
Stefan Michaelis · Nico Piatkowski
Marco Stolpe (Eds.)

Solving Large Scale
Learning Tasks
Challenges and Algorithms

Fe
st

sc
hr

ift
LN

AI
 9

58
0

Essays Dedicated to Katharina Morik
on the Occasion of Her 60th Birthday

 123



Lecture Notes in Artificial Intelligence 9580

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Stefan Michaelis • Nico Piatkowski
Marco Stolpe (Eds.)

Solving Large Scale
Learning Tasks

Challenges and Algorithms

Essays Dedicated to Katharina Morik
on the Occasion of Her 60th Birthday

123



Editors
Stefan Michaelis
TU Dortmund
Dortmund
Germany

Nico Piatkowski
TU Dortmund
Dortmund
Germany

Marco Stolpe
TU Dortmund
Dortmund
Germany

Cover illustration: The illustration appearing on the cover belongs to Katharina Morik. Used with permission.

Photograph on p. V: The photograph of the honoree was taken by Jürgen Huhn. Used with permission.

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-41705-9 ISBN 978-3-319-41706-6 (eBook)
DOI 10.1007/978-3-319-41706-6

Library of Congress Control Number: 2016942885

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland





Foreword

The German word “Festschrift” has made it into international dictionaries because it
very succinctly denotes a volume of writings by different researchers that originate
from an event and constitutes a tribute to a scholar of extraordinary reputation. As such,
a Festschrift offers a unique approach toward a field of science, since at its center,
instead of an a priori-defined topical focus, there are the works and scientific vision of
an outstanding individual as reflected in the works of collaborators and contributors to
the volume.

While this nature of a Festschrift makes it an interesting approach independent of
what the field of science is, in the field of machine learning this way of accessing
science is of particular interest, since in a certain sense it reflects the very nature of the
field itself. In the present volume, which originated at the scientific symposium in
honor of Katharina Morik’s 60th birthday, you will see that the individual contributions
of her colleagues offer an implicit view of her strategic vision of what machine learning
should be and how research in machine learning should be conducted, as reflected in
her choice of collaborators. You are thus invited to do what any good machine-learning
algorithm would do when presented with examples: use the research presented in this
book to induce for yourselves the implicit vision that lies at their heart.

In this foreword, I certainly do not want to take away from the pleasure of drawing
these conclusions yourselves, so let me just say that in my view, the papers clearly
reflect Katharina Morik’s commitment and conviction that machine learning should be
firmly rooted in fundamental research with all its rigor, while at the same time being
turned into software and engineering results and demonstrating its usefulness by
applications in various disciplines. As you will see, this vision is clearly shared by the
excellent researchers who have contributed to this volume.

Enjoy the book!

December 2015 Stefan Wrobel



Preface

In celebration of Prof. Morik’s 60th birthday, this Festschrift covers research areas that
Prof. Morik worked in and presents various researchers with whom she collaborated.
Articles in this Festschrift volume provide challenges and solutions from theoreticians
and practitioners on data preprocessing, modeling, learning, and evaluation. Topics
include data-mining and machine-learning algorithms, feature selection, optimization
as well as efficiency of energy and communication.

March 2016 Stefan Michaelis
Nico Piatkowski

Marco Stolpe



Biographical Details

Katharina Morik was born in 1954. She earned her PhD (1981) at the University of
Hamburg and her habilitation (1988) at the TU Berlin. In 1991, Katharina became a full
professor of computer science at the TU Dortmund University (former Universität
Dortmund), Germany. Starting with natural language processing, her interest moved to
machine learning ranging from inductive logic programming to statistical learning, then
to the analysis of very large data collections, high-dimensional data, and resource
awareness. She is a member of the National Academy of Science and Engineering and
the North Rhine-Westphalia Academy of Science and Art. She is the author of more
than 200 papers in acknowledged conferences and journals. Her latest results include
spatio-temporal random fields and integer Markov random fields, both allowing for
complex probabilistic graphical models under resource constraints.

Throughout her career, Katharina has been passionate about teaching. She has often
taught more courses than required, and inspired students with her passion for artificial
intelligence and computer science in general.

Her aim to share scientific results strongly supports open source developments. For
instance, the first efficient implementation of the support vector machine, SVMlight, was
developed at her lab by Thorsten Joachims. The leading data-mining platform
RapidMiner also started out at her lab, which continues to contribute to it. Currently,
the Java streams framework is being developed, which abstracts processes on
distributed data streams.

Since 2011, she has been leading the collaborative research center SFB876 on
resource-aware data analysis, an interdisciplinary center comprising 14 projects,
20 professors, and about 50 PhD students or postdocs.

Katharina was and is strongly engaged in the data mining and machine learning
community. She was one of the founders of the IEEE International Conference on Data
Mining together with Xindong Wu, and she chaired the program of this conference in
2004. She was the program chair of the European Conference on Machine Learning
(ECML) in 1989 and one of the program chairs of ECML PKDD 2008. Katharina is on
the editorial boards of the international journals Knowledge and Information Systems
and Data Mining and Knowledge Discovery.
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Abstract. Today online social network services are challenging state-
of-the-art social media mining algorithms and techniques due to its real-
time nature, scale and amount of unstructured data generated. The con-
tinuous interactions between online social network participants generate
streams of unbounded text content and evolutionary network structures
within the social streams that make classical text mining and network
analysis techniques obsolete and not suitable to deal with such new chal-
lenges. Performing event detection on online social networks is no excep-
tion, state-of-the-art algorithms rely on text mining techniques applied
to pre-known datasets that are being processed with no restrictions on
the computational complexity and required execution time per document
analysis. Moreover, network analysis algorithms used to extract knowl-
edge from users relations and interactions were not designed to handle
evolutionary networks of such order of magnitude in terms of the num-
ber of nodes and edges. This specific problem of event detection becomes
even more serious due to the real-time nature of online social networks.
New or unforeseen events need to be identified and tracked on a real-time
basis providing accurate results as quick as possible. It makes no sense
to have an algorithm that provides detected event results a few hours
after being announced by traditional newswire.

Keywords: Event detection · Social networks

1 Introduction

Today, online social networking services like Twitter [102], Facebook [99],
Google+ [100], LinkedIn [101], among others, play an important role in the
dissemination of information on a real-time basis [91].

Recent observation proves that some events and news emerge and spread first
using those media channels rather than other traditional media like the online
news sites, blogs or even television and radio breaking news [50,88]. Natural dis-
asters, celebrity news, products announcements, or mainstream event coverage
show that people increasingly make use of those tools to be informed, discuss and
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 1–41, 2016.
DOI: 10.1007/978-3-319-41706-6 1



2 M. Cordeiro and J. Gama

exchange information [38]. Empirical studies [50,88] show that the online social
networking service Twitter is often the first medium to break important natural
events such as earthquakes often in a matter of seconds after they occur. Being
Twitter the “what’s-happening-right-now” tool [91] and given the nature of it’s
data — an real-time flow of text messages (tweets) coming from very different
sources covering varied kinds of subjects in distinct languages and locations —
makes the Twitter public stream an example of an interesting source of data
for “real time” event detection based on text mining techniques. Note that “real
time” means that events need to be discovered as early as possible after they
start unraveling in the online social networking service stream. Such information
about emerging events can be immensely valuable if it is discovered timely and
made available.

When some broad major event happens, three factors are the main contrib-
utors to the rapidly spread of information materialized in exchanged messages
between users of an online social network service. (i) the ubiquity nature of
today’s social network services, that are available nowadays by any internet con-
nected device like a personal computer or a smartphone; (ii) the ease of use and
agility of entering or forward information is also a key factor that lead some
messages to be spread very fast on the network and go viral [40]; and (iii) the
lifespan of the messages is also an interesting feature of those online social net-
work services. Posted messages tend to be exchanged, forwarded or commented
following a time decay pattern, meaning that the information they contain has
the importance peak when it is posted in the following hours or days [51]. This
statement is coherent with the Barabasi [11] conclusion that the timing of many
human activities, ranging from communication to entertainment and work pat-
terns, follow non-Poisson statistics, characterized by bursts of rapidly occurring
events separated by long periods of inactivity.

With the purpose of correlating the occurrence of events in the real world and
the resulting activity in online social networks, Zhao et al. [108] and Sakaki et al.
[88] introduced the concept of “social sensors” where the social text streams are
seen as sensors of the real world. The assumption made is that each online
social user (i.e.: a Twitter, Facebook, Google+ user) is regarded as a sensor
and each message (i.e.: tweet, post, etc.) as sensory information. Zhao et al.
[108] pointed two major substantial differences of the social text stream data
over general text stream data: (i) social text stream data contains rich social
connections (between the information senders/authors and recipients/reviewers)
and temporal attributes of each text piece; and (ii) the content of text piece in
the social text stream data is more context sensitive. Sakaki et al. [88] went
beyond in its concept of “social sensors” by introducing an analogy to a physical
sensor network. Some common characteristics of those “virtual” social sensors in
comparison with real physical sensors are: (i) some sensors are very active, others
are not — the activity of each user is different as some users post more messages
than others; (ii) a sensor could be inoperable or malfunctioning sometimes —
this means that a user can be offline at a given time i.e.: sleeping, on vacation;
or even offline (without internet connection); and (iii) very noisy compared to
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ordinal physical sensors — the output of the sensor is not normalized, there are
many users that are posting messages that can be considered as spammers.

1.1 Event Detection Overview

The event detection problem is not a new research topic, Yang et al. [105] in
1998, investigated the use and extension of text retrieval and clustering tech-
niques for event detection. The main task was to detect novel events from a
temporally-ordered stream of news stories automatically. In an evaluation of the
system using manually labeled events were obtained values for the F-score1 of
82 % in retrospective detection and 42 % in on-line detection. Despite the fact
of the size of the corpus with 15,836 documents used in the evaluation, the sys-
tem performed quite well and showed that basic techniques such as document
clustering can be highly effective to perform event detection.

Two years later Allan et al. [6] evaluated the UMASS reference system [4]
in three of the five Topic Detection and Tracking (TDT) tasks: (i) detection;
(ii) first story detection; and (iii) and story link detection [3]. The core of this
system used a vector model for representing stories, each story as a vector in
term-space, and terms (or features) of each vector were single words, reduced
to their root form by a dictionary-based stemmer. The study concluded that
the results were acceptable for the three evaluated tasks but not as high quality
as authors expected. Allan et al. [5] showed that performing first story detec-
tion based upon tracking technology has poor performance and to achieve high-
quality first story detection the tracking effectiveness should be improved to a
level that experiments showed not to be possible. Therefore Allan et al. [5] con-
cluded that first story detection is either impossible or requires substantially
different approaches.

Despite the fact that in the following 10 years, the period between years 2000
and 2010, the event detection problem was a relatively active research topic,
it was in the latest 8 years, coinciding with the advent and massification of the
online social networks phenomena and big data era that the problem gained more
interest from the research community. Just targeting event detection specifically
in the online social network service Twitter, Petrovic [73] pointed out and com-
pared major scientific contribution from Hu et al. [39], Jurgens and Stevens [43],
Sankaranarayanan et al. [89], Sakaki et al. [88], Popescu and Pennacchiotti [79],
Cataldi et al. [20], Mathioudakis and Koudas [62], Phuvipadawat and Murata
[76], Becker et al. [14], Weng et al. [98], Cordeiro [23], Li et al. [56], Li et al. [55],
Agarwal et al. [1] and Ozdikis et al. [68]. This fact by itself is explanatory on the
interest and relevance of the research topic. None of this listed publications man-
aged to solve the problem of event detection in online social networks completely.
Some of them assumed to solve the problem partially by defining constraints or
limiting the scope of the problem. One year later, Atefeh and Khreich [9] pub-
lished a survey that classifies the major techniques for Twitter event detection
according to the event type (specified or unspecified events), detection method

1 http://en.wikipedia.org/wiki/F1 score.

http://en.wikipedia.org/wiki/F1_score
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(supervised or unsupervised learning), and detection task (new event detection
or retrospective event detection). Due the fact that the research conducted by
Petrovic [73] work was primarily focused on solving online new event detec-
tion of unspecified events using unsupervised methods, it did not compare his
work with other references to advancements in other specific areas of the event
detection. Atefeh and Khreich [9] survey considers work described by Petrovic
[14,23,73,74,76,79,88,89,98] and additional advancements like Long et al. [58],
Popescu et al. [80], Benson et al. [15], Lee and Sumiya [52], Becker et al. [12],
Massoudi et al. [61], Metzler et al. [63] and Gu et al. [35]. This survey also dis-
cusses the common used features used in event detection tasks for each one of the
listed methods. Imran et al. [41] in a survey under the subject of communication
channels during mass convergence and emergency events, gave an overview of
the challenges and existing computational methods to process social media mes-
sages that may lead to an effective response in mass emergency scenarios. This
survey, not being specifically devoted to event detection, includes a full chapter
where Retrospective and Online New Event Detection types are addressed.

Most of the techniques described by Petrovic [73], Atefeh and Khreich [9]
and Imran et al. [41] lack evaluation or are evaluated empirically. Measuring
the accuracy and performance of an event detection methods is hampered by
the lack of standard corpora and results leading some authors to create and
make publicly available their own datasets with events being annotated manually
[73]. In other cases evaluation is made with some automation by comparing
directly to a reference system as a baseline [98] by generating a list of detected
event that serves as ground truth. The need for public benchmarks to evaluate
the performance of different detection approaches and various features was also
highlighted by Atefeh and Khreich [9].

1.2 Problem Statement

Most of the described approaches to solving the event detection in text streams
are not real-time and use batch algorithms. The good results obtained by refer-
ence systems used in the evaluation of the TDT task were obtained from reduced
corpus datasets. Latter studies proved that they do not scale to larger amounts of
data [72], in fact they were not even designed do deal with text streams. The per-
formance, effectiveness and robustness of those reference systems was acceptable
under the specified evaluation conditions at that time. Due the characteristics
of today’s online social network services data, unbounded massive unstructured
text streams, these systems are nowadays considered as being obsolete. Apart
from not being designed to handle big amounts of data, the data in online social
network services is also dynamic, messages are arriving at high data rates, requir-
ing the adaption of the computing models to process documents as they arrive.
Finally today computation time is an issue, in most cases when using this kind of
systems it is preferable to have an immediate and approximated solution rather
than waiting too much for an exact solution [10].

Online social network text streams seem to be the ideal source to perform
real-time event detection applying data mining techniques [74,88,98]. The main
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benefits of using those sources of data are their real-time or near real-time data
availability, contextualization of the messages with additional information (tem-
poral, geospatial, entity, etc. referenced in messages), possible data segmentation
at several levels (by communities of user, by regions, by topic, etc.), access to sta-
tic relations between users (friends, followers, user groups), possibility to build
dynamic user relations built from exchanged messages flows, among others.

To perform data mining, every previously mentioned advantage of the online
social network text data source reveals, in fact, to have a significant draw-
back and shortcoming. Performing real-time event detection using online social
network services requires dealing and mining massive unstructured text data
streams with messages arriving at high data rates. Given this, the approach
to deal with this specific problem involves providing solutions that are able to
mine continuous, high-volume, open-ended data streams as they arrive [17,82].
Because text data source is not disjointed from the online social network topolog-
ical properties, it is expected that information retrieved using metrics of networks
analysis (nodes, connections and relations, distributions, clusters, and commu-
nities) could improve the quality of the solution of the algorithm. In Table 3, for
each one of the techniques, is included the collection, corpus size, and temporal
scope of the dataset used in the evaluation.

1.3 Scope and Organization

It makes no sense to talk about an event detection system without first speci-
fying an defining exactly what is an event. Section 2 introduces the concepts of
story, event and topic. Section 3 defines, under topic detection and tracking task,
introduces the origins of event detection as Information Retrieval problem. New
Event Detection (NED) and Retrospective Event Detection (RED) tasks are
described in Sect. 3.1. Section 3.2 describes the differences of systems designed
to detected specified and unspecified events. Pivot techniques are presented in
Sect. 3.3. Section 4 presents a taxonomy of event detection systems. The taxon-
omy was made taking into account the type of event that the system tries to
detect (specified or unspecified event), and the type of the detection (unsuper-
vised, supervised or hybrid detection). An overview of the common detection
methods is presented in Sect. 4.3. Section 5 includes a list of the datasets, their
respective size, and temporal scope used to evaluate each one of the event detec-
tion techniques. Finally Sect. 6 presents the conclusions, future and trends of
event detection systems.

2 Event Definition

Fiscus and Doddington [30] in the scope of the Topic Detection and Tracking
project gave the following definitions of story, event and topic:

story is “a topically cohesive segment of news that includes two or more declar-
ative independent clauses about a single event”;
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event is “something that happens at some specific time and place along with all
necessary preconditions and unavoidable consequences”;

topic is “a seminal event or activity, along with all directly related events and
activities”.

Sakaki et al. [88] defines an event as an arbitrary classification of a space/time
region that might have actively participating agents, passive factors, products,
and a location in space/time like is being defined in the event ontology by
Raimond and Abdallah [81]. The target events in this work are broad events
that are visible through messages, posts, or status updates of active users in
Twitter online social network service. These events have several properties: (i)
they are of large scale because many users experience the event, (ii) they par-
ticularly influence people’s daily life, being that the main reason why users are
induced to mention it, and (iii) they have both spatial and temporal regions,
topically the importance of an event is correlated with the distance users have
between themselves and the event and with the spent time since the occurrence.

The Linguistic Data Consortium [57] defines the broad topic types denoting
the category where an event falls into. As defined by the TDT5 [93] there are
the following broad topic type categories: (i) Elections; (ii) Scandals/Hearings;
(iii) Legal/Criminal Cases; (iv) Natural Disasters; (v) Accidents; (vi) Acts of Vio-
lence or War; (vii) Science and Discovery News; (viii) Financial News; (ix) New
Laws; (x) Sports News; (xi) Political and Diplomatic Meetings; (xii) Celebrity
and Human Interest News; and (xiii) Miscellaneous News.

3 Earlier Event Detection and Discovery

The Topic Detection and Tracking project was started with the objective to
improve technologies related to event-based information organization in 1998,
see [3]. The project consisted of five distinct tasks: (i) segmentation; (ii) tracking;
(iii) detection; (iv) first story detection; and (v) linking. From the previous list
of tasks the tracking, detection, and first story detection are the ones that are
relevant for event detection.

tracking: the tracking task detect stories that discuss a previously known target
topic. This task is very closely linked to the first story detection. A tracking
system can be used to solve a first story detection by finding other on-
topic stories in the rest of the corpus. A nearest-neighbour based first story
detection system could be used to solve tracking;

detection: the detection task is concerned with the detection of new, previously
unseen topics. This task is often also called on-line clustering, every newly
received story is assigned to an existing cluster or to a new cluster depending
if there is a new story of not;

first story detection: the first story detection is considered the most difficult
of the five topic detection and tracking tasks [5]. The aim of the task is to
detect the very first story to discuss a previously unknown event. The first
story detection can be considered a special case of detection by deciding
when to start a new cluster in the on-line clustering problem.
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Event detection on social media streams requires significantly different
approaches than the ones used for traditional media. Social media data arrives
at larger volumes and speed than traditional media. Moreover, most social
media data is composed of short, noisy and unstructured content requiring
significantly different techniques to solve similar machine learning or informa-
tion retrieval problems [5]. Taking into account these considerations, Sect. 3.3
presents an overview of Document-Pivot and Feature-Pivot event detection tech-
niques applied to traditional medial [98]. Document-pivot methods detect events
by clustering documents based on the semantics distance between documents
[105], feature-pivot methods studies the distributions of words and discovers
events by grouping words together [46].

3.1 Detection Task

The task of discovering the “first story on a topic of interest” by continuously
monitoring document streams is known in the literature as new event detection,
first-story detection or novelty detection. Makkonen et al. [59] described first-
story detection or novelty detection as an example of “query-less information
retrieval” where events can be detected with no prior information available on
a topic of interest. Events are evaluated using a binary decision on whether a
document reports a new topic that has not been reported previously, or if should
be merged with an existent event [103]. Depending on how data is processed,
two categories of Event Detection systems were identified [7,105].

Online New Event Detection (NED). Online New Event Detection refers
to the task of identifying events from live streams of documents in real-time.
Most new and retrospective event detection techniques rely on the use of well
know clustering-based algorithms [2,16]. Typically new event detection involves
the continuous monitoring of Media feeds for discovering events in near real time,
hereupon scenarios where the detection of real-world events like breaking news,
natural disasters or other of general interest. Events are unknown apriori and in
most cases use unspecified event detection. When monitoring specific NED like
natural disasters or celebrities related, where specific apriori known information
about the event can be used. In these cases, NED is performed using specified
event detection.

Retrospective Event Detection (RED). Retrospective Event Detection
refers to the process of identifying previously unidentified events from accu-
mulated historical collections or documents that have arrived in the past. In
Retrospective Event Detection, most methods are based on the retrieval of event
relevant documents by performing queries over a collection of documents or by
performing TF-IDF analysis on the document corpus. Both techniques assume
that event relevant documents contain the query terms. A variation of the pre-
vious approach is the use of query expansion techniques, meaning that some
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messages relevant to a specific event do not contain explicit event related infor-
mation, but with the use of enhanced queries messages related to the event can
be retrieved.

3.2 Type of Event

Event detection can be classified into specified or unspecified event detection
techniques [9,29]. By using specific pre-known information and features about an
event, traditional information retrieval and extraction techniques can be adapted
to perform specified event detection (i.e.: filtering, query generation and expan-
sion, clustering, and information aggregation). When no prior information or
features are available about the event or even if we don’t know a clue about
the kind of event we want to detect, most traditional information retrieval and
extraction techniques are useless. Unspecified event detection techniques address
this issue on the basis that temporal signals constructed via document analysis
can detect real work events. Monitoring bursts or trends in document streams,
grouping features with identical trends, and classifying events into different cat-
egories are among some of the used tasks to perform unspecified event detection.

3.3 Pivot Techniques

Both Document-Pivot and Feature-Pivot techniques are being used in event
detection applied to traditional media. The following sections describe how each
of them works and how it is being used.

Document-Pivot Techniques. Document-pivot techniques try to detect
events by clustering documents using their textual similarity, these techniques
consider all documents to be relevant and assume that each of them contain
events of interest [5]. The noisy characteristics of social networks, where rele-
vant events are buried by in large amount of noisy data [95], allied with scale
and speed processing restrictions [5] make document-pivot techniques not suit-
able to perform event detection in social media data. Nevertheless, because they
were the primordial steps to modern event detection systems, they will be briefly
presented here.

The main goal of the TDT research initiative was to provide core technology
and tools that by monitoring multiple sources of traditional media are able to
keep users updated about news and developments. A particular event detection
goal was to discover new or previously unidentified events were each event refers
to a specific thing that happens at a specific time and place [7]. Yang et al.
[105,106] described the three traditional event detection major phases as data
prepossessing, data representation, and data organisation or clustering. Filtering
out stop-words and applying words stemming and tokenization techniques are
some of the steps done in the data prepossessing phase. Term vectors of bag of
words are common use traditional data representations techniques used in event
detection. Entries are non-zero if the corresponding term appear in the document
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Table 1. Type, technique, detection method and detection task for each one of the
references. Column Application refers to the target application of the work: (a) Detect-
ing General Interest Events; (b) Identification of Novel Topics in Blogs; (c) Detecting
Controversial Events from Twitter; (d) Calendar of Significant Events; (e) Geo-Social
Event Detection system; (f) Detection of Natural Disaster Events; (g) Query-based
Event Retrieval; (h) Query-based Structured Event Retrieval; (i) Crime and Disas-
ter related Events; (j) Detection of Breaking News; (k) Emergent topics; (l) Trend
Detection; (m) Crisis-related Sub-event Detection; (n) Event Photo Identification;
(o) Creating event-specific queries for Twitter

Type of event Pivot technique Detection method Detection task Application

Specified Unspecified Document Feature Supervised Unsupervised NED RED

Hu et al. [39] x x x x (a)

Jurgens and
Stevens [43]

x x x x (b)

Popescu and
Pennacchiotti
[79]

x x x x (c)

Popescu et al. [80] x x x x (c)

Benson et al. [15] x x x x (d)

Lee and Sumiya
[52]

x x x x (e)

Sakaki et al. [88] x x x x (f)

Becker et al. [12] x x x x (g)

Becker et al. [13] x x x (g)

Massoudi et al.
[61]

x x x x (g)

Metzler et al. [63] x x x x (h)

Gu et al. [35] x x x x (h)

Li et al. [56] x x x x (i)

Ozdikis et al. [68] x x x x (a)

Sankaranarayanan
et al. [89]

x x x x x (j)

Cataldi et al. [20] x x x x x (k)

Mathioudakis and
Koudas [62]

x x x x (l)

Phuvipadawat and
Murata [76]

x x x x (j)

Petrovic et al. [74] x x x x (a)

Becker et al. [14] x x x x x (a)

Long et al. [58] x x x x (a)

Weng et al. [98] x x x x (a)

Cordeiro [23] x x x x (a)

Li et al. [55] x x x x (a)

Agarwal et al. [1] x x x x (a)

Sayyadi et al. [90] x x x x (a)

Zhao et al. [108] x x x x (a)

Pohl et al. [78] x x x x (m)

Chen and Roy [22] x x x x (n)

Ritter et al. [85] x x x x x (d)

Robinson et al.
[86]

x x x x (f)

Corley et al. [24] x x x x (a)

Tanev et al. [94] x x x x (o)

Dou et al. [25] x x x x (a)



10 M. Cordeiro and J. Gama

T
a
b
le

2
.
E

v
en

t
d
et

ec
ti

o
n

a
p
p
ro

a
ch

A
p
p
ro

a
c
h

E
v
e
n
t

ty
p
e
s

S
c
a
la

b
le

R
e
a
l-
ti

m
e

Q
u
e
ry

ty
p
e

S
ta

ti
o
-t

e
m

p
o
ra

l
S
u
b
-e

v
e
n
ts

H
u

e
t

a
l.

[3
9
]

O
n
li
n
e

c
lu

st
e
ri

n
g

o
f
q
u
e
ry

p
ro

fi
le

s

O
p
e
n

d
o
m

a
in

Y
e
s

N
o

O
p
e
n

N
o

N
o

J
u
rg

e
n
s

a
n
d

S
te

v
e
n
s

[4
3
]

T
e
m

p
o
ra

l
R

a
n
d
o
m

In
d
e
x
in

g

O
p
e
n

d
o
m

a
in

Y
e
s

N
o

K
e
y
w

o
rd

s
N

o
N

o

P
o
p
e
sc

u
a
n
d

P
e
n
n
a
c
c
h
io

tt
i
[7

9
]

R
e
g
re

ss
io

n
m

a
c
h
in

e

le
a
rn

in
g

m
o
d
e
ls

b
a
se

d

o
n

G
ra

d
ie

n
t

B
o
o
st

e
d

D
e
c
is

io
n

T
re

e
s

C
o
n
tr

o
v
e
rs

ia
l
E
v
e
n
ts

N
o

N
o

O
p
e
n

N
o

N
o

P
o
p
e
sc

u
e
t

a
l.

[8
0
]

R
e
g
re

ss
io

n
m

a
c
h
in

e

le
a
rn

in
g

m
o
d
e
ls

b
a
se

d

o
n

G
ra

d
ie

n
t

B
o
o
st

e
d

D
e
c
is

io
n

T
re

e
s

C
o
n
tr

o
v
e
rs

ia
l
E
v
e
n
ts

N
o

N
o

O
p
e
n

N
o

N
o

B
e
n
so

n
e
t

a
l.

[1
5
]

F
a
c
to

r
G

ra
p
h

M
o
d
e
l
a
n
d

C
o
n
d
it

io
n
a
l
R

a
n
d
o
m

F
ie

ld

C
o
n
c
e
rt

s
in

N
e
w

Y
o
rk

C
it
y

N
o

N
o

K
e
y
w

o
rd

s
Y
e
s

N
o

L
e
e

a
n
d

S
u
m

iy
a

[5
2
]

K
-m

e
a
n
s

c
lu

st
e
ri

n
g

m
e
th

o
d

fo
r

d
e
te

c
ti

n
g

R
O

I,
m

e
a
su

ri
n
g

st
a
ti

st
ic

a
l
v
a
ri

a
ti

o
n
s

o
f
a

se
t

o
f
g
e
o
-t

a
g
s

L
o
c
a
l
e
v
e
n
ts

su
c
h

a
s

lo
c
a
l
fe

st
iv

a
ls

N
o

N
o

O
p
e
n

Y
e
s

N
o

S
a
k
a
k
i
e
t

a
l.

[8
8
]

S
u
p
p
o
rt

v
e
c
to

r
m

a
c
h
in

e

(S
V

M
)

N
a
tu

ra
l
d
is

a
st

e
r

e
v
e
n
t

Y
e
s

Y
e
s

K
e
y
w

o
rd

s
Y
e
s

N
o

B
e
c
k
e
r

e
t

a
l.

[1
2
]

R
u
le

-b
a
se

d
c
la

ss
ifi

e
r

P
la

n
n
e
d

E
v
e
n
t

N
o

N
o

K
e
y
w

o
rd

s
N

o
N

o

B
e
c
k
e
r

e
t

a
l.

[1
3
]

P
re

c
is

io
n
/
R

e
c
a
ll

O
ri

e
n
te

d

S
tr

a
te

g
ie

s

P
la

n
n
e
d

E
v
e
n
t

N
o

N
o

K
e
y
w

o
rd

s
N

o
N

o

M
a
ss

o
u
d
i
e
t

a
l.

[6
1
]

Q
u
e
ry

E
x
p
a
n
si

o
n

u
si

n
g

th
e

to
p

k
te

rm
s

T
o
p
ic

o
f
in

te
re

st
N

o
N

o
K

e
y
w

o
rd

s
N

o
N

o

M
e
tz

le
r

e
t

a
l.

[6
3
]

T
e
m

p
o
ra

l
Q

u
e
ry

E
x
p
a
n
si

o
n

b
a
se

d
o
n

te
m

p
o
ra

l

c
o
-o

c
c
u
rr

e
n
c
e

o
f
te

rm
s

T
o
p
ic

o
f
in

te
re

st
N

o
N

o
K

e
y
w

o
rd

s
N

o
N

o

G
u

e
t

a
l.

[3
5
]

H
ie

ra
rc

h
ic

a
l
c
lu

st
e
ri

n
g

T
o
p
ic

o
f
in

te
re

st
N

o
N

o
K

e
y
w

o
rd

s
N

o
Y
e
s?

L
i
e
t

a
l.

[5
6
]

C
la

ss
ifi

c
a
ti

o
n

C
ri

m
e

a
n
d

D
is

a
st

e
r

re
la

te
d

E
v
e
n
ts

N
o

N
o

S
p
a
ti

a
l/

te
m

p
o
ra

l/
k
e
y
w

o
rd

s
Y
e
s

N
o

(c
o
n
ti
n
u
ed

)



Online Social Networks Event Detection: A Survey 11

T
a
b
le

2
.
(c
o
n
ti
n
u
ed

)

A
p
p
ro

a
c
h

E
v
e
n
t

ty
p
e
s

S
c
a
la

b
le

R
e
a
l-
ti

m
e

Q
u
e
ry

ty
p
e

S
ta

ti
o
-t

e
m

p
o
ra

l
S
u
b
-e

v
e
n
ts

O
z
d
ik

is
e
t

a
l.

[6
8
]

S
e
m

a
n
ti

c
E
x
p
a
n
si

o
n

o
f

H
a
sh

ta
g
s

v
ia

a
g
g
lo

m
e
ra

ti
v
e

c
lu

st
e
ri

n
g

O
p
e
n

d
o
m

a
in

N
o

N
o

S
p
a
ti

a
l/

k
e
y
w

o
rd

s/
u
se

rs
N

o
N

o

S
a
n
k
a
ra

n
a
ra

y
a
n
a
n

e
t

a
l.

[8
9
]

T
w

e
e
t

N
a
iv

e
B

a
y
e
s

c
la

ss
ifi

e
r

a
n
d

w
e
ig

h
te

d

te
rm

v
e
c
to

r
b
a
se

d

o
n
li
n
e

c
lu

st
e
ri

n
g

B
re

a
k
in

g
-N

e
w

s
Y
e
s

N
o

K
e
y
w

o
rd

s
Y
e
s?

N
o

C
a
ta

ld
i
e
t

a
l.

[2
0
]

K
e
y
w

o
rd

-b
a
se

d
to

p
ic

g
ra

p
h

B
re

a
k
in

g
-N

e
w

s
N

o
Y
e
s

K
e
y
w

o
rd

s
N

o
N

o

M
a
th

io
u
d
a
k
is

a
n
d

K
o
u
d
a
s

[6
2
]

C
o
n
te

x
t

e
x
tr

a
c
ti

o
n

a
lg

o
ri

th
m

s
(P

C
A

,

S
V

D
)

a
n
d

K
e
y
w

o
rd

C
o
-O

c
c
u
rr

e
n
c
e

G
ro

u
p
in

g

B
re

a
k
in

g
-N

e
w

s/
T
o
p
ic

o
f
in

te
re

st

Y
e
s

Y
e
s

O
p
e
n

N
o

N
o

P
h
u
v
ip

a
d
a
w

a
t

a
n
d

M
u
ra

ta
[7

6
]

S
im

il
a
ri

ty
b
a
se

d
g
ro

u
p
in

g

v
ia

T
F
-I

D
F

B
re

a
k
in

g
-N

e
w

s
N

o
N

o
K

e
y
w

o
rd

s
N

o
N

o

P
e
tr

o
v
ic

e
t

a
l.

[7
4
]

D
e
te

c
ti

o
n

o
f
E
v
e
n
ts

v
ia

L
o
c
a
ll
y

S
e
n
si

ti
v
e

H
a
sh

in
g

O
p
e
n

d
o
m

a
in

Y
e
s

Y
e
s

O
p
e
n

N
o

N
o

B
e
c
k
e
r

e
t

a
l.

[1
4
]

In
c
re

m
e
n
ta

l,
o
n
li
n
e

c
lu

s-

te
ri

n
g
/
c
la

ss
ifi

c
a
ti

o
n

v
ia

su
p
p
o
rt

v
e
c
to

r

m
a
c
h
in

e
(S

V
M

)

O
p
e
n

d
o
m

a
in

Y
e
s

N
o

O
p
e
n

N
o

N
o

L
o
n
g

e
t

a
l.

[5
8
]

T
o
p
-d

o
w

n
h
ie

ra
rc

h
ic

a
l

d
iv

is
iv

e
c
lu

st
e
ri

n
g

o
n

a
c
o
-o

c
c
u
rr

e
n
c
e

g
ra

p
h

O
p
e
n

d
o
m

a
in

N
o

N
o

O
p
e
n

N
o

N
o

W
e
n
g

e
t

a
l.

[9
8
]

C
lu

st
e
ri

n
g

o
f

W
a
v
e
le

t-
b
a
se

d
S
ig

n
a
ls

v
ia

g
ra

p
h

p
a
rt

it
io

n
in

g

O
p
e
n

d
o
m

a
in

N
o

N
o

K
e
y
w

o
rd

s
N

o
N

o

C
o
rd

e
ir

o
[2

3
]

W
a
v
e
le

t-
b
a
se

d
S
ig

n
a
ls

a
n
d

L
a
te

n
t

D
ir

ic
h
le

t

A
ll
o
c
a
ti

o
n

O
p
e
n

d
o
m

a
in

Y
e
s

Y
e
s

O
p
e
n

N
o

N
o

(c
o
n
ti
n
u
ed

)



12 M. Cordeiro and J. Gama

T
a
b
le

2
.
(c
o
n
ti
n
u
ed

)

A
p
p
ro

a
c
h

E
v
e
n
t

ty
p
e
s

S
c
a
la

b
le

R
e
a
l-
ti

m
e

Q
u
e
ry

ty
p
e

S
ta

ti
o
-t

e
m

p
o
ra

l
S
u
b
-e

v
e
n
ts

L
i
e
t

a
l.

[5
5
]

S
y
m

m
e
tr

ic
C

o
n
d
it

io
n
a
l

P
ro

b
a
b
il
it
y

(S
C

P
)

fo
r

n
-g

ra
m

s,
b
u
rs

ty

d
e
te

c
ti

o
n

u
si

n
g

b
in

o
m

ia
l
d
is

tr
ib

u
ti

o
n
,

C
lu

st
e
ri

n
g

b
y

k
-N

e
a
re

st
N

e
ig

h
b
o
r

G
ra

p
h

O
p
e
n

d
o
m

a
in

Y
e
s

N
o

O
p
e
n

N
o

N
o

A
g
a
rw

a
l
e
t

a
l.

[1
]

C
lu

st
e
ri

n
g

in
a

C
o
rr

e
la

te
d

K
e
y
w

o
rd

G
ra

p
h

O
p
e
n

d
o
m

a
in

Y
e
s

Y
e
s

O
p
e
n

N
o

N
o

S
a
y
y
a
d
i
e
t

a
l.

