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Abstract. Automated segmentation of intervertebral discs (IVDs) from
magnetic resonance imaging has the potential to enhance the efficien-
cies of radiological investigations of large clinical and research imaging
datasets. This work presents an automated method for localization and
3D segmentation of IVDs that is applied to magnetic resonance imag-
ing of the thoraco-lumbar spine as part of the segmentation challenge
at the 3rd MICCAI Workshop & Challenge on Computational Methods
and Clinical Applications for Spine Imaging - MICCAI–CSI2015. Our
initialization method involves multi-atlas registration and a hierarchical
conditional shape regression for localization of all imaged lumbar and
thoracic discs, and active shape model based 3D segmentation. Com-
parisons between manual (ground truth) and automated segmentation
of 105 disc volumes (T11/T12 - L5/S1) revealed a mean Dice score of
0.896± 0.024 and mean absolute square distance of 0.642± 0.169 mm.
Our automated segmentation approach provided accurate segmentation
of IVDs from turbo spine echo images which are highly competitive with
leading state-of-the-art 3D segmentation techniques.

1 Introduction

Spine-related disorders account for the largest proportion of musculoskeletal
complaints in industrialized countries [1,2]. Magnetic resonance imaging (MRI)
allows highly detailed, multiplanar investigations of spine pathologies, such as
intervertebral disc (IVD) prolapse, herniation and degeneration [3]. Informatic
tools offer significant opportunities for improving the efficiency of radiological
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assessment of the spine by reducing the time- and expertise-intensive encum-
brances of tedious tasks as required in three-dimensional (3D) segmentation and
measurement of anatomical structures. Precise segmentation of IVDs is a pre-
requisite for many clinical applications (diagnosis, treatment planning and evalu-
ation), and automated segmentation has the potential to enhance the efficiencies
of radiological investigations of large clinical and research imaging datasets.

This work presents a fully automated algorithm for 3D segmentation of lum-
bar and thoracic IVDs from sagittal T2-weighted MRI scans and evaluates it on
a publicly available dataset as part of the challenge on “Automatic IVD local-
ization and segmentation from 3D T2 MRI data” at the 3rd MICCAI Workshop
& Challenge on Computational Methods and Clinical Applications for Spine
Imaging - MICCAI–CSI2015. The current method extends and fully automates
our previous work based on segmentation of lumbar spine IVDs via active shape
models (ASMs) [4]. This ASM approach has been applied successfully in a series
of studies but requires further development of the pipeline for more general-
ized application in a clinical framework. Initially, our fully automated approach
was developed using 3D sampling perfection with application optimized contrast
using different flip angle evolution (SPACE) scans [4], while clinical examina-
tions are routinely performed using two-dimensional (2D) turbo spin echo (TSE)
images. In clinical TSE scans, this ASM segmentation scheme was successfully
applied to the segmentation of IVDs in the lumbar region although a simple
and quick manual initialization step was required in the form of point identi-
fication of individual vertebræ [5,6]. The automated initialization on the 3D
SPACE scans [4] made use of the detailed high-resolution imaging information
in the axial plane that is not available in routine sagittal TSE images. Moreover,
the validation of the 3D segmentation algorithm on clinical TSE datasets was
performed through a simplified evaluation framework based on 2D manual seg-
mentations in the mid-sagittal slice only. The purpose of the present work is to
perform a volumetric validation of our 3D segmentation scheme against the man-
ual segmentation of IVDs acquired from an entire MRI set of TSE sagittal slices,
as offered through the MICCAI–CSI2015 segmentation challenge. Notably, two
important advances are addressed in this current work: (i) an improved auto-
mated IVD localization to provide a fully automated pipeline well-suited to
the processing of sagittal MRI scans acquired in routine clinical examinations,
and (ii) a larger, external validation of our automated 3D IVD segmentation
system on a publicly available MRI dataset having “ground-truth” manual seg-
mentations of the IVDs performed in all sagittal slices in T2-weighted TSE
examinations.

2 Methods

The central methodological innovations of this work lie in designing a novel app-
roach for fully automated IVD localization from sagittal TSE images (Fig. 1),
which provide a robust basis for subsequent 3D segmentation. The segmenta-
tion algorithm is based on a previously presented method of IVD segmentation
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Fig. 1. Summary of the automated sacrum localization method. First, training 2D
atlases (A) are rigidly registered to the inferior mid-sagittal, mid-coronal portion of
the processed case (B). Second, the best (based on normalized mutual information)
result is used to initialize subsequent registration of an average atlas (C). Finally, a 3D
deformable template is used to pre-segment the L5 and S1 vertebral bodies (D).

using a 3D ASM-based approach [4]. The initialization pipeline for lumbar spine
localization is summarized in Fig. 1 and explained in detail in the next sections.

