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Abstract. Network inference through link prediction is an important
data mining problem that finds many applications in computational
social science and biomedicine. For example, by predicting links, i.e., reg-
ulatory relationships, between genes to infer gene regulatory networks
(GRNs), computational biologists gain a better understanding of the
functional elements and regulatory circuits in cells. Unsupervised meth-
ods have been widely used to infer GRNs; however, these methods often
create missing and spurious links. In this paper, we propose a learning
framework to improve the unsupervised methods. Given a network con-
structed by an unsupervised method, the proposed framework employs a
graph sparsification technique for network sampling and principal com-
ponent analysis for feature selection to obtain better quality training
data, which guides three classifiers to predict and clean the links of
the given network. The three classifiers include neural networks, ran-
dom forests and support vector machines. Experimental results on sev-
eral datasets demonstrate the good performance of the proposed learning
framework and the classifiers used in the framework.

Keywords: Feature selection · Graph mining · Network analysis ·
Applications in biology and medicine

1 Introduction

Network inference through link prediction is a major research topic in com-
putational social science [9,12,18] and biomedicine [1,6,8]. For example,
computational biologists develop different methods for reconstructing gene reg-
ulatory networks (GRNs) using high throughput genomics data. Maetschke
et al. [21] categorized the existing GRN reconstruction algorithms into three
groups: unsupervised, supervised and semi-supervised. While supervised algo-
rithms are capable of achieving the highest accuracy among all the network infer-
ence methods, these algorithms require a large number of positive and negative

c© Springer International Publishing Switzerland 2016
P. Perner (Ed.): MLDM 2016, LNAI 9729, pp. 28–42, 2016.
DOI: 10.1007/978-3-319-41920-6 3



A Learning Framework to Improve Unsupervised Gene Network Inference 29

training examples, which are difficult to obtain in many organisms [21,24,29].
Unsupervised algorithms infer networks based solely on gene expression profiles
and do not need any training example; however, the accuracy of the unsuper-
vised algorithms is low [21]. In our previous work [24,29], we studied supervised
and semi-supervised methods. Here we explore ways for improving the accuracy
of unsupervised methods.

Specifically we propose a learning framework to clean the links of the GRNs
inferred by unsupervised methods using time-series gene expression data. These
methods include BANJO (Bayesian Network Inference with Java Objects) [36],
TimeDelay-ARACNE (Algorithm for the Reconstruction of Accurate Cellular
Networks) [37], tlCLR (Time-Lagged Context Likelihood of Relatedness) [10,20],
DFG (Dynamic Factor Graphs) [16], BPDS (Boolean Polynomial Dynamical Sys-
tems) [30], MIDER [31], Jump3 [14], ScanBMA [35], and Inferelator [3]. BANJO
models networks as a first-order Markov process; it searches through all pos-
sible networks, seeking the network with the best score. TimeDelay-ARACNE
infers networks from time-series data using mutual information from information
theory.

The tlCLR method also uses mutual information and depends on ordinary
differential equations to model time-series data. DFG models experimental noise
as a fitted Gaussian and then infers networks based on an assumed underly-
ing, idealized gene expression pattern. Jump3 uses a non-parametric procedure
based on decision trees to reconstruct GRNs. ScanBMA is a Bayesian inference
method that incorporates external information to improve the accuracy of GRN
inference. Inferelator uses ordinary differential equations that learn a dynami-
cal model for each gene using time-series data. Recent extensions of Inferelator
incorporate prior knowledge into the tool, and are resilient to noisy inputs.

The main drawback of the unsupervised methods is that they often create
missing and spurious links [21]. The learning framework proposed here consists
of several steps to clean the links. First, since an inferred network is sizable, we
develop a graph sparsification technique to generate dual sample graphs, which
represent significant portions of the network constructed by an unsupervised
method. Graph sparsification is a technique for generating sample graphs from a
large network, which speeds up the learning process from the network [2,17,23].
Next, we use principal component analysis (PCA) as a dimensionality reduction
technique for feature learning. PCA is commonly used in the bioinformatics
community to select important features from data [26,34]. Finally, we build three
classifiers using the important features learned from the dual sample graphs and
apply these classifiers to predicting and cleaning the links in the noisy network
constructed by an unsupervised method. The three classifiers include neural
networks, random forests and support vector machines. Like PCA, these three
classifiers are commonly used in bioinformatics[32]. As a case study, we focus
on Inferelator [3] in the paper and show how to use the proposed framework to
predict and clean the links constructed by Inferelator, which is one of the most
widely used unsupervised methods in the field.
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The rest of this paper is organized as follows. Section 2 presents our learning
framework, describing the techniques of graph sparsification, feature construc-
tion and principal component analysis, as well as the proposed link prediction
and cleaning algorithm. Section 3 reports experimental results, comparing the
three classifiers used in the framework. The results demonstrate the effectiveness
of the framework, showing how it improves the accuracy of Inferelator. Section 4
concludes the paper.

