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18.1 Introduction

Soil change is the central, if under-recognized, component of
land and ecosystem changes (Yaalon 2007). Soils change
naturally over a long timescale (decades to millennia) in
response to soil-forming factors (biota, climate, parent
material, time, and topography). However, human land-use
pressures are currently the driving force in maintaining,
aggrading, and degrading soil properties across nearly all
ecosystems. Traditionally, in order to simplify and stan-
dardize the relationships between soils and soil-forming
factors, pedology and soil survey have often focused on
“natural” or “virgin” soil (e.g., Hilgard 1860; Jenny 1980),
but many argue that humans should be thought of as a part of
soil genesis and formation (Amundson and Jenny 1991;
Yaalon and Yaron 1966; Bidwell and Hole 1965).

Landscapes and soils have been altered by wide-scale
conversion to agriculture, use of vegetative products, and
development for direct human use. Land-use impacts can be
gradual or abrupt, subtle, or catastrophic (Table 18.1). The
interactions between environmental changes and geomor-
phic and biotic feedback loops vary across temporal and
spatial scales depending on the setting (Monger and

Bestelmeyer 2006). The effects of land use can linger for
decades to centuries and beyond (Hall et al. 2013; Jangid
et al. 2011; Sandor et al. 1986). While each land resource
region has some specific soil–land use interactions, this
chapter will focus on general uses and topical areas: crop-
lands, wetlands, grazing lands (both pasture and rangelands),
and forest lands with smaller sections devoted to special
issues including acid sulfate soils, strip-mined lands, and
cold soils.

18.1.1 Concepts of Soil Change

Soil change refers to the variation of soil properties in one
location over time. The concept of “soil change” has been
proposed as a framework for understanding and document-
ing the impact of human use and management on soil
properties and function (Arnold et al. 1990; Palm et al. 2007;
Richter and Markewitz 2001; Robinson et al. 2012; Tugel
et al. 2005, 2008). Management of soil resources, directly or
indirectly, can alter soil properties and soil functions both
negatively and positively. While all management (even its
absence) impacts soil conditions, some impacts are intensive
and site specific while others are extensive (Grigal 2000).
The direction of change depends on the nature of the man-
agement, the goals of the management action, and the
framework for measuring outcomes. While management
actions to increase soil fertility might lead to improved soil
function (for instance, crop productivity) at a local scale, a
broader watershed scale might assess decreased soil function
(for instance, nutrient filtering and buffering that influence
eutrophication).

Soil change in this chapter refers to disturbances caused
directly or indirectly by human land use and management.
Palm et al. (2007) refers to soil degradation as a change that
causes a reduction in ecosystem function (as in Fig. 18.1).
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The resistance and resilience of a soil refer to the capacity of
a particular soil to respond to a disturbance (Seybold et al.
1999). A soil is resistant if it does not change functionality
after a disturbance or management impact occurs. Lal (1993)
uses the term soil stability for the same concept. A soil is
resilient if it recovers its initial qualities after a disturbance
(Seybold et al. 1999). Resilience can be applied to land-
scapes, soil profiles, or individual properties and are
important for predicting and assessing soil change.

18.1.2 Measuring Soil Change

An assessment of soil change depends upon the metrics of
soil and ecosystem function evaluated. Richter and Marke-
witz (2001) illustrated an approach that used an in-depth
evaluation of an experimental forest to represent regional
soil change that has occurred over centuries. Richter et al.
(2011) expanded on the limits of a soil management
approach and emphasized the need to understand soil

Table 18.1 Types of soil change ranging from landscape alteration to cyclical fluctuations

Landscape
alteration

Taxonomic
classification

Phase distinctions Surface properties Cyclical fluctuations

Drastically altered
arrangement of
materials
• Removal or
transport of
material

• Gully erosion
• Landslides

Alteration or
mixing of horizons
• Extension
erosion or
deposition
changes soil
interacting with
the environment

• Large changes in
nutrient or base
status due to
long-term
management

Distinction soil features
remain intact with
relatively unaltered
subsurface features
(control section)
• Low-to-moderate
erosion

• Drainage

Dynamic soil properties that
change with land use or
management
• Nutrients
• Aggregates
• Organic matter

Regular, periodic, or cyclical
fluctuations
• Soil moisture
• Temperature
• Water table

Change in soil and ecosystem functions

High, catastrophic
change to
functions relating
to soil stability and
productivity

Variable, depends
on the taxonomic
system used and
classes crossed

Moderate, soil capacity,
or potential may remain
intact, but sensitive
functions may be
disrupted

Moderate to low, depends on
type and magnitude of soil
property change as well as
the constraints upon the
ecosystem

Variable. Typical fluctuations
occur as part of highly functioning
soil systems. However, alteration
to the timing and amplitude of
fluctuations can greatly modify
soil functions

Adapted from Tugel et al. (2008)

Table 18.2 Summary of effects of tillage and residue management on soil physical properties in small grains cropping systems at the end of
20 years in interior Alaska

Tillage/residue Effects on soil properties

Intensivea Had the most detrimental effects on soil physical properties and was found to be the least effective in reducing soil
loss during high wind events

Autumn chisel Promoted greater roughness, aggregation, and residue cover compared with intensive tillage; random roughness was
greater for autumn chisel compared to all other tillage treatments. Infiltration was greater compared to all other tillage
treatments

Spring disk Promoted greater roughness, aggregation, and residue cover compared with intensive tillage

No tillage Had larger aggregates, greater soil strength (penetration resistance and shear stress at the surface), wetter soil, and
greater residue cover compared to all other tillage treatments; resulted in an organic layer on the soil surface (after
20 years) which suppressed infiltration; had higher saturated hydraulic conductivity and retained more water against
gravitational and matric forces versus intensive tillage

Crop residue
managementb

Influenced residue biomass and cover (the response was dependent on tillage treatment). No tillage resulted in 100 %
residue cover, while residue cover ranged from 2 to 4 % on all other tillage treatments. Crop residue management did
not influence soil properties

Summarized from Sharratt et al. (2006a, b)
aIntensive = autumn chisel and spring disk
bCrop residue management treatments were residue removed and residue retained after harvest
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genesis through the concepts of the Anthropocene (the “age
of humans”). Ecology and economic disciplines have
attempted to document soil change in terms of the natural
environment and ecosystem functions and to apply monetary
metrics to ecosystem services (Costanza et al. 1997; Goudie
2013).

