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Abstract. The existence of many clustering algorithms with variable
performance on each dataset made the clustering task difficult. Consen-
sus clustering tries to solve this problem by combining the partitions
generated by different algorithms to build a new solution that is more
stable and achieves better results. In this work, we propose a new con-
sensus method that, unlike others, give more insight on the relations
between the different partitions in the clusterings ensemble, by using
the frequent closed itemsets technique, usually used for association rules
discovery. Instead of generating one consensus, our method generates
multiple consensuses based on varying the number of base clusterings,
and links these solutions in a hierarchical representation that eases the
selection of the best clustering. This hierarchical view also provides an
analysis tool, for example to discover strong clusters or outlier instances.

Keywords: Unsupervised learning · Clustering · Consensus clustering ·
Ensemble clustering · Frequent closed itemsets

1 Introduction

Although the last decades witnessed the development of many clustering algo-
rithms, getting a “good” quality partitioning remains a difficult task. This prob-
lem has many dimensions, one of them is the fact that the results of clustering
algorithms are data-dependent. An algorithm can achieve good results in some
datasets while in others it does not. This is because each is designed to discover
a specific clustering structure in the dataset. Another aspect of the problem
is the effect of algorithm parameters on the results since changing the settings
may produce different partitioning in terms of the number and size of clusters.
Defining what should be a “correct” (or a “good”) clustering also contributes to
the problem, despite the existence of many validation measures whether internal
or external.1 External validation measures are not always applicable, because
usually class labels are not provided, especially for large datasets. Moreover,
Färber et al. [6] states that using such measures, usually applied to synthetic
datasets, may not be sound for real datasets because the classes may contain

1 More details about validation measures can be found in [4], [12] and [19].
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internal structures that the present attributes may not allow to retrieve, or also
the classes may contain anomalies. On the other hand, internal validation mea-
sures may overrate the results of a clustering algorithm which targets the same
underlying structure model as the one targeted by the measure.

From many available clustering algorithms with variable outcome, researchers
focused recently on the possibility of combining multiple clusterings, called base
clusterings, to build a new consensus solution that can be better than what each
single base clustering could achieve. Such process is called consensus clustering
or aggregation of clusterings. It involves 2 steps: first, building an ensemble of
partitions (i.e. the combination of all the partitions provided by the base cluster-
ing algorithms), then applying a consensus function. Some consensus clustering
approaches impose limitations on the ensemble, such as all the base clusterings
must produce the same number of clusters. Other approaches require consen-
sus function with high storage or time complexities. In this work, we present a
new category of consensus clustering methods, that is, a pattern-based consensus
generation using the frequent closed itemset technique from the frequent pattern
mining domain. Since clustering quality depends more on their meaningfulness
to the analyst, our method involves generating multiple consensuses by varying
the number of base clusterings. The results are presented in a tree of consen-
suses that not just facilitates the selection of the preferred partitioning, but also
depicts how the clusters are generated, and what clusters are more stable than
others. We also present a recommended solution, which is the consensus that is
the most similar to the ensemble.

In the next section, we summarize some of the consensus clustering meth-
ods. Section 3 details the proposed approach. Experimental results are shown in
Sect. 4. We conclude in Sect. 5.

2 Related Work

Consensus clustering methods can be organized into several categories according
to the underlying approach [10],[24]:

– Graph partitioning methods: The problem of consensus clustering is
formulated as a graph partitioning problem where the instances and clus-
ters of the base clusterings are used to build the vertices and edges of the
graph respectively. Examples of such consensus methods: Cluster-based Sim-
ilarity Partitioning Algorithm (CSPA), HyperGraph Partitioning Algorithm
(HGPA), Meta CLustering Algorithm (MCLA) (Strehl and Ghosh [21]), and
Hybrid Bipartite Graph Formulation (HBGF) (Fern and Brodley [7]).