[9
0
]

C
o
m

m
u
n
it
y

D
e
te

c
ti

o
n

o
n

a
K

e
y
w

o
rd

G
ra

p
h

O
p
e
n

d
o
m

a
in

N
o

N
o

O
p
e
n

N
o

N
o

Z
h
a
o

e
t

a
l.

[1
0
8
]

C
o
n
te

n
t-

B
a
se

d
C

lu
st

e
ri

n
g

w
h
e
re

w
o
rd

in
th

e
te

x
t

p
ie

c
e

is
q
u
a
n
ti

fi
e
d

a
s

th
e

T
F
.I
D

F
,
a
d
a
p
ti

v
e

ti
m

e
se

ri
e
s,

in
fo

rm
a
ti

o
n

fl
o
m

o
d
e
li
n
g

O
p
e
n

d
o
m

a
in

N
o

N
o

O
p
e
n

N
o

N
o

P
o
h
l
e
t

a
l.

[7
8
]

T
w

o
-p

h
a
se

c
lu

st
e
ri

n
g
:
1
.

c
a
lc

u
la

ti
o
n

o
f

te
rm

-b
a
se

d
c
e
n
tr

o
id

s

u
si

n
g

g
e
o
-r

e
fe

re
n
c
e
d

d
a
ta

;
2
.
A

ss
ig

n
m

e
n
t

o
f

b
e
st

fi
tt

in
g

d
a
ta

p
o
in

ts
u
si

n
g

c
o
si

n
e

d
is

ta
n
c
e

m
e
a
su

re

C
ri

si
s-

re
la

te
d

su
b
-e

v
e
n
t

N
o

N
o

G
e
o
-r

e
fe

re
n
c
e
d

D
a
ta

Y
e
s

Y
e
s

(c
o
n
ti
n
u
ed

)



Online Social Networks Event Detection: A Survey 13

T
a
b
le

2
.
(c
o
n
ti
n
u
ed

)

A
p
p
ro

a
c
h

E
v
e
n
t

ty
p
e
s

S
c
a
la

b
le

R
e
a
l-
ti

m
e

Q
u
e
ry

ty
p
e

S
ta

ti
o
-t

e
m

p
o
ra

l
S
u
b
-e

v
e
n
ts

C
h
e
n

a
n
d

R
o
y

[2
2
]

D
is

c
re

te
W

a
v
e
le

t

T
ra

n
sf

o
rm

(D
W

T
),

d
e
n
si

ty
-b

a
se

d

c
lu

st
e
ri

n
g

(D
B

S
C

A
N

)

P
e
ri

o
d
ic

e
v
e
n
ts

/
a
p
e
ri

o
d
ic

e
v
e
n
ts

Y
e
s

N
o

K
e
y
w

o
rd

s
Y
e
s

N
o

R
it

te
r

e
t

a
l.

[8
5
]

N
a
m

e
d

E
n
ti

ty

S
e
g
m

e
n
ta

ti
o
n
,

C
o
n
d
it

io
n
a
l
R

a
n
d
o
m

F
ie

ld
s

fo
r

le
a
rn

in
g

a
n
d

in
fe

re
n
c
e

e
v
e
n
ts

,

la
te

n
t

v
a
ri

a
b
le

m
o
d
e
ls

to
c
a
te

g
o
ri

z
e

e
v
e
n
ts

(L
in

k
L
D

A
)

O
p
e
n

d
o
m

a
in

N
o

N
o

K
e
y
w

o
rd

s
N

o
N

o

R
o
b
in

so
n

e
t

a
l.

[8
6
]

B
u
rs

t
d
e
te

c
to

r
u
si

n
g

b
in

o
m

ia
l
m

o
d
e
l

N
a
tu

ra
l
d
is

a
st

e
r

e
v
e
n
t

N
o

Y
e
s

K
e
y
w

o
rd

s
Y
e
s

N
o

C
o
rl

e
y

e
t

a
l.

[2
4
]

D
e
te

c
ti

o
n

o
f
S
ig

n
a
l

C
o
n
si

st
e
n
c
y

fr
o
m

S
o
c
ia

l
S
e
n
so

rs
,
T
o
p
ic

C
lu

st
e
ri

n
g

v
ia

P
e
a
rs

o
n

c
o
rr

e
la

ti
o
n

c
o
e
ffi

c
ie

n
t,

A
u
to

re
g
re

ss
iv

e

In
te

g
ra

te
d

M
o
v
in

g

A
v
e
ra

g
e

O
p
e
n

d
o
m

a
in

N
o

N
o

K
e
y
w

o
rd

s
N

o
N

o

T
a
n
e
v

e
t

a
l.

[9
4
]

Q
u
e
ry

e
x
p
a
n
si

o
n

m
e
th

o
d
s

O
p
e
n

d
o
m

a
in

N
o

N
o

K
e
y
w

o
rd

s
N

o
N

o

D
o
u

e
t

a
l.

[2
5
]

T
o
p
ic

a
l
th

e
m

e
s

u
si

n
g

L
a
te

n
t

D
ir

ic
h
le

t

A
ll
o
c
a
ti

o
n

(L
D

A
),

e
a
rl

y
e
v
e
n
t

d
e
te

c
ti

o
n

u
si

n
g

c
u
m

u
la

ti
v
e

su
m

c
o
n
tr

o
l
c
h
a
rt

(C
U

S
U

M
)

O
p
e
n

d
o
m

a
in

N
o

N
o

K
e
y
w

o
rd

s
Y
e
s

N
o



14 M. Cordeiro and J. Gama

and zero otherwise. Classical term frequency-inverse document frequency (tf-idf)
is used to evaluate how important a word is in a corpus and also to retrieve the
list of documents where the word is mentioned. This rudimentary event detec-
tion approach does not solve the problem, the term vector model size can grow
indefinitely depending on the size of the corpus. Temporal order, the semantics
and syntactic features of the of words are discarded. Although this model can
find similarities of documents it may not capture the similarity or dissimilarity
of related or unrelated events. Exploring other data representation techniques
such as semantical and contextual features was also done by Allan et al. [5,6]
where they presented an upper bound for full-text similarity. Alternative data
representations such as the named entity vector [49] attempt to extract infor-
mation answering the question who, what, when, and where [64]. Mixed models
using term and named entity vectors were also proposed [49,104]. Probabilis-
tic representations including language models were applied by Lee et al. [53]
and Li et al. [77] proposed a probabilistic framework McRank that incorporates
advanced probabilistic learning models. Traditional metrics like the Euclidean
distance, Pearson’s correlation coefficient, and cosine similarity were also used
to measure the similarity between events. Other similarity measures like the
Hellinger distance [19] and the clustering index [42] were also used.

Feature-Pivot Techniques. Modeling an event in text streams as a bursty
activity, with certain features rising sharply in frequency as the event emerges
is the common approach for Feature-Pivot techniques. Kleinberg [46] show that
events may be represented by a number of keywords showing bursts in appear-
ance counts. Moreover, in his work, he developed a formal approach for modeling
bursts in a way that they can be robustly and efficiently identified, provide an
organizational framework for analyzing the underlying content. Several systems
to detect emerging trends in textual data (Emerging Trend Detection systems)
were described by Kontostathis et al. [48]. The main goal of a trend detection
task over textual data is to identify topic areas that were previously unseen
or rapidly growing in importance within the corpus. Kontostathis et al. [48]
described, for each system, the components (including linguistic and statistical
features), learning algorithms, training and test set generation, visualization,
and evaluation. Bursty event detection has been also an active topic in recent
years with contributions from Fung et al. [32], He et al. [37], He et al. [36], Wang
et al. [97] and Goorha and Ungar [34].

Kleinberg [46] approach is based on modeling the stream using an infinite-
state automaton, in which bursts appear naturally as state transitions. The
output of the algorithm yields a nested representation of the set of bursts that
imposes a hierarchical structure on the overall stream computed in a highly effi-
cient way. Fung et al. [32] proposed a parameter free probabilistic approach,
called feature-pivot clustering, that detect a set of bursty features for a burst
event detected in a sequence of chronologically ordered documents. The feature-
pivot clustering modeled word appearance as a binomial distribution, identified
the bursty words according to a heuristic-based threshold, and grouped bursty
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features to find bursty events. Spectral analysis techniques using the discrete
Fourier transformation (DFT) were used by He et al. [37] to categorize fea-
tures for different event characteristics, i.e.: important or not important, and
periodic or aperiodic events. Passing from the time domain to the frequency
domain, using the DFT, allows the identification of bursts in signals by moni-
toring the corresponding spike in the frequency domain. Aware that the DFT
cannot identify the period of a burst event, He et al. [36] improved their pre-
vious works with Gaussian mixture models to identify the feature bursts and
their associated periods. Important work in the domain of multiple coordinated
text streams was done by Wang et al. [97]. They proposed a general probabilis-
tic algorithm which can effectively discover correlated bursty patterns and their
bursty periods across text streams even if the streams have completely different
vocabularies (e.g., English vs. Chinese). An online approach for detecting events
in news streams was presented by Snowsill et al. [92], this technique is based on
statistical significant tests of n-gram word frequency within a time frame. The
online detection was achieved, by reducing time and space constraints, when
an incremental suffix tree data structure was applied. Social and mainstream
media system monitoring tools are also available in Goorha and Ungar [34].
These tools are focused on the user discovery, query and visualisation process
for lists of emerging trends previously collected by using some of the algorithms
described in this section.

Like the document-pivot techniques, feature-pivot techniques do not deal
well with noise resulting in poor event detection performance. Moreover, not all
bursts are relevant events of interest, other ones may be missed due the fact that
they happen without explicit burst occurrences.

4 Event Detection Taxonomy

The event detection taxonomy is presented in Table 1. A description of each
one of the techniques is included in the present section. A division of each one
of the techniques was made by taking into account the type of events they
were designed (i.e.: Specified or Unspecified Event Detection) and the respective
detection method type (i.e.: supervised, unsupervised or hybrid in case it is
a combination of both). A resume of the Approaches used in each one of the
techniques is presented in Table 2.

4.1 Specified Event Detection

Specified event detection systems using either unsupervised, supervised and
hybrid detection techniques are being described in this section.

Unsupervised Detection. Hu et al. [39] proposed event detection of common
user interests from huge volume of user-generated content by assuming that the
degree of interest from common users in events is evidenced by a significant
surge of event-related queries issued to search for documents (e.g., news articles,
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blog posts). Defining query profile as a set of documents matching a query at a
given time and single streams of query profiles as the integration of a query profile
and respective documents, events are therefore detected by applying incremental
clustering to the stream of query profiles. A temporal query profile is a set of
published documents at a given time matching the queries formulated by users
at the same time. Based on the observations regarding the number of documents
retrieved, authors were able to associate a query profile to the occurrence of a
specific event, correlate different query profiles in the context of the same event
and establish their duration and evolution. Event detection uses a simple online
clustering algorithm consisting of modules: event-related query identification,
event assignment, and event archive.

Lee and Sumiya [52] developed a geo-social event detection system, which
attempts to find out the occurrence of local events such as local festivals, by
monitoring crowd behaviours indirectly via Twitter. To detect such unusual geo-
social events, the proposed method depend on geographical regularities deduced
from the usual behaviour patterns of crowds with geo-tagged microblogs. The
decision whether or not there are any unusual events happening in the monitored
geographical area is done by comparing these regularities with the estimated
ones. The method performs event detection in the following steps: collecting
geo-tagged tweets; configuration of region-of-interests (RoIs) is done using a
clustering-based space partition method based on the geographical coordinates.
The K-partitioned regions over a map, obtained via K-means clustering, are
then regarded as RoIs; geographical regularity of each RoI crowd behaviours
is estimated during a certain time period using following properties of a RoI:
number of tweets, number of users, and moving users. Features are accumulated
over historical data using 6-h time intervals. Unusual events in the monitored
geographical area are detected by comparing statistics from new tweets with the
estimated behaviour.

Gu et al. [35] proposed ETree, an effective and efficient event modelling solu-
tion for social media network sites. ETree used three key components: an n-
gram based content analysis technique for identifying and group large numbers
of short messages into semantically coherent information blocks; an incremen-
tal and hierarchical modelling technique for identifying and constructing event
theme structures at different granularities; and an enhanced temporal analysis
technique for identifying inherent causalities between information blocks. The
identification of core information blocks of an event is done using an n-gram
based content analysis technique. Frequent word sequences (i.e., n-grams, or
key phrases) among a large number of event-related messages are detected in a
first stage. Each frequent sequence represents an initial information block. In the
second stage, messages that are semantically coherent are merged into the corre-
sponding information blocks. For each one of the remaining messages, messages
that do not contain any of the frequent n-gram patterns, a similarity against
each core information block is measured by calculating their TF-IDF weights
using words that belongs to both. The weighted cosine similarity between each
message and each information block allows the merging of messages into the
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information block with the highest similarity. Messages that belong to a specific
“conversation thread” are also merged into the same information block. The
construction of hierarchical theme structures is done by applying an incremen-
tal (top-down) hierarchical algorithm based on weighted cosine similarity in the
previously identified information blocks. Each theme is represented as a tree
structure with information blocks as the leaf nodes and subtopics as the internal
nodes.

Ozdikis et al. [68] proposed a document expansion based event detection
method for Twitter using only hashtags. Their expansion was based on second-
order relations, which is also known in NLP as distributional similarity. The
event detection technique was based on clustering of hashtags by using the
semantic similarities between hashtags. Items (i.e. tweets in this context) are
clustered according to their similarity in vector space model using agglomera-
tive text clustering. In their agglomerative clustering implementation, values in
tweet vectors, i.e. weights of the corresponding terms for each tweet, are set as
TF-IDF values. Cluster vectors are calculated by taking the arithmetic mean of
values in tweet vectors in each dimension. The similarity of tweet vectors and
cluster vectors is calculated by applying the cosine similarity. Tweets are only
added to a cluster in case the similarity of the vectors being above a threshold
defined empirically.

With respect on how event detection can work on corpora less structured than
newswire releases, Jurgens and Stevens [43] proposed an automatic event detec-
tion that aims to identify novel, interesting topics as they are published in blogs.
Authors proposed an adaptation of the Random Indexing algorithm [44,87],
Temporal Random Indexing, as a new way of detecting events in this media.
The algorithm makes use of a temporally-annotated semantic space for tracking
how words change semantics and demonstrate how these identified changes could
be used to detect new events and their associated blog entries. Based on semantic
slice of a single word, which covers all the time periods in which that word has
been observed, the detection of events using Temporal Random Indexing is done
in three steps: convert the corpus into month long semantic slices; semantic shift
are calculated for each word for slices at consecutive timestamps and compared
using the cosine similarity. Authors describe changes in angle as a change in a
word’s meaning, which can signify the presence of an event. Changes in mag-
nitude showed not to be correlated with events; Finally, events are regarded as
the selection of the topic words that undergo a significant semantic shift.

Metzler et al. [63] proposed the problem of structured retrieval of histori-
cal event information over microblog archives. Unlike all previous work, that
retrieves individual microblog messages in response to an event query, they pro-
pose the retrieval of a ranked list of historical event summaries by distilling
high quality event representations using a novel temporal query expansion tech-
nique. Taking a query as input, the proposed microblog event retrieval framework
returns a ranked list of structured event representations. This is accomplished
through two steps: the timespan retrieval, that identifies the timespans when
the event happened; and the summarization step that retrieves a small set of
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microblog messages for each timespan. Temporal Query Expansion, Timespan
Ranking and Timespan Summarization are used in the search task.

Robinson et al. [86] developed an earthquake detector for Australia and New
Zealand by monitoring special keywords like “earthquake” and “#eqnz” in Twit-
ter and available geolocation information. Based on the Emergency Situation
Awareness (ESA), the earthquake detector monitors Tweets and checks for spe-
cific earthquake related alerts. The system uses ESA burst detection methods
based on a binomial model to generate an expected distribution of feature occur-
rences in a given time window. Then a test on the frequency of observed features
in fixed-width time-windows against a statistical content model of historical word
frequencies is done. In the cases where the historical model of word frequencies
does not fit the observed data, an earthquake situation is identified.

Supervised Detection. Controversial events provoke a public discussion in
which audience members express opposing opinions, surprise or disbelief. Using
social media as a starting point, Popescu and Pennacchiotti [79] addressed the
detection of this kind of events, by proposing three alternative regression machine
learning models based on Gradient Boosted Decision Trees [31]. Triplets consist-
ing of a target entity, a given time period, and a set of tweets about the entity
from the target period, were used. Authors call those triplets a snapshot with
the detection task being done in three steps: separation of events and non-event
snapshots using a supervised gradient boosted decision trees trained on a manu-
ally labeled data set; estimation of a controversy score to each snapshot using an
ML regression model; ranking the snapshots according to the controversy score
obtained in the previous step. In a successive work, Popescu et al. [80] used addi-
tional features with the same framework described earlier to extract events and
their descriptions from Twitter. These new features inspired from the document
aboutness system Paranjpe [71] allow the ranking of entities in a snapshot with
respect to their relative importance to the snapshot.

With the focus on the identification of entertainment event Twitter messages,
Benson et al. [15] formulated an approach to the problem as a structured graph-
ical model which simultaneously analyzes individual messages, clusters them
according to event, and induces a canonical value for each event property. This
technique is able to construct entertainment event records for the city calendar
section of NYC.com using a stream of Twitter messages with high precision and
acceptable recall. At the message level, the model relies on a conditional ran-
dom field (CRF) component to extract field values such as the location of the
event and artist name. A factor-graph model was used to capture the interaction
between each of these decisions. Variational inference techniques allow to make
predictions on a large body of messages effectively and efficiently. A seed set of
example records constitutes the only source of supervision; alignment between
these seed records and individual messages is not observed, nor any message-level
field annotation. The output of the model consists of an event-based clustering
of messages, where each cluster is represented by a single multi-field record with
a canonical value chosen for each field.

http://www.nyc.com
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By considering a Twitter user as a sensor and tweets as sensory information,
Sakaki et al. [88] employed a supervised classification technique to detect specific
event types such as earthquakes, typhoons, and traffic jams. Positive events
and negative events are classified according to an SVM trained on a manually
labelled dataset. Three groups of features are used: statistical features, i.e.: the
number of words in a tweet message, and the position of the query word within a
tweet; keyword features, the words in a tweet; word context features, the words
before and after the query word. The analysis of the number of tweets over time
for earthquakes and typhon data revealed an exponential distribution of events.
Authors also mentioned that spikes occur on the number of tweets. Subsequently,
a probabilistic spatio-temporal model for the target event that can find the
center and the trajectory of the event location is produced. The estimation of
the earthquake center and typhoon trajectory was done using Kalman filtering
and particle filtering. Particle filters outperformed Kalman filter in both cases.

Massoudi et al. [61] presented a model for retrieving microblog posts that
is enhanced with textual and microblog specific quality indicators and with a
dynamic query expansion model. They used a generative language modeling app-
roach based on query expansion and microblog “quality indicators” to retrieve
individual microblog messages. Being the microblogs documents a special type
of user-generated content due their limited size, Massoudi et al. [61], enumer-
ated two interesting effects of its limited size: people use abbreviations or change
spelling to fit their message in the allotted space, giving rise to a rather idiomatic
language; redundancy-based IR methods may not be usable in a straightforward
manner to provide effective access to very short documents. To address the first
effect, they introduced credibility indicators for blog post search. To overcome
the second effect a re-examination of the potential of local query expansion for
searching microblog posts is done using a time-dependent expansion flavor that
accounts for the dynamic nature of a topic.

Li et al. [56] proposed a domain-specific event detection method based on
pre-specified rules called TEDAS. This system detects, analyses, and identifies
relevant crime and disaster related events (CDEs) on Twitter. Based on the
authors observation that similar types of CDEs share similar keywords, tweets
are collected based on iteratively-refined rules (e.g.: keywords, hashtags). Due
to the difficulty to manually define a good set of rules, authors adopted the
bootstrapping idea to expand the tracking rule set automatically and iteratively.
Next, tweets are classified via supervised learning based on content and Twitter-
specific features (i.e.: URLs, hashtags, mentions) and CDE-specific features (i.e.:
similarity to CDE tweets, time of day with high crime probability, high crime geo-
graphical zones). Location information is extracted using both GPS tagged and
location information in tweet content. When no location information is present
in the tweet, authors predict user’s location as the location from his friends or
tweets that minimizes the overall distances between locations in his tweets and
from his friends. To rank tweets according to their level of importance, authors
propose a learning-to-rank approach, which learns a function to assign a score
to each tweet, integrating a variety of signals, such as author’s credibility and
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the number of retweets. To predict a tweet’s importance precisely, they explored
signals from various aspects, including content, user and usage.

Hybrid Detection. Using a set of automatic query building strategies, Becker
et al. [12] presented a system for augmenting information about planned events
with Twitter messages. Simple query building strategies were used to achieve
high precision results in the task of identifying Twitter messages related to a
specific event. To improve recall, they employ term-frequency analysis and co-
location techniques on the high-precision tweets to identify descriptive event
terms and phrases, which are used recursively to define new queries. Additional
queries using URL and hashtag statistics from the high-precision tweets for an
event are also built. A rule-based classifier is used to select among this new set
of queries, and then use the selected queries to retrieve additional event mes-
sages. Becker et al. [12] also developed centrality-based techniques for effective
selection of quality event content that may, therefore, help improve applications
such as event browsing and search. They address this problem with two con-
crete steps. First, by identifying each event and its associated Twitter messages
using an online clustering technique that groups together topically similar Twit-
ter messages. Second, for each identified event cluster, by providing a selection
of messages that best represent the event. With the focus on the challenge of
automatically identifying user-contributed content for events that are planned
across different social media sites, Becker et al. [13] extended and incorporated
into a more general approach their developed techniques of query formulation
and centrality based approaches for retrieving content associated with an event
on different social media sites.

4.2 Unspecified Event Detection

Unspecified event detection systems rely on either on unsupervised or hybrid
detection techniques. The following sections describe examples of those two types
of systems.

Unsupervised Detection. TwitterMonitor, the trend detection system over
the Twitter stream proposed by Mathioudakis and Koudas [62], was also
designed to identify emerging topics in real-time. This system also provides
meaningful analytics that synthesize an accurate description of each topic. The
detection of bursty keywords was done using a data stream algorithm trends are
obtained by grouping keywords into disjoint subsets, so all keywords in the same
subset appear on the same topic of discussions. Keyword grouping employs a
greedy strategy that produces groups in a small number of steps. The system
employs context extraction algorithms (such as PCA and SVD) over the recent
history of the trend and reports the keywords that are most correlated with
it. To identify frequently mentioned entities in trends uses Grapevine’s entity
extractor [8].
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Phuvipadawat and Murata [76] presented a methodology to collect, group,
rank and track breaking news using Twitter tweets. Tasks are divided into two
stages: story finding and story development: In the story finding, messages are
fetched through the Twitter streaming API using pre-defined search queries to
get near real-time public statuses. These pre-defined search queries can be mes-
sages containing for example, hashtags users often use to annotate breaking
news e.g.: #breakingnews and “breaking news” keyword. To accommodate the
process of grouping similar messages, an index based on the content of messages
is constructed using Apache Lucene. Messages that are similar to each other
are grouped together to form a news story. Similarity between messages is com-
pared using TF-IDF with an increased weight for proper noun terms, hashtags,
and usernames. A general implementation of linear chain Conditional Random
Field (CRF) sequence models, coupled with well-engineered feature extractors
was used as the Named Entity Recognition (NER) technique to identify proper
nouns. NER was trained on conventional news corpora; In story development,
each news story is adjusted with appropriate ranking through a period of time.
The final method ranks the clusters of news using a weighted combination of
followers (reliability) and the number of re-tweeted messages (popularity) with
a time adjustment for the freshness of the message; Phuvipadawat and Murata
[76] emphasized that the key aspect to improving the similarity comparison for
short-length messages was to put an emphasis on proper nouns.

Traditional first story detection approaches for news media like the one pro-
posed by Allan et al. [5], which was based on the cosine similarity between docu-
ments to detect new events that never appeared in previous documents, revealed
to be obsolete when used in a real-time event detection method over social data
streams. Petrovic et al. [74] being aware of the limitations constraints of clas-
sical event detection methods, both in term of speed and efficiency, proposed a
constant time and constant space approach to solve this problem. The proposed
system [72] achieved over an order of magnitude speedup in processing time in
comparison with the a state-of-the-art system on the first story detection task
[6]. The author claimed comparable performance event detection on a collection
of 160 million tweets. Modern event detection systems face important challenges
when dealing with the high-volume, unbounded nature of today social networks
data streams. Using an adapted a variant of the Locality Sensitive Hashing
methods [33], was able to detect never seen events when a new bucket is created
after hashing a new document to calculate its approximate nearest neighbor. In
following work, Petrovic et al. [74] evaluated the use of paraphrases [66] and
cross stream event detection by combining Twitter data with Wikipedia spikes
[67] and Twitter data with traditional newswires sources [75]. In direct com-
parison with the UMass system [6], Petrovic et al. [74] also concludes that his
approximate technique sometimes outperforms the exact technique. The reason
for outperforming the exact system lies in the combination of using LSH and the
variance reduction strategy.

Long et al. [58] proposed a unified workflow of event detection, tracking and
summarization on microblog data composed by three main steps: in the first
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events from daily microblog posts are detected using clustering of topical words,
afterwards related events are tracked by formulating the event tracking task as a
bipartite graph matching problem, and finally tracked event chains are summa-
rized for user to better understand what are happening. Summaries are presented
using the top-k most relevant posts considering their relevance to the event as
well as their topical coverage and abilities to reflecting event evolution over time.
Topical words are extracted from messages using word frequency, word occur-
rence in hashtags, and word entropy. The separation of topical words into event
clusters is done using top-down hierarchical divisive clustering on a co-occurrence
graph. Authors state that, using any clustering method, their proposed feature
selection outperforms, document frequency only and document frequency with
entropy. It also stated that top-down hierarchical divisive clustering outperforms
both k-means and traditional hierarchical clustering no matter what k to use.

Weng et al. [98] proposed the EDCoW, an event detection algorithm that
clusters wavelet-based signals built from the analysis of the text stream in Twit-
ter. The algorithm builds signals for individual words by applying wavelet analy-
sis to the frequency-based raw signals of the words. Then filters away the triv-
ial words by looking at their corresponding signal auto-correlations. Remaining
words are then clustered to form events with a modularity-based graph parti-
tioning technique. In a direct comparison with Discrete Fourier Transformation
(DFT) approaches [36,37] that converts the signals from the time domain into
the frequency domain, Weng et al. [98] use wavelet transformation to analyses
signals in both time and frequency domain. Unlike the sine and cosine used in the
DFT, which are localized in frequency but extend infinitely in time, the wavelet
transformation allows the identification of the exact time and the duration of
a bursty event within a signal. Weng et al. [98] argue why the use of wavelet
transformation is, in general, a better choice for event detection, giving as one
example an event detection systems using a similar technique on Flickr data [22].
Event detection is performed in four separate steps: Construction of signals for
individual words using wavelet analysis. Signal construction is based on time-
dependent of document frequency-inverse document frequency (DF-IDF), where
DF counts the counts the number of documents containing a specific word, while
IDF accommodates word frequency up to the current time step; The detection of
events done by grouping a set of words with similar patterns of burst. To achieve
this, the similarities between words need to be computed first, by building a sym-
metric sparse word cross-correlation matrix. This step is called computation of
cross-correlation; Applying a modularity-based graph partitioning in the cross-
correlation matrix will allow to group co-occurrences of words at the same time.
Weng et al. [98] formulated the event detection problem as a graph partitioning
problem, i.e. to cut the graph into subgraphs, where each subgraph corresponds
to an event, which contains a set of words with high cross-correlation. Finally, the
quantification of event significance compute a significance value for each event
by summing all the cross-correlation values between signals associated with an
event and discounting the significance when the event is associated with too
many words.
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A lightweight method for event detection using wavelet signal analysis of
hashtag occurrences in the Twitter public stream was presented by Cordeiro
[23]. In his work hashtags were used to build signals, instead of individual words
[98]. The author considered that an abrupt increase in the use of a given hashtag
at a given time is a good indicator of the occurrence of an event. Hashtags signals
were constructed by counting distinct hashtag mentions grouped in intervals of
5 min. Each hashtag represented a separate time series. The context of the hash-
tag was kept by concatenating all the text included in documents with mentions
to a specific hashtag. Four separate tasks were performed to detect events: rep-
resentation of each one of the hashtag signals in a time-frequency representation
using a continuous wavelet transformations (CWT); Signal pre-processing using
Kolmogorov-Zurbenko Adaptive Filters to remove noise; Wavelet peak and local
maxima detection using the continuous wavelet transformation; Finally, event
summarization was done by applying LDA [18] topic inference to retrieve a list
of topics that describes the event.

Li et al. [55] proposed Twevent, a segment-based event detection system for
tweets. Authors define a tweet segment as one or more consecutive words (or
phrase) in a tweet message. Based on the fact that tweet segments contained in
a large number of tweets are likely to be named entities (e.g. Steve Jobs) or some
semantically meaningful unit (e.g. Argentina vs. Nigeria), authors refer that a
tweet segment often contains much more specific information than any of the
unigrams contained in the segment. Where other techniques rely on bursts of
terms or topics (unigrams) to detect events, this particular system first detects
bursty tweet segments as event segments. Tweets are split into non-overlapping
and consecutive segments, this tweet segmentation problem is formulated as an
optimization problem with an objective function based on the stickiness of a
segment or a tweet by using the generalized Symmetric Conditional Probabil-
ity (SCP) for n-grams with n greater or equal to 2, supported by statistical
information derived from Microsoft Web N-Gram service and Wikipedia. Bursty
segments are identified by modeling the frequency of a segment as a Gaussian
distribution based on predefined fixed time-window. By considering their fre-
quency distribution and their content similarity, the grouping of event-related
segments as candidate events was done using k-Nearest Neighbor graph and a
cosine based similarity measure. Each one of the event clusters is regarded as
candidate events detected in that time window. Wikipedia is exploited to iden-
tify the realistic events and to derive the most newsworthy segments to describe
the identified events.

Agarwal et al. [1] model the problem of discovering events that are unravelling
in microblog message streams as a problem of discovering dense clusters in highly
dynamic graphs. Authors state that the identification of a set of temporally
correlated keywords is the starting point to identify an emerging topic. Moreover,
they go further and define temporally correlated keywords as keywords that show
burstiness at the same time and are spatially correlated, and more specifically
keywords that co-occur in temporally correlated messages from the same user.
To capture these characteristics, a dynamic graph model that uses the moving
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window paradigm and is constructed using the most recent messages present
in the message stream, was used. An edge between two nodes — representing
two keywords — indicates that messages from a user within the recent sliding
window involve the respective keywords. A Correlated Keyword Graph (CKG)
captures the properties of microblog contents by representing all the keywords,
after removing stop words, appearing in the messages in the current window
as nodes in an undirected graph. Emerging events are, therefore, identified by
discovering clusters in CKG. Clusters of interest are obtained via majority quasi
cliques (MQCs). Being the discovering majority quasi cliques an NP-complete
problem even for static graphs, authors proposed the use of short cycle property
(SCP) of MQCs to make event discovery a tractable and local problem. Because
Correlated Keyword Graph is dynamic and not static, efficient algorithms for
maintaining the clusters locally even under numerous additions and deletions of
nodes and edges were also proposed.

Under the premises that documents that describe the same event contain sim-
ilar sets of keywords, and graph of keywords for a document collection contain
clusters of individual events, Sayyadi et al. [90] proposed an event detection app-
roach that overlays a graph over the documents, based on word co-occurrences.
Authors assume that keywords co-occur between documents when there is some
topical relationship between them and use a community detection method over
the graph to detect and describe events. The method uses two steps: Building of
a KeyGraph, by first extracting a set of keywords from documents, then for each
keyword calculating the term frequency (TF), document frequency (DF) and
the inverse document frequency (IDF). Using keywords with higher occurrences
nodes are created in the KeyGraph for keyword. Edges between nodes (keywords)
are added if the two co-occur in the same document; Community Detection in
KeyGraph, community detection is done removing edges in the graph till com-
munities get isolated. Authors consider that by removing the edges with a high
betweenness centrality score, every connected component of the KeyGraph repre-
sents a hypothesis about an event, the keywords forming a bag of words summary
of the event; Document Clustering, community of keywords are seen as synthetic
documents. Original documents are clustered using cosine similarity distance to
the keywords synthetic documents. Documents that truly represent events are
obtained by filtering keywords synthetic documents with high variance.

Zhao et al. [108] proposed the detection of events by exploring not only the
features of the textual content but also the temporal, and social dimensions
present in social text streams. Authors define an event as the information flow
between a group of social actors on a specific topic over a certain time period.
Social text streams are modeled as multi-graphs, where nodes represent social
actors, and each edge represents the information flow between two actors. The
content and temporal associations within the flow of information are embedded
in the corresponding edge. Events are detected by combining text-based clus-
tering, temporal segmentation, and information flow-based graph cuts of the
dual graph of the social networks. The proposed method begins with social text
streams being represented as a graph of text pieces connected by content-based
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document similarity. The weight of each word in the text piece is quantified
as the TF-IDF, with the content-based similarity being defined as the cosine
similarity of the vector representation of each text pieces. Using a graph cut
algorithm [60], text pieces are then clustered into a set of topics. The resulting
graph then is partitioned into a sequence of graphs based on the intensity along
the temporal dimension using the adaptive time series model proposed by Lemire
[54]. Each graph in the temporal dimension, for a given topic, represents a com-
munication peak (intensive discussion) that corresponds to a specific aspect or
a smaller event. After that, each graph in a specific time window with respect
to a specific topic is converted into its dual graph and the dual graph is further
partitioned into a set of smaller graphs based on the dynamic time warping [45]
based information flow pattern similarity between social actor pairs using graph
cut algorithm [60]. Finally, the output of each event will be represented as a
graph of social actors connected via a set of emails or blog comments during a
specific time period about a specific topic.

Pohl et al. [78] proposed crisis-related sub-event detection using social media
data obtained from Flickr and Youtube. Considering the Geo-referenced data
an important source of information for crisis management, authors decided to
apply a two-phase clustering approach to identify crisis-related sub-events. The
method relies on longitude and latitude coordinates of existing data items for
sub-event detection. In a pre-processing step each item is therefore represented
in two parts: the coordinates, represented by longitude and latitude values; and
the terms, extracted from textual metadata fields belonging to a specific item.
Term frequency-inverse document frequency (tf-idf) values are also computed.
The two-phase clustering consists of the calculation of term-based centroids with
a Self-Organizing Map (SOM) Kohonen [47] using the geo-referenced data. In
the second phase, the assignment of best fitting data points to the calculated
centroids using reassignment and the cosine distance measure is done.

Chen and Roy [22] presents a method to perform event detection from Flickr
photos by exploiting the tags supplied by user’s annotations. As not every photo
represents an event, authors use feature-pivot approaches to detect event-related
tags before detecting events of photos. The methods is done in three steps: In
Event Tag Detection, the temporal and locational distributions of tag usage are
analyzed in order to discover event-related tags using the Scale-structure Iden-
tification (SI) approach Rattenbury et al. [83]. A wavelet transform is employed
to suppress noise; In Event Generation, by examining the characteristics of the
distribution patterns, authors are able to distinguish between aperiodic-event-
related and periodic-event-related tags. Event-related tags are clustered such
that each cluster, representing an event, consists of tags with similar temporal
and locational distribution patterns as well as with similarly associated photos.
A density-based clustering method was used (DBSCAN) Ester et al. [28]; In
Event Photo Identification, for each tag cluster, photos corresponding to the
represented event are extracted.

Corley et al. [24] proposed a conceptual framework for interpreting social
media as a sensor network. The system quantifies a baseline from the social
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sensor measurements. Those baselines provide the expected value at a particular
point in time of the volume of social media features fitting some criterion. Using
a brute-force approach, they detect aberrations (Events) in the sensor data when
an observed value is significantly different from the expected baseline. Signals
are built considering the varying time-dependent measures of frequency such as
user retweets, term and hashtag usage, and user-specific posts. Measures like
the signal magnitude, which is the value of the centered moving average of an
indicated time period of that signal, and the social signal noise, defined as the
range of counts bounded by the values of two standard deviations above and
below the signal magnitude, are used to calculated the signal aberration (or
event) is an instance when the social signal exceeds signal noise boundaries. To
produce baseline signals for related topics, topic clustering through using the
dot product similarity metric between authors and their hashtag usage, over the
course of a specified time period, is used.

Tanev et al. [94] described an Information Retrieval approach to link news
about events to Twitter messages. The authors also explored several methods
for creating event-specific queries for Twitter. They also claim that methods
based on utilization of word co-occurrence clustering, domain-specific keywords
and named entity recognition have shown good performance. Basic detection of
known bi-grams in the input news article is performed using an index of word
uni-grams and bi-grams previously calculated. Because each word uni-gram and
bi-gram is accompanied by its frequency and the frequency of the co-occurrences
with the other uni/bi-grams, the same index is also used to calculate IDF for
each term and suggest classes of terms which are used to formulate the queries
to Twitter based on the co-occurrence information. Other techniques like word
co-occurrences, named entities, domain-specific keywords were used to improved
the detection method.