2 The Learning Framework

2.1 Graph Sparsification

The input of the proposed learning framework is a weighted directed graph
G = (V,E) that represents the topological structure of (a subgraph of) the gene
regulatory network (GRN) constructed by Inferelator based on a time series gene
expression dataset. E is the set of edges or links, and V is the set of vertices or
nodes in G, where each link represents a regulatory relationship and each node
represents a gene. Each edge e = (u, v) ∈ E is associated with a weight, denoted
by W (e), where 0 < W (e) ≤ 1.

Our graph sparsification method, named GeneProbe (reminiscent of
LinkProbe [5] for social network analysis), takes as input the graph G and two
genes of interest: an origin or regulator gene, and a destination or regulated gene.
GeneProbe creates six sets of genes, described below, and produces as output
an inference subgraph that contains all genes in the six sets and all edges in E
that connect the genes in the six sets.

Two Sets of k-backbone Genes. These include one set of k-backbone hub
genes and one set of k-backbone authority genes. The k-backbone hub genes
include all genes whose weighted outgoing degree is greater than or equal to
a user-specified positive real value khub ∈ R

+. The weighted outgoing degree
of a gene or node u is defined as the sum of edge weights for all outgoing
edges of u. Likewise, the k-backbone authority genes include all genes whose
weighted incoming degree is greater than or equal to a user-specified value
kauthority ∈ R

+. The weighted incoming degree of a node u is defined as the
sum of edge weights for all incoming edges of u. (In the study presented here,
khub = 15 and kauthority = 10.) Intuitively we select few “highly social” individu-
als who would represent “social hubs/authorities” for inference across geograph-
ical regions. The genes most likely to be regulators (with the largest weighted
outgoing degrees) are selected as the “hubs” of the network G for inclusion in
the inference subgraph. Furthermore, the genes most likely to be regulated genes
(with the largest weighted incoming degrees) are selected as the “authorities” of
the network G for inclusion in the inference subgraph.

Formally, let W-out(u) (W-in(u), respectively) denote the weighted outgoing
(incoming, respectively) degree of node u. Then

W-out(u) =
∑

e∈E-out(u)

W (e) (1)
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W-in(u) =
∑

e∈E-in(u)

W (e) (2)

where W (e) is the weight of edge e, and E-out(u) (E-in(u), respectively) denotes
the set of edges leaving (entering, respectively) u. GeneProbe retrieves all genes
u ∈ G where W-out(u) ≥ khub and W-in(u) ≥ kauthority.

Two Sets of d-local Genes. These include one set of d-local genes for the origin
and one set of d-local genes for the destination. The d-local genes are the genes
adjacent to each of the two genes of interest, i.e., the origin and destination, with
incident edge weights greater than or equal to a user-specified positive real value
d ∈ R

+. (In the study presented here, d = 0.95.) Intuitively, the d-local genes
represent the genes most likely to be regulated by and most likely to regulate
the two genes of interest.

Two Sets of Random Walk Metropolis Genes. These include one set of ran-
dom walk metropolis genes for the origin and one set of random walk metropolis
genes for the destination. The random walk metropolis (RWM) genes provide a
stochastic path from the genes of interest back to a k-backbone gene (if possi-
ble). The RWM does not differentiate between k-backbone hub and k-backbone
authority genes. All of the genes encountered along the RWM path are added to
the inference subgraph. For the origin or regulator gene, the random walk is a
walk along outgoing edges towards the k-backbone, whereas the random walk for
the destination or regulated gene is a backtrack to the k-backbone along incom-
ing edges. Each step along the random walk metropolis is selected based on a
randomized chance until a k-backbone gene is reached (or a maximum number
of tries is exceeded).

