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Abstract. In 2004, the US President launched an initiative to make healthcare 
medical records available electronically [27]. This initiative gives researchers 
an opportunity to study and mine healthcare data across hospitals, pharmacies, 
and physicians in order to improve the quality of care. Physicians can make bet-
ter informed decisions regarding care of patients if physicians have proper un-
derstanding of patient journeys. In addition, physician healthcare decisions are 
influenced by their social networks. In this paper, we find patterns among pa-
tient journeys for pain medications from sickness to recovery or death. Next, we 
combine social network analysis and diffusion of innovation theory to analyze 
the diffusion patterns among physicians prescribing pain medications. Finally, 
we suggest an interactive visualization interface for visualizing demographic 
distribution of patients. The main implication of this research is a better under-
standing of patient journeys via data-mining and visualizations; and, improved 
decision-making by physicians in treating patients. 

Keywords: Diffusion of innovation · Patient journey · Social network analysis · 
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1 Introduction 

Modern healthcare has started using a patient-centered approach by building and 
evaluating patient journeys through their sickness and recovery. The study of patient 
journeys is relatively recent innovation in the healthcare quality improvement process 
[1]. A patient’s journey involves a sequence of events that a patient proceeds through 
from the point of entry into the healthcare system (triggered by sickness) until the 
complete recovery or death. Thus, patient journeys include filling prescriptions at a 
pharmacy, visiting a doctor, being admitted to the hospital, undergoing lab tests, get-
ting treatment, and recovering from sicknesses. Understanding the whole journey 
from patient’s point of view is important as the patient is the only person who experi-
ences the whole journey [2]. Patient journeys highlight bottlenecks in the healthcare 
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system, which helps providers improve the system. Hence, a comprehensive approach 
to patient journeys can help impart provocative vision that may lead physicians to 
revise their treatment plan.  

During a patient’s journey, the decisions of the physicians may be influenced by 
their social network. Most importantly, the medication that a physician prescribes or 
any new innovation that he adopts is highly influenced by the interpersonal communi-
cation of the physician with the members of his personal network [5]. Here, social 
network analysis investigates various direct and indirect interpersonal communica-
tions and interaction patterns between the members of a social system. 

Since patients are the end-users of medications, the understanding of patient jour-
neys will help us specify how and when patients consume pharmaceutical products. 
Proper evaluation of patient journey will help a physician know the unspoken needs 
of patients. Thus, it is important to investigate factors involved in creating good pa-
tient journeys. Up to now, researchers have created these journeys using process 
mapping and visualization tools by conducting surveys for a few hundred patients [1]. 
In this paper, however, we have adopted a bottom-up approach to understand patient 
journeys. We focus on pain medications being used by patients and prescribed by 
physicians in the United States of America. We build patient journeys by mining 
through billions of patient records and creating a social network of the physicians 
using their prescribing histories, specialty, and diffusion of innovation theory [7]. 
Furthermore, using social network analysis, we pinpoint key-opinion leaders in the 
physician’s social network. These opinion leaders have high influencing power and 
can bring about behavioral change in ways that medications are prescribed [7]. More-
over, in order to visualize multidimensional patients’ data we have implemented visu-
alization techniques for exploratory data analyses. Starting in the next section, we 
discuss background work in the area of patient journeys, social network analysis and 
visualization. Then, we divide our analysis into three sections: The first section deals 
with patient journeys; second section deals with diffusion of innovation of the medi-
cation and social network analysis of the physicians’ network; and, the last section 
shows the visualization of multivariate dataset. We close this paper by discussing the 
significance of our results for improving existing healthcare system. 

2 Background 

Patient journey motivates us to observe and examine the various paths a patient goes 
through and the decisions that are taken by various stakeholders through the ameliora-
tion of a disease and its treatment. Process mapping is a framework used for building 
patient journeys through patient’s perspective. It allows us to figure out a series of 
sequential-events linked with the patient’s experience [3]. It aims to boost the quality 
of clinical role, eliminate unnecessary activities from the care, and finally focus on 
more valuable activities [4]. Though process-mapping technique successfully maps 
patient’s experiences; however, in order to visualize each stakeholder’s role we need 
graphical communication tools. These graphical communication tools act as commu-
nication medium which encourages communication between various participants and 
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helps to improve the journey experiences of the patient. Furthermore, the communica-
tion tool encourages stakeholder involvement and highlights the importance of rele-
vant variables that contribute to the whole experience of the patient. However, less 
attention has been paid to the analysis of patient journeys using bottom-up approach, 
i.e., from low-level data. In this paper, we use data from US for pain medications and 
build patient journeys bottom-up. We believe that building such journeys will provide 
insights into improving patient experience across their journeys.  