Dou et al. [25] proposed an interactive visual analytics system, LeadLine,
that automatically identify meaningful events in news and social media data and
support exploration of the events. To characterize events, topic modeling, event
detection, and named entity recognition techniques were used to automatically
extract information regarding event details. First, text data such as news stories
and microblog messages are organized based on topical themes using LDA [18].
An Early Event Detection algorithm is used to identify the temporal scale for
events by determining the length and “burstyness” of events.

Supervised Detection. No supervised detection techniques to detect unspec-
ified events were included. No pure supervised event detection systems to detect
unspecified events were found in the literature. This fact may be related to the
fact that supervised techniques with prior training on ground truth datasets,
could not detect unforeseen events in that dataset. Supervised Detection tech-
niques are always used in conjunction with unsupervised techniques (Hybrid
Detection) that are being described in the following section.
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Hybrid Detection. Sankaranarayanan et al. [89] proposed a news processing
system, called TwitterStand, that primarily demonstrates how to use a microblog
service (i.e. Twitter) to automatically obtain breaking news from the tweets
posted by Twitter users. Since the geographic location of the user as well as
the geographic terms comprising the tweets play an important role in clustering
tweets and establishing clusters’ geographic foci, providing users a map inter-
face for reading this news. This system discards tweets that clearly cannot be
news by using a naive Bayes classifier previously trained on a training corpus of
tweets that have already been marked as either news or junk. A clustering algo-
rithm based on weighted term vector according to TF-IDF and cosine similarity
was used to form clusters of news. The leader-follower clustering [26] algorithm
needed to be modified in order to work in an online fashion.

Cataldi et al. [20] use burstiness of terms in a time interval to detect when
an event is happening. They proposed a topic detection technique that retrieves
in real-time the most emergent topics expressed by the Twitter community. The
process begins with the extraction and formalisation of the user-generated con-
tent expressed by the tweets as vectors of terms with their relative frequencies;
author’s authority is calculated by the Page Rank algorithm [69] applied to a
directed graph of the active authors based on their social relationships; for each
term, its life cycle is modeled according to an aging theory [21] that leverages
the user’s authority in order to study its usage in a specified time interval; a
set of emerging terms is selected by ranking the keywords depending on their
life status (defined by an energy value). Supervised term selection relies on a
user-specified threshold parameter while the unsupervised term selection relies
on an unsupervised ranking model with the cut-off being adaptively computed;
finally a navigable topic graph is created which links the extracted emerging
terms with their relative co-occurrent terms in order to obtain a set of emerging
topics.

Becker et al. [14] explored approaches for analyzing the stream of Twitter
messages to distinguish between messages about real-world events and non-event
messages. Their approach relies on a rich family of aggregate statistics of topi-
cally similar message clusters. Using an incremental, online clustering technique
that does not require a priori knowledge of the number of clusters, a task of
grouping together topically similar tweets is done. To identify event clusters in
the stream, a variety of revealing features is computed using statistics of the
cluster messages. Authors used a combination of temporal, social, topical, and
Twitter-centric features that must be updated periodically once that they con-
stantly evolve over time. Temporal Features characterize the volume of frequent
cluster terms (i.e., terms that frequently appear in the set of messages associated
with a cluster) over time. These features capture any deviation from expected
message volume for any frequent cluster term or a set of frequent cluster terms.
Social Features capture the interaction of users in a cluster’s messages. These
interactions might be different between events, Twitter-centric activities, and
other non-event messages. User interactions on Twitter include retweets, replies,
and mentions. Topical Features describe the topical coherence of a cluster, based
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on a hypothesis that event clusters tend to revolve around a central topic,
whereas non-event clusters do not. Twitter-centric features target commonly
occurring patterns in non-event clusters with Twitter-centric behavior, includ-
ing tag usage, and presence of multi-word hashtags. Subsequently, classification
via support vector machine (SVM) using the cluster features representation and
a previously labeled training set of clusters is done in order to decide whether
or not the cluster, and its associated messages, contains event information (i.e.:
distinguish between event and non-event clusters).

Ritter et al. [85] proposed TwiCal, an open-domain event-extraction and
categorization system for Twitter. The system extract event phrases, named
entities, and calendar dates from Twitter by focusing on certain types of words
and phrases. Named entities are extracted using a named entity tagger trained
on 800 randomly selected tweets, while the event mentions are extracted using a
specific Twitter-tuned part-of-speech tagger [84]. The extracted events are classi-
fied retrospectively into event types using a latent variable model (LinkLDA [27])
which infers an appropriate set of event types to match the data (via collapsed
Gibbs Sampling using a streaming approach [107]), and then classifies events into
types by leveraging large amounts of unlabeled data. The approaches used were
based on latent variable models inspired on modeling selectional preferences, and
unsupervised information extraction.

4.3 Detection Methods

Distinct methods to perform event detection are described in the following
sections.

Clustering. Clustering is the most used technique in event detection systems.
Different clustering techniques are described in literature, from classical cluster-
ing, passing by incremental clustering, hierarchical clustering or graph partition-
ing techniques, authors see the separation of documents in similar clusters as a
valid method to detect events.

Although they require a prior knowledge of the number of clusters, partition
clustering techniques such as K-Means, K-median, K-medoid were used by [52].
Clustering of hashtags based on the similarity of documents vectors and cluster
vectors using cosine similarity was proposed by [68]. Frequent word sentences
(n-grams) using weighted cosine similarity were also used by [35]. The cluster-
ing of wavelet signals was proposed in [23] to signals constructed by hashtags
occurrences, and using Co-occurrence of words in [98].

With the necessity of grouping continuously arriving text documents, incre-
mental threshold-based clustering approaches need to be used. Examples of this
approach are [39] were incremental clustering to the stream of query profiles
is proposed and the Locally Sensitive Hashing method proposed by [72] where
documents are clustered after applying a dimensional reduction technique. The
major drawbacks of these methods are the fragmentation issues and the correct
setting for the threshold value.
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Graph-based clustering algorithms were also used. Hierarchical divisive clus-
tering techniques used on a co-occurrence graph, that connects messages accord-
ing to word co-occurrences, to divide topical words into event clusters [1,58,94].
Modularity-based graph partitioning techniques are used to form events by split-
ting the graph into subgraphs each one corresponding to an event [90]. PageRank
was used as an alternative to the costly of finding the largest eigenvalue of the
modularity matrix [20]. In general hierarchical clustering algorithms do not scale
because they require the full similarity matrix. [55] proposed a k-Nearest Neigh-
bour graph of non-overlapping and consecutive document segments based on the
generalised Symmetric Conditional Probability (SCP) for n-grams.

Classification. Classification algorithms, commonly used for the detection of
specified events, rely mainly on supervised learning approaches. Classification
algorithms include naive Bayes [14,89], support vector machines (SVM) [14,88]
and gradient boosted decision trees [79,80]. Classifiers are typically trained on
a small set of documents collected over a few months or weeks and labeled
according event or non-event [14,89], earthquake or non-earthquake [88] and
controversial or non-controversial event [79,80]. Usually labeling involves human
annotators with domain knowledge and is done manually. Previous filtering of
irrelevant messages to increase accuracy is also done, e.g.: [88] filter documents
that contains special words like “earthquake”.

Dimension Reduction. Dimension Reduction techniques are used in most
cases to speed up the event detection methods. They are commonly used in
streaming scenarios were very high volumes of documents arrive at very high
speeds. Normally they are used in conjunction with other techniques (i.e.: clus-
tering, classification, etc.). Petrovic et al. [72] proposed a first story detection
algorithm using Locality-sensitive hashing (LSH). This method performs a prob-
abilistic dimension reduction of high-dimensional data. The basic idea is to hash
the input items so that similar items are mapped to the same buckets with high
probability (the number of buckets being much smaller than the universe of pos-
sible input items). With this improvement the scaling problem of the traditional
approaches to FSD, where each new story is compared to all, was overcome by
a system that works in the streaming model and takes constant time to process
each new document, while also using constant space [65]. The proposed system
follows the streaming model of computation where items arrive continuously in
a chronological order and are processed, each new one, in bounded space and
time.

Early successful approaches such as Latent Semantic Analysis use the Sin-
gular Value Decomposition (SVD) to reduce the number of dimensions. Prin-
ciple Component Analysis (PCA) and SVD event detection techniques were
addressed by [62]. Although SVD resulted in significant improvements in infor-
mation retrieval, their poor performance makes them impractical for use in large
corpora. Moreover, the SVD and other forms of PCA must have the entire cor-
pus present at once, which makes it difficult to update space as new words and
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contexts are added. This is particularly problematic for event detection, as the
corpus is expected to grow continuously as new events occur. Random Index-
ing offers an alternative method for reducing the dimensionality of the semantic
space by using a random projection of the full co-occurrence matrix onto a lower
dimensional space and was used by [43] as the underlying technique for event
detection.

Wavelets Analysis. Weng et al. [98] attempted to solve the event detection in
the Twitter online social network by proposing the detection of generic events
using signal analysis. The algorithm, called Event Detection with Clustering of
Wavelet-based Signals, builds signals for individual words by applying wavelet
analysis to the frequency-based raw signals of the words. It then filters away
the trivial words by looking at their corresponding signal auto-correlations. The
remaining words are then clustered to form events with a modularity-based graph
partitioning technique. The algorithm didn’t follow the streaming model defined
by [65] and is not expected to scale to unbounded text streams. Additionally the
authors applied a Latent Dirichlet Allocation algorithm to extract topics from
the detected events.

Burstiness Analysis. Analysis of burstiness is also a frequent technique.
Analysis if burstiness of special keywords was proposed by [86] while burstiness
of topics extracted via LDA was proposed by [25]. Pan and Mitra [70] proposes
two event detection approaches using generative models. In the first approach
they combined Latent Dirichlet Allocation (LDA) model [18] with temporal seg-
mentation and spatial clustering and afterwards adapted an image segmentation
model, Spatial Latent Dirichlet Allocation (SLDA) [96], for spatial-temporal
event detection on text.

Other. Hybrid detection approaches are used in techniques composed by more
than one step. Supervised classification or detection techniques are commonly
used to identify relevant or important documents before performing the unsuper-
vised step (e.g.: clustering) [89]. Other techniques use a factor graph model that
simultaneously detects information of events using supervised CRF and then
clusters them according to the event type [15]. A temporal query expansion
method was proposed by [63] while Generative Language models were proposed
by [61].

5 Datasets

Event detection research is hampered by the lack of standard corpora that
could be used to evaluate and benchmark systems. Most researchers that work
on event detection, often create their ad-hoc corpora to perform the evalua-
tion. Event labelling is typically done by manual inspection or using external
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sources/systems to mark events, very often are not publicly available, and usu-
ally present problems that pass for being: (i) tied to a specific domain applica-
tion or data source; (ii) they only cover high-volume events ignoring low-volume
events; (iii) they do not cover broad range of event types. Table 3 presents all
the datasets and respective properties used for the evaluation of each one of the
techniques. Through a quick analysis, it can be observed the heterogeneity in
terms of source, size and temporal scope of each one of the used corpus.

6 Conclusions

This chapter presents a survey of techniques proposed for event detection in
online social networks. The survey also presents an overview of the challenges
that event detections techniques face when dealing with today’s Online Social
Networks data. While some techniques were designed for the detection of speci-
fied events (i.e. natural disasters), others were designed to detect events without
prior information of the event itself (i.e. unspecified events).

Event detection techniques are classified according to the type of target event
into specified or unspecified event detection. Depending on the target application
the way data is being analyzed, the techniques are also classified into Online New
Event Detection (NED) or in Retrospective Event Detection (RED). Depending
on the underlying detection method involved in the event detection, a classifica-
tion in supervised, unsupervised or hybrid approaches was also done. Depending
if the detection method operates at the document or feature domain, the tech-
niques could also be classified in two main categories: Document-pivot techniques
and Feature-pivot techniques. A resume of the main detection methods was also
provided, clustering methods are the most used in unsupervised detection sys-
tems for unspecified event detection. Classification methods are in the basis of
most of the supervised methods for specified event detection. Dimension reduc-
tion approaches, specially LSH, is used when processing of high volumes of data
arriving at very high speeds. Systems based on burstiness analysis are commonly
used to monitor trends and changes in behaviour that may indicate the presence
of events. In the present survey is also shown that there is a very high variety of
applications and sources of data. It was shown that most of the techniques use
different datasets and evaluation methods, which makes their direct comparison
almost impossible. Some of them also have different event detection objectives
and meet specific detection requirements.

Although the extensive literature presented an high degree of maturity of
some methods, the event detection problem is still one of the most actives in the
research community. The continuous growth and evolving of the Online Social
Networks Services is challenging state-of-the-art methods in terms of volume,
speed and data diversity. Recent trends in research using approximation methods
show that equivalent results were obtained when compared to exact methods in
a much more efficient way.
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Abstract. Event detection is a research area that attracted attention
during the last years due to the widespread availability of social media
data. The problem of event detection has been examined in multiple
social media sources like Twitter, Flickr, YouTube and Facebook. The
task comprises many challenges including the processing of large volumes
of data and high levels of noise. In this article, we present a wide range
of event detection algorithms, architectures and evaluation methodolo-
gies. In addition, we extensively discuss on available datasets, potential
applications and open research issues. The main objective is to provide
a compact representation of the recent developments in the field and aid
the reader in understanding the main challenges tackled so far as well as
identifying interesting future research directions.

Keywords: Event detection · Social media · Stream processing

1 Introduction

The Web 2.0 era brought a lot of revolutionary changes in the way World Wide
Web content is generated and utilized. Social media and online Social Networks
are nowadays the most widely used services along with search engines. Data
generated from Web 2.0 activity are of great value since they reflect aspects
of real-world societies. Moreover, data are easily accessible since they can be
collected through web-crawlers or public APIs. These two qualities constitute
the main motivation for researchers studying online social networks.

The range of novel data analysis applications is impressive. A prominent tech-
nique, known as ‘sentiment analysis’, analyzes user opinions in order to extract
the expressed emotion about products [14,35,75], services, or even political fig-
ures [80]. Marketing in particular found a perfect fit since now businesses are
able to analyse a large volume of public data and identify trends [55], influ-
ential profiles [18], experts [33] or to provide personalized advertisements and
documents [20]. From another perspective, social scientists study knowledge cas-
cades [32], information propagation [32] or community dynamics [49]. In health
care, researchers have been able to track and predict diseases like influenza [76]
c© Springer International Publishing Switzerland 2016
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and identify disorders such as depression [28]. The list is incomplete and expands
rapidly.

From all the above applications, the task of event detection stands out due
to its complexity and social impact. Broadly speaking event detection is the
problem of automatically identifying significant incidents by analysing social
media data. Such events can be a concert, an earthquake or a strike.

Most approaches tackle event detection similarly to a clustering problem.
Clustering can be performed on the textual features of users’ messages (Topic
Clustering) or on their spatio-temporal attributes (Spatio-Temporal clustering).
Some of the identified clusters correspond to real events while others are just
groups of similar messages. The identification of the event clusters is often tack-
led with scoring functions or machine learning classifiers [12]. Some approaches
utilize novelty tests [66] while others focus on sentiment peaks [83] and keyword
bursts [1]. A common element in many methods is a change detection component
necessary to identify that ‘something happened out of the ordinary’. Change is
detected through statistical analysis of the messages’ content or the network’s
structure (e.g. an increasing number of new connections in the social graph).
There are many more lines of research in event detection. The most prominent
ones are organized and discussed in the following sections.

The purpose of the article is to provide a categorization of existing approaches
in order to let the reader easily grasp the motivation, basic steps and issues
of each group of algorithms. In brief, the contribution of this article can be
summarized into the following points:

– It provides definitions of numerous concepts related to event detection from
Web 2.0 data. These definitions aim at formalizing the problem by disam-
biguating fuzzy concepts. Additionally, they allow a common terminology that
will aid in presenting the state of the art under the same framework.

– The state of the art is identified, organized and discussed.
– Open issues and potential future research directions are presented.

The remainder of this article is organized as follows. In Sect. 2 recently intro-
duced definitions of event detection are presented. In Sect. 3, an overview and
a taxonomy of event detection approaches is given. Section 4 presents the algo-
rithms in more detail emphasizing on intuition, main advantages and disadvan-
tages. Section 4 outlines architectures utilized in relevant systems for efficient
event detection. After that, in Sect. 5, we review a large number of Event Detec-
tion applications. Next, in Sect. 6 we summarize the evaluation procedures (pro-
tocols, datasets, metrics) that are utilized in evaluating the algorithms and we
comment on the obtained results. Finally, the paper concludes with a discussion
on related problems and open issues.

2 Research Challenges and Requirements

There are numerous research challenges inherent in event detection. In this
section we discuss the ones that differentiate this task from other well known
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problems. Hence, we justify why off-the shelf data and text mining approaches
are not suitable for tackling event detection.

Volume and Velocity. Data from social media come in great volume and veloc-
ity. Therefore, algorithms should be online and scalable in memory and compu-
tational resources. High data volume makes batch processing computationally
infeasible. Data structures like Count-Sketch [19], randomized data structures
such as Bloom [38] and Bloomier [50] filters, sampling methods [54] and stream-
ing algorithms are often used in real-time streaming applications. The authors
in [2] use the Count-Min Sketch [24] data structure to improve the efficiency of
the Content Summary clustering algorithm they propose. Osborne et al. in [66]
use a hashing function to calculate neighbours in constant time and [43] uses
simple inverse document frequency (IDF) scores in order to avoid document-
to-document comparisons and to reduce the number of computations. Most of
the related work aim in building online systems capable of processing high rate
streams such as the Twitter Sample stream (1 %) or even the Firehose stream
(100 %) [56].

Real-Time Event Detection. Events should be identified as soon as possible,
especially when the approach is intended to be used in critical applications like
emergency response. In this case, methods for event detection should be evalu-
ated not only in terms of Precision and Recall but also in terms of how fast they
can identify a specific type of event. In [56], the authors offer a detailed descrip-
tion of the real-time elements of their approach and comment on advantages and
disadvantages of making the process parallel.

Noise and Veracity. It is only natural that user generated information is char-
acterized by noise. Social media are filled with spam messages, advertisements,
bot accounts that publish large volumes of messages, hoaxes, as well as internet
memes [45]. Another obstacle is that textual information in social media is very
limited. Users usually publish very short messages a fact that makes off-the-shelf
Text Mining and NLP methods unsuitable.

Feature Engineering. Selecting the most suitable features to utilize in super-
vised or unsupervised learning components is not a trivial task. Textual represen-
tations such as Term-Document matrices are not sufficient. As many researchers
have observed, there are specific characteristics that appear in event related mes-
sages. These features could be content-based attributes such as TF-IDF scores,
number of tags and emoticons or structural features like the number of fol-
lowers (Twitter) or friends (Facebook). Supervised approaches mostly focus on
content features in order to train classifiers such as Naive Bayes or Support
Vector Machines. Many researchers have concluded that the utilization of the
correct feature-set is very crucial for the event detection process. As an exam-
ple, Becker et al. [11] presents a comparison between structural features and
Term-Document matrices. They conclude that the combination of textual and
non-textual features lead to a statistically significant gain in Precision.
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Evaluation. Algorithm evaluation sets difficult to overcome obstacles. Unfortu-
nately, availability of event detection datasets is very limited [57]. The TDT51

dataset is used by many researchers such as [43,66] in order to evaluate Pre-
cision. However, the nature of this data is quite different (topic detection and
tracking) and hence it serves only as last resort. Results obtained from TDT5
could significantly vary from those obtained from Twitter or Facebook. TDT5
comes from news-wire articles and contains well formed high quality text. On
the other hand, social media text has unique textual characteristics including
abbreviations, use of slang language and misspellings. A public dataset gathered
from social media sources is very important since it could be used to train super-
vised classifiers and also evaluate the algorithms in terms of Precision or Recall.
Since such dataset is not available most research teams create their own corpora
that are manually annotated [12,57,66] with a small number of events. This
fact makes the results subjective to sample bias and also hinders comparative
experiments.

3 Definitions and Context

The lack of a formal definition for the problem of event detection initiates a
lot of issues since the problem is multi-dimensional and many aspects are not
obvious. Up until now there were some individual efforts towards defining specific
sub-problems. We begin this section by presenting such definitions of tasks that
relate to event detection or similar problems. Next, we propose definitions that
extend and unify the ones that appear in the literature.

According to the Topic Detection and Tracking (TDT)2 project [3], an event
is “something that happens at specific time and place with consequences”. The
consequences may motivate people to act in social media and hence the events
will be reflected in network activity (e.g. large number of tweets on Twitter, new
groups on Facebook and new videos on YouTube). Aggarwal et al. [2] provides a
definition of News Event as “something that happens at specific time and place
but is also of interest to the news media”. That is, apart from making an impact
to the Web 2.0 world, an event should also affect conventional news media. In
[12] the authors state that “an event is a real-world occurrence e with a time
period Te and a stream of Twitter messages discussing the event during the
period Te”. Their definition has a Twitter scope and is related to an increased
amount of messages in a time window. However, it could be applied to other
platforms that operate as a stream of documents.

McMin et al. [57] defines event as “something significant that happens at
specific time and place”. The authors state that something is significant when
it is discussed by the news media. This is quite similar to the definition of [2].
Weng et al. in [89] state that an event is “a set of posts sharing the same topic
and words within a short time”. Abedelhaq et al. [1] state that events stimulate
people to post messages but in a substantial geographic space. This is connected
1 http://www.itl.nist.gov/iad/mig/tests/tdt/resources.html.
2 http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html.

http://www.itl.nist.gov/iad/mig/tests/tdt/resources.html
http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html
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to localized event detection (local events versus global events). In [1] the authors
define localized events as “events with a small spatial extent”. Boettcher et al. in
[15] state that an event is “an occurrence or happening restricted on time”. This
definition differentiates Real World events from Virtual events. Virtual events
are restricted within the limits of the online world. Examples of such cases are
memes, trends or popular discussions. Discussions are considered events since
people are active in social media because of them. Nevertheless, they do not
correspond to a real world incident. Wang et al. [87] define Social Events as
events among people when the one is an acquaintance of the other.

A slightly different definition that also includes the concept of social event
is given in [26]. The authors identify four event categories: local non-social, local
social, global social and global. A social event is an event that involves partici-
pants that have been together again in another situation. An example of such a
social event is a conference where the participants have attended the same con-
ference in the past. Finally, Popescu et al. [69] describe the “event snapshots”
idea as a tuple s = (e,Δt, tweets). The tuple consists of a set of tweets that
are correlated with an entity e for a time period Δt. This definition could be
mostly considered for celebrity-related events like popular actors or singers. An
alternative definition that considers sentiment information, is given in [83]. The
authors define the task of event detection as: “The identification of those mes-
sages that alter significantly and abruptly the emotional state of a large group
of people.”

It is clear that the aforementioned definitions are not always consistent with
each other. Some of them require the events to happen in a specific geograph-
ical region while others do not take into account the space dimension. Other
articles state that the time the events take place should be finite and short in
duration. Such a definition is not applicable for Global Events that may concern
communities for weeks.

Event Types. In the literature we come across the following types of events:

– Planned: Events with a predefined time and location (e.g. a concert).
– Unplanned: Events that are not planned and could happen suddenly (e.g. a

strike, an earthquake).
– Breaking News: Events connected to breaking news that are discussed in con-

ventional news media (e.g. the result of the elections in Greece discussed by
the global press).

– Local: Events limited to a specific geographical location. The event impacts
only this area (e.g. a minor car accident).

– Entity Related: Events about an entity (i.e. a new video clip of a popular
singer).

Table 1 summarizes the range of the different event types in terms of space
and time. It also reports in which media these events are more probable to be
observed in.

The rest of this section presents definitions that unify and extend the ones
proposed in the literature. They are based on the observation that events can be
identified by analysing actions of accounts in the online social network (OSN).



Detecting Events in Online Social Networks 47

Table 1. Different type of events and their properties

Event type Time duration
restrictions

Geographical
distribution

Observable in

Planned High Medium Social media, news media, event
portals

Unplanned Low High News media

Breaking news High Low News media

Global Low Low News media, online sources

Local High High Local media, online sources

Entity High Low News media, blogs

Definition 1. Account (p): An agent that can participate (i.e. perform actions)
in a social network after following a registration procedure.

Accounts can be operated by individuals, groups of people or computational
agents (bots). Accounts usually maintain a profile in the OSN.

Definition 2. Content object (c): A textual or binary object that is published
or shared via the social network (e.g. text, image, video).

Definition 3. Action (a): Depending on the social network, an action, a, can
be either: (i) a post of new content (e.g. a new tweet), (ii) an interaction with
another profile (e.g. a new follower, a friend request, etc.), (iii) an interaction
with another user’s content (e.g. a retweet, or a “like”).

It is obvious that some of these actions can be observable or un-observable by
agents that are not connected with the action-generating accounts. In the task
of event detection, we are interested in a set of N actions Ae = {ai, . . . , aN}
that are correlated with (or caused by) the event e. Such a set of actions has
also a temporal definition TAe = [t(Ae,start), t(Ae,end)]. The actions that an event
produces are most of the times in a different time window compared with the
actual event, i.e. t(e,start) < t(Ae,start) and t(e,end) �= t(Ae,end).

Ae is the ideal, ground truth set that contains all actions that event e has
caused. This set of actions comprises the effect of the event and it is the only
source of information that a computational agent can analyse in order to “sense”
the event. By analysing Ae, location and actors can be inferred.

Definition 4. Event (e): In the context of online social networks, (significant)
event e is something that causes (a large number of) actions in the OSN.

Intuitively, the importance of an event can be measured by the mass of the
actions that it generates. It is implied that, in event detection, we are inter-
ested in significant events. Naturally, significant events can have global or local
character.
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The textual representation or summary R(e) of an event could be a title
heading or a set of keywords. An event is linked with a specific time frame
TE = [t(e,start), t(e,end)] (duration of the event). An event is sometimes correlated
with a set of involved actors Ie and a location Loce.

Definition 5. Event detection in an online Social Network: Given a stream of
actions An of the OSN n, identify a set of real-world events and provide some
of the following information:

(a) the (textual) representation of the event R(e),
(b) a set of actions that relate to this event Ae ⊂ An,
(c) a temporal definition of the set of actions

T e
A = [t(Ae,start), t(Ae,end)]

(d) a location loce that is correlated with the event,
(e) the involved actors Ie.

Currently, approaches presented in the literature only provide some of the
above information. This is totally acceptable in some applications.

In other words, the problem of event detection could be defined as: “Given
a stream of actions An in an online social network n identify all tuples E =
{e1, . . . , eM}”, where M is the number of events and

ei = ≺R(ei), Aei , T ei

A , locei
, Iei�

4 Organization of Methods

We present an organization of Detection approaches under two perspectives. We
firstly organize methods according to the technique they utilize (clustering, first
story, etc.) (Sect. 5). Then we organize approaches according to whether they are
looking for New or Past events or whether they are operating off-line or online
(Sect. 6). Details of each algorithm are presented in the following section. An
earlier overview of Twitter specific event detection approaches can be found in
[9]. Although most work on event detection is using Twitter data, we describe
techniques on other sources as well (Youtube, Flickr, etc.). Furthermore, we pro-
vide a hierarchical organization of the methods and emphasize on architectural
issues, evaluation procedures, dataset availability and dataset labeling.

4.1 Taxonomy

In this section we present a taxonomy of the related work based on the fun-
damental data mining techniques that they utilize (clustering, outlier detection,
classification, etc.). An illustration of the taxonomy can be seen in Fig. 1. Details,
as well as more references will be presented in the next section.

Most event detection algorithms tackle the problem, at least in a first stage,
as a Stream clustering task. The identified clusters are organized into “event-
clusters” or “non-event-clusters”. This assignment can be either supervised or
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unsupervised. In the unsupervised case, a scoring function is used that is usually
based on features extracted from the clusters. In the supervised case, a classifier is
trained either using textual features, structural features, or both. The advantage
of the supervised approach is that the classifiers automatically “learn” the task
based on historical cases. On the other hand, a training set should be available
and the classifiers must be retrained periodically.

A different approach targets at the detection of anomalies in the content
of the network. The idea is to first model the content in normal circumstances
and then detect outlying messages. The first step is to build language models
capturing term usage from historical data. When, for example, a group of terms
demonstrates increased usage, then this is considered an indication of an event.
Typically, sentiment information is utilized along with the assumption that sig-
nificant deviations in sentiment indicate events.

An alternative strategy is to use novelty scores on incoming messages. Nov-
elty scores are mostly used in the First Story Detection (FSD) problem. FSD
is usually applied on news streams and aims at detecting the first story about
an event by examining a set of ‘neighbour’ (i.e. similar) documents. That is,
if a message is significantly different from its nearest neighbours, it is consid-
ered novel and indicative of a new event. Auxiliary sources of information like
Wikipedia are exploited in order to identify evidence for the detected events.

Some methods, focus on events concerning specific topics such as a music
band. After the messages that talk about these topics are identified, the algo-
rithms detect anomalies. For example, in [94], authors find events about the NFL
2010–2011 games. [7] detects increases in flu-related messages while the TEDAS
system [52] focuses on crime-related and disastrous events. An issue with these
approaches is that the topic should be known a priori and other event types will
not be identified. We refer to this category as topic specific event detection.

According to Topic Detection and Tracking task (TDT3) the two main
approaches of event detection are Document Pivot and Feature Pivot. In doc-
ument pivot techniques, clustering is used to organize documents according to
their textual similarity and neighbours are identified through direct comparison.
These approaches were mainly used in TDT challenges. However, they are not
directly applicable to social media like Twitter or Facebook. The first issue is
that not all documents are related to events (e.g. memes) as it is assumed in the
TDT challenge. A second problem is that Document Pivot techniques require
batch processing and are not scalable to large amounts of data.

Feature Pivot techniques focus on event topics that were previously unseen
or growing rapidly. Many Feature Pivot techniques focus on burst detection.
Bursts could be defined as term or sentiment deviations. Kleinberg et al. [44]
define a finite state automaton to detect bursts in documents streams, while [31]
model words as a binomial distribution in order to detect bursts. Similarly in
the Twitter Monitor system [55] a streaming algorithm called Queue Burst is
used in order to detect bursts on the Twitter stream. In general, Feature Pivot
techniques focus on change and burst detection of text features. Most algorithms

3 http://www.itl.nist.gov/iad/mig//tests/tdt/1998/.

http://www.itl.nist.gov/iad/mig//tests/tdt/1998/
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from TDT that are applied in social media are mainly Feature Pivot algorithms.
We will discuss Pivot algorithms in more detail in the following sections.

4.2 NED vs. RED and Online vs. Offline

Even from the TDT era (see previous section), two important categories of event
detection were identified. These were the retrospective event detection (RED)
and the new event detection (NED). RED focuses mostly on identifying previ-
ously unknown events from historical collections [92]. NED targets at events from
live streams in real time [5]. RED mines historical data in order to detect events
that were not previously known. There is no time constraint since the events
already happened in the past and their identification could not support decision
making. On the other hand, NED has online nature involving real time event
detection with the goal to support crucial decision making (e.g. in emergency
situations).

Most articles related to event detection in social media focus on online event
detection. Online event detection aims at deciding if a message is about an
event as soon as it arrives without the need of time consuming batch process-
ing. The offline event detection algorithms require complex procedures that can
not be used in real-time processing. They are useful mostly for retrospective
event analysis where execution time is not a major requirement. Some hybrid
approaches have an online part that is used for real-time analysis of messages and
an offline part that post-processes data. Such an offline part may be the training
of a classifier. Typical examples of online approaches are those that cluster mes-
sages and then use scoring functions to decide which clusters are event clusters.
Approaches like [12] require offline components since the classifier used for the
cluster categorization requires training.

5 Event Detection Methods

Following the taxonomy presented in the previous section, we present here rep-
resentative methods from each category in more detail. Initially the clustering
based approaches are presented including supervised and unsupervised scoring
techniques. Then, approaches based on anomalies, such as keyword bursts, are
discussed. After that, First Story Detection approaches inspired by TDT are
presented. The Section concludes with methods that focus on detecting specific
events.

5.1 Clustering Based Event Detection

Event detection approaches from social media streams is often faced using clus-
tering of messages. After that, the clusters are classified as “Event-Related” or
“Non-Event-Related” (see Fig. 1). This assignment could be resolved with super-
vised or unsupervised learning. In the supervised case, clusters are classified using
a learning algorithm such as Naive Bayes or Support Vector Machine based on a
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certain group of extracted features. On the other hand, in the unsupervised case,
clusters are classified according to a scoring function. The main difference is that
in the supervised case a set of labelled clusters is required in order to train the
classifier. As we will discuss in Sect. 8, labelled data sets require large amounts
of annotation effort on a periodic basis due to model retraining requirements.
The rest of this Section presents the supervised approaches and continues with
the unsupervised. Figure 2 presents an abstract workflow of the clustering based
event detection.

Unsupervised Cluster Identification. In this section methods that identify
clusters as “event” or “non-event” based on a scoring function will be presented.
This is the unsupervised case since no training set is required.

The first system we will present is the EvenTweet system [1]. EvenTweet
is based on an initial clustering of keywords according to their spatial signa-
ture. Keywords that appear on the same location will be included into the same
cluster. These keywords receive a score according to their level of burstiness,
their spatial distribution and other time-related features. Burstiness is calcu-
lated according to frequency deviations from the mean. The spatial signature is
calculated using geo-referenced tweets containing the keywords and it is fixed
on a set of pre-defined cells on a grid. Keywords with low burstiness and high
spatial entropy are filtered out as noise. Each cluster receives a score equal to the
sum of its keywords’ score. The top-k clusters according to their score are the
candidate event Clusters. EvenTweet applies online clustering by dividing the
stream into sliding windows. Windows are sub-divided into time frames. Key-
words’ scores are calculated per time frame. Cluster scoring is updated when a
new time-frame is complete.

Similarly, in [60] the authors followed an unsupervised approach for detect-
ing events from Twitter. Their idea is to utilize the semantic relationships of
terms during the clustering procedure. They propose to cluster expanded TF-ID
vectors. An expanded vector has values even for terms that are missing from
the document if they are semantically related with those that are present. The
cosine similarity is used as a distance metric. This approach leads to clusters of
tweets that discuss the same topic. The paper presents two semantic expansion
methods. The first one detects a set of co-occurring words from a static corpus
and then the document vector is expanded by these co-occurrences. The second
one treats each word as a vector of co-occurrences.

Using this representation, the authors calculate the cosine similarity among
all vectors. Vectors having similarity more than 0.8 are assumed to be semanti-
cally related. A document vector is expanded by the semantically related terms
being present at the neighbour documents. As a result, correlated words even if
they do not appear in the message should have a weight in the expanded vectors.
Finally, the method associates events with the largest obtained clusters.

A similar method, focused again on term vector expansion, is followed in [61].
In this case only tweets containing hashtags are utilized. Hashtag correlations
are exploited in order to expand the vectors that are now solely contain hashtag
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information. The results are improved in comparison to [60] especially in how
fast the events are identified. Such a result is not expected since document (word)
information is discarded. Nevertheless, on specific event types it turns out that
hashtag features alone are sufficient.

On [47] the authors describe an event detection method that is based on
topic clustering of the tweets. The clustering involves both textual and social
features such as the unique users that posted messages about the event. They
give a definition of user diversity within a cluster as the entropy of its users. The
more users a cluster has the higher the diversity. Then they formally define the
event detection method as an optimization problem where the goal is to both
maximize the documents similarity as well as the user diversity and prove that
it is NP-hard. As a result, they use an approximate time efficient and one-pass
online clustering algorithm in order to cluster tweets topically. Then the clusters
are periodically checked for their user diversity and those with a diversity more
than a threshold are identified as event clusters.

The TwEvent system [51] implements the idea of using tweet segments
(N-grams) instead of unigrams. Segment extraction is based on Wikipedia cor-
pus and the Microsoft N-gram service4. Segments are selected according to their
appearances on historical data using a “cohesiveness” metric formally defined
on the article. Thus, only coherent segments are considered while the rest are
filtered out. The segment extraction algorithm has linear complexity. In the next
step, they approximate the frequencies of the segments and detect the bursty
ones. Candidate event segments are identified based on burstiness and number
of unique authors. Then, candidate segments are clustered using a modification
of the Jarvis Patric algorithm [41]. According to this algorithm, two segments
result in the same cluster if one is the nearest neighbour of the other. The simi-
larity between two segments sa and sb is based on a time-indexed sliding window
W consisting of m parts. The similarity simt(sa, sb) is defined in the following
Equation (Eq. 1)

simt(sa, sb) =
M∑

m=1

wt(sa,m)wt(sb,m)Sim(Tt(sa,m), Tt(sb,m)) (1)

Sim(Tt(sa,m), Tt(sb,m)) is the similarity of the tweets concatenation con-
taining segments sa and sb during the sub-window m. Tt(sa,m) is the
concatenation of tweets containing the segments sa during the sub-window
m. Sim(Tt(sa,m), Tt(sb,m)) is the similarity of the concatenated documents
Tt(sa,m) and Tt(sb,m) is extracted from the associated segments sa and sb
respectively. This similarity is based on the cosine similarity of the TF-IDF vec-
tors. Weight wt(sa,m) equals to the ratio of tweets containing sa to tweets that
do not. A problem with this approach is that the computation complexity of
the Jarvis Patric algorithm is O(n2). However, the authors state that the algo-
rithm should perform well for a small number of tweets. A score to each cluster
is assigned according to the number of segment appearances in Wikipedia. The
top clusters are classified as event related clusters.
4 http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx.

http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx
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[30], similarly to [52], considers Twitter as a social sensor where the users
provide valuable information for the authorities. The authors use their system to
detect flood events analyzing tweets from Germany for a period of eight months.
They follow a visual analytics approach in order to present flood-related Tweet
messages on the map. Two interesting approaches are presented. The first one is
based on increased local tweet activity. The second assumes that similar messages
appearing in nearby locations can possibly refer to disastrous events taking place
in that area.