– Voting methods: The objective is to match the cluster labels in all base
partitions, then perform a voting procedure to find the final grouping of the
instances. One limitation in voting methods is that they require the cluster-
ings in the ensemble to produce the same number of clusters as the targeted
consensus. Example: the Plurality Voting method (Dudoit and Fridlyand [5],
Fischer and Buhmann [8]).
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– Co-association based methods: A co-association matrix can be used to
record how many times 2 instances belong to the same cluster in the ensemble
of all partitions. Thus, the matrix defines a new measure of similarity between
the instances. As an example, Fred and Jain [9] applied a minimum spanning
tree algorithm on the matrix to generate a consensus clustering.

– Information based methods: The consensus function here tries to find a
clustering that shares the maximum information with the ensemble. Topchy
et. al. [22] proposed to use the Category Utility function in order to define
the similarity between partitions. The resulting consensus represents the
“median” partition which is the most similar to the ensemble.

More details can be found in the surveys by Ghaemi et al. [10], Sarumathi
et al. [20], and Vega-Pons & Ruiz-Shulcloper [24].

3 Pattern-Based Consensus Generation

Our approach is based on discovering clustering patterns among the ensemble.
Pattern mining and association rule discovery aims at identifying relationships
between items in very large datasets [17]. If we consider each cluster in the
ensemble as an item, then using pattern mining enables us to discover relation-
ships between the clusters, by identifying the sets of instances that are clustered
together by sets of base clusterings.

One of the powerful techniques is the Frequent Closed Itemset (FCI) [17].
Its objective is to find the maximal sets of items (clusters) that are common
to sets of objects (instances). FCI generates patterns of fewer items only if they
become more frequent than their maximal sets, thus eliminating many redundant
clustering patterns for our approach, and reducing memory consumption and
execution times compared to the approaches based on generating all frequent
itemsets.2

Our consensus generation process starts by creating a clustering ensemble,
from which a binary membership matrix is built. FCI technique is applied on
the binary matrix to find clustering patterns, and finally we apply our proposed
algorithm to generate the consensus partition, as explained in the following sub-
sections.

3.1 Clustering Ensemble

We do not impose any restriction on the selection of the base clustering algo-
rithms or their settings, as long as they produce hard partitions, that is, each
instance belongs to only one cluster. However, changing the base algorithms
(partition-based, hierarchical, density-based, etc) and/or theirs settings is prefer-
able to ensure the diversity in the ensemble, which makes the consensus more
powerful as it can benefit from the different shapes and sizes of base clusters.

2 See [2] for an extensive survey on association rule mining.
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3.2 Cluster Membership Matrix

After generating a clustering ensemble by partitioning the dataset considering
different clustering algorithms, a cluster membership matrix M is built. M is
used in several consensus clustering methods, as in [1] and [21]. It consists of n
rows and m columns, where n is the number of instances, and m is the total
number of clusters of all base clusterings. The membership matrix records the
binary relation between instances and clusters as given in definition 1.

Definition 1. A cluster membership matrix M is a triplet (I, C, R) where
I is a finite set of instances represented as rows, C is a finite set of clusters
represented as columns, and R is a binary relation defining relationships between
rows and columns: R ⊆ I × C. Every couple (i, c) ∈ R, where i ∈ I and c ∈ C,
means that instance i belongs to cluster c. This binary relation is represented in
the matrix by 1 at Mic, and 0 if there is no relation.

Let us take as an illustrative example a dataset of nine instances D =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Suppose that we used 5 base clustering algorithms to pro-
duce 5 partitions of D as follows: P1= {{1, 2, 3, 4},{5, 6, 7, 8, 9}}, P2= {{1, 2, 3},
{4, 5, 6, 7, 8, 9}}, P3= {{1, 2, 3, 4, 5}, {6, 7, 8, 9}}, P4= {{6, 7},{1, 2, 3, 4, 5, 8, 9}},
and P5= {{4, 5, 6, 7, 8, 9},{1, 2}}. Table 1 presents the membership matrix. Each
column P i

j represents cluster j in partition i as a binary vector where values ‘1’
identify the instances that belong to the cluster. In pattern mining domain, each
column in M represents an item, as defined below.

