hilbert space in the sense of this paper.

This will mean that we were able to extend the classical reproducing kernels
[1, 2, 29], beautifully and completely.

The fundamental applications to initial value problems using eigenfunctions and
reproducing kernels, see [33, 34].

3 Kernel Forms—Connections with Other Fields

For the linearmapping (1.1), to consider the kernel form (1.2) is essentially important,
meanwhile any reproducing kernel is given in the form (1.2) and the form will be
appeared in natural ways in different theories.

Kolmogorov factorization theorem [22] gives, conversely for any positive definite
quadratic form function K (p, q), a factorization representation (1.2) by constructing
a Hilbert spaceH and a HilbertH-valued function h(p) on E . This important result
was interestingly derived from the theory of stochastic theory independing of the
theory of reproducing kernels. This property is essentially important when we con-
sider a general convolution operator and various operators among abstract Hilbert
spaces. See [30] for the details.

Let (�,B, P) be a probability space and L2(�,B, P) theHilbert space consisting
of the second order random variables on � with the inner product E(XY ). Let X (t),
t on a set T , be a second order stochastic process defined on the probability space
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(�,B, P). For the mean value function as m(t) = E(X (t)), the second moment
function

R(t, s) = E(X (t)Y (s)) (3.1)

and the covariance function

K (t, s) = E((X (t) − m(t))(Y (s) − m(s)) (3.2)

are positive definite quadratic form functions on� so, both the theories of stochastic
processes and reproducing kernels have a fundamental relationship. A typical result
is the Loéve’s theorem: The Hilbert space H(X) generated by the process X (t), t on
a set T with the covariance function R(t, s) is congruent to the reproducing kernel
Hilbert space admitting the kernel R(t, s).

The support vectormachine is a powerful computationalmethod for solving learn-
ing and function estimating problems such that pattern recognition, density, and
regression estimation and operator inversion. See [36] for the details.

From some data input space E we consider a general non linear mapping to a
feature space F that is a pre-Hilbert space with the inner product (·, ·)F :

� : E −→ F; x −→ �(x). (3.3)

Then, we form the positive definite quadratic form function

K (x, y) = (�(x),�(y))F . (3.4)

The important point of thismethod is thatwe can apply this kernel to the problemof
construction of the optimal hyperplanes in the space F not by using the explicit values
of the transformed data �(x). See [4, 5] for the basic books and their references.

Quite recently a new method is developing known as kernel method:
For the transform of the data in the probability space (�,B, P) for a reproducing

kernel Hilbert space HK admitting a kernel on �:

� : � −→ (·, ·)F ; x −→ K (·, x), (3.5)

the theory of reproducing kernels may be applied to the probability problems on the
space (�,B, P). See the basic Refs. [17, 18] and their references.

The Dirac delta function and the Green functions are a family of reproducing ker-
nels, and orthonormal systems and reproducing kernels are the basic tools of quantum
mechanics; for examining of Coherent States. See the general survey article [37].
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4 Inversion Formulas

Consider the inversion in (1.1) formally, however, this idea will be very important
for the general inversions and for discretization method.

Following the above general situation, let {v j } be a complete orthonormal basis
forH. Then, for

v j (p) = (v j ,h(p))H,

h(p) =
∑

j

(h(p), v j )Hv j =
∑

j

v j (p)v j .

Hence, by setting
h(p) =

∑
j

v j (p)v j ,

h(·) =
∑

j

v j (·)v j .

Thus, define
( f,h(p))HK =

∑
j

( f, v j )HK v j .

For simplicity, write as follows:

HK = HK (E).

Then, formally, we obtain:

Proposition 4.1 Assume that for f ∈ HK

( f,h)HK ∈ H

and for all p ∈ E,

( f, (h(p),h(·))H)HK = (( f,h)HK ,h(p))H.

Then,
‖ f ‖HK � ‖( f,h)HK ‖H.

If {h(p); p ∈ E} is complete in H, then equality always holds.
Furthermore, if

(f0, ( f,h)HK )H = ((f0,h)H, f )HK f or f0 ∈ N (L).
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Then, for f∗ in (II) and (III)
f∗ = ( f,h)HK .

In particular, note that the basic assumption ( f,h)HK ∈ H in Proposition 4.1, is,
in general, not valid and very delicate for many analytical problems and we need
some delicate treatment for the inversion.

In order to derive a general inversion formula for (1.1) that is widely applica-
ble in analysis, assume that both the Hilbert spaces H and HK are given as H =
L2(T, dm), HK ⊂ L2(E, dμ), on the sets T and E , respectively (assume that for
dm, dμmeasurable sets T, E , they are the Hilbert spaces consisting of dm, dμ − L2

integrable complex-valued functions, respectively). Therefore, consider the integral
transform

f (p) =
∫

T
F(t)h(t, p)dm(t). (4.1)

Here, h(t, p) is a function on T × E , h(·, p) ∈ L2(T, dm), and F ∈ L2(T, dm).
The corresponding reproducing kernel for (1.2) is given by

K (p, q) =
∫

T
h(t, q)h(t, p)dm(t) on E × E .

The normof the reproducing kernelHilbert space HK is represented as L2(E, dμ).
Under these situations:

Proposition 4.2 Assume that an approximating sequence {EN }∞N=1 of E satis-
fies (a) E1 ⊂ E2 ⊂ · · · ⊂ · · · , (b)

⋃∞
N=1 EN = E, (c)

∫
EN

K (p, p)dμ(p) < ∞,

(N = 1, 2, . . .).
Then, for f ∈ HK satisfying

∫
EN

f (p)h(t, p)dμ(p) ∈ L2(T, dm) for any N, the
sequence {∫

EN

f (p)h(t, p)dμ(p)

}∞

N=1

(4.2)

converges to F∗ in (1.4) in Proposition 1.1 in the sense of L2(T, dm) norm.

Practically for many cases, the assumptions in Proposition 4.2 under the condition
(4.1) will be satisfied automatically, so Proposition 4.2may be applied inmany cases.
Proposition 4.2 will give a new viewpoint and method for the Fredholm integral
equation (4.1) of the first kind that is a fundamental integral equation. The method
and solutions have the following properties:

(1) The use of the naturally determined reproducing kernel Hilbert space HK that is
determined by the integral kernel.

(2) The solution is given in the sense of H norm convergence.
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(3) The solution (inverse) is given by f ∗ with minimum norm in Proposition 1.1.
(4) For the ill-posed problem in (4.1), the solution is given as a well-posed solution.

This viewpoint is, however, a mathematical and theoretical one. In practical and
physical linear systems, the observationdatawill bea finite number of data containing
error or noises, so we will meet to various delicate problems numerically.

5 General Integral Transforms

The basic assumption here for the integral kernels is to belong to some Hilbert
spaces. However, as a very typical integral transform, in the case of Fourier integral
transform, the integral kernel does not belong to L2(R) and, however,we can establish
the isometric identity and inversion formula in the space L2(R).

We can develop some general integral transform theory containing the Fourier
integral transform case that the integral kernel does not belong to any Hilbert space,
based on the recent general concept of generalized reproducing kernels in [33, 34].

When we consider the integral transform

L F(p) =
∫

T
F(λ)h(λ, p) dm(λ), p ∈ E (5.1)

for F ∈ H = L2(T, dm), indeed, the integral kernel h(λ, p) does not need to belong
to the space L2(T, dm) and with the very general assumptions that for any exhausion
{Tt } of T such that Tt ⊂ Tt ′ for t ≤ t ′,

⋃
t>0 Tt = T ,

h(λ, p) belongs to L2(Tt , dm) for any p of E

and
{h(λ, p); p ∈ E} is complete in L2(Tt , dm),

we can establish the isometric identity and inversion formula of the integral transform
(5.1) by giving the natural interpretation of the integral transform (5.1), as in the
Fourier transform by considering the generalized reproducing kernel K (p, q)

Kt (p, q) =
∫

Tt

h(t, q)h(t, p)dm(t) on E × E,

and
K (p, q) = lim

t→∞ Kt (p, q),

which diverses as in the delta function.



160 S. Saitoh

6 The Aveiro Discretization Method

Meanwhile, in general, the reproducing kernel Hilbert space HK has a complicated
structure, so we have to consider the approximate realization of the abstract Hilbert
space HK by taking a finite number of points of E . A finite number of data will lead
to a discretization principle and practical method, because computers can deal with
a finite number of data.

By taking a finite number of points {p j }n
j=1, we set

K (p j , p j ′) := a j j ′ . (6.1)

Then, if the matrix A :=‖ a j j ′ ‖ is positive definite, then, the corresponding norm
in HA consisting of the vectors x = (x1, x2, . . . , xn)

T is determined by

‖x‖2HA
= x∗ Ãx,

where Ã = A−1 = ‖ã j j ′ ‖.
When we approximate the reproducing kernel Hilbert space HK by the vector

space HA, then from Proposition 4.1, the following is directly derived:

Proposition 6.1 In the linear mapping

f (p) = (f,h(p))H, f ∈ H (6.2)

for
{p1, p2, . . . , pn},

the minimum norm inverse f∗
An

satisfying

f (p j ) = (f,h(p j ))H, f ∈ H (6.3)

is given by

f∗
An

=
n∑

j=1

n∑
j ′=1

f (p j )ã j j ′h(p j ′), (6.4)

where ã j j ′ are assumed to be the elements of the complex conjugate inverse of the
positive definite Hermitian matrix An constituted by the elements

a j j ′ = (h(p j ′),h(p j ))H = K (p j , p j ′).

Here, the positive definiteness of An is a basic assumption.
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The following proposition shows the convergence of the approximate inverses in
Proposition 6.1.

Proposition 6.2 Let {p j }∞j=1 be a sequence of distinct points on E, that is the positive
definiteness in Proposition 6.1 for any n and a uniqueness set for the reproducing
kernel Hilbert space HK ; that is, for any f ∈ HK , if all f (p j ) = 0, then f ≡ 0.
Then, in the space H

lim
n→∞ f∗

An
= f∗. (6.5)

From the result, we can obtain directly the ultimate realization of the reproducing
kernel Hilbert spaces and the ultimate sampling theory:

Proposition 6.3 (Ultimate realization of reproducing kernel Hilbert spaces). In the
general situation and for a uniqueness set {p j } of the set E satisfying the linearly
independence in Proposition 6.1,

‖ f ‖2HK
= ‖f∗‖2H = lim

n→∞

n∑
j=1

n∑
j ′=1

f (p j )ã j j ′ f (p j ′). (6.6)

Proposition 6.4 (Ultimate sampling theory). In the general situation and for a
uniqueness set {p j } of the set E satisfying the linearly independence in Proposi-
tion 6.1,

f (p) = lim
n→∞(f∗

An
,h(p))H = lim

n→∞

⎛
⎝

n∑
j=1

n∑
j ′=1

f (p j )ã j j ′h(p j ′),h(p)

⎞
⎠

H

(6.7)

= lim
n→∞

n∑
j=1

n∑
j ′=1

f (p j )ã j j ′ K (p, p j ′).

In Proposition 6.1, for any given finite number f (p j ), j = 1, 2, . . . , n, the result
in Proposition 6.1 is valid. Meanwhile, Propositions6.2 and 6.4 are valid when we
consider the sequence f (p j ), j = 1, 2, . . ., for any member f of HK . The sequence
f (p j ), j = 1, 2, . . ., for any member f of HK is characterized by the convergence
of (6.6) in Proposition 6.3. Then, any member f of HK is represented by (6.7) in
terms of the sequence f (p j ), j = 1, 2, . . ., in Proposition 6.4.

In the general setting in Proposition 6.1, assume that we observed the values
f (p j ) = α j , j = 1, 2, . . . , n, for a finite number of points {p j }, then for the whole
value f (p) of the set E , how can we consider it?



162 S. Saitoh

One idea is to consider the function f1(p): among the functions satisfying the
conditions f (p j ) = α j , j = 1, 2, . . . , n, we consider the minimum norm member
f1(p) in HK (E). This function f1(p) is determined by the formula

f1(p) =
n∑

j=1

C j K (p, p j )

where, the constants {C j } are determined by the formula

n∑
j=1

C j K (p j ′ , p j ) = α j ′ , j ′ = 1, 2, . . . , n.

(of course, we assume that ‖K (p j ′ , p j )‖ is positive definite).
For this problem, see, Mo and Qian [27], as a new numerical approach by a usual

computer system level, we use a special powerful computer system by H. Fujiwara.
In particular, they can deal with errorness data.

Meanwhile, by Proposition 1.1 we can consider the function f2(p) defined by

f2(p) = (f∗
An

,h(p))H

in terms of f∗
An

in Proposition 6.1. This interpolation formula is depending on the
linear system.

For analytical problems, we need discretization and using a finite number of data
in order to obtain approximate solutions by using computers, the typical methods
are finite element method and difference method, however, their practical algorithms
will be complicated depending on case by case, depending on the domains and
depending on the dimensions, however, the above methods are essentially simple
and uniform method in principle, called the Aveiro discretization method. However,
the hard work part is to solve the linear simultaneous equations, computer powers
requested are increasing so, in future, the above simple method may be expected to
become a standard method. For the general information and numerical results, see
[9, 10].

Many numerical experiments for the sampling theory by Proposition 6.4 were
given by [16]. In particular:

We showed a general sampling theorem and the concrete numerical experiments
for the simplest and typical examples. We gave the sampling theorem in the Sobolev
Hilbert spaces with numerical experiments. For the SobolevHilbert spaces, sampling
theorems seem to be a new concept.

For the typical Paley-Wiener spaces, the sampling points are automatically deter-
mined as the common sense, however, in our general sampling theorem,we can select
the sampling points freely so, case by case, following some a priori information of
a considering function, we can take the effective sampling points. We showed these
properties by the concrete examples, with many Figures by computers.
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6.1 A Typical Example of the Aveiro Discretization Method
with ODE

Consider a prototype differential operator

Ly := αy′′ + βy′ + γy. (6.8)

Here, consider a very general situation that the coefficients are arbitrary functions
essentially and on a general interval I .

For some practical construction of some natural solution of

Ly = g (6.9)

for a very general function g on a general interval I , we obtain

Proposition 6.5 ([9, 10]) Let us fix a positive number h and take a finite number of
points {t j }n

j=1 of I such that

(α(t j ),β(t j ), γ(t j )) �= 0

for each j . Then, an optimal solution y A
h of the Eq. (6.9) is given by

y A
h (t) = 1

2π

∫ π/h

−π/h
F A

h (ξ)e−i tξdξ

in terms of the function F A
h ∈ L2(−π/h,+π/h) in the sense that F A

h has the mini-
mum norm in L2(−π/h,+π/h) among the functions F ∈ L2(−π/h,+π/h) satis-
fying, for the characteristic function χh(t) of the interval (−π/h,+π/h):

1

2π

∫

R

F(ξ)[α(t)(−ξ2) + β(t)(−iξ) + γ(t)]χh(ξ) exp(−i tξ)dξ = g(t) (6.10)

for all t = t j and for the function space L2(−π/h,+π/h).
The best extremal function F A

h is given by

F A
h (ξ) =

n∑
j, j ′=1

g(t j )ã j j ′(α(t j ′)(−ξ2) + β(t j ′)(−iξ) + γ(t j ′)) exp(i t j ′ξ). (6.11)

Here, the matrix A = {a j j ′ }n
j, j ′=1 formed by the elements

a j j ′ = Khh(t j , t j ′)
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with

Khh(t, t ′) = 1

2π

∫

R

[α(t)(−ξ2) + β(t)(−iξ) + γ(t)][α(t ′)(−ξ2) + β(t ′)(−iξ) + γ(t ′)]
× χh(ξ) exp(−i(t − t ′)ξ)dξ (6.12)

is positive definite and the ã j j ′ are the elements of the inverse of A (the complex
conjugate of A).

Therefore, the optimal solution y A
h of the Eq. (6.9) is given by

y A
h (t) =

n∑
j, j ′=1

g(t j )ã j j ′
1

2π
[−α(t j ′)

∫ π
h

− π
h

ξ2e−i(t−t j ′ )ξdξ

+ iβ(t j ′)

∫ π
h

− π
h

ξe−i(t−t j ′ )ξdξ + γ(t j ′)

∫ π
h

− π
h

e−i(t−t j ′ )ξdξ].

First, we are considering approximate solutions of the differential equation (6.9)
and at this point, we are considering the Paley-Wiener function spaceswith parameter
h as approximating function spaces; the function spaces are formed by analytic
functions of the entire functions of exponential type that are decreasing to zero
exponential order. Next, by using the Fourier inversion, the differential equation
(6.9) may be transformed into (6.10). However, to solve the integral equation (6.10)
is very difficult for the generality of the coefficient functions. So, we assume (6.10)
is valid on some finite number of points t j . This assumption will be very reasonable
for the discretization of the integral equation. By this assumption we can obtain an
optimal approximate solution in a very simple way.

Here, we assume that Eq. (6.9) is valid on I so, as some practical case we would
like to consider the equation in (6.9) on I satisfying some boundary conditions. In
the present case, the boundary conditions are given as zero at infinity for I = R.

However, our result gives the approximate general solutions satisfying boundary
values. For example, for a finite interval (a, b), we consider t1 = a and tn = b and
α(t1) = β(t1) = α(tn) = β(tn) = 0. Then, we can obtain the approximate solution
having arbitrary given boundary values y A

h (t1) and y A
h (tn). In addition, by a simple

modification we may give the general approximate solutions satisfying the corre-
sponding boundary values.

For a finite interval case I , following the boundary conditions, we can consider
the corresponding reproducing kernels by the Sobolev Hilbert spaces. However, the
concrete representations of the reproducing kernels are involved depending on the
boundary conditions. However, we can still consider them and we can use them.

Of course, for a smaller h we can obtain a better approximate solution.
For the representation (6.12) of the reproducing kernel Khh(t, t ′), we can calculate

it easily.
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The very surprising facts are: for variable coefficients linear differential equations,
we can represent their approximate solutions satisfying their boundary conditions
without integrals. Approximate function spaces may be considered with the Paley-
Wiener spaces and the Sobolev spaces. For many concrete examples and numerical
examples, see [9, 10]. We showed Figures of the numerical experiments. See also
[28] for some applications to nonlinear partial differential equations.

7 Best Approximations—As a Connection

Let L be any bounded linear operator from a reproducing kernel Hilbert space HK

into a Hilbert space H. Then, the following problem is a classical and fundamental
problem known as the best approximatemean square norm problem: For anymember
d of H, we would like to find

inf
f ∈HK

‖L f − d‖H.

It is clear that we are considering operator equations, generalized solutions and
corresponding generalized inverses within the framework of f ∈ HK and d ∈ H,
having in mind

L f = d. (7.1)

However, this problem has a complicated structure, specially in the infinite dimen-
sion Hilbert spaces case, leading in fact to the consideration of generalized inverses
(in the Moore-Penrose sense). Following the reproducing kernel theory, we can real-
ize its complicated structure. Anyway, the problem turns to be well posed within the
reproducing kernels theory framework in the following proposition:

Proposition 7.1 For any member d of H, there exists a function f̃ in HK satisfying

inf
f ∈HK

‖L f − d‖H = ‖L f̃ − d‖H (7.2)

if and only if, for the reproducing kernel Hilbert space Hk admitting the kernel defined
by k(p, q) = (L∗L K (·, q), L∗L K (·, p))HK

L∗d ∈ Hk . (7.3)

Furthermore, when there exists a function f̃ satisfying (7.2), there exists a uniquely
determined function that minimizes the norms in HK among the functions satisfying
the equality, and its function fd is represented as follows:

fd(p) = (L∗d, L∗L K (·, p))Hk on E . (7.4)
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Here, the adjoint operator L∗ of L , as we see, from

(L∗d)(p) = (L∗d, K (·, p))HK = (d, L K (·, p))H

is represented by known d, L , K (p, q), and H. From this Proposition 7.1, we see
that the problem is well established by the theory of reproducing kernels that is the
existence, uniqueness, and representation of the solutions in the problem are well
formulated. In particular, note that the adjoint operator is represented in a good way;
this fact will be very important. The extremal function fd is the Moore-Penrose
generalized inverse L†d of the equation L f = d. The criteria (7.3) is involved so the
Moore-Penrose generalized inverse fd is not good, when the data contain error or
noises in some practical cases.

8 The Tikhonov Regularization

We will consider some practical and more concrete representation in the extremal
functions involved in the Tikhonov regularization by using the theory of reproducing
kernels. Recall that for compact operators the singular values and singular func-
tions representations are popular and in a sense, however the representation may be
considered as complicated.

Furthermore, when d contains error or noises, error estimates are important. For
this fundamental problem, we have the following results:

First, we need

Proposition 8.1 Let L : HK → H be a bounded linear operator, and define the
inner product with a positive α

〈 f1, f2〉HKα
= α 〈 f1, f2〉HK + 〈L f1, L f2〉H

for f1, f2 ∈ HK . Then (HK , 〈·, ·〉HKα
) is a reproducing kernel Hilbert space whose

reproducing kernel is given by

Kα(p, q) = [(α + L∗L)−1Kq ](p).

Here, Kα(p, q) is the solution K̃α(p, q) of the functional equation

K̃α(p, q) + 1

α
(L K̃q , L K p)H = 1

α
K (p, q), (8.1)

that is corresponding to the Fredholm integral equation of the second kind for many
concrete cases. Here,

K̃q = K̃α(·, q) ∈ HK for q ∈ E, K p = K (·, p) for p ∈ E .
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Proposition 8.2 In the Tikhonov functional

f ∈ HK �→ {
α ‖ f : HK ‖2 + ‖L f − d : H‖2} ∈ R

attains the minimum and the minimum is attained only at fd,α ∈ HK such that

( fd,α)(p) = 〈d, L Kα(·, p)〉H.

Furthermore, ( fd,α)(p) satisfies

|( fd,α)(p)| ≤
√

K (p, p)

2α
‖d‖H. (8.2)

This proposition means that in order to obtain good approximate solutions, we
must take a sufficiently small α, however, here we have restrictions for them, as we
see, when d moves to d′, by considering fd,α(p) − fd′,α(p) in connection with the
relation of the difference ‖d − d′‖H. This fact is a very natural one, because we
cannot obtain good solutions from the data containing errors. Here we wish to know
how to take a small α a priori and what is the bound for it. These problems are very
important practically and delicate ones, and we have many methods.

The basic idea may be given as follows.We examine for variousα tending to zero,
the corresponding extremal functions. By examining the sequence of the approximate
extremal functions, when it converges to some function numerically and after then
when the sequence diverges numerically, it will give the bound for α numerically.
See [12–14].

For this important problem and the method of L-curve, see [19, 20], for example.
The Tikhonov regularization is very popular and widely applicable in numerical

analysis for its practical power. The application of the theory of reproducing kernels
will give more concrete representations of the extremal functions in the Tikhonov
regularization.

8.1 A Typical Example with Real and Numerical Inversion
of the Laplace Transform

Consider the inversion formula of the Laplace transform

(LF)(p) = f (p) =
∫ ∞

0
e−pt F(t)dt, p > 0

for some natural function spaces.
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On the positive real line R+, consider the norm

{∫ ∞

0
|F ′(t)|2 1

t
et dt

}1/2

for absolutely continuous functions F satisfying F(0) = 0. This space HK admits
the reproducing kernel

K (t, t ′) =
∫ min(t,t ′)

0
ξe−ξdξ. (8.3)

Then,
∫ ∞

0
|(LF)(p)p|2dp ≤ 1

2
‖F‖2HK

; (8.4)

that is, (LF)(p)p is a bounded linear operator from HK into L2(R+, dp) = L2(R+).
So the following result holds:

Proposition 8.3 For any g ∈ L2(R+) and for any α > 0, in the sense

inf
F∈HK

{
α

∫ ∞

0
|F ′(t)|2 1

t
et dt + ‖(LF)(p)p − g‖2L2(R+)

}
(8.5)

= α

∫ ∞

0
|F∗′

α,g(t)|2
1

t
et dt + ‖(LF∗

α,g)(p)p − g‖2L2(R+)

there exists a uniquely determined best approximate function F∗
α,g and it is repre-

sented by

F∗
α,g(t) =

∫ ∞

0
g(ξ) (LKα(·, t)) (ξ)ξdξ. (8.6)

Here, Kα(·, t) is determined by the functional equation for Kα,t ′ = Kα(·, t ′), Kt =
K (·, t),

Kα(t, t ′) = 1

α
K (t, t ′) − 1

α
((LKα,t ′)(p)p, (LKt )(p)p)L2(R+). (8.7)

We calculate the approximate inverse F∗
α,g(t) by using (8.6). By taking the Laplace

transform of (8.7) with respect to t , by changing the variables t and t ′

(LKα(·, t))(ξ) = 1

α
(LK (·, t))(ξ) − 1

α
((LKα,t )(p)p, (L(LK·)(p)p))(ξ))L2(R+).

(8.8)
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Here

K (t, t ′) =
{−te−t − e−t + 1 for t ≤ t ′

−t ′e−t ′ − e−t ′ + 1 for t ≥ t ′.

(LK (·, t ′))(p) = e−t ′ pe−t ′[ −t ′

p(p + 1)
+ −1

p(p + 1)2

]
+ 1

p(p + 1)2
.

∫ ∞

0
e−qt ′

(LK (·, t ′))(p)dt ′ = 1

pq(p + q + 1)2
.

Therefore, by setting as (LKα(·, t))(ξ)ξ = Hα(ξ, t), we obtain theFredholm inte-
gral equation of the second kind:

αHα(ξ, t) +
∫ ∞

0

Hα(p, t)

(p + ξ + 1)2
dp = −e−tξe−t

ξ + 1

(
t + 1

ξ + 1

)
+ 1

(ξ + 1)2
, (8.9)

which is corresponding to (7.1).By solving this integral equation,H. Fujiwara derived
a very reasonable numerical inversion formula for the integral transform and he
expanded very good algorithms for numerical and real inversion formulas of the
Laplace transform. For more detailed references and comments for this equation, see
[12–14].

In particular, H. Fujiwara solved the integral equation (8.9) with 6000 points
discretization with 600 digits precision based on the concept of infinite precision
which is in turn based on multiple-precision arithmetic. Then, the regularization
parameters were α = 10−100, 10−400 surprisingly. For the integral equation, he used
the DE formula by H. Takahashi and M. Mori, using double exponential transforms.
H. Fujiwara was successful in deriving numerically the inversion for the Laplace
transform of the distribution delta that was proposed by V.V. Kryzhniy as a difficult
case. This fact will mean that the above results valid for very general functions
approximated by the functions of the reproducing kernel Hilbert space HK (R+).

We can see many Figures for the numerical experiments in the complete version
[15] by Professor H. Fujiwara and for the heat conduction problem, by [23].

9 General Fractional Functions

Consider a general fractional function

g

f
(9.1)

for some very general functions g and f on a set E .
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In order to consider such fractional functions (9.1), consider the background-
related equation

f1(p) f (p) = g(p) on E (9.2)

for some functions f1 and g on the set E . If the solution f1 of (9.2) on the set E
exists, then the solution f1 gives the meaning of the fractional function (9.1). So, the
problem may be transformed into the very general and popular equation (9.2).

The function f is initially given. So, for analyzing the Eq. (9.2), we introduce
a suitable function space containing the function f1 and then we find the induced
function space containing the product f1(p) f (p). Then, we can consider the solution
of the Eq. (9.2).

Here, we note the very interesting fact that the products f1(p) f (p) determine a
natural reproducing kernel Hilbert space that is induced by the reproducing kernel
Hilbert space HK1(E) and by a second reproducing kernel Hilbert space, say HK (E),
containing the function f (p). Note that for an arbitrary function f , there exists a
reproducing kernel Hillbert space containing the function f (p); indeed the simplest
reproducingkernel is givenby f (p) f (q). Then, the space in question is a reproducing
kernel Hilbert space HK1K (E) that is determined by the product K1(p, q)K (p, q)

and, furthermore, we obtain the inequality

‖ f1 f ‖HK1K (E) ≤ ‖ f1‖HK1 (E)‖ f ‖HK (E). (9.3)

This inequality means that for the linear operator ϕ f ( f1) on HK1(E) (for a fixed
function f ), defined by

ϕ f ( f1) = f1(p) f (p), (9.4)

the inequality
‖ϕ f ( f1)‖HK1K (E) ≤ ‖ f1‖HK1 (E)‖ f ‖HK (E)

holds. This means that the mapping ϕ f is a bounded linear operator from HK1(E)

into HK1K (E) (see Sect. 10.1 for the details).
Nowwe can consider the operator equation (9.2) in this natural framework.We can

mathematically analyze this situation in a natural way and can develop a consequent
theory, however, the operator problem will be very sensitive on the functions f .

For some reasonable solutions for the operator equation (9.2), we can introduce
approximate fractional functions and generalized fractional functions in correspon-
dence to the usual fractional function by using the above Tikhonov regularization
method combined with the theory of reproducing kernels, and as a special case, by
the concept of the Moore-Penrose generalized inverses. See [6, 7, 30, 31].

Division by Zero
The general fractional functions may be considered in various general situations. In
particular, in the sense of the Moore-Penrose generalized inverse on R or C, for any
real or complex number z,

z

0
= 0, (9.5)
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which was derived as the very special case in [32].
For a simple introduction and several physical meanings, see [21].
The division by zero has a long history and great references. See for example

Google Site by division by zero.
On the division by zero, we believe our mathematics determines that for any

complex number z, z/0 = 0; here, of course, for the definition z/0 of the division
by zero, we have to give its definition clearly. At this moment, we have 5 definitions
with motivations; that is,

(1) by the generalization of the fractions by the Tikhonov regularization or by the
Moore-Penrose generalized inverse,

(2) by the intuitive meaning of the fractions (division) by H. Michiwaki,
(3) by the unique extension of the fractions by S. Takahasi [35],
(4) by the extension of the fundamental function W = 1/z fromC \ {0} intoC such

that W = 1/z is a one to one and onto mapping from C \ {0} onto C \ {0} and
the division by zero 1/0 = 0 is a one to one and onto mapping extension of the
function W = 1/z from C onto C, and

(5) by considering the values of functions with the mean values of functions.

Further, in order to show the importance of the division by zero, we gave in [25]
clear evidences of the reality of the division by zero z/0 = 0 with a fundamental
algebraic theorem, and physical and geometrical examples; that is, (A) a field struc-
ture containing the division by zero, (B) by the gradient of the y axis on the (x, y)

plane, (C) by the reflection 1/z of z with respect to the unit circle with center at
the origin on the complex z plane, and (D) by considering rotation of a right circle
cone having some very interesting phenomenon from some practical and physical
problem.

In particular, by Figure the interpretation of (C) was introduced in the talk.
Furthermore, we were able to find several meanings in the elementary geometry

and physical meanings of the division by zero.
For the division by zero in connection with number structures, mathematics logic,

and computer sciences, see the paper [3]. However, they state that in the conclusion:
The theory of meadows depends upon the formal idea of a total inverse oper-

ator. We do not claim that division by zero is possible in numerical calculations
involving the rationals or reals. But we do claim that zero totalized division is log-
ically, algebraically, and computationally useful: for some applications, allowing
zero totalized division in formal calculations, based on equations and rewriting, is
appropriate because it is conceptually and technically simpler than the conventional
concept of partial division.

It seems that the relationship of the division by zero and field structures are
abstract.

Anyhow, we have two ideas for the division by zero as follows:

(I) the division by zero is impossible based on the idea that division is an inversion
operation of the product (common idea) and
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(II) the division by zero is possible as z/0 = 0, by the above five basic ideas and
four evidences.

Following the idea (II), the idea that division is an inversion operation of the
product is incorrect. Indeed, we think mathematicians made a serious mistake for
this point for a very long time.

Meanwhile, when we take the idea (I), there is no any world to consider the
division by zero more; that is, there is no any story for the division by zero, more.
That means the end. Meanwhile, following the idea (II), we can consider more for the
division by zero and we can consider a new mathematics. There exists a new world.
We would like to recall the principle for our existence. Indeed, for impossible, no
more, and the end, for possible, we can expect something, favorable.

10 Convolutions, Integral Transforms, and Integral
Equations

Wecan consider general convolutions, bymeans of the theory of reproducing kernels.
Consider two systems

f j (p) = (f j ,h j (p))H j , f j ∈ H j (10.1)

as in Sect. 1 by using {H j , E,h j }2j=1. Here, we assume that E is a same set for the
two systems in order to have the output functions f1(p) and f2(p) on the same set E .

For example, consider the operator

f1(p) f2(p)

in F(E). Then, consider the following problems: How to represent the product
f1(p) f2(p) on E in terms of their inputs f1 and f2 through one system?
By using the theory of reproducing kernels we can give a natural answer for

this problem. Following similar ideas, we can consider various operators among
Hilbert spaces. In particular, for the product of two Hilbert spaces, the idea gives
generalizations of convolutions and the related natural convolution norm inequalities.
These norm inequalities gave various generalizations and applications to forward
and inverse problems for linear mappings in the framework of Hilbert spaces, see
for example, [8–10]. Furthermore, for some very general nonlinear systems, we can
consider similar problems. See [29] for the details. We consider the product case that
will give a general concept of convolutions and we refer to applications to integral
equations. For this session, see [7].



A Reproducing Kernel Theory with Some General Applications 173

10.1 Product and Convolution

First, note that in general:
For any two positive definite quadratic form functions K1(p, q) and K2(p, q)

on E , the usual product K (p, q) = K1(p, q)K2(p, q) is again a positive definite
quadratic form function on E , and then HK is the restriction of the tensor product
HK1(E) ⊗ HK2(E) to the diagonal set, and

Let { f (1)
j } j and { f (2)

j } j be some complete orthonormal systems in HK1(E) and
HK2(E), respectively, then the reproducing kernel Hilbert space HK is comprised of
all functions on E that are represented as, in the sense of absolutely convergence on E

f (p) =
∑
i, j

αi, j f (1)
i (p) f (2)

j (p) on E,
∑
i, j

|αi, j |2 < ∞ (10.2)

and its norm in HK is given by ‖ f ‖2HK
= min

∑
i, j |αi, j |2 where {αi, j } are considered

by satisfying (10.2).

By (I), for
K j (p, q) = (h j (q),h j (p))H j on E×E, (10.3)

and for f1 ∈ HK1(E) and f2 ∈ HK2(E), we note that for the reproducing kernel
Hilbert space HK1K2(E) admitting the reproducing kernel

K1(p, q)K2(p, q) on E,

in general, the inequality

‖ f1 f2‖HK1K2 (E) ≤ ‖ f1‖HK1 (E)‖ f2‖HK2 (E) (10.4)

holds.
For the positive definite quadratic form function K1K2 on E , we assume the

expression in the form

K1(p, q)K2(p, q) = (hP(q),hP(p))HP on E × E (10.5)

with a Hilbert space HP -valued function on E and further we assume that

{hP(p); p ∈ E} is complete in HP . (10.6)

Such a representation is, in general, possible by the fundamental result of Kol-
mogorov. Then, we can consider conversely the linear mapping from HP onto
HK1K2(E)

fP(p) = (fP ,hP(p))HP , fP ∈ HP (10.7)
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and the isometric identity
‖ fP‖HK1K2 (E) = ‖fP‖HP (10.8)

holds.
Hence, for such representations (10.7) with (10.8), we obtain the isometric map-

ping between the Hilbert spaces HP and HK1K2(E).
Now, for the product f1(p) f2(p) there exists a uniquely determined fP ∈ HP

satisfying
f1(p) f2(p) = (fP ,hP(p))HP on E . (10.9)

Then, fP will be considered as a product of f1 and f2 through these transforms so,
we introduce the notation

fS = f1[×]f2. (10.10)

This product for themembers f1 ∈ H1 and f2 ∈ H2 is introduced through the three
transforms induced by {H j , E, h j } ( j = 1, 2) and {HP , E, hP}.

The operator f1[×]f2 is represented in terms of f1 and f2 by the inversion formula

(f1,h1(p))H1(f2,h2(p))H2 −→ f1[×]f2 (10.11)

in the sense (II) from HK1K2(E) onto HP . Then, from (II) and (10.6) we have a
similar inequality for Schwarz:

The inequality
‖f1[×]f2‖HP ≤ ‖f1‖H1‖f2‖H2 (10.12)

holds.

10.2 Example

A typical application to the convolution inequality is given by:

Proposition 10.1 Suppose that we are given two positive integrable functions ρ1, ρ2
on R. If F1, F2 : R → [0,∞] are measurable functions, then the inequality

∫

R

1

(ρ1 ∗ ρ2)(t)

∣∣∣∣
∫

R
F1(ξ)ρ1(ξ)F2(t − ξ)ρ2(t − ξ) dξ

∣∣∣∣
2

dt

≤
∫

R
F1(t)

2ρ1(t) dt ·
∫

R
F2(t)

2ρ2(t) dt

holds for the usual convolution ρ1 ∗ ρ2.
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Proof We define K j and L j : L2(R; ρ j ) → HK j by

K j (x, y) =
∫

R
exp(i(x − y) · t)ρ j (t) dt,

(L j F)(t) = 1

2π

∫

R
F(x)ρ j (x) exp(−i t · x) dx

for j = 1, 2.
It follows from the Fubini theorem that

K1(x, y)K2(x, y) =
∫

R
exp(i(x − y) · t)(ρ1 ∗ ρ2)(t) dt.

The same can be said for L1F1 · L2F2:

(L1F1)(x)(L2F2)(x) =
∫

R
exp(−i x · t)(F1ρ1) ∗ (F2ρ2)(t) dt.

By the property of the product kernel space HK1K2

‖L1F1 · L2F2‖HK1K2
≤ ‖L1F1‖HK1

· ‖L2F2‖HK2
.

By writing out in full both the sides, the inequality follows. �

This result was expanded for various directions with applications to inverse prob-
lems and partial differential equations.

10.3 Applications to Integral Equations

We will assume that the linear transforms in the above

L j : f j ∈ H j −→ f j ∈ HK j (E)

and
L : fP ∈ HP −→ fP ∈ HK1K2(E)

are isometrical. We now consider the integral equation, for f1 ∈ H1, f
(1)
2 , f (2)

2 ∈ H2

and g ∈ HP

f1[×]f (1)
2 + f1[×]f (2)

2 = g.

Then, by taking the transform L , we obtain

L1f1(L2f
(1)
2 + L2f

(2)
2 ) = g(p)
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so

f1(p)
(

f (1)
2 (p) + f (2)

2 (p)
)

= g(p) (4.1)

on the functions on E . Then, for given f (1)
2 , f (2)

2 ∈ H2 and g ∈ HP , when we solve
the equation, we wish to consider the following way:

f1 = L−1
1

(
g(p)

f (1)
2 (p) + f (2)

2 (p)

)
.

Here, the essential problem, however, rises how to obtain the solution

g(p)

f (1)
2 (p) + f (2)

2 (p)
.

The important problems here are that the function f (1)
2 (p) + f (2)

2 (p) may have
many zero points and some properties of the above fractional function for looking
the inversion L−1

1 . These important problems may be solved effectively by using the
Tikhonov regularization in Sect. 8 and the concept in Sect. 10.

11 Eigenfunctions, Initial Value Problems, Integral
Transforms, and Reproducing Kernels

Among the very fundamental concepts of eigenfunctions, initial value problems on
some general linear PDEs, integral transforms and reproducing kernels on analysis,
there exist good relationships. For Sect. 11, see [11].

For some general linear operator Lx for some function space on some domain,
consider the initial value problem: For t > 0

(∂t + Lx )u f (t, x) = 0 (11.1)

satisfying the initial value condition with some suitable meaning

u f (0, x) = f (x). (11.2)

Furthermore, the relation will give the method how to characterize completely the
solutions under the given conditions.

One basic concept is to use some eigenvalues λ on a set I and eigenfunctions Wλ

satisfying

Lx Wλ(x) = λWλ(x). (11.3)
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Then, the functions
exp{−λt}Wλ(x) (11.4)

are the solutions of the operator equation

(∂t + Lx )u(t, x) = 0. (11.5)

We consider some general solution of (11.5) by a suitable sum of the solutions
(11.4). In order to consider a fully good sum, consider the kernel form, with a con-
tinuous nonnegative weight function ρ over the interval I

Kλ(x, y) =
∫

I
exp{−λt}Wλ(x)Wλ(y)ρ(λ)dλ. (11.6)

Here, we assume that λ are real-valued and also the eigenfunctions Wλ(x) are
also real-valued. Then, fully general solutions of the Eq. (11.1) may be represented
in the integral form

u(t, x) =
∫

I
exp{−λt}Wλ(x)F(λ)ρ(λ)dλ (11.7)

for the functions F satisfying

∫

I
exp{−λt}|F(λ)|2ρ(λ)dλ < ∞. (11.8)

Then, the solution u(t, x) of (11.1) satisfying the initial condition

u(0, x) = F(x) (11.9)

will be obtained by t → +0 in (11.7) with a natural meaning. However, this point
will be very delicate and we will need to consider some deep and beautiful structure.
Here, (11.6) is a reproducing kernel and in order to analyze the logic above, we will
need the theory of reproducing kernels, essentially and beautiful ways.

We will consider the related reproducing kernel

K0(x, y) =
∫

I
Wλ(x)Wλ(y)ρ(λ)dλ (11.10)

and the corresponding reproducing kernel Hilbert space HK0 . Here, the important
general property

Kt (x, y) � K0(x, y); (11.11)

that is, K0(x, y) − Kt (x, y) is a positive definite quadratic form function and we
have

HKt ⊂ HK0
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and for any function f ∈ HKt

‖ f ‖HK0
= lim

t→0
‖ f ‖HKt

in the sense of nondecreasing norm convergence.
Now, the kernel Kt (x, y) will satisfy the operator equation (11.1) for any fixed y

as the summation of the solutions of (11.1). Then, consider a further summation in
the form, for any given function f ∈ HK0

u f (t, x) = ( f (·), Kt (·, x))HK0
. (11.12)

These functions will satisfy the operator equation (11.1) as the summation of the
solutions. Then, the initial value condition is given as follows:

lim
t→0

u f (t, x) = lim
t→0

( f (·), Kt (·, x))HK0
. (11.13)

= ( f (·), K0(·, x))HK0

= f (x).

We construct the solution for the initial value problem satisfying (11.1) and (11.9).
The function (11.2) will satisfy the operator equation (11.1) and for the sake of the
norm convergence, the limit for t → +0 converges to the function f in a good way.
So, the crucial point in our approach is based on the realization of the reproducing
kernel Hilbert space HK0 . Of course, these properties depend on the eigenfunctions
property.

Furthermore, the complete property of the solutions of (11.1) satisfying the initial
value f may be derived from the reproducing kernel Hilbert space admitting the
kernel

k(x, t; y, τ ) := (Kτ (·, y), Kt (·, x))HK0
. (11.14)

In the method, we see that the existence problem of the initial value problem
is based on the eigenfunctions Wλ(x) and we are constructing the desired solution
satisfying the desired initial condition. For a larger knowledge for the eigenfunctions,
we can consider a more general initial value problem. The uniqueness property of
the initial value problem is depending on the completeness of the family of functions

{Kt (·, x); x ∈ the space} (11.15)

in the space HK0 .
Furthermore, by considering the linear mapping of (11.7) with various situations,

various inverse problems looking for the initial values f from the various output data
of u f (t, x) may be obtained.
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11.1 The Simplest Case Example for the Exponential
Function

For the simplest derivative operator D,

Deλx = λeλx . (11.16)

We can consider the initial value problemswith various situations by consideringλ
and the variable x . The typical cases are the weighted Laplace transforms, the Paley-
Wiener spaces and the Sobolev spaces depending on λ > 0, λ is on a symmetric
interval and λ is on the whole real space. The Laplace transform may be considered
in many situations by considering the various weights [29], so we will consider the
simplest case:

K (z, u) =
∫ ∞

0
e−λze−λudλ = 1

z + u
, z = x + iy, (11.17)

on the right half complex plane. The reproducing kernel is the Szegö kernel and for
the image of the integral transform

f (z) =
∫ ∞

0
e−λz F(λ)dλ, (11.18)

for the L2(0,∞) functions F(λ), the isometric identity

1

2π

∫ +∞

−∞
| f (iy)|2dy =

∫ ∞

0
|F(λ)|2dλ (11.19)

is obtained.Here, f (iy)means theFatou’s non-tangential boundary values of analytic
functions f (z) of the Szegö space on the right-hand half complex plane.