The randomized chance at each step along the random walk for the regulator
gene (i.e., origin) can be characterized as follows. Given a current gene u, we
select a random edge from the list of outgoing edges of gene u. Let w represent
the gene at the end of the randomly selected outgoing edge. The random walk
will proceed from gene u to gene w if a randomly selected number between 0
and 1 is less than or equal to the minimum of 1 and the weighted outgoing
degree of w divided by the weighted outgoing degree of u. That is, w is accepted
as the next state with the probability of less than or equal to an acceptance
rate αout. Otherwise, another random outgoing edge of gene u is selected and
similar calculations are performed. This move can be formalized in Equation (3).
P (u → w) is the probability that a random walk proceeds from u to w where

αout = P (u → w) = min

{
1,

W-out(w)
W-out(u)

}
(3)

This process is repeated until a maximum number of tries is reached (or a
k-backbone gene is reached). Note that given enough chances in a connected
gene regulatory network, the random walks will always reach a k-backbone gene.
It logically follows that a setting that includes few k-backbone genes will likely
generate many RWM genes and vice versa.
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The randomized chance at each step along the random walk for the regulated
gene (i.e., destination) can be characterized as follows. Given a current gene v,
we select a random edge from the list of incoming edges of gene v. Let w represent
the gene at the end of the randomly selected incoming edge. The random walk
will backtrack from gene v to gene w if a randomly selected number between
0 and 1 is less than or equal to the minimum of 1 and the weighted incoming
degree of w divided by the weighted incoming degree of v. That is, w is accepted
as the next state with the probability of less than or equal to an acceptance rate
αin. Otherwise, another random incoming edge of gene v is selected and similar
calculations are performed. This move is formalized in Equation (4).

αin = P (w ← v) = min

{
1,

W-in(w)
W-in(v)

}
(4)

where P (w ← v) is the probability that a random walk moves backward from v
to w. This process is repeated until a maximum number of tries is reached (or a
k-backbone gene is reached). Figure 1 illustrates an inference subgraph.

Fig. 1. Example of an inference subgraph containing an origin (green), a destination
(purple), d-local genes (black), k-backbone genes (blue) and random walk metropolis
genes (red).



A Learning Framework to Improve Unsupervised Gene Network Inference 33

2.2 Feature Selection

An inference subgraph may still have missing and spurious links. We select a
more reliable sample from the inference subgraph where the weight of each edge
in the sample is greater than or equal to 0.5. For each pair of genes u, v in the
sample graph, we create a feature vector B by concatenating the gene expression
profiles of u and v, as in [7,29]. That is,

B = [u1, u2, . . . , up, v1, v2, . . . , vp] (5)

where u1, u2, . . . , up are the gene expression values of u, and v1, v2, . . . , vp are
the gene expression values of v. Each gene expression value is a feature.

We employ principal component analysis (PCA) to reduce the dimensionality
of the feature vectors of a sample graph [28]. Specifically, we combine the feature
vectors into a 2p × N matrix X where 2p is the total number of features and N
is the number of links in the sample graph. Let the rank of the matrix X be r
where the rank represents the maximum number of uncorrelated column vectors
in X [33]. We represent X through singular value decomposition (SVD) as

X = U · S · V T (6)

Both U and V are orthogonal matrices. Each column of U is one of the
eigenvectors of the covariance matrix X · XT where XT is the transpose of X.
Each column of V is one of the eigenvectors of the matrix XT · X. The r × r
matrix S contains eigenvalues of X on the diagonal line of S.

In our case, each column vector of the matrix X represents a (present or
missing) link of the sample graph. That is, each link of the sample graph is
a vector in the 2p-dimensional Euclidean space. The dot product between two
column vectors reflects the extent to which the two corresponding links share
similar feature occurrences. Thus, we can use the dot product to get pairwise
link distances. Let M contain pairwise link distances, i.e., Mij is the dot product
distance between link Li and link Lj . Then M can be derived by:

M = XT · X (7)

which can be generalized as:

M = (U · S · V T )T · (U · S · V T ) (8)

= (V · S · UT ) · (U · S · V T ) (9)

= V · S2 · V T (10)

= (V · S) · (V · S)T (11)

The new representation of the matrix M shows that the pairwise link comparison
matrix M can be obtained through the dot product of (V ·S) and (V ·S)T . That is,
the ith row of the N × r matrix (V · S) is an r-dimensional vector representing
the ith link in the sample graph. This result indicates that after performing
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projection transformation with respect to the matrix V , we can keep pairwise
distances between link-vectors as in the original setting.

