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Abstract. Predicting accurately and in real-time 3D body joint posi-
tions from a depth image is the cornerstone for many safety, biomedical,
and entertainment applications. Despite the high quality of the depth
images, the accuracy of existing human pose estimation methods from
single depth images remains insufficient for some applications. In order
to enhance the accuracy, we suggest to leverage a rough orientation esti-
mation to dynamically select a 3D joint position prediction model spe-
cialized for this orientation. This orientation estimation can be obtained
in real-time either from the image itself, or from any other clue like
tracking. We demonstrate the merits of this general principle on a pose
estimation method similar to the one used with Kinect cameras. Our
results show that the accuracy is improved by up to 45.1 %, with respect
to a method using the same model for all orientations.

1 Introduction

Markerless pose estimation has attracted much interest since the release of low-
cost depth cameras like the Microsoft Kinect. Shotton et al. and Girshick et al.
made an important step by presenting methods that infer a full-body pose recon-
struction in real-time. Their details were explained, chronologically, in [3,8,9].
Despite this technological breakthrough, the accuracy of human pose estimation
from single depth images remains insufficient for some applications.

The straightforward strategy to improve the pose estimation is to sub-
stantially increase the size and the diversity of the learning set, but this is
costly, impractical, and often impossible. Other ideas to improve the method of
Shotton et al. have also been developed. Yeung et al. [11] presented a way to
combine the predictions of two Kinect cameras in order to reduce the prob-
lems related to unwanted joints positions vibration and bone-length variation
observed with the method described in [9]. Wei et al. [10] used a method equiva-
lent to [8] in combination with a tracking algorithm and showed that it improved
the robustness and the accuracy on the estimation of the joint positions. In this
paper, we present a principle for improvement that can be used with any mark-
erless pose estimation method based on machine learning techniques. Instead
of taking advantage of additional cameras or filtering the predictions in a post-
processing step, we start by estimating the orientation of the observed person.
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Fig. 1. Outline of our method. The orientation estimation can be obtained from the
image itself or thanks to any kind of sensors through a machine learning or a tracking
algorithm for instance. The last image shows the skeleton linking the estimated joints.

Our contribution is to show how an estimation of the orientation of the
observed person improves the accuracy of a pose estimation algorithm. Our idea
consists in slicing the full orientation range into smaller ranges and learning
a different model for each of these smaller ranges. When the models are used
to recover the pose, given the estimation of the orientation of the observed
person, we use the appropriate model to make the predictions for the joints
positions. To take into account the uncertainty on the orientation estimation,
we consider slightly overlapping orientation ranges when the models are learned.
An illustration of our method is shown in Fig. 1.

2 Principle of Leveraging an Orientation Estimation

The intuition for having several models depending on smaller orientation ranges
is the following. From our experience, when it comes to analyze silhouettes anno-
tated with depth in each pixel (see Fig. 3), machine learning methods tend to
grant a high importance to the information related to the external contour and
not enough importance to the information related to the depth signal. The prob-
lem is that there are two different poses corresponding to the same silhouette
shape [7] (when the small details of the silhouette corresponding to the per-
spective effects are neglected), and this ambiguity leads to large errors when an
average solution is predicted. Note that with the arbitrary convention taken in
this paper (see Fig. 2), one of the two possible poses is associated with an orien-
tation of θ, while the other one is associated with an orientation of 360◦ − θ.

Therefore, except for the rare cases where the observed person has an orien-
tation very close to 0◦ (seen from his right side) or 180◦ (seen from his left side),
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Fig. 2. The configuration considered in this paper. The person can be anywhere in the
area (a square of 3 m side) with any pose and any orientation. The camera is placed
1 m above the floor; its optical axis is horizontal.

the knowledge of the orientation is sufficient to overcome the pose ambiguity,
even if it is only roughly estimated. Our method is based on the idea that it
is preferable to rely on an additional method that is specifically designed for
orientation estimation instead of trying to recover the joint positions and disam-
biguate the silhouette orientation all at once. We observed that when a machine
learning method does not have to simultaneously estimate the orientation and
the pose, and can focus on the pose estimation given that a rough orientation
estimation is provided to it, its task is eased and the accuracy of the predictions
is improved.

Several clues can be used to estimate the orientation. When the observed
person is walking, his orientation is given by his velocity vector, and can therefore
be estimated by tracking. This tracking can be done directly from the depth
camera, or from range laser scanners [6]. The orientation can also be estimated
directly from a single depth image [5].

One way of forcing the pose estimation method to take the orientation into
account is to consider several ranges of orientation and to learn a different model
for each range. During the pose estimation step, given the orientation estima-
tion, we use the appropriate model to predict the pose. Note that the overlap
between consecutive ranges should be adapted to the maximum uncertainty of
the selected orientation estimation method. In the case of the estimation from
the depth image, Piérard et al. [5] showed that it is possible to achieve an aver-
age uncertainty of 4.3◦ (measured on synthetic, noise-free data), but no bound
was given. In practice, the errors are larger, but the temporal variance can be
filtered out, leading to reliable estimates as shown on the video on the author’s
website. We take an overlap of 20◦ for this orientation estimation method.
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3 Experiments

To assess the effectiveness of our principle, we implement a simplified (for
practical reasons) version of the pose estimation method described in Girshick
et al. [3]. The main differences are that we use a general regression random forest
model (the ExtRaTrees [2]) instead of a custom one, that we use 500 features
rather than 2, 000 to describe the pixels environments, and that the models are
learned from another, smaller, dataset.

