AdaMS: Adaptive Mountain Silhouette
Extraction from Images

Daniel Braun, Michael Singhof®) and Stefan Conrad

Institut fiir Informatik , Heinrich-Heine-Universitat Diisseldorf,
Universitatsstr. 1, 40225 Diisseldorf, Germany
{braun, singhof,conrad}@cs.uni-duesseldorf .de

Abstract. Modern image sharing platforms such as instagram or flickr
support an easy publication of photos to the internet, thus leading to
great numbers of available photos. However, many of the images are not
properly tagged so that there is no notion of what they are showing.

For the example of mountain recognition it is advisable to create ref-
erence silhouettes from digital elevation maps. Those are matched with
the silhouette extracted from a given image in order to recognise the
mountain. It is therefore necessary to obtain a very precise silhouette
from the query image.

In this paper, we present AdaMS, an adaptive grid segmentation algo-
rithm, that extracts the silhouette from an image. By the help of an arte-
fact detection method, we find erroneous parts in the silhouette and show
how our algorithm uses this information to recalculate the silhouette in
the surroundings of the error. We also show that our method yields good
results by evaluating our approach on an existing data set of mountain
images.

1 Introduction

In times of social media services and a high spread of smart phones, the impor-
tance of sharing our experiences with other people rises as part of our today’s life.
As a result of this, every day the number of publicly accessible photos increases
significantly, which can be observed in image sharing platforms like Instagram
where users share about 80 million [7] new photos per day. Unfortunately, the
majority of these images is not properly tagged and therefore we have no notion
of what they are showing, which makes the search for images with specific objects
as motif difficult. This leads to a rising need for efficient and precise algorithms
for automatic object recognition in images, so that a subsequent tagging, with-
out the need for time consuming human interactions, is possible. Therefore, the
significance of this research field increases, what concludes in a high amount of
innovations and advances in this area in the last decades.

Our work focuses on the automated landmark recognition for the exam-
ple of mountain recognition. This task is still challenging, especially because
of the problems that are a consequence of the motif itself. These are, for
instance, volatile weather conditions, the snowline in combination with clouds,

© Springer International Publishing Switzerland 2016
P. Perner (Ed.): MLDM 2016, LNAI 9729, pp. 98-112, 2016.
DOI: 10.1007/978-3-319-41920-6_8

AdaMS: Adaptive Mountain Silhouette Extraction from Images 99

or vegetation that hides the mountain. As a result, the extraction of meaningful
features to describe a mountain, which should be recognized in other images,
gets more complex. In addition to this, the appearance of the mountain depends
strongly on the viewpoint of the camera, leading to an enormous amount of
different feature descriptions for just one mountain to recognize. Therefore, one
common method to identify a mountain in an image is to match the silhouette of
the mountain with known silhouettes, which for example have been extracted out
of a digital elevation map of the mountains to compare with. With the growing
spread of devices that have the capability to tag an image with GPS coordinates
of the camera position, like smartphones and cameras with an attached GPS
unit, this task becomes simpler. This is due to the fact that, with the known
position, an algorithm has just to check the surroundings of this location and
therefore match the extracted silhouette only against a low number of moun-
tain candidates in this area. However, there are still many images without this
advantage, especially in older image collections, so that an algorithm, which
can handle images without GPS data, is still a valuable aim. On the downside,
we have to check every mountain on the earth, which makes a highly precise
silhouette of the mountain in the query image inevitable.

In this work we introduce AdaMS, an adaptive segmentation algorithm, for
the purpose of extracting a mountain silhouette out of an image, that tries
to reduce the amount of artefacts through segmentation errors or obstacles in
the resulting silhouette. For this, we first use an outlier detection algorithm to
identify possible artefacts and afterwards classify the encountered outliers to
choose the right removal method. If the outlier is classified as a segmentation
error, we locally recalculate the segmentation to eliminate it. We therefore use
a grid based approach for the segmentation, to get the opportunity to locally
modify the segmentation parameters. If, on the contrary, the artefact is caused
by an obstacle and therefore the segmentation recalculation would achieve no
further improvement, we eliminate this artefact by simply cutting it off.

This paper is structured as follows: In the next section we discuss related
work. Afterwards, we introduce our algorithm and give a detailed explanation
of its different parts. In chapter four we evaluate the algorithm, before we sum-
marise our work in the last chapter, where we furthermore outline our future
work.