Now, consider the reproducing kernel Kt (z, u) and the corresponding reproducing
kernel Hilbert space HKt by

Kt (z, u) =
∫ ∞

0
e−λt e−λze−λudλ. (11.20)

Note that the reproducing kernel Hilbert space HKt is the Szegö space on the
right-hand complex plane x > −t

2 .
For any Szegö kernel function spacemember f (z) on the right half complex plane,

the function

U f (t, z) = ( f (·), Kt (·, z)HK = 1

2π

∫ +∞

−∞
f (iy)Kt (iy, z)dy (11.21)
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satisfies the partial differential equation

(∂t − Dz)U (t, z) = 0. (11.22)

In order to see the characteristic property of the solutionsU (t, z), wewill consider
the kernel form

k(t, z; τ , u) = (Kτ (·, u), Kt (·, z))HK (11.23)

= 1

t + τ + z + u
.

From this representation we see that, for any fixed t > 0, the solutions U (t, z)
belong to the Szegö space on the right-hand complex plane

Re z > −t,

and for any fixed z, Re z > 0, the solutions U f (t, z) may be continued analytically
onto the half complex plane with respect to t

Re t > −Re z.

In particular, note that the solutions U f (t, z) will have meanings on the negative
time.

For any fixed time t , we can obtain the inversion formula in the complex version
in (11.18) by the general formula in Proposition 4.2, because the needed situations
are concretely given. Meanwhile, for any fixed space point z, we will be able to
see that the situation is similar, and we in a natural way consider the inversion with
the complex time t . When we wish to establish the real inversion, we can consider
the inversion formulas by the Aveiro discretization method [9, 10] or by applying
the Tikhonov regularization method [31] as in the numerical real inversion formula
of the Laplace transforms. Then, the analytical inversion formula is very deep and
complicated.

The above typical example may be expected to have the systematical developments
as follows:

(1) Many concrete reproducing kernels may be calculated and the related reproduc-
ing kernel Hilbert spaces should be realized with concrete norms.

(2) Eigenfunctions and the related initial value problems in partial differential and
integral equations should be examined with their properties of the solutions.

(3) Many new integral transforms and their properties; that is, isometric identities
and inversion formulas should be established.

(4) For the associated t kernels and the related small reproducing kernels appeared
in the general theory, we can consider the similar problems above.



A Reproducing Kernel Theory with Some General Applications 181

From the great references by Russianmathematicians containing the special func-
tion theory, we can expect new materials and such materials in mathematics are
definite values and fundamentals in mathematics.

The general theory in this section was recently extended to the Hilbert space
framework by using the generalized reproducing kernels in [33, 34] with Professor
Y. Sawano.

Meanwhile, the materials except the division by zero in this paper will be pub-
lished in a book from Springer with the title Theory of Reproducing Kernels and
Applications with the co-author Y. Sawano in Developments in Mathematics, Vol.
44 (2016).
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Sparse Approximation by Greedy
Algorithms

V. Temlyakov

Abstract It is a survey on recent results in constructive sparse approximation. Three
directions are discussed here: (1) Lebesgue-type inequalities for greedy algorithms
with respect to a special class of dictionaries, (2) constructive sparse approximation
with respect to the trigonometric system, (3) sparse approximation with respect
to dictionaries with tensor product structure. In all three cases constructive ways
are provided for sparse approximation. The technique used is based on fundamental
results from the theory of greedy approximation. In particular, results in the direction
(1) are based on deepmethods developed recently in compressed sensing.We present
some of these results with detailed proofs.

Keywords Sparse · Constructive · Greedy · Lebesgue inequality

1 Introduction

The paper is a survey on recent breakthrough results in constructive sparse approx-
imation. In all cases discussed here the new technique is based on greedy approx-
imation. The main motivation for the study of sparse approximation is that many
real-world signals can be well approximated by sparse ones. Sparse approximation
automatically implies a need for nonlinear approximation, in particular, for greedy
approximation. We give a brief description of a sparse approximation problem and
present a discussion of the obtained results and their relation to previous work. In
Sect. 2 we concentrate on breakthrough results from [18] and [41]. In these papers
we extended a fundamental result of Zhang [48] on the Lebesgue-type inequality for
the RIP dictionaries in a Hilbert space (see Theorem 2.2 below) in several directions.
We found new more general than the RIP conditions on a dictionary, which still
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guarantee the Lebesgue-type inequalities in a Hilbert space setting. We generalized
these conditions to a Banach space setting and proved the Lebesgue-type inequalities
for dictionaries satisfying those conditions. To illustrate the power of new conditions
we applied this new technique to bases instead of redundant dictionaries. In particular,
this technique gave very strong results for the trigonometric system.

In a general setting, we are working in a Banach space X with a redundant sys-
tem of elements D (dictionary D). There is a solid justification of importance of
a Banach space setting in numerical analysis in general and in sparse approxima-
tion in particular (see, for instance, [40], Preface, and [29]). An element (function,
signal) f ∈ X is said to be m-sparse with respect to D if it has a representation
f = ∑m

i=1 xi gi , gi ∈ D, i = 1, . . . , m. The set of allm-sparse elements is denoted by
�m(D). For a given element f0 we introduce the error of best m-term approximation
σm( f0,D) := inf f ∈�m (D) ‖ f0 − f ‖. We are interested in the following fundamental
problem of sparse approximation.

Problem. How to design a practical algorithm that builds sparse approximations
comparable to best m-term approximations?

In a general setting, we study an algorithm (approximation method)
A = {Am(·,D)}∞m=1 with respect to a given dictionaryD. The sequence of mappings
Am(·,D) defined on X satisfies the condition: for any f ∈ X , Am( f,D) ∈ �m(D).
In other words, Am provides an m-term approximant with respect toD. It is clear that
for any f ∈ X and any m we have ‖ f − Am( f,D)‖ ≥ σm( f,D). We are interested
in such pairs (D,A) for which the algorithmA provides approximation close to best
m-term approximation. We introduce the corresponding definitions.

Definition 1.1 We say that D is an almost greedy dictionary with respect to A if
there exist two constants C1 and C2 such that for any f ∈ X we have

‖ f − AC1m( f,D)‖ ≤ C2σm( f,D). (1.1)

IfD is an almost greedy dictionary with respect toA thenA provides almost ideal
sparse approximation. It provides C1m-term approximant as good (up to a constant
C2) as ideal m-term approximant for every f ∈ X . In the case C1 = 1 we call D a
greedy dictionary. We also need a more general definition. Let φ(u) be a function
such that φ(u) ≥ 1.

Definition 1.2 We say that D is a φ-greedy dictionary with respect to A if there
exists a constant C3 such that for any f ∈ X we have

‖ f − Aφ(m)m( f,D)‖ ≤ C3σm( f,D). (1.2)

If D = � is a basis then in the above definitions we replace dictionary by basis.
Inequalities of the form (1.1) and (1.2) are called the Lebesgue-type inequalities.

In the above setting, the quality criterion of the algorithm A is based on the
Lebesgue-type inequalities, which hold for every individual f ∈ X . In classical
approximation theory very often we use as a quality criterion of the algorithm A
its performance on a given class F . In this case, we compare



Sparse Approximation by Greedy Algorithms 185

em(F,A,D) := sup
f ∈F

‖ f − Am( f,D)‖

with
σm(F,D) := sup

f ∈F
σm( f,D).

We discuss this setting in Sects. 5 and 6.
In the case A = {Gm(·, �)}∞m=1 is the Thresholding Greedy Algorithm (TGA),

the theory of greedy and almost greedy bases is well developed (see [40]).We remind
that in case of a normalized basis � = {ψk}∞k=1 of a Banach space X the TGA at the
mth iteration gives an approximant

Gm( f, �) :=
m∑

j=1

ck j ψk j , f =
∞∑

k=1

ckψk, |ck1 | ≥ |ck2 | ≥ · · · .

In particular, it is known (see [40], p. 17) that the univariate Haar basis is a greedy
basis with respect to TGA for all L p, 1 < p < ∞. Also, it is known that the TGA
does not work well with respect to the trigonometric system.

We demonstrated in the paper [41] that the Weak Chebyshev Greedy Algorithm
(WCGA) which we define momentarily is a solution to the above problem for a
special class of dictionaries.

Let X be a real Banach space with norm ‖ · ‖ := ‖ · ‖X . We say that a set of
elements (functions)D from X is a dictionary if each g ∈ D has norm one (‖g‖ = 1),
and the closure of spanD is X . For a nonzero element g ∈ X we let Fg denote a
norming (peak) functional for g: ‖Fg‖X∗ = 1, Fg(g) = ‖g‖X . The existence of such
a functional is guaranteed by the Hahn–Banach theorem.

Let t ∈ (0, 1] be a given weakness parameter. We define the Weak Chebyshev
Greedy Algorithm (WCGA) (see [37]) as a generalization for Banach spaces of the
Weak Orthogonal Matching Pursuit (WOMP). In a Hilbert space the WCGA coin-
cides with theWOMP. TheWOPM is very popular in signal processing, in particular,
in compressed sensing. In case t = 1,WOMP is called Orthogonal Matching Pursuit
(OMP).

Weak Chebyshev Greedy Algorithm (WCGA). Let f0 be given. Then for each
m ≥ 1 we have the following inductive definition:

(1) ϕm := ϕc,t
m ∈ D is any element satisfying

|Ffm−1(ϕm)| ≥ t sup
g∈D

|Ffm−1(g)|.

(2) Define�m := �t
m := span{ϕ j }m

j=1, and defineGm := Gc,t
m to be the best approx-

imant to f0 from �m .
(3) Let fm := f c,t

m := f0 − Gm .
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The trigonometric system is a classical system that is known to be difficult to
study. In [41] we study among other problems the problem of nonlinear sparse
approximation with respect to it. Let RT denote the real trigonometric system
1, sin 2πx, cos 2πx, . . . on [0, 1] and let RTp to be its version normalized in
L p([0, 1]). Denote RT d

p := RTp × · · · × RTp the d-variate trigonometric system.
We need to consider the real trigonometric system because the algorithm WCGA
is well studied for the real Banach space. In order to illustrate performance of the
WCGAwe discuss in this section the above-mentioned problem for the trigonometric
system. We proved in [41] the following Lebesgue-type inequality for the WCGA.

Theorem 1.1 Let D be the normalized in L p, 2 ≤ p < ∞, real d-variate trigono-
metric system. Then for any f0 ∈ L p the WCGA with weakness parameter t gives

‖ fC(t,p,d)m ln(m+1)‖p ≤ Cσm( f0,D)p. (1.3)

The Open Problem 7.1 (p. 91) from [38] asks if (1.3) holds without an extra
ln(m + 1) factor. Theorem 1.1 is the first result on the Lebesgue-type inequalities
for the WCGA with respect to the trigonometric system. It provides a progress in
solving the above-mentioned open problem, but the problem is still open.

We note that properties of a given basis with respect to TGA andWCGA could be
very different. For instance, the class of quasi-greedy bases (with respect to TGA),
that is the class of bases� for which Gm( f, �) converges for each f ∈ X , is a rather
narrow subset of all bases. It is close in a certain sense to the set of unconditional
bases. The situation is absolutely different for the WCGA. If X is uniformly smooth
thenWCGA converges for each f ∈ X with respect to any dictionary in X (see [40],
Ch. 6).

Theorem 1.1 shows that the WCGA is very well designed for the trigonometric
system.We show in [41] that an analog of (1.3) holds for uniformly bounded orthog-
onal systems. The proof of Theorem 1.1 uses technique developed in compressed
sensing for proving the Lebesgue-type inequalities for redundant dictionaries with
special properties. First, results on Lebesgue-type inequalities were proved for inco-
herent dictionaries (see [40] for a detailed discussion). Then a number of results were
proved for dictionaries satisfying the Restricted Isometry Property (RIP) assumption.
The incoherence assumption on a dictionary is stronger than the RIP assumption.
The corresponding Lebesgue-type inequalities for the Orthogonal Matching Pur-
suit (OMP) under RIP assumption were not known for a while. As a result new
greedy-type algorithms were introduced and exact recovery of sparse signals and
the Lebesgue-type inequalities were proved for these algorithms: the Regularized
Orthogonal Matching Pursuit (see [22]), Compressive Sampling Matching Pursuit
(CoSaMP) (see [21]), and the Subspace Pursuit (SP) (see [3]). The OMP is simpler
than CoSaMP and SP, however, at the time of invention of CoSaMP and SP these
algorithms provided exact recovery of sparse signals and the Lebesgue-type inequal-
ities for dictionaries satisfying the Restricted Isometry Property (RIP) (see [21] and
[3]). The corresponding results for the OMP were not known at that time. Later, a
breakthrough result in this direction was obtained by Zhang [48]. In particular, he
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proved that if D satisfies RIP then the OMP recovers exactly all m-sparse signals
within Cm iterations. In [18] and [41] we developed Zhang’s technique to obtain
recovery results and the Lebesgue-type inequalities in the Banach space setting.

The above Theorem 1.1 guarantees that the WCGA works very well for each
individual function f . It is a constructive method, which provides after � m lnm
iterations an error comparable to σm( f,D). Here are two important points. First, in
order to guarantee a rate of decay of errors ‖ fn‖ of theWCGAwewould like to know
how smoothness assumptions on f0 affect the rate of decay of σm( f0,D). Second,
if, as we believe, one cannot get rid of lnm in Theorem 1.1 then it would be nice to
find a constructive method, which provides on a certain smoothness class the order
of best m-term approximation after m iterations. Thus, as a complement to Theorem
1.1 we would like to obtain results, which relate rate of decay of σm( f, T d)p to some
smoothness type properties of f . In Sect. 5 we concentrate on constructive methods
of m-term approximation. We measure smoothness in terms of mixed derivative and
mixed difference. We note that the function classes with bounded mixed derivative
are not only interesting and challenging object for approximation theory but they are
important in numerical computations.

We discuss here the problem of sparse approximation. This problem is closely
connected with the problem of recovery of sparse functions (signals). In the sparse
recovery problem we assume that an unknown function f is sparse with respect to a
given dictionary and we want to recover it. This problem was a starting point for the
compressed sensing theory (see [40], Ch. 5). In particular, the celebrated contribution
of thework of Candes, Tao, andDonohowas to show that the recovery can be done by
the �1 minimization algorithm. We stress that �1 minimization algorithm works for
the exact recovery of sparse signals. It does not provide sparse approximation. The
greedy-type algorithms discussed in this paper provide sparse approximation, satis-
fying the Lebesgue-type inequalities. It is clear that the Lebesgue-type inequalities
(1.1) and (1.2) guarantee exact recovery of sparse signals.

2 Lebesgue-Type Inequalities: General Results

A very important advantage of theWCGA is its convergence and rate of convergence
properties. TheWCGA is well defined for all m. Moreover, it is known (see [37] and
[40]) that the WCGA with weakness parameter t ∈ (0, 1] converges for all f0 in all
uniformly smooth Banach spaces with respect to any dictionary. That is, when X is
a real Banach space and the modulus of smoothness of X is defined as follows:

ρ(u) := 1

2
sup

x,y;‖x‖=‖y‖=1
|‖x + uy‖ + ‖x − uy‖ − 2| , (2.1)

then the uniformly smooth Banach space is the one with ρ(u)/u → 0 when u → 0.
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We discuss here the Lebesgue-type inequalities for the WCGA with weakness
parameter t ∈ (0, 1]. This discussion is based on papers [18] and [41]. For notational
convenience, we consider here a countable dictionary D = {gi }∞i=1. The following
assumptions A1 and A2 were used in [18]. For a given f0 let sparse element (signal)

f := f ε =
∑
i∈T

xi gi , gi ∈ D,

be such that ‖ f0 − f ε‖ ≤ ε and |T | = K . For A ⊂ T denote

f A := f ε
A :=

∑
i∈A

xi gi .

A1. We say that f = ∑
i∈T xi gi satisfies the Nikol’skii-type �1X inequality with

parameter r if ∑
i∈A

|xi | ≤ C1|A|r‖ f A‖, A ⊂ T . (2.2)

We say that a dictionary D has the Nikol’skii-type �1X property with parame-
ters K , r if any K -sparse element satisfies the Nikol’skii-type �1X inequality with
parameter r .

A2. We say that f = ∑
i∈T xi gi has incoherence property with parameters D and

U if for any A ⊂ T and any� such that A ∩ � = ∅, |A| + |�| ≤ D we have for any
{ci }

‖ f A −
∑
i∈�

ci gi‖ ≥ U−1‖ f A‖. (2.3)

We say that a dictionary D is (K , D)-unconditional with a constant U if for any
f = ∑

i∈T xi gi with |T | ≤ K inequality (2.3) holds.
The term unconditional in A2 is justified by the following remark. The above

definition of (K , D)-unconditional dictionary is equivalent to the following defini-
tion. Let D be such that any subsystem of D distinct elements e1, . . . , eD from D is
linearly independent and for any A ⊂ [1, D] with |A| ≤ K and any coefficients {ci }
we have

‖
∑
i∈A

ci ei‖ ≤ U‖
D∑

i=1

ci ei‖.

It is convenient for us to use the following assumption A3 introduced in [41]
which is a corollary of assumptions A1 and A2.

A3. We say that f = ∑
i∈T xi gi has �1 incoherence property with parameters D,

V , and r if for any A ⊂ T and any � such that A ∩ � = ∅, |A| + |�| ≤ D we have
for any {ci } ∑

i∈A

|xi | ≤ V |A|r‖ f A −
∑
i∈�

ci gi‖. (2.4)
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A dictionary D has �1 incoherence property with parameters K , D, V , and r if
for any A ⊂ B, |A| ≤ K , |B| ≤ D we have for any {ci }i∈B

∑
i∈A

|ci | ≤ V |A|r‖
∑
i∈B

ci gi‖.

It is clear that A1 and A2 imply A3 with V = C1U . Also, A3 implies A1 with
C1 = V and A2 with U = V K r . Obviously, we can restrict ourselves to r ≤ 1.

We give a simple remark that widens the collection of dictionaries satisfying the
above properties A1, A2, and A3.

Definition 2.1 LetD1 = {g1
i } andD2 = {g2

i } be countable dictionaries. We say that
D2 D-dominates D1 (with a constant B) if for any set �, |�| ≤ D, of indices and
any coefficients {ci } we have

‖
∑
i∈�

ci g
1
i ‖ ≤ B‖

∑
i∈�

ci g
2
i ‖.

In such a case we write D1 ≺ D2 or more specifically D1 ≤ BD2.
In the caseD1 ≤ E−1

1 D2 andD2 ≤ E2D1 we say thatD1 andD2 are D-equivalent
(with constants E1 and E2) and write D1 ≈ D2 or more specifically E1D1 ≤ D2 ≤
E2D1.

Proposition 2.1 Assume D1 has one of the properties A1 or A3. If D2 D-dominates
D1 (with a constant B) then D2 has the same property as D1: A1 with C2

1 = C1
1 B

or A3 with V 2 = V 1B.

Proof In both cases A1 and A3 the proof is the same. We demonstrate the case A3.
Let f = ∑

i∈T xi g2
i . Then by the A3 property of D1 we have

∑
i∈A

|xi | ≤ V 1|A|r‖
∑
i∈A

xi g
1
i −

∑
i∈�

ci g
1
i ‖ ≤ V 1B|A|r‖

∑
i∈A

xi g
2
i −

∑
i∈�

ci g
2
i ‖.

�

Proposition 2.2 Assume D1 has the property A2. If D1 and D2 are D-equivalent
(with constants E1 and E2) then D2 has property A2 with U 2 = U 1E2/E1.

Proof Let f = ∑
i∈T xi g2

i . Then by D1 ≈ D2 and the A2 property of D1 we have

‖
∑
i∈A

xi g
2
i −

∑
i∈�

ci g
2
i ‖ ≥ E1‖

∑
i∈A

xi g
1
i −

∑
i∈�

ci g
1
i ‖

≥ E1(U
1)−1‖

∑
i∈A

xi g
1
i ‖ ≥ (E1/E2)(U

1)−1‖
∑
i∈A

xi g
2
i ‖.

�
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We now proceed to main results of [18] and [41] on the WCGA with respect to
redundant dictionaries. The following Theorem 2.1 from [41] in the case q = 2 was
proved in [18].

Theorem 2.1 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose K -
sparse f ε satisfiesA1,A2 and ‖ f0 − f ε‖ ≤ ε. Assume that rq ′ ≥ 1. Then the WCGA
with weakness parameter t applied to f0 provides

‖ fC(t,γ,C1)U q′ ln(U+1)K rq′ ‖ ≤ Cε for K + C(t, γ, C1)U
q ′
ln(U + 1)K rq ′ ≤ D

with an absolute constant C.

It was pointed out in [18] that Theorem 2.1 provides a corollary for Hilbert spaces
that gives sufficient conditions somewhat weaker than the known RIP conditions
on D for the Lebesgue-type inequality to hold. We formulate the corresponding
definitions and results. Let D be the Riesz dictionary with depth D and parameter
δ ∈ (0, 1). This class of dictionaries is a generalization of the class of classical Riesz
bases. We give a definition in a general Hilbert space (see [40], p. 306).

Definition 2.2 A dictionaryD is called the Riesz dictionary with depth D and para-
meter δ ∈ (0, 1) if, for any D distinct elements e1, . . . , eD of the dictionary and any
coefficients a = (a1, . . . , aD), we have

(1 − δ)‖a‖22 ≤ ‖
D∑

i=1

ai ei‖2 ≤ (1 + δ)‖a‖22. (2.5)

We denote the class of Riesz dictionaries with depth D and parameter δ ∈ (0, 1)
by R(D, δ).

The term Riesz dictionary with depth D and parameter δ ∈ (0, 1) is another name
for a dictionary satisfying the Restricted Isometry Property (RIP) with parameters
D and δ. The following simple lemma holds:

Lemma 2.1 LetD ∈ R(D, δ) and let e j ∈ D, j = 1, . . . , s. For f = ∑s
i=1 ai ei and

A ⊂ {1, . . . , s} denote
SA( f ) :=

∑
i∈A

ai ei .

If s ≤ D then
‖SA( f )‖2 ≤ (1 + δ)(1 − δ)−1‖ f ‖2.

Lemma 2.1 implies that if D ∈ R(D, δ) then it is (D, D)-unconditional with a
constant U = (1 + δ)1/2(1 − δ)−1/2.

Theorem 2.2 Let X be a Hilbert space. Suppose K -sparse f ε satisfies A2 and
‖ f0 − f ε‖ ≤ ε. Then the WOMP with weakness parameter t applied to f0 provides
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‖ fC(t,U )K ‖ ≤ Cε for K + C(t, U )K ≤ D

with an absolute constant C.

Theorem 2.2 implies the following corollaries:

Corollary 2.1 Let X be a Hilbert space. Suppose any K -sparse f satisfiesA2. Then
the WOMP with weakness parameter t applied to f0 provides

‖ fC(t,U )K ‖ ≤ CσK ( f0,D) for K + C(t, U )K ≤ D

with an absolute constant C.

Corollary 2.2 Let X be a Hilbert space. Suppose D ∈ R(D, δ). Then the WOMP
with weakness parameter t applied to f0 provides

‖ fC(t,δ)K ‖ ≤ CσK ( f0,D) for K + C(t, δ)K ≤ D

with an absolute constant C.

We emphasized in [18] that in Theorem 2.1 we impose our conditions on an
individual function f ε. It may happen that the dictionary does not have the Nikol’skii
�1X property and (K , D)-unconditionality but the given f0 can be approximated by
f ε which does satisfy assumptionsA1 andA2. Even in the case of a Hilbert space the
above results from [18] add something new to the study based on the RIP property of
a dictionary. First of all, Theorem 2.2 shows that it is sufficient to impose assumption
A2 on f ε in order to obtain exact recovery and the Lebesgue-type inequality results.
Second, Corollary 2.1 shows that the condition A2, which is weaker than the RIP
condition, is sufficient for exact recovery and the Lebesgue-type inequality results.
Third, Corollary 2.2 shows that even if we impose our assumptions in terms of RIP
we do not need to assume that δ < δ0. In fact, the result works for all δ < 1 with
parameters depending on δ.

Theorem 2.1 follows from the combination of Theorems 2.3 and 2.4. In case
q = 2 these theorems were proved in [18] and in general case q ∈ (1, 2]—in [41].

Theorem 2.3 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose for
a given f0 we have ‖ f0 − f ε‖ ≤ ε with K -sparse f := f ε satisfying A3. Then for
any k ≥ 0 we have for K + m ≤ D

‖ fm‖ ≤ ‖ fk‖ exp
(

−c1(m − k)

K rq ′

)
+ 2ε, q ′ := q

q − 1
,

where c1 := tq′

2(16γ)
1

q−1 V q′ .

In all theorems that follow we assume rq ′ ≥ 1.

Theorem 2.4 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose K -
sparse f ε satisfies A1, A2 and ‖ f0 − f ε‖ ≤ ε. Then the WCGA with weakness para-
meter t applied to f0 provides
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‖ fC ′U q′ ln(U+1)K rq′ ‖ ≤ CUε for K + C ′U q ′
ln(U + 1)K rq ′ ≤ D

with an absolute constant C and C ′ = C2(q)γ
1

q−1 Cq ′
1 t−q ′

.

We formulate an immediate corollary of Theorem 2.4 with ε = 0.

Corollary 2.3 Let X be a Banach space with ρ(u) ≤ γuq . Suppose K -sparse f
satisfiesA1andA2. Then the WCGA with weakness parameter t applied to f recovers
it exactly after C ′U q ′

ln(U + 1)K rq ′
iterations under condition K + C ′U q ′

ln(U +
1)K rq ′ ≤ D.

We formulate the versions of Theorem 2.4 with assumptions A1 and A2 replaced
by a single assumption A3 and replaced by two assumptions A2 and A3. The corre-
sponding modifications in the proofs go as in the proof of Theorem 2.3.

Theorem 2.5 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose K -
sparse f ε satisfiesA3 and ‖ f0 − f ε‖ ≤ ε. Then the WCGA with weakness parameter
t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(V K )K rq′ ‖ ≤ CV K rε for K + C(t, γ, q)V q ′
ln(V K )K rq ′ ≤ D

with an absolute constant C and C(t, γ, q) = C2(q)γ
1

q−1 t−q ′
.

Theorem 2.6 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose K -
sparse f ε satisfies A2, A3 and ‖ f0 − f ε‖ ≤ ε. Then the WCGA with weakness para-
meter t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(U+1)K rq′ ‖ ≤ CUε for K + C(t, γ, q)V q ′
ln(U + 1)K rq ′ ≤ D

with an absolute constant C and C(t, γ, q) = C2(q)γ
1

q−1 t−q ′
.

Theorems 2.5 and 2.3 imply the following analog of Theorem 2.1.

Theorem 2.7 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose K -
sparse f ε satisfiesA3 and ‖ f0 − f ε‖ ≤ ε. Then the WCGA with weakness parameter
t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(V K )K rq′ ‖ ≤ Cε for K + C(t, γ, q)V q ′
ln(V K )K rq ′ ≤ D

with an absolute constant C and C(t, γ, q) = C2(q)γ
1

q−1 t−q ′
.

The following edition of Theorems 2.1 and 2.7 is also useful in applications. It
follows from Theorems 2.6 and 2.3.

Theorem 2.8 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Suppose K -
sparse f ε satisfies A2, A3 and ‖ f0 − f ε‖ ≤ ε. Then the WCGA with weakness para-
meter t applied to f0 provides
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‖ fC(t,γ,q)V q′ ln(U+1)K rq′ ‖ ≤ Cε for K + C(t, γ, q)V q ′
ln(U + 1)K rq ′ ≤ D

with an absolute constant C and C(t, γ, q) = C2(q)γ
1

q−1 t−q ′
.

3 Proofs

Proof of Theorem 2.3. We begin with a proof of Theorem 2.3.

Proof Let
f := f ε =

∑
i∈T

xi gi , |T | = K , gi ∈ D.

Denote by T m the set of indices of g j ∈ D, j ∈ T , picked by the WCGA after m
iterations, �m := T \ T m . Denote by A1(D) the closure in X of the convex hull of
the symmetrized dictionary D± := {±g, g ∈ D}. We will bound ‖ fm‖ from above.
Assume ‖ fm−1‖ ≥ ε. Let m > k. We bound from below

Sm := sup
φ∈A1(D)

|Ffm−1(φ)|.

Denote Am := �m−1. Then

Sm ≥ Ffm−1( f Am /‖ f Am ‖1),

where ‖ f A‖1 := ∑
i∈A |xi |. Next, by Lemma 6.9, p. 342, from [40] we obtain

Ffm−1( f Am ) = Ffm−1( f ε) ≥ ‖ fm−1‖ − ε.

Thus
Sm ≥ ‖ f Am ‖−1

1 (‖ fm−1‖ − ε). (3.1)

From the definition of the modulus of smoothness we have for any λ

‖ fm−1 − λϕm‖ + ‖ fm−1 + λϕm‖ ≤ 2‖ fm−1‖
(
1 + ρ

(
λ

‖ fm−1‖
))

(3.2)

and by (1) from the definition of the WCGA and Lemma 6.10 from [40], p. 343, we
get

|Ffm−1(ϕm)| ≥ t sup
g∈D

|Ffm−1(g)| =

t sup
φ∈A1(D)

|Ffm−1(φ)| = t Sm .
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Then either Ffm−1(ϕm) ≥ t Sm or Ffm−1(−ϕm) ≥ t Sm . Both cases are treated in the
same way. We demonstrate the case Ffm−1(ϕm) ≥ t Sm . We have for λ ≥ 0

‖ fm−1 + λϕm‖ ≥ Ffm−1( fm−1 + λϕm) ≥ ‖ fm−1‖ + λt Sm .

From here and from (3.2) we obtain

‖ fm‖ ≤ ‖ fm−1 − λϕm‖ ≤ ‖ fm−1‖ + inf
λ≥0

(−λt Sm + 2‖ fm−1‖ρ(λ/‖ fm−1‖)).

We discuss here the case ρ(u) ≤ γuq . Using (3.1) we get

‖ fm‖ ≤ ‖ fm−1‖
(
1 − λt

‖ f Am ‖1 + 2γ
λq

‖ fm−1‖q

)
+ ελt

‖ f Am ‖1 .

Let λ1 be a solution of

λt

2‖ f Am ‖1 = 2γ
λq

‖ fm−1‖q
, λ1 =

(
t‖ fm−1‖q

4γ‖ f Am ‖1
) 1

q−1

.

Our assumption (2.4) gives

‖ f Am ‖1 = ‖( f ε − Gm−1)Am ‖1 ≤ V K r‖ f ε − Gm−1‖

≤ V K r (‖ f0 − Gm−1‖ + ‖ f0 − f ε‖) ≤ V K r (‖ fm−1‖ + ε). (3.3)

Specify

λ =
(

t‖ f Am ‖q−1
1

16γ(V K r )q

) 1
q−1

.

Then, using ‖ fm−1‖ ≥ ε we get

(
λ

λ1

)q−1

= ‖ f Am ‖q
1

4‖ fm−1‖q(V K r )q
≤ 1

and obtain

‖ fm‖ ≤ ‖ fm−1‖
(
1 − tq ′

2(16γ)
1

q−1 (V K r )q ′

)
+ εtq ′

(16γ)
1

q−1 (V K r )q ′
. (3.4)

Denote c1 := tq′

2(16γ)
1

q−1 V q′ . Then
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‖ fm‖ ≤ ‖ fk‖ exp
(

−c1(m − k)

K rq ′

)
+ 2ε.

�

Proof of Theorem 2.4. We proceed to a proof of Theorem 2.4. Modifications of this
proof which are in a style of the above proof of Theorem 2.3 give Theorems 2.5 and
2.6.

Proof We begin with a brief description of the structure of the proof. We are given
f0 and f := f ε such that ‖ f0 − f ‖ ≤ ε and f is K -sparse satisfying A1 and A2.
We apply the WCGA to f0 and control how many dictionary elements gi from the
representation of f

f := f ε :=
∑
i∈T

xi gi

are picked up by the WCGA after m iterations. As above denote by T m the set of
indices i ∈ T such that gi has been taken by theWCGAat one of the firstm iterations.

Denote �m := T \ T m . It is clear that if �m = ∅ then ‖ fm‖ ≤ ε because in this
case f ∈ �m .

Our analysis goes as follows. For a residual fk we assume that �k is nonempty.
Then we prove that after N (k) iterations we arrive at a residual fk ′ , k ′ = k + N (k),
such that either

‖ fk ′ ‖ ≤ CUε (3.5)

or
|�k ′ | < |�k | − 2L−2 (3.6)

with some natural number L . An important fact is that for the number N (k) of
iterations we have a bound

N (k) ≤ β2aL , a := rq ′. (3.7)

Next, we prove that if we begin with k = 0 and apply the above argument to
the sequence of residuals f0, fk1 , . . . , fks , then after not more than N := 22a+1βK a

iterations, we obtain either ‖ fN ‖ ≤ CUε or �N = ∅, which in turn implies that
‖ fN ‖ ≤ ε.

We now proceed to the detailed argument. The following corollary of (2.3) will
be often used: for m ≤ D − K and A ⊂ �m we have

‖ f A‖ ≤ U (‖ fm‖ + ε). (3.8)

It follows from the fact that f A − f + Gm has the form
∑

i∈� ci gi with � satis-
fying |A| + |�| ≤ D, A ∩ � = ∅, and from our assumption ‖ f − f0‖ ≤ ε.
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The following lemma plays a key role in the proof. �

Lemma 3.1 Let f satisfy A1 and A2 and let A ⊂ �k be nonempty. Denote B :=
�k \ A. Then for any m ∈ (k, D − K ] we have either ‖ fm−1‖ ≤ ε or

‖ fm‖ ≤ ‖ fm−1‖(1 − u) + 2u(‖ fB‖ + ε), (3.9)

where

u := c1|A|−rq ′
, c1 := tq ′

2(16γ)
1

q−1 (C1U )q ′
,

with C1 and U from A1 and A2.

Proof As above in the proof of Theorem 2.3 we bound Sm from below. It is clear
that Sm ≥ 0. Denote A(m) := A ∩ �m−1. Then

Sm ≥ Ffm−1( f A(m)/‖ f A(m)‖1).

Next,
Ffm−1( f A(m)) = Ffm−1( f A(m) + fB − fB).

Then f A(m) + fB = f ε − f� with Ffm−1( f�) = 0. Moreover, it is easy to see that
Ffm−1( f ε) ≥ ‖ fm−1‖ − ε. Therefore,

Ffm−1( f A(m) + fB − fB) ≥ ‖ fm−1‖ − ε − ‖ fB‖.

Thus
Sm ≥ ‖ f A(m)‖−1

1 max(0, ‖ fm−1‖ − ε − ‖ fB‖).

By (2.2) we get

‖ f A(m)‖1 ≤ C1|A(m)|r‖ f A(m)‖ ≤ C1|A|r‖ f A(m)‖.

Then

Sm ≥ ‖ fm−1‖ − ‖ fB‖ − ε

C1|A|r‖ f A(m)‖ . (3.10)

From the definition of the modulus of smoothness we have for any λ

‖ fm−1 − λϕm‖ + ‖ fm−1 + λϕm‖ ≤ 2‖ fm−1‖
(
1 + ρ

(
λ

‖ fm−1‖
))

and by (1) from the definition of the WCGA and Lemma 6.10 from [40], p. 343, we
get

|Ffm−1(ϕm)| ≥ t sup
g∈D

|Ffm−1(g)| =
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t sup
φ∈A1(D)

|Ffm−1(φ)|.

From here we obtain

‖ fm‖ ≤ ‖ fm−1‖ + inf
λ≥0

(−λt Sm + 2‖ fm−1‖ρ(λ/‖ fm−1‖)).

We discuss here the case ρ(u) ≤ γuq . Using (3.10) we get for any λ ≥ 0

‖ fm‖ ≤ ‖ fm−1‖
(
1 − λt

C1|A|r‖ f A(m)‖ + 2γ
λq

‖ fm−1‖q

)
+ λt (‖ fB‖ + ε)

C1|A|r‖ f A(m)‖ .

Let λ1 be a solution of

λt

2C1|A|r‖ f A(m)‖ = 2γ
λq

‖ fm−1‖q
, λ1 =

(
t‖ fm−1‖q

4γC1|A|r‖ f A(m)‖
) 1

q−1

.

Inequality (3.8) gives

‖ f A(m)‖ ≤ U (‖ fm−1‖ + ε).

Specify

λ =
(

t‖ f A(m)‖q−1

16γC1|A|rU q

) 1
q−1

.

Then λ ≤ λ1 and we obtain

‖ fm‖ ≤ ‖ fm−1‖
(
1 − tq ′

2(16γ)
1

q−1 (C1U |A|r )q ′

)
+ tq ′

(‖ fB‖ + ε)

(16γ)
1

q−1 (C1|A|rU )q ′
. (3.11)

�

For simplicity of notations we consider separately the case |�k | ≥ 2 and the case
|�k | = 1. We begin with the generic case |�k | ≥ 2. We apply Lemma 3.1 with dif-
ferent pairs A j , B j , which we now construct. Let n be a natural number such that

2n−1 < |�k | ≤ 2n.

For j = 1, 2, . . . , n, n + 1 consider the following pairs of sets A j , B j : An+1 =
�k , Bn+1 = ∅; for j ≤ n, A j := �k \ B j with B j ⊂ �k is such that |B j | ≥ |�k | −
2 j−1 and for any set J ⊂ �k with |J | ≥ |�k | − 2 j−1 we have

‖ fB j ‖ ≤ ‖ f J ‖.
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We note that the above definition implies that |A j | ≤ 2 j−1 and that if for some
Q ⊂ �k we have

‖ fQ‖ < ‖ fB j ‖ then |Q| < |�k | − 2 j−1. (3.12)

Set B0 := �k . Note that property (3.12) is obvious for j = 0.
Let j0 ∈ [1, n] be an index such that if j0 = 1 then B1 �= �k and if j0 ≥ 2 then

B1 = B2 = · · · = B j0−1 = �k, B j0 �= �k .

For a given b > 1, to be specified later, denote by L := L(b) the index such that
(B0 := �k)

‖ fB0‖ < b‖ fB j0
‖,

‖ fB j0
‖ < b‖ fB j0+1‖,
. . .

‖ fBL−2‖ < b‖ fBL−1‖,
‖ fBL−1‖ ≥ b‖ fBL ‖.

Then
‖ fB j ‖ ≤ bL−1− j‖ fBL−1‖, j = j0, . . . , L , (3.13)

and
‖ fB0‖ = · · · = ‖ fB j0−1‖ ≤ bL− j0‖ fBL−1‖. (3.14)

Clearly, L ≤ n + 1.
Define m0 := · · · m j0−1 := k and, inductively,

m j = m j−1 + [β|A j |rq ′ ], j = j0, . . . , L ,

where [x] denotes the integer part of x . The parameter β is any, which satisfies the
following inequalities with c1 from Lemma 3.1

β ≥ 1, e−c1β/2 < 1/2, 16Ue−c1β/2 < 1. (3.15)

We note that the inequality β ≥ 1 implies that

[β|A j |rq ′ ] ≥ β|A j |rq ′
/2.

Taking into account that rq ′ ≥ 1 and |A j | ≥ 1 we obtain

m j ≥ m j−1 + 1.
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At iterations from m j−1 + 1 to m j we apply Lemma 3.1 with A = A j and obtain
from (3.9) that either ‖ fm−1‖ ≤ ε or

‖ fm‖ ≤ ‖ fm−1‖(1 − u) + 2u(‖ fB j ‖ + ε), u := c1|A j |−rq ′
.

Using 1 − u ≤ e−u and
∑∞

k=0(1 − u)k = 1/u we derive from here

‖ fm j ‖ ≤ ‖ fm j−1‖e−c1β/2 + 2(‖ fB j ‖ + ε). (3.16)

We continue it up to j = L . Denote η := e−c1β/2. Then either ‖ fmL ‖ ≤ ε or

‖ fmL ‖ ≤ ‖ fk‖ηL− j0+1 + 2
L∑

j= j0

(‖ fB j ‖ + ε)ηL− j .

We bound the ‖ fk‖. It follows from the definition of fk that ‖ fk‖ is the error of
best approximation of f0 by the subspace �k . Representing f0 = f + f0 − f we
see that ‖ fk‖ is not greater than the error of best approximation of f by the subspace
�k plus ‖ f0 − f ‖. This implies ‖ fk‖ ≤ ‖ fB0‖ + ε. Therefore, we continue

≤ (‖ fB0‖ + ε)ηL− j0+1 + 2
L∑

j= j0

(‖ fBL−1‖(ηb)L− j b−1 + εηL− j )

≤ b−1‖ fBL−1‖
⎛
⎝(ηb)L− j0+1 + 2

L∑
j= j0

(ηb)L− j

⎞
⎠ + 2ε

1 − η
.

Our choice of β guarantees η < 1/2. Choose b = 1
2η . Then

‖ fmL ‖ ≤ ‖ fBL−1‖8e−c1β/2 + 4ε. (3.17)

By (3.8) we get

‖ f�mL ‖ ≤ U (‖ fmL ‖ + ε) ≤ U (‖ fBL−1‖8e−c1β/2 + 5ε).

If ‖ fBL−1‖ ≤ 10Uε then by (3.17)

‖ fmL ‖ ≤ CUε, C = 44.

If ‖ fBL−1‖ ≥ 10Uε then by our choice of β we have 16Ue−c1β/2 < 1 and

U (‖ fBL−1‖8e−c1β/2 + 5ε) < ‖ fBL−1‖.
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Therefore,
‖ f�mL ‖ < ‖ fBL−1‖.

This implies
|�mL | < |�k | − 2L−2.

In the above proof, our assumption j0 ≤ n is equivalent to the assumption
that Bn �= �k . We now consider the case Bn = �k and, therefore, B j = �k , j =
0, 1, . . . , n. This means that ‖ f�k ‖ ≤ ‖ f J ‖ for any J with |J | ≥ |�k | − 2n−1. There-
fore, if for some Q ⊂ �k we have

‖ fQ‖ < ‖ f�k ‖ then |Q| < |�k | − 2n−1. (3.18)

In this case we set m0 := k and

m1 := k + [β|�k |rq ′ ].

Then by Lemma 3.1 with A = �k we obtain as in (3.16)

‖ fm1‖ ≤ ‖ fm0‖e−c1β/2 + 2ε ≤ ‖ f�k ‖e−c1β/2 + 3ε. (3.19)

By (3.8) we get

‖ f�m1 ‖ ≤ U (‖ fm1‖ + ε) ≤ U (‖ f�k ‖e−c1β/2 + 4ε).

If ‖ f�k ‖ ≤ 8Uε then by (3.19)

‖ fm1‖ ≤ 7Uε.

If ‖ f�k ‖ ≥ 8Uε then by our choice of β we have 2Ue−c1β/2 < 1 and

‖ f�m1 ‖ ≤ U (‖ f�k ‖e−c1β/2 + 4ε) < ‖ f�k ‖. (3.20)

This implies
|�m1 | < |�k | − 2n−1.

