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Preface

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the body, the
spinal cord. Spine-related diseases and conditions, such as degenerative disc disease,
spinal stenosis, scoliosis, osteoporosis, herniated discs, fracture/ligamentous injury,
infection, tumor, and spondyloarthropathy, are common and cause a huge burden of
morbidity as well as cost to society. Treatments vary with the disease, and the clinical
scenario can be nonspecific. As a result, imaging is often required to help make the
diagnosis, and studies include plain radiographs, dual-energy X-ray absorptiometry
(DXA), bone scans, computed tomography (CT), magnetic resonance (MR), ultrasound
(US), and nuclear medicine. Computational methods play a steadily increasing role in
improving speed, confidence, and accuracy in reaching a final diagnosis. Although
there has been great progress in the development of computational methods for spine
imaging over the recent years, there are still a number of challenges in both method-
ology and clinical applications.

The goal of the workshop series on “Computational Methods and Clinical Appli-
cations for Spine Imaging (CSI)” is to bring together scientists, clinicians, and
industrial vendors in the field of spine imaging, for presenting and reviewing the state-
of-art techniques, sharing the novel and emerging analysis and visualization approa-
ches, and discussing the clinical challenges and open problems in this rapidly growing
field. Contributions are welcome on all major aspects related to spine imaging,
including clinical applications of spine imaging, computer-aided diagnosis of spine
conditions, computer-aided detection and emerging computational imaging techniques
for spine-related diseases, fast three-dimensional (3D) reconstruction of the spine,
feature extraction, multiscale analysis, pattern recognition and image enhancement of
spine imaging, image-guided spine intervention and treatment, multimodal image
registration and fusion for spine imaging, novel visualization and segmentation tech-
niques, statistical and geometrical modeling of spinal structures, and localization of the
spine and vertebrae.

The Third Workshop and Challenge on Computational Methods and Clinical
Applications for Spine Imaging, MICCAI–CSI20151, was held on October 5, 2015, in
Munich, Germany, as a satellite event of the 18th International Conference on Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2015. After the
success of the first workshop, and the second workshop and challenge, this was the
third consecutive MICCAI event on this particular topic, inviting general “workshop”
papers as well as contributions for the “Automatic Intervertebral Disc Localization and
Segmentation from 3D T2 MRI Data” computational challenge. Each submission
underwent a double-blind review by three members of the Scientific Review Com-
mittee consisting of researchers who actively contributed to the field of spine imaging

1 http://csi2015.weebly.com

http://csi2015.weebly.com


in the past. Overall, 15 papers were accepted that are grouped in these final proceedings
into “workshop” contributions (9) and “challenge” contributions (6), while one paper
was rejected. In order to give a deeper insight into the field of spine imaging and
stimulate further ideas, three invited talks were held during the workshop: “Osteo-
porosis Imaging at the Spine: Clinical Needs and Technical Challenges” by Dr. Tho-
mas Baum from Technische Universität München, Germany, “Spinal Imaging in
Surgical Planning and Navigation” by Dr. Martin Haimerl from Brainlab AG, Ger-
many, and “Vertebral Fracture Identification Using Dual Energy X-Ray Absorptiom-
etry” by Dr. Margaret Paggiosi from University of Sheffield, UK.

Finally, we would like to thank everyone who contributed to this joint workshop and
challenge: the authors for their contributions, the members of the Program and
Scientific Review Committee for their review work, promotion of the workshop, and
general support, the invited speakers for sharing their expertise and knowledge, and the
MICCAI society for the general support. The event was supported by the SpineWeb2

initiative, a collaborative platform for research on spine imaging and image analysis,
and sincere gratitude goes to Brainlab AG, Germany,3 for the financial support.

May 2016 Tomaž Vrtovec
Jianhua Yao
Ben Glocker

Tobias Klinder
Alejandro Frangi
Guoyan Zheng

Shuo Li

2 http://spineweb.digitalimaginggroup.ca
3 http://www.brainlab.com
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Automated Pedicle Screw Size and Trajectory
Planning by Maximization of Fastening Strength

Dejan Knez(B), Boštjan Likar, Franjo Pernuš, and Tomaž Vrtovec

Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
{dejan.knez,bostjan.likar,franjo.pernus,tomaz.vrtovec}@fe.uni-lj.si

Abstract. Spinal fusion combined with vertebral fixation through pedi-
cle screw placement is the preferred surgical treatment for several spinal
deformities. The accuracy of pedicle screw placement is directly related
to the surgical outcome, however, manual planning of screw size and tra-
jectory is time-consuming, while automated approaches do not take into
account the screw fastening strength. We propose a novel automated
method for optimal planning of pedicle screw size and trajectory that
takes into account both geometric (i.e. morphometry) and anatomical
(i.e. bone mineral density) properties of vertebrae to maximize the screw
fastening strength. The size and trajectory of 61 pedicle screws, deter-
mined by the automated method in computed tomography images of nine
patients, were in high agreement with preoperative manual plans defined
by a spine surgeon (mean difference of 0.6 mm in diameter, 4.0 mm in
length, 1.7 mm in pedicle crossing, and (6.1◦)in screw insertion angles),
and an increased fastening strength was observed for 50 cases (82 %).

1 Introduction

Spinal fusion combined with vertebral fixation is the preferred surgical treatment
for several spinal deformities, such as scoliosis, kyphosis or vertebral fractures [1].
Vertebral fixation is commonly achieved by placement of pedicle screws (Fig. 1(a)),
which consists of screws being inserted through vertebral pedicles representing fas-
teners onto which stabilizing rods are attached, resulting in a limited compression
of affected vertebrae. The accuracy of pedicle screw placement is directly related to
the surgical outcome and is therefore of significant importance, as inaccurate place-
ment can lead to serious nerve or viscus injuries [1]. Therefore, preoperative surgery
planning has become essential for safe pedicle screw placement [2,3]. During plan-
ning the surgeon studies in detail the spinal anatomy of the treated patient by
relying on preoperative images, nowadays usually in the form of three-dimensional
(3D) computed tomography (CT) scans.

However, manual planning of pedicle screw size and insertion trajectory is
time-consuming, besides it is practically impossible to take into account all
important parameters, such as the screw fastening strength. Especially for sub-
jects with low bone mass, such as patients with osteoporosis [4], the screw fas-
tening strength should be as high as possible, and was in fact proved to be
directly related to the underlying vertebral bone mineral density (BMD) [2,5].
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-41827-8 1
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Manual (visual) determination of BMD is also a demanding and time-consuming
task, as it requires accurate analysis of a larger number of 3D image cross-sections
in different planes of view. Moreover, such analysis has to be repeated for each
change in size and/or insertion trajectory of each pedicle screw. As a result,
guiding and navigation techniques for computer-assisted orthopedic surgery were
developed [1,6,7]. A few studies also focused on automated pedicle screw plan-
ning based on preoperative image analysis [3,8], although without taking into
account the screw fastening strength. By applying computer-assisted quantita-
tive analysis of 3D images, the screw fastening strength can be estimated through
BMD for each observed screw size and insertion trajectory, and a combination
that maximizes the screw fastening strength can be determined through an opti-
mization procedure. If the subjective interpretation of the surgeon is reduced,
the reliability of preoperative planning can be increased.

In this paper, we describe a novel automated method for optimal preopera-
tive planning of pedicle screw size and insertion trajectory. The proposed method
aims to maximize the screw fastening strength by taking into account both geo-
metric (i.e. morphometry) and anatomical (i.e. BMD) properties of vertebrae,
extracted from non-segmented 3D CT spine images that were acquired preop-
eratively for the purpose of manual planning of surgical treatments involving
pedicle screw placement and spinal fusion.

2 Methodology

For an adequate pedicle screw planning, the knowledge of the 3D anatomy of ver-
tebral bodies and pedicles is indispensable, as the size (i.e. diameter and length)
and insertion trajectory (i.e. pedicle crossing point and inclination angles) of
each pedicle screw have to be defined so that it is positioned strictly within
the vertebral body and the corresponding pedicle (i.e. does not leave the bone
structures), does not perforate the anterior wall of the vertebral body, and does
not intersect with the screw through the opposite pedicle (Fig. 1(a)). Pedicle
screw planning can be therefore achieved by appropriate modeling of vertebral
structures and pedicle screws in 3D through quantitative analysis of 3D images.

2.1 Modeling of Vertebral Structures in 3D

Modeling of vertebral structures is limited to vertebral bodies and pedicles,
and achieved using the superquadric approach [9]. The parametric form of a
superquadric (i.e. a generalized quadric surface in 3D) directly indicates whether
an arbitrary point is located inside, lying on, or located outside the superquadric
surface, which is advantageous for positioning pedicle screws strictly within ver-
tebral bodies and pedicles. Moreover, the parameters of a superquadric are
directly related to the morphometry of the underlying anatomical structure,
which proved to be related to clinically meaningful anatomical deformations [10].
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(a) (b)

Fig. 1. (a) An example of successful pedicle screw placement, shown in a postoperative
computed tomography axial image cross-section. (b) An illustrative example of three-
dimensional parametric modeling of the vertebral body and pedicles.

Parametric Modeling of Vertebral Bodies. The superquadric for the initial
3D vertebral body shape Vi(x) is represented by an elliptical cylinder [9]:

Vi(x) =
(

x2 + y2

r(θ)2

)10
+

(
z

h

)20
; r(θ) =

ab√
(a sin θ)2 + (b cos θ)2

, (1)

where x = (x, y, z) is a point in 3D space, r(θ) represents the trace of an ellipse
with semi-major axis a and semi-minor axis b, θ = arctan(y/x) is the radial
angle, and h is the cylinder half-height. A more detailed 3D vertebral body shape
Vd(x) = TV (Vi(x)) is obtained by introducing 22 additional parameters, which
define transformation TV and represent specific 3D anatomical deformations of
the vertebral body [9], i.e. (1) the shape of the elliptical cylinder at the location of
the left pedicle, right pedicle, vertebral foramen and anterior part of the vertebral
body, (2) the concavity of the vertebral body wall at its anterior part and at the
vertebral foramen, (3) concavities and sagittal inclinations of vertebral endplates,
and (4) the increasing size and torsion of the vertebral body. The final 3D model
of the vertebral body V (x) = RV (Vd(x)) is obtained after its rigid alignment
RV to the 3D image (Fig. 1(b)). The similarity criterion used to determine TV

and RV is composed of two components that take into account the properties
of CT images [9]. The intensity component CI is based on 3D image intensities
and maximizes the amount of the bone structures inside the 3D model and the
amount of the soft tissues outside the 3D model:

CI =
√

1 −
∑

s

√
pin(s) pout(s), (2)

where pin and pout are probability distributions of image intensities s within
the 3D model and a volume surrounding the 3D model, respectively. The shape
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component CG is based on 3D image intensity gradients and maximizes their
agreement against 3D model surface normals:

CG =
∑

x∈Vin

(〈
g(x),nin(x)

〉 e
−d(x)2

2√
2π

) ∑
x∈Vout

(〈
g(x),nout(x)

〉 e
−d(x)2

2√
2π

)
, (3)

where d(x) is the Euclidean distance between point x and the 3D model surface,
and 〈g(x), · )〉 is the dot product of normalized 3D image intensity gradients
g(x) and inward-pointing nin(x) or outward-pointing nout(x) 3D model unit
surface normals within, respectively, volume Vin spanned inwards or volume
Vout spanned outwards of the 3D model surface. Optimal transformations TV

and RV , respectively representing anatomical deformations and rigid alignment,
are obtained by maximizing the joint intensity and shape similarity criterion:

{
TV , RV

}
= arg max

{T,R}

((
CI CG

)∣∣∣
{T,R}→V (x)

)
. (4)

Parametric Modeling of Pedicles. The superquadric for the initial 3D pedi-
cle shape Pi(x) is represented by an elliptical cylinder (1), and is automatically
initialized from parameters of the final 3D model of the vertebral body V (x)
that define the initial location and orientation of the left (or right) pedicle. The
elliptical cylinder is then deformed into a detailed 3D pedicle shape by introduc-
ing additional parameters that represent specific 3D anatomical deformations of
the pedicle. Although the same modeling approach is used as for the vertebral
body, the parameters corresponding to 3D anatomical deformations of the pedi-
cle are defined independently by observing its anatomy in 3D, therefore repre-
senting a novel approach to parametric modeling of pedicles. As a result, a more
detailed 3D pedicle shape Pd(x) = TP (Pi(x)) is obtained by 22 parameters of
transformation TP representing (1)the offset of the inner pedicle shape, (2)the
concavity of the pedicle at its anterior, posterior, right and left parts, (3)the
pedicle axis concavity in the coronal and sagittal plane, and (4) the tear drop
deformation of the pedicle in the axial plane. The final 3D model of the pedicle
P (x) = RP (Pd(x)) is obtained after its rigid alignment RP to the 3D image
(Fig. 1(b)). Optimal transformations TP and RP are obtained by maximizing
the joint intensity and shape similarity criterion (CI CG) |{T,R}→P (x) (2)–(4).

2.2 Modeling of Pedicle Screws in 3D

The superquadric for the 3D pedicle screw model Si(x) is represented by a
circular cylinder, which defines its size, i.e. the diameter and length. The final
3D pedicle screw model S(x) = RS (Si(x)) is obtained after its rigid alignment
RS to the 3D image, which defines its insertion trajectory, i.e. the crossing point
through the mid-coronal plane of the pedicle and inclination angles.
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Pedicle Screw Size and Insertion Trajectory. The 3D pedicle screw model
is defined by parameters s = {D,L,p, ωx, ωz} representing the pedicle screw
size by its diameter D (i.e. D = 2a = 2b in (1)) and length L (i.e. L = 2h in (1),
measured as the length of the screw within the vertebra), and the pedicle screw
insertion trajectory by its pedicle crossing point p = (xp, yp, zp), and sagittal ωx

and axial ωz inclination angle in the reference coordinate system (Fig. 2).

(a) (b)

Fig. 2. The pedicle screw model with labeled diameter D, offset Δ around the diameter,
length L, pedicle crossing point p and axial inclination angle ωz, shown (a) in a three-
dimensional view and (b) in the axial view.

Pedicle Screw Planning. The screw fastening strength is a predictor for the
screw pullout strength, which should be as high as possible due to fragile char-
acteristics of the bone structures. Lehman et al. [5] performed a biomechanical
analysis of the thoracic pedicle screw trajectory on cadaveric specimens and
concluded that the screw pullout strength, and therefore the screw fastening
strength, correlates with BMD. As BMD is also linearly correlated with under-
lying CT image intensities [2,5,11], the screw fastening strength can be estimated
as [2]:

F =
∫ L

0

∫ 2π

0

∫ D/2

0

r I (r, ϕ, z) dr dϕ dz, (5)

where L is the screw length, D/2 is the screw radius, and I(r, ϕ, z) is the 3D
image intensity under cylindrical coordinates (r, ϕ, z). However, such definition
of the screw fastening strength takes into account the whole screw volume, which
is, in our opinion, not optimal as intensities close to the screw centerline do not
contribute to its fastening strength. We therefore define the screw fastening
strength as:

F =
∫ L

0

∫ 2π

0

∫ (D+Δ)/2

(D−Δ)/2

r I (r, ϕ, z) dr dϕ dz; Fn =
F

πDΔL
, (6)
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where Δ is the offset around the screw radius, and Fn is the normalized screw
fastening strength, computed as F per unit of volume πDΔL spanned between
(D − Δ)/2 and (D + Δ)/2 (Fig. 2(a)). Besides the fact that, in contrast to
the definition of Linte et al. [2], the intensities close to the screw centerline are
not taken into account, we also introduce Fn, which is maximized to determine
the optimal 3D pedicle screw model, as maximization of F would favor larger
screw diameters and lengths. Maximization is additionally limited by vertebral
anatomy obtained from the 3D vertebral body model V (x) and 3D pedicle model
P (x), i.e. the 3D pedicle screw model S(x) must be located within both V (x) and
P (x), and must not cross the vertebral plane of symmetry obtained from V (x) to
prevent intersection with the opposite pedicle screw (Fig. 2(b)). Parameters s∗ =
{D∗, L∗,p∗, ω∗

x, ω∗
z} of S(x) that define its optimal size and insertion trajectory

are therefore obtained as:

s∗ = arg max
s

(
Fn

∣∣∣
s→S(x),V (x),P (x)

)
. (7)

3 Experiments and Results

3.1 Patients

Experiments were performed for nine patients (7 males and 2 females; mean age
18.7 years; range 14 − 34 years) with adolescent idiopathic scoliosis (7 patients)
and degenerative disc disease (2 patients) in the thoracic spinal region, who were
referred for pedicle screw placement surgery and preoperatively undertook CT
scanning (pixel size 0.26− 0.46 mm; slice thickness 0.6 mm). Manual planning of
the size and insertion trajectory for 61 pedicle screws in the acquired CT scans
was performed by a spine surgeon, who was experienced with the dedicated soft-
ware for navigating through 3D images and manipulating with 3D screw models,
and required at least 10 min to plan each pedicle screw. From these preoperative
plans, patient-specific drill guides were manufactured and physically laid over
the visible part of the spine during surgery, which was performed by the same
spine surgeon, and then pedicle screws with predefined size were placed along
these guides defining their insertion trajectory [12].

3.2 Implementation Details

The proposed automated method was implemented in C++ without code opti-
mization and executed on a personal computer (Intel Core i7 at 3.2 GHz and
32 GB memory) with graphics processing unit acceleration (Nvidia GeForce GTX
760). For each observed vertebra, a 3D vertebral body model V (x) (initialized
as an elliptical cylinder by a single manually defined point within the verte-
bral body) and corresponding left and right 3D pedicle models P (x) (automat-
ically initialized as elliptical cylinders using parameters of V (x)) were obtained
by applying the Nelder-Mead optimization method [13] to (4). The proposed
3D vertebral body model was used for both thoracic and lumbar vertebrae,
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and similarly the proposed 3D pedicle model was used for both thoracic and
lumbar pedicles. Automated pedicle screw planning was obtained by initializ-
ing each 3D pedicle screw model using parameters of both V (x) and P (x), and
then finding the optimal 3D pedicle screw model S(x) by maximization of the
normalized screw fastening strength Fn (6), (7); Δ= 0.1D), again by using the
Nelder-Mead optimization method [13].

Table 1. Comparison between manual and automated pedicle screw planning in terms
of mean absolute difference (MAD) and corresponding standard deviation (SD).

Vertebral level T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 All

No. of screws 2 3 1 2 6 10 8 10 10 5 4 61

Screw size: diameter D (mm)

MAD 0.7 0.8 0.6 0.3 0.7 0.6 0.8 0.5 0.6 0.1 0.4 0.6

SD 0.5 0.2 0.0 0.4 0.4 0.5 0.6 0.3 0.5 0.2 0.5 0.4

Screw size: length L (mm)

MAD 1.1 5.5 0.8 7.2 2.8 3.9 3.8 5.4 4.5 2.3 7.3 4.0

SD 0.1 2.9 0.0 9.4 1.5 3.3 2.1 3.1 4.2 1.4 6.0 3.5

Screw insertion trajectory: pedicle crossing point p(mm)

MAD 1.6 1.8 1.2 1.8 2.0 1.5 1.3 1.5 2.0 2.2 1.4 1.7

SD 0.6 1.1 0.0 1.2 1.2 1.1 1.0 1.5 1.3 1.1 0.9 1.2

Screw insertion trajectory: sagittal inclination angle ωx(◦)

MAD 9.5 5.8 7.7 8.1 7.2 6.0 5.5 5.6 6.6 4.8 5.4 6.5

SD 8.6 4.7 0.0 8.9 8.0 3.6 4.2 3.0 4.1 2.7 7.2 4.8

Screw insertion trajectory: axial inclination angle ωz(
◦)

MAD 3.8 5.0 10.4 10.7 4.6 4.7 2.5 6.7 3.9 4.3 5.9 5.7

SD 2.7 4.8 0.0 9.9 4.4 4.5 2.9 3.1 3.1 2.5 4.8 3.9

Screw planning: normalized fastening strength Fn(mm3)

MAD 44 67 42 191 69 92 65 111 97 68 57 82

SD 63 42 0 211 61 60 59 87 131 50 72 87

3.3 Results

For the 73 vertebral bodies and 146 pedicles, the mean absolute difference (MAD)
± standard deviation (SD) of corresponding modeling by 3D vertebral body
models V (x) and 3D pedicle models P (x) was estimated to 1.2± 0.3 mm and
0.7± 0.5 mm, respectively, in terms of the radial Euclidean distance to manu-
ally placed ground truth points. The obtained automated plans for placement
of 61 pedicle screws were compared to corresponding manual plans (Table 1),
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(a) (b) (c)

Fig. 3. Visual comparison between the proposed automated (in red color) and manual
(in blue color) pedicle screw planning for a selected vertebra of two patients with
adolescent idiopathic scoliosis (first and second row) and two patients with degenerative
disc disease (third and fourth row), shown in (a) a three-dimensional view, (b) in a
selected axial view, and (c) in a selected sagittal view (left pedicle only). (Color figure
online)
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resulting in a high agreement with an overall MAD ± SD of 0.6± 0.4 mm for
diameter D and 4.0± 3.5 mm for length L related to the pedicle screw size,
and 1.7± 1.2 mm for pedicle crossing point p, 6.5± 4.8◦ for sagittal inclination
angle ωx and 5.7± 3.9◦ for axial inclination angle ωz related to the pedicle screw
insertion trajectory.

On average, automated planning of each pedicle screw took around 6 min
(i.e. 3.7 min for 3D vertebral body modeling, 2.2 min for 3D pedicle modeling
and 3 s for pedicle screw planning). When applying automated planning, an
increased fastening strength in comparison to manual planning was observed for
50 pedicle screws (82%), with an overall increase of 96 ± 87 /mm3 in terms of Fn

(agreement to manual plans of 0.6± 0.4 mm for diameter D and 4.4± 3.7 mm for
length L related to the pedicle screw size, and 1.6± 1.0 mm for pedicle crossing
point p, 6.2± 4.3◦ for sagittal inclination angle ωx and 5.0± 4.1◦ for axial incli-
nation angle ωz related to the pedicle screw insertion trajectory). On the other
hand, a smaller drop of 38± 41 /mm3 in terms of Fn was observed for the remain-
ing 11 screws (agreement to manual plans of 0.5± 0.5 mm for diameter D and
3.0± 3.1 mm for length L related to the pedicle screw size, and 2.1± 1.7 mm for
pedicle crossing point p, 5.5± 6.3◦ for sagittal inclination angle ωx and 4.7± 4.1◦

for axial inclination angle ωz related to the pedicle screw insertion trajectory).
A statistically significant difference (p < 0.01) was observed between the
obtained automated and manual pedicle screw planning. Examples of automated
and manual screw planning are also shown in Fig. 3. The proposed automated
methods failed in one case because there was no proper pedicle shape due to its
narrow width (Fig. 4), however, in practice surgeons avoid pedicles where screws
cannot be placed.

(a) (b) (c)

Fig. 4. The case where the proposed automated methods for parametric modeling of
the pedicle and pedicle screw planning failed because there was no proper pedicle shape
due to its narrow width. The figure shows the resulting parametric 3D pedicle model
(in yellow color) in a selected (a) axial, (b) sagittal, and (c) coronal view. (Color figure
online)
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4 Discussion and Conclusion

We described a novel automated method for preoperative pedicle screw plan-
ning that is based on maximization of the screw fastening strength. We pro-
posed a modified screw fastening strength (6), which takes into account only
the region around the screw surface, as only this region is actually in contact
with its thread and only the corresponding BMD therefore contributes to its
fastening. Moreover, we proposed to maximize the normalized screw fastening
strength (7) in order to equally treat and be able to compare screws of different
sizes. The performed experiments and obtained results revealed that the pro-
posed automated pedicle screw planning is highly in agreement with manual
plans defined by an experienced spine surgeon. However, a higher normalized
screw fastening strength was obtained for 82% of the observed pedicle screws,
indicating the main potential of the proposed automated method in the field
of computer-assisted orthopedic surgery. Moreover, although computation times
are comparable to those required for manual planning, automated pedicle screw
planning can be performed offline, and the surgeon would then only have to
verify and eventually adjust the proposed plans, which would result in a consid-
erably faster preoperative planning. Future research will be focused on increasing
the size of the patient database by considering also the diversity in patient age
and pathology, evaluating the intra- and inter-observer variabilities of preopera-
tive manual planning, and comparing the results to actual postoperative pedicle
screw insertion trajectories.
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under grants P2-0232, J2-5473, J7-6781 and J2-7118. The authors thank Ekliptik d.o.o.,
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pedicle screw accuracy and deviation from planning in robot-guided spine surgery.
Spine 40(17), E986–E991 (2015)

5. Lehman Jr., R., Polly Jr., D., Kuklo, T., Cunningham, B., Kirk, K., Belmont Jr.,
P.: Straight-forward versus anatomic trajectory technique of thoracic pedicle screw
fixation: a biomechanical analysis. Spine 28(18), 2058–2065 (2003)



Automated Pedicle Screw Size and Trajectory Planning 13

6. Tian, N., Huang, Q., Zhou, P., Zhou, Y., Wu, R., Lou, Y., Xu, H.: Pedicle screw
insertion accuracy with different assisted methods: a systematic review and meta-
analysis of comparative studies. Eur. Spine J. 20(6), 846–859 (2011)

7. Helm, P., Teichman, R., Hartmann, S., Simon, D.: Spinal navigation and imaging:
history, trends and future. IEEE Trans. Med. Imaging 34(8), 1738–1746 (2015)

8. Lee, J., Kim, S., Kim, Y., Chung, W.: Automated segmentation of the lumbar
pedicle in CT images for spinal fusion surgery. IEEE Trans. Biomed. Eng. 58(7),
2051–2063 (2011)
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Abstract. This paper describes a novel automatic system for Modic
changes classification of vertebral endplates. Modic changes are classes
of vertebral degenerations visible as intensity variations in magnetic res-
onance images (MRI). The system operates on T1 and T2 MRI. We
introduce three main novelties: 1. a vertebrae alignment scheme via pre-
cise bounding boxes obtained through corner localisation, 2. vertebral
endplate classification in three dimensions, and 3. Modic changes classi-
fication. The system was trained and validated using a large dataset of
785 patients, containing MRIs sourced from a wide range of acquisition
protocols. The proposed system achieved 87.8 % classification accuracy
on our dataset.

1 Introduction

The objective of this work is the automated classification of Modic changes in
magnetic resonance imaging (MRI) sagittal lumbar scans. Modic changes are
classes of vertebral degenerations visible as intensity variations in MRI. There
are three types of Modic changes and each type possesses varying correlation
with the degradation of the vertebral bodies (VBs) with Modic type 1 having the
highest correlation with clinical pain scores [1]. Classification of these changes
in vertebral endplates is highly beneficial as it gives a measure of health of a
vertebra which would help in the diagnosis of lower back pain. To our knowledge,
this is the first system to automatically classify Modic changes and vertebral
endplates degeneration in general. An example of the vertebral regions associated
with the task is shown in Fig. 1.

The system is trained and its performance validated using a clinical dataset
which is heterogeneous, i.e. the scans are sourced from different clinical centres
using different machines and protocols. The scans in the dataset possess a vari-
ation of field-of-view, field strength, resolution, and are susceptible to bias field
corruption. Since it is a necessity for Modic changes classification to use both
T1 and T2 scans, we also have to localize the vertebrae of the spine in the two
scans. The advantages of such an automated system are improvement of radio-
logical score consistency, which varies from one radiologist to another, and ease
of pathological detection of Modic changes.
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 14–26, 2016.
DOI: 10.1007/978-3-319-41827-8 2
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Fig. 1. The task: Given T1 and T2 weighted lumbar sagittal MRI volumes, detect,
localise, label, and predict the states of the endplates of the vertebrae from the lower
endplate of T12 to the upper endplate of S1. In the example, only single slices of T1
and T2 are shown but in practice, the system operates on every slice in the scans.
Bounding boxes, shown in red, represent the regions used in the classification of the
endplates. (Color figure online)

1.1 Modic Changes

The variation of voxel intensities in an MRI scan can be said to be caused by
the variation of proton densities of different organs. One good assumption is
that a specific organ would roughly consist of the same material hence possess a
narrower range of proton densities unique to that organ. By extension, a healthy
or normal vertebra would exhibit homogeneous intensity distributions in its T1
and T2 scans. The opposite is true for some abnormal vertebrae where visible
discolourations can be seen in both their T1 and T2 scans, as first discovered by
Modic et al. [2], aptly named Modic changes and at times might also be referred
to as marrow or vertebral body changes.

Modic postulated that such discolourations in the form of visible intensity
changes of the vertebrae might be caused by the evolution of marrow of the
vertebral endplate in response to the degeneration of the corresponding inter-
vertebral disc [2,3]. This response is hypothesised to be either mechanical or
bacterial in cause but which or both has yet to be determined [1].

There are three different types of Modic changes, each characterized by a
change in intensity of the vertebral endplates in both the T1 and T2 scans.
See Fig. 2 and Table 1.
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Fig. 2. Each column pair of images is from an individual vertebra scanned with T1
and T2 weightings and each pair represents an example of the type of Modic changes
they belong to. These discolourations only appear on the endplates of the vertebrae
adhering to the definition set forth by Modic et al. [2].

Several studies have been conducted to find the relationship between Modic
changes and lower back pain. Modic type 1 has the strongest correlation with
lower back pain and type 1 endplates may stabilise into Modic type 2 over time,
which has a lower correlation with lower back pain [4–6]. This suggests that
patients with lower back pain might possibly be monitored by observing just the
state of their endplates.

1.2 Related Work

This work is the first fully automated system to classify Modic changes but
there exists another system proposed by Vivas et al. [7] that is semi-automatic,
requiring inputs for disc detections, and only does binary classification i.e. a sim-
ple Modic/non-Modic classification instead of a multi-class classification scheme
into the three types or normal.

Table 1. An overview of the definition of the 3 types of Modic changes where we follow
a standard radiological intensity terminology where a hyperintense area refers to an
area with higher intensity in comparison to its surrounding and vice versa.

Modic type T1 endplate intensity T2 endplate intensity

I Hypointense Hyper intense

II Hyper intense Isointense/Hyper intense

III Hypointense Hypointense
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Most research in analysis of spine imaging has focused on the interverte-
bral discs rather than the VB. Typically, disc classifications methods use both
intensity and shape information of the discs [8,9]. Existing work on VB analyses
mainly focused on vertebral fractures [10] and sclerotic metastases [11]. Verte-
bral fracture analysis classification requires a highly accurate per vertebra region
of interest (ROI) fit because fractures are correlated with the height of the ver-
tebra [10]. This is unlike Modic changes which are independent of the shape of
the vertebra, focusing only on intensity. In this paper, we compare our feature
with the normalised intensity histogram, Hist+, by Lootus et al. [9]. Our pro-
posed features are also comparable to the spatial binned ROI intensity features
by Ghosh et al. [8].

2 Approach Overview

Our method has five stages: 1. two-dimensional (2D) vertebrae detection and
labelling in all slices of a given scan, 2. corner localisation, 3. vertebrae align-
ment, 4. three-dimensional (3D) vertebrae extent detection, and 5. classification.
See Fig. 3.

2.1 2D Vertebrae Detection and Labelling – Stage 1

Todetect and label the vertebrae,we followandadapted thedetection and labelling
scheme proposed by Lootus et al. [12] which uses a combination of a deformable
part model (DPM) detector [13] and labelling via graphical model. The input to
this stage is a 3D MRI volume and the output is a series of approximate bounding
boxes with the vertebrae labels from T12 to the combined sacrum (S1 and S2). The
detector and graphical model is trained using scans with annotated ground truth
bounding boxes with labels as described in the work of Lootus et al. [12].

Fig. 3. An overview of our approach. The arrows indicate the processes while the
images show a close up view of the vertebra in both scans. This is repeated in all of
the slices of the volume.
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2.2 Corner Localisation – Stage 2

There is an issue with using the loose bounding boxes as our classification fea-
tures which is: the variation of fit of the bounding boxes, both intra-scan and
inter-scan, which can be seen in Fig. 4.

We propose a finer localisation post-processing of these bounding boxes such
that the resulting bounding boxes are more consistent and tightly aligned with
the vertebrae. Tighter alignment leads to improvements in localizing the regions
used to extract the features, and also helps in the alignment of the vertebrae in
the T1 and T2 scans (Sect. 2.3).

We adapt the supervised descent method (SDM) by Xiong et al. [14] origi-
nally developed for the detection of facial landmarks to improve the localisation
accuracy of the bounding boxes. The input to this stage is the image together
with its bounding box from the vertebrae detection and labelling stage and the
output is an irregular quadrilateral, with a tighter fit around the vertebra.

Fig. 4. An example output using the detection and labelling system described in the
work of Lootus et al. [12]. The enlarged set of images of the vertebrae show the variation
of fit of the bounding boxes to the vertebrae. Intra-scan variability: Note the sacrum
bounding box contains both S1 and S2. The L3 bounding box contains all of the
vertebra but is slightly loose while the L5 bounding box is missing the upper endplate
of the vertebra. Inter-scan variability: Both images show the same L5 vertebra at the
different contrasts and their respective bounding boxes.

At test time, the algorithm works by first regressing the corner points of the
loose bounding boxes to a learned mean vertebrae corner points. Then, these
intermediate corner points are iteratively updated via regression based on scale-
invariant feature transform (SIFT) features around the points. The regression
can be solved iteratively and can be represented as:
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Fig. 5. Examples of inputs, shown in red, and outputs, shown in green, of the corner
localisation. Note the sacrum bounding box is now more specific, containing only S1
instead of both S1 and S2, and the variation of bounding boxes fit is reduced. (Color
figure online)

xk+1 = xk + Δxk, (1)

where lim
k→∞

xk =x∗. x0 are the four points of the loose bounding boxes and x∗
are the vertebral corner points. After several iterations, k = 10 works well in our
dataset, the regression is stopped and the final points become the new corner
points describing the best quadrilateral fit for the vertebra.