Furthermore, the rate of adoption of a new medication/innovation varies from phy-
sician-to-physician [5]. While some physicians adopt a new medication early, most of 
them tend to test the waters first. Thus, most physicians wait for others in his social 
system to have tried the innovation first. The diffusion of innovation is the process in 
which an initial few people adopt an innovation first and, through their social net-
work, the innovation diffuses to others in the network. As time goes on the rate of 
adoption increases and all or most members of the social system start adopting the 
innovation [6-8]. A social network/system is the pattern of friendship, advice, com-
munication or support which exists among the members of a social system [9-12]. 
Such networks can be used to find key-opinion leaders inside a social system. Thus, a 
major contribution of social networks to diffusion research has been the categoriza-
tion of adopters based on innovativeness as measured by the time-of-adoption [13]. 
Here, innovativeness is the degree to which an individual is relatively early in adopt-
ing new ideas compared to other members of a social system [15]. As per theory of 
innovation of diffusion, there are five adopter categories among members of a social 
system on the basis of their innovativeness: 1) Innovators, 2) Early adopters, 3) Early 
majority, 4) Late majority, and 4) Laggards [6, 14, 7]. According to theory of diffu-
sion of innovation given by Everett Roger [7, 17] adopter distribution takes the form 
of a bell-shaped curve. Using two basic statistical parameters of the normal adopter 
distribution-mean time of adoption (t) and its standard deviation (σ) we obtain the five 
adopter categories [17] (Table 1). In this paper, we use this categorization and apply it 
to physicians prescribing pain medications in the US. As suggested by theory of inno-
vation-diffusion, physicians' relative location in the social network with other physi-
cians affect their decisions concerning the adoption of new innovation [16]. Thus, 
categorization based upon theory of innovation-diffusion helps us understand how 
pain medications diffuse over a social network of physicians and allows us to measure 
the rate of diffusion of innovation over time.  

Table 1. Adopter categories based on Innovativeness [17] 

Adopter Categories %  adopters Area covered under curve 

Innovators 2.5 Between t - 2σ 
Early adopters 13.5 Between t – σ and t - 2σ  
Early majority 34 Between t and t – σ 
Late Majority 34 Between t and t + σ 
Laggards 16 Between t + σ 
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Furthermore, huge amounts of multivariate data are being generated on a daily ba-
sis nowadays about patient journeys and physician prescribing histories. In order to 
find patterns in the growing data, we need to be able to visualize it efficiently. Con-
ventional visualization methods like 2-d plots, scatter grams, histograms are limited in 
the sense that they can only depict 2-dimensions at one time. In contrast, Parallel 
Coordinates system [24] has been recently proposed and it allows end-users to visual-
ize entire data together at one time. Furthermore, various functionalities like brushing, 
scattering and distribution can be attained using Parallel Coordinates. Currently, 
healthcare industry lacks a generalized, interactive and easy-to-use visualization inter-
face which incorporates features like brushing, distribution, visualization of selective 
dimensions, and correlation among dimensions. Parallel Coordinates helps us over-
come this necessity. In this paper, we build a tool based upon Parallel Coordinates 
that accepts a CSV dataset of any size and generates the visualization plot, correlation 
matrix, and distribution lists from this data.  

3 Method 

The patient journeys, social networks, and visualizations were created for patients and 
physicians residing in the US. We used a large medical-prescriptions dataset1 in order 
to build patient journeys, social network of the physicians, and visualizations. The 
dataset, containing patients and physicians, was provided by a pharmaceutical com-
pany. 

3.1 Patient Journey 
We have focused our analyses on outpatient refill data and inpatient hospital-
visitation data. The data is Big in nature as it has more than 100 million records be-
tween years 2008 and 2014. Inpatients are those who consume pain medications and 
are admitted to hospitals. Outpatients are those patients who consume pain medica-
tions but were never admitted to hospitals. We used a Big-Data architecture consisting 
of q-programming language to query a kdb+ database (from Kx systems) in order to 
find patterns among inpatients and outpatients [18]. In our patient journeys, each ac-
tivity of patients’ is coded using a letter code. For example, H represents that a patient 
has been admitted to the hospital, D represents discharge from hospital. Furthermore, 
px and dy represent procedure and diagnostic-test codes corresponding to procedure x 
and diagnostic-test y performed on patients, respectively. Medicine consumption is 
coded as amount of potency consumed by the patient (e.g., 5 mcg/hr, 10 mcg/hr, 15 
mcg/hr, and 20 mcg/hr). After building the long chain of sequences for each patient 
who consumed the pain medications, we applied Apriori algorithm [19] to find out 
strong association rules across journeys. The Apriori algorithm helps us to find  
the frequently appearing item sets in a large database. The frequent item sets are  
used to determine the association rules that highlight patterns in data. We have per-
formed a demographic analysis based on sex and age-group of patients to see how 

                                                           
1 Data shown has been altered to protect privacy. 
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these characteristics affect the refill behavior among patients. Furthermore, we ana-
lyzed the switch behavior to see how patients switched from one medicine level to 
another during their journeys.  