It remains to consider the case |�k | = 1. By the above argument, where we used
Lemma 3.1 with A = �k we obtain (3.20). In the case |�k | = 1 inequality (3.20)
implies �m1 = ∅, which completes the proof in this case.

We now complete the proof of Theorem 2.4. We begin with f0 and apply the
above argument (with k = 0). As a result we either get the required inequality or
we reduce the cardinality of support of f from |T | = K to |�mL1 | < |T | − 2L1−2

(the WCGA picks up at least 2L1−2 dictionary elements gi from the representation
of f ), mL1 ≤ β2aL1 , a := rq ′. We continue the process and build a sequence mL j

such that mL j ≤ β2aL j and after mL j iterations we reduce the support by at least
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2L j −2. We also note that mL j ≤ β22a K a . We continue this process till the following
inequality is satisfied for the first time

mL1 + · · · + mLs ≥ 22aβK a . (3.21)

Then, clearly,
mL1 + · · · + mLs ≤ 22a+1βK a .

Using the inequality

(a1 + · · · + as)
θ ≤ aθ

1 + · · · + aθ
s , a j ≥ 0, θ ∈ (0, 1]

we derive from (3.21)

2L1−2 + · · · + 2Ls−2 ≥ (
2a(L1−2) + · · · + 2a(Ls−2)

) 1
a

≥ 2−2
(
2aL1 + · · · + 2aLs

) 1
a

≥ 2−2
(
(β)−1(mL1 + · · · + mLs )

) 1
a ≥ K .

Thus, after not more than N := 22a+1βK a iterations we either get the required
inequality or we recover f exactly (the WCGA picks up all the dictionary elements
gi from the representation of f ) and then ‖ fN ‖ ≤ ‖ f0 − f ‖ ≤ ε.

Proof of Theorem 2.5. We begin with a version of Lemma 3.1 that is used in this
proof.

Lemma 3.2 Let f satisfy A3 and let A ⊂ �k be nonempty. Denote B := �k \ A.
Then for any m ∈ (k, D − K ] we have either ‖ fm−1‖ ≤ ε or

‖ fm‖ ≤ ‖ fm−1‖(1 − u) + 2u(‖ fB‖ + ε), (3.22)

where

u := c2|A|−rq ′
, c2 := tq ′

2(16γ)
1

q−1 V q ′
,

with r and V from A3.

Proof The proof is a combination of proofs of Theorem 2.3 and Lemma 3.1. As in
the proof of Lemma 3.1 we denote A(m) := A ∩ �m−1 and get

Sm ≥ ‖ f A(m)‖−1
1 max(0, ‖ fm−1‖ − ε − ‖ fB‖).

From here in the sameway as in the proof of Theorem 2.3 we obtain for any λ ≥ 0

‖ fm‖ ≤ ‖ fm−1‖
(
1 − λt

‖ f A(m)‖1 + 2γ
λq

‖ fm−1‖q

)
+ λt (‖ fB‖ + ε)

‖ f A(m)‖1 .
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Using definition of A(m) we bound by A3

‖ f A(m)‖1 =
∑

i∈A(m)

|xi | ≤ V |A(m)|r‖ f A(m) + f − f A(m) − Gm−1‖

≤ V |A|r‖ f − Gm−1‖ ≤ V |A|r (‖ fm−1‖ + ε).

This inequality is a variant of inequality (3.3) with K replaced by |A|. Arguing as
in the proof of Theorem 2.3 with K replaced by |A|we obtain the required inequality,
which is the corresponding modification (K is replaced by |A| and ε is replaced by
‖ fB‖ + ε) of (3.4).

The rest of the proof repeats the proof of Theorem 2.4 with the use of Lemma
3.2 instead of Lemma 3.1 and with the use of the fact that A3 implies A2 with
U = V K r ≤ V K . �
Proof of Theorem 2.6. This proof repeats the proof of Theorem 2.4 with the use of
Lemma 3.2 instead of Lemma 3.1.

4 Examples

In this section, following [41], we discuss applications of Theorems from Sect. 2 for
specific dictionariesD. Mostly,D will be a basis � for X . Because of that we use m
instead of K in the notation of sparse approximation. In some of our examples, we
take X = L p, 2 ≤ p < ∞. Then it is known that ρ(u) ≤ γu2 with γ = (p − 1)/2. In
someother examples,we take X = L p, 1 < p ≤ 2.Then it is known thatρ(u) ≤ γu p,
with γ = 1/p.

Proposition 4.1 Let � be a uniformly bounded orthogonal system normalized in
L p(�), 2 ≤ p < ∞, � is a bounded domain. Then we have

‖ fC(t,p,�)m ln(m+1)‖p ≤ Cσm( f0, �)p. (4.1)

The proof of Proposition 4.1 is based on Theorem 2.7.

Corollary 4.1 Let � be the normalized in L p, 2 ≤ p < ∞, real d-variate trigono-
metric system. Then Proposition 4.1 applies and gives for any f0 ∈ L p

‖ fC(t,p,d)m ln(m+1)‖p ≤ Cσm( f0, �)p. (4.2)

We note that (4.2) provides some progress in Open Problem 7.1 (p. 91) from [38].

Proposition 4.2 Let � be a uniformly bounded orthogonal system normalized in
L p(�), 1 < p ≤ 2, � is a bounded domain. Then we have

‖ fC(t,p,�)m p′−1 ln(m+1)‖p ≤ Cσm( f0, �)p. (4.3)
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The proof of Proposition 4.2 is based on Theorem 2.7.

Corollary 4.2 Let � be the normalized in L p, 1 < p ≤ 2, real d-variate trigono-
metric system. Then Proposition 4.2 applies and gives for any f0 ∈ L p

‖ fC(t,p,d)m p′−1 ln(m+1)‖p ≤ Cσm( f0, �)p. (4.4)

Proposition 4.3 Let � be the normalized in L p, 2 ≤ p < ∞, multivariate Haar
basis Hd

p = Hp × · · · × Hp. Then

‖ fC(t,p,d)m2/p′ ‖p ≤ Cσm( f0,Hd
p)p. (4.5)

The proof of Proposition 4.3 is based on Theorem 2.4. Inequality (4.5) provides
some progress in Open Problem 7.2 (p. 91) from [38] in the case 2 < p < ∞.

Proposition 4.4 Let � be the normalized in L p, 1 < p ≤ 2, univariate Haar basis
Hp = {HI,p}I , where HI,p is the Haar function indexed by dyadic intervals of support
of HI,p (we index function 1 by [0, 1] and the first Haar function by [0, 1)). Then

‖ fC(t,p)m‖p ≤ Cσm( f0,Hp)p. (4.6)

The proof of Proposition 4.4 is based on Theorem 2.8. Inequality (4.6) solves the
Open Problem 7.2 (p. 91) from [38] in the case 1 < p ≤ 2.

Proposition 4.5 Let X be a Banach space with ρ(u) ≤ γu2. Assume that � is a
normalized Schauder basis for X. Then

‖ fC(t,X,�)m2 lnm‖ ≤ Cσm( f0, �). (4.7)

The proof of Proposition 4.5 is based on Theorem 2.7. We note that the above
bound still works if we replace the assumption that � is a Schauder basis by the
assumption that a dictionary D is (1, D)-unconditional with constant U . Then we
obtain

‖ fC(t,γ,U )K 2 ln K ‖ ≤ CσK ( f0, �), for K + C(t, γ, U )K 2 ln K ≤ D.

Proposition 4.6 Let X be a Banach space with ρ(u) ≤ γuq , 1 < q ≤ 2. Assume
that � is a normalized Schauder basis for X. Then

‖ fC(t,X,�)mq′ lnm‖ ≤ Cσm( f0, �). (4.8)
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The proof of Proposition 4.6 is based on Theorem 2.7. We note that the above
bound still works if we replace the assumption that � is a Schauder basis by the
assumption that a dictionary D is (1, D)-unconditional with constant U . Then we
obtain

‖ fC(t,γ,q,U )K q′ ln K ‖ ≤ CσK ( f0,D), for K + C(t, γ, q, U )K q ′
ln K ≤ D.

We now discuss application of general results of Sect. 2 to quasi-greedy bases.
We begin with a brief introduction to the theory of quasi-greedy bases. Let X be
an infinite-dimensional separable Banach space with a norm ‖ · ‖ := ‖ · ‖X and let
� := {ψm}∞m=1 be a normalized basis for X . The concept of quasi-greedy basis was
introduced in [17].

Definition 4.1 The basis � is called quasi-greedy if there exists some constant C
such that

sup
m

‖Gm( f, �)‖ ≤ C‖ f ‖.

Subsequently,Wojtaszczyk [46] proved that these are precisely the bases forwhich
the TGA merely converges, i.e.,

lim
n→∞ Gn( f ) = f.

The following lemma is from [8] (see also [10] and [11] for further discussions).

Lemma 4.1 Let � be a quasi-greedy basis of X. Then for any finite set of indices
� we have for all f ∈ X

‖S�( f, �)‖ ≤ C ln(|�| + 1)‖ f ‖,

where for f = ∑∞
k=1 ck( f )ψk we denote S�( f, �) := ∑

k∈� ck( f )ψk .

We now formulate a result about quasi-greedy bases in L p spaces. The following
theorem is from [45]. We note that in the case p = 2 Theorem 4.1 was proved in
[46]. Some notations first. For a given element f ∈ X we consider the expansion

f =
∞∑

k=1

ck( f )ψk

and the decreasing rearrangement of its coefficients

|ck1( f )| ≥ |ck2( f )| ≥ ... .

Denote
an( f ) := |ckn ( f )|.
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Theorem 4.1 Let � = {ψm}∞m=1 be a quasi-greedy basis of the L p space, 1 < p <

∞. Then for each f ∈ X we have

C1(p) sup
n

n1/pan( f ) ≤ ‖ f ‖p ≤ C2(p)

∞∑
n=1

n−1/2an( f ), 2 ≤ p < ∞;

C3(p) sup
n

n1/2an( f ) ≤ ‖ f ‖p ≤ C4(p)

∞∑
n=1

n1/p−1an( f ), 1 < p ≤ 2.

Proposition 4.7 Let � be a normalized quasi-greedy basis for L p, 2 ≤ p < ∞.
Then

‖ fC(t,p)m2(1−1/p) ln(m+1)‖ ≤ Cσm( f0, �). (4.9)

The proof of Proposition 4.7 is based on Theorem 2.7.

Proposition 4.8 Let � be a normalized quasi-greedy basis for L p, 1 < p ≤ 2. Then

‖ fC(t,p)m p′/2 ln(m+1)‖ ≤ Cσm( f0, �). (4.10)

The proof of Proposition 4.8 is based on Theorem 2.7.

Proposition 4.9 Let � be a normalized uniformly bounded orthogonal quasi-greedy
basis for L p, 2 ≤ p < ∞ (for existence of such bases see [23]). Then

‖ fC(t,p,�)m ln ln(m+3)‖p ≤ Cσm( f0, �)p. (4.11)

The proof of Proposition 4.9 is based on Theorem 2.8.

Proposition 4.10 Let � be a normalized uniformly bounded orthogonal quasi-
greedy basis for L p, 1 < p ≤ 2 (for existence of such bases see [23]). Then

‖ fC(t,p,�)m p′/2 ln ln(m+3)‖p ≤ Cσm( f0, �)p. (4.12)

The proof of Proposition 4.10 is based on Theorem 2.8.
Proposition 4.4 is the first result about almost greedy bases with respect toWCGA

in Banach spaces. It shows that the univariate Haar basis is an almost greedy basis
with respect to the WCGA in the L p spaces for 1 < p ≤ 2. Proposition 4.1 shows
that uniformly bounded orthogonal bases are φ-greedy bases with respect to WCGA
with φ(u) = C(t, p,�) ln(u + 1) in the L p spaces for 2 ≤ p < ∞. We do not know
if these bases are almost greedy with respect to WCGA. They are good candidates
for that.

It is known (see [40], p. 17) that the univariate Haar basis is a greedy basis with
respect to TGA for all L p, 1 < p < ∞. Proposition 4.3 only shows that it is a φ-
greedy basis with respect to WCGAwith φ(u) = C(t, p)u1−2/p in the L p spaces for
2 ≤ p < ∞. It is muchweaker than the corresponding results for theHp, 1 < p ≤ 2,
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and for the trigonometric system, 2 ≤ p < ∞ (see Corollary 4.1). We do not know
if this result on the Haar basis can be substantially improved. At the level of our
today’s technique we can observe that the Haar basis is ideal (greedy basis) for the
TGA in L p, 1 < p < ∞, almost ideal (almost greedy basis) for the WCGA in L p,
1 < p ≤ 2, and that the trigonometric system is very good for the WCGA in L p,
2 ≤ p < ∞.

Corollary4.2 shows that our results for the trigonometric system in L p , 1 < p < 2,
are not as strong as for 2 ≤ p < ∞. We do not know if it is a lack of appropriate
technique or it reflects the nature of the WCGA with respect to the trigonometric
system.

We note that Propositions 2.1 and 2.2 can be used to formulate the above Propo-
sitions for a more general bases. In these cases, we use Propositions 2.1 and 2.2 with
D = ∞. In Propositions 4.1, 4.2, 4.7, and 4.8, where we used Theorem 2.7, we can
replace the basis � by a basis �, which dominates the basis �. In Propositions 4.3,
4.4, 4.9, and 4.10, where we used either Theorem 2.4 or 2.8, we can replace the basis
� by a basis �, which is equivalent to the basis �.

It is interesting to compare Theorem 2.3 with the following known result. The
following theorem provides rate of convergence (see [40], p. 347). We denote by
A1(D) the closure in X of the convex hull of the symmetrized dictionary D± :=
{±g : g ∈ D}.
Theorem 4.2 Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρ(u) ≤ γuq , 1 < q ≤ 2. Take a number ε ≥ 0 and two elements f0, f ε from X
such that

‖ f0 − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then, for the WCGA we have

‖ f c,t
m ‖ ≤ max

(
2ε, C(q, γ)(A(ε) + ε)t−1(1 + m)1/q−1) .

Both Theorem 4.2 and Theorem 2.3 provide stability of the WCGA with respect
to noise. In order to apply them for noisy data we interpret f0 as a noisy version
of a signal and f ε as a noiseless version of a signal. Then, assumption f ε/A(ε) ∈
A1(D) describes our smoothness assumption on the noiseless signal and assumption
f ε ∈ �K (D) describes our structural assumption on the noiseless signal. In fact,
Theorem 4.2 simultaneously takes care of two issues: noisy data and approximation
in an interpolation space. Theorem 4.2 can be applied for approximation of f0 under
assumption that f0 belongs to one of the interpolation spaces between X and the
space generated by the A1(D)-norm (atomic norm).
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5 Sparse Trigonometric Approximation

Sparse trigonometric approximation of periodic functions began by the paper of
Stechkin [28], who used it in the criterion for absolute convergence of trigonometric
series. Ismagilov [14] found nontrivial estimates for m-term approximation of func-
tions with singularities of the type |x | and gave interesting and important applications
to the widths of Sobolev classes. He used a deterministic method based on number
theoretical constructions. His method was developed by Maiorov [19], who used a
method based on Gaussian sums. Further strong results were obtained in [7] with
the help of a nonconstructive result from finite-dimensional Banach spaces due to
Gluskin [12]. Other powerful nonconstructive method, which is based on a proba-
bilistic argument, was used byMakovoz [20] and by Belinskii [2]. Different methods
were created in [16, 31, 36, 42] for proving lower bounds for function classes. It
was discovered in [9] and [39] that greedy algorithms can be used for constructive
m-term approximation with respect to the trigonometric system. We demonstrate
in [43] how greedy algorithms can be used to prove optimal or best-known upper
bounds for m-term approximation of classes of functions with mixed smoothness.
It is a simple and powerful method of proving upper bounds. The reader can find a
detailed study of m-term approximation of classes of functions with mixed smooth-
ness, including small smoothness, in the paper [24] by Romanyuk and in [43, 44].
We note that in the case 2 < p < ∞ the upper bounds in [24] are not constructive.

We discuss some approximation problems for classes of functions with mixed
smoothness. We define these classes momentarily. We will begin with the case of
univariate periodic functions. Let for r > 0

Fr (x) := 1 + 2
∞∑

k=1

k−r cos(kx − rπ/2) (5.1)

and
W r

p := { f : f = ϕ ∗ Fr , ‖ϕ‖p ≤ 1}. (5.2)

It is well known that for r > 1/p the class W r
p is embedded into the space of con-

tinuous functions C(T). In a particular case of W 1
1 we also have embedding into

C(T).
In the multivariate case for x = (x1, . . . , xd) denote

Fr (x) :=
d∏

j=1

Fr (x j )

and
Wr

p := { f : f = ϕ ∗ Fr , ‖ϕ‖p ≤ 1}.

For f ∈ Wr
p we will denote f (r) := ϕ where ϕ is such that f = ϕ ∗ Fr .
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The main results of Sect. 2 of [43] are the following two theorems. We use the
notation β := β(q, p) := 1/q − 1/p and η := η(q) := 1/q − 1/2. In the case of
trigonometric system T d we drop it from the notation:

σm(W)p := σm(W, T d)p.

Theorem 5.1 We have

σm(Wr
q)p �

⎧
⎨
⎩

m−r+β(logm)(d−1)(r−2β), 1 < q ≤ p ≤ 2, r > 2β,

m−r+η(logm)(d−1)(r−2η), 1 < q ≤ 2 ≤ p < ∞, r > 1/q,

m−r (logm)r(d−1), 2 ≤ q ≤ p < ∞, r > 1/2.

Theorem 5.2 We have

σm(Wr
q)∞ �

{
m−r+η(logm)(d−1)(r−2η)+1/2, 1 < q ≤ 2, r > 1/q,

m−r (logm)r(d−1)+1/2, 2 ≤ q < ∞, r > 1/2.

The case 1 < q ≤ p ≤ 2 in Theorem 5.1, which corresponds to the first line, was
proved in [31] (see also [30], Ch. 4). The proofs from [31] and [30] are constructive.
In [43] we concentrate on the case p ≥ 2. We use recently developed techniques on
greedy approximation inBanach spaces to proveTheorems 5.1 and 5.2. It is important
that greedy approximation allows us not only to prove the above theorems but also
to provide a constructive way for building the corresponding m-term approximants.
We give a precise formulation from [43].

Theorem 5.3 For p ∈ (1,∞) and μ > 0 there exist constructive methods
Am( f, p,μ), which provide for f ∈ Wr

q an m-term approximation such that

‖ f − Am( f, p,μ)‖p

�
⎧
⎨
⎩

m−r+β(logm)(d−1)(r−2β), 1 < q ≤ p ≤ 2, r > 2β + μ,

m−r+η(logm)(d−1)(r−2η), 1 < q ≤ 2 ≤ p < ∞, r > 1/q + μ,

m−r (logm)r(d−1), 2 ≤ q ≤ p < ∞, r > 1/2 + μ.

Similar modification of Theorem 5.2 holds for p = ∞. We do not have matching
lower bounds for the upper bounds in Theorem 5.2 in the case of approximation in
the uniform norm L∞.

As a direct corollary of Theorems 1.1 and 5.1 we obtain the following result.

Theorem 5.4 Let p ∈ [2,∞). Apply the WCGA with weakness parameter t ∈ (0, 1]
to f ∈ L p with respect to the real trigonometric system RT d

p . If f ∈ Wr
q , then we

have

‖ fm‖p �
{

m−r+η(logm)(d−1)(r−2η)+r−η, 1 < q ≤ 2, r > 1/q,

m−r (logm)rd , 2 ≤ q < ∞, r > 1/2.
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The reader can find results on best m-term approximation as well as results on
constructive m-term approximation for Besov-type classes in the paper [43]. Some
new results in the case of small smoothness are contained in [44].

6 Tensor Product Approximations

In the paper [1]we studymultilinear approximation (nonlinear tensor product approx-
imation) of functions. For a function f (x1, . . . , xd) denote

	M( f )X := inf
{ui

j }, j=1,...,M,i=1,...,d
‖ f (x1, . . . , xd) −

M∑
j=1

d∏
i=1

ui
j (xi )‖X

and for a function class F define

	M(F)X := sup
f ∈F

	M( f )X .

In this section we use the notation M instead of m for the number of terms in an
approximant because this notation is a standard one in the area. In the case X = L p

we write p instead of L p in the notation. In other words we are interested in studying
M-term approximations of functions with respect to the dictionary


d := {g(x1, . . . , xd) : g(x1, . . . , xd) =
d∏

i=1

ui (xi )}

where ui (xi ) are arbitrary univariate functions. We discuss the case of 2π-periodic
functions of d variables and approximate them in the L p spaces. Denote by 
d

p

the normalized in L p dictionary 
d of 2π-periodic functions. We say that a dictio-
nary D has a tensor product structure if all its elements have a form of products
u1(x1) · · · ud(xd) of univariate functions ui (xi ), i = 1, . . . , d. Then any dictionary
with tensor product structure is a subset of
d . The classical example of a dictionary
with tensor product structure is the d-variate trigonometric system {ei(k,x)}. Other
examples include the hyperbolic wavelets and the hyperbolic wavelet-type system
Ud defined in [35].

Modern problems in approximation, driven by applications in biology, medicine,
and engineering, are being formulated in very high dimensions, which brings to the
fore new phenomena. For instance, partial differential equations in a phase space of
large spacial dimensions (e.g., Schrödinger and Fokker–Plank equations) are very
important in applications. It is known (see, for instance, [4]) that such equations
involving large number of spacial variables pose a serious computational challenge
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because of the so-called curse of dimensionality, which is caused by the use of
classical notions of smoothness as the regularity characteristics of the solution. The
authors of [4] show that replacing the classical smoothness assumptions by structural
assumptions in terms of sparsity with respect to the dictionary 
d , they overcome
the above computational challenge. They prove that the solutions of certain high-
dimensional equations inherit sparsity, based on tensor product decompositions, from
given data. Thus, our algorithms, which provide good sparse approximation with
respect to 
d for individual functions might be useful in applications to PDEs of
the above type. The nonlinear tensor product approximation is very important in
numerical applications. We refer the reader to the monograph [13] which presents
the state of the art on the topic. Also, the reader can find a very recent discussion of
related results in [27].

In the case d = 2 the multilinear approximation problem is the classical problem
of bilinear approximation. In the case of approximation in the L2 space the bilinear
approximation problem is closely related to the problem of singular value decompo-
sition (also called Schmidt expansion) of the corresponding integral operator with
the kernel f (x1, x2). There are known results on the rate of decay of errors of best
bilinear approximation in L p under different smoothness assumptions on f . We only
mention some known results for classes of functions with mixed smoothness. We
study the classes Wr

q of functions with bounded mixed derivative defined above in
Sect. 5.

The problem of estimating 	M( f )2 in case d = 2 (best M-term bilinear approx-
imation in L2) is a classical one and was considered for the first time by E. Schmidt
[26] in 1907. For many function classes F an asymptotic behavior of 	M(F)p is
known. For instance, the relation

	M(Wr
q)p � M−2r+(1/q−max(1/2,1/p))+ (6.1)

for r > 1 and 1 ≤ q ≤ p ≤ ∞ follows from more general results in [32]. In the case
d > 2 almost nothing is known. There is (see [33]) an upper estimate in the case
q = p = 2

	M(Wr
2)2 � M−rd/(d−1). (6.2)

Results of [1] are around the bound (6.2). First of all we discuss the lower bound
matching the upper bound (6.2). In the case d = 2 the lower bound

	M(W r
p)p � M−2r , 1 ≤ p ≤ ∞, (6.3)

follows from more general results in [32] (see (6.1) above). A stronger result

	M(W r
∞)1 � M−2r (6.4)

follows from Theorem 1.1 in [34].
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We could not prove the lower bound matching the upper bound (6.2) for d > 2.
Instead, we proved in [1] a weaker lower bound. For a function f (x1, . . . , xd) denote

	b
M( f )X := inf

{ui
j },‖ui

j ‖X ≤b‖ f ‖1/d
X

‖ f (x1, . . . , xd) −
M∑

j=1

d∏
i=1

ui
j (xi )‖X

and for a function class F define

	b
M(F)X := sup

f ∈F
	b

M( f )X .

In [1] we proved the following lower bound (see Corollary 2.2)

	b
M(Wr

∞)1 � (M ln M)−
rd

d−1 .

This lower bound indicates that probably the exponent rd
d−1 is the right one in the

power decay of the 	M(Wr
p)p.

Second, we discuss some upper boundswhich extend the bound (6.2). The relation
(6.1) shows that for 2 ≤ p ≤ ∞ in the case d = 2 one has

	M(Wr
2)p � M−2r . (6.5)

In [1] we extend (6.5) for d > 2.

Theorem 6.1 Let 2 ≤ p < ∞ and r > (d − 1)/d. Then

	M(Wr
2)p �

(
M

(log M)d−1

)− rd
d−1

.

The proof of Theorem 6.1 in [1] is not constructive. It goes by induction and uses a
nonconstructive bound in the case d = 2, which is obtained in [33]. The correspond-
ing proof from [33] uses the bounds for the Kolmogorov width dn(W r

2 , L∞), proved
by Kashin [15]. Kashin’s proof is a probabilistic one, which provides existence of a
good linear subspace for approximation, but there is no known explicit constructions
of such subspaces. This problem is related to a problem from compressed sensing on
construction of good matrices with Restricted Isometry Property. It is an outstand-
ing difficult open problem. In [1] we discuss constructive ways of building good
multilinear approximations. The simplest way would be to use known results about
M-term approximation with respect to special systems with tensor product structure.
However, this approach (see [35]) provides error bounds, which are not as good as
bestm-term approximationwith respect to
d (we have exponent r instead of rd

d−1 for

d ). It would be very interesting to provide a constructive multilinear approximation
method with the same order of the error as the best m-term approximation.
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As we pointed out in a discussion of Theorem 6.1 the upper bound in Theorem
6.1 is proved with a help of probabilistic results. There is no known determinis-
tic constructive methods (theoretical algorithms), which provide the corresponding
upper bounds. In [1] we apply greedy-type algorithms to obtain upper estimates of
	M(Wr

2)p. The important feature of our proof is that it is deterministic andmoreover
it is constructive. Formally, the optimization problem

	M( f )X := inf
{ui

j }, j=1,...,M,i=1,...,d
‖ f (x1, . . . , xd) −

M∑
j=1

d∏
i=1

ui
j (xi )‖X

is deterministic: one needs to minimize over ui
j . However, minimization by itself

does not provide any upper estimate. It is known (see [5]) that simultaneous opti-
mization overmany parameters is a very difficult problem. Thus, in nonlinear M-term
approximationwe look formethods (algorithms),which provide approximation close
to best M-term approximation and at each step solve an optimization problem over
only one parameter (

∏d
i=1 ui

j (xi ) in our case). In [1] we provide such an algorithm
for estimating 	M( f )p. We call this algorithm constructive because it provides an
explicit construction with feasible one parameter optimization steps. We stress that
in the setting of approximation in an infinite-dimensional Banach space, which is
considered in [1], the use of term algorithm requires some explanation. In that paper
we discuss only theoretical aspects of the efficiency (accuracy) of M-term approx-
imation and possible ways to realize this efficiency. The greedy algorithms used
in [1] give a procedure to construct an approximant, which turns out to be a good
approximant. The procedure of constructing a greedy approximant is not a numeri-
cal algorithm ready for computational implementation. Therefore, it would be more
precise to call this procedure a theoretical greedy algorithm or stepwise optimizing
process. Keeping this remark in mind we, however, use the term greedy algorithm
in this paper because it has been used in previous papers and has become a standard
name for procedures used in [1] and for more general procedures of this type (see
for instance [6, 40]). Also, the theoretical algorithms, which we use in [1], become
algorithms in a strict sense if instead of an infinite-dimensional setting we consider
a finite-dimensional setting, replacing, for instance, the L p space by its restriction
on the set of trigonometric polynomials. We note that the greedy-type algorithms are
known to be very efficient in numerical applications (see, for instance, [47] and [25]).

In [1] we use two very different greedy-type algorithms to provide a constructive
multilinear approximant. The first greedy-type algorithm is based on a very simple
dictionary consisting of shifts of the de la Vallée Poussin kernels. The algorithm uses
function (dyadic blocks of a function) evaluations and picks the largest of them. The
second greedy-type algorithm is more complex. It is based on the dictionary 
d and
uses theWeakChebyshevGreedyAlgorithmwith respect to
d to update the approx-
imant. Surprisingly, these two algorithms give the same error bound. For instance,
Theorems 4.3 and 4.4 from [1] give for big enough r the following constructive upper
bound for 2 ≤ p < ∞



Sparse Approximation by Greedy Algorithms 213

	M(Wr
2)p �

(
M

(ln M)d−1

)− rd
d−1+ β

d−1

, β := 1

2
− 1

p
.

This constructive upper bound has an extra term β
d−1 in the exponent compared to

the best M-term approximation. It would be interesting to find a constructive proof
of Theorem 6.1.
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The Bi-free Extension of Free Probability

Dan-Virgil Voiculescu

Abstract Free probability is a noncommutative probability theory adapted to vari-
ables with the highest degree of noncommutativity. The theory has connections with
random matrices, combinatorics, and operator algebras. Recently, we realized that
the theory has an extension to systems with left and right variables, based on a notion
of bi-freeness. We provide a look at the development of this new direction. The paper
is an expanded version of the plenary lecture at the 10th ISAAC Congress in Macau.

Keywords Two-faced pair · Bi-free probability · Bi-free convolution
2000 Mathematics Subject Classification. Primary: 46L54 · Secondary: 46L53

1 Introduction

Free probability is now in its early thirties. After such a long time I became aware that
the theory has a natural extension to a theorywith twokinds of variables: left and right.
This is not the same as passing from a theory of modules to a theory of bimodules,
since our left and right variables will not commute in general, a noncommutation
which will appear already when we shall take a look at what the Gaussian variables
of the theory are.

We call the theory with left and right variables bi-free probability and the indepen-
dence relation that underlies it is called bi-freeness. This new type of independence
does not contradict the theorems ofMuraki [15] and Speicher [20] about the possible
types of independence in noncommutative probability with all the nice properties
(“classical”, free, Boolean and if we give up symmetry also monotonic and anti-
monotonic), the reason being that we play a new game here, by replacing the usual
sets of random variables by sets with two types of variables.
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The observation about the possibility of left and right variables could have been
made at the very beginning of free probability.At present it becomes necessary to look
back and think about the problems which would have appeared earlier had we been
aware of the possibility. Several advances on this road have beenmade.Developments
are happening faster since the lines alongwhich free probability developed are serving
often as a guide.

2 Free Probability Background

Free probability is a noncommutative probability framework adapted for variables
with the highest degree of noncommutativity. By “highest” noncommutativity we
mean the kind of noncommutativity one encounters, for instance, in free groups,
free semigroups or in the creation and destruction operators on a full Fock space.
At this heuristic level, Bosonic and Fermionic creation and destruction operators
are “less noncommutative” because the commutation or anticommutation relations
they satisfy represent restrictions on the noncommutativity. These are the reasons
for the adjective “free” in the name of free probability. It should also be noticed
that heuristically, when noncommutativity is at the highest, a certain homogeneity
appears which simplifies matters.

The distinguishing feature of free probability among noncommutative probability
theories is the independence relation, called free independence or freeness, on which
it is based.

Thus the notions of random variables and of expectation values are the usual
ones in noncommutative probability that is quantum mechanical observables, and
their expectation values or some purely algebraic version of these. So our random
variables will be operators T on some complex Hilbert space H and there will be a
unit vector ξ ∈ H so that the expectation of T is 〈T ξ, ξ〉 (we use the mathematician’s
scalar product which is linear in the first and conjugate linear in the second variable).
The purely algebraic version is a “noncommutative probability space” which is a
unital algebra A over C with a linear expectation functional ϕ : A → C, ϕ(1) = 1
and the elements a ∈ A are the noncommutative random variables (in the Hilbert
space setting A is L(H) the linear operators on H and ϕ(a) = 〈aξ, ξ〉).

The distribution μα of a family α = (ai )i∈I of noncommutative random variables
in a noncommutative probability space (A,ϕ) is the information provided by the
collection of noncommutativemomentsϕ(ai1 . . . ain )when n ∈ N and i1, . . . , in ∈ I .
This information can be structured in better ways. For instance in the case of just
one variable a, which is a bounded hermitian operator on a Hilbert space H then
ϕ(an) = 〈anξ | ξ〉 are precisely the moments of a probability measure, which we
shall also denote by μa and which is given by μa(ω) = 〈E(a;ω)ξ, ξ〉where E(a;ω)

is the spectral project of a for the Borel set ω ⊂ R.
The definition of freeness, which is the notion of independence, for a family of

subalgebras (Ai )i∈I which contain the unit 1 ∈ Ai (i ∈ I ) of (A,ϕ) is that:
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ϕ(a1 . . . an) = 0

whenever ϕ(a j ) = 0, a j ∈ Ai j 1 ≤ j ≤ n and i j �= i j+1 if 1 ≤ j < n. A family of
sets αi ⊂ (A,ϕ)i∈I is free if the algebras Ai generated by {1} ∪ αi are freely inde-
pendent. When compared with the usual notion of independence (often called “clas-
sical” or “tensor product” independence) in quantum mechanics, a key difference is
the noncommutation of independent variables in the free case. In the usual definition,
at least in distribution, the independent variables commute. So if a, b ∈ (A,ϕ) are
classically independent and ϕ(a) = ϕ(b) = 0 then ϕ(abab) = ϕ(a2)ϕ(b2) which
may be �= 0 while ϕ(abab) = 0 when a, b are freely independent.

Once random variables, distributions, and independence of random variables in
a noncommutative probability theory have been defined, one can imitate classical
probability theory and look at the limit processes which give rise to basic types
of variables: Gaussian, Poisson, etc. For instance, a free central limit process will
consider a sequence ak , k ∈ N of freely independent variables in some (A,ϕ) which
are identically distributed, i.e.,ϕ(a p

k ) = mp for all k ∈ N, and assuming the variables
are centeredϕ(ak) = m1 = 0 one looks at the limits as n → +∞ of the distributions
of n−1/2(a1 + · · · + an). One finds that the limit distribution ifm2 > 0 is a semicircle
law, that is if we normalize m2 = 1 the moments are those of a probability measure
onRwith support [−2, 2] and density 1

2π

√
4 − t2 with respect to Lebesgue measure.

Similarly, to find a free Poisson distribution one takes for each n freely inde-
pendent variables a(n)

k , 1 ≤ k ≤ n which have identical distributions corresponding
to Bernoulli measures

(
1 − α

n

)
δ0 + α

n δ1 and then looks at the limit distribution of

a(n)
1 + · · · + a(n)

n as n → ∞. The distribution one finds (in the case of α > 0) looks
like a tilted shifted semicircle with the possibility of an additional atom at 0, that
is the probability measure (1 − a)δ0 + ν if 0 ≤ a ≤ 1 and only ν if a ≥ 1 where
ν has support [(1 − √

a)2, (1 + √
a)2] and density (2πt)−1

√
4a − (t − (1 + a))2.

This law is quite different from the classical Poisson law which is

∑
n≥0

e−a a
n

n! δn

a measure concentrated on the natural numbers.
Actually, the freeGaussian and free Poisson laws are the same aswell-known limit

eigenvalue distribution laws in randommatrix theory: theWigner semicircle law (the
limit distribution for eigenvalues of a suitably normalized hermitianGaussian random
matrix with i.i.d. entries) and the Marchenko–Pastur law. Clearly, the fact that the
free Gauss law and the free Poisson law appear in random matrix theory provided a
strong indication of a connection between free probability and random matrices.

The explanation for the connection between random matrices and free probabil-
ity I found in [25] is that free independence appears asymptotically among large
random matrices under suitable conditions. The algebra of N × N random matri-
ces with entries p-integrable for all 1 ≤ p < ∞ over a probability space (�,�,μ)

can be endowed with an expectation functional ϕN , where ϕN (Y ) = N−1E(TrNY ).
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Thus random matrices become noncommutative random variables and by doing this
their entries are forgotten and only noncommutative moments are remembered. The
simple occurrence of asymptotic freeness is that anm-tuple (Y (N )

1 , . . . ,Y (N )
m ) of Her-

mitian Gaussian random matrices with i.i.d. suitably normalized entries is asymp-
totically free as N → ∞. This generalizes to sets of independent random matrices
with distributions invariant under unitary conjugation and even, using a combination
of concentration and operator algebra techniques to a kind of generic asymptotic
freeness result. The fact that free probability can be modeled by random matrices
in the limit N → ∞, was the source of the applications of free probability to the
operator algebras of free groups (see [26, 28]), a subject we will not discuss here.

The computations of noncommutative distributions in free probability has evolved
in two directions. On one hand my initial analytic approach using complex analysis
and a bit of operator algebras evolved toward an analytic approach and connections
with noncommutative analysis. On the other hand the streamlining of the computa-
tion of moments led to Roland Speicher’s combinatorial approach to free probability.
In essence free probability from the point of view of moments and cumulants can
be viewed as replacing the lattice of partitions of {1, . . . , n} which underlies classi-
cal probability by the lattice of noncrossing partitions. A partition of {1, . . . , n} is
noncrossing if there are no 1 ≤ a < b < c < d ≤ n so that {a, c} and {b, d} lie in
different blocks of the partition.

All this seems to be connected to the discovery of t’Hooft [12] about the large
N -limit of gauge theory: that in the large N -limit of the gauge group, (U (N ) with
N → ∞) the contribution to the expectation values concentrates on planar diagrams.
Given a partition of {1, . . . , n} if we draw limits connecting the elements in the same
block, the resulting diagram is planar precisely when the partition is noncrossing. On
the other hand, the large N limit of randommatrixmodels,was early on recognized by
physicists as a kind of simplified large N -limit of gauge theories situation. Perhaps the
connection to the large N limit of gauge theories is also the answer to the question:
if free probability is a successful noncommutative probability theory, why is the
noncommutative probability which underlies quantum mechanics the one based on
“classical” independence? The answer seems to be that free probability is related to
another region of quantum theory, to the large N limit of gauge theories.

Imitation of basic classical probability for the corresponding notions of free prob-
ability has developed in many directions. The free parallel to classical probability
goes quite far and after more than 30 years one should wonder about the extent of this
parallelism. A partial list of itemswhich appear in the free/classical parallel includes:
limit laws, stochastic processes with independent increments, convolution operations
corresponding to addition or multiplication of independent random variables, com-
binatorics of cumulants, continuous entropy, extreme values, exchangeability.

Some comments are here in order. This is only a rough parallel, to be taken with a
grain of salt sometimes. For instance, there is a free entropy theory [30], resembling
more classical entropy than von Neumann’s quantum entropy of states. On the other
hand the free entropy is a “continuous” entropy, an analogue of Shannon’s differential
entropy, in contrast with the fact that in classical probability the fundamental entropy
notion is the discrete one.
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The parallelism for infinitely divisible and stable laws (see [2]) is quite close, but
there are a few surprises. The X 2-law, the distribution of the square of a Gaussian
variable in the free setting coincides unexpectedly with a free Poisson law (i.e., a
Marchenko–Pastur law). Another interesting detail is perhaps that free and classical
Cauchy laws are the same.

A quite unexpected rather recent addition to the parallel was the discovery by
Koestler and Speicher [13] that there is a free analogue to de Finneti’s exchange-
ability theorem. At first sight such a result is quite unlikely, since invariance under
permutations is too weak a condition for joint distributions of noncommutative vari-
ables, the number of noncommutative moments of monomials grows exponentially
with the degree compared with the polynomial growth for commuting variables. The
discovery was that instead of classical permutations the appropriate symmetry is
provided by Wang’s C∗-algebraic universal quantum permutation groups.

Other rather unexpected items with free analogues are, for instance, extreme
values [1] and optimal transportation [3, 10].

An important feature of free probability is that conditional probabilities have a
quite natural free counterpart: a “base change” from the complex field C to some
unital algebra B over C. This works especially nice in the setting of von Neumann
algebraswith faithful trace states, where there are unique state-preserving conditional
expectations onto von Neumann subalgebras. We should note that because of the
noncommutativity, “conditional free” is a much more complex matter than in the
classical commutative setting. For instance, conditional independence when dealing
with group examples amounts to free products of groups with amalgamation over a
subgroup. Also, in the setting of von Neumann algebras of type II1, one may have
to face the complexity of a subfactor inclusion B ⊂ A, to describe the position of
B in A.

3 Bi-free Independence

The framework for dealing with left and right variables is that of a pair of faces in
a noncommutative probability space (A,ϕ), which is a pair 1 ∈ B ⊂ A, 1 ∈ C ⊂ A
of subalgebras in A, the first one B being the left face and the second C the right
face. Often such a structure arises from ((zi )i∈I , (z j ) j∈J ) a two-faced set of noncom-
mutative random variables in (A,ϕ), where (zi )i∈I are the left and (z j ) j∈J the right
variables, the algebras B and C being then the algebras generated by {1} ∪ {(zi )i∈I }
and {1} ∪ {(z j ) j ıJ }, respectively. The distribution of such a system is that of the left
and right variables taken together (zi )i∈I ∪ (z j ) j∈J in (A,ϕ), that is expectation
values of monomials in left and right variables.

To explain why left and right variables are natural in free probability we shall
revisit how classical independence is defined from the tensor product of Hilbert
spaces and then try to imitate this in the free setting.

Let (Ti )i∈I be operators on a Hilbert spaceHwith the state vector ξ ∈ H, ‖ξ‖ = 1
and (Sj ) j∈J operators onKwith state vector η. Two sets of noncommutative random
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variables are classically independent if they have the same joint distribution as two
sets of the form (Ti ⊗ IK)i∈I , (IH ⊗ Sj ) j∈J on H ⊗ K with the state vector ξ ⊗ η
(to make this quite general the operators are not bounded and the tensor product is
not completed).

The free analogue of the tensor product of the Hilbert spaces with state vector,
for a family (Hi , ξi )i∈I of such spaces is (H, ξ) = ∗

i∈I(Hi , ξi ) where

H = Cξ ⊕
⊕
n≥1

⊕
i1 �=i2 �=i3 �=···�=in

◦
Hi1 ⊗ · · · ⊗ ◦

Hin

and
◦
Hi = Hi � Cξi . The moment left and right make their appearance is when we

want to lift operators acting on the spaces Hi to operators acting on H: this can be
done in two ways, as left and as right operators, respectively. Indeed there are left
and right factorizations, identifications via isomorphisms

Vi : Hi ⊗
⎛
⎝Cξ ⊕

⊕
n≥1

⊕
i �=i1 �=···�=in

◦
Hi1 ⊗ · · · ⊗ ◦

Hin

⎞
⎠ → H

Wi :
⎛
⎝Cξ ⊕

⊕
n≥1

⊕
i1 �=···�=in �=i

◦
Hi ⊗ · · · ⊗ ◦

Hin

⎞
⎠ ⊗ Hi → H,

where we viewHi as Cξi ⊕ ◦
Hi and ξi⊗ or ⊗ξi acting as a blank. If T is an operator

on Hi we define λi (T ) = Vi (T ⊗ I )V−1
i and ρi (T ) = Wi (I ⊗ T )W−1

i the left and
right operators, respectively.

When defining an independence based on the free products of Hilbert spaces we
have a choice between left and right. If we choose all operators to be left operators
or all operators to be right operators we get the usual free independence. Bi-freeness
arises when we combine left and right.