For their first approach (increased spatial twitter activity), the authors
divided Germany into a number of cells using Voronoi Polygons. All these cells
are associated with a normal activity’ characterized by a mean and a standard
deviation. When increased activity is detected an event alarm is triggered.

The second approach, at first, filters out irrelevant messages (not related to
floods) using a dictionary approach. The OPTICS [6] density based clustering
algorithm is utilized in order to identify similar messages. Validation of clusters is
achieved through the use of external sources. If the tweets contained in a cluster
correspond to a news story then the cluster is identified as an event cluster. The
authors conclude that the second approach is more effective than the first one.

The authors of [2] utilize content and social features of the Twitter network
in order to detect events. Following a similar path to many of the aforementioned
approaches, clustering comprises the first step of the method. Clustering is topic
based since textual features are analyzed. However, an important difference with
other approaches is that the clustering takes into account user profiles. The
algorithm is named Cluster Summary (CS). Cluster centroids consist of two
parts: (i) the content summary which is a term-frequency matrix and (ii) the
user summary which is a user-frequency matrix. The distance metric of the
clustering algorithm is a linear combination of the two summaries:

Sim(Si, Ci) = λ ∗ SimS(Si, Ci) + (1 − λ) ∗ SimC(Si, Ci) (2)

Content similarity SimC is based on TF-IDF [21] and utilizes the cosine
distance. The structure similarity SimS depends on how many users the tweet
and the cluster have in common. The authors associate each tweet with all the
followers of the author of the tweet.

In the same article, the authors state that the user summary of a cluster can
be represented using a randomized counting data structure called Count-Min
Sketch [23]. The Count-Min Sketch could be used to approximate the user fre-
quency using constant amounts of memory. Count-Min Sketch is a data struc-
ture that overestimates the counters of an element . A possible drawback of
the Count-Min Sketch for such applications is that its error rate increases with
time [23].

Once a cluster is formed then its size is periodically checked according to
its recent history. If the cluster growth over two consecutive sliding windows is
more than a predefined threshold the cluster is identified as an event.
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Supervised Cluster Identification. In this group of approaches, decision
about event clusters is made through supervised machine learning classifiers.
The classifiers take advantage of textual features as well as other attributes that
are usually domain dependent.

In [86] the authors initially clustered the tweets according to their spatio-
temporal information using a set of predefined rules. The clustering algo-
rithm presented is simple, online and fast. The clusters formed are considered
event-candidate clusters. In the next step, textual and non-textual features are
extracted from the clusters in order to train a classifier. The top extracted fea-
tures according to individual feature evaluation are the following:

– Unique authors
– Word overlap
– Number of mentions
– Unique coordinates
– Number of fourthsquare5 posts

For example, the more unique coordinates or fourthsquare posts within a
cluster, the more likely this is an event cluster. Three classifiers are trained
using a manually annotated dataset: a Decision Tree, a Naive Bayes classifier
and a Multilayer Perceptron. The classifiers are compared using only textual
features against using both textual and non-textual features. The result showed
a statistically significant improvement when all features are used. This is an
indication that in some cases the text itself is not enough.

Another algorithm based on message clustering followed by supervised clas-
sification is described in [12]. The authors, as in similar approaches, set the
requirement of not knowing apriori the number of clusters and they use an online
threshold-based clustering method. The documents are presented as vectors that
are TF-IDF weighted using a bag-of-words approach. The clustering algorithm
is simple as in [86]. When a new point has a distance less than a threshold
from the nearest centroid it is added to that cluster, otherwise a new cluster
is created. Then, features are extracted from the clusters in order to train the
classifier. The features are topical, temporal, social and Twitter specific. Tem-
poral features may describe deviations on the volume of common terms as well
as changes on their usage frequency. Social features capture interactions among
users. Topic based features capture the thematic coherence of the cluster. Twit-
ter specific features are often present in non-event clusters, for example Twitter
tagged conversations that do not correspond to a real-world event (e.g. the hash-
tag #ff “Follow Friday”). When the feature extraction is complete, a Support
Vector Machine is trained and compared against a Naive Bayes classifier using
only textual features. The conclusion is that the manually extracted features
provide a very important advantage over the baseline method using only text
features. The clustering step is fast and online. However, training the Support
Vector Machine is computationally demanding involving parameter tuning and
is prone to over-fitting especially when the training set is relatively small.
5 https://foursquare.com/.

https://foursquare.com/
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The event detection method presented above, originally described in [12], is
revisited in [70] in order to boost the clustering procedure. The authors state
that the original online clustering algorithm takes into account just textual infor-
mation in the form of TF-IDF vectors. They then propose the usage of two new
features from the similarity function used in the clustering. The first feature orig-
inates from the parsing of URLs within the document, favoring documents with
the same or similar URL. The intuition behind that is the fact that documents
that contain the same URL should result into the same cluster since the shared
URL indicate that the documents correspond to the same event. The second
feature is called “Bursty Vocabulary”. This is a set of keywords per cluster that
exhibit bursty behaviour identified trough a computationally inexpensive outlier
test on consecutive sliding windows. The frequency of the identified bursty key-
words during the next sliding window is estimated and used for the assignment
of new documents to the cluster. The two features presented so far are textual.
However, the authors suggested that temporal features should be used also dur-
ing the document allocation to clusters. They propose the usage of a Gaussian
attenuator, highly similar to the one presented in [73], that takes into account
the time of the latest cluster document and the time of the document to be
assigned. This temporal feature is embedded to the clustering similarity func-
tion and penalizes inactive clusters. The above improvements not only supply
more textual information to the clustering algorithm but also exploit temporal
information resulting into a textual-temporal method.

Another interesting system is described in [73]. TwitterStand targets at
detecting tweets that relate to Breaking News. In contrast with other approaches,
it does not utilize information extracted only from the Twitter API. Their data
originate from tweets of the top-2000 users with the most tweets, the 10 % of
the public tweets, the Twitter Search API6 and an API named BirdDog that
receives tweets from a large number of Twitter users.

A Naive Bayes classifier is built in order to classify tweets as “news-tweets” or
“junk-tweets”. Their approach of classifying tweets obtained from keyword based
searches is similar to [52]. The classifier is trained on a static corpus consisting
of tweets labelled as “junk” or “news”. A smaller dynamic corpus is exploited
to periodically update the classifier. This corpus consists of tweets related to
news reported by conventional media. “News” tweets are clustered into topics.
The clustering algorithm used is called leader-follower [29] and allows content
and temporal clustering. Regarding content similarity required by the clustering
algorithm, the TF-IDF weighted vectors of the tweets are utilized. The similarity
metric is a variant of the cosine similarity containing a temporal factor. Content
similarity between document d and cluster c is defined as:

δ(d, c) =
TFVt · TFVc

||TFVt|| · ||TFVc|| (3)

where TFVt and TFVc are the term vector of the tweet (TF-IDF weighted) and
the cluster centroid respectively. In order to capture time the similarity metric
6 https://dev.twitter.com/docs/api/1.1/get/search/tweets.

https://dev.twitter.com/docs/api/1.1/get/search/tweets
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is expanded with a Gaussian attenuator (Eq. 4). Tt and TC are the tweet time
and the time of the latest tweet respectively.When the clustering is complete the
system presents the clusters on a map by estimating the location of tweets using
a text-based geo-tagging technique.

δ̂(d, c) = δ(d, c) ∗ e
−(Tt−Tc)

2σ2 (4)

EventRadar [15] follows a similar idea in order to detect localized events. A
term vector is created for each tweet at pre-processing. Then, unigrams, bigrams
and trigrams are extracted and the algorithm examines if in a recent history H
there are tweets that contain these n-grams. If these tweets are close in space and
time, they are considered as event candidates. DBSCAN is utilized for clustering
the tweets. A Logistic regression classifier is trained in order to reveal which of
the clusters are real events. The features used for the classification task include
two Boolean variables related to the tweets locations and keywords. In addition,
they include the number of tweets containing relevant keywords for a period of
seven days as a feature for the classification. The final result is a list of events
described by a set of keywords as well from a set of representative tweets.

The work in [69] aims at recognizing controversial events. These are events
where users express opposing opinions. The authors use the idea of an entity
snapshot as the sum of the tweets related to an entity e published during a period
Δt. It is defined as a triple s = (e,Δt, tweets). Some of these snapshots are about
real-events related to an entity e and are called event snapshots. Snapshots are
created from entities gathered from Wikipedia, tweets referring directly (using
the @ symbol) or indirectly to these entities published during Δt. The next step
of the method is to train a Gradient Boosted Decision Tree to classify snapshots
as event or non-event snapshots. Features from Twitter as well as from external
sources, including sentiment information, are utilized. For each of the detected
events a regression model outputs a controversy score. These models mainly use
textual features extracted from annotated samples as well as from a sentiment
lexicon and a controversy lexicon derived from Opinion Finder7 and Wikipedia
pages.

Semi-supervised Cluster Identification. In [39] a semi-supervised approach
is utilized since the labelling of Tweet clusters, involving thousands of tweets, is
a quite time consuming task. The system tracks events in news media, extract
keywords, and labels tweets that contain similar keywords as ‘events tweets’.
These tweets are able to propagate their label to related tweets using the social
structure of Twitter. Social ties such as message re-tweets, mentions and hashtags
are used to propagate labels. Using a reputable seed the authors are able to
obtain a training set and propagate the observed labels. The next step is to
construct the wavelet signal for every term that appears in the tweets. For these
signals auto-correlation is calculated and common words or words appearing
every day are filtered out (e.g. high auto-correlation). For example the hashtag

7 http://mpqa.cs.pitt.edu/opinionfinder/.

http://mpqa.cs.pitt.edu/opinionfinder/
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“#ff” (follow Friday) appearing every Friday would be filtered out. For the
resulting set of words a cross-correlation matrix is calculated. This matrix is
presented as a graph in order to apply graph partitioning [89]. This way word
groups are created and tweets are clustered to these word groups according
to their content. For the classification of the clusters as event or non-event,
a Support Vector Machine is trained using TF-IDF weighted document term
features. Named entities are removed from the terms in order to avoid over-
fitting issues. The event-clusters identified are then spatially grouped according
to the tweets’ geo-locations. For tweets that do not contain geo-location, the
location is propagated from related tweets using social ties. In the end, the
system provides a visualization of the event clusters on a map. We should note
that such an approach could be highly valuable in cases where a reputable seed
is available allowing label propagation without the need of manual annotation.

Clustering Approaches Summary. Table 2 presents an overview of the
clustering-based approaches used for event detection. The second column notes
the clustering algorithm that is utilized in the approach. The third and forth
column present the features and the similarity metric that are exploited. Lastly,
“scoring” indicates how the event cluster identification is achieved (supervised or
unsupervised). Table 3 presents an overview of the supervised approaches, along
with features and classifiers used.

Table 2. A summary of the clustering approaches used for event detection.

References Clustering type Features Similarity metric Scoring

[1] Keyword clustering Spatial Cosine similarity Unsupervised

[52] Topic Segments Content similarity Unsupervised

[60,61] Tweet clustering Expanded TF-IDF
vectors

Cosine similarity Unsupervised

[86] Spatio-temporal Spatio-temporal Rule based
distance

Unsupervised

[12] Topic TF-IDF vectors Cosine similarity Supervised

[30] Spatio-temporal
density

Spatio-temporal Distance threshold Unsupervised

[73] Content-temporal TF-IDF vectors,
Temporal

Modified cosine
similarity

Unsupervised

[39] Topic clustering Term vectors Overlapping tweet
terms

Supervised

[39] Term clusters,
spatial clusters

TF-IDF vectors Cross-correlation Semi-Supervised

5.2 Anomaly Based Event Detection

The methods of this section follow the path of identifying abnormal observations.
Examples include: unexpected word usage in the last time window, irregular
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Table 3. A summary of the supervised approaches used for event detection.

References Features Algorithms

[12] Temporal, topical, social Naive Bayes, SVM

[86] Textual, spatial, temporal Decision Tree, Neural Net

[73] Textual Naive Bayes

[15] Textual Logistic Regression

[69] Social (internal and external), textual Gradient Boosted Decision Tree

Social Stream
T1 T2

... Tn
Online

Clustering

Cluster1

...
Clustern

Cluster
Classification

Event Cluster

Event
Summaries

Non - Event

Fig. 2. An example of the general event detection approach using stream clustering.
The online clustering component groups tweets that are close in space. The Cluster
Classification module uses a supervised or an unsupervised method in order to classify
the clusters as event cluster. For each of the event clusters a summary is extracted
using different summarization methods.

spatial activity, or a distribution of emotion that is different from the average.
The approaches discussed in this section track the social stream and raise an
alert for an event candidate when an anomaly is observed.

The methods presented in [82,83] focus on identifying events from social
media using a sentiment analysis. The main idea is that users will respond to
an event in order to express their opinion causing this way fluctuations in the
sentiment levels. According to the authors, when an event happens it affects the
emotional state of a group of people that are close to the event. In the proposed
system, users are initially clustered according to their geographic locations and
their messages are aggregated over sliding windows. For each sliding window,
sentiment sensors are responsible for specific regions (e.g. a sensor per city or
district). The emotions of each region are analysed over four sentiment classes.
When a significant deviation in sentiment levels is detected, an event alarm is
triggered. The system is compared against the EdCow [89] system that uses key-
word count deviations instead of sentiment information. Authors of [83] report
that TwitInsight outperforms EdCow on its capability to detect events. In addi-
tion, TwitInsight is much faster since it does not depend on computationally
expensive procedures and is able to run in real-time.
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A strong point of the above work is the sentiment level outlier detection
method. The authors of [83] assume that the sentiment level distribution is
unknown amd changes overtime. The idea is to dynamically estimate the Prob-
ability Density Function (PDF) in a streaming fashion and use it for detecting
outlying sentiment levels. The tool used for this methodology originates from [78]
where a streaming estimation technique for unknown Probability Density Func-
tions (PDF) is utilized based on kernels and dynamic sampling. The resulting
PDF is used in order to perform non-parametric density outlier detection.

Authors in [22] use the Discrete Wavelet Transformation in order to detect
peaks on hashtag usage in Twitter that will point on real-world events. This
approach is similar to [89] with the difference that only hashtags are used while
the rest of the text is discarded. The approach utilizes Map-Reduce jobs to
extract hashtags and create their time series. Time series consist of aggregated
counts of tweets containing the hashtag over five minute time intervals. Discrete
Wavelet Transformation is used in order to detect bursts of hashtags since that
could indicate events. The events are summarized using a fast online version of
Latent Dirichlet Allocation (LDA) based on Gibb’s Sampling. Topic modelling
is used in order to represent events as a mixture of latent topics. This approach
did not focus on real-time event detection but rather on batch data analysis.

Outlier tests that consider hashtags similarly to [22] are presented in [25,46].
Hashtags are commonly used to indicate topics but some times correspond to real
breaking news events. Moreover, in some cases, they represent “memes” or “vir-
tual events”. The authors in [25] extracted content features from hashtag includ-
ing “frequency instability”, “meme characteristics” and “authors entropy”. They
classified hashtags as “Advertisements”, “Miscalculation”, “Breaking News” and
“Memes”. Their method is able to discriminate breaking news from meme-
hashtags regardless of language. Similarly in [46], hashtags are considered to
be associated with event or with memes. The authors extracted hashtag features
like the number of words used with a hashtags, the number of replies a tweet
with a hashtag is getting, number of URLs, and more. Using these features and a
training-set they utilize a set of supervised classifiers including Random Forests
and Support Vector Machines. According to their report, discrimination between
event-hashtags and meme-hashtags is successful with 89.2% accuracy.

Watanabe et al. [88] built the Jasmine system in order to detect local events in
real time. They used the streaming Twitter API to collect tweets from Japan. A
location database is created from messages posted on Forthsquare8. This data-
base is utilized in order to geo-tag tweets not including location information.
The approach is simple and fast. Based on geo-tagged tweets, popular places
are identified using a hashing algorithm called “geo-hash”. According to this
algorithm, close locations result into the same hashing bucket. From the most
popular places, keywords that describe the localized event are extracted. Jas-
mine could lead to an interesting mobile application that detects local parties
or concerts instead of larger scale events like earthquakes.

8 https://foursquare.com/.

https://foursquare.com/
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Focusing on a different social network, in [85] the authors describe their app-
roach for the MediaEval Benchmark 20129. This dataset contained 167 thou-
sands images from Flickr and the challenge is to find (a) technology events
that took place in Germany, (b) soccer events that took place in Hamburg and
(c) demonstrations and protests that took place in Madrid. The research team
used some preprocessing techniques involving removal of common words and
text cleaning. They also used the Google Translate API10 in order to translate
non-English words. Based on the image description text, they classified pictures
based on their TF-IDF vectors. As for the pictures with no textual information,
user profile information is utilized. Since the challenge required topic-specific
event detection, Latent Dirichlet Allocation is utilized in order to extract topics.
For the event detection task they used peak detection on the number of photos
assigned to each topic. If a topic received more photos than expected, an event is
identified for this topic. Since this approach requires computationally expensive
procedures such as LDA, it is not easily applicable for high rate streams.

5.3 First Story Detection

The authors of [66] tackle the problem of detecting the first story about a news
event. This problem is known as first story detection (FSD) and is equivalent to
the problem of new event detection (NED) (see Sect. 4). A common approach to
solving the FSD problem is to calculate for every document in the corpus the
distance to their nearest neighbours [5]. If this distance is larger than a threshold,
this document is considered novel and a “First Story”. This unsupervised app-
roach is extended in [48] to a supervised method using as features the distance,
the entity overlap as well as the term overlap utilizing a SVM classifier.

Osborne et al. in [66] suggests that the conventional approach described by
[5,48] will not scale for streaming data and therefore proposes a more efficient
approach. Nearest neighbour calculation is computationally intensive. Even fast
nearest neighbour algorithms such as KD-Trees and Indexing-Trees [93] will not
scale in the case of large and fast social streams. The authors propose the usage
of a hashing technique in order to detect the nearest neighbour. It is called
Locality Sensitive Hashing (LSH) [77] and is a hashing scheme that provides
an approximate nearest neighbour in constant time. LSH hashes documents to
buckets. If the documents are similar, they are hashed into the same bucket.
However, the approach is randomized and errors may occur. In order to reduce
the variance of the neighbour errors, [66] uses multiple LSH data structures.
That is, a document is hashed to multiple buckets, one per LSH data structure,
using different hashing families. The neighbour computation similarly involves
the exploration of all these buckets.

In order to bound the memory requirements as well as the number of com-
putations per incoming document they restrict the maximum size of a LSH
bucket and the computations performed within it by discarding old invaluable
documents. Similar approaches are used in [53] in order to bound the memory

9 http://www.multimediaeval.org/mediaeval2012/.
10 https://cloud.google.com/translate/docs.

http://www.multimediaeval.org/mediaeval2012/
https://cloud.google.com/translate/docs
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consumption using careful delete operations. This system detects the First Story
about an event and then new documents that are similar are linked together in
order to create event threads. Threads are document sets that represent the
event. This is similar to the clustering approaches we discussed in the previous
sections. The Threads are created and then presented in a sorted list according
to their size, number of users and thread entropy (expressed as the distribution
of terms). They compare their results to [5] and they suggest that event detec-
tion performance is similar. However, the efficiency of [66] is improved from [5]
achieving constant memory and computation time per document resulting in a
streaming FSD solution.

Petrovic et al. in [59] observed that the FSD system of [66] had low Precision
due to many false positives. This is something expected since most tweets are not
about real-world events. The authors use two streams in order to detect events.
They constructed a stream of Wikipedia page views using Wikipedia logs11.
The method in [66] is ranking the event threads according to their entropy in
order to identify the top-k events. In [59] the ranking is modified in order to
take into account Wikipedia page views that are related to the event. For every
detected thread, the Wikipedia stream is checked for outlying behaviour (i.e. an
unexpectedly large numbers of views) in pages that had a similar title. A very
important drawback of this method is that Wikipedia Stream lags on average two
hours behind the Twitter Stream causing problems for real time event detection.
This is explained by the fact that users initially discuss the event topic on the
social platform and then some of them may visit the relevant Wikipedia page.
An overview of the system is presented in Fig. 3.

Osborne et al. [67] extends [66] in order to cope with “tweet paraphrases”.
That is, the feature vector is extended with synonyms of existing terms. This
approach may remind to the reader the method described in [60] where the term
vectors are semantically expanded. In [67] the authors used online sources in
order to create a list of paraphrases while in [60] the authors computed term co-
occurrences from a static Twitter corpus. The idea of [67] is to use a term-to-term
matrix Q in order to exploit term synonyms. Using this matrix the similarity of

Twitter Stream

T1 T2
... ... Tn

Wikipedia Stream

C1 C2
... ... Cn

FSD

Ranker
First

Stories

Fig. 3. Overview of the approach presented in [59]. A Wikipedia page-view stream is
utilized in order to validate events detected by the FSD algorithms

11 http://meta.wikimedia.org/wiki/Data dumps#Content.

http://meta.wikimedia.org/wiki/Data_dumps#Content
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two tweet vectors x and y, is computed as:

Sim(x, y) = yTQx (5)

Since such a similarity computation requires intensive matrix-vector multiplica-
tions they use a heuristic to calculate the inner product faster by using the square
root matrix of Q. Since the square root matrix computation is also expensive
O(n3) they approximate Q

1
2 as if Q is a sparse matrix. Using the heuristics their

system is only 3.5 times slower from the original FSD system [66]. The improve-
ment in the Precision of the system is significant achieving higher Precision than
the state of the art UMASS system [4].

A similar approach that uses Locality Sensitive Hashing for event detection
is followed in [42]. The approach is quite similar to [66]. The authors utilize
Twitter posts and Facebook messages. They use LSH in order to group messages
into buckets. Their algorithm works in two phases. In the first one, new events
(first stories) from both sources (Twitter, Facebook) are independently identified
and stored. In the second phase, first stories are hashed into buckets and the
corresponding messages are stored as ‘event messages’.

The authors in [65] applied an FSD system on Twitter and on a news feed
that is referred as Newswire. The performance of FSD is evaluated on both
Twitter and the newswire. In an additional experiment, the 27 events originally
detected in [66] are used in this work in order to clarify which of the events
will be present in both media. They found that almost all events appeared on
Twitter and newsWire. However, the events appeared in different time points in
the two streams. Events related to sports usually appear faster on Twitter since
users post about them while they happen. On the other hand, on events related
to breaking news, the newswire stream had a minor advantage.

An efficient first story detection method is presented in [43]. The authors
focus on new event detection using a novelty score that is based on term-
usage. The main goal of this approach is to detect novel documents avoiding the
computation of distances among similar documents. Such an approach is very
useful since neighbor computations in the TF-IDF weighted vector space could
be computationally intensive for a large corpus. The proposed algorithm uses
the Inverse Document Frequency (IDF) per keyword as a novelty score compo-
nent. Each document receives a novelty score that is the sum of its terms’ IDF
weights. That is, a document is considered novel if its terms are novel. If the
novelty score is above a threshold the document is detected as event related.
In the same work, the authors suggest also the probabilistic IDF (pIDF) as a
scoring function. Given a term q taken from a corpus C, pIDF is defined as:

pIDF (q, C) = log
N − dfq

dfq
(6)

dfq is the frequency of the term q among the documents in the corpus C and N
is the size of the corpus C. The probabilistic IDF violates a set of rules about a
scoring function since it can take negative values. The authors state that this is
beneficial since it penalizes documents if they contain common terms. Notably,
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score calculation using IDF weights [43], is invariant of the corpus size and
the complexity of processing a document d is O(|d|). Where |d| is the number of
terms used in the document. However, it should be noted that since social media
such as Twitter consist of extremely dynamic content, the IDF scores should be
periodically updated in order to reflect accurately the content of the stream.

5.4 Topic Specific Event Detection

The methods presented so far aim at identifying events that could be of any
type. This section, presents algorithms that target at identifying and tracking
events of a specific predefined type.

One of these efforts is the TEDAS system that is described by Li et al. in
[52]. TEDAS is built for recognizing criminal and disastrous events such as tor-
nadoes, floods or law-breaking evidence. The system collects tweets using the
Twitter API and returns tweets related to crime and disaster using topic related
keywords. Tweets are captured using an initial keyword seed that is predefined
by the authors. This seed is expanded according to co-occurrences with keywords
from the received tweets. In other words, the system looks for paraphrases or
for semantically linked terms. Since not all tweets containing these keywords are
about crimes and disasters, a classifier is trained using Twitter features such
as use of hashtags, mentions and some predefined pattern-features in the con-
tent. Such a pattern feature is the presence of time and location in a tweet.
The system clusters all crime and disaster (CDE) tweets according to their spa-
tial information and presents them to a map. The high-level description of the
TEDAS system can be seen in Fig. 4.

Keywords
Seed

Update
Seed

1
Twitter API

Tweets Containing Keyword

T1 T2
... ... Tn Classifier

Map
Visualizer

Events
Summaries

Fig. 4. The TEDAS system. An initial seed with crime/disaster keywords in applied
to the Twitter API in order to collect relevant tweets. Based on the result set, the
keyword list is expanded. Each tweet is classified as event or non-event, and in the
second case it is presented to the map.

Another approach that targets events of specific type is that of Sakaki
et al. [72]. This work focuses on earthquakes. Initially, tweets containing at least
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one earthquake-related query-term are collected. Assuming that these tweets
actually talk about earthquakes the authors train a Support Vector Machine
on these data. For the classification task, they used tweet statistics (#words
in a tweet), textual features (terms of a tweet) and context features (keywords
before or after the query term). The goal is to detect the location and the tra-
jectory of the event. The geo-tagging of tweets is exploited to detect the location
of the event. Finally, Kalman Filters and Particle Filters aid in identifying the
trajectory of the event.

Packer et al. [62] expand a seed of keywords related to a topic using external
structured information. In order to collect tweets about a topic (e.g. a music
band), they use RDF structured information to identify related entities. For
example, many music bands have an entry in DBPedia12, a large RDF database
based on Wikipedia. Therefore, entities related to the band (e.g. band members)
could easily be extracted. These additional entities are used to extract tweets
that refer to the topic. Events related to a topic are identified according to
the number of the times the corresponding entities are mentioned in tweets.
According to the experimental evaluation the usage of the external sources gave
a boost in the event detection performance. Furthermore, the authors observed
an important correlation between the actual time period of the event and the
time the related entities are mentioned in Twitter. This observation suggests
that users usually tweet during an event.

The work presented in [94] focuses on detecting sports-related events. The
case study is the National Football League games of the 2010–2011 season. Using
a lexicon-based heuristic the authors collect relevant tweets. For identifying
events, they propose a sliding adaptive window-based method. If the ratio of
relevant tweets in the second half of the window is larger than a predefined
threshold then that is an indicator that something is happening. The window
size is adapted when the tweet-ratio(of relevant tweets) highly deviates from that
of the previous window. The algorithm is able to detect game related events such
as touchdowns and interceptions. The idea of using an adaptive sliding window
is quite interesting since it will enable capturing events of different magnitudes.

The approach proposed in [7] targets at detecting influenza incidents using
Twitter. Similarly with above, flu-related keywords are utilized in order to collect
a number of potentially relevant tweets. A classifier is then trained in order to
filter tweets that are not relevant. The classifier is built on bag-of-words text
features. By considering the output of the classifier (relevant tweets), a time
series is created based on flu-related tweets count. In order to evaluate their
results, the authors compared their methods to Infection Disease Surveillance
reports from clinics and to Google trends13. They conclude that this type of
events can be tracked via Twitter and detected before Google trends and even
before a potential break out. A similar approach is suggested in [34] where search
engine queries are utilized instead of social media messages.

12 http://dbpedia.org/About.
13 http://www.google.com/trends/.

http://dbpedia.org/About
http://www.google.com/trends/
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Medvet et al. [58] focus on keywords that suddenly received increased popu-
larity. Their algorithm monitors words related to a predefined topic. Whenever
these words demonstrate an increased frequency - compared with their history,
are identified as candidate event keywords. The most recent tweets containing
these terms are classified according to sentiment (positive, negative or neutral).
Tweets from these three classes are then used to generate a summary for the
event. This application could be very useful for brand related events and also
for market research software in order to track product feedback.

6 Architecture

From a computational point of view, an apparent obstacle in social media analy-
sis is Big Data management. Real time detection in Web 2.0 data requires algo-
rithms that efficiently scale in space and time. Extreme data volumes impel
researchers and engineers to consider distributed environments. Inevitably many
of the papers discussed in Sect. 5 focus on architectural aspects and suggest
frameworks suitable for real-time social media analysis. Methods that are focused
on smaller data volumes without intensive computations however are able to per-
form in real-time even with the usage of a single machine.

The frameworks proposed in the literature recently can be organized in the
following categories:

– Multi-Component: Single Machine or Distributed. The system consists of many
components, each of which is responsible for a different task. Many times, the
components that considered to be a bottleneck, are replicated on multiple
machines in order to increase throughput if possible.

– Data Stream Topologies: Multiple nodes are responsible for different tasks.
These approaches utilize a stream topology that is suitable for scaling with
high-rate data input. A common configuration for this case is Storm14 along
with a NoSQL database like MongoDB.

6.1 Architectures of Multiple Components

In this section we provide an overview of systems built for event detection
that utilize a multiple components structure running on a single or multiple
computers.

In [86] the authors focus on identifying events in real-time. They utilize a
sample of the Twitter stream that produces 3 million tweets per day. The core
of the system is a MongoDB15 database. MongoDB is suitable for storing data
such as tweets in JSON format. The choice of this type of database is supported
by the fact that MongoDB supports geo-spatial and temporal indices. Another
important feature is that it can easily scale in number of instances. In case data
rate increases (e.g. due to Twitter increased popularity) MongoDB would deploy

14 http://storm.incubator.apache.org/.
15 https://www.mongodb.org/.

http://storm.incubator.apache.org/
https://www.mongodb.org/
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additional machines. The system consists of multiple components. These are a
Twitter Fetcher, a Cluster Creator, a Cluster Updater and a Cluster Scorer.
Initially a single machine is used, however modules such as the Cluster Scorer
could be easily replicated on more than one machine to handle increased load.
This architecture is presented in Fig. 5.

Twitter
Fetcher

JSON

Cluster
Creator-Updater

Document
Store

Cluster
Scorer

Fig. 5. The architecture of [86]. The four components are the Twitter Fetcher, the
Cluster Creator-Updater and the Cluster Scorer. The cluster scorer is represented as a
set of servers since it could be replicated.

In [22] the author established a MongoDB database to store Twitter data.
The choice of MongoDB is justified by the requirement of having the pre-
processing done by Map-Reduce jobs. MongoDB supports Map-Reduce jobs as
javascript functions. Map-Reduce as a pre-processing engine is an intuitive choice
given that tasks like noise filtering and natural language processing are com-
putationally demanding. The dataset consisted of 1.7 million tweets per day.
However, the method did not target at run-time processing since it only consid-
ered Retrospective event detection. The dataset is processed in batch steps that
involved computationally expensive procedures like Discrete Wavelet Transfor-
mation (DWT) and Latent Dirichlet Allocation (LDA). The main contribution
of this work is that it provides an insight on the capabilities of map-reduce for
efficiently preprocessing textual information. MongoDB as well as other NoSQL
databases such as CouchDB attracted the interest of the research community
due to their document storage and scaling capabilities.

Abdelhaq et al. [1] focused on identifying local events in a streaming fashion.
The system is implemented as a plug-in for the JOSM16 framework. Similarly to
[86] it consists of a number of modules. The Tweets Repository module is respon-
sible for gathering tweets using the Twitter API. The Buffer module keeps in

16 https://josm.openstreetmap.de/.

https://josm.openstreetmap.de/
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main memory the last window of tweets. The window is indexed according to
time frames in order to ensure quick access to the data. In addition, this module
maintains a table with word-count statistics calculated from the streams’ his-
tory. This component results in large amounts of memory requirements. Sketch
randomized data structures could be a solution in such cases and be applied for
keeping the word-count table in main memory. The Content Processor module
is responsible for the data processing task. This component could be distributed
on more machines since its operations are easily parallelized. The last module is
the Localized Event Detector and this is the component that actually performs
the event detection and it is triggered at predefined times.

The Jasmine system that is presented in [88] uses a large sample of Twitter
(15 % of the original stream) that leads to a stream of 15 million tweets per
day. The basic components are: (a) the Tweet Fetcher, that is responsible for
downloading tweets, (b) the Geotag allocator that is responsible for assigning
locations to tweets - this module takes advantage of a locations database where
places are stored using the Solr17 search engine for efficient text search, (c) the
Popular Place Extractor that keeps a list of the most popular places, and finally,
(d) the Key Term extractor that identifies the most popular words in tweets
in order to summarize the events. The system is able to run in real-time but
also maintains a history of the stream in order to support retrospective event
detection or any other type of post processing.

An overview of the system is presented in Fig. 6.

Twitter
Fetcher

Tweets Database

Geotag
Allocator

Polular-Place
Extractor

Place Database

Key-Term
Extractor

Fig. 6. The architecture of Jasmine System [88]. The first component is the Twitter
Fetcher that receives tweets from the 15% of the Twitter stream and stores them in
a database. The geotag allocator geotag the tweets using the places database. The
popular place component keeps in memory the most popular places. Finally, the Key-
Term extractor extracts key-terms for localized events.

The TwitterStand system presented in [73] used 4 different sources of infor-
mation: (a) Twitter Gardenhose (deprecated privileged Twitter API providing
17 https://lucene.apache.org/solr/.

https://lucene.apache.org/solr/
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Fig. 7. The architecture of the TwInsight system [84].

10 % sample of tweets), (b) the BirdDog service (deprecated API for receiving
posts from up to 200, 000 Twitter users), (c) a 2000 user stream and (d) a key-
word stream of 2000 terms. The first component of the system is responsible
for collecting the tweets from the sources. The next component is a fast Naive
Bayes classifier with the purpose to filter out “junk” from “news” tweets. The
classifier is not trained on a static corpus but it is updated from a dynamic one.
This justifies the choice of the Naive Bayes classifiers since it has a low update
computational cost. Another benefit is that its simplicity makes it tolerant to
increased data volumes. The third component is the Clusterer that performs
topic clustering using textual features. The Clusterer depends on the classifier
component since it clusters only the tweets that are classified as “news”. The last
module is the Geo-Tagging Component that groups together the topic-clustered
tweets according to their geo-location. The above system is represented as a
graph of connected stream processing units, each of them receiving the output
of the previous one, defining a processing topology. Thus, it is straightforward
to think that it could be implemented from a stream processing framework such
as Apache Storm18 and distributed on multiple processing engines if necessary.
Units that act as bottlenecks can be enhanced with more cores.

Another system structured in multiple-components is presented in [84]. Two
approaches are presented. The first one uses Twitter data while the second one
exploits mobile information. Figure 7 presents the architecture of the approach
operating on Twitter data. This system is utilized by the TwInsight system
which is presented in [83]. The first layer consists of the Twitter feed fetcher. In
the second layer, an emotions classifier, a Gazetteer and a storage component
are included. The Gazetteer assigns geo-locations to tweets and users utilizing
an algorithm presented in [81]. This part can be a bottleneck for the system
and therefore can be replicated to multiple machines. Emotions are assigned to
tweets using a Machine Learning classifier. The storage component contains a
database that stores the tweets with their extracted meta-data from the previous

18 https://storm.apache.org/.

https://storm.apache.org/
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two components including emotion as well as location information. Finally, the
resulting tweets are processed in the third layer by the event extractor. This
component performs the event detection and provides a summarization of the
detected events. A visualization component on the third layer is responsible for
providing sentiment level information on a map.

