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Abstract
Alternative splicing of pre-mRNA is an essential event that leads to
protein diversity and regulation of the cellular processes in mammals.
With the advent of the next generation sequencing technologies, the role
of alternative splicing is gaining a momentum. Regulation of alternative
splicing is a complex process involving the core spliceosome machinery
and multiple regulatory factors that enable the tightly controlled splicing
of introns/exons. Any aberrant alteration in this process can result in
diseases such as cancer. Indeed, accumulating evidence suggests that
alternative splicing plays an important role in all hallmarks of cancer
including proliferative signaling, resisting cell death, inducing angiogen-
esis, and activating invasion and metastasis. These changes may occur due
to mutations or altered expression levels of key regulatory genes of
spliceosome machinery or splicing factors. In this review, we summarize
recent findings that have implicated the critical role of alternative splicing
in breast cancer and discuss current understandings and its potential utility
in breast cancer.
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23.1 Introduction

The splicing mechanism is the process in which
introns are separated from the exons; the latter go
on to form mature mRNAs. Alternative splicing
(AS) is a mechanism by which selective inclu-
sion/ exclusion of exons and introns during
splicing of the pre-mRNAs leads to the produc-
tion of more than one isoform. It plays an
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important role in regulating cellular processes in
a tissue-specific manner (Black 2003; Pan et al.
2008). In particular, recent high-throughput
sequencing technologies revealed that about
92–94 % of human genes are alternatively
spliced (Blencowe 2006; Pan et al. 2008; Wang
et al. 2011; Irimia and Blencowe 2012). In this
process, inclusion or exclusion of exons or por-
tions of exons or introns within a pre-mRNA
transcript can result in multiple protein isoforms
being encoded by a single gene. This process is
tightly regulated in normal cells. Most exons are
constitutive, being always spliced or included in
the mature mRNA (Fig. 23.1a). However, aber-
rant regulation of AS may result in several dis-
eases including cancer. The major alternative
splicing patterns or events (Fig. 23.1b–f) are
grouped into five types. If an exon is sometimes
excluded or included, this indicates that the exon
expression is regulated and also termed as cas-
sette exon (Fig. 23.1b). In some cases, cassette
exons are mutually exclusive (Fig. 23.1c); this
might hold true for more than one exons. Exons
can be longer or shorter affecting their splice
sites. Alterations in 5′-terminal exons result in

alternative promoter sites (Fig. 23.1d). On the
other hand, alternative splicing of the 3′-terminal
exons can lead to alternative polyadenylation
sites (Fig. 23.1e). In addition, some regulatory
events result in inclusion of an intron, a splicing
pattern called intron retention (Fig. 23.1f).

Aberrant alternative splicing events in cancer
may impact the alteration of genes and proteins
both at the expression and functional level. These
events are regulated by a complex process
involving the core spliceosome machinery and
multiple regulatory factors (Irimia and Blencowe
2012). A schematic was depicted in Fig. 23.2 to
summarize the key regulatory players at the exon
level.

The core spliceosome machinery is a large
dynamic macromolecular RNA-protein complex
composed of five small nuclear RNAs (snRNAs)
and over 100 associated proteins. The association
of these small RNAs with the protein factors
comprise the RNA-protein-complex called small
nuclear ribonucleic proteins (snRNPs). Splice
sites of a gene are the binding sites for the
spliceosome machinery. Splicing factors (SFs), a
subset of RNA binding proteins (RBPs), control

Fig. 23.1 Main alternative splicing events a Constitutive splicing; b cassette alternative exon; c mutually exclusive
exons; d alternative 5′ splice site; e alternative 3′ splice site and f intron retention
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the choice of splice sites and impact the recruit-
ment of the spliceosome to splice sites (Chen and
Weiss 2015; Liu and Cheng 2013; Zhang and
Manley 2013; Cartegni et al. 2002; Irimia and
Blencowe 2012). SFs exert their effect by bind-
ing specific RNA sequences, or motifs, known as
exonic splicing enhancers (ESEs), exonic splic-
ing silencers (ESS), intronic splicing enhancers
(ISEs) and intronic splicing silencers (ISSs)
(Cartegni et al. 2002; Irimia and Blencowe
2012). Bound SFs can either activate or inhibit
the interaction between spliceosome and
pre-mRNAs (McManus and Graveley 2011).
Some of them can have dual function based on
the location of the motifs they bind. Several
splicing factors have been well established in
humans (Venables et al. 2008; Twyffels et al.
2011), and categorized into two major families:
serine-arginine protein (SR) and heterogeneous
ribonucleoprotein (hnRNP). SRs usually

