Evolving a Low Price Recovery Strategy
for Distressed Securities

Robert E. Marmelstein™®), Alexander L. Hunt, and Christoper Eroh

Computer Science Department, East Stroudsburg University,
East Stroudsburg, PA 18301, USA
rmarmelstein@esu.edu, {ahunt,cerohl}@live.esu.edu

Abstract. This paper investigates methods to evolve an automated
agent that executes a niche trading stock strategy. Unlike trading strate-
gies that seek to exploit broad market trends, we choose a very specific
strategy on the assumption that it will be easier to learn, require less
input data to do so, and more straightforward to evaluate the agents
performance. In this case, we select a Low Price Recovery Strategy
(LPRS), which involves picking stocks that have a high likelihood of
quickly recovering after a steep, one day decline in share price. A series
of intelligent agents are evolved through the use of a Genetic Program-
ing approach. The inputs to our algorithms included traditional stock
performance metrics, sentiment indicators available from online sources,
and associated classification rules. The essential aspects of the research
discussed include: identification of opportunities, feature selection and
extraction, design of various genetic programs for evolving the agent,
and testing approaches for the agents. We demonstrate that the evolved
agent yields results outperform a randomized version of the LPRS and
the benchmark Standard & Poor’s 500 (S&P500) stock market index.

1 Introduction

The last two decades have seen substantial work done in development of algo-
rithms to perform rapid, automated trading of securities. Given the need to
adapt to dynamically changing market conditions and the tremendous amount
of data available to make trading decisions, the machine learning community has
been in the forefront of these efforts. For many trading firms, the use of neural
networks has proved extremely popular [6][8]. Such“black box” techniques excel
in performance and the underlying design is much easier to keep secret for the
purposes of competitive advantage. However, from a knowledge acquisition per-
spective, it is preferable to learn rules which can explain why a given decision
was made. Once promising rules are identified, they can form the basis for more
sophisticated, intelligent agents which use those underlying rules to make trad-
ing decisions. Evolutionary Algorithm techniques, such as Genetic Algorithms
(GA) and Genetic Programming (GP), are a proven way to combine existing
rules or discover new ones in order to construct such trading agents.

© Springer International Publishing Switzerland 2016
P. Perner (Ed.): MLDM 2016, LNAI 9729, pp. 1-14, 2016.
DOI: 10.1007/978-3-319-41920-6_1

2 R.E. Marmelstein et al.

1.1 Problem Description

This research evolves automated agents to trade using a Low Price Recovery
Strategy. The main idea of the LPRS is to identify and purchase selected stocks
which suffer a steep decline in share price, but have a high likelihood of rebound-
ing within a short period of time. The candidate stocks selected for this strategy
possess three characteristics. First, the stock share price must decline by at least
10% in value on a single trading day. While a lower percent decline would yield
more candidates, we chose 10% as our decline threshold in order to ensure a
resonable profit if a rebound occurs within a sixty (60) day time period. The
trading day on which the decline occurs is known as the baseline day.

A second critera is that the company must have a pre-decline market capi-
talization value of at least $10B dollars. We incorporated this rule because we
wanted to evaluate the impact of online sentiment on the likelihood of recov-
ery. While using small capitalization stocks would have increased the size of our
candidate data set, these tend to have little social media chatter relating to the
decline event. Measurable levels of chatter are more likely with larger capitaliza-
tion companies than smaller ones. Third, the stock share type must be common
stock only.

Once candidates have been identified, they are then classified as either recov-
ered or non-recovered. A “successful” recovery occurs when a stock gains back
75% of the value it lost within 60 days after the baseline day. Note that a
stock just has to breach this threshold once to be successful. Thus, a stock that
rebounds and then declines further within the 60 day period is still labeled as
recovered. Any candidate stock that does not meet this condition is classified as
non-recovered. We chose the 60 day period because it is long enought to give the
stock adequate time to recover and short enough to reinvest the proceeds up to
six (6) times in a given year. Figure 1 shows an example recovery situation for
the Best Buy Corporation (stock symbol: BBY).