The purpose of INSIGHT’s19 Twitter Intelligent Sensor Agent (ISA) is to
detect in real-time traffic or flood related incidents in the city of Dublin. The
architecture of the Twitter-ISA consists of multiple components similar to [83].
The first component is a Tweet fetcher responsible for gathering topic related
tweets through the Twitter Filtered API20. This enables tracking of specific
users, keywords and locations in order to collect a decent number of topic related
tweets. Since the majority of tweets do not include location information, a Geo-
tagger is utilized. The Geotagger analyzes the tweets and checks whether there
are references to places. If this is the case, it assigns coordinates to tweets using
Open Street Maps21 and a Lucene22 index following the method described in [27].
The resulting tweets are forwarded to the Text Classifier component that identi-
fies tweets that talk about traffic or flood incidents. All identified event-related
tweets are stored to a MongoDB database for further analysis. The bottleneck
of the system are the Geotagger and the Text Classifier components. However,
these components are easily replicated on multiple machines each of them han-
dling a different sub-stream of the original stream without any impact on the
effectiveness of event detection. The architecture of the Twitter-ISA is presented
in Fig. 8.

Fig. 8. The architecture of the Twitter-ISA of the INSIGHT system.

6.2 Data Stream Topologies

The authors in [56] suggested a distributed framework for high-volume data
streams like the Twitter Firehose (nearly 100 % of the Twitter feed). They pro-
pose a Storm topology in order to enable parallel and distributed computations
19 http://www.insight-ict.eu/.
20 https://dev.twitter.com/streaming/reference/post/statuses/filter.
21 https://www.openstreetmap.org.
22 https://lucene.apache.org/.

http://www.insight-ict.eu/
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://www.openstreetmap.org
https://lucene.apache.org/
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implementing the first story detection algorithm described in [66]. A key compo-
nent of this algorithm is finding the nearest neighbor of a document. The basic
idea of the distributed streaming topology is to divide the Twitter stream into
sub-streams without reducing the evidence that could aid event detection.

The first topology layer is the Vectorizer that converts the tweets to the vector
space using a bag-of-words approach. The next layer is the “Hashing” that dis-
tributes the tweets on different processing units. The authors suggest the usage of
Locality Sensitive Hashing (LSH) in order to partition the documents into mul-
tiple LSH-buckets, with similar content, belonging on Storm Bolts. The intuition
behind the multiple-bucket partitioning, using multiple LSH data-structures, is
to reduce the nearest neighbour error caused by LSH and is described in more
detail in [66]. Each document is sent to multiple bolts involving extra com-
munication cost but reducing the LSH error. Those bolts belong to the Local
Distance layer where each of them reports the nearest neighbour to a document
identified from its buckets. In the next layer named Global Distance, the nearest
neighbors are aggregated and the one with the smallest distance from the new
document is selected. Documents who have distance more than a threshold from
the global nearest neighbour are sent to the “K-Means clustering” layer that
performs online clustering, the rest are discarded. Each of the formed clusters
may correspond to a real world event. The storm topology is presented on Fig. 9.

(a) Stream

(b) Vectorizer (c) Hashing

(d) Local Distance

(e) Global
Distance

(f) K-Means
Clustering

Events

Events

Fig. 9. The storm topology with multiple bolts per component. The (d) local distance
layer is allocated the most cores since it is the most computationally intensive.

They found that the fastest layer is, as expected, the Vectorizer. The slowest
one is the Local Distance. This is explained by the fact that this bolt imple-
ments a nearest neighbour computation involving similarity calculations on high
dimensional vectors. It is important to measure the slowest layer in order to
allocate cores where it is necessary. The authors suggest that the throughput of
the system scales linearly as more and more cores are added to the right bolt
layers. After investigating the number of cores that will be needed in order to
process the entire Twitter Firehose (5000 tweets/s) the authors concluded that
70 cores or 9 8-core machines will suffice.
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6.3 Summary

In this section, system architectures that are capable of performing real-time
event detection are presented. Most of them focus on the Twitter sample
stream and the Twitter Garden hose with almost 10 million tweets per day.
For managing and mining the sample stream (1 % of Twitter) a distributed
modular architecture is required.

Notably, the 1 % of the Twitter stream on March of 2014 was about 8 million
tweets per day. This volume is similar to the volume of the Gardenhose API (10 %
of Twitter) provided some years before. This fact confirms the growth of the
Twitter usage over the years. If one is willing to process the entire Twitter stream
she needs to turn to architectures like Storm and to use the appropriate number
of processing units. For a smaller dataset such as a stream of 1 million tweets per
day a single machine with high amounts of main memory and processing power
will be able to process the data at run-time. It is important to note that not all
modules involved in the methods presented can be replicated. This is due to the
fact that not all algorithms can be parallelised without affecting the quality of
results (e.g. [66]). A summary of the above approaches that contains the stream
rate and the approach architecture is presented on Table 4.

7 Applications

In this section, we present a set of interesting applications of event detection sys-
tems and methods. The applications range from generic global events to celebrity
specific incidents.

In [36] the authors used Twitter to identify tweets that are about health
issues. This study investigates what types of links the users consult for publishing
health related information. A similar application is presented in [7] where authors
collect tweets about Influeza and identify flu outbreaks. Their results are similar
to Google-trends based flu outbreak detection especially in the early stages of
the outbreak. It is easy to see the potential social impact of such applications.

[72] focuses on identifying earthquake incidents with Twitter users as sensors.
The authors make an effort to detect the location and the trajectory of the phe-
nomenon. The system monitors Twitter and emails citizens when an earthquake

Table 4. The size of corpus and frameworks used in the papers presented in this
Section.

Reference Data volume Frameworks

[86] 3 M/Day MongoDB Spatial-temporal indexes,
horizontally Scaling

[1] Twitter sample stream 10 M/day JOSM

[88] 15 M/day Apache Solr, geo-hash

[73] Above 15M/day -

[56] Gardenhose and Firehose Storm Topology
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is detected. The response time of the system is proved to be quite fast, similar
to the Japan Meteorological Agency. In [30] the authors detect flood events in
Germany providing visual information on the map. The TEDAS system [52] tar-
gets Crime and Disaster incidents by identifying where and when they happened.
A map visualization of tweets is available. Flickr and Youtube are utilized in [68]
where the goal is to detect content related to an emergency. The above systems
help the authorities in detecting real-time incidents as well as in extracting useful
information after the event.

Another set of approaches focused on finding global important events for a
given time period. These include [12,43,66]. [66,67] emphasize on finding the first
story about a new event (new event detection). Such approaches are valuable
since they can aid in identifying unexpected events.

Medvent et al. [58] focused on detecting events related to specific brands.
They focused on three major brands: Google, Microsoft and Apple. Examples
of such events are the release of a new product like the new iPad or Microsoft’s
Security Essential software. In order to achieve the desired outcome, the authors
study the sentiment of the tweets. These techniques are utilized for marketing
purposes. A similar approach is presented in [69] where events of controversial
sentiment are targeted. Automatic identification of controversies is very useful
in order to track and manage a large number of discussion groups.

Noettcher et al. [15], developed an Android application that finds local events
given a specific geographic area. The application is able to provide summaries to
the users. The Jasmine system detects local events for the user according to the
desired size of event and the number of users attending it. It presents summaries
and some important tweets per event in order to provide with a short description.
This group of applications could support mobile users looking for “happenings”
near by.

In the area of sports analytics, the EvenTweet system [1] could detect the
start time and the location of football matches for UEFA 2012. The system
described in [94] was able to detect National Football League events of the
2010–2011 season. The events include touchdowns, interceptions and goals.

8 Evaluation

Event Detection in social media is a relatively new and rather complex problem,
especially when it comes to evaluating the suggested approaches. Most authors
have to evaluate their algorithms during a period where important global events
take place. This will enable the validation of their techniques. Another approach
is to insert artificially event tweets into the stream. In this section a review of
the most common evaluation practises is presented. Experimental set-up, utilized
metrics, and obtained results are presented. Moreover we will cover strategies
for labeling the data and provide links to publicly available datasets.
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8.1 Dataset Labelling

Many approaches constructed a dataset using the Twitter API. From the col-
lected tweets they create clusters of messages and label these clusters either
using the most important words of the cluster or the centroid of the cluster.
Usually, more than one annotators are used and the agreement between them is
measured using Cohen’s Kappa [90]. Only the annotations with high agreement
are used in the most cases while the low agreement annotations are discarded
since they are considered noise.

The authors in [2] followed a supervised approach on classifying event-
candidate clusters as event or non-event. Their system required a training set
for the supervised classifier used by their method. In order to assemble such a
dataset they initially extracted 1000 clusters using their one pass online clus-
tering algorithm. Then they manually labelled these clusters. 319 clusters are
labeled as events whereas 681 are labelled as non-events suggesting that, as
expected, the two classes are slightly unbalanced.

In a similar fashion the authors in [12] tracked the same problem. Sharing
the supervised classification idea with [86] they required a training set consisting
of example clusters marked as event and non-event. They manually annotated
clusters, but these clusters are carefully selected. Instead of annotating the clus-
ters or annotating a random subset, they restricted the cluster selection to the
top-20 fastest growing clusters per hour. The assumption behind this is that
usually a cluster that suddenly increases in size, will be an event cluster. For
the testing set they sample randomly clusters per hour from the whole cluster
pool in order to depict the real balance between “event” and “no-event” clus-
ters. The annotators labelled the clusters as “real world event”, “Twitter centric
activity”, “non-event” and “ambiguous”. Two annotators provided judgments
and Cohen’s Kappa is used in order to measure the agreement. The clusters
used for the training are 504, favoring the event class due to the careful cluster
selection. The test-set consisted only of 300 clusters.

The authors in [66] used the Edinburgh Fist Story Detection (FSD) Corpus.
A simply modified version of this dataset will be presented in the next sec-
tions. From this dataset they created threads of messages using their threading
algorithm described in the same paper. The threading algorithm links related
documents according to their textual distance and creates clusters of similar
documents. Authors divided the stream in sliding windows and then for every
sliding window they extracted the fastest growing threads(clusters) and manu-
ally labelled them. The top 1000 fastest growing threads from a sliding window
of 100, 000 threads are labelled using two annotators and using Cohen’s Kappa
coefficient. Clearly, it is important to note that again the reason why the fastest
growing clusters are selected for annotation is in order to favor the event clus-
ters similarly to [12]. Otherwise, the dataset would contain only a very small
proportion of clusters labeled as “event”.

An alternative approach is described in [57]. There, the wisdom of the crowd
is utilized through Amazon’s Mechanical Turk.
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They selected candidate clusters of events using the LSH [66] algorithm and
the Cluster Summary algorithm [2]. They also utilized the Wikipedia Events
Portal in order to receive event clusters as well as tweets about the detected
events. Then the crowd is used to determine if the cluster tweets are about
the event. In addition some clever heuristics are used in order to increase the
annotators agreement and also to filter out low-quality annotations. On the same
time, these heuristics provided the annotators motivation to continue their high
quality work.

8.2 Evaluation Metrics and Results

In this section, we provide an overview of the results obtained by various studies
presented in previous sections. Given the fact that there is an absence of shared
datasets, a direct comparison is impossible. However, the following metrics serve
as indicators of performance in various problems. Furthermore we present infor-
mation on the metrics used in each case.

Many authors decided to test the performance of their algorithms on the
TDT5 dataset. This dataset contains news articles extracted from traditional
news media and was widely used for the TDT challenge. Naturally, results will
diverge in a Twitter dataset since the two information sources are different in
many ways. For example, the streaming FSD algorithm [66] demonstrated much
better performance on the TDT5 dataset in comparison to a Twitter dataset.

The most common evaluation metrics originate from fields like Information
Retrieval and Natural Language Processing. Typical examples are Precision,
Recall and the F-Measure in terms of the detected events. In some cases, Accu-
racy is reported whereas in others the number of detected events is used as an
indicator of effectiveness. The latter might be misleading in cases of unbalanced
classes such as event detection. At this point, we will define some of the basic
metrics frequently used in the literature. Precision is defined in Eq. 7. Actual
Events (or True Positives) is the number of times that the algorithm detected
an event and it is actually an event. Recall shows the percentage of the actual
events that the system is able to identify (see Eq. 8). F-Measure is the harmonic
mean of Precision and Recall and it is defined in Eq. 9.

Many approaches can achieve high Recall but with limited Precision due to
the large number of False Positives. This is one of the reasons that additional
‘filtering’ techniques are utilized before or after the core approach. Some meth-
ods use ranked versions of the above evaluation metrics such as Precision at
k (P@K). Such metrics allow the evaluation of methods that can provide an
ordered list of predicted events.

Precision =
Number of Actual Events Detected

Number of Detected Events
(7)

Recall =
Number of Actual Events Detected

Number of Actual Events
(8)

F -Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)
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The authors in [12] decided to use a manually labelled dataset for the evalua-
tion of their system. Their approach utilized classifiers that are compared based
on the F1 measure. SVMs outperformed the Naive Bayes classifier (0.837 over
0.702).

In [66] the authors evaluate their system in terms of average Precision. This
decision is straightforward since labels are available only for the detected events
(True Positives). The authors evaluate their first story detection system on the
top-k event stories ranked according to different scoring functions. The best
obtained results in terms of Precision at k (P@k) is 34.0%.

The same event detection system is tested in [67] where Wikipedia is utilized
in order to re-rank the detected events. The authors observed that the use of
Wikipedia provided an improvement in Precision. However, as the authors com-
ment, Wikipedia causes a two-hour delay in event detection in comparison with
the original approach [66].

The authors in [59] evaluated their system on the same dataset [66]. They
conclude that their approach outperformed UMASS [4] while the detection time
is only 3.5 times slower than the method in [66]. However, the benefits of the
approach are not so clear in Twitter data as they are in FSD data (TDT5).

[43] utilized the corpus of [59]. They used Detection Trade-off (DET) curves
for evaluating the effectiveness of the approach. DET curves display the ratio
of Miss Probability to False Alarm Probability). The conclusion is that their
system outperformed all baseline approaches included in the experiments. On
top of that, a significant improvement is observed in execution time.

In [86] the authors evaluated three classifiers in terms of Precision, Recall and
F-Measure. They used a manually labelled dataset by 10-fold cross-validation.
Their best performing classifier is a Pruned Decision Tree with a F1 score of
0.857. They also experimented with the impact of the content and non-content
features. The authors observed a statistically significant improvement when all
types of features are considered. One could note however that these results devi-
ate from the ones reported in [12,67]. This gap demonstrates the effect of the
dataset in an experimental evaluation.

The inventors of TwEvent [51] provided with their own definitions of Recall
and Duplicate Event Rate (DER) that are the metrics used in their evaluation.
Recall is defined as the number of detected events while DER is the ratio of
duplicate events found. DER is useful in order to penalize multiple alerts on
the same event. They compared the approach against the EdCow system [89]
and concluded that TwEvent achieved an important improvement in terms of
Recall (75 over 13 detected actual events). An improvement is also observed in
Precision (86.1% over 76.2%). The DER metric of TwEVent system and EdCow
is 16.0% and 23.1% respectively.

Similarly, Popescu et al. [69] utilized a manually labelled dataset that consists
of 800 labelled events using two human annotators. Three alternative approaches
are compared on Precision at k (P@k). The so-called blended model performed
best with 0.9 Precision at rank-1 and 0.80 Precision at rank-4. The Area Under
Curve (AUC) of the three models suggests that they have good discriminative



Detecting Events in Online Social Networks 77

power in comparison to baseline algorithms. A final note is that the performance
differences between the three systems is not statistically significant.

8.3 Available Datasets

The Edinburgh FSD corpus23 was created in order to test the method in [66].
The dataset contains 51, 879, 318 tweet IDs. The content of the tweets is removed
due to Twitter’s terms of use. In order to take advantage of the dataset one has to
use the Twitter API to download the messages that correspond to the tweet IDs.
The authors identified 27 topics in the data. 3034 tweets are labelled according
to the procedure described in [59]. This dataset was created for detecting first
stories. However, it is suitable (and was utilized) for general event detection
tasks.

A dataset that is not Twitter specific but is useful for event detection evalua-
tion is the NewsWire dataset24. The dataset contains links to news articles. The
articles contain a timestamp and a relevance value to some of the aforementioned
27 topics [65]. The dataset contains 47751 links to articles.

The dataset of the MediaEval challenge is also available and can be utilized
for event detection. The dataset consisted of Flickr images and 1.327 videos
from YouTube with their metadata. Another one consists of Instagram pictures
instead of Flickr images. The labelled part of the dataset was created using
human annotators. This dataset contains 8 event types. These are music events,
conferences, exhibitions, fashion shows, protests, sport events, theatrical/dance
events and other events.

9 Related Problems

Trend detection is a highly related task to event detection and is commonly
applied to social media (e.g. Twitter trending topics) and News portals (e.g.
Yahoo News). Many trend detection methods like [13,55] are similar to feature-
pivot event detection techniques. In these methods, a keyword burst identifica-
tion is a core element. Similarly to event detection, scalability for high volumes
of data is a major concern.

Information diffusion [37] is another problem that shares many similarities
with event detection. Twitter [71,91] and Facebook [10] have been extensively
studied on how information flows inside the network. Information diffusion exam-
ines the impact of the network structure, which users are influential or why some
content becomes viral.

‘Event Detection’ is a term commonly used in video/image analysis and com-
puter vision [40,79,95]. In this case the goal is to identify in a video feed an inci-
dent - usually of specific type. Similar efforts have been observed in image and
video streams in social networks like Instagram, Flick and YouTube [63,64,85].

Other domains for event detection emerge as new information sources become
available. Mobile and Urban data are now in abundance in smart cities. Hence,
23 Available at http://demeter.inf.ed.ac.uk/cross/docs/fsd corpus.tar.gz.
24 Available at http://demeter.inf.ed.ac.uk/cross/docs/Newswire Events.tar.gz.

http://demeter.inf.ed.ac.uk/cross/docs/fsd_corpus.tar.gz
http://demeter.inf.ed.ac.uk/cross/docs/Newswire_Events.tar.gz
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data analysis and event processing techniques as well as complete streaming
frameworks are exploited in order to identify incidents in the streets of a city
[8,16,17,74]. Data sources that are utilized in such cases are SCATS25 data
(traffic volume information) or vehicle data like public transport data (e.g. GPS
location of buses moving around the city). The INSIGHT project develops a
system that targets at identifying disastrous events from city data.

10 Conclusion and Open Challenges

In this paper we presented an overview of the most recent techniques for detect-
ing events in online social networks. This is an area of research that emerged
during the last years, in parallel with the growth of user participation in social
networks. In this overview, we made an effort to organize the most important
research lines as well as their results. Furthermore we focused on the architec-
ture element of such systems. Due to large volumes of data, state-of-the-art data
stream and database frameworks had to be utilized. Finally we discussed how
the evaluation is being executed in event detection and mentioned the most
common evaluation metrics and datasets used. We believe that this survey will
benefit researchers in the field as well as practitioners working in commercial
applications that exploit social network applications.

The problem of event detection is a very challenging one. The definition of
the problem in Sect. 3, suggests that there are many dimensions to it. It is not
sufficient to detect that something happened, in other words, detect anomalies.
Event detection requires the automatic answering of what, when, where, and by
whom. After reporting on the most recent efforts in the area, it is clear that no
method addressed all of these questions. Therefore, there is a lot of space for
improvement towards this direction.

Another challenge that has to be addressed is the lack of public datasets.
Privacy issues along with Social Network companies’ terms of use hinder the
availability of shared data. This obstacle, is of great significance since it relates
to the repeatability of experiments and comparison between approaches. It is
not hard to observe that most approaches focus on the Twitter platform. This
is of course due to the usability and accessibility of the Twitter API. However, a
research area that depends on a single data source, as interesting as it is, entails
many risks. Nonetheless, it is expected that as new media sources emerge, event
detection will remain significant and challenging.
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67. Petrović, S., Osborne, M., Lavrenko, V.: Using paraphrases for improving first
story detection in news and Twitter. In: Proceedings of the 2012 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 338–346 (2012)

68. Pohl, D., Bouchachia, A., Hellwagner, H.: Automatic sub-event detection in emer-
gency management using social media. In: Proceedings of the 21st International
Conference Companion on World Wide Web, WWW 2012 Companion, p. 683
(2012). http://dl.acm.org/citation.cfm?d=2187980.2188180

69. Popescu, A.M., Pennacchiotti, M.: Detecting controversial events from twitter. Pro-
ceedings of the 19th ACM International Conference on Information and Knowl-
edge Management, CIKM 2010, p. 1873 (2010). http://portal.acm.org/citation.
cfm?d=1871437.1871751

70. Psallidas, F., Becker, H., Naaman, M., Gravano, L.: Effective event iden-
tification in social media. IEEE Trans. Comput. 36(3), 42–50 (2013).
http://sites.computer.org/debull/A13sept/p42.pdf

71. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In: Proceedings of the 20th International Conference on World Wide Web,
pp. 695–704. ACM (2011)

72. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web (2010). http://dl.acm.org/citation.cfm?id=1772777

73. Sankaranarayanan, J., Samet, H.: Twitterstand: news in tweets. In: Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM (2009). http://dl.acm.org/citation.cfm?id=1653781

74. Schnitzler, F., Liebig, T., Mannor, S., Morik, K.: Combining a Gauss-Markov model
and Gaussian process for traffic prediction in Dublin city center. In: Proceedings of
the Workshop on Mining Urban Data at the International Conference on Extending
Database Technology (2014, to appear)

75. Sharma, J., Vyas, A.: Twitter sentiment analysis. Indian Institute of Technology
(2010, unpublished). http://home.iitk.ac.in/jaysha/cs365/projects/report.pdf)

76. Signorini, A., Segre, A.M., Polgreen, P.M.: The use of Twitter to track levels of dis-
ease activity and public concern in the US during the influenza A H1N1 pandemic.
IEEE Trans. Comput. 6(5), e19467 (2011)

77. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lec-
ture notes]. IEEE Trans. Comput. 25(2), 128–131 (2008)

78. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.:
Online outlier detection in sensor data using non-parametric models. In: Proceed-
ings of the 32nd International Conference on Very Large Data Bases, pp. 187–198.
VLDB Endowment (2006)

79. Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex
event detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1250–1257. IEEE (2012)

80. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections
with twitter: what 140 characters reveal about political sentiment. In: ICWSM
2010, 178–185 (2010)

81. Valkanas, G., Gunopulos, D.: Location extraction from social networks with com-
modity software and online data. In: 2012 IEEE 12th International Conference
on Data Mining Workshops pp. 827–834. http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6406525

http://dl.acm.org/citation.cfm?d=2187980.2188180
http://portal.acm.org/citation.cfm?d=1871437.1871751
http://portal.acm.org/citation.cfm?d=1871437.1871751
http://sites.computer.org/debull/A13sept/p42.pdf
http://dl.acm.org/citation.cfm?id=1772777
http://dl.acm.org/citation.cfm?id=1653781
http://home.iitk.ac.in/jaysha/cs365/projects/report.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6406525
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6406525


84 N. Panagiotou et al.

82. Valkanas, G., Gunopulos, D.: Event detection from social media data. IEEE Trans-
actions on Computers 36(3), 51–58 (2013)

83. Valkanas, G., Gunopulos, D.: How the live web feels about events. In: Proceed-
ings of the 22Nd ACM International Conference on Conference on Information
and Knowledge Management, CIKM 2013, pp. 639–648. ACM, New York (2013).
http://doi.acm.org/10.1145/2505515.2505572

84. Valkanas, G., Gunopulos, D., Boutsis, I., Kalogeraki, V.: An architecture for detect-
ing events in real-time using massive heterogeneous data sources. In: Proceedings of
the 2nd International Workshop on Big Data, Streams and Heterogeneous Source
Mining Algorithms, Systems, Programming Models and Applications, BigMine
2013, pp. 103–109 (2013). http://dl.acm.org/citation.cfm?d=2501221.2501235

85. Vavliakis, K.N., Tzima, F.A., Mitkas, P.A.: Event detection via LDA for the Medi-
aEval2012 SED task. In: MediaEval, pp. 5–6 (2012)

86. Walther, M., Kaisser, M.: Geo-spatial event detection in the twitter stream. In:
Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein,
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Abstract. In recent years, various socio-political debates and scandals
have raised old and new questions regarding data protection that, among
other things, will also lead to new European legislation initiatives. How-
ever relevant each issue may be, there is far too little discussion in the
public which potentials, be it positive or negative, exist with the possi-
bility of combining data from different sources. In this article I want to
give a non-exhaustive overview of the manner in which such information
about everyone of us is collected today, before I discuss the social risks
this may entail. I close the article with some theses outlining a path that
helps to protect the rights of freedom of the citizens despite the exten-
sive collection and analysis of data (My heartfelt thanks goes to Edward
Sodmann for proofreading this text. He required tons of hours to generate
something from my text, that can be understood at all.).

Keyword: Data privacy

1 Current Trends

Information processing is increasingly integrated into everyday consumer elec-
tronics. While the average Internet user is worried about his data collected by
Amazon or posted on Facebook, information about him is being collected and
interpreted extensively in much more private and sensitive areas. Examples are:

1.1 Communication Data

WhatsApp, Twitter, and Facebook not only save the data we post about our-
selves, be it the already quite personal daily joggs or photos of their loved ones.
Hardly anyone is aware that a personality profile with information about their
marital status (marriage, children, etc.), education, consumer behavior, etc. can
be determined solely from the use of language, without actually communicating
this information [19]. So we unconsciously give many more details about us than
we realize at the time of communication.

Email is a highly decentralized form of electronic communication. There are
many providers or one can even host an email server oneself. Thus, there is no
easy way to access all emails of a person. It requires a relatively deep intrusion
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into the network infrastructure (as the NSA has shown us) to analyze email
communications on a large scale. Moreover, it is very easy to create different
email accounts for different purposes. This makes it even more difficult to create
a comprehensive profile of an email user.

The conventional forums allow for a certain anonymity. Forums are typi-
cally themed: I am interested in motorcycles and diving, so I can log into two
completely independent forums using different pseudonyms. But again, it is of
course possible to use the IP address to link the various pseudonyms to the same
person.

The communication via social networks and communication platforms such
as Facebook, Twitter and WhatsApp has influenced the ability to collect data
dramatically. Social networks thrive on the fact that they are, on the one hand,
people-oriented, and, on the other hand, forming communication monopolies.
Only if most of the communication is done via a single platform, the platform
makes sense. Facebook, Twitter and WhatsApp are successful because almost
all use the same platforms – similar platforms such as the VZ platforms have
been forced out of the market. However, the fewer platforms exist, the more they
know about us.

No one wants to have to post the same information on different platforms
just to reach different friends. Then one could just use email. But this monopoly
pushes towards a centralization of data. More so since the purchase of WhatsApp
by Facebook, and (after a cooling-off period) the subsequent pooling of data
from the two platforms, Facebook knows a great many details of billions of
people: their lives, their preferences, their behavior, their whereabouts, and, in
particular, their social networks.

A Facebook user profile can draw fairly accurate conclusions about the sexual
orientation, ancestry, religion, political attitude, personality, intelligence, well-
being, age, gender, relationship status, and the drug abuse of the user. All this
information can be obtained indirectly, without asking the user any questions
whatsover [19]. With Facebook knowing twenty percent of the world population,
this is no trifle matter!

1.2 Photos and Videos

While public video surveillance is subject to strict conditions and hence the data
protection is essentially ensured, countless pictures and videos are posted on all
kinds of communication platforms in the so-called private sector. Furthermore,
ubiquitous smartphone photography and filming with action cams is steadily
increasing. Each pastime is now captured on video without considering the people
that may unknowingly be in the background. The fact that, unlike photography
and classic filmmaking, is especially critical concerning action cams because no
conscious image design takes place. While image design usually tries to have as
little distraction in the picture as possible, action cams record everything that
happens to be in front of the lens.

This is particularly problematic since we have little impact on the publica-
tion of pictures in which we happen to be coincidentally. While we can ignore
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Facebook and the like (albeit considered as old-fashioned or nutters), we can
only object to the publication of photos if we become aware of a photo, and if
we are more than a random accessory in the background. While this used to be
no problem, as long as the photos were developed on paper and only shown in
the circle of friends, digital images quite often appear on the Internet.

Photos and videos are no highly critical information as such. Linking names
to photos and videos leads to a critical conflict situation in the near future.
The more photos are tagged, the better the face recognition method of Google,
Facebook, etc. will perform. In turn, images that have not yet been tagged, can
be assigned to specific people. Similarly, as the search for buildings with a photo
is available on Google, it is a likely scenario that in a few years one can find
the names of the people who are on a photo or video. In addition, it will be
feasible to find pictures or movies with non-public persons on the net – possibly
only because they appear randomly somewhere in the background of a picture
or video.

Since the photos and videos are often marked with metadata such as date
and location, more information, such as motion profiles, can be extracted or
extrapolated.

1.3 Smartphones

In 2014, worldwide about 1.85 billion people use smartphones [16]; in Germany
there are approximately 41 million people [15]. Apps on these devices are easily
able to collect very detailed profiles about their users – without them knowing
it. A look at the permissions of the first six matches for Android flashlight apps
reveals that these can all access the Internet, and five of the six apps require
additional permissions. The app with the most permissions, for example, can
read the device status and device ID, change system settings, retrieve running
applications, take pictures and videos, as well as read, modify, and delete arbi-
trary files on the device.

For an app that is supposed to only turn on the LED, it’s a lot of rights!
This begs the suspicion that this app is to produce not only light in the darkness
of smartphone owners, but also light in the dark of the supplier by consistently
uploading information about smartphone usage so that the supplier is able to
analyze the behavior of the user. Ironically, this app is rated above average, so
that it is installed probably more often than other, perhaps less curious apps.

Unfortunately, the user of an Android device is not empowered to withdraw
special rights of an installed app (unless he roots his smartphone). Apple with
their iOS is far ahead: once an app wants access to resources of the smartphone,
the user is asked in advance.

1.4 Internet of Things

More and more everyday items are based on electronic control modules. Thus, for
efficient energy use one’s own home becomes a networked, intercommunicating
system. Devices will cooperate in the future in order e.g. to adapt the current
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electricity consumption to the power generation status or to weather conditions.
Heaters will automatically adjust to the habits of the inhabitants.

And of course, these devices must always communicate with the owners.
Either explicitly through concrete instructions (“the washing should be done
by 16:30”), or by recording the behavior (“if it is recognized that no one is at
home on Tuesdays, the heater control can respond accordingly”). Most times,
increased comfort is made possible by the extensive collection of data. If one can
control blinds and light via a smart home functionality via the Internet, a lot
can be recorded detailing the course of our days.

Again, of course: as long as the data remain stored locally, and do not leave
their homes, this is not problematic for the time being. However, it is already
being planned for the detection of current consumption that information about
the load behavior in households are stored centrally in order to facilitate the
control of power plants and grids. Fortunately, this issue is still in the hands of
the legislature, so anonymization and aggregation of data are regulated [7]. In
the consumer sector, however, the authorities cannot respond to each new prod-
uct with new legislation. And here a technology invades our households whose
potential goes far beyond the Orwellian fantasies. Today’s television sets can be
controlled by gestures or voice commands. This is especially concerning when
the TV can be switched on via gestures or language because this requires that a
camera or microphone is continuously in receiving mode. TV sets recognize who
sits in front of them and report the appropriate user to the Internet services so
that the viewer can use these services without prior log-in. At least the man-
ufacturer Samsung stipulates that in the terms that the recorded data may be
sent to third parties [9].

Another example of the increasing networking of everyday objects is the
rising number of equipment in vehicles with communication modules. Today, all
modern cars record not only functional errors but also parameters of driving
behavior. High-end vehicles are fitted with communication modules that are
able to transmit these data online to the manufacturer. Together with the driver
recognition via electronic key or seating positions information can be generated
from the speakerphone’s address data or from the GPS data that go far beyond
mere motion profiles. Without knowing a concrete study, I am sure that the
mood of the driver can be recognized by the accelerator and brake protocol. In
contrast to the opportunities that arise here, the possibilities of black boxes for
detection of driver behavior as they are offered by commercial truck insurers are
less threatening.

1.5 Linking Information

To date, information substantially exists as data islands. Every company, every
forum, every game portal, each social media site collects data about customers or
users. For some of these providers, we may mask our identity with pseudonyms.
Once we enter into a business transaction, this is generally not possible. In
addition, Facebook in particular expects and reviews the application with a real
name, although this is actually not necessary. Research from 2006 shows that in
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an individual case it is possible to relate different, even anonymous user profiles
with each other, matching it to a specific person. The best-known example is the
assignment of a IMBD profile to a video rental customer’s account [13]. While
in this example, only a single person was de-anonymized, whole subnets of the
Flickr network could be de-anonymized in [12]. In 2000, Latanya Sweeney showed
that 87 % of all Americans could be uniquely identified using only three bits of
information: ZIP code, birth date, and sex [17]. One year before, she identified
and related the anonymized medical records of the governor of Massachusetts [6].

Meanwhile various approaches to de-anonymize people are developed by com-
bining distributed data. Researchers can given credit that they want to demon-
strate to users the possibilities and to suggest a less generous attitude with their
data. Nevertheless, it is expected that within a few years, techniques will be on
the market that link user and search profiles on a large scale. Information which
is regarded as confidential and anonymous by Internet users can be assigned to
them anyway after all.

1.6 Pre-crime Detection

Data Mining techniques are now being used for the prevention of crime and ter-
ror. “The Future Attribute Screening Technology project (FAST) system has the
capability to monitor physiological and behavioral cues without contact. That
means capturing data like the heart rate and steadiness of gaze of passengers
about to board a plane. The cues are then run through algorithms in real-time to
compute the probability that an individual is planning to commit a crime” [10].

In Memphis, Tennessee (USA), data analysis has been used to preventively
to monitor locations where potential offenses may be committed since 2005. In
2010, the police and IBM celebrated with a decline of serious crime by more than
30 %, including a 15 % reduction in violent crimes since 2006 [11]. The reason
for the decline is, according to the publication, that particular gang disputes
could be detected early. Unfortunately, it is not clear from text to what extent
people were arrested preventively, and, conversely, to what extent honest persons
preemptively avoid areas where they can potentially be arrested.

2 Why Is Privacy Important?

2.1 Loss of Autonomy and Freedom Rights

“I have nothing to hide!” This sentence is heard often at discussions about data
protection and in particular on data that is to be given to law enforcement
authorities. I would like to emphatically disagree.

“Privacy describes the extent to which a person other people are permitted to
enter one’s own world” [4,18]. We constantly negotiate the limits of our privacy
and our voluntary disclosure with others but also with ourselves. The scope of
one’s privacy is very individual, and may even vary at different times. We need
an open mental sphere to evolve. Young people need privacy to learn to think
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for themselves and to act self-confidently. The less a teenager has trust in his
privacy, the less he will dare to act contrary to the norms of his peer group,
and the more uniform and less confident he will be. But adults need privacy to
personally and professionally develop, too. Sabine Trepte formulated as a benefit
of privacy among others the autonomy to break social norms and to experiment
with new behaviors and thoughts [18].

The German Federal Constitutional Court ruled in its landmark ruling on the
census [1] that if someone is not reasonably certain how his personal information
is used and shared, he can be inhibited in its freedom, to plan and decide in a
self-determined way. People who do not know what information is held on them,
will try to behave as inconspicuously as possible. There is the likelihood that
central fundamental rights are waived without being aware.

The protection of privacy not only means that “thoughts are free”, but also
that I may share my thoughts in a safe room with the people that I trust. For
this reason, the inviolability of the home is an essential and fundamental right.
Equally important is the inviolability of communication. Of course, not every
conversation, every chat, every posting is equally confident, nor any confiden-
tiality is of equal importance. But I must be able in a figurative sense “to close
the door” at all times in order to monitor accurately who participates in a con-
versation.

In academic literature, scholars distinguish three dimensions of privacy [14]:
Informational privacy refers to the fact that my data will not be public unless I
want to. Decisional privacy describes the right to be protected in decisions and
actions from unwanted external influences. Local privacy describes the protection
against the entry of other into private rooms and areas.

And only those that respect the privacy of a person, respect him as an
autonomous person in the sense that he has the freedom to live his life indepen-
dently and to seek his own happiness [14]. Conversely, secret knowledge about
other people gives institutions power over these, which can lead to changes in
behavior and behavioral adaptations. In this sense, to understand the ruling of
the Constitutional Court: this power through secret knowledge threatens the
freedom of expression and freedom of assembly, and thus central fundamental
rights.

Unfortunately, many Internet users already resigned: “It is already too late,
they already know everything about me”. Many people who do not agree with the
data collection use this as an excuse and keep using the new communications
media. I agree with that in so far as all information that we have disclosed
via social media services, etc., cannot be taken back, i.e. cannot be deleted.
This certainly does not mean that we should continue feeling unconcerned. The
more information that is available about us, the easier it will be in the future
to associate this information with other strings of information, and finally to
generate complex personality profiles.

The sooner we begin to be careful with our data, the better. The human
quality to forget or to put into perspective what is said over time is just an
important tool for personal development, such as the aforementioned privacy.
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Only trusting the fact that details about my actions and statements over time
disappear from the memories, allows me to freely discuss. Unfortunately, the
Internet and data collection companies do not forget what we have posted!