Table 1. Example cluster membership matrix.

Instance ID P 1
1 P 1

2 P 2
1 P 2

2 P 3
1 P 3

2 P 4
1 P 4

2 P 5
1 P 5

2

1 1 0 1 0 1 0 0 1 0 1

2 1 0 1 0 1 0 0 1 0 1

3 1 0 1 0 1 0 0 1 1 0

4 1 0 0 1 1 0 0 1 1 0

5 0 1 0 1 1 0 0 1 1 0

6 0 1 0 1 0 1 1 0 1 0

7 0 1 0 1 0 1 1 0 1 0

8 0 1 0 1 0 1 0 1 1 0

9 0 1 0 1 0 1 0 1 1 0

Definition 2. An item of a cluster membership matrix M = (I, C, R) is a
cluster identifier c ∈ C.
An itemset is a non-empty finite set of items C = {c1, ..., cn} ⊆ C in M.
An itemset C ⊆ C is frequent in M if and only if its frequency, called support,
in M defined as support(C) = |{I ∈ I | ∀i ∈ I,∀c ∈ C, we have (i, c) ∈ R}| is
greater than or equal to the user-defined minsupport threshold.
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3.3 Clustering Patterns

The rows in M present binary patterns (frequent itemsets) that tell the clusters
to which each instance belongs. Using FCI methodology, we can find all the sets
of instances that share the same clustering pattern. FCI discovers patterns from
not only the full set of base clusterings, but also from their subsets, as long
as they satisfy the FCI properties defined in [17]. We call the combination of
the set of instance identifiers with its corresponding set of cluster identifiers a
Frequent Closed Pattern (FCP). Table 2 shows the set of the FCPs extracted
from Table 1.3

Definition 3. A Frequent Closed Pattern P = (C, I) in the cluster membership
matrix M = (I, C, R) is a pair of sets C ⊂ C and I ⊂ I such that:
i) ∀i ∈ I and ∀c ∈ C, we have (i, c) ∈ R.
ii) |I| ≥ minsupport, i.e., C is a frequent itemset.
iii) �i′ ∈ I such that ∀c ∈ C, we have (i′, c) ∈ R.
iv) �c′ ∈ C such that ∀i ∈ I, we have (i, c′) ∈ R.

3.4 Generating Multiple Consensuses

This process involves filtering the FCPs based on the number of clusterings in
the itemset, and build a consensus from each group. The idea is that, since the
base partitions represent clustering decisions and we do not know which of these
decisions is/are better than the others, then we search for the item membership
similarities between different combinations of these decisions to build a final con-
sensus decision for each possible valid combination. A Decision Threshold (DT)
is used for the filtering process, as it defines the number of base clusters involved
in the clustering pattern. Thus, to generate multiple consensuses, we start by
building the first consensus from the instance sets of FCPs whose cluster identi-
fier set (itemset) defines patterns shared by all base clusterings (DT= number of
base clusterings4). Then, we sequentially decrement DT towards 1, and at each
DT value, we generate a consensus from the instance sets of FCPs built from
DT clusterings, plus the clusters of the previous consensus (the clusters of the
consensus at DT+1).

Definition 4. Given the first consensus LMaxDT = {P1, P2, ..., Pm}, and the
definition BDT = IDT ∪ LDT+1, where IDT is the instance sets of the FCPs
built from DT base clusterings, and LDT+1 is the instance sets (clusters) of the
previous consensus, a new consensus LDT is the result of applying a consensus
function Y on BDT , that is, LDT = Y(BDT ) = {L1, L2, ..., Lk} such that Li ∩Lj

= ∅, ∀(i, j) ∈ {1, ..., k}, i 
= j, and
⋃i=k

i=1 Li = I.
3 We can see that the number of generated clustering patterns is larger than dataset

size. This happens only for a small dataset, while for a large dataset, most of its
instances will share the same clustering pattern, resulting in a much lower number
of patterns compared to dataset size.