To generate the learning and test datasets, we followed a method similar to
the one described in [9] except that we used the open source softwares Blender
and MakeHuman. Moreover, we used only one human model and did not add
clothes to it. Without loss of generality, our small dataset is sufficient to estab-
lish that our principle helps to improve the accuracy of the pose estimation. The
poses used to generate the data were taken randomly from the CMU motion cap-
ture database [1]. A few unrealistic poses, that do not correspond to a standing
person, have been manually excluded (less than 1%). A total of 24, 000 silhou-
ettes annotated with depth have been generated from the same amount of poses
for the learning set, and 10, 000 for the test set. In the generated depth images,
the distance from the human model to the camera varies from 1.5 to 5.74 meters.
Note that we used the specifications of the Kinect v2 of Microsoft to generate
the depth images and we added a Gaussian noise with the characteristics given
in [4]. Some examples of our input depth images are shown in Fig. 3 with the
projection of the ground truth body joints positions in green.

Fig. 3. Examples of generated depth images used in our experiments. The ground truth
body joints are displayed in green. (Color figure online)

We report the results obtained with 1, 4, and 12 models specialized according
to the orientation. We analyze 8 body joints: neck, head, shoulder, elbow, wrist,
hip, knee, ankle. We only consider the right joints given that the prediction
accuracy will be symmetrical for the left ones.

3.1 Improvement with a Constant Global Learning Dataset Size

Our first experiment shows what happens when we increase the number of mod-
els, with smaller orientation ranges, while keeping a constant learning dataset size.
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Table 1. Mean errors on the positions of the considered body joints for different number
of models used with a constant learning dataset size. There is an optimal number of
models (4 in this experiment) for a constant learning dataset size (8000 samples).

1 4 12
8000 8000/4 = 2000 8000/12 � 666
360 360 /4 + 2 × 10 = 110 360 /12 + 2 × 10 = 50

Table 1 gives the mean Euclidean errors for 1, 4 and 12 models. We see a significant
reduction of the error for all joints when going from 1 to 4 models. These results
underline that using multiple models designed for narrow ranges of orientations is
preferable than using a unique model. However, going from 4 to 12 models slightly
worsens the performance.

With a learning dataset, whose size cannot be increased, there is a trade-off
between, on the one side, the improvement that is obtained from the knowledge of
an approximative orientation estimation by the use of specialized pose estimation
models, and on the other side, the deterioration due to the reduction of the
learning set size. Nevertheless, the optimal solution takes advantage of a few
models, and benefits from the knowledge of the orientation.

Note that the predictions for the head and the neck are less influenced by
the number of models used. Indeed, the joints on the spine (that is the person’s
rotation axis) are less affected than those in the limbs by a change of the ori-
entation. Moreover, we observe the largest errors on the wrist, as it is the joint
that has the higher freedom to move in space. The magnitude of the mean error
is thus related to the variety of poses in the test set. The general trend is higher
errors at limb extremities, and lower errors at joints close to the torso.

The curves of Fig. 4 depict the mean Euclidean errors (estimated with a
Gaussian filter of σ = 8◦) affecting the pose estimation at every joint with
respect to the orientation of the observed person. The results obtained with a
single 360◦-model is shown in red, while the one with four 110◦-models is shown
in blue. As can be seen, the errors are anisotropic, and the best improvement
obtained thanks to our principle is for people facing the camera, or seen from
their back. Moreover, for all the joints of the right limbs, we observe larger errors
when the person is seen from his left side, which is probably due to the fact that
these joints have a higher chance of being occluded.
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Fig. 4. Mean errors (in cm) on the positions of the considered body joints for different
number of models specialized for reduced ranges of orientation. By convention, a person
with an orientation of 0◦ is seen from the right side. (Color figure online)

3.2 Improvement with a Constant Learning Dataset Size per Model

Figure 4 also shows the behavior when the same experiment is performed with all
models derived from the same amount of learning samples. The dark gray curves
correspond to a single 360◦-model, the purple ones to four 110◦-models, and the
light gray ones to twelve 50◦-models. Each of these models has been learned from
2, 000 samples. To the contrary of our first experiment, we observe a systematic
decrease of the error when the number of models is increased. However, the small
difference between 4 and 12 models suggests a plateau is reached after 4 models.
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Therefore, relying on too many models is useless. This suggests that a rough
orientation estimation suffices to improve the performance of pose estimation.

4 Conclusion

This work presents the principle of using an estimation of the orientation of
the observed person to improve the accuracy of a pose estimation algorithm.
Instead of learning a unique model over the 360◦-range of orientation, we learn
several models designed for smaller ranges of orientations. We tested this princi-
ple for different amounts of models and showed that the accuracy is significantly
improved when the number of models increases while keeping a constant learning
dataset size.
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