promotes splicing, while hnRNPs usually inhibit
the splicing process by binding to silencer
sequences (Cartegni et al. 2002; David and
Manley 2010; Irimia and Blencowe 2012). The
decision of alternative splicing also requires
cis-acting RNA splicing regulatory elements
(SREs) which influence the splicing of
exons/introns in the mRNA (Cho et al. 2014).
Cis-acting regulatory elements are located on
200–300 nucleotides adjacent to observed splice
sites. They also can alter splicing by binding to
different trans-acting proteins which are remotely
located and act as splicing enhancers or silencers.
The ultimate decision for splicing regulation is
combinatorial and context-dependent based on
the cooperation and competition of splicing fac-
tors. All these factors increase the diversity and
functional capacity of a gene during
post-transcriptional processing and exert tight
gene regulation.

Fig. 23.2 Schematic representation of core spliceosomal
components and its binding proteins. Splicing factors can
either promote or repress splice site selection depending
on the location of their binding sites with respect to
splicing signals. ISE Intronic splicing\enhancer; ISS
Intronic splicing silencer; ESE Exonic splicing enhancer;

ESS Exonic splicing silencer; SR, Ser/Arg-repeat con-
taining protein; hnRNP Heterogeneous ribonucleoprotein
(hnRNP); and U2AF, U2 snRNP auxiliary factor.
Adapted from Irimia and Blencowe Current Opinion in
Cell Biology
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Mutations of SF genes or alterations in
expression levels of the proteins may contribute
to aberrant AS. These proteins are guided by
additional factors that can also interact with
mRNAs at specific motifs to regulate the inclu-
sion or exclusion of exons in the final transcript.
Alterations in the levels and activity of these SFs
thus provide another means of AS deregulation.
Changes in splice sites or motifs of SFs in a
given gene may also affect the alternative splic-
ing. Besides binding to SFs, other characteristics
of the protein may be altered including ligand
binding, enzymatic activity, subcellular local-
ization, and/or protein-protein interactions. This
further may alter many processes that can switch
cells from normal to malignant phenotype.

Deregulation of alternative splicing due to
these factors may result in cancers including
breast cancer. Several studies have revealed
splice variants specific to tumors in several can-
cers including breast cancer which impact hall-
marks of cancer such as proliferation, apoptosis,
cell-cycle-control, metabolism, angiogenesis, and
invasion (Chen and Weiss 2015; Dutertre et al.
2010; Germann et al. 2012; Swami et al. 2009;
Liu and Cheng 2013; Oltean and Bates 2014;
Venables et al. 2008; Zhang and Manley 2013).
In this chapter, we will review the regulatory
factors and alternative splicing events in breast
cancer, its promises and limitations in the clinical
practice.

23.2 Alternative Splicing in Breast
Cancer

23.2.1 Mutations in RNA Splicing
Factors

Recent next-generation sequencing technologies
have revealed the presence of somatic mutations
in the components of spliceosome machinery and
splicing factors (Malcovati et al. 2011; Papaem-
manuil et al. 2011; Yoshida and Ogawa 2014;
Yoshida et al. 2011). These mutations mostly
involve components that are involved in the
initial steps of pre-mRNA splicing, such as 3’
splice-site recognition and occur in a mutually