2 Related Work

Baatz et al. [2] were the first to target the task of large-scale geo-localisation. For
the silhouette extraction they propose an approach which is based on unary data
costs for the belonging of a pixel to the sky segment. This approach is combined
with a possible user interference, where the user can mark sky or ground pixels for
better results. For 49% of the images in their dataset, which they have collected
during their research, this user intervention was needed. Thankfully, they have
published this dataset, so that it can be used for evaluating our algorithm. For
a large scale approach, a fully automated segmentation would be preferable,
because every user interference is a bottleneck.

100 D. Braun et al.

Such an image segmentation is in general a significant technique in many
object extraction and recognition tasks. Therefore the research in this field
advanced and led to a great number of proposed methods, such as the watershed
transform [6], region based algorithms [10] or image clustering [12]. In [10] the
authors present a seeded region growing algorithm based on different probability
maps calculated for the whole image. Their method relies on homogeneous data
and therefore the right probability map for a good segmentation result has to
be chosen manually, just as the seed pixel, which determines the region of inter-
est. In contrast to that, our goal is a fully automated parameter determination
for the subsequent silhouette extraction. Perner [13] suggests to use case-based-
reasoning (CBR) to choose the right parameters for a segmentation task, so
that the parameters of the nearest case for an input image are used for the seg-
mentation. In the work of Frucci, Perner and Sanniti di Baja [6], for example,
such a CBR system is used for a modified watershed transform algorithm, which
reduces the problem of over-segmentation significantly. In comparison to that,
we try to choose the parameters locally in the image to automatically reduce
the error in respect to the extracted silhouette.

The authors of [12] suggest a k-means clustering for segmentation and intro-
duce an estimation method for the right number of clusters. Therefore, they
extract the edges out of the image, by using phase congruency, and merge them
as long as the distance of the average colour is below a given threshold. The
number of different edges then serves as number of clusters for the subsequent
clustering step. For multi-object segmentation both methods can be advisable,
but in the case of silhouette extraction we have only two possible classes, namely
sky and ground, and therefore the segmentation process has to yield two result-
ing segments. So, a subsequent region merging step would be necessary to extract
the silhouette, but it seems beneficial to use an algorithm, which already takes
the requirement of a binarisation for the segmentation step into account and
therefore can optimise the result regarding this condition.

This binarisation is, for example, widely used for tasks like character recog-
nition in document images or general foreground/background separation. In
the last decades many solutions where presented, like using support vector
machines [17], graph cut with Gaussian mixture models [14], global [9,11]
and local [16] thresholding, or Markov random fields in combination with the
Dempster-Shafer theory [5]. For both tasks, global threshold based algorithms,
like Otsu’s method [11] or the algorithm from Kittler and Illingworth [9], are
often successfully used to partition the image into two groups of pixels [15].
A related technique is proposed in [17]. Their algorithm first clusters the pixels
with fuzzy C-means and thereafter the resulting membership values of randomly
chosen pixels are used to train a SVM, which serves as a kind of separating
threshold, for classifying the remaining pixels. But as a result of the given con-
ditions in mountainous regions an image thresholding algorithm based only on
the brightness or colour values of the whole image is not advisable. This is due
to the common inhomogeneity of the brightness values, be it the sky, for exam-
ple through weather conditions, or the ground in general, and a possible fluent

AdaMS: Adaptive Mountain Silhouette Extraction from Images 101

passage between the sky and the ground segment. Both lead to a high variation
in illumination and contrast which can result in a non-optimal threshold for find-
ing the exact silhouette of the mountain. To overcome similar problems, local
thresholding techniques have been proposed. Roman et al. [16], for example,
present a local thresholding, which calculates a threshold for a pixel relying on
the mean and the mean deviation in a local window around it, by using the
integral sum for efficient computation.

With the target of only extracting the border between mountain and sky
and the prior knowledge that the sky will be a portion of the upper part of
the image, we use a seed growing algorithm with local constraints to find the
initial silhouette of the mountain. Having the other target of an unsupervised
silhouette extraction process, solutions like GrabCut [14], in which the user gives
first a bounding box to locate the foreground object and then possibly interferes
to optimise the result, respectively the technique proposed from Chen et al. [5],
which needs the user to mark some foreground/background pixels before the
segmentation starts, are not feasible. Even so, the GrabCut algorithm can be
used for an automated segmentation, if we have some prior knowledge over the
background of the image.