SVD reduces the dimensionality (from 2p to r where r < min(2p,N)) of a
link-vector. However, the reduced r-dimensional link-vector might still contain
redundant dimensions. In practice, the dimensionality of these link-vectors could
be further reduced without losing characteristics of the link-vectors in the orig-
inal 2p-dimensional Euclidean space. Specifically, based on the optimal solution
of the squared-error criterion of PCA [28], an r-dimensional vector could be
projected onto a k-dimensional subspace, k < r, spanned by the eigenvectors
corresponding to the k largest eigenvalues of the covariance matrix X ·XT . As a
result, we can obtain Xk, which is an approximation of the original matrix X, by
keeping the k largest eigenvalues of the covariance matrix X · XT and replacing
the remaining eigenvalues with zeros. Then, Equation (6) can be rewritten as

Xk = Uk · Sk · V T
k (12)

Therefore, the N ×k matrix (Vk ·Sk) replaces the matrix (V ·S) in Equation (11),
where the ith row of the matrix (Vk ·Sk) is a k-dimensional vector that represents
the ith link in the sample graph. (In the study presented here, k = 10.)

2.3 The Link Prediction Algorithm

After explaining the concepts of graph sparsification and feature selection, we
now describe how the proposed learning framework (i.e., link prediction algo-
rithm) works. The main assumption here is that the network G constructed by
Inferelator is not accurate, and there are many missing and spurious links in G.
A missing link or edge em refers to a regulatory relationship that exists in the
ground truth but is not inferred by Inferelator, and hence em �∈ G. A spurious
link es refers to a regulatory relationship that does not exist in the ground truth,
but is inferred by Inferelator, and hence es ∈ G. The goal here is for our link
prediction algorithm to detect these missing and spurious links, so as to clean
them. To achieve this goal, the algorithm predicts whether there is a link between
two nodes and uses the predicted outcome to replace the result obtained from
Inferelator if the predicted outcome differs from Inferelator’s result.

Let G = (V,E) be the gene regulatory network (GRN) constructed by Infer-
elator based on a time series gene expression dataset. Our algorithm first creates
two subgraphs G+ = (V+, E+) and G− = (V−, E−) where V+ (V−, respectively)
contains incident nodes of the edges in E+ (E−, respectively), the weight of each
edge in E+ (E−, respectively) is greater than or equal to (less than, respectively)
the median of the weights of the edges in E, E+ ∩ E− = ∅ and E+ ∪ E− = E.
Thus, the edges in G+ are likely to be positive instances and the edges in G−
are likely to be negative instances. Note, however, that in practice these two
subgraphs G+ and G− have low quality data, i.e., they contain many missing
and spurious links.
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Our link-prediction algorithm consists of five steps.

Step 1: Suppose the algorithm aims to predict whether there is a link from
node/gene u to node/gene v. There are two cases to consider. In case 1, the gene
pair (u, v) is in G+. Then the algorithm creates an inference subgraph I+ ⊆ G+

by invoking GeneProbe and using G+, the origin u and the destination v as
input. In addition, the algorithm randomly selects a pair of genes x, y in G−,
and creates an inference subgraph I− ⊆ G− by invoking GeneProbe and using
G−, the origin x and the destination y as input. In case 2, the gene pair (u, v) is
in G−. Then the algorithm creates an inference subgraph I− ⊆ G− by invoking
GeneProbe and using G−, the origin u and the destination v as input. In addi-
tion, the algorithm randomly selects a pair of genes x, y in G+, and creates an
inference subgraph I+ ⊆ G+ by invoking GeneProbe and using G+, the origin x
and the destination y as input. Without loss of generality, we assume that case 1
holds and will use case 1 to describe the following steps. Thus, the algorithm
creates dual graph sparsifications I+ and I− in step 1.