exclusive manner. Among the mutated splicing
factors, U2AF1, SRSF2, SF3B1, and ZRSR2
genes were common mutational hotspots in
myeloid neoplasms such as myelodysplastic
syndrome (MDS). Although these mutations
were frequent (45–85 %) in myeloid neoplasms,
they exist in other hematologic malignancies and
solid tumors, albeit at different frequencies
(Quesada et al. 2012; Ramsay et al. 2013; Scott
and Rebel 2013; Wang et al. 2011; Yoshida and
Ogawa 2014). Mutations in splicing factor 3b,
subunit 1 (SF3B1) occurred in 15 % of chronic
lymphocytic leukemias (CLLs) (Quesada et al.
2012), and in solid cancers such as uveal mela-
nomas (9.7 %) (Furney et al. 2013; Harbour et al.
2013), pancreatic cancers (4 %) (Biankin et al.
2012), and breast cancers (2 %) (Cancer Genome
Atlas 2012; Stephens et al. 2012). Mutations in
other splicing genes, such as the U2 small
nuclear RNA auxiliary factor 1 gene (U2AF1),
the serine/arginine-rich splicing factor 2 gene
(SRSF2), and the U2 small nuclear ribonucleo-
protein auxiliary factor 35 kDa subunit-related
protein 2 gene (ZRSR2), have also been identified
in a lower frequency than SF3B1 mutations
(Yoshida and Ogawa 2014; Yoshida et al. 2011).

SF3B1 is the only splicing factor that has been
reported to be among the top 35 mutated genes
using next-generation sequencing on 510 breast
tumors (Cancer Genome Atlas 2012). However,
the frequency was low (2 % of all tumors). Of
the 15 non-silent mutations, the majority were
missense mutations. Patients with estrogen
receptor ER+ and HER-2+ subtypes harbored the
majority of these mutations. The SF3B1 was also
among the 18 significantly mutated genes in
untreated ER+ breast tumors from 77 patients
accrued from two neo-adjuvant aromatase inhi-
bitor clinical trials (Ellis et al. 2012). A recent
study re-analyzed the mutations in spliceosomal
components using public exome and whole
genome sequencing data (Maguire et al. 2015).
Their data also confirmed that SF3B1 was the
most commonly mutated gene in the spliceoso-
mal complex in breast cancer, in particular in ER
+ breast tumors. Furthermore, SF3B1 mutations
were associated with differential splicing of
genes in ER+ breast tumors including
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TMEM14C, RPL31, DYNL11, UQCC, ABCC5
and CRNDE. Some of these splice variants have
also been observed in other cancers with SF3B1
mutations (Furney et al. 2013).

23.2.2 Altered Gene Expression
Levels in RNA Splicing
Factors

Accumulating evidence implicates that aberrant
expression of genes regulating alternative splic-
ing is another factor that impacts the alternative
splicing events in breast cancer. In our study, the
splicing factor SF3B1 was upregulated in
acquired endocrine resistant models as well as in
cases with Oncotype DX high-recurrence scores
(Gokmen-Polar et al. 2015). However, we did
not observe any prognostic correlation of SF3B1
expression in our analyses using breast tumors
from TCGA and Affymetrix microarray datasets.
Interestingly, splicing factor 3b, subunit 3
(SF3B3), a SF3B subunit interacting with
SF3B1, was also upregulated in these models. As
in the case of SF3B1, high expression of SF3B3
correlated with the Oncotype DX high-recurrence
cases. In contrast to SF3B1, high expression of
SF3B3 correlated with poor prognosis in patients
with ER+ breast cancer.

Other alterations in expression of splicing
factors or components of spliceosome machin-
ery, have also been reported in breast cancer
(Grosso et al. 2008). These alterations are
assumed to affect the splicing pattern of other
genes that are involved in tumor development
and progression. Alternatively, they might act as
oncogenes. For example, splicing factor
SF2/ASF is upregulated in various human
tumors, and impacts alternative splicing of the
tumor suppressor BIN1 and the kinases MNK2
and S6K1. While BIN1 isoforms lost their
tumor-suppressor activity, the MNK2 isoform
promotes MAPK-independent eIF4E phospho-
rylation and the S6K1 isoform has demonstrated
oncogenic properties (Karni et al. 2007).