Training the regressor is posed as a minimisation task of Δx:

argmin
Δx

f(x0 + Δx) = ‖h(d(x0 + Δx)) − φ∗‖22, (2)

where h is the feature transformation, which in this case is SIFT, of that point
and φ∗ =h(d(x∗)) represents the SIFT features at the ground truth. To overcome
overfitting, ridge regression was used. The regularizer, λ, is a general singular
value penalty imposed per iteration.

Since the size of the vertebrae in the dataset vary, a normalisation step has
to be conducted prior to regression. An individual vertebra is resized according
to the height, Vh, of its bounding box and the image is translated such that the
centre of the bounding box is the point of origin. Examples of corner localised
vertebrae given its raw bounding boxes can be seen in Fig. 5.

2.3 Vertebrae Alignment – Stage 3

This section describes the vertebrae alignment stage which is necessary because
there is no guarantee of a good alignment between the T1 and T2 scans. The
inputs to this stage are two tight bounding boxes, one each from the T1 and
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T2 scans, that contain one vertebra and the outputs are rigid transforms that
describe the motion between the two scans specifically for that single vertebra.

A good alignment of the vertebra in both T1 and T2 scans is important since
features extracted from both scans are jointly used for classification. The two
main reasons for misalignments of the vertebrae are: 1. the movements of the
patients in between scans and 2. the inter-scan difference in bounding boxes,
both in terms of position and shape, detected in the T1 and T2 scans as shown
in Fig. 4.

For the alignment, the vertebrae are assumed to be rigid bodies and any
motion related to them is assumed to be only in-slice pitch and translation i.e.
slice correspondence is assumed to be valid. As such, any extreme movement
especially any yaw and roll would result in failure in alignment. These assump-
tions work well since scanning procedures dictate that patients should lie in the
same orientation for both the T1 and T2 scans. Thus, the solution for the motion
or transformation between the scans of the same vertebra can be expressed as:

VT1 = R(θ)VT2 + T, (3)

which describes both rotational, R (2× 2 matrix), and translational, T (2× 1
vector), motions between T1 and T2. Both, VT1 and VT2 are 2D coordinate
feature points which are detected in both images.

We use the four corner points obtained in the previous stages in both T1 and
T2 to be the feature points for alignment. However, the regressed corner points
are not without mistakes. This is because vertebral corners tend to be smooth
making it hard to pinpoint the exact locations of the corner points. Thus, a
mechanism for identifying these mistakes and being tolerant to them is needed.
We use a random sample consensus (RANSAC)-like approach to estimate the
transformation and identify inliers/outliers simultaneously [15]. Detected outliers
are removed from VT1 and VT2. After the rigid transformation of each vertebra
has been obtained, we transform one scan to the other, aligning them, and use
these as the inputs for Modic classification.

2.4 3D Vertebrae Extent Detection – Stage 4

Our aim in this stage is to determine the 3D extent of the vertebrae from the 2D
quadrilaterals in each sagittal slice; this requires determining where the original
detections should start and end slice-wise. This is important since the positions of
the vertebrae in a scan are initially unknown and there exist slices which contain
only partial volumes of the vertebrae, mostly containing tissue. These partial
vertebrae are problematic if they are selected as ROIs for feature extraction.
To this end we utilise a classifier to distinguish non-vertebrae and vertebrae
quadrilaterals.

We follow a standard image classification scheme, discussed by Chatfield
et al. [16], where the sequential steps are: 1. dense SIFT feature extraction over
the quadrilaterals, 2. Fisher vector (FV) encoding of the features, 3. spatial
tiling of the features in the image and 4. classification via linear support vector
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machines (SVM). This is done on a per slice basis on every slice. Quadrilaterals
classified as vertebrae are passed through to the Modic classification stage.

3 Classification

The classification of the vertebral endplates starts with feature extractions of the
endplate regions which then are fed into the classifier. There are four different
types of classes an endplate might be classified as, namely: normal and the three
different types of Modic changes.

3.1 Feature Extraction

Prior to classification, the right features have to be extracted such that they best
separate the different classes which in this case are the different types of Modic
changes. Since the very definition of the different Modic types is dependent on the
joint intensity of the images, we propose a feature that captures this information
between T1 and T2: a spatially-binned joint histogram of intensities (SJT). As
a baseline measure, our feature is compared with a histogram based scheme by
Lootus et al. [9] tested on radiological disc grading (Hist+).

The ROIs for feature extractions are the upper and lower thirds of the
vertebra-aligned corner-localised tight quadrilaterals of T1 and T2. These ROIs
are essentially shorter quadrilaterals, one each for upper and lower endplates
shown in Figs. 1 and 6, which cover the vertebral endplates. We have also exper-
imented on using vertebrae segmentation proposed in the work of Lootus et al. [9]
but since the nature of the problem itself is dependent on intensity, segmentation
of the vertebrae proved to be unhelpful due to the intensity variation of endplate
with Modic changes. The intensity of each endplate ROI is median normalised
using both the intensity distributions of the vertebra and its neighbouring ver-
tebra. This reduces the effect of bias field and protocol intensity variation while
preserving actual per vertebra variation which is crucial for Modic classification.

SJT. Each ROI is spatially-binned, 2× 8 bins, so that there is a measure of
spatial statistics of the Modic changes and from each corresponding T1-T2 pair of
spatial cells we construct a 16 × 16 joint intensity histogram. The joint histogram
is constructed by binning every pixel pair (T1 and T2 in the ROI) according to
its joint-intensity; see Fig. 6. The overall dimension of the feature vector is 4096.
Since the histogram is quite sparse, images are upsampled three times with
respect to their original sizes prior to feature extraction [17].

Hist+: For each ROI, an intensity histogram, 16 bins, with its moments (mean,
standard deviation, kurtosis, skewness, and entropy) is constructed. This forms
a feature vector with 21 dimensions (16 intensity bins + 5 moments) for each
ROI. The T1 and T2 features are concatenated forming the final feature vector.
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Fig. 6. An example of a joint histogram of one cell in the whole region. By introduc-
ing spatial bins, we capture the localisation of the intensity changes of the vertebral
endplates.

3.2 Learning

For the classification task, a linear SVM is used. The classification is assessed
with a 50:50 split of the dataset described in Sect. 4.1. To obtain the statistical
variation of the classifier, the assessment is done 20 times, each time with a
randomly selected 50:50 split according to patients. The optimal value for the
parameter C is found via a 5-fold cross validation of the training set. A uni-slice
classifier is trained using vertebral endplate labels marked by a radiologist where
the best slice is used per endplate. The best slice is manually selected using the
endplate labels from the radiologist as reference i.e. if the endplate is labelled
to show Modic 1 change, the slice which best represent type 1 change is used.
We use the one-versus-rest approach for the multi-class classification task e.g.
for a Modic 1 classifier, the positive examples are Modic 1 endplates while the
negative examples are the opposite and vice versa. To handle classification in
multiple slices (3D extent of the endplates), the detection of which is discussed
in Sect. 2.4, we use mean pooling of the classifier scores.

3.3 Data Augmentation

To further enhance the accuracy of our classification task, we applied several
different augmentation transforms, five in total, to the data. To automatically
choose the five best transforms i.e. five extra augmented samples in both train
and test sets that help capture the invariances of the vertebrae in our dataset
the image transformation pursuit (ITP) algorithm by Paulin et al. [18] was used.
The transforms, 43 overall, we experimented on are as follows:

– 1 flip/mirror,

– 20 rotations: θ = − 10◦ to 10◦ at 1◦ increment,

– 16 shifts: ↑, ↓,←,→,↖,↗,↘,↙ with two pixel distances (5 and 10 pixels),

– 6 bounding box scales: 85 % to 115 % in 5 % increment.

The five chosen augmentations samples are used as extra samples in training
and we pool (mean) the classifier scores from the unaugmented samples with its
corresponding five augmentations at test time.
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4 Results and Discussion

4.1 Dataset

The dataset used to train and validate our system came from a range of differ-
ent MRI machines and protocols. In all, the dataset consists of 785 patients of
which 683 possess radiological scores (graded by a single radiologist) e.g. Modic
changes, Pfirrmann grading etc. These patients are scanned on the basis that
they are already diagnosed with back pain and no patient can be classified as
healthy.

Of the 785 patients, 341 were used to train stages 1 to 4 described in Sect. 2
while 444 were used for stage 5, classification. There is no overlap of patients in
training stages 1 to 4 and the patients in the classification. Only 388 patients
out of the 444 possess labels for Modic changes, see Table 2.

4.2 Corner Localisation

Two sets of models are trained for corner localisation, each set having a single
regressor for the standard VB from the T12 to the L5 vertebrae, and a more
specific S1 regressor. The first set, termed the 1st stage, is for more coarse locali-
sation, and the second set, termed the 2nd stage is for a precise corner regression.
Both sets of models are trained with the same ground truth used in training the
detection and labelling system. Overall, 4274 T12-L5 and 720 S1 vertebrae were
used in training the VB and S1 models respectively. The results of the trained
models on an unseen validation set is shown in Fig. 7.

There are only four parameters that have to be optimised; they are: the
normalised height of the VB, Vh, the size of the SIFT patch, the regularizer of
the ridge regression, λ, and the number of iterations, k. They are optimized such
that they minimize the error on a hold-out validation set. In general, 91.1 % of
the S1 vertebrae and 95.3 % of the VB have errors less than 2 mm which is a
considerable improvement over the original bounding box detections with none
of the S1 vertebrae and 41.6 % of the VB at the same error threshold.

Table 2. There is a total of 388 patients and 4656 endplates where 194 patients are
used for training and 194 for testing i.e. 50:50 random splits with no overlap of patients
in training and testing. Most patients with Modic changes possess more than one Modic
endplates and some of the patients possess more than one Modic types resulting in the
total of the numbers shown in the table to be different than the actual total.

Endplate class Patients Endplates

Normal 144 3921

Modic 1 111 249

Modic 2 195 551

Modic 3 18 42
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Fig. 7. (Left) Error per vertebra of the VB regression. (Right) Error per vertebra of the
S1 regression. The red, blue, and yellow plots represent the errors of the raw bounding
boxes, 1st stage and 2nd stage respectively. Both stages outperform the initial bounding
box considerably. This is especially true for S1 which has a larger fit variance of the
bounding boxes compared to VB. (Color figure online)

4.3 3D Vertebrae Extent Detection

For classification of vertebrae and non-vertebrae, the same patients that trained
the corner regressors were used; a total of 66556 VB quadrilaterals (39309 ver-
tebrae and 27247 non-vertebrae) with 50:50 train and test split. In general, this
stage of the system performs well with an accuracy of 95.6 %.

4.4 Classification

For the classification task, the results can be separated into two parts: area under
curve (AUC) of the receiver operating characteristic (ROC) curve of the one-
versus-rest classifiers and overall accuracy of the multi slice classification task.
Results are shown in Table 3.

Table 3. Automatic endplate classification: (Left) Area under curve (AUC) of the
receiver operating characteristic (ROC) curve of the one-versus-rest classifiers. (Right)
Accuracy of the classification.

AUC of ROC

Features Normal Modic 1 Modic 2 Modic 3 Accuracy

Hist+ 83.8 ± 1.4 81.6 ± 2.7 81.2 ± 1.4 89.3 ± 8.7 85.8 ± 0.7

SJT 88.8 ± 0.9 85.5 ± 2.6 86.1 ± 1.0 90.1 ± 6.5 87.8 ± 0.6

It can be seen that the suggested SJT features outperform the Hist+ features
by a considerable margin with a 2.0 % difference in accuracy and roughly between
4− 5 % difference in AUC of ROC. Furthermore, the standard deviation of the
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SJT features is consistently slightly less than that of Hist+ which suggests SJT
to be more robust in learning. Note that the vertebral endplate as a whole is
classified but this does not localise the slices that the Modic changes occur in.
The result of the classification, 87.8 % in accuracy, is better than the accuracy
without augmentation at 87.4 % and the chance accuracy at 69.4 %.

Up to this point we have assessed a fully automatic classification of the end-
plates by pooling the uni-slice classifications across the vertebra. In comparison,
if only a single hand-picked best slice for each vertebra was used at test time
i.e. manually select the slice that most clearly show the Modic change, we see a
slightly better performance of 88.3 %, a minor difference of 0.5 %.

5 Conclusion

This paper has presented the first system to classify Modic changes automatically
and validated using a large dataset. Since the ROIs extracted by the system
are highly accurate and consistent, they can be used in other vertebral tissue
classification problems which we hope to explore, alongside segmentation and
localisation of Modic changes, in the near future.
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Abstract. Accurate and efficient patient registration is essential for sur-
gical image-guidance. Here, we present a registration pipeline to establish
spatial correspondence between tracked intraoperative stereovision (iSV)
and preoperative computed tomography (pCT) for spine surgery. First,
depth projection images encoding the common vertebral dorsal surface
“height” were generated from pCT and iSV. For pCT, vertebral pose
was adjusted when necessary based on anatomic landmarks. For iSV,
multiple reconstructed surfaces were combined to generate a unified pro-
jection image with accounting of overlapped regions to maximize the
sampling of the surgical scene. Rigid registration between the resulting
projection images produced an initial alignment for refined registration
using an improved iterative closest point algorithm. The technique was
applied to four explanted porcine spines in a total of eight poses. Reg-
istration accuracy was assessed using bone-implanted mini screws. The
average fiducial registration error and target registration error (TRE) for
ground-truth probe registration was 0.50 ± 0.08 and 0.63 ± 0.08, respec-
tively. The accuracy for iSV registration was 1.77 ± 0.31 mm in TRE and
was 2.01 ± 0.44 mm for surface reconstruction. The entire registration
completed within 2 min. These results suggest potential for application
of the method in human patients.

1 Introduction

Accurate and efficient patient registration is the cornerstone of surgical image-
guidance. While image-guidance has become ubiquitous in open skull neuro-
surgery, its application in open spinal procedures is largely limited to screw
insertion for fusion surgeries [1]. Resistance to wider acceptance in spine appears
to be the result of inefficient and often ineffective patient registration. In spinal
operations, skin-affixed fiducials do not provide sufficient accuracy, and instead,
spinal registration involves exposure and identification of anatomic landmarks
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 27–37, 2016.
DOI: 10.1007/978-3-319-41827-8 3
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within the surgical field which is tedious and time-consuming [1]. Additionally,
the one-time registration prior to surgery does not account for the intervertebral
motion that occurs after surgery begins. Although intraoperative image-guidance
using computed tomography (CT) or fluoroscopy overcomes some of these short-
comings, the added radiation exposure presents health risks to the patient, and
possibly, the surgical team. Substantial capital costs of the imaging equipment
also limit their wider deployment.

Radiation-free intraoperative images from ultrasound [2] and stereovision
(iSV) [3] have recently been employed to facilitate patient registration in spine
surgery. Both feature- and intensity-based techniques can be used for registra-
tion with preoperative CT (pCT). The previous iSV approach, while promising,
presents certain challenges. First, iterative closest point (ICP) algorithms [4]
to register iSV and pCT point-clouds strongly depend on a favorable three-
dimensional (3D) initial alignment. Second, multiple tracked iSV acquisitions
are usually necessary to maximize the sampling of the surgical field. However,
combining them to generate a unified reconstructed surface would require non-
standard processing and an accounting of the overlapping regions. As a practical
consideration, therefore, only one iSV image was utilized in the previous method.
Third, registration of bony features may require their segmentation from iSV;
at a practical level, broader clinical adoption of iSV-based registration requires
that this process be automated [3].

In this study, we present a registration pipeline to transform iSV-to-pCT 3D
point-cloud geometrical registration first into a two-dimensional (2D) rigid image
registration by exploiting common vertebral topological features in iSV and pCT.
The resulting 2D registration provides a global initial starting point for the
subsequent 3D registration. Although a manual, approximate initial registration
is still needed in 2D, a full 3D initialization is avoided, and the technique could
become more automated once a shape model [5] becomes available for patient
cases in the future. Further, the technique efficiently and conveniently combines
multiple iSV reconstructed surfaces into uniformly sampled areas without the
need for bony feature segmentation in iSV, which is an important improvement
over the previous technique [3].

Conceptually, our registration technique is analogous to solving the well-
studied shape correspondence problem [6], which has been extensively explored
in medical imaging (e.g., using surface features computed in the frequency
domain [7] or employing a marker-less global surface matching to initiate a subse-
quent fine registration [8]). However, the use of 2D projection images for patient
registration appears not to have been reported in the spine, although we note
similar applications in the brain [9,10]. Their difference is that topological or
shape information was used to generate projection images for the spine, whereas
vessels from the exposed cortical surface were used for the brain.

The iSV-to-pCT registration technique was applied to four porcine spines
(eight poses/imaging sessions in total). We evaluated its accuracy using bone-
implanted mini screws as the gold standard. The current study focuses on assess-
ing whether the iSV-based registration is able to achieve sufficient accuracy
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relative to that obtained from bone-implanted fiducials when no spinal interver-
tebral motion occurs, as both images were acquired at the same surgical stage.
Results from this study may provide the foundation for future investigations to
compensate for spinal intervertebral motion with the iSV technique and/or for
clinical applications in human patients.

2 Materials and Methods

Following Institutional Animal Care and Use Committee (IACUC) approval,
four explanted porcine spines were obtained from purpose-bred swine weigh-
ing between 35–70 kg. Muscular tissues were cleared from the dorsal aspect
of each spine, exposing the spinous processes, lamina, facets, and transverse
processes, similarly to that in human patients. Four Leibinger titanium mini
screws (1.5 mm diameter, 3 mm depth) were implanted into each exposed verte-
bra. Each spine underwent two independent imaging sessions at two arbitrary
postures (in an attempt to capture potential intervertebral motion). During a
session, preoperative CT (pCT) images were acquired with a pixel resolution
of 0.27mm× 0.27mm× 0.60 mm. To reduce computational cost, in-plane pCT
images were down-sampled (selecting one every two pixels). Immediately after
pCT acquisition, iSV images were obtained with a custom stereovision system
(consisting of two C-mount cameras; Flea2 model FL2G-50S5C-C, Point Grey
Research Inc., Richmond, BC, Canada) was rigidly mounted to a Zeiss surgical
microscope (OPMIR© PenteroTM, Carl Zeiss, Inc., Oberkochen, Germany) through a
binocular port. Exposed vertebrae were sampled along the dorsal surface, rostrally to
caudally, with the microscope focused at the corresponding spinous process and the
optical axis approximately perpendicular to the spine’s dorsal surface. Additional iSV
images were captured with the microscope optical axis obliquely aligned to maximize
the sampling of the surgical field. Typically, 6 − 10 iSV images were acquired during a
given imaging session.

The position and orientation of the microscope, and hence, the reconstructed
iSV geometrical surface, were available from a StealthStationR© navigation system
(Medtronic, Inc., Louisville, CO, USA). Tips of the bone-implanted screws were local-
ized with a digitization stylus for independent fiducial-based patient registration as
well as for assessing the accuracy of the iSV registration in this study.

2.1 Patient Registration Pipeline

Establishing a spatial transformation between the patient in the operating room (OR)
and the individual’s preoperative scans by registering tracked intraoperative images
is well established [2,3,9,10]. For the spine, when the spatial transformation between
iSV and pCT image volumes (i.e., pCTTiSV ) is directly available, patient registration
(pCTTpatient) can be readily computed from

pCTTpatient =pCT TiSV ×iSV Tworld × inv
(
patientTworld

)
, (1)

where patientTworld and iSV Tworld are the spatial positions and orientations of two
trackers rigidly fixed to the porcine sample (to an adjacent spinous process near the
surgical field) and the surgical microscope-stereovision camera assembly, respectively.
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The coordinate systems and transformations involved in patient registration are visu-
ally illustrated in Fig. 1. Essentially, establishing correspondence between the patient
in the OR and pCT becomes an iSV-to-pCT registration.

Fig. 1. Coordinate systems involved in patient registration. Solid/dashed arrows
indicate transformations determined from calibration/registration. A transformation
reversing the arrow direction is obtained by matrix inversion.

Here, direct intensity-based image registration may not be possible because the
texture information captured in iSV does not correspond to the same intensity features
in pCT. Therefore, feature-based registration of 3D point clouds generated from the
two imaging data streams is a logical option, e.g., via an improved ICP algorithm [4].
Unfortunately, ICP-based methods are sensitive to initial alignment and data noise.
Further, multiple reconstructed iSV surfaces were available from which to represent
the surgical field, but they typically overlapped and did not sample the surgical scene
uniformly. Therefore, specialized programs are likely necessary to process them.

To overcome these challenges, we designed a preprocessing pipeline (Fig. 2) to facil-
itate registration by topologically encoding depth in 2D projection images generated
from pCT and iSV. An image intensity-based rigid registration was then performed by
maximizing mutual information (MI). This result provided an initial starting position
for a second, refined registration achieved with an improved ICP [4].

2.2 pCT Depth Projection Image and Vertebral Pose Adjustment

The pCT images were preprocessed (standard thresholding, erosion, identification of
the largest connected region, and dilation (kernel size of 5 pixels for both erosion and
dilation)) in order to create a binary volume representing the spine. A 2D image was
created with its dimensions determined by the number of column and slice indices,
j and k, of the pCT volume, respectively. For each non-zero voxel, its row index, i,
in the image volume (corresponding to its distance relative to a local xz-plane, or
“height” along the ventral-dorsal direction) was recorded at the corresponding (j, k)
position in the 2D image (illustrated in Fig. 1). The intensity of each (j, k) location in
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the 2D image was determined as the largest recorded i-index scaled by the appropriate
voxel dimension along this direction (i.e., to convert to millimeters). This 3D-to-2D
projection was invertible because each 2D pixel can be uniquely traced back to its 3D
correspondence on the vertebral dorsal surface.

Fig. 2. The iSV-to-pCT registration pipeline. The pose-adjusted pCT depth projection
image is rigidly registered with that from iSV (both encoding vertebral dorsal “height”).
The resulting registration provides an initial starting position for a second refined
registration. Texture information in iSV allows unambiguous identification of bone-
implanted screws, permitting reliable assessment of accuracy in registration and iSV
surface reconstruction.

Essentially, the resulting depth projection image was determined by the spinal
posture in pCT. However, the vertebrae may be aligned in pCT in a way that could
produce a depth projection image having intensities which did not necessarily cor-
respond to a “neutral” posture as in iSV (see Sect. 2.3; Fig. 3(a) and (b)), and could
degrade the MI registration performance. To avoid this possibility, the pCT was rigidly
transformed and re-sampled with a template-based segmentation to identify individual
lumbar vertebra and the corresponding anatomical tips of the transverse processes.
The template vertebra was defined as the volume bound by two axial planes pass-
ing through two adjacent intervertebral discs. The tips of the transverse processes of
the template were also identified. Both the vertebra template and tips were manually
determined here, although a shape model could automate the process in the future [5].
The template vertebral volume was then registered with the L1 vertebra in pCT by
locating it in an appropriate starting position. Upon convergence, the newly identified
vertebra served as a template with which to identify and register its neighboring seg-
ment. The initial starting position for the next registration was assigned by using a
typical inter-vertebral distance of ∼25–40mm. The tips of the transverse processes in
the new template were similarly used to identify their correspondences in the targeted
vertebra (e.g., by localizing their closest points on an iso-surface). The procedure was
repeated until all lumbar vertebrae were registered and anatomic features identified.
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(a) (b) (c) (d)

Fig. 3. Vertebral pose adjustment via rigid transformation and resampling based on
vertebral feature points (circles) obtained through a template-based segmentation and
identification (vertebrae color-coded in (a) and (c)). The resulting depth projection
images are shown in (b) and (d). Automatically identified bone-implanted screws
appear as black dots in (a) and (c). (Color figure online)

The identified tips of the transverse processes defined a plane which represented
the relative spinal pose within the coordinate system (Fig. 3(a)). Subsequently, a rigid-
body transformation was determined from the angles of the fitted plane relative to the
major axes, and was used to transform and re-sample the pCT (Fig. 3(c)). An updated,
pose-adjusted depth projection image was created following the algorithm described
above (Fig. 3(d)).

2.3 iSV Projection Image and Combining Multiple iSV Acquisitions

For each porcine spine imaging session, the iSV acquisitions were individually recon-
structed into 3D geometrical surfaces using an optical-flow correspondence matching
technique [10]. Because all iSV acquisitions were tracked, the reconstructed surfaces
were transformed into the common coordinate system of the patient tracker rigidly
attached to the spine. To generate a composite depth projection image from this data,
a local coordinate system was created with its origin located at the centroid of the
reconstructed surface nodal positions (Fig. 2). Because the iSV images were acquired
first with the microscope focused on the tips of the spinous processes and the optical
axis perpendicular to the spine dorsal surface, the z-axis of a local coordinate system
was established along the spinal inferior-to-superior direction. The x- and y-axes were
subsequently determined along the lateral and ventral-to-dorsal directions, similarly to
the pCT coordinate system.

Next, a 2D mesh was created in the xz-plane with a nodal density of 0.5 mm per
pixel in both directions (to match the resolution of the re-sampled pCT). The mesh
physical dimensions, and hence, the image size, were determined from the combined
iSV sampling area. For each reconstructed iSV surface, nodal positions were projected
into the xz-plane with their y-coordinates assigned to the closest mesh nodes. For
each mesh node, multiple assignments were possible due to sampling overlap, and
they were averaged to produce a unique value representing the dorsal surface “height”
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in the ventral-dorsal direction. The algorithm was repeated for all iSV reconstructed
surfaces. Because the topological intensity values were averaged at a pre-determined set
of mesh nodes, multiple iSV acquisitions were easily combined. Similarly to pCT, the
iSV 3D-to-2D projection remained numerically invertible because the corresponding
3D coordinate for each 2D image pixel (and vice versa) was uniquely determined as
long as the surfaces were free of “image folding” (average coordinate in the overlapping
region). Additional thresholding and Gaussian smoothing (e.g., kernel size of 4 pixels)
were performed on the resulting depth projection image prior to intensity-based MI
rigid registration using Insight Segmentation and Registration Toolkit (ITK).

2.4 iSV-to-pCT Refined Registration

Before iSV-to-pCT MI registration of their 2D projection images, an initial alignment
was manually produced to ensure proper correspondence occurred between vertebral
segments (e.g., by clicking on the same vertebral segments in iSV and pCT projection
images to inform their correspondence). This initial alignment was only intended to
be approximate to allow the same vertebral segments in iSV and pCT corresponded
to each other. In future clinical patient cases, this initial alignment may be obviated,
e.g., by imaging and localizing in iSV the spinous process adjacent to the one on which
the patient tracker was affixed. By matching the localized spinous process with that
automatically extracted segment from a spine shape model [5], a direct global initial-
ization could be attained. On the other hand, it is important to recognize that some
user input may be unavoidable, due to the largely repetitive pattern of the vertebral
segment geometry and the limited imaging region in iSV (i.e., the exposed surgical area
only). This is justified, however, because the surgeon will most likely manually verify
and confirm the registration, regardless, given the potential catastrophic consequences
should mis-alignment or mis-registration occur in this surgical specialty [3].

Nevertheless, upon convergence of the 2D MI registration, an initial pixel-wise cor-
respondence between pCT and iSV was obtained in the overlapping region (Fig. 2).
Independently, these 2D pixels were mapped back to their respective 3D coordinates
in pCT and iSV through the inverse of the projection transformations. For pCT, an
additional rigid-body transformation was necessary to account for spinal pose adjust-
ment. The resulting one-to-one correspondences of the 3D point pairs between pCT
and iSV allowed a rigid-body transformation to be directly computed via singular
value decomposition. Subsequently, all of the combined iSV surface nodes were back-
projected from the depth projection image into the 3D coordinate system, and were
further transformed into the pCT image space. As a final step to refine the registra-
tion, an improved ICP algorithm [4] was performed on the transformed iSV surface
points (serving as “stationary”) and the same pCT point clouds corresponding to the
overlapping region. Because the pCT point cloud corresponded to a subset of the iSV
data, the registration avoided the need for iSV segmentation, which was required in
the previous method [3].

Finally, because pCT and iSV image acquisitions of the porcine spines occurred
at the same surgical stage with an identical spinal posture, no intervertebral motion
compensation was necessary for their registration in this study. In clinical patients,
obviously their image acquisitions may be performed at different stages (e.g., when
patient is in supine vs. prone for pCT and iSV, respectively), in which case interverte-
bral motion compensation becomes important. In these cases, the iSV-to-pCT registra-
tion technique developed here that treats the combined imaging area as a single unit
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will provide an initial starting position for a subsequent, refined registration performed
at each individual vertebral level. The performance of the iSV-based vertebral motion
compensation will be reported in the future.

2.5 Data Analysis

The iSV-to-pCT registration was conducted on four explanted spine samples each with
two independent image sessions/poses (i.e., total of eight). The high-resolution iSV tex-
ture images (pixel size of ∼0.2 mm) allowed accurate and unambiguous localization of
bone-implanted screws (albeit, the projection 2D image was effectively down-sampled
to match with the pCT resolution and also to reduce the computational cost). To
evaluate the performance of the iSV-based registration, the spine samples were also
independently registered with the pCT using ten (N = 10) ordered bone-implanted
screws as fiducial markers localized separately in pCT and the OR. This was conducted
following the standard procedure via the StealthStation, which included manually iden-
tifying the screw locations in the image space and localizing them in the physical space
with a tracked digitizing stylus connected to the StealthStation. Other screw tip loca-
tions in pCT not sampled with the digitizing probe were automatically localized with
a template-based technique.

For the ground-truth registration, fiducial registration error (FRE) based on the
matched 10 screw pairs between the probe and pCT was obtained (FREprobe). To eval-
uate target registration error (TRE), 4–6 probe-identified screws not used in fiducial-
based registration via the StealthStation were selected on or near the lamina to report
their root mean squared (RMS) distances (probe vs. pCT; TREprobe). Similarly, RMS
distances between the same screw pairs identified in pCT and iSV after iSV registra-
tion were reported (pCT vs. iSV; TREiSV). To further assess the iSV reconstruction
accuracy (RMSrecon), the iSV surfaces were transformed into pCT space through the
ground-truth registration (i.e., fiducial-registration using identified screw locations via
the StealthStation). The resulting RMS distances between screws identified by both the
probe and iSV were obtained (probe vs. iSV; points around iSV image boundaries were
excluded due to the potentially degraded accuracy in these areas). All image process-
ing and data analyses were performed on a Windows computer with due octo-cores
(Intel Xeon E5-2650, 2.6 GHz, 32 GB RAM) using MATLAB (R2014a, The Mathworks,
Natick, MA, USA).

3 Results

Individual registrations including the 2D MI-based image registration and 3D ICP-
based point cloud registration successfully converged within 20 s. The total pipeline
including generation of pCT and iSV depth images, iSV reconstruction and combina-
tion (Fig. 2), and the 2D and 3D registrations was 2 min. Probe-based registrations
typically required about 15–20 min (mostly for manual identification of fiducials in
both pCT image space and the OR). Figure 4 compares the iSV-pCT alignment using
registrations based on the iSV-to-pCT pipeline with that obtained via the ground-truth
probe registration using the StealthStation. Table 1 summarizes the accuracy measures
of the registrations and iSV reconstructions.
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Table 1. Summary of FRE and TRE of the probe-based registration (FREprobe and
TREprobe, respectively), TRE of the iSV registration (TREiSV), and the iSV recon-
struction accuracy (RMSrecon) for four spine samples (eight imaging sessions/poses).
In the first experiment (Pig 1), independent, probe-identified screw points were not
available (N/A) for TRE evaluation.

Acc. (mm) Pig 1 Pig 2 Pig 3 Pig 4 Avg. (mm)

(1) (2) (1) (2) (1) (2) (1) (2)

FREprobe 0.56 0.50 0.63 0.43 0.58 0.46 0.41 0.46 0.50 ± 0.08

TREprobe N/A N/A 0.62 0.67 0.68 0.73 0.56 0.50 0.63 ± 0.08

TREiSV N/A N/A 1.59 1.61 2.15 1.56 1.51 2.17 1.77 ± 0.31

RMSrecon 1.53 2.21 1.59 1.60 2.70 2.53 1.84 2.11 2.01 ± 0.44

(a) (b)

Fig. 4. The reconstructed iSV surfaces are combined and overlaid with the surface
from pCT using the iSV registration for two cases with representative poses (neutral
(1) vs. altered (2)). (a) Pig 2 (1), (b) Pig 3 (2). The iSV-identified screws are compared
with those digitized by the probe and found in the pCT using the iSV or ground-truth
probe registration (top and bottom insets, respectively). For visualization clarity, not
all iSV surfaces are shown (color figure online).

4 Discussion and Conclusion

In this study, we successfully developed a registration pipeline based on pCT and
tracked iSV to establish patient registration for image-guided spinal surgery. The reg-
istration accuracies as well as the accuracies of the iSV reconstructed surfaces were
evaluated using bone-implanted fiducials serving as the “gold standard”. The probe
had the highest, sub-millimeter accuracy in terms of both FRE and TRE, as expected.
The average iSV-based TRE was 1.77 mm based on independent screws located near
or within the surgical area of interest, which exceeded the recommended accuracy
level of 2mm [11]. The accuracy performance was comparable to that achieved with
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ultrasound, although the authors in the ultrasound study reported RMS distances of a
same set of points between the ultrasound- and probe-based registrations [2] as opposed
to errors between independent, homologous screw tip locations in iSV relative to pCT
that were not used for registration as reported here. The average iSV reconstruction
accuracy was ∼2 mm, comparable to our previous report on human patients [3]. The
total computational cost was <2 min (generation of depth projection images, iSV sur-
face reconstructions and combinations, plus registrations).