4 The clusters in the first consensus are known in [25] as “data fragments”.



Multiple Consensuses Clustering by Iterative Merging/Splitting 795

Table 2. Frequent Closed Patterns extracted from Table 1.

FCP ID Itemset (FCIs) Instance ID set

1 {P 1
1 , P 2

1 , P 3
1 , P 4

2 , P 5
1 } {3}

2 {P 1
1 , P 2

2 , P 3
1 , P 4

2 , P 5
1 } {4}

3 {P 1
2 , P 2

2 , P 3
1 , P 4

2 , P 5
1 } {5}

4 {P 1
1 , P 3

1 , P 4
2 , P 5

1 } {3,4}
5 {P 2

2 , P 3
1 , P 4

2 , P 5
1 } {4, 5}

6 {P 1
1 , P 2

1 , P 3
1 , P 4

2 , P 5
2 } {1,2}

7 {P 1
2 , P 2

2 , P 3
2 , P 4

1 , P 5
1 } {6,7}

8 {P 1
2 , P 2

2 , P 3
2 , P 4

2 , P 5
1 } {8,9}

9 {P 3
1 , P 4

2 , P 5
1 } {3,4,5}

10 {P 1
1 , P 2

1 , P 3
1 , P 4

2 } {1,2,3}
11 {P 1

2 , P 2
2 , P 4

2 , P 5
1 } {5,8,9}

12 {P 1
1 , P 3

1 , P 4
2 } {1,2,3,4}

13 {P 2
2 , P 4

2 , P 5
1 } {4,5,8,9}

14 {P 1
2 , P 2

2 , P 3
2 , P 5

1 } {6,7,8,9}
15 {P 3

1 , P 4
2 } {1,2,3,4,5}

16 {P 4
2 , P 5

1 } {3,4,5,8,9}
17 {P 1

2 , P 2
2 , P 5

1 } {5,6,7,8,9}
18 {P 2

2 , P 5
1 } {4,5,6,7,8,9}

19 {P 4
2 } {1,2,3,4,5,8,9}

20 {P 5
1 } {3,4,5,6,7,8,9}

At each DT, an instance set I ⊆ I has one of the following three properties:

i) Uniqueness: it does not intersect with any other set I ′ ⊆ I, that is, I∩I ′ = ∅.
ii) Inclusion: it is a subset of another set I ′ ⊆ I, that is, I ⊆ I ′.
iii) Intersection: it intersects with another set I ′ ⊆ I, that is, I ∩ I ′ 
= ∅, I \ I ′


= ∅ and I ′ \ I 
= ∅.

Note that at the first consensus, all the instance sets are unique, because they
are generated from clustering patterns shared by all base clusterings. However,
for the next consensuses, the sets of instance identifiers can have any of the
above properties, because when we consider fewer base clusterings, instances
can belong to several patterns.

The objective of the consensus function is to build unique clusters from sets
of instance identifiers. Thus, to decide how to deal with intersecting sets, we
use the size of intersection as a measure for merging or splitting them. The idea
of measuring the similarity between sets based on their intersection is not new.
Jaccard index [14] is based on calculating the ratio between intersection size over
the size of the union of 2 sets:

Jaccard(X,Y ) = |X∩Y |
|X∪Y | = |X∩Y |

|X|+|Y |−|X∩Y |
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Let us consider the three cases of sets intersection in Fig. 1. By calculating
Jaccard for each case we get:

Jaccard(A,B) = 3
27 , Jaccard(B,C) = 7

23 , Jaccard(D,E) = 7
23

Jaccard measure provides the same score for cases 2 and 3, while they are
actually different: Indeed, the set B is mostly part of set C while the sets in case
3 share only about the half of their instances. Thus, instead of using Jaccard, we
take a merge/split decision based on comparing intersection size over the size of
each set. Let us then define I(X|Y ) as the ratio of intersection between sets X
and Y over the size of set X, that is:

I(X|Y ) = |X∩Y |
|X|

Fig. 1. Examples of sets intersection

Case 1: I(B|A) = |A∩B|
|B| = 3

10 , I(A|B) = |A∩B|
|A| = 3

20

Case 2: I(B|C) = |B∩C|
|B| = 7

10 , I(C|B) = |B∩C|
|C| = 7

20

Case 3: I(E|D) = |E∩D|
|E| = 7

14 , I(D|E) = |D∩E|
|D| = 7

16

From the above scores, we can see that I(B|C) is the highest, and that
the scores provided for cases 2 and 3 are different, compared to Jaccard which
assigned them the same score. Thus the question is: how will we use all these
information to decide to merge or split intersecting sets? We propose the follow-
ing method:

To decide to either merge or split intersecting sets, a Merging Threshold
(MT) can be used. MT is the minimum intersection ratio of a set (X) to decide
to merge it with another set (Y). That is, sets X and Y are merged only if
the intersection ratio of any of them, I(X|Y ) or I(Y |X), is bigger than MT,
otherwise they are split. While the merge operation is simply the union of two
sets, the split operation involves removing the common instances from one of
the sets. Since the sets represent clusters, the winner is the smaller set, as it is
fundamentally more coherent. Thus, the shared instances are kept in the smaller
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cluster and removed from the bigger one. Any set that is subset of another set
is removed. The process checks all the sets and the newly generated sets of
the merge/split operation until obtaining all the remaining sets as unique sets.
Algorithm 1 explains the full process of generating multiple consensuses.

Going back to the FCPs in Table 2, the first consensus (DT=5) consist of
6 clusters (data fragments) which are the instance sets of FCPs 1, 2, 3, 6, 7,
and 8. For the next consensus (DT=4), we add the instance sets of FCPs 4, 5,
10, 11, and 14. However, the clusters of the previous consensus will be removed
because they are just subsets of the new sets. Therefor, we will have the following
sets: {3,4}, {4,5}, {1,2,3}, {5,8,9}, and {6,7,8,9}. With MT=0.5, we start with
set {3,4} that intersects with set {4,5} by 0.5 of their instances, thus they are
merged to form the set {3,4,5}. Next, set {3,4,5} intersects with set {1,2,3} but
by 0.3 which is less than MT, thus they are split into sets {3,4,5} and {1,2}. The
same split process is performed for sets {3,4,5} and {5,8,9} to form sets {3,4,5}
and {8,9}. For the remaining sets, we find that set {8,9} is a subset of {6,7,8,9},
thus it is removed. The final clusters at DT=4 are: {3,4,5}, {1,2}, and {6,7,8,9}.
The same process is performed for the remaining DTs.

By varying DT, it is possible that a consensus at a given value is identical to
the previous one. Therefore, redundant consensuses are removed, and a Stability
counter (ST) is used to record how many times a consensus is generated. The
ST value is assigned to the consensus with the highest DT, suggesting that
there is no better solution found for ST consecutive consensuses. Although the
recommended consensus is the one with the highest similarity to the ensemble,
a stable consensus can also be considered as another good solution.

3.5 ConsTree

The ConsTree is a Hasse diagram of consensuses, where each level depicts the
clusters of a consensus as nodes, with node’s size and label reflecting the cluster
size. The bottom of the tree is the first consensus, then the tree goes up to the
root having, at maximum, number of levels equals the number of base clusterings.
Each cluster in a consensus can be linked to several clusters at the higher level,
because the merge/split operations can result in regrouping some instances in
a different manner at a higher level. Figure 2 shows a ConsTree of applying 9
base clusterings to partition a dataset of 400 instances, with the recommended
consensus circled by a red line.

Definition 5. A tree of consensuses is an ordered set (L, �) of consensuses
L =

⋃DT=MinDT
DT=MaxDT LDT ordered in descending order of DT values. Let us denote

Lα = {Pα
1 , ..., Pα

m} and Lβ = {P β
1 , ..., P β

n } the consensuses generated for α and
β DT values respectively. Let us denote Pα

q the qth cluster in Lα and P β
r the rth

cluster in Lβ, with 1 ≤ q ≤ m and 1 ≤ r ≤ n. For α > β we have Lα � Lβ,
that is ∀Pα

q ∈ Lα, ∃P β
r ∈ Lβ such that Pα

q ∩ P β
r 
= ∅. Lα is a predecessor of Lβ

in the tree of consensuses.

