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Abstract. Discectomy procedure simulations require patient-specific
and robust three-dimensional representation of vertebral and interver-
tebral disc structures, as well as existing pathology, of the lumbar spine.
Prior knowledge, such as expected shape and variation within a sample
population, can be incorporated through statistical shape models to opti-
mize the image segmentation process. This paper describes a framework
for construction of statistical shape models (SSMs) of nine L1 vertebrae
and eight L1-L2 intervertebral discs from computed tomography and
magnetic resonance (MR) images respectively. The generated SSMs are
utilized as a reference for knowledge-based priors to optimize coarse-to-
fine multi-surface segmentation of vertebrae and intervertebral discs in
volumetric MR images. Correspondence between instances within each
model has been established using entropy-based energy minimization of
particles on the image surfaces, which is independent of any reference
bias or surface parameterization techniques. The resulting shape models
faithfully capture variability within the first seven principal modes.

1 Introduction

According to the Global Burden of Disease study [1,2], lower back pain is the
single leading cause of disability worldwide. Imaging studies indicate that 40% of
patients suffering from chronic back pain showed symptoms of intervertebral disc
degeneration (IDD) [3]. Primary treatment for lower back pain consists of non-
surgical treatment methods. If non-surgical treatments are ineffective, a surgical
procedure may be required to treat IDD, a procedure known as spinal discectomy.
Approximately 300,000 discectomy procedures, over 90% of all spinal surgical
procedures [4,5], are performed each year in the United States alone, totaling
up to $11.25 billion in cost per year.
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Discectomy procedure simulation requires patient-specific and robust three-
dimensional (3D) representation of vertebral and intervertebral disc structures,
as well as existing pathology, of the lumbar spine. Although lumbar vertebral
structures have high variability, the prominent features of the bone are consis-
tent within a sample population. This facilitates the incorporation of a statisti-
cal shape model with expected variations into a volumetric image segmentation
framework. Low image resolution and image artifacts, such as image noise, make
biomedical volumetric image segmentation a challenge. Ambiguous image inten-
sity results in incorrect, or even disconnected, boundary detection of the struc-
ture of interest. Prior knowledge, such as expected shape and variance within
a sample population, can be incorporated through statistical shape models to
optimize the image segmentation process.

This paper describes a framework for the construction of statistical shape
models (SSMs) of L1 vertebrae and L1-L2 intervertebral discs from computed
tomography (CT) and magnetic resonance (MR) images of respectively of
healthy subjects. The generated SSMs are utilized as a reference for knowledge-
based priors to optimize segmentation of vertebrae and intervertebral discs in vol-
umetric MR images. These shape models can be incorporated into a controlled-
resolution deformable segmentation model of the lumbar spine. Incorporation of
strong shape priors would facilitate quantification and analysis of shape varia-
tions across healthy subjects. It is aimed as a tool for improving spine segmenta-
tion results that can be utilized as part of an anatomical input to an interactive
spine surgery training simulator, especially a discectomy procedure [6].

Statistical shape models from nine L1 vertebrae and eight L1-L2 interver-
tebral discs have been generated to be utilized as shape priors during spine
segmentation from volumetric MR images. Correspondence between instances
within each model has been established using entropy-based point placement on
the image surfaces [7–9], which is independent of any reference bias or surface
parameterization techniques. The rest of the paper is as follows: Sect. 2 pro-
vides an overview of the correspondence and active shape model construction
methods; Sect. 3 describes the initial shape model results for vertebrae and inter-
vertebral discs. Finally, Sect. 4 presents a conclusion and future improvements
of the implemented method.

2 Method

2.1 Image Dataset and Preprocessing

Datasets provided by the SpineWeb initiative have been utilized for generating
shape models of an L1 vertebra and an L1-L2 intervetebral disc. Volumetric
CT scans of healthy subjects, along with binary masks, of nine anonymized
patients [10] were used for model construction of L1 vertebra. The CT scans
and binary masks had a resolution of 0.2× 0.3× 1mm3. In addition, expert seg-
mentations of the L1-L2 interveterbral disc of eight anonymized patients, with
2.0× 1.25× 1.25mm3 resolution [11], were preprocessed as input to the corre-
spondence and shape model construction method.
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These binary images were initially aligned along the first principal mode,
and any aliasing artifacts were removed during image preprocessing. The fast
marching method was applied to generate distance maps of the binary images,
which were used for 3D surface reconstruction and establish correspondence
between instances of both vertebra and disc shape models.