Step 2: Create a sample graph I
′
+ ⊆ I+ where I

′
+ does not contain the test-

ing gene pair (u, v), and the weight of each edge in I
′
+ is greater than or equal

to 0.5. We consider the edges in I
′
+ to have higher quality and are more likely

to be positive instances. Suppose there are K edges in I
′
+. We then randomly

select K edges from I− and use the randomly selected edges to form a sample
graph I

′
− ⊆ I−. In training the three classifiers including neural networks, ran-

dom forests and support vector machines, we will use the edges in I
′
+ as positive

training examples, and use the edges in I
′
− as negative training examples. The

dual sample graphs I
′
+ and I

′
− together form the training dataset.

Step 3: Construct a feature vector for the testing gene pair (u, v) by concate-
nating the gene expression values of u and v, as shown in Equation (5). Also,
construct a feature vector for each gene pair (p, q) in the training dataset by
concatenating the gene expression values of p and q.

Step 4: Reduce the dimensionality of the feature vectors constructed in step
3 using principal component analysis (PCA), as described in Section 2.2.

Step 5: Use the training examples (reduced feature vectors obtained from step 4)
to train three classifiers including neural networks, random forests and support
vector machines. Use the trained models to predict whether there is a link from
gene u to gene v.

3 Experiments and Results

We conducted a series of experiments to evaluate the performance of the pro-
posed learning framework and the three classifiers used in the framework. Below,
we describe the datasets and experimental methodology used in our study, and
then present the experimental results.
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3.1 Datasets

We adopted the five time-series gene expression datasets available in the
DREAM4 100-gene in silico network inference challenge [10,22,25,27]. Each
dataset contains 10 times series, where each time series has 21 time points,
for 100 genes. Each gene has (10 × 21) = 210 gene expression values. Each link
consists of two genes, and hence is represented by a 420-dimensional feature
vector; cf. Equation (5). Through principal component analysis, each reduced
feature vector has only 10 dimensions.

Each time-series dataset is associated with a gold standard file, where the gold
standard represents the ground truth of the network structure for the time-series
data. Each link in the gold standard represents a true regulatory relationship
between two genes. For a given time-series dataset, Inferelator [3] constructs a
directed network, in which each link has a weight and represents an inferred
regulatory relationship between two genes.

Table 1 presents details of the five networks, true and inferred, used in the
experiments. The table shows the numbers of true present and missing links in
each gold standard, and the numbers of inferred present and missing links in
each network constructed by Inferelator. Each network contains 100 nodes or
genes, which form 9,900 ordered gene pairs totally.

Table 1. Networks used in the experiments

Net1 Net2 Net3 Net4 Net5

Directed Yes Yes Yes Yes Yes
Nodes 100 100 100 100 100
True present links 176 249 195 211 193
True missing links 9,724 9,651 9,705 9,689 9,707
Inferred present links 6,232 6,066 6,186 5,930 6,180
Inferred missing links 3,668 3,834 3,714 3,970 3,720

For each network, we created four sets of testing data. Each testing dataset
contains 50 randomly selected links from the gold standard. Among the 50 links,
25 are true present links and 25 are true missing links in the gold standard. The
label (+1 or -1) of each selected link is known, where +1 represents a true present
link and -1 represents a true missing link. These testing data were excluded from
the training datasets used to train the classifiers studied in the paper. There were
20 testing datasets totally.

3.2 Experimental Methodology

We considered three classification algorithms, namely neural networks (NN),
random forests (RF) and support vector machines (SVM). Software used in
this work included: the neuralnet package in R [11], the random forest package
in R [19], and the SVM program with the polynomial kernel of degree 2 in
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the LIBSVM package [4]. The principal component analysis (PCA) program
was based on the prcomp function in R [13]. The graph sparsification method
(GeneProbe) was implemented in C++. In addition, we used R to write some
utility tools for performing the experiments.

