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Abstract. Algorithms based on the unscented Kalman filter (UKF)
have been proposed as an alternative for registration of point clouds
obtained from vertebral ultrasound (US) and computerised tomography
(CT) scans, effectively handling the US limited depth and low signal-
to-noise ratio. Previously proposed methods are accurate, but their con-
vergence rate is considerably reduced with initial misalignments of the
datasets greater than 30◦ or 30 mm. We propose a novel method which
increases robustness by adding a coarse alignment of the datasets’ prin-
cipal components and batch-based point inclusions for the UKF. Exper-
iments with simulated scans with full coverage of a single vertebra show
the method’s capability and accuracy to correct misalignments as large
as 180◦ and 90 mm. Furthermore, the method registers datasets with
varying degrees of missing data and datasets with outlier points coming
from adjacent vertebrae.

1 Introduction

In the realm of spinal surgery, ultrasound (US) is an attractive imaging modality
for image-guided interventions because it is non-invasive, produces no radiation,
offers real-time acquisition and has low costs. However, the registration of US
intra-operative scans with respect to (w.r.t.) pre-operative scans (e.g. comput-
erised tomography, CT) is challenging because of the limited depth of field, low
resolution and reduced signal-to-noise ratio of US scans.

Among the proposed strategies for US to CT registration, the methods based
on the unscented Kalman filter (UKF) have proven to effectively handle datasets
with incomplete and noisy data. However, the UKF-based methods require a
good initial alignment between the CT and US datasets to perform accurate
registrations.

In this work, we implement a registration algorithm that addresses the prob-
lem of producing a good initial guess of the registration parameters by means
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of a principal component analysis (PCA) of the point clouds. This good initial
guess enables the robust functioning of UKF, unviable otherwise. Our registra-
tion algorithm refines the registration parameters obtained from the PCA by
implementing an UKF with a modified batch-based point inclusion strategy for
its iterations. The proposed algorithm was tested systematically with simulated
data, considering scenarios with partial scans of the vertebra and with outlier
points coming from adjacent vertebrae, which were not addressed in other works
based on the use of the UKF. In all cases, the proposed method obtained remark-
able results.

1.1 Related Work

Several methods have been proposed to register CT and US volumes. On one
hand, intensity-based methods are interesting because segmentation of the CT
and US datasets is avoided. Methods of Lang et al. [1] and Gill et al. [2] are based
on the US simulation of the CT volume. Then, the acquired and simulated US
are registered by maximizing an intensity similarity metric between them. These
methods are able to register datasets with initial misalignments up to 20 mm.
In order to avoid US volume reconstruction, Yan et al. [3] propose a method to
register a group of US slices to a CT volume. However, such method requires
that the initial misalignments between the datasets are smaller than 15 mm
to work properly. To overcome limitations of previous approaches, Hacihaliloglu
et al. [4] present a method that projects, by using three-dimensional (3D) Radon
transform, and aligns local phase-based bone features in the projective space.
The quantitative evaluation of such method (initial misalignments of the datasets
between ±30 mm and ±15◦) proves its accuracy. A general limitation of the
reviewed methods is their computational complexity, which impedes their real-
time use.

On the other hand, real-time US to CT registration is usually based on
point-based registration methods, such as the iterative closest point (ICP) algo-
rithm [5]. In this line of work, Ungi et al. [6] present an algorithm based on
the pairing of manually defined landmarks in the CT and US data by using a
simplified version of the ICP algorithm. The ICP method, however, is vulnerable
to outlier points in the datasets, only accounts for isotropic Gaussian noise on
both datasets and it requires a good initial registration guess.

To improve upon ICP, methods based on the Kalman filter have been pro-
posed for registration of point clouds carrying anisotropic noise. In the work of
Moghari and Abolmaesumi [7], an UKF-based registration method that is more
accurate and robust than the ICP is presented. However, the UKF robustness
sharply decreases with low quality (misalignment beyond 30◦ or 30 mm) in the
initially guessed registration. In the work of Talib et al. [8], a linear Kalman
filter (LKF) is used to register coplanar points of US snapshots as they are
acquired from the patient. The LKF shows good accuracy and response times in
the registration if the initial registration guess has misalignments under 5◦ and
20 mm [8].
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Although methods in the works of Moghari and Abolmaesumi [7] and Talib
et al. [8] require a good initial alignment between the datasets, such works do
not report any action to overcome such an obstacle. In response to the men-
tioned limitations, we present a complete registration algorithm composed of
two stages: (1) a coarse registration stage based on PCA, capable of correct-
ing large misalignments between the CT and US datasets, and (2) a fast fine
registration stage based on the UKF, which refines the initial guess from PCA.

