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Abstract. This paper proposes a novel methodology for discovering interest-
ingness hotspots in spatial datasets using a graph-based algorithm. We define 
interestingness hotspots as contiguous regions in space which are interesting 
based on a domain expert’s notion of interestingness captured by an interesting-
ness function. In our recent work, we proposed a computational framework 
which discovers interestingness hotspots in gridded datasets using a 3-step ap-
proach which consists of seeding, hotspot growing and post-processing steps. In 
this work, we extend our framework to discover hotspots in any given spatial 
dataset. We propose a methodology which firstly creates a neighborhood graph 
for the given dataset and then identifies seed regions in the graph using the in-
terestingness measure. Next, we grow interestingness hotspots from seed  
regions by adding neighboring nodes, maximizing the given interestingness 
function. Finally after all interestingness hotspots are identified, we create a 
polygon model for each hotspot using an approach that uses Voronoi tessella-
tions and the convex hull of the objects belonging to the hotspot. The proposed 
methodology is evaluated in a case study for a 2-dimensional earthquake dataset 
in which we find interestingness hotspots based on variance and correlation  
interestingness functions. 

Keywords: Spatial data mining · Interestingness hotspot · Interestingness  
function · Hotspot discovery · Graph-based hotspot growing algorithm · Spatial 
polygon models 

1 Introduction 

Interestingness hotspots are contiguous regions in space which are interesting based on a 
domain expert’s notion of interestingness which is captured in an interestingness func-
tion. Typically, spatial clustering algorithms have been used to find interestingness 
hotspot in spatial datasets using interestingness functions; however, in our previous 
works [1,2] we proposed an alternative, non-clustering approach to obtain interesting-
ness hotspots in gridded datasets, which grows interestingness hotspots from seed 
hotspots. In this paper, we extend our framework to discover hotspots in any given spa-
tial dataset, relying on a graph-based framework. In gridded datasets, determining the 
contiguity of region is trivial: grid cells are neighboring if they share an edge. However, 
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contiguity or neighborhood relation is not well-defined for point based datasets, and an 
approach is needed to define neighborhood relation between points. In this paper, we 
propose an approach which employs Gabriel graphs [3] as neighborhood graphs of the 
spatial objects in the dataset. Next, we introduce a graph-based hotspot discovery algo-
rithm that identifies contiguous, interestingness hotspots in Gabriel graphs, maximizing 
a plug-in interesting function. Furthermore, we generate polygon models that describe 
the scope of each hotspot based on Voronoi diagram. 

Finding hotspots in a dataset maximizing an interestingness function that is based 
on a domain expert’s notion of interestingness allows domain experts to discover 
regions with interesting patterns in the data. For example, Miller et al. [4] identifies 
regions with strong association of internet ad performance and demographic data to be 
used for geo-targeted advertising. In our previous work [1], we identify regions with 
high correlation of air pollutants and Ozone levels in an air pollution dataset which 
can be used to find associations between air pollutants and Ozone levels.  

The proposed graph-based hotspot discovery framework can be summarized as  
follows: 

1. We propose a methodology for finding hotspots in spatial datasets that con-
sists of 4 steps: 1) building neighborhood graph 2) finding hotspot seeds  
3) growing hotspot seeds 4) generating polygon models. 

2. We propose methods for creating a neighborhood relation between spatial  
objects.  

3. A heap-based hotspot growing algorithm is proposed to find interestingness 
hotspots using the neighborhood graph in spatial datasets.  

4. We propose an approach to generate a polygon model for two-dimensional 
hotspots based on Voronoi diagram. 

5. The proposed interestingness hotspot discovery framework is evaluated in a 
case study involving a two-dimensional earthquake dataset. 

 
The rest of the paper is organized as follows. In Section 2, we compare the existing 

methods for discovering hotspots in spatial datasets. Section 3 introduces our frame-
work and Section 4 provides a detailed discussion of our methodology. We present 
the experimental evaluation in Section 5, and Section 6 concludes the paper.   

2 Related Work 

Spatial scan statistics introduced by Kulldorff [5] is the most widely used hotspot 
discovery tool. It searches spatial circular regions occurring within a certain time 
interval and can obtain circular hotspots by growing circles from a point of origin by 
increasing the radius of the circle. However, our framework is quite different as we 
compute hotspots based on a given interestingness measure rather than using distance-
based features of the regions. 