The spatial and temporal frameworks implemented in soil
change studies depend upon the nature of the agents of
change, system attributes, and types of soil change of most
concern (Table 18.1; Fig. 18.1). However, since there are
often no good records of historical soil properties, tech-
niques such as “space-for-time substitution” have been used
to compare soils that differ only in management or other
disturbance (Pickett 1989). This technique requires that other
soil-forming factors (parent material, climate, organisms,
relief, and time) be held constant to the extent possible and
that the conceptual model of soil change be explicitly con-
sidered and documented (Tugel et al. 2008). Soil survey and
environmental covariates that represent soil-forming factors
can be used to choose comparable locations. When possible,
monitoring the same location over time improves under-
standing of the processes and mechanisms of soil change.
Variability in soil with spatial extent, management applica-
tions, and weather phenomena means that measuring and
interpreting soil change are not simple or straightforward.
While humans have been active managers of soil and
ecosystem resources for millennia (Nir 1983), the degree and
amount of change have accelerated in recent centuries
(Richter et al. 2011). In the United States, the time of
European settlement is often used as a reference to assess
soil change across ecosystems and regions (i.e., Richter and
Markewitz 2001). The scale and type of soil change being
investigated may require alternate reference states for rele-
vant comparisons (Fig. 18.1).

When measurements of soil change are focused on
management-relevant timelines (months to decades) and
spatial scales (e.g., field or paddock), the concept of soil
quality is useful. Soil quality and soil health are terms used
to indicate the ability of soils to perform functions, such as
support and stability, productivity, and cycling, filtering, and
buffering (Doran and Parkin 1994; Karlen et al. 1997; Singer
and Ewing 2000). Assessments of soil quality and health are
often used to assess soil change and intermediate scales of
human management (i.e., Tugel et al. 2005).

18.1.3 Monitoring and Modeling Soil Change

Soil as a component of agricultural and environmental
ecosystems is well studied. However, there is growing
emphasis on long-term studies that focus on change in soil
properties (i.e., university- and government-led agricultural
research). While soil degradation may occur quickly as a
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Fig. 18.1 Three examples of expected soil organic C change after
management change. The arrows point to a disturbance that may have
positive or negative impacts: a Conversion from conventional tillage to
no till. West and Post (2002) found that maximum SOC accumulation
(average increase of 0.6 kg m−2) occurred within 15–20 years after
conversion to no till. b Secondary forest succession after field
abandonment. Curve from 1 to 80 years based on soil N level in a
Minnesota chronosequence (Zak et al. 1990). SOC followed a similar
trajectory and increased from 1.25 to 2.10 kg m−2 during the same
period. c Change from reference state after grazing and absence of fire
in a grassland system. Adapted from Tugel et al. (2005) and based on
data from Archer et al. (2001). Archer et al. (2001) simulated a SOC
reduction of 16 % in a sandy loam and 29 % in a clay loam over a
period of about 50 years after the onset of heavy grazing and fire
suppression
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result of practices on the land, studies have shown that
agricultural management improvements of soil properties are
likely to be observed and quantified in long-term studies (Lal
1993; McVay et al. 2006, Wood and Edwards 1992). The
importance of quantifying land management practices on
soil properties is well identified. However, ongoing soil
sampling and monitoring to quantify changes in soil prop-
erties as a result of management and/or environmental
changes is relatively new and is greatly needed to develop
guidelines and criteria for decision-making (Lal 1993;
Lawrence et al. 2013). Long-term studies also allow for a
wide range of environmental conditions in addition to land
management. These conditions allow for the inclusion of
episodic events (i.e., drought) or slower events such as
changes in land use and climate. In addition, long-term
studies provide necessary data for the calibration and vali-
dation of crop and environmental simulation models used to
forecast changes (Hobbie et al. 2003; Robertson et al. 2008;
Williams et al. 2008).

Guidelines and criteria for understanding how manage-
ment practices influence changes in soil properties can only
be developed if long-term experimental data are available
(Lal 1993). Since the inclusion of repetitive soil sampling in
long-term studies is relatively new and questions relating to
long-term impacts of management on soil properties may be
difficult to ascertain from data collected from networks,
alternative approaches such as space-for-time (Pickett 1989;
Tugel et al. 2005; Blois et al. 2013) and computer modeling
(Kelly et al. 1997; Smith et al. 1997; Izaurralde et al. 2006)
have been used.

Space-for-time studies encompass analyses in which
current spatial phenomena are used to understand and model
processes that are unobservable (Blois et al. 2013) such as
the impact of management change on soil properties that
were implemented in the past and their likely impact long
term. Space-for-time measurements have limitations in soil
management research due to changes in climate and man-
agement over time. Computer models are more commonly
used in soil management research to estimate the effects of
management on changes in soil properties and are increas-
ingly important tools for short- and long-term assessments
(Williams and Sharpley 1989; Lowrance et al. 2000; Izau-
rralde et al. 2006; Williams et al. 2008, 2013) especially
when measured data are limited and forecasting is neces-
sary. The disadvantage of using computer models, however,
is the inherent uncertainty. Soils are part of a complex
system, and models may not be able to simulate such
complexities as simultaneous interaction between physical,
chemical, biological, climatic conditions, and the calibration
process.

18.2 Soil Change in Croplands

Soils in the USA have been altered to provide food and
fiber for millennia. While Native Americans altered land-
scapes for hunting and farming, European settlement and
clearing for agriculture resulted in a marked acceleration of
soil change (Richter and Markewitz 2001). Eastern forests
were first cleared for production agriculture in the early
1800s (Ramankutty et al. 2010), and the impact on soil
properties can only be postulated by observing relatively
undisturbed areas or inferring from modern-day disturbance
studies (as in space-for-time). The immediate impacts of
deforestation likely include increased soil temperature,
altered moisture regime, and modified nutrient cycles
(Vitousek et al. 1983).

As agricultural development progressed westward,
grasslands were plowed and wetlands drained for cropland
uses (Ramankutty and Foley 1999). Even where native
vegetation regenerated, the effect of cropping has lingered in
soil properties from decades (Bellemare et al. 2002; Guzman
and Al-Kaisi 2010) to centuries (McLauchlan 2006; Sandor
et al. 1986). While using soils for cropland can cause mul-
tiple disturbances to soil functions through the introduction
of monocultures, the addition of inorganic fertilizers and
pesticides, and irrigation, the most direct impact comes from
physical disruption.

The Morrow plots at the University of Illinois were
established in 1876 to answer questions about agricultural
management (Odell et al. 1982). Initial results indicated that
growing corn depleted soil organic matter and associated soil
fertility. Introducing inorganic fertilizer and crop rotations
improved yields but did not return soil conditions to their
original status. Other long-term observation plots such as the
Sanborn Field in Missouri (Brown 1993), the Magruder
plots in Oklahoma (Webb et al. 1980), and long-term studies
in Oregon (Rasmussen et al. 1998) and Nebraska (Peterson
et al. 2012), all reported decreases in SOC over time with
cropping. The world’s oldest continuous cotton experiment,
called “The Old Rotation” in Auburn, AL, has demonstrated
that changes to management systems (tillage and rotation)
can increase SOC concentrations (and improve other soil
properties and functions) (Hubbs et al. 1998; Mitchell et al.
2008; Prieto et al. 2002).