2 Materials and Methods

2.1 Registration Problem

The registration problem consists in the statistical estimation of a rigid transfor-
mation T(R, t) which brings the CT point cloud (Y ∈ R

3×N ) and the US points
cloud (U ∈ R

3×M ) into alignment. R represents a rotation matrix (belonging to
the special orthogonal SO(3) group) parameterized by Euler angles [θx, θy, θz]
and t= [tx, ty, tz]

T is translation vector. Then, the registration problem can be
stated as finding R and t such that the cost function f is minimized:

f =
M∑

i=1

∥∥∥ci − (Rui + t)
∥∥∥, (1)

where points ci ∈ Y and points ui ∈ U. Points ci are computed as
ci = Ψ(Y,Rui + t) where function c= Ψ(A,b) finds the point c in set A that
presents the minimum Euclidean distance to point b. Notice that the CT and
US scans: 1. do not sample the same object points, 2. do not have the same
sizes, 3. do not completely sample the interest subset, 4. do not only sample the
interest subset and may include points from adjacent objects.

2.2 Registration by Using PCA and Kalman Filters

The workflow of the implemented registration algorithm is shown in Fig. 1(a).
In the PCA-based registration, the parameters of a coarse registration transfor-
mation T0 are estimated, and then, point cloud U is transformed as T0U. In
the UKF-based registration (Fig. 1(b)), point cloud T0U is incrementally trans-
formed as TjTj−1 . . .T1T0U=TeU where Tj is the transformation estimated
in iteration j of the UKF. Te(Re, te) minimizes (1).

Coarse Registration Using PCA. A pre-requisite for PCA-based registra-
tion is the fact (indeed present in vertebrae cases) that object protrusions and
asymmetries exist, which guide the alignment.

Since point clouds Y and U sample enough common neighborhoods in the
object, we propose to initialize the registration procedure by aligning the prin-
cipal axes of data sets Y and U. Let V and W be 3 × 3 ∈ SO(3) matrices
containing the principal axes (eigenvectors) of point sets Y and U, respectively.
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Fig. 1. (a) Workflow of the implemented registration algorithm. (b) Workflow of the
UKF-based registration.

V and W are obtained by singular value decomposition (SVD) of the covariance
matrices of their respective point clouds [9]. V and W have their orthogonal
column vectors sorted in order of descending variance, with determinant +1
enforced. R is given by:

R = VWT . (2)

The translation vector t is determined by the distance between the centroid of
dataset Y and the rotated centroid of dataset U:

t = cY − RcU, (3)

where cY and cU are the centroids of Y and U respectively.
PCA determines the direction of each principal axis of the data but allows

sign ambiguity. Therefore, the sign of eigenvectors in W is set so the distance
between the point clouds T0U and Y is minimized. The resulting misalignment
between Y and T0U is deterministic and is independent of any rigid transfor-
mation applied on Y or U.

Fine Registration Using the Unscented Kalman Filter. The implemented
UKF formulation is a variant of the one presented in the work of Moghari and
Abolmaesumi [7]. To register point clouds Y and U using the UKF, points in U
and Y are regarded as inputs and outputs, respectively, of a multiple-input and
multiple-output (MIMO) system. The non-linear system state vector is then
x= [θx, θy, θz, tx, ty, tz]

T , which builds transformation matrix T(R, t) (Eq. 1).
The UFK is comprised by the prediction and correction steps of the estimates of
x (Fig. 1(b)). The a priori and maximum a posteriori estimates of x in iteration
j are denoted as −x̂j(predicted) and x̂j(corrected), respectively.