2.2 Correspondence Establishment

Correspondence establishment is the process of finding a set of points on one
two-dimensional (2D) contour or 3D surface that can be mapped to the same
set of points in another image. Anatomically meaningful and correct correspon-
dences are of utmost importance, as they ensure correct shape parametriza-
tion and shape representation. This can be achieved by co-registering manual
landmarks onto the shape boundary in 2D shape space but is challenging in
3D space. Anatomical landmarks are points of correspondence on each shape
that match within a sample population [12], which may be manually or auto-
matically placed. Correspondence landmarking may entail identifying matching
parts between 3D anatomical structures, which is challenging due to inherent
variability within geometry or shape of the anatomical structure across a pop-
ulation [13,14]. Therefore, landmark placement to establish correspondence for
robust statistical analysis is a significant task.

According to Heimann et al. [13], a number of methods for correspondence
establishment are feasible, where a generic template mesh is registered onto a set of
instances through model-to-model or model-to-image registration to achieve a set
of instances with automatic point-to-point correspondences through distance [15].
However, this method introduces a bias through selection of a reference topol-
ogy [16,17]. To mitigate the reference bias, Rasoulian et al. [18,19] utilized for-
ward group-wise registration to establish probabilistic point-to-point correspon-
dences to generate 3D training shapes of L2 vertebrae. Similarly, Mutsvangwa
et al. [20] employed rigid and non-rigid registration of pointsets, and implemented
a probabilistic principal component analysis (PCA) to mitigate outlier effects of
a 3D scapula model. Vrtovec et al. [21] established correspondences through a
hierarchical elastic mesh-to-image registration of an extracted reference across 25
lumbar vertebral image volumes. Kaus et al. [22] rigidly aligned a reference tri-
angular mesh to training shapes and then utilized discrete deformable models to
locally adapt the reference mesh to segmented volumes, thus propagating the ref-
erence pointset across 32 vertebral images. Lorenz et al. [23] performed curvature-
adaptive landmark-guided warping and mesh relaxation of a reference mesh across
a set of 31 lumbar vertebral image volumes for 3D statistical model construc-
tion. Becker et al. [24] parameterized 14 lumbar vertebral shapes to a rectangle by
utilizing a graph embedding method, and reduced mesh distortion using energy
minimization-based adaptive resampling. Heitz et al. [25] also implemented non-
rigid b-spline based warping to construct models of C6 and C7 cervical vertebrae.
This list is a reference of 3D vertebral and intervertebral disc statistical shape
models and is by no means exhaustive. In contrast, 3D shape variability of inter-
vertebral discs is less explored in the literature. Peloquin et al. [26] constructed a
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statistical shape model of 12 L3-L4 intervertebral discs from signed distance maps
of manually segmented binary images.

This research focuses on the refinement of a correspondence technique intro-
duced by Cates et al. [7,8] that is independent of structure parameterization or a
reference bias. The utilized technique employs a two-stage framework, with soft
correspondence establishment in the first stage, and correspondence optimization
across all instances of the shape space in the second stage. Soft correspondence
is established by automatically placing homologous points on the shape surface
through an iterative, hierarchical splitting strategy of particles, beginning with
a single particle. A 3D surface can be sampled using a discrete set of N points
that are considered random variables Z = (X1, . . . , XN ) drawn from a probabil-
ity density function (PDF) p(X). Denoting a specific shape realization of this
PDF as z = (x1, x2, . . . , xN ), the amount of information contained in each point
is the differential entropy of the PDF function p(x), which is estimated as the
logarithm of its expectation log{E(p(x))}, E(·) estimated by Parzen windowing.
The cost function C becomes

C{x1, . . . , xN} = −H(P i) =
∑

j

log
1

N(N − 1)

∑

k �=j

p(xj)

=
∑

j

log
1

N(N − 1)

∑

l �=j

G(xj − xl, σj), (1)

where G is an isotropic Gaussian kernel with standard deviation σj . These
dynamic particles have repulsive forces that interact within their circle of influ-
ence limited through the Gaussian kernel until a steady state is achieved, and
are constrained to lie on shape surface through gradient descent in the tangent
plane.