Tillage changes the physical arrangement of soil particles,
which has cascading effects on chemical and biological
properties (Bronick and Lal 2005). The disruption of soil
structural integrity with tillage leads to the breaking apart of
soil aggregates and breakdown of soil organic matter.
Cambardella and Elliott (1992) studied Mollisols in Iowa
under native prairie or sod and intensively cropped

354 S.A. Wills et al.



conditions. They found that carbon and nitrogen dynamics
were linked to particulate organic matter (POM) and soil
structural units or aggregates. The soil structure was dis-
turbed due to tillage, therefore leading to a breakdown of
larger aggregates and decrease in SOC. Six et al. (1998)
found similar results and showed that tillage intensity was
related to POM and structural stability and later linked
aggregate sizes directly to the SOC they contained (Six et al.
2000).

Tillage also leads to changes in mechanical impedance
(Bennie 1990), which can be described in terms of soil
bulk density and soil strength (often measured as pene-
tration resistance). These physical properties impact plant
growth, water infiltration, and water storage (Dao 1993;
Ehlers et al. 1983; Lampurlanés and Cantero-Martínez
2003). Changes in physical properties may increase erosion
on summits and sideslopes and deposition in footslopes and
depressions (e.g., Daniels et al. 1985; Beach 1994; Konen
1999; Norton 1986), and therefore can alter watershed
hydrology (Johnson et al. 1980). In some cases, erosion
and deposition can alter the soil profile and therefore, the
classification (taxa) and mapping of soil bodies (Indorante
et al. 2014; Fenton 2012).

Limiting the impact of agricultural practices on erosion
has long been a goal of conservation efforts, and recent
conservation efforts are focusing on soil health with
emphasis on soil biology (Morgan 2009; Lindbo et al. 2014).
There are complex interactions between soil types, man-
agement systems, and the impact of tillage on soil ecology
(Kladivko 2001). Microbial diversity and activity in the soil
have been shown to be a signal of the overall function of soil
chemical and physical systems (Torsvik and Øvreås 2002;
Wander et al. 1995; Wardle et al. 1999).

New developments in agricultural technology (conser-
vation or reduced and no-tillage cropping systems) have led
to improvements in soil properties. For instance,
Blanco-Canqui et al. (2009) reported that a no-till cropping
system increased SOC and decreased bulk density. Rhoton
et al. (2002) observed improvements with low-tillage sys-
tems in organic matter and physical structure, which lead to
increased infiltration and decreased runoff. Furthermore,
developments in crop rotations, cover crops, and reduced
chemical disturbance (inputs of inorganic nutrients and
pesticides) have led to improvements in soil biological
function (Doran 1980; Parkinson and Coleman 1981;
Spedding et al. 2004). Although the improvements in soil
properties were observed in these studies, recovery of some
soil properties may take longer than most management time
frames (Fig. 18.2). See Sect. 18.2.3 for a discussion of
erosion that cannot be reversed on a human timescale with
even the best management.

18.2.1 Impacts of Cropping on Soils
of the Great Plains of the USA

Mollisols are the predominant soils in the Great Plains
(Chap. 8), and because of inherent soil fertility, the soils in
this region are intensively cropped. Strong gradients in an-
nual precipitation and temperature are present in this region,
and lead to a range of management choices by agricultural
producers, including crop rotations, cropping intensity,
amendments, and tillage operations. Access to irrigation
water from either aquifers (such as the Ogallala, High Plains,
and Equus Beds) or surface water is also an important factor
in crop production in the Great Plains. The Great Plains is an
extremely important center of agricultural production.
However, it is also a region that has numerous challenges
including losses of soil from erosion, low precipitation in the
west, intense thunderstorms, and declining aquifer levels for
irrigation. Water is the most limiting resource to attaining
maximum crop yield potential (Nielsen et al. 2005). During
the 1930s, the farming of marginal lands in the Great Plains,
combined with a prolonged drought, culminated in dust
storms and soil destruction of disastrous proportions (Goudie
and Middleton 1992). This period, known as the “Dust
Bowl,” inflicted great hardships on the people and the land,
and has been called the greatest ecological disaster to have
occurred in the USA (Cook et al. 2009). The erosion and
deposition events of the dust bowl created shallow
low-fertility soils in some areas and buried soils in others
leading to reduced agricultural productivity (Hansen and
Libecap 2003; Hornbeck 2009).

A traditional Great Plains dryland cropping system was
wheat/fallow with conventional tillage during the fallow
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Fig. 18.2 Soil organic C after tillage and restoration in an Iowa
Mollisol. Initial tillage was approximately 150 years ago. Each point
represents one site. Adapted from Guzman and Al-Kaisi (2010)
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period for weed control. During the past *20 years, pri-
marily due to developments in chemical weed control, a
shift has occurred toward reduced or no tillage, and has
allowed for more intensive rotations, thus reducing the
amount of fallow. Declines in soil organic matter have been
documented with tillage and summer fallow, and changing
to no-till or more intensive crop rotation has been found to
increase soil organic matter levels, though not to the
original levels (Hartman et al. 2011; Mikha et al. 2012;
Peterson et al. 1998). For these reasons, and because of
agronomic and environmental advantages including
increased stored water, decreased wind and water erosion,
increased C storage, and overall increased grain yields,
no-till practices have increased (Reicosky and Saxton
2007). Decreasing the fallow period or rotating wheat with
other crops has shown to sequester C at greater rates than
either the wheat-fallow or continuous wheat (West and Post
2002; Sainju et al. 2006). McVay et al. (2006) summarized
five long-term studies across a precipitation gradient in
Kansas and observed that decreased tillage, increased fer-
tilization, and crop rotations that included at least one
cereal crop in the rotation increased SOC in the surface
5 cm, while no significant changes were observed at other
depths.

Irrigation has been observed to affect the soil organic
matter of some Great Plains soils. Bordovsky et al. (1999)
found that irrigation led to increases in total C for semi-arid
sandy soils in Texas, while Lueking and Schepers (1985)
observed increased total C for sandy soils in Nebraska.
Williams (2001) observed increased SOC with irrigation for
drier upland soils, and no increase for wetter lowland soils in
a study conducted on fine-textured soils of Konza Prairie in
eastern Kansas. Presley et al. (2004) measured no changes in
SOC for the upper 0.3 m of irrigated silt loams and silty clay
loams in western Kansas, as compared with dryland soils
sampled from the corners of a center-pivot irrigated field.
However, it is critical to note that irrigation is not the only
management practice that differs; dryland fields receive
lower inputs of N and produce less biomass than the irri-
gated portion of the field and are also less productive. It
seems that the effect of irrigation is dependent upon inherent
soil properties that include soil texture, drainage class,
and/or slope position, among others.