There are also spatial clustering algorithms which can be used for computing spa-
tial hotspots. Varlaro et al. [6] describe the goal of spatial clustering “to group nearby 
sites and form clusters of homogeneous regions…Only similar sites (transitively) 
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connected in the discrete spatial structure may be clustered together”. However, in a 
clustering approach all hotspots are obtained in a single run of the clustering and the 
obtained clusters are always disjoint in contrast to hotspot growing approaches. 
DBSCAN [7] has been used and extended by many for performing spatial clustering. 
Another popular clustering algorithm SNN [8] (Shared Nearest Neighbor) uses the 
sharing of objects in k-nearest neighbor lists to assess the similarity of spatial object 
which enables the algorithm to identify clusters of varying densities. Wang et al. 
compare different spatial clustering approaches [9].  

Most clustering algorithms compute clusters based on only the distance infor-
mation. A new group of clustering algorithms has been introduced in the literature 
that find contiguous clusters by maximizing plug-in interestingness functions similar 
to the approach used in this paper. These algorithms are capable of considering non-
spatial attributes in objective functions that drive the clustering process. Clusters are 
computed maximizing the sum of the rewards for each cluster based on a cluster in-
terestingness function. CLEVER [10] is a k-medoids-style clustering algorithm which 
exchanges cluster representatives as long as the overall reward grows, whereas 
MOSAIC [11] is an agglomerative clustering algorithm which starts with a large 
number of small clusters, and then merges neighboring clusters as long as merging 
increases the overall interestingness. We use an algorithm similar to MOSAIC in our 
framework for reducing the number of hotspot seeds by merging seed regions if merg-
ing them increases the interestingness. 

3 Interestingness Hotspot Discovery Framework 
In this section, we describe the framework for discovering hotspots in spatial datasets 
using interestingness functions.  

Interestingness hotspots are contiguous areas in space for which an interestingness 
function i assigns a reward w  0, indicating “news-worthy” regional associations. Our 
goal is to mine spatial patterns for performance attributes in a predefined space.  The 
scope of an interestingness hotspot is a contiguous spatial region for which the associa-
tion is valid and validity is assessed using interestingness functions. Formally, we as-
sume a spatial dataset O is given in which objects oO are characterized by a set of 
performance attributes P, a set of spatial attributes S, a set of continuous attributes M, 
which provide meta data under which the performance  attributes P are analyzed in the 
spatial space. Moreover, we assume that we have an interestingness measure 
i:2O{0}+ that assesses the interestingness of subsets of the objects in O by assign-
ing rewards to a particular cluster H. Moreover, we assume a spatial neighboring rela-
tionship NOO is given that describes which objects belonging to O are neighbors.  N 
is usually computed using spatial attributes S of objects in O. Finally, we assume an 
interestingness threshold  is given that defines which patterns are interesting.  

In this research we find interestingness hotspots H  O; where H is an interesting-
ness hotspot with respect to i, if the following 2 conditions are met:  

1.  i(H)    
2.  H is contiguous with respect to a neighborhood relation N; that is, for each 

pair of objects (o,v) with o,vH, there has to be a path from o to v that traverses 
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4.2 Finding Small Hotspot Seeds with High Interestingness 

Once we create the Gabriel graph for the spatial dataset, in this phase, we identify the 
small, contiguous subgraphs with high interestingness, which we call “hotspot seed 
regions” and grow these seed regions in Phase 3 to obtain larger hotspots. In order to 
identify seed regions, we visit each vertex in the graph, and create a region consisting 
of the vertex and all of its neighbors. The interestingness value for each region is cal-
culated by applying the plugin interestingness function on the set of objects in the 
region. A “seed interestingness threshold” is used to determine which of these regions 
can be used to grow larger hotspots. 

4.2.1   Merging Seed Regions 
The seeding phase finds many regions with high interestingness which can be used to 
grow hotspots in in the next phase. However, the case study reported in [1] shows that 
many seed regions grow to the same hotspot. This is not surprising as large hotspots 
usually have smaller sub-regions with high interestingness which were identified as 
seeds. Thus, we try to eliminate some of these seeds before growing by merging them. 
We use the following method to reduce the number of seed regions grown: 

1) Find neighboring seed regions 
2) Create a neighborhood graph of seed regions where each seed region is a node. 
Seed regions are neighbors if they share at least 1 node. Create an edge between 
nodes in this graph if the corresponding seed regions are neighbors and the union 
of these regions yields a region with an acceptable reward value. A merge thresh-
old is used to assess if the union of two seed regions is acceptable. Weight of the 
edge is the reward gain when the two regions connected to the edge is merged.  
3) Merge the seed regions connected to the edge with the highest weight.  
4) Update seed neighborhood graph after the merge operation: Create an edge be-
tween the new node and neighbors of the merged nodes using the same proce-
dure. 
5) Continue merging seed regions as long as there are nodes to be merged in the 
graph.  