2.1 Prior Knowledge

The initialization method employs prior knowledge from a training dataset of
2D spine atlases and their segmentations in the following three forms:

2D Atlases. Training atlases were extracted from 35 T2-weighted sagittal
TSE examinations (in-plane resolution 0.71× 0.71 mm, image matrix 448 × 448)
acquired from a heterogeneous sample of patients (different from the training
data provided as part of the MICCAI–CSI2015 challenge). The selection of train-
ing atlases focused on including a spectrum of patients with varying anatomy and
pathology. This procedure aimed to increase robustness for application to unseen
datasets, which would be limited if atlases from the same datasets were used in
the leave-one-out fashion. The mid-sagittal sections were individually cropped
(to identical dimensions) to include the inferior mid-coronal section of the mid-
sagittal training slice. The field-of-view (FoV) differed considerably among the
training scans and therefore varying portions of the sacrum and coccyx were
visualized in the atlases (see Fig. 1A for some examples). The heterogeneity of
the FoV among atlases is important for enabling robustness for varying FoV
which may be encountered across the spectrum of cases for segmentation.
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Average 2D Atlas. The 2D atlases were also used to create an average atlas of
the L5-S1-S2 region (Fig. 1C). The registration during atlas generation was per-
formed using a robust inverse-consistent rigid registration algorithm [7], followed
by non-rigid registration based on the method of diffeomorphic deamons [8].

3D Statistical Shape Model of the L5-S1 Vertebral Bodies. Automated
segmentations of the 35 original (uncropped) training scans were used to create
an ASM of the combined L5 and S1 vertebral bodies (Fig. 1D) [4].

2.2 Spine Localization

The atlases and deformable templates were used to automatically initialize the
ASM-based IVD segmentation in the following fashion:

Approximate Sacrum Localization Using Multi-Atlas Registration.
For each case to be segmented, all atlases were registered to the mid-sagittal
slice using the robust inverse-consistent rigid registration algorithm [7]. The reg-
istration was initialized by automatically positioning each atlas to the inferior
mid-coronal area of the mid-sagittal slice (Fig. 1A). The registration results were
compared using normalized mutual information metric and the best atlas was
selected for the subsequent localization step (Fig. 1B).

Refinement of the Sacrum Location by Average Atlas Registration.
The position of the selected registered atlas was used to automatically place an
average atlas template of the sacral portion of the spinal region (Fig. 1C), which
was subsequently registered to the case to be segmented [7]. This step was found
to positively complement the multi-atlas selection and increased the accuracy
of the localization pipeline. This is likely due to the reduced dimensions of the
average atlas that gives space to precisely fit the L5-S1-S2 region, compared to
the larger individual atlases (Fig. 1).

Pre-Segmentation of the L5 and S1 Vertebral Bodies Using
Deformable Template Registration. The registered 2D average atlas was
used to automatically place a 3D deformable template combining the L5 and S1
vertebral bodies (Fig. 1D). The deformable template was 3D, unlike the image
atlases that were registered in the mid-sagittal plane to increase the compu-
tational efficiency. The deformable template was laterally centered around the
mid-sagittal slice and used for approximate segmentation of the S1 and L5 verte-
bral bodies in 3D. The deformable segmentation was based on an ASM strategy,
similar to the one later applied to the IVDs [4].
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Localization of the Neighboring Lumbar IVDs Using Conditional
Shape Models. Automatic initialization of the ASM segmentation of the IVDs
was performed hierarchically using the segmentation of the S1, L5 vertebral bod-
ies and conditional shape models of de Bruijne et al. [9]. The conditional shape
models describe relations between neighboring shapes S1 (shape to be estimated)
and S2 (known shape) using a probability distribution based on Gaussian con-
ditional density P (S1|S2). The most likely estimate μ of the shape S1 can be
obtained as:

μ = μ1 + Σ12(Σ22 + γI)−1(S2 − μ2), Σ =
[

Σ11 Σ12

Σ21 Σ22

]
, (1)

where μ1 and μ2 are the mean shapes of the training data of S1 and S2, Σ is the
combined covariance matrix, and γ is a ridge regression coefficient to improve
numerical stability [9].

Using the conditional probabilities, the shapes of the L5/S1 and L4/L5 IVDs
were estimated from the pre-segmented L5 and S1 vertebral bodies. These esti-
mates served as an initialization for the ASM segmentation of these two lumbar
IVDs. In the next step, the initial shape of the L3/L4 IVD was estimated from
the segmentation of L4/L5 and L5/S1 IVDs. This iterative process continued
superiorly until the end of the image FoV was reached.

2.3 Imaging Dataset

Our 3D ASM-based approach for segmentation of lumbar IVDs was validated
against the publicly available manually segmented MRI dataset released via the
SpineWeb initiative1. The datasets consisted of sagittal T2-weighted TSE scans
acquired from 25 subjects from a 1.5T MRI scanner (Magnetom Sonata, Siemens
Healthcare, Erlangen, Germany). The images (39 slices per case) were acquired
with in-plane resolution 1.25× 1.25 mm (image matrix 305 × 305) and slice spac-
ing 3.3 mm [10]. The data was split into three sets: a training dataset (15 cases),
a testing dataset (five cases) and a dataset for live segmentation challenge (five
cases). Manual “ground-truth” segmentations of seven IVDs (T10/T11 - L5/S1)
were provided for 15 cases in the training dataset for quantitative evaluation and
parameter tuning.