Another way to find the mountain silhouette is to analyse all edges in the
image in respect to their plausibility to be part of it. The authors of [8] extract
the edges in the images with the Canny algorithm [4] and use different filters to
reduce the candidate edges. Afterwards they use a measure to find the silhouette
with the highest probability to be the skyline. By choosing only one resulting
silhouette, this suffers from edges with low contrast, which leads to a fragmented
skyline and therefore only a part of the skyline will be found. Ahmad et al. [1] use
both, edge-less and egde-based approaches, to find the horizon line as shortest
path in a classification map, which values represent the horizon-ness of each
pixel, with dynamic programming. A related technique is presented in [3], where
the authors use an edge map to find the right terrain alignment by matching
this against an edge map created with a digital elevation map. Contrary to our
target, this method needs the knowledge of the viewpoint location, through GPS
data, and they do not extract the skyline particularly.

3 AdaMS Extraction

As we stated in the first chapter, the use of digital elevation maps to iden-
tify the mountain in a query image is beneficial. But without the use of prior
knowledge, like GPS data or user pre-selection of possible locations, our algo-
rithm has to check every mountain in the database, which means, that we have
to compare the silhouette of the query image with many, through view point
relocation, possible silhouettes of these mountains. Therefore we need a highly
accurate query silhouette to achieve a good precision in the subsequent matching
process. To achieve the desired high accuracy, our AdaMS (Adaptive Mountain
Silhouette) extraction algorithm identifies possible artefacts in the extracted sil-
houette and tries to eliminate them through a refined segmentation, if it is a

102 D. Braun et al.

Grid Initialisation id 77777777777777777777777777777777777

Adaptive Segmentation

s tati Outlier Detection
cgmentation (1. Outlier)
Outlier Removal

Found an
Outlier?

Fig. 1. Flow diagram of AdaMS.

segmentation error, respectively a straight forward removal policy, if the arte-
fact is caused by an obstacle. These different artefact types are described in
the following subsection, where we additionally point out some causes for these
artefacts. Afterwards, we define the grid which will be used for the segmentation
process. Finally, we introduce in the following subsections the five steps of our
silhouette extraction algorithm. As can be seen in Figure 1 these steps are grid
initialisation, image segmentation, silhouette extraction, outlier detection, and
silhouette refinement. The latter one differentiates between outlier removal and
recalculation of the segmentation for some parts of the silhouette.

The grid initialisation overlays the image with a grid with predefined grid
element spacing. In the segmentation step, in which we use some pixel marked
as sky of the image as seed to let the sky segment grow, we finally extract the
transition between sky and ground segment as initial silhouette. This silhouette
is passed to the outlier detection step, to find all anomalies in its structure which
are then classified. For every segmentation error the algorithm tries to recalculate
the segmentation in a local area around the artefact.

3.1 Artefact Definition

For the silhouette extraction we have to identify the pixels in the image which are
part of the sky. Therefore we have a binary segmentation task to solve, which
suffers from possible error sources with the result of possible artefacts in the
extracted silhouette. But as a whole we can condense these into the following

AdaMS: Adaptive Mountain Silhouette Extraction from Images 103

three main sources: The first one is a general problem with images, where sev-
eral problems, like noise pollution, background clutter, blur, strong illumination
variations, or a reduced contrast of the skyline through over-/underexposure,
can occur. As result of such an error, the extracted silhouette can have a saw-
tooth-shaped appearance. The second one is a consequence of the motif itself,
because of highly volatile weather conditions, clouds or mist can hide parts of
the mountain silhouette completely or reduce the contrast of it significantly,
especially in combination with snow on mountain peaks, so that a separation
of the sky from the ground gets difficult. The last main error source is a result
of the natural environment of the mountains. Therefore we have to deal with
different possible obstacles, like trees or other vegetation, humans or buildings
in the foreground, or cables from a ski-lift, in the image, which partly cover the
mountain. Altogether, this problems make the segmentation and therefore the
extraction of the real mountain silhouette error prone.

The disparity of these errors leads to another problem, because an algorithm
which solves one of it may not be ideal for the other ones. An artefact, which is
a result of a low contrast at the mountain silhouette, may be solvable through
a modification of the segmentation parameters. But if an obstacle leads to an
erroneous silhouette, the segmentation step has worked properly, so that another
parameter set will not lead to any improvement. Therefore, if we identify an
artefact in the extracted silhouette, we have to classify it, so that we can choose
the right method to get rid of it.