18.2.2 Impacts of Cropping in the Southeastern
USA

In the southeastern USA, agriculture created some unique
problems due to the predominance of low-fertility Ultisols.
In the 1800 s, farmers in the southeastern USA managed
these soils by shifting agriculture, clearing forests, and
growing cotton and tobacco with little to no fertilizer

additions until the land would no longer yield, and then
moving their fields (Gray 1933; Trimble 1974).

In addition to depleted soil fertility, shifting to row-crop
agriculture practices in this region accelerated erosion rates.
Ultisols can be very stable under native forest cover, but
once the forest cover is removed, in combination with the
high-intensity rainfall that is common to the region, they can
be subject to high degrees of soil loss (Trimble 1974). The
years 1860–1920 were the period of the most erosive land
use in the Southern Piedmont (Fig. 13.1). In 1934, 3100 km2

of the Piedmont was reported to be destroyed by gully
erosion with 85 % of the affected area being in South Car-
olina and Georgia (Trimble 1974). An extreme example of
this type of soil loss from the nearby Coastal Plain region is
Providence Canyon State Park in southwest Georgia, which
is referred to as “Georgia’s Little Grand Canyon”
(Fig. 18.3). In 1820, the Creek Native Americans ceded the
land area that included modern-day Providence Canyon;
settlement and row-crop agriculture quickly followed. The
removal of forest led to gully erosion and the development of
a canyon 50 m deep and several hundred meters wide in
places (Froede and Williams 2004). Paleolimnological
studies confirm that the period of most extreme historical
erosion in the canyon occurred between 1840 and 1880
(Hyatt and Gilbert 2000).

After the US Civil War (1865), continuous cultivation
and fertilization became more common (Sheridan 1979),
whereas soil conservation practices became more common
after the 1930s (Trimble 1974). Studies from the Calhoun
Experimental Forest in South Carolina showed that
long-term cultivation and fertilization of the Ultisols in the
southeastern USA induced deep and long-lasting changes in
soil properties including changes in bulk density, pH,
nutrients, and exchangeable cations (Richter and Markewitz
2001). Also in the southeastern USA, Levi et al. (2010)
reported similar results and suggested that anthropogenic
amendments have actually changed the soil classification
from Ultisols to Alfisols.

An example of soil change caused by tillage for agri-
cultural production resulted from the development of the
rock plow in 1951 (US Patent 25739771). The rock plow
was designed to break up “solid formations of rock, coral, or
slag” and prepare the soil for fruit trees and row-crop pro-
duction. The rock plow was designed for the shallow, oolitic
limestone soils of south Florida. Before the rock plow was
developed, growers used dynamite to blast holes in the
ground in order to plant fruit trees (Derr 1998). As of 2007,
339,960 ha. in south Florida have been transformed by the
rock plow, while only 14,074 ha. of the native soil remain

1Any use of trade, product, or firm names is for descriptive purposes
only and does not imply endorsement by the US Government.
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(Soil Survey Staff 2007). Rock plowing results in soils that
are a several centimeters thicker than the native soils, and
much gravellier (from 12 % in the native soil to 35–70 % in
the rock plowed soil). Therefore, despite the fact that man-
agement accelerated physical weathering, the resulting soil
textures are coarser, rather than finer than the native soils.

18.2.3 Impact of Cropping on Arid
and Irrigated Soils

Dry soils, referred to as Aridisols in Soil Taxonomy (Soil
Survey Staff 1999), pose unique management challenges and
respond to cropping systems in unique ways. Dry soils may
have taken long periods to develop and have limited inputs
for restoring functionality; their resistance to change and
resilience may be low (Homburg and Sandor 2011; Seybold
et al. 1999). The risk of detrimental change can be high for
arid systems under many climate change scenarios (Herrick
and Beh 2015). For a more complete discussion of soil
change dynamics in arid and semi-arid systems see the
section on grazing lands (Sect. 18.5).

Irrigation has been an important part of agriculture and
cropping for decades, but has become increasingly wide-
spread in the modern era, since 1800 (Michael 2008). Irri-
gation alters the distribution of salts by leaching soluble salts
downward while evapotranspiration moves salts toward the
surface. The resulting distribution of salts in the soil profile
is determined by the crops grown, weather conditions, water
quality, and water quantity applied as well as the drainage of
excess irrigation water. Application of poor-quality

irrigation water can lead to accumulations of sodium and
trace elements (Dregne 2011; Grattan 2002). Most crop
production on dry soils requires irrigation, but much of the
USA’s irrigation water is applied in semi-humid and humid
areas (Fig. 18.4). The effects of irrigation can be very
localized or regional (Ferguson and Maxwell 2012). See the
discussion of irrigation in the Great Plains (Sect. 18.2.3).

18.3 Soil Change in Wetlands

While wetland soils are recognized as environmentally and
ecologically important and legally protected in the USA,
many USA wetland soils have been drained for agricultural
production. The agricultural use of these potentially highly
productive soils was recognized, and, in fact, encouraged by
the Swamp and Overflowed Lands Act of 1850 (Wright
1907). Drainage districts were established in these states,
and wetlands across the nation were drained. This resulted in
significant management-induced soil change on these lands.
Drainage of wetlands for agriculture in the Midwest may
have resulted in SOC losses of 30–50 % across the region
(Baker et al. 2007). More recently, the value of wetland and
hydric soils for ecosystem services have been recognized
and attitudes about wetland drainage have changed (Gopal
2000). Wetlands are being managed for flood control, water
quality, and wildlife habitat (Barbier et al. 2011; Brander
et al. 2006; Zedler and Kercher 2005).

Wetland drainage is a direct alteration of the water table
(e.g., James and Fenton 1993). As water tables were low-
ered through artificial drainage, peat or organic soils that

Fig. 18.3 The walls of
Providence Canyon, in
southeastern Georgia. This
massive gully formed when the
land was cleared for agriculture in
the early 1800s. A thick Ultisol is
exposed at the surface.
(Photograph credit: Aaron Daigh)
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had built up over time due to anaerobic conditions and
slow decomposition were aerated and exposed to oxidation
and wind erosion. In many places, this caused the soil to
subside and become lower relative to set benchmarks
(Parent et al.1982; Kohake et al. 2010). The majority of the
subsidence is accounted for in gaseous as opposed to
aqueous CO2 fluxes (Deverel and Rojstaczer 1996), sug-
gesting that the losses are largely related to increased rates
of organic matter decomposition. In some areas, subsidence
occurred rapidly after the soil was first drained for agri-
culture and development. For example, in the California
Sacramento-San Joaquin Delta, an estimated 55–80 % of
the original peat layer was lost due to subsidence, which
equates to a loss of 2900–5700 metric tons of organic C
ha−1 (Drexler et al. 2009). Other soil changes associated
with the drainage and tillage of organic matter-rich wetland
soils include increased bulk density, decreased labile
organic matter contents, and increased mineral content
(Drexler et al. 2009; Shih et al. 1998).