These correspondences are further optimized by entropy-based energy mini-
mization of particle distribution along gradient descent by balancing the negative
entropy of a shape instance with the positive entropy of the entire shape space
encompassing all instances (known as an ensemble) [27]. Consider an ensemble
ε consisting of M surfaces, such as ε= (z1, z2, . . . , zM ), where points are ordered
according to correspondences between these surface pointsets. A surface zk can
be modeled as an instance of a random variable Z, where the following cost
function is minimized:

Q = H(Z) −
∑

k

H(Pk). (2)

The cost function Q favors a compact representation of the ensemble and assumes
a normal distribution of particles along the shape surface. Hence, p(z) is modeled
parametrically with a Gaussian distribution with covariance Σ. This ensemble
entropy term can be represented as

H(z) ≈ 1
2

log ‖Σ‖ =
1
2
Σkλk, (3)

where λk are ensemble covariance eigenvalues. This process optimally reposi-
tions the particles of the shapes within the ensemble to generate robust shape
representations with uniformly-distributed particles.
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ShapeWorks1 was used to establish dense correspondences of 16,384 homol-
ogous points on nine L1 vertebral instances, and 4,038 points on eight L1-L2
intervertebral disc instances. The ensemble shapes were respectively normalized
according to centroid-referred coordinates, and were further aligned during the
correspondence optimization process through iterative Procrustes analysis [28].
Statistical shape models were respectively generated for an L1 vertebra and L1-
L2 disc using these point clouds in the manner summarized in Sect. 2.3.

2.3 Construction of a Statistical Shape Model

The shape of an object is the geometrical information that remains after effects of
translation, rotation and scaling have been filtered [29]. Statistical shape model
capturing variations within L1 vertebrae and L1-L2 intervertebral disc popula-
tion have been constructed using PCA [30].

The generalized mean shape X̄ and covariance matrix ΣX can be calculated
for the datasets. Assuming that the training dataset covers a set of closely related
shapes, correlation between shape points can be represented by a multivariate
Gaussian distribution. PCA is utilized to extract the principal modes, which
represent data correlation along principal directions within the dataset, to reduce
problem dimensionality.

Each eigenvector φi represents the modes of variation within the training
dataset, and the corresponding eigenvalue λi captures the amplitude of varia-
tion within the corresponding eigenvector, with the largest λ corresponding to
the largest deformation in corresponding modes. The eigenvalues of Φ are sorted
in descending order such that λi > λi+1 and the largest t eigenvalues and cor-
responding eigenvectors are kept so that Φt = (φ1, φ2, . . . , φt). A sample shape
X can be approximated as a linear combination of the mean shape and first
t modes of variation represented by X = X̄ + btΦt, where bt is a t-dimensional
vector representing modes of variation. Assuming the mean shape X̄ is located
at the origin, three standard deviations of λi capture expected shape variability
with a 99.7% confidence interval.

The calculated average shape and expected variations can be incorporated
within the discrete deformable simplex model segmentation [6,31–33] to con-
straint the model variability and faithfully capture structure boundary in pres-
ence of image artifacts and noise.

3 Results

3.1 Shape Mean and Variance Evaluation

Figure 1 is a graphical representation of dense correspondence-based mean shape
of the L1 vertebrae and L1-L2 intervertebral discs. Both mean shapes look quali-
tatively normal. Figure 2 illustrates the changes in the shapes along the first three
principal modes of variation by 3σ for vertebrae and intervertebral discs. The
1 http://www.sci.utah.edu/software/shapeworks.html.

http://www.sci.utah.edu/software/shapeworks.html
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(a) (b)

Fig. 1. Correspondence-based mean shapes. (a) Mean L1 vertebra shape from a popu-
lation of nine instances, viewed from inferior. (b) Mean L1-L2 intervertebral disc shape
from a population of eight instances, viewed from superior.

first mode for both shape models mainly captures scaling across the population.
The maximum vertebral variability (16 mm) is observed at the inferior and supe-
rior articular processes and the spinous process. The second and third modes in
the vertebral model capture variation and scaling in the transverse processes and
foramen size respectively. In contrast, the first mode of the intervertebral disc
model varies maximally by 7 mm. The second principal mode captured stretch-
ing in the lateral parts of the disc, and the third mode captured rotational effects
in the lateral part of the disc respectively.