3.2 Grid

For the binary segmentation of the image we use a seed based region growing
algorithm. This means that the algorithm chooses some start points as sky and
then adds every neighbouring pixel that fulfils certain conditions.

For this, we define a grid G as follows:

Definition 1. Given an image I with the width wy and height hy. Then the grid
G with step size dg consists of the pizels

d . d .
Dij = (7G +idg, 76; + jdg)

d d
with 0 <i < @) gnd 0 < j < L2,
G G
This results in a total number of

(hy —42)
da

(wy — 9¢)

=T 1

n=|

grid points g; with ¢ € {1,...,n} defining n grid cells C overlaying the image.

104 D. Braun et al.

3.3 Segmentation

For the region growing algorithm we have to specify some seed points, where the
algorithm starts to add connected points, if they satisfy a given condition. For
this task we can use the assumption, that the sky will be localised at the top of
the image. Because of this, we choose the highest pixel row in the image, mark
it as sky and finally use this set of pixels as initial sky segment.

Starting at this seed points, the algorithm then adds successively every 8-
connected pixel to the sky segment, if for the pixel holds

By meant | <7V

with By, ;(w,y)
brightness in a neighbourhood of the pixel with the radius of » and v as a
scaling factor. When the algorithm cannot add any further point, the binary
segmentation ends. Now the silhouette extraction could start, but there are two
drawbacks at this point. First, it is possible, that for instance clouds have been
marked as ground and therefore the sky segment is not homogeneous. To get
rid of such additional ground patches, we eliminate every patch which has no
direct connection to the right or the left border of the image, resulting in only
two uniform segments for the sky respectively ground. Finally, through small
segmentation errors at the border between sky and ground, the transition can
have small parts with the width of one pixel, which would result in a jagged
silhouette. To remove this parts, we use erosion as a morphological operation.
Therefore, a square with the width wgser centred around each pixel acts as
structuring element. Having the class Cp(m,y) € {sky, ground} we count every
pixel in the hereby defined neighbourhood with the same class and switch Cp,
if the ratio of this pixels is below the threshold (. After this cleaning step we
end with a smoothed border between the two parts of the image.

At this point, the algorithm starts the silhouette extraction by finding a
ground pixel in the first pixel column on the left side of the image. If it finds
no appropriate point, the algorithm will check the next columns until a ground
pixel is found or the right side of the image has been reached. Afterwards it
tracks the transition between sky and ground and adds every pixel on the upper
border of the ground as vertex v = (z,y), with « and y the pixel coordinates
in the image, of the polygonal chain S which constitutes the silhouette of the
mountain.

As last step of the extraction, our algorithm eliminates every vertex for which
it holds that it is positioned on the line between its predecessor and its ancestor.
In this case, the point carries no further information regarding the extracted
silhouette and therefore it can be safely removed.

the brightness of the pixel p(,), mean as the mean of the

3.4 Outlier Detection

As stated before, the silhouette S extracted in the previous step can contain
artefacts and therefore the algorithm now tries to identify the erroneous parts

AdaMS: Adaptive Mountain Silhouette Extraction from Images 105

of it. For that, we first convert the silhouette to a representation which is inde-
pendent from the absolute position of each vertex in the query image. This is
necessary, because otherwise equal parts of the different silhouettes could be
different through varying positions, which makes pattern recognition difficult.
Therefore we define the following representation that is based on relative posi-
tions of the vertices and similar to polar coordinates with complex numbers.

Definition 2. A relative silhouette RS = (v1,...,v,), n > 0, is a polygonal
chain with v; = (l;,a;) for all 1 < i < n, where l; > 0 is the length of a line
segment and a; € (—180°,180°] is the angle relative to the x-awxis.

Using this representation of the silhouette we now compare parts of a rel-
ative silhouette to reference data R, free of outliers, by computing histograms
on the silhouettes and computing a distance between the histograms. These
histograms contain the same two dimensions as the relative silhouette, namely
segment length and angle relative to x-axis. In the following, by Hr we denote
the reference histogram, i.e. the histogram computed from the reference data.