Prediction of x̂: In this step, a prediction of the values of the system variables
is performed and with such prediction the outputs of the MIMO system are
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also predicted for a given set of inputs. In the prediction step, the fact that U
is transformed incrementally is considered. Let the state of U in iteration j of
the UKF be denoted by Ue, where Ue =TeU=TjTj−1 . . .T0U. This means
that initial matrices Tj represent relatively large transformations, but, as more
iterations are completed, matrices Tj represent transformations similar to the
identity matrix (I). Following this rationale, a reasonable guess of the transfor-
mation to be applied in iteration j + 1 is the one applied in iteration j. Then,
the prediction −x̂j+1 is computed as per (4):

−x̂j+1 = x̂j(∀j ≥ 1). (4)

Notice that the input for the fine registration method is the transformed dataset
T0U, which is closely aligned with Y. Therefore, x̂0 (which may represent a
large transformation) is not used to predict −x̂1. Instead, −x̂1 is initialized such
that it represents the identity matrix (I), as proposed in the work of Moghari
and Abolmaesumi [7].

Let uj+1 =
[
uT
1 ,uT

2 , . . . ,uT
m

]T = [x1, y1, z1, x2, y2, z2, . . . , xm, ym, zm]T be a
vector (with size 3m × 1) containing the (x, y, z) coordinates of points ∈ Ue

concatenated vertically, which are used to estimate x̂j+1. To achieve a smooth
behavior of the filter, uj+1 is populated keeping a set of points from Ue previ-
ously used in the registration, but adding a new set of points not used before in
the estimation of the state vector x̂.

For each point ui ∈uj+1 a prediction (−ŷi) of its corresponding point in
dataset Y is computed as per (5), where xθ = [θx, θy, θz]

T and xt = [tx, ty, tz]
T .

The vector containing the coordinates of the predicted −ŷi points is
−ŷj+1 =

[−ŷT
1 , . . . ,− ŷT

m

]T :

−ŷi = R(−x̂j+1
θ )ui +− xj+1

t . (5)

Correction of x̂: The correction of x̂ is based on the minimization of the distances
between the predicted −ŷi (5) and the observed yi points (yi ∈ Y) that corre-
spond to points ui. The points yi are defined as the observed correspondences in
Y to points ui. The points yi are the ones that present the minimum Euclidean
distance to the points ui transformed by (5), and therefore, points yi are com-
puted as yi = Ψ (Y,− ŷi). The vector containing the observed correspondences yi

is yj+1 =
[
yT
1 , . . . ,yT

m

]T . Then, x̂ is corrected as per (6), where Kj+1 ∈R
6×3m

is the Kalman gain matrix. K and the covariance matrices of the noise and state
vector are computed as proposed by Moghari and Abolmaesumi [7]:

x̂j+1 =− x̂j+1 + Kj+1(yj+1 −− ŷj+1). (6)

Finally, Tj+1 is assembled with the estimated variables in x̂j+1 and it is applied
to dataset Ue, Ue =Tj+1Ue. The prediction and correction steps are repeated
until convergence is achieved. Notice that the fact that this algorithm registers
point batches yi and ui, which contain m points, does not imply that point
clouds U and Y must have the same size.
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(a) (b)

Fig. 2. (a) Typical anatomy of a lumbar vertebra. (b) US views to scan it defined in
the work of Chin et al. [10]: paramedian sagittal (PS) transverse process view (top
left), PS articular process view (top right), PS oblique view (bottom left), transverse
spinous process view (bottom centre) and transverse interlaminar view (bottom right).

In contrast to the UKF formulation in the work of Moghari and Abolmae-
sumi [7], the size of uj+1 remains constant (batches of points of size 3m × 1).
In the work of Moghari and Abolmaesumi [7] a point from Ue is added to uj+1

in each iteration j until convergence is achieved or all points in Ue have been
added to uj+1. Notice that Moghari and Abolmaesumi [7] the inversion of matri-
ces with size 3m × 3m, with m increasing in each iteration, is required, which
becomes computationally expensive as more iterations are completed [8].

2.3 Evaluation of the Performance of the Registration Algorithm

The performance of our implemented registration algorithm is assessed in the
following clinical scenarios:

1. Base-Case: When a reasonable quality US scan U of only the target vertebra
is available.

2. Incomplete US-Scans: When specific regions of the target vertebra do not
appear in U.

3. Outliers: When regions belonging to adjacent vertebrae appear in U.

The datasets U belonging to the mentioned scenarios are generated follow-
ing the protocol to US-scan lumbar vertebrae proposed in the work of Chin
et al. [10]. The various regions of the vertebra (Fig. 2(a)) are scanned from five
basic views (Fig. 2(b): 1. paramedian sagittal (PS) transverse process view, 2. PS
articular process view, 3. PS oblique view, 4. transverse spinous process view,
and 5. transverse interlaminar view.