In our LPRS, the agent must decide to purchase the stock (or not) the day
after the baseline day; recommended purchases are executed immediately. This
snap decision is based on the available information at that time. If a stock is
purchased, its target price (current price + 75% of the absolute decline amount)
is computed. The stock is then held in the portfolio until the target price is met
or until the 60 day hold period has passed. If the former condition occurs, the
stock holding is considered to be sold the first time the target price is reached.
If the latter condition occurs, the holding is sold for the stock’s closing price on
the last day of the holding period. Note that a non-recovered stock may result
in either a capital loss or gain. If a gain, it will be less than the gain if the stock
had met our recovery criteria.

2 Approach

We employ the Genetic Programming paradigm to evolve several LPRS agent
variations. GP can be viewed as an extension of the GA, a biologically inspired

Evolving a Low Price Recovery Strategy for Distressed Securities 3

Best Buy Co., Inc. (BBY)
32.64 +0.93(+2.93%)

. i o - N =
} indicstor -} Comparison 1d S 1m 3m 6m YID 1y 2y Sy 10y Max [H 2 Linear) | GoToSymbol - &

| eovasse

Recovery ——> .

Decline

Janz 15 Jan 3115 Jan 1615 Jan 23715 Jan 3015 FEOE1S Fap 13715 Fsb 7015 FaD 2715

|

28 daysto recover

Fig. 1. Low Price Recovery Example (BBY)

model for testing and selecting the best choice among a set of results, each rep-
resented by a string. However, GP goes a step farther-it generates a program
to solve a problem. The utility of the generated program is tested using a pre-
defined fitness function. Two steps are employed over multiple generations to
evolve a successful program. The first is selection of the fittest set of programs,
using a competitive approach (such as a tournament). The second step is breed-
ing the selected program, using crossover and mutation techniques, to create a
new population of even fitter solutions for the next generation.

A crucial aspect of any GP is designing the fitness function to measure the
degree to which a program is achieving the desired goal. In this experiment, we
use different fitness function to evolve multiple variations of the LPRS agent.
The GP chromosome in our application encodes trading rules as a function in
the form of a tree. Figure 2 shows an example of such a tree structure. Each
chromosome is evaluated and the value returned by the function (root node) is
converted into a Boolean value. In our case, if the function returns a positive
value, it is interpreted as a buy signal (true); when a negative value is returned,
no purchase is made. Note the tree structure is composed of a combination
of primitive functions (e.g., +, -, sin, exp, etc.), variables and variables. The
complete set of these primative functions are described in section 2.3.

We chose GP as our evolutionary computation paradigm because it has more
flexibility in exploring the algorithmic search space to creating novel trading
strategies than a GA. Extensive tutorials on both GAs and GP can be found at
2] [7) [11] [12) 18]

4 R.E. Marmelstein et al.

Function Output

Buyif20

Absolute
Decline ()

Market Cap Earnings
(¢B) Per Share

Fig. 2. Function represented as a GP tree structure

2.1 LPRS Agent Fitness Functions

Our GP utilized two types of fitness functions to evolve the LPRS agent. The
first function type is based on a Confusion Matrix (CM) [10], which measures
the agents ability to correctly classify each candidate stock as recovered or non-
recovered. In machine learning, a CM contains the true positives, false posi-
tives and false negatives for every class in the data set. In our approach, the
classification results over the training set are put in a confusion matrix (X).
Each diagnonal value of the matrix () represents the true positives the ith
class—that is, the percentage of class i that was correctly classfied. The fitness
value is computed by multiplying the diagonal values of the matrix together (see
Equation 1). Thus, the fitness metric reflects the agents ability to correctly dis-
criminate between classes, even if it comes at the expense of overall classification
accuracy.