We use a merge threshold µ to define if the union of seed regions is acceptable. If the 
reward of the new region is higher than the total reward of merged regions multiplied 
by µ, then the merge is acceptable: 

merge(s1, s2) if  R(∪(s1,s2)) >  (R(s1) + R(s2)) * µ                   (4) 
where R(si) represents the reward of seed region si. Fig. 2 gives a shortened version of 
seed processing algorithm explained above and Fig. 3 depicts pseudocode for the seed 
merge procedure. We assign the reward gain which is calculated by R(∪(s1,s2))  -  
(R(s1) + R(s2)) as the weight of an edge. We keep all edges to be processed in a max-
heap where the edge with the highest weight (reward gain) is the root of the heap tree 
and processed first. 
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1:  Create an neighborhood graph G of all seed regions 

2:  Create a max-Heap H of all edges using edge weights as priority 

3:  while H has elements   

4:      nextEdge = H.dequeue()   

5:      if graph contains both nodes connected by nextEdge then 

6:           Merge(nextEdge) 

7:     end if 

8:  end while

Fig. 2. Pseudocode for seed processing algorithm 

1: Procedure Merge (Edge e) 

2:   Set s1 = e.source, s2 = e.target 

3:   Merge s1 and s2 by adding all elements in s1 and s2  

     in a newregion snew 

4:   Add snew into G as a new vertex 

5:   Remove e from G 

6:   foreach neighbor si of s1 connected by edge ei 

7:       if R(∪(si,snew)) >  (R(si) + R(snew)) * µ then 
8:            Create an edge enew connecting nodes si and snew 

9:            enew.weight = R(∪(si,snew))  -  (R(si) + R(snew)) 
10:           G.AddEdge(enew) 

11:          G.RemoveEdge(ei) 

12:     end if 

13:  end foreach 

14:  foreach neighbor sj of s2 connected by edge ej  

15:      if R(∪(sj,snew)) >  (R(sj) + R(snew)) * µ then 
16:          Create an edge enew connecting nodes sj and snew 

17:          enew.weight = R(∪(sj,snew))  -  (R(sj) + R(snew)) 
18:          G.AddEdge(enew)  

19:          G.RemoveEdge(ej) 

20:     end if 

21:  end foreach 

22:  Remove s1 and s2 from the graph G 

23: end procedure 

Fig. 3. Pseudocode for Seed Merge procedure 

4.3 Hotspot Growing Phase 

In this section, we describe the heap-based hotspot growing algorithm. In hotspot 
growing phase, we search the best neighbor among all neighbors in each step, and 
after each time we add a new neighbor we do this search again. Searching for the best 
neighbor each time increases the complexity of hotspot growing algorithm. Instead, 
when new neighbors are encountered as a result of growing the hotspot, we assign 
each new neighbor a fitness value by evaluating the reward gain in case the neighbor 
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is added to the region. We use a max-heap data structure to keep the list of neighbors 
where the neighbor with the highest fitness value is the root of the heap tree. We add 
each neighbor into the heap using the fitness value as the priority. Fig. 4 gives the 
algorithm for each step of hotspot growing algorithm. We continue growing the re-
gion as long as there are more neighbors to be added and the interestingness of the 
region is higher than the interestingness threshold.  

 
1:  Procedure AddNextNeighbor(region)        
2:    set bestNeighbor = Heap.dequeue() 
3:    add bestNeighbor to region 
4:    set newReward = CalculateReward(region) 
5:    foreach neighbor n of bestNeighbor 
6:       if n is not in region and n is not in the neighbors list 
         then 
7:          set fitness = CalculateFitness(region, n) 
8:          Heap.enqueue(n,fitness) 
9:       end if 
10:   end foreach 
11:   if newReward > region.alltimeBestReward then 
12:      set region.alltimeBestReward = newReward 
13:      set region’s overallBestGridCells =region.currentGridCells  
14:   end if 
15: end procedure 

Fig. 4. Pseudocode for heap-based hotspot growing algorithm 

The runtime complexity of the heap-based hotspot growing algorithm is O(nlogn) 
as a total of O(logn) time is spent in each step where n is the number of objects in the 
hotspot. We refer to [2] for more details about the runtime complexity calculation. We 
also implemented incremental calculation of correlation and variance interestingness 
function to calculate the new reward in O(1) time. Details of incremental calculation 
is also available in [2]. Moreover, we grow seeds in parallel using a parallel pro-
cessing framework which is also discussed in [2].  