3.2 Social Network Analysis 

The dataset consisted of billions of physicians prescribing medicines between years 2011 
and 2015. The nature of data was prescription records of each physician during this period. 
Using social-network analysis, we created a social network for 50,000+ physicians, who 
prescribed pain medications and satisfied the constraints discussed below.  

The following assumptions were used to create a social network: 

1. Physicians living in close vicinity are likely to be in contact with each other and 
influence each other 

2. Physicians having the same specialty are likely to be in contact with each other 
and influence each other 

The distance d (i, j) between the physician i and j was computed using the haversine 
distance formula [20] 

݀(݅, ݆ሻ = 2rarcsin(ඨ݊݅ݏଶ ቀ߮௝ − ߮௜2 ቁ + cos(߮௜ሻ cos൫߮௝൯݊݅ݏଶ ቆߣ௝ − ௜2ߣ ቇ 
 

(1) 

where φi, φj and λi, λj are the latitude and longitude respectively, of prescribers i and j. 
The distances calculated are in miles. Thus, all physicians prescribing pain medica-
tions, having the same specialty, and within a certain threshold distance of each other 
were in each other’s social network. In this paper, the threshold distances selected 
were the 12.5th, 25th and 50th percentiles of all distances calculated between each phy-
sician (12.5th percentile: 323 miles; 25th percentile: 527 miles; 50th percentile: 919 
miles). Once the social network was created, each physician was given a diffuser level 
based on when he/she first prescribed pain medications with respect to his/her person-
al network. The algorithm for assigning a diffuser level is as follows: 

1. Prescribing physicians are given an integer diffuser level in the set {1, 2…n} 
2. A physician i is given diffuser level (n) = 1 if he/she prescribed in the first month or 

is the first person in his/her personal network to prescribe the pain medications, i.e., 
all members of his/her personal network had a time of adoption later than i  

3. The diffuser level assigned to a physician is n+1 where n is the diffuser level of 
physician i who is in the personal network of j but has prescribed the pain medi-
cations earlier than j.  

3.2.1   Algorithm for Social Network Analysis 

The algorithm used for social network analysis can be summarized as follows:   

1. Calculate distances between all prescribers of pain medications using haversine 
[20] distance formula 

2. Set a distance threshold for creating the social network 
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3. Create a social network by connecting physicians satisfying the vicinity and spe-
cialty assumptions 

4. Find the key-opinion leaders i.e., prescribers with the highest number of connections 
5. Assign diffuser level to each prescriber 
6. Apply the diffusion of innovation theory to the social network to categorize the 

physicians into the five adopter categories 
Based upon the algorithm above, key-opinion leaders were those physicians who were 
categorized as early adopters and whose personal network had the highest number of 
prescribers of the medication. 

3.3 Visualization 

Parallel Coordinates are becoming popular methods for data visualization, especially 
for multivariate data. The technique was proposed by Inselberg for analysis of hyper-
dimensional geometry [21]. To show a set of points in an n-dimensional space, a 
backdrop is drawn consisting of parallel lines, typically vertically and equally spaced. 
A point in an n-dimensional space is represented as a polyline with vertices on the 
parallel axes; the position of the vertex on the i-th axis corresponds to the i-th  
coordinate of the point. In order to make the interface more interactive various func-
tionalities were incorporated by making use of the d3 parallel coordinates library of 
JavaScript and enabling brushing experience for the user [22, 23]. This library follows 
an object-oriented design and consists of core functionalities implemented in  
JavaScript. It provides APIs that are used for further development of new features 
[23]. For testing our implementation, we used Parallel Coordinates on a large medica-
tion refill dataset (5000+ patients). 

4 Results 

4.1 Patient Journey 

The Apriori algorithm [19] measures the quality of association rules using confidence 
of the rule. The confidence of a rule is the number of cases in which the rule is correct 
related to the number of cases in which it is applicable. Based upon the Apriori algo-
rithm, we found the following three rules with 100% confidence among patients: 

1. If patients suffer from morbid obesity, then they go for gastric bypass and gastric 
restrictive procedures and consume pain medications 

2. If patients are females and they experience infections related to giving birth, then 
they go for spine-related surgeries and consume pain medications 

3. If patients have severe knee conditions (e.g. osteoarthritis), then they go for total 
knee replacements and consume pain medications 

As the above rules had 100% confidence, whenever the “if” condition occurred in 
data, then the “then” part of the rule occurred with 100% probability. These rules 
indicated that the same pain medications were used to treat a number of post-
operative patient conditions. 
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Fig. 3. Distribution of potency switching among patients. The x-axis shows the switch ratio and 
the y-axis shows the number of patients showing a particular switch ratio.  