In the tree of Fig. 2, few shifting of instances occur, while the majority is
just merging clusters from low level into 1 cluster at a higher level. However,
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Input : Dataset to cluster, merging threshold MT
Output : ConsTree tree of consensuses, list of consensus clustering vectors

1 Generate clusterings ensemble of the dataset;
2 Build the cluster membership matrix M;

3 Generate FCPs from M for minsupport = 0;

4 Sort the FCPs in ascending order of the size of their instance set;
5 MaxDT ← Number of base clusterings;

6 BiClust ← {instance sets of FCPs built from MaxDT base clusters};
7 Assign a label to each set in BiClust to build the first consensus vector and store it in a

list of vectors ConsVctrs;

8 for DT = (MaxDT - 1) to 1 do

9 BiClust ← BiClust ∪ {instances sets of FCPs built from DT base clusters};
10 N ← |BiClust | ;
11 repeat

12 for i = 1 to N do

13 Bi ← ith set in BiClust;

14 for j = 1 to N, j �= i do
15 Bj ← jth set in BiClust;
16 IntrscLeng ← |Bi ∩ Bj |;
17 if IntrscLeng = 0 then

18 Next j ;

19 else if IntrscLeng = |Bi| then
20 Remove Bi from BiClust;
21 Next i;

22 else if IntrscLeng = |Bj | then
23 Remove Bj from BiClust;
24 Next j;

25 else if (IntrscLeng ≥ |Bi| × MT ) or (IntrscLeng ≥ |Bj | × MT )
then

26 Bj ← Bi ∪ Bj ;

27 Remove Bi from BiClust;

28 Next i;

29 else

30 if |Bi| ≤ |Bj | then
31 Bj ← Bj \ Bi ;
32 else

33 Bi ← Bi \ Bj ;
34

35

36 end

37 end

38 until All sets in BiClust are unique;
39 Assign a label to each set in BiClust to build a consensus vector and add it to

ConsVctrs;

40 end

41 Find stable consensuses in ConsVctrs and remove extra duplicates;
42 For each remaining consensus, calculate its average similarity to the ensemble using

Jaccard index;

43 Build a tree from the consensuses in ConsVctrs, with a recommended solution as the
one that has the highest average similarity to the ensemble;

Algorithm 1. Generate Multiple Consensuses
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Fig. 2. Example of a ConsTree.

to enhance the visualization of the tree and to make it easier for the analyst
to recognize the stable clusters or their cores (those that do not change over
several tree levels), we developed a tree refinement process on which the few
instances that shift are removed. Figure 3 is the result of performing the refine-
ment process on the tree in Fig. 2. The refinement process does not alter the
original consensuses, it just simplify the visualization. The Removed Instances
(RI) at the bottom of the figure tells how many instances are removed. It is a
set of instance identifiers that the analyst can retrieve to investigate why these
instances are not stable and cause conflicts between the base clusterings on where
they should belong. If she/he prefers the clusters generated by the refinement
process, she/he can simply remove the RI from the selected consensus.

The tree represent an important tool to analyze the dataset and discover the
hidden cluster structure. For example, we can recognize in Fig. 2 4 columns of
node-structures (the heads of these columns are the children nodes of the root).
The ST value of DT=4 (which happened to be also the recommended solution)
tells that this consensus of 4 clusters is the most stable one, which also adds to
our discovery of a hidden structure of 4 clusters. We can also recognize other
strong clusters, as the clusters of sizes 51 and 49 in the second column from the
left, telling a strong intra-cluster similarity between their instances compared
to other clusters. The fact that these 2 clusters are then merged into 1 cluster
tells that their instances are close in the data space. The refinement process
allowed us also to discover in Fig. 3 that 36 instances have strong similarity
between them so they did not change over 4 consecutive tree levels. Based on
such analysis, the analyst is not restricted to choose the recommended consensus,
since the meaningfulness of the clusters depends more on the analyst preference.
This is why we generate multiple consensuses from different combinations of base
clusters (different views), rather than presenting just one solution.
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Fig. 3. The result of refining the tree in Fig. 2.

