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Abstract. This paper presents one of the participating methods to the
intervertebral disc segmentation challenge organized in conjunction with
the 3rd MICCAI Workshop & Challenge on Computational Methods and
Clinical Applications for Spine Imaging - MICCAI–CSI2015. The pre-
sented method consist of three steps. In the first step, vertebral bodies
are detected and labeled using integral channel features and a graphi-
cal parts model. The second step consists of image registration, where a
set of image volumes with corresponding intervertebral disc atlases are
registered to the target volume using the output from the first step as
initialization. In the final step, the registered atlases are combined using
label fusion to derive the final segmentation. The pipeline was evaluated
using a set of 15 + 10 T2-weighted image volumes provided as train-
ing and test data respectively for the segmentation challenge. For the
training data, a mean disc centroid distance of 0.86 mm and an average
DICE score of 91 % was achieved, and for the test data the corresponding
results were 0.90 mm and 90 %.

1 Introduction

Lower back pain is considered as one of the most common neurological ailments
in the United States and as such costs associated to lower back pain form a
significant portion of the total annual spending on healthcare. Degeneration
of intervertebral discs (IVDs), as caused by aging, trauma, mechanical load,
nutritional or genetic factors, is a common underlying cause of lower back pain.
The degree of degeneration is typically assessed by means of magnetic resonance
imaging (MRI), given the superior ability of MRI to distinguish between soft
tissues and its absence of ionizing radiation. Because of significant inter-observer
variation in grading IVD degeneration and constantly increasing workloads for
radiologists, more and more research is devoted to develop computer assisted
diagnosis systems to support the radiologists in their work and thereby improving
the diagnostic process [1]. A crucial initial step in such a system is an accurate
segmentation of the IVDs.

Over the last years, a number of different methods have been proposed for
segmentation of IVDs [1–6]. The performance ranges from a mean DICE score
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of a mediocre 74 % to an impressive 92 %. However, a drawback of some refer-
enced methods is the limitation to two-dimensional (2D) image data, as typically
given by the mid-sagittal slice of an image volume covering the lumbar spine. In
addition, thus far no comparison between methods has been possible since all
have been evaluated on different data sets. To this end, that is promoting three-
dimensional (3D) segmentation of IVDs along with enabling a valid comparison
of different methods, an IVD segmentation challenge was set up and organized
in conjunction with the 3rd MICCAI Workshop & Challenge on Computational
Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015.

In this paper, we present one of the challenge participants of said chal-
lenge. As such, the presented method is capable of both localizing and segment-
ing IVDs in MRI data. The method builds upon earlier work as presented by
Lootus et al. [7] for vertebral body detection and labeling in MRI data and
by Forsberg [8] for multi-atlas based segmentation of vertebrae in computed
tomography data. The two approaches are combined and adapted to the task of
localization and segmentation of IVDs in MRI data. Results are presented and
discussed as pertaining to the training and test data provided for the challenge.

2 Materials and Methods

2.1 Image Data

The image data provided for training/testing and initial/final evaluation con-
sisted of MRI data from 15 respectively 10 subjects, where each subject had been
scanned with a 1.5 T scanner (Siemens Magnetom Sonata, Siemens Healthcare,
Erlangen, Germany) and form a subset of the data used in the work of Chen
et al. [2]. The image data consisted of sagittal T2-weighted turbo spin echo
image volumes with a spatial resolution of 2.00× 1.25× 1.25 mm3 and a size
of 39× 305× 305 or 48× 304× 304. The IVDs have been manually segmented
using the original sagittal images. Examples of the image data and ground truth
segmentations are given in Fig. 1.

2.2 Segmentation Pipeline

The proposed segmentation pipeline consists of the following three components,
detection and labeling of vertebral bodies, multi-atlas based segmentation per
IVD and finally label fusion. Note that the presented method is a 3D-based
method providing an accurate segmentation in 3D, even though the initial detec-
tion and labeling step is performed on individual 2D images.