Two two-faced systems in (A,ϕ), ((b′
i )i∈I ′ , (c′

j ) j∈J ′) and ((b′′
i )i∈I ′′ , (c′′

j ) j∈J ′′) are
bi-free if there are (H1, ξ1) and (H2, ξ2) Hilbert spaces with state vectors and opera-
tors ((T ′

i )i∈I ′ , (S′
j ) j∈J ′) onH1 and ((T ′′

i )i∈I ′ , (S′′
j ) j∈J ′′) onH2 so that the distribution

of ((b′
i )i∈I ′ , (c′

j ) j∈J ′ , (b′′
i )i∈I ′′ , (c′′

j ) j∈J ′′) is the same as that of

((λ1(T
′
i ))i∈I ′ , (ρ1(S

′
j )) j∈J ′ , (λ2(T

′′
i )i∈I ′′ , ρ2(S

′′
j ) j∈J ′′))

on H w.r.t. the state vector ξ where (H, ξ) = (H1, ξ1) ∗ (H2, ξ2). (To achieve full
generality in this the operators will not be bounded and all completions left out.)

Bi-freeness defined in this way has the right properties to serve as a noncommu-
tative independence relation for a new type of systems of noncommutative random
variables with two faces (two kinds of variables, left and right variables).
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Among the consequences of this definition, if ((b′
i )i∈I ′ , (c′

j ) j∈J ′) and ((b′′
i )i∈I ′′ ,

(c′′
j ) j∈J ′′) are bi-free then (b′

i )i∈I ′ and (b′′
i )i∈I ′′ are free and similarly (c′

j ) j∈J ′ and
(c′′

j ) j∈J ′′ are free. On the other hand (b′
i )i∈I ′ and (c′′

j ) j∈J ′′ are classically independent
and also (c′

j ) j∈J ′ and (b′′
i )i∈I ′′ are classically independent. This bi-freeness involves

some freeness (for the same kind of variables and classical independence for different
kinds). However bi-freeness does not reduce just to this combination of free and
classical independences.

We should also point out that on a free product of Hilbert spaces (Hi , ξi ) if T is
an operator on Hi and S an operator on H j then λi (T ) and ρ j (S) commute when
i �= j but if i = j then [λi (T ), ρi (S)] = [T, S] ⊕ O whereHi is identified with the

subspace Cξ ⊕ ◦
Hi of the free product space.

Two-faced systems of variables where the left and right variables commute will
be called bipartite.

We have chosen to call the left and right variables “faces” of a system in reference
to Janus. In roman mythology, the two faces of Janus were used to look into the
past and into the future and combining these two kinds of observations to deal with
the transition. It would be interesting if models involving some past/future interface
could be developed in the noncommutative probability settingwhichwe discuss here.

To conclude this section, we will mention a few basic examples of bi-freeness.
If (Xi , ξi ) are Hilbert spaces with state vectors and L(Xi ) denotes the algebra of

linear operators onXi and ϕi (·) = 〈·ξi , ξi 〉 is the expectation functional onL(Hi ) let
(X , ξ) be the free product of the (Xi , ξi ) andϕ(·) = 〈·ξ, ξ〉 the expectation functional
on L(X ). It is almost tautological then that (λi (L(Xi )), ρi (L(Xi )))i∈I are bi-free in
(L(X ),ϕ).

IfH is a complex Hilbert space and T (H) = ⊕
n≥1

H⊗n ⊕ C1 is the full Fock space,

let l(h) be the left and r(h) be the right creation operator: l(h)ξ = h ⊗ ξ and r(h)ξ =
ξ ⊗ h. If ωi ⊂ H are subsets, i ∈ I which are pairwise orthogonal i �= j ⇒ ωi⊥ω j

then in (L(T (H)), 〈·1, 1〉) the family of two-faced sets of noncommutative random
variables ((l(ωi ) ∪ l∗(ωi )), (r(ωi ) ∪ r∗(ωi )))i∈I is bi-free.

Similarly, let (Gi )i∈I be groups and G = ∗
i∈IG their free product. If g ∈ G we shall

denote by L(g) the left shift by g on l2(G) and by R(g) the right shift on l2(G) by g
and let τ on L(l2(G)) be the functional ϕ(·) = 〈·δe, δe〉 where δg where g ∈ G is the
canonical basis of l2(G). Then the family (L(g))g∈Gi , (R(g))g∈Gi )i∈I of two-faced
sets in (L(l2(G)),ϕ) is bi-free.

4 Generalities on Operations on Bi-free Systems
of Variables

Like for other types of independences operations on bi-free systems of variables
give rise to corresponding convolution operations on the distributions. For instance,
if z′ = ((z′

i )i∈I , (z
′
j ) j∈J ), z′′ = ((z′′

i )i∈I , (z
′′
j ) j∈J ) are bi-free two-faced systems of
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noncommutative random variables in (A,ϕ) and if z′ + z′′ = ((z′
i + z′′

i )i∈I , (z
′
j +

z′′
j ) j∈J ) then the distribution μz′+z′′ depends only on the distributions μz′ ,μz′′ . This

yields an operation on the distributions of systems of variables with these index sets,
so that

μz′ � �μz′′ = μz′+z′′ .

The operation �� will be called additive bi-free convolution, in analogy with the
additive free convolution � in free probability. Clearly many kinds of such convo-
lution operations can be defined, like in the case of free probability and it is also
possible to combine different operations on left and right variables. For instance,
passing from z′, z′′ to ((z′

i + z′′
i )i∈I , (z

′
j z

′′
j ) j∈J ) defines an additive–multiplicative

bi-free convolution which we shall denote by ��.
In classical probability the linearizingmap for the additive convolution is provided

by the logarithm of the Fourier transform, in particular for probability measures with
compact support the sequence of derivatives of all orders of the logarithm of the
Fourier transform at zero, is a sequence of polynomials in themoments of themeasure
which addwhen theprobabilitymeasures are convolved.Roughlyup to normalization
these polynomials are the classical cumulants of the probability measure.

The bi-free cumulants can be described as follows. Let z = ((zi )i∈I , (z j ) j∈J ) be a
two-faced system of noncommutative random variables with index see I,J . Given
a map α : {1, . . . , n} → I ∐J the bi-free cumulant Rα is a polynomial in vari-
ables Xα(k1),...,α(kr ) where {k1 < · · · < kr } ⊂ {1, . . . , n} so that the quantity Rα(μz)

obtained under the substitution

Xα(k1),...,α(kr ) → ϕ(zα(k1) . . . zα(kr ))

has the property that Rα(μz′� � μz′′) = Rα(μz′) + Rα(μz′′) and moreover Rα is
homogeneous of degree n when Xα(k1),...,α(kr ) is assigned degree r and the coeffi-
cient of Xα(1),...,α(n) is 1. The simplest result about cumulants is their existence and
uniqueness which we proved in [31]. This is a consequence of quite general consid-
erations about the bi-free convolution being an operation which can be described by
polynomials at the level of moments and which then yields an inverse limit of simply
connected abelian complex Lie groups. Such Lie groups are isomorphic to their Lie
algebras via the exponential maps. Roughly, the bi-free cumulants are the result of
using the inverse of these isomorphisms.

Such general considerations were also used in free probability in [22], at the very
beginning of the theory, to prove existence and uniqueness of cumulants, before
the effective results about cumulants which were the result of later developments.
This very primitive result about existence and uniqueness was sufficient to prove an
algebraic central limit theorem [22] and find that the semicircle law plays the role of
the Gauss law in free probability. In the bi-free setting a development along similar
lines has taken place and will be the subject of the next section.



The Bi-free Extension of Free Probability 225

5 Bi-free Central Limit and Bi-free Gaussian
Distributions [31]

From the existence and uniqueness of bi-free cumulants one immediately finds
that the bi-free cumulants of degrees 1 and 2, when z = ((zi )i∈I , (z j ) j∈J ) are
Rα(μz) = ϕ(zα(1)), α : {1} → I

∐
J and, respectively, Rα(μz) = ϕ(zα(1)zα(2)) −

ϕ(zα(1))ϕ(zα(2)),α : {1, 2} → I
∐

J . With this at hand one then easily proves an
algebraic bi-free central limit theorem [31] if z(k) = ((z(k)

i )i∈I , (z(k)
j )k∈J ), k ∈ N, are

bi-free and their distributions coincide μz(k) = μ, k ∈ N then assuming ϕ(z p) = 0
for all p ∈ I

∐
J , the central limit process

S(N ) =
⎛
⎝

(
N−1/2

∑
1≤k≤N

z(k)
i

)

i∈I
,

(
N−1/2

∑
1≤k≤N

z(k)
j

)

j∈J

⎞
⎠

has a limit distribution γ.
Indeed, the cumulants of S(N ) are easily seen to converge and this is equivalent

with the convergence of the moments, that is the convergence of the distributions.
Moreover, one easily sees that the limit distributions one finds, which are the cen-
tered bi-free Gaussian distributions, are precisely those for which Rα(μz) = 0, where
α : {1, . . . , n} → I

∐
J and n �= 2. To find all these centered bi-free Gaussian dis-

tributions is equivalent to finding for each covariance matrix (Cpq)p,q∈I ∐
J a distri-

bution μz so that ϕ(z p) = 0, ϕ(z pzq) = Cpq and μz is equal to the limit distribution
of a central limit process.

Using these simple remarks we found [31] that in case I and J are finite sets, the
bi-free Gaussian distributions are the distributions of ((l(h′

i ) + l∗(h′′
i ))i∈I , (r(h

′
j ) +

r∗(h′′
j )) j∈J in (L(T (H)), 〈·1 | 1〉) where h′

i , h
′′
i , h

′
j , h

′′
j ∈ H. Here l, l∗, r, r∗ are left

and, respectively, right creation and destruction operators on the full Fock space
T (H). The covariance matrix which determines the distribution depends only on the
scalar products of the vectors h′

i , h
′′
i , h

′
j , h

′′
j or i ∈ I , j ∈ J .

It should be noted that the left and right operators which realize the bi-free
Gaussian distribution do not commute in general, indeed:

[l(h′
i ) + l∗(h′′

i ), r(h
′
j ) + r∗(h′′

j )] = (〈h′
j , h

′′
i 〉 − 〈h′

i , h
′′
j 〉)P

where P is the rank one projector operator P = 〈·1 | 1〉1.

6 The Combinatorics of Bi-freeness

Knowing that bi-free cumulants, which linearize the additive bi-free convolution
exist, immediately leads to the question of extending to the bi-free setting what is
known in free probability about computing free convolutions in free probability. This
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meant looking for bi-free extensions on one hand of the analytic machinery and on
the other hand of the combinatorial machinery of free probability. This section will
briefly deal with the extension of Speicher’s noncrossing partitions approach [21]
and I will turn later to my initial analytic approach.

A first step in the combinatorial approach to bi-freeness was the paper of Mastnak
and Nica [14], who found a connection to the combinatorics of double-ended queues
and identified some of the basic objects. This beginning was then brought to fruition
in a work of Charlesworth et al. [4] and also carried further to go beyond the field of
scalars C to a general algebra B in [5].

Instead of noncrossing partitions one considers so-called bi-noncrossing partitions
[4], that is for each n ∈ N and each map χ : {1, . . . , n} → {L , R} the set BNC(χ)

is the set of partitions π of {1, . . . , n} so that s−1
χ π is noncrossing, where sχ is

a permutation of {1, . . . , n} defined as follows. If χ−1(L) = {i1 < · · · < i p} and
χ−1(R) = { j1 < · · · < jq} then

sχ(k) =
{
ik if 1 ≤ k ≤ p

jn+1−k if p < k ≤ n.

The role of the map χ in formulae connecting noncommutative moments and
cumulants is to indicate in an ordered productwhich are the factorswhich are left and,
respectively, right variables. With this change of lattices of partitions, the connection
between moments and cumulants is of the same kind as in the free setting, that is
based on an incidence algebra and the corresponding Möbius function. Note, that
since BNC(χ) and the lattice of noncrossing partitions NC(n) of {1, . . . , n} are
isomorphic via the permutation sχ, the Möbius functions are also related via sχ.
However, since the role of sχ is to change the order of factors in a product and all
possibleχ are to be considered, the resulting cumulant formulae are a quite nontrivial
generalization.

Like in the free setting, also in the bi-free generalization the independence relation
corresponds to the vanishing of mixed cumulants.

To illustrate these results in one of the simplest cases: the formulae expressing
moments of Gaussian variables in terms of covariances using pair-partitions is the
relation between moments and cumulants (in the Gaussian case the only nonzero
ones are covariances). If ((zi )i∈I , (z j ) j∈J ) is a bi-free Gaussian two-faced system
in (A,ϕ) and BNC2(χ) denotes the bi-noncrossing pair-partitions for a given χ :
{1, . . . , n} → {L , R} then:

ϕ(zα(1), . . . , zα(n)) =
∑

({ak ,bk })1≤k≤m∈BNC2(χ)

∏
1≤k≤m

ϕ(zα(ak )zα(bk ))

where χ(α−1(I )) ⊂ {L}, χ(α−1(J )) ⊂ {R}.
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7 One-Variable Free Convolutions of Free Probability

Before we discuss the simplest bi-free convolutions, we need to briefly recall their
free probability precursors.

If a, b ∈ (A,ϕ) are freely independent noncommutative random variables, then
μa+b = μa � μb which is the definition of the additive free convolution �. The
transform which linearizes additive free convolution and which can be used for its
computation is the R-transform [23], Ra(z) defined by the formulae

Gz(z) =
∑
n≥0

z−n−1ϕ(an) = ϕ((z1 − a)−1)

Ga(Ka(z)) = z, Ra(z) = Ka(z) − z−1

and which satisfies
Ra+b = Ra + Rb.

Here Ra is either a formal power series if we work purely algebraically or the germ
of a holomorphic function at 0 in the case of a Banach algebra A. Note that in the
case of a hermitian operator a, μ is a compactly supported probability measure on
R and Ga is its Cauchy–Stieltjes transform. The inversion used to define Ka is for z
near 0. Note also that since the sum of hermitian operators is a hermitian operator, �
is an operation on probability measures on R. In this case one uses the above result
from [23] to get Ra+b and then by the same formulae used backward one finds Ga+b

and gets μa+b by the solution of a moment problem which boils down to finding the
distributional boundary values of −Im Ga+b(x + iε) as ε ↓ 0.

In [24] we found also another transform which computes the multiplicative con-
volution. If a, b ∈ (A,ϕ) are free then μab = μa � μb. Assuming ϕ(a) �= 0 one
considers the moment-generating series

ψa(z) =
∑
n≥1

znϕ(an) = ϕ((1 − za)−1) − 1

and defines χa(ψa(z)) = z, Sa(z) = z+1
z χa(z) which then satisfies

Sμa�μb(z) = Sμa (z)Sμb(z).

Themapμ → Sμ is a free analogue of theMellin transform. Surprisingly, ifμa,μb

are compactly supported probability measures on (0,∞), then so is μa � μb.
The proofs of these results in [23, 24] were analytic, using operator theory and

complex analysis. Later alternative combinatorial proofs were found. For more ref-
erences about free convolution see [29].



228 D.-V. Voiculescu

8 Partial Bi-free Transforms and the Computation
of the Simplest Bi-free Convolutions

The simplest bi-free convolutions arise from operations on two bi-free two-faced
pairs (a, b) and (c, d) in some noncommutative probability space (A,ϕ). The three
operations which we can consider combining addition and multiplication give rise
to bi-additive, additive–multiplicative, and bi-multiplicative convolutions

μa+c,b+d = μa,b � �μc,d

μa+c,bd = μa,b � �μc,d

μac,bd = μa,b � �μc,d .

Looking for the simplest situations, we may restrict our attention to “two-bands
moments, starting left” that is to moments of the form ϕ(a pbq) for a two-faced pair
(a, b). Note that in case the pairs (a, b), (c, d) satisfy the additional simplifying
assumption [a, b] = 0, [c, d] = 0 and since we may also find realizations of the bi-
freeness so that [a, d] = [b, c] = 0 we will get in all three cases pairs where left and
right commute (i.e., bipartite pairs):

[a + c, b + d] = [a + c, bd] = [ac, bd] = 0.

Thus the convolution operation at the level of two-bands moments actually com-
pletely describes the bi-free convolution operations in the case of bipartite pairs.

We found in [32, 33] three transforms which together with the one-variable trans-
forms which we discussed in Sect. 7 provide the solution to computing these simplest
bi-free convolutions.

If (a, b) is a two-faced pair in (A,ϕ), in the Banach algebra setting, the moment-
generating functions we use can be written:

Ga,b(z, w) = ϕ((z1 − a)−1(w1 − b)−1)

Ha,b(z, w) = ϕ((1 − za)−1(1 − wb)−1)

Fa,b(z, w) = ϕ((z1 − a)−1(1 − wb)−1)

which of course have also formal power series versions. In case a, b are commuting
hermitian operators and ϕ is given by a probability measure on R

2, Ga,b(z, w) is a
double Cauchy–Stieltjes transform.

The reduced partial transforms are defined by the formulae

R̃a,b(z, w) = 1 − zw

Ga,b(Ka(z), Kb(w))

S̃a,b(z, w) = z + 1

z

w + 1

w

(
1 − 1 + z + w

Ha,b(χa(z),χb(w))

)

T̃a,b(z, w) = w + 1

w

(
1 − z

Fa,b(Ka(z),χb(w))

)
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where Ka,χa are according to the notation used in 7. We called these transforms,
“reduced” because in case ϕ(a pbq) = ϕ(a p)ϕ(bq) for all p ≥ 0, q ≥ 0 we have
R̃a,b = 0, S̃a,b = 1, T̃a,b = 1.

The key properties of these transforms are that if (a, b) and (c, d) are bi-free in
(A,ϕ) we have

R̃a+c,b+d = R̃a,b + R̃c,d

S̃ac,bd = S̃a,b S̃c,d

T̃a+c,bd = T̃a,bT̃c,d .

Tocompute the bi-free convolutions at the level of two-bandsmoments the reduced
transforms are used in conjunctionwith the one-variable free transforms applied to the
marginals. For instance, to compute �� one uses (Ra, Sb, T̃a,b) and (Rc, Sd , T̃c,d) to
get Ra+c = Ra + Rc, Sbd = SbSd and T̃a+c,bd = T̃a,bT̃c,d . Note that the computation
of T̃a+c,bd requires the knowledge of Ka+c andχbd which are obtained from Ra+c and
Sbd . Then from (Ra+c, Sbd , T̃a+c,bd) one finds Ga+c, ψbd and then one can recover
from T̃a+c,bd the moment-generating function Fa+c,bd .

Our work [32, 33] about the R̃, S̃, and T̃ transforms is analytic. It takes as starting
point our one-variable results in free probability about the R and S-transforms, but
instead of our original proofs, the alternative proofs of Uffe Haagerup [11] turned out
to be better suited for approaching the bi-free generalization. Soon after these results
were obtained analytically, Paul Skoufranis [16, 17] was able to find also alternative
combinatorial proofs.

9 Bi-free Extreme Values

In classical probability theory, the max of two independent random variables has as
distribution function the product of the distribution functions of the randomvariables.
The realization that there is a free probability analogue of this basic observation was
the starting point of our joint workwith Gerard BenArous [1] on free extreme values.
We showed in [34] how to extend this basic fact also to the bi-free setting, which
opens the way to study basic bi-free extreme value questions. We will explain the
free “dictionary” and go on to explain the bi-free “dictionary” for extreme values.

The noncommutative probability framework (A,ϕ)will be that of a vonNeumann
algebraA and ϕ a normal state. If P, Q ∈ A are hermitian projections, then P ∧ Q,
P ∨ Q ∈ A denote the projections unto PH ∩ QH and PH + QH where H is the
Hilbert space on which A acts. If X = X∗, Y = Y ∗ are hermitian operators then
X ∨ Y is defined with respect to Ando’s spectral order, that is

E(X ∨ Y ; (−∞, a]) = E(X; (−∞, a]) ∧ E(Y ; (−∞, a]), a ∈ R

where E(X;ω) is the spectral projection of X for the Borel set ω ⊂ R. There is a
similar definition of X ∧ Y .
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If (Xi )i∈I , (Yi )i∈I are families of hermitian elements in (A,ϕ), one defines a free
max-convolution for distributions of such families, so that

μ(Xi )i∈I �∨ μ(Yi )i∈I = μ(Xi∨Yi )i∈I .

In the one-variable case the distribution corresponds to a probability measure μ
on R with compact support. To compute the free max-convolution, it is convenient
to pass to the distribution function

Fμ(a) = μ((−∞, a])

and to consider the corresponding operation, denoted also by �∨, on distribution
functions. Then one has

(F�∨ G)(t) = (F(t) + G(t) − 1)+ .

This is what replaces in free probability in this case the multiplication of the
distribution functions.

For the bi-free extension one considers a bi-free pair of faces of hermitian elements
in (A,ϕ)

z′ = ((z′
i )i∈I , (z

′
j ) j∈J )

z′′ = ((z′′
i )i∈I , (z

′′
j ) j∈J )

and
z′ ∨ z′′ = ((z′

i ∨ z′′
i )i∈I , (z

′′
j ∨ z′′

j ) j∈J ).

This gives then rise to a bi-free max-convolution operation on the distributions

μz′�∨ �∨ μz′′ = μz′∨z′′ .

The simplest case of bi-free max-convolutions to consider is that of the distrib-
utions of two-faced pairs of hermitian operators which commute (i.e., the bipartite
case). The distribution of such a pair is described by a probability measure μ with
compact support on R

2. The bivariate distribution function is then

Fμ(s, t) = μ((−∞, s] × (−∞, t]).

The marginals of a bivariate distribution function F(s, t) will be denoted by F1(s)
and F2(t). The operation on the bivariate distribution functions is also denoted by�∨�∨.
The result of [34] is that if F,G are bivariate distribution functions and H = F�∨�∨ G
the Hj = (Fj + G j − 1)+, j = 1, 2 and

H1(s)H2(t)

H(s, t)
− 1 =

(
F1(s)F2(t)

F(s, t)
− 1

)
+

(
G1(s)G2(t)

G(s, t)
− 1

)
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if F(s, t) > 0, G(s, t) > 0, H1(s) > 0, H2(t) > 0 and H(s, t) = 0 otherwise.
This opens theway to finding the bi-freelymax-stable andmax-infinitely-divisible

laws, which is reduced to a classical analysis problem. Note that the determination
of the univariate free max-stable laws in [1] showed that these are generalized Pareto
laws, related to “peaks over thresholds” in classical extreme values theory. One may
wonder whether the bi-free max-stable and max-infinitely divisible laws will also
turn out to be similarly related to classical bivariate extreme values questions.

10 Concluding Remarks

The replacement of the complex field C by a general algebra B in bi-freeness was
briefly sketched in [31] and then developed in detail together with the corresponding
combinatorics of cumulants in [5]. In free probability B-valued R-transforms were
initially found analytically in [27], the bi-free B-valued transforms have now been
developed using combinatorics in [19].

General infinite divisibility results for the simplest cases have already been
obtained [8, 9]. See also [6] about the operator theory side of bi-free Gaussian pairs.

In free probability randommatrix realizations in the large N limit play a key role.
The question about random matrix realizations for bi-free probability has not yet
been clarified. On one hand realizations for certain bipartite situations, that is when
left and right commute, are easy to construct but do not seem to add much to what we
already know from free probability. Going beyond the bipartite case the best results
at present are in [18].

The question whether there are de Finetti type theorems for bi-freeness was con-
sidered in [7]. It is not clear at present whether the Köstler–Speicher theorem [13]
has a complete bi-free analogue.
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Abstract This note is to survey our recent study on the stability and instability of the
Prandtl boundary layers in incompressible viscous flows near a physical boundary.
Both of the two-dimensional and three-dimensional problems are considered. First,
we present an energymethod for studying thewell-posedness of the two-dimensional
Prandtl boundary layer equations in Sobolev spaces under the Oleinik monotonicity
condition on the tangential velocity field. Then, we give an instability result for
the Prandtl equations in three space variables, which shows that the monotonicity
condition of tangential velocity fields is not sufficient for the well-posedness of the
three-dimensional Prandtl equations. Later, we present a well-posedness result of
the three-dimensional Prandtl equations for a special structured flow. These results
show that a shear flow is linearly and nonlinearly stable for the three-dimensional
Prandtl equations, if and only if, the tangential velocity field direction is invariant
with respect to the normal variable.
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1 Introduction

Incompressible flows occupied in a domain � of Rd (d = 2, 3) can be described by
the following well-known Navier-Stokes equations:

{
∂tuε + (uε · ∇)uε + ∇ pε − ε�uε = 0, t > 0, x ∈ �

∇ · uε = 0
(1.1)

where uε = (uε
1, . . . , uε

d)T is the velocity field, pε is the pressure, ∇ and � are
the gradient and Laplacian in the space variables x = (x1, . . . , xd)T , and ε is the
viscosity. The boundary condition on ∂� plays an important role in determining the
behavior of flow near the physical boundary. One classical type is the so-called the
nonslip condition,

uε|∂� = 0. (1.2)

To understand the behavior of a flow near the physical boundary is a classical and
challenging problem, not only in developing mechanical theory but also in applica-
tion. It was Prandtl [23] in 1904who first noted that away from the physical boundary,
the flow is mainly driven by the convection while the viscous force can be neglected
approximately due to friction being tiny, and only in a small neighborhood of the
boundary, the forces arising from the convection and viscosity of the flow are impor-
tant simultaneously. Mathematically, away from ∂�, the flow given by (1.1) and
(1.2) can be approximated by the following incompressible Euler equations:

{
∂tu + (u · ∇)u + ∇ p = 0, t > 0, x ∈ �

∇ · u = 0
(1.3)

with the boundary condition
u · �n|∂� = 0 (1.4)

a simple consequence of (1.2), where �n is the unit outward normal vector on ∂�.
The inconsistence between the boundary conditions (1.2) and (1.4) generates a thin

layer near the physical boundary ∂�, in which the tangential velocity fields change
rapidly. This thin transition layer was first studied by Prandtl in his seminal work
[23], it was called later as the boundary layer. As Prandtl claimed, both of the forces
arose from the convection and the viscosity are important in the layer, so by multi-
scale analysis one can deduce that the boundary layer thickness is

√
ε. Near a regular

point of the physical boundary ∂�, one can transform ∂� into the flat one, e.g., see
[13], and can suppose � to be the half space � = {x = (x ′, xd)|x ′ ∈ R

d−1, xd > 0}
with the tangential variables x ′ = (x1, . . . , xd−1)

T .
Take the following ansatz of the asymptotic expansions:

{
u j (t, x) = u p

j (t, x ′, xd√
ε
) + o(1), j = 1, . . . , d − 1

ud(t, x) = √
εu p

d (t, x ′, xd√
ε
) + o(

√
ε)

(1.5)
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for the solutions of the problem (1.1) near the boundary {xd = 0}, where u p
j (t, x ′, η)

(1 ≤ j ≤ d) approach the Euler flow on the boundary {xd = 0} rapidly as η = xd√
ε

→
+∞. Plugging the ansatz (1.5) into the problem (1.1), it follows that the pressure does
not change in the layer, and the boundary layer profiles up = (u p

1 , . . . , u p
d )T satisfy

the following d−dimensional Prandtl equations in {(t, x ′, η)|t > 0, x ′ ∈ R
d−1, η >

0}:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t u
p
j + (up

τ · ∇x ′)u p
j + u p

d ∂ηu p
j + ∂x j P = ∂2

ηu p
j , j = 1, . . . , d − 1

∇x ′ · up
τ + ∂xd u p

d = 0

up|η=0 = 0,

lim
η→+∞ u p

j (t, x ′, η) = uE
j (t, x ′, 0), j = 1, . . . , d − 1

(1.6)

whereup
τ = (u p

1 , . . . , u p
d−1)

T are tangential velocityfields,∇x ′ = (∂x1, . . . , ∂xd−1)
T ,

P(t, x ′) = pE (t, x ′, 0), and (uE , pE ) is the Euler flow determined by the problem
(1.3) and (1.4).

The first theoretic study of the Prandtl equation problem (1.6) was developed
by Oleinik and her collaborators in [21, 22], in which they had obtained the well-
posedness of the two-dimensional Prandtl boundary layer equations, d = 2, in the
class of tangential velocity u p

1 being strictly monotonic with respect to the nor-
mal variable η > 0, by introducing the Crocco transformation. Under the Oleinik
monotonicity assumption and an additional favorite condition of pressure, ∂x1 P < 0,
Xin and Zhang [29] obtained a global weak solution to the two-dimensional Prandtl
equations.

Without themonotonicity assumption of the tangential velocity,manyworks show
that the two-dimensional Prandtl equations are linearly and nonlinearly unstable in
the Sobolev spaces in general. E and Engquist in [27] constructed a finite time
blowup solution to the Prandtl equation. In [6], Grenier showed that the unstable
Euler shear flow (us(y), 0) with us(y) having an inflection point implies instability
for the two-dimensional Prandtl equations by a spectral argument and the WKB
method. In the spirit of Grenier’s approach, Gérard-Varet and Dormy [4] showed
that if the shear flow profile (us(t, y), 0) of the two-dimensional Prandtl equation
has a nondegenerate critical point, then it leads to a strong linear ill-posedness of the
Prandtl equation in the Sobolev framework. Guo and Nguyen in [8] proved that the
nonlinear two-dimensional Prandtl equation is ill-posed near nonstationary and non-
monotonic shear flows, and showed that the asymptotic boundary layer expansion
is not valid for non-monotonic shear layer flows in Sobolev spaces. For the related
mathematical results and discussions, also see the review papers [2, 28]. Another
approach for studying the Prandtl equations is in the frame of analytic functions. In
[24, 25], Sammartino and Caflisch obtained the local existence of analytic solutions
to the two-dimensional and three-dimensional Prandtl equation, and a rigorous theory
on the stability of boundary layers with analytic data in the framework of the abstract
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Cauchy-Kowaleskaya theory. This result was extended to the function space which
is only analytic in the tangential variable in [3, 14].

A rigorous mathematical theory of Prandtl’s boundary layer theory, the solutions
of the Navier-Stokes equations can be approximately decomposed into the solutions
of the Euler equations away from the boundary and the solutions of the Prandtl
boundary layer equations in the small viscosity limit is almost completely unknown,
except a few special cases, such as circularly symmetric flows [15], in the space of
analytic solutions [25], under the assumption of the support of vortices in the Euler
flow being away from boundary [16], and a steady flow over a moving plate [7] in
the two-dimensional problem. It is well known that the energy method works well
for both of the Navier-Stokes equations and the Euler equations, as proposed in [2],
it is very interesting to develop an energy method for studying the well-posedness
of the Prandtl equations in Sobolev spaces.

The first part of this note shall reviewour recent study of a direct energymethod for
the two-dimensional Prandtl equations under the Oleinik monotonicity assumption,
which was collaborated with Alexandre, Xu and Yang in [1].

The strict monotonicity of the tangential velocity implies the positivity of the
vorticity of the flow in the two-dimensional boundary layer, as shown in the existing
works, this positivity of vorticity is crucial to have the stability of the boundary layer
in the existing literature. It is known that the vorticity of the flow is much more com-
plicated in the three-dimensional flow in general, as shown in [18], extra instability
could be generated by the secondary flow in the three-dimensional boundary layers.
Till now, there is basically no any well-posedness theory for the three-dimensional
Prandtl equations, except the analytic case [24]. The well-posedness of the Prandtl
equations in three space variables is one of the important open questions proposed
by Oleinik and Samokhin in their classical monograph [21].

The second part of this note is to review our recent rigorous study on the stability
and instability of the three-dimensional Prandtl equations, collaborated with Liu
and Yang in [10–12]. From these works, we found that the three-dimensional shear
flow is stable in the Prandtl equations if and only if the direction of the tangential
velocity field is invariant with respect to the normal vector to the boundary, this
special structure avoids the appearance of the complicated secondary flow in the
three-dimensional Prandtl boundary layers.

The remainder of this note is arranged as follows. In Sect. 2, we present the well-
posedness result on the two-dimensional Prandtl equations by the energy method,
and in Sect. 3, we study the stability and instability of the three-dimensional Prandtl
equations.
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2 Well-Posedness of the Two-Dimensional Prandtl
Equations

The proposal of this section is to study the following initial boundary value problem
for the two-dimensional Prandtl equations in {(t, x, z)|t > 0, x ∈ R, z > 0}:

⎧
⎪⎪⎨
⎪⎪⎩

ut + uux + vuz − uzz + Px = 0, t > 0, x ∈ R, z > 0,
ux + vz = 0,
u|z=0 = v|z=0 = 0, lim

z→+∞ u(t, x, z) = U (t, x),

u|t=0 = u0(x, z)

(2.1)

under the assumption that

u0(x, z) is strictly monotonic in z, (2.2)

where P(t, x) = pE (t, x, 0) and U (t, x) = uE (t, x, 0) satisfy the Bernoulli law

Ut + UUx + Px = 0.

For simplicity of presentation, we shall only consider the case of an uniform
outflow, i.e., U (t, x) = 1.

Linearized Prandtl Equations

Let (ũ, ṽ) be a smooth background state of (2.1) satisfying

∂z ũ(t, x, z) > 0, ∂x ũ + ∂z ṽ = 0. (2.3)

It is easy to know the linearized problem of (2.1) at (ũ, ṽ) can be written as

⎧
⎪⎪⎨
⎪⎪⎩

∂t u + ũ∂x u + ṽ∂zu + u∂x ũ + v∂z ũ − ∂2
z u = f,

∂x u + ∂zv = 0,
u|z=0 = v|z=0 = 0, lim

z→+∞ u(t, x, z) = 0,

u|t≤0 = 0 .

(2.4)

It is easy to represent v(t, x, z) in term of u by

v(t, x, y) = −
∫ z

0
∂x u(t, x, z̃)dz̃ (2.5)

from the divergence-free constraint and the boundary condition v(t, x, 0) = 0 given
in (2.4).
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Plugging the representation (2.5) into thePrandtl equation, it follows thatu(t, x, z)
satisfies the following equation:

∂t u + ũ∂x u + ṽ∂zu + u∂x ũ − ∂z ũ
∫ z

0
∂x u(t, x, z̃)dz̃ − ∂2

z u = f. (2.6)

The crucial difficult term for estimating the energy of u from the Eq. (2.6) is the
integral term ∫ z

0
∂x u(t, x, z̃)dz̃.

Noting that the coefficient ∂z ũ of this integral term in (2.6) has a good sign due
to monotonicity assumption (2.3), by introducing the transformation

w(t, x, z) =
(

u

∂z ũ

)

z
(t, x, z), i.e. u(t, x, z) = (∂z ũ)

∫ z

0
w(t, x, z̃)dz̃. (2.7)

it follows that the problem (2.4) is equivalent to the following one for the unknown
w(t, x, z):

⎧
⎨
⎩

∂tw + ∂x (ũw) + ∂z(ṽw) − 2∂z(ηw) + ∂z(ζ
∫ z
0 w(t, x, z̃)dz̃) − ∂2

z w = ∂z f̃ ,(
∂zw + 2ηw

)|z=0 = − f̃ |z=0,

w|t≤0 = 0,
(2.8)

where

η = ∂2
z ũ

∂z ũ
, ζ =

(
∂t + ũ∂x + ṽ∂z − ∂2

z

)
∂z ũ

∂z ũ
, f̃ = f

∂z ũ
.

One can obtain a priori estimates in the weighted Sobolev spaces for the solution
to the problem (2.8), but with a loss of regularity with respect to the background
states (ũ, ṽ). Returning back the transformation (2.7), we deduce

Theorem 2.1 ([1], Theorem 3.1) Under certain regularity assumption on the back-
ground state (ũ, ṽ) and the decay rate of ũ(t, x, z) as z → +∞, and compatibility
conditions for the problem (2.4), we have the energy estimates of the solution (u, v) to
the problem (2.4) in the weighted Sobolev spaces, with a fixed order loss of regularity
with respect to (ũ, ṽ).

Remark 2.1 (1) By using the energy estimates for the linearized problem (2.4), and
adapting the Nash–Moser iteration scheme [9, 19, 20] for the nonlinear problem
(2.1), we have obtained the existence of a classical solution local time to the problem
(2.1) under certain order compatibility conditions and the monotonicity assumption
(2.2). One can find the detail in [1].

(2) In collaboration with Xie and Yang in [26], by using a similar energy method
we have obtained the well-posedness of a classical solution in the class of monotonic
tangential velocity to the compressible Prandtl boundary layer equations in two
space variables, which is derived from the compressible isentropic Navier-Stokes
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equations with nonslip boundary condition in the small viscosity limit. Recently,
collaborating with Gong and Guo, we have also studied the incompressible limit for
the compressible Prandtl equations in [5].

(3) Another energy method has been introduced by Masmoudi and Wong in
[17] for the two-dimensional Prandtl equations in the class of monotonic tangential
velocity.

3 The Three-Dimensional Prandtl Equations

In this section, we study the well-posedness and ill-posedness of the follow-
ing initial boundary value problem for the three-dimensional Prandtl equations in
{(t, x, y, z)|t > 0, (x, y) ∈ D, z > 0} for a fixed domain D of R2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + (u∂x + v∂y + w∂z)u − ∂2
z u = −∂x P,

∂tv + (u∂x + v∂y + w∂z)v − ∂2
z v = −∂y P,

∂x u + ∂yv + ∂zw = 0,

u|z=0 = w|z=0 = 0, lim
z→+∞(u, v) = (U (t, x, y), V (t, x, y)),

(u, v)|�− = (u1(t, x, y, z), v1(t, x, y, z)),

(u, v)|t=0 = (u0(x, y, z), v0(x, y, z)),

(3.1)

where �− = R
+
t × γ− × R

+
z with γ− = {(x, y) ∈ ∂D|nx u1 + nyv1 < 0}, �n =

(nx , ny)
T being the outward unit normal vector of ∂D, P(t, x, y) = pE (t, x, y, 0)

andU (t, x, y) = uE (t, x, y, 0), V (t, x, y) = vE (t, x, y, 0) are the Euler flow on the
boundary.

Aswe pointed out in Introduction, since the tangential flow given by (3.1) are two-
dimensional, the vorticity of the flow is very complicated, so to study the stability
of the three-dimensional Prandtl boundary layer is very challenging. We shall first
study the stability mechanism for a shear flow, then consider the stability of a general
flow.

3.1 Instability of a Shear Flow

Let (us(t, z), vs(t, z), 0) be a given shear flow solution to the three-dimensional
Prandtl equations, then from (1.6) we know that us and vs should satisfy

⎧
⎪⎪⎨
⎪⎪⎩

∂t us − ∂2
z us = 0, ∂tv

s − ∂2
z vs = 0,

(us, vs)|z=0 = 0, lim
z→+∞(us, vs) = (U0, V0),

(us, vs)|t=0 = (Us, Vs)(z)

(3.2)

with U0, V0 being constants.



242 Y.-G. Wang

Consider the following problem for the three-dimensional linearized Prandtl equa-
tions at (us, vs, 0) in � � {(t, x, y, z) : t > 0, (x, y) ∈ T

2, z ∈ R
+}:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + (us∂x + vs∂y)u + w∂zus − ∂2
z u = 0

∂tv + (us∂x + vs∂y)v + w∂zv
s − ∂2

z v = 0

∂x u + ∂yv + ∂zw = 0

(u, v, w)|z=0 = 0, lim
z→+∞(u, v) = (0, 0),

(u, v)|t=0 = (u0(x, y, z), v0(x, y, z)) .

(3.3)

It is not difficult to obtain the following results:

Proposition 3.1 ([12], Sect. 2) (1) When the initial data (u0, v0) are analytic in
(x, y), then the problem (3.3) has a local solution (u, v, w) analytic in (x, y).

(2) When the shear flow us(t, z) satisfies ∂zus(t, z) > 0, and the initial data
(u0, v0) are analytic in y and Hm in x, then the problem (3.3) has a local classical
solution (u, v, w) which is analytic in y as well.

A natural and interesting question is whether the well-posedness of the linearized
Prandtl equations (3.3) is still true in the Sobolev spaces if one imposes monotonic-
ity condition on both tangential velocity components us, vs but without analyticity
assumption anymore.

From the following discussion, we shall see that the answer to the above question
is no in general. To state our instability result, we first introduce notations: Denote by
T (t, s)

(
(u0, v0)

) = (u, v)(t, ·) the solution operator of the linearized Prandtl equa-
tions (3.3) with (u, v)|t=s = (u0, v0), and

Hm
α := Hm(

T
2
x,y; L2

α(R+
z )

)
,

with L2
α(R+

z ) = {u|eαzu ∈ L2}.
Theorem 3.1 ([12], Theorem 1) (1) If the initial data of the shear flow (us, vs, 0)
satisfy that there is z0 > 0 such that,

V ′
s (z0)U

′′
s (z0) 
= U ′

s(z0)V ′′
s (z0) (3.4)

Then there exists σ > 0 such that for all δ > 0,

sup
0≤s≤t≤δ

∥∥e−σ(t−s)
√|∂T |T (t, s)

∥∥
L(Hm

α ,Hm−μ
α )

= + ∞ (3.5)

for all m > 0 and μ ∈ [0, 1
4 ), with the operator ∂T = ∂x or ∂y .
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(2) There exists an initial shear layer (Us, Vs) and σ > 0, such that for all δ > 0
and m1, m2 > 0,

sup
0≤s≤t≤δ

∥∥e−σ(t−s)
√|∂T |T (t, s)

∥∥
L(H

m1
α ,H

m2
α )

= + ∞. (3.6)

Discussion of the Proof Idea:
To study the instability mechanism in the problem (3.3), as the assertions (3.5) and
(3.6) hold for any time interval [0, δ], so as in [4], one can first consider the following
linear problem by frozing the coefficient functions of the equations (3.3) at t = 0:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t u + (Us∂x + Vs∂y)u + wU ′
s − ∂2

z u = 0, in �,

∂tv + (Us∂x + Vs∂y)v + wV ′
s − ∂2

z v = 0, in �,

∂x u + ∂yv + ∂zw = 0, in �,

(u, v, w)|z=0 = 0, lim
z→+∞(u, v) = 0.

(3.7)

A crucial fact for the problem (3.7) is that, first from the assumption (3.4) we
know thatU ′

s(z0) and V ′
s (z0) can not vanish simultaneously, for example, we assume

that U ′
s(z0) 
= 0, then from the assumption (3.4), we get that the tangential velocity

of the background state

Vs(z) − V ′
s (z0)

U ′
s(z0)

Us(z) has a non − degenerate critical point at z = z0. (3.8)

Next, we construct solutions of the problem (3.7) in the form of planar waves in
(x, y),

(u, v, w)(t, x, y, z) = eik(y−ax+λ(k)t)(ûk, v̂k, ŵk)(z),

with a = V ′
s (z0)

U ′
s (z0)

.

Set ε = 1
k . By using the divergence-free condition given in (3.7), we know that

the solution of the above form can be rewritten as
{

(u, v)(t, x, y, z) = eiε−1(y−ax+λεt)(u′
ε, v

′
ε)(z),

w(t, x, y, z) = −iε−1eiε−1(y−ax+λεt)(vε − auε)(z).
(3.9)

Plugging the solution representation (3.9) into the equations given in (3.7), it
follows that wε(z) � (vε − auε)(z) satisfies the following problem in {z > 0}:

{
(λε + Ws)w

′
ε − W ′

swε + iεw(3)
ε = 0,

wε(0) = w′
ε(0) = 0

(3.10)

with Ws(z) � (Vs − aUs)(z). Note that the above problem of wε(z) is the same
one studied by Gérard-Varet and Dormy in [4] for the linearized two-dimensional
Prandtl equations, in which they had obtained the following results
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Lemma 3.1 ([4])For the problem (3.10), there is a complex number τ with Imτ < 0,
such that

⎧
⎨
⎩

λε ∼ −Ws(z0) + ε
1
2 τ ,

wε(z) ∼ H(z − z0)
[
Ws(z) − Ws(z0) + ε

1
2 τ

] + ε
1
2 W ( z−z0

ε
1
4

),
(3.11)

where W (Z) is the solution to the following problem:

⎧
⎪⎪⎨
⎪⎪⎩

(
τ + W ′′

s (z0)
Z2

2

)
W ′ − W ′′

s (z0)Z W + iW (3) = 0, Z 
= 0,

[W ] ∣∣Z=0 = −τ , [W ′]∣∣Z=0 = 0, [W ′′] ∣∣Z=0 = −W ′′
s (z0),

lim
Z→±∞ W = 0, exponentially.