Definition 3. Given a relative silhouette RS, then Hrs(s,l) denotes the his-
togram consisting of the points v, ...,vsy;—1 of RS and Hrs denotes the his-
togram over all vertices of RS.

Now, for a silhouette RS = (v1,...,v,) of a query image we compute the
histograms Hgg(1,1) to Hrs(n —I,1) and their respective distances to the ref-
erence histogram d; = dist(Hgs(i,1), Hg) via a sliding window approach. Then
the anomaly score an(v;) of a vertex v; is computed as the average of the set of
distances {d;|i < jAj < i+l}, i.e. the distances of histograms that are computed
over parts of the silhouette that contain v;.

Based on the mean g and the standard deviation o for the single vertices’
distribution of anomaly scores, we introduce two thresholds 7;,, and 7, similar
to the double threshold approach in [4]. These lead to two kinds of anomalies.

Definition 4. Let RS = (v1,...,vy) be the silhouette of an image with corre-

sponding anomaly scores an(v;) for the vertex v;, reference outlier score distri-

bution mean p and standard deviation o and the two thresholds 0 < Tyt < Tin -
Then we call v; a weak anomaly if

an(v;) >+ Tout + 0

and a strong anomaly if
an(v;) > @+ Tip - 0.

Note, that a strong anomaly always is a weak anomaly, too. The second thing
to remember here, is, that for ease of understanding, we do not use “anomaly”
and “outlier” synonymously. With “anomaly” we refer to a single vertex in a
polygonal chain as in the definition above. In contrast to this, with “outlier”
we mean a part of a polygonal chain that consists of anomalies as the following
definition states.

106 D. Braun et al.

Definition 5. Let ! > 0, and RS, an(v;), p, 0, Tin and Tour as in definition 4.
We call 0 = (vy, ..., v;) an l-outlier if the following is true:

1. For all vg, 1 < k < j, it holds that vy is a weak anomaly.
2. There exist m,n € {i,...,7} such that n —m >1 and for all vy, m < k <n,
it holds that v is a strong anomaly.

An outlier o = (v;, ..., v;) is called ¢ maximum [-outlier if and only if neither
(Viz1,-..,vj) nor (vs,...,vj41) are l-outliers.

In the outlier detection step, only maximum [-outliers are of interest, so,
whenever we find | consecutive strong anomalies we expand the outlier as long
as there are adjacent weak anomalies to that outliers. Given a silhouette R.S,
we are thus able to find all outliers in linear time relative to the length of the
silhouette, since anomaly score computation can be accomplished in linear time
as well.

3.5 Outlier Classification

As discussed in section 3.1, different types of outliers exist. For the classification
process we use four classes of outliers. All kinds of obstacles are summarised in
the class obstacle. For segmentation errors, we introduce two classes. If parts of
the mountain are recognised as sky, i.e. the silhouette is too far downwards in the
image, these outliers are classified as segUp. On the other hand, if parts of the
sky are recognised as mountain and the silhouette is too far upwards, outliers
are classified in segDown. Finally, we introduce a class for false positives that
contains parts of the silhouette, that get marked as outliers but are not outliers,
so we end up with a set of outlier classes

OC = {obstacle, segUp, segDown, falsePos}.

For the outlier classification itself, we choose a weighted k-nearest neighbour
approach, using a manually tagged dataset of 80 outliers, 20 of each class, as
reference data for the classification. Assuming this module gets an outlier o
from the detection module, we compute the distance of its histogram H, to all
reference outlier histograms H f f with 1 < ¢ < 80, resulting in a set of k nearest
outliers, each saved as tuple of type and distance {(¢;, d;)}. Finally, for every type

type; € OC we compute s; = Zti:typej w; and declare o to be of the type with
maximum s;. Here, the weighting w; for the ith tuple is given by w; = ﬁ with
€ the smallest positive double in the programming language, since distances can
become 0. Having classified the outlier, there are three possible ways to further
process it. First, the outlier can be a false positive, which results in deleting
it by marking this part of the silhouette as non-outlier. If it is classified as a
real outlier, it is, in the case of an obstacle, passed to the artefact elimination
tool, described in section 3.6 or, if it is a segmentation error, passed to the

segmentation module introduced in section 3.7 for a local refinement.

