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Abstract. We present a flexible non-parametric generative model for
multigroup regression that detects latent common clusters of groups.
The model is founded on techniques that are now considered standard
in the statistical parameter estimation literature, namely, Dirichlet pro-
cess(DP) and Generalized Linear Model (GLM), and therefore, we name
it “Infinite MultiGroup Generalized Linear Models” (iMG-GLM). We
present two versions of the core model. First, in iMG-GLM-1, we demon-
strate how the use of a DP prior on the groups while modeling the
response-covariate densities via GLM, allows the model to capture latent
clusters of groups by noting similar densities. The model ensures different
densities for different clusters of groups in the multigroup setting. Sec-
ondly, in iMG-GLM-2, we model the posterior density of a new group
using the latent densities of the clusters inferred from previous groups as
prior. This spares the model from needing to memorize the entire data of
previous groups. The posterior inference for iMG-GLM-1 is done using
Variational Inference and that for iMG-GLM-2 using a simple Metropo-
lis Hastings Algorithm. We demonstrate iMG-GLM’s superior accuracy
in comparison to well known competing methods like Generalized Linear
Mixed Model (GLMM), Random Forest, Linear Regression etc. on two
real world problems.

1 Introduction

Multigroup Regression is the method of choice for research design whenever
response-covariate data is collected across multiple groups. When a common
regressor is learned on the amalgamated data, the resultant model fails to identify
effects for the responses specific to individual groups because the underlying
assumption is that the response-covariate pairs are drawn from a single global
distribution, when the reality might be that the groups are not statistically
identical, making the joining of them inappropriate. Modeling separate groups
via separate regressors results in a model that is devoid of common latent effects
across the groups. Such a model does not exploit the patterns common among
the groups ensuring in turn the transferability of information among groups in
the regression setting. This is of particular importance when the training set is
very small for many of the groups. Joint learning, by sharing knowledge between
the statistically similar groups, strengthens the model for each group, and the
resulting generalization in the regression setting is vastly improved.
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The complexities that underlie the utilization of the information transfer
between the groups are best motivated through examples. In Clinical Trials, for
example, a group of people are prescribed either a new drug or a placebo to
estimate the efficacy of the drug for the treatment of a certain disease. At a
population level, this efficacy may be modeled using a single Normal or Poisson
mixed model distribution with mean set as a (linear or otherwise) function of
the covariates of the individuals in the population. A closer inspection might
however disclose potential factors that explain the efficacy results better. For
example, there might be regularities at the group level—Caucasians as a whole
might react differently to the drug than, say, Asians, who might, furthermore,
comprise many groups. Identifying this across group information would there-
fore improve the accuracy of the regressor. Similarly in the Stock Market, future
values and trends for a group of stocks are predicted for various sectors such
as Energy, Materials, Consumer discretionary, Financials, Telecomm., Technol-
ogy, etc. Within each sector, various stocks share trends and therefore predict-
ing them together (modeling them with the same time series via autoregressive
density) is usually much more accurate than predicting and capturing individual
trends. Modeling the latent common clustering effects of cross-cutting subgroups
is therefore an important problem to solve. We present a framework here that
accomplishes this.

We begin with a brief description of the weaknesses of the most popular mul-
tilevel regression techniques, namely, Generalized Linear Models [19] and Mixed
model [7]. In regression theory, Generalized Linear Model (GLM), proposed in
[19], brings erstwhile disparate techniques such as, Linear regression, Logistic
regression, and Poisson regression, under a unified framework. GLM is formally
defined as:

f (y; θ, ψ) = exp

{
yθ − b (θ)

a (ψ)
+ c (y; ψ)

}
(1)

Here, ψ is a dispersion parameter. exp denotes the exponential family density.
The mean response is E [Y |X] = b (θ) = μ = g−1

(
XT β

)
, where g is the link

function, XT β is the linear predictor. For multigroup regression, Generalized
Linear Mixed Model (GLMM) [7] and Hierarchical Generalized Linear Mixed
Model [14] have been developed where similarities between groups is captured
though a Fixed effect and variation across groups is captured through random
effects. Statistically, these models are very rigid since every group is forced to
manifest the same fixed effect, while the random effect only represents the inter-
cept parameter of the linear predictors. Cluster of groups may have significantly
different properties from other clusters of groups, a feature that is not captured
in these traditional GLM based models. Furthermore, various clusters of groups
may have different uncertainties with respect to the covariates which we denote
as heteroscedasticity. In recent progress, [3] has proposed a Bayesian Hierarchical
model, where a prior is used for the mixture of groups. Nevertheless, individual
groups are given weights as opposed to jointly learning various groups. Also, the
number of mixtures are fixed in advance.
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Before, presenting our algorithm, we describe our basis for identifying group-
correlation. First, two groups are correlated if their responses follow the same
distribution. Second, two groups that have the same response variance with
respect to the covariates are deemed to be correlated. This is achieved via a
Dirichlet Process prior on the groups and the covariate co-efficients (β). The
posterior is obtained by appropriately combining the prior and the data likeli-
hood from the given groups. The prior helps cluster the groups and the likelihood
from the individual groups help in the sharing of trends between groups to create
the single posterior density between the many potential groups, thereby leading
to group-correlation.