(3.12)

Noting that Imτ < 0, plugging the asymptotic expansion of λε given in (3.11)
into the representation (3.9), one can get the instability of the solution to the problem
(3.7) immediately.

Sketch of The Proof of Theorem 3.1:
Step 1: Construct an approximate solution of the linearized problem (3.3) in the
form:

(uε, vε, wε)(t, x, y, z) = eiε−1(y−ax)
(
Uε, Vε, Wε

)
(t, z) (3.13)

such that

C−1
0 e

σ0 t√
ε ≤ ‖(Uε, Vε)(t, ·)‖L2

α
≤ C0e

σ0 t√
ε (3.14)

and ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t uε + (us∂x + vs∂y)uε + wεus
z − ∂2

z uε = r1ε ,

∂tvε + (us∂x + vs∂y)vε + wεv
s
z − ∂2

z vε = r2ε ,

∂x uε + ∂yvε + ∂zwε = 0,

(uε, vε, wε)|z=0 = 0, lim
z→+∞(uε, vε) = 0,

(3.15)

where (r1ε , r2ε )(t, x, y, z) := eiε−1(y−ax)(R1
ε , R2

ε )(t, z) satisfies

‖(R1
ε , R2

ε )(t, ·)‖L2
α

≤ C1ε
− 1

4 e
σ0 t√

ε . (3.16)

Step 2: Suppose the assertion (3.5) is not true, i.e., for all σ > 0, there exists δ >

0, m ≥ 0 and μ ∈ [0, 1
4 ), and

sup
0≤s≤t≤δ

‖e−σ(t−s)
√|∂x |T (t, x)‖L(Hm

α ,Hm−μ
α )

< +∞. (3.17)
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Denoted by

Tε(t, s)
(
(U0, V0)

) := e−iε−1(y−ax)T (t, s)
(

eiε−1(y−ax)(U0, V0)
)
.

Then, from the assumption (3.17), one has

‖Tε(t, s)‖L(L2
α) ≤ Cε−μe

√
aσ(t−s)√

ε , ∀ 0 ≤ s ≤ t ≤ δ (3.18)

which implies the estimate for the exact solution of (3.3):

‖(U, V )(t, ·)‖L2
α

≤ Cε−μe

√
aσt√
ε . (3.19)

On the other hand, by comparing the problem (3.3) with (3.15), we know that the
error (Ũ , Ṽ ) := (U, V ) − (Uε, Vε) satisfies

(Ũ , Ṽ )(t, ·) =
∫ t

0
Tε(t, s)

(
(R1

ε , R2
ε )(s, ·)

)
ds, ∀ t ≤ δ,

which implies that by choosing
√

aσ < σ0,

‖(Ũ , Ṽ )(t, ·)‖L2
α

≤ Cε−μ− 1
4

∫ t

0
e

√
aσ(t−s)√

ε e
σ0s√

ε ds ≤ Cε
1
4−μe

σ0 t√
ε , (3.20)

by using (3.18) and (3.16).
Thus, from (3.14) we obtain that for t < δ and sufficiently small ε,

‖(U, V )(t, ·)‖L2
α

≥ C−1
0 e

σ0 t√
ε

which gives a contradiction to (3.19) as
√

aσ < σ0.

Remark 3.1 (1) When U ′
s > 0, the condition (3.4) given in Theorem 3.1 is equiva-

lent to
d

dz

( V ′
s

U ′
s

) 
≡ 0.

which is equivalent to
d

dz

( Vs

Us

) 
≡ 0,

by using Us(0) = Vs(0) = 0.
(2) It is easy to know that when d

dz

( Vs
Us

) ≡ 0 holds, one also has ∂
∂z

(
vs (t,z)
us (t,z)

) ≡ 0
for the shear flow given in (3.2), i.e., the tangential flow direction of the shear flow
is invariant with respect to the normal variable z. In contrast to the instability result
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proved in Theorem 3.1, it is very interesting to study whether the flow is stable when
the tangential flow direction in the boundary layer is invariant with respect to the
normal variable z. It is the goal of the next subsection!

3.2 A Well-Posedness Result

Assume that the x−component of the velocity in the Euler flow (1.3) is positive on
the boundary, U (t, x, y) > 0 in (3.1), then without loss of generality, we can take
the trace of the Euler flow being the form of

(U (t, x, y), k(t, x, y)U (t, x, y), 0; p(t, x, y)) , U (t, x, y) > 0, (3.21)

on the boundary {z = 0}.
As mentioned in Remark 3.1(2), we wish to study the stability of the following

solution pattern for the problem (3.1) of the Prandtl equations in three space variables,

(u(t, x, y, z), k(t, x, y)u(t, x, y, z), w(t, x, y, z)), (3.22)

then, from (3.1) we know that the above flow satisfies the following problem in
{t > 0, (x, y) ∈ D, z > 0},

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t u + (u∂x + ku∂y + w∂z)u + ∂x p − ∂2
z u = 0

∂t (ku) + (u∂x + ku∂y + w∂Z )(ku) + ∂y p − k∂2
z u = 0

∂x u + ∂y(ku) + ∂zw = 0

u|z=0 = w|z=0 = 0, lim
Z→+∞ u(t, x, y, z) = U (t, x, y)

(3.23)

which implies
u

[
∂t k + u(∂x + k∂y)k

] − k∂x p + ∂y p = 0. (3.24)

If we assume that
∂zu > 0,

then from (3.24) we get that ∂t k = 0 and

(∂x + k∂y)k = 0, ∂y p − k∂x p = 0. (3.25)

From now on, we give the following assumptions:

(A1) k is a smooth function of (x, y), and satisfies the constraint

∂x k + k∂yk = 0. (3.26)
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(A2) The velocity U (t, x, y) and pressure p(t, x, y) of the outflow satisfy

U (t, x, y) > 0,

and
∂y p − k∂x p = 0 i.e. ∇ p ‖ (U, kU ) (3.27)

for all t > 0 and (x, y) ∈ D.

Denote by �T = (0, T ] × �, with � = {(x, y, z)| (x, y) ∈ D, z ∈ R+}, and D
being a bounded domain of R2. Let us consider the following problem in �T :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + (u∂x + v∂y + w∂z)u + ∂x p − ∂2
z u = 0

∂tv + (u∂x + v∂y + w∂z)v + ∂y p − ∂2
z v = 0

∂x u + ∂yv + ∂zw = 0

(u, v, w)|z=0 = 0, lim
z→+∞(u, v) = (U (t, x, y), k(x, y)U (t, x, y))

(u, v)|t=0 = (u0(x, y, z), k(x, y)u0(x, y, z))

(u, v)|�− = (u1(t, x, y, z), k(x, y)u1(t, x, y, z))

(3.28)

where �− = (0, T ] × γ− × [0,+∞), with γ− = {(x, y) ∈ ∂D| (1, k(x, y)) · �n
(x, y) < 0}, and �n(x, y) being the unit outward normal vector of D on (x, y) ∈ ∂D,
under the assumption ∂zu0(x, y, z) > 0.

For the above problem, first we have:

Lemma 3.2 If (u, v, w)(t, x, y, z) is the classical solution to the problem (3.28),
then v(t, x, y, z) = k(x, y)u(t, x, y, z).

This lemma can be easily obtained by observing from (3.28) that ku − v satisfies
a scalar degenerate parabolic equation. One can find the detail in [11].

By using Lemma 3.2, we only need to study the solution being the form

(u(t, x, y, z), k(x, y)u(t, x, y, z), w(t, x, y, z)) (3.29)

of the problem (3.28), fromwhich we know that (u, w) satisfy the following reduced
problem in �T :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t u + (u∂x + ku∂y + w∂z)u − ∂2
z u = −∂x p,

∂x u + ∂y(ku) + ∂zw = 0,

u|z=0 = w|z=0 = 0, lim
z→+∞ u = U (t, x, y),

u|�− = u1(t, x, y, z), u|t=0 = u0(x, y, z),

(3.30)

It is obvious that the form of the problem (3.30) is quite similar to that of the
problem (2.1)whichwas studied in Sect. 2 for the two-dimensional Prandtl equations,
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so by using either the Crocco transformation as in [21] or the energy method [1], we
can conclude the local existence of a classical solution to the problem (3.30) in the
class of u(t, x, y, z) being strictly monotonic in the normal variable z. Moreover,
as in [30], under an additional favorite assumption on the pressure, we can obtain a
global weak solution to this problem. These results are summarized in the following
theorem.

Theorem 3.2 ([10, 11]) (1) There is a unique local classical solution to the prob-
lem (3.30) with the x−directional tangential velocity u(t, x, y, z) being strictly
monotonic in z > 0, under the assumption ∂zu0 > 0, ∂zu1 > 0 for z ≥ 0.

(2) Moreover, if

px (t, x, y) ≤ 0, for t > 0, (x, y) ∈ D. (3.31)

then there is a global weak solution to the problem derived from (3.30) by using the
Crocco transformation.

Remark 3.2 The assumption (3.27) on the outer flow leads to avoid the appearance
of the secondary flow in the boundary layer, a complete new unstable mechanism
noted by Moore in [18] for the three-dimensional Prandtl layer.

The next goal is to study the stability of this special flow. For any given special
solution

(us(t, x, y, z), k(x, y)us(t, x, y, z), ws(t, x, y, z)), (3.32)

of the problem (3.1), with

∂zus(t, x, y, z) > 0, kx + kky = 0

in�T = {0 < t ≤ T, (x, y) ∈ D, z > 0}, consider the following linearized problem
of (3.1) at the background state (3.32):

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t u + (us∂x + kus∂y + ws∂z)u + (u∂x + v∂y + w∂z)us − ∂2
z u = f1,

∂tv + (us∂x + kus∂y + ws∂z)v + (u∂x + v∂y + w∂z)(kus) − ∂2
z v = f2,

∂x u + ∂yv + ∂zw = 0,

(u, v, w)|z=0 = 0, lim
z→+∞(u, v) = 0, (u, v)|�− = (u1, v1)(t, x, y, z),

(u, v)|t=0 = (u0, v0)(x, y, z),
(3.33)

where �− = (0, T ] × γ− × R
+
z , with γ− = {(x, y) ∈ ∂D| (1, k(x, y)) · �n(x, y) <

0}, and �n(x, y) being the unit outward normal vector of D on (x, y) ∈ ∂D.
Now, we are going to study energy estimates for the solutions of the problem

(3.33), which is given in the following two steps.
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Step 1: Set ṽ(t, x, y, z) = k(x, y)u(t, x, y, z) − v(t, x, y, z). By the relation
kx + kky = 0, from (3.33) it is easy to know that ṽ(t, x, y, z) satisfies the following
problem,

⎧
⎪⎪⎨
⎪⎪⎩

∂t ṽ + (us∂x + kus∂y + ws∂z)ṽ + kyus ṽ − ∂2
z ṽ = k f1 − f2, in �T ,

ṽ|z=0 = 0, lim
z→+∞ ṽ = 0, ṽ|�− = (ku1 − v1)(t, x, y, z),

ṽ|t=0 = (ku0 − v0)(x, y, z).
(3.34)

One can easily estimate the solution ṽ of (3.34) by using the classical energy
method.

Step 2: Rewrite the problem (3.33) by using that v = ku − ṽ as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t u + (us∂x + kus∂y + ws∂z)u + (u∂x + ku∂y + w∂z)us

−∂2
z u = f1 + ṽ∂yus, in �T ,

∂x u + ∂y(ku) + ∂zw = ∂y ṽ, in �T ,

(u, w)|z=0 = 0, lim
z→+∞ u = 0, u|�− = u1(t, x, y, z)|�− ,

u|t=0 = u0(x, y, z).

(3.35)

Noting that ∂zus(t, x, y, z) > 0, as in [1], for the problem (3.35), we introduce
the transformation:

h = ∂z(
u

∂zus
), or u = ∂zus

∫ z

0
hdz̃. (3.36)

Then, from (3.35) we know that h(t, x, y, z) satisfies the following initial bound-
ary value problem for a scalar integro-differential equation:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t h + [us∂x + kus∂y + ws∂z]h − 2∂z(ηh) + ∂z
[
(ζ − kyus)

∫ z
0 h ds

]

−∂2
z h = ∂z( f̃ + ∂yus ṽ

∂zus ) − ∂y ṽ,

(∂zh + 2ηh)|z=0 = − f̃ |z=0, h|�− = h1(t, x, y, z) � ∂z(
u1(t,x,y,z)

∂zus (t,x,y,z)|�−
),

h|t=0 = h0(x, y, z) � ∂z(
u0(x,y,z)

∂zus (0,x,y,z) ),

(3.37)
with

η = ∂2
z us

∂zus
, ζ = (∂t + us∂x + kus∂y + ws∂z − ∂2

z )∂zus

∂zus
, f̃ = f1

∂zus
.

Similar to [1], one can estimate the solution h = ∂z(
u

∂zus ) to the problem (3.37)
in a weighted norm, from which we get the estimate of the solution u(t, x, y, z).
Combining this estimate with that of ṽ from (3.34), we conclude the estimate of
v(t, x, y, z). The estimate of w(t, x, y, z) follows immediately from the divergence-
free constraint given in (3.33).
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Therefore, we obtain the following result:

Theorem 3.3 ([11]) The classical solution (us(t, x, y, z), k(x, y)us(t, x, y, z),
ws(t, x, y, z)) of the problem (3.28) constructed in Theorem 3.2 is linearly sta-
ble with respect to any three-dimensional perturbation of the initial data, boundary
data, and force terms in (3.1).
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Visual Exploration of Complex Functions

Elias Wegert

Abstract The technique of domain coloring allows one to represent complex
functions as images on their domain. It endows functions with an individual face
and may serve as simple and efficient tool for their visual exploration. The empha-
sis of this paper is on phase plots, a special variant of domain coloring. Though
these images utilize only the argument (phase) of a function and neglect its modulus,
analytic (and meromorphic) functions are uniquely determined by their phase plot
up to a positive constant factor. Following (Wegert in Not AMS 58:78–780, 2011
[49], Wegert in Visual Complex Functions. An Introduction with Phase Portraits,
Springer Basel, 2012 [53]), we introduce phase plots and several of their modifi-
cations and explain how properties of functions can be reconstructed from these
images. After a survey of related results, the main part is devoted to a number of
applications which illustrate the usefulness of phase plots in teaching and research.
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1 Introduction

Graphical representations of functions belong to themost useful tools inmathematics
and its applications. While graphs of (scalar) real-valued functions can be depicted
easily, the situation is quite different for complex functions. Even the graph of a
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Fig. 1 Analytic landscapes of the Gamma function

Fig. 2 Color circle, coded phase, and domain coloring of C

complex analytic function in one variable is a surface in four dimensional space, and
hence not so easily drawn.

The first pictorial representations of complex functions in history are analytic
landscapes, i.e., graphs of | f |; probably introduced by EdmondMaillet [31] in 1903.
The analytic landscape of Euler’sGamma function in the famous book [19] by Jahnke
and Emde achieved an almost iconic status (see Fig. 1, left). Impressive contempo-
rary pictures of analytic landscapes can be seen on “The Wolfram Special Function
Site” [55].

Analytic landscapes involve only the modulus | f | of the function f , its argu-
ment arg f is lost. In the era of black and white illustrations this shortcoming was
often compensated by complementing the analytic landscape with lines of constant
argument. Today we can do this much better using colors.

Since the ambiguous argument arg z of a complex number is only determined
up to an additive multiple of 2π, we prefer to work with the well-defined phase z/|z|
of z. Phase lives on the complex unit circle T and can easily be encoded by colors
using the standard hsv color wheel (Fig. 2, left). The colored analytic landscape is
the graph of | f |, colored according to the phase of f (Fig. 1, right).

2 Domain Coloring

In practice, it is often difficult to generate analytic landscapes which allow one to
read off properties of the function easily and precisely. An alternative approach is
not only simpler but even more general: Instead of drawing a graph, one can depict a
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function directly on its domain by color coding its values completely, as in the image
on the right-hand side of Fig. 2.

Such coloring techniques for complex-valued functions have been in use at least
since the 1980s (Larry Crone [9], see Hans Lundmark [26]), but they became popular
only with Frank Farris’ review [10] of Tristan Needham’s book “Visual Complex
Analysis” and its complement [11]. Farris also coined the name “domain coloring.”

2.1 Phase Plots and Their Modifications

In contrast to “standard” domain coloring, which color codes the complete values of
f by a two dimensional color scheme, phase plots display only the phase ψ( f ) :=
f/| f |, thus requiring just a one dimensional color space with a circular topology. To
also admit zeros and poles, we extend this definition by ψ(0) := 0 and ψ(∞) := ∞,
and associate black to 0 and white to ∞, respectively.

At the first glance it seems to be of no advantage to depict the phase of a function
instead of its modulus. But indeed there is some subtle asymmetry between these two
entities. In fact there are at least three reasons why phase plots outperform analytic
landscapes, as can be seen in Fig. 3. First, phase has a small range (the unit circle),
while the range of the modulus of an analytic function is usually quite large. As a
consequence, the visual resolution is much higher for the phase than for the absolute
value.

Second, reconstruction of (missing) information is simpler and more accurate for
phase plots, as will be shown in the following section. In particular zeros, poles, and
essential singularities can be clearly identified.

Last but not least, the analytic landscape is a three-dimensional object which usu-
ally must be projected for visualization, while the phase plot is a flat color image on
the domain of the function, which allows one to read off information more precisely.

Since phase occupies only one dimension of the color space (which is usually the
three-dimensional RGB space), additional information can be easily incorporated.
If, for example, the modulus of f is encoded by a gray scale, we get standard domain

Fig. 3 Analytic landscape versus phase plot of f (z) = e1/z
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Fig. 4 Color schemes and representations of f (z) = z − 1

z2 + z + 1

coloring. Figure4 illustrates four useful color schemes and the corresponding phase
plots of f (z) = (z − 1)/(z2 + z + 1) in the square |Re z| < 2, |Im z| < 2. The upper
row depicts the color scheme in the w-plane; pulling back the colors to the z-plane
via the mapping w = f (z) yields the images in the lower row.

The leftmost column corresponds to the pure (plain) phase plot, while the right-
most images show standard domain coloring, respectively. The second column
involves a gray component which is a sawtooth function of log | f |, like

g = �log | f |� − log | f |.

Here x �→ �x� is the ceiling function, which determines the smallest integer not
less than x . The jumps in the gray component generate contour lines of | f |, i.e., lines
of constant modulus. In between two such lines darker colors correspond to smaller
values of | f |. From one line to the next the modulus of f increases by a constant
factor, which allows one to determine the values much more accurately than from
standard domain coloring. Another advantage is that this coloring is insensitive to
the range of the function. A similar modification was used in the third column, but
here discontinuities of the shading enhance some isochromatic lines (sets of constant
phase). In the fourth column we have applied both shading schemes simultaneously,
which generates a (logarithmically scaled) polar tiling of the range plane. The fre-
quencies of the sawtooth functions encoding modulus and phase are chosen such that
the tiles are “almost square.” Due to the conformality of the mapping, this property
is preserved (for almost all tiles) under pull back. This color scheme resembles a grid
mapping, another common technique for visualizing complex functions. Compared
with the standardmethod of pushing forward amesh from the z-plane to thew-plane,
pulling back has the advantage that there are no problems with functions of valence
greater than one.
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It is worth noticing that the shading method works with almost no additional com-
putational costs, is absolutely stable, and does not require sophisticated numerical
algorithms for computing contour lines.

2.2 How to Read Phase Plots

Which properties of an analytic function are reflected in its phase plot and how can
we extract the information?

First of all it is important to note that meromorphic functions are almost uniquely
determined by their phase plot: if two such functions (in a connected domain D) have
the same phase plot (in an open subset of D), then one is a positive scalar multiple
of the other (see [53]).

2.2.1 Zeros, Poles, and Saddle Points

Many features of a complex function can be read off from the local structure of its
phase plot: not only zeros and poles of f , but also zeros of f ′ (saddle points). A simple
criterion can be derived from the local normal form f (z) = a + (z − z0)mg(z) with
g(z0) �= 0, a ∈ C and m ∈ Z. If z0 is a zero or a pole of f , we have a = 0 (with
m > 0 or m < 0, respectively), otherwise a �= 0 and m − 1 ≥ 0 is the order of the
zero of f ′. The following definition is needed in a more precise local classification
of phase plots given in [48].

Definition 2.1 A phase plot P := ψ ◦ f is said to be (locally) conformally equiva-
lent at a point z0 to the phase plot Q = ψ ◦ g at w0, if there exists a neighborhood
U of z0, a neighborhood V of w0, and a bijective conformal mapping ϕ of U onto
V such that Q

(
ϕ(z)

) = P(z) for all z ∈ U \ {z0}.
In this definition, we admit that P and Q are defined only in punctured neighbor-

hoods of z0 and w0, respectively.

Theorem 2.2 Let f : D → Ĉ be a meromorphic function. Then, for any z0 ∈ D,
the phase plot of f at z0 is conformally equivalent to the phase plot of the following
functions g at 0:

(i) If f (z0) ∈ C \ {0} and f ′(z0) �= 0, then g(z) = ψ( f (z0)) exp z.
(ii) If f (z0) ∈ C \ {0} and f ′ has a zero of order m ≥ 1 at z0, then

g(z) = ψ( f (z0)) exp(zm+1).
(iii) If f has a zero of order m ≥ 1 at z0, then g(z) = zm.
(iv) If f has a pole of order m ≥ 1 at z0, then g(z) = z−m.

It follows from (iii) and (iv) that not only the location z0 but also the multiplicity
m of zeros and poles can easily read off from the phase plot of f : in the vicinity of
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Fig. 5 Local normal forms of (enhanced) phase plots

z0 it looks like a rotated phase plot of zm or z−m , respectively. In particular, zeros
and poles can be distinguished by the different orientations of colors.

In the second case (ii), the point z0 is said to be a saddle of f of order m. A saddle
of order m is the common crossing point of m + 1 isochromatic lines. In the pure
phase plot saddles appear as diffuse spots and it needs some training to detect them.
Using a color scheme with enhanced isochromatic lines makes this much easier.

Figure5 shows the prototypes of (enhanced) phase plots in the four cases with
f (z0) = 1, a saddle of order 2 with f (z0) = 1, a zero of order 3, and a pole of order
2, respectively.

2.2.2 Isolated Singularities

It is clear that removable singularities cannot be seen in the phase plot of a function,
and we already know how poles look like. So what about essential singularities ? Do
they always manifest themselves as in Fig. 3? The answer is basically yes, but the
statement of a strict result needs some terminology.

Let f : D → Ĉ be a nonconstantmeromorphic function. For any (color) c ∈ T, let

S(c) := {z ∈ D : ψ( f (z)) = c}

be the subset of the domain D where the phase plot of f has color c. After removing
from S(c) all points z where f ′(z) = 0, the remaining set splits into a finite or
countable number of connected components. These are smooth curves which we call
isochromatic lines in the phase plot of f .

Theorem 2.3 An isolated singularity z0 of f is an essential singularity if and only if
for some (and then for any color) c ∈ T any neighborhood of z0 intersects infinitely
many isochromatic lines with color c.

The result follows from Picard’s Great Theorem (see [53]); an elementary proof,
based on the Casorati-Weierstrass Theorem, is in [49], Theorem 4.4.6.

We point out that a corresponding result for the lines of constant argument does
not hold, since the values of arg f (z) on isochromatic lines with the same color may
be different. For example, any continuous branch of arg exp(1/z) in C \ {0} attains
different values on distinct isochromatic lines.
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Fig. 6 Phase plots illustrating the growth of functions

2.2.3 Growth

The Cauchy–Riemann equations for (any continuous branch of) the logarithm
log f = ln | f | + i arg f imply that the isochromatic lines are orthogonal to the con-
tour lines | f | = const. Consequently, the isochromatic lines are the lines of steepest
ascent/descent of | f |. The direction in which | f | increases can easily be determined:
for example, when walking on a yellow line in ascending direction, we have red on
the right and green to the left.

To go a little beyond this qualitative result, let s denote the unit vector parallel
to the gradient of | f | and n := is. Using the Cauchy–Riemann equations for log f
we get

| f ′|/| f | = ∂s ln | f | = ∂n arg f.

The left-hand side is the modulus of the logarithmic derivative f ′/ f ; it measures
the growth of | f | (in the direction of its gradient) relative to the absolute value of f .
The right-hand side is the density of the isochromatic lines. So, at least in principle,
we can read the growth of a function from its (pure) phase plot. In practice it is more
convenient to use the enhanced variant with contour lines of | f |.

Note that (almost) parallel stripes (with constant density of isochromatic lines)
indicate exponential growth. The phase plots in Fig. 6 show an exponential function
(left), a function growing faster than exponentially from left to right (middle), and the
sum of three exponential functions eaz with different complex values of a. Knowing
the size of the depicted domain, an experienced observer can read off the three values
of a.

2.2.4 Periodic Functions

Clearly, the phase of a (doubly) periodic function is (doubly) periodic, but what about
the converse? If, for example, a phase plot is doubly periodic, can we then be sure
that it represents an elliptic function?



260 E. Wegert

Fig. 7 Three prototypes of periodic phase plots

Though there are only two classes (simply and doubly periodic) of nonconstant
periodic meromorphic functions on C, we can observe three different types of peri-
odic phase plots as shown in Fig. 7 (from left to right: an exponential function, the
cosine function and a Weierstrass ℘-function).

Motivated by these pictures we say that a (nonconstant) phase plot P is

(i) striped if there exists p0 �= 0 such that for all p = αp0 with α ∈ R

P(z + p) = P(z) for all z, (2.1)

(ii) simply periodic if there exists p0 �= 0 such that (2.1) holds if and only if p =
k p0 for all k ∈ Z,

(iii) doubly periodic if there exist p1, p2 �= 0 with p1/p2 /∈ R such that (2.1) holds
if and only if p = k1 p1 + k2 p2 for all k1, k2 ∈ Z.

While it is easy to characterize striped and simply periodic phase plots, the doubly
periodic case is more subtle. In the following theorem σ denotes the Weierstrass
Sigma function:

σ(z) := z
∏

λ∈�\{0}
exp

(
z

λ
+ z2

2λ2

)(
1 − z

λ

)
,

where� := p1Z + p2Z is the grid generated by the primitive periods p1 and p2. We
further define u1, u2 and q1, q2 by

u j :=
∑

λ∈�\{0,p j }

1

λ(λ − p j )2
, q j := p2

j u j − 3/p j . (2.2)

Theorem 2.4 The phase plot of a nonconstant meromorphic function f on C is

(i) striped if and only if there exist a, b ∈ C with a �= 0 such that

f (z) = eaz+b,



Visual Exploration of Complex Functions 261

Fig. 8 A Weierstrass Sigma function σ and σ(z)/σ(z − b)

(ii) simplyperiodicwith primitive period p if and only if there exist a simply periodic
function g : C → C with period p and a real number a such that

f (z) = eaz/p g(z),

(iii) doubly periodic with primitive periods p1 and p2 (p1/p2 /∈ R) if and only if f
can be represented as

f (z) = eaz g(z)
σ(z)

σ(z − b)
,

where g is elliptic with periods p1 and p2, and a, b ∈ C satisfy

Im (ap j ) ≡ Im (bq j ) (mod 2π), j = 1, 2,

with q j defined in (2.2).

For a proof of (i) and (ii) see [53], assertion (iii) is due to Marius Stefan [40].
Figure8 shows aWeierstrass Sigma function and a quotient σ(z)/σ(z − b)which

has a doubly periodic phase plot (middle), but is not an elliptic function (right).

3 Phase Diagrams

The phase plot of a function contains information which is nonlocal. As an example,
we consider the argument principle: Let f : D → Ĉ be meromorphic in the domain
D and assume that D contains the closure of the interior of a (positively oriented)
Jordan curve J . If f has neither zeros nor poles on J , then the winding number
windJ Pf (about the origin) of the phase Pf := ψ ◦ f along J is the difference of
the number n( f, J ) of zeros and the number p( f, J ) of poles of f inside J (counted
according to their multiplicity),

n( f, J ) − p( f, J ) = windJ Pf .
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This number can easily be read off from the phase plot of f , and we call it the
chromatic winding number of f along J . In the image on the left-hand side of Fig. 9
we have windJ Pf = 4. The phase plot in the middle reveals that the interior of J
indeed contains four zeros (one is double) and no poles of f .

But this is not yet the end of the story, one can discover even more. In the next
section we follow [48].

3.1 The Phase Flow

The isochromatic lines in the phase plot of f are the flow lines of the vector field

V f : D → C, z �→ − f (z) f ′(z)
| f (z)|2 + | f ′(z)|2

(see Fig. 9, middle and right). With an appropriate definition at zeros and poles of f
the vector field V f is smooth and vanishes exactly at the zeros and poles of f and
f ′, which we call singular points of V f .
The flow generated by the vector field V f is said to be the phase flow of f . Endow-

ing the phase plot with the orbits of this flow yields the phase diagram of f . Using
standard techniques from the theory of dynamical systems, one can characterize the
orbits of V f and describe the basins of attraction of zeros (for details see [48]).

3.2 The Extended Argument Principle

If J is a Jordan curve in D whichdoes not contain singular points ofV f , thedirectional
winding number windJ V f of f along J is the winding number (about the origin) of
V f along J . In the rightmost image of Fig. 9 we have

Fig. 9 Argument principle, phase flow and winding numbers
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windJ Pf = 1, windJ V f = 2.

Analyzing the phase diagram using index theory reveals a relation between the two
winding numbers of f along J and the numbers n( f ′, J ) and p( f ′, J ) of zeros and
poles of f ′ inside J , respectively.

Theorem 3.1 ([48]) Let f be meromorphic in D and assume that the positively
oriented Jordan curve J and its interior are contained in D. If neither f nor f ′ have
zeros or poles on J , then

n( f ′, J ) − p( f ′, J ) = windJ Pf − windJ V f

Note that (at least in principle, but not always in practice) both winding numbers
can be read off from the phase plot of f in an arbitrarily small neighborhood of J .

If f is holomorphic, the argument principle and Theorem 3.1 allow one to deter-
mine the number of zeros of f and f ′ inside J from the phase plot of f near J .
In Fig. 9 (left) we have windJ Pf = 4 and windJ V f = 1, so that n( f, J ) = 4 and
n( f ′, J ) = 3.

An important special case pertains to the situation when f is holomorphic and
the isochromatic lines of f are nowhere tangent to J . Since the latter implies
windJ V f =1, Theorem 3.1 tells us that then n( f ′, J ) = n( f, J ) − 1. This yields
a short proof of Walsh’s theorem on the location of critical points of Blaschke prod-
ucts [46–48].

4 Applications

In this section we discuss applications of phase plots which we believe to be useful—
though in some examples the mathematical background is rather trivial.

4.1 Software Implementation

When one needs to compute special functions numerically, it is tempting to download
code which is freely available on the internet. In many cases this may be an easy and
efficient way to solve the problem, but one should be aware that there is no guarantee
that software does what it claims to do.

An example is shown in Fig. 10. The image on the left is a phase plot of the
complex Gamma function, computed with a certified Matlab routine. The picture
in the middle displays the phase plot of a want-to-be Gamma function in the same
domain, computed with code from a dubious source. Though the overall impression
is almost the same, a closer look reveals that somethingmust bewrong on the negative
real axis near the left boundary of the domain. Zooming in a little closer, we discover
a beautiful bug sitting at the end of an artificial branch cut.
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Fig. 10 A bug in software for evaluating the Gamma function

Fig. 11 Implementations of the logarithmic Gamma Function

Since this is not the only incidentwhich can be reported, one should be very careful
when using software without knowing what it really computes. Though looking at
phase plots can by no means ensure correctness of computations, it may help to
discover some inconsistencies quite easily.

4.2 Multivalued Functions

Computations involvingmultivalued functions, like complexnth roots or the complex
logarithm, are often challenging because usually only their main branch is imple-
mented in standard software. In particular, composing such functions without taking
care for choosing the appropriate branches may lead to fallacious results.

Let us consider the logarithmic Gamma function GammaLog(z) as an example.
The three images of Fig. 11 show log�(z) (left), another implementation from the
web which claims to be GammaLog(z) (middle), and a version having a branch cut
along the negative real line (which is the standard definition). After some training,
phase plots make it quite easy to understand the structure of spurious branch cuts,
but removing them can be very tedious.
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4.3 Riemann Surfaces

Phase plots may serve as convenient tool for constructing Riemann surfaces. We
demonstrate this for the Riemann surface of the inverse of the sine function f (z) =
sin z. Basically this procedure involves three steps:
Step 1. Look at the phase plot of f in the z-plane and determine the basins of
attraction of the zeros (first row of Fig. 12). In the case at hand the basins are vertical
stripes kπ < Re z < (k + 1)π, k ∈ Z. Every such basin is mapped onto a copy of
the complex w-plane, slit along the rays [−∞,−1] and [1,+∞] (second row).
Step 2. Change the coloring of the z-plane to the standard color scheme (phase plot
of the identity, see first row of Fig. 13).
Step 3. Push the colors forward from the fundamental domains to the w-plane by
w = f (z). This generates phase plots of f −1 on the different sheets of its Riemann
surface (second row of Fig. 13).

Gluing the rims of branch cuts according to their neighboring relations (which
usually, but not always, can be seen from the phase plots), yields the Riemann surface
on which the phase plot of g can be displayed (see Fig. 14).

Thomas Banchoff [5] and Michael Trott [43, 44] described techniques for visual-
izing complex functions ondomain-coloredRiemann surfaces. This topicwas studied
in more detail by Konrad Poehlke and Konstantin Polthier [33]. In two subsequent
papers [34] and [32] (with M.Niesen) they propose algorithms for the automatic
construction of Riemann surfaces with prescribed branch points and branch indices.

Fig. 12 The sine function mapping strips to C
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Fig. 13 Three branches of the inverse sine function

Fig. 14 The inverse sine function on its Riemann surface

The image on the left of Fig. 15 (reproduced from [32] with permission) shows such
a surface composed of five sheets.

Another (more specialized) approach to automated computation of Riemann sur-
faces of algebraic curves is described in Stefan Kranich’s PhD thesis [24]. The image
on the right of Fig. 15 is the Riemann surface of the folium of Descartes, defined
implicitly by the equation z3 + w3 − 3zw = 0 (reprinted in scaled form with per-
mission).
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Fig. 15 Automatically generated Riemann surfaces

Fig. 16 Canonical embedding of planar graphs via Belyi functions

A general point-based algorithm for rendering implicit surfaces inR4 using inter-
val arithmetic for topological robustness and (phase) coloring as substitute for the
fourth dimension is described by Bordignon et al. [7].

4.4 Belyi Functions

A planar graph can be embedded in the (complex) plane in many different ways.
Given one such embedding (like the one on the left-hand side of Fig. 16), one may
askwhether it can be continuously deformed into a “canonical shape”without chang-
ing the vertex–edge relation and with no crossings throughout this whole process.
Surprisingly, such a representation exists (depicted on the right of Fig. 16). A theo-
rem due to Gennadii Belyi [6] tells us that every planar graph G can be represented
by a rational function R (in the special class of so-called Belyi functions) with the
following properties: The zeroes of R are exactly the vertices of G (red points) and
the edges of G (black lines) are the preimages of the interval [0, 1] under R. In every
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face of G there is exactly one pole of R (white points) and the preimages of [1,+∞]
(white lines) connect the poles to one point (gray) on each of the edges bounding the
face containing that pole. (The area outside the graph is considered to be a face with
its pole at infinity.) Moreover, all edges run into a vertex with equal angles between
neighboring edges and the (white) lines originating at the poles intersect the edges
perpendicularly. Last but not least, every face is the basin of attraction (see Sect. 3
and [48]) of the associated pole (with respect to the reverse phase flow).

The actual computation of the Belyi function associated with a given graph is a
challenging problem. Donald Marshall developed an approach via conformal weld-
ing [27, 28] and implemented it using his software Zipper [29, 30]. I am grateful to
him for providing the coefficients of the Belyi function shown in Fig. 16.

4.5 Filters and Controllers

In signal and control theory (linear, causal, time invariant, and stable) systems are
described by transfer functions, which are analytic in the right half plane. In practice,
most transfer functions are rational functions with poles in the left half plane. In the
frequency domain the system acts on an input as multiplication operator with its
transfer function T . In particular, the frequency response T (iω) tells one what the
system does with harmonic input signals eiωt : The values |T (iω)| and arg T (iω) are
the gain and the phase shift induced by the system operating at frequency ω.

The phase plot on the left of Fig. 17 is the transfer function of a Butterworth
filter—a low pass filter, which damps high frequency signals. This can be seen from
its frequency response on the imaginary axis: the white segment is the passband
where |T (iω)| ≈ 1, in the stopband (black) |T (iω)| decays for increasing values of
ω. Using the contour lines and the phase coloring one can read off the frequency
response directly from the phase plot of T and, for instance, construct Bode and
Nyquist plots.

Santiago Garrido and Luis Moreno [15] developed more elaborate techniques
involving phase plots for designing controllers. The two images in the middle and

Fig. 17 Design of filters and controllers



Visual Exploration of Complex Functions 269

on the right of Fig. 17 show some screenshots from their software (I am grateful to
the authors for providing these images).

4.6 Numerical Algorithms

In recent years, domain coloring techniques have proven useful tools in analyzing
numerical algorithms. Compared with numerical values, like the norm of the error
(function) of an approximate solution, images deliver much more structural infor-
mation. This may, for instance, improve the understanding of the method’s global
behavior. A further advantage of phase plots is the high sensitivity of the phase ψ(z)
for small values of z, which lets them act as a looking glass focused at the origin.

4.6.1 Iterative Methods

Numerical methods often use iterative procedures to find successively better approx-
imations to solutions of a problem. There are many options to display relevant infor-
mation about the global behavior of these methods. In order to demonstrate how
coloring techniques can be used in this context, we consider zero finding for a com-
plex function f (for a more detailed exposition see Varona [45]).

Most iterative methods start with an initial value z0 and calculate z1, z2, . . . recur-
sively by

zk+1 = zk − λk f (zk), (4.1)

where λk is a parameter which may be constant (Whittaker’s method) or depend-
ing on zk . For λk := 1/ f ′(zk) we get the popular Newton method which converges
(locally) quadratically. A skillful choice of λk leads to an accelerated convergence
of the approximating sequence. For example, the “double convex acceleration of
Whittaker’s method” (DCAW method) uses the iteration formula (see [18, 45])

zk+1 = zk − f (zk)

2 f ′(zk)

[
1 − g(zk) + 1 + g(zk)

1 − g(zk)
(
1 − g(zk)

)
]

,

where g(z) = f (z) f ′′(z)/
(
2 f ′(z)2

)
. This method has convergence order 3.

Figure18 displays the results of some experiments for solving f (z) := z5 − 1 = 0
by the recursion (4.1). We see the fourth iterate z4 (upper row) and the residue f (z4)
(lower row) as functions of the initial point z0 for different methods, namely (from
left to right) Whittaker’s method with λ = 0.15, Newton’s method, an accelerated
Whittaker method (see [45]), and the DCAW method.

The pictures in the upper row are plain phase plots, showing the emanating basins
of attraction of the zeros; the five dominating colors correspond to the phase of these
zeros. In the lower row we used domain coloring, encoding the modulus by a gray
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Fig. 18 Iterates and residues for several zero-finding methods

scale, to get a better feeling for the magnitude of the residue. In the (almost) black
regions the absolute value of f (z4) is in the range of 10−15, in the bright domains
the iterates converge to the point at infinity.

4.6.2 Numerical Differentiation

As another simple example, we consider approximations of the first derivative of a
function f by the difference quotients

f1(z) := f (z + h) − f (z)

h
, f2(z) := f (z + h) − f (z − h)

2h
,

f3(z) := f (z + ih) − f (z − ih)

2ih
, f4(z) := f2(z) + f3(z)

2
.

Figure19 shows phase plots of the error functions f ′ − fk (k = 1, 2, 3, 4) for
f (z) = 1/z with h = 10−3 (first row) and h = 10−5 (second row). What do we see
here?

The difference quotients fk approximate f ′ with order hn , where n = 1, 2, 2, 4
for k = 1, 2, 3, 4, respectively. A straightforward computation using Taylor series
then shows that the error function satisfies

ek(z) := fk(z) − f ′(z) = ck hn f (n+1)(z) + O(hn+1)

so that we basically should see a phase plot of ck f (n+1)(z) = ck(−z)−n−2. This is
indeed the case in the first three pictures for h = 10−3. For f4 the error is already
so small, that rounding effects (cancelation of digits) manifest themselves near the
boundary. For h = 10−5, similar effects can also be observed for e2 and e3, while
in the fourth picture the error function e4 is completely dominated by noise (for a
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Fig. 19 Error functions for numerical differentiation

Fig. 20 Evaluation of Cauchy integrals

computer expert the emerging structure may reveal information about the imple-
mented arithmetic).

The most interesting observation is that one can read off the approximation order
n directly: applying the method to f (z) = z−1, the resulting phase plot shows a pole
of order n + 2 at the origin. Similar types of experiments can be designed for other
approximation methods.

4.6.3 Numerical Integration

Evaluation of integrals is another topic which can nicely be illustrated and studied
using phase plots. In Fig. 20, we demonstrate this for a Cauchy integral of an analytic
function f . The exact values of the integral are displayed in the figure on the left-hand
side. Outside the contour of integration the integral vanishes, at points z surrounded
by the contour its values are equal to k f (z), where k is the winding number of the
contour about z (here k is either 1 or 2).
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The other two figures show approximations of the integral, evaluated by the trape-
zoidal rule with 200 and 1200 nodes, respectively.We see poles, sitting at the contour
of integration, induced by the pole of the Cauchy kernel. The gear-like pattern in the
exterior domain has almost parallel isochromatic lines, indicating rapid decay of the
function (in the direction perpendicular to the contour); it is bounded by a chain of
zeros aligned along the contour of integration. This chainmay be related to Jentzsch’s
theorem and its generalizations ([8, 20, 46]).

Austin, Kravanja and Trefethen [1] used phase plots in order to compare different
methods (Cauchy integrals, polynomial and rational interpolation) for computing val-
ues f (z) and f (m)(z) of analytic and meromorphic functions in a disk from samples
at the boundary of that disk.

4.6.4 Padé Approximation

Phase plots of rational functions can “visually approximate” any image, drawn solely
with saturated colors from the hsv color wheel (for a precise statement see [50]).
Particularly nice images arise from rational functions with zeros and poles forming
special patterns, as it happens, for instance, in Padé approximation. In turn, these
images may help to understand special aspects of these approximations.

The first row of Fig. 21 shows the function f (z) = tan z4 to be approximated
(left), and two Padé approximants of order [100, 100]. The function depicted in the
middle is computed by a standard method, the function on the right is the output
of a stabilized (“robust”) algorithm developed by Gonnet et al. [17]. Though the
pictures can barely be distinguished, the structural differences become obvious in
the next two rows, depicting phase plots of the numerator polynomial p (left) and
the denominator polynomial q (middle), as well as the error function f − f[100,100]
(right). The upper row corresponds to the standard algorithm, while the lower row
visualizes the output of the stabilized algorithm. Apparently the first one produces
a lot of spurious zeros in both polynomials p and q, which are (almost) canceled in
the quotient p/q.