The performance of each classification algorithm was evaluated as follows.
We trained each classification algorithm as described in Section 2.3. For each
link in a testing dataset, we used the trained model to predict its label. In
evaluating our link prediction algorithm, we define a true positive to be a true
present link that is predicted as a present link. A false positive is a true missing
link that is predicted as a present link. A true negative is a true missing link
that is predicted as a missing link. A false negative is a true present link that is
predicted as a missing link. In evaluating Inferelator, we define a true positive to
be a true present link that is an inferred present link. A false positive is a true
missing link that is an inferred present link. A true negative is a true missing link
that is an inferred missing link. A false negative is a true present link that is an
inferred missing link. Let TP (FP , TN , FN , respectively) denote the number
of true positives (false positives, true negatives, false negatives, respectively) for
a testing dataset. We adopted the balanced error rate (BER) [29], defined as

BER =
1
2

×
(

FN

TP + FN
+

FP

FP + TN

)
(13)

We applied each classification algorithm to each testing dataset and recorded the
BER for that testing dataset. The lower BER a classification algorithm has,
the better performance that algorithm achieves. We define the improvement rate,
denoted IR, on a testing dataset to be (P ∗ − P ) × 100% where P ∗ is the BER
of Inferelator and P is the BER of a classification algorithm (NN, RF or SVM)
for that dataset. Statistically significant performance differences were calculated
using Wilcoxon signed rank tests [15]. As in [28], we considered p-values below
0.05 to be statistically significant.

3.3 Experimental Results

Table 2 shows the improvement rate (IR) each classification algorithm achieves
on each of the 20 testing datasets. A positive (negative, respectively) IR for
a classification algorithm indicates that the algorithm performs better (worse,
respectively) than Inferelator. The larger the positive IR a classification algo-
rithm has, the more improvement over Inferelator that algorithm achieves. For
each testing dataset, the classification algorithm with the best performance, i.e.,
the largest positive IR, is shown in boldface.

It can be seen from Table 2 that SVM (support vector machines) outperforms
Inferelator, NN (neural networks) and RF (random forests). SVM improves Infer-
elator on 16 testing datasets, and the improvement is statistically significant
according to Wilcoxon signed rank tests (p < 0.05). NN improves Inferelator
on 12 testing datasets; however, the improvement is not statistically significant
according to Wilcoxon signed rank tests (p > 0.05).
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Table 2. Improvement rates of three classification algorithms on twenty datasets

Dataset NN RF SVM

Net1.test1 +11.1% +0.90% +17.9%
Net1.test2 +17.0% +1.80% +12.3%
Net1.test3 +7.10% +4.90% +13.6%
Net1.test4 +5.20% +2.10% +9.20%
Net2.test1 +5.80% +1.80% −1.60%
Net2.test2 +14.8% −6.20% +0.90%
Net2.test3 +4.40% −12.1% +1.20%
Net2.test4 −0.60% +1.20% +5.20%
Net3.test1 +0.20% −9.40% −1.10%
Net3.test2 +0.00% +8.00% +4.00%
Net3.test3 −8.00% −6.00% +2.00%
Net3.test4 −2.00% −10.0% +8.00%
Net4.test1 +10.4% −4.80% +3.00%
Net4.test2 −5.70% −6.00% +4.50%
Net4.test3 +10.8% +2.50% +5.20%
Net4.test4 −3.00% +8.20% +2.60%
Net5.test1 +1.20% −5.00% +7.10%
Net5.test2 −1.70% −13.1% +2.90%
Net5.test3 −7.00% −13.3% −3.50%
Net5.test4 −3.00% −7.20% −1.10%

We also carried out experiments to evaluate the performance of different
SVM kernel functions, including the linear kernel (SVM L), polynomial kernel
of degree 2 (SVM P2), polynomial kernel of degree 15 (SVM P15), Gaussian
kernel (SVM G), and sigmoid kernel (SVM S). Figure 2 shows the BER values,
averaged over the 20 testing datasets, for the different kernel functions. It can
be seen that SVM with the polynomial kernel of degree 2 (SVM P2) used in this
study performs the best.

Finally we conducted experiments to evaluate the effectiveness of the compo-
nents of the proposed learning framework. There are two core components: graph
sparsification (GeneProbe) and feature selection (PCA). Figure 3 compares the
approach with graph sparsification (GS) only, the approach with feature selection
(FS) only, and our proposed approach, which combines both graph sparsifica-
tion (GS) and feature selection (FS). Each bar represents the average BER over
the 20 testing datasets. The classifier used to generate the results was the SVM
program with the polynomial kernel of degree 2. It can be seen from Figure 3
that the proposed approach combining GS and FS performs the best.
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Fig. 2. Performance evaluation of different SVM kernel functions.
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Fig. 3. Effectiveness of the components of the proposed learning framework.