The safest option for confidentiality is the boycott of as many Internet-based
services as possible. This way less or no information will be disclosed, of course,
and cannot be misused. And although I certainly advocate a more restrictive
use of the Internet: this path sooner or later leads to an exclusion from the peer
groups that communicate via social-media platforms. If I’m not on Facebook,
I do not get the information provided exclusively via this platform. Also note
that not even the complete Internet abstinence really solves the problem; this
strategy will only delay the collection of data and cannot really prevent it, either.
Data are now collected at every traditional purchase, every contract, and any
travel booking.

To illustrate this more vividly: you search old classmates for a class reunion?
Check with a credit agency such as Bürgel or Creditreform. They know the com-
plete move history, including any change of name of any bank client. Just give as
reason for the request “business contacts”, and – a couple of euros poorer – you
know the current address of your old class mate and, in addition, you can verify if
he is able to pay his bill himself? [8].

2.2 Transition from a State of Law to a State of Prevention

A constitutional state is different from a preventive state in that the former does
not preemptively act against potential offenders – only the charge of an offence
may lead to a penalty. Preventive actions always lead to a restriction of the
freedom of action – especially for innocent citizens.

Not without reason will the establishment of any public video surveillance be
discussed intensively – particularly from the people that have nothing to hide.
There is a very fine line between security and upholding fundamental rights. In a
constitutional state we are not able to prevent all crimes, nor will we be able to
solve every crime because of the given legal means. However, the rulings of the
Federal Constitutional Court (e.g. concerning data retention) seem to suggest
that this tightrope walk works quite well – at least in Germany.

2.3 Desolidarization Society

Machine Learning techniques as well as traditional statistical techniques are
often used for risk assessment. However, automatic risk assessment can cause
certain members of the population to be unreasonably excluded from a fair
treatment that is based on facts and not extrapolation. If scoring functions
are used already, they should produce accurate results in every case. The well-
known example of someone receiving no credit because he lives in the wrong area
indicate the poor scoring functions. However, I do not understand why trained
and experienced bank branch managers no longer have the power to overrule the
scoring result. The individual applicant may have sufficiently good proof that
ultimately speaks for getting his credit.
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In the insurance industry a more accurate risk assessment leads to a loss of
solidarity. The more closely I can determine the risk of insurance, and the more
accurately I can set the premium on this risk, the more the idea of solidarity
insurance is lost. In almost superfluous insurances such as the legal protection
insurance (for “normal” individuals) this might be a trifle.

When, however, the risk assessment excludes participation from society, we
lose a fundamental principle of our state. Consider, for example, the car insurance
sector: the fact that the premium depends on the type of vehicle is unproblematic
– cars that carry lower premiums can be an option. Since the current premium
determination has started considering whether the parents also own a car, and
how old the driver is, the premiums for liability insurance can easily vary from
case to case by a factor of three to four. I can even drive as prudently and
cautiously as I want to – I may be charged higher premiums just because the
statistics speak against me and I may not be able to afford a car. A corresponding
analysis in the field of health insurances might point at an even worse scenario
for a nation.

In my view, we are losing the basic idea of an insurance. Their idea is to spread
the risk as much as possible, to give everyone the same opportunities. If, due
to individual misconduct, premiums rise modestly, that is certainly acceptable.
But to exclude people from insurance policies putting up high premiums without
letting them have an influence on the design of the premium does not correspond
to my idea of our society.

3 Is Data Collection and Analysis to Demonize
Generally?

Data analysis is just a technique, and is not bad in itself. In many situations,
including those that will perhaps be viewed by the population as questionable
data analysis carries overall positive aspects.

The quality of Google search results bases on a very detailed analysis of
user behavior. The fact that almost always a relevant hit is already on the first
results page, reflects the quality of this analysis. The extrapolation quality of the
on-screen advertising is very high, too. There is, of course, the self-interest of
Google because the ads usually must be paid only if they are clicked. You do not
get anything for nothing – without collecting and analyzing data Google search
works just not as well (the older readers among us remember surely still with
horror at the previous attempts to adjust the keywords as closely as possible to
the search target, to aid search engines to find something useful).

And I love the assistance provided by many vendors displaying similar prod-
ucts. I can browse through music, and come across new, hitherto unknown pieces.
Invoices are archived for years by the manufacturers and may be accessed by the
customer at any time. There is no need for him to file away the bills at home in
folder. As long as the data is saved by the providers, there is little danger from
them. Scary is the fact that much more data is collected about customers than
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is required for the sale. Amazon e.g. gathers intensive data about the reading
habits of the users of its e-book reader [3].

And also in the scoring of credits, there are positive aspects of a systematic
data analysis. The denial of a loan is not only to protect the financial lender
against losses, but also very much the borrower against over-indebtedness. The
more accurate the scoring process the better I can grant credits to those that
do not overburden themselves with this loan. It is a pity, however, if the scoring
algorithm is not able to justify the classification, and if, at the same time, the
employees of the lenders are completely exempted of the freedom to lend based
on personal assessments and counter-scoring results.

There are many other data analysis applications from which citizens benefit
more or less directly. The analysis of traffic flows may optimize traffic control
and planning, so that road users get faster and more energy-efficiently to the
destinations. The analysis of the movement patterns of people in shops or at
events such as conferences can lead to improvements in the placement of objects
(sale items, break counters, . . . ).

In this sense, there is certainly an unlimited number of useful applications
of data analysis that can help to cope with the challenges that we have to face
because of limited and increasingly costly resources. But how should society deal
with the conflict between benefits and risks?

4 Conclusion

Big Data cannot be stopped, and in many areas data analysis is really helpful.
It also seems to point out that with the larger amounts of data the statistical
errors become less relevant – that are so used to analyze more data, the better
the results are.

However, we need an intense social discourse about the ways our data is
handled. We need empowered and educated citizens who are aware of the dan-
gers and consequences of data collection. Citizens who actually read the privacy
statements of companies or the permissions of apps, and discard applications
when they have doubts about the legality of the use. Citizens who understand
the principles and apply encryption techniques, and quit service providers who
do not offer any encoding. Citizens who consider carefully what information they
publish about themselves. At the same time, we need citizens who critically eval-
uate information gathered from the Internet and that rely on different sources
of information, and that are always aware of the existence of fake identities and
propaganda dressed up as information.

For these citizens, however, we need a better infrastructure to ensure their
data are safe. Easy to use encryption programs that allow local data and data
stored in cloud storage to be automatically protected by encryption. Communi-
cation systems, including in particular email, encrypting messages end-to-end,
and thereby allowing a simple but faithful key exchange. Although this software
already exists, it is still underused, which is, in my view, due to complicated
use for IT laymen. It would be desirable if pictures, videos and other documents
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could be provided with an expiry date, after which they can no longer be seen.
This would ensure that missteps in the identification process, particularly of
young people would not permanent part of their public life.

It is absolutely certain that we also need new laws. The Federal Constitu-
tional Court took very clear position in 1983 with the census ruling ensuring
the right to informational self-determination. All European countries are now
following the European Data Protection Directive, published in 1994 by having
adopted country-specific data protection laws. All these laws do no longer work
effectively in the global world, as they are binding only for those providers who
are headquartered in the EU. Those who do not want to keep to European law,
need only to open their businesses in Tonga (or the US), and can then han-
dle data in an unrestricted way. Furthermore, the penalties for offenses against
the privacy law are too low to deter potential perpetrators. Since 2012, a new
European data protection regulation has been discussed, in particular addressing
the two points mentioned above [2]. First, the privacy regulation is applicable
as soon as product is offered in Europe, regardless of where this occurs. Then,
European citizens are protected against suppliers from countries that have weak
privacy rights. On the other hand, a significant increase in the potential penalties
is planned so that this right can be enforced.

We need to ensure that people will not be constantly put into a box. The
larger the amount of data that can be used to analyze, the better purely sta-
tistical correlations work, and the less analyses that are based on models are
used [5]. Since we lack the explanations for automatically-made decisions, a bank
employee is unable to overrule the scoring decision because he cannot identify an
inconsistency between decision and request. I believe we should have the right to
oppose purely statistical assessment procedures that force the seller to disclose
the reasons for a refusal.

Still less can it be permissible to criminalize people on the basis of statistical
analyses. In a constitutional state an offender still must have actually committed
a crime before he is indicted. Each statistics-based crime prevention that deter-
mines and monitors potential criminals leads away from the rule of law towards
a prevention and surveillance state.

And finally, we need more learning techniques (and other techniques), which
ensure a very early real anonymization of the data collected. Research by e.g.
the Fraunhofer Institute for Intelligent Analysis and Information Systems shows,
that an analysis of pedestrian flows is possible just on the basis of aggregated
data that cannot not be de-anonymized [20].
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Abstract. Big Data is both a curse and a blessing. A blessing because
the unprecedented amount of detailed data allows for research in, e.g.,
social sciences and health on scales that were until recently unimagin-
able. A curse, e.g., because of the risk that such – often very private –
data leaks out though hacks or by other means causing almost unlimited
harm to the individual.

To neutralize the risks while maintaining the benefits, we should be
able to randomize the data in such a way that the data at the individual
level is random, while statistical models induced from the randomized
data are indistinguishable from the same models induced from the orig-
inal data.

In this paper we first analyse the risks in sharing micro data – as sta-
tisticians tend to call it – even if it is anonymized, discretized, grouped,
and perturbed. Next we quasi-formalize the kind of randomization we
are after and argue why it is safe to share such data. Unfortunately, it is
not clear that such randomizations of data sets exist. We briefly discuss
why, if they exist at all, will be hard to find. Next I explain why I think
they do exist and can be constructed by showing that the code tables
computed by, e.g., Krimp are already close to what we would like to
achieve. Thus making privacy safe sharing of micro-data possible.

1 Introduction

The attitude of many people with respect to privacy may seem rather ambivalent.
On the one hand they freely share rather personal – often very personal – data
on social networks such as Facebook and Twitter. While on the other hand they
baulk at the detailed information about them that is gathered both by these
social networks as well as by websites such as search engines, companies, and
also government agencies. To a great extent this seeming ambivalence is due to a
lack of awareness. Most people only now start to understand how much detailed
information on them is stored in countless databases that can, moreover, be easily
linked with each other. To understand what the advantages and opportunities
but also what the disadvantages and the risks of these vast amounts of data are.
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The reason why they become aware is “Big Data”1. Both the virtues – such as
automatic translation – and the vices – such as hacks of large customer databases
or seemingly private collections of photos – of a data driven society are presented
in the media under this heading. And with awareness, the feelings vis a vis Big
Data are changing. This can, e.g., be seen from more or less popular books on Big
Data. Whereas [14] mostly extols the huge opportunities offered by Big Data,
later books such as [11] – more from a technical point of view – and [17] – more
from a political point of view – discuss the threats to privacy as deeply as – if
not deeper than – the opportunities brought by Big Data.

Unfortunately, this growing awareness poses real threats to opportunities
of Big Data. For example, under European regulations it is already hard – if
not impossible – for hospitals to pool detailed information on rare diseases –
just a few occurrences, if any, per hospital per year – with possible detrimental
consequences for the recognition and treatment of patients. It is true that the
involuntary release of healthcare information can have disastrous consequences
for individual but the choice not to share seems about as bad, if not worse. With
a growing distaste for vast data collections such situations will only occur more
and more.

The data mining community was well aware of these threats, well before
the general public started to worry. Under the umbrella term “privacy aware
data mining” techniques such as k-anonymity [16] and differential privacy [8] –
both originating in the Statistical databases community – have been embraced,
studied and expanded upon. Yet, it is the question whether or not the deployment
of such techniques will satisfy the population or the possibly much more severe
privacy guidelines that might result from this unrest. After all, the data miner
might not be able to learn individual data, but that data is still in the database.
That is, it can potentially still leak.

In other words, privacy preserving data mining is not the answer to the
problem of data sharing. What we want is to be able to share detailed data –
micro data as it is called in Statistics – with an absolute guarantee for privacy.
That is we would like to anonymize databases in such a way that no-mater what,
none of the entries in the database can be related to a person. At the same time,
of course, this anonymized database should be related to the original in the sense
that any – sensible – statistical analysis on the one yields (mostly) similar results
to that same analysis on the other database.

Note that such an anonymized database guarantees privacy. It is OK if some-
one has access to such a database, even if you are in the original database. The
access doesn’t give any information about you at all. As an aside, note that such
anonymization techniques may also make companies more willing to share data.

1 Surprisingly often terminology arising in marketing and/or journalism enters the
scientific vernacular. While this is understandable from the point of view that funding
agencies want to fund research that society needs and researchers need funding, but
one can but wonder what would have happened if the term hypology – from the
classical Greek υπoλoγισμo (calculate) – once coined as an alternative for the term
computer science [21], would have caught on.
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Large data driven companies such as Facebook have data that is very valuable
to, e.g., the social sciences. However, since that data is also very valuable to the
company itself, it will certainly not share the data and be very careful to give
access to individual researchers. This means that it is hard, if not impossible, to
replicate research like in [2] and even more that there are problems that could be
studied but never will. The anonymization we are discussing here removes most,
if not all, commercial value of the data – after all, there are no real individuals
one could target in that database – while its scientific value is mostly retained.

The second requirement – statistical indistinguishability – simply means that
the anonymized database should exhibit, more or less, the same set of patterns
as the original one does; at least that is what it seems to mean to a pattern
miner like me.

The problem discussed in this paper is: is this possible? Can databases be
transformed so that both privacy and statistical indistinguishability can be guar-
anteed? To be upfront, this question is not answered in this paper. What this
paper presents is firstly a detailed discussion of the problem as well as a (quasi)
formal problem statement. Secondly, I’ll explain why I think that the problem
can be solved in a positive way; note that it is far from clear that such trans-
formed databases exist let alone be computed from an original database. For
this second part, the data is assumed to be simply a table with categorical data.
While I am convinced that everything discussed here is largely independent of
the type of data under consideration, sticking to categorical data simplifies the
discussion greatly.

2 Profiles

If you know exactly what a prospective customer wants, say X, you can make
her a truly personalized offer: you can now order X for only $y, this offer is valid
for the next z days. But knowing exactly what a prospective client wants is not
that easy. She may have examined, among other things, X at your website, but
that doesn’t mean that she is still interested in X. If not, adverts for X will be
a waste of money and e-mail offers for X will most likely just annoy her.

Hence, personalized offers are often based on profiles, (simple) characterisa-
tions of clients based on their attributes. For example,

Age ∈ [18, 25] ∧ Sex = male,

with the offer being something very much liked by that client group and not yet
owned, as far as you know(!), by this particular client.

In fact, profiles have a far greater use than just webvertising. Insurance com-
panies create profiles to identify high-risk groups, health researchers profile to
better understand who suffers from a certain disease or has a high(er) risk of
doing so, and literature researchers profile authors to be able to attribute an
anonymously published book.

In most, if not all, these cases, the profiles consist of simple selection state-
ments as above. What varies is what queries are deemed to be interesting and
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how they are discovered. One way to formally define this type of profiling is
through theory mining [13]:

Definition 1. Given a query language Q, a selection predicate φ, and a database
db the theory T (Q, φ, db) is defined by

T (Q, φ, db) = {q ∈ Q | φ(q, db) = true}
In other words, the theory consists of all those queries – i.e., profiles – that are
interesting in db according to φ.

The predicate φ could simply count the size of q(db) and check whether or
not it exceeds a threshold, then we have frequent pattern mining [1]. Or it could
check whether or not the size of q(db) increases by much for two consecutive
time points, in which case we have emerging patterns [7]. Or it could compute
an aggregate on some attribute for q(db) and when that is higher than a threshold
(which may the value of that aggregate on the complete database or on (some)
complement) giving us subgroup mining [10]. And so on, and so on.

Whether or not we can compute the complete theory or have to be satisfied
with a heuristically computed set of good results depends very much on both
Q and φ. But there is a large collection of both pattern languages (as Q is
often called) and interestingness predicates (as φ is usually called) together with
algorithms to discover interesting patterns on a wide variety of data types.

That is, there are algorithms that allow us to discover profiles for a wide
variety of tasks, making profiling easily one of the most important applications
of Big Data. For the purposes of this paper we will mostly restrict ourselves to
one specific type of profiles, viz., frequent patterns:

T (Q, φ, db) = {q ∈ Q || q(db) | ≥ θ}
In which θ is some user defined threshold and Q consists of conjunctive select
queries like

Ai = vi,l ∧ Aj = vj,m ∧ · · · ∧ Ak = vk,n

over the discrete domains of the attributes of the single table database.
The reason why profiles (patterns) are so popular is what social scientist call

homophily, or as the English proverb has it: birds of a feather flock together.
That is (in our case), the assumption that people who resemble each other in
some (important)respects will also resemble each other in other respects.

Moreover, most predicates φ will ensure that |q(db)| is large enough to ensure
that it is likely that the profile q generalizes to unseen data. Which is in turn
usually tested with out of sample techniques such as cross-fold validation or
other techniques.

Another, slightly unrelated, reason why patterns – and especially frequent
patterns on categorical data – are important is that they form the basis of many
other data analysis techniques. Most, if not all, categorical data analysis is based
on count data; count data on the complete table but even more count data on
sub-tables like marginals and conditionals. These sub-tables are identified by
patterns, the count is the support of that pattern.
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Again for reasons of generalizability, also in this case one is mostly interested
in patterns with a reasonably large support. Think, e.g., of decision trees [3]
– which are also based on count data, i.e., the support of patterns. One may
grow trees to small-support patterns, but these will quickly be pruned away by
statistical hypothesis testing methods.

In other words, an important use of micro-data is to mine for patterns with
reasonably large support. Clearly, that is not the only use as it would preclude
the targeting of a single client, but for data analysis purposes it is arguably the
most important use. And large-support patterns are reasonably safe with regard
to privacy. After all, external knowledge will not help to identify you in a large
peer-group. Or does it?

3 Re-identification

Anonymization, especially together with perturbation and/or generalization,
may seem an excellent way to guarantee the privacy of those who are in the
database. After all, anonymization means that sensitive attributes, such as names
and social security numbers, are removed; perturbation means that random noise
is added to the remaining attributes; and generalization means that individual
attribute values are grouped, e.g., by discretization or by using hierarchies. What
possible private information can remain after such a thorough sanitization of the
data?

Unfortunately, it only seems an excellent way. Time and time again it has
been proven that with outside data sources – background knowledge – it is pos-
sible to identify individuals in such anonymized data sets. Because this pertains
directly to what we want to achieve, we discuss two such cases.

The first case is the famous Netflix prize [24]. To allow data miners outside
of Netflix to build a recommender system which beats Netflix own system – and
get a substantial reward for that – Netflix released an anonymized dataset to
the public. The entries in that data set are of the form

< user, movie, date of grade, grade >

in which both user and movie are integer ID’s. For each movie, title and year of
release are given in a separate data set, for users there is, of course, no further
information whatsoever. This may seem a completely safe data set to release.
Unfortunately it isn’t. The reason is that Netflix isn’t the only site to which
users upload ratings, IMDb is another one.

Very soon after the release of the data set, in 2007, two researchers, Arvind
Narayanan and Vitaly Shmatikov, from the University of Texas at Austin were
able to link users from Netflix to users from IMDb.

In [15] they showed how to do this. The main cause to make it possible is
that the data is sparse in the sense of the following definition.

Definition 2. A dataset D is (ε, δ)-sparse with regard to the similarity measure
s if

Pr(sim(r, r′) ≥ ε ∀r′ �= r) ≤ δ
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That is, a data set is sparse if for the fast majority of records in the data set
there are no other records that are remotely similar.

In our pattern language this can be expressed as: a data set is sparse if the
vast majority of records satisfy (almost) unique patterns; i.e., patterns with a
support of one or close to it. Note that the paper doesn’t detail the length of
these patterns, just their existence. This is different for the second paper we
briefly discuss, on the re-identification of credit card data [6].

In [6], the data set D consists of 3 months of credit card transactions for 1.1
million users in 10,000 shops. It is anonymized by replacing the user details by
an abstract user-id, the time of purchase is truncated to the date only and the
transaction-amount is discretized in progressively larger bins. The tool of choice
of the authors is unicity.

Definition 3. For p ∈ N, define for each user I ∈ D S(Ip) to be the set of
traces in D that match the trace t(I) of I on p randomly selected data points in
t(I). The unicity at p is then defined by:

εp = Pr(|S(Ip)| = 1)

That is, εp is the probability that knowing p transactions of a user – background
knowledge – is enough to identify the complete trail (all purchases) of that user.
For that particular data set, the authors show that ε4 > 0.9, i.e., over 90 % of
the users are identifiable from only 4 known transactions. In other words, a little
outside knowledge gives you a lot of new knowledge. With external knowledge
you are not safe, even if one only knows that you are in the complete database.

4 The Problem

From the previous two sections we have learned that

1. for data analysis we need the support of patterns that have a reasonably large
support,

2. but unfortunately individuals happen to satisfy very low support patterns as
well.

Hence, guaranteeing privacy when sharing data is not easy if we want to allow
(useful) pattern mining. The – very naive, a bit differential privacy like – app-
roach of disclosing the support only if it is big enough obviously fails. If the
support of p1 is large, so will the support of p1 ∨ p2 be, regardless of the support
of p2 and, thus, disclosing a lowerbound on the support of the latter.

The only way to guarantee that private information cannot be retrieved from
a shared data set is by randomizing it. For, if the individual tuples in our table are
completely random, no amount of external knowledge can link them to persons.
The tuples are random, they do not correspond to any person.

The downside of such randomized data is, of course, that their use for data
analysis is limited. Models derived from random data do not tell us very much
about the real world. In fact, truly random data cannot be modelled. In the
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terminology of Algorithmic Information Theory [12], data is precisely random
if it cannot be compressed. So, while truly random data guarantees privacy, it
isn’t the answer as it renders the shared data useless.

The randomized data would not be useless if the support of large(r) patterns
would be more or less preserved; only more or less as models should be robust
against small changes anyway. In other words, our problem is can we randomize
the data such that

– small support patterns have a mostly random support
– while large(r) support patterns have mostly their original support?

Or as a pseudo2 formal problem statement:

Problem. Given a database db, thresholds θ1 and θ2 and parameters ε and δ,
create a database r such that

1. for all patterns p such that suppdb(p) ≤ θ1:

Pr(suppdb(p) �= suppr(p)) ≥ δ

2. for all patterns p such that suppdb(p) ≥ θ2:

Pr(|suppdb(p) − suppr(p)| ≤ ε) ≥ δ

That sharing r instead of db mitigates privacy risks while allowing to draw
statistical analysis as if one was given db should be clear. For complete (unique)
tuples – or by extension high-unicity patterns – one doesn’t know whether or
not they correspond to a real world entity, whatever external information you
can link it to. While requirement 2 guarantees that models derived from r will
not be too far from models derived from db.

As already mentioned in the Introduction, I’m unfortunately not – yet(!) – able
to give a proven algorithm that constructs such a randomized version. Instead I’ll
discuss why I believe that such algorithms exist. The task to design one is future
work.

5 Do Solutions Exist?

It is not straightforward that our problem has a solution. In fact, it is obvious
that for some settings no solution can exist. If one sets, e.g., ε1 = 1, ε2 = 2,
ε = 0 and δ = 1, i.e. requiring that all support = 1 patterns in db get a different
support in r, while all patterns with a support ≥ 2 in db get the same support.
Clearly, this is an inconsistent set of requirements per the p1 ∨ p2 argument
above. Hence there are at least cases in which no solution exists.

It is easy to see that both criteria on their own are satisfiable, i.e., allow for
solutions to exist. Let, e.g., db be a 0/1 database. If we only regard requirement
1, a simple bit-flip will suffice; if every 0 is set to 1 while simultaneously every 1
2 If only because of the large number of parameters we use.
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is set to 0 all patterns that happen to have a support that is different from half
the database will get a new support. It is even easier to satisfy just the second
requirement. Simply make r a copy of db. Unfortunately, these two solutions
are about as different as it gets. Hence, we still have no reason to believe that
solutions that satisfy both criteria simultaneously exist.

A different way to approach this is by counting. Again assume that db is a
binary database with m columns and n rows. That is, db ∈ D, in which D is the
set of all ntimesm binary databases. Obviously

|D| = 2nm

Clearly, r will also be in D. In other words, if we wouldn’t care about the support
of patterns we could replace db by any of the 2nm elements of D. But we do care
about the support of patterns and each pattern limits the set of elements of D
we can use.

If a pattern π covers p columns and s rows in db an equality requirement for
condition 2, diminishes D by a factor 2−ps for the cover of the pattern and a
factor

(
2p−1
2p

)(n−s)
for the rows not covered by π. That is, r ∈ D′ with

|D′| = 2−ps

(
2p − 1

2p

)(n−s)

|D|,

which may be a lot smaller than D and there are many such patterns. Having ε
leeway makes the reduction smaller, but again, there are many such patterns.

Something similar can be said for the condition 1 pattern constraints. While
in general their reduction, given (obviously) by:

|D′| =

(
1 − 2−ps

(
2p − 1

2p

)(n−s)
)

|D|,

will be smaller, there are usually even more small support patterns than there
are larger support patterns.

Hence, also if one counts, it is not obvious that our problem admits solutions.
However, the situation is not necessarily as bleak as it seems. For, the patterns
one discovers in db are not independent, i.e., it is not true that each new pattern
considered will decrease the number of possible candidates for r as drastically as
the above calculation shows. This is, e.g., witnessed by the success of condensed
representations such as non-derivable item sets [4].

Unfortunately, the complexity of non-derivable item set mining, based on the
inclusion/exclusion principle, makes it hard to give a good estimate on how large
the pool D′ of candidates for the randomized r actually is.

Hence, we still have no compelling reason to believe that such randomized
versions exist. At most we have evidence that if they exist they’ll be probably
hard to find. So, why do i believe they exist? The reason is that given a database
db I can generate databases that are close to what r should be.
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6 Code Tables and Database Generation

The crux to the database generation is a code table [19,23]. A code table CT is
a two column table in the first column there are patterns in the second column
there are code words from some prefix code. To be a valid code table, CT has
to contain all the singleton patterns, i.e., all patterns of the form

Ai = vi,j

Moreover, both the patterns and the code words should be unique; i.e., occur at
most once in CT . To encode a database we first cover it. To find the cover of a
tuple t ∈ db, we go down the first column of CT and search for the first pattern
pi such that

pi ⊆ t

If t\pi = ∅ we are done and cov(t) = {pi}. If not, we recursively cover t\pi. To
encode t we simply replace each pattern pi in its cover by its related code word
ci ∈ CT .

Not all code tables are equally good for database generation, but the optimal
one in the Minimum Description Length principle (MDL)-sense of the word
is. The MDL principle [9] can be paraphrased as: Induction by Compression.
Slightly more formal, it can be described as follows. Given a set of models H,
the best model H ∈ H for data set D is the one that minimises

L(H) + L(D|H)

in which

– L(H) is the length, in bits, of the description of H
– L(D|H) is the length, in bits, of the description of the data when encoded

with H.

Given the left-hand side of CT – we fix the patterns – it is easy to determine the
optimal code words. To compute this code length, we encode each transaction in
the database db. The usage of an pattern p ∈ CT is the number of tuples t ∈ db
which have c in their cover. The relative frequency of c ∈ CT is the probability
that c is used to encode an arbitrary t ∈ db. For optimal compression of db, the
higher P(c), the shorter its code should be. In fact, from information theory [5],
we have the Shannon code length for c, which is optimal, as:

lCT (c) = − log(P (c|db)) = − log
(

usage(c)∑
d∈CT usage(d)

)

So, if we know which patterns to use – as well as their order in CT – it is easy
to determine the optimal code table. Unfortunately, it is less easy, to use an
understatement, to determine the optimal set of patterns as well as their order.
Fortunately heuristic algorithms such as Krimp [23] and Slim [20] are known
to produce good approximations.
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In [22], we showed how code tables can be used to generate data. The crucial
observation is that CT defines a probability distribution over D, the domain of
db as follows. For t ∈ D,

lCT (t) =
∑

c∈cover(t)

lCT (c) =
∑

c∈cover(t)

− log (P (c | db))

= − log

⎛

⎝
∏

c∈cover(t)

P (c | db)

⎞

⎠ = − log (P (t | db))

Clearly, the last equal sign is a bit optimistic if we want our distribution to be
exactly the one db was sampled under. For, in that case it is only true if all the
patterns in the code table are mutually independent and they are not. They are
not independent for the simple reason that we use the order in CT to encode
the data.

However, when

P (c1 | db) × P (c2 | db) < P (c1 ∪ c2 | db)

it becomes favourable to add c1 ∪ c2 to the code table and if it is added, it will
be above c1 and c2 (otherwise it wouldn’t be used in encoding the database).
Hence, problems may only occur for those cases where:

P (c1 | db) × P (c2 | db) > P (c1 ∪ c2 | db)

But this means that c1 ∪ c2 doesn’t occur very often in db. In other words, we
expect that the distribution over db defined above is not too far off from the true
distribution that gave us db.

To generate transactions from the distribution, we need the notion of a partial
cover, which is defined as follows:

1. pc a partial cover, i.e., a subset of CT , such that:
(a) ∀p1, p2 ∈ pc : p1 �= p2 → p1 ∩ p2 = ∅; i.e., the patterns are defined on

disjoint sets of attributes)
(b) ∃t ∈ D : ∪c∈pcc ⊆ t; i.e., there exists a tuple in D which is partially

covered by pc – pc is consistent.
note that pc = ∅ is, of course, fine

2. pcc = {c ∈ CT | pc ∪ {c} is a partial cover}
Given a partial cover pc /∈ Dom(db), define for p ∈ pcc its selection probability
as follows:

Psel(p | pc) =
P (p | db)∑

q∈pcc P (q | db)

With these notions defined, we generate tuples as follows.

– start with pc = ∅,
– iterate
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– choose an p ∈ pcc according to Psel

– pc := pc ∪ {p}
– until pc ∈ D
– return pc.

By iterating this simple procedure we can generate complete data sets. Since
our probability distribution is, however, not necessarily the same as the one db
was sampled from there is no guarantee that the generated database satisfies the
requirements we stated for a randomized version.

Fortunately, in both [18,22]. We showed experimentally that databases gen-
erated in this way are remarkably close to what we want in this paper. More
specifically we showed in [22] that the support of patterns in the original and in
the generated data sets are close to each other. Moreover, in that same paper
we defined an anonymity score by

AS(dbg, dbo) =
∑

sup∈dbg

1
sup

P (t ∈ dbg | t ∈ dbo)

NAS(dbo, dbo) =
AS(dbg, dbo)
AS(dbg, dbg)

So a small NAS means that small support item sets in the original data set
have a small chance that they end up in the generated data set. And for the
experiments in [22] the NAS score was indeed small.

In [18], we showed that queries computed on the generated data give answers
close to the same queries computed on the original data; especially for select
queries, which are actually the patterns we are interested in here. Moreover we
showed that one can even answer such queries by only generating tuples that
satisfy the query.

Hence, both these papers indicate that we can already generate databases
that are close to the kind of randomized databases we want. The biggest problem
in that respect is that we cannot prove they satisfy the requirements. It is,
however, the existence of these close to ideal database through which I believe
randomized databases, fit for sharing, exist and can be constructed.

7 Conclusion

Big Data is both a blessing and a curse. A blessing because it allows us to
study phenomena that were inaccessible before. From the behaviour of people,
to health research, to the intricate workings of the cell. It is a curse because it
means that details of the life of persons are recorded at an unprecedented scale
opening up the risk by hacking or other means supposedly private data becomes
public. What is worse is that the curse might outweigh the blessing. If privacy
cannot be guaranteed, people will be unwilling to share information.

In this paper I advocate not to share the original data, but a randomized ver-
sion. A version in which the details – the tuples in the database – are completely
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random, but in which the larger statistics (counts) are almost always close to
the same statistics computed on the original database.

At the moment I cannot prove that such a randomization is possible. I have,
however, shown that by using code tables such as computed by sc Krimp [23]
we can already get close to our ideal; unfortunately not provably so, only exper-
imentally. In the not to far future I do hope to publish an algorithm that will
provably randomize a database in the sense advocated in this paper. Thus mak-
ing it possible to share micro-data privacy-safe.

Acknowledgements. The author is supported by the Dutch national COMMIT
project.
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Abstract. Support Vector Machines (SVM) have a strong theoretical
foundation and a wide variety of applications. However, the underlying
optimization problems can be highly demanding in terms of runtime and
memory consumption. With ever increasing usage of mobile and embed-
ded systems, energy becomes another limiting factor. Distributed ver-
sions of the SVM solve at least parts of the original problem on different
networked nodes. Methods trying to reduce the overall running time and
memory consumption usually run in high performance compute clusters,
assuming high bandwidth connections and an unlimited amount of avail-
able energy. In contrast, pervasive systems consisting of battery-powered
devices, like wireless sensor networks, usually require algorithms whose
main focus is on the preservation of energy. This work elaborates on this
distinction and gives an overview of various existing distributed SVM
approaches developed in both kinds of scenarios.

Keywords: Distributed data mining · Support Vector Machines · High-
performance computing · Wireless sensor networks

1 Introduction

Every day, more and more data is getting stored on personal computers, elec-
tronic consumer devices, company servers, the world wide web or, more recently,
in the cloud. In the past, such data was mostly generated by humans. Due to
tremendous advances in hardware technology, however, data today is also auto-
matically assessed by sensors which are deployed across devices as diverse as
mobile phones, embedded systems in cars, satellites or wireless sensor networks
that monitor, for instance, conditions in harsh environments. In many cases,
the individual machines and devices are connected to one or even several net-
works, which sometimes even include the internet. Such connectivity opens up
new opportunities for inferring information and answering questions that relate
to data not only assessed or stored by a single node, but across many nodes.
For example, data from spatially distributed sensors may be used to predict
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 109–138, 2016.
DOI: 10.1007/978-3-319-41706-6 5
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global events like catastrophes, e.g. tsunamis, earth-quakes or floods. Some other
applications include predicting the traffic flow in smart cities, which improve the
tracking and monitoring of objects with RFID sensors in production settings,
or that help physicists to analyze huge amounts of data assessed by different
telescopes.

Inferring information from raw data is a data analysis task. In the past, many
methods for the analysis of data have been developed by such fields as diverse as
signal processing, statistics, artificial intelligence, machine learning, data mining,
information retrieval and research in databases. In their basic form, the devel-
oped methods usually expect all data to be available at a single node in main
memory, or at least to be stored in a centralized database. For small amounts of
data, this restriction can easily be accounted for by transferring all data first to
a central node which then performs the analysis. However, the amounts of data
generated today are more and more often too large to be transferred, stored and
processed at a single node. Existing systems are not scalable. Either the size of
the data is so big that it cannot even fit into the main memory of a supercom-
puter. This case will be referred to as big data scenario. Or the systems and
devices recording and analysing data are so constrained that sending all data
to a more powerful central node would be too costly in terms of bandwidth
or energy consumption. This case will be denoted as the small devices scenario.
Both cases require algorithms which are able to analyse the data in a distributed
fashion, instead of working fully centrally.

However, the types of algorithms required for both types of scenarios may be
different. For big data analysis, it usually can be assumed that all compute nodes
have a continuous power supply. While the reduction of energy consumption
may still be an important aim for economical or environmental reasons, energy
isn’t necessarily a limiting technical factor (though it can be). Similarly, the
available communication bandwidth in cluster and cloud computing is also high.
In contrast, for small battery-powered devices connected to wireless networks,
energy and bandwith are usually the most scarce resources. Distributed data
analysis algorithms for small devices therefore must be designed explicitly for
taking the energy consumption of their actions and the remaining energy into
account [2]. They also have to be more fault tolerant, e.g. by giving guarantees
on the quality of their solution even when some devices fail.

This paper presents several distributed versions of the Support Vector
Machine (SVM) [34], a popular method for data analysis with a strong foun-
dation in statistical learning theory. Despite the many existing decomposition
techniques for the underlying quadratic optimization problem, it will become
apparent how challenging it is to distribute SVM computations over different
nodes. This is especially true for non-linear problems in the vertically parti-
tioned data scenario, where not observations, but their features are distributed
over different nodes. Each method will be discussed in relation to its suitability
for big data analysis and usage on small devices.

The next section briefly introduces regularized risk minimization and a vari-
ety of accompanying SVM problems in their non-distributed, original form.
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Section 3 elaborates on the distinction between high-performance computing
and pervasive systems and introduces two different types of data partitioning
methods which have different implications for learning. Section 4 presents dis-
tributed SVMs for horizontally partitioned data, while Sect. 5 does the same for
the vertically partitioned scenario. The summary and conclusions in Sect. 6 give
a final overview over all methods, discuss their shortcomings and point to future
research opportunities.

2 Support Vector Machines

The following subsections shortly describe the problem of supervised function
learning in the context of structural risk minimization. They then introduce
several variants of the Support Vector Machine (SVM), for which distributed
versions are presented in Sects. 4 and 5.