4 Experiments

Tests were run on a laptop with Intel R© CoreTM i7-4710MQ @ 2.50GHz, and
32 GB RAM. The proposed method was implemented using R language [18].
To find the clustering patterns, function apriori in arules R package [11] was
used, by setting the target parameter to “closed frequent itemsets”.5 To draw
the ConsTree, each cluster in a consensus was represented as a node in a graph.
Nodes of consecutive consensuses were linked by edges based on the shared
instances between them. A data frame that defines these edges was used to build
the graph, then the ConsTree was plotted by the plot function in the igraph R
package [3]. The refinement process keeps only the edges that has the maximum
number of shared instances between 2 nodes.

Table 3 summarizes the performed tests. In each test, the ensemble was gener-
ated by random selection of the following clustering algorithms with random set-
tings: K-means, PAM, agglomerative hierarchical clustering, AGNES, DIANA,
MCLUST (Gaussian Model-Based Clustering), C-Means, FANNY, Bagged Clus-
tering, and SOM. All these clustering algorithms are available in R. If the random
generation of the ensemble results in creating identical clusterings, 1 cluster ,
or 1 dominant cluster that involves 90% of the instances, then these partitions
are removed. “Ensemble size” specifies the number of base clusterings, that each
partitioned the dataset into a number of clusters within the range “K range”. We
measured the quality of the ensemble as the average Jaccard similarity between

5 A faster algorithm for generating closed itemsets called FIST is proposed by [16],
and an implementation of it in java is available on the website of the authors.
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Table 3. Tests validation.

Dataset Seeds Mushroom Zoo E.Coli Iris
Breast
Cancer

Wine EngyTime Wingnut

Dataset Size 210 8124 101 336 150 699 178 4096 1016

# of attributes 7 22 16 7 4 9 13 2 2

# of true classes 3 2 7 8 3 2 3 2 2

Ensemble size 9 7 10 12 8 9 9 8 12

K range [2,8] [2,5] [2,12] [4,10] [2,8] [2,6] [2,8] [2,8] [2,7]

In-ensemble
similariy

0.56 0.58 0.62 0.59 0.53 0.67 0.58 0.49 0.58

Ensemble Min. 0.30 0.34 0.45 0.28 0.29 0.42 0.45 0.27 0.37

Ensemble Max. 0.74 0.69 0.90 0.69 0.73 0.82 0.89 0.88 1.00

Our method 0.74 0.67 0.84 0.67 0.69 0.87 0.78 0.86 0.98

# of clusters in
our method

3 3 5 5 3 2 3 2 2

SE 0.64 0.70 0.75 0.42 0.62 0.87 0.82 0.86 0.88

GV1 0.67 0.70 0.82 0.38 0.71 0.86 0.80 0.85 0.88

DWH 0.67 0.70 0.81 0.51 0.62 0.85 0.73 0.75 0.89

HE 0.65 0.70 0.81 0.50 0.62 0.85 0.78 0.86 0.88

GV3 0.72 0.70 0.82 0.44 0.59 0.87 0.84 0.86 0.91

SM 0.64 0.70 0.79 0.50 0.62 0.85 0.78 0.86 0.88

soft/symdiff 0.75 0.70 0.69 0.42 0.59 0.86 0.47 0.86 0.92

Medoids 0.74 0.69 0.90 0.64 0.55 0.81 0.75 0.64 0.52

each pair of clusterings in the ensemble. We call this the “in-ensemble simi-
larity”, while “ensemble min” and “ensemble max” denotes the minimum and
maximum similarity to the true class. These information are to ensure that we
did not use very similar high quality clusterings in the ensemble to generate a
high quality consensus. In all tests, we compared the “recommended consensus”
of our method against voting-based consensus methods available in R pack-
age CLUE [13], which include the following: SE, GV1, DWH, HE, SM, GV3,
soft/symdiff, and consensus medoid. To justify the quality of the results, the
consensus solution is compared using Jaccard index against true class labels
available for each tested dataset. Note that CLUE methods require specifying
the number of required clusters in the consensus, thus we used the true number
of classes, while our method do not require this. For the MT parameter, we used
MT = 0.5 as the default value.