The black line in the error plots on the right-hand side is the unit circle. The
almost(!) unstructured part in the middle (the influence of the zero-pole-cancelation
is seen here) is due to small fluctuations about zero.

The computations are performed with the Matlab routine padeapprox of the
Chebfun toolbox (for details see [17]).

4.6.5 Differential Equations

Numerous classes of special functions (Bessel, Airy, hypergeometric, etc.) arise as
solutions of second order ordinary differential equations (ODEs). Computing these
functions often requires elaborate numerical methods. A particularly hard case is
given by the six Painlevé equations, which are prototypes of equations
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Fig. 21 Padé approximation of f (z) = tan z4

u′′ = F
(
z, u, u′) ,

where F is a rational function of its arguments, and have single-valued solutions u
for all choices of their two initial conditions.

Solutions of Painlevé equations often have widely scattered poles, which were for
a long time perceived as “numerical mine fields.” Only in 2011, the first effective
numerical algorithm for calculating their solutions was described by Bengt Fornberg
and Andre Weideman [14].

Figure22 shows special solutions of the Painlevé I (left) and Painlevé II equation
(right), computed by Fornberg and Weideman (I am grateful to the authors for pro-
viding the data). The phase plot does not only deliver much more information than
the plain zero-pole-pattern usually displayed in texts about Painlevé equations—one
does not even need compute the zeros and poles, they show up automatically.
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Fig. 22 Solutions of the Painlevé I and II equations

Fig. 23 Rational harmonic functions in gravitational lensing

4.7 Gravitational Lensing

Though phase plots allow one only to reconstruct meromorphic functions (almost)
uniquely, they may nevertheless help to explore more general classes of functions.
As an example we consider a problem involving rational harmonic functions which
arises in gravitational lensing.

In 2006, Dmitri Khavinson and Genevra Neumann [22] proved that functions of
the form f (z) = r(z) − z, where r is a rational function of degree n ≥ 2, can have
at most 5n − 5 zeros. That this bound is sharp follows from an example given by the
astrophysicist Sun Hong Rhie in 2003. In the context of her paper [35], the zeros of
f represent the images produced from a single light source by a gravitational lens
formed by n point masses, located at the n poles of r(z).

The picture on the left of Fig. 23 is a phase plot of Rhie’s example for n = 8,
having 35 zeros. Due to the term z, the function f is not meromorphic, and hence
a pure phase plot does not depict all properties one is interested in. The modified
color scheme of the image allows one to read off where the mapping z �→ f (z)
is orientation preserving (brighter colors) or orientation reserving (darker colors).
This is important to distinguish between zeros and poles: in the brighter regions the
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orientation of colors near a zero of f is the same as in the color wheel; in the darker
regions the orientation is reversed.

Rhie’s example was highly symmetric, and it is very unlikely that heavy cosmic
objects (galaxies) form such a pattern. So it was greatly appreciated by the com-
munity of astrophysicists when Robert Luce, Olivier Sète and Jörg Liesen [37, 38]
found a more general recursive construction of maximal gravitational lenses with-
out symmetry. Phase plots played a prominent role in their investigations see [25].
The two images on the right of Fig. 23 (provided by the authors) illustrate how five
zeros emerge from introducing an additional pole near a former zero located in the
orientation preserving region of f .

4.8 The Riemann Zeta Function

Without doubt theRiemannZeta function is one of themost fascinatingmathematical
objects. A reformulation of Bagchi’s general universality theorem ([2, 21]) implies
that its phase plot in the right half 1/2 < Re z < 1 of the critical strip is incredibly
colorful (see [53]). Figure24 displays a collection of phase plots of Zeta in the critical
strip. Each rectangle has width 1 and covers about 20 units in the direction of the
imaginary axis, with some overlap between neighboring rectangles. Since our visual
system is trained in pattern detection, it usually does not take long until one discovers
a diagonal structure. This observation inspired Jörn Steuding and me to study mean
values of the Zeta function on (vertical) arithmetic progressions. Sampling ζ at points
with fixed distance d, we expected that the asymptotic behavior of the mean values
should be nontrivial if d is in resonance with the observed stochastic period. This
could be confirmed by the following result from our paper [41].

Theorem 4.1 Fix s ∈ C \ {1} with 0 < σ := Re s ≤ 1, t := Im s ≥ 0, and let d =
2π/ logm, where m ≥ 2 is an integer. Then, for M → +∞,

1

M

∑
0≤k<M

ζ(s + ik d) = 1

1 − m−s
+ O(M−σ log M).

Fig. 24 The Riemann Zeta function in the critical strip
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Fig. 25 A color scheme for generating stream lines

We point out that this result does not really explain the observed stripes (which
correspond to d = 2). To do this, one should consider mean values of the phase of
Zeta instead of Zeta itself—another challenging problem ….

5 Concluding Remarks

Visualization of complex functions may facilitate new views on known results, raise
interesting questions at all levels of difficulty, and, as the last example has shown,
may inspire research.

Besides phase plots and standard domain coloring many other color schemes may
be useful to illustrate and investigate special features of a function. So the striped
patterns in Fig. 25 are convenient to display flow lines, while the chess-board-like
structures in Fig. 26 are more appropriate to visualize conformal mappings. In this
figure, the domain of the mapping is displayed in the upper row, while the lower row
shows the corresponding image domains.

Cristina Ballantine and Dorin Ghisa [3, 4] used very beautiful color schemes
to visualize Blaschke products, and Ghisa [16] analyzes several special functions
(including the Gamma function and Riemann’s Zeta function) using their coloring
techniques.

Going a step further, one can put any image in the range plane of a complex
function and pull it back to the domain, which may have fascinating and appealing
results. For some masterpieces (and the theoretical background) we refer to Frank
Farris work [12, 13].

Applications of phase plots in teaching comprise the visualization of converging
power series, Weierstrass’ disk chain method, Riemann surfaces, and other topics of
standard lectures on complex functions. With dynamic phase plots one can interac-
tively study the dependence of functions on parameters—such hands-on approaches
allow students to become familiar with abstract concepts by doing their own exper-
iments.
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Fig. 26 Color schemes for visualizing conformal mappings

A comprehensive teaching-oriented introduction to complex functions and phase
plots is given in the author’s textbook [49]. A mathematical calendar featuring this
theme can be downloaded at [54].

Matlab software for generating phase plots and colored analytic landscapes on
plain domains and the Riemann sphere with various color schemes is available at the
Matlab exchange platform [51, 52]. For implementations in Mathematica, we refer
to Thaller [42], Trott [44], Sandoval-Romero and Hernández-Garduño [36], and
Shaw [39]. Visual Basic code can be downloaded from Larry Crone’s website [9]. A
stand-alone Java implementationof phase plots of elementary functions is available as
part of the Cinderella project by Ulrich Kortenkamp and Jürgen Richter-Gebert [23].
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Integral Transform Approach
to Time-Dependent Partial Differential
Equations

Karen Yagdjian

Abstract In this review, we present an integral transform that maps solutions of
some class of the partial differential equations with time independent coefficients to
solutions of more complicated equations, which have time-dependent coefficients.
We illustrate this transform by applications to several model equations. In particular,
wegive applications to the generalizedTricomi equation, theKlein–Gordon andwave
equations in the curved spacetimes such as Einstein-de Sitter, de Sitter, anti-de Sitter,
and the spacetimes of the black hole embedded into de Sitter universe.

Keywords Generalized Tricomi equation · de Sitter spacetime · Einstein-de Sitter
spacetime · Global solutions · Strauss exponent
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1 Introduction

In this review, we present an integral transform that maps solutions of some class
of the partial differential equations with time independent coefficients to solutions
of more complicated equations, which have coefficients depending on time in some
specific way. That integral transform leads to representation formulae, which for
many equations exhaust all solutions. We also give survey of some results which
were obtained by means of those representation formulas. That transform was used
in a series of papers [28–31, 33, 84–95] to investigate in a unified way several
equations such as the linear and semilinear Tricomi equations, Gellerstedt equation,
the wave equation in Einstein-de Sitter spacetime, the wave and the Klein–Gordon
equations in the de Sitter and anti-de Sitter spacetimes. The listed equations play
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an important role in the gas dynamics, elementary particle physics, quantum field
theory in curved spaces, and cosmology.

Consider for the smooth function f = f (x, t) the solution w = w(x, t; b) to the
problem

wtt − A(x, ∂x)w = 0, w(x, 0; b) = f (x, b), wt(x, 0; b) = 0, t ∈ [0, T1] ⊆ R, x ∈ � ⊆ R
n,

(1.1)

with the parameter b ∈ I = [t0, T ] ⊆ R, t0 < T ≤ ∞, and with 0 < T1 ≤ ∞. Here
� is a domain in R

n, while A(x, ∂x) is the partial differential operator A(x, ∂x) =∑
|α|≤m aα(x)Dα

x . For M ∈ C, we are going to present the integral operator

K[w](x, t) = 2
∫ t

t0

db
∫ |φ(t)−φ(b)|

0
K(t; r, b; M)w(x, r; b)dr, x ∈ �, t ∈ I,

(1.2)
which maps the function w = w(x, r; b) into solution u = u(x, t) of the equation

utt − a2(t)A(x, ∂x)u − M2u = f , x ∈ �, t ∈ I. (1.3)

In fact, the function u = u(x, t) takes initial values as follows

u(x, t0) = 0, ut(x, t0) = 0, x ∈ � .

Here φ = φ(t) is a distance function produced by a = a(t), that is φ(t) =∫ t
t0

a(τ ) dτ , while M ∈ C is a constant. Moreover, we also give the correspond-
ing operators, which generate solutions of the source-free equation and takes non-
vanishing initial values. These operators are constructed in [87, 88] in the case
of A(x, ∂x) = �, where � is the Laplace operator on R

n, and, consequently, the
Eq. (1.1) is the wave equation. More general equations with x-dependent coefficients
are treated in [33]. In the present review, we restrict ourselves to the smooth func-
tions, but it is evident that similar formulas, with the corresponding interpretations,
are applicable to the distributions as well. (For details see, e.g., [87].)

In order to motivate our approach, we consider the solution w = w(x, t; b) to the
Cauchy problem

wtt − �w = 0, (t, x) ∈ R
1+n, w(x, 0; b) = ϕ(x, b), wt(x, 0; b) = 0, x ∈ R

n,

(1.4)

with the parameter b ∈ I ⊆ R. We denote that solution by wϕ = wϕ(x, t; b); if ϕ is
independent of the second time variable b, then we write simply wϕ(x, t). There are
well-known explicit representation formulas for the solution of the problem (1.4).
(See, e.g., [75].)

The starting point of the integral transform approach suggested in [84] is the
Duhamel’s principle (see, e.g., [75]), which has been revised in order to prepare the
ground for generalization. Our first observation is that the function
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Fig. 1 a Case of wave
equation A(x, ∂x) = �

b Case of general A(x, ∂x)

u(x, t) =
∫ t

t0

db
∫ t−b

0
wf (x, r; b) dr , (1.5)

is the solution of the Cauchy problem utt − �u = f (x, t) in R
n+1, and u(x, t0) = 0,

ut(x, t0) = 0 in R
n , if the function wf = wf (x; t; b) is a solution of the problem

(1.4), where ϕ = f . The second observation is that in (1.5) the upper limit t − b of
the inner integral is generated by the propagation phenomena with the speed which
equals to one. In fact, that is a distance function. Our third observation is that the
solution operator G : f �−→ u can be regarded as a composition of two operators.
The first one

WE : f �−→ w

is a Fourier Integral Operator, which is a solution operator of the Cauchy problem
for wave equation. The second operator

K : w �−→ u

is the integral operator given by (1.5).We regard the variableb in (1.5) as a “subsidiary
time”. Thus, G = K ◦ WE and we arrive at the diagram of Fig. 1.

Based on the first diagram, we have generated in [89] a class of operators for
which we have obtained explicit representation formulas for the solutions, and, in
particular, the representations for the fundamental solutions of the partial differential
operator. In fact, this diagram brings into a single hierarchy several different partial
differential operators. Indeed, if we take into account the propagation cone by intro-
ducing the distance function φ(t), and if we provide the integral operator (1.5) with
the kernel K(t; r, b; M), as in (1.2), then we actually generate new representations
for the solutions of different well-known equations with x-independent coefficients.
(See, for details, [89].)

Our fourth observation is that if we plug into (1.5) the solution w = w(x; t; b)

of the Dirichlet problem for the elliptic equation wtt + �w = 0, (t, x) ∈ R
1+n,

w(x, 0; b)= f (x, b), x ∈R
n, then the integral (1.5) defines the solution u of the equa-

tion utt + �u = f (x, t)+ ∫ t
tin

wt(x; 0; b) db, such that u(x, tin)= 0, ut(x, tin)= 0.
Thus, the integral (1.5), regarded as an integral transform, can be used for elliptic
equations as well. That integral transform is interesting in its own right. If we want
to remove the integral of the right-hand side of the equation, then we have to restrict
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ourselves to some particular functions f since the Cauchy problem wtt + �w = 0,
w(x, 0; b) = f (x, b), wt(x, 0; b) = 0, is solvable, even locally, not for every, even
smooth, function f .

Moreover, in [93, 95] we extended the class of the equations for which we can
obtain explicit representation formulas for the solutions, by varying the firstmapping.
More precisely, consider the diagram (b) of Fig. 1, where w = wA,ϕ(x, t; b) is a
solution to the problem (1.1) with the parameter b ∈ I ⊆ R. If we have a resolving
operator of the problem (1.1), then, by applying (1.2), we can generate solutions of
another equation. Thus,GA = K ◦ EEA. The newclass of equations contains operators
with x-depending coefficients, and those equations are not necessarily hyperbolic.

We believe that the integral transform and the representation formulas for the
solutions that we describe in this article fill up the gap in the literature on that topic.

2 Linear Equations in the de Sitter Spacetime

Now let us restrict ourselves to the Klein–Gordon equation in the de Sitter spacetime,
that is a(t) = e−t in (1.3). Recently the equations in the de Sitter and anti-de Sitter
spacetimes became the focus of interest for an increasing number of authors (see,
e.g., [1, 5–8, 11–20, 23, 32, 43–49, 59–61, 67, 79, 80, 92] and the bibliography
therein) which investigate those equations from a wide spectrum of perspectives.
The creation of a tool for the investigation of the local and global solvability in
the problems for these linear and nonlinear equations appears to be a worthwhile
undertaking.

To formulate the main result of this paper we need the following notations. First,
we define a chronological future D+(x0, t0) and a chronological past D−(x0, t0) of the
point (x0, t0), x0 ∈ R

n, t0 ∈ R, as follows: D±(x0, t0) := {(x, t) ∈ R
n+1 ; |x − x0| ≤

±(e−t0 − e−t) }. Then, for (x0, t0) ∈ R
n × R, M ∈ C, we define the function

E(x, t; x0, t0; M) := 4−MeM(t0+t)
(
(e−t0 + e−t)2 − (x − x0)

2
)M− 1

2
(2.6)

×F
(1
2

− M,
1

2
− M; 1; (e−t0 − e−t)2 − (x − x0)2

(e−t0 + e−t)2 − (x − x0)2

)
,

where (x, t) ∈ D+(x0, t0) ∪ D−(x0, t0) and F
(
a, b; c; ζ

)
is the hypergeometric func-

tion. (For definition of the hypergeometric function, see, e.g., [9].) When no ambigu-
ity arises, like in (2.6), we use the notation x2 := |x|2 for x ∈ R

n. Thus, the function
E depends on r2 = (x − x0)2, that is E(x, t; x0, t0; M) = E(r, t; 0, t0; M). Accord-
ing to Theorem 2.12 [93], the function E(r, t; 0, t0; M) solves the following one-
dimensional Klein–Gordon equation in the de Sitter spacetime:

Ett(r, t; 0, t0; M) − e−2tErr(r, t; 0, t0; M) − M2E(r, t; 0, t0; M) = 0 .
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The kernels K0(z, t; M) and K1(z, t; M) are defined by

K0(z, t; M) := −
[

∂

∂b
E(z, t; 0, b; M)

]

b=0

, (2.7)

K1(z, t; M) := E(z, t; 0, 0, M) . (2.8)

The Eq. (1.3) is said to be an equation with imaginary (real) mass ifM2 > 0 (−M2 ≥
0); here M ∈ C. From now on we assume that aα ∈ C(�). For the Klein–Gordon
equation (1.3) we have the following result.

Theorem 2.1 ([93]) For f ∈ C(� × I), I = [0, T ], 0 < T ≤ ∞, and ϕ0, ϕ1 ∈
C(�), let the function vf (x, t; b) ∈ Cm,2,0

x,t,b (� × [0, 1 − e−T ] × I) be a solution to
the problem

{
vtt − A(x, ∂x)v = 0 , x ∈ �, t ∈ [0, 1 − e−T ] ,

v(x, 0; b) = f (x, b) , vt(x, 0; b) = 0 , b ∈ I, x ∈ �,
(2.9)

and the function vϕ(x, t) ∈ Cm,2
x,t (� × [0, 1 − e−T ]) be a solution of the problem

{
vtt − A(x, ∂x)v = 0, x ∈ �, t ∈ [0, 1 − e−T ] ,

v(x, 0) = ϕ(x), vt(x, 0) = 0 , x ∈ � .
(2.10)

Then the function u = u(x, t) defined by

u(x, t) = 2
∫ t

0
db
∫ φ(t)−φ(b)

0
vf (x, r; b)E(r, t; 0, b; M) dr + e

t
2 vϕ0 (x, φ(t)) (2.11)

+ 2
∫ φ(t)

0
vϕ0 (x, s)K0(s, t; M)ds + 2

∫ φ(t)

0
vϕ1 (x, s)K1(s, t; M)ds, x ∈ �, t ∈ I ,

where φ(t) := 1 − e−t , solves the problem

{
utt − e−2tA(x, ∂x)u − M2u = f , x ∈ �, t ∈ I,

u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x), x ∈ � .
(2.12)

Here the kernels E, K0 and K1 have been defined in (2.6), (2.7) and (2.8), respectively.

Wenote that the operatorA(x, ∂x) is of arbitrary order, that is, the equation of (2.12)
can be an evolution equation, not necessarily hyperbolic. Then, the problems in (2.9)
and (2.12) can be a mixed initial-boundary value problem involving the boundary
condition. Indeed, assume that � ⊂ R

n is domain with smooth boundary ∂�, and
that ν = ν(x) is a unit normal vector. Let α = α(x) and β = β(x) be continuous
functions, α, β ∈ C(∂�). If v = v(t, x) satisfies the boundary condition

α(x)v(x, t) + β(x)∂νv(x, t) = 0 for all t ∈ [0, 1 − eT ], x ∈ ∂� ,
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then the function u = u(x, t) fulfills the same boundary condition

α(x)u(x, t) + β(x)∂νu(x, t) = 0 for all t ∈ I, x ∈ ∂� .

Next, we stress that interval [0, 1 − e−T ] ⊆ [0, 1], which appears in (2.9), reflects
the fact that de Sitter model possesses the horizon [38]; existence of the horizon in the
de Sitter model is widely used to define an asymptotically de Sitter space (see, e.g.,
[7, 79]) and to involve geometry into the analysis of the operators on the de Sitter
space (see, e.g., [10, 59, 64, 78]).

The special case of Theorem 2.1, when A(x, ∂x) = �, one can find in [87, 88].
The case of the anti-de Sitter spacetime is discussed in [82]. The proof given in those
papers is based on the well-known explicit representation formulas for the wave
equation, the Riemann function, the spherical means, and the Asgeirsson’s mean
value theorem. The main outcome, resulting from the application of all those tools,
is the derivation of the final representation formula and the kernels E, K0, and K1.
Having in the hand the integral transform and the final formulas, the straightforward
proof by substitution, which works also for the equations with coefficients depending
on x, is given in [93].

Amongpossible applications of the integral transformmethod are theLp − Lq esti-
mates, Strichartz estimates, Huygens’ principle, global and local existence theorem
for semilinear and quasilinear equations. Below, we give examples of the equations
with the variable coefficients those are amenable to the integral transform method.

Example 1 Themetric g in the de Sitter type spacetime, that is, g00 = g00 = − 1, g0j =
g0j = 0, gij(x, t)= e2tσij(x), |g(x, t)| = e2nt| det σ(x)|, gij(x, t)= e−2tσ ij(x), i,
j = 1, 2, . . . , n, where

∑n
j=1 σ ij(x)σjk(x) = δik , and δij is Kronecker’s delta. The lin-

ear covariant Klein–Gordon equation in the coordinates is

ψtt − e−2t

√| det σ(x)|
n∑

i,j=1

∂

∂xi

(√| det σ(x)|σ ij(x)
∂

∂xj
ψ

)
+ nψt + m2ψ = f .

Here m is a physical mass of the particle. If we introduce the new unknown
function u = ent/2ψ , then the equation takes the form of the Klein–Gordon equation

utt − e−2t

√| det σ(x)|
n∑

i,j=1

∂

∂xi

(√| det σ(x)|σ ij(x)
∂

∂xj
u

)
+ M2u = f ,

where M2 = m2 − n2

4 is the square of the so-called curved (or effective) mass. For
the last equation we set

A(x, ∂x)u = 1√| det σ(x)|
n∑

i,j=1

∂

∂xi

(√| det σ(x)|σ ij(x)
∂

∂xj
u

)
.
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If� = � is a non-Euclidean space of constant negative curvature and the equation
of the problems (2.9) and (2.10) is a non-Euclidean wave equation, then the explicit
representation formulas are known (see, e.g., [40, 51]) and the Huygens’ principle is
a consequence of those formulas. Thus, for a non-Euclidean wave equation, due to
Theorem 2.1, the functions vf (x, t; b) and vϕ(x, t) have explicit representations, and
the arguments of [87, 94] allow us to derive for the solution u(x, t) of the problem
(2.12) in the de Sitter type metric with hyperbolic spatial geometry the explicit
representation, theLp − Lq estimates, and to examine theHuygens’ principle. Precise
statements will be published in the forthcoming paper.

Example 2 This example we introduce as a toy model, which helps to understand
the properties of the black hole formally embedded in the de Sitter universe. The

metric tensor gμν is generated by line element ds2 = −
(
1 − 2GMbh

c2r

)
c2dt2 +

e
2ct
R

(
1 − 2GMbh

c2r

)−1

dr2 + e
2ct
R r2(dθ2 + sin2 θ dφ2). The Ricci tensor of that

background is

Rμν = 3(
1 − 2GM

c2r

)
R2

⎛
⎜⎜⎜⎜⎝

−c2
(
1 − 2GM

c2r

)
2RGM
3cr2 0 0

2RGM
3cr2 e

2ct
R

1(
1− 2GM

c2r

) 0 0

0 0 e
2ct
R r2 0

0 0 0 e
2ct
R r2 sin2(θ)

⎞
⎟⎟⎟⎟⎠

,

while the the Riemannian curvature isR = 12

R2
(
1− 2GM

c2r

) . Hence,

Rμν = R
4

⎛
⎜⎜⎜⎜⎝

−c2
(
1 − 2GM

c2r

)
2RGM
3cr2 0 0

2RGM
3cr2 e

2ct
R

1(
1− 2GM

c2r

) 0 0

0 0 e
2ct
R r2 0

0 0 0 e
2ct
R r2 sin2(θ)

⎞
⎟⎟⎟⎟⎠

.

The Einstein tensor Gμν := Rμν − 1
2Rgμν for this metric is or

Gμν = −R
4
gμν − R

4

⎛
⎜⎜⎝

0 R 2GM
3cr2 0 0

R 2GM
3cr2 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

The metric g is an asymptotically Einstein metric, in the sense that

Rμν = (k + O(r−1))gμν + O(r−2) .
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At the same time, the metric g is an asymptotically hyperbolic (de Sitter) metric,
in the sense that

Rμν = k(r)gμν + O(r−2) , as r → ∞ .

The stress–energy tensor T can be calculated as follows

8πG

c4
T = Gμν + �gμν = Rμν − 1

2
Rgμν + �gμν , � = 3

R2
.

Hence,

8πG

c4
T = −R

4

2GM

c2r
gμν − R

4

2GM

c2r

⎛
⎜⎜⎝

0 cR
3r 0 0

cR
3r 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Consequently, T is of Type II (see, [38, p. 89]). It is evident that the weak energy
condition, that is

Tμνuμuν ≥ 0 for all time-like vectors u ,

is not satisfied unless u0u1 ≤ 0. But according to the next lemma it is satisfied on
some conic set consisting of the time-like vectors with u0u1 ≥ 0. Thus, the following
lemma addresses the weak energy condition (see, e.g., [38, p. 89], [17, p. 51]).

Lemma 2.2 The set of all vectors u such that Tμνuμuν ≥ 0 contains all time-like
vectors with u0u1 < 0 as well as a conic set of vectors with u0u1 > 0 and satisfying

c2
(
1 − 2GM

c2r

)
(u0)2 − e

2ct
R

(
1 − 2GM

c2r

)−1

(u1)2

×
(

R

3r
e

−ct
R +
√(

R2

9r2
e

−2ct
R + 1

)
+
(
1 − 2GM

c2r

)
r2
(
(u2/u1)2 + (u3/u1)2 sin2(θ)

))2
> 0 .

Proof The lemma can be proved by straightforward calculations. �

The stress–energy tensor is

8πG

c4
Tμν = R

4

2GM

c2r

⎛
⎜⎜⎜⎝

c2(1 − 2GM
c2r ) − cR

3r 0 0
− cR

3r −e
2ct
R

1
(1− 2GM

c2r
)

0 0

0 0 −e
2ct
R r2 0

0 0 0 −e
2ct
R r2 sin2(θ)

⎞
⎟⎟⎟⎠ .



Integral Transform Approach to Time-Dependent Partial Differential Equations 289

The eigenvalues of the stress–energy tensor are as follows

λ1 = R
4

2GM

c2r

(
− 1

2α

(
e

2ct
R − c2α2

)
+
√

1

4α2

(
e

2ct
R + c2α2

)2 + c2R2

9r2

)
,

λ2 = R
4

2GM

c2r

(
− 1

2α

(
e

2ct
R − c2α2

)
−
√

1

4α2

(
e

2ct
R + c2α2

)2 + c2R2

9r2

)
,

λ3 = R
4

2GM

c2r

(
−e

2ct
R r2
)

, λ4 = R
4

2GM

c2r

(
−e

2ct
R r2 sin2(θ)

)
,

where we denoted α := 1 − 2GM
c2r .

The following lemma addresses the dominant energy condition (see, e.g.,
[38, p. 91], [17, p. 51]).

Lemma 2.3 The vector −T ν
μuμ is time-like and future directed for all time-like

future directed vectors u, such that u0u1 ≤ 0. The conic set of all future directed
vectors u, such that u0u1 > 0 and −T ν

μuμ is time-like and future directed, contains
all vectors satisfying

c2
(
1 − 2GM

c2r

)
(u0)2 − e

2ct
R

(
1 − 2GM

c2r

)−1

(u1)2

×
⎛
⎜⎝ 2e− ct

R R

3
(
1 − e− 2ct

R R2

9r2

)
r

+
√√√√√

4e− 2ct
R R2

9
(
1 − e− 2ct

R R2

9r2

)2
r2

+ 1

⎞
⎟⎠

2

≥ 0 .

Proof The lemma can be proved by straightforward calculations. �

Hence, we have an asymptotically dominant energy condition: for every ε > 0
there is sufficiently large M(ε) > 0 such that, for every “ε-time-like vector” u such
that u0u1 > 0 and

−
(
1 − 2GM

c2r

)
c2(u0)2 + (1 + ε)e

2ct
R

(
1 − 2GM

c2r

)−1

(u1)2 < 0

the following inequality Tμνuμuν ≥ 0 holds for all t, r with sufficiently large t + r ≥
M(ε), more precisely,

1

9
(
1 − e− 2ct

R
R2

9r2

)2
r2

(
2e− ct

R R + 3

(
1 + e− 2ct

R
R2

9r2

)
r

)2
− 1 ≤ ε .
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In order to discuss the strong energy condition we calculate 8πG
c4 Tμ

μ = −4R
4

2GM
c2r .

Then

ραβ = R
4

2GM

c2r
gαβ − R

4

2GM

c2r

⎛
⎜⎜⎝

0 cR
3r 0 0

cR
3r 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Consider the radial case; we need

ρμνuμuν = R
4

2GM

c2r

(
− (u0)2c2(1 − 2GM

c2r
) − 2

cR

3r
u0u1 + (u1)2e

2ct
R

1

(1 − 2GM
c2r

)

)
≥ 0

and the time-like vector u:

gμνuμuν = −(u0)2c2(1 − 2GM

c2r
) + (u1)2e

2ct
R

1

(1 − 2GM
c2r )

< 0

Thus, even an asymptotically strong energy condition is violated. There are many
matter configurations which violate the strong energy condition. In particular, the
violation of the strong energy condition takes place for a scalar field in the de Sitter
expansion. (See, [25, Sect. 9.7.3])

The covariant wave equation in the black hole embedded in de Sitter universe
background is

−
(
1 − 2GMbh

c2r

)−1 1

c2
∂2ψ

∂t2
− 3

cR

(
1 − 2GMbh

c2r

)−1
∂ψ

∂t

+e− 2ct
R

{(
1 − 2GMbh

c2r

)
∂2ψ

∂r2
+ 2

r

(
1 − GMbh

c2r

)
∂ψ

∂r

+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂

∂φ

(
∂ψ

∂φ

)}
= 0 .

For ψ = ψ(r, t, θ, φ) we obtain the covariant wave equation (m = 0)

∂2ψ

∂t2
+ 3c

R

∂ψ

∂t
− c2e− 2ct

R

{(
1 − 2GMbh

c2r

)2
∂2ψ

∂r2
+ 2

r

(
1 − GMbh

c2r

)(
1 − 2GMbh

c2r

)
∂ψ

∂r

+
(
1 − 2GMbh

c2r

)
1

r2
�

S2ψ

}
= f .

The covariant Klein–Gordon equation is (m = 0)

∂2ψ

∂t2
+ 3c

R

∂ψ

∂t
− c2e− 2ct

R

{(
1 − 2GMbh

c2r

)2 ∂2ψ

∂r2
+ 2

r

(
1 − GMbh

c2r

)(
1 − 2GMbh

c2r

)
∂ψ

∂r

+
(
1 − 2GMbh

c2r

)
1

r2
�
S2ψ

}
+ m2c4

h2
ψ − m2 2c2GMbh

h2r
ψ = 0 .
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For the large r (the far field) the equation is the wave equation in FLRW spacetime,
while the near field limit for small time is Schwarzschild.

Wemake change u = e
3c
2R tψ (ψ = e− 3c

2R tu) in thewave equation, then the covariant
wave equation became non-covariant wave equation

∂2u

∂t2
− c2e− 2ct

R

{(
1 − 2GMbh

c2r

)2
∂2u

∂r2
+ 2

r

(
1 − GMbh

c2r

)(
1 − 2GMbh

c2r

)
∂u

∂r

+
(
1 − 2GMbh

c2r

)
1

r2
�S2u

}
− 9c2

4R2
u = g ,

where g = e
3c
2R t f . This is the non-covariant Klein–Gordon equation with the imagi-

nary mass

utt − e− 2ct
R A(x, ∂x)u − M2u = 0 ,

were the curved mass is M = 3c
2R and

A(x, ∂x)u := c2
{(

1 − 2GMbh

c2r

)2
∂2u

∂r2

+ 2

r

(
1 − GMbh

c2r

)(
1 − 2GMbh

c2r

)
∂u

∂r
+
(
1 − 2GMbh

c2r

)
1

r2
�S2u

}
.

One can choose the unites, such that c/R = 1, then the non-covariant Klein–
Gordon equation became

utt − e−2tA(x, ∂x)u − M2u = 0 . (2.13)

Thus, we are in position to apply Theorem 2.1 and to reveal the properties of the
black hole in the de Sitter background.

Example 3 The Euler-Bernoulli beam equation with the variable coefficients is the
equation

ψtt + e−2t
n∑

i,j=1

∂2
xi

(
aij(x)∂2

xj
ψ
)

= f .

Here A(x, ∂x) =∑n
i,j=1 ∂2

xi
aij(x)∂2

xj
and we assume that

∑n
i,j=1 aij(x)ξiξj ≥ 0.
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3 The Generalized Tricomi Equation

In this subsection, we consider the generalized Tricomi equation. For a smooth
function f = f (x, t) consider the solution w = wA,f (x, t; b) to the problem

wtt − A(x, ∂x)w = 0, w(x, 0; b) = f (x, b), wt(x, 0; b) = 0, t ∈ [0, T1] ⊆ R, x ∈ �̃ ⊆ R
n,

(3.14)

with the parameter b ∈ I = [tin, T ] ⊆ R, 0 ≤ tin < T ≤ ∞, and with 0 < T1 ≤ ∞.
Here �̃ is a domain inRn, whileA(x, ∂x) is the partial differential operatorA(x, ∂x) =∑

|α|≤m aα(x)∂α
x with smooth coefficients, aα ∈ C∞( �̃). We are going to present the

integral operator

K[w](x, t) =
∫ t

tin

db
∫ |φ(t)−φ(b)|

0
K(t; r, b)w(x, r; b) dr, x ∈ �̃, t ∈ I, (3.15)

which maps the function w = w(x, r; b) into the solution u = u(x, t) of the gener-
alized Tricomi equation

utt − a2(t)A(x, ∂x)u = f , x ∈ �̃ , t ∈ I , (3.16)

wherea2(t) = t�, � ∈ C. In fact, the functionu = u(x, t) takes initial values as follows

u(x, tin) = 0, ut(x, tin) = 0, x ∈ �̃ .

In (3.15), φ = φ(t) is a distance function produced by a = a(t), that is φ(t) =∫ t
tin

a(τ ) dτ . Moreover, we also introduce the corresponding operators, which gener-
ate solutions of the source-free equation and take nonvanishing initial values. These
operators are constructed in [84] in the case of � > 0, A(x, ∂x) = �, �̃ = R

n, where
� is the Laplace operator on Rn, and, consequently, the Eq. (3.14) is the wave equa-
tion. In the present paper, we restrict ourselves to smooth functions, but it is easily
seen that similar formulas, with the corresponding interpretations, are applicable to
distributions as well.

Here we emphasize that the integral transformK is less singular than fundamental
solution (Green function) given by G since the operator WE takes an essential part
of singularities.

In this subsection we restrict ourselves to the generalized Tricomi equation, that is
a(t) = t�, � ∈ C. This class includes, among others, equations of a wave propagating
in the so-called Einstein-de Sitter (EdeS) universe and in the radiation dominated
universe with spatial slices of the constant curvature.

The transform linking to the generalized Tricomi operator is generated by the
kernel

K(t; r, b) = E(r, t; b; γ ) := c�

(
(φ(t) + φ(b))2 − r2

)−γ
F

(
γ, γ ; 1; (φ(t) − φ(b))2 − r2

(φ(t) + φ(b))2 − r2

)
,

(3.17)
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with the distance function φ = φ(t) and the numbers γ , c� defined as follows

φ(t) = 2

� + 2
t

�+2
2 , γ := �

2(� + 2)
, � ∈ C \ {−2}, c� =

(
� + 2

4

)− �
�+2

, (3.18)

while F
(
a, b; c; ζ

)
is the Gauss’s hypergeometric function. Here tin = 0.

According to Theorem 2.1 [95], the function E(r, t; b; γ ) solves the following
Tricomi-type equation:

Ett(r, t; b; γ ) − t�Err(r, t; b; γ ) = 0 , 0 < b < t . (3.19)

The proof of Theorem 2.1 [95], which is given in [95], is straightforward. This
theorem generalizes corresponding statement from [22]. In fact, that proof is applica-
ble to the different distance functions φ = φ(t), see, for instance, [93], where the
case of a(t) = e−t is discussed.

There are four important examples of equationswhich are amenable to the integral
transform approach, when � = 3, 1,−1,−4/3; those are the small disturbance equa-
tions for the perturbation velocity potential of a two-dimensional near sonic uniform
flow of dense gases in a physical plane (see, e.g., [48, 76]), the Tricomi equation
(see, e.g., [4, 13, 21, 27, 35, 36, 50, 52–54, 57, 58, 62, 65, 74, 77] and bibliography
therein), the equation of waves in the radiation dominated universe (see, e.g., [25,
37] and bibliography therein) and in the EdeS spacetime (see, e.g., [25, 37, 38, 63]
and bibliography therein), respectively.

To introduce the integral transform we need some special geometric structure of
the domains of functions.

Definition 3.1 The set � ⊆ R
n+1
+ is said to be backward time line-connected to

t = 0, if for every point (x, t) ∈ � the line segment {(x, s) | s ∈ (0, t] } is also in �;
that is {(x, s) | s ∈ (0, t]} ⊆ �.

Henceforth we just write “backward time connected” for such sets. Similarly,
if � ⊆ [0, T ] × R

n, T > 0, then one can define a forward time line-connected to
t = T set. The union and the intersection of the backward time connected sets are
also backward time connected. The interior and the closure of the backward time
connected set are also the backward time connected sets. For every set, there exists
its minimal backward time connected covering. The domain of the dependence for
the wave equation is backward time connected, while domain of influence is forward
time connected.

Definition 3.2 Let φ ∈ C(R+) be nonnegative increasing function and� be a back-

ward time connected set. The backward time connected set �φ ⊆ R
n+1
+ defined by

�φ :=
⋃

(x,t)∈�

{(x, τ ) | τ ∈ (0, φ(t)] }

is said to be a φ-image of �.
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Fig. 2 φ(t) = (2/(� + 2))t(�+2)/2, φ(t) + |x| ≤ 1, x ∈ [−1, 1], t ∈ [0, 2], � = 0,− 4
3 , 1, 3

Fig. 3 φ(t) = (2/(� + 2))t(�+2)/2, φ(t) + |x| ≤ 8, x ∈ [−8, 8], t ∈ [0, 18], � = 0,− 4
3 , 1, 3

Fig. 4 � and �φ with x0 = 1/2; � and �φ with x0 = 100

On Figs. 2, 3 we illustrate the dependence domains for hyperbolic equations with
� = 0,− 4

3 , 1, 3 and A(x, ∂x) = �.
Figure4 illustrates the part of the domain in the hyperbolic region of the Tricomi

problem (see, e.g., [52] and references therein) that has the form � := {(x, t) | |x| <

x0 − 2
3 t

3
2 , −x0 ≤ x ≤ x0, t > 0} for x0 = 1/2 and x0 = 100. Corresponding φ-

images of � are �φ := {(x, t) | |x| < x0 − ( 23
)5/2

t
9
4 , −x0 ≤ x ≤ x0} with x0 = 1/2

and x0 = 100, respectively.
The next theorem describes the main property of the integral transform (3.15).

We denote Ux0 a neighborhood of the point x0 ∈ R
n.

Theorem 3.3 ([95]) Let f = f (x, t) be a function defined in the backward time
connected domain �. Suppose that for a given (x0, t0) ∈ � the function w(x, r; b) ∈
Cm,2,0

x,r,t (Ux0 × [0, φ(t0)] × [0, t0]) solves the problem



Integral Transform Approach to Time-Dependent Partial Differential Equations 295

wrr − A(x, ∂x)w = 0 in Ux0 for all r ∈ (0, |φ(t0) − φ(b)|) , (3.20)

w(x, 0; b) = f (x, b) in Ux0 for all b ∈ (0, t0) . (3.21)

Then for � > −2 the function

u(x, t) = c�

∫ t

0
db
∫ |φ(t)−φ(b)|

0

(
(φ(t) + φ(b))2 − r2

)−γ
(3.22)

×F

(
γ, γ ; 1; (φ(t) − φ(b))2 − r2

(φ(t) + φ(b))2 − r2

)
w(x, r; b) dr,

defined in the past Ux0 × [0, t0) of Ux0 × {t0}, is continuous in Ux0 × [0, t0) and it
satisfies the equation

utt − t�A(x, ∂x)u = f (x, t) (3.23)

+ c�(φ
′(t))2
∫ t

0
(φ(t) + φ(b))−2γ F

(
γ, γ ; 1; (φ(t) − φ(b))2

(φ(t) + φ(b))2

)
wr(x, 0; b) db ,

in the sense of distributionsD′(Ux0 × (0, t0)). The function u(x, t) takes the vanishing
initial value u(x, 0) = 0 for all x ∈ Ux0 . Moreover, if, additionally, � < 4, then ut is
continuous in Ux0 × [0, t0) and ut(x, 0) = 0 for all x ∈ Ux0 .

We stress here that the integral transformw �−→ u is point-wise in x and nonlocal
in time. Letπx be a projectionπx : � −→ R

n of the backward time connected domain
�, and denote �̃ := πx(�).

Corollary 3.4 Let f = f (x, t) be a function defined in the backward time connected
domain �. Suppose that the function w(x, r; b) ∈ Cm,2,0

x,r,t satisfies

wrr − A(x, ∂x)w = 0 for all (x, r) ∈ �φ and (x, b) ∈ �,

w(x, 0; b) = f (x, b) for all (x, b) ∈ � .

Then for � > −2 the function (3.22) defined on �, is continuous and satisfies the
Eq. (3.23) in the sense of distributions D′(�). The function u takes the vanishing
initial value u(x, 0) = 0 for all x ∈ �̃. If, additionally, � < 4, then ut is continuous
in � and ut(x, 0) = 0 for all x ∈ �̃.

If the initial value problem for the operator ∂2
t − A(x, ∂x) admits two initial con-

ditions, then we can eliminate the function wr from the right-hand side of Eq. (3.23).

Theorem 3.5 ([95]) Let f = f (x, t) be a function defined in the backward time
connected domain �. Suppose that the function w(x, r; b) ∈ Cm,2,0

x,r,t satisfies

wrr − A(x, ∂x)w = 0 for all (x, r) ∈ �φ and for all (x, b) ∈ �,

w(x, 0; b) = f (x, b), wr(x, 0; b) = 0 for all (x, b) ∈ � .
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Then for � > −2 the function

u(x, t) = c�

∫ t

0
db
∫ |φ(t)−φ(b)|

0

(
(φ(t) + φ(b))2 − r2

)−γ

×F

(
γ, γ ; 1; (φ(t) − φ(b))2 − r2

(φ(t) + φ(b))2 − r2

)
w(x, r; b) dr,

defined on �, is continuous and satisfies the equation

utt − t�A(x, ∂x)u = f (x, t) , (3.24)

in the sense of distributions D′(�). The function u takes the vanishing initial value
u(x, 0) = 0 for all x ∈ �̃. If, additionally, � < 4, then ut is continuous in � and
ut(x, 0) = 0 for all x ∈ �̃.

For instance, the Cauchy problem for the second order strictly hyperbolic equa-
tion admits two initial conditions. We recall here that for the weakly hyperbolic
operators ∂2

t −∑|α|≤2 aα(x)∂α
x , which satisfy the Levi conditions (see, e.g., [83]),

the Cauchy problem can be solved for smooth initial data. If m = 1, then the prob-
lem with two initial conditions can be solved in Gevery spaces. (See, e.g., [83].) The
case of m > 2 covers the beam equation and hyperbolic in the sense of Petrowski
(p-evolution) equations. On the other hand, the Cauchy-Kowalewski theorem guar-
antees solvability of the problem in the real analytic functions category for the partial
differential equation (3.24) with any positive � and m = 2. Furthermore, the opera-
tor A(x, ∂x) =∑|α|≤2 aα(x)∂α

x can be replaced with an abstract operator A acting on
some linear topological space of functions.