2.1 The Problem of Supervised Function Learning

Let X be a space of observations and Y be a set of possible labels. The task
of supervised function learning aims at deriving a function f : X → Y from a
sample S = {(x1, y1), . . . , (xn, yn)} of n observation/label pairs (xi, yi) ∈ X ×Y ,
drawn i.i.d. from an unknown joint probability distribution P (X,Y ), such that
the expected risk

Rexp =
∫

L(y, f(x))dP (x, y)

is minimized. Here, L is a convex loss function L : Y ×Y → R
+
0 which measures

the cost of assigning the wrong label to individual observations. Sample S is also
often called the training data.

The challenge of supervised function learning is that the expected risk cannot
be calculated explicitly, since the underlying joint distribution of observations
and labels is unknown. What can be directly estimated is the empirical risk

Remp =
1
n

n∑

i=1

L(yi, f(xi)), (xi, yi) ∈ S

which measures the loss of function f on the training data. The empirical risk
Remp approximates Rexp as n → ∞. However, it is well known that the min-
imization of Remp alone on a small finite number of sample observations may
yield functions f that perform arbitrarily bad on other samples. This problem
is also known as overfitting.

2.2 Structural Risk Minimization

An empirical approach for obtaining a better estimate of Remp is to train func-
tion f on a subset of sample S and to test it on a hold-out test set of labeled
observations not used for training. Given a set of candidate functions f1, . . . , fc,
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the best function fopt is then the one with the lowest estimated test error. While
such a black-box approach is able to work with arbitrary functions, it can be
time consuming.

Whenever it is possible to measure the so called structural complexity of
functions, structural risk minimization yields a more principled way of chosing
fopt. Intuitively, given two functions with the same empirical risk Remp, the
less complex function should generalize better and thus overfit less likely. For a
function class f(x,γ) with parameter vector γ, the structural risk (also called
regularized risk) is therefore defined as

Rreg(γ) = Remp(γ) + λΩ(γ) ,

where Ω is a strictly monotonic increasing function which measures the capacity
of function class f depending on parameter vector γ. The trade-off between
the empirical training error and the capacity is managed by λ. The capacity
can for example be measured with help of the Vapnik-Chervonenkis dimension
(VC dimension), which yields a probabilistic bound for the regularized risk. The
existence of guaranteed error bounds may be seen as one reason for the great
success of methods following the structural risk minimization principle, like the
large margin methods explained in the following.

2.3 Support Vector Classification

Large margin approaches for classification follow the regularized risk minimiza-
tion principle by maximizing a margin between a linear function and the nearest
data points.

Let observations be vectors consisting of p real-valued components, i.e. xi ∈
R

p. Let further constrain Y to two values, -1 and +1, which is the problem of
binary classification, and for simplicity assume that all observations are linearly
separable. Then there must exist a hyperplane

H = {h|〈w, h〉 + b = 0}
with w being normal to H, bias b with |b|/||w|| being the perpendicular distance
of H to the origin and ||w|| being the Euclidean norm of w, such that

∀n
i=1 yi(〈w,xi〉 + b) ≥ 0,

i.e. that all observations of a particular class are lying in the same halfspace as
given by H. Given w and b, observations x may be then be classified by function

f(x,w, b) = sgn(〈w,x〉 + b) .

The parameters w and b define the position and orientation of H and can be
seen as the parameter vector γ of function f .

There are infinitely many hyperplanes which correctly separate positive and
negative training examples and thereby minimize the empirical risk Remp. How-
ever, there is only one hyperplane which also minimizes the structural risk Rreg.
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This hyperplane separates positive and negative observations with the largest
possible margin, which is defined as the perpendicular distance of points clos-
est to the hyperplane. For normalized w, b such that points xi closest to the
hyperplane satisfy |〈w,xi〉 + b| = 1, the margin is given by 1/||w||. Instead
of maximizing 1/||w||, we may as well minimize 1

2 ||w||2. Furthermore, one can
allow for non-separable data points that lie inside the margin or even in the
wrong halfspace by introducing slack variables ξi and minimizing the sum of
such errors.

Primal SVM Problem for Non-separable Data. The primal optimization
problem for non-separable data then becomes

min
w

1
2
||w||2 + C

n∑

i=1

ξi (1)

s.t. ∀n
i=1 : yi(〈w,xi〉 + b) ≥ 1 − ξi .

In terms of structural risk minimization, parameter C in (1) trades off the empir-
ical risk (the sum over all slack variables) against the structural risk (the size of
the margin). This relationship can be even easier seen when replacing (1) by the
hinge function notation

min
w

n∑

i=1

[1 − yi(〈w,x〉 + b)]+ + λ||w||2 , (2)

where ξi = [1 − yi(〈w,xi〉 + b)]+ is the so called hinge loss function. It can
be shown that this problem is a quadratic optimization problem with inequality
constraints. Such problems are sometimes easier to solve by introducing Lagrange
multipliers αi, μi, i = 1, . . . , n for each inequality constraint, resulting in the
Lagrangian

LP (w, b,α,μ) =
1
2
||w||2−C

n∑

i=1

ξi−
n∑

i=1

αi(yi(〈w,xi〉+b)−1+ξi)−
n∑

i=1

μiξi (3)

Dual SVM Problem for Non-separable Data. By setting the partial deriv-
atives of LP for w and b to zero and inserting the solutions w =

∑n
i=1 αiyixi and

0 =
∑n

i=1 αiyi into (3), one obtains the dual SVM problem for non-separable
data

max
α

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyj〈xi,xj〉 (4)

s.t. ∀n
i=1 : 0 ≤ αi ≤ C and

n∑

i=1

αiyi = 0

The solution w =
∑n

i=1 αiyixi is a linear combination of data points for which
0 ≤ αi ≤ C. Such data points are also called support vectors (SVs), as they
sufficiently determine the computed hyperplane.
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Kernel Functions. For better or non-linear separation of observations, it may
help to map them to another space, called feature space, by a transformation
function Φ : X → H. Space H often needs to have a higher dimension than X.
Hence, an explicit calculation of the dot product in (4) on the mapped obser-
vations can become quite time-consuming. However, it can be shown that for
certain mappings Φ, there exist kernel functions k(x,x′) = 〈Φ(x), Φ(x′)〉 which
correspond to dot products in H. Often, replacing 〈Φ(x), Φ(x′)〉 by k(x,x′) allows
for a much more efficient computation of the dot product. Moreover, since solv-
ing the dual problem only depends on values of the dot product, but not the
observations themselves, instance space X may not only consist of real-valued
vectors, but arbitrary objects like strings, trees or graphs which have an asso-
ciated similarity measure. Further, there exist kernel functions with H being
infinite. Popular kernel functions are, for instance, the

Polynomial Kernel k(x,x′) = (κ〈x,x′〉 + δ)d , (5)

RBF Kernel k(x,x′) = e− ||x−x′||2
2σ2 and (6)

Sigmoid Kernel k(x,x′) = tanh(κ〈x,x′〉 − δ) . (7)

As will become clear in the following sections, non-linear classification by
the use of kernel functions is often difficult to achieve in distributed settings,
especially in the vertically distributed scenario described in Sect. 5.

2.4 Solvers

There exist several methods that solve the centralized SVM problem. Interior
point methods [4] replace the constraints with a barrier function. This results in
a series of unconstraint problems which can be solved efficiently with Newton
or Quasi-Newton methods. However, the general methods have a cubic run-time
and quadratic memory requirements. More popular approaches are chunking and
decomposition methods [18,23,25], which work on a subset of dual variables at
a time. Finally, gradient methods like Pegasos and SVM-perf iteratively update
the primal weights. Their convergence rate is usually O(1/ε).

2.5 Support Vector Regression (SVR)

For real-valued outputs yi ∈ R, the primal SVM problem can be stated like

min
w

1
2
||w||2 + C

(
n∑

i=1

ξi +
n∑

i=1

ξ′
i

)

s.t. ∀n
i=1 : 〈w,xi〉 + b ≤ yi + ε + ξ′

i and
〈w,xi〉 + b ≥ yi − ε − ξi .

The dual formulation then contains two αs, one for each ξi and ξ′
i.
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2.6 Support Vector Data Description (SVDD) and 1-Class SVM

Supervised classifiers are trained on two or more classes. Their accuracy may
suffer if the distribution of observations over classes is highly imbalanced. For
instance, this may happen in applications where unusual events and therefore
data about them is scarce, like faults in machines, quality deviations in pro-
duction processes, network intrusions or environmental catastrophes. In all such
cases, many positive examples are available, but only few or even no examples
of the negative class.

The task of data description, or 1-class classification [22], is to find a model
that well describes the observations of a single class. The model can then be used
to check whether new observations are similar or dissimilar to the previously seen
data points and mark dissimilar points as anomalies or outliers. Support Vector
Data Description (SVDD) [32] computes a spherical boundary around the data.
The diameter of the enclosing ball and thereby the volume of the training data
falling within the ball are user-chosen. Observations inside the ball are classified
as normal whereas those outside the ball are treated as outliers or anomalies.

More formally, given a sample of training observations S = {x1, . . . ,xn} ⊆ X
that all belong to the same class, the primal SVDD problem is to find a minimum
enclosing ball (MEB) with radius R and center c around all data points xi ∈ S:

min
R,c

R2 : ||c − xi||2 ≤ R2, i = 1, . . . , n

Similar to the previously presented support vector methods, kernel functions may
be applied whenever observations are arbitrary objects or the decision bound-
ary in the original space is non-spherical. The dual problem after the kernel
transformation then becomes

max
α

n∑

i=1

αik(xi,xi) −
n∑

i,j=1

αiαjk(xi,xj) (8)

s.t. ∀n
i=1 : αi ≥ 0,

n∑

i=1

αi = 1 .

The primal variables can be recovered using

c =
n∑

i=1

αiΦ(xi), R =
√

αT diag(K − αT Kα)

where K = (kij) with kij = k(xi,xj) is the n×n kernel matrix. Support vectors
are data points for which αi > 0. An observation x belongs to the training set
distribution if its distance from the center c is smaller than radius R, where
distance is expressed by the set of support vectors SV and the kernel function:

||c − Φ(x)||2 = k(x,x) − 2
|SV |∑

i=1

αik(x,xi) +
|SV |∑

i,j=1

αiαjk(xi,xj) ≤ R2
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It can be shown [33] that for kernels k(x,x) = κ (κ constant) that map all input
patterns to a sphere in feature space, (8) can be simplified to the optimization
problem (where 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T )

max
α

−αT Kα : α ≥ 0, αT 1 = 1 (9)

Whenever the kernel satisfies k(x,x′) = κ, any problem of the form (9) is an MEB
problem. For example, Schölkopf [27] proposed the 1-class ν-SVM that, instead
of minimizing an enclosing ball, separates the normal data by a hyperplane
with maximum margin from the origin in feature space. If k(x,x′) = κ, the
optimization problems of the SVDD and the 1-class ν-SVM with C = 1/(νn)
are equivalent, and yield identical solutions.

3 Distributed Systems and Computation

The components of distributed SVM algorithms concurrently work on subprob-
lems of the previously presented quadratic optimization problems. Although the
underlying problems are quite similar, algorithms may specialize on certain types
of distributed systems, architectures and network topologies. For our discussion,
important distinctions are to be made between parallel and distributed comput-
ing, and between high-performance computing and pervasive distributed sys-
tems. This section elaborates on the differences, as far as they concern the dis-
tributed SVM algorithms presented in the following sections of this paper. Most
of the following material is based on [31], which is recommended for further
details. Finally, we present two different ways of how data can be partitioned in
distributed settings and discuss their implications for learning.

3.1 Parallel vs. Distributed Computing

Although parallel and distributed systems share common properties and prob-
lems, they are also fundamentally different. Parallel algorithms are assumed to
run on different processors, but on the same machine. The components of par-
allel algorithms usually have access to shared memory segments, which can be
used for the coordination of different processes or threads of execution. Commu-
nication is only as costly as reading from or writing to main memory. Critical
conditions, like program exceptions or hardware failures, will usually leave the
system in a well-defined state, which may also include shutdowns of the whole
system. Moreover, parallel processes share the same system clock. In compari-
son, distributed components run (or at least are expected to run) on different
physical entities. By definition, they cannot share the same physical memory,
but have a local memory and must coordinate themselves by exchanging mes-
sages over physical communication lines. The time for sending and receiving
messages over such lines is usually several orders of magnitudes higher than the
time to access main memory. On battery-powered embedded or mobile devices,
communication usually also consumes lots of energy and thus doesn’t come for
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free. Further, in distributed systems partial failures, i.e. failures of individual
components, are common and sometimes hard to distinguish from valid system
states. For instance, a sender may have difficulties to determine if other compo-
nents have received a message or not. A message may have been dropped due
to failure of communication lines that are not even directly linked to the sender,
it may get lost due to a hardware failure at the receiving end, or the receiver
got the message, but cannot acknowledge it in the required time frame, caused
by a high computational load. It might also occur that the message has been
delivered, but the acknowledgement is getting lost on its way back to the sender.
In each case, it is hard for the sender to determine the state of the receiving end,
leading to difficult synchronization problems. Similar problems may be caused
by differing system clocks of different physical entities.

Considering the differences of parallel and distributed systems, distrib-
uted algorithms usually must be designed to be much more fault-tolerant and
autonomous than parallel algorithms. Moreover, communication costs must be
taken into account and possibly traded off for computation. With the advent of
pervasive systems, another limiting factor that must be taken into account is
the consumption of energy. Due to these differences, we have excluded from this
paper parallel SVMs like [8] or [38] that rely on shared memory implementations
instead of message passing.

3.2 High-Performance vs. Pervasive Computing

Despite the differences between parallel and distributed systems, algorithms
designed for running in high-performance clusters often follow the paradigm
of parallel computation. This partly can be justified by the control exerted over
such systems, since machines in a cluster operate in a well-defined and closed
environment. In particular, it may be assumed that communication lines are
highly reliable and have a high bandwidth for fast communication. Also, the
network topology stays the same during the run of a distributed algorithm. The
computational resources per node usually may be assumed to be at least as
high as that of contemporary hardware and furthermore, each node potentially
may use an unlimited amount of energy. Frameworks and libraries for high-
performance computing, like MPI, Storm or Hadoop, try to make the design of
distributed algorithms as transparent as possible, giving the impression of work-
ing with a single system of parallel processors. Intricate details of fault handling,
synchronization and coordination between distributed components are usually
automated to a large degree and shielded from the developer as much as possible.
Nevertheless, to benefit for example from automated fault handling procedures,
developers must usually provide extra code. Another important property of high-
performance clusters is that the data to work on oftentimes is transferred to such
systems explicitly, with the ability to control how data is stored and partitioned
across different networked nodes. This may allow for easier and more performant
scheduling of distributed processes.

In comparison, pervasive distributed systems like wireless sensor networks
(WSNs) consist of small devices that communicate with each other over some-
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times highly unreliable communication lines. They may have a low bandwidth,
prohibiting excessive data transmission. Data is usually directly assessed at
each networked node and, due to communication restrictions, must be processed
locally as much as possible. However, the computational units at the same time
are tiny in terms of CPU power and main memory. In addition, battery-powered
devices have severe energy constraints. Especially with mobile devices, the net-
work topology might change continously. Hence, distributed algorithms that can
work in such restricted environments must be differently designed than those
following a parallel computation paradigm. The predominant concern often is
not speed of computation, but to find a solution with satisfying accuracy at all,
given the circumstances.

The quadratic optimization problems underlying most variants of support
vector learning usually have high demands on resources, like CPU power, main
memory and energy. Due to the iterative nature of most solvers, partial results
like current support vectors, predictions or optimization variables often need to
be transmitted several times to other nodes. With unlimited access to energy
and a sufficiently high bandwidth, high performance clusters may solve moder-
ately sized SVM problems in less time than their centralized counterpart, even
if more data than the whole dataset is transmitted. In contrast, transmitting
large amounts of data is prohibitive in big data or pervasive scenarios, where
the most limiting factors are bandwidth and energy. In the following, an algo-
rithm will be called communication-efficient if it transmits less data than the
whole dataset. Though many distributed SVM algorithms have been designed
for high performance distributed computation, there are more and more authors
who claim that their algorithms might run in highly restricted environments
like WSNs. Therefore, we will not only discuss the performance of distributed
SVM algorithms in terms of accuracy and speed, but also with regard to their
communication costs.

3.3 Types of Data Partitioning

Many data analysis methods expect observations and labels in a fixed-size n× p
data matrix D, whose rows store the feature values of observations in S. There
exist two main scenarios for the partitioning of D across distributed nodes [6].
In the horizontally partitioned data scenario, each node stores a subset of obser-
vations (usually together with their labels). This means for j = 1, . . . ,m nodes,
we have datasets Sj ⊆ S and S = S1 ∪ · · · ∪ Sm with Su ∩ Sv = ∅ (u �= v
for u, v = 1, . . . , n) and corresponding data matrices D1, . . . ,Dm. In the verti-
cally partitioned data scenario, each node stores only partial information about
observations, i.e. subsets of their features, but for all observations. Let x[j] ∈ R

pj

denote a vector which contains pj features of observation x available at node j.
Columns of the data matrix D are then split over the nodes, i.e. each node j
stores a n × pj submatrix D[j] whose rows consist of vectors x1[j], . . . ,xn[j].

From a learning point of view, both scenarios exhibit different properties.
Local datasets in the horizontally partitioned scenario may be seen as potentially
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skewed subsamples of the whole training sample S. In principle, in a preprocess-
ing step, one could use a distributed uniform sampling algorithm like the one
introduced in [10] to adjust for the skewedness. Anyhow, each training example
belongs to the same global instance space X. In comparison, partial informa-
tion about observations in the vertically partitioned data is not just a skewed
representation of the whole dataset, but the local vectors do not even share the
same space. Hence, it is much harder to design communication-efficient algo-
rithms in cases where features from different nodes are conditionally dependent,
given the label. Modeling such dependencies necessarily requires to join features
from different nodes, potentially resulting in a large communication overhead.
Since both scenarios require different learning strategies, the rest of the paper is
divided into two different sections accordingly.

4 Horizontally Distributed SVMs

For horizontally partitioned data, one can identify two main strands of distrib-
uted algorithms. The first type of algorithms is based on an exchange of sum-
mary information about the local datasets, like support vectors, with a central
coordinator or neighboring peer nodes. The different variants are presented in
Sect. 4.1. The second type of algorithms is discussed in Sect. 4.2. The different
variants solve parts of the underlying optimization problem in a distributed fash-
ion and only exchange partial results with other nodes. Finally, Sect. 4.3 presents
a way to cast the original problem into a distributed least squares formulation.

4.1 Distributed Learning on Summarized Data

There exist several distributed approaches for horizontally partitioned data that
are based on the exchange of summary information about observations. Many
of such approaches are inspired by early incremental versions of the SVM which
repeatedly keep only the support vectors of previous learning steps for training.
More sophisticated versions have demonstrated that although support vectors
are not sufficient representations of a dataset, correct results can be achieved by
exchanging support vectors in multiple iterations or by keeping other relevant
data points. The following subsections first describe the aforementioned incre-
mental approaches and then discuss distributed methods that are also based on
the exchange of summary information between nodes.

Incremental SVMs. Instead of learning on a single batch of data, the incre-
mental SVM proposed in [30] assumes a training set S to be divided into disjunct
subsets S1, . . . , Sm. The training procedure works incrementally. In the initial
first step t = 1, the algorithm trains a SVM on set S1, but only keeps the support
vectors SV1. At each following time step t, an SVM model ft is trained on the
union St ∪ SVt−1 of the current training set St and the support vectors SVt−1

found in the previous step. Empirical results on UCI datasets suggest the incre-
mental SVM achieves a similar performance as the standard batch SVM trained
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on all data up to the corresponding time step t, i.e. also at the end of train-
ing. The performance drops significantly if the SVM is only trained on a subset
(90 %) of the determined support vectors, from which the authors conclude that
the incremental SVM finds a minimal set of support vectors. The authors further
point out that the incremental SVM can be seen as a lossy approximation of the
chunking method [23], with the incremental approach considering each support
vector only once.

The incremental procedure proposed in [30] appears plausible as long as the
distributions of training examples in each subset S1, . . . , Sm are similar to the
distribution of data points in the whole training set S. In cases where the training
algorithm has full control over how S is split into subsets, the aforementioned
condition could be achieved by a uniform sampling of examples from S. However,
that type of control can neither be assumed in a real streaming case, nor in many
distributed settings, where the data partitioning is already given.

The case where the statistical properties of each batch S1, . . . , Sm may differ
from those of S has been investigated, among others, by [26]. In contrast to
detecting concept drift, the focus is on learning a single concept from all data.
However, though training examples in each batch consistently represent that
concept, their distributions differ. The author notes that while support vectors
provide a condensed and sufficient description of the learned decision boundary,
they do not represent the examples themselves. That is, in terms of empirical
risk minimization, the support vectors provide an estimate of P (X|Y ), but not
of P (X). If the number of support vectors is small in comparison to the number
of examples in the next batch, their influence on the decision boundary will be
small. It is demonstrated how decision boundaries can differ between an SVM
trained on all data and one trained on a subset of the data, with SVs from
another subset added. The few support vectors are treated as mere outliers,
which the SVM is known to be robust against. Therefore, [26] proposes to weight
prediction errors on support vectors higher than errors on training examples in
the new batch by replacing the original SVM objective (1) with

min
w

1
2
||w||2 + C

(
∑

i∈S

ξi + L
∑

i∈SV

ξi

)
,

where S is the set of new training examples, SV is the set of old support vectors
and L = 2 n

|SV | . It is shown that the modified incremental algorithm empirically
achieves a higher accuracy than the plain version proposed in [30].

Iterative Exchange of Support Vectors. While [26] gives a counter example
which shows that local sets of support vectors may differ strongly from the global
set of support vectors, [7] includes a formal proof. Like [1], the authors further
show that points on the convex hull provide a sufficient statistic for SVM learning
from distributed data sources. However, for higher dimensions, computing the
convex hull is exponential and thus not efficient.

In [5], the same authors propose a scheme that is, according to their reason-
ing, efficient and exact. The idea consists of exchanging support vectors itera-
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tively with a central node. At iteration t, each local site j determines its current
set of support vectors SV t

j , based on the dataset Sj ∪ GSV t−1, where Sj is the
local data stored at node j and GSV t−1 is the global set of support vectors j
has received from the central node at the previous iteration t − 1. Each node
sends its local set of support vectors to the central node, which merges them to
the global set GSV t and communicates it to all local nodes. The authors sketch
a proof which shows that after a finite number of iterations, the local sets of
support vectors converge to the globally optimal set of support vectors.

Cascade SVM. The Cascade SVM introduced in [16] is based on a similar
idea as the previously presented incremental SVMs, which is to identify and
eliminate non-support vectors as early as possible and only communicate sup-
port vectors between distributed nodes. Proposed is a hierarchical binary tree
topology of cascading SVMs. At the beginning, disjunct subsets S1, . . . , Sm of
S are distributed over the leaves of the tree. An SVM is trained at each leave
and the resulting support vectors are communicated to the parent node in the
next layer of the hierarchy. At the parent nodes, SVMs are trained on unions of
support vectors of the previous layer. The root node communicates the finally
determined support vectors to each leave, and each leave decides if any of its
input vectors would become new support vectors. When the set of support vec-
tors has stabilized over all leaves, the algorithm stops, otherwise the hierachical
cascade is traversed again. The algorithm thus includes a similar feedback loop
as the approach proposed in [5], but due its hierarchical design, it may earlier
filter data points that are not in the global set of support vectors.

It is proven that the Cascade SVM converges to a set of support vectors
that is globally optimal in finite time. However, no bound is given for the total
number of iterations. For the standard datasets tested, like the MNIST dataset,
the authors report a low number of iterations between 3 and 5. Moreover, with
16 machines in a cluster, the final number of support vectors and the size of
subsets at each leave is about 16 times smaller than the total number of 1 M
data points. Training time was reduced from about one day on a single machine
to one hour with the distributed approach.

In practice, run-time and communication costs will largely depend on the
ratio of training examples to support vectors. Often, bad choices of hyperpara-
meters, like C or σ for the RBF kernel, result in an unnecessarily large number
of support vectors. Unfortunately, optimal hyperparameters are hard to deter-
mine in advance, but must be found experimentally. Similarly, a high number of
support vectors can be expected for complicated non-linear decision boundaries.

[20] prove and demonstrate that the iterative exchange of support vectors
converges to the global optimum also in case of other network topologies. Partic-
ularly, they train local SVMs and exchange support vectors with their ancestors
and descendants in a strongly connected network. It is shown that the binary cas-
cade proposed in [16] is a special case of a strongly connected network and that
a random strongly connected network topology may lead to faster convergence.
A ring topology has the slowest convergence. Further tested are synchronous
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and asynchronous versions of the algorithm. The synchronous implementation
dominates in terms of training time, while the asynchronous version leads to less
data accumulation (number of exchanged support vectors) in sparser networks.

Energy-Efficient Distributed SVMs. In [12], the incremental procedure pro-
posed in [26] is brought into the context of distributed wireless sensor networks.
Subsets of S are assumed to be stored at clusterheads. Such clusterheads may be
determined by already existing energy-efficient clustering network protocols (for
an overview, see e.g. [2]). Similar to the original incremental algorithm, models
are consecutively trained on the data Si at clusterhead i and support vectors
received from the previous clusterhead in a chain of clusterheads. The authors
regard varying distributions of observations by a different weighting of exam-
ples and support vectors, as already proposed in [26]. Empirically the algorithm
is shown to be similarly accurate, but more energy-efficient than transmitting
all data to a central node and training a single SVM on all data. However, in
comparison to [5,16], the algorithm is not guaranteed to find a globally optimal
solution. Moreover, it was only evaluated on a single synthetic two-dimensional
dataset consisting of two Gaussian distributions. Like the Cascade SVM, the
communication costs will very much depend on the number of support vectors
found. Here, it may happen that clusterheads at the end of the chain always
receive more support vectors than those at the beginning. Balancing the net-
work’s total energy consumption would thus require a technique for changing
the order of communication dynamically.

For solving the last problem, in [13] the same authors propose two gossip
algorithms that exchange summary information between one-hop neighboring
nodes. A single iteration of the minimum selective gossip algorithm (MSG-SVM)
at time step t consists of training SVMs at each node, based on the currently
available local information. Each node then communicates its current set of sup-
port vectors to all one-hop neighbors and all nodes update their current model
at time step t + 1. Although the authors give no explicit stopping criterion for
their algorithm, they argue that over time, all nodes will converge to the same
SVM model. However, they also argue that their algorithm is sub-optimal and
will not converge to the same solution as a centralized SVM trained on all data.
The idea of this proof is based on the same argument as already given in [7].
It remains unclear if between iterations, nodes only keep the determined sup-
port vectors or if exchanged support vectors are added to the already available
local data points. In the first case, data points that might later become support
vectors could be thrown away and would thus be missed. In the second case,
however, the iterative exchange of support vectors closely resembles the filtering
mechanism and feedback loops of the approaches introduced in [5] and [16],
which both converge to the global optimum. The second proposed strategy,
the sufficient selective gossip algorithm (SSG-SVM), ensures convergence to the
global optimum by exchanging points that lie on the convex hull of each class.
While this algorithm might work efficiently on the synthetic two-dimensional
datasets used for evaluation, it is inefficient for higher dimensions (see [5]).
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In [14], the authors propose to trade-off communication costs for accuracy by
exchanging only a pre-determined percentage of observations between neighbor-
ing nodes. The observations to be transmitted by each node are ranked by their
distance from the current determined local hyperplane. For a single type of syn-
thetic data, consisting of two 2-dimensional Gaussians, the authors demonstrate
that accuracy can be increased by transmitting slightly more observations than
only the support vectors. While the algorithm allows for trading off communica-
tion costs for accuracy, it remains unclear how much accuracy decreases if much
less is sent than the set of support vectors. Since the number of support vectors
may be high, it appears somewhat questionable that any of the aforementioned
approaches could truly work in highly energy-constraint systems like WSNs.

4.2 Distributed Optimization and Consensus

As discussed in the previous sections, communication costs for the exchange
of summary information largely depend on the structure of the data. When
both classes are well separated and the decision border is simple, the SVM
model will be simple, consisting only of a small number of support vectors.
However, the number of support vectors necessarily grows with the complexity
of the decision border in non-linear cases and may also be high for bad choices
of hyperparameters. In the worst case, where all data points become support
vectors, the whole dataset needs either to be exchanged between local nodes and
a fusion center or between neighboring peer nodes. According to our definition
from Sect. 3, such algorithms are not communication-efficient.

An important observation is that all previously presented approaches are
globally solving the SVM problem in its dual formulation (see Sect. 2.3), where
each constraint on training example xi in the primal formulation introduces an
optimization variable αi. The total number of variables is thus n. In comparison,
in the primal problem, the number of optimization variables equals the dimension
p of weight vector w plus one variable for the bias. In many practical applications,
the number of features, and therefore the dimension of w, is much smaller than
the number of training examples. Further, it can be noted that the constraints
on subsets of the training examples, as given in the horizontally partitioned
data scenario, can be checked independently from each other (i.e. locally). The
question therefore arises if instead of exchanging special data points, like support
vectors, an iterative exchange of w and b among nodes could be feasible as well
and more communication efficient at the same time.

Alternating Direction Method of Multipliers (ADMM). In [15], the cen-
tralized SVM problem is divided into a set of decentralized convex optimization
problems which are coupled by consensus constraints on the weight vector w. The
approach followed is the Alternating Direction Method of Multipliers (ADMM),
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which in general solves the problem

min
v

f1(v) + f2(Av)

s.t. v ∈ P1,Av ∈ P2 ,

where f1 : R
p1 → R and f2 : R

p2 → R are convex functions, A is a p2 × p1
matrix, while P1 ⊂ R

p1 and P2 ⊂ R
p2 denote non-empty polyhedral sets. The

problem is made separable by introducing an auxiliary variable ω ∈ R
p2 :

min
v,ω

f1(v) + f2(ω)

s.t. Av = ω,v ∈ P1,ω ∈ P2

Let α ∈ R
p2 denote the Lagrange multipliers corresponding to the constraint

Av = ω. The augmented Lagrangian is

L(v,ω, α) = f1(v) + f2(ω) + αT (Av − ω) +
η

2
||Av − ω||2 ,

where η > 0 controls how much equality constraints may be violated. ADMM
minimizes L in an alternating fashion, i.e. first for the primal variable v and
then for the auxiliary variable ω. After each iteration, it updates the multiplier
vector α. With t denoting the current iteration, the ADMM iterates at t+1 are
given by

vt+1 = argmin
v∈P1

L(v,ω(t),αt),

ωt+1 = argmin
ω∈P2

L(vt+1,ω,αt),

αt+1 = αt + η(Avt+1 − ωt+1)

The first two optimization problems may be solved on different processors or
machines. In a distributed setting, their results must be communicated over
the network, such that each node can update its multiplier vector α. It can be
proven that after a finite amount of iterations, the iterates αt will converge to
the globally optimal solution α∗ of the dual problem.

In [15], the centralized SVM problem is cast into an ADMM formulation.
The network is modeled by an undirected graph G(P,E), where vertices P =
{1, . . . , m} represent nodes and the set of edges E describes communication
links between them. The graph is assumed to be connected and each node j
only communicates with nodes in a one-hop neighborhood Nj ⊆ P . Each node
j ∈ P stores a sample Sj = {(xj1, yj1), . . . , (xjnj

, yjnj
)} of labeled observations,

where xji is a p×1 vector from R
p and yji ∈ {−1,+1} is a binary class label. The

original primal SVM problem (see Sect. 2.3) is cast into the distributed ADMM
framework by putting consensus constraints on the weight vectors wj ,wl and
bias variables bj , bl of each node j and its one-hop neighboring nodes l ∈ Nj :
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min
{wj ,bj ,ξji}

1
2

m∑

j=1

||wj ||2 + mC

m∑

j=1

nj∑

i=1

ξji

s.t. yji(〈wj ,xji〉 + bj) ≥ 1 − ξji ∀j ∈ P, i = 1, . . . , nj

ξji ≥ 0 ∀j ∈ P, i = 1, . . . , nj

wj = wl, bj = bl ∀j ∈ P, l ∈ Nj .

For ease of notation, the authors define the augmented vector vj :=
[wT

j , bj ]T , the augmented matrix Xj := [[xj1, . . . ,xjnj
]T ,1j ], the diagonal

label matrix Yj := diag([yj1, . . . , yjnj
]), and the vector of slack variables

ξj := [ξj1, . . . , ξjnj
]T . Πp+1 is a (p + 1) × (p + 1) matrix with zeros everywhere

except for the (p + 1), (p + 1)-st entry. It follows that wj = (Ip+1 − Πp+1)vj for
[Πp+1](p+1)(p+1) = 1. With these vector and matrix notations, the problem can
be rewritten as

min
{vj ,ξj ,ωji}

1
2

m∑

j=1

vT
j (Ip+1 − Πp+1)vj + mC

m∑

j=1

1T
j ξj

s.t. YjXjvj � 1j − ξj ∀j ∈ P

ξj � 0j ∀j ∈ P

vj = ωjl,ωjl = vl ∀j ∈ P,∀l ∈ Nj

where the auxiliary variables {ωjl} decouple parameters vj at node j from those
of its neighbors l ∈ Nj . The augmented Lagrangian for the problem is

L({vj}, {ξj}, {ωjl}, {αjlk}) =
1
2

m∑

j=1

vT
j (Ip+1 − Πp+1)vj + mC

m∑

j=1

1T
j ξj

+
m∑

j=1

∑

l∈Nj

αT
jl1 (vj − ωjl) +

m∑

j=1

∑

l∈Nj

αT
jl2(ωjl − vl)

+
η

2

m∑

j=1

∑

l∈Nj

||vj − ωjl||2 +
η

2

m∑

j=1

∑

l∈Nj

||ωjl − vl||2 (10)

where the Lagrange multipliers αjl1 and αjl2 correspond to the constraints vj =
ωjl and ωjl = vl. The quadratic terms ||vj −ωjl||2 and ||ωjl −vl||2 ensure strict
convexity, while parameter η allows for trading off speed of convergence against
approximation error.

The distributed iterations that solve (10) are

{vt+1
j , ξt+1

j } = argmin
{vj ,ξj}

L({vj}, {ξj}, {ωt
jl}, {αt

jlk})

{ωt+1
jl } = argmin

{ωjl}
L({vt+1

j }, {ξt+1
j }, {ωjl}, {αt

jlk})
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αt+1
jl1 = αt

jl1 + η(vt+1
j − ωt+1

jl ) ∀j ∈ P,∀l ∈ Nj

αt+1
jl2 = αt

jl2 + η(ωt+1
jl − vt+1

l ) ∀j ∈ P,∀l ∈ Nj .

For details of how to simplify these iterations further and how to formulate the
corresponding dual, see [15]. In each iteration, each node j ∈ P must solve a
quadratic optimization problem that is similar to the original SVM problem,
but the local datasets Sj on which it needs to be solved can be considerably
smaller than the whole dataset S = S1 ∪ . . . ∪ Sm. After each iteration, nodes
must communicate their local solutions vj to each one-hop neighbor and then
update their local multiplier vectors. Casting the SVM problem into the ADMM
framework guarantees that after a finite number of iterations, the local solutions
vj at each node j ∈ P equal the global solution w, b that would have been found
by training a centralized SVM classifier on all data S.

As long as the number of iterations is smaller than the total number of
training examples n, the algorithm communicates less than the whole dataset.
On the MNIST dataset used for evaluation in [15], the algorithm only needs
about 200 iterations for reaching a similar error as a centralized SVM. Since
in each iteration, only p + 1 scalars are transmitted, the total communication
costs are considerably smaller than, for instance, those of the Cascade SVM that
transmits about 60 k p-dimensional support vectors.

Even although each local optimization problem is solved in its dual formu-
lation, only primal weight vectors are exchanged between nodes. The non-linear
case is thus much harder to solve, since direct application of the Φ transformation
may lead to high-dimensional weight vectors and therefore to high communica-
tion costs. Direct application of the kernel trick is not possible. The authors
of [15] therefore propose to enforce consensus of the local discriminants on a
subspace of reduced rank. This however requires preselected vectors common to
all nodes, which introduce a subset of basis functions common to all local func-
tional spaces. The choice of such vectors isn’t necessarily straightforward and
potentially requires the algorithm to be run again for each new classification
query. Due to its complexity, the non-linear version is not discussed here. For
further details, see [15].

Distributed Dual Ascend. [17] presents a method for distributed SVM learn-
ing based on distributed dual ascend. Let Pj(d) with d = 0 be the solution of a
standard linear SVM with zero bias trained on the data Sj at node j:

Pj(d) = argmin
w[j]

λ

2m
||wj ||2 + wT

j d +
1
m

∑

(xi,yi)∈Sj

max{0, 1 − yi〈wj ,xi〉} .

The proposed distributed scheme uses d �= 0 for tying together the local results
wj while iterating over the local solutions Pj(·). At the beginning, the algorithm
sets λ

(0)
j = 0 and μ

(0)
j = 0. Then, in each iteration, each node j computes

updates λ
(t)
j ← −μ

(t−1)
j − λ

mPj(μ
(t−1)
j ) and passes its solution to a central node,



Distributed Support Vector Machines: An Overview 127

which calculates μ
(t)
j ← −λ

(t)
j + 1

m

∑m
j=1 λ

(t)
j and communicates the solution

back to each local node. The final output at iteration T is w∗ = − 1
λ

∑m
j=1 λ

(T )
j .