4 Conclusion

Given gene regulatory networks constructed by unsupervised network inference
methods, our goal is to predict and clean the links in the networks. To achieve this
goal, we propose a learning framework, which employs (i) a graph sparsification
technique (GeneProbe) for generating inference subgraphs from a given network,
and (ii) principal component analysis (PCA) for selecting significant features
from high-dimensional feature vectors. The selected feature values are then used
to train three classifiers including neural networks (NN), random forests (RF)
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and support vector machines (SVM) for performing link prediction and link
cleaning in the given network.

In our case study, the proposed framework is able to learn better quality
training data from noisy networks constructed by a widely used network infer-
ence tool (Inferelator). Among the three classification algorithms studied in the
paper, SVM with the polynomial kernel of degree 2 outperforms NN and RF in
terms of improving the accuracy of Inferelator. This kernel is the best among
all SVM kernel functions tested here. Our experimental results also show that
combining both graph sparsification and PCA is better than using PCA or graph
sparsification alone.

To the best of our knowledge, ours is the first study to predict and clean the
links in gene regulatory networks constructed by unsupervised network inference
methods. In future work, we plan to apply the proposed learning framework to
other unsupervised network inference tools and evaluate its performance when
used with those tools. We will also explore new feature learning and data classi-
fication methods including deep learning algorithms and assess their feasibility
for our framework.
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30. Vera-Licona, P., Jarrah, A.S., Garćıa-Puente, L.D., McGee, J., Laubenbacher,
R.C.: An algebra-based method for inferring gene regulatory networks. BMC Sys-
tems Biology 8, 37 (2014). http://dx.doi.org/10.1186/1752-0509-8-37

31. Villaverde, A.F., Ross, J., Morn, F., Banga, J.R.: MIDER: network inference
with mutual information distance and entropy reduction. PLoS ONE 9(5), e96732
(2014). http://dx.doi.org/10.1371%2Fjournal.pone.0096732

32. Wang, J.T.L., Zaki, M.J., Toivonen, H.T.T., Shasha, D.: Data Mining in Bioinfor-
matics. Springer (2005)

33. Wang, J.T.L., Liu, J., Wang, J.: XML clustering and retrieval through principal
component analysis. International Journal on Artificial Intelligence Tools 14(4),
683 (2005). http://dx.doi.org/10.1142/S0218213005002326

34. Yeung, K.Y., Ruzzo, W.L.: Principal component analysis for clustering gene
expression data. Bioinformatics 17(9), 763–774 (2001). http://dx.doi.org/10.1093/
bioinformatics/17.9.763

35. Young, W., Raftery, A.E., Yeung, K.Y.: Fast Bayesian inference for gene regulatory
networks using ScanBMA. BMC Systems Biology 8, 47 (2014). http://dx.doi.org/
10.1186/1752-0509-8-47

36. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to
Bayesian network inference for generating causal networks from observational
biological data. Bioinformatics 20(18), 3594–3603 (2004). http://bioinformatics.
oxfordjournals.org/content/20/18/3594.abstract

37. Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelay-ARACNE: reverse engineer-
ing of gene networks from time-course data by an information theoretic approach.
BMC Bioinformatics 11, 154 (2010). http://dx.doi.org/10.1186/1471-2105-11-154

http://dx.doi.org/10.1186/1752-0509-8-37
http://dx.doi.org/10.1371%2Fjournal.pone.0096732
http://dx.doi.org/10.1142/S0218213005002326
http://dx.doi.org/10.1093/bioinformatics/17.9.763
http://dx.doi.org/10.1093/bioinformatics/17.9.763
http://dx.doi.org/10.1186/1752-0509-8-47
http://dx.doi.org/10.1186/1752-0509-8-47
http://bioinformatics.oxfordjournals.org/content/20/18/3594.abstract
http://bioinformatics.oxfordjournals.org/content/20/18/3594.abstract
http://dx.doi.org/10.1186/1471-2105-11-154

	A Learning Framework to Improve Unsupervised Gene Network Inference
	1 Introduction
	2 The Learning Framework
	2.1 Graph Sparsification
	2.2 Feature Selection
	2.3 The Link Prediction Algorithm

	3 Experiments and Results
	3.1 Datasets
	3.2 Experimental Methodology
	3.3 Experimental Results

	4 Conclusion
	References