The current technique is a significant improvement over our previous method
because it efficiently combines multiple iSV acquisitions to maximize sampling of the
surgical field without involving iSV segmentation. In contrast, our earlier effort was lim-
ited to a single iSV surface and required semi-automatic segmentation of bony surfaces
for the ICP registration [3]. The registration pipeline described here essentially trans-
formed geometrical surface registration into a topological depth projection image regis-
tration, analogously to methods previously applied to the brain [9,10]. In addition, the
shape correspondence using projected 2D images was also analogous to previous studies
using surface features [7] or global surface matching [8] for registration in radiotherapy
and liver surgery, respectively. However, because a shape model was not available for
the porcine spine, some manual input to provide an approximate initial registration in
2D was still necessary, which was a limitation of our study. Regardless, we anticipate
that the technique could be further automated, by incorporating a shape model [5] in
patient cases. On the other hand, a completely automatic patient registration may not
be clinically feasible or desirable, given the potential catastrophic consequences should
mis-alignment/mis-registration occur for this surgical specialty [3].

Importantly, the accuracy and efficiency of our iSV-to-pCT registration suggest
that the technique has potential to be applied during human procedures. Probe-based
registration in spine surgery relies on anatomic landmarks, and typically requires
20–30 min [3] (vs. 2 min, with potential to further reduce manual operations by incor-
porating a shape model [5]). Intervertebral motion compensation was not necessary in
our current study, because both images were acquired at an identical spinal posture.
However, the technique developed here that treats the exposed spinal surface as a single
unit for registration may effectively serve as an initial starting position for subsequent,
more refined registrations at the individual vertebral level. By quantifying the relative
differences between the global iSV-to-pCT registration and those obtained from each
individual vertebral level, the intervertebral motion can be directly quantified. The
accuracy and efficiency performances of the iSV registration suggest the feasibility of
this strategy. Results from these investigations will be reported in the future.

If an accurate, robust, and efficient patient registration can be readily achieved
with radiation-free, low-cost intraoperative images, application of image-guidance is
likely to be broadened within spine surgery. The technique presented here suggests
that the iSV technique, with further improvement (e.g., via a shape model to improve
automation), may become clinically feasible to provide an effective patient registration
in human subjects.
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Abstract. We describe a method for automatic detection and localisa-
tion of vertebrae in clinical images that was designed to avoid making a
priori assumptions of how many vertebrae are visible. Multiple random
forest regressors were trained to identify vertebral end-plates, providing
estimates of both the location and pose of the vertebrae. The highest-
weighted responses from each model were combined using a Hough-style
voting array. A graphical approach was then used to extract contigu-
ous sets of detections representing neighbouring vertebrae, by finding
a path linking modes of high weight, subject to pose constraints. The
method was evaluated on 320 lateral dual-energy X-ray absorptiometry
spinal images with a high prevalence of osteoporotic vertebral fractures,
and detected 92 % of the vertebrae between T7 and L4 with a mean
localisation error of 2.36 mm. When used to initialise a constrained local
model segmentation of the vertebrae, the method increased the incidence
of fit failures from 1.5 to 2.1 % compared to manual initialisation, and
produced no difference in fracture classification using a simple classifier.

1 Introduction

Osteoporosis is a common skeletal disorder defined by a reduction in bone min-
eral density (BMD) resulting in a T-score of <2.5 (i.e. more than 2.5 standard
deviations below the mean in young adults), measured using dual energy X-
ray absorptiometry (DXA) [1]. It significantly increases the risk of fractures,
most commonly occurring in the hips, wrists or vertebrae. Approximately 40 %
of postmenopausal Caucasian women are affected, increasing their lifetime risk
of fragility fractures to as much as 40 % [1]. Osteoporosis therefore presents a
significant public health problem for an ageing population. However, between
30–60 % of vertebral fractures may be asymptomatic and only about one third
of those present on images come to clinical attention; they are frequently not
noted by radiologists, not entered into medical notes, and do not lead to preven-
tative treatments [2]. Many of these cases involve images acquired for purposes
other than assessment for the presence of vertebral fractures, so identification
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may be opportunistic. However, a recent multi-centre, multinational prospec-
tive study [3] found a false negative rate of 34 % for reporting vertebral frac-
tures from lateral radiographs of the thoracolumbar spine. The potential utility
of computer-aided vertebral fracture identification systems is therefore consid-
erable. Modern clinical imaging is primarily digital, with images acquired in
digital imaging and communications in medicine (DICOM) format and stored
on a picture archiving and communication system (PACS). A system that could
interface with a PACS, use information from the DICOM header to select images
that cover a portion of the spine, automatically segment vertebrae, and detect
any abnormal shape would therefore be particularly valuable.

Several authors have investigated the use of methods based on statistical
shape models to segment vertebrae in both radiographs, e.g. de Bruijne et al. [4],
and DXA images, e.g. Roberts et al. [5]. In recent work [6], the random for-
est regression voting constrained local model (RFRV-CLM) [7] was applied to
DXA images. This approach uses random forest (RF) [8] regressors to predict
the locations of landmarks that delineate the vertebrae. Each RF predicts one
landmark, and fitting is performed subject to a constraint provided by a global
shape model. The RFRV-CLM was shown to be more robust, i.e. suffered from a
smaller number of fitting failures on more severely fractured vertebrae, than the
active appearance model [9], an important consideration in clinical tasks where
pathological cases are most significant. High-resolution RFRV-CLMs require ini-
tialisation relatively close to the location of the structure being segmented. The
use of multi-stage, coarse-to-fine models can reduce the required initialisation
accuracy. However, fully automatic application of such models still requires an
initial estimate of the location of each vertebra. This is problematic due to the
repetitive nature of vertebrae and the extensive shape differences between nor-
mal and pathological anatomy.

A variety of methods that detect potential vertebral candidates have been
proposed; see Glocker et al. [10] for references. However, most assume that the
number of vertebrae visible in the image is known a priori. This is a significant
limitation, particularly when using midline sagittal reformatted images from
computed tomography (CT) scans performed for various clinical indicators and
not specifically acquired to view the spine, since the region of the body imaged
can vary significantly. DXA images acquired for vertebral fracture assessment
(VFA) typically cover the anatomy from T4 to L4. However, confounding bony
structures, adipose tissue in the abdomen, or variation in the field of view can
result in vertebrae being obscured or omitted, leading to fit failures with models
that assume a certain number of vertebrae are present and can be accurately
located. Several authors have proposed solutions to the more general problem of
vertebra localisation where the number present is not known a priori. Klinder
et al. [11] described a framework for fully automatic localisation, identification
and segmentation of vertebrae in CT images, producing a triangulated surface
mesh and a level label for all visible vertebrae. However, a complex chain of
processing steps was required. Glocker et al. [10] used RF regressors trained on
features from arbitrary, unregistered CT images to predict the locations of all
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visible vertebral centroids simultaneously, followed by a refinement stage using
a probabilistic graphical model. Later work [12] reported that this approach
had problems with images featuring pathology or very narrow fields of view,
and instead used RF classifiers to generate a probabilistic label map for verte-
bral centroids, combined with a shape and appearance model to remove false
positives.

We describe a method for detecting vertebrae in clinical images, based on RF
regressors, that is intended to be robust to obscured or non-present vertebrae.
The key idea is to use a set of relatively non-specific regressors trained to pre-
dict the location and pose of lower vertebral end-plates. Each regressor detects
multiple vertebrae in a query image, and so does not require a specific vertebra
to be present and visible. The results are combined using a Hough-style voting
array, and the modes of the smoothed array represent potential detections. A
graphical approach is then used to find the highest-weighted path through the
modes subject to pose constraints. An evaluation on 320 DXA VFA images with
a high prevalence of osteoporotic fractures is described in Sect. 3.

2 Method

The algorithm described here was based on our own implementation of Hough
forests [13], and used a set of RF regressors, each trained on a different verte-
bral level, to predict the offset to a distinctive portion of that vertebra given
local patches of image features. Figures 1 and 2 show the various stages of the
algorithm. Training data consisted of a set of lateral DXA spinal images I with
manual annotations xl of N points l = 1. . .N on each, outlining the vertebrae
(see Fig. 1). The two end points of the curve that delineated the lower end
plate were extracted. The lower end-plate was used as, of the four sides of the
vertebra visible in the lateral view, it tends to exhibit the smallest changes in
size and pose when osteoporotic fractures are present. The two reference points
were used to calculate the parameters θ of a similarity registration that trans-
formed the image into a standardised reference frame, such that the reference
points were transformed to specific coordinates. The image was then resampled
into this frame by applying Ir(m,n)= I(T−1

θ (m,n)), where (m,n) specify pixel
coordinates. A scaling parameter wframe set the reference frame width in pixels,
allowing variation of the resolution.

A set of random displacements dj was then generated by sampling from a
uniform distribution in the range [−dmax,+dmax] in x and y. Patches of image
data of area w2

patch were extracted from the reference frame images at these
displacements, and features f j extracted from them. Haar-like features were
used [14], as they have proven effective for a range of applications and can
be calculated efficiently from integral images. The process was repeated with
random perturbations in scale and orientation to make the detector locally pose-
invariant. The free parameters were chosen to set wpatch to twice the length of the
lower end-plate and the reference points to relative coordinates (0.75, 0.25) and
(0.75, 0.75) in an undisplaced patch i.e. the patch size was equivalent to an entire
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(a) (b) (c)

Fig. 1. (a) Example lateral DXA spinal image with manual annotations of 405 points
on T7-L4. (b) Top 100 detections from each of the 10 lower end-plate detectors, overlaid
on the manual annotations. The hue indicates the vertebral level on which the detector
was trained, from T7 (green) to L4 (red), and the saturation and line thickness indicate
the weighting. (c) The smoothed Hough voting array produced from the posterior point
of the end-plate detections, and the detected modes. (Color figure online)

vertebra plus a border of (approximately, given that vertebrae are not square)
one quarter of the end-plate length around each boundary. The resolution was
set to 1 mm per pixel, and dmax was set to 0.4 of the patch size, so that the
patches always covered more of the target vertebra than its neighbours. The
pose variation was set to 0.1 rad, the resolution of the search (see below).

A RF was then constructed; each tree was trained on a bootstrap sample of
pairs {(f j ,dj)} from the training data using a standard, greedy approach. At
each node, a random set of nfeat features was chosen by sampling from a uniform
distribution of range 1. . .NMRS and using the result as skip sizes through the
feature list. A feature fi and threshold t that best split the data into two compact
groups were chosen by minimising

GT (t) = G
({di : fi < t})

+ G
({di : fi ≥ t}) where G

({di}
)

= Nslog|Σ |. (1)
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(a) (b) (c)

Fig. 2. (a) The highest-weight set of linked modes from the Hough array, overlaid on
the original image (see Fig. 1). (b) Example fitted 99-point RFRV-CLM triplet model
initialised with the three lowest automatic detections. (c) Concatenated points from the
central vertebra in all fitted RFRV-CLM triplet models initialised from the automatic
vertebra detections.

G(S) is an entropy measure, Ns is the number of samples and Σ is their covari-
ance matrix. Splitting terminated at either a maximum depth, Dmax, or a
minimum number of samples, Nmin. The process was repeated to generate a
forest of size ntrees. Free parameters of the RFs (NMRS , Dmax, Nmin, ntrees)
were set to the values given in the study of Bromiley et al. [6].

To detect vertebrae in a query image, a grid of points covering the image was
defined; the resolution of this grid was set to 3mm. Each of the RF end-plate
detectors was applied at each grid location. The required Haar-like features were
extracted and passed into the RF, which output a prediction of the displacement
to the reference points. The process was repeated with a range of angle and scale
variation. Since RF searching is fast, optimisation of free parameters was avoided
by using large search ranges: −0.8 to 0.8 rad in steps of 0.1, and scales from 0.1
to 4 in rational/integer steps. For each detector, the predictions were used to
vote into a Hough array. Each vote was weighted by the determinant of the
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covariance matrix of the samples that reached the relevant RF leaf node. The
array was then smoothed using a Gaussian kernel of standard deviation (s.d.)
1mm, to allow mode detection using a 9-way maximum, and the modes detected
using exhaustive search. Each mode was a potential end-plate detection.

Vertebrae are repeating structures with considerable similarity in shape
between neighbours. Therefore, each RF end-plate detector tended to locate
multiple vertebrae across a considerable range of the spine (see Fig. 1). This
provided robustness to variations in exactly which vertebrae were visible in the
image. A second stage of Hough voting was performed to combine the results
from the multiple models and estimate the location and pose of all detected ver-
tebrae1. The highest-weighted Nmodes modes from each detector were used to
cast votes into a single Hough array. Each vote was weighted by the length of the
line subtended by the two reference points. This had two effects. First, it acted
as a shape prior; vertebrae are the largest structures in spinal images that might
be delineated by parallel edges, so the weighting aided in elimination of false
detections on ribs, humerus etc. Second, it weighted the vote according to the
amount of information it contained about the vertebral pose. The array was then
smoothed with a Gaussian kernel of s.d. σcomb, and modes were detected. Esti-
mating the location and pose simultaneously would require a four-dimensional
array, which would be inefficient in terms of memory requirements, and would
require a large Nmodes to avoid problems with sparsity. Therefore, a two stage
approach was adopted. The posterior-most point of the detection was used to
vote into a two-dimensional (2D) array. For each detected mode in this array, all
votes within 3σcomb were extracted, and their anterior-most points were used to
vote into a second 2D array. This was again smoothed using a Gaussian kernel of
s.d. σcomb, and the main mode was detected. σcomb was set to 5mm, and Nmodes

was set to 100.
The result of the combined Hough voting was a single set of Nm potential

lower end-plate detections (see Fig. 1), containing false positives. To initialise a
subsequent appearance model, an ordered set of points with no missing vertebrae
or false detections was required, and so a graphical method was used to extract
the highest-weighted subset of modes subject to pose constraints. This could be
performed by optimising over all possible paths through the graph. In practice,
it was found to be sufficient to start from the highest-weighted mode in the
posterior-point Hough array. The main mode of the corresponding anterior-point
Hough array gave an estimate of the vertebral pose. The normals to the vector
between these modes specified the local superior and inferior directions of the
spine, and a path was extracted by searching in each direction using

arg min
i=1...Nm,

i�=c

‖pi − pc‖ s.t. wi > wt,
rot(ac − pc,±π/2).(pi − pc)

|rot(ac − pc,±π/2)||(pi − pc)| > cos θt, (2)

1 This was performed as a separate step for implementation reasons. We have not yet
investigated the possibility of performing the search for all RF regressors using a
combined array.



44 P.A. Bromiley et al.

where pi is the location of mode i in the posterior-point Hough array, ai the
corresponding anterior point, c specifies the current mode, wi is the weight of
mode i, wt and θt are thresholds, and ± specifies the search direction. θt was set
to twice the angular resolution of the RF search, and wt was set to the 2σ value
of a Gaussian distribution with a s.d. of σcomb and a mean scaled to the height of
the highest-weighted mode in the posterior-point Hough array. This eliminated
any statistically insignificant modes whilst accounting both for the smoothing
applied and the typical width of the distribution of votes contributing to the
modes. The result of the search was a set of ordered points that specified the
posterior-most points on the lower end-plates; an example is given in Fig. 2. The
remaining orientation ambiguity was resolved by assuming that the superior-to-
inferior axis of the body corresponded more closely to the direction of increasing
image y-coordinate.

The extracted path might have missing detections, posing a problem for ini-
tialisation of subsequent shape and appearance models. Therefore, a second stage
of searching through the posterior-point array, equivalent to the use of an adap-
tive threshold, was included. The lengths of the links in the path were compared
to normative vertebral heights learned from the training data, assuming that the
lowest detection was on L4, and any heights more than 1.5 times that expected
were referred for the second search. A threshold w′

t was calculated using the
same procedure as wt, but the 3σ point of the distribution. The values in the
posterior-point voting array along the link were analysed at a set of rational
steps (1/2, 1/3 and 2/3 etc.). The set, if any, that had the highest proportional
weight, and individual weights higher than w′

t, was added to the path. This pro-
cedure was sub-optimal as it assumed a vertebral level assignment and, in future
work, we intend to replace it with a robust, shape-model based procedure.

3 Evaluation

The method was evaluated on 320 DXA VFA images scanned on various Hologic
(Bedford, MA, USA) scanners2. Manual annotations of 405 landmarks were avail-
able for each image, covering the vertebrae from T7 to L4 (see Fig. 1). Each of
these vertebrae was also classified by an expert radiologist into one of five groups
(normal, deformed but not fractured, and grade 1, 2 and 3 fractures according
to the Genant definitions [16]).

The automatic initialisation algorithm was applied in a leave-1/4-out proce-
dure, using 3/4 of the data to train the detectors and then applying them to
the remaining 1/4. Figure 3 shows the accuracy of the detected lower end-plate
points, and the number of such points detected, after the extraction of the linked
path and after the additional search to detect missing points in the path. A verte-
bral level was manually assigned to each detection, by finding the closest manual
2 44 patients from a previous study [15]; 80 female subjects in an epidemiological study

of a UK cohort born in 1946; 196 females attending a local clinic for DXA BMD
measurement, for whom the referring physician had requested VFA (approved by
the local ethics committee).
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(a) (b)

Fig. 3. Cumulative distribution function (CDF) of the P-to-P errors (a) and number
of points detected (b) for the 320 DXA images, after path extraction and missing point
detection. (Color figure online)

posterior lower end-plate point. Errors are given as the Euclidean distance, in
millimetres, between the detected point and the corresponding manual annota-
tion (point-to-point, or P-to-P, error). Additional vertebrae were detected above
T7 in many images, and below L4 in some. Since manual annotations were not
available for these, detections above the centroid of T7, and below the centroid
of L4 plus its height, were removed from the analysis. The proportions of the
vertebrae detected at each level are given in Table 1. There is a reduction in the
proportion of detections above T10 and for L4, where the vertebrae are obscured
by other bony structures. However, over 90% of the vertebrae were detected at
other levels. The additional search to detect missing points resulted in no signifi-
cant accuracy loss, but a 4.4% rise in detected points. Nine out of the ten target
points were found in 85% of the images, and at least six were found in 99% of
the images. RF searching was inefficient by design (see Sect. 2) and took 16.7 s
per regressor per image on a machine with two Xeon X5670 processors using a
single core; the Hough voting based combination of the results and extraction of
the linked modes took 1.24 s per image.

The automatically detected lower end-plate points were then used to ini-
tialise the fitting of a RFRV-CLM covering a triplet of neighbouring vertebrae,
as described in the study of Bromiley et al. [6], and the results compared to
those achieved using manual initialisation of the same points. This model cov-
ered 99 points (33 on each of the vertebrae in the triplet). For the automatic
initialisation, the RFRV-CLM was applied to all triplets of neighbouring initial-
isation points. The 33 points on the central vertebra were then extracted; no use
was made of the overlap of neighbouring models. A vertebral level was manually
assigned by comparing the centroid of these points and of the manual anno-
tations for each vertebra. Additional vertebrae above T7 were again removed
from the analysis, and errors were calculated for each point as the minimum
Euclidean distance to a piecewise linear curve through the manual annotations
(point-to-curve or P-to-C error), to compensate for the aperture problem with
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Table 1. Statistics of the mean P-to-C errors on each vertebra after RFRV-CLM fitting,
using manual and automatic initialisation. Column five gives the %age of vertebrae at
each level that had an end-plate detection and, in brackets, a central vertebra from
a RFRV-CLM fit assigned to them. Fitting of L4 required L5 to be detected; this is
rarely present in DXA VFA images, hence the low percentage of L4 fits.

Vertebral
level

Manual initialisation Automatic initialisation

Median
(mm)

Mean
(mm)

Errors >2
mm (%)

Detected
(%)

Median
(mm)

Mean
(mm)

Errors >2
mm (%)

T7 − − − 64.69
(46.87)

0.70 1.19 12.7

T8 0.54 0.72 3.44 87.81
(71.21)

0.53 0.79 4.39

T9 0.49 0.60 2.19 95.63
(88.75)

0.48 0.69 3.17

T10 0.51 0.60 1.56 98.75
(95.63)

0.51 0.67 2.61

T11 0.56 0.70 1.25 100.0
(98.12)

0.55 0.78 2.86

T12 0.59 0.70 1.88 100.0
(99.38)

0.58 0.75 3.14

L1 0.56 0.64 1.25 100.0
(99.38)

0.54 0.62 0.94

L2 0.57 0.63 0.31 100.0
(98.75)

0.57 0.62 0.32

L3 0.56 0.63 0.31 96.88
(79.38)

0.53 0.60 0.0

L4 − − − 77.19
(13.13)

0.53 0.60 0.0

dense annotations on extended edges. The mean error over each fitted vertebra
was then calculated. The same metric was applied to the manually initialised fits
and, for consistency, only those triplets for which all three of the initialisation
points were available were included. Therefore, results on T7 and L4 were not
available for manual initialisation. Example results from a single triplet model
fit, and the concatenated central vertebra points from all triplets, are shown in
Fig. 2.

Figures 4 and 5 show CDFs of the mean P-to-C error on manually and auto-
matically initialised RFRV-CLM fits for each vertebral level, and for each verte-
bral status. Tables 1 and 2 provide statistics derived from these curves, including
the percentage of vertebrae with mean P-to-C errors above 2mm, which gives
an indication of the proportion of fit failures. There is little difference between
the medians or means for either status or level, indicating that the accuracy
of the RFRV-CLM fitting is largely independent of the initialisation as long as
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(a) (b)

Fig. 4. CDFs of the mean P-to-C errors of the 33 points on the central vertebra in
each RFRV-CLM triplet model for the 320 DXA images, for each vertebral level, for
manual (a) and automatic (b) initialisation. (Color figure online)

Table 2. Statistics of the mean P-to-C errors on each vertebra after RFRV-CLM
fitting, using manual and automatic initialisation.

Vertebra % age of Manual initialisation Automatic initialisation
status sample

Median Mean Errors >2 Detected Median Mean Errors >2
(mm) (mm) mm (%) (%) (mm) (mm) mm (%)

Normal 84.0 0.52 0.60 0.80 78.7± 0.8 0.52 0.63 1.38

Deformed 4.6 0.59 0.71 1.74 78.6± 3.4 0.58 0.73 2.73

Grade 1 3.5 0.61 0.79 1.14 83.2± 4.0 0.64 0.95 7.14

Grade 2 4.5 0.76 0.88 2.63 85.4± 3.6 0.77 1.06 6.30

Grade 3 3.5 0.87 1.16 11.49 85.7± 4.0 0.88 1.33 13.33

it is within the capture range of the model. The percentage of fitting failures
on all detected vertebrae between T8 and L3 increased from 1.5% for manual
initialisation to 2.1% for automatic, but the increase was larger for fractured
vertebrae. However, using the 2mm threshold, at least 86.7% of vertebrae were
successfully fitted, regardless of status. Importantly, there was no statistically
significant variation in the proportion of vertebrae detected with vertebral status
i.e. no evidence of bias against detecting fractured or non-fractured vertebrae.

To evaluate the importance of the differences in segmentation accuracy, a
simple classifier based on the standard six-point morphometry technique was
applied to the results from both manually and automatically initialised RFRV-
CLM fits. The anterior Ha, middle Hm, and posterior Hp heights of each verte-
bra were extracted. A predicted posterior height Hp′ of each vertebra was also
calculated by taking the posterior heights of the closest four annotated verte-
brae, multiplying by ratios of vertebral heights in normative data obtained from
the study of Leidig-Bruckner and Minne [17], and taking the maximum of the
four values (on the basis that fractures reduce vertebral height). This process
used the vertebral level assignment derived from the manual annotations for the
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(a) (b)

Fig. 5. CDFs of the mean P-to-C errors of the 33 points on the central vertebra in
each RFRV-CLM triplet model for the 320 DXA images, for each vertebral status, for
manual (a) and automatic (b) initialisation. (Color figure online)

automatically initialised results. Three ratios were then calculated: the biconcav-
ity ratio Hm/Hp, the wedge ratio Ha/Hp, and the crush ratio Hp/Hp′ . The data
were whitened by subtracting the median and dividing by the square root of the
covariance matrix (estimated using the median absolute deviation). The result-
ing data for the automatically initialised annotations are shown in Fig. 6, showing
clear separation between the normal and fractured vertebrae and, in particular,
that deformed vertebrae are displaced from the normal class along a different
vector through the space than the fractured vertebrae. However, since only a
simple classifier was intended, a threshold was applied to the Euclidean distance
between the origin and the point defined by the three height ratios, to classify
the vertebrae into non-fractured (normal and deformed) and fractured (grade 1,

(a) (b)

Fig. 6. (a) The whitened biconcavity and wedge ratios used by the simple classifier
(black = normal; red = deformed; green, blue, cyan = grade 1, 2, 3 fractures, respec-
tively). (b) ROC curves for classification of the detected vertebrae using the manual
annotations, and RFRV-CLM annotations with manual and automatic initialisation.
(Color figure online)
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2 and 3) classes. Figure 6 shows receiver operating characteristic (ROC) curves
produced by varying the threshold. The simple classifier achieves 90% sensitivity
at a false positive rate of 10% when applied to the manual annotations. Using
the manually initialised annotations reduced this to 80%, largely due to errors
on grade 1 fractures, where shape changes can be quite subtle. However, there
was no significant difference in classifier accuracy between manual and automatic
initialisation.

4 Conclusion

This paper has described a method for automatic detection and localisation
of vertebrae in clinical images. The algorithm relies on a set of RF regressors
trained to predict the location of vertebral lower end-plates. We have demon-
strated that the individual RFs are not specific to the vertebrae they were trained
on but instead, due to the similarity of neighbouring vertebrae, respond over a
considerable range of the spine. This provides robustness to vertebrae that are
obscured or not present. The use of multiple models, and Hough voting to com-
bine their results, provides robustness to fit failures [18]. The failure of any one
RF to detect vertebrae will result in responses scattered throughout the voting
array. Only locations that result in strong responses from multiple models will
result in significant modes. These are detected, and a graphical method applied
to find a path through the detections, subject to pose constraints. This can be
used to initialise a high-resolution appearance model that provides an accurate
segmentation.

The method was evaluated on 320 DXA VFA images with a high prevalence
of osteoporotic fractures. Other authors who have studied this problem [10–
12] have used CT images that, since the modality is used for a wider range of
clinical purposes, show a much larger variation in the region of the spine being
imaged and the number of vertebrae visible. The difference in the dimensionality
of the images prevents any comparison of localisation accuracy. However, we
note that the proportions of vertebrae detected by Glocker et al. [10,12] are
similar to the detection rates presented here. Instead, our evaluation focused on
using the automatic annotations, and the equivalent manually annotated points,
to initialise a RFRV-CLM. This demonstrated no difference in accuracy when
the initialisation was within the capture range of the RFRV-CLM. Automatic
initialisation led to more fit failures on grade 1 fractures, where the shape change
may be subtle. However, the increase was smaller on grade 2 and 3 fractures. A
simple classifier was applied, and showed little difference in performance between
RFRV-CLM segmentations using manual and automatic initialisation.

One drawback of the algorithm is that it implicitly assumes prior knowledge
of an overall image scaling, in the form of the pixel size in mm, although this
information is available in the DICOM header for digital clinical images. Another
is the relatively simple technique used to extract the path through the modes of
the voting array. An appearance model based technique, such as that described
in the study of Glocker et al. [12], might prove more robust. Finally, we have not
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yet evaluated the technique on images showing wide variation in the number of
visible vertebrae. These issues will be addressed in future work.
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Abstract. Algorithms based on the unscented Kalman filter (UKF)
have been proposed as an alternative for registration of point clouds
obtained from vertebral ultrasound (US) and computerised tomography
(CT) scans, effectively handling the US limited depth and low signal-
to-noise ratio. Previously proposed methods are accurate, but their con-
vergence rate is considerably reduced with initial misalignments of the
datasets greater than 30◦ or 30 mm. We propose a novel method which
increases robustness by adding a coarse alignment of the datasets’ prin-
cipal components and batch-based point inclusions for the UKF. Exper-
iments with simulated scans with full coverage of a single vertebra show
the method’s capability and accuracy to correct misalignments as large
as 180◦ and 90 mm. Furthermore, the method registers datasets with
varying degrees of missing data and datasets with outlier points coming
from adjacent vertebrae.

1 Introduction

In the realm of spinal surgery, ultrasound (US) is an attractive imaging modality
for image-guided interventions because it is non-invasive, produces no radiation,
offers real-time acquisition and has low costs. However, the registration of US
intra-operative scans with respect to (w.r.t.) pre-operative scans (e.g. comput-
erised tomography, CT) is challenging because of the limited depth of field, low
resolution and reduced signal-to-noise ratio of US scans.

Among the proposed strategies for US to CT registration, the methods based
on the unscented Kalman filter (UKF) have proven to effectively handle datasets
with incomplete and noisy data. However, the UKF-based methods require a
good initial alignment between the CT and US datasets to perform accurate
registrations.

In this work, we implement a registration algorithm that addresses the prob-
lem of producing a good initial guess of the registration parameters by means
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 52–63, 2016.
DOI: 10.1007/978-3-319-41827-8 5
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of a principal component analysis (PCA) of the point clouds. This good initial
guess enables the robust functioning of UKF, unviable otherwise. Our registra-
tion algorithm refines the registration parameters obtained from the PCA by
implementing an UKF with a modified batch-based point inclusion strategy for
its iterations. The proposed algorithm was tested systematically with simulated
data, considering scenarios with partial scans of the vertebra and with outlier
points coming from adjacent vertebrae, which were not addressed in other works
based on the use of the UKF. In all cases, the proposed method obtained remark-
able results.

1.1 Related Work

Several methods have been proposed to register CT and US volumes. On one
hand, intensity-based methods are interesting because segmentation of the CT
and US datasets is avoided. Methods of Lang et al. [1] and Gill et al. [2] are based
on the US simulation of the CT volume. Then, the acquired and simulated US
are registered by maximizing an intensity similarity metric between them. These
methods are able to register datasets with initial misalignments up to 20 mm.
In order to avoid US volume reconstruction, Yan et al. [3] propose a method to
register a group of US slices to a CT volume. However, such method requires
that the initial misalignments between the datasets are smaller than 15 mm
to work properly. To overcome limitations of previous approaches, Hacihaliloglu
et al. [4] present a method that projects, by using three-dimensional (3D) Radon
transform, and aligns local phase-based bone features in the projective space.
The quantitative evaluation of such method (initial misalignments of the datasets
between ±30 mm and ±15◦) proves its accuracy. A general limitation of the
reviewed methods is their computational complexity, which impedes their real-
time use.

On the other hand, real-time US to CT registration is usually based on
point-based registration methods, such as the iterative closest point (ICP) algo-
rithm [5]. In this line of work, Ungi et al. [6] present an algorithm based on
the pairing of manually defined landmarks in the CT and US data by using a
simplified version of the ICP algorithm. The ICP method, however, is vulnerable
to outlier points in the datasets, only accounts for isotropic Gaussian noise on
both datasets and it requires a good initial registration guess.

To improve upon ICP, methods based on the Kalman filter have been pro-
posed for registration of point clouds carrying anisotropic noise. In the work of
Moghari and Abolmaesumi [7], an UKF-based registration method that is more
accurate and robust than the ICP is presented. However, the UKF robustness
sharply decreases with low quality (misalignment beyond 30◦ or 30 mm) in the
initially guessed registration. In the work of Talib et al. [8], a linear Kalman
filter (LKF) is used to register coplanar points of US snapshots as they are
acquired from the patient. The LKF shows good accuracy and response times in
the registration if the initial registration guess has misalignments under 5◦ and
20 mm [8].
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Although methods in the works of Moghari and Abolmaesumi [7] and Talib
et al. [8] require a good initial alignment between the datasets, such works do
not report any action to overcome such an obstacle. In response to the men-
tioned limitations, we present a complete registration algorithm composed of
two stages: (1) a coarse registration stage based on PCA, capable of correct-
ing large misalignments between the CT and US datasets, and (2) a fast fine
registration stage based on the UKF, which refines the initial guess from PCA.

2 Materials and Methods

2.1 Registration Problem

The registration problem consists in the statistical estimation of a rigid transfor-
mation T(R, t) which brings the CT point cloud (Y ∈ R

3×N ) and the US points
cloud (U ∈ R

3×M ) into alignment. R represents a rotation matrix (belonging to
the special orthogonal SO(3) group) parameterized by Euler angles [θx, θy, θz]
and t= [tx, ty, tz]

T is translation vector. Then, the registration problem can be
stated as finding R and t such that the cost function f is minimized:

f =
M∑
i=1

∥∥∥ci − (Rui + t)
∥∥∥, (1)

where points ci ∈ Y and points ui ∈ U. Points ci are computed as
ci = Ψ(Y,Rui + t) where function c= Ψ(A,b) finds the point c in set A that
presents the minimum Euclidean distance to point b. Notice that the CT and
US scans: 1. do not sample the same object points, 2. do not have the same
sizes, 3. do not completely sample the interest subset, 4. do not only sample the
interest subset and may include points from adjacent objects.

2.2 Registration by Using PCA and Kalman Filters

The workflow of the implemented registration algorithm is shown in Fig. 1(a).
In the PCA-based registration, the parameters of a coarse registration transfor-
mation T0 are estimated, and then, point cloud U is transformed as T0U. In
the UKF-based registration (Fig. 1(b)), point cloud T0U is incrementally trans-
formed as TjTj−1 . . .T1T0U=TeU where Tj is the transformation estimated
in iteration j of the UKF. Te(Re, te) minimizes (1).

Coarse Registration Using PCA. A pre-requisite for PCA-based registra-
tion is the fact (indeed present in vertebrae cases) that object protrusions and
asymmetries exist, which guide the alignment.

Since point clouds Y and U sample enough common neighborhoods in the
object, we propose to initialize the registration procedure by aligning the prin-
cipal axes of data sets Y and U. Let V and W be 3 × 3 ∈ SO(3) matrices
containing the principal axes (eigenvectors) of point sets Y and U, respectively.
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Fig. 1. (a) Workflow of the implemented registration algorithm. (b) Workflow of the
UKF-based registration.

V and W are obtained by singular value decomposition (SVD) of the covariance
matrices of their respective point clouds [9]. V and W have their orthogonal
column vectors sorted in order of descending variance, with determinant +1
enforced. R is given by:

R = VWT . (2)

The translation vector t is determined by the distance between the centroid of
dataset Y and the rotated centroid of dataset U:

t = cY − RcU, (3)

where cY and cU are the centroids of Y and U respectively.
PCA determines the direction of each principal axis of the data but allows

sign ambiguity. Therefore, the sign of eigenvectors in W is set so the distance
between the point clouds T0U and Y is minimized. The resulting misalignment
between Y and T0U is deterministic and is independent of any rigid transfor-
mation applied on Y or U.