n
Fitness = H Tis (1)

i=1
The second type of fitness function returns the overall profit (P) ratio earned
by the agent. For this case, a simulation is elaborated with the LPRS agent’s
portfolio having an initial cash balance and no stocks on a predetermined start
date. Beginning with this date, trade decisions are made in temporal order, as
candidates are identified. Stock holdings are sold according to the rules enu-
merated in section 1.1. Capital gains on trades are added to the available cash
reserve in the account; likewise, capital losses are subtracted. Using this app-
roach, purchases are only carried out if the sufficient free cash exists in the
portfolio to cover the transaction. The fitness result is returned based on the
percent increase in portfolio value within 60 days after the last security pur-

Evolving a Low Price Recovery Strategy for Distressed Securities 5

chase is made. The overall fitness of the LPRS is the ratio of the starting and
ending portfolio balances (see Equation 2).

P) — Endi
Fitness — (ortfolioValue($) nding) B

PortfolioValue($) — Starting @)

Unlike the CM fitness, P fitness is highly dependent on the time-sensitive
aspects of trading, both in terms of order and spacing of stock purchases. For
example, if there is not sufficient cash available to buy a stock, it is not purchased
regardless of what the buy signal is. Thus, performance is dependent on the kinds
of resource and timing constraints that real world traders must contend with.

2.2 Types of LPRS Agents

Each LPRS agent evaluates a candidate stock using some set of features. The
set of features utilized is dependent on the agent type. For any given candidate,
the output of the LPRS agent is a buy signal. A positive buy signal indicates the
stock should be purchased; no purchase is made for a negative signal. In cases
where a profit (P) fitness function is used, the stock is not necessarily purchased
even if the LPRS agent emits a positive buy signal. For this experiment, the
following types of LPRS agents were used:

— Random. This agent selects candidate stocks for purchase at random; each
candidate has a 50% probability that the agent will generate a positive buy
signal. This agent-type is used only with the P fitness function. Note that
this agent type is solely intended as a baseline for performance comparison
with other agent types.

— Metric-based. This agent is evolved from a combination of fundamental stock
metrics, features derived from social media sources, and low level primitive
operators.

— Rule-based. For this type of agent, each metric in the dataset is evaluated
using a Classification and Regression Tree (CART) [13] technique on its
ability to discriminate between the two classes. The most promising rules,
described in section 2.3, are input as features to evolve the GP.

— Majority-rule. For this type of agent, we select the nine (9) most promising
agents for a majority-rules scheme. That is, if a majority of the selected LPRS
agent output a positive buy signal, then the buy-signal of the conglomerate
is positive; otherwise, it is negative.

2.3 Genetic Program Characteristics

In this section, we describe the inputs to the Genetic Programming framework.
For our experiment, we chose the AForge.Net framework [9], which provides
a wide variety of machine learning C# libraries, including GA and GP. The
primitive functions supported by the frameworks default GP chromosome are:
addition, subtraction, multiplication, division, sine, cosine, exponent, natural
logarithm, and square root. These primitives operate on a set of features, which

6 R.E. Marmelstein et al.

appear as leaves on the tree (see Figure 2). The choice of features is very impor-
tant to the success of a GP; in some cases, the features themselves may be
implemented as functions. The feature set employed for the LPRS agents are
described in the subsections that follow.

Candidate Stocks. For this research, we surveyed the biggest decliners on the
New York Stock Exchange (NYSE) for the period from Jan 1, 2011 through
April 30, 2015. From the total list of decliners, we identified 207 transactions
that met the criteria described in Section 1.1. These cases were almost evenly
split between the two classes, with 101 (48.8%) in the recovery class and 106
(51.2%) in the non-recovery class. We partitioned this set of candidates into two
subsets for training and testing the agents, respectively.