2.4 Implementation Details

The ASM segmentation in our study was run in two steps. The parameter speci-
fications, enabling progressive refinement of the deformable models, are provided
in Table 1 (see Neubert et al. [4] for fuller parameter descriptions).

1 http://spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
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(a) (b)

Fig. 2. Quantitative results on the training dataset consisting of 105 IVDs evaluated
using (a) Dice score coefficient (DSC) and (b) mean absolute square distance (MASD)
similarity metrics.

3 Results

The segmentation results were evaluated using the Dice score coefficient (DSC)
and mean absolute square distance (MASD) similarity metrics (Fig. 2).

The testing dataset of 15 cases was segmented with mean DSC value of
0.896± 0.024 between our automated and the manual segmentation measures of
IVD volumes. The overall mean MASD was 0.642± 0.169 mm. The large major-
ity (95%) of the 105 IVDs were segmented with high accuracy based on having
DSC> 0.85, MASD< 1 mm). Two outliers (1.9%) with lower segmentation accu-
racy were identified - one L5/S1 IVD (subject 10) and one L4/L5 IVD (subject
4, Fig. 3). The fully automated initialization step worked successfully on 14 out
of 15 cases (93%). Only one case failed and required a simple manual initial-
ization involving one-click identification of a “central” point in the S1 vertebral
body in the mid-sagittal slice.

Evaluation on the testing dataset of five cases resulted into mean DSC of
0.828± 0.037 and mean MASD of 1.39± 0.13 mm. The live segmentation chal-
lenge on the remaining five cases was achieved with mean DSC of 0.889± 0.033
and mean MASD of 1.22± 0.10 mm.

Table 1. Active shape model (ASM) segmentation parameters.

Parameter value Step 1 Step 2

Iterations 50 50

Profile spacing 0.25 mm 0.25 mm

Points in matching profiles 101 81

Shape constraint 1.5 3

Number of modes 3 90 % of the variation
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Fig. 3. Qualitative results on an example case (subject 4). The manual segmentation
is shown in green, the automated segmentation in red, and the overlap in yellow. The
L4/L5 IVD shows lower accuracy (DSC = 0.809, MASD = 1.647 mm) than the remain-
ing IVDs. The automated segmentation extends beyond the IVD region anteriorly and
laterally, as indicated by the arrows. (Color figure online)

4 Discussion

The automated initialization performed very well for 14/15 of the training cases
providing an excellent basis for our fully automated pipeline. Overall, there was
very good agreement between the IVD segmentations from the manual (ground
truth) and our automated approaches. In this challenge for segmentation of IVDs
from TSE images of the lumbar spine region, our fully automated segmentation
approach delivered results highly competitive with leading state-of-the-art 3D
segmentation techniques [4,10,11]. Only 2/105 (1 L5/S1, 1 L4/L5 IVD) outliers
were identified (Fig. 2) with slightly lower segmentation accuracy (DSC∼0.80).
This was likely due to a combination of factors, such as specific anatomical
features (e.g. unclear boundaries between an IVD and the hypo-intense closely
apposed psoas muscle) as seen in Fig. 3.

To further evaluate our automated scheme, it would be beneficial to validate
our approach on larger datasets of heterogeneous clinical populations. Addi-
tional work involving an increase in the number of atlases and varying the initial
atlas positioning before the rigid registration may further improve our auto-
mated approach by increasing the (already high) percentage of cases initialized
fully automatically. Importantly, our system offers a quick and simple “fall-back”
option for manual initialization in the form of one mouse click, offering a very
fast, robust clinical solution. This approach can also be used if fast segmen-
tation of one isolated IVD is required as it overcomes the need for sequential
segmentation starting from the S1, L5 vertebral bodies.
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A limitation of the presented framework is the reliance on certain features
related to the imaging protocol, e.g. sufficient coverage of the sacrum and a good
left/right centering of the spine in the FoV. This plainly influences the applica-
bility of our current models to other spinal regions (e.g. the cervical spine), which
would involve the future addition of new imaging atlases. However, clinical MRI
examinations of the lumbar spine have extremely similar imaging protocols for
patients presenting with low back pain. The vast majority of clinical studies that
we have encountered would satisfy the FoV requirements for the applicability of
our fully automated method.

5 Conclusion

An automated approach for localization and segmentation of IVDs from T2-
weighted sagittal TSE scans of the thoraco-lumbar spine was successfully vali-
dated on a publicly available dataset with manual “ground-truth” segmentations.
The presented method was used in the segmentation challenge at MICCAI-
CSI2015.
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