Then, the datasets U are created by intentionally failing (or not) in scanning
the vertebra in the specified views of the protocol. Table 1 defines the notation
that specify the failures in the US acquisition protocol.

The scope of our investigation reaches vertebra vs. vertebra registration. We
do not seek to register groups of vertebrae. Notice that algorithms for multiple-
vertebra registration must deal with the relative movement among vertebrae as
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Table 1. Notation of failures in the US acquisition protocol.

Symbol Meaning

� The scan was completely performed

x The scan was not performed

I None of the transverse processes were scanned

II Transverse process appears disconnected in the scan

III The right transverse process was not scanned

IV The superior articular process was not scanned

V None of the superior articular processes were scanned

VI The left superior articular process was not scanned

VII Only the tip of the spinous process was scanned

the patient changes position in CT and US acquisition. Besides, in this work we
assume that the vertebra to be registered has been correctly selected in the CT
and US volumes by the medical staff.

Datasets Production. The assessment datasets are generated as follows:

(a) A surface model of the vertebra is obtained from a CT scan. We have used
the spine surface model available in the work of Lasso et al. [11].

(b) The PLUS software [11] is used to simulate an US scan of (a).
(c) Volume reconstruction and segmentation are effected to produce an US ver-

tebra surface model from (b).
(d) Datasets Y and U are populated by vertices of (a) and (c), respectively.
(e) Datasets U are generated such that they have complete alignment with Y.
(f) True correspondences between points in U and Y are known beforehand.

Note that, despite that a surface model is extracted from the CT scan, dataset
Y only consists of the model’s vertices and not of its surface patches. Thus, all
registrations are performed between pairs of point clouds.

Registration Accuracy. The accuracy of the registration is estimated with
the mean target registration error (mTRE) as per (7):

mTRE =

√√√√ 1
n

n∑

i=1

[yi − ui]T [yi − ui], (7)

with ui and yi being true corresponding points in U and Y, respectively, unused
during registration. Successful registrations have mTRE ≤ 2 mm. The success
rate (SR) percentage is computed as: SR = (number of successful registra-
tions/total number of trials) · 100.
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Table 2. Summary of failures in the image acquisition protocol of datasets 0–12 (nota-
tion is defined in Table 1).

Base-Case Scenario. In this case, a full compliance with the US acquisi-
tion protocol is achieved, which generates dataset 0 in Table 2. The region of
interest (ROI) of the US scan excludes neighboring vertebrae (Fig. 3). Arbitrary
known transformations Q (translation components in [−90, 90] mm, Euler angles
in [−180, 180] degrees) are generated randomly and are applied to U to test the
performance of the registration algorithm. The translation and rotation mag-
nitudes of Q are chosen to represent worst-case initial misalignments between
U and Y of clinical scenarios. One hundred (100) runs with UKF alone and
additional 100 runs with UKF plus PCA pre-processing are executed.

Incomplete US-Scans Scenario. In this case (datasets 1 to 12), the US
scans lack one or more views of the US acquisition protocol. Table 2 specifies the
fault (x = “missing” or roman number index of the defect as in Table 1). Grey
rows indicate critically low geometric similarity between U and Y (e.g. Fig. 3).
The scenario tests the robustness of the algorithm w.r.t. low quality datasets.
Transformation matrices Q are applied to U as in the Base-Case. Each dataset
was used in 20 trials.
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Fig. 3. Partial US scan datasets (blue point clouds) and reference CT surface model.
From left to right: datasets 0 (Base Case), 3, 5 and 8. (Color figure online)

Outliers Scenario. This case (datasets 13–15) has complete US scans but
including portions of neighbouring vertebrae (outliers, Fig. 4). The ratio from
the number of outlier points to the target vertebra number of points are 0.10,
0.15 and 0.20 for datasets 13, 14 and 15 respectively. Transformation matrices
Q are applied to U as in the Base-Case. Each dataset was used in 40 trials.