Fine Registration Using the Unscented Kalman Filter. The implemented
UKF formulation is a variant of the one presented in the work of Moghari and
Abolmaesumi [7]. To register point clouds Y and U using the UKF, points in U
and Y are regarded as inputs and outputs, respectively, of a multiple-input and
multiple-output (MIMO) system. The non-linear system state vector is then
x= [θx, θy, θz, tx, ty, tz]

T , which builds transformation matrix T(R, t) (Eq. 1).
The UFK is comprised by the prediction and correction steps of the estimates of
x (Fig. 1(b)). The a priori and maximum a posteriori estimates of x in iteration
j are denoted as −x̂j(predicted) and x̂j(corrected), respectively.

Prediction of x̂: In this step, a prediction of the values of the system variables
is performed and with such prediction the outputs of the MIMO system are
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also predicted for a given set of inputs. In the prediction step, the fact that U
is transformed incrementally is considered. Let the state of U in iteration j of
the UKF be denoted by Ue, where Ue =TeU=TjTj−1 . . .T0U. This means
that initial matrices Tj represent relatively large transformations, but, as more
iterations are completed, matrices Tj represent transformations similar to the
identity matrix (I). Following this rationale, a reasonable guess of the transfor-
mation to be applied in iteration j + 1 is the one applied in iteration j. Then,
the prediction −x̂j+1 is computed as per (4):

−x̂j+1 = x̂j(∀j ≥ 1). (4)

Notice that the input for the fine registration method is the transformed dataset
T0U, which is closely aligned with Y. Therefore, x̂0 (which may represent a
large transformation) is not used to predict −x̂1. Instead, −x̂1 is initialized such
that it represents the identity matrix (I), as proposed in the work of Moghari
and Abolmaesumi [7].

Let uj+1 =
[
uT
1 ,uT

2 , . . . ,uT
m

]T = [x1, y1, z1, x2, y2, z2, . . . , xm, ym, zm]T be a
vector (with size 3m× 1) containing the (x, y, z) coordinates of points ∈ Ue

concatenated vertically, which are used to estimate x̂j+1. To achieve a smooth
behavior of the filter, uj+1 is populated keeping a set of points from Ue previ-
ously used in the registration, but adding a new set of points not used before in
the estimation of the state vector x̂.

For each point ui ∈uj+1 a prediction (−ŷi) of its corresponding point in
dataset Y is computed as per (5), where xθ = [θx, θy, θz]

T and xt = [tx, ty, tz]
T .

The vector containing the coordinates of the predicted −ŷi points is
−ŷj+1 =

[−ŷT
1 , . . . ,− ŷT

m

]T :

−ŷi = R(−x̂j+1
θ )ui +− xj+1

t . (5)

Correction of x̂: The correction of x̂ is based on the minimization of the distances
between the predicted −ŷi (5) and the observed yi points (yi ∈ Y) that corre-
spond to points ui. The points yi are defined as the observed correspondences in
Y to points ui. The points yi are the ones that present the minimum Euclidean
distance to the points ui transformed by (5), and therefore, points yi are com-
puted as yi = Ψ (Y,− ŷi). The vector containing the observed correspondences yi

is yj+1 =
[
yT
1 , . . . ,yT

m

]T . Then, x̂ is corrected as per (6), where Kj+1 ∈R
6×3m

is the Kalman gain matrix. K and the covariance matrices of the noise and state
vector are computed as proposed by Moghari and Abolmaesumi [7]:

x̂j+1 =− x̂j+1 + Kj+1(yj+1 −− ŷj+1). (6)

Finally, Tj+1 is assembled with the estimated variables in x̂j+1 and it is applied
to dataset Ue, Ue =Tj+1Ue. The prediction and correction steps are repeated
until convergence is achieved. Notice that the fact that this algorithm registers
point batches yi and ui, which contain m points, does not imply that point
clouds U and Y must have the same size.
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(a) (b)

Fig. 2. (a) Typical anatomy of a lumbar vertebra. (b) US views to scan it defined in
the work of Chin et al. [10]: paramedian sagittal (PS) transverse process view (top
left), PS articular process view (top right), PS oblique view (bottom left), transverse
spinous process view (bottom centre) and transverse interlaminar view (bottom right).

In contrast to the UKF formulation in the work of Moghari and Abolmae-
sumi [7], the size of uj+1 remains constant (batches of points of size 3m× 1).
In the work of Moghari and Abolmaesumi [7] a point from Ue is added to uj+1

in each iteration j until convergence is achieved or all points in Ue have been
added to uj+1. Notice that Moghari and Abolmaesumi [7] the inversion of matri-
ces with size 3m× 3m, with m increasing in each iteration, is required, which
becomes computationally expensive as more iterations are completed [8].

2.3 Evaluation of the Performance of the Registration Algorithm

The performance of our implemented registration algorithm is assessed in the
following clinical scenarios:

1. Base-Case: When a reasonable quality US scan U of only the target vertebra
is available.

2. Incomplete US-Scans: When specific regions of the target vertebra do not
appear in U.

3. Outliers: When regions belonging to adjacent vertebrae appear in U.

The datasets U belonging to the mentioned scenarios are generated follow-
ing the protocol to US-scan lumbar vertebrae proposed in the work of Chin
et al. [10]. The various regions of the vertebra (Fig. 2(a)) are scanned from five
basic views (Fig. 2(b): 1. paramedian sagittal (PS) transverse process view, 2. PS
articular process view, 3. PS oblique view, 4. transverse spinous process view,
and 5. transverse interlaminar view.

Then, the datasets U are created by intentionally failing (or not) in scanning
the vertebra in the specified views of the protocol. Table 1 defines the notation
that specify the failures in the US acquisition protocol.

The scope of our investigation reaches vertebra vs. vertebra registration. We
do not seek to register groups of vertebrae. Notice that algorithms for multiple-
vertebra registration must deal with the relative movement among vertebrae as
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Table 1. Notation of failures in the US acquisition protocol.

Symbol Meaning

� The scan was completely performed

x The scan was not performed

I None of the transverse processes were scanned

II Transverse process appears disconnected in the scan

III The right transverse process was not scanned

IV The superior articular process was not scanned

V None of the superior articular processes were scanned

VI The left superior articular process was not scanned

VII Only the tip of the spinous process was scanned

the patient changes position in CT and US acquisition. Besides, in this work we
assume that the vertebra to be registered has been correctly selected in the CT
and US volumes by the medical staff.

Datasets Production. The assessment datasets are generated as follows:

(a) A surface model of the vertebra is obtained from a CT scan. We have used
the spine surface model available in the work of Lasso et al. [11].

(b) The PLUS software [11] is used to simulate an US scan of (a).
(c) Volume reconstruction and segmentation are effected to produce an US ver-

tebra surface model from (b).
(d) Datasets Y and U are populated by vertices of (a) and (c), respectively.
(e) Datasets U are generated such that they have complete alignment with Y.
(f) True correspondences between points in U and Y are known beforehand.

Note that, despite that a surface model is extracted from the CT scan, dataset
Y only consists of the model’s vertices and not of its surface patches. Thus, all
registrations are performed between pairs of point clouds.

Registration Accuracy. The accuracy of the registration is estimated with
the mean target registration error (mTRE) as per (7):

mTRE =

√√√√ 1
n

n∑
i=1

[yi − ui]T [yi − ui], (7)

with ui and yi being true corresponding points in U and Y, respectively, unused
during registration. Successful registrations have mTRE ≤ 2 mm. The success
rate (SR) percentage is computed as: SR = (number of successful registra-
tions/total number of trials) · 100.



Robust CT to US 3D-3D Registration 59

Table 2. Summary of failures in the image acquisition protocol of datasets 0–12 (nota-
tion is defined in Table 1).

Base-Case Scenario. In this case, a full compliance with the US acquisi-
tion protocol is achieved, which generates dataset 0 in Table 2. The region of
interest (ROI) of the US scan excludes neighboring vertebrae (Fig. 3). Arbitrary
known transformations Q (translation components in [−90, 90] mm, Euler angles
in [−180, 180] degrees) are generated randomly and are applied to U to test the
performance of the registration algorithm. The translation and rotation mag-
nitudes of Q are chosen to represent worst-case initial misalignments between
U and Y of clinical scenarios. One hundred (100) runs with UKF alone and
additional 100 runs with UKF plus PCA pre-processing are executed.

Incomplete US-Scans Scenario. In this case (datasets 1 to 12), the US
scans lack one or more views of the US acquisition protocol. Table 2 specifies the
fault (x = “missing” or roman number index of the defect as in Table 1). Grey
rows indicate critically low geometric similarity between U and Y (e.g. Fig. 3).
The scenario tests the robustness of the algorithm w.r.t. low quality datasets.
Transformation matrices Q are applied to U as in the Base-Case. Each dataset
was used in 20 trials.
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Fig. 3. Partial US scan datasets (blue point clouds) and reference CT surface model.
From left to right: datasets 0 (Base Case), 3, 5 and 8. (Color figure online)

Outliers Scenario. This case (datasets 13–15) has complete US scans but
including portions of neighbouring vertebrae (outliers, Fig. 4). The ratio from
the number of outlier points to the target vertebra number of points are 0.10,
0.15 and 0.20 for datasets 13, 14 and 15 respectively. Transformation matrices
Q are applied to U as in the Base-Case. Each dataset was used in 40 trials.

3 Results

Base-Case Scenario. Registration with the UKF alone has a success rate of
only 7 %, demonstrating that the Kalman filter alone is unable to handle large
initial misalignments. Registration using our PCA pre-processing has a success
rate of 100% (dataset 0 in Table 3), which shows the robustness given by the
PCA-based algorithm. For this case, it is clear that the PCA-based method is
capable of bringing U and Y into a coarse alignment within the convergence
region of the UKF-based method. The quality of the alignment between Y and
T0U (i.e. after the PCA-based registration) is central to the success of our
method. The minimum misalignment between Y and T0U is limited by the
deviations of the principal axes of U w.r.t. the principal axes of Y (Table 4),
which depend on the geometrical similarity between Y and U. Requirements for
a high geometrical similarity are: 1. that the ROI defined in the CT data is in
agreement with the expected depth of the US scan (i.e. including the vertebral
processes and pedicles but leaving out most of the vertebral body), and 2. that
the majority of anatomical features sampled in Y are also included in U.

Incomplete US Scans Scenario. Table 3 shows the registration results for
datasets 1 to 12, which correspond to the incomplete US scans (Table 2).

Fig. 4. US scan datasets with outliers (blue point clouds) and reference CT surface
model. From left to right: datasets 13, 14 and 15. (Color figure online)
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Table 3. Results of the evaluation of the registration algorithm.

These results show that 8 out of the 12 cases obtained a full success rate (100%)
with all cases obtaining a mTRE below 1 mm. Datasets 3, 5, 8 and 9 obtained
a success rate of 0%. Table 4 shows that the 4 failed registration cases coincide
with higher angular deviations between the principal components of Y and U,
which reflect low degree of similarity between Y and U and produce poor PCA-
based registrations. Sine qua non conditions for registration are (a) the various
scans sample conspicuous object features, and (b) salient object features appear
in both scans, so unambiguous correspondence permits to span the embedding
space Rn (in this case, R3). In our algorithm, these preconditions dictate the exis-
tence of transverse and articular vertebrae processes in scans U and Y. None of
the successfully registered datasets has a deviation larger than 20◦, which seems
to be a tolerable amount to be effectively corrected by the UKF-based algorithm.

Notice that because of the deterministic nature of the PCA, registration trials
of the same dataset U are always coarsely aligned in the same way to Y. Datasets
U that are poorly aligned by the PCA are likely to be inaccurately registered by
the UKF-based method because the UKF requires small misalignments between
Y and T0U in order to work properly.

Outliers Scenario. As in the Incomplete US Scans Scenario, if dataset U
contains too many points from adjacent vertebrae, deviations of its principal
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Table 4. Deviation (degrees) of the principal axes of the US datasets w.r.t. the refer-
ence CT dataset.

axes lead to poor PCA-based registrations. For datasets 13–15, the deviation of
the principal axes remained in an adequate range and successful registrations
were performed. However, mTRE increased compared to the previously studied
scenarios. Notice that, if outlier points are included in uj , the UKF-based reg-
istration estimates a suboptimal transformation Tj , reducing the efficiency and
precision of the algorithm.

4 Conclusions

This article presents a two-stage registration algorithm for US and CT 3D point
clouds of the vertebrae, which is based on a coarse registration using PCA fol-
lowed by a fine registration using the Unscented Kalman filter. The PCA-based
coarse registration is deterministic and can handle large misalignments between
the datasets, as long as both datasets have an appropriate degree of geometrical
similarity. In contrast to other UKF-based registration approaches, our algo-
rithm produces an initial alignment between the datasets which is suitable to be
improved by the UKF.

The algorithm evaluation was performed in the following scenarios: (a) when
an US scan of reasonable quality of the vertebra is available (base-case), (b) when
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specific regions of the target vertebra are absent in the US scan, and (c) when
regions belonging to adjacent vertebrae appear in the US scan. Results show
that the proposed algorithm is able to register datasets with initial rotational
misalignments within the range [−180, 180] degrees and translational offsets in
the range [−90, 90] mm. In the base-case scenario, the registration based on the
UKF alone presents a success rate of 7%. By adding the PCA-based coarse
pre-registration, the success rate improves to 100 %, which demonstrates the
robustness added by the PCA-based algorithm. The mTRE of successful reg-
istrations are: 0.7646 mm in the base-case scenario, 0.8094 mm for incomplete
datasets and 1.088 mm for datasets with outliers.
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Abstract. Structure of cortical bone is decisive for its strength, and
quantification of the structure is crucial for early diagnosis of osteo-
porosis and monitoring of therapy effect. In three-dimensional computed
tomography (CT) images, typically cortical thickness in proximal femur,
lumbar vertebrae, and sometimes in distal forearm is estimated. However,
resolution of clinical quantitative CT (QCT) scanners is comparable to
the cortical thickness, especially for osteoporotic patients, leading to sig-
nificant partial volume artefacts. A recent model-based approach recovers
the cortical bone thickness by numerically deconvolving the image (pro-
file fitting) using an estimated scanner point spread function (PSF) and
a hypothesized uniform cortical bone mineralization level (reference den-
sity). In this work we provide an essentially analytical unique solution
to the model-based cortex recovery problem using few characteristics
of the measured profile and thus eliminate the non-linear optimization
step for deconvolution. The proposed approach allowed to get rid of the
PSF in the model and reduce the sensitivity to errors in the reference
density value. Also, run-time and memory effective implementation of
the proposed method can be done with the help of a lookup table. The
method was compared to an existing approach and to the 50% relative
threshold technique by evaluating performance of these three algorithms
in a simulated environment with noise and various error levels in the
reference density parameter. Finally, accuracy of the proposed algorithm
was validated using CT acquisitions of European Forearm Phantom II,
a widely used anthropomorphic standard of cortical and trabecular bone
compartments that was scanned with various protocols.

1 Introduction

Dual energy X-ray absorptiometry (DXA) is a standard method to measure
bone mineral density (BMD) of lumbar vertebrae, which is the best predictor
of osteoporotic vertebral fracture. However, DXA cannot differentiate between
trabecular and cortical compartments which is important since cortical thickness
is an independent contributor to the vertebral bone strength: as shown by Roux
et al. [1] it can significantly improve the regression with experimentally mea-
sured work to failure and enhance prediction of vertebral fragility. Thus, quan-
titative CT (QCT) is the method of choice to assess the cortex independently.
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 64–73, 2016.
DOI: 10.1007/978-3-319-41827-8 6
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Measurement accuracy of cortical thickness, BMD and bone mineral content
(BMC, i.e. bone mass) in three-dimensional (3D) computed tomography (CT)
images is limited by the CT scanner resolution. Typically for clinical quantita-
tive CT (QCT), a voxel size of 0.3× 0.3× 1mm3 is used which is comparable
with the cortical thickness of the lumbar vertebrae, especially by osteoporotic
patients (cortical thickness in the middle of the vertebral body is usually below
0.5 mm). In this case partial volume artefacts become large enough to distort the
appearance of the cortical bone. Untill recently, two cortical bone segmentation
approaches were commonly used: local adaptive threshold (or 50%-method) and
global threshold. Partial volume artefacts constitute a serious problem for these
methods. Thus, the 50%-method significantly overestimates the thickness of a
thin cortex [2] whereas threshold-based techniques [3,4] cannot in general pro-
vide an accurate estimation of the whole range of cortex thickness values and
require careful choice of thresholds.

A novel approach was proposed in the work of Treece et al. [5], which models
the imaging process as a convolution of the imaged bone with the scanner point
spread function (PSF) and recovers the cortical bone thickness by numerically
deconvolving the given image. Several essential assumptions are made within this
model-based approach. First, the cortex is assumed to have a constant density
and thus be of a box-shape when plotted along the 1D profile perpendicular to
the outer bone surface. The correct estimation of this global constant density
(also reference BMD, BMDref) is the most problematic part of the method.
Additionally, the PSF is assumed Gaussian and trabecular density of the bone
at one side of the cortex as seen on the profile and soft tissue density at the
opposite side are assumed constant for this profile. The standard deviation σ
of the Gaussian and the two constant density values are obtained as result of
optimization for deconvolution.

Although the model-based approach seems to outperform other methods in
estimating the thickness of the “thin” cortex, it is an optimization process which
is not guaranteed to converge to the global solution, and its sensitivity to errors
in estimation of the model parameters is considerable [6]. On the other hand,
the 50%-method is rather robust and model-independent and cortical BMC-
values computed with its help are more accurate than cortical BMD, which is
underestimated, and cortical thickness, which is overestimated [2,6].

In this article, the following simple alternative to the model-based decon-
volution is proposed for the estimation of the cortical thickness tc under the
model-based assumptions used by Treece et al. [5] as described above:

tc =
BMCcort

BMDref
, (1)

where BMCcort is the true BMC of the cortical bone. The main idea is to estimate
BMCcort analytically from the profile as measured in the image between two
50%-points. The purpose of the proposed approach is threefold:

1. Get an analytical solution which allows for comprehensive analysis of the
problem and computationally advantageous implementation.
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2. Reduce the number of the model parameters.
3. Mitigate cortical thickness estimation errors caused by errors in BMDref .

2 Materials and Methods

In the following, we will put the center of the cortex to the origin of the profile
axis so that the limits of the “real” cortical bone are −a and a (a is unknown).
This gives the graph of the “real” cortex as that of the box function with the
height BMDref which is surrounded by two box functions with half-infinite sup-
port on both sides of the cortex representing soft tissue (ST (t) with the height
b) and trabecular bone compartment (Tr(t) with the box height c), see Fig. 1(a).
To avoid unnecessary complications in the formulae and without the loss of gen-
erality, we will always assume that “soft tissue” is on the left side of the cortex
and “trabecular bone” on the right and c≥ b = 0.

(a) (b)

Fig. 1. (a) A profile as a convolution of a piecewise constant cortical function and a
Gaussian (scanner PSF), with related notations. (b) Relative thickness estimation error
with three algorithms at four error levels in BMDref : ±5 % and ±10 % for the range
of cortical thickness from “very thin” to “very thick” with Gaussian full width at half
maximum (FWHM) equal to 1.5. (Color figure online)

According to the modeled imaging process, the convolution of the piece-
wise constant function representing the cortex with the imaging PSF equal to

G(t)= 1√
2πσ

exp− t2

2σ2 (σ is unknown) produces the ideal measured profile P (t):

P (t) = (G ∗ (h + Tr + ST )) (t). (2)

Using the function erf(x) = 2√
π

∫ x

0
exp−t2 dt one gets for the model profile:

P (t) =
BMDref

2

[
erf

(
t + a√

2σ

)
− erf

(
t − a√

2σ

)]
+

c

2

[
1 + erf

(
t − a√

2σ

)]

+
b

2

[
1 − erf

(
t + a√

2σ

)]
.

(3)
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In the work of Treece et al. [5], the unknown parameters σ, c, and b are recovered
as the result of least squares fitting of P (t) with the measured profile, while
BMDref is a model parameter independently estimated from the image data.
Here, we propose a method that uses one model parameter, BMDref , and three
parameters measured in the profile (four if b �= 0):

1. c (or R = c
BMDref

) : mean density of the trabecular part of the profile;
2. BMDmax (or T = BMDmax

BMDref
) : maximal density value along the profile;

3. BMCmeas
50% : BMC-value measured in the profile between cortical boundaries

obtained with local adaptive threshold (LAT, also 50%-method).

The values BMDmax, c, and b define the 50%-points t− 1
2

and t 1
2
:

P (t− 1
2
) =

BMDmax + b

2
, P (t 1

2
) =

BMDmax + c

2
, (4)

where t− 1
2

lies in the soft tissue compartment (on the “left” side from BMDmax)
and t 1

2
– in the trabecular one. Finally, BMCmeas

50% is just an integral of density
values between t− 1

2
and t 1

2
.

2.1 Estimation of the Cortical BMC

Our purpose now is to estimate BMC50%, i.e., area under the curve (AUC)
for the model profile P (t) between two 50 %-points, and to compare it
with the BMCcort = BMDref · 2a. Let us denote the primitive of erf(t) as
Er(t)= terf(t) + exp−t2/

√
π. Then BMC within two points −r1 and r2 is the

following AUC(−r1, r2):∫ r2

−r1

P (t) dt =
cσ√

2

[
r1 + r2√

2σ
+ Er

(
r2 − a√

2σ

)
− Er

(
r1 + a√

2σ

)]
+

BMDref σ√
2

[
Er

(
r2 + a√

2σ

)
− Er

(
r1 − a√

2σ

)
− Er

(
r2 − a√

2σ

)
+ Er

(
r1 + a√

2σ

)]
.

(5)

This follows directly from the definitions of P (t) and Er(t).
We are going to estimate the coordinates r1 and r2 of the 50%-points and

then substitute them into (5) to get BMC50%. For this, we first find the ratio
a√
2σ

, which we designated as a, using the equation P (tmax) = BMDmax:

BMDref

2

[
erf

(
tmax + a

) − erf
(
tmax − a

) ]
+

c

2

[
1 + erf

(
tmax − a

) ]
= BMDmax,

(6)
where tmax = tmax/

√
2σ. The coordinate of the profile peak point, tmax, is

obtained as an extremal point of the profile curve (P ′
t (tmax) = 0) : tmax = k/a,

where k = −1
4 ln ((BMDref − c)/BMDref ). Upon substitution of tmax into (6) we

obtain an equation for a with parameters BMDref , BMDmax, c, and BMDmax

normalized by BMDref :

erf
(
ka−1 + a

)
+ (R − 1)erf

(
ka−1 − a

) − 2T + R = 0. (7)
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The function on the left hand side of the equation is strictly monotone increasing
with respect to a and has values of the opposite signs as a → 0 and a → ∞ and
thus has one root only which can be efficiently found with the help of various
one-dimensional optimization algorithms.

Having obtained the value of a, we can estimate the coordinates of the
50%−points t± 1

2
according to their definition in (4). Here again, we adopt the

overline notation t± 1
2

for the values t± 1
2

divided by
√

2σ:

erf
(
t− 1

2
+ a

)
+ (R − 1)erf

(
t− 1

2
− a

)
= T − R, (8)

erf
(
t 1
2

+ a
)

+ (R − 1)erf
(
t 1
2

− a
)

= T. (9)

The function on the left hand side of each of the equations is smooth and has
a unique maximum, thus the respective root can be effectively found using one-
dimensional (1D) optimization if the search is restricted to the range (−∞; tmax)
for t− 1

2
and (tmax; +∞) for t 1

2
(the respective root is unique then).

Now we are in the position to obtain the estimation for the ratio
BMC50%
BMCcort

= :K. Denote r1 = r1√
2σ

= − t− 1
2

and r2 = r2√
2σ

= t 1
2
, then by (5)

K =
AUC(−r1, r2)

2aBMDref
=

R

4a

[
r1 + r2 + Er (r2 − a) − Er (r1 + a)

]

+
1
4a

[
Er (r2 + a) − Er (r1 − a) − Er (r2 − a) + Er (r1 + a)

]
.

(10)

The value of K is then used as a correction factor for BMCmeas
50% measured by the

50%-method, to approximate BMCcort by BMCmeas
50%

K . Substituting this approx-
imation of BMCcort into (1), we finally obtain the model-based cortical half-
thickness:

amod =
BMCmeas

50%

2BMDref K
. (11)

Summarizing, estimation of the cortical thickness is done with the following
steps:

1. Obtain a as the root of the Eq. (7).
2. Obtain estimated coordinates of the 50%-points, normalized by

√
2σ, as the

roots of the Eq. (8), respectively (9).
3. Calculate the BMC correction factor K using (10).
4. Calculate the model-based cortical half-thickness a using (11).

2.2 Hybrid Algorithm and Implementation Details

Given that a50% ≥ a (Fig. 1(b)) we add one natural constraint: amod ≤ a50%,
which, if violated, indicates that a50% by LAT shall be used instead of amod. Let
us call this combined algorithm a hybrid model-based profile analysis (HMPA).
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After the profile is set normal to the preliminary segmented periosteal surface
and cortical borders are computed, one can use the distance between them as
the cortical thickness. However, the thickness value computed this way is over-
estimated in general, since even tiny surface roughness renders the profile askew
and increases the length of its cortical part. That is why we built a segmentation
mask connecting all cortex border points in profiles and measured the thickness
at a point as a distance between the outer and inner mask surfaces.

Finally, for the effective implementation one can make use of the fact that
there is a functional dependence of the factor K on three parameters only:
T = BMDmax/BMDref , R = c/BMDref , and S = b/BMDref . This dependence
allows for run-time and size effective implementation as a lookup table.

2.3 Experimental Check of the Accuracy of the Method

The following experiments were conducted to evaluate the method:

1. Simulated profiles for a range of modeled thickness values from 0.5σ up to
7σ. The results of the proposed HMPA-method were compared with that of
the 50%-method [2] and with the deconvolution method (DM) [5]. First, the
additive Gaussian noise was simulated corresponding to two exposure levels
of 100 and 150 mAs typically used in clinical QCT applications. Second, four
levels of the error in BMDref were introduced: ±5% and ±10%.

2. CT scans of the European Forearm Phantom (EFP) using Siemens
SOMATOM Definition Flash scanner, see examples in Fig. 4. Nine scan proto-
cols were used, which is the number of all combinations of the following scan
parameter values: (1) voltage: 120 kV; (2) exposure: 100, 50, and 20 mAs;
(3) convolution kernel: B40s (smooth), B50s, and B60s (sharp). Voxel size
was 0.3× 0.3× 1mm3 in all reconstructions.

In all these experiments, the ground truth of BMDref was known. In practice, one
needs to obtain this parameter before starting the cortical thickness estimation
algorithm. One can use either simple methods, like 5% trimmed maximum value
in the image, or a more complicated statistical method of Treece et al. [6] for
this purpose.

3 Results

The results of cortical thickness estimation with three algorithms (deconvolution,
50%-method, and the new one) under simulated noise are presented in Fig. 2.
Two levels of Gaussian noise were generated roughly corresponding to the noise
levels of 150 and 100 mAs, 120 kV, as measured in the calibration phantom.

The effect of over- and underestimation of BMDref on the performance of
the proposed hybrid method (with analytic estimation (11)) as compared to the
deconvolution method (DM) and 50%-criterion (LAT) is shown in Fig. 1(b).

The proposed algorithm for cortical thickness estimation was implemented
within MIAF software [7,8], as well as corresponding binary segmentation of
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(a) (b)

Fig. 2. Relative error of the thickness estimation under simulated noise. For the range
of true thickness values (a/FWHM), mean value and standard deviation of the corre-
sponding relative error were computed after three hundred simulations at every value.
True reference BMD was used (800 HU), σ = 1.5, c = 150, b = 0. (a) Lower noise (30 HU).
(b) Higher noise (37 HU)

(a) (b) (c)

Fig. 3. An example of lumbar spine segmentation of an ex vivo 3D QCT acquisition
with voxel size 0.3× 0.3× 1.3 mm3. Periosteal and endosteal cortical borders are shown
as well as segmentation of intervertebral disc spaces. Spinous and transverse processes
were automatically excluded from the segmentation. (a) L2, axial. (b) L1-L3, sagittal.
(c) L1-L3, coronal

the cortex. One example of lumbar spine segmentation for 3D CT acquisition ex
vivo is shown in Fig. 3. The results of the EFP segmentation are exemplified in
Fig. 4 for two extreme cases: the most noisy one but with highest level of image
details and the most smooth one. Finally, the results of cortical thickness esti-
mation based on segmentation of EFP using LAT50, deconvolution, and HMPA
methods are summarized in Table 1, where both real BMDref and “noisy” value
of BMDref ± 20% were assumed.
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4 Discussion

The manuscript presents a model-based approach for the cortical bone segmen-
tation in CT images. Our method shares the main idea and assumption of the
constant cortex mineralization with the deconvolution method presented in the
works of Treece et al. [5,6]. Both methods give theoretically equivalent results for
the ideal profiles and consequently share higher accuracy at the “thin” cortex as
compared to the 50%-method, but also sensitivity to errors in the main model
parameter, BMDref . Exactly this auxiliary parameter, BMDref distinguishes the
parameter set of our method from that of the 50%-method: BMDmax, b, and c.
Thus, on the one hand the HMPA-method is the parametric counterpart of the
model-based deconvolution method, and on the other hand it is a direct general-
ization of the 50%-method to a “thin” cortex case, where the main assumption
of the 50%-method (

∫ ∞
2a

PSF(t) dt ≈ 0, see Prevrhal et al. [2]) is not valid. Let
us formulate essential differences between the deconvolution method and the
proposed one.

First, the method excludes the non-trivial optimization step and gives a solu-
tion in the form suitable for analytical investigation (1D root finding steps for a
and t± 1

2
guarantee the correct answer due to nice properties of the corresponding

equations). This is achieved due to the usage of few profile metrics instead of
the whole curve. Fitting the whole profile curve may be more robust, since not
a single value but the whole range is used (see Fig. 2), but on the other hand,
optimization for curve fitting is generally subject to local minima, whereas our
approach provides a unique solution which allows for effective implementation
by means of a lookup table. Moreover, the sensitivity of the deconvolution to
errors in BMDref is greater than that of the new approach, as shown in Fig. 1(b)
and Table 1 (for the cases with underestimated BMDref). Thanks to the lookup
table implementation, computation time of the cortical thickness for an EFP
acqusition with HMPA, which was less than one minute on a standard PC, was
about 20 times less than that with the deconvolution approach.

(a) (b)

Fig. 4. Two CT datasets of the European Forearm Phantom with segmentation con-
tours. For each dataset, two planar reconstructions are shown: axial and sagittal.
(a) 120 kV, 20 mAs, sharp kernel B60s. (b) 120 kV, 100 mAs, smooth kernel B40s.
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Table 1. Cortical thickness estimation for the European Forearm Phantom (EFP)
based on segmentation with local adaptive threshold (LAT), deconvolution (DM), and
hybrid model-based profile analysis (HMPA). BMDref was manually measured in the
“cortex” of the shaft.

VOI#
(true 2a)

Method Thickness

100 mAs 50 mAs 20 mAs

B40s B50s B60s B40s B50s B60s B40s B50s B60s

1
(0

.5
m
m
)

LAT
a50%,mm 1.58 1.35 1.26 1.60 1.35 1.26 1.60 1.34 1.28

error,% 216.5 170.3 153.0 220.2 170.6 152.2 220.3 167.9 156.2

DM
amod, mm 0.64 0.62 0.63 0.65 0.62 0.65 0.65 0.60 0.62

error,% 27.4 23.1 25.7 29.4 24.4 29.3 29.6 19.3 23.5

HMPA
amod, mm 0.64 0.64 0.65 0.65 0.64 0.66 0.65 0.61 0.65

error,% 27.7 28.2 30.8 29.3 27.2 31.4 29.7 22.8 29.4

DM, amod, mm 0.53 0.50 0.50 0.52 0.50 0.51 0.53 0.49 0.50

BMDref + 20% error,% 5.8 -0.7 -0.9 4.9 0.2 2.1 5.8 -2.6 0.0

HMPA, amod, mm 0.56 0.53 0.54 0.57 0.54 0.55 0.57 0.53 0.54

BMDref + 20% error,% 11.4 6.7 7.7 13.2 7.4 10.2 14.3 5.5 8.7

DM, amod, mm 0.83 0.85 0.86 0.84 0.85 0.86 0.84 0.81 0.83

BMDref − 20% error,% 65.4 69.0 71.6 67.9 70.2 71.9 67.8 62.6 66.5

HMPA, amod, mm 0.81 0.82 0.84 0.83 0.84 0.85 0.83 0.81 0.84

BMDref − 20% error,% 62.8 64.0 68.8 65.4 68.1 69.2 65.2 62.4 67.4

2
(1

m
m
)

LAT
a50%,mm 1.59 1.30 1.20 1.60 1.31 1.23 1.60 1.30 1.19

error,% 58.7 30.2 20.5 59.5 30.6 22.8 60.5 29.5 18.9

Deconv
amod, mm 1.04 1.07 1.02 1.05 1.08 1.03 1.05 1.05 1.00

error,% 4.3 7.1 1.8 4.9 7.5 2.6 5.3 5.1 0.3

HMPA
amod, mm 1.02 0.99 0.97 1.04 1.00 0.98 1.03 0.99 0.95

error,% 1.8 -0.8 -3.2 3.7 -0.3 -2.4 3.1 -0.6 -4.7

DM, amod, mm 0.87 0.91 0.89 0.87 0.92 0.90 0.87 0.90 0.89

BMDref + 20% error,% -13.1 -9.5 -10.6 -13.1 -7.8 -9.5 -12.8 -10.4 -11.4

HMPA, amod, mm 0.83 0.92 0.91 0.83 0.93 0.91 0.84 0.91 0.90

BMDref + 20% error,% -17.2 -8.0 -8.7 -16.6 -7.2 -8.8 -16.4 -9.5 -9.6

DM, amod, mm 1.27 1.19 1.14 1.28 1.19 1.14 1.28 1.17 1.13

BMDref − 20% error,% 26.9 18.6 14.1 27.6 19.4 14.2 28.0 16.8 13.1

HMPA, amod, mm 1.24 1.08 1.01 1.24 1.08 1.01 1.24 1.08 1.00

BMDref − 20% error,% 23.9 8.1 0.6 23.8 8.4 0.6 24.5 8.2 -0.4

BMDref , HU 1196 1218 1235 1190 1207 1219 1187 1241 1246

Second, the proposed analytical approach eliminates σ, which is an essential
parameter for the deconvolution method. σ may be estimated from phantom
measurements but it is a non-trivial and/or not very accurate procedure due to
the fact that the CT-scanner PSF is not really a Gaussian, especially for sharp
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reconstruction kernels, and also since various imaging artefacts, such as field
inhomogeneity and beam hardening, will probably lead to somewhat different σ
values than those applicable to the in vivo patient acquisitions. Also, additional
parameters make the curve fitting more error prone for the noisy profiles in
general.