We now present an overview of our iMG-GLM framework. Our objective is
to achieve (a) shared learning of various groups in a regression setting, where
data may vary in terms of temporal, geographical or other modalities and (b)
automatic clustering of groups which display correlation. iMG-GLM-1 solves
this task. In iMG-GLM-2, we model a completely new group after modeling
previous groups through parameters learned in iMG-GLM-1. In the first part,
the regression parameters are given a Dirichlet Process prior, that is, they are
drawn from a DP with the base distributions set as the density of the regression
parameters. Since a draw from a DP is an atomic density, to begin, one group
will be assigned one density of the regression parameters which signifies the
response density with respect to its covariates. As the drawn probability weight
from the DP increases, the cluster starts to consume more and more groups in
this mutigroup setting. We employ a variational Bayes algorithm for the infer-
ence procedure in iMG-GLM-1 for computational efficiency. iMG-GLM-1 is then
extended to iMG-GLM-2 for modeling a completely new group. Here we trans-
fer the information (covariate coefficients) obtained in the first part, to learning
a new group. In essence, the cluster parameters (covariate coefficients for the
whole group) are used as a prior distribution for the model parameters of the
new group’s response density. This therefore leads to a mixture model where the
weights are given by the number of groups that one cluster consumed in the first
part and the mixture components are the regression parameters obtained for
that specific cluster. The likelihood comes from the data of the new group. We
use a simple accept-reject based Metropolis Hastings algorithm to generate sam-
ples from the posterior for the new group regression parameter density. For both
iMG-GLM-1 and iMG-GLM-2, we use Monte Carlo integration for evaluating
the predictive density of the new test samples.

We evaluate both iMG-GLM-1 and iMG-GLM-2 Normal models in two real
world problems. The first is the prediction and finding of trends in the Stock
Market. We show how information transfer between groups help our model to
effectively predict future stock values by varying the number of training samples
in both previous and new groups. In the second, we show the efficacy of i-MG-
GLM-1 and 2 Poisson model against its competitors in a very important Clinical
Trial Problem Setting.
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2 Mathematical Background

2.1 Models Related to iMG-GLM

After its introduction, Generalized Linear Model was extended to Hierarchical
Generalized Linear Model (HGLM) [14]. Then it included structured dispersion
in [15] and models for spatio-temporal co-relation in [16]. Generalized Linear
Mixed Models (GLMMs) were proposed in [7]. The random effects in HGLM were
specified by both mean and dispersion in [17]. Mixture of Linear Regression was
proposed in [22]. Hierarchical Mixture of Regression was done in [13]. Varying
co-efficient models were proposed in [11]. Multi-tasking Model for classification
in Non-parametric Bayesian scenario was introduced in [23]. Sharing Hidden
Nodes in Neural Networks was introduced in [4,5]. General Multi-Task learning
was described first in [8]. Common prior in hierarchical Bayesian model was
used in [24,25]. Common structure sharing in the predictor space was presented
in [1]. All of these models suffer the shortcomings of not identifying the latent
clustering effect across groups as well as varying uncertainty with respect to
covariates across groups, which the iMG-GLM inherently models.

2.2 Dirichlet Process and its Stick-Breaking Representation

A Dirichlet Process [10], D (α,G0) is defined as a probability distribution over a
sample space of probability distributions, G ∼ DP (α,G0) and ηj |G ∼ G. Here,
α is the concentration parameter and G0 is the base distribution.

Fig. 1. Graphical Representation of iMG-GLM-1 Model.
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When we integrate over G, the conditional density of ηj , given previous η1:j−1

is given by the Chinese Restaurant process [2]. ηj |θ1:j−1, α,G0 ∼ α
α+j−1G0 +

1
α+j−1

∑j−1
k=1 n−j,kδη∗

k
. Here, n−m,k denotes the number of η’s equal to η∗

k (From
K distinct values) excluding ηj .