3 Results

Base-Case Scenario. Registration with the UKF alone has a success rate of
only 7 %, demonstrating that the Kalman filter alone is unable to handle large
initial misalignments. Registration using our PCA pre-processing has a success
rate of 100% (dataset 0 in Table 3), which shows the robustness given by the
PCA-based algorithm. For this case, it is clear that the PCA-based method is
capable of bringing U and Y into a coarse alignment within the convergence
region of the UKF-based method. The quality of the alignment between Y and
T0U (i.e. after the PCA-based registration) is central to the success of our
method. The minimum misalignment between Y and T0U is limited by the
deviations of the principal axes of U w.r.t. the principal axes of Y (Table 4),
which depend on the geometrical similarity between Y and U. Requirements for
a high geometrical similarity are: 1. that the ROI defined in the CT data is in
agreement with the expected depth of the US scan (i.e. including the vertebral
processes and pedicles but leaving out most of the vertebral body), and 2. that
the majority of anatomical features sampled in Y are also included in U.

Incomplete US Scans Scenario. Table 3 shows the registration results for
datasets 1 to 12, which correspond to the incomplete US scans (Table 2).

Fig. 4. US scan datasets with outliers (blue point clouds) and reference CT surface
model. From left to right: datasets 13, 14 and 15. (Color figure online)
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Table 3. Results of the evaluation of the registration algorithm.

These results show that 8 out of the 12 cases obtained a full success rate (100%)
with all cases obtaining a mTRE below 1 mm. Datasets 3, 5, 8 and 9 obtained
a success rate of 0%. Table 4 shows that the 4 failed registration cases coincide
with higher angular deviations between the principal components of Y and U,
which reflect low degree of similarity between Y and U and produce poor PCA-
based registrations. Sine qua non conditions for registration are (a) the various
scans sample conspicuous object features, and (b) salient object features appear
in both scans, so unambiguous correspondence permits to span the embedding
space Rn (in this case, R3). In our algorithm, these preconditions dictate the exis-
tence of transverse and articular vertebrae processes in scans U and Y. None of
the successfully registered datasets has a deviation larger than 20◦, which seems
to be a tolerable amount to be effectively corrected by the UKF-based algorithm.

Notice that because of the deterministic nature of the PCA, registration trials
of the same dataset U are always coarsely aligned in the same way to Y. Datasets
U that are poorly aligned by the PCA are likely to be inaccurately registered by
the UKF-based method because the UKF requires small misalignments between
Y and T0U in order to work properly.

Outliers Scenario. As in the Incomplete US Scans Scenario, if dataset U
contains too many points from adjacent vertebrae, deviations of its principal
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Table 4. Deviation (degrees) of the principal axes of the US datasets w.r.t. the refer-
ence CT dataset.

axes lead to poor PCA-based registrations. For datasets 13–15, the deviation of
the principal axes remained in an adequate range and successful registrations
were performed. However, mTRE increased compared to the previously studied
scenarios. Notice that, if outlier points are included in uj , the UKF-based reg-
istration estimates a suboptimal transformation Tj , reducing the efficiency and
precision of the algorithm.

4 Conclusions

This article presents a two-stage registration algorithm for US and CT 3D point
clouds of the vertebrae, which is based on a coarse registration using PCA fol-
lowed by a fine registration using the Unscented Kalman filter. The PCA-based
coarse registration is deterministic and can handle large misalignments between
the datasets, as long as both datasets have an appropriate degree of geometrical
similarity. In contrast to other UKF-based registration approaches, our algo-
rithm produces an initial alignment between the datasets which is suitable to be
improved by the UKF.

The algorithm evaluation was performed in the following scenarios: (a) when
an US scan of reasonable quality of the vertebra is available (base-case), (b) when
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specific regions of the target vertebra are absent in the US scan, and (c) when
regions belonging to adjacent vertebrae appear in the US scan. Results show
that the proposed algorithm is able to register datasets with initial rotational
misalignments within the range [−180, 180] degrees and translational offsets in
the range [−90, 90] mm. In the base-case scenario, the registration based on the
UKF alone presents a success rate of 7%. By adding the PCA-based coarse
pre-registration, the success rate improves to 100 %, which demonstrates the
robustness added by the PCA-based algorithm. The mTRE of successful reg-
istrations are: 0.7646 mm in the base-case scenario, 0.8094 mm for incomplete
datasets and 1.088 mm for datasets with outliers.
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