Stock Metrics. For each candidate transaction, the following metrics were
available as features for GP training:

— Decline date

— Closing share price on decline date

— Absolute price decline (on decline date)

— Percentage price decline

— Recovery or Sell Date

— Final Share Price

— Trade volume in millions of trades (on decline date)
— Market Capitalization of company in billions of $ (pre decline)
— Earnings per Share (prior quarter)

— Current Ratio [16]

— Dividend Per Share (quarterly)

— Price-Earnings (PE) Ratio [16]

Several other features, derived from online sources, were used as well (below).
The purpose of these features was to get a snapshot of the prevailing sentiment
about each security on the day of its decline.

— Google Trend Index. The weighted stock symbol value from Google Trends
on day of decline. This is the trend value on the decline day divided by the
average Google trend value for the previous three (3) months.

— Message Post Index. The normalized number of message board posts on
Yahoo Finance about the stock on the day of the decline. This value is nor-
malized with respect to the mean percentage increase in posts noted for all
candidate stocks on the day of decline.

— Analyst Count. The total number of financial analysts following the company
that issued the security.

— Analyst Sentiment. The cumulate change in sentiment of analysts over the
past 120 days. Each update to analyst ratings on the stock changed the senti-
ment value, on a scale between —1 and +1 depending on the specific ratings
change.

Evolving a Low Price Recovery Strategy for Distressed Securities 7

Buying Rules. The following are decision rules that were generated using the
CART decision tree algorithm. These rules were chosen based on their ability
to discriminate each candidate into the correct class. Each of the below four (4)
rules were used as input to the GP to evolve the rule-based LPRS agents.

A. Buy signal true if: absolute price decline is greater than $4.01; false otherwise.

B. Buy signal true if: PE ratio is less than 9.3; false otherwise.

C. Buy signal true if: volume is greater than 40.26M OR less than 0.7707M
shares; false otherwise.

D. Buy signal true if: the percent price decline is between 10.1% and 11.5%;
false otherwise.

Additionally, for the rule-based LPRS agent, the following metrics were also
input to the GP: percentage price decline, market capitalization, volume, senti-
ment count, Message Post Index and Google Trend Index.

3 Related Work

Over the past two decades, both GAs and GPs have been applied to a wide range of
financial trading problems[5]. In many cases, the resulting evolved solutions have
been shown to outperform both human traders and benchmark trading indices
(e.g., S&P500) for specific problems. This approach differed from ours in that the
pool of candidate stocks was much smaller[1] used GPs to evolve stock trading
rules for the S&P500 index as a whole from 1929 through 1995. After transac-
tion costs were factored in, it was found the rules did not earn consistent excess
returns over a simple buy-and-hold strategy in the out-of-sample test periods.
The rules were able to identify periods to be invested in the index when daily
returns were positive and volatility is low and out when the reverse was true.
Becker & Seshadri [3] were later able to improve upon their work and actually
outperform a buy-and-hold strategy for the S&P500 index. Potvin, Soriano &
Vallée [15] employed a GP approach to trade a small pool of fourteen (14)1 Cana-
dian stocks, with each stock selected from a distinct commercial sector. Like [1],
their evolved rules were unable to outperform a buy-and-hold strategy. In con-
trast to these researchers, our approach did not use either indices or a specific pool
of stock. Instead, we utilized the LPRS criteria to continuously indentify specific
buying opportunities from the entire NYSE. The only real decision our evolved
agent makes is the buy decision; unlike these other approaches, our sell decision is
automatic. Thus our approach does not result in excessive churning of stock pur-
chases. Further, when our P fitness function is utilized, the cash balance of the
portfolio serves as a limiting factor for potential stock purchases.