According to the stick-breaking construction [21] of DP, G, which is a sample
from DP, is an atomic distribution with countably infinite atoms drawn from G0.

vk|α, G0 ∼ Beta(1, α), θk|α, G0 ∼ G0,

πi = vk

∏k−1
p=1 (1 − vp) , G =

∑∞
k=1 πk.δθk

(2)

In the DP mixture model [9], DP is used as a non-parametric prior over
parameters of an Infinite Mixture model.

zn| {v1, v2, ...} ∼ Categorical {Π1, Π2, Π3....} ,

Xn|zn, (θk)∞
i=1 ∼ F (θzn)

(3)

Here, F is a distribution parametrized by θzn
. {π1, π2, π3, ...} is defined by

Eq. 2.2.

3 iMG-GLM Model Formulation

We consider M groups indexed by j = 1, ....,M and the complete data as D =
{xj,i, yj,i} s.t. i = 1, ...Nj . {xj,i, yj,i} are covariate-response pairs and are drawn
i.i.d. from an underlying density which differs along with the nature of {xj,i, yj,i}
among various models.

3.1 Normal iMG-GLM-1 Model

In the Normal iMG-GLM-1 model, the generative model of the covariate-
response pair is given by the following set of equations. Here, Xji and Yji

represent the ith continuous covariate-response pairs of the jth group. The dis-
tribution of Yj,i|Xj,i is normal parametrized by β0:D and λ. The distribution,
{βkd, λk} (Normal-Gamma) is the prior distribution on the covariate coefficient
β. This distribution is the base distribution (G) of the Dirichlet Process. The
set {m0, β0, a0, b0} constitute the hyper-parameters for the covariate coefficients
(β) distribution. The graphical representation of the normal model is given in
Figure 1.

vk ∼ Beta(α1, α2), πk = vkΠk−1
n=1 (1 − vn)

N
(
βkd|m0, (β0, λk)−1)Gamma (λk|a0, b0)

Zj |vk ∼ Categorical (π1, ......π∞)

Yji|Xji ∼ N
(
Yji|∑D

d=0 βZjdXjid, λ−1
Zj

)
(4)

3.2 Logistic Multinomial iMG-GLM-1 Model

In the Logistic Multinomial iMG-GLM-1 model, a Multinomial Logistic Frame-
work is used for a Categorical response, Yji, for a continuous covariate, Xji, in
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the case of ith data point of the jth group. t is the index of the category. The dis-
tribution of Yj,i|Xj,i is Categorical parametrized by β0:D,0:T . The distribution,
{βktd} (Normal) is the prior distribution on the covariate coefficient β which is
the base distribution (G) of the Dirichlet Process. The set {m0, s0} constitute
the hyper-parameters for the covariate coefficients (β) distribution.

vk ∼ Beta(α1, α2), πk = vkΠk−1
n=1 (1 − vn)

βktd ∼ N (βktd|m0, s
2
0

)
, Zj |vk ∼ Categorical (π1, ......π∞)

Yji = t|Xji, Zj ∼ exp
(∑D

d=0 βZjtd
Xjid

)

∑T
t=1 exp

(∑D
d=0 βZjtd

Xjid

)
(5)

3.3 Poisson iMG-GLM-1 Model

In the Poisson iMG-GLM model, a Poisson distribution is used for the count
response. Here, Xji and Yji represent the ith continuous/ordinal covariate and
categorical response pair of the jth group. The distribution of Yj,i|Xj,i is Pois-
son parametrized by β0:D,0:T . The distribution, {βkd} (Normal) is the prior dis-
tribution on the covariate coefficient β which is the base distribution (G) of
the Dirichlet Process. The set {m0, s0} constitute the hyper-parameters for the
covariate coefficients (β) distribution.

vk ∼ Beta(α1, α2), πk = vkΠk−1
n=1 (1 − vn) ,

{βk,d} ∼ N (βkd|m0, s
2
0

)
Yji|Xji, Zj ∼ Poisson

(
yji| exp

(∑D
d=0 βZjdXjid

)) (6)

4 Variational Inference

The inter-coupling between Yji, Xji and zj in all three models described above
makes computing the posterior of the latent parameters analytically intractable.
We therefore introduce the following fully factorized and decoupled variational
distributions as surrogates.