Third, we combine the advantages of an accurate “thin” cortex measurement
provided by the model-based approach and robust and accurate estimation of
the “thick” cortex provided by the 50%-method, which is independent of the
errors in BMDref , within a hybrid approach. Essentially, switching to the 50%-
estimation is conservative: the resulting accuracy error is generally not higher
than in the case when no 50%-method was switched on at all.

What is left beyond the scope of the article, is the analysis of real patient
data obtained with various resolution levels, such as standard QCT and high-
resolution CT (as a ground truth), as it was done by Treece et al. [5]. Note
however that high resolution data can be considered as ground truth to only
a limited degree since inhomogeneous cortex structure is revealed at high res-
olution (porosity, adjacent trabeculae etc.) which makes its appearance very
different from that at the low resolution. In this view, validation with phantom
segmentation may be more informative; phantom measurements in our experi-
ments were rather accurate even for very high noise levels. Finally, sensitivity
analysis with respect to errors in parameters was not shown, although it can be
easily done using the presented formula for a.
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Abstract. The precise and accurate segmentation of the vertebral col-
umn is essential in the diagnosis and treatment of various orthopedic,
neurological, and oncological traumas and pathologies. Segmentation is
especially challenging in the presence of pathology such as vertebral com-
pression fractures. In this paper, we propose a method to produce seg-
mentations for osteoporotic compression fractured vertebrae by applying
a multi-atlas joint label fusion technique for clinical computed tomog-
raphy (CT) images. A total of 170 thoracic and lumbar vertebrae were
evaluated using atlases from five patients with varying degrees of spinal
degeneration. In an osteoporotic cohort of bundled atlases, registration
provided an average Dice coefficient and mean absolute surface distance
of 92.7 ± 4.5% and 0.32 ± 0.13 mm for osteoporotic vertebrae, respec-
tively, and 90.9 ± 3.0 % and 0.36 ± 0.11 mm for compression fractured
vertebrae.

1 Introduction

Vertebral compression fractures (VCFs), which often result from osteoporosis,
constitute nearly half the number of clinical osteoporotic fractures. Affecting
nearly 1.5 million people in the United States each year, these compression frac-
tures can often result in severe and debilitating pain [1]. Loss in height and
the deformity of the vertebral body, with associated changes in the curvature
of the spine, can result in a reduction in the spine’s effectiveness in weight-
bearing, movement, and support. VCFs are typically diagnosed via qualitative
visual review, using imaging modalities such as radiography and CT. However,
clinical time restrictions prevent detailed processing of data and comprehensive
characterization of individual fractures using conventional, manual segmentation
methods. Automated methods for identifying and segmenting vertebrae have
been applied to the characterization of thoracolumbar spine in patients with
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 74–84, 2016.
DOI: 10.1007/978-3-319-41827-8 7
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(a) (b) (c) (d)

Fig. 1. Sagittal view of vertebrae with varying severities of vertebral compression frac-
ture (VCF): (a) no VCF; (b) grade 1; (c) grade 2; (d) grade 3. Arrows point to vertebra
of interest. Note increasing osteopenia (decreasing bone density) with higher grades.

non-osteopenia spines [2]. However, it has remained unexplored whether similar
applications for osteoporotic patients would be of benefit in the evaluation of
cases of trauma and pathology such as vertebral compression fractures.

Accurate segmentation of lumbar and thoracic vertebrae can lead to improved
identification and quantitative characterization of VCFs, and have potential to
guide fracture treatment and management. Additionally, improved segmentation
provides a means for extracting features, such as bone density and anatomic
landmarks that allow for a better understanding of the integrity of the spine [3].
VCFs are typically graded manually using Genant scoring, which is based on
thresholds for percentage height loss relative to adjacent vertebra [4]. Examples
of vertebral compression fractures of different levels of severity are shown in
Fig. 1.

A number of vertebra segmentation algorithms for computed tomography
(CT) images have been proposed. Previous methods that integrated vertebra
detection, identification, and segmentation into a single framework were applied
primarily to healthy vertebrae [2]. Ibragimov et al. [5] built landmark-based
shape representations of vertebrae and aligned models to specific vertebrae in
CT images using game theory. An atlas-based method that utilized groupwise
segmentation of five vertebrae with majority voting label fusion was proposed
by Forsberg [6] to segment healthy vertebrae in a vertebra segmentation chal-
lenge1 [2]. Fusing information from multiple manually segmented atlases allows
for greater acuity to be obtained in the visualization of vertebral compression
fractures. In this paper, we present a method to produce segmentations of the
osteoporotic spine, especially for vertebrae with compression fractures through
a multi-atlas local appearance, similarity weighted joint label fusion technique
for clinical CT images [7].

2 Methods

We propose a multi-atlas joint label fusion framework for spine segmentation on a
vertebral basis (Fig. 2). Each vertebra was localized by the automatic generation
1 http://csi-workshop.weebly.com.

http://csi-workshop.weebly.com
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Fig. 2. Workflow for our implementation.

of a bounding box that provided greater local anatomical coherence between
images and allowed for more precise image registration. An intensity-based non-
rigid B-spline registration technique with affine initialization was used to capture
the geometric variability exhibited by vertebrae [8]. Upon completing registra-
tion, a set of manually segmented atlases was deformed to the target space using
the computed transformations. All transformed atlases were then combined using
a joint label fusion technique that utilized local appearance similarity between
each registration result to determine the label [7]. Lastly, a morphological label
correction step was applied to correct over-segmented results that failed to be
properly localized to a single vertebra. This step was used to correct under-
segmented results that emerged from the relatively decreased spinal bone density
in the osteoporotic test cohort.

2.1 Multi-atlas Registration

The initial location of the vertebra and subsequent bounding box localization
was obtained using a fully automatic algorithm reported in the work of Yao
et al. [9]. The algorithm is based on adaptive thresholding, watershed, directed
graph search, curved reformation, and anatomic vertebra models. The registra-
tion was conducted in two stages: symmetric affine transformation for initializa-
tion, followed by dense non-rigid registration. Using a floating image I2 from the
atlas and a target image I1, a displacement field was computed to estimate an
affine transformation A that maximized the intensity similarity between float-
ing and target CT images [8]. The resulting output image I was computed by
applying I1 =̃ I = I2 ◦ A where A was then applied to all atlas labels.

After obtaining the initialized affine transformation results, a non-rigid B-
spline transformation T was computed that maximized the normalized mutual
information (NMI) between the floating and target images [8]. NMI between
images I1 and I2 ◦ T is computed by using their marginal entropies H and joint
entropies H(I1, I2 ◦ T ) as a measure of alignment as

NMI =
H (I1) + H (I2 ◦ T )

H (I1, I2 ◦ T )
. (1)
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The non-rigid transformation was then optimized on a global and local scale by
maximizing the following cost-function

C = (1 − α) NMI − αP. (2)

The penalty term P uses bending energy to restrict the amount of deformation to
achieve physically realistic smooth transformations that penalize only non-rigid
registrations [10]:

P =
1
N

∑
x∈Ω

[[(
δ2T (x)

δx2

)2

+
(

δ2T (x)
δy2

)2

+
(

δ2T (x)
δz2

)2
]

+ 2 ·
[(

δ2T (x)
δxy

)2

+
(

δ2T (x)
δyz

)2

+
(

δ2T (x)
δxz

)2
]]

.

(3)

Weight factor α controls the penalty term; the default value of α = 0.005 was
used, which has been shown to work well for medical images [8]. Since the regis-
tration methods are computationally heavy, a graphics processing unit (GPU)-
accelerated solution, NiftyReg2 was used. Registration produced a transformed
set of floating images and segmentation labels which have been warped to the
space of the target images.

Two configurations of atlases were explored in our registration experiments:
a single vertebra atlas and a three-vertebra atlas, where a vertebra is bundled
with the ones directly above and below. T1 and L5 vertebra were bundled with
the nearest two thoracic and lumbar vertebrae, respectively. The bundled atlas
was a means to preserve the interface between adjacent vertebrae and to prevent
conflicting segmentation.

2.2 Joint Label Fusion

Since individual registrations to multiple atlases following the affine and non-
rigid transformations can yield drastically different results, a joint fusion method
(JLF) was applied to the labels in order to enforce region coherence. Since all
atlases shared common structures and similar appearances, independent errors in
the final segmentation result were minimized following JLF [7]. With a measure
of registration success for each transformed atlas, a weighted voting scheme
achieved optimal label fusion that minimizes the expectation of combined label
differences. Joint label fusion achieves consensus segmentation

S̄(x) =
n∑

i=1

wi(x)Si(x), (4)

based on individual voting weights wi(x) and segmentations Si(x). Weights were
determined by

wx =
M−1

x · 1n
1tnM−1

x 1n
, (5)

2 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.

http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
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where 1n = [1; 1; . . . ; 1] is a vector of size n and Mx is the pairwise dependency
matrix that estimates the likelihood of two atlases both producing wrong seg-
mentations on a per-voxel basis for the target image. The end result was a
segmentation determined by the probability distribution of propagated labels
provided by multi-atlas registrations.

2.3 Morphological Label Correction

After joint label fusion, post processing measures were taken to correct seg-
mentation error and to refine the boundaries of the binary label result. First,
morphological operators and connected components were applied to remove iso-
lated islands and to close holes. Next, collision detection and correction steps
were taken to correct segmentations where a voxel was assigned to two verte-
brae. A perceptron linear classifier based on the voxel intensity difference and
the distance relative to the centers of the vertebrae was applied to determine
which vertebra to which the voxel belonged. The weights for intensity difference
and distance were set empirically. Finally, a Laplacian level set algorithm was
employed to refine the segmentation [11].

3 Experiments and Results

3.1 Dataset

The dataset used in this experiment was obtained from the University of
California, Irvine Medical Center. The dataset contained spine CT data from
10 patients, five from a healthy cohort ranging in age from 20 to 34 years
(27± 5 years), and five from an osteoporotic cohort ranging in age from 59 to
82 years (73± 9 years) that have been previously identified to have at least one
vertebral compression fracture. The studies were performed with spine CT pro-
tocol, with in-plane resolution ranging from 0.31 to 0.45 mm, and slice thickness
ranging from 1 to 2 mm.

A total of 170 thoracic and lumbar vertebrae were evaluated. Among them, 16
vertebrae were previously identified with compression fracture (one with grade 1,
ten with grade 2, and five with grade 3). All thoracic and lumbar vertebrae were
manually segmented to build atlases for the validation our algorithm. Figure 3
shows reconstructed images from the healthy and osteoporotic data sets and
their manual segmentations in a sagittal imaging plane.

3.2 Evaluation Methodology

The Dice coefficient (DC) and mean absolute surface distance (ASD) were used
for evaluating the accuracy of segmentation. They are defined as

DC =
2 · |GT ∩ S|
|GT | + |S| × 100%, (6)
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(a) (b) (c) (d)

Fig. 3. Sagittal views of spine atlases used. (a) Healthy spine (20 years old) with
(b) manual segmentation. (c) Osteoporotic spine (78 years old) with (d) manual seg-
mentation. Arrows point to fractured vertebrae.

ASD =
1

|VS |
|VS |∑
i=1

‖di (Vs, VGT )‖, (7)

where GT and S refer to the ground truth and the computed segmentations
respectively, V refers to the volume, and di refers to the distance between the
nearest surface voxels of each label [12]. The vertebrae were partitioned into four
substructures using the algorithm in the work of Yao et al. [3]: vertebral body
(VB), left transverse process (LTP), right transverse process (RTP) and spinous
process (SP). Performance was evaluated on both the whole vertebra and the
vertebral body substructure.

Performance was evaluated for either using healthy or osteoporotic cases as
atlases. We compared three experimental setups: (1) use of healthy vertebrae as
atlases to segment the osteoporotic vertebrae with compression fractures (H2D),
(2) use of the osteoporotic vertebrae as atlases for segmentation of osteoporotic
vertebrae (D2D), and (3) use of a three-vertebra bundled atlas using osteoporotic
data (BD2D). A leave-one-vertebra-out scheme was adopted in the second and
third experiments.

3.3 Results

Experiments were conducted to assess the segmentation of healthy and osteo-
porotic vertebrae and vertebrae with compression fracture. Figure 4 shows the
visual segmentation result at each step of the process. Individual registrations
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(a) (b)

(c)

(d) (e) (f)

Fig. 4. Segmentation results at each step of the process: (a) Original image;
(b1) − (b4) atlas labels; (c1) − (c4) registration results; (d) ground truth segmentation;
(e1),(f1) joint label fusion; (e2),(f2) corrected result in axial and sagittal views.

using GPU-based NiftyReg were completed with a runtime of 5 minutes each,
with an additional 5 minutes for the label fusion [8]. Table 1 lists the charac-
teristics (volume and density) of osteoporotic vertebrae at different grades of
compression fracture and the segmentation performance in different experimen-
tal setups.

BD2D setup performed better than both H2D and D2D especially for frac-
tured vertebrae as shown in Table 1, suggesting that the bundled osteoporotic
atlases provided the best registration results. However, the performance on grade
3 compression fractures was not on the same level as those of grades 1 and 2. A
paired t-test showed statistically significant improvement in the DC and mean
ASD when using BD2D instead of H2D atlas in all metrics of segmentation
performance (p< 0.001).

Table 2 shows the segmentation performance on both the whole vertebra and
the vertebral body using the three groups of atlases before and after morpholog-
ical label correction. While the DC was higher for the whole vertebra for all atlas
registration groups, the mean ASD performed better on just the vertebral body
substructure. Depending on the atlas and the segmentation performance metric
used, the morphological label correction improved results over the label fusion
alone. However, using BD2D, the improvements seen in the DC and mean ASD
in both the whole vertebra and vertebra body substructure were statistically
significant (p< 0.05).
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Table 1. Comparison of upper thoracic (UT), lower thoracic (LT), lumbar (L), non-
fracture (NF), grades 1−3 (G1, G2, G3) compression fracture, VCF, and all vertebrae.
Mean and standard deviation (in parenthesis) of segmentation volume (cm3), density
(HU), Dice coefficient (DC) (%) and absolute surface distance (ASD) (mm) of refined
(-r) H2D, D2D, and BD2D setups are reported. Best performing methods are bolded.

No Vol. Den. DC DC DC ASD ASD ASD

Vert H2D-r D2D-r BD2D-r H2D-r D2D-r BD2D-r

UT 30 21 259 90.6 91.3 92.5 0.33 0.32 0.29

(3.7) (48) (4.7) (4.9) (1.5) (0.16) (0.15) (0.06)

LT 30 33 274 92.4 91.9 93.0 0.34 0.37 0.34

(6.7) (96) (3.6) (3.4) (2.8) (0.10) (0.13) (0.10)

L 25 56 267 91.5 93.5 92.5 0.42 0.37 0.35

(8.1) (86) (10.5) (4.5) (7.7) (0.40) (0.35) (0.21)

NF 69 36 254 92.0 92.6 93.0 0.35 0.34 0.31

(16) (52) (7.1) (4.4) (4.7) (0.27) (0.24) (0.14)

G1 1 22 216 88.3 92.4 92.2 0.31 0.34 0.39

G2 10 31 259 91.0 92.3 92.6 0.32 0.30 0.29

(11) (41) (2.7) (1.3) (1.1) (0.07) (0.05) (0.04)

G3 5 39 465 86.2 86.1 87.6 0.55 0.53 0.50

(16) (160) (3.8) (3.0) (3.6) (0.09) (0.08) (0.08)

VCF 16 33 321 89.3 90.4 91.0 0.39 0.37 0.36

(12) (134) (3.7) (3.5) (3.2) (0.13) (0.12) (0.11)

All 85 35 267 91.5 92.1 92.7 0.36 0.35 0.32

(15) (78) (6.6) (4.3) (4.5) (0.25) (0.23) (0.13)

4 Discussion

The multi-atlas joint label fusion segmentation method presented in this paper
provides a robust framework for the segmentation and analysis of osteoporotic
spine and vertebral compression fractures. Compared to prior literature which
used multi-atlas joint label fusion techniques for healthy spine [2], our method
produced similar or better performance, as measured by DC, for both non-
fractured osteoporotic vertebrae (93.0%) and compression fractured vertebrae
(91.0%). A similar pattern was observed in the mean ASD where we obtained a
mean ASD of 0.31 mm and 0.36 mm for non-fractured and fractured vertebrae,
respectively. The same five osteoporotic cases were re-evaluated by the tech-
niques used in the work of Yao et al. [13]. The two best performing methods,
one of which was not fully-automated and used statistical shape model defor-
mation and B-spline relaxation [14], and one similar to ours that used multi-
atlas registrations on bundles of five vertebrae with basic majority voting label
fusion [6], produced similar overall DC of 89.8% and 89.7% and ASD of 0.64 mm
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Table 2. Mean and standard deviation of Dice coefficient (DC) (%) and absolute
surface distance (ASD) (mm) for whole vertebra and vertebral body (VB) using JLF of
H2D, D2D, BD2D and refined results. Two statistical tests were conducted: comparison
of (1) each atlas type with its refined (-r) segmentations and (2) H2D-r and D2D-r with
BD2D-r. Varying levels of significance in the first test are marked by asterisks, where ∗
indicates p≤ 0.05, ∗∗ p≤ 0.01, and ∗∗∗ p≤ 0.001. Significance of p≤ 0.05 in the second
test is indicated by §.

DC DC VB ASD ASD VB

H2D 91.2 (6.8) 88.0 (21.1) 0.35 (0.17) 0.33 (0.14)

H2D-r 91.5∗ (6.6) 88.7∗∗ (18.3) 0.36 (0.25) 0.32 (0.11)

D2D 92.0 (4.4) 89.2 (17.7) 0.33 (0.16) 0.31 (0.14)

D2D-r 92.1 (4.3) 89.4∗∗∗ (17.7) 0.35 (0.23) 0.32∗∗∗ (0.15)

BD2D 92.5 (4.4) 89.5 (17.9) 0.31 (0.10) 0.30 (0.09)

BD2D-r 92.7∗∗§ (4.5) 89.7∗∗§ (18.0) 0.32∗§ (0.13) 0.30∗∗∗§ (0.10)

and 0.86 mm respectively. Our technique, which utilized multi-atlas registrations
on bundles of three vertebrae with joint label fusion based on local similarity
appearance with a weighting scheme and additional morphological label correc-
tions, performed at a DC of 92.7% and ASD of 0.32 mm.

Certain metrics in our algorithm can be selected and further optimized to
improve performance. In image registration, the local normalized correlation
coefficient (LNCC) could be used instead of NMI within NiftyReg [8], assum-
ing that a linear relationship exists between the intensities of the voxels of the
floating and target images. The weight factor α can be varied to determine the
best value to use on CT images, as the default value was optimized for inter-
modality registrations of medical images. In addition, the cases chosen for these
experiments may not have fully captured the variability of morphology in the
osteoporotic population. More cases and optimized atlas selection could produce
a segmentation algorithm than can be applied to a more robust population of
osteoporotic individuals.

Based on results in Tables 1 and 2, segmentation performance on grade 3
compression fractures was not as high as those on grades 1 and 2. One potential
reason for this is the markedly elevated intensities observed in the grade 3 VCFs
as a result of injected surgical cement in three of the five fractured vertebrae.
Additional fractured vertebrae are necessary to increase and test the robustness
of the algorithm, as there were only 16 VCFs total, of which only one grade 1 in
the test cohort.

The average DC was higher when evaluating the whole vertebrae than on a
single vertebral body. However, the opposite was true when examining the mean
ASD. This is likely the result of evaluating smaller and less variable regions at
the surface of the vertebral body rather than more variable regions across the
entire vertebra.
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5 Conclusion

In this paper, we present a robust method for segmenting osteoporotic com-
pression fractures. Despite significantly greater variability in the morphology
of compression fractured spines, we have shown that optimization of existing
techniques for non-osteopenia spines can yield similar or better performance
for segmentation of osteoporotic spines. With these improved segmentations,
morphological features of osteoporotic compression fractured vertebrae can be
better characterized for clinical applications. The extraction of features through
an improved segmentation result may also provide means for better treatment
and management of spinal disease.
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Abstract. Discectomy procedure simulations require patient-specific
and robust three-dimensional representation of vertebral and interver-
tebral disc structures, as well as existing pathology, of the lumbar spine.
Prior knowledge, such as expected shape and variation within a sample
population, can be incorporated through statistical shape models to opti-
mize the image segmentation process. This paper describes a framework
for construction of statistical shape models (SSMs) of nine L1 vertebrae
and eight L1-L2 intervertebral discs from computed tomography and
magnetic resonance (MR) images respectively. The generated SSMs are
utilized as a reference for knowledge-based priors to optimize coarse-to-
fine multi-surface segmentation of vertebrae and intervertebral discs in
volumetric MR images. Correspondence between instances within each
model has been established using entropy-based energy minimization of
particles on the image surfaces, which is independent of any reference
bias or surface parameterization techniques. The resulting shape models
faithfully capture variability within the first seven principal modes.

1 Introduction

According to the Global Burden of Disease study [1,2], lower back pain is the
single leading cause of disability worldwide. Imaging studies indicate that 40% of
patients suffering from chronic back pain showed symptoms of intervertebral disc
degeneration (IDD) [3]. Primary treatment for lower back pain consists of non-
surgical treatment methods. If non-surgical treatments are ineffective, a surgical
procedure may be required to treat IDD, a procedure known as spinal discectomy.
Approximately 300,000 discectomy procedures, over 90% of all spinal surgical
procedures [4,5], are performed each year in the United States alone, totaling
up to $11.25 billion in cost per year.
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 85–96, 2016.
DOI: 10.1007/978-3-319-41827-8 8
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Discectomy procedure simulation requires patient-specific and robust three-
dimensional (3D) representation of vertebral and intervertebral disc structures,
as well as existing pathology, of the lumbar spine. Although lumbar vertebral
structures have high variability, the prominent features of the bone are consis-
tent within a sample population. This facilitates the incorporation of a statisti-
cal shape model with expected variations into a volumetric image segmentation
framework. Low image resolution and image artifacts, such as image noise, make
biomedical volumetric image segmentation a challenge. Ambiguous image inten-
sity results in incorrect, or even disconnected, boundary detection of the struc-
ture of interest. Prior knowledge, such as expected shape and variance within
a sample population, can be incorporated through statistical shape models to
optimize the image segmentation process.

This paper describes a framework for the construction of statistical shape
models (SSMs) of L1 vertebrae and L1-L2 intervertebral discs from computed
tomography (CT) and magnetic resonance (MR) images of respectively of
healthy subjects. The generated SSMs are utilized as a reference for knowledge-
based priors to optimize segmentation of vertebrae and intervertebral discs in vol-
umetric MR images. These shape models can be incorporated into a controlled-
resolution deformable segmentation model of the lumbar spine. Incorporation of
strong shape priors would facilitate quantification and analysis of shape varia-
tions across healthy subjects. It is aimed as a tool for improving spine segmenta-
tion results that can be utilized as part of an anatomical input to an interactive
spine surgery training simulator, especially a discectomy procedure [6].

Statistical shape models from nine L1 vertebrae and eight L1-L2 interver-
tebral discs have been generated to be utilized as shape priors during spine
segmentation from volumetric MR images. Correspondence between instances
within each model has been established using entropy-based point placement on
the image surfaces [7–9], which is independent of any reference bias or surface
parameterization techniques. The rest of the paper is as follows: Sect. 2 pro-
vides an overview of the correspondence and active shape model construction
methods; Sect. 3 describes the initial shape model results for vertebrae and inter-
vertebral discs. Finally, Sect. 4 presents a conclusion and future improvements
of the implemented method.

2 Method

2.1 Image Dataset and Preprocessing

Datasets provided by the SpineWeb initiative have been utilized for generating
shape models of an L1 vertebra and an L1-L2 intervetebral disc. Volumetric
CT scans of healthy subjects, along with binary masks, of nine anonymized
patients [10] were used for model construction of L1 vertebra. The CT scans
and binary masks had a resolution of 0.2× 0.3× 1mm3. In addition, expert seg-
mentations of the L1-L2 interveterbral disc of eight anonymized patients, with
2.0× 1.25× 1.25mm3 resolution [11], were preprocessed as input to the corre-
spondence and shape model construction method.
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These binary images were initially aligned along the first principal mode,
and any aliasing artifacts were removed during image preprocessing. The fast
marching method was applied to generate distance maps of the binary images,
which were used for 3D surface reconstruction and establish correspondence
between instances of both vertebra and disc shape models.

2.2 Correspondence Establishment

Correspondence establishment is the process of finding a set of points on one
two-dimensional (2D) contour or 3D surface that can be mapped to the same
set of points in another image. Anatomically meaningful and correct correspon-
dences are of utmost importance, as they ensure correct shape parametriza-
tion and shape representation. This can be achieved by co-registering manual
landmarks onto the shape boundary in 2D shape space but is challenging in
3D space. Anatomical landmarks are points of correspondence on each shape
that match within a sample population [12], which may be manually or auto-
matically placed. Correspondence landmarking may entail identifying matching
parts between 3D anatomical structures, which is challenging due to inherent
variability within geometry or shape of the anatomical structure across a pop-
ulation [13,14]. Therefore, landmark placement to establish correspondence for
robust statistical analysis is a significant task.

According to Heimann et al. [13], a number of methods for correspondence
establishment are feasible, where a generic template mesh is registered onto a set of
instances through model-to-model or model-to-image registration to achieve a set
of instances with automatic point-to-point correspondences through distance [15].
However, this method introduces a bias through selection of a reference topol-
ogy [16,17]. To mitigate the reference bias, Rasoulian et al. [18,19] utilized for-
ward group-wise registration to establish probabilistic point-to-point correspon-
dences to generate 3D training shapes of L2 vertebrae. Similarly, Mutsvangwa
et al. [20] employed rigid and non-rigid registration of pointsets, and implemented
a probabilistic principal component analysis (PCA) to mitigate outlier effects of
a 3D scapula model. Vrtovec et al. [21] established correspondences through a
hierarchical elastic mesh-to-image registration of an extracted reference across 25
lumbar vertebral image volumes. Kaus et al. [22] rigidly aligned a reference tri-
angular mesh to training shapes and then utilized discrete deformable models to
locally adapt the reference mesh to segmented volumes, thus propagating the ref-
erence pointset across 32 vertebral images. Lorenz et al. [23] performed curvature-
adaptive landmark-guided warping and mesh relaxation of a reference mesh across
a set of 31 lumbar vertebral image volumes for 3D statistical model construc-
tion. Becker et al. [24] parameterized 14 lumbar vertebral shapes to a rectangle by
utilizing a graph embedding method, and reduced mesh distortion using energy
minimization-based adaptive resampling. Heitz et al. [25] also implemented non-
rigid b-spline based warping to construct models of C6 and C7 cervical vertebrae.
This list is a reference of 3D vertebral and intervertebral disc statistical shape
models and is by no means exhaustive. In contrast, 3D shape variability of inter-
vertebral discs is less explored in the literature. Peloquin et al. [26] constructed a
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statistical shape model of 12 L3-L4 intervertebral discs from signed distance maps
of manually segmented binary images.

This research focuses on the refinement of a correspondence technique intro-
duced by Cates et al. [7,8] that is independent of structure parameterization or a
reference bias. The utilized technique employs a two-stage framework, with soft
correspondence establishment in the first stage, and correspondence optimization
across all instances of the shape space in the second stage. Soft correspondence
is established by automatically placing homologous points on the shape surface
through an iterative, hierarchical splitting strategy of particles, beginning with
a single particle. A 3D surface can be sampled using a discrete set of N points
that are considered random variables Z = (X1, . . . , XN ) drawn from a probabil-
ity density function (PDF) p(X). Denoting a specific shape realization of this
PDF as z = (x1, x2, . . . , xN ), the amount of information contained in each point
is the differential entropy of the PDF function p(x), which is estimated as the
logarithm of its expectation log{E(p(x))}, E(·) estimated by Parzen windowing.
The cost function C becomes

C{x1, . . . , xN} = −H(P i) =
∑
j

log
1

N(N − 1)

∑
k �=j

p(xj)

=
∑
j

log
1

N(N − 1)

∑
l �=j

G(xj − xl, σj), (1)

where G is an isotropic Gaussian kernel with standard deviation σj . These
dynamic particles have repulsive forces that interact within their circle of influ-
ence limited through the Gaussian kernel until a steady state is achieved, and
are constrained to lie on shape surface through gradient descent in the tangent
plane.

These correspondences are further optimized by entropy-based energy mini-
mization of particle distribution along gradient descent by balancing the negative
entropy of a shape instance with the positive entropy of the entire shape space
encompassing all instances (known as an ensemble) [27]. Consider an ensemble
ε consisting of M surfaces, such as ε= (z1, z2, . . . , zM ), where points are ordered
according to correspondences between these surface pointsets. A surface zk can
be modeled as an instance of a random variable Z, where the following cost
function is minimized:

Q = H(Z) −
∑
k

H(Pk). (2)

The cost function Q favors a compact representation of the ensemble and assumes
a normal distribution of particles along the shape surface. Hence, p(z) is modeled
parametrically with a Gaussian distribution with covariance Σ. This ensemble
entropy term can be represented as

H(z) ≈ 1
2

log ‖Σ‖ =
1
2
Σkλk, (3)

where λk are ensemble covariance eigenvalues. This process optimally reposi-
tions the particles of the shapes within the ensemble to generate robust shape
representations with uniformly-distributed particles.
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ShapeWorks1 was used to establish dense correspondences of 16,384 homol-
ogous points on nine L1 vertebral instances, and 4,038 points on eight L1-L2
intervertebral disc instances. The ensemble shapes were respectively normalized
according to centroid-referred coordinates, and were further aligned during the
correspondence optimization process through iterative Procrustes analysis [28].
Statistical shape models were respectively generated for an L1 vertebra and L1-
L2 disc using these point clouds in the manner summarized in Sect. 2.3.

2.3 Construction of a Statistical Shape Model

The shape of an object is the geometrical information that remains after effects of
translation, rotation and scaling have been filtered [29]. Statistical shape model
capturing variations within L1 vertebrae and L1-L2 intervertebral disc popula-
tion have been constructed using PCA [30].

The generalized mean shape X̄ and covariance matrix ΣX can be calculated
for the datasets. Assuming that the training dataset covers a set of closely related
shapes, correlation between shape points can be represented by a multivariate
Gaussian distribution. PCA is utilized to extract the principal modes, which
represent data correlation along principal directions within the dataset, to reduce
problem dimensionality.

Each eigenvector φi represents the modes of variation within the training
dataset, and the corresponding eigenvalue λi captures the amplitude of varia-
tion within the corresponding eigenvector, with the largest λ corresponding to
the largest deformation in corresponding modes. The eigenvalues of Φ are sorted
in descending order such that λi > λi+1 and the largest t eigenvalues and cor-
responding eigenvectors are kept so that Φt = (φ1, φ2, . . . , φt). A sample shape
X can be approximated as a linear combination of the mean shape and first
t modes of variation represented by X = X̄ + btΦt, where bt is a t-dimensional
vector representing modes of variation. Assuming the mean shape X̄ is located
at the origin, three standard deviations of λi capture expected shape variability
with a 99.7% confidence interval.

The calculated average shape and expected variations can be incorporated
within the discrete deformable simplex model segmentation [6,31–33] to con-
straint the model variability and faithfully capture structure boundary in pres-
ence of image artifacts and noise.

3 Results

3.1 Shape Mean and Variance Evaluation

Figure 1 is a graphical representation of dense correspondence-based mean shape
of the L1 vertebrae and L1-L2 intervertebral discs. Both mean shapes look quali-
tatively normal. Figure 2 illustrates the changes in the shapes along the first three
principal modes of variation by 3σ for vertebrae and intervertebral discs. The
1 http://www.sci.utah.edu/software/shapeworks.html.

http://www.sci.utah.edu/software/shapeworks.html
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(a) (b)

Fig. 1. Correspondence-based mean shapes. (a) Mean L1 vertebra shape from a popu-
lation of nine instances, viewed from inferior. (b) Mean L1-L2 intervertebral disc shape
from a population of eight instances, viewed from superior.

first mode for both shape models mainly captures scaling across the population.
The maximum vertebral variability (16 mm) is observed at the inferior and supe-
rior articular processes and the spinous process. The second and third modes in
the vertebral model capture variation and scaling in the transverse processes and
foramen size respectively. In contrast, the first mode of the intervertebral disc
model varies maximally by 7 mm. The second principal mode captured stretch-
ing in the lateral parts of the disc, and the third mode captured rotational effects
in the lateral part of the disc respectively.