A number of researchers have also experimented with using public senti-
ment as a basis for predicting the performance of markets and individual stocks.
Bollen, Mao, & Zeng [4] showed that the general public mood, as derived from
Twitter feeds, was correlated to the Dow Jones Industrial Average (DJIA) over
time. Nuij et al. [14] incorporated mined specific categories of news events and
incorporated them into a GP to evolve trading rules for the FTSE350 and

8 R.E. Marmelstein et al.

S&P500 indices. They found that augmenting news information with more tra-
ditional technical financial indicators generated higher returns than if the news
events had not been included. While our approach likewise utilizes sentiment
to make buying decisions, we attempt to measure the prevailing sentiment for
individual stocks (vs. global stock indices). This drove our decision to ignore
stocks which had a low market capitalization since there appeared to be insuffi-
cient sentiment information available for these stocks. Vu, Chang, Ha & Collier
[17] had considerable success in using Twitter sentiment to predict the daily
up/down changes of widely held technology stocks (AMZN, APPL, GOOG, and
MSFT). A key advantge of this approach is that the large size of the companies
helps ensure a critical mass of sentiment was available. Even so, large companies
tend to have fairly stable stock prices; as such, they are typically not LPRS
candidates.

4 Experimentation and Analysis of Results

In this section, we describe the setup of the experiment, including all test cases.
We then present and analyze the results of each test case. The primary objective
of our analysis is to compare approaches for evolving the most effective LPRS
agent. As part of our analysis, we also compare the performance of our evolved
agents against the performance of the S&P500 index and a random purchase
decision for LPRS candidates.

4.1 Experiment Setup

We experimented with a number of different strategies for evolving each type of
LPRS agent. In general, these strategies varied by:

— Agent type

— Fitness function type

— Buying strategy (buy all or selective)

For some cases, the fitness function type was alternated, such that one was
used for training and the other for testing. The motivation here was to see how
effective an agent trained on one fitness function would be on the other. Table 1
provides a summary of test cases.

The breakdown of transactions by class was discussed in section 2.3. For this
experiment, the training period was from January 1, 2011 through 31 May 2014.
The test period was from 1 June 2014 through 30 April 2015. The training and
test data sets had 165 and 42 transactions, respectively. The parameters for the
evolved GP were as follows:

Population size = 100

— Maximum generations = 100

— Crossover Rate = 75%

— Mutation Rate = 10%

Selection method is Roulette wheel

The results reported for each test case are based on ten (10) agents evolved
using the GP.

Evolving a Low Price Recovery Strategy for Distressed Securities 9

Table 1. Summary of Test Cases

ExpID] Metrics Type: Stock
Train Test
SM-CM-All Fitness: CM; BuyMode: All Fitness: CM; BuyMode: All
SM-CM-Sel Fitness: CM; BuyMode: All Fitness: CM; BuyMode: Selective using GP-Output
SM-CM-Vote Fitness: CM; BuyMode: All Fitness: CM; BuyMode: Selective using GP-Vote
SM-P-Sel Fitness: Profit; BuyMode: Selective using GP-Output Fitness: Profit; BuyMode: Selective using GP-Output
SM-P-Vate Fitness: Profit ; BuyMode: Selective using GP-Output Fitness: Profit ; BuyMode: Selective using GP-Vote
ExpID] Metrics Type: Rule-Based
Train Test
RB-CM-All Fitness: CM; BuyMode: All Fitness: CM; BuyMode: All
RB-CM-Sel Fitness: CM; BuyMode: All Fitness: CM; BuyMode: Selective using GP-Output
RB-CM-Vote Fitness: CM; BuyMode: All Fitness: CM; BuyMode: Selective using GP-Vote
RB-P-Sel Fitness: Profit; BuyMode: Selective using GP-Output Fitness: Profit; BuyMode: Selective using GP-Output
RB-P-Vote Fitness: Profit; BuyMode: Selective using GP-Output Fitness: Profit; BuyMode: Selective using GP-Vote

4.2 Experiment Results

For the CM-ALL experiment, we evolved a series of ten GPs using the CM fitness
function and the training data set. In each case, the final, evolved GP was then
selected as the LPRS agent and run against the test data set. This was done
for both the Stock Metric (SM) and Rule-based (RB) feature sets. The averaged
results of these runs are shown in Table 2. The REC and NonRec columns in the
table indicate the percentage of items in each class that were correctly classified
by the GP. Though not shown in Table 2, the fitness for each test case may be
computed using Equation 1.