4.1 Normal iMG-GLM-1 Model

The variational distribution for the Normal model is defined formally as:

q (z, v, βkd, λk) =
∏K

k=1 Beta
(
vk|γ1

k, γ2
k

)∏M
j=1 Multinomial (zj |φj)∏K

k=1

∏D
d=0 N (βkd|mkd, (βk, λk)−1)Gamma (λk|ak, bk)

(7)

Firstly, each vk follows a Beta distribution. As in [6], we have truncated the
infinite series of v

′
ks into a finite one by making the assumption p (vK = 1) = 1

and πk = 0∀k > K. Note that this truncation applies to the variational surro-
gate distribution and not the actual posterior distribution that we approximate.
Secondly, zj follows a variational multinomial distribution. Thirdly, {βkd, λk}
follows a Normal-Gamma distribution.
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4.2 Logistic Multinomial iMG-GLM-1 Model

The variational distribution for the Logistic Multinomial model is given by:

q (z, v, βkd, λk) =
∏K

k=1 Beta
(
vk|γ1

k, γ2
k

)∏M
j=1 Multinomial (zj |φj)∏K

k=1

∏T
t=1

∏D
d=0

{N (βktd|mktd, s2ktd

)} (8)

Here, vk and zj represent the same distributions as described in the Normal
iMG-GLM-1 model above. {βktd} follows a variational Normal Model.

4.3 Poisson iMG-GLM-1 Model

The variational distribution for the Poisson iMG-GLM-1 model is given by:

q (z, v, βkd, λk) =
∏K

k=1 Beta
(
vk|γ1

k, γ2
k

)
∏M

j=1 Multinomial (zj |φj)
∏K

k=1

∏D
d=0

{N (βktd|mktd, s2ktd

)} (9)

Here, vk and zj represent the same distributions as described in the Normal
iMG-GLM-1 model above. {βkd} follows a variational Normal Model.

5 Parameter Estimation for Variational Distribution

We bound the log likelihood of the observations in the generalized form of iMG-
GLM-1 (same for all the models) using Jensen’s inequality, φ (E [X]) ≥E[φ (X)],
where, φ is a concave function and X is a random variable. In this section,
we differentiate the individually derived bounds with respect to the variational
parameters of the specific models to obtain their respective estimates.

5.1 Parameter Estimation of iMG-GLM-1 Normal Model

The parameter estimation of the Normal Model is as follows:

γ1
k = 1 +

∑M
i=1 φik, γ2

k = α +
∑M

i=1

∑K
p=k+1 φn,p

φjk =
exp(Sjk)∑K

k=1 exp(Sjk)
s.t.

Sjk =
∑k

j=1

{
Ψ
(
γ1

j

)− Ψ
(
γ1

j + γ2
j

)}
+ Pjk s.t.

Pjk = 1
2

∑M
j=1

∑Nj

i=1 φjk{log
(

1
2π

)
+ Ψ (ak) − log (bk)

−βk

(
1 +
∑D

d=1 X2
jid

)
− ak

bk

(
Yji − mk0 −∑D

d=1 mkdXjid

)2
}

βk =
(D+1)β0+

∑M
j=1

∑Nj
i=1 φjk(1+

∑D
d=1 X2

jid)
D+1

ak =
∑D

d=0 a0 + 1
2

∑M
j=1

∑Nj

i=1 φjk

bk = 1
2
{∑D

d=0 β0 (mkd − m0)
2 + 2b0

+
∑M

j=1

∑Nj

i=1 φjk

(
Yji − mk0 −∑D

d=1 mkdXjid

)2
}

mk0 =
m0β0+

∑M
j=1

∑Nj
i=1 φji(Yji−∑D

d=1 mkdXjid)

β0+
∑M

j=1
∑Nj

i=1 φjk

mkd =
m0β0+

∑M
j=1

∑Nj
i=1 φji

(
Yji−mk0−∑D−(d)

d=1 mkdXjid

)
Xjid

β0+
∑M

j=1
∑Nj

i=1 φjkX2
jid

(10)
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5.2 Parameter Estimation of iMG-GLM-1 Multinomial Model

For the Logistic Multinomial Model, the estimation of γ1
i , γ2

i , φjk and are iden-
tical to the Normal model with the only difference being that Pjk is given as,

Pjk = 1
2

∑M
j=1

∑Nj

i=1 φjk{log
(

1
2π

)
+∑T

t=1 Yjit

(
mk0t +

∑D
d=1 Xjidmkdt

)
mkdt = m0s

2
0 + s2kdt

∑M
j=1 φjk

∑Nj

j=1 YjitXjid, s2kdt = s20+∑M
j=1 φjk

∑Nj

j=1

(∑D
d=0 X2

jid exp
(∑D

d=0 Xjidmkdt

))
(11)

5.3 Parameter Estimation of Poisson iMG-GLM-1 Model

Again, in the Poisson Model, estimation of γ1
i , γ2

i , φjk, are similar to the Normal
model with the only difference being that the term Pjk is given as,

Pjk = 1
2

∑M
j=1

∑Nj

i=1 φjk{−∑D
d=0 exp

(
skd

2
+

mkdXjid

skd

)
+

Yji

(∑D
d=0 Xjidmkd

)
− log (Yji)

mkd

s2
kd

+ exp (mkd) +
∑M

j=1 φjk

∑Nj

i=1

Xjid

s2
kd

=
∑M

j=1

∑
i=1 NjφjkYjiXjid

(12)

For, mkd and skd, does not have a close form solution. However, it can be
solved quickly via any iterative root-finding method.