2.3 Detection and Labeling

Detection and labeling of vertebrae is a challenge of its own and a number of
methods have been presented in recent years. In our pipeline, it was decided to
mimic the approach presented by Lootus et al. [7]. However, we employed aggre-
gated channel features [9] coupled with an AdaBoost classifier for detection of the
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Fig. 1. Example of data used for the evaluation along with ground truth segmentations.

individual vertebrae. The reasons for not choosing the deformable parts model
based on histogram of oriented gradients, as employed by Lootus et al. [7], were
twofold. Firstly, it did not perform as well as the chosen approach, and secondly,
it was more computationally demanding. Similar to the work of Lootus et al. [7],
two different detectors were trained, one general vertebra detector and one for
the fused S1 and S2 segments of the sacrum. To remove a significant portion of
the false positive detections, a greedy non-maxima suppression algorithm was
employed. In order to improve the performance of the detector, by increasing
the number of detections, a set of sagittal slices (the three mid-sagittal slices)
were fed as input to the vertebra detector. The individually detected objects
are then combined using a pictorial structures model [10], further removing false
positive detections along with labeling the detected vertebra. The object verte-
bra detectors along with the graphical parts model had previously been trained
on a separate data set. Figure 2 provides a few examples depicting the output
from the detection and labeling step.

The output from the detection and labeling consisted of a pair of y and z
coordinates along with a label for each detected and labeled vertebra (assuming
a coordinate system where x goes from right to left, y anterior to posterior
and z inferior to superior). Corresponding x coordinates for each detection and
labeling were simply set to the x coordinate of the mid-sagittal slice in the data
set. Note that this works well as long as the orientation of the image volume is
parallel with the spinal column and the subject has limited spinal deformities in
the coronal plane.

2.4 Multi-atlas Based Segmentation

The output from the previous step provided a set of landmarks denoting the
centerpoints of vertebra T11 to L5 along with the centerpoint of sacrum S1-S2.
These centerpoints were used to provide rough estimates of the centerpoints of
the corresponding IVDs, simply by using the midpoint between the centerpoints
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(a) (b) (c)

Fig. 2. Example results from the detection and labeling of vertebra. The detection and
labeling works well even in cases where the sacrum is not fully depicted (c).

of two consecutive vertebrae. This served as input to the image registration in
which a registration per disc was performed by extracting a sub-block (sized
40× 96× 96 voxels, determined empirically to ensure a good coverage of each
disc) of the data from each volume centered around the respective centerpoints
of each disc. Note that for a general segmentation pipeline, the size of the sub-
blocks should preferably be set in millimeters and with the possible extension
to scale the size depending on sex, age and length of the patient. Each disc of
the image data to segment is registered with multiple atlases. The registration
was executed in two steps, where an initial affine registration was performed
to account for differences in size and pose, and where a subsequent deformable
registration was applied to account for local differences in shape. In both cases,
local phase-based image registration approaches were applied.

Affine Registration. The affine phase-based registration was defined as an L2

norm:
ε2 =

1
2

∑

k

∑

x∈Ω

ck(x)
[
∇ϕk(x)T

B(x)p − Δϕk(x)
]2

, (1)

where ϕk refers to the local phase-difference in orientation n̂k between the two
images to be registered, ck is a measure of certainty related to ϕk, and B(x)p
corresponds to a linear parameterization of the local displacement d(x). A more
detailed description is found in the works of Hemmendorff et al. [11] and Eklund
et al. [12], and provides details on the employed graphics processing unit (GPU)
implementation.

Deformable Registration. Similarly, as for the affine registration, a voxel-
wise L2 norm based upon local phase-differences was defined for the deformable
counterpart:

ε2(x) =
∑

k

[ck(x)T(x) (ϕk(x)n̂k − u(x))]2 . (2)
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Fig. 3. Example results from the atlas-based registration. The individual segmentations
as provided by the atlas-based segmentation are highly irregular and far from perfect,
for example note the top disc in (a).

In this case, ϕk and ck are as before, and T refers to local structure tensor.
Solving for u provides a voxel-wise update field u(x), which can be iteratively

regularized and added to the final displacement field d. Details on the registra-
tion algorithm can be found in the works of Knutsson and Andersson [13], and
Forsberg et al. [14,15] for the employed GPU implementation.