(a) (b)

Fig. 2. Graphical representation of shape model variability (in mm) captured by the
first three principal modes (−3σ ← mean → +3σ) of (a) L1 vertebra, viewed from
superior (b) L1-L2 intervertebral disc, viewed from superior. Red corresponds to the
maximum outward signed distance (mm) from the mean shape, while blue corresponds
to the maximum inward signed distance (mm) from the mean shape. (Color figure
online)
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3.2 Statistical Shape Model Evaluation

Shape model correspondences and the constructed statistical models may be
evaluated through established metrics, such as model compactness, generaliza-
tion ability, and specificity [14]. A robust statistical model should have low gen-
eralization ability, low specificity and high compactness for the same number of
modes. Compactness is the ability of the model to use a minimum number of
parameters to faithfully capture shape variance within the dataset. This may be
calculated as the cumulative variance captured by the first m number of modes

C(m) =
m∑
i=1

λi, (4)

where λi is the largest eigenvalue of the i-th mode. Figure 3 graphically illus-
trates the compactness of the statistical models as a function of the number of
modes required to capture 100% of the variation across the population. Each
principal mode represents a distinct shape variation amongst the shape popu-
lation. Both shape models were able to capture variance within the first seven
principal modes, with 39.45% variance of the vertebra model, and 71.04% disc
shape variation captured within the first principal mode respectively. The gen-
eralized ability of the statistical model to represent new, unseen instances of a
new shape that are not present in the training dataset was evaluated by per-
forming leave-one-out experiments. Vertebra and disc statistical shape models
were generated using all training samples except one, which was considered the
test sample. This test sample was then reconstructed using the statistical shape
model, and the root-mean-square (RMS) distance and Hausdorff distance errors
were calculated between the reconstructed sample and the original test sample
after rigid registration. This method was repeated over the entire vertebra and
disc datasets respectively, to calculate an average and worst measure of error for
both statistical models. Generalization ability G(m), and its associated standard
error σG(m) can be mathematically represented as

G(m) =
1
n

n∑
i=1

Di(m), σG(m) =
σ√

n − 1
, (5)

(a) (b)

Fig. 3. Compactness ability of (a) L1 vertebra (b) L1-L2 intervertebral disc shape
models. 100 % of the variation was captured within the first seven modes for both
models.
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where Di(m) is the RMS or Hausdorff distance error between the test sample
and the instantiated shape, n is the number of shapes (i.e. nine L1 vertebrae
and eight L1-L2 discs in our study) and σ is the standard deviation of G(m).

Model specificity is the measure of a model to only instantiate instances that
are valid and similar to those in the training dataset. To measure our statistical
models’ specificity, (n−1) instances where randomly generated within [−3λ,+3λ]
using our statistical models, and compared to the closest shape in the training
dataset. Specificity S(m) and its standard error σS(m) have been calculated as

S(m) =
1
n

n∑
j=1

Dj(m), σS(m) =
σ√

n − 1
, (6)

where n is the number of samples, Di(m) is the RMS distance error between a
randomly generated instance and its nearest shape within the training dataset,
and σ is the standard deviation of S(m).

Results of the vertebra model generalization ability are presented in Fig. 4(a)
and (b). For the first mode of variation, the average reconstruction error for an
unseen instance is 0.47 mm with a confidence interval of 0.03 mm, with an initial
Hausdorff distance of 8.2 mm. This error converges to 0.4 mm with worst mean
error of 7.6 mm. Our vertebra models cumulative specificity error is 1.43 mm
in seven principal modes with negligible standard error. Our vertebra model
results are comparable with those in the literature. Vrtovec et al. [21] model
is more compact, capturing 52% variability within the first principal mode.
Rasoulian et al. [18] capture G(m) RMS error of 0.95 mm, with Hausdorff error
of 9 mm within the first principal mode, which is decreased to 0.8 mm RMS and
7.5 mm after seven modes. Their model is worse in generalization and specificity,

(a) (b) (c)

(d) (e) (f)

Fig. 4. Generalization ability and specificity of L1 vertebra and L1-L2 intervertebral
disc shape models. Errorbars indicate standard error. (a) − (c) L1 vertebra: (a) general-
ization (RMS), (b) generalization (Hausdorff), and (c) specificity. (d) − (f) L1-L2 inter-
vertebral disc: (d) generalization (RMS), (e) generalization (Hausdorff), and (f) speci-
ficity.
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but outperforms in model compactness (capturing 60% in the first mode). Our
statistical model outperforms Kaus et al. [22] whos model reported 1.66 mm
mean error after 20 modes, with 30% first mode compactness, constructed with
32 (L1-L4) vertebral training shapes.

Our intervertebral disc model is able to represent unseen instances with an
initial RMS error of 0.23 mm, and Hausdorff distance of 2.24 mm, which con-
verges to 0.1 mm RMS error and 0.5 mm worst error after six principal modes.
As depicted in Fig. 4(d) and (e), mode 5 attributes a spike in the distance errors.
This may be caused by a singular variation within a training sample captured by
this mode. The overall effect of this variation is reduced by mode 6, as demon-
strated by a reduction in the G(m) error. The disc model specificity captures
cumulative 1.0 mm RMS error within six modes. Peloquin et al. [26] present
comparable results for model compactness of 14 L3-L4 discs, capturing 70%
variability within the first mode. They presented a leave-one-out analysis to
determine which samples influenced model outliers, demonstrating that PCs> 4
had higher influence on the mean shape of the model.

Overall, the compact model transitions coherently, with a tradeoff between
compactness and the ability to faithfully represent new training shapes. Some
outliers in the first principal mode can be noted in the variant vertebral shape.
These outliers may be reduced by increasing the size of the population dataset,
as well as exploring probabilistic PCA instead of simple PCA, which may better
account for any outliers in the model. Moreover, large variability exists between
the nine vertebrae instances, leading to large variability in the L1 vertebral shape
model itself, as seen in Fig. 2. An increase in the training dataset would lead to
a more robust and faithful vertebral model better able to represent variability
within a population.

4 Future Work and Conclusion

The current shape models can be improved by increasing the size of the training
dataset. Moreover, probabilistic PCA can be implemented to capture outliers in
the vertebral shape model in presence of a small training size.

This paper quantifies inter-patient 3D shape variation of an L1 vertebra and
an L1-L2 intervertebral disc of the lumbar spine. The constructed shape models
have been shown to faithfully capture variance within a population with few par-
ticle outliers, capturing 100% variability within the first seven modes. The main
advantage of this correspondence method is the lack of a reference bias, as it
places particles on the implicit shape surface independent of prior surface para-
meterization. It also iteratively performs alignment during the correspondence
optimization phase in order to mitigate error introduced by shape misalignment.

The calculated strong shape prior knowledge will be incorporated within a
multi-surface, multi-resolution simplex deformable segmentation model of lum-
bar vertebrae and intervertebral discs. The shape models can be registered to
the volumetric images, and set as a template meshes that are allowed to deform
and capture the structure boundary while constraining the model according to
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expected variation. The inherent regularization and surface smoothness para-
meters in the discrete simplex model enforce mesh smoothness, mitigating the
effects of shape model noise. These shape forces can be integrated in a controlled-
resolution segmentation pipeline to faithfully capture structure boundary in pres-
ence of image artifacts, improving on our previous segmentation results [6].
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Abstract. This paper describes an automatic system for intervertebral
discs (IVDs) localization and segmentation in three-dimensional mag-
netic resonance imaging scans. The system builds upon the localization
and segmentation system first introduced by Lootus et al. with several
improvements to the localization step. The system was trained on T1
and T2 scans of 341 patients obtained from various sources. The pro-
posed system achieved a mean localization error of 1.1± 0.6 mm and a
mean Dice overlap coefficient of 84.0± 1.5 % on the 15 training data of
the challenge on IVD localization and segmentation at the 3rd MICCAI
Workshop & Challenge on Computational Methods and Clinical Appli-
cations for Spine Imaging - MICCAI–CSI2015.

1 Introduction

The objective of this work is the automated localization and segmentation of
intervertebral discs (IVDs), and to this end we propose a system that was first
presented in the work of Lootus et al. [1] and improve it with ideas from the work
of Jamaludin et al. [2]. The whole system comprises five main steps: 1. vertebrae
detection and labelling, 2. corner localization of detected vertebrae, 3. detection
of the extent of the vertebrae in sagittal slices, 4. IVDs segmentation via graph
cuts, and 5. localization of IVDs centres.

2 Methodology

2.1 Vertebrae Detection and Labelling

To detect and label the vertebrae, we use the detection and labelling scheme
proposed by Lootus et al. [3] which uses a combination of a deformable part
model (DPM) detector [4] and labelling via graphical model. The input to this
stage is a three-dimensional (3D) magnetic resonance (MR) volume and the
output is a series of approximate bounding boxes with the vertebrae labels from
T11 to the combined sacrum (S1 and S2). The detector uses two different groups
of histogram of oriented gradients (HOG) templates one for the combined sacrum

c© Springer International Publishing Switzerland 2016
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Fig. 1. Examples of the ground truth bounding boxes that were used to train the HOG
templates models are shown here in cell units where one cell is made up of 8× 8 pixels.
Only one template was trained for the sacrum while four different templates of varying
ratio were trained for the other vertebrae.

(S1-S2) and the other for T11-L5 vertebrae detections. The graphical model is a
chain graph with eight vertices, one for each vertebra (T11 to S1-S2), with the
edges describing the geometrical relationships of one vertebra and the next. Both
the HOG templates and geometrical relationships of the vertices are trained with
annotated ground truth bounding boxes with labels as described in the work
of Lootus et al. [3]. Examples of annotated ground truths, the trained HOG
templates, and the graph of the chain model can be seen in Fig. 1 while an
example of the input and output can be seen in Fig. 2.

(a) (b)

Fig. 2. (a) A midsagittal slice of the 3D MR scan (input). (b) The same scan super-
imposed with the bounding boxes and their corresponding labels (output). Note: the
S1-S2 bounding box is truncated to just S1.
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2.2 Corner Localization

We then refine the localization of these bounding boxes such that the resulting
quadrilaterals are more consistent and tightly fit the vertebrae. This is achieved
by regressing to the corner points of the vertebrae contained in the bounding
boxes. We adapt the supervised descent method (SDM) by Xiong et al. [5] orig-
inally developed for the detection of facial landmarks. Implementation details
and experimentation results of the regression of the corner points can be found
in the work of Jamaludin et al. [2]. Examples of corner localized vertebrae with
corresponding bounding box inputs can be seen in Fig. 3.

(a) (b)

Fig. 3. (a) Input. (b) Output. Note: the quadrilaterals are tighter in terms of fit com-
pared to the original bounding boxes.

2.3 Detection of the Extent of the Vertebrae

All the previous steps are performed on each sagittal slice of the scan, however,
it is also necessary to determine the vertebra start and end. This is important
since the positions of the vertebrae in a scan are initially unknown and there
exist slices which contain only partial volumes of the vertebrae, largely containing
other non-vertebral tissue. Such partial vertebrae are problematic because they
should be considered to be part of the background class during segmentation. To
this end we utilise a binary classifier to distinguish non-vertebrae and vertebrae
quadrilaterals.

We follow the method proposed by Chatfield et al. [6], where the steps are:
1. dense scale-invariant feature transform feature extraction over the quadrilat-
erals, 2. Fisher vector encoding of the features, 3. spatial tiling of the features in
the image and 4. classification via linear support vector machines. This is done
on a per slice basis on every slice where the quadrilaterals are classified as either
vertebra or non-vertebra. Examples can be seen in Fig. 4.
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(a) (b)

Fig. 4. (a) Tight quadrilaterals of the midsagittal slice (input). (b) Triangular mesh
plots made from quadrilaterals in the 3D volume that were classified as vertebrae
(output). The plots shown is of a single scan but at three different orientations.

2.4 IVD Segmentation

We follow the segmentation scheme proposed by Lootus et al. [3] which uses a
standard graph cuts algorithm. We therefore segment twice, once for the verte-
brae and then once more for the IVDs. The placement of the foreground and
background seeds are automatically generated according to tight quadrilaterals
similar to the work of Lootus et al. [3]. This two-step segmentation proves to
be better than segmenting the IVDs directly from the quadrilaterals due to the
fact that accurate foreground seed placement is less demanding than vertebrae
segmentation.

There are two main differences between our implementation and that dis-
cussed in the work of Lootus et al. [3]. First, the seeds are set to be the biggest
at the midsagittal point, determined from the extent detector, and smallest at
the sagittal edge of the vertebrae extent. Also, for the IVD segmentation, we
combine the sagittal segmentation with its coronal segmentation by flipping the
third axis of the 3D volume with the first axis and segmenting it again. The joint
segmentation result is the final IVDs segmentation. Example segmentations of
the vertebrae and IVDs can be seen in Fig. 5.

2.5 Localization of IVDs Centres

To localize the IVDs centres we combine three different localization predictions:
1. the centroid of adjacent vertebrae corner points, 2. a linear regression of
adjacent vertebrae corner points, and 3. the centroid of segmented binary mask
of each IVD.

The first localization prediction is the centroid of the corner points of adjacent
vertebrae to a specific IVD. We assume that this centroid is a close approximation
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(a) (b) (c)

Fig. 5. (a) Tight quadrilaterals of the midsagittal slice, now classified as either vertebra
or non-vertebra according to extent detector (input). For (b) vertebrae segmentation
and (c) IVD segmentation are shown the resulting segmentation masks.

to the centroid of the IVD since an IVD will be bounded by the adjacent vertebrae.
The second localization prediction is essentially the output of a linear regressor
using the corner points as features. The linear regressor is trained by leave-one-
out cross validation of the whole training set. The final localization prediction is
the centroid of the segmentation binary mask. All three predictions are then aver-
aged to give the final localization prediction. Through experimentations, we found
averaging the three predictions give us a more accurate prediction overall. Exam-
ple of IVDs centres localization can be seen in Fig. 6.

Fig. 6. Shown is a single sagittal slice and the predicted IVDs centres. In practice, the
localization predictions predict the centres in 3D space.

3 Results

Results for the corner localization and the extent detector can be seen in the
work of Jamaludin et al. [2]. To test our segmentation and IVD localization we
use the 15 training data provided as part of the challenge on IVD localization and
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segmentation [7] at the 3rd MICCAI Workshop &Challenge on Computational
Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015. As
per the challenge we use mean and standard deviation of the results to the ground
truth for the localization task and the mean Dice overlap for the segmentation
task. Results can be seen in Table 1. Besides the 15 training data provided we
also tested our approach with the five test data provided in the challenge. For
segmentation, we obtain a dice overlap of 82.3± 3.2% and an absolute distance
of 1.57± 0.20 mm. Similarly for localization, we achieve a mean localization of
1.02± 0.47 mm. Our localization results on the challenge dataset is good and
the system manages to achieve sub-voxel accuracy on average. However, our
segmentation results can be improved upon, possibly by means of a true 3D
graph cut segmentation algorithm.

Table 1. Localization and segementation results.

Task Mean ± STD Median Min Max

Localization (mm) 1.1± 0.6 1.0 0.2 2.9

Segmentation (Dice, %) 84.0± 1.5 84.2 79.8 86.4

4 Conclusion

This paper has presented an automatic IVDs localization and segmentation sys-
tem. The proposed system managed to achieve good localization and segmenta-
tion accuracy on the challenge data which is impressive considering the system
was mostly trained on a totally different dataset. This indicates the robustness
of our system.
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Abstract. This paper presents one of the participating methods to the
intervertebral disc segmentation challenge organized in conjunction with
the 3rd MICCAI Workshop & Challenge on Computational Methods and
Clinical Applications for Spine Imaging - MICCAI–CSI2015. The pre-
sented method consist of three steps. In the first step, vertebral bodies
are detected and labeled using integral channel features and a graphi-
cal parts model. The second step consists of image registration, where a
set of image volumes with corresponding intervertebral disc atlases are
registered to the target volume using the output from the first step as
initialization. In the final step, the registered atlases are combined using
label fusion to derive the final segmentation. The pipeline was evaluated
using a set of 15 + 10 T2-weighted image volumes provided as train-
ing and test data respectively for the segmentation challenge. For the
training data, a mean disc centroid distance of 0.86 mm and an average
DICE score of 91 % was achieved, and for the test data the corresponding
results were 0.90 mm and 90%.

1 Introduction

Lower back pain is considered as one of the most common neurological ailments
in the United States and as such costs associated to lower back pain form a
significant portion of the total annual spending on healthcare. Degeneration
of intervertebral discs (IVDs), as caused by aging, trauma, mechanical load,
nutritional or genetic factors, is a common underlying cause of lower back pain.
The degree of degeneration is typically assessed by means of magnetic resonance
imaging (MRI), given the superior ability of MRI to distinguish between soft
tissues and its absence of ionizing radiation. Because of significant inter-observer
variation in grading IVD degeneration and constantly increasing workloads for
radiologists, more and more research is devoted to develop computer assisted
diagnosis systems to support the radiologists in their work and thereby improving
the diagnostic process [1]. A crucial initial step in such a system is an accurate
segmentation of the IVDs.

Over the last years, a number of different methods have been proposed for
segmentation of IVDs [1–6]. The performance ranges from a mean DICE score
c© Springer International Publishing Switzerland 2016
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of a mediocre 74 % to an impressive 92 %. However, a drawback of some refer-
enced methods is the limitation to two-dimensional (2D) image data, as typically
given by the mid-sagittal slice of an image volume covering the lumbar spine. In
addition, thus far no comparison between methods has been possible since all
have been evaluated on different data sets. To this end, that is promoting three-
dimensional (3D) segmentation of IVDs along with enabling a valid comparison
of different methods, an IVD segmentation challenge was set up and organized
in conjunction with the 3rd MICCAI Workshop & Challenge on Computational
Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015.

In this paper, we present one of the challenge participants of said chal-
lenge. As such, the presented method is capable of both localizing and segment-
ing IVDs in MRI data. The method builds upon earlier work as presented by
Lootus et al. [7] for vertebral body detection and labeling in MRI data and
by Forsberg [8] for multi-atlas based segmentation of vertebrae in computed
tomography data. The two approaches are combined and adapted to the task of
localization and segmentation of IVDs in MRI data. Results are presented and
discussed as pertaining to the training and test data provided for the challenge.

2 Materials and Methods

2.1 Image Data

The image data provided for training/testing and initial/final evaluation con-
sisted of MRI data from 15 respectively 10 subjects, where each subject had been
scanned with a 1.5 T scanner (Siemens Magnetom Sonata, Siemens Healthcare,
Erlangen, Germany) and form a subset of the data used in the work of Chen
et al. [2]. The image data consisted of sagittal T2-weighted turbo spin echo
image volumes with a spatial resolution of 2.00× 1.25× 1.25 mm3 and a size
of 39× 305× 305 or 48× 304× 304. The IVDs have been manually segmented
using the original sagittal images. Examples of the image data and ground truth
segmentations are given in Fig. 1.

2.2 Segmentation Pipeline

The proposed segmentation pipeline consists of the following three components,
detection and labeling of vertebral bodies, multi-atlas based segmentation per
IVD and finally label fusion. Note that the presented method is a 3D-based
method providing an accurate segmentation in 3D, even though the initial detec-
tion and labeling step is performed on individual 2D images.

2.3 Detection and Labeling

Detection and labeling of vertebrae is a challenge of its own and a number of
methods have been presented in recent years. In our pipeline, it was decided to
mimic the approach presented by Lootus et al. [7]. However, we employed aggre-
gated channel features [9] coupled with an AdaBoost classifier for detection of the
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(a) (b) (c)

Fig. 1. Example of data used for the evaluation along with ground truth segmentations.

individual vertebrae. The reasons for not choosing the deformable parts model
based on histogram of oriented gradients, as employed by Lootus et al. [7], were
twofold. Firstly, it did not perform as well as the chosen approach, and secondly,
it was more computationally demanding. Similar to the work of Lootus et al. [7],
two different detectors were trained, one general vertebra detector and one for
the fused S1 and S2 segments of the sacrum. To remove a significant portion of
the false positive detections, a greedy non-maxima suppression algorithm was
employed. In order to improve the performance of the detector, by increasing
the number of detections, a set of sagittal slices (the three mid-sagittal slices)
were fed as input to the vertebra detector. The individually detected objects
are then combined using a pictorial structures model [10], further removing false
positive detections along with labeling the detected vertebra. The object verte-
bra detectors along with the graphical parts model had previously been trained
on a separate data set. Figure 2 provides a few examples depicting the output
from the detection and labeling step.

The output from the detection and labeling consisted of a pair of y and z
coordinates along with a label for each detected and labeled vertebra (assuming
a coordinate system where x goes from right to left, y anterior to posterior
and z inferior to superior). Corresponding x coordinates for each detection and
labeling were simply set to the x coordinate of the mid-sagittal slice in the data
set. Note that this works well as long as the orientation of the image volume is
parallel with the spinal column and the subject has limited spinal deformities in
the coronal plane.

2.4 Multi-atlas Based Segmentation

The output from the previous step provided a set of landmarks denoting the
centerpoints of vertebra T11 to L5 along with the centerpoint of sacrum S1-S2.
These centerpoints were used to provide rough estimates of the centerpoints of
the corresponding IVDs, simply by using the midpoint between the centerpoints
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(a) (b) (c)

Fig. 2. Example results from the detection and labeling of vertebra. The detection and
labeling works well even in cases where the sacrum is not fully depicted (c).

of two consecutive vertebrae. This served as input to the image registration in
which a registration per disc was performed by extracting a sub-block (sized
40× 96× 96 voxels, determined empirically to ensure a good coverage of each
disc) of the data from each volume centered around the respective centerpoints
of each disc. Note that for a general segmentation pipeline, the size of the sub-
blocks should preferably be set in millimeters and with the possible extension
to scale the size depending on sex, age and length of the patient. Each disc of
the image data to segment is registered with multiple atlases. The registration
was executed in two steps, where an initial affine registration was performed
to account for differences in size and pose, and where a subsequent deformable
registration was applied to account for local differences in shape. In both cases,
local phase-based image registration approaches were applied.

Affine Registration. The affine phase-based registration was defined as an L2

norm:
ε2 =

1
2

∑
k

∑
x∈Ω

ck(x)
[
∇ϕk(x)T

B(x)p − Δϕk(x)
]2

, (1)

where ϕk refers to the local phase-difference in orientation n̂k between the two
images to be registered, ck is a measure of certainty related to ϕk, and B(x)p
corresponds to a linear parameterization of the local displacement d(x). A more
detailed description is found in the works of Hemmendorff et al. [11] and Eklund
et al. [12], and provides details on the employed graphics processing unit (GPU)
implementation.

Deformable Registration. Similarly, as for the affine registration, a voxel-
wise L2 norm based upon local phase-differences was defined for the deformable
counterpart:

ε2(x) =
∑

k

[ck(x)T(x) (ϕk(x)n̂k − u(x))]2 . (2)
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(a) (b) (c)

Fig. 3. Example results from the atlas-based registration. The individual segmentations
as provided by the atlas-based segmentation are highly irregular and far from perfect,
for example note the top disc in (a).

In this case, ϕk and ck are as before, and T refers to local structure tensor.
Solving for u provides a voxel-wise update field u(x), which can be iteratively

regularized and added to the final displacement field d. Details on the registra-
tion algorithm can be found in the works of Knutsson and Andersson [13], and
Forsberg et al. [14,15] for the employed GPU implementation.

Examples of output from the whole atlas-based segmentation step are shown
in Fig. 3.

2.5 Label Fusion

The final step is to merge the labels of the multiple deformed atlases into a
single label volume. In this case, a modified majority voting has been employed
for label fusion, where instead of a standard majority vote only a minimum
number of votes were required to render a valid segmentation. The reason for this
approach was that since the discs are well-separated, it is only the background
that provides a competing label. The minimum number of votes required for
a segmentation was set to five, a number which was empirically determined.
Example visualizations of the final segmentations are given in Fig. 4.

2.6 Evaluation

Given that 15 data sets were available for training, including ground truth data,
a leave-one-out evaluation was performed for the training data in which one data
set is segmented using the 14 others as atlases. This is then repeated for each
available data set. Both IVD localization and segmentation results were included
in the evaluation. For the evaluation on the test data, all 15 data sets were used
as atlases.
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(a) (b) (c)

Fig. 4. Example results from the final step of label fusion. Previous irregularities are
now gone and no apparent errors in the final segmentations are visible.

The evaluation of the test data was performed in a two-step process, with
five data sets released prior to the challenge for an off-site evaluation and with
remaining five data sets released on the day of the challenge for an on-site eval-
uation. The challenge organizers only provided results in terms of mean disc
centroid distance and DICE score.

Localization. For each segmented disc, the disc centroid distance was computed
as the Euclidean distance between the centroid of the ground truth IVD and the
centroid of the segmented IVD obtained from the presented method. Based upon
the disc centroid distance a disc localization was considered as successful if the
distance was less than 2 mm.

Segmentation. The ground truth data was compared with the segmentations
obtained from the multi-atlas based segmentation using the DICE score. The
DICE score is defined as:

DICE =
2 ∗ |GT ∩ S|
|GT | + |S| , (3)

where GT and S refer to the ground truth and the computed segmentations
respectively, and | . . . | denotes the number of voxels, i.e. no respect was given to
the anisotropic resolution.

To complement the agreement measure of the DICE score, false negative
(FN) and false positive (FP) ratios were also computed as:

FN =
|GT \ S|

|GT | (4)

respectively

FP =
|S \ GT |

|S| . (5)
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Table 1. Average DICE score, and false negative (FN) and false positive (FP) ratios
per disc for the training data.

Disc DICE FN FP

T11/T12 0.89 ± 0.03 0.10 ± 0.04 0.11 ± 0.05

T12/L1 0.91 ± 0.02 0.09 ± 0.02 0.09 ± 0.04

L1/L2 0.91 ± 0.03 0.09 ± 0.04 0.10 ± 0.04

L2/L3 0.92 ± 0.01 0.08 ± 0.03 0.07 ± 0.02

L3/L4 0.92 ± 0.02 0.07 ± 0.03 0.08 ± 0.03

L4/L5 0.92 ± 0.02 0.08 ± 0.03 0.08 ± 0.02

L5/S1 0.89 ± 0.03 0.09 ± 0.04 0.12 ± 0.05

3 Results

3.1 Training Data

The mean disc centroid distance was 0.86± 0.45 mm. Only three disc centroid
distances were larger than 2 mm (2.05, 2.91 and 2.06 respectively) providing an
IVD detection rate of 97%.

The average achieved DICE score was 0.91± 0.01 along with an average FN
and FP of 0.08± 0.02 and 0.09± 0.02 respectively. Detailed results per disc and
subject are given in Tables 1 and 2 respectively.

Table 2. Average DICE score, and false negative (FN) and false positive (FP) ratios
per subject for the training data.

Subject DICE FN FP

1 0.91 ± 0.02 0.09 ± 0.03 0.10 ± 0.01

2 0.91 ± 0.02 0.07 ± 0.02 0.10 ± 0.04

3 0.91 ± 0.01 0.09 ± 0.03 0.08 ± 0.02

4 0.89 ± 0.05 0.09 ± 0.06 0.14 ± 0.05

5 0.92 ± 0.02 0.09 ± 0.03 0.06 ± 0.04

6 0.92 ± 0.03 0.09 ± 0.05 0.06 ± 0.02

7 0.91 ± 0.03 0.08 ± 0.01 0.11 ± 0.05

8 0.92 ± 0.02 0.10 ± 0.03 0.06 ± 0.02

9 0.93 ± 0.01 0.09 ± 0.01 0.06 ± 0.01

10 0.93 ± 0.01 0.07 ± 0.02 0.06 ± 0.02

11 0.90 ± 0.03 0.08 ± 0.04 0.12 ± 0.03

12 0.92 ± 0.01 0.04 ± 0.02 0.12 ± 0.02

13 0.88 ± 0.02 0.11 ± 0.02 0.13 ± 0.05

14 0.91 ± 0.01 0.10 ± 0.04 0.07 ± 0.02

15 0.91 ± 0.02 0.08 ± 0.02 0.10 ± 0.04
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3.2 Test Data

For the off-site evaluation the mean disc centroid distance was 0.81± 0.42 mm
and a detection rate of 97 %. Corresponding results for the on-site evaluation
was 0.99± 0.78 mm and a detection rate of 80 %. The achieved DICE score was
0.90± 0.03 for both the off-site and on-site evaluation.

4 Discussion

In this paper, we have presented one of the methods participating in the IVD seg-
mentation challenge, organized in conjunction with MICCAI–CSI2015, a method
relevant for both robust IVD detection and accurate IVD segmentation. The
method has been evaluated using training and testing data provided by the
challenge organizers. Performance was assessed using disc centroid distance, the
DICE score along with computing the ratios of false negatives and false positives
(the latter two only computed for the training data).

The presented method achieved a mean disc centroid distance of
0.86± 0.45 mm, with a success rate of 97 % given a threshold of 2 mm for the
training data. This can be compared with a mean disc centroid distance of
2.08 mm as reported by Ghosh and Chaudhary [3] for the 2D case, 1.23 mm by
Law et al. [4] and 1.6− 2.0 mm by Chen et al. [2] (both the latter for the 3D
case). As such, the presented results are superior to earlier results. Note that
the results obtained for the on-site evaluation was somewhat lower than for the
training data and for off-site evaluation.

In terms of segmentation accuracy, the presented method performs on par
with current state-of-the-art methods for IVD segmentation. For example,
Michopoulou et al. [5] achieved an impressive mean DICE score of 0.92, however,
only for segmentation of 2D image data and using manual interaction for per-
forming the initial atlas-based registration. Similar DICE scores were presented
in the work of Law et al. [4], but again only for 2D image data. Neubert et al. [16]
presented an extension of their initial work [6] using multi-level statistical model
and achieved a mean DICE score of 0.91 on 3D data.

In Tables 1 and 2 it can be noted that the segmentation accuracy is stable
over both discs and subjects, i.e. there exists no failed cases and any future
improvements are, thus, rather related to fine-tuning of parameters than making
major changes in the presented pipeline. The ratios of false negatives and false
positives show that there appear to be an equal distribution of under- and over-
segmentation between discs and subjects.

Limitations of the presented results are given by the small size of the data set
employed for the evaluation along with its homogeneity. Further, the data set
lacks in cases of degenerated IVDs, hence, it is difficult to foresee the performance
of the presented segmentation pipeline on more clinically relevant data, including
a variety of degenerated IVDs. Another limitation is given by the dependence
of the registration step on the detection and labeling step. A missed vertebra
in-between other vertebrae can be handled with some additional heuristics to
account for long distance between detected vertebra. In the case the detection
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and labeling is off by one or two labels, i.e. in the case when S1-S2 is missed and
instead L5-S1 is labeled as S1-S2, the segmentation is still expected to perform
well but neglects to segment the most inferior IVD.

In all, the presented method along with the evaluation results, a mean disc
centroid distance of 0.86± 0.45 mm and an average DICE score of 0.91 for the
training data, show that robust localization and accurate segmentation of IVDs
are achievable.

Acknowledgements. The work of D.F. was partially funded by the Swedish Innova-
tion Agency (VINNOVA), grant 2014-01422.
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Abstract. Gradual degeneration of intervertebral discs of the lumbar
spine is one of the most common causes of low back pain. A fully auto-
matic, accurate and robust segmentation of intervertebral discs in mag-
netic resonance (MR) images is therefore a prerequisite for the computer-
aided diagnosis and quantification of intervertebral disc degeneration. In
this paper, we propose an automated framework for intervertebral disc
segmentation from MR spine images, in which intervertebral disc detec-
tion is performed by a landmark-based approach and segmentation by a
deformable model-based approach using the self-similarity context (SSC)
descriptor. The performance was evaluated on three publicly available
databases of MR spine images that represent the training, on-line and
on-site testing data for the intervertebral disc localization and segmenta-
tion challenge in conjunction with the 3rd MICCAI Workshop & Challenge
on Computational Methods and Clinical Applications for Spine Imaging -
MICCAI–CSI2015, yielding an overall mean Euclidean distance of 2.4, 1.7
and 2.2 mm for intervertebral disc localization, and an overall mean Dice
coefficient of 92.5, 91.5 and 92.0 % for intervertebral disc segmentation for
training, on-line and on-site testing data, respectively.

1 Introduction

The vertebral column is a complex anatomical construct, composed of vertebrae
and intervertebral discs that are supported by robust spinal ligaments and mus-
cles. During life, all components undergo degenerative changes and morphologic
alterations, and although for most individuals such changes do not represent a
problem, in some cases they may eventually cause severe, chronic and debilitat-
ing low back pain, which is an insidious problem recognized as a biopsycho-social
syndrome [1,2]. The complex process begins due to an anatomical or biological
event and afterwards it is transformed by psychological and social factors into
a chronic illness. Despite the high prevalence of low back pain and significant
burden to the society, its etiology remains unclear. The main diagnostic chal-
lenge is to locate the pain generator, and the degenerated intervertebral disc has
been identified to be capable of acting as such [3]. In clinical practice, magnetic
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 117–124, 2016.
DOI: 10.1007/978-3-319-41827-8 11
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resonance (MR) is the imaging modality of choice for diagnosing intervertebral
disc degeneration as precise information on soft tissues is needed. In addition
to the non-invasive nature of this modality, MR depicts many important fea-
tures of the intervertebral disc, including disc height, annulus fibrosus contours
and persistence of water in the nucleus pulposus [4]. A fully automatic, accurate
and robust segmentation of intervertebral discs in MR images is therefore a pre-
requisite for the computer-aided diagnosis and quantification of intervertebral
disc degeneration that could be also used for computer-assisted planning and
simulation in spinal surgery.

In recent years, several automated and semi-automated methods focusing on
three-dimensional (3D) intervertebral disc (or space) segmentation have been
developed for computed tomography (CT) and MR images. Neubert et al. [5]
proposed an automated approach to extract 3D lumbar and thoracic interver-
tebral discs from MR images using statistical shape analysis and registration of
gray level intensity profiles. Kelm et al. [6] introduced an approach that com-
bines local object detection based on iterative marginal space learning with a
global probabilistic prior model to obtain an oriented bounding box around
the intervertebral disc for a case-adaptive segmentation in MR images. Chen
et al. [7] proposed a fully automatic method for localizing and segmenting 3D
intervertebral discs from MR images, where the two problems were solved in a
unified data-driven regression and classification framework. Korez et al. [8] ini-
tialized a 3D parametric model of the intervertebral disc space in the form of
a truncated elliptical cone, which was then in an optimization procedure incre-
mentally deformed by adding parameters that provided a more detailed morpho-
metric description of the observed shape, and aligned to the observed interver-
tebral disc space in CT images to obtain the final segmentation. Recently, Haq
et al. [9] initialized a simplex active surface mesh in the sagittal plane of a
patient MR volume and allowed it to deform using weak shape priors to capture
the intervertebral disc boundary.