5.4 Predictive Distribution

Finally, we define the predictive distribution for a new response given a new
covariate and the set of previous covariate-response pairs for the trained groups.

p (Yj,new|Xj,new, Zj , βk=1:K,d=0:D) =∑K
k=1

∫
Zjkp

(
Yj,new|Xj,new, βD

k,d=0

)
q (z, v, βkd, λk)

(13)

Table 1. Algorithm: Variational Inference Algorithm for iMG-GLM-1 Normal Model.

1. Initialize Generative Model Latent Parameters
q (z, v, βkd, λk) Randomly in its State Space.
Repeat
2. Estimate γ1

k and γ2
k according to Eq.5.10. for

k = 1 to K.
3. Estimate φjk according to Eq.5.10. for j = 1 to M
and for k = 1 to K. 4. Estimate the model density
parameters, {mkd, βk, ak, bk} according to Eq.5.10.
for k = 1 to K and d = 0 to D. until converged
6. Evaluate E[Yj,new] for a new covariate, Xj,new,
according to Eq.5.14 and Eq.5.15.
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Integrating out the q (z, v, βkd, λk), we get the following equation for the
Normal model.

p (Yj,new|Xj,new) =∑K
k=1 φjkSt

(
Yj,new|

(∑D
d=0 mkdXj,new,,d, Lk, Bk

)) (14)

Here, Lk = (2ak−D)βk

2(1+βk)bk
, which is the precision parameter of the Student’s t-

distribution and Bi = 2ay,i − D is the degrees of freedom. For the Poisson and
Multinomial Models, the integration of the densities is not analytically tractable.
Therefore, we use Monte Carlo integration to obtain,

E [Yj,new|Xj,new,X,Y] = E [E [Yj,new|Xj,new,q (βkd)] |X,Y]

= 1
S

∑S
s=1 E [Yj,new|Xj,new,q (βkd)]

(15)

In all experiments presented in this paper, we collected 100 i.i.d. samples
(S=100) from the density of β to evaluate the expected value of Yj,new. The com-
plete Variational Inference Algorithm for iMG-GLM-1 Normal Model is given
Table 1.

6 iMG-GLM-2 Model

We can now learn a new group M + 1, after all of the first M groups have been
trained. For this process, we memorize the learned latent parameters from the
previously learned data.

6.1 Information Transfer From Prior Groups

First, we write down the latent parameter conditional distribution given all
the parameters in the previous groups. We define the set of latent parameters
(Z, v, β, λ) as η. From the description of Dirichlet Process we write down the
probability for the latent parameters for the (M + 1)th group given previous
ones,

p (ηM+1|η1:M , α, G0) = α
M+α

G0 + 1
M+α

∑K
k=1 nkδη∗

k
(16)

Where, nk =
∑M

j=1 Zjk, represents count where ηj = η∗
k. If we substitute

η∗
k = E [η∗

k], which we define by Ω = {φjk, γk,mdk, λk, sdk}, we get,

p (ηM+1|η∗
k, α, G0) = α

M+α
G0 + 1

M+α

∑K
k=1 nkδη∗

k
(17)

Where, nk =
∑M

j=1 indexjk and indexjk = δargmax(φjk). This distribution
represents the prior belief about the new group latent parameters in the Bayesian
setting. Now our goal is to compute the posterior distribution of the new group
latent parameters after we view the likelihood with the data in (M +1)th group.

p (ηM+1|Ω, α, DM+1) =
p(DM+1|ηM+1)p(ηM+1|Ω,G0)

p(DM+1|Ω,G0)
(18)

Here, p (DM+1|ηM+1) = Π
NM+1
i=1 p (YM+1,i|ηM+1,XM+1,i).
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6.2 Posterior Sampling

The posterior of Eq. 6.18 does not have a closed form solution apart from
the Normal Model. So, we apply a Metropolis Hastings Algorithm [18,20]
for the Logistic Multinomial and Poisson Model. For the Normal model,
p (ηM+1|Ω,α,DM+1) turns out to be a mixture of Normal-Gamma density,
Normal − Gamma