Heterogeneous ribonucleoproteins (hnRNPs)
are another major group of splicing factors that
are involved in different steps of pre-mRNA

processing and cellular functions (Carpenter
et al. 2006; Grosso et al. 2008). The hnRNP
proteins are also involved in various biological
processes required for tumor progression. Splic-
ing factor SRSF1 is upregulated in human breast
tumors, and its overexpression promotes trans-
formation of mammary cells (Anczukow et al.
2015). A recent study reported the expression
profile of ten splicing factors (both SRs and
hnRNPs) and eight RNA-binding proteins in
breast cancer cells (Silipo 2015). Taken together,
these studies emphasize that alterations (muta-
tions or altered expression) in core spliceosomal
complex genes and its associated genes may
contribute to aberrant alternative splicing in
breast cancer progression.

23.3 Alternative Splicing Events
in Breast Cancer

Aberrant alternative splicing events have been
associated with the initiation and progression in
breast cancer (Dutertre et al. 2010). We will
enumerate some examples for each type of
alternative splicing events and emphasize their
contribution in breast cancer development and
progression (Table 23.1).

23.3.1 Cassette Exons

23.3.1.1 Exon Skipping
The breast cancer susceptibility genes, BRCA1
and BRCA2, are good illustrative examples for
exon skipping. BRCA1 RNAs from most tumors
show splicing alterations (Bonnet et al. 2008;
Easton et al. 2007; Lovelock et al. 2006; Tom-
masi et al. 2008; Caux-Moncoutier et al. 2009;
Anczukow et al. 2008). For example, the
full-length BRCA1 gene encodes 24 exons. Exon
18 skipping in BRCA1 can enhance (SF2/ASF)
or inhibit (hnRNPA1 and hnRNPH/F) binding of
splicing factors to the mRNA (Liu et al. 2001;
Millevoi et al. 2010). In addition, skipping of
exon 11 has been associated with cell death and
proliferation. Besides exon 11 and 18 skipping,
other splice variants of BRCA1 have been
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identified including BRCA1 full length (inclusion
of all exons), partial skipping of exon 11, skip-
ping of exons 9, 10, and partial skipping of exon
11 and IRIS isoforms (skipping of exons 12–24,
but retaining a short segment from intron 11)
(Tammaro et al. 2012). Additional studies are
emerging regarding novel BRCA1 variants
inducing splicing defects (Ahlborn et al. 2015;
Romero et al. 2015; Tammaro et al. 2012).
However, the clinical significance of these vari-
ants and the relevance of these mutations are
unknown. With the exception of IRIS, the
importance of other BRCA1 splicing events in
cancer development needs to be further
determined.

23.3.1.2 Exon Inclusion and Complex
Splicing Patterns

CD44, a cell surface receptor, has been gained
attention as a breast cancer stem cell marker and
chemo-resistance and is under extensive study as
a therapeutic target. CD44 has been used as
biomarkers to identify and characterize the breast
cancer stem cell (CSC) phenotype (Al-Hajj et al.
2003; Shipitsin et al. 2007). Breast cancer cells

with CD44+/CD24- subpopulation express
higher levels of pro-invasive genes and have
highly invasive properties specific to ER− cell
lines (Sheridan et al. 2006). However, overex-
pression of CD44 has been implicated in both
tumor suppression and progression (Horak et al.
2008). Relevance of CD44 in breast carcinomas
is still unclear in part due to the complex splice
pattern observed in breast cancer.

CD44 pre-mRNA contains 19 exons, 9 of
which are alternatively spliced (Loh et al. 2015).
Based on the inclusion of variable exons, a
number of isoforms are generated. The standard
isoform of CD44 (CD44s) contains 10 constant
exons (exons 1–5 and 15–20), whereas the
variant CD44v isoforms includes exons 5a and
14 (exon v1–v10). Exon 5a (v1) is not expressed
in humans (Screaton et al. 1993; Inoue and Fry
2015). Several groups have assessed the role of
CD44 in breast cancer progression in vivo using
mouse models (Brown et al. 2011; Warzecha
et al. 2009). Different splice variants of CD44
have also been associated with different subtypes
of breast cancer (Olsson et al. 2011). High
expression of standard (CD44s) isoform was

Table 23.1 Aberrant alternative splicing events in breast cancer

Gene name Alternative splicing event References

BRCA1 Cassette exon
Skipping of exon 18 and exon 11
IRIS isoform- skipping of multiple exons