Table 2. Confusion Matrix Training and Test Results

Test Case Statistic Training Test
REC % MNonREC % REC % NonREC %
SM-CM-All Mean 67.6% 62.9% 57.9% 49,6%
STDev 6.6% 6.5% 13.0% 16.0%
RE-CM-AIl Mean 70.8% 67.9% 70.0% 48.1%
STDev 6.3% 3.8% 4.5% 7.8%

When we use the CM fitness function, we are most concerned with evolving
an LPRS agent that can distinguish a recovery situation from a non-recovery
one. While such an LPRS agent is not explicitly trained to maximize profit, it is
reasonable to expect it to be profitable. Table 3 shows the extent to which this
may be true. Here we run the LPRS agents evolved for the SM-CM-ALL and
RB-CM-ALL cases to determine the increase in portfolio value each would reap.

The P fitness function, given in Equation 2, is reported against both the
training and test datasets (labeled in Table 3 as Test-1 and Test-2, respectively).
Note that there is no need to provide the data for the REC and NoREC columns
in Table 3, because the results would be identical to those in Table 2.

10 R.E. Marmelstein et al.

Table 3. CM Training and Profit Test Results

— Statistic : Test-1 (on Training data) : Test-2 (Test Data)
Fitness | REC% | NonREC%| Fitness | REC% | NonREC%
Mean 0.624 0.164
SM-CM-Sel N/A N/A
STDev 0.078 0.051
M 0.607 0.182
RB-CM-Sel £an N/A N/A
STDev 0.094 0.124

Next, we selected the top 9 out of 10 LPRS agents from the previous experi-
ment based on the Table 2 results. We then combined these to create a composite
LPRS agent, where the REC/NoREC determination is made based on what the
majority of agents decide. The results of this test case are shown in Table 4. As
is the case for Table 3, the fitness is computed using the P fitness function and
we also track the CM classification accuracy for each composite LPRS. Since we
employ majority rule to make this decision on the data, this experiment con-
sisted of a single run for each test case. For this reason, there was no need to
report the standard deviation statistic.

For the last two experiments, we focused on LPRS agents evolved to maximize
profit during training. The results for the SM and RB feature set are given in
Table 5. Even though profit is the guiding factor here, the REC/NoREC results
are included to give a sense of how critical class discrimination is to profit.

Table 4. Best of Nine (9) Votes - CM Training and Profit Test Results

Test Case Statistic - Test-1 (on Training data) - Test-2 (Test Data)
Fitness REC% | NonREC % | Fitness REC% | NonREC %
SM-CM-Vote Mean 0.7355 76.7% 65.1% 0.2289 64.3% 63.0%
STDev N/A
RB-CM-Vate Mean 0.4724 67.8% 69.7% | 0.3519 67.9% 51.9%
STDev N/A

Table 5. Profit Training and Test Results

Test Case Statistic = Training = Test
Fitness REC % MNonREC % | Fitness REC % MonREC %
SM-P-SEL Mean 0.816 90.4% 12.9% 0.188 85.4% 25.5%
STDev 0.035 3.5% 5.2% 0.035 5.9% 6.8%
RB-P-SEL Mean 0.832 91.2% 21.5% 0.181 83.1% 17.0%
STDev 0.034 5.5% 10.6% 0.030 8.7% 13.3%
M 0.315 0.137
Random can N/A N/A
STDev 0.129 0.028
S&P 500 Mean 0.530 N/A 0.086 NfA
STDev NfA

Evolving a Low Price Recovery Strategy for Distressed Securities 11

Table 6. Best of Nine (9) Votes - Profit Training and Test Results

Test Case Statistic Test-1 (on Training data) Test-2 (Test Data)
Fitness REC% | NonREC % | Fitness REC % | NonREC %
SM-P-Vote Mean 0.8174 91.3% 10.6% 0.1725 85.7% 29.2%
STDev N/A
RE-P-Vote Mean 0.9502 93.8% 17.7% | 0.2098 95.2% 4.8%
STDev N,"A

Finally, Table 6 shows the performance of the majority rule approach for LPRS
agents evolved for the profit fitness function. Similar to Table 4, we selected the
top nine LPRS agents from those evolved for the Table 5 test case. Thus, the
results in Table 6 reflect a single, composite LPRS agent.