Example 1 Consider equations of the gas dynamics. (a) For the Tricomi equation in
the hyperbolic domain,

utt − t�u = f (x, t), (3.25)

φ(t) = 2
3 t

3
2 and A(x, ∂x) = �. Then for every f ∈ C(Rn × [0, T ]) we can solve the

Cauchy problem for the wave equation

wtt − �w = 0, w(x, 0; b) = f (x, b) , wt(x, 0; b) = 0 , x ∈ R
n, t ∈

[
0,

2

3
T

3
2

]

in R
n ×
[
0, 2

3T
3
2

]
× [0, T ]. (For the explicit formula see, e.g., (3.33), (3.34).) The

solution to the Cauchy problem for (3.25) with vanishing initial data is given as
follows
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u(x, t) = 3−1/322/3
∫ t

0
db
∫ 2

3 t
3
2 − 2

3 b
3
2

0

((
2

3
t
3
2 + 2

3
b

3
2

)2
− r2
)− 1

6

×F

⎛
⎜⎝1
6
,
1

6
; 1;
(
2
3 t

3
2 − 2

3b
3
2

)2 − r2

(
2
3 t

3
2 + 2

3b
3
2

)2 − r2

⎞
⎟⎠w(x, r; b)dr, t ∈ [0, T ] .

For the Tricomi equation in the elliptic domain,

utt + t�u = f (x, t), t > 0, (3.26)

we have A(x, ∂x) = −� and, since the Cauchy problem for (3.26) is not well posed,
Theorem 3.3 gives representation of the solutions only for some specific functions f .
(b) The small disturbance equation for the perturbation velocity potential of a two-
dimensional near sonic uniform flow of dense gases in a physical plane, has been
derived by Kluwick [48], Tarkenton and Cramer [76]. It leads to the equation

utt − t3�u = f (x, t), (3.27)

with � = 3 and φ(t) = 2
5 t

5
2 , and A(x, ∂x) = �. The solution to the Cauchy problem

for (3.27) with vanishing initial data is given as follows

u(x, t) = 3

10

∫ t

0
db
∫ 2

5 t
5
2 − 2

5 b
5
2

0

((
2

5
t
5
2 + 2

5
b

5
2

)2
− r2
)− 3

10

×F

⎛
⎜⎝ 3

10
,
3

10
; 1;
(
2
5 t

5
2 − 2

5b
5
2

)2 − r2

(
2
5 t

5
2 + 2

5b
5
2

)2 − r2

⎞
⎟⎠w(x, r; b)dr, t > 0 .

Example 2 Consider the wave equation in the Einstein-de Sitter (EdeS) spacetime
with hyperbolic spatial slices. The metric of the Einstein & de Sitter universe (EdeS
universe) is a particular member of the Friedmann-Robertson-Walker metrics

ds2 = −dt2 + a2
sc(t)

[
dr2

1 − Kr2
+ r2d�2

]
, (3.28)

where K = −1, 0, or +1, for a hyperbolic, flat or spherical spatial geometry, respec-
tively. For the EdeS the scale factor is asc(t) = t2/3. The covariant d’Alambert’s
operator (the Laplace-Beltrami operator),

�gψ = 1√|g|
∂

∂xi

(√|g|gik ∂ψ

∂xk

)
,
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in the spherical coordinates is

�EdeSψ = −
(

∂

∂x0

)2
ψ − 2

t

(
∂ψ

∂x0

)
ψ + t−

4
3

√
1 − Kr2

r2
∂

∂r

(
r2
√
1 − Kr2

∂ψ

∂r

)

+t−
4
3

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ t−

4
3

1

r2 sin2 θ

(
∂

∂φ

)2
ψ .

The change ψ = t−1u of the unknown function leads the equation �EdeSψ = g
to the equation

utt − t−4/3A(x, ∂x)u = f ,

where

A(x, ∂x)u =
√
1 − Kr2

r2
∂

∂r

(
r2
√
1 − Kr2

∂u

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

r2 sin2 θ

(
∂

∂φ

)2
u .

(3.29)

The spatial part X of the spacetime (3.28) has a constant curvature 6K . The
operator A(x, ∂x) (3.29) is the Laplace-Beltrami operator on X. The explicit formulas
for the solutions of the Cauchy problem for thewave operator on spaceswith constant
negative curvature are known, see, for instance, [41, 51]. Thus, Theorem 3.5 gives an
explicit representation for the solution of the Cauchy problem with vanishing initial
data for the wave equation in the EdeS spacetime with negative constant curvature
K < 0. We note here that γ = −1 for the metric (3.28) (see [29]) that makes the
hypergeometric function polynomial.

The next theorem represents the integral transforms for the case of the equa-
tion without a source term. In that theorem, the transformed function has nonva-
nishing initial values. For γ ∈ C, Re γ > 0, that is for � ∈ C \ D1(−1, 0) = {z ∈
C | |z + 1| > 1}, and, in particular, for � ∈ (−∞,−2) ∪ (0,∞), we define the inte-
gral operator

(K0v)(x, t) := 22−2γ � (2γ )

�2 (γ )

∫ 1

0
v(x, φ(t)s)(1 − s2)γ−1ds

= φ(t)1−2γ 22−2γ � (2γ )

�2 (γ )

∫ φ(t)

0
v(x, τ )(φ2(t) − τ 2)γ−1dτ .

For γ ∈ C, Re γ < 1, that is for � ∈ C \ D1(−3, 0) = {z ∈ C | |z + 3| > 1}, and,
in particular, for � ∈ (−∞,−4) ∪ (−2,∞), we define the integral operator

(K1v)(x, t) := t22γ
� (2 − 2γ )

�2 (1 − γ )

∫ 1

0
v(x, φ(t)s)(1 − s2)−γ ds

= tφ(t)2γ−122γ
� (2 − 2γ )

�2 (1 − γ )

∫ φ(t)

0
v(x, τ )(φ2(t) − τ 2)−γ dτ .
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Thus, both operators are defined simultaneously for γ ∈ C, 0 < Re γ < 1, and,
in particular, for � ∈ (−∞,−4) ∪ (0,∞). Denote

a� := 21−2γ � � (2γ )

2γ�2 (γ )
, b� := (� + 2)22γ−1� (2 − 2γ )

�2 (1 − γ )
.

The next theorem describes the properties of the integral transforms K0 and K1 in
the case when � is a positive number.

Theorem 3.6 ([95]) Let � be a positive number and let � ⊂ R
n+1
+ be a backward

time connected domain. Suppose that the function v ∈ Cm,2
x,t (�) for given (x0, t0) ∈ �

solves the equation

∂2
t v − A(x, ∂x)v = 0 at x = x0 and all t ∈ (0, φ(t0)) . (3.30)

Then, the functions K0v ∈ Cm,2
x,t (�) and K1v ∈ Cm,2

x,t (�) satisfy the equations

(
∂2

t − t�A(x, ∂x)
)

K0v = a�t
�
2 −1∂tv(x, 0) at x = x0 for all t ∈ (0, t0) , (3.31)

and

(
∂2

t − t�A(x, ∂x)
)

K1v = b�t
�
2 ∂tv(x, 0) at x = x0 for all t ∈ (0, t0) , (3.32)

respectively. They have at x = x0 the following initial values

(K0v)(x0, 0) = v(x0, 0) , (K0v)t(x0, 0) = 0 ,

and

(K1v)(x0, 0) = 0 , (K1v)t(x0, 0) = v(x0, 0) .

Thus, the value v(x0, 0) of the solutions of (3.30) is invariant under operation K0,
while the operator K1 acts similarly to the Dirichlet-to-Neumann map.

Corollary 3.7 Let � be a positive number and � ⊂ R
n+1
+ be a backward time con-

nected domain. Suppose that the function v ∈ Cm,2
x,t (�φ) solves the equation

∂2
t v − A(x, ∂x)v = 0 for all (x, t) ∈ �φ .

Then, the functions K0v ∈ Cm,2
x,t (�) and K1v ∈ Cm,2

x,t (�) satisfy the equations

(
∂2

t − t�A(x, ∂x)
)

K0v = a�t
�
2 −1∂tv(x, 0) for all (x, t) ∈ �,
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and

(
∂2

t − t�A(x, ∂x)
)

K1v = b�t
�
2 ∂tv(x, 0) for all (x, t) ∈ �,

respectively. They have the following initial values

(K0v)(x, 0) = v(x, 0) , (K0v)t(x, 0) = 0 for all x ∈ �̃ ,

and

(K1v)(x, 0) = 0 , (K1v)t(x, 0) = v(x, 0) for all x ∈ �̃ .

For the Cauchy problem with full initial data, we have the following result for the
generalized Tricomi equation in the hyperbolic domain.

Theorem 3.8 ([95]) Let � be a positive number and � ⊂ R
n+1
+ be a backward time

connected domain. Suppose that the functions v0, v1 ∈ Cm,2
x,t (�φ) solve the problem

∂2
t vi − A(x, ∂x)vi = 0 for all (x, t) ∈ �φ ,

vi(x, 0) =
∑

k=0,1

δikϕk(x) , ∂tvi(x, 0) = 0 , i = 0, 1, for all (x, t) ∈ �̃φ .

Then the function u = K0v0 + K1v1 ∈ Cm,2
x,t (�) solves the problem

(
∂2

t − t�A(x, ∂x)
)

u = 0 for all (x, t) ∈ �,

u(x, 0) = ϕ0(x) , ∂tu(x, 0) = ϕ1(x) for all x ∈ �̃ .

In order to make this paper more self-contained, we remind here that if A(x, ∂x) =
�, then the function vϕ(x, t) is given by the following formulas (see, e.g., [73]): for
ϕ ∈ C∞

0 (Rn) and for x ∈ R
n, n = 2m + 1, m ∈ N,

vϕ(x, t) := ∂

∂t

(1
t

∂

∂t

) n−3
2 tn−2

ωn−1c(n)
0

∫

Sn−1
ϕ(x + ty) dSy , (3.33)

while for x ∈ R
n, n = 2m, m ∈ N,

vϕ(x, t) := ∂

∂t

(1
t

∂

∂t

) n−2
2 2tn−1

ωn−1c(n)
0

∫

Bn
1(0)

1√
1 − |y|2 ϕ(x + ty) dVy . (3.34)

The last formulas can be also written in terms of the Radon transform; for details,
see [41, 51].

The case of negative � requires some modifications in the setting of the initial
conditions at t = 0. For the EdeS spacetime (� = −4/3) these modifications are
suggested in [29]; they are the so-called weighted initial conditions.
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One can consider the Cauchy problem for the equations with negative � and with
the initial conditions prescribed at t = tin > 0. For � < −2, the hyperbolic equations
in such spacetime have permanently bounded domain of influence. Nonlinear equa-
tions with a permanently bounded domain of influence were studied in [16, 18]. In
particular, Choquet-Bruhat [16, 18] proved for small initial data the global existence
and uniqueness of wave maps on the FLRW expanding universe with the metric
g = −dt2 + R2(t)σ and a smooth Riemannian manifold (S, σ ) of dimension n ≤ 3,
which has a time independent metric σ and a nonzero injectivity radius, and with
R(t) being a positive increasing function such that 1/R(t) is integrable on [tin,∞).
If the target manifold is flat, then the wave map equation reduces to a linear system.

It will be interesting to apply the integral transform approach to the maximum
principle (see, e.g., [52, 66]) for the generalized Tricomi equation, to the derivation
of the Lp − Lq estimates (see, e.g., [47, 87]), to the mixed problem for the Friedlan-
der model (see, e.g., [45] and references therein), to the global existence problem
for the semilinear generalized Tricomi equations on the hyperbolic space (for the
wave equation see, e.g., [3, 15, 55]), and to the derivation of the Price’s law for the
corresponding cosmological models (see, e.g., [56] and references therein).

4 The Semilinear Equations on the Curved Spacetime

In this section, we present some results obtained in [33] on the existence of a global
in time solutions of the semilinear Klein–Gordon equation in the de Sitter spacetime
with the time slices being Riemannian manifolds. In the spatially flat de Sitter model,
this can beR3 and in the spatially closed and spatially open cases it can be the three-
sphere S3 and the three-hyperboloid H

3, respectively (see [17, p. 113]).
The metric g in the de Sitter spacetime, is defined as follows, g00 = g00 = −1,

g0j = g0j = 0, gij(x, t) = e2tσij(x), i, j = 1, 2, . . . , n, where
∑n

j=1 σ ij(x)
σjk(x) = δik , and δij is Kronecker’s delta. The metric σ ij(x) describes the time slices.
In quantum field theory the matter fields are described by a function ψ that must
satisfy equations of motion. In the case of a massive scalar field, the equation of
motion is the semilinear Klein–Gordon equation generated by the metric g:

�gψ = m2ψ + V ′
ψ(x, ψ) .

Here m is a physical mass of the particle. In physical terms this equation describes
a local self-interaction for a scalar particle. A typical example of a potential function
would be V (φ) = φ4. The semilinear equations are also commonly used models for
general nonlinear problems.

The covariant Klein–Gordon equation in the de Sitter spacetime in the coordi-
nates is

ψtt − e−2t

√| det σ(x)|
n∑

i,j=1

∂

∂xi

(√| det σ(x)|σ ij(x)
∂

∂xj
ψ

)
+ nψt + m2ψ = F(ψ) .
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This is a special case of the equation

ψtt + nψt − e−2tA(x, ∂x)ψ + m2ψ = F(ψ) ,

whereA(x, ∂x) =∑|α|≤2 aα(x)∂α
x is a second order partial differential operator.More

precisely, in this section, we assume that aα(x), |α| = 2, is positive definite (and
symmetric).

In [90–92] a global existence of small data solutions of the Cauchy problem
for the semilinear Klein–Gordon equation and systems of equations in the de Sitter
spacetime with flat time slices, that is, σ ij(x) = δij, is proved. The nonlinearity F was
assumed Lipschitz continuous with exponent α ≥ 0 (see definition below). It was
discovered that unlike the same problem in the Minkowski spacetime, no restriction
on the order of nonlinearity is required, provided that a physical mass of the field
belongs to some set, m ∈ (0,

√
n2 − 1/2] ∪ [n/2,∞). The following conjecture was

made in [90].

Conjecture The interval (
√

n2 − 1/2, n/2) is a forbidden mass interval for the small
data global solvability of the Cauchy problem for all α ∈ (0,∞).

For n = 3 the mass m interval (0,
√
2) is called the Higuchi bound in quantum

field theory [42]. The proof of the global existence in [90–92] is based on the special
integral presentations (see Sect. 2) and Lp − Lq estimates.

In this section, the small data global existence result to the case of the de Sitter
spacetime with the time slices being Riemannian manifolds, is presented. To formu-
late the theorem we need the following description of the nonlinear term. Let Bs,q

p be
the Besov space.
Condition (L). The function F is said to be Lipschitz continuous with exponent α ≥ 0
in the space Bs,q

p if there is a constant C ≥ 0 such that

‖F(x, ψ1) − F(x, ψ2)‖Bs,q
p

≤ C‖ψ1 − ψ2‖Bs,q
p′

(
‖ψ1‖α

Bs,q
p′

+ ‖ψ2‖α
Bs,q

p′

)
(4.1)

for all ψ1, ψ2 ∈ Bs,q
p′ , where 1/p + 1/p′ = 1.

For the important case of Bs,2
2 = H(s)(R

n), define the complete metric space

X(R, s, γ ) := {ψ ∈ C([0, ∞); H(s)(R
n)) | ‖ ψ ‖X := sup

t∈[0,∞)

eγ t ‖ ψ(x, t) ‖H(s)(R
n)≤ R}

with the metric

d(ψ1, ψ2) := sup
t∈[0,∞)

eγ t ‖ ψ1(x, t) − ψ2(x, t) ‖H(s)(Rn) .

We denote B∞ the space of all C∞(Rn) functions with uniformly bounded deriv-
atives of all orders.
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Theorem 4.1 ([33]) Let A(x, ∂x) =∑|α|≤2 aα(x)∂α
x be a second-order negative

elliptic differential operator with real coefficients aα ∈ B∞. Assume that the nonlin-
ear term F(u) is a Lipschitz continuous with exponent α > 0 in the space H(s)(R

n),
s > n/2 ≥ 1, and F(0) = 0. Assume also that m ∈ (0,

√
n2 − 1/2] ∪ [n/2,∞).

Then, there exists ε0 > 0 such that, for every given functions ψ0, ψ1 ∈ H(s)(R
n),

such that
‖ψ0‖H(s)(Rn) + ‖ψ1‖H(s)(Rn) ≤ ε, ε < ε0 ,

there exists a global solution ψ ∈ C1([0,∞); H(s)(R
n)) of the Cauchy problem

ψtt + nψt − e−2tA(x, ∂x)ψ + m2ψ = F(ψ) , (4.2)

ψ(x, 0) = ψ0(x) , ψt(x, 0) = ψ1(x) . (4.3)

That solution ψ(x, t) belongs to the space X(2ε, s, γ ), that is,

sup
t∈[0,∞)

eγ t‖ψ(·, t)‖H(s)(Rn) < 2ε ,

with γ such that either 0 < γ ≤ 1
α+1

(
n
2 −
√

n2
4 − m2

)
if

√
n2 − 1/2 ≥ m > 0,

or we choose 0 ≤ γ0 < n−1
2 if m = n/2 and 0 ≤ γ0 ≤ n−1

2 if m > n/2, then γ ≤
min
{
γ0 , n

2(α+1)

}
.

If m ∈ (
√

n2 − 1/2, n/2), then for the problem with ψ0 = 0 the global solution

exists and belongs to X(2ε, s, γ ), where γ ∈ (0, 1
α+1 (

n
2 −
√

n2
4 − m2)).

The range m ∈ (
√

n2 − 1/2, n/2), which seems to be a forbidden mass interval
for the problem with general initial data, can be allowed if we change the setting of
the problem. Indeed, if we consider the initial value problem with vanishing Cauchy
data and with the source term f , then we have the following result for all m > 0.

Theorem 4.2 ([33]) Let A(x, ∂x) =∑|α|≤2 aα(x)∂α
x be a second-order negative

elliptic differential operator with real coefficients aα ∈ B∞. Assume that the nonlin-
ear term F(u) is a Lipschitz continuous with exponent α > 0 in the space H(s)(R

n),
s > n/2 ≥ 1, and F(0) = 0. Assume also that m > 0. Then, there exists ε0 > 0 such
that, for every given function f ∈ X(ε, s, γrhs), such that

sup
t∈[0,∞)

eγrhst‖f (x, t)‖H(s)(Rn) ≤ ε < ε0 ,

there exists a global solution ψ ∈ C1([0,∞); H(s)(R
n)) of the Cauchy problem

ψtt + nψt − e−2tA(x, ∂x)ψ + m2ψ = f + F(ψ) , (4.4)

ψ(x, 0) = 0 , ψt(x, 0) = 0 . (4.5)
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That solution ψ(x, t) belongs to the space X(2ε, s, γ ), that is,

sup
t∈[0,∞)

eγ t‖ψ(·, t)‖H(s)(Rn) < 2ε ,

with γ such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ <
1

α + 1
γrhs if m <

n

2
and γrhs ≤ n

2
−
√

n2

4
− m2 ,

γ <
1

α + 1

(
n

2
−
√

n2

4
− m2

)
if m <

n

2
and γrhs >

n

2
−
√

n2

4
− m2 ,

γ ≤ min

{
γrhs,

n

2(α + 1)

}
if m ≥ n

2
and

n

2
> γrhs ,

γ ≤ min

{
γ0,

n

2(α + 1)

}
where γ0 < γrhs if m = n

2
and

n

2
= γrhs ,

γ ≤ n

2(α + 1)
if m >

n

2
and

n

2
≤ γrhs ,

γ <
n

2(α + 1)
if m = n

2
and

n

2
< γrhs .

The main tools to prove Theorems 4.1 and 4.2 are the following: (1) integral
transform, which produces representations of the solutions of the linear equation, (2)
decay estimates in the Besov spaces, which generate weighted Stricharz estimates,
and (3) the fixed point theorem.

The values of the physical mass m which leads to the values of M = −k + 1
2 ,

k = 0, 1, 2, . . ., are called in [94] the knot points. One of these knot points, m =√
n2 − 1/2, presents the only field that obeys the Huygens principle [94]. For these

values of the curved mass M the functions F(−k,−k; 1; z), k = 0, 1, 2, . . . , are
polynomials.

It is known that the Klein–Gordon quantum fields whose squared physical masses
are negative (imaginarymass) represent tachyons. (See, e.g., [12].) In [12] the Klein–
Gordon equation with imaginary mass is considered, and it is shown that localized
disturbances spread with at most the speed of light, but grow exponentially. The
conclusion is made that free tachyons have to be rejected on stability grounds.

The Klein–Gordon quantum fields on the de Sitter manifold with imaginary mass,
which take an infinite set of discrete values as follows

m2 = −k(k + n) , k = 0, 1, 2, . . . , (4.6)

present a family of scalar tachyonic quantum fields. Epstein andMoschella [26] give
a complete study of a family of scalar tachyonic quantum fields which are linear
Klein–Gordon quantum fields on the de Sitter manifold whose squared masses are
negative and take an infinite set of discrete values (4.6). The corresponding linear
equation is

ψtt + nψt − e−2t�ψ + m2ψ = 0 ,
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for which the kernel is E(x, t; x0, t0; M), where M =
√

n2
4 + k(k + n) = k + n

2 ,
k = 0, 1, 2, . . . . If n is an odd number, then m takes value at knot points set. The
nonexistence of a global in time solution of the semilinear Klein–Gordon massive
tachyonic (quantum fields) equation in the de Sitter spacetime is proved in [88]. The
conclusion is that the self-interacting tachyons in the de Sitter spacetime have finite
lifespan. More precisely, consider the semilinear equation

ψtt + nψt − e−2t�ψ − m2ψ = c|ψ |1+α ,

which is commonly used model for general nonlinear problems. Then, according to
Theorem 1.1 [88], if c = 0, α > 0, and m = 0, then for every positive numbers ε and
s there exist functions ψ0, ψ1 ∈ C∞

0 (Rn) such that ‖ψ0‖H(s)(Rn) + ‖ψ1‖H(s)(Rn) ≤ ε

but the solution ψ = ψ(x, t) with the initial values (4.3) blows up in finite time.

The equation that is considered in Theorems 4.1 and 4.2 is more general than the
covariant Klein–Gordon equation. Then, these theorems, after evident modification,
can be applied to the smooth pseudo Riemannian manifold (V, g) of dimension
n + 1 and V = R × S with S an n-dimensional orientable smooth manifold and g is
the de Sitter metric. One important example of the equation on the smooth pseudo
Riemannian manifold that is amenable to Theorem 4.1 is if S is a non-Euclidean
space of constant negative curvature and the equation of the problem (4.2) and (4.3)
is a non-Euclidean Klein–Gordon equation.

5 The Semilinear Equations in the Energy Spaces

Although the integral transform approach is not used to derive the results in the
energy spaces, we review those results having in mind that the comparison with the
ones obtained by the integral transform approach is very instructive and interesting.

Galstian and Yagdjian [32] proved the existence of global solutions in the energy
class in the case of n = 3, 4 and the nonlinear term is of power type. They consid-
ered equation in the Friedmann–Lemaître–Robertson–Walker spacetimes (FLRW
spacetimes) with the time slices being Riemannian manifolds. The Klein–Gordon
equation in the Einstein-de Sitter and de Sitter spacetimes are important particular
cases discussed in [32].

We are interesed in the waves, which obey the semilinear Klein–Gordon equation,
propagating in the FLRW spacetimes. The equations in the de Sitter and Einstein-
de Sitter spacetimes are the important particular cases. In this section, we review
some results on the global in time existence in the energy class of solutions of the
Cauchy problem.
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Consider the Klein–Gordon equation in the spacetimes belonging to some family
of the FLRW spacetimes. In the FLRW spacetime, one can choose coordinates so
that the metric has the form ds2 = −dt2 + a2(t)dσ 2. (See, e.g., [38].) This family
includes, as a particular case, the metric

ds2 = − dt2 + t�
∑

i,j=1,...,n

δijdxidxj , (5.7)

where δij is the Kronecker symbol and � = 4
nγ
. The function a(t) is the scaling

factor. The time dependence of the function a(t) is determined by the Einstein’s field
equations for gravity, which for the perfect fluid imply

μ̇ = −3(μ + p)
ȧ

a
,

ä

a
= −4π

3
(μ + 3p) ,

(
ȧ

a

)2
= 8π

3
μ − K

a2
,

whereμ is the proper energy density, p is pressure, andK is spatial curvature. The last
equations give a differential equation for a = a(t) if an equation of state (equation
for the pressure) p = p(μ) is known. For pressureless, p = 0, matter distribution in
the universe and vanishing spatial curvature, K = 0, the solution to that equation is

a(t) = a0t2/3 ,

where a0 > 0 is a constant. The universe expands, and its expansion decelerates since
ä < 0. In the radiation dominated universe, the equation of state is p = μ/3 and,
consequently, a(t) = a0t1/2. The equation of state p = (γ − 1)μ, which includes
those two cases of the matter- and radiation- dominated universe, implies that in
order to have a nonnegative pressure for a positive density, it must be assumed that
γ ≥ 1 for the physical space with n = 3 (see [17] p. 122). The spacetime with γ = 1
and n = 3 is called the Einstein-de Sitter universe. In [32] the significance of the
restriction γ ≥ 1 on the range of � was revealed; in fact, it was shown that it is
closely related to the nongrowth of the energy and to the existence of the global
in time solution of the Cauchy problem for the Klein–Gordon equation. Another
important spacetime, the so-called de Sitter spacetime, is also a member of that
family and it was discussed in [32] as well.

In quantum field theory the matter fields are described by a function ψ that must
satisfy equations of motion. In the case of a massive scalar field, the equation of
motion is the semilinear Klein–Gordon equation generated by the metric g:

1√|g(x)|
∂

∂xi

(√|g(x)|gik(x)
∂ψ

∂xk

)
= m2ψ + V ′

ψ(x, ψ) . (5.8)

In physical terms this equation describes a local self-interaction for a scalar parti-
cle. A typical example of a potential function would be V (φ) = φ4. The semilinear
equations are also commonly used models for general nonlinear problems.



Integral Transform Approach to Time-Dependent Partial Differential Equations 307

To motivate the approach that was used in [32], we first consider the covari-
ant Klein–Gordon equation in the metric (5.7), which can be written in the global
coordinates as follows

ψtt − t−��ψ + n�

2t
ψt + m2ψ + V ′

ψ(x, t, ψ) = 0 .

Consider the Cauchy problem with the data prescribed at some positive time t0,

ψ(t0, x) = ψ0, ψt(t0, x) = ψ1 , (5.9)

and look for the solution defined for all values of t ∈ [t0,∞) and x ∈ R
n. Let us

change the unknown function ψ = t− ln
4 u, then for the new function u = u(t, x) we

obtain the equation

utt − t−��u + M2(t)u + tn�/4V ′
ψ(x, t, t−

�n
4 u) = 0

with the “effective” (or “curved mass”)

M2
EdS(t) := m2 − n�(n� − 4)

16t2
. (5.10)

It is easily seen that for the range (0, 4
n ] of the parameter � the curved mass is

positive while its derivative is non-positive. This is crucial for the nonincreasing
property of the energy and in the derivation of the energy estimate.

Let (V, g) be smooth pseudo Riemannian manifold of dimension n + 1 and V =
R × S with S an n-dimensional orientable smoothmanifold, and g be a FLRWmetric.
We restrict our attention to the case of n ≥ 3 and to the spacetime with the line
element ds2 = − dt2 + a2(t)σ . Then we consider an expanding universe that means
that ȧ(t) > 0. For the metric with ȧ(t) > 0 we define the norm

‖ ψ ‖X(t) := ‖ψt‖L∞([t0,t];L2(S)) + ‖a−1(·)∇σψ‖L∞([t0,t];L2(S)) (5.11)

+‖M(·)ψ‖L∞([t0,t];L2(S)) + ‖
√

ȧa−3 ∇σψ‖L2([t0,t]×S) ,

where 0 < t0 < t ≤ ∞ and M(t) ≥ 0 is a curved mass defined by:

M2(t) = m2 +
(

n

2
− n2

4

)(
ȧ(t)

a(t)

)2
− n

2

ä(t)

a(t)
. (5.12)

Hence, in the classification suggested in [87], mass m is large if the metric g
is a de Sitter metric − dt2 + e2tdx2, x ∈ R

n. Here and henceforth ȧ(t) denotes the
derivativewith respect to time, while the spatial variablewill be denoted s in a general
manifold S and x when S = R

n. In order to describe admissible nonlinearities we
make the following definition.
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Condition (L). The smooth in s function F = F(s, u), F : S × R −→ R is said to
be Lipschitz continuous in u with exponent α, if there exist α ≥ 0 and C > 0 such
that

|F(s, u) − F(s, v)| ≤ C|u − v| (|u|α + |v|α) for all u, v ∈ R, x ∈ S .

For the continuous function � ∈ C([t0,∞)) denote by Ca,�,α0(T) and C(−1)
a,�,α0

(r) the
function

Ca,�,α0(T) :=
(∫ T

t0

(
a(t)

ȧ(t)

) nα0
4−nα0 |�(t)| 4

4−nα0 dt

) 4−nα0
4

, 0 < α0 <
4

n
.

and its inverse, respectively.

Theorem 5.1 ([32]) Assume that n = 3, 4 and that the metric g is g = − dt2 +
a2(t)σ . Suppose also that m > 0 and that there is a positive number c0 such that the
real-valued positive function a = a(t) satisfies

a(t) > 0, ȧ(t) > 0 for all t ∈ [t0,∞) , (5.13)

M(t) > c0 > 0, Ṁ(t) ≤ 0 for all t ∈ [t0,∞) . (5.14)

Consider the Cauchy problem for the Eq. (5.8) with the derivative of potential
function V ′

ψ(s, t, ψ) = −�(t)F(s, ψ) such that F is Lipschitz continuous with expo-
nent α, F(s, 0) = 0 for all s ∈ S, and either

|�(t)| ≤ C�

ȧ(t)

a(t)
for all t ∈ [t0,∞) , (5.15)

where C� is a constant independent of t, or, there is α0 such that

Ca,�,α0(∞) < ∞, 0 < α0 <
4

n
. (5.16)

If 4
n ≤ α ≤ 2

n−2 , then for every ψ0 ∈ H(1)(S) and ψ1 ∈ L2(S), sufficiently small
initial data, ‖ψ0‖H(1)(S) + ‖ψ1‖L2(S), the problem (5.8), (5.9) has a unique solution
ψ ∈ C([t0,∞); H(1)(S)) ∩ C1([t0,∞); L2(S)) and its norm ‖a

n
2 ψ‖X(∞) is small.

Condition (5.14) for the norm of solutions of the equation implies that the energy
of solution is nonincreasing. In the next theorem, the local existence is stated with
the less restrictive conditions and with the estimate for the lifespan.

Theorem 5.2 ([32]) Suppose that m > 0 and that there is a positive number c0
such that the real-valued positive function a = a(t) satisfies (5.13), (5.14). Con-
sider the Cauchy problem for the Eq. (5.8) with the derivative of potential function
V ′

ψ(s, t, ψ) = −�(t)F(s, ψ) such that F is Lipschitz continuous with exponent α,
F(s, 0) = 0 for all s ∈ S.
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If 0 ≤ α ≤ 2
n−2 , then for every ψ0 ∈ H(1)(S) and ψ1 ∈ L2(S) there exists T1 > t0

such that the problem (5.8), (5.9) has a unique solution ψ ∈ C([t0, T1); H(1)(S)) ∩
C1([t0, T1); L2(S)).

The lifespan of the solution can be estimated as follows

T1 − t0 ≥ CC(−1)
a,�,α0

(‖ψ0‖H(1)(S) + ‖ψ1‖L2(S)) ,

where C is a positive constant independent of T1, ψ0 and ψ1.

If the nonlinear term has an energy conservative potential function, then in the
next theorem the existence of the global solution for large initial data was established.

Theorem 5.3 ([32]) Suppose that all conditions of Theorem 5.2 on n, α, and a =
a(t), are satisfied, and additionally,

2

n

a(t)

ȧ(t)
V ′

t (t, s, a−n/2(t)w) + 2V (t, s, a−n/2(t)w) − a−n/2(t)wV ′
ψ(s, a−n/2(t)w) ≤ 0

(5.17)
for all (t, s, w) ∈ [t0,∞) × S × R.

Then for every ψ0 ∈ H(1)(R
n) and ψ1 ∈ L2(Rn), the problem (5.8), (5.9) has

a unique solution ψ ∈ C([t0,∞); H(1)(R
n)) ∩ C1([t0,∞); L2(Rn)) and its norm

‖a
n
2 ψ‖X(∞) is finite.

The hyperbolic equations in the de Sitter spacetime have permanently bounded
domain of influence. Nonlinear equations with a permanently bounded domain of
influence were studied, in particular, in [85]. In that paper the example of equation,
which has a blowing-up solution for arbitrarily small data, is given. Moreover, it
was discovered in [85] that the time-oscillation of the metric, due to the parametric
resonance, can cause blowup phenomena for wave map type nonlinearities even
for the arbitrarily small data. On the other hand in the absence of oscillations in
the metric, Choquet-Bruhat [16] proved for small initial data the global existence
and uniqueness of wave maps on the FLRW expanding universe with the metric
g = −dt2 + R2(t)σ and a smooth Riemannian manifold (S, σ ) of dimension n ≤ 3,
which has a time independent metric σ and nonzero injectivity radius, and with R(t)
being a positive increasing function such that 1/R(t) is integrable on [t0,∞). If the
target manifold is flat, then the wave map equation reduces to a linear system. On
the other hand, in the Einstein-de Sitter spacetime the domain of influence is not
permanently bounded.

Although recently the equations in the de Sitter and anti-de Sitter spacetimes
became the focus of interest for an increasing number of authors (see, e.g., [1, 2, 5,
8, 14, 26, 32, 44, 59, 61, 69, 79] and the bibliography therein) which investigate
those equations from a wide spectrum of perspectives, there are very few papers on
the semilinear Klein–Gordon equation in the de Sitter spacetime. Here, we mention
someof themclosely related to ourmain result. Baskin [8] discussed small data global
energy class solutions for the scalar Klein–Gordon equation on asymptotically de
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Sitter spaces, which are compact manifolds with boundary. More precisely, in [8]
the following Cauchy problem is considered for the semilinear equation

�gu + m2u = f (u), u(x, t0) = ϕ0(x) ∈ H(1)(R
n), ut(x, t0) = ϕ1(x) ∈ L2(Rn) ,

where mass is large, m2 > n2/4, f is a smooth function and satisfies conditions
|f (u)| ≤ c|u|α+1, |u| · |f ′(u)| ∼ |f (u)|, f (u) − f ′(u) · u ≤ 0,

∫ u
0 f (v)dv ≥ 0, and∫ u

0 f (v)dv ∼ |u|α+2 for large |u|. It is also assumed that α = 4
n−1 . In Theorem 1.3

[8] the existence of the global solution for small energy data is stated. (For more
references on the asymptotically de Sitter spaces, see the bibliography in [7, 79].)

Hintz and Vasy [44] considered the semilinear wave equations of the form

(�g − λ)u = f + q(u, du)

on a manifold M, where q is a polynomial vanishing at least quadratically at (0, 0),
in an asymptotically de Sitter and Kerr-de Sitter spaces, as well as asymptotically
Minkowski spaces. The initial data for the equation are generated by the source
term f . The linear framework in [44] is based on the b-analysis, in the sense of
Melrose, introduced in this context by Vasy to describe the asymptotic behavior of
solutions of linear equations. Hintz and Vasy have shown the small source term f
solvability of suitable semilinear wave and Klein–Gordon equations. However, the
microlocal, high regularity approach that was taken in [44] does not apply to low
regularity nonlinearities covered in Theorem 4.1. Their result for asymptotically
de Sitter spacetime and polynomial semilinear term with large α covers also the
range m ∈ (

√
n2 − 1/2, n/2). On the other hand, the important case of n = 3 and

the quadratic nonlinearity is not covered. We note here that their results as well as
Theorem 4.2 of the present paper, neither prove nor disprove the conjecture from the
article [90].

Nakamura [61] considered the Cauchy problem for the semilinear Klein–Gordon
equations in de Sitter spacetime with n ≤ 4 and with flat time slices. The nonlinear
term is of power type for n = 3, 4, or of exponential type for n = 1, 2. For the power
type semilinear termwith 4

n ≤ α ≤ 2
n−2 Nakamura [61] proved the existence of global

solutions in the energy class.
Ringström [68] considered the question of future global nonlinear stability in the

case of Einstein’s equations coupled to a nonlinear scalar field. The class of potential
V (ψ) is restricted by the condition V (0) > 0, V ′(0) = 0 and V ′′(0) > 0. Ringström
proved that for given initial data, there is a maximal globally hyperbolic development
of the data which is unique up to isometry. The case of Einstein’s equations with
positive cosmological constant was not included unless the scalar field is zero.

Rodnianski and Speck [69] proved the nonlinear future stability of the FLRW
family of solutions to the irrotational Euler-Einstein system with a positive cos-
mological constant. More precisely, they studied small perturbations of the family
of FLRW cosmological background solutions to the coupled Euler-Einstein system
with a positive cosmological constant in 1 + 3 spacetime dimensions. The back-
ground solutions model an initially uniform quiet fluid of positive energy density
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evolving in a spacetime undergoing exponentially accelerated expansion. Their
analysis shows that under the equation of state p = (γ − 1)μ, 0 < γ − 1 < 1/3,
the background metric plus fluid solutions are globally future-stable under small
irrotational perturbations of their initial data.

6 The Strauss Exponent for the Semilinear Equation
on the Einstein-de Sitter Spacetime

In this section, we give some new results on the global in time existence of the waves
propagating in the Einstein-de Sitter spacetime. We discuss only the massless fields.

In [29] Galstian, Kinoshita, and Yagdjian considered the wave propagating in the
Einstein and de Sitter spacetime. The covariant d’Alembert’s operator (the Laplace-
Beltrami operator) in the Einstein-de Sitter spacetime belongs to the family of
the non-Fuchsian partial differential operators. In [29] the authors introduced the
weighted initial value problem for the covariant (if n = 3) wave equation and gave
the explicit representation formulas for the solutions. Based on the representation for-
mulas they also shown the Lp − Lq estimates for solutions. Then, in [31] the authors
gave the parametrices in the terms of Fourier integral operators also discussed the
propagation and reflection of the singularities phenomena.

In fact,Galstian,Kinoshita, andYagdjian suggested in [29] the followingweighted
initial value problem

⎧
⎨
⎩

ψtt − t−4/3 � ψ + 2t−1ψt = 0, t > 0, x ∈ R
n,

lim
t→0+ tψ(x, t) = ϕ0(x), lim

t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3 � ϕ0(x)

)
= ϕ1(x), x ∈ R

n .

We use this setting to prescribe the initial conditions for a problem for the semi-
linear equation

⎧
⎨
⎩

ψtt − t−4/3 � ψ + 2t−1ψt = |ψ |p, t > 0, x ∈ R
n,

lim
t→0+ tψ(x, t) = ϕ0(x), lim

t→0+
(

tψt(x, t) + ψ(x, t) + 3t−1/3 � ϕ0(x)
)

= ϕ1(x), x ∈ R
n .

(6.1)

We define pcr(n) as a positive root of the equation

(n + 3)p2 − (n + 13)p − 2 = 0 . (6.2)

that is

pcr(n) = n + 13 + √
n2 + 34n + 193

2(n + 3)
.
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Theorem 6.1 ([34]) Assume that p > 1 and

either 1 < p < 1 + 6

n
or 1 < p ≤ 2n + 10

n + 3
and p < pcr(n).

Then for every arbitrary small number ε > 0 and arbitrary s there exist functions,
ϕ0, ϕ1 ∈ C∞

0 (Rn) with norm

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) < ε

such that solution of the problem (6.1) blows up in finite time.

Proof If we denote

L := ∂2
t − t−4/3 � +2t−1∂t, S := ∂2

t − t−4/3� ,

then we can easily check for t = 0 the following operator identity

t−1 ◦ S ◦ t = L . (6.3)

The last equation suggests a change of unknown function ψ with u such that

ψ = t−1u.

Then the problem for u is as follows:

⎧
⎪⎪⎨
⎪⎪⎩

utt − t−4/3 � u = t1−p|u|p, t > 0, x ∈ R
n,

lim
t→0+

u(x, t) = ϕ0(x), x ∈ R
n,

lim
t→0+

(
ut(x, t) + 3t−1/3 � ϕ0(x)

) = ϕ1(x), x ∈ R
n .

(6.4)

Denote

F(t) =
∫

Rn

u(x, t) dx .

Then F ∈ C2(0, T) provided that the function u is defined for all (x, t) ∈ R
n ×

(0, T), and

lim
t→0+

F(t) =
∫

Rn

lim
t→0+

u(x, t) dx =
∫

Rn

ϕ0(x) dx = C0,
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while

lim
t→0+

F ′(t) = lim
t→0+

∫

Rn

ut(x, t) dx

= lim
t→0+

∫

Rn

(
ut(x, t) + 3t−1/3 � ϕ0(x) − 3t−1/3 � ϕ0(x)

)
dx

= lim
t→0+

∫

Rn

(
ut(x, t) + 3t−1/3 � ϕ0(x)

)
dx =
∫

Rn

ϕ1(x) dx = C1 .

Thus
F ∈ C1[0,∞) ∩ C2(0,∞) .

From the equation we have

F ′′ = t1−p
∫

Rn

|u(x, t)|p dx ≥ 0 for all t > 0,

and from the initial conditions we derive

F(t) = F(ε) +
∫ t

ε

F ′(t1) dt1 = F(ε) +
∫ t

ε

(
F ′(ε) +

∫ t1

ε

F ′′(t2)dt2

)
dt1

= F(ε) + (t − ε)F ′(ε) +
∫ t

ε

∫ t1

ε

F ′′(t2)dt2 dt1

≥ F(ε) + (t − ε)F ′(ε) for all t ≥ 0 .

Set C0 ≥ 0 andC1 ≥ 0. By letting ε → 0+ we obtain

F(t) ≥ F ′(0)t + F(0) = t
∫

Rn

ϕ1(x) dx +
∫

Rn

ϕ0(x) dx ≥ 0 for all t ≥ 0 .

On the other hand, using the compact support of u(·, t) and Hölder’s inequality
we get with τn the volume of the unit ball in Rn, and φ(t) = 3t1/3

∣∣∣∣
∫

Rn

u(x, t) dx

∣∣∣∣
p

≤
(∫

|x|≤R+φ(t)
1 dx

)p−1 (∫

|x|≤R+φ(t)
|u(x, t)|p dx

)

� (1 + t)
n(p−1)

3

(∫

|x|≤R+φ(t)
|u(x, t)|p dx

)

� (R + φ(t))n(p−1)

(∫

|x|≤R+φ(t)
|u(x, t)|p dx

)
,

where the number R is chosen such that supp ϕ0, supp ϕ1 ⊆ {|x| ≤ R}. Here and
henceforth, if A and B are two nonnegative quantities, we use A � B (A � B) to
denote the statement that A ≤ CB (AC ≥ B) for some absolute constant C > 0.



314 K. Yagdjian

Hence

F ′′(t) = t1−p
∫

Rn

|u(x, t)|p dx ≥ (1 + t)1−p− n(p−1)
3 |F(t)|p

� (1 + t)−
(n+3)(p−1)

3 |F(t)|p (6.5)

� (R + φ(t))−(n+3)(p−1)|F(t)|p for all t ≥ 0 .