Liu et al (2001), Millevoi et al. (2010),
Tammaro et al. (2012), Ahlborn et al. (2015),
Romero et al. (2015)

CD44 Cassette exon
Inclusion of variable exons 9 (exon 6–14)
in humans

Inoue and Fry (2015), Olsson et al. (2011),
Screaton et al. (1993)

FGFR2 Mutually exclusive exons
FGFR2 IIIb or IIIc

Fletcher et al (2013)

HER-2 Intron retention
Herstatin-retention of intron 18,
p100-retention of intron 15

Jackson et al. (2013), Doherty et al. (1999),
Aigner et al. (2001)

Bcl- 2-like
Bcl-xL versus
Bcl-xS

Alternative 5′ splice sites
5′ splice sites in exon 2

Boise et al. (1993), Adams and Cory (2007),
Akgul et al. (2004)

VEGF Alternative 3′ splice sites
Proximal/distal 3′ splice site

Biselli-Chicote et al. (2012), Harper and Bates (2008),
Nowak et al. (2008)
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present in tumors with strong HER-2 staining
and in a subgroup of basal-like tumors. Expres-
sion was associated with ALDH1 expression. In
contrast, other CD44 variants are associated with
luminal A subtype and with tumors with high
CD44+/CD24- subpopulation. In breast cancer
cell lines, the untransformed (MCF10A) and
non-metastatic (MCF-7) cell lines harbor differ-
ent isoform pattern (CD44v6 isoform, which
includes all of the v6-containing mRNA iso-
forms- c5v6v7v8v9v10c6) compared to meta-
static MDA-MB-231 cell lines. The splicing
factor epithelial splicing regulatory protein 1
(ESRP1) and hnRNPA1 are important in con-
trolling the CD44 isoform switch and critical for
regulating the EMT phenotype in cell line mod-
els (Warzecha et al. 2009). The switch of CD44v
to CD44s variants has been reported to induce
EMT phenotype (Brown et al. 2011). In contrast,
other studies reported that CD44v isoforms can
mediate metastasis (Zhang et al. 2014, 2015;
Tjhay et al. 2015). Orthotropic transplantation of
a CD44v(+) subpopulation of 4T1 breast cancer
cells, but not that of a CD44v(−) subpopulation,
in mice results in efficient lung metastasis
accompanied by expansion of stem-like cancer
cells proving the role of the variant isoform in
cancer metastasis (Yae et al. 2012). In summary,
CD44 splicing is very complex and further
analysis is necessary to understand the role of
CD44 splice variants in breast cancer.

23.3.2 Mutually Exclusive Exons

Fibroblast Growth Factor Receptor 2 (FGFR2), a
member of the fibroblast growth factor receptors,
has been shown to be altered in breast cancer
(Fletcher et al. 2013). FGFR2 is one of the
examples in breast cancer where the alternative
splicing of two mutually exclusive exons (FGFR2
IIIb or IIIc) alters its ligand binding ability and its
biological function. Switching of FGFR2 IIIb to
IIIc plays a role in EMT process and results in

mammary tumor development (Cha et al. 2008;
Moffa et al. 2004; Wei et al. 2012).

23.3.3 Intron Retention

Intron retention is common in most of the tumors
except in breast tumors (Dvinge and Bradley
2015). Breast tumors were associated with
decreased intron retention relative to normal
controls. For example, Herstatin is a naturally
occurring truncated HER-2 protein generated
from alternative HER-2 mRNA transcripts that
retain intron 8 (Jackson et al. 2013; Doherty et al.
1999). Herstatin can act as an inhibitor of
full-length HER-2 by interfering with dimeriza-
tion, and tyrosine phosphorylation (Guidi et al.
1997). In particular, Herstatin levels are signifi-
cantly higher in noncancerous breast cells com-
pared to carcinoma cells (Koletsa et al. 2008),
p100, another truncated HER2 mRNA splice
variant, exhibits the retention of intron 15 and
inhibits the tumor cell proliferation and onco-
genic signaling (Aigner et al. 2001). Further
studies are necessary to understand its prognostic
and predictive value in breast cancer.