4.4 Generating Polygon Models for Hotspots 

In this phase, we present a method to create polygon models for 2-dimensional 
hotspots. Polygons serve an important role in the analysis of spatial data as they can 
be used as higher order representations for spatial clusters. Computationally it is much 
cheaper to perform certain calculations on polygons than on sets of objects. Moreover, 
relationships and change analysis between spatial clusters can be studied more  
efficiently and quantitatively by representing each spatial cluster as a polygon.  
Furthermore, many database systems support operations on polygons, increasing the 
importance of polygons as models for spatial data.  

We use the Voronoi diagram for the spatial dataset as the basis for creating a poly-
gon model for hotspots. Each point in the hotspot will either be in a Voronoi polygon, 
or if the point is on the convex hull of the dataset, it will not be enclosed by a Voronoi 
polygon (in which case it will be in an unbounded Voronoi region). In this case, we 
propose enclosing such points in a polygon by intersecting the convex hull of the 
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dataset with the Voronoi edges. Moreover, some points will not lie on the convex 
hull, but they will be enclosed by a polygon which crosses the convex hull. Such 
points and their Voronoi cells usually lie on the edges of the dataset and their Voronoi 
polygons are quite large, beyond the convex hull. In this case, we intersect such 
Voronoi polygons with the convex hull to obtain more compact hotspots. Once we 
create the Voronoi diagram and the convex hull of the dataset, we propose the follow-
ing algorithm for creating a polygon model for a spatial hotspot: 

1.  Find the Voronoi polygons or edges for each point in the hotspot. 
2.  For each point P in the hotspot: 

a. If P is in a closed Voronoi cell (Voronoi polygon), check if it crosses 
with the convex hull: 

i. If the convex hull does not cross Voronoi polygon, then add this poly-
gon into the polygon model for the hotspot. 

ii. Else if the convex hull crosses the Voronoi polygon, then the convex 
hull splits this polygon into 2 polygons. In this case, the point will be 
inside one of these polygons. Add the polygon with the point into the 
polygon model. 

b. If the point is not in a Voronoi polygon: find the intersection of the 
Voronoi edges around the point and the convex hull. The intersection 
will create a polygon; add this polygon into the polygon model. 

This method will create polygons for all points in the hotspot and merge them. 
Since all points in the hotspot are connected, the union of all polygons will create one 
large polygon model for the hotspot. 

5 Experimental Evaluation 

We tested our methodology in a case study involving an earthquake dataset containing 
all earthquakes of magnitude 6.0 or higher in Japan and Korea region from January 1st 
2000 to January 1st 2016. The dataset contains latitude, longitude, depth and magnitude 
of 236 earthquakes in the region. The data was downloaded from USGS (United States 
Geological Survey) website [14] for latitudes from 29.091 to 45.841 and longitudes 
from -234.756 to -210.41. Fig. 5 shows the earthquakes on a map. In the first experi-
ment, we find hotspots with very high correlations of earthquake depth and magnitude. 
Next, we find hotspots where variance of earthquake depth is very low.  
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for each spatial object in the hotspot, identifying the scope of the identified also al-
lowing for the quantitative assessment of the size of the hotspots and relationships to 
other objects in the spatial dataset.  

The proposed methodology is evaluated in a case study for a 2-dimensional earth-
quake dataset in which we find interestingness hotspots based on variance and corre-
lation interestingness functions. The methodology proved to be successful in finding 
hotspots based on plugin interestingness and reward functions. We plan to extend our 
framework for higher dimensional datasets in which we create higher dimensional 
Gabriel graphs and polygonal models.  

Compared to clustering approaches we believe that our approach has more poten-
tial to compute “better”, more interesting hotspots, as the clustering approach searches 
for all hotspots in parallel, being forced to make compromises, as switching one sub 
region from one to another cluster might increase the reward of one cluster but de-
crease the reward of the other cluster. We plan to compare our approach to clustering 
approaches in a future work. 
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