4.3 Analysis of Results

While Tables 2 through 6 contain the raw experiment results, Figure 3 com-
pares the performance results for each approach side by side. For this figure,
we converted the raw profit fitness performance into an annualized Return on
Investment (ROI) percentage. Taking duration out of the training/test perfor-
mance results enables us to better compare how the LPRS results generalize to
new data.

In the CM-ALL experiment (Table 2), we were only concerned with class
discrimination performance. Given that the classes were nearly equally repre-
sented, the agents were able to marginally improve the apriori class probability
(=~ 50%), with a training classification accuracy SM-CM-ALL and RB-CM-ALL
of 65% and 69% respectively. For the test data, these percentages decreased to
54% and 59%, respectively. For these cases, the discrimination performance did
not generalize well and the classification accuracy on the test data was barely
better than guessing.

For the P-SEL cases, the evolved agents also did poorly in terms of training
classification, with accuracy rates of SM-P-SEL and RB-P-SEL of 50% and 55%,
respectively. However, unlike the CM-ALL approach, these rates generalized well
with the test data. Here, the bias was heavily skewed in favor of classifying cases
as REC. For this case, fitness was measure in terms of profit. In terms of the
increase in overall portfolio value, this approach achieved better fitness than
both Random and the S&P500. This indicates that the LPRS strategy is more
profitable if the agent is biased toward stock recovery.

The best overall results were achieved with P-Vote approach. As Figure 3
shows, these LPRS agents did well in terms of profit on the training data and as
well, or better, on the test data (generalized well). For these two cases, the RB-
P-Vote did slightly better than the SM-P-Vote agent. Based on the classification
accuracy, it appears that both these agents are biased toward classifying stocks as
REC. This characteristic supports the counter-intuitive assertion that accurate
class discrimination is not essential to good portfolio performance.

12 R.E. Marmelstein et al.

40.0%

350%

§

3

§

Annualzed Return on Investment (%)

g

10.0% -

0.0% -

SM-CM-Sel RB-CM-Sel SM-CM-Vote RB-CM-Vote SM-P-SEL RB-P-SEL SM-P-Vote RB-P-Vote Random S&P 500
Test Cases

=Train » Test

Fig. 3. Comparison View of Annualized ROI Results

For the most part, the Random approach was outperformed by all the LPRS
agents. That being said, the SM-CM-Sel results (Table 3) did not convinc-
ingly outperform Random on the test data, especially when taking the large
fitness standard deviations into account. Likewise, the results for SM-P-SEL
cases (Table 5) were only marginally better than the Random results. The per-
formance of the S&P500 index was competitive with the LPRS agents on the
training data. However, with regard to the test data, all the LPRS approaches
(including the Random approach) outperformed this benchmark index by sub-
stantial margins.

These results also yielded a number of surprises. For the RB-CM-SEL case,
Buying Rule A (from section 2.3) was very prominent in the evolved solutions,
appearing repeatedly. In fact, only two distinct solutions were involved. This
phenomenon indicates that Buying Rule A is a very powerful discrimination
rule. Another surprise was that the evolved LPRS agents consistently performed
better on test cases than on the training cases.