23.3.4 Alternative 5′ Splice Sites

The apoptosis regulator gene Bcl-2-like 1 or
Bcl-x, which belongs to the Bcl-2 family of pro-
teins, can act as an anti-apoptotic (Bcl-xL) or
pro-apoptotic (Bcl-xS) protein by regulating cas-
pase activation. These two isoforms are generated
based on the alternative splicing pattern of Bcl-x in
the 5′ splice sites in exon 2. Overexpression of the
longer isoformBcl-xL has been reported in several
cancers including breast cancer, whereas the
shorter isoform Bcl-xS is downregulated in cancer
(Boise et al. 1993; Adams and Cory 2007; Akgul
et al. 2004; Cloutier et al. 2008; Ma et al. 2010).
The alternative splicing of Bcl-x has been well
documented in affecting survival or evading
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apoptosis, one of the key hallmarks of cancer
(Hanahan and Weinberg 2000, 2011).

23.3.5 Alternative 3′ Splice Sites

Vascular endothelial growth factor (VEGF) is a
well-known stimulator of tumor angiogenesis,
tumor growth and metastasis in cancer, all of
which are hallmarks of cancer. Overexpression
of VEGF is an early event in breast cancer pro-
gression and a prerequisite step to tumor invasion
(Guidi et al. 1997). Elevated expression of VEGF
can be associated with shorter relapse-free sur-
vival and overall survival times in breast cancer
patients with both positive and negative lymph
nodes (Gasparini et al. 1997; Konecny et al.
2004; Relf et al. 1997). VEGF pre-mRNA is
regulated by alternative splicing (Biselli-Chicote
et al. 2012; Harper and Bates 2008). The VEGF
gene contains eight exons having two competing
3′ splice sites (proximal and distal) in exon 8
(Houck et al. 1991). The proximal 3′ splice site
of exon 8 generates the VEGF isoforms that are
pro-angiogenic, whereas the distal 3′ splice site
produces the VEGFb isoforms that are
anti-angiogenic. Splicing factors SRSF1 and
SRSF5 (SRp40) have been shown to control the
splicing of VEGF exon 8 proximal 3′ splice site
and promote the production of VEGF (Nowak
et al. 2008). VEGF splicing is complex and
alternative splicing of other exons (exon 6 and 7)
increases its functional diversity.

23.4 Future Directions; Promises
and Limitations

High throughput technologies such as massively
parallel RNA-sequencing have emphasized the
importance of alternative splicing in biological
models and human disease by providing an
extensive information of small RNAs and asso-
ciated proteins that are involved in RNA splicing
process. Alterations of these proteins by muta-
tions or gene expression level affect the alterna-
tive splicing events leading to altered function
and protein-protein interactions of several

proteins. In particular, mutations in spliceosome
components have opened new therapeutic
opportunities in cancer. Much work needs to be
done to understand the clinical utility of key
splice variants in tumor development, progres-
sion and metastasis. In particular, major chal-
lenges need to be overcome to remove significant
bottlenecks for the clinical utility of
cancer-specific splice variants. First, computa-
tional biology methods need to be refined and
standardized among the different databases and
platforms. Second, identification of gene
expression alterations at the exon level need to be
coupled with biological endpoints such as pro-
liferation, apoptosis or recurrence/metastasis. For
example, in breast cancer, a decrease in the
proliferation rate following neoadjuvant endo-
crine therapies can be associated with alterations
at the exon level. Exon markers can unravel the
dual roles of some of the prognostic and pre-
dictive markers in breast cancer initiation, pro-
gression and metastasis. Third, experimental
models need to be developed that can determine
and validate the biological significance of these
exon markers. However, the complexity arises
when multiple exons are skipped or included.
This might suggest that it is important to not only
identify clinical significance at the exon level as
well as at the transcript level. Fourth, databases at
the transcript level need to be developed from
tumors of retrospective and prospective clinical
trials with the outcome follow-up. These data-
bases are critical to understand their ultimate
clinical utility both at the discovery and valida-
tion stage.

In conclusion, overcoming of all of these
challenges requires the extensive collaboration of
computational scientists, mathematicians, cancer
biologists, pathologists and clinicians.
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