Rates of organic soil subsidence have decreased over
time. In 1950, Weir estimated that the rates of subsidence
were 2.8–11.7 cm year−1 in the California Delta (Weir
1950), and in the same time period, Stephens and Johnson
(1951) estimated that the subsidence rate in the Everglades
Agricultural Area in Florida was 3 cm year−1. By 1998, that
rate had decreased to 1.4 cm year−1 (Shih et al. 1998;
Fig. 18.5). In the California Delta, the subsidence rate has
decreased to 0.5–1.0 cm year−1 (Deverel and Rojstaczer
1996). The reduction in subsidence rate is likely due to the
maintenance of higher water tables in both regions. The
Everglades Agricultural Area of Florida (EAA), during the
first half of the twentieth century, was largely farmed for
vegetables, and the perception was that water tables needed
to be low. However, by the mid-twentieth century, more of
the EAA was being farmed for sugarcane, a crop that is more
tolerant of high water tables.

Not all wetlands have organic soils and wetland soils
change for reasons other than drainage and subsidence.

Fig. 18.4 Acres of irrigated land from the 2007 Census of Agriculture (USDA-National Agriculture Statistics Service (NASS) (2007)
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Riparian wetlands occur adjacent to streams and thus receive
sediment deposition from the upstream watershed. Depres-
sional wetlands receive deposition from a more limited area.
Wetlands can retain high levels of nutrients and pollutants
from water and sediments (Johnston 1991; Gilliam 1994),
and these additions may alter the biogeochemistry within the
wetland soils themselves (Morris 1991; Rokosch et al.
2009). Craft and Casey (2000) found that deposition in
Georgia wetlands was dependent on past and current an-
thropogenic disturbance within the surrounding watershed.
Freeland et al. (1999) found that there were higher rates of
deposition in wetlands adjacent to cultivated fields in North
Dakota. Sediments and nutrients deposited in wetlands
impact the vegetation and hydrology of the systems
(Mahaney et al. 2005; Preston et al. 2013).

Tidal or salt marshes occur along coasts and estuaries and
have flooding characteristics determined by the tides (Adam
2002). Soils in these coastal marshes may be mineral or
organic, and the salt balance in the marsh is determined by
local geomorphology. They have low redox potential and are
often very biologically active (Rabenhorst 2001; Seybold
et al. 2002). Coastal marshes have been managed for forage
and grazing for centuries (Gedan et al. 2009), and they are
increasingly under heavy pressure from human development
including pollution, introduced species, altered hydrology
(including nutrient and sediment loadings), and climate
change (Adam 2002; Scavia et al. 2002; Kirwan and
Megonigal 2013). Many have been degraded and even
destroyed by direct and indirect human management on the

Atlantic (Coverdale et al. 2014; Kearney et al. 2002), Gulf
(Turner 2011), and Pacific coasts (Craft et al. 2003; Kennish
2001).

Kirwan et al. (2010) summarized the stability of coastal
marshes as the balance between accretion and submergence
where biological and physical factors interact to modify the
marsh environment. Anthropogenic activity modifies marsh
hydrology through changes in the quality, quantity, or dis-
tribution of water. On the gulf coast of Louisiana, DeLaune
et al. (1983) found that the tidal marshes were being sub-
merged due to decreases in sediment loads caused by
changes in waterway management (such as dykes and levees
for flood protection). Changes in water quality such as
excess nutrient loading can also lead to coastal marsh
degradation (Turner 2011; Deegan et al. 2012). Sea-level
rise stresses the interaction between biophysical properties
and can lead to soil submergence and weakening of marsh
strength and integrity which eventually leads to erosion of
the marsh into open water (Adam 2002; Kirwan and
Megonigal 2013).

18.4 Soil Change in Forest Lands

While the most visible and dramatic changes in forested soils
can occur when they are cleared for agriculture or planta-
tions, forest management (silviculture) can induce remark-
able levels of soil change (Binkley and Fisher 2012). Stand
establishment (regeneration) and harvesting techniques can

Fig. 18.5 Soil change through
subsidence. This image shows the
amount of subsidence that has
occurred at the University of
Florida’s Everglades Research
and Education Center, in Belle
Glade, FL, since 1924 when a
concrete post was driven into the
organic soil so that it was level
with the soil surface at the time.
This photograph was taken in
2013 and represents about 1.8 m
of soil loss. (Photograph credit:
Alan Wright)
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disturb the soil surface and can thus increase soil erosion and
negatively impact soil productivity (Swanson et al. 1989;
Megahan 1990). Loss of forest floor (litter and woody deb-
ris), compaction (increase in bulk density), and access routes
may contribute to increased erosion in managed forests
(Elliot et al. 1998; Grigal 2000). Due to the slow growth of
most forest species, recovery from soil disturbance can take
extended lengths of time (decades to centuries).

The most apparent soil change in forestland at the pedon
scale takes place at the interface between air, forest floor,
and soil. Many mechanical actions from harvesting disturb
the soil surface inadvertently with trails, skids, and other
physical impacts from heavy machinery. The soil surface
may be deliberately disturbed through management tech-
niques such as prescribed burns and scarification (exposing
mineral soil) to improve forest seedling regeneration
(Page-Dumroese et al. 1997). In southeastern forests, bed-
ding radically alters the forest floor by mechanically creating
raised beds to plant plantation seedlings. Physical distur-
bance may remove organic material, therefore altering bulk
density and disrupting the nitrogen cycle as well as leading
to accelerated soil erosion (Fox et al. 1986; Gent et al. 1984;
Grigal 2000; Jandl et al. 2007; Jurgensen et al. 1997;
Mclaughlin et al. 2000). Surface disruption can also cause
lingering changes to soil biochemistry and microbial com-
munities (Amaranthus et al. 1989; Hartmann et al. 2012).

In the eastern USA, forest clearing has created massive
erosion and deposition events, which can be observed as
multiple buried soils along terraces (Bierman et al. 2005).
Forests in the northern portion of the USA may experience
higher soil temperature and impaired soil gas exchange due
to harvesting and site preparation (Ballard 2000). In the
western USA, changes to fire regimes (through suppression,
prevention, or more recently, prescribed burns) can cause
changes in forest floor that may vary in duration due to soil

and landscape variables as well as management actions
(Certini 2005). These types of soil change can have impacts
at watershed and larger scales such as stream quality and
flooding from increased runoff (DeBano et al. 1998).