Examples of output from the whole atlas-based segmentation step are shown
in Fig. 3.

2.5 Label Fusion

The final step is to merge the labels of the multiple deformed atlases into a
single label volume. In this case, a modified majority voting has been employed
for label fusion, where instead of a standard majority vote only a minimum
number of votes were required to render a valid segmentation. The reason for this
approach was that since the discs are well-separated, it is only the background
that provides a competing label. The minimum number of votes required for
a segmentation was set to five, a number which was empirically determined.
Example visualizations of the final segmentations are given in Fig. 4.

2.6 Evaluation

Given that 15 data sets were available for training, including ground truth data,
a leave-one-out evaluation was performed for the training data in which one data
set is segmented using the 14 others as atlases. This is then repeated for each
available data set. Both IVD localization and segmentation results were included
in the evaluation. For the evaluation on the test data, all 15 data sets were used
as atlases.
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Fig. 4. Example results from the final step of label fusion. Previous irregularities are
now gone and no apparent errors in the final segmentations are visible.

The evaluation of the test data was performed in a two-step process, with
five data sets released prior to the challenge for an off-site evaluation and with
remaining five data sets released on the day of the challenge for an on-site eval-
uation. The challenge organizers only provided results in terms of mean disc
centroid distance and DICE score.

Localization. For each segmented disc, the disc centroid distance was computed
as the Euclidean distance between the centroid of the ground truth IVD and the
centroid of the segmented IVD obtained from the presented method. Based upon
the disc centroid distance a disc localization was considered as successful if the
distance was less than 2 mm.

Segmentation. The ground truth data was compared with the segmentations
obtained from the multi-atlas based segmentation using the DICE score. The
DICE score is defined as:

DICE =
2 ∗ |GT ∩ S|
|GT | + |S| , (3)

where GT and S refer to the ground truth and the computed segmentations
respectively, and | . . . | denotes the number of voxels, i.e. no respect was given to
the anisotropic resolution.

To complement the agreement measure of the DICE score, false negative
(FN) and false positive (FP) ratios were also computed as:

FN =
|GT \ S|

|GT | (4)

respectively

FP =
|S \ GT |

|S| . (5)
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Table 1. Average DICE score, and false negative (FN) and false positive (FP) ratios
per disc for the training data.

Disc DICE FN FP

T11/T12 0.89 ± 0.03 0.10 ± 0.04 0.11 ± 0.05

T12/L1 0.91 ± 0.02 0.09 ± 0.02 0.09 ± 0.04

L1/L2 0.91 ± 0.03 0.09 ± 0.04 0.10 ± 0.04

L2/L3 0.92 ± 0.01 0.08 ± 0.03 0.07 ± 0.02

L3/L4 0.92 ± 0.02 0.07 ± 0.03 0.08 ± 0.03

L4/L5 0.92 ± 0.02 0.08 ± 0.03 0.08 ± 0.02

L5/S1 0.89 ± 0.03 0.09 ± 0.04 0.12 ± 0.05

3 Results

3.1 Training Data

The mean disc centroid distance was 0.86± 0.45 mm. Only three disc centroid
distances were larger than 2 mm (2.05, 2.91 and 2.06 respectively) providing an
IVD detection rate of 97%.

The average achieved DICE score was 0.91± 0.01 along with an average FN
and FP of 0.08± 0.02 and 0.09± 0.02 respectively. Detailed results per disc and
subject are given in Tables 1 and 2 respectively.

Table 2. Average DICE score, and false negative (FN) and false positive (FP) ratios
per subject for the training data.