5 Summary

In this paper, we investigated a number of different approaches for evolving
agents to conduct a Low Price Recovery Strategy for stock trading. We targeted

Evolving a Low Price Recovery Strategy for Distressed Securities 13

the LPRS because our observation had been that stocks experiencing major
declines will often bounce back in a relatively short period of time. This phe-
nomenon has been shown to be fairly common in our research, with nearly 50%
of the candidate stocks recovering. Given this, our evolved LPRS agents were
all able to beat a strategy of buying random candidates. Additionally, their
performance also bested the S&P500 index, which is considered an important
benchmark when evaluating the performance of mutual stock funds. In general,
the best LPRS performance was observed when the agents were trained to maxi-
mize the return of the portfolio. From a profit perspective, this approach proved
superior to simply training agents to discriminate between the REC and NoREC
classes. Within those subgroups, the majority rules strategy yielded the best
results, with the agent evolved for the RB-P-Vote case having the best overall
performance, both in terms of fitness and generalization of results (from train-
ing to test). It was also found that the absolute decline in stock price (Buying
Rule A) was an especially important factor in choosing stocks that would even-
tually recover.

This research has demonstrated the utility of evolving agents for specific
trading strategies. The fact that these agents can outperform benchmarks like
the S&P500 index is especially promising. Our future work in this area will focus
on variations on this technique to determine if performance can be improved
still further. In particular, instead of a binary (yes/no) trading decision, we
want to use the output of the evolved function as a basis for prioritizing buying
opportunities. Additionally, we will continue to investigate popular sentiment
metrics which potentially have short-term predictive value for investments.

References

1. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules.
Journal of Financial Economics 51(2), 245-271 (1999)

2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic programming: an
introduction, vol. 1. Morgan Kaufmann San Francisco (1998)

3. Becker, L.A., Seshadri, M.: Gp-evolved technical trading rules can outperform buy
and hold (2003)

4. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of
Computational Science 2(1), 1-8 (2011)

5. Chen, S.-H.: Genetic algorithms and genetic programming in computational
finance. Springer Science & Business Media (2012)

6. Enke, D., Thawornwong, S.: The use of data mining and neural networks for fore-
casting stock market returns. Expert Systems with Applications 29(4), 927-940
(2005)

7. Golberg, D.E.: Genetic algorithms in search, optimization, and machine learning,
1st edn., vol. 1989 (1989)

8. Kimoto, T., Asakawa, K., Yoda, M., Takeoka, M.: Stock market prediction system
with modular neural networks. In: 1990 IJCNN International Joint Conference on
Neural Networks, pp. 1-6. IEEE (1990)

9. Kirillov, A.: Aforge.net framework (2013)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

R.E. Marmelstein et al.

Kohavi, R., Provost, F.: Glossary of terms. Machine Learning 30(2-3), 271-274
(1998)

Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press (1992)

Koza, J.R.: Survey of genetic algorithms and genetic programming. In: Wescon
Conference Record, pp. 589-594. Western Periodicals Company (1995)

Lewis, R.J.: An introduction to classification and regression tree (cart) analysis. In:
Annual Meeting of the Society for Academic Emergency Medicine in San Francisco,
California, pp. 1-14 (2000)

Nuij, W., Milea, V., Hogenboom, F., Frasincar, F., Kaymak, U.: An automated
framework for incorporating news into stock trading strategies. IEEE Transactions
on Knowledge and Data Engineering 26(4), 823-835 (2014)

Potvin, J.-Y., Soriano, P., Vallée, M.: Generating trading rules on the stock markets
with genetic programming. Computers & Operations Research 31(7), 1033-1047
(2004)

Rosenberg, C.N.: Stock Market Primer. Grand Central Publishing (1991)

Vu, T.-T., Chang, S., Ha, Q.T., Collier, N.: An experiment in integrating sentiment
features for tech stock prediction in twitter (2012)

Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4(2), 65-85
(1994)

	Evolving a Low Price Recovery Strategy for Distressed Securities
	1 Introduction
	1.1 Problem Description

	2 Approach
	2.1 LPRS Agent Fitness Functions
	2.2 Types of LPRS Agents
	2.3 Genetic Program Characteristics

	3 Related Work
	4 Experimentation and Analysis of Results
	4.1 Experiment Setup
	4.2 Experiment Results
	4.3 Analysis of Results

	5 Summary
	References