AdaMS: Adaptive Mountain Silhouette Extraction from Images 107

3.6 Artefact Elimination

In the case of an obstacle hiding the mountain a re-segmentation would be point-
less, because the first segmentation has worked properly and a less conservative
segmentation can result in a jagged mountain silhouette if the algorithm marks
too many pixel as sky. Furthermore, the obstacle hides the background com-
pletely, leaving no further information of the mountain contour which could be
used for a preliminary processing of this part of the image. Therefore, a good way
to handle such an outlier is to cut it off and replace it by a straight line, since, if
the width of the outlier is small enough, the mountain will most likely have no
greater curves at this place. But even for a greater obstacle such a replacement
will be in most cases more natural for the mountain than the obstacle itself.
Given the outlier o of length n, with v; and v,, as start respectively end vertex,
our algorithm removes the obstacle in the following manner: First, we construct
the line connecting both endpoints | = 777, and calculate the distance d(v;,1)
for every vertex v;, resulting in a list of distances D. Then, beginning at the start
vertex v; and with a threshold parameter d, the algorithm searches a vertex for
which holds
d(vi,l) > (5/\\V/1)j (j < iAd(Uj,l) < 5)

In words, this is the first vertex with a distance exceeding the threshold and
consecutive predecessors with distances smaller than . If on the one hand no
vertex is found, every outlier vertex lies near the connecting line [and therefore
the chance for an error, be it through the detection or classification step, rises.
Furthermore, with a § small enough, the impact on the silhouette precision
should be negligible, so that the algorithm marks this part as non-outlier. If on
the other hand a vertex is found, the algorithm searches such a point in respect to
the end vertex and though considering all successors, returning the two vertices
Viow and Vpign, Whose connecting line 0;5,Unigh is used to remove the obstacle.

Fig. 2. An example of the local refinement. Left: The initial silhouette with the marked
outliers. Right: The resulting silhouette after the local refinement terminated.

3.7 Local Refinement

Segmentation errors can occur when the segmentation is too conservative, which
implies that the scaling factor v is too low, and therefore clouds are not properly
marked as sky (segDown) or when the contrast of the transition between sky

108 D. Braun et al.

and ground is low, so that the segmentation algorithm starts to add ground
pixels to the sky segment (segUp), which is a result of a 7 too high for this part
of the image. With the knowledge of the outlier’s class, a recalculation with a
changed v may solve the problem, as long as this refinement is localised around
the outlier, because a changed value for the whole image could make the result
at other parts of the silhouette even worse. Therefore a local refinement for the
outlier removal is the target. For that purpose, we reuse the grid G defined in
definition 1. Having the outlier o, the set C2"¢" of grid cells containing parts of
the outlier and C“P99%¢ the union of C2*¢" and all directly connected grid cells,
we define the local refinement step as follows.

Given the alteration rate 6, a as the predefined alteration value and the grid
cells C' € C%*e" we first compute the new scale factor

Yo =a-8+7c.

Here, the sign of « and therefore the direction of the alteration of v¢ is deter-
mined by the class of the segmentation error as follows:

1, if o has been classified as segDown
o =
—1 else.

Afterwards, we recalculate the segmentation, using
*
1By, —meany, | <3¢V Va,

for every point p(x,y) which lies in a grid cell C' € Cvpdate The resulting silhou-
ette is then extracted and passed back to the outlier detection module. This will
be repeated until there are no outliers classified as segmentation errors left or
IMAX jterations have been executed. The latter one will result in the use of the
originally extracted silhouette by additionally marking it as unsure silhouette.
An example for the result after some refinement steps can be seen in Figure 2.

3.8 Global Refinement

If the ratio of detected segmentation errors to the length of the silhouette exceeds
a predefined threshold 6, we recalculate the whole segmentation. This is due
to the assumption, that such a high outlier ratio is a sign for a messed up
segmentation through a wrong initial v for the whole image. Therefore, we alter
each grid point value and restart the segmentation on the whole image. For the
selection of the right v we use a grid search, using a predefined set of possible
values, and choose the resulting silhouette with the lowest outlier ratio as start
silhouette for the possibly needed local refinement.