Some of the most widespread impacts of human man-
agement on forested soils are indirect. Soil acidification
through industrial output (deposited across forests in the
northeastern USA as acid rain) has caused alteration of
chemical and biological processes in forest ecosystems
(Robarge and Johnson 1992). This has been shown to lead to
changes in forest productivity and species composition
related to changes in Al concentrations and pH of the soil
(Drohan and Sharpe 1997). The spread of introduced
earthworms has altered the biological and structural systems
of forest floors in northern USA hardwood forests
(Fig. 18.6) Invasive earthworms consume O horizon mate-
rial and leave behind castes that mix decomposed organic
material and mineral soil. A horizons in these systems can be
thickened with increased bulk density and altered N and P
cycling (Hale et al. 2005). The presence of invasive earth-
worms has been shown to be correlated with anthropogenic
activities such as recreation (fishing and cabins) and trans-
portation (roads and trails) (Holdsworth et al. 2007). In the
northwestern USA, current fire regime and past fire history
have interacted to produce forests that may not be well
suited to thrive or survive under future climate change sce-
narios (Whitlock et al. 2003).

18.5 Soil Change in Grazing Lands

Large ungulate grazing shapes ecosystems through her-
bivory (consumption of plant matter by ungulates), physical
impact (hoof impact, wallowing, etc.), and deposition (urine,
dung, and carcasses). Grazing lands, defined here as lands

O horizon  

E horizon  

A horizon  

(a) (b)

Fig. 18.6 Changes to O and A horizons caused by introduction of
invasive earthworms. a Before earthworm invasion, a thick forest floor
of organic materials (dark O horizon) on top of the mineral soil
(light-colored E horizon) with a distinct boundary between the two.
b After earthworm invasion, the forest floor has been replaced by a

layer of thick black topsoil (A horizon) made mostly from earthworm
casts. There are no longer distinct organic (O) and mineral horizons.
(Photograph credit: Great Lakes Worm Watch http://www.nrri.umn.
edu/worms/forest/soil.html)
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where grazing by domestic livestock is currently or has
historically been a major land-use activity, are typically
divided into two general types: (1) pasture lands, charac-
terized by intensive management (e.g., irrigation and appli-
cation of fertilizer and seed) and replacement of a native
vegetation community with seeded forage; and (2) range-
lands, which are characterized by low management inputs
and retention of native vegetation communities. The man-
agement impacts on soils can differ dramatically between
range and pasture lands; thus, it is a useful distinction for
discussions of soil change.

In pasture systems, direct effects of grazing are additive to
those caused by the direct impacts of management on soils.
For example, seedbed preparation, seeding, and fertilization
can cause soil change similar to those seen in croplands.
Similarly, irrigation can change the growing environment
and soil solution composition leading to increased plant
production and altered carbon and nutrient dynamics. Soil
changes due to pasture management include direct impact on
the soil surface and changes in nutrient cycling due to spe-
cies composition, animal deposition, and fertilizer inputs.
Grazing may increase bulk density (Greenwood and
McKenzie 2001), specifically in areas of concentrated hoof
action (Tate et al. 2004), although sometimes less so than
conversion to tilled cropland (Franzluebbers et al. 2000). In
North Dakota, Liebig et al. (2006) found that pasture man-
agement (including stocking rate, species mix, and fertilizer
treatment) changed soil bulk density, pH, and nitrogen
levels. In the southeastern USA, conversion of cropland to
pasture has been shown to increase SOC content, but the
depth distribution is unlikely to be equivalent to native
systems (Franzluebbers et al. 2000). While soil degradation
(loss of beneficial surface material and characteristics) in
pasture lands is recognized as a potential result of poor
pasture management, the exact mechanisms of these
responses are not fully known (Bilotta et al. 2007). However,
active management of pastureland can also provide oppor-
tunities to manage undesirable soil change (more so than in
rangelands).

In rangelands, management options that effect soil change
are more limited. Short-term (annual) options are typically
only associated with animal management (timing, intensity,
and duration of grazing). Although management of range-
lands is usually not intensive, the impacts of domestic her-
bivores on these landscapes can be substantial. Cows (the
most common grazer) have been proposed as an agent of
geomorphic change by Trimble and Mendel (1995). Active
degradation of western USA rangelands was particularly
widespread and acute after the expansions of the railroads
and prior to the Taylor Grazing Act of 1934. In a study using
high alpine lakes of the southern Rocky Mountains, Neff
et al. (2008) documented an increase in dust production by
more than fourfold beginning in the mid- to late nineteenth

century (Pacific Railway Act was signed in 1862) and sub-
sequent decrease in the early to mid-1900s. This dust is
sourced to the dry regions of northern Arizona and attributed
to the removal of vegetation and disturbing of exposed soil
surfaces by cattle (Neff et al. 2008). The impacts of grazing
on soils are highly variable depending on the ecosystem, soil
and management system in question, as well as the soil
properties evaluated (Bilotta et al. 2007). In some instances
(e.g., fertile soils in mesic environments), the effects of
grazing on plant and soils can be gradual and readily
reversible with minor adjustments to grazing strategies
(Briske et al. 2003). However, in many areas, particularly
drier regions (aridic moisture regimes) that are characterized
by low and variable rainfall, sparse vegetation cover, and
erosion-prone soils, poor grazing management can cause
ecosystems to cross biophysical thresholds. In these instan-
ces, the changes to soils and vegetation persist when grazing
pressure is reduced or eliminated and usually require active
restoration (Briske et al. 2003).

Range improvement projects that use herbicide, fire,
heavy equipment, or hand tools to manipulate rangeland
vegetation communities are a common approach for
improving wildlife habitat, increasing forage production,
controlling fuels, or restoring post-fire landscapes in the
western USA. The degree to which these activities affect soil
change is primarily dependent on the amount that the soil is
disturbed during implementation and project success in
altering species composition (e.g., woody to herbaceous) or
abundance. Woody species removal (in fuel treatments or for
range improvements) can increase the amount of woody
litter incorporated into soils (Ross et al. 2012). Treatments
that increase herbaceous cover and productivity may be
associated with a multitude of changes to soil quality (van
Auken 2000). The use of heavy equipment for both removal
of woody vegetation and application of seed disturbs the soil
surface and can leave large areas susceptible to erosion by
wind and water. For example, broad-scale soil disturbance
associated with post-fire seeding treatments following the
Milford Flat Fire in Central UT was associated with extreme
wind erosion in the most sensitive landscape settings,
resulting in rates of wind-driven sediment flux that rank
among the highest ever recorded in North America (Miller
et al. 2012). Furthermore, negative feedbacks between
broad-scale soil destabilization and wind-driven saltating
sands further hampered establishment of desired species in
these aridic soils (Duniway et al. 2015). Indeed, direct
manipulations of rangeland plant communities are more
likely to be successful in more mesic soil systems than aridic
(Knutson et al. 2014), suggesting desirable impacts on soil
change and dynamic soil properties are much more likely in
mesic than aridic soil systems.