(
ηM+1|m′

k, β
′
k, a

′
k, b

′
k

)
with following parameters,

m
′
k =
{
XT

M+1XM+1 + (βk) I
}−1 {

XT
M+1YM+1 + βkImk

}
β

′
k =
(
XT

M+1XM+1 + βkI
)
, a

′
k = ak + NM+1/2

b
′
k = bk + 1

2

{
Y T

M+1YM+1 + mT
k βkmk − m

′T
k β

′
km

′
k

} (19)

For the Poisson and Logistic Multinomial Model, The Metropolis Hastings
Algorithm has the following steps. First, we draw a sample η̇ from Eq. 6.17. Then
we draw a candidate sample η, Next, we compute the acceptance probability,[
min

[
1, p(DM+1|η)

p(DM+1|η̇)
]]

. We set the new η̇ to η with this acceptance probability.
Otherwise, it remains the old value. We repeat the above 4 steps until enough
samples has been collected. This yields the approximation of the posterior.

6.3 Prediction for New Group Test Samples

We seek to predict the future YM+1,new|XM+1,new, Ω, by the following equation
with the previous collection of posterior samples ηt=1:T . T is the number of
samples.

p (YM+1,new|XM+1,new, Ω)

= 1
T

∑T
t=1 p (YM+1,new|XM+1,new, ηt)

(20)

7 Experimental Results

We present empirical studies on two realworld applications: (a) a Stock Market
Accuracy and Trend Detection problem and (b) a Clinical Trial problem on the
efficacy of a new drug.

7.1 Trends in Stock Market

We propose iMG-GLM-1 and iMG-GLM-2 as a trend spotter in Financial Mar-
kets where we have chosen daily close out stock prices over 51 stocks from NYSE
and Nasdaq in various sectors, such as, Financials (BAC, WFC, JPM, GS, MS,
Citi, BRK-B, AXP), Technology (AAPl, MSFT, FB, GOOG, CSCO, IBM, VZ),
Consumer Discretionary (AMZN, DIS, HD, MCD, SBUX, NKE, LOW), Energy
(XOM, CVX, SLB, KMI, EOG), Health Care (JNJ, PFE, GILD, MRK, UNH,
AMGN, AGN), Industrials (GE, MMM, BA, UNP, HON, UTX, UPS), Materi-
als (DOW, DD, MON, LYB) and Consumer Staples (PG, KO, PEP, PM, CVS,
WMT). The task is to predict future stock prices given past stock value for all
these stocks and spot general trends in the cluster of the stocks which might be
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Fig. 2. The Average Mean Absolute Error for 10 New Stocks for 50 random runs for
iMG-GLM-2 Model with varying number of training samples in both previous and New
Groups

helpful in finding a far more powerful model for prediction. The general setting
is a auto-regressive process via the Normal iMG-GLM-1 model with lags repre-
senting the predictor variables and response being the current stock price. The
lag-length was determined to be 3 by trial and error with 50-50 training-testing
split. Data was collected from September 13th, 2010 to September 13th, 2015
with 1250 data points, from Google Finance.

Some very interesting trends were noteworthy. After the clustering was
accomplished for the Normal model, the stocks became grouped almost entirely
by the sectors they came from. Specifically, we witnessed a total of 9 clusters of
stocks, close in makeup to the 8 sectors chosen originally consolidating all the
stocks sectors such as, financial, healthcare etc. For example, Apple, Microsoft
Verizon, Google, Cisco and AMZN were clubbed together in one cluster. This
signifies that all of these stocks share the same auto-regressive density with the
same variance. In comparison, single and separate modeling of the stocks resulted
in a much inferior model. Joint modeling was particularly useful because we had
only 625 data points per stocks for training purposes over the past 5 years. As
a result, transfer of stock data points from one stock to another helped mit-
igate the problem of over-fitting the individual stocks while ensuring a much
improved model for density estimation for a cluster of stocks. We report the
clustering of the stocks in Table 2. We also show the accuracy of the prediction
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for the iMG-GLM-1 model in terms of the Mean Absolute error (MAE) in Table
3. Note that MAE for the Normal model significantly outperformed the GLMM
normal model, stock specific Random Forest, Linear Regression and Gaussian
Process Regression.