4 Evaluation

In the following we evaluate the preciseness of our silhouette extraction app-
roach on the Switzerland dataset from [2]. This dataset consists of 203 images

AdaMS: Adaptive Mountain Silhouette Extraction from Images 109

Table 1. Comparison of extracted silhouettes to ground truth. Values are given in
pixels. RG1 and RG2: Region growing with a threshold of 1 respectively 2.

| Parameter HGrabCut[Otsu [RGI [RG2 [AdaMS‘
Avg. initial distance 18.80

Avg. final distance 26.03 [118.74|27.61|49.31| 15.75
Median final distance 2.58 97.4411.65|1.81| 1.43

and corresponding silhouettes as extracted by the authors. We use these silhou-
ettes as ground truth here, since they have been refined manually. However, in
some cases there are differences between the approaches. For example, in the
ground truth silhouettes, most obstacles have not been removed. Therefore, in
our approach, we skip the obstacle removal step in order to get comparable
results. We use GrabCut [14], Otsu [11] and a region growing algorithm with a
predefined threshold for the maximal allowed divergence in the brightness values
of 4-connected pixels in the sky segment, for a comparison of our algorithm with
other segmentation methods. GrabCut and the region growing algorithm need
some given background pixels and therefore we choose, equally to our approach,
the upper row as background. For the latter one, we furthermore choose the
values 1 (RG1) and 2 (RG2) as threshold for the maximal brightness difference.
For comparing two silhouettes we use the following distance measure:

Definition 6. Let S1 and S5 be the two silhouettes with ny respectively no pizels
and pd(p}, S2) be the pizel distance from the point p} of Sy to Sz defined by

1 _ : 1 20, .1 _ .2
pd(p;,52) = min {ly; —yjl: @ =23}

Then the distance between S1 and Sy is given by

max () pd(p},S2),»_ pd(p;,S1)).

i=1 i=1

Table 1 shows some aggregated results for the comparison. Average initial
distance gives the average distance of the silhouettes after the first iteration, i.e.
with the initially computed silhouette. Therefore, only our approach has such a
value, because for the other algorithms there exists no refinement step. Average
final distance gives the distance values after all iterations of the refinement step
have been completed. Median final distance is the median of the final distances.
As mentioned before, the fact that Otsu finds the threshold by considering the
whole image seems to be a great drawback for this task and this can be seen in
the results. With an average error of 118.74 pixel per vertex and the fact that
for six images the results are too fragmented to extract the silhouette properly,
without choosing the bottom pixel row as silhouette candidate, Otsu yields the
worst results. On the other side, the region growing algorithm yields relatively
good results for a threshold of 1, except for 2 images for which the silhouette
extraction fails due to an extremely low contrast. This shows, that the difference

110 D. Braun et al.

Fig. 3. Huge distance between extracted silhouette and ground truth because we do
not cut out obstacles.

in the illumination in the sky segment is very low in many images of the dataset.
But increasing the threshold leads to worse results, because the contrast in most
images is low and therefore the sky segment grows far to wide, so that, addition-
ally to the higher average distance, the silhouette extraction fails for 19 images
when we choose 2 as threshold. This is in contrast to AdaMS and GrabCut. For
both, the silhouette extraction has found proper silhouette candidates for all 203
images of the dataset.

200

150
0
Q
=
()
>
o
=
B
w100
9]
Qo
£
35
b4
50 |

AdaMS ——

GrabCut ——

Otsu ——

Region Growing 1 ——

Region Growing 2 ——

0 . . .

0 50 100 150 200 250 300
Maximum average distance

Fig. 4. The cumulative distances of the different algorithms.

The results of GrabCut are nearly equal to RG1 in respect to the overall
average distance. But as can be seen in the median value, the region growing
algorithm works better on most of the images and furthermore our adaptive
approach yields far better results, even for the initial segmentation. In Figure 4
we visualise this by the cumulative sum of the distances. As can be seen, the

AdaMS: Adaptive Mountain Silhouette Extraction from Images 111

presented approach can find a good silhouette in significantly more images than
the other algorithms. On the other side, GrabCut seems to be a bit more stable
in respect to the distance for completely wrong segmentation results, but aver-
age distances over 10 pixels are nonetheless not very helpful for a subsequent
matching.

Even so, the average initial distance of our algorithm seems to be relatively
large with an error of nearly 19 pixels as is the average final distance with a
distance of more than 16 pixels. If we compare this, however, to the median final
distance, which reaches a good value with 1.43 pixels, it becomes clear, that
the high average number is due to only a few images causing problems to our
approach. Mostly this is due to omitting the obstacle removal step, as Figure 3
illustrates. It can be seen here, that our approach marks the ropeway’s cables as
outliers, however, we do not remove those and hence get huge distances in some
images.