In rangelands, soil change and changes in plant com-
munity composition and cover are often coupled. Grazing
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alters the structure of plant communities by selectively
grazing or disrupting growth and reproduction of some
species (Augustine and McNaughton 1998; Belsky 1992;
Cingolani et al. 2005). Grazing can also interact with woody,
weedy, and invasive species by altering competitive inter-
actions, effects on fire frequency (via effects on fine fuels),
and seedling germination (MacDougall and Turkington
2005; DiTomaso 2000). Grazing alters carbon and nutrient
cycling directly through removal of plant biomass reducing
the amount of biomass that is returned to the soil as litter
(Holland et al. 1992) and indirectly through changes in
vegetation structure, composition, and growth (Biondini
et al. 1998; McIntyre and Lavorel 2007).

Dynamic soil properties in semi-arid and arid rangelands
are characteristically patchy, and understanding how soil
quality soil quality varies spatially has emerged as an
important indicator of range land health (Herrick 2000; Pyke
et al. 2002). Some of the most important indicators of soil
change are not simply plot averages but measures of vascular

plant distribution, soil attributes both under plant canopies
and in patches between plants. For example, the development
of biological and physical soil crusts is common in the patches
between plant canopies. Biological crusts (and physical crusts
to some extent) can increase the stability of these exposed
surfaces, lowering erodability by wind and water (Belnap and
Gillette 1998; Belnap 2006). Direct hoof action by grazers
disturbs soil surfaces, breaking up fragile crusts, and thereby
greatly increasing soil erodability in areas heavily trafficked
by grazers (Belnap and Eldridge 2003). Similarly, the
development of water-stable soil aggregates will covary with
both plant and crust cover, typically greater in perennial plant
or crust patches than in bare interspaces (Fig. 18.7; Herrick
et al. 2001). The patchy nature of arid and semi-arid range-
lands has led to the development of semi-quantitative
approaches for evaluating soil and site stability that explic-
itly accounts for spatial variability (e.g., Interpreting Indica-
tors of Rangeland Health (Pellant et al. 2005) and Pedoderm
and Pattern Classes (Burkett et al. 2011)).

Grazing History
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Fig. 18.7 Soil change caused by grazing: a Effects of grazing history
on near surface soil aggregate stability from a rangeland setting in
southeastern Utah, USA. Average aggregate stability is significantly
greater in ungrazed than grazed pastures (p < 0.001) (aggregate
stability collected following Herrick et al. 2001). Photographs showing
b well-developed biological crust cover in a national park, compared to
c heavily grazed area outside the park. Box plots show plot mean (white

dashed horizontal line), median (solid horizontal line), 25th and 75th
quantiles (lower and upper bounds of box), 10th and 90th percentile
(whiskers), and outliers (black dots) aggregate stability values. Data are
from 80 plots sampled within Canyonlands National Park (ungrazed for
40 years) and 65 plots in the surrounding private, state, and federal
lands that are open to grazing (Miller et al. 2012). All sites were located
on similar soils based on NRCS Ecological Site Classification
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18.6 Soil Change in Extreme Conditions

Some of the most dramatic examples of soil change occur
when sensitive soils or areas are mishandled or poorly
managed. Acid sulfate soils undergo extreme (and negative)
changes after they are exposed and oxidized. Cold soils are
sensitive to heat and other human-induced environmental
changes. Some land uses, such as strip-mining, alter the
landscape entirely producing massive amounts of soil
change. Extreme soil change is typically non-recoverable.
Land-use options are limited by the impacts of past use and
management.

18.6.1 Acid Sulfate Soils

An extreme example of management-induced soil change is
the production of sulfuric acid in acid sulfate soils. In such
soils, sulfuric acid is being produced (active), has been
produced (post-active), or could be produced (potential).
Potential acid sulfate soils are typically formed under
anaerobic conditions in coastal or tidal sedimentary envi-
ronments where iron sulfide minerals accumulate (Dent and
Pons 1995). When these minerals oxidize, they produce
sulfuric acid, which lowers soil pH to 3.5 or less, which is a
level below which most plants will not grow. These minerals
oxidize, and the soils become active acid sulfate soils
through drainage, surface deposits of dredged material, or
earth-moving associated with development, construction,
and mining (Bradshaw 1997; Fanning 2006).

The Food and Agriculture Organization of the United
Nations (FAO) suggests that there are 0.1 million ha of
potential and active acid sulfate soils in North America,
which is only a small proportion of the estimated world total
of 12.6–18.1 million ha. (Andriesse and van Mensvoort
2006). Although they have not been formally mapped, there
are several locations within the USA where the formation of
sulfuric horizons (low pH, evidence of oxidation of sulfide
minerals) has been observed, such as dredged materials from
the San Francisco Bay of California, the Baltimore Harbor in
Maryland, the tidal Pocomoke River in Maryland, reclaimed
marshland soils in Florida, clay landfill caps in New York
and Maryland and exposed soil as a result of construction
activities in Virginia (Grass et al. 1962; Calvert and Ford
1973; Fanning and Burch 1997; Demas et al. 2004, Fanning
2004).

18.6.2 Management Impacts in Soils of Cold
Climates

Cold climate soils are those that formed in high latitudes or
at high altitudes that have a mean annual soil temperature (at

50 cm depth) of <8 °C (Ping 2005) and mean summer (June,
July, August) soil temperature of <15 °C (Soil Survey Staff
1999). About 16–18 % of the USA consists of cold climate
soils of which <1 % is farmland. Almost all of the cold soils
(in the USA) are located in Alaska, most in the tundra and
boreal forest ecoregions. Features of cold soils include per-
mafrost (continuous and discontinuous), formation of
ground ice, and cryoturbation from freeze–thaw cycles.
Permafrost impedes soil drainage creating high moisture
contents and can result in the accumulation of solutes in the
active layer (Alekseev et al. 2003). Above the permafrost is
the active layer (seasonally thawed layer), that can range
from 0.2 to 5 m or more in thickness (Marchenko and
Etzelmüller 2013). In a natural system, permafrost and
ground ice are buffered or insulated by surface vegetation
and surface organic layers (O horizons). Removal of this
buffer results in recession of the permafrost table and an
increase in depth of the active layer. Once the thermal
equilibrium is disrupted, increased thawing can result
(Brown 1997).