(a) (b)

Fig. 2. Graphical representation of shape model variability (in mm) captured by the
first three principal modes (−3σ ← mean → +3σ) of (a) L1 vertebra, viewed from
superior (b) L1-L2 intervertebral disc, viewed from superior. Red corresponds to the
maximum outward signed distance (mm) from the mean shape, while blue corresponds
to the maximum inward signed distance (mm) from the mean shape. (Color figure
online)
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3.2 Statistical Shape Model Evaluation

Shape model correspondences and the constructed statistical models may be
evaluated through established metrics, such as model compactness, generaliza-
tion ability, and specificity [14]. A robust statistical model should have low gen-
eralization ability, low specificity and high compactness for the same number of
modes. Compactness is the ability of the model to use a minimum number of
parameters to faithfully capture shape variance within the dataset. This may be
calculated as the cumulative variance captured by the first m number of modes

C(m) =
m∑

i=1

λi, (4)

where λi is the largest eigenvalue of the i-th mode. Figure 3 graphically illus-
trates the compactness of the statistical models as a function of the number of
modes required to capture 100% of the variation across the population. Each
principal mode represents a distinct shape variation amongst the shape popu-
lation. Both shape models were able to capture variance within the first seven
principal modes, with 39.45% variance of the vertebra model, and 71.04% disc
shape variation captured within the first principal mode respectively. The gen-
eralized ability of the statistical model to represent new, unseen instances of a
new shape that are not present in the training dataset was evaluated by per-
forming leave-one-out experiments. Vertebra and disc statistical shape models
were generated using all training samples except one, which was considered the
test sample. This test sample was then reconstructed using the statistical shape
model, and the root-mean-square (RMS) distance and Hausdorff distance errors
were calculated between the reconstructed sample and the original test sample
after rigid registration. This method was repeated over the entire vertebra and
disc datasets respectively, to calculate an average and worst measure of error for
both statistical models. Generalization ability G(m), and its associated standard
error σG(m) can be mathematically represented as

G(m) =
1
n

n∑

i=1

Di(m), σG(m) =
σ√

n − 1
, (5)

(a) (b)

Fig. 3. Compactness ability of (a) L1 vertebra (b) L1-L2 intervertebral disc shape
models. 100 % of the variation was captured within the first seven modes for both
models.
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where Di(m) is the RMS or Hausdorff distance error between the test sample
and the instantiated shape, n is the number of shapes (i.e. nine L1 vertebrae
and eight L1-L2 discs in our study) and σ is the standard deviation of G(m).

Model specificity is the measure of a model to only instantiate instances that
are valid and similar to those in the training dataset. To measure our statistical
models’ specificity, (n−1) instances where randomly generated within [−3λ,+3λ]
using our statistical models, and compared to the closest shape in the training
dataset. Specificity S(m) and its standard error σS(m) have been calculated as

S(m) =
1
n

n∑

j=1

Dj(m), σS(m) =
σ√

n − 1
, (6)

where n is the number of samples, Di(m) is the RMS distance error between a
randomly generated instance and its nearest shape within the training dataset,
and σ is the standard deviation of S(m).

Results of the vertebra model generalization ability are presented in Fig. 4(a)
and (b). For the first mode of variation, the average reconstruction error for an
unseen instance is 0.47 mm with a confidence interval of 0.03 mm, with an initial
Hausdorff distance of 8.2 mm. This error converges to 0.4 mm with worst mean
error of 7.6 mm. Our vertebra models cumulative specificity error is 1.43 mm
in seven principal modes with negligible standard error. Our vertebra model
results are comparable with those in the literature. Vrtovec et al. [21] model
is more compact, capturing 52% variability within the first principal mode.
Rasoulian et al. [18] capture G(m) RMS error of 0.95 mm, with Hausdorff error
of 9 mm within the first principal mode, which is decreased to 0.8 mm RMS and
7.5 mm after seven modes. Their model is worse in generalization and specificity,

(a) (b) (c)

(d) (e) (f)

Fig. 4. Generalization ability and specificity of L1 vertebra and L1-L2 intervertebral
disc shape models. Errorbars indicate standard error. (a) − (c) L1 vertebra: (a) general-
ization (RMS), (b) generalization (Hausdorff), and (c) specificity. (d) − (f) L1-L2 inter-
vertebral disc: (d) generalization (RMS), (e) generalization (Hausdorff), and (f) speci-
ficity.
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but outperforms in model compactness (capturing 60% in the first mode). Our
statistical model outperforms Kaus et al. [22] whos model reported 1.66 mm
mean error after 20 modes, with 30% first mode compactness, constructed with
32 (L1-L4) vertebral training shapes.