In this paper, we present an automated framework for intervertebral disc
segmentation from MR spine images that is based on deformable models aug-
mented by the self-similarity context (SSC) descriptor. The framework was tested
on images that represent training, on-line and on-site testing data for the inter-
vertebral disc localization and segmentation challenge in conjunction with the
3rd MICCAI Workshop & Challenge on Computational Methods and Clinical
Applications for Spine Imaging - MICCAI–CSI2015.

2 Methodology

2.1 Intervertebral Disc Detection

Successful segmentation of intervertebral discs depends on accurate and robust
initialization, which can be formulated as a disc detection and labeling task.
Thoroughly investigated landmark-based approaches proved to be efficient in
detecting various structures, as they can consider global image information and
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therefore distinguish among locally similar structures such as vertebrae or inter-
vertebral discs [10]. Each intervertebral disc is described by five landmarks that
belong to its mid-plane and represent, respectively, the mid-point and most supe-
rior, inferior, anterior and posterior points of the disc. The appearance infor-
mation of each landmark is described by Haar-like features, which effectively
capture intensity inhomogeneity and complex neighborhood of that landmark
in MR images, and can be rapidly computed from integral image representa-
tion [11]. The shape information is described by pairwise spatial relationships
among landmarks that belong to the same disc. The optimal landmark positions
correspond to the best agreement between the appearance and shape model.

2.2 Intervertebral Disc Segmentation

Mean Shape Model of the Intervertebral Disc. Let set I contain 3D
images of the thoracolumbar spine, where each image is assigned a series of binary
masks representing reference segmentations of each individual thoracolumbar
intervertebral disc from level T11–T12 to L5–S1. To extract a shape model of
each intervertebral disc from each image in I, the marching cubes algorithm is
applied to each binary mask, resulting in a 3D face-vertex mesh consisting of
vertices with triangle connectivity information. In order to establish pointwise
correspondences among vertices of the same intervertebral level, the nonrigid
transformation among sets of vertices is recovered using coherent point drift
algorithm [12]. Finally, the generalized Procrustes alignment is used to remove
translation, rotation and scaling from corresponding meshes, yielding the mean
shape model of each intervertebral disc, represented by a 3D mesh M =

{V,F}
of |V| vertices and |F| faces (i.e. triangles). The mean shape models of individual
intervertebral discs are used for intervertebral disc segmentation in an unknown
3D image.

Deformable Model-Based Segmentation by Using the SSC Descriptor.
The results of the landmark-based intervertebral disc detection (Sect. 2.1) ini-
tialize intervertebral disc segmentation, which is achieved by adapting the mean
shape model to intervertebral disc boundaries in the unknown image. For this
purpose, we propose an iterative mesh deformation technique that moves mesh
vertices to their optimal locations using the SSC descriptor [13] while preserving
the underlying intervertebral space shape [14,15].

By displacing each mesh vertex v i; i= 1, 2, . . . , |V| along its corresponding
mesh vertex normal n(v i), a new candidate mesh vertex v∗

i is found in each
k-th iteration:

v∗
i = v i + δ arg max

ji∈J

{
F

(
v i, v i + δ ji n(v i)

) − D δ2 j2i

}
n(v i), (1)

where δ is the length of the unit displacement, set

J = {−j,−j + 1, . . . , j − 1, j}; j =
⌊

J − 1
1 − K

· k +
1 − J · K

1 − K

⌋
, (2)
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represents the search profile along n(ci), which is of size 2J+1 at initial iteration
k = 1 and three at final iteration k = K, and �·� denotes the ceil operator.
Furthermore, the parameter D controls the tradeoff between the response of the
boundary detection operator

F (v i, v
′
i) =

gmax (gmax + ‖gW (v ′
i)‖)

g2max + ‖gW (v ′
i)‖2

〈n(v i), gW (v ′
i)〉 , (3)

and the distance from v i to v i + δ ji n(v i), where gmax is the estimated mean
amplitude of intensity gradients at intervertebral disc boundaries, ‖·‖ denotes
the vector norm, 〈·, ·〉 denotes the dot product, and gW is the image appearance
operator at candidate mesh vertex location c′

i:

gW (v ′
i) =

(
1 + αC(v ′

i) + (1 − α)R(v ′
i)

)
g(v ′

i), (4)

where α is the weighting parameter, C(c′
i) ∈ [0, 1] is the continuous response

to the Canny edge operator [16], R(v ′
i) ∈ [−1, 1] is the continuous response to

the random forest regression model [17] (with R(v ′
i) = 1 indicating that the

location of v ′
i corresponds to appearance characteristics of intervertebral disc

boundaries and R(v ′
i) = −1 indicating the opposite), and g(v ′

i) is the image
intensity gradient at v ′

i. The important characteristics of each mesh vertex v i;
i = 1, 2, . . . , |V| that are used for the random forest regression are described by
a 26-dimensional feature vector defined as (I vi

,SSCvi
,Gvi

, g(v i), ϕ(v i)):

– I vi
= (I(v i), I(v i)2, I(v i)3, 2

√
I(v i), 3

√
I(v i)),

– SSCvi is a 12-dimensional SSC descriptor [13] obtained from patch-based
self-similarities that aim to find the geometrical and structural context around
each mesh vertex v i,

– Gvi = (‖g(v i)‖ , ‖g(v i)‖2 , ‖g(v i)‖3 , 2
√‖g(v i)‖, 3

√‖g(v i)‖),

where I(v i) is the image intensity at v i, g(v i) is the image intensity gradient
at v i, and ϕ(v i) is the angle between n(v i) and g(v i) [18].

Once new candidate mesh vertices v∗
i are detected, mesh M = {V,F} is

reconfigured in each k-th iteration by minimizing the weighted sum E of energy
terms Eext + βEint, where β is the weighting parameter. The external energy
Eext attracts mesh M to new mesh vertices v∗

i , i = 1, 2, . . . , |V| (1), that are
located on intervertebral disc boundaries:

Eext =
|V|∑
i=1

w∗
i

〈
v∗
i − v i,

gW (v∗
i )

‖gW (v∗
i )‖

〉2

, (5)

where |V| is the number of mesh vertices, gW is the image appearance operator
(4), and w∗

i = max{0, F (ci, c
∗
i ) − D δ2 ji

2}; i = 1, 2, . . . , |V|, are weights that
are defined according to the obtained ji (1) to give a greater influence to more
promising locations of mesh vertices. The internal energy Eint restricts the flex-
ibility of mesh M by penalizing the deviation between deformation vertices V
and mean vertices Vm:



Deformable Model-Based Segmentation of Intervertebral Discs 121

Eint =
|V|∑
i=1

∑
j∈Ni

∥∥∥(
v i − v j

)
−

(
sR

(
vm
i − vm

j

)
+ t

)∥∥∥2

(6)

where v i and vm
i are vertices from sets V and Vm, respectively, Mm = {Vm,Fm}

represents the mean shape model of the observed intervertebral disc (Sect. 2.2),
and Ni is the set of vertices neighboring to v i (or vm

i , since the topology is
preserved). The scaling factor s, rotation matrix R and translation vector t that
align mesh vertices v i to mean vertices vm

i are determined prior to calculation
of (6) by using the Procrustes alignment.

3 Experiments and Results

The proposed automated framework for intervertebral disc segmentation was
evaluated (by applying a leave-one-out evaluation scheme) on the publicly avail-
able databases of MR spine images that represent training, on-line and on-site
testing data for the intervertebral disc localization and segmentation challenge
in conjunction with MICCAI–CSI2015. The training, on-line and on-site testing
data consist of 15, 5 and 5 sagittally reconstructed MR images of the thora-
columbar spine with a total of 105, 35 and 35 thoracolumbar intervertebral discs
from 15, 5 and 5 subjects, respectively. Furthermore, the in-plane voxel size was
of 1.25mm × 1.25 mm, cross-sectional thickness was of 2 mm, and a reference seg-
mentation binary mask was available for each intervertebral disc in the training
data.

All experiments were executed on a personal computer with Intel Core i5
processor at 3.2 GHz and 16 GB of memory without a graphics processing unit.
The detection of all seven intervertebral discs in the database of training images
(i.e. levels from T11–T12 to L05–S01) took on average around 1.4 min, while

Table 1. Summary of intervertebral disc segmentation results on the training data in
terms of mean symmetric surface distance (MSD), root-mean-square symmetric surface
distance (RMSSD), maximal symmetric surface distance (MaxSD) and Dice coefficient
(DICE), reported as mean ± standard deviation.

Intervertebral level MSD (mm) RMSSD (mm) MaxSD (mm) DICE (%)

T11–T12 0.46 ± 0.18 0.86 ± 0.27 4.05 ± 1.37 90.84 ± 3.29

T12–L01 0.44 ± 0.12 0.83 ± 0.16 4.08 ± 1.13 92.21 ± 1.65

L01–L02 0.45 ± 0.13 0.87 ± 0.19 4.48 ± 1.08 92.75 ± 1.87

L02–L03 0.45 ± 0.10 0.87 ± 0.16 4.02 ± 1.17 93.17 ± 1.22

L03–L04 0.44 ± 0.11 0.82 ± 0.14 3.94 ± 0.94 93.73 ± 1.12

L04–L05 0.48 ± 0.19 0.89 ± 0.26 4.17 ± 1.47 92.97 ± 2.09

L05–S01 0.48 ± 0.34 0.89 ± 0.54 3.91 ± 1.72 92.01 ± 4.39

All levels 0.46± 0.18 0.86± 0.28 4.09± 1.31 92.52± 2.64
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(a) (b) (c)

Fig. 1. An example of intervertebral disc segmentation results (in yellow) in comparison
to reference segmentation (in red) for three ((a), (b) and (c)) randomly selected MR
spine images from the database (mid-sagittal view only). (Color figure online)

the segmentation of each individual intervertebral disc took on average around
30 s. An important aspect of the segmentation process is its dependence on sev-
eral parameters. Therefore, we analysed the sensitivity of the algorithm against
changes in parameters, and based on images in the training database, optimal
values were set to δ = 0.25 mm and D = 5.0 mm−2 (1), J = 35 and K = 15
(2), gmax = 75 (3), α = 0.25 (4), and β = 30. Since the total energy E is a
sum of quadratic terms, the minimization problem was efficiently solved by the
conjugate gradient method.

The detection performance of the proposed framework was evaluated by the
Euclidean distance (ED), computed between the detected and corresponding
reference landmarks, while the segmentation performance was evaluated by the
mean symmetric surface distance (MSD), root-mean-square symmetric surface
distance (RMSSD), maximal symmetric surface distance (MaxSD) and Dice coef-
ficient (DICE), computed between the resulting 3D meshes and corresponding
reference segmentation binary masks. On the training data, the overall detec-
tion performance (mean ± standard deviation) was ED = 2.35 ± 0.98 mm, and
the overall segmentation performance was MSD = 0.46 ± 0.18 mm, RMSSD =
0.86 ± 0.28 mm, MaxSD = 4.09 ± 1.31 mm and DICE = 92.52 ± 2.64 %
for the proposed framework. Detailed results for segmentation at individual
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intervertebral levels are presented in Table 1. Furthermore, on the on-line and
on-site testing data, the overall detection performance was ED = 1.74±0.88 mm
and 2.18 ± 0.82 mm, and the overall segmentation performance was DICE =
91.5 ± 2.3 % and 92.0 ± 1.9 %, respectively. An example of the resulting segmen-
tation for three randomly selected MR thoracolumbar spine images is shown in
Fig. 1.

4 Conclusion

In this paper, we presented an automated framework for intervertebral disc seg-
mentation from MR spine images, in which detection of intervertebral discs
was performed by a landmark-based approach, and segmentation of interverte-
bral discs was performed by a deformable model-based approach using the SSC
descriptor. The performance was evaluated on three publicly available databases
of MR spine images that represent the training, on-line and on-site testing data
for the intervertebral disc localization and segmentation challenge in conjunction
with MICCAI–CSI2015.
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Abstract. Segmentation of intervertebral discs from three-dimensional
magnetic resonance images is a challenging problem with numerous
medical applications. In this paper we describe a fully automated seg-
mentation method based on a conditional random field operating on
supervoxels. A mean Dice score of 90 ± 3 % was obtained on data pro-
vided for the intervertebral disc localisation and segmentation challenge
in conjunction with the 3rd MICCAI Workshop & Challenge on Compu-
tational Methods and Clinical Applications for Spine Imaging - MICCAI–
CSI2015.

1 Introduction

Segmentation of intervertebral discs in three-dimensional (3D) magnetic reso-
nance (MR) images is an important step in many applications, but remains a
difficult problem for automated computational methods. In this paper we report
a fully automated method and evaluate it on data provided for the interver-
tebral disc localisation and segmentation challenge in conjunction with the 3rd

MICCAI Workshop & Challenge on Computational Methods and Clinical Appli-
cations for Spine Imaging - MICCAI–CSI2015. The approach described here is
adapted from a method for segmentation of vertebrae from MR imaging and
computerised tomography (CT) data that we introduced in the works of Hutt
et al. [1,2]. The method is based on a conditional random field operating on
supervoxels and incorporating a classifier and distance metric learned on sparse
supervoxel features. Compared to our previous work, the most notable difference
is that we do not use any location features for intervertebral disc segmentation.
In Sect. 2 we give a brief description of the main components of the method,
before presenting the segmentation results.

2 Methods

2.1 Supervoxels

We formulate the segmentation problem as one of assigning class labels to super-
voxels (groups of similar voxels). Operating on supervoxels enables more descrip-
tive features to be extracted over the supervoxel regions and greatly reduces com-
putational complexity compared to operating directly on the individual voxels
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 125–129, 2016.
DOI: 10.1007/978-3-319-41827-8 12
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of the images. To generate supervoxels for a volume, we use a modified version
of simple linear iterative clustering (SLIC) [3] which results in supervoxels with
approximately equal physical extent in all directions. We determine the super-
voxel parameters empirically by searching for the maximum supervoxel size that
still preserves almost all object boundaries in the training images.

2.2 Multi-scale Dictionary Learning

We aim to characterise the supervoxels by extracting descriptive features from
them which can be used to learn a model from training data to estimate the class
label (i.e. disc or background). We next describe our supervoxel features, which
are obtained by encoding and pooling the responses from learned multi-scale
dictionaries of linear filters.

To learn the dictionaries, we first construct a Gaussian pyramid represen-
tation for each of the training volumes by successive smoothing and downsam-
pling by a factor of 2. We then randomly sample 100 000 patches of dimension
5 × 5 × 5 voxels from each pyramid level of the training images and reshape
them into vectors {vi}Mi=1. The sampled vectors are whitened and then encoded
into a separate dictionary of filters corresponding to each pyramid level using
sparse coding [4]. For the results given in this paper we used 3-level pyramids
and learned a separate dictionary of 128 filters at each level of the training pyra-
mids. This results in a set of dictionaries which are able to capture large-scale
structure in the volumes due to being learned over multiple scales, but are also
very efficient to compute.

To obtain the final supervoxel features for a volume, patches are first sampled
densely over the pyramid using a step-size of 2 voxels. The sampled patches are
then encoded using non-linear functions of the linear filter responses, given by

ui = max
{

0,
[−D,D

]�
vi

}
, (1)

where
[−D,D

]
is a matrix formed by column-wise concatenation of the dictio-

nary D of learned filters.1 Features corresponding to different levels of the pyra-
mid are concatenated into a single vector at each location. The densely extracted
features are then aggregated within each supervoxel using a max pooling oper-
ation and �2-normalised to unit length.

2.3 CRF with Learned Potentials

Given the set of supervoxel feature vectors for a volume, we define a condi-
tional random field (CRF) over the supervoxels that relates the features to the
underlying class labels. The resulting model promotes spatial consistency of the
labels and enables segmentation to be carried out very efficiently using graph
cut algorithms.

1 Separate dictionaries are used to encode patches at different levels of the pyramid.
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(a) (b) (c) (d)

Fig. 1. (a), (c) Segmentation results overlaid onto a mid-sagittal slice from two subjects
(numbers 2 and 10, respectively). (b), (d) Overlap between the CRF segmentations
(cyan) and manual annotations (magenta). (Color figure online)

The CRF defines a conditional distribution over the supervoxel class labels
x given the features y and can be formulated in terms of an energy function.
The energy function is a sum over a unary data term and a pairwise smoothness
term:

E(x,y) =
∑
i∈S

ψ(yi | xi)︸ ︷︷ ︸
Data term

+λ
∑
i∈S

∑
j∈Ni

φ(yi,yj | xi, xj)︸ ︷︷ ︸
Smoothness term

, (2)

where S is the set of supervoxels and Ni are the neighbours of supervoxel i.
The constant λ controls the relative importance of the data and smoothness
terms. The data term of the CRF is defined as the negative log likelihood of the
supervoxel feature vector given the class label:

ψ(yi | xi) = − log
(
P (yi | xi)

)
. (3)

The likelihood P (yi | xi) is the probability estimate for the supervoxel given
by a learned support vector machine (SVM) classifier. We train the SVM on
labelled supervoxel examples using a generalised RBF kernel, given by

K(yi,yj) = exp
(

− γ(yi − yj)�M(yi − yj)
)
, (4)

where γ is an overall kernel width parameter. The matrix M defines a pseudo-
metric between supervoxel features which we learn from training data using the
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large margin nearest neighbour (LMNN) [5] algorithm. The smoothness term of
the CRF incorporates the learned distance metric as follows

φ(yi,yj | xi, xj) =

{
exp

(
− (yi − yj)�M(yi − yj)

)
if xi �= xj

0 otherwise
, (5)

which penalises neighbouring supervoxels that have similar feature vectors and
are assigned to different classes.

We compute soft estimates (max-marginals) for the supervoxels P (xi | yi)
from the CRF and obtain the final voxel-level segmentation by thresholding the
max-marginals after smoothing with a Gaussian filter.

Table 1. Segmentation results on the training dataset. The table shows the Dice score
(%) and average absolute surface distance (ASD) (mm) for each individual subject.
The final column gives the median value over all subjects.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Med.

Dice 91 93 89 84 93 92 89 92 92 94 87 90 89 90 92 91

ASD 0.54 0.40 1.22 1.37 0.34 0.45 0.72 0.40 0.44 0.35 0.95 0.63 0.59 0.54 0.45 0.54

3 Results

The method was evaluated on a dataset consisting of T2-weighted turbo spin
echo MR images from 25 different subjects provided for the MICCAI–CSI2015
intervertebral disc localisation and segmentation challenge [6].2 Each image con-
tains intervertebral discs of the lower spine from T11 to L5. A total of 7 discs
in each image have been manually annotated. The complete dataset is split into
an initial training dataset consisting of 15 subjects and two test datasets each
consisting of 5 subjects.

Leave-one-out testing was used to evaluate the performance of the method
on the training dataset. At each iteration the model was learned on the 14
training subjects and then evaluated on the single held out subject. The process
was repeated for all subjects, thus ensuring that the training and test data were
always from separate subjects. For each test subject, parameters, such as λ, were
learned using leave-one-out cross validation on the 14 training subjects; here
too, the validation subject was always separate from the remaining 13 training
subjects. The average value of λ over all leave-one-out iterations was 0.67, while
the average values of the SVM regularisation and kernel parameters were C =
5.24 and γ = 0.52. The execution time for processing a single volume after
learning was approximately 6 min using an Intel Core i5 2.50 GHz machine with
8 GB of RAM.

The segmentations were evaluated using the Dice score and average absolute
surface distance (ASD); the results on the training dataset are summarised in

2 Available from the SpineWeb: http://spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
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Table 1. The mean Dice score on the training dataset was 90±3 % and the mean
ASD was 0.63±0.32 mm. On the two test datasets the mean Dice scores were 90±
4 % and 91±3 %; the mean ASD values were 1.24±0.24mm and 1.19±0.20mm.
Figure 1 provides a visual comparison, for single slices of the 3D segmentation,
between example automatic segmentations and manual annotations.

4 Conclusion

We described a method for automated segmentation of intervertebral discs from
MR imaging data based on a conditional random field on supervoxels. The
method was shown to obtain accurate and consistent results on the challenge
data, with each volume taking approximately 6 min to segment. An advantage of
our approach is its generality, which means it can be applied to segment different
structures without fundamental change to the model. This is illustrated by the
consistently good performance of the method on the intervertebral disc dataset,
along with previous vertebra segmentation results obtained on MR imaging and
CT data.

Acknowledgements. We are grateful to the organisers of the challenge and to the
SpineWeb initiative for making the data available.
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Abstract. We introduce a fully automatic localization and segmen-
tation pipeline for three-dimensional (3D) intervertebral discs (IVDs),
consisting of a regression-based prediction of vertebral bodies and IVD
positions as well as a 3D geodesic active contour segmentation delineat-
ing the IVDs. The approach was evaluated on the data set of the challenge
in conjunction with the 3rd MICCAI Workshop & Challenge on Compu-
tational Methods and Clinical Applications for Spine Imaging - MICCAI–
CSI2015, that consists of 15 magnetic resonance images of the lumbar
spine with given ground truth segmentations. Based on a localization accu-
racy of 3.9±1.6 mm, we achieve segmentation results in terms of the Dice
similarity coefficient of 89.1 ± 2.9 % averaged over the whole data set.

1 Introduction

Due to reduced physical activity and working conditions of modern office jobs
low back pain (LBP) resembles a very important health problem in the devel-
oped countries. It is a leading cause of disability affecting work performance and
well-being. Clinical studies indicate correlation between LBP and intervertebral
disc (IVD) degeneration [1]. A widely used imaging modality for examining IVD
degeneration is magnetic resonance (MR) imaging (MRI), since it provides excel-
lent soft tissue contrast without the need for ionizing radiation. In the diagnosis
of MR images of the lumbar spine automatic IVD identification and extraction
of quantitative measures of IVD geometry and appearance is of high interest.
However, development of such automatic methods for accurate and objective
IVD localization and segmentation is challenging and still represents an impor-
tant research area [2–5]. To objectively compare and analyze IVD segmenta-
tion approaches, efforts like the challenge Automatic Intervertebral Disc (IVD)
Localization and Segmentation from 3D T2 MRI Data in conjunction with the
3rd MICCAI Workshop & Challenge on Computational Methods and Clinical
Applications for Spine Imaging - MICCAI–CSI2015 are necessary and crucial
for potential future application in clinical practice.
c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 130–140, 2016.
DOI: 10.1007/978-3-319-41827-8 13
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In this work we present our novel automatic IVD center localization and
segmentation approach. It consists of a machine learning step to predict cen-
ter locations of both vertebral bodies and IVDs as well as an image processing
pipeline to segment IVDs given the located spine landmarks. Segmentation is
based on geodesic active contours formulated as convex energy functional. We
evaluate our method on the 15 MRI data sets from the MICCAI–CSI2015 chal-
lenge and report localization errors and Dice similarity coefficients (DSC) with
respect to the provided IVD ground truth segmentations.

2 Methods

Our proposed IVD segmentation algorithm is built upon a powerful machine
learning based landmark localization step using regression forests [6,7] together
with a high-level Markov random field (MRF) model of the global configura-
tion of the relative landmark positions [8]. After landmark prediction, we attach
a three-step image processing pipeline for segmentation. First, we roughly seg-
ment vertebral bodies based solely on image gradient information, followed by a
merging of pairs of adjacent vertebral bodies to single objects to initialize IVD
segmentation. Finally, we formulate the IVD segmentation problem as a convex
geodesic active contour optimization task based on edges resembling geometrical
similarity to the shape of IVDs. Enabled by the robustness of previous localiza-
tion, this latter segmentation step requires no a priori information on appearance
but only a very rough shape prior. The main algorithm steps are shown in Fig. 1.

2.1 Preprocessing

Since the input MRI data sets contain slightly different absolute intensity val-
ues and some of the volumes show intensity inhomogeneities, we first perform
an automatic Retinex theory based inhomogeneity correction step similar to the

→ → → →

(a) (b) (c) (d) (e)

Fig. 1. Algorithm overview. The 3D MR input images (a) are processed by spinal
landmark localization (b), vertebral body segmentation (c), merging of vertebral bodies
to initialize IVD segmentation (d) and final voxel-wise IVD labeling (e).
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work of Ma et al. [9] to remove the smooth bias field due to this imaging artifact.
To derive more similar intensity distributions among the MRI data, we addi-
tionally apply histogram matching ignoring background voxels as determined by
thresholding [10].

2.2 Spinal Landmark Localization Using Regression Forests

Our approach for localization of vertebrae and IVD centers is based on local
appearance information of vertebrae and IVDs in spine images. Inspired by
the localization method proposed by Donner et al. [8], we use a Hough forest
(HF) [11] to generate probability maps pl(x) for each landmark l being at loca-
tion x. Due to the similar, repeating appearance of spinal landmarks, a global
geometric model implemented as an MRF with a dynamic programming based
solver is used to select the most probable configuration of landmark positions
from the set of candidate positions, thus correctly labeling vertebrae and IVDs.

Candidate Position Generation - Hough Forest. For each landmark l we
train a HF from manually annotated locations. Each HF consists of K trees with
a maximum depth D. Training starts at the root node using all voxels inside a
certain radius r around the landmark position. Our node split functions, passing
a voxel either to the left or right child node, are based on Haar-like features.
The feature response is calculated as the difference between the mean intensity
of two cuboids, whose positions are defined relatively to the voxel position. At
each node split, T random thresholds, a pool of F random feature boxes with a
maximum distance df,max from the voxel position and a maximum size sf,max

are generated. The respective combination of feature and threshold, which maxi-
mizes an Information Gain criterion, is used as the node split function and stored
in the split node. In a leaf node we calculate a histogram of the voting vectors

Fig. 2. Overview of the localization pipeline. The colors of the candidate locations
indicate the strength of the HF response, where red corresponds to a high value. (Color
figure online)
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of all voxels arriving at the node and store one single voting vector derived from
the maximum of this histogram.

During testing, a random subset of all voxels in an image is pushed through
the previously trained trees. All resulting voting vectors from the leaf nodes
are summed up in an accumulator data structure, which can be interpreted as
probabilities pl(x) of the landmark l being located at position x. Using non-
maxima suppression we select for each landmark the N strongest local maxima
of pl(x) as candidate locations (see Fig. 2).

Candidate Selection - Geometric Model. To select the best candidate for
each spinal landmark according to a global geometric model, an MRF is used
based on the landmark candidate positions from the previous regression forest
step. An MRF is an undirected graph with L nodes and E edges, where each node
Nl in the graph corresponds to one landmark. The edges e, connecting the nodes
in the graph, are modeling geometric relationships between the landmarks. In our
MRF graph only the nodes of neighboring spinal landmarks are connected, thus
each vertebral body is connected to its adjacent IVDs and vice versa. Solving
the MRF means to select for each node a candidate such that the function

Φ =
L∏

l=1

Φ(Nl)
E∏

e=1

Φn(Ne1 , Ne2), (1)

based on a product of all node potentials Φ(Nl) and edge potentials Φn(Ne1 , Ne2),
is maximized. The node potentials Φ(Nl) are set to the accumulator value pl(x)
obtained in the previous step. The edge potentials between nodes Ne1 and Ne2

and candidate locations c1 and c2 are defined as

Φn(Ne1 , Ne2) =

{
Φx

e (Ne1 , Ne2) · Φd
e(Ne1 , Ne2), if c1,z ≥ c2,z

0 otherwise
, (2)

where Φx
e (Ne1 , Ne2) is a term punishing large deviations in x-coordinates between

two landmarks and Φd
e(Ne1 , Ne2) a term based on the Euclidean distance between

candidate locations. The term based on the x-coordinates is defined as

Φx
e (Ne1 , Ne2) = e− 1

2 (
c1,x−c2,x

σx
)2 , (3)

where σx allows to control the allowed deviation in x, which is set empirically
to 2 mm. The model for the Euclidean distance is based on statistics from the
training data and defined as

Φd
e(Ne1 , Ne2) = e− 1

2 (
‖c1−c2‖−μe

σe
)2 , (4)

where μe and σe are mean and variance of the Euclidean distance, respectively.
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2.3 Intervertebral Disc Segmentation Using Geodesic Active
Contours

From the accurate regression forest based landmark localization approach we
achieve a very good initialization for segmenting the IVDs using an image
processing pipeline that extracts vertebral bodies and restricts the region where
the IVDs are expected. This segmentation pipeline, which is shown in Fig. 3,
makes heavy use of a convex 3D geodesic active contour segmentation approach
based on total variation (TV), which is described next.

Total Variation Segmentation. Our segmentation framework is based on
minimizing following continuous non-smooth energy functional Eseg(u) which
has previously also been used by Reinbacher et al. [12] and Hammerni et al. [13].
It is a minimal surface segmentation approach formulated as

min
u

Eseg(u) = min
u

∫
Ω

g(x)|∇u(x)|dx + λ

∫
Ω

u(x) · w(x) dx,

s.t. u ∈ Cbox = {u : u(x) ∈ [0, 1], ∀x ∈ Ω}
(5)

where Ω denotes the image domain and u ∈ C1 : Ω �→ R is smooth. The
first term denotes the g-weighted TV semi-norm which is a reformulation of the
geodesic active contour energy [14]. The edge function g(x) is defined as

g(x) = e−α‖∇I(x)‖β

, α, β > 0, (6)

where ∇I(x) is the gradient of the input image. The second term in (5) is the
data term with w describing a weighting map. The values in w have to be chosen
negative if u should be foreground and positive if u should be background. If
values in w are set to zero, the pure weighted TV energy is minimized seeking
for a minimal surface segmentation. The regularization parameter λ defines the
trade-off between our data term and the weighted TV semi-norm. The stated
convex problem in (5) can be solved for its global optimum efficiently using
the primal-dual algorithm [15]. As the segmentation u is continuous the final
segmentation is achieved by thresholding u.

Vertebral Body Segmentation. The first step of our segmentation pipeline
is to segment the eight vertebral bodies (T11, T12, L1-L5, S1) individually using
(5) (see Fig. 1b). The weighting map w is constructed based on the localization
results for vertebral bodies and IVDs. We span a cylinder whose normal vector
points from the center of the vertebral body to the center of the IVD located
above. This cylinder defines the foreground seed (w = −∞) region. A larger, but
again cylindrical region around the foreground seed is set to zero in the weighting
map w such that the solution u is influenced by the surrounding image edges.
Values farther away in the weighting map are set to background w = ∞. The edge
function g(x) is defined according to (6), where the image I(x) is the input from
the preprocessing step with an additionally applied edge-preserving denoising
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Fig. 3. Exemplary illustration of the segmentation pipeline. The vertebral body seg-
mentation B is used to generate a fused, one-connected structure U containing the
IVD. After morphological operations, the difference D = U − B initializes a weighted
TV segmentation step using wd derived from D (black are foreground seeds, white
background seeds, grey indicates wd = 0) and gdir as edge indicator function. The final
segmentation result shows IVD between L3 and L4.

using the TV-L1 model as explained by Chambolle and Pock [15]. Solving the
TV segmentation model in (5) gives us the central part of the vertebral bodies,
which is sufficient to constrain the later IVD segmentation.

Fusion of Vertebral Bodies Using the Star Prior Constraint. The second
step of our segmentation pipeline is to connect the segmentations of pairs of ver-
tebral bodies to obtain a rough spine segmentation (see Fig. 1c), thus initializing
the IVD region. This motivates the use of the star prior constraint introduced by
Veksler [16] and extended to multiple star centers by Gulshan et al. [17]. The inten-
tion of the star prior is that any rayn sent out from a specified star center is directed
in opposite direction of ∇u. This enforces one-connected and star convex objects.
The star prior constraint is modeled in terms of a convex set Cstar

Cstar = {u : 〈∇u(x), n(x)〉 ≤ 0, ∀x ∈ Ω}. (7)

This constraint on the segmentation u can be handled easily in our segmentation
model (5) by minimizing the energy Eseg(u) such that u ∈ Cbox∩Cstar. For more
details we refer the interested reader to the work of Hammernik [18].

In our segmentation pipeline we use the star prior to connect the gap between
adjacent vertebrae as depicted in Fig. 3. This gap region gives a strong hint of
the expected IVD location. For each IVD, we use the two neighboring vertebral
bodies as foreground seeds setting their weight w = −∞. The border region of
the image domain Ω are background seeds (w = ∞) and other regions are set
to zero. The edge function is derived from the binary segmentation result B(x)
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of the two vertebral bodies using the edge inversion function from the original
geodesic active contour approach [19], i.e.

g(x) =
1

1 + γ‖∇B(x)‖2 , γ > 0. (8)

We use two star centers defined by the localization results of the respective
vertebral bodies. The ray direction n(x) is then defined from the star center
which is closest to the position x. After solving the weighted TV model in (5)
with the star prior constraint (7), we subtract the vertebral body segmentation
B(x) from the segmentation result U(x) and perform morphological opening
and erosion operations to achieve one final connected component D(x) that is
guaranteed to be located inside the IVD region (see D in Fig. 3).