Near Fairbanks Alaska, clearing of an area of natural
boreal forest vegetation and removal of the 10-cm-thick
surface organic layer resulted in a drop in the permafrost
table from 1 to 5 m (Kallio and Rieger 1969). When ground
ice melts, the surface topography is changed and increased
melting can lead to major ground disturbances known as
thermokarst (Fig. 18.8). Anthropogenic disturbances such as
construction of roads, trails, airfields, trampling, and agri-
culture can have profound effects on the landscape due to
subsidence and thermokarst over relatively short timescales
(Nelson et al. 2002). Melting permafrost on ice-rich slopes
can cause soil erosion and gullying (Brown 1997). Farming
in cold soils leads to a thickening of the active layer (deeper
permafrost), which results in changes in leaching, oxidation,
and reduction as well as cryogenic processes (Ping 2005).
Overgrazing and excessive trampling can result in disturbed
or destroyed surface organic layers or surface vegetation
cover, leading to permafrost melting and erosion (Forbes
1999; Ping 2005). Increased dust load associated with gravel
roads and pads can alter tundra nutrient cycling and nutrient
regimes (Moorhead et al. 1996) and has several ecological
consequences (Walker and Everett 1987).

The active layer and upper permafrost can contain large
quantities of organic C compared to soils in temperate
ecosystems as a result of frost churning (Bockheim et al.
1999; Ping et al. 1997; Ping 2013; Tarnocai 2009). In the
subarctic, land-use change has been found to increase soil
temperatures by 4–5 °C, lengthen the season of biological
activity by 2–3 weeks, and enhance plant residue decom-
position by 25 % (Grünzweig et al. 2003). Land-use change
from forest to agricultural land results in increased CO2

emissions, but can be minimized by selecting relatively
C-poor soils for land-use change and by implementing C
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preservation management strategies (e.g., perennial crops,
low tillage) (Grünzweig et al. 2004). Increases in the num-
ber of freeze–thaw cycles can decrease aggregate size dis-
tribution and can lower infiltration rates (Fouli et al. 2013).
Conversation tillage options have been shown to be viable
in Alaska to promote infiltration and conserve organic
matter (Sharratt et al. 2006a; Sparrow et al. 2006). Zhang
et al. (2012) found net C gains and improved soil quality
after 18 years in the conservation reserve program (CRP),
over that of native forest in subarctic Alaska. The CRP is a
US government program where environmentally sensitive
land is removed from agriculture production for a period of
time.

18.6.3 Impacts of Strip-Mining for Phosphates

An example of extreme soil change is that caused by man-
agement associated with phosphate strip-mining as is done
in Florida, North and South Carolina, Tennessee, Utah,
Idaho, Montana, and Wyoming (USGS 2014a). Phosphorus
mining began in the late 1800s and expanded in the 1900s in
North and South Carolina, Tennessee, and Florida. The
mining industry grew largely as a response to the increasing
demand for phosphorus fertilizer by farmers in the southeast
USA (Richter and Markewitz 2001). Today 85 % of
USA-mined phosphorus comes from mines in Florida and
North Carolina, while the remainder comes from Idaho and
Utah (USGS 2014b).

In the phosphorus mining regions in North Carolina and
Florida, 3–15 m of overburden is stripped off to allow
excavation of the phosphate-rich material below (Marion
1986). After excavation, the phosphate is separated from
the soil and unconsolidated material leaving behind over-
burden fill, sand tailings, and clay-slime (Brown et al.
1992) each of which have different soil characteristics.
Overburden fill tends to have characteristics most closely
related to the native soils of the area, but they are mixed
and spatially variable (Wallace and Best 1983). The native
soils in the phosphate-mining region of Florida are Spo-
dosols with a fine sand texture, low pH, low cation
exchange capacity (CEC), and low organic matter. The
native soils of the phosphate-mining region of North Car-
olina are Ultisols with fine sandy loam surface texture, low
pH, and low CEC. The overburden fill sites are charac-
terized by the mixing of many native soil horizons and tend
to have finer surface textures, greater CEC, higher
water-holding capacity (WHC), and higher pH than nearby
native soils (Hawkins 1973; Wilson and Hanlon 2012).
Also, overburden fill surface horizon bulk density is usu-
ally higher and subsoil bulk density is usually lower than
the natural soils (Gee et al. 1978; Chambers et al. 1994).
Overburden fill sites can be suitable for agriculture or
development.

Sand tailings are the quartz sands that have been sepa-
rated from the clay and phosphate during the mining process.
Phosphorus and calcium concentrations tend to be three to
five times greater in these soils than those found in

Fig. 18.8 Aerial photograph of
thermokarst in tundra on the
North Slope of Alaska. The upper
ice-rich permafrost is thawing and
water draining, resulting in the
settling and collapse of the
surface. (Photograph credit:
Cathy Seybold)
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undisturbed or native soils (Davis et al. 1991), but the soils
have low CEC, WHC, organic matter, K, and micronutrients
(Mislevy and Blue 1981) These sand tailings can be used for
agriculture, but nutrients and WHC can be limiting. They are
highly suitable for development as the sands are quite stable
surfaces compared to the clay-slime settling areas (Wilson
and Hanlon 2012). The final waste sediment from the
phosphate-mining process is the clay-slime slurry, which is
pumped to retention basins and allowed to dry. About 40 %
of phosphate-mined reclamation areas are clay-settling
basins (Wilson and Hanlon 2012). The resulting soil tex-
tures of these sites are largely clay that is high in smectites
and has high shrink swell potential (Hawkins 1973). They
are heavy, sticky, and slow to dry, which makes them poorly
suited for development, but they have been productive for
agricultural crops (Mislevy et al. 1990).

In Florida, phosphate mining has impacted 526,000 ha.,
disturbing 2500 ha. annually, and 25–30 % of the lands
impacted by phosphate mining are isolated or hydrologically
connected wetlands (FDEP 2010). Although, reclaimed
phosphate-mined land soils differ from native soils, soil
development in created wetlands on overburden fill, and
sand tailings mimics that of natural wetland soil formation;
that is, organic matter accumulates, C:N ratio decreases, and
bulk density decreases with increasing wetland age (Nair
et al. 2001).

18.7 Conclusions

Soil change is a general term that can apply to small local-
ized disturbances and responses or to broad landscape scale
disruptions. Human management impacts soil properties
across all kinds of soils and land uses. Land-use conversion
is often accompanied by soil change, but management
decisions within individual land uses can have meaningful
impacts on soil properties. Tillage has produced notable
changes in soil physical structure and carbon cycles across
the USA croplands. Wetland soils have been changed by
drainage, sedimentation, and changes in sea level. Forest
silviculture often results in changes to the forest floor and
surface soil horizons. Grazing impacts are highly dependent
on the specific conditions of a location and the management
system in place, inputs, and disruptions. Soils interact with
ecosystems through feedbacks with plants, animals, and
water. Some systems are resistant to change, some are
resilient and can recover after disruption, and still others will
undergo catastrophic change when disturbed. Anthropogenic
soil change should continue to be studied and assessed to
allow for better quantification of the impacts on soil function
and ecosystem services.
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