If 1 < p < 1 + 6
n and C1 > 0, then we can apply Kato’s lemma (see, e.g., [85,

Lemma 2.1]) since

p − 1 >
(n + 3)(p − 1)

3
− 2 ⇐⇒ p <

6

n
+ 1 ⇐⇒ α := p − 1 <

6

n

that proves blow up for such p.

Next, we consider the case of 1 < p ≤ (2n + 10)/(n + 3) and p < pcr(n). For

ϕ0 ∈ C
[ n
2 ]+3

0 (Rn), according to Lemma 2.3 [29], the solution of the problem
⎧
⎨
⎩
Su = 0, x ∈ R

n, t > 0,

lim
t→0

u(x, t) = ϕ0(x), lim
t→0

(
ut(x, t) + 3t−1/3 � ϕ0(x)

)
= 0, x ∈ R

n ,
(6.6)

is given by the function

u(x, t) = vϕ0(x, 3t1/3) − 3t1/3(∂rvϕ0)(x, 3t1/3) , (6.7)

where vϕ(x, 3t1/3) is the value of the solution v(x, r) to the Cauchy problem for
the wave equation, vrr − �v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0, taken at the point
(x, r) = (x, 3t1/3). Hence, if we assume that �ϕ = ϕ, then we obtain

vϕ(x, t) = cosh(t)ϕ(x)

and, consequently,

u(x, t) = vϕ0 (x, 3t1/3) − 3t1/3(∂rvϕ0 )(x, 3t1/3) =
(
cosh(3t1/3) − 3t1/3 sinh(3t1/3)

)
ϕ(x) .

The second independent solution with separated variables is

w(x, t) = (sinh(3t1/3) − 3t1/3 cosh(3t1/3)
)
ϕ(x) .

The function

v(x, t) =
(
cosh(3t1/3) − 3t1/3 sinh(3t1/3)

)
ϕ(x) −

(
sinh(3t1/3) − 3t1/3 cosh(3t1/3)

)
ϕ(x)

=
(
3 3√t + 1

)
exp
(
−3 3√t

)
ϕ(x) = (φ(t) + 1) exp (−φ(t)) ϕ(x)
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solves the problem (6.6) with ϕ0 = ϕ. Moreover, v is such that

v(x, 0) = ϕ(x) , lim
t→∞ v(x, t) = 0 .

Now we choose the function

ϕ(x) =
∫

Sn−1
exω dω .

Then �ϕ(x) = �
∫
Sn−1 exω dω = ϕ(x).

Hence, the function v(x, t) is the low frequency solution of the linear equation

vtt − t−4/3�v = 0 .

Next we define the function F1(t),

F1(t) :=
∫

Rn

u(x, t)v(x, t) dx ,

that is the projection of the solution on the low frequency one-dimensional eigenspace
of Laplace operator. Here F1 ∈ C2(0, T). We estimate the function F1 from above
as follows

|F1(t)|p ≤
(∫

|x|≤R+φ(t)
|v(x, t)|p/(p−1) dx

)p−1 (∫

|x|≤R+φ(t)
|u(x, t)|p dx

)

≤
(∫

|x|≤R+φ(t)
|v(x, t)|p/(p−1) dx

)p−1

tp−1F ′′(t) .

Hence

F ′′(t) ≥
(∫

|x|≤R+φ(t)
|v(x, t)|p/(p−1) dx

)1−p

t1−p |F1(t)|p . (6.8)

To find out the properties of F1(t) we need the following lemma.

Lemma 6.2 ([34]) The function

λ(t) =
(
3 3
√

t + 1
)
exp
(
−3 3

√
t
)

= (φ(t) + 1) exp (−φ(t))

solves the equation
λ′′(t) − t−

4
3 λ(t) = 0
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and has the following properties:

(i) λ′(t) = − 3
3
√

t
exp(−3 3

√
t) = − 9

φ(t)
exp (−φ(t)) ≤ 0 ,

(ii) lim
t→0

λ(t) = 1 , lim
t→∞ λ(t) = 0 , lim

t→∞ λ′(t) = 0 ,

(iii)
λ′(t)
λ(t)

= − 9

φ(t) (φ(t) + 1)
.

Proof It can be verified by straightforward calculations. �

Next we turn to the function ϕ(x). It is well known ([81]) that

ϕ(x) ∼ Cn|x|−(n−1)/2e|x| as |x| → ∞ .

Lemma 6.3 ([81]) Assume that p > 1. Then

∫

|x|≤τ

|ϕ(x)|p/(p−1) dx ≤ cRτ
n−1
2

p−2
p−1 eτ

p
p−1 for all τ ≥ 1. (6.9)

Lemma 6.4 ([34]) Assume that ϕ0, ϕ1 ∈ C∞
0 (Rn), and that

∫

Rn

ϕ1(x)ϕ(x) dx ≥ 18
∫

Rn

ϕ0(x)ϕ(x) dx > 0 ,

then

F1(t) � (9
3
√

t2 − 1)
∫

Rn

ϕ1(x)ϕ(x) dx for all t > 1 .

Proof We have

F1(0) = lim
t→0

∫

Rn

u(x, t)v(x, t) dx =
∫

Rn

ϕ0(x)ϕ(x) dx ≥ c0 > 0 .

For every ε > 0 we have

0 =
∫ t

ε

∫

Rn

(utt(x, τ ) − τ−4/3�u − τ 1−p|u|p)v(x, τ ) dx dτ

=
∫ t

ε

∫

Rn

utt(x, τ )v(x, τ ) dx dτ

−
∫ t

ε

∫

Rn

τ−4/3u(x, τ )�v(x, τ ) dx dτ −
∫ t

ε

∫

Rn

τ 1−p|u(x, τ )|pv(x, τ ) dx dτ .
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Further,

∫ t

ε

∫

Rn
utt(x, τ )v(x, τ ) dx dτ

=
∫

Rn
ut(x, τ )v(x, τ ) dx

∣∣∣t
ε

−
∫

Rn
u(x, τ )vt(x, τ ) dx

∣∣∣t
ε

+
∫ t

ε

∫

Rn
u(x, τ )τ−4/3�v(x, τ ) dx dτ .

Hence,

∫

Rn
ut(x, τ )v(x, τ ) dx

∣∣∣t
ε

−
∫

Rn
u(x, τ )vt(x, τ ) dx

∣∣∣t
ε

=
∫ t

ε

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ .

The last equation implies

(
d

dτ

∫

Rn
u(x, τ )v(x, τ ) dx − 2

∫

Rn
u(x, τ )vt(x, τ ) dx

) ∣∣∣t
ε

=
∫ t

ε

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ .

It follows

d

dt
F1(t) − 2

λt(t)

λ(t)

∫

Rn
u(x, t)λ(t)ϕ(x) dx

= d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)

∫

Rn
u(x, ε)λ(ε)ϕ(x) dx +

∫ t

ε

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ .

Consequently,

d

dt
F1(t) − 2

λt(t)

λ(t)
F1(t) = d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε) +

∫ t

ε

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ .

It follows

d

dt

(
F1(t) exp

(
−
∫ t

ε
2
λt(τ )

λ(τ)
dτ

))

= exp

(
−
∫ t

ε
2
λt(τ )

λ(τ)
dτ

){
d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε) +

∫ t

ε

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ

}
,

that is

d

dt

(
F1(t)

(
λ(t)

λ(ε)

)−2
)

=
(

λ(t)

λ(ε)

)−2 { d

dt
F1(t)
∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

+
∫ t

ε

∫

Rn

τ 1−p|u(x, τ )|pv(x, τ ) dx dτ

}
.
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We integrate it and obtain

F1(t) =
(

λ(t)

λ(ε)

)2 [
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2
(6.10)

×
{

d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε) +

∫ s

ε

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ

}
ds

]
.

On the other hand, according to (iii) of Lemma 6.2 we have
λt(t)

λ(t)
=

− 3
3
√

t(3 3
√

t + 1)
. Consider the term

d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε)

=
∫

Rn
ut(x, ε)λ(ε)ϕ(x) dx +

∫

Rn
u(x, ε)λt(ε)ϕ(x) dx + 6

3√ε(3 3√ε + 1)

∫

Rn
u(x, ε)λ(ε)ϕ(x) dx.

We can rewrite it as follows

d

dt
F1(t)
∣∣∣
ε
+ 6

3
√

ε(3 3
√

ε + 1)
F1(ε)

=
∫

Rn

{ut(x, ε) + 3ε−1/3�ϕ0(x)}v(x, ε) dx −
∫

Rn

3ε−1/3�ϕ0(x)v(x, ε) dx

−
∫

Rn

3
3
√

ε(3 3
√

ε + 1)
u(x, ε)v(x, ε) dx + 6

3
√

ε(3 3
√

ε + 1)

∫

Rn

u(x, ε)v(x, ε) dx

=
∫

Rn

{ut(x, ε) + 3ε−1/3�ϕ0(x)}v(x, ε) dx

+
∫

Rn

3ε−1/3
{

− ϕ0(x) + 1

(3 3
√

ε + 1)
u(x, ε)

}
v(x, ε) dx .

Hence, taking into account the property of u, we derive

lim
ε→0+

(
d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε)

)
=
∫

Rn
ϕ1(x)ϕ(x) dx − 9

∫

Rn
ϕ0(x)ϕ(x) dx .

Now

lim
ε→0+

(
λ(t)

λ(ε)

)2 [
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2 { d

dt
F1(t)
∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

}
ds

]

= λ(t)2F1(0) + lim
ε→0+

(
λ(t)

λ(ε)

)2 ∫ t

ε

(
λ(s)

λ(ε)

)−2 { d

dt
F1(t)
∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

}
ds

= λ(t)2F1(0) +
{∫

Rn
ϕ1(x)ϕ(x) dx − 9

∫

Rn
ϕ0(x)ϕ(x) dx

}
λ2(t)
∫ t

0
λ−2(s)ds

= (3 3
√

t + 1)2 exp
(
−6 3

√
t
) ∫

Rn
ϕ0(x)ϕ(x) dx +

{∫

Rn
ϕ1(x)ϕ(x) dx − 9

∫

Rn
ϕ0(x)ϕ(x) dx

}

×(3 3
√

t + 1)2 exp
(
−6 3

√
t
) ∫ t

0
(3 3

√
s + 1)−2 exp

(
6 3
√

s
)

ds .
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On the other hand

∫ t

0
(3 3

√
s + 1)−2 exp

(
6 3
√

s
)

ds = 1

18

(
exp
(
6 3
√

t
) (3 3

√
t − 1
)

3 3
√

t + 1
+ 1

)
(6.11)

implies

lim
ε→0+

(
λ(t)

λ(ε)

)2 [
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2 { d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε)

}]
ds

= (3 3√t + 1)2 exp
(
−6 3√t

) ∫

Rn
ϕ0(x)ϕ(x) dx +

{∫

Rn
ϕ1(x)ϕ(x) dx − 9

∫

Rn
ϕ0(x)ϕ(x) dx

}

×(3 3√t + 1)2
1

18

((
3 3√t − 1

)

3 3√t + 1
+ exp

(
−6 3√t

))
.

Due to conditions of the lemma,

∫

Rn
ϕ1(x)ϕ(x) dx − 9

∫

Rn
ϕ0(x)ϕ(x) dx ≥ 1

2

∫

Rn
ϕ1(x)ϕ(x) dx > 0 .

Then, from (6.10), by letting ε → 0, we derive

F1(t) ≥
(

λ(t)

λ(ε)

)2 [
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2 { d

dt
F1(t)
∣∣∣
ε

− 2
λt(ε)

λ(ε)
F1(ε)+

}
ds

]

≥ (3 3√t + 1)2 exp
(
−6 3√t

) ∫

Rn
ϕ0(x)ϕ(x) dx

+ (3 3√t + 1)2
1

18

((
3 3√t − 1

)

3 3√t + 1
+ exp

(
−6 3√t

)) 1

2

∫

Rn
ϕ1(x)ϕ(x) dx

≥ (3 3√t + 1)2 exp
(
−6 3√t

) ∫

Rn
ϕ0(x)ϕ(x) dx + (9

3
√

t2 − 1)
1

36

∫

Rn
ϕ1(x)ϕ(x) dx .

Lemma is proved. �

The last lemma and (6.8) imply

F ′′(t) ≥
(∫

|x|≤R+φ(t)
|v(x, t)|p/(p−1) dx

)1−p

t1−p |F1(t)|p

≥ λ−p(t)

(∫

|x|≤R+φ(t)
|ϕ(x)|p/(p−1) dx

)1−p

t1−p |F1(t)|p for all t ≥ 1 .

According to the last lemma
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F ′′(t) ≥ λ−p(t)

(∫

|x|≤R+φ(t)
|ϕ(x)|p/(p−1) dx

)1−p

t1−p |F1(t)|p

≥ cRλ−p(t)
(
(R + φ(t))

n−1
2

p−2
p−1 eφ(t) p

p−1

)1−p
t1−p |F1(t)|p

≥ cRλ−p(t)(R + φ(t))−
n−1
2 (p−2)e−φ(t)pt1−p |F1(t)|p

≥ cR(R + φ(t))−p− n−1
2 (p−2)t1−p

∣∣∣∣(9t
2
3 − 1)

∫

Rn

ϕ1(x)ϕ(x) dx

∣∣∣∣
p

.

Finally

F ′′(t) ≥ CR(R + φ(t))−p− n−1
2 (p−2)t1−p+ 2

3 p

∣∣∣∣
∫

Rn

ϕ1(x)ϕ(x) dx

∣∣∣∣
p

for all t ≥ 1 .

(6.12)

For t > 1 and arbitrary ε ∈ (0, 1), it follows

F(t) = F(ε) +
∫ 1

ε
F′(t1) dt1 +

∫ t

1
F′(t1) dt1

= F(ε) +
∫ 1

ε

{
F′(ε) +

∫ t1

ε
F′′(t2) dt2

}
dt1 +

∫ t

1

{
F′(ε) +

∫ t1

ε
F′′(t2) dt2

}
dt1

≥ F(ε) +
∫ 1

ε
F′(ε) dt1 +

∫ t

1

{
F′(ε) +

∫ t1

1
F′′(t2) dt2

}
dt1

≥ F(ε) +
∫ 1

ε
F′(ε) dt1 +

∫ t

1
F′(ε) dt1 +

∫ t

1

{∫ t1

1
F′′(t2) dt2

}
dt1

≥ F(ε) + (t − ε)F′(ε) +
∫ t

1

{∫ t1

1
F′′(t2) dt2

}
dt1 .

By letting ε → 0 and using (6.12) we derive

F(t) ≥ tF ′(0) + F(0) + cR

∣∣∣∣
∫

Rn
ϕ1(x)ϕ(x) dx

∣∣∣∣
p ∫ t

1

∫ t2

1
(R + φ(t1))

−p− n−1
2 (p−2)t

1− 1
3 p

1 dt1 dt2 .

Set (see (6.5))

r = 1

6

[
2n + 16 − (n + 3)p

]
, q = (n + 3)(p − 1)

3
.

We need r ≥ 1 that is, p ≤ (2n + 10)/(n + 3). The Kato’s lemma’s (see, e.g., [85,
Lemma 2.1]), concerning differential inequality

F(t) ≥ c0(1 + t)r for large t,

F ′′(t) ≥ (1 + t)−q|F(t)|p for large t ,
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conditions are r ≥ 1, p > 1 and

(p − 1)r > q − 2 ⇐⇒ (n + 3)p2 − (n + 13)p − 2 < 0 .

Since pcr(n) is defined as a positive root of the Eq. (6.2) then p < pcr(n). The
theorem is proved. �

For n = 3 a positive root of the Eq. (6.2) is pcr(3) = (4 + √
19)/3 > 8/3.

Corollary 6.5 ([34]) For the covariant semilinear wave equation (n = 3) assume
that 1 < p ≤ 8/3. Then for every arbitrary small number ε > 0 and arbitrary s there
exist functions, ϕ0, ϕ1 ∈ C∞

0 (Rn), suppϕ0, ϕ1 ⊆ {x ∈ R
n | |x| ≤ R} with norm

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) < ε

such that solution of the problem (6.1) with support in {(x, t) | t > 0, x ∈ BR+φ(t)(0)}
blows up in finite time.

Now we analyze the conditions of the theorem:

if n ≥ 37 then for every p <
n + 13 + √

n2 + 34n + 193

2(n + 3)
,

if n ≤ 36 then for every p <
2n + 10

n + 3

the theorem implies blow up of solution.

6.1 Local in Time Solution

If p < 2 then by invoking results of [29] one can easily prove the existence of the
local in time solution. Denote by G a solution operator of the problem

⎧
⎨
⎩

ψtt − t−4/3 � ψ + 2t−1ψt = f , t > 0, x ∈ R
n,

lim
t→0+ tψ(x, t) = ϕ0(x), lim

t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3 � ϕ0(x)

)
= ϕ1(x), x ∈ R

n .

with ϕ0(x) = ϕ1(x) = 0, that is ψ = G[f ]. Let ψ0 is the solution of the last problem
with f = 0:

⎧
⎨
⎩

ψtt − t−4/3 � ψ + 2t−1ψt = 0, t > 0, x ∈ R
n,

lim
t→0+ tψ(x, t) = ϕ0(x), lim

t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3 � ϕ0(x)

)
= ϕ1(x), x ∈ R

n .
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Then any solutionψ ∈ C(H(s)(R
n) × (0, T ]) ∩ C2(H(s)(R

n) × (0, T ])of theprob-
lem (6.14) solves also the linear integral equation

ψ(x, t) = ψ0(x, t) + G[|ψ(·, τ )|p](x, t), t > 0 . (6.13)

We define a solution of (6.1) as a solution of the last integral equation.
In fact, after a change of unknown function ψ with u such that ψ = t−1u the

problem for u is (6.4):

⎧
⎪⎪⎨
⎪⎪⎩

utt − t−4/3 � u = t1−p|u|p, t > 0, x ∈ R
n,

lim
t→0+

u(x, t) = ϕ0(x), x ∈ R
n,

lim
t→0+

(
ut(x, t) + 3t−1/3 � ϕ0(x)

) = ϕ1(x), x ∈ R
n .

(6.14)

Theorem 6.6 ([34]) Assume that 1 < p < 2. For every given ϕ0(x), ϕ1(x), there
exists T = T(ϕ0, ϕ1) such that the problem (6.1) has a solutionψ ∈ C2((0, T(ϕ0, ϕ1)];
H(s)(R

n))

Proof The following estimate has been proven in [29] (see (3.6),(3.7) and Prop. 3.3
with p = q = 2,):

‖ψ(·, t)‖H(s)(Rn) ≤ Ct−
1
3

(
t−

2
3 ‖ϕ0‖H(s)(Rn) + ‖ � ϕ0‖H(s)(Rn)

)

+ C‖ϕ1‖H(s)(Rn) +
∫ t

0
τ‖f (·, τ )‖H(s)(Rn) dτ for all t > 0 .

In particular,

‖ψ0(·, t)‖H(s)(R
n) ≤ Ct− 1

3

(
t− 2

3 ‖ϕ0‖H(s)(R
n) + ‖ � ϕ0‖H(s)(R

n)

)
+ C‖ϕ1‖H(s)(R

n)

� t−1‖ϕ0‖H(s)(R
n) + t− 1

3 ‖ � ϕ0‖H(s)(R
n) + ‖ϕ1‖H(s)(R

n) for all t > 0 ,

and tψ0 ∈ C([0, T ]; H(s)(R
n)) for arbitrary T > 0.

Then, it follows

t‖ψ(·, t)‖H(s)(R
n) ≤ Ct

2
3

(
t−

2
3 ‖ϕ0‖H(s)(R

n) + ‖ � ϕ0‖H(s)(R
n)

)

+ Ct‖ϕ1‖H(s)(R
n) + t
∫ t

0
τ 1−p (τ‖ψ(·, τ )‖H(s)(R

n)

)p
dτ

≤ C
(
‖ϕ0‖H(s)(R

n) + t
2
3 ‖ � ϕ0‖H(s)(R

n)

)

+ Ct‖ϕ1‖H(s)(R
n) + t
∫ t

0
τ 1−p (τ‖ψ(·, τ )‖H(s)(R

n)

)p
dτ for all t > 0 .
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Since tψ is continuous at t = 0, we obtain

t‖ψ(·, t)‖H(s)(R
n) ≤ C

(
‖ϕ0‖H(s)(R

n) + t
2
3 ‖ � ϕ0‖H(s)(R

n)

)

+ Ct‖ϕ1‖Lp(Rn) + max
τ∈[0,t]

(
τ‖ψ(·, τ )‖H(s)(R

n)

)p
t
∫ t

0
τ 1−p dτ for all t > 0 .

Hence, for 1 < p < 2 we have

t‖ψ(·, t)‖H(s)(R
n) ≤ C

(
‖ϕ0‖H(s)(R

n) + t
2
3 ‖ � ϕ0‖H(s)(R

n)

)

+ Ct‖ϕ1‖Lp(Rn) + max
τ∈[0,t]

(
τ‖ψ(·, τ )‖H(s)(R

n)

)p 1

2 − p
t3−p for all t > 0 .

If we consider the map S defined as follows

S[ψ](x, t) := ψ0(x, t) + G[|ψ(·, τ )|p](x, t), t ∈ [0, T ] ,

then the last estimate implies S is a contraction for small T

t‖ψ(·, t)‖H(s)(R
n) ≤ C

(
‖ϕ0‖H(s)(R

n) + t
2
3 ‖ � ϕ0‖H(s)(R

n)

)

+ Ct‖ϕ1‖Lp(Rn) + max
τ∈[0,t]

(
τ‖ψ(·, τ )‖H(s)(R

n)

)p 1

2 − p
t3−p for all t > 0 .

This proves the theorem. �

6.2 Equation Without Singularity

The next theorem shows that the singularity of the coefficients at t = 0 does not cause
the blow up of Theorem 6.1. In fact, it is caused by the semilinear term. Consider
the following Cauchy problem

{
ψtt − t−2k � ψ + 2t−1ψt = |ψ |p, t > 1, x ∈ R

n,

ψ(x, 1) = ϕ0(x), ψt(x, 1) = ϕ1(x), x ∈ R
n,

(6.15)

where k ∈ (0, 1). Let pcr(n, k) be a positive root of the equation

(1 − k)(n + 3)p2 − (n + 5 − k(n + 1))p − 2 + 2k = 0 ,

that is

pcr(n, k) := n + 5 − k(n + 1) +
√

k2(n + 5)2 − 2k(n(n + 14) + 29) + n(n + 18) + 49

2(1 − k)(n + 3)
.
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The numbers pcr(k) and pcr(n, k) can be regarded as an analog of the Strauss exponent
that was defined for the semilinear wave equation in the Minkowski spacetime. (See,
e.g., [39, 81, 86].)

The Eq. (6.15) is strictly hyperbolic for every bounded interval of time and it has
smooth coefficients. Consequently, for every smooth initial functions ϕ0 and ϕ1 the
problem (6.15) has a local solution. According to the next theorem for n = 3 and
p < 3 the small data solution can blow up. Thus, for n = 3 and p < 3 a local in time
solution, in general, cannot be prolonged to the global solution.

Theorem 6.7 ([34]) Assume that p > 1 and

either 1 < p < 1 + 2

n(1 − k)
or 1 < p ≤ 2

n − 1 + 2/(1 − k)

n + 3
and p < pcr(n, k) .

Then for every arbitrary small number ε > 0 and arbitrary s there exist functions,
ϕ0, ϕ1 ∈ C∞

0 (Rn) with norm

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) < ε

such that solution of the problem (6.15) blows up in finite time.

Proof We use operators L and S which are introduced above: L := ∂2
t − t−2k �

+2t−1∂t , S := ∂2
t − t−2k� , and for t = 0 the following operator identity t−1 ◦ S ◦

t = L . The last equation suggests a change of unknown function ψ with u such that
ψ = t−1u . Then the problem for u is as follows:

⎧
⎪⎨
⎪⎩

utt − t−2k � u = t1−p|u|p, t > 1, x ∈ R
n,

u(x, 1) = u0(x) , u0(x) := ϕ0(x), x ∈ R
n,

ut(x, 1) = u1(x) , u1(x) := ϕ0(x) + ϕ1(x), x ∈ R
n,

(6.16)

Denote

F(t) =
∫

Rn

u(x, t) dx .

Then F ∈ C2[1, T ] provided that the function u is defined for all (x, t) ∈ R
n ×

[1, T ], and

F(1) =
∫

Rn

u0(x) dx = C0 > 0,

while

F ′(1) =
∫

Rn

u1(x) dx = C1 ≥ 0.
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From the equation we have

F ′′ = t1−p
∫

Rn

|u(x, t)|p dx ≥ 0 for all t > 1,

and from the initial conditions we derive

F(t) = F(1) +
∫ t

1
F ′(t1) dt1 = F(1) +

∫ t

1

(
F ′(1) +

∫ t1

1
F ′′(t2)dt2

)
dt1

= F(1) + (t − 1)F ′(1) +
∫ t

1

∫ t1

1
F ′′(t2)dt2 dt1

≥ F(1) + (t − 1)F ′(1) ≥ 0 for all t ≥ 1 .

Hence

F(t) ≥ F′(1)(t − 1) + F(1) = (t − 1)
∫

Rn
u1(x) dx +

∫

Rn
u0(x) dx ≥ 0 for all t ≥ 1 .

On the other hand, using the compact support of u(·, t) and Hölder’s inequality
we get with τn the volume of the unit ball in Rn, and φ(t) = 1

1−k t1−k

∣∣∣∣
∫

Rn

u(x, t) dx

∣∣∣∣
p

≤
(∫

|x|≤R+φ(t)−φ(1)
1 dx

)p−1 (∫

|x|≤R+φ(t)−φ(1)
|u(x, t)|p dx

)

� (1 + t)n(p−1)(1−k)

(∫

|x|≤R+φ(t)−φ(1)
|u(x, t)|p dx

)

� (R + φ(t))n(p−1)

(∫

|x|≤R+φ(t)−φ(1)
|u(x, t)|p dx

)
,

where the number R is chosen such that supp ϕ0, supp ϕ1 ⊆ {|x| ≤ R}. Here and
henceforth, ifA andB are twononnegative quantities,we useA � B (A � B) to denote
the statement that A ≤ CB (AC ≥ B) for some absolute constant C > 0. Hence

F′′(t) = t1−p
∫

Rn
|u(x, t)|p dx ≥ (1 + t)1−p−n(p−1)(1−k)|F(t)|p for all t ≥ 1 . (6.17)

We denote

r = 1 , q := (p − 1) + n(p − 1)(1 − k) = (p − 1)(1 + n(1 − k)) . (6.18)

Consider the first case 1 < p < 1 + 2
n(1−k)

. If 1 < p < 1 + 2
n(1−k)

and C1 > 0,
then we can apply Kato’s lemma (see, e.g., [85, Lemma 2.1]) since
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p − 1 > (p − 1)(1 + n(1 − k)) − 2 ⇐⇒ p < 1 + 2

n(1 − k)

that proves blow up of solution.

Consider the second case. For this case, we set φ(t) := t1−k

1−k and choose

v(x, t) = λ̃(t)ϕ(x) ,

λ̃(t) := 1

K 1
2−2k

(
1

1−k

)√tK 1
2−2k

(
t1−k

1 − k

)
= 1

K 1
2−2k

(φ(1))

√
tK 1

2−2k
(φ(t)) .

where Ka(z) is the modified Bessel function of the second kind. The function λ̃ =
λ̃(t) solves the following equation

λtt − t−2kλ = 0 .

It is easy to verify the following limit

lim
t→∞

√
tK 1

2−2k
(φ(t)) = 0 .

Hence

v(x, 1) = ϕ(x) , lim
t→∞ v(x, t) = 0 .

The following lemma can be easily checked.

Lemma 6.8 ([34]) There is a number �0 > such that

�1(k) := − λ̃t(1) =
K 1−2k

2−2k

(
1

1−k

)

K 1
2−2k

(
1

1−k

) > �0 for all k ∈ [0, 1) .

Assume that u0, u1 ∈ C∞
0 , supp u0, u1 ⊆ {x ∈ R

n | |x| ≤ R}. Now we turn to the
function

F1(t) :=
∫

Rn

u(x, t)v(x, t) dx

and obtain

|F1(t)|p ≤
(∫

|x|≤R+φ(t)−φ(1)
|v(x, t)|p/(p−1) dx

)p−1 (∫

|x|≤R+φ(t)−φ(1)
|u(x, t)|p dx

)

≤
(∫

|x|≤R+φ(t)−φ(1)
|v(x, t)|p/(p−1) dx

)p−1
tp−1F′′(t) .
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The equation and the last estimate imply

F ′′(t) ≥
(∫

|x|≤R+φ(t)−φ(1)
|v(x, t)|p/(p−1) dx

)1−p

t1−p |F1(t)|p . (6.19)

Lemma 6.9 [34] Assume that u0, u1 ∈ C∞
0 , supp u0, supp u1 ⊆ {x ∈ R

n | |x| ≤ R},
and

�1(k)

∫

Rn

u0(x)ϕ(x)dx +
∫

Rn

u1(x)ϕ(x)dx ≥ c0

∫

Rn

u0(x)ϕ(x)dx > 0 . (6.20)

Then, there exists sufficiently large T > 1 such that for the solution u = u(x, t) of
the problem (6.16) with the support in {x ∈ R

n | |x| ≤ R + φ(t) − φ(1)} one has

F1(t) ≥ 1

16
tk

{
�1(k)

∫

Rn

u0(x)ϕ(x)dx +
∫

Rn

u1(x)ϕ(x)dx

}
for all t > T .

(6.21)

Proof We have

F1(1) =
∫

Rn

u(x, 1)v(x, 1) dx =
∫

Rn

u0(x)ϕ(x) dx ≥ c0 > 0

and

0 =
∫ t

1

∫

Rn
(utt(x, τ ) − τ−2k�u − τ1−p|u|p)v(x, τ ) dx dτ

=
∫ t

1

∫

Rn
utt(x, τ ))v(x, τ ) dx dτ −

∫ t

1

∫

Rn
τ−2ku�v(x, τ ) dx dτ −

∫ t

1

∫

Rn
τ1−p|u|pv(x, τ ) dx dτ .

Further,

∫ t

1

∫

Rn
utt(x, τ )v(x, τ ) dx dτ

=
∫

Rn
ut(x, τ )v(x, τ ) dx

∣∣∣τ=t

τ=1
−
∫

Rn
u(x, τ )vt(x, τ ) dx

∣∣∣τ=t

τ=1
+
∫ t

1

∫

Rn
u(x, τ )t−2k�v(x, τ ) dx dτ .

Hence,

0 =
∫

Rn
ut(x, τ )v(x, τ ) dx

∣∣∣
τ=t

τ=1
−
∫

Rn
u(x, τ )vt(x, τ ) dx

∣∣∣
τ=t

τ=1
−
∫ t

1

∫

Rn
τ 1−p|u(x, τ )|pv(x, τ ) dx dτ .

That is

∫

Rn
ut(x, τ )v(x, τ ) dx

∣∣∣τ=t

τ=1
−
∫

Rn
u(x, τ )vt(x, τ ) dx

∣∣∣τ=t

τ=1
=
∫ t

1

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ
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implies

(
d

dτ

∫

Rn
u(x, τ )v(x, τ ) dx − 2

∫

Rn
u(x, τ )vt(x, τ ) dx

) ∣∣∣
τ=t

τ=1
=
∫ t

1

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ

and

d

dt
F1(t) − 2 λ̃t(t)

∫

Rn

u(x, t)ϕ(x) dx

= d

dt
F1(t)
∣∣∣
t=1

− 2 λ̃t(1)
∫

Rn

u(x, 1)ϕ(x) dx +
∫ t

1

∫

Rn

τ 1−p|u(x, τ )|pv(x, τ ) dx dτ .

On the other hand

λ̃t(t)

λ̃(t)
= −

t−kK1+ 1
2(k−1)

(
t1−k

1−k

)

K 1
2−2k

(
t1−k

1−k

) = −
t−kK1+ 1

2(k−1)
(φ(t))

K 1
2−2k

(φ(t))
< 0 for all t > 0 ,

lim
t→∞

λ̃t(t)

λ̃(t)
= 0 ,

λ̃t(1)

λ̃(1)
= λ̃t(1) = −

K 1−2k
2−2k

(
1

1−k

)

K 1
2−2k

(
1

1−k

) .

Then, according to Lemma 6.8

d

dt
F1(t) − 2

λ̃t(t)

λ̃(t)

∫

Rn
u(x, t) λ̃(t)ϕ(x) dx

= d

dt
F1(t)
∣∣∣
1

− 2
λ̃t(1)

λ̃(1)

∫

Rn
u(x, 1) λ̃(1)ϕ(x) dx +

∫ t

1

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ .

Consequently

d

dt
F1(t) − 2

λ̃t(t)

λ̃(t)
F1(t) = d

dt
F1(t)
∣∣∣
1
− 2

λ̃t(1)

λ̃(1)
F1(1) +

∫ t

1

∫

Rn
τ 1−p|u(x, τ )|pv(x, τ ) dx dτ ,

that is,

d

dt

(
F1(t)
(
λ̃(t)
)−2
)

= ( λ̃(t)
)−2
{

d

dt
F1(t)
∣∣∣
1
+ 2�1(k)F1(1) +

∫ t

1

∫

Rn

τ 1−p|u(x, τ )|pv(x, τ ) dx dτ

}
,
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where �1(k) = − λ̃t(1) =
K1+ 1

2(k−1)
( 1
1−k )

K 1
2−2k

( 1
1−k )

> 0. We integrate the last relation

F1(t)
(
λ̃(t)
)−2

= F1(1) +
∫ t

1

(
λ̃(s)
)−2
{

d

dt
F1(t)
∣∣∣
t=1

+ 2�1(k)F1(1) +
∫ s

1

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ

}
ds .

Finally

F1(t) = ( λ̃(t)
)2
[

F1(1)

+
∫ t

1

(
λ̃(s)
)−2
{

d

dt
F1(t)
∣∣∣
t=1

+ 2�1(k)F1(1) +
∫ s

1

∫

Rn
τ1−p|u(x, τ )|pv(x, τ ) dx dτ

}
ds

]
.

Consider two first terms of the integrand

d

dt
F1(t)
∣∣∣
t=1

+ 2�1F1(1) =
∫

Rn
u0(x)vt(x, 1)dx +

∫

Rn
u1(x)v(x, 1)dx + 2�1

∫

Rn
u0(x)v(x, 1)dx

= �1(k)

∫

Rn
u0(x)ϕ(x) dx +

∫

Rn
u1(x)ϕ(x) dx .

Then

(
λ̃(t)
)2 [

F1(1) +
∫ t

1

(
λ̃(s)
)−2
{

d

dt
F1(t)
∣∣∣
t=1

+ 2�1(k)F1(1)

}
ds

]
(6.22)

= ( λ̃(t)
)2

F1(1) +
[
�1(k)

∫

Rn
u0(x)ϕ(x)dx +

∫

Rn
u1(x)ϕ(x)dx

] (
λ̃(t)
)2 ∫ t

1

(
λ̃(s)
)−2

ds .

Lemma 6.10 ([34]) There is T1 such that

λ̃2(t)
∫ t

T
λ̃−2(s) ds ≥ 1

32
tk for all t ≥ T1 .

Proof For all T > 1 we have

λ̃2(t)
∫ t

1
λ̃−2(s) ds = λ̃2(t)

∫ T

1
λ̃−2(s) ds + λ̃2(t)

∫ t

T
λ̃−2(s) ds for all t ≥ T . (6.23)

There is for the large t the following asymptotic

√
tK 1

2−2k
(φ(t)) =

√
π

2

√
1 − ke−φ(t)tk/2 (1 + o(1)) .
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Consider the second integral; for the sufficiently large T we have

λ̃2(t)
∫ t

T
λ̃−2(s) ds

≥ 1

2
e−2 t1−k

1−k t2k
∫ t

T
e2

s1−k
1−k s−2k ds

= 1

2
e−2 t1−k

1−k t2k 1

4

(
2e

2t1−k
1−k t−k + ke

2t1−k
1−k t−1 + 2

1
1−k k

(
1

k − 1

) k−2
k−1

�

(
1

k − 1
,
2t1−k

k − 1

)

−2e− 2T1−k
k−1 T−k − ke− 2T1−k

k−1

T
− 2

1
1−k k

(
1

k − 1

) k−2
k−1

�

(
1

k − 1
,
2T1−k

k − 1

))
for all t ≥ T ,

where �(a, z) = ∫∞
z ta−1e−t dt is the incomplete gamma function. (See, e.g., [9,

Sect. 6.9.2].) On the other hand, since k = 1 − ε, ε > 0, we obtain for the incomplete
gamma function the following asymptotic formula (see [9, Sect. 6.13.1])

(
1

k − 1

) k−2
k−1

�

(
1

k − 1
,
2t1−k

k − 1

)
= 2

3−2k
k−1 e− 2t1−k

k−1 tk−2
(
2 + O(tk−1)

)

≤ ce− 2t1−k

k−1 t−1−ε for all t ≥ T .

Consequently, for the sufficiently large T1 > T we obtain

λ̃2(t)
∫ t

T
λ̃−2(s) ds

≥ 1

2
e−2 t1−k

1−k t2k 1

4

(
e
2t1−k
1−k t−k − 2e

2T1−k
1−k T−k − ke− 2T1−k

k−1

T
− 2

1
1−k k

(
1

k − 1

) k−2
k−1

�

(
1

k − 1
,
2T1−k

k − 1

))

≥ 1

16
tk for all t ≥ T1 .

The estimate for the first term of (6.23) is evident. Lemma is proved. �

On the other hand, according to (6.19) we have

F ′′(t) � λ−p(t)

(∫

|x|≤R+φ(t)−φ(1)
|ϕ(x)|p/(p−1) dx

)1−p

t1−p |F1(t)|p for large t ,

and, consequently, (6.22) and Lemma 6.10 imply

F ′′(t) � cR(R + φ(t) − φ(1))−p− n−1
2 (p−2)t1−p

×
∣∣∣∣
1

32
tk

{
�1(k)

∫

Rn

u0(x)ϕ(x)dx +
∫

Rn

u1(x)ϕ(x)dx

}∣∣∣∣
p

for t ≥ T .
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Here T > 1 is sufficiently large number. It follows

F(t) = F(1) +
∫ t

1
F ′(t1)dt1 = F(1) +

∫ T

1
F ′(t1)dt1 +

∫ t

T
F ′(t1)dt1 =

= F(1) +
∫ T

1

{
F ′(1) +

∫ t1

T
F ′′(t2)dt2

}
dt1 + F ′(T)(t − T) +

∫ t

T

∫ t1

T
F ′′(t2)dt2 dt1

� F(1) + F ′(1)(T − 1) + F ′(T)(t − T)

+
∫ t

T

∫ t1

T
cR(R + φ(t2) − φ(1))−p− n−1

2 (p−2)t1−p

×
∣∣∣∣
1

32
tk
2

{
�1(k)

∫

Rn
u0(x)ϕ(x)dx +

∫

Rn
u1(x)ϕ(x)dx

}∣∣∣∣
p

dt2 dt1

� F(1) + F ′(1)(T − 1) + (t − T)

{
F ′(1) +

∫ T

1
F ′′(t1) dt1

}

+
∣∣∣∣
1

32

{
�1(k)

∫

Rn
u0(x)ϕ(x)dx +

∫

Rn
u1(x)ϕ(x)dx

}∣∣∣∣
p

×
∫ t

T

∫ t1

T
cR(R + φ(t2) − φ(1))−p− n−1

2 (p−2)t1−p
2

∣∣∣tk
2

∣∣∣
p

dt2 dt1 ,

where F ′(1) = ∫
Rn u0(x)ϕ(x)dx + ∫

Rn u1(x)ϕ(x)dx. Thus,

F(t) � F(1) + F ′(1)(t − 1) +
∣∣∣∣
{
�1(k)

∫

Rn

u0(x)ϕ(x)dx +
∫

Rn

u1(x)ϕ(x)dx

}∣∣∣∣
p

×
∫ t

T

∫ t1

T
φ(t2)

−p− n−1
2 (p−2)t1−p

2 tkp
2 dt2 dt1 .

Set

r = (1 − k)

[
−p − n − 1

2
(p − 2)

]
+ 1 − p + kp + 2 , q = (p − 1)(1 + n(1 − k)) .

We need r ≥ 1, that is,

p ≤ 2
n − 1 + 2/(1 − k)

n + 3
.

We check the condition (p − 1)r > q − 2 of the Kato’s lemma (see, e.g., [85,
Lemma 2.1]), that is,

1

2
(k − 1)(n + 3)p2 + 1

2
(−k(n + 1) + n + 5)p + 1 − k > 0 .

Since k < 1 we conclude 1 < p < pcr(n, k). Theorem is proved. �
In particular, for the matter dominated universe with k = 2/3 we obtain

1 < p < pcr := n + 13 +
√

n2 + 34n + 193

2n + 6
, if n = 3 then 1 < p < pcr := 1

3

(
4 + √

19
)

,

and 1 < p ≤ 2
(n − 1)(1 − k) + 2

(1 − k)(n + 3)
if n = 3 then 1 < p ≤ 8

3
,
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while for the radiation dominated universe with k = 1/2 we obtain

1 < p < pcr := n + 9 + √
n2 + 26n + 105

2n + 6
, if n = 3 then 1 < p < pcr := 3 + 2

√
3

3

and 1 < p ≤ 2
(n − 1)(1 − k) + 2

(1 − k)(n + 3)
if n = 3 then 1 < p ≤ 8

3
,

1 < p < pcr := n + 9 + √
n2 + 26n + 105

2n + 6
, if n = 4 then 1 < p < pcr := 2

and 1 < p ≤ 2
(n − 1)(1 − k) + 2

(1 − k)(n + 3)
if n = 4 then 1 < p ≤ 10

7
.

The first case 1 < p < 1 + 2
n(1−k)

of the theorem means

1 < p < 1 + 2

n(1 − k)
, if k = 2

3
, n = 3 then 1 < p < 3 ,

1 < p < 1 + 2

n(1 − k)
, if k = 1

2
, n = 3 then 1 < p <

7

3
,

1 < p < 1 + 2

n(1 − k)
, if k = 1

2
, n = 4 then 1 < p < 2 .

Consider now the difference

1 + 2

n(1 − k)
− 2

(n − 1)(1 − k) + 2

(1 − k)(n + 3)
= −n(−k(n − 5) + n − 3) − 6

(1 − k)n(n + 3)
.

For n = 3 we have

1 + 2

n(1 − k)
− 2

(n − 1)(1 − k) + 2

(1 − k)(n + 3)
= 1

3
> 0 for all k ∈ (0, 1) .

It remains to check the sign of n(−k(n − 5) + n − 3) − 6 > 0.
For the semilinear generalized Tricomi equation ∂2

t u − tm�u = |u|p with the
increasing coefficient, that is withm ∈ N, the critical exponent pcrit(m, n) and confor-
mal exponent pconf (m, n) are suggested in [39]. We also mention interesting articles
on the nonlinear higher order degenerate hyperbolic equations [70], the low regu-
larity solution problem for the semilinear mixed type equation [72], and the local
existence and singularity structures of low regularity solution to the semilinear gen-
eralized Tricomi equation with discontinuous initial data [71].

The Cauchy problem for the damped linear wave equations with a time-dependent
propagation speed and dissipations, utt − a(t)2�u + b(t)ut = 0, where
a ∈ L1(0,∞), is considered in [24]. The analysis of results of [24] hopefully can
lead to the global existence in the problem for the wave equation in the de Sitter
spacetime and shed a light on the interval (

√
n2 − 1/2, n/2).
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