Intervertebral Disc Segmentation. For the final IVD segmentation we again
use the weighted TV model for each IVD as described in (5). The foreground
seeds are simply defined by the result of the previous step, defining the region
where (wd = − ∞). The background is defined by the borders of the image
domain Ω, all other regions are set to wd = 0. For the edge information we apply
a slightly modified variant of the edge function g in (6) to incorporate a small
amount of a priori information on the shape of IVDs. As IVDs are prone to have
double edges, we only consider those edges which are aligned with rays that are
sent out from a specified disc. This disc is defined by a radius r and a normal
vector d which points from the located IVD to the next vertebral body. The rays
n(x) are calculated for every point x relative to the closest point on the disc. We
define the modified edge function gdir considering directed edges as follows:

gdir = e−α‖ξ∇I(x)‖β

, α, β > 0 (9)

with

ξ =

{
〈∇I(x), n(x)〉 if 〈∇I(x), n(x)〉 > 0
0 if 〈∇I(x), n(x)〉 ≤ 0

. (10)

3 Experimental Setup

The whole localization and segmentation approach was implemented in C++ and
OpenMP, with the exception of the Matlab-based MRF solver. Costly image
processing operations were accelerated using Nvidia CUDA to use graphical
processing units as parallel numerical co-processors.

Localization. Localization results were obtained using a leave-one-out cross
validation on the 15 subjects of the MICCAI–CSI2015 challenge, where centers
of the vertebral bodies and IVDs were manually annotated for all subjects by a
scientist well experienced in spine image analysis. Hough forests were trained and
tested with a voxel size of 1.5× 1.5× 1.5 mm. For each HF we trained K = 64
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trees until a maximum depth D = 15 using all voxels in the range r = 8 mm
around the landmarks. At each node split F = 10 candidate feature boxes and
T = 10 thresholds were generated. The maximum size sf,max and distance df,max

of the feature boxes was set to 20 mm. After non-maxima supression we selected
for each landmark the N = 10 candidate positions with the highest maxima in the
accumulator volume. The MRF made use of a specific statistical model (μe, σe)
computed from the 14 subjects of each cross-validation run and was solved with
loopy belief propagation using the publicly available Matlab UGM1 library.

Segmentation. To provide a realistic, generalizable setup we pooled the indi-
vidual localization results of each of the 15 leave-one-out cross validation runs
to form our input vertebral body and IVD landmarks for segmentation. The fur-
ther processing pipeline involved a number of parameters. For all edge functions
α = 20 and β = 0.55 was selected. We chose a λ = 1.25 for the edge-preserving
TV-L1 smoothing and a radius of 15 mm as well as a height of 7.5 mm to initial-
ize the vertebral body cylinder model. Segmentation of vertebral bodies involved
a λ = 0.01, while the star prior constrained TV segmentation required λ = 1000
and γ = 0.125. Finally, IVD segmentation was done using λ = 0.05 and a radius
of 15 mm for the prevention of double edges. All TV segmentation steps were
computed until the maximum change of two voxels of subsequent segmentations
was below 0.0001 and a threshold of u = 0.5 was used to derive a binary result
from the convex model in (5).

4 Results and Discussion

Localization. Quantitative results of the individual vertebra/intervertebral
discs as well as for the 15 different subjects are shown in Fig. 4. We achieve
an overall mean localization error ± standard deviation of 3.9± 1.6 mm for all
15 landmarks of the 15 subjects compared to our own manual annotation of the
landmark centers. For the vertebrae we achieve an average of 4.0± 1.7 mm and
for the intervertebral discs 3.8± 1.5 mm. These are promising results given the
image spacing of the input data of 2× 1.25× 1.25 mm, i.e. the mean localization
error is on the order of a few pixel and standard deviations are reasonable. Our
segmentation results also indicate that this localization performance is sufficient
to initialize our image processing pipeline.

For the first test set we achieve a mean localization error of 3.97± 1.19 mm,
with 2.9% of landmarks below 2 mm, 42.9% below 4 mm and 94.3% below 6 mm
of distance. For the on-site test set we achieve 4.37± 1.17 mm, with 0.0% below
2 mm, 37.1% below 4 mm and 91.4% below 6 mm of distance.

Segmentation. For quantitative evaluation of the overall segmentation algo-
rithm we used the DSC to compute the overlap of our segmentation result
with the provided ground truth segmentation from the CSI challenge data set.
1 Downloaded from http://www.cs.ubc.ca/∼schmidtm/Software/UGM.html.

http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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(a) (b)

Fig. 4. Box-whisker plots of the mean localization error of our proposed method.
(a) Location error for vertebrae and IVDs showing individual landmarks (blue for
vertebral bodies, green for IVDs). (b) Location error for individual subjects. (Color
figure online)

We achieved an average DSC of 89.1± 2.9% over all IVDs from the 15 sub-
jects. Figure 5 shows more details of the performance of our method according
to individual IVDs and subjects.

For segmenting the first five test data sets we achieve a DSC of 87.4± 4.8%
and a surface distance of 1.47± 0.53 mm. Unfortuantely, during the on-site cal-
culation of the segmentation results, in one of the five data sets a severe segmen-
tation error occurred, leading to merged IVDs of T11/T12 and T12/L1, which
prevented our method from being compared to the others.

(a) (b)

Fig. 5. Detailed quantitative Dice similarity coefficients (DSC) results of the IVD seg-
mentation approach (overall: 89.1 ± 2.9 %). (a) DSC for individual IVDs. (b) DSC for
each of the 15 subjects.
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5 Conclusion

In this work, a fully automatic localization and segmentation system for interver-
tebral disc segmentation from MRI data was shown. It builds upon a regression
forest together with a simple global geometric model as well as TV based convex
active contour segmentation steps extracting vertebral bodies and IVDs in a geo-
metrically constrained manner. Our results on the data of the MICCAI–CSI2015
challenge are located in the lower third of the nine compared approaches.
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Abstract. In this paper, we present the results of evaluating our
fully automatic intervertebral disc (IVD) localization and segmentation
method using the training data and the test data provided by the local-
ization and segmentation challenge organizers of the 3rd MICCAI Work-
shop & Challenge on Computational Methods and Clinical Applications
for Spine Imaging - MICCAI–CSI2015. We introduce a validation frame-
work consisting of four standard evaluation criteria to evaluate the per-
formance of our method for both localization and segmentation tasks.
More specifically, for localization we propose to use the mean local-
ization distance (MLD) with standard deviation (SD) as well as the
successful detection rate with three ranges of accuracy. For segmenta-
tion, we propose to use the Dice overlap coefficients (DOC) and average
absolute distance (AAD) between the automatic segmented disc surfaces
and the associated ground truth. Using the proposed metrics, we first val-
idate our previously introduced approach by conducting a comprehen-
sive leave-one-out experiment on the IVD challenge training data which
consists of 15 three-dimensional T2-weighted turbo spin echo magnetic
resonance (MR) images and the associated ground truth. For localiza-
tion, we respectively achieved a successful detection rate of 61, 92, and
93 % when the accuracy range is set to 2.0, 4.0, and 6.0 mm, and a mean
localization error of 1.8± 0.9 mm. For segmentation, we obtained a mean
DOC of 88 % and a mean AAD of 1.4 mm. We further evaluated the per-
formance of our approach on the test-1 dataset consisting of five MR
images released at the pre-test stage and the test-2 dataset consisting of
another five MR images released at the on-site competition stage. The
results were obtained with a blind test where the performance evalua-
tions were conducted by the challenge organizers. For localization on the
test-1 dataset we achieved a successful detection rate of 91.4, 100.0, and
100.0 % with a MLD± SD of 1.0± 0.8 mm, and for localization on the
test-2 dataset we achieved a successful detection rate of 77.1, 100.0, and
100.0 % with a MLD± SD of 1.4± 0.7 mm, respectively. For segmenta-
tion on the test-1 dataset we obtained a mean DOC of 90 % and a mean
AAD of 1.2 mm, and for segmentation on the test-2 dataset we obtained
a mean DOC of 92 % and a mean AAD of 1.3 mm, respectively.

c© Springer International Publishing Switzerland 2016
T. Vrtovec et al. (Eds.): CSI 2015, LNCS 9402, pp. 141–149, 2016.
DOI: 10.1007/978-3-319-41827-8 14
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1 Introduction

Accurate localization and segmentation of intervertebral discs (IVD) on spine
magnetic resonance (MR) images is very important for correct diagnosis and
treatment planning of spinal disorders in clinical routine. However, automatically
identifying and segmenting individual IVDs from MR images is still a challenge
tasks due to the repetitive nature of these structures as well as low contrast,
noise and intensity inhomogeneity of MR images.

For IVD localization, different methods have been proposed in literature [1–
4]. For IVD segmentation, there exist methods based on Hough transform [5],
atlas registration [6], AdaBoost and normalized-cut [7], graph cuts with geo-
metric priors from neighboring discs [8], template matching and statistic shape
model [9], or anisotropic oriented flux detection [10].

Recently, we presented a data-driven optimization based framework [11] to
fully automatically localize and segment three-dimensional (3D) IVDs from MR
images. In this approach, the localization of disc centers is tackled by using
a data-driven regression method to estimate image displacements. To further
exploit the inter-disc relations, we employ dynamic programming to post-process
the localization results of each disc to resolve ambiguity caused by the repetitive
pattern of IVDs. The output of localization step allows us to defined a region
of interest (ROI) for the segmentation step, where we use a similar data-driven
classification method as we used for localization to estimate the likelihood of a
pixel in the ROI being foreground or background. The estimated likelihood is
then combined with the prior probability, which is learned from a set of training
data, to get the posterior probability of the pixel. The binary segmentation of
the target disc is then derived by a thresholding on the estimated probability.
Figure 1 gives an overview of the framework. For more details, we refer to our
previous work [11].

In this paper, We presents the results of evaluating our previously intro-
duced approach [11] on the IVD challenge training data and test data of the
3rd MICCAI Workshop &Challenge on Computational Methods and Clinical

Fig. 1. Overview of our method which consists of the localization step followed by the
segmentation step. The localization step is based on estimation of the image displace-
ments of some image patches, while the segmentation step involves the classification of
image pixels as foreground (inside disc) or background (outside disc).
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Applications for Spine Imaging - MICCAI–CSI2015. We design and present four
standard evaluation criteria to evaluate the performance of our method in both
localization and segmentation tasks. The details are described as follows.

2 Materials and Methods

2.1 Data Description

Training Data Description. The training data provided by challenge organiz-
ers consists of 15 3D T2-weighted turbo spine echo MR images and the associated
ground truth segmentation1. These 15 3D T2-weighted MR images are acquired
from 15 patients in two different studies. Each patient was scanned with 1.5
Tesla MR scanner (Siemens Healthcare, Erlangen, Germany). There are seven
IVDs T11-L5 to be localized and segmented from each image. Figure 2 illustrates
two T2-weighted MR image and the segmented IVD regions from the image.

(a) (b) (c)

Fig. 2. Manual segmentation of seven IVD regions from a T2-weighted MR image.
(a) A sagittal T2 MR image. (b) The seven defined IVDs. (c) Surface models of IVDs.

1 http://ijoint.istb.unibe.ch/challenge/index.html.

http://ijoint.istb.unibe.ch/challenge/index.html
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Test Data Description. The challenge organizers released two sets of test data
while the associated ground truth data were not provided to the participants. At
the pre-test stage, five 3D T2-weighted MR images were released as the test-1
dataset and at the on-site competition stage another five 3D T2-weighted MR
images were released as the test-2 dataset.

2.2 Experiments

Experiments on the Training Data. We conducted a comprehensive leave-
one-out experiment on the 15 training MR images in order to evaluate our pre-
viously proposed approach [11]. In each time one patient data out of the 15 data
is chosen for test and the remaining 14 data are used for training.

Experiments on the Test Data. Taking the same 15 training MR images
as the training data, we further validated our approach on two test datasets
with a blind test since the performance evaluations of results obtained from
both test datasets were conducted by the challenge organizers. More specifically,
we first applied our algorithms to the released test datasets and then sent the
obtained localization and segmentation results to the organizers. The organizers
then evaluated the performance of our algorithms using the ground truth data
that they kept and finally sent back the performance evaluation results to us.

2.3 Evaluation Metrics

We propose a standard evaluation framework which includes both qualitative and
quantitative evaluation. For qualitative evaluation, we perform a visual check of
the localization results and segmentation results. For quantitative evaluation, we
utilize four different metrics and at each step two main criteria are considered
for evaluation of our method [11].

For evaluation of the localization performance, we use the following two
metrics:

1. Mean localization distance (MLD) with standard deviation (SD).
The equation of localization distance R for each disc center is computed by

R =
√

(Δx)2 + (Δy)2 + (Δz)2, (1)

where where Δx is the absolute difference between X axis of the identified
IVD center and the ground truth IVD center calculated from the ground truth
segmentation, Δy is the absolute difference between Y axis of the identified
IVD center and the ground truth IVD center, and Δz is the absolute difference
between Z axis of the identified IVD center and the ground truth IVD center.
The equations of MLD and SD are defined as follows:

MLD =

∑15
i=1

∑7
j=1 Rij

n
and SD =

√∑15
i=1

∑7
j=1(Rij − MLD)2

n
, (2)

where n is the total number of IVDs.
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2. Successful detection rate with various ranges of accuracy. If the
absolute difference between the localized IVD center and the ground truth
center is no greater than t mm, the localization of this IVD is considered as
an accurate detection; otherwise, it is considered as a false localization. The
equation of the successful localization rate Pt with accuracy of less than t mm
is formulated as follows

Pt =
number of accurate IVD localization

number of IVDs
. (3)

To evaluate the segmentation performance, we use the following two metrics:

1. Dice overlap coefficient (DOC). This metric measures the percentage of
correctly segmented voxels. DOC [12] is computed by

DOC =
2|A ∩ B|
|A| + |B| × 100%, (4)

where A is the sets of foreground voxels in the ground-truth data and B is
the corresponding sets of foreground voxels in the segmentation result, respec-
tively. Larger DOC metric means better segmentation accuracy.

2. Average absolute distance (AAD). This metric measures the AAD from
the ground truth disc surface and the segmented surface. To compute the
AAD, we first generate a 3D mesh from binary data of seven IVD segmen-
tations. For each vertex on the surface model derived from the automatic
segmentation, we found its shortest distance from the surface model derived
from the associated ground truth segmentation. The AAD was then com-
puted as the average of all shortest distances. Smaller AAD means better
segmentation accuracy.

3 Experimental Results

3.1 Evaluation of Localization Performance

Localization Results on Training Data. Figure 3 shows some qualitative
results of disc center localization, where the red crosses are ground truth and
the green ones are the detected centers. From the visualization results, we find
that our previously proposed method [11] successfully detect all the seven IVDs
from 14 data out of the given 15 T2-weighted training MR images. There exists
one failure case in which all disc centers are approximately located but the disc
identifications are shifted one level up. Our method seems to believe that the
real disc L1-T12 is the disc T12-T11. To correct these errors, as proposed in
our previous work [11], we manually specify the location of a randomly chosen
disc with one mouse click on the middle sagittal image. This simple intervention
corrects all mistakes.
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Fig. 3. The qualitative localization result on five images (the mid-sagittal slice).

Table 1 gives the results of successful detection rate with different accuracy
range t = 2.0, 4.0, and 6.0 mm. Given the specified accuracy range t = 2.0 mm,
our method successfully detected 61% IVDs. The successful detection rate is
changed to 92% when t is set to 4.0 mm and this rate is further changed to 93%
when we set t to 6.0 mm. Table 2 gives the results of successful detection rate
of our method [11] when one mouse click was used to correct the failed case.
When accuracy range t is set to 2.0 mm, the successful detection rate is 67%.
The successful detection rate is changed to 99% when we set t to 4.0 mm and all
the 105 discs are successfully detected when we set accuracy range t to 6.0 mm.

We also compute the MLD with SD on the corrected localization results
as describe above. Table 3 (second row) gives the MLD and SD on the given
15 training MR images. We achieved good localization results with an MLD of
1.8± 0.9 mm.

Table 1. Successful detection rate with various ranges of accuracy (t). All results are
achieved fully-automatically without manual interventions.

t = 2.0 mm t = 4.0 mm t = 6.0 mm

Number of successfully detected discs 64 discs 97 discs 98 discs

Successfully detected rate 61% 92% 93%

Table 2. Successful detection rate with various ranges of accuracy (t) when one mouse
click was used to correct the failed case.

t = 2.0 mm t = 4.0 mm t = 6.0 mm

Number of successfully detected discs 70 discs 104 discs 105 discs

Successfully detected rate 67% 99% 100%

Localization Results on Test Data. As announced by the challenge orga-
nizers, we respectively achieved a successful detection rate of 91.4, 100.0, and
100.0% when accuracy range was set to t = 2.0, 4.0, and 6.0 mm for the test-1
dataset. Our localization algorithm also achieved a MLD±SD of 1.0± 0.8 mm
on the test-1 dataset. Similarly, for localization on the test-2 dataset, we respec-
tively achieved a successful detection rate of 77.1, 100.0, and 100.0%, and a
MLD±SD of 1.4± 0.7 mm.
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(a) (b)

Fig. 4. Segmentation result on two images ((a) and (b)), visualized on the 13th, 18th,
23th sagittal slices and as the 3D surface model of the IVD segmentation (red: ground
truth contour, green: our results). (Color figure online)

3.2 Evaluation of Segmentation Performance

Segmentation Results on Training Data. We visually check the segmen-
tation results on randomly selected two training images in Fig. 4. We visualize
the results by superimposing the contours of ground truth discs and those of
our results on three sagittal slices (slices 13, 18, and 23). The red contours are
ground truth and the green ones are our results. We also compare the 3D surface
models of the ground truth and the automatic segmentation (Fig. 4). It can be
seen that our method [11] gets good automatic segmentation results. For quanti-
tative evaluation on 15 training images, we achieved a mean DOC of 88± 3.7%
and a mean AAD of 1.4± 0.2 mm as shown in Table 3.

Segmentation Results on Test Data. As announced by the challenge orga-
nizers, we successfully segment all the disc regions on both the test-1 dataset

Table 3. Evaluation results for the localization and segmentation performance of the
present approach using proposed metrics.

Image # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 overall

MLD (mm) 1.9 1.7 2.0 2.4 1.8 1.3 1.9 1.3 1.4 1.6 1.4 1.4 1.8 2.1 2.7 1.8± 0.9

DOC (%) 88 88 89 85 87 91 87 89 90 92 86 90 83 86 88 88± 3.7

AAD (mm) 1.6 1.4 1.3 1.5 1.3 1.2 1.3 1.2 1.2 1.2 1.5 1.3 1.5 1.5 1.3 1.4± 0.2
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and the test-2 dataset. For segmentation on the test-1 dataset we obtained a
mean DOC of 90± 2.9% and a mean AAD of 1.2± 0.23 mm. Similarly, for seg-
mentation on the test-2 dataset we obtained a mean DOC of 92± 2.4% and a
mean AAD of 1.3± 1.54 mm.

4 Conclusions

We present the results of evaluating our fully automatic IVD localization and
segmentation method. We design and present four standard evaluation criteria
to evaluate the performance of both localization and segmentation tasks. Using
the proposed four metrics, we validate our approach on the MICCAI–CSI2015
challenge training data which consists of 15 3D T2-weighted turbo spin echo
MR images and the associated ground truth. For localization, we respectively
achieved a successful detection rate of 61, 92, and 93% when the accuracy range
is set to 2.0, 4.0, and 6.0 mm, and a mean localization error of 1.8± 0.9 mm. For
segmentation, we obtained a mean DOC of 88% and a mean AAD of 1.4 mm
on the given 15 training data. We further evaluated the performance of our
approach on the test-1 dataset consisting of five MR images released at the pre-
test stage and the test-2 dataset consisting of another five MR images released
at the on-site competition stage. According to the results obtained from the
blind evaluations which was conducted by the challenge organizers, we achieved
for localization on the test-1 dataset a successful detection rate of 91.4, 100.0,
and 100.0% with MLD±SD of 1.0± 0.8 mm, and for localization on the test-2
dataset a successful detection rate of 77.1, 100.0, and 100.0% with MLD±SD of
1.4± 0.7 mm, respectively. For segmentation on the test-1 dataset we obtained
a mean DOC of 90% and a mean AAD of 1.2 mm, and for segmentation on the
test-2 dataset we obtained a mean DOC of 92% and a mean AAD of 1.3 mm,
respectively.
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Abstract. Automated segmentation of intervertebral discs (IVDs) from
magnetic resonance imaging has the potential to enhance the efficien-
cies of radiological investigations of large clinical and research imaging
datasets. This work presents an automated method for localization and
3D segmentation of IVDs that is applied to magnetic resonance imag-
ing of the thoraco-lumbar spine as part of the segmentation challenge
at the 3rd MICCAI Workshop & Challenge on Computational Methods
and Clinical Applications for Spine Imaging - MICCAI–CSI2015. Our
initialization method involves multi-atlas registration and a hierarchical
conditional shape regression for localization of all imaged lumbar and
thoracic discs, and active shape model based 3D segmentation. Com-
parisons between manual (ground truth) and automated segmentation
of 105 disc volumes (T11/T12 - L5/S1) revealed a mean Dice score of
0.896± 0.024 and mean absolute square distance of 0.642± 0.169 mm.
Our automated segmentation approach provided accurate segmentation
of IVDs from turbo spine echo images which are highly competitive with
leading state-of-the-art 3D segmentation techniques.

1 Introduction

Spine-related disorders account for the largest proportion of musculoskeletal
complaints in industrialized countries [1,2]. Magnetic resonance imaging (MRI)
allows highly detailed, multiplanar investigations of spine pathologies, such as
intervertebral disc (IVD) prolapse, herniation and degeneration [3]. Informatic
tools offer significant opportunities for improving the efficiency of radiological
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assessment of the spine by reducing the time- and expertise-intensive encum-
brances of tedious tasks as required in three-dimensional (3D) segmentation and
measurement of anatomical structures. Precise segmentation of IVDs is a pre-
requisite for many clinical applications (diagnosis, treatment planning and evalu-
ation), and automated segmentation has the potential to enhance the efficiencies
of radiological investigations of large clinical and research imaging datasets.

This work presents a fully automated algorithm for 3D segmentation of lum-
bar and thoracic IVDs from sagittal T2-weighted MRI scans and evaluates it on
a publicly available dataset as part of the challenge on “Automatic IVD local-
ization and segmentation from 3D T2 MRI data” at the 3rd MICCAI Workshop
& Challenge on Computational Methods and Clinical Applications for Spine
Imaging - MICCAI–CSI2015. The current method extends and fully automates
our previous work based on segmentation of lumbar spine IVDs via active shape
models (ASMs) [4]. This ASM approach has been applied successfully in a series
of studies but requires further development of the pipeline for more general-
ized application in a clinical framework. Initially, our fully automated approach
was developed using 3D sampling perfection with application optimized contrast
using different flip angle evolution (SPACE) scans [4], while clinical examina-
tions are routinely performed using two-dimensional (2D) turbo spin echo (TSE)
images. In clinical TSE scans, this ASM segmentation scheme was successfully
applied to the segmentation of IVDs in the lumbar region although a simple
and quick manual initialization step was required in the form of point identi-
fication of individual vertebræ [5,6]. The automated initialization on the 3D
SPACE scans [4] made use of the detailed high-resolution imaging information
in the axial plane that is not available in routine sagittal TSE images. Moreover,
the validation of the 3D segmentation algorithm on clinical TSE datasets was
performed through a simplified evaluation framework based on 2D manual seg-
mentations in the mid-sagittal slice only. The purpose of the present work is to
perform a volumetric validation of our 3D segmentation scheme against the man-
ual segmentation of IVDs acquired from an entire MRI set of TSE sagittal slices,
as offered through the MICCAI–CSI2015 segmentation challenge. Notably, two
important advances are addressed in this current work: (i) an improved auto-
mated IVD localization to provide a fully automated pipeline well-suited to
the processing of sagittal MRI scans acquired in routine clinical examinations,
and (ii) a larger, external validation of our automated 3D IVD segmentation
system on a publicly available MRI dataset having “ground-truth” manual seg-
mentations of the IVDs performed in all sagittal slices in T2-weighted TSE
examinations.

2 Methods

The central methodological innovations of this work lie in designing a novel app-
roach for fully automated IVD localization from sagittal TSE images (Fig. 1),
which provide a robust basis for subsequent 3D segmentation. The segmenta-
tion algorithm is based on a previously presented method of IVD segmentation
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Fig. 1. Summary of the automated sacrum localization method. First, training 2D
atlases (A) are rigidly registered to the inferior mid-sagittal, mid-coronal portion of
the processed case (B). Second, the best (based on normalized mutual information)
result is used to initialize subsequent registration of an average atlas (C). Finally, a 3D
deformable template is used to pre-segment the L5 and S1 vertebral bodies (D).

using a 3D ASM-based approach [4]. The initialization pipeline for lumbar spine
localization is summarized in Fig. 1 and explained in detail in the next sections.

2.1 Prior Knowledge

The initialization method employs prior knowledge from a training dataset of
2D spine atlases and their segmentations in the following three forms:

2D Atlases. Training atlases were extracted from 35 T2-weighted sagittal
TSE examinations (in-plane resolution 0.71× 0.71 mm, image matrix 448 × 448)
acquired from a heterogeneous sample of patients (different from the training
data provided as part of the MICCAI–CSI2015 challenge). The selection of train-
ing atlases focused on including a spectrum of patients with varying anatomy and
pathology. This procedure aimed to increase robustness for application to unseen
datasets, which would be limited if atlases from the same datasets were used in
the leave-one-out fashion. The mid-sagittal sections were individually cropped
(to identical dimensions) to include the inferior mid-coronal section of the mid-
sagittal training slice. The field-of-view (FoV) differed considerably among the
training scans and therefore varying portions of the sacrum and coccyx were
visualized in the atlases (see Fig. 1A for some examples). The heterogeneity of
the FoV among atlases is important for enabling robustness for varying FoV
which may be encountered across the spectrum of cases for segmentation.
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Average 2D Atlas. The 2D atlases were also used to create an average atlas of
the L5-S1-S2 region (Fig. 1C). The registration during atlas generation was per-
formed using a robust inverse-consistent rigid registration algorithm [7], followed
by non-rigid registration based on the method of diffeomorphic deamons [8].

3D Statistical Shape Model of the L5-S1 Vertebral Bodies. Automated
segmentations of the 35 original (uncropped) training scans were used to create
an ASM of the combined L5 and S1 vertebral bodies (Fig. 1D) [4].

2.2 Spine Localization

The atlases and deformable templates were used to automatically initialize the
ASM-based IVD segmentation in the following fashion:

Approximate Sacrum Localization Using Multi-Atlas Registration.
For each case to be segmented, all atlases were registered to the mid-sagittal
slice using the robust inverse-consistent rigid registration algorithm [7]. The reg-
istration was initialized by automatically positioning each atlas to the inferior
mid-coronal area of the mid-sagittal slice (Fig. 1A). The registration results were
compared using normalized mutual information metric and the best atlas was
selected for the subsequent localization step (Fig. 1B).

Refinement of the Sacrum Location by Average Atlas Registration.
The position of the selected registered atlas was used to automatically place an
average atlas template of the sacral portion of the spinal region (Fig. 1C), which
was subsequently registered to the case to be segmented [7]. This step was found
to positively complement the multi-atlas selection and increased the accuracy
of the localization pipeline. This is likely due to the reduced dimensions of the
average atlas that gives space to precisely fit the L5-S1-S2 region, compared to
the larger individual atlases (Fig. 1).

Pre-Segmentation of the L5 and S1 Vertebral Bodies Using
Deformable Template Registration. The registered 2D average atlas was
used to automatically place a 3D deformable template combining the L5 and S1
vertebral bodies (Fig. 1D). The deformable template was 3D, unlike the image
atlases that were registered in the mid-sagittal plane to increase the compu-
tational efficiency. The deformable template was laterally centered around the
mid-sagittal slice and used for approximate segmentation of the S1 and L5 verte-
bral bodies in 3D. The deformable segmentation was based on an ASM strategy,
similar to the one later applied to the IVDs [4].
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Localization of the Neighboring Lumbar IVDs Using Conditional
Shape Models. Automatic initialization of the ASM segmentation of the IVDs
was performed hierarchically using the segmentation of the S1, L5 vertebral bod-
ies and conditional shape models of de Bruijne et al. [9]. The conditional shape
models describe relations between neighboring shapes S1 (shape to be estimated)
and S2 (known shape) using a probability distribution based on Gaussian con-
ditional density P (S1|S2). The most likely estimate μ of the shape S1 can be
obtained as:

μ = μ1 + Σ12(Σ22 + γI)−1(S2 − μ2), Σ =
[

Σ11 Σ12

Σ21 Σ22

]
, (1)

where μ1 and μ2 are the mean shapes of the training data of S1 and S2, Σ is the
combined covariance matrix, and γ is a ridge regression coefficient to improve
numerical stability [9].

Using the conditional probabilities, the shapes of the L5/S1 and L4/L5 IVDs
were estimated from the pre-segmented L5 and S1 vertebral bodies. These esti-
mates served as an initialization for the ASM segmentation of these two lumbar
IVDs. In the next step, the initial shape of the L3/L4 IVD was estimated from
the segmentation of L4/L5 and L5/S1 IVDs. This iterative process continued
superiorly until the end of the image FoV was reached.

2.3 Imaging Dataset

Our 3D ASM-based approach for segmentation of lumbar IVDs was validated
against the publicly available manually segmented MRI dataset released via the
SpineWeb initiative1. The datasets consisted of sagittal T2-weighted TSE scans
acquired from 25 subjects from a 1.5T MRI scanner (Magnetom Sonata, Siemens
Healthcare, Erlangen, Germany). The images (39 slices per case) were acquired
with in-plane resolution 1.25× 1.25 mm (image matrix 305 × 305) and slice spac-
ing 3.3 mm [10]. The data was split into three sets: a training dataset (15 cases),
a testing dataset (five cases) and a dataset for live segmentation challenge (five
cases). Manual “ground-truth” segmentations of seven IVDs (T10/T11 - L5/S1)
were provided for 15 cases in the training dataset for quantitative evaluation and
parameter tuning.

2.4 Implementation Details

The ASM segmentation in our study was run in two steps. The parameter speci-
fications, enabling progressive refinement of the deformable models, are provided
in Table 1 (see Neubert et al. [4] for fuller parameter descriptions).

1 http://spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
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(a) (b)

Fig. 2. Quantitative results on the training dataset consisting of 105 IVDs evaluated
using (a) Dice score coefficient (DSC) and (b) mean absolute square distance (MASD)
similarity metrics.

3 Results

The segmentation results were evaluated using the Dice score coefficient (DSC)
and mean absolute square distance (MASD) similarity metrics (Fig. 2).

The testing dataset of 15 cases was segmented with mean DSC value of
0.896± 0.024 between our automated and the manual segmentation measures of
IVD volumes. The overall mean MASD was 0.642± 0.169 mm. The large major-
ity (95%) of the 105 IVDs were segmented with high accuracy based on having
DSC> 0.85, MASD< 1 mm). Two outliers (1.9%) with lower segmentation accu-
racy were identified - one L5/S1 IVD (subject 10) and one L4/L5 IVD (subject
4, Fig. 3). The fully automated initialization step worked successfully on 14 out
of 15 cases (93%). Only one case failed and required a simple manual initial-
ization involving one-click identification of a “central” point in the S1 vertebral
body in the mid-sagittal slice.

Evaluation on the testing dataset of five cases resulted into mean DSC of
0.828± 0.037 and mean MASD of 1.39± 0.13 mm. The live segmentation chal-
lenge on the remaining five cases was achieved with mean DSC of 0.889± 0.033
and mean MASD of 1.22± 0.10 mm.

Table 1. Active shape model (ASM) segmentation parameters.

Parameter value Step 1 Step 2

Iterations 50 50

Profile spacing 0.25 mm 0.25 mm

Points in matching profiles 101 81

Shape constraint 1.5 3

Number of modes 3 90% of the variation
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Fig. 3. Qualitative results on an example case (subject 4). The manual segmentation
is shown in green, the automated segmentation in red, and the overlap in yellow. The
L4/L5 IVD shows lower accuracy (DSC = 0.809, MASD = 1.647 mm) than the remain-
ing IVDs. The automated segmentation extends beyond the IVD region anteriorly and
laterally, as indicated by the arrows. (Color figure online)

4 Discussion

The automated initialization performed very well for 14/15 of the training cases
providing an excellent basis for our fully automated pipeline. Overall, there was
very good agreement between the IVD segmentations from the manual (ground
truth) and our automated approaches. In this challenge for segmentation of IVDs
from TSE images of the lumbar spine region, our fully automated segmentation
approach delivered results highly competitive with leading state-of-the-art 3D
segmentation techniques [4,10,11]. Only 2/105 (1 L5/S1, 1 L4/L5 IVD) outliers
were identified (Fig. 2) with slightly lower segmentation accuracy (DSC∼0.80).
This was likely due to a combination of factors, such as specific anatomical
features (e.g. unclear boundaries between an IVD and the hypo-intense closely
apposed psoas muscle) as seen in Fig. 3.

To further evaluate our automated scheme, it would be beneficial to validate
our approach on larger datasets of heterogeneous clinical populations. Addi-
tional work involving an increase in the number of atlases and varying the initial
atlas positioning before the rigid registration may further improve our auto-
mated approach by increasing the (already high) percentage of cases initialized
fully automatically. Importantly, our system offers a quick and simple “fall-back”
option for manual initialization in the form of one mouse click, offering a very
fast, robust clinical solution. This approach can also be used if fast segmen-
tation of one isolated IVD is required as it overcomes the need for sequential
segmentation starting from the S1, L5 vertebral bodies.



Automated Intervertebral Disc Segmentation 157

A limitation of the presented framework is the reliance on certain features
related to the imaging protocol, e.g. sufficient coverage of the sacrum and a good
left/right centering of the spine in the FoV. This plainly influences the applica-
bility of our current models to other spinal regions (e.g. the cervical spine), which
would involve the future addition of new imaging atlases. However, clinical MRI
examinations of the lumbar spine have extremely similar imaging protocols for
patients presenting with low back pain. The vast majority of clinical studies that
we have encountered would satisfy the FoV requirements for the applicability of
our fully automated method.

5 Conclusion

An automated approach for localization and segmentation of IVDs from T2-
weighted sagittal TSE scans of the thoraco-lumbar spine was successfully vali-
dated on a publicly available dataset with manual “ground-truth” segmentations.
The presented method was used in the segmentation challenge at MICCAI-
CSI2015.
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