Our intervertebral disc model is able to represent unseen instances with an
initial RMS error of 0.23 mm, and Hausdorff distance of 2.24 mm, which con-
verges to 0.1 mm RMS error and 0.5 mm worst error after six principal modes.
As depicted in Fig. 4(d) and (e), mode 5 attributes a spike in the distance errors.
This may be caused by a singular variation within a training sample captured by
this mode. The overall effect of this variation is reduced by mode 6, as demon-
strated by a reduction in the G(m) error. The disc model specificity captures
cumulative 1.0 mm RMS error within six modes. Peloquin et al. [26] present
comparable results for model compactness of 14 L3-L4 discs, capturing 70%
variability within the first mode. They presented a leave-one-out analysis to
determine which samples influenced model outliers, demonstrating that PCs> 4
had higher influence on the mean shape of the model.

Overall, the compact model transitions coherently, with a tradeoff between
compactness and the ability to faithfully represent new training shapes. Some
outliers in the first principal mode can be noted in the variant vertebral shape.
These outliers may be reduced by increasing the size of the population dataset,
as well as exploring probabilistic PCA instead of simple PCA, which may better
account for any outliers in the model. Moreover, large variability exists between
the nine vertebrae instances, leading to large variability in the L1 vertebral shape
model itself, as seen in Fig. 2. An increase in the training dataset would lead to
a more robust and faithful vertebral model better able to represent variability
within a population.

4 Future Work and Conclusion

The current shape models can be improved by increasing the size of the training
dataset. Moreover, probabilistic PCA can be implemented to capture outliers in
the vertebral shape model in presence of a small training size.

This paper quantifies inter-patient 3D shape variation of an L1 vertebra and
an L1-L2 intervertebral disc of the lumbar spine. The constructed shape models
have been shown to faithfully capture variance within a population with few par-
ticle outliers, capturing 100% variability within the first seven modes. The main
advantage of this correspondence method is the lack of a reference bias, as it
places particles on the implicit shape surface independent of prior surface para-
meterization. It also iteratively performs alignment during the correspondence
optimization phase in order to mitigate error introduced by shape misalignment.

The calculated strong shape prior knowledge will be incorporated within a
multi-surface, multi-resolution simplex deformable segmentation model of lum-
bar vertebrae and intervertebral discs. The shape models can be registered to
the volumetric images, and set as a template meshes that are allowed to deform
and capture the structure boundary while constraining the model according to
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expected variation. The inherent regularization and surface smoothness para-
meters in the discrete simplex model enforce mesh smoothness, mitigating the
effects of shape model noise. These shape forces can be integrated in a controlled-
resolution segmentation pipeline to faithfully capture structure boundary in pres-
ence of image artifacts, improving on our previous segmentation results [6].
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tion of 3D statistical shape models. Image Anal. Stereol. 23(2), 111–120 (2004)

22. Kaus, M., Pekar, V., Lorenz, C., Truyen, R., Lobergt, S., Wesse, J.: Automated
3-D PDM construction from segmented images using deformable models. IEEE
Trans. Med. Imaging 22(8), 1005–1013 (2003)

23. Lorenz, C., Krahnstover, N.: Generation of point-based 3D statistical shape models
for anatomical objects. Comput. Vis. Image Underst. 77(2), 175–191 (2000)

24. Becker, M., Kirschner, M., Fuhrmann, S., Wesarg, S.: Automatic construction of
statistical shape models for vertebrae. In: Fichtinger, G., Martel, A., Peters, T.
(eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 500–507. Springer, Heidelberg
(2011)

25. Heitz, G., Rohlfing, T., Maurer Jr., C.: Statistical shape model generation using
nonrigid deformation of a template mesh. In: Fitzpatrick, J., Reinhardt, J. (eds.)
Proceedings of SPIE Medical Imaging 2005: Image Processing Conference, SPIE
Proceedings, vol. 5747, pp. 1411–1421. SPIE (2005)

26. Peloquin, J., Yoder, J., Jacobs, N., Moon, S., Wright, A., Vresilovic, E., Elliott,
D.: Human L3L4 intervetebral disc mean 3D shape, modes of variation, and their
relationship to degeneration. J. Biomech. 47(10), 2452–2459 (2014)

27. Cates, J.E., Fletcher, P.T., Styner, M.A., Hazlett, H.C., Whitaker, R.T.: Particle-
based shape analysis of multi-object complexes. In: Metaxas, D., Axel, L.,
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