Subject DICE FN FP

1 0.91 ± 0.02 0.09 ± 0.03 0.10 ± 0.01

2 0.91 ± 0.02 0.07 ± 0.02 0.10 ± 0.04

3 0.91 ± 0.01 0.09 ± 0.03 0.08 ± 0.02

4 0.89 ± 0.05 0.09 ± 0.06 0.14 ± 0.05

5 0.92 ± 0.02 0.09 ± 0.03 0.06 ± 0.04

6 0.92 ± 0.03 0.09 ± 0.05 0.06 ± 0.02

7 0.91 ± 0.03 0.08 ± 0.01 0.11 ± 0.05

8 0.92 ± 0.02 0.10 ± 0.03 0.06 ± 0.02

9 0.93 ± 0.01 0.09 ± 0.01 0.06 ± 0.01

10 0.93 ± 0.01 0.07 ± 0.02 0.06 ± 0.02

11 0.90 ± 0.03 0.08 ± 0.04 0.12 ± 0.03

12 0.92 ± 0.01 0.04 ± 0.02 0.12 ± 0.02

13 0.88 ± 0.02 0.11 ± 0.02 0.13 ± 0.05

14 0.91 ± 0.01 0.10 ± 0.04 0.07 ± 0.02

15 0.91 ± 0.02 0.08 ± 0.02 0.10 ± 0.04
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3.2 Test Data

For the off-site evaluation the mean disc centroid distance was 0.81± 0.42 mm
and a detection rate of 97 %. Corresponding results for the on-site evaluation
was 0.99± 0.78 mm and a detection rate of 80 %. The achieved DICE score was
0.90± 0.03 for both the off-site and on-site evaluation.

4 Discussion

In this paper, we have presented one of the methods participating in the IVD seg-
mentation challenge, organized in conjunction with MICCAI–CSI2015, a method
relevant for both robust IVD detection and accurate IVD segmentation. The
method has been evaluated using training and testing data provided by the
challenge organizers. Performance was assessed using disc centroid distance, the
DICE score along with computing the ratios of false negatives and false positives
(the latter two only computed for the training data).

The presented method achieved a mean disc centroid distance of
0.86± 0.45 mm, with a success rate of 97 % given a threshold of 2 mm for the
training data. This can be compared with a mean disc centroid distance of
2.08 mm as reported by Ghosh and Chaudhary [3] for the 2D case, 1.23 mm by
Law et al. [4] and 1.6− 2.0 mm by Chen et al. [2] (both the latter for the 3D
case). As such, the presented results are superior to earlier results. Note that
the results obtained for the on-site evaluation was somewhat lower than for the
training data and for off-site evaluation.

In terms of segmentation accuracy, the presented method performs on par
with current state-of-the-art methods for IVD segmentation. For example,
Michopoulou et al. [5] achieved an impressive mean DICE score of 0.92, however,
only for segmentation of 2D image data and using manual interaction for per-
forming the initial atlas-based registration. Similar DICE scores were presented
in the work of Law et al. [4], but again only for 2D image data. Neubert et al. [16]
presented an extension of their initial work [6] using multi-level statistical model
and achieved a mean DICE score of 0.91 on 3D data.

In Tables 1 and 2 it can be noted that the segmentation accuracy is stable
over both discs and subjects, i.e. there exists no failed cases and any future
improvements are, thus, rather related to fine-tuning of parameters than making
major changes in the presented pipeline. The ratios of false negatives and false
positives show that there appear to be an equal distribution of under- and over-
segmentation between discs and subjects.

Limitations of the presented results are given by the small size of the data set
employed for the evaluation along with its homogeneity. Further, the data set
lacks in cases of degenerated IVDs, hence, it is difficult to foresee the performance
of the presented segmentation pipeline on more clinically relevant data, including
a variety of degenerated IVDs. Another limitation is given by the dependence
of the registration step on the detection and labeling step. A missed vertebra
in-between other vertebrae can be handled with some additional heuristics to
account for long distance between detected vertebra. In the case the detection
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and labeling is off by one or two labels, i.e. in the case when S1-S2 is missed and
instead L5-S1 is labeled as S1-S2, the segmentation is still expected to perform
well but neglects to segment the most inferior IVD.

In all, the presented method along with the evaluation results, a mean disc
centroid distance of 0.86± 0.45 mm and an average DICE score of 0.91 for the
training data, show that robust localization and accurate segmentation of IVDs
are achievable.
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