Seeds, Mushroom, Zoo, E.Coli, Iris, Breast Cancer and Wine are real datasets
available on the UCI repository [15]. EngyTime and Wingnut are synthetic
datasets from [23]. Table 4 shows the execution time, in seconds, of the con-
sensus methods used. For our method, we separated between the time required
to generate the patterns, and the time used by the method to generate all the
consensuses and calculate the recommended one.6 We can see that the total time
of the proposed method is acceptable, and it does not depend on the dataset
6 The time required to display the ConsTree is not considered, as it depend on the

I/O device.
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Table 4. Execution time of the consensus methods (in seconds).

Dataset Seeds Mushroom Zoo E.Coli Iris
Breast
Cancer

Wine EngyTime Wingnut

Patterns 0.116 0.353 0.085 0.342 0.053 0.147 0.147 0.210 0.568

Our method 0.417 0.491 0.262 1.492 0.229 0.488 0.688 3.567 1.892

SE 0.011 0.064 0.010 0.037 0.013 0.017 0.009 0.066 0.023

GV1 0.080 0.047 0.048 0.076 0.019 0.018 0.026 0.051 0.031

DWH 0.006 0.051 0.006 0.010 0.016 0.009 0.006 0.030 0.015

HE 0.011 0.062 0.017 0.018 0.001 0.016 0.008 0.087 0.020

GV3 1.483 3532.199 0.664 7.061 0.768 13.031 0.848 673.044 30.901

SM 0.722 22.917 0.817 9.305 0.675 2.172 0.833 11.455 4.720

soft/symdiff 10.918 21925.92 4.433 55.181 5.301 175.815 8.518 5332.099 414.718

Medoids 0.028 0.222 0.031 0.067 0.016 0.047 0.030 0.154 0.101

size, but on the number of the base clusterings used, and the similarity between
them. For example, in the test of the Mushroom dataset, the total number of
generated patterns is 106, while the dataset size is 8124 instances. This is a huge
pruning of the search space.

5 Conclusions

We presented a new method that can generate multiple consensus clustering solu-
tions, and recommend to the user the solution the most similar to the ensemble.
Frequent closed itemsets technique is used to detect similarities between the base
partitions, and define clustering patterns common to sets of instances. The sim-
ilarity between clustering patterns is calculated based on their shared instances.
The tests showed that the proposed method achieved generally good results in
terms of quality and the number of discovered clusters. In addition, it does not
require the user to specify K (the number of clusters in the generated consen-
sus), as this parameter is difficult to predict in the absence of domain knowledge
about the number of hidden clusters in the dataset.

An additional advantage of the proposed method is the ConsTree. As an
analysis tool, it enables the user to discover strong clusters, that is, those that
do not change over several tree levels, pointing out to strong intra-cluster simi-
larity among the instances. A stable consensus (identified on the tree by ST>1)
suggests usually the existence of a well separated clusters structure, thus the
user is advised to investigate this consensus in addition to the recommended
solution.

Execution time of our method is not related directly to the dataset size as
in other consensus methods. Instead, it depends on the size of the ensemble
and whether there are many similarities or conflicts among the base cluster-
ings, as this will determine the generated clustering patterns. Thus, for large
datasets, we can get smaller number of patterns compared to dataset size if
there are many agreements between the base clusterings. In addition, to gener-
ate a consensus, the proposed method requires only accessing a small subset of
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the available clustering patterns. Tests showed that the CLUE methods “GV3”
and “soft/symdiff” cost longer execution time compared to all other methods,
and are not applicable on large datasets because of their high storage complexity.
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