In comparison to a fixed threshold, our approach regards the global and local
appearance of the image to find a better measure for the membership of a pixel
to the sky, which leads to a better silhouette for the images with low contrast.
In conclusion, we get a great improvement with the precision by the adaptive
refinement presented here. Our experiments show that the adaptive refinement
improves the quality of the extracted silhouette by 16%.

5 Summary and Future Work

In this work we have proposed a baseline system for an adaptive segmentation
approach that is focused on the precise extraction of mountain silhouettes from
images of mountains. Our results show that our adaptive solution has great
advantages over our initial segmentation and comparable algorithms.

In the future, we aim to make the seed point selection for the grid initialisa-
tion more precise by using different feature descriptors combined with a classi-
fication step to find pixels with a high probability to be part of the sky, so that
we can drop the assumption, that the upper row will be part of the sky. We also
want to improve the outlier detection and classification by considering further
information such as edge strength and the usage of more than one reference
histogram for the description of normal mountain silhouettes.

Furthermore we are currently working on a data set for mountain recognition
with ground truth notation that we aim to make publicly available.

References

1. Ahmad, T., Bebis, G., Nicolescu, M., Nefian, A., Fong, T.: Fusion of edge-less
and edge-based approaches for horizon line detection. In: 6th IEEE International
Conference on Information, Intelligence, Systems and Applications (IISA 2015),
Corfu, Greece, July 6-8, 2015. IEEE (2015)

112

2.

10.

11.

12.

13.

14.

15.

16.

17.

D. Braun et al.

Baatz, G., Saurer, O., Koser, K., Pollefeys, M.: Large scale visual geo-localization
of images in mountainous terrain. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 517-530.
Springer, Heidelberg (2012)

Baboud, L., Cadik, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain
alignment for the annotation of mountain pictures. In: 2011 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE (2011)

Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8(6) (November 1986)

Chen, Y., Cremers, A.B., Cao, Z.: Interactive color image segmentation via iterative
evidential labeling. Information Fusion 20 (2014)

Frucci, M., Perner, P., Sanniti Di Baja, G.: Case-based-reasoning for image seg-
mentation. International Journal of Pattern Recognition and Artificial Intelligence
22(05) (2008)

Instagram (accessed January 1, 2016). https://instagram.com/press/

Kim, B.J., Shin, J.J., Nam, H.J., Kim, J.S.: Skyline extraction using a multistage
edge filtering. World Academy of Science, Engineering and Technology 55 (2011)
Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognition 19(1)
(1986)

Mancas, M., Gosselin, B., Macq, B.: Segmentation using a region-growing thresh-
olding. In: Electronic Imaging 2005. International Society for Optics and Photonics
(2005)

Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man and Cybernetics 9(1) (1979)

Patil, R., Jondhale, K.: Edge based technique to estimate number of clusters in
k-means color image segmentation. In: 2010 3rd IEEE International Conference on
Computer Science and Information Technology (ICCSIT), vol. 2 (2010)

Perner, P.: An architecture for a CBR image segmentation system. Engineering
Applications of Artificial Intelligence 12(6) (1999)

Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: Interactive foreground extrac-
tion using iterated graph cuts. In: ACM Transactions on Graphics (SIGGRAPH),
vol. 23(3) (2004)

Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative
performance evaluation. Journal of Electronic Imaging 13(1) (2004)

Singh, T.R., Roy, S., Singh, O.I., Sinam, T., Singh, K.M.: A new local adaptive
thresholding technique in binarization. IJCSI International Journal of Computer
Science Issues 8(6) (2011)

Wang, X.Y., Zhang, X.J., Yang, H.Y., Bu, J.: A pixel-based color image segmenta-
tion using support vector machine and fuzzy -means. Neural Networks 33 (2012)

https://instagram.com/press/

	AdaMS: Adaptive Mountain Silhouette Extraction from Images
	1 Introduction
	2 Related Work
	3 AdaMS Extraction
	3.1 Artefact Definition
	3.2 Grid
	3.3 Segmentation
	3.4 Outlier Detection
	3.5 Outlier Classification
	3.6 Artefact Elimination
	3.7 Local Refinement
	3.8 Global Refinement

	4 Evaluation
	5 Summary and Future Work
	References