We now highlight the utilization of information transfer in the iMG-GLM-1
model. We trained the first 51 stocks where we varied the number of training
samples in each group/stock from 200 to 1200 in steps of 250. For each group we
chose the training samples randomly from the datasets and the remaining were
used for testing. The hyper-parameters were set as, {m0, β0, a0, b0} = 0, 1, 2, 2.
We also ran our inference with different settings of the hyper-parameters but
found the results not to be particularly sensitive to the hyper-parameters set-
tings. We plot the average MAE of 50 random runs in Figure 3. The iMG-GLM-1
Normal Model generally outperformed the other competitors. Few interesting
results were found in this experiment. When very few training samples were
used for training, virtually all the algorithms performed poorly. In particular,
iMG-GLM-1 clubbed all stocks into one cluster as sufficient data was not present
to identify the statistical similarities between stocks. As the number of training
samples increased iMG-GLM-1 started to pick out cluster of groups/stocks as it
was able find latent common densities among different groups. As, the training
samples got closer to the number of data points (1200), all other models started
to perform close to the iMG-GLM-1 model, because they managed to learn each
stock well in isolation, indicating that further data from other groups became
less useful.

We now proceed to iMG-GLM-2, where we trained 10 new stocks from dif-
ferent sectors (CMCSA, PCLN, WBA, COST, KMI, AIG, GS, HON, LMT, T).
Two features which influenced the learning were considered. First, we varied the
number of training samples from 400 to 750 to 1100 for each previous groups
that were used to further train βM+1. Then, we changed the number of train-
ing samples for the new groups from 200 to 1200 in steps of 250. We plot the
MAE results for 50 random runs in Figure 2. The prior belief is that the new
groups are similar in response density to the previous groups. iMG-GLM-2 effi-
ciently transfers this information from a previous groups to new groups. The
iMG-GLM-1 model learns an informative prior for new groups when the number
of training samples for each previous group is very small (as seen in the first
part in Figure 2). The accuracy increases very slightly as the number of training
samples increases in each group. But, with the number of training samples for
the new groups increasing, iMG-GLM-2 does not improve at all. This is due to
the flexible information transfer from the previous groups. The model does not
require more training samples for its own group to model its density, because it
has already obtained sufficient information as prior from the previous groups.

7.2 Clinical Trial Problem Modeled by Poisson iMG-GLM Model

Finally, we explored a Clinical Trial problem [12] for testing whether a new anticon-
vulsant drug reduces a patient’s rate of epileptic seizures. Patients were assigned
the new drug or the placebo and the number of seizures were recorded over a six
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Table 2. Clusters of Stocks from Various Sectors. We note 9 clusters of stocks consol-
idating all the pre-chosen sectors such as, financials, materials etc.

Group No. 1 2 3 4 5 6 7 8 9

AAPL,
MSFT,

VZ,
GOOG,
CSCO,
AMZN

BAC,
WFC,
JPM,
AXP,

PG, CITI,
GS,MS

DIS,
HD,

LOW,
SBUX,
MCD

XOM,
CVX,
SLB,
EOG,
KMI

GILD,
MRK,
UNH,

AMGN,
AGN

GE,
MMM,
BA,
UNP,
HON

DOW,
DD,

MON,
LYB,
JNJ,
PFE

KO,
PEP,
PM,
CVS,
WMT

BRK-B,
IBM,
FB,

NKE,
UTX,
UPS

Table 3. Mean Absolute Error (MAE) for All Stocks. iMG-GLM has Much Higher
Accuracy than Other Competitors.

AAPL MSFT VZ GOOG CSCO AMZN BAC WFC JPM AXP PG CITI GS MS DIS HD LOW

GPR .023 .004 .087 .078 .093 .189 .452 .265 .176 .190 .378 .018 .037 .098 .278 .038 .011
RF .278 .903 .370 .256 .290 .570 .159 .262 .329 .592 .746 .894 .956 .239 .934 .189 .045
LR .381 .865 .280 .038 .801 .706 .589 .491 .391 .467 .135 .728 .578 .891 .389 .790 .624
GLMM .378 .489 .389 .208 .972 .786 .289 .768 .189 .389 .590 .673 .901 .490 .209 .391 .991
iMG-GLM .012 .002 .009 .011 .018 .028 .047 .038 .035 .079 .069 .087 .019 .030 .139 .189 .213

SBUX MCD XOM CVX SLB EOG KMI GILD MRK UNH AMGN AGN GE MMM BA UNP HON

GPR .837 .289 .849 .583 .185 .810 .473 .362 .539 .289 .306 .438 .769 .848 .940 .829 .691
RF .884 .321 .895 .843 .774 .863 .973 .729 .894 .794 .695 .549 .603 .738 .481 .482 .482
LR .380 .391 .940 .995 .175 .398 .539 .786 .591 .320 .793 .839 .991 .839 .698 .389 .298
GLMM .649 .720 .364 .920 .529 .369 .837 .630 .729 .481 .289 .970 .740 .649 .375 .439 .539
iMG-GLM .003 .018 .128 .291 .005 .060 .052 .017 .014 .078 .009 .067 .191 .034 .098 .145 .238