4.2 Social Network Analysis 

In this section, we look into the results of how physicians are connected with other 
physicians in their network. Using the algorithm described above, first, we construct-
ed a list of top-500 key-opinion leaders. Among this list, we found that most opinion 
leaders were from mid-western and southern regions of USA2 for different percentile 
distances (Fig. 4). Among physicians, the specialties with the highest number of pre-
scribers were the following (in decreasing order): Family Medicine, Internal Medi-
cine, and Nurse practitioners.  

   

 

Fig. 4. Region-wise key-opinion leaders for 12.5th, 25th and 50th percentile.  

                                                           
2 The regions were divided as per U.S. Census Bureau Regions and Divisions. 
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Next, we analyzed the count of physicians under different diffuser levels (as ex-
plained above a diffuser level was assigned to each physician). As shown in Fig. 5, 
we found that there were slightly more number of 3rd and 4th level diffusers in the 
12.5th percentile compared to the 25th and 50th percentiles. We also observed that most 
physicians were 2nd level diffusers across all three percentiles and only the 50th per-
centile had 6th level diffusers. 

 

Fig. 5. Log (Number of Physicians) of Diffuser Level at 12.5th, 25th, and 50th percentile. 

 

Fig. 6. Region-wise distribution of adopter categories across 12.5th, 25th and 50th percentile. 
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common health problems among middle-aged patients. Lastly, we found there existed 
two kinds of switch-ratio behaviors among patients’ potency-consumption patterns. 
Thus, it seems that physicians are good at prescribing the right quantity of medication 
to majority of people. However, there also exists a large population of patients, where 
the pain medications require trial-and-error adjustments before the right potency is 
prescribed.   

5.2 Social Network Analysis 

As per theory of diffusion of innovation [7], innovators and early-adopters are known 
for their innovativeness and ability to take risks. Innovators are global leaders while 
early adopters are local leaders. As such, early-adopters have a higher influence as 
compared to innovators. In this paper, we classify physicians as key-opinion leader 
who are early-adopters, and have the highest number of prescribers in their personal 
network that they have influenced in diffusing pain medications.  

First, we found that even though the innovation was pain medications, the highest 
number of prescribers were from the specialty family medicine rather than pain medi-
cine. This finding seems counter-intuitive; however, it could simply be explained by 
the fact that family-medicine doctors are general physicians available in larger num-
bers to whom patients go to at the onset of sickness. In contrast, pain medicine is a 
specialized field where doctors would be fewer in number and only referred to by 
family-medicine doctors as a second step in patient journeys. Second, results show 
that most physicians are second level diffusers i.e. most physicians wait for other 
physicians in their personal network to prescribe before they themselves prescribe. 
This is also consistent with the diffusion of innovation theory [7], which shows fence-
sitting effects, as bulk percentage of adopters are early-majority (34%) and late-
majority (34%) rather than innovators or early-adopters. Third, our results show that 
there were slightly more number of 3rd and 4th level diffusers in the 12.5th percentile 
compared to the 25th and 50th percentiles. This is because in a smaller geographical 
area (12.5th percentile), people are likely to know each other and diffuse innovation 
across their small community; however, in a larger geographical area, people are less 
likely to know each other due to distance and would be less likely to diffuse innova-
tion. Lastly, we found that southern region of US shows the highest concentration of 
physician prescribing pain medications across all the adopter categories. This peak for 
southern region was followed by western region; with a slight deviation in the case of 
innovators and laggards, where mid-western region was higher. This may be due to 
the fact that southern region has warmer temperatures and denser population followed 
by west and mid-western region [25]. 

5.3 Visualization 

It became quite evident that scatter-grams and conventional methods are not sufficient 
enough for visualization of Big-Data in healthcare and other domains. The tool creat-
ed on parallel coordinates technologies is very interactive and helps data analysts to 
mine data more efficiently and find meaningful patterns. 
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6 Future Scope 

Patient journeys can provide a roadmap to create a better healthcare plan. In the future we 
will enhance patient journeys to highlight reasons that made patients or physicians to 
change their medication/treatment.  We will also interleave diagnosis and procedures in 
the patient journeys which will explain reasons behind prescribing a particular medication.   

Social network analysis can be an efficient and powerful tool to find key opinion 
leaders. In the future we will consider referral patterns and nomination studies to 
strengthen the reliability of the connections between the physicians and also use the 
centrality measures (e.g., eigen-vector centrality) as a metric for finding key-opinion 
leaders. 

The visualization tools could be extended to incorporate features like pie-chart for 
distribution within a dimension, manual assignment of codes for non-numeric attrib-
utes for calculation of correlation, and showing only significant correlation among 
dimensions using t-distributions and p-values. The tools can also include linear-
regression models between dimensions using correlations found between dimensions. 

These and other ideas are some of the immediate next steps that we plan to take in 
this ongoing project. 
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