DOW DD LYB JNJ PFE KO PEP PM CVS WMT BRK-B IBM FB NKE UTX UPS MON

GPR .689 .890 .745 .907 .678 .378 .867 .945 .361 .934 .589 .845 .901 .310 .483 .828 .748
RF .181 .098 .489 .237 .692 .827 .490 .295 .749 .692 .957 .295 .478 .694 .747 .806 .945
LR .67 .386 .984 .982 .749 .294 .256 .567 .345 .767 .893 .956 .294 .389 .694 .921 .702
GLMM .727 .389 .288 .592 .402 .734 .923 .900 .571 .312 .839 .956 .638 .490 .390 .372 .512
iMG-GLM .038 .078 .063 .019 .024 .007 .089 .192 .138 .111 .289 .390 .289 .218 .200 .149 .087

week period. A measurement was made before the trial as a baseline. The objective
was to model the number of seizures, which being a count datum, is modeled using
a Poisson distribution with a Log link. The covariates are: Treatment Center size
(ordinal), number of weeks of treatment (ordinal), type of treatment–new drug or
placebo (nominal) and gender (nominal). A Poisson distribution with log link was
used for the count of seizures. Here, Xji and Yji represent the ith covariate and
count response pair of the jth group. The distribution, {βkd} (Normal) is the prior
distribution on the covariate coefficient β.

We found that a patient’s number of seizures are clustered (they form the
groups) in multiple collections. This signifies that a majority of the patients
across groups show the same response to the treatment. We obtained 8 clusters
from 300 out of 565 patients for the iMG-GLM-1 model (the remaining 265 were
set aside for modeling through the iMG-GLM-2 model). Among them 5 clusters
showed that the new drug reduces the number of epileptic seizures with increas-
ing number of weeks of treatment while the remaining 3 clusters did not show
any improvement. We also report the forecast error of the number of epileptic
seizures of the remaining 265 patients in Table 4. Our recommendation for the
usage of the new drug would be a cluster based solution. For a specific patient, if
she falls in one of those clusters with decreasing trend in the number of seizures
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Fig. 3. The Average Mean Absolute Error for 51 Stocks for 50 random runs for iMG-
GLM-1 Model with varying number of training samples.

Table 4. MSE and MAE of the Algorithms for the Clinical Trial Dataset and Number
of Patients in Clusters for iMG-GLM-1 and iMG-GLM-2 Model.

Patient Number in Clusters for iMG-GLM-1 Model

Positive Negative

46 30 40 27 33 24 37 24

Patient Number in Clusters for iMG-GLM-2 Model

Positive Negative

33 24 41 29 30 31 34 43

iMG-GLM Poisson GLMM Poisson Regression RForest

Mean Square Root Error(L2 Error) fpr iMG-GLM-2 Model

1.53 1.58 1.92 1.75

Mean Absolute Error Root Error(L1 Error) for iMG-GLM-2 Model

1.14 1.34 1.51 1.62

with time, we would recommend the new drug, and otherwise not. Out of 265
test case patients modeled through iMG-GLM-2, 180 showed signs of improve-
ments while 85 did not. We kept all the weeks as training for the iMG-GLM-1
model and the first five weeks as training and the last week as testing data for
the iMG-GLM-2 model. Traditional Poisson GLMM cannot infer these findings
since the densities are not shared at the patient group level. Moreover, only the
Poisson iMG-GLM-1/2 based prediction is formally equipped to recommend a
patient cluster based solution for the new drug, whereas all traditional mixed
models predict a global recommendation for all patients.

8 Conclusion

In this paper, we have formulated an infinite multigroup Generalized Lin-
ear Model (iMG-GLM), a flexible model for shared learning among groups in
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grouped regression. The model clusters groups by identifying identical response-
covariate densities for different groups. It also models heteroscedasticity among
groups by modeling different uncertainty among groups. We experimentally eval-
uated the model on a wide range of problems where traditional mixed effect mod-
els and group specific regression models fail to capture structure in the grouped
data. Although the Metropolis Hastings algorithm turned out to be fairly accu-
rate for the iMG-GLM-2 model, developing a variational inference alternative
would be an interesting topic for future research. Finally, the number of groups
in each cluster depends on the scale factors α1 and α2 (scale parameters of the
DP) of the model, and at times grows large in specific cluster. This occurs mostly
when any cluster has a large number of groups which becomes representative of
the whole data. In most cases, beyond a few primary clusters, the remaining clus-
ters represent outliers. Although, careful tuning of scale parameters can mitigate
these problems, a theoretical understanding of the dependence of the model on
scale parameters could lead to better modeling and application.
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