The algorithm is based on principles of Fenchel Duality (for further details,
see [17]) and thus has a linear convergence rate, i.e. it takes O(log(1/ε)) iterations
to get ε-close to the optimal solution. With a linear kernel, only p scalars need to
be transmitted in each iteration. The authors have also extended the algorithm
to non-linear kernels. There, in the worst case, all components of vector α need
to be exchanged, meaning that each node j must transmit n/m scalars and
receive all remaining αs in each iteration. Therefore, if T > p, the algorithm is
not communication-efficient.

Distributed Block Minimization. For the linear SVM, [24] rewrite the dual
SVM problem (see Sect. 2.3) as

min
α

αT Qα/2 − 1T α

s.t. ∀n
i=1 : 0 ≤ αi ≤ C

where Quv = yuyvxuxv. [35] have shown that this problem can be used with
sequential block minimization (SBM), i.e. that at each iteration t, only a single
block Sj of matrix Q is considered. The authors show that when solving for the
variables in this block, the variables from other blocks don’t need to be kept in
memory. Suppose that αt is a solution after t iterations and that at t + 1, the
focus is on block Sj , with dj = αt+1[j]−αt[j] being the direction for components
of the α vector that are associated with block Sj . Then, according to [24], dj

may be obtained by solving the optimization problem

min
dj

dT
j Q[j, j]dj/2 + (wt)T Ujdj − 1T dj (11)

s.t. 0 � αt[j] + dj � C ,

where Q[j, j] is a submatrix of Q consisting only of entries associated with the
training examples in Sj and Uj is a p×|Sj | matrix where the i-th column is the
i-th example in Sj , multiplied by its label yi. For solving the problem, all that
needs to be kept in memory are the training examples in Sj and the p-dimensional
vector wt. After solving (11), wt is updated as wt+1 = wt +

∑
xi∈Sj

dj [i]yixi.
The distributed block minimization (DBM) with averaging scheme proposed

in [24] is then straightforward: Instead of processing each block Sj sequen-
tially, they are all optimized in parallel. That is, given a central coordinator
and j local nodes, per iteration t each node j solves (11) for Sj , sends Δwt

j =∑
xi∈Sj

dj [i]yixi to the central coordinator and sets αt+1[j] = αt[j] + 1/m · dj .
The central coordinator then computes wt+1 = wt + 1/m

∑m
j=1 Δwt

j from the
deltas received by each local node. The new vector w must then be transmit-
ted to each local node, before a new iteration starts. The authors also discuss
another variant than averaging, using line search for updating w.

In each iteration, the algorithm communicates O(mp) values. The authors
argue that for a constant number of iterations, the communication complexity
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becomes independent from the number of training examples n. However, they
haven’t provided a proof of global convergence or for the rate of convergence.
Empirically, the number of iterations needed to achieve sufficient accuracy on two
different datasets was only 20. On both tested datasets, one proprietary from
Akamai with 79 M training examples and the other a public learning to rank
dataset from Microsoft with 37 M training examples, the algorithm achieves a
higher accuracy than LIBLINEAR-CDBLOCK (see [35]) in a much shorter time.

4.3 Incremental Least Squares SVM

[11] introduces a distributed SVM based on a slightly different formulation of the
SVM, the so called Least Squares SVM [29]. In the least squares formulation, the
inequality constraints of the original SVM problem (see Sect. 2.3) are replaced by
equality constraints and a 2-norm error, leading to the unconstraint optimization
problem

min
w,b

1
2
||w||2 +

λ

2
||1 − Y(Dw − 1b)||2 ,

where Y is a diagonal matrix with Yii = yi. Setting the gradient w.t.r. w and
b to zero, instead of a quadratic optimization problem one obtains a system of
(p + 1) linear equations

[w b]T =
(

1
λ
I◦ + ET E

)−1

ET Y1 ,

where E = [D−1] and I◦ denotes a (p + 1) × (p + 1) diagonal matrix whose
(n + 1)-th diagonal entry is zero and the other diagonal entries are 1.

As the authors show, it is possible to solve this system of linear equations
incrementally:

[w b]T =

⎛

⎝ 1
λ
I◦ +

m∑

j=1

ET
j Ej

⎞

⎠
−1

m∑

j=1

ET
j Yj1 . (12)

In the distributed version of their algorithm, each node j computes the local
sums ET

j E and ET
j Yj1 independently from each other and communicates them

to a central coordinator. The coordinator can then sum up these matrices and
globally solve the linear system of Eq. (12).

The algorithm obviously can speed up computations, because the sums
involved in solving the linear system of equations can be computed in parallel
over different nodes j. With a linear kernel, the algorithm is communication-
efficient if n > p2. For cases where p2 > n, the authors applied the Sherman-
Morrison-Woodbury formula to the linear system of equations, resulting in a
n × n instead of a (p + 1) × (p + 1) matrix. For non-linear kernels, the algo-
rithm usually is not communication-efficient, since the original data matrix D is
replaced by the kernel matrix K, resulting in an n-dimensional weight vector w
and thus a system of n linear equations.
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5 Vertically Distributed SVMs

The vertically partitioned data scenario has been especially examined in the con-
text of privacy-preserving data mining. However, as will be shown in Sect. 5.1,
the approaches followed are generally not communication-efficient. Hybrid solu-
tions that combine local and global models are presented in Sect. 5.2. They may
reduce communication costs by several orders of magnitude, but in some cases
at the expense of a decreased prediction performance. Finally, Sect. 5.3 discusses
consensus algorithms, which guarantee convergence to a global optimum, but
might transmit more data than the original dataset.

5.1 Privacy-Preserving SVMs

[21,36,37] present privacy-preserving SVMs that are mainly based on the com-
munication of kernel matrices. A central observation in each work is that entries
of the n × n kernel matrix K are separable in the sense that

k( [EF ] , [GH]T ) = k(E, GT ) + k(F, HT ) or (13)

k( [EF ] , [GH]T ) = k(E, GT ) � k(F, HT ) (14)

where k : Rn×p × R
p×n → R

n×n denotes the kernel function for whole matri-
ces, + denotes standard addition and � denotes the Hadamard componentwise
product of two matrices with same dimensions. In [21] it is shown that the linear
dot product kernel k(x,x′) = 〈x,x′〉 satisfies (13), while the RBF kernel (6)
satisfies (14). Moreover, separability can be extended to polynomial kernels (5).

In a distributed setting, D[j] is the n × pj data matrix whose rows consist
of the (partial) training examples Sj at each local node j and D the n × p data
matrix for the whole dataset S. Given kernel matrices K1, . . . ,Km with entries
of the linear kernel for data matrices D[1], . . . ,D[m] at m different nodes, the
global kernel matrix K for D can be calculated as

K = K1 + · · · + Km = D[1]D[1]T + · · · + D[m]D[m]T .

In [36], it is proposed that each local node j first calculates its local kernel matrix
Kj . Each node might then send Kj to a central coordinator, which builds K
and trains a centralized SVM on the full kernel matrix as usual. The scheme
preserves the privacy of each local data matrix D[j], since it doesn’t reveal the
original attribute values. For added privacy, i.e. not even revealing the entries of
the local kernel matrices, the authors propose an extended scheme with a secure
addition mechanism (for details, see [36]). There, m nodes communicate in a
ring topology where each node sends an n×n matrix to the next node and then
back to the first node.

A slightly different approach is followed in [21]. There, it is proposed to
replace the standard kernel by a reduced kernel k(D,BT ) : R

n×p × R
p×ñ →

R
n×ñ, where ñ < n and B is a random matrix. The ñ columns of the random

matrix are privately generated in m blocks corresponding to the m nodes which
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hold the corresponding feature values in their local data matrices D[1], . . . ,D[m].
Each node communicates its reduced local kernel matrix to a central coordinator,
which reconstructs the global (reduced) kernel matrix Kr according to (13) or
(14) and then trains a centralized SVM based on Kr as usual. It is empirically
shown for several standard datasets that learning with the reduced kernel matrix
achieves a similar error rate as a centralized SVM trained on the full kernel
matrix.

The authors of [37] propose a similar scheme as [21,36], but argue that the
secure addition procedure proposed in [36] or the reduced kernel are not neces-
sary for the preservation of privacy. Instead, local kernel matrices could be sent
directly to a central coordinator.

While all of the aforementioned approaches preserve the privacy of each local
dataset, only [21] may improve the total run-time, due to a reduced kernel
matrix. None of the approaches is communication-efficient for most practical
purposes. The data matrix D[j] at node j consists of n×pj real values and each
kernel matrix Kj of n × n (or n × ñ) values. Only if pj > n (or pj > ñ), less
data is sent than transmitting the original data matrices D[j] to a central node.
However, usually pj � n, especially since the total number of features p is split
among m different nodes.

5.2 Local vs. Global Optimization

As already discussed in Sect. 3.3, distributed learning in the vertically parti-
tioned data scenario is particularly challenging if the label depends on features
from different nodes. Since each local dataset Sj is based on an entirely differ-
ent feature space than the whole dataset S, separate SVM models trained on
each local dataset will have different α values and thus cannot easily be merged.
However, in cases where features from different nodes are conditionally indepen-
dent, given the label, the predictions of locally trained models or kernel values
may be centrally combined by different means. The following subsections present
approaches which combine local and global models in hybrid learning schemes.

Separable SVM. [19] solves the primal SVM problem locally at each node with
stochastic gradient descent (SGD). The global optimization problem consists of
learning a weighting for the combination of local predictions. While [19] addresses
the tasks of 1-class learning, binary classification and regression, the following
discussion is restricted to binary classification. The primal optimization problem
to solve is denoted in hinge function notation (see (2)) as

min
w∈H

λ

2
||w||2 +

1
n

n∑

u=1

max{0, 1 − y〈w, Φ(xu)〉} , (15)

where feature mapping Φ : R
p → H induces a positive semidefinite kernel

k(x,x′) = 〈Φ(x), Φ(x′)〉. (Here, without loss of generality, the intercept b is
ignored). The kernel function is split across nodes by definition of a composite
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kernel k, which is a conic combination of local kernels kj : Rpj ×R
pj → R defined

on the partial feature vectors xi[j], i = 1, . . . , n stored at node j:

k(x,x′) =
m∑

j=1

μ2
jkj(x[j],x′[j]) .

With Lagrange multipliers α, the optimization problem becomes

min
α∈Rn

λ

2

m∑

j=1

μ2
i

n∑

u=1

n∑

v=1

αuαvkj(xu[j],xv[j])

+
1
n

n∑

u=1

max

⎧
⎨

⎩0, 1 − yu

m∑

j=1

μ2
j

n∑

v=1

αvkj(xu[j],xv[j])

⎫
⎬

⎭ . (16)

Problem (16) points to the fundamental difficulty of distributing SVMs in the
vertically partitioned data scenario: All optimization variables α1, . . . , αn are
coupled with each node j = 1, . . . , m, and therefore cannot be split over the
nodes. In [19], separability is achieved by two different means. The first observa-
tion is that the terms ||w||2 and 〈w, Φ(xu)〉 in the primal problem (15) become
separable over the components of w if w and Φ(xu) are in a finite dimensional
space. The authors therefore propose to replace local feature mappings Φj with
approximate mappings ϕj which can be directly constructed using the technique
of random projections (for details, see [19]). The second observation is that the
hinge loss can be upper bounded as follows:

max

⎧
⎨

⎩0,

m∑

j=1

μj(1 − y〈w[j], ϕj(x[j])〉)
⎫
⎬

⎭ ≤
m∑

j=1

μj(1 − y〈w[j], ϕj(x[j])〉) . (17)

Summing up the inequalities (17) over training examples u = 1, . . . , n, the local
objective solved by each node j = 1, . . . ,m becomes

min
w[j]

λ

2
||w[j]||2 +

1
n

n∑

u=1

μj(1 − y〈w[j], ϕj(xu[j])〉).

A global classifier may then be constructed by combining local predictions,
i.e. 〈w, ϕ(x)〉 =

∑m
j=1 μj〈w[j], ϕ(x[j])〉. Hence, for each test point, m scalars

〈w[j], ϕ(x[j])〉 need to be transmitted.
Approximating the non-separable hinge loss by separable upper bounds nec-

essarily leads to a gap in accuracy. In addition to the local objectives, which
are solved by SGD, [19] therefore poses a central quadratic optimization prob-
lem for finding optimal weights μ1, . . . , μm. The problem is solved iteratively
in an alternating fashion. Per iteration, each node j solves its local objective
and transmits predictions for all n observations to the central node. The central
node finds optimal weights μj and transmits them back to the corresponding
local nodes. The loop stops after a user-specified number of iterations or if the
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central objective cannot be further improved. The algorithm has been evaluated
on synthetic data and five standard datasets. While on one dataset, prediction
accuracy could be improved by six percentage points with the central optimiza-
tion, improvement on the other datasets was marginal. The use of random pro-
jections and a composite kernel reduces accuracy in the range of 5.5–27.8 %
points. However, the method is highly communication-efficient, since without
the central optimization, no data needs to be transmitted during training. It is
also communication-efficient during application, since each node only transmits
a single scalar value per test point, instead of pj feature values.

Distributed 1-Class SVM. [9] introduces a synchronized distributed anom-
aly detection algorithm based on the 1-class ν-SVM (see also Sect. 2.6). A local
1-class model is trained at each node and points identified as local outliers
are sent to the central node P0, together with a small sample of all observa-
tions. A global model trained on the sample at node P0 is used to decide if
the outlier candidates sent from the data nodes are true global outliers or not.
The method cannot detect outliers which are global due to a combination of
attributes. However, the algorithm shows good performance if global outliers are
also local outliers. Moreover, in the application phase, the algorithm is highly
communication-efficient, since the number of outlier candidates is often only a
small fraction of the data. A drawback is that the fixed-size sampling approach
gives no guarantees or bounds on the correctness of the global model. Moreover,
during training, no other strategies than sampling are used for a reduction of
communication costs.

Vertically Distributed Core Vector Machine. The Vertically Distributed
Core Vector Machine (VDCVM) [28] replaces the global 1-class ν-SVM from [9]
by the Core Vector Machine (CVM) [33]. The CVM algorithm is guaranteed to
find a (1 + ε) approximation of the MEB with high probability. It starts with
a so called core set S consisting of two data points far away from each other
and their center c0. In each iteration t, the CVM samples a fixed-size batch Vt

of data points. For this batch, the algorithm determines a point zt ∈ Vt that is
furthest away from the current center ct and adds it to the current core set, i.e.
St+1 = St ∪ {zt}. The CVM stops if all core set points lie inside a (1 + ε)-ball,
i.e. ||ct −Φ(xi)|| ≤ Rt(1+ε) for all xi ∈ St+1. If not, it calculates a new MEBt+1

around all core set points, resulting in a new center ct+1 and radius Rt+1, and
goes on with the next iteration. It can be shown that the number of iterations,
and thus the core set size, is constant (see [33]) and does neither depend on the
number of observations n, nor the number of features p.

The distributed CVM algorithm proposed in [28] is based on the idea that
with a composite kernel like the one in [19], the furthest point calculation

zt = argmax
x�∈Vt

[
−

∑

xi∈St

α
(t)
i k̃(xi,x�)

]
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for positive kernels k̃(xu,xv) = k(xu,xv) + δuv/C with δuv = 1 for u = v and
δuv = 0 for u �= v may be distributed across local nodes j = 1, . . . ,m in each
iteration. Kernel k is defined as a combination of RBF kernels on features of
each local node, i.e.

k(xu,xv) =
m∑

j=1

e−γj ||xu[j]−xv[j]||2 .

With this kernel, the furthest point calculation becomes separable. In each iter-
ation t, a central coordinator sends random indices of observations which would
be contained in Vt to each local node. Each local node j = 1, . . . , m calculates a
partial sum

v
(j)
� =

∑

xi[j]∈St

α
(t)
i e−γj ||xi[j]−x�[j]||2 .

for each point x� ∈ Vt and sends it back to the central coordinator. These partial
sums are centrally aggregated (added) and used to determine the index of the
furthest point. The coordinator asks each local node for the furthest point’s
feature values, adds zt to St and then either stops or goes on with the MEB
calculation. Since the partial sum computations are based on the current α(t)

vector, in each iteration the central coordinator must further transmit α(t) to
each local node.

On many of the tested synthetic and standard datasets, the algorithm reaches
a similar prediction performance as a centrally trained standard 1-class SVM
and the distributed 1-class SVM introduced in [9]. The algorithm’s communi-
cation costs have been compared theoretically as well as empirically to sending
all data to a central node. It is demonstrated that up to a fixed number of iter-
ations T , which depends on the number of features p stored at each node, the
algorithm is highly communication-efficient and may reduce communication by
several orders of magnitude. The reduction in early iterations is mainly achieved
by sending feature values only for core set points, while the partial sums sent for
the remaining points in each subsample are just single scalar values. However,
in later iterations the transmission of vector α dominates communication costs,
which are asymptotically quadratic in the number of iterations (i.e. the core set
size).

5.3 Distributed Optimization and Consensus

[3] casts the vertically distributed SVM problem into the ADMM framework.
The general problem of model fitting on vertically partitioned data is posed in
terms of regularized risk minimization as

min
{w[j]}

l

⎛

⎝
m∑

j=1

D[j]w[j] − y

⎞

⎠ +
m∑

j=1

rj(w[j]) ,

where y = y1, . . . , yn is the vector of all labels, l measures the loss and w[j] is
a partial weight vector whose dimension corresponds to the number of features
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pj stored at node j. Multiplication of the local n× pj data matrix D[j] with the
partial weight vector w[j] results in a vector of dimension n, which consists of
the local predictions at node j for the partial observations stored at j. The loss
over all nodes should be minimized. The regularization function r(x) is assumed
to be separable. For solving with ADMM, the authors introduce an auxiliary
variable zj , resulting in the optimization problem

min
{w[j]}

l

⎛

⎝
m∑

j=1

zj − y

⎞

⎠ +
m∑

j=1

rj(w[j])

s.t. D[j]w[j] − zj = 0, j = 1, . . . , m .

For the SVM problem in particular, the distributed ADMM iterates are

wt+1[j] = argmin
w[j]

(η

2
||D[j]w[j] − D[j]wt[j] − zt + Dw

t
+ ut||2 + λ||w[j]||2

)

zt+1 = argmin
z

(
1T (mz + 1)+ +

η

2
||z − D[j] − Dw

t+1 − ut||2
)

ut+1 = ut + Dw
t+1 − z̄t+1 ,

where the bar denotes averaging, η allows for trading off speed of convergence
against approximation error and λ controls the structural risk. Updates of the
weight vector w require solving local ridge regression problems at each node.
The z updates can be shown to split to the component level, i.e. they can be run
on each node independently from each other (for details, see [3]). What needs
to be communicated to other nodes in each iteration is vector Dw, which is the
average of predictions over all nodes.

The communication costs will depend on the total number of iterations T .
In comparison to the horizontally distributed consensus SVM (see [15]), con-
sensus is not to be reached on p components of the weight vector w, but on n
predictions after applying the partial weight vectors w[j] to local data. There-
fore, in each iteration n scalar values need to be communicated by each node.
If ∃j : T > pj , already more data would be transmitted by j than the local
data, which is not communication-efficient. Unfortunately, the authors provide
no empirical evaluation of how many iterations the algorithm needs to reach a
sufficient accuracy on different datasets. In general, however, ADMM is known
to have a slow convergence rate.

6 Summary and Conclusions

There exist several solutions for the distributed computation of SVMs in the
horizontally partitioned data scenario which are communication-efficient, at least
for the linear kernel. Algorithms exchanging summary information, like support
vectors, speed up computation and can be communication-efficient if the number
of support vectors is small. However, their number depends on the structure
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of the data, chosen hyperparameters, and on the type of used kernel. Running
such types of algorithms in pervasive distributed systems with energy-constraints
thus comes at a risk. They seem to be better suited for moderately sized problem
instances solved on a high-performance cluster. Their communication complexity
is O(T |SV |), where T is the total number of iterations.

In contrast, the communication complexity of distributed optimization algo-
rithms that iteratively update the primal weight vector w is O(Tp). In practice,
p is often much smaller than the number of observations n, leading to small com-
munication costs per iteration. The total communication costs, however, depend
on the convergence rate. ADMM is known to have slow convergence, while the
dual ascend approach introduced in [17] converges in O(log 1/ε) steps to a global
optimum. Distributed block minimization has no proof for the convergence rate.
All algorithms show good performance in practice, with regard to prediction per-
formance as well as the number of iterations. Moreover, the Consensus SVM is
also highly fault tolerant, as it only communicates with neighboring peer nodes
and has no single point of failure. However, it is very difficult to incorporate non-
linear kernels. The same is true for the distributed Least Squares SVM. However,
for linear kernels, it is among the most communication-efficient methods, sending
only O(p2) values per node.

Distributed SVM computing in the vertically partitioned data scenario is
much more difficult to achieve and usually requires a central coordinator. The
privacy-preserving methods have a communication complexity of O(n2), and
thus communicate more than the entire data if n > p. Hybrid methods which
combine local and global models can be highly communication-efficient, but accu-
racy may suffer in cases where features are conditionally dependent, given the
label. In comparison to all other methods presented in this paper, the VDCVM
is the only method which makes only a single pass over the data, due to the use
of core sets. However, communication costs are quadratic in the size of the core
set (i.e. O(T 2)). Nevertheless, on many of the datasets tested, the method could
reduce communication costs by at least an order of magnitude, maintaining a
similar accuracy. As an incremental sampling method, it is also fault-tolerant
against transmission errors: If samples get lost, new data points can be easily
re-transmitted. The ADMM approach for vertically partitioned data has a com-
munication complexity of O(Tn), which is not efficient if T > p. Since it has not
been tested on any data, it remains unknown how it performs empirically.

Obviously, an implementation of the SVM algorithm on small embedded
devices involves much more than the reduction of communication costs, which
may be the reason why none of the above methods have yet been evaluated
in a really constraint environment like WSNs. The distributed optimization
approaches that work on horizontally partitioned data look most promising here,
while the hybrid methods might work for vertically partitioned sensor data. With
big horizontally partitioned data, distributed block minimization needs about six
hours for 80 million data points on a high performance cluster. For big vertically
partitioned data, the VDCVM looks most promising, since it only samples as
many data points as needed to reach a sufficient accuracy with high probability.
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An unsolved problem regarding all of the presented methods, however, is how to
tune the SVM’s hyperparameters in a communication-efficient way, i.e. without
running the method several times with different parameter settings.
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Abstract. In this paper we discuss the performance of classical classifi-
cation methods on Big Data. We concentrate on the case with many more
features than observations and discuss the dependence of classification
methods on the distance of the classes and their behavior for many noise
features. The examples in this paper show that standard classification
methods should be rechecked for Big Data.

1 Introduction

This paper is on Big Data Analytics (BDA). But what is Big Data? Unfortu-
nately, the answer depends on whom you have asked when. In Machine Learning
(ML) benchmarks in the 1990s (e.g. in the UCI repository) maximum 100 s to
1000 s of data points were available. In modern benchmarks we often have more
than 106 data points. When you ask, e.g., Google, the answer might be ‘Big Data
means that data are much too big for your computer storage, only streaming
is possible from a cloud, only distributed analytics, ...’ Another possibility is to
define a ‘Big Data problem’ by the impossibility to exactly solve the learning
problem by computation time complexity.1 Therefore, information in the data
is not optimally utilizable.

In this paper we will discuss typical classification methods in the context of
Big Data Analytics. The message of this paper is that for BDA not all classical
methods are adequate in all Big Data situations and that Big Data might even
long for special methods. We concentrate here on one extreme when there are
many more features than observations2. With the advent of high throughput
biotechnology data acquisition platforms such as micro arrays, SNP chips and
mass spectrometers, data sets with many more features than observations are
now routinely being collected (see, e.g., [4]). Most often, however, only a small
part of these p features or a small number of directions in p-space are important
for classification. Therefore, one might be tempted to thoughtlessly apply stan-
dard methods which are known to be only adequate for p < n (not too big), but
problematic in high dimensions (curse of dimensionality) and for very large n.
In this paper, we will discuss some of the many available classification methods
in this context.
1 Thanks to T. Glasmachers for suggesting this definition.
2 We base on the corresponding part of an earlier version of this paper [7].
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The paper is structured as follows. In Sect. 2 some theoretical results from
the literature will be considered. In Sect. 3 related simulations will be reported.
The paper is concluded with a summary and ideas for extensions.

2 Some Theoretical Results

One of the best known and most used classification methods in statistics is Fisher
discrimination. The performance of this method in the case of more features than
observations is discussed by [1] showing the following property.

Property 1: Consider 2 classes with Gaussian distributions N (μ1, Σ), N (μ2, Σ).
Let the corresponding a priori probabilities be equal, i.e., π1 = π2 = 0.5. Then,
for Fisher discrimination the classification function has the form δF (x) = (x −
μ)T Σ−1(μ1 − μ2) with μ = (μ1 + μ2)/2.

Let the corresponding samples be observed with equal sample sizes, i.e.
n1 = n2. Then, the sample version of the classification rule is: Assign class 1 iff
δ̂F (x) = (x − x̄)T S−1(x̄1 − x̄2) > log(π2/π1) = 0. If p > n, then the inverse of
the estimated pooled covariance matrix S does not exist and the Moore-Penrose
generalized inverse is used instead.

For this situation, the following result is true under some regularity con-
ditions, which particularly state that the norm of the mean vectors should be
limited and the true covariance matrix Σ is not ill-conditioned for each p. If
p → ∞, n → ∞, and p/n → ∞, then in the worst case error(δ̂F (x)) → 0.5, i.e.
the class assignment is no better than random guessing.

This result states a strong warning concerning the application of Fisher dis-
crimination in the case of many more features than observations. As have been
motivated by [1], the bad performance of Fisher discriminant analysis is due to
the fact that the condition number of the estimated covariance matrix goes to
infinity as dimensionality diverges even though the true covariance matrix is not
ill-conditioned.

Noise accumulation might be reduced by ignoring the full covariance struc-
ture, e.g. by using a diagonal matrix as an estimate of the covariance matrix. In
this context, [1] derived the following asymptotic result for the so-called indepen-
dence rule (ir), i.e. linear discriminant analysis with diagonal covariance matrix.

Property 2: Let Γ be a ‘regular’ space of possible means and covariance matrices
of the two classes, Σ the full covariance matrix in the two classes, Σ0 the corre-
sponding correlation matrix, λ(Σ0) an eigenvalue of Σ0, and Φ the distribution
function of the standard normal. Then, the following result is true:

If log(p)/n → 0, then lim supn→∞(maximal error in Γ ) = 1 − Φ
( √

K0
1+K0

c
)

≤
0.5, where K0 = maxΓ

(
λmax(Σ0)
λmin(Σ0)

)
and c2 = minΓ

(
(μ2 − μ1)T Σ−1(μ2 − μ1)

)
.

Therefore, if p is going slower to infinity than en, then for big data sets there
is a bound for the maximal error in the space of possible data situations. In
practice, this property may lead to a superiority of ir over the full lda.

Note that for normal distributions the independence rule is equivalent to the
Naive Bayes method. In practice, however, the Naive Bayes method (NB) is
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typically implemented in a non-parametric way and not by assuming a certain
type of distribution like the normal distribution. This generally leads to imple-
mentations different from the independence rule. For normal distributions as in
our examples, NB is thus expected to be inferior to ir.

Let us now take a closer look at the distance dependency of classification
quality for a general class of distance-based classifiers. For a plausible distance-
based classifier g we only assume the following two properties:

(a) g assigns x to class 1 if it is closer to each of the xi in class 1 than it is to
any of the xj in class 2.
(b) If g assigns x to class 1, then x is closer to at least one of the xi in class 1
than to the most distant xj in class 2.

Property 3: For such a method the following property is true [3]: Consider the
model xij = μkj + εij , i ∈ {gk, k = 1, 2}, where xij is the jth component of
xi, μkj the jth component of the mean vector μk, and the εij are independently
identically distributed with mean 0 and finite 4th moment. Then, the probability
that a distance based classifier of the above kind classifies a new observation
correctly converges to 1 iff p = o(||μ2 − μ1||4) for p → ∞.

This property shows that with distance based classifiers perfect class predic-
tion is possible, but only if the distance of class means grows with the number of
influential features so that p1/4/||μ2 − μ1|| → 0, i.e. that ||μ2 − μ1|| grows faster
than p1/4. Note that this result is independent of sample size n.

Also note that the above definition of general distance-based classifiers
includes the nearest neighbor classifiers kNN and the linear support vector
machine (svm) which is also looking for linear separations. The latter method
will be discussed here as a representative of methods which can be adapted to
the actual data by tuning hyperparameters, e.g. the cost parameter. Note that
we expect a linear separation in our examples so that nonlinear svms are not
expected to be sensible. Another type of classifiers we include in our comparison
is the decision tree generated by CART (tree). Such trees have the advantage of
automatically selecting the important features and thus ignoring features which
mainly represent noise for the classification problem. Finally, we include one rep-
resentative of ensemble techniques. Here, we restrict ourselves to bagged CART-
trees (baggedtree), in order to again benefit from automatic feature selection.

3 Simulations

Let us now discuss the above theoretical results by means of simulations. We
start with Generic Data Generation.

3.1 Generic Data Generation (GDG)

In this paper, we will always consider the ideal situation for linear discrimi-
nant analysis (lda), i.e. two classes where the influential features are multivari-
ate normally distributed with different mean vectors and the same covariance
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matrix. When pr features influence class separation we choose the class means
m1(i) = −md/2, m2(i) = md/2, where md = difference between the two class
means in dimension i, i = 1, . . . , pr. The covariance matrices are built so that
Σ = ΣR + d · I, where ΣR is built of independent uniform random numbers
between 0.1 and 1 and the multiple d of the identity is added in order to gen-
erate positive definiteness. Note that if d is large, then Σ is nearly diagonal,
making our above discussion on error rates for diagonal covariance matrices rel-
evant. By choosing different distances md between the mean vectors or different
d the difficulty of the classification problem can be varied.

Sometimes we add noise by means of features which do not have any influence
on class separation by adding (p − pr) normally distributed features with mean
0 and variance d. Overall, we assume that we have p features. Note that possibly
p = pr.

We typically use n = 2 · nel << p observations, nel observations for each
class. Thus, p tends to be much bigger than n, the case we discuss in this paper.
The generation of n data points from the above normal distributions in p dimen-
sions is repeated rp = 200 times using different random covariance matrices Σ.
For the estimation of error rates, corresponding test samples with nelt = 1000
observations per class are generated from training distributions.

3.2 Properties 1 and 2: Error Rate Convergence

Let us now discuss properties 1 and 2 by means of simulations. First, let us state
that in the case of two normal distributions with identical invertible covariance
matrices Σ and identical a-priori probabilities like in properties 1 and 2 it is
known that the Bayes error is given by
errBayes = Φ(−0.5((μ2 − μ1)T Σ−1(μ2 − μ1))0.5) (see [5]). Note that the Bayes
error is mainly influenced by the Mahalanobis distance of the mean vectors of
the classes. If Σ is diagonal with identical diagonal elements d and if the mean
class distance is equal to md for all pr individual dimensions, then
errBayes = Φ(−0.5

√
pr · md/d0.5).

We will consider two distinct cases:

1. The mean vectors drift away from each other the higher the no. of dimensions
pr by setting the distance in the pr individual coordinates equal to md = 2.5
for all i. Then, if the covariance matrix is diagonal, namely Σ = 25 · I, the
Bayes error is
errBayes = Φ(−0.5

√
pr · md/d0.5) = Φ(−√

pr/4) = 0.19, 0.003, . . . , 0 for pr =
12, 120, . . . , 2040.

2. The distance ||μ1 − μ2|| of the mean vectors of the classes stay the same for
different pr by means of shrinking the distance in the individual coordinates as
md = 20/

√
pr. Then, if the covariance matrix is diagonal, namely Σ = 25 · I,

the Bayes error is
errBayes = Φ(−0.5

√
pr · md/d0.5) = Φ(−2) = 0.023.

Note that in both cases all pr features influence classification equally. Obviously,
if the class distance is increasing with increasing pr, the classification problem
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Table 1. Comparison of mean error rates (%): (a) all features influence, (b) only p/6
features influence, no selection, (c) only p/6 features influence, p/6 features selected

p 12 120 240 360 480 600 1080 2040 12 120 240 360 480 600 1080 2040 sec

(a) all md = 2.5 md = 20 /
√

p

lda 41 23 16 14 12 11 8 7 23 32 35 37 38 39 41 43 1.0

ir 32 14 10 9 8 7 7 6 7 24 31 34 37 38 41 45 0.1

NB 37 23 19 16 14 13 10 8 13 33 39 41 42 43 46 47 1.5

1NN 38 23 19 16 15 13 12 10 12 33 39 41 43 43 46 47 0.0

svm 35 16 11 9 8 8 7 6 9 27 32 35 38 39 42 44 134

tree 41 41 41 41 41 41 41 41 29 44 46 47 48 48 49 50 0.6

baggedtree 41 35 30 27 24 22 18 14 25 41 44 45 45 46 47 48 223

(b) p/6 md = 2.5 md = 20 /
√

p/6

lda 48 45 45 43 43 41 38 32 22 37 42 43 44 44 46 46 1.0

ir 47 38 34 31 29 27 22 16 6 20 27 30 32 34 38 41 0.05

NB 47 44 42 40 39 38 34 31 12 32 37 39 41 42 44 46 1.5

1NN 48 43 40 37 36 35 31 27 10 29 34 37 39 40 43 45 0.0

svm 47 39 35 32 29 27 22 16 15 22 27 31 33 34 38 41 138

tree 47 45 44 44 44 44 43 41 11 36 42 44 45 46 47 48 0.6

baggedtree 48 46 46 44 43 43 41 37 13 37 42 44 45 45 47 48 228

(c) p/6, fs/6 md = 2.5 md = 20 /
√

p/6

lda 44 40 36 34 32 31 25 19 5 25 30 33 34 37 38 40 10

ir 43 35 29 26 24 22 17 12 4 16 21 25 28 29 34 37 10

NB 44 39 36 33 32 31 27 23 5 22 29 32 35 37 40 43 10

1NN 47 38 34 30 28 26 23 19 5 19 26 29 32 33 38 42 10

tree 46 45 44 44 43 44 43 42 10 37 41 44 45 46 47 48 10

Note: p = no. of dimensions, sec = mean training time over both md in seconds for p = 2040,

md = mean difference of classes in each dimension,

lda = linear discriminant analysis (lda, package MASS, software R [6]),

fs/6 = feature selection (best p/6 features, mutual information (symmetrical.uncertainty)

criterion), package FSelector in R),

ir = independence rule = lda with diagonal covariance matrix

(sda, package sda in R, no shrinkage, diagonal = TRUE)

NB = naive Bayes rule (naiveBayes, package e1071 in R),

1NN = 1 nearest neighbor rule (knn, package class in R),

svm = linear support vector machine

(svm in R, package e1071, cost parameter tuned on grid 2−4, . . . , 24 by leave-one-out).

tree = CART decision tree (rpart, minsplit=4, minbucket=2 in R), baggedtree = bagged

decision tree (bagging.rpart =

makeBaggingWrapper(base.rpart,bw.iters=500,bw.replace=FALSE,bw.size=1,bw.feats=0.75),

makeDownsampleWrapper(bagging.rpart,dw.perc=0.75,dw.stratify=TRUE) in R)

gets simpler. On the other hand, if the overall class distance ||μ1 −μ2|| stays the
same for different pr, the Bayes error, representing the difficulty of the classifi-
cation problems, stays the same for different numbers of dimensions pr.

For method ir, taking Σ = d · I leads to K0 = 1 and to a limit for the
maximal error of 1 − Φ(c/2) = Φ(−0.5c) when the sample size n → ∞. This is
again equal to the Bayes error above.

Let us start our simulations with assuming that all involved features in
fact influence the class choice, i.e. p = pr = 12, . . . , 2040, and let d = 25,
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nel = 6,md ∈ {2.5, 20/
√

p} representing the above first and second case of class
distance choice. By means of this variation of p with constant n = 2 · 6 = 12 we
vary the ratio p/n from 1 to 170. For md = 2.5 the classification problem tends
to become easier for increasing p than for the problem with md = 20/

√
p. On

the accordingly generated data (see GDG) the classification methods introduced
in Sect. 2 are compared. Let us start with the discussion of the mean error rates
in Table 1(a).3 Obviously, all methods but tree benefit from higher dimensions
in the case md = 2.5 as expected. For tree the error rate stays constant when
p is increasing. This is because CART-trees are splitting in individual dimen-
sions and the distance in these dimensions is staying the same for all numbers
of dimensions p. Obviously, bagging helps, probably by offering different obser-
vations for splitting. Method ir appears to be more adequate than full lda. In
the case md = 20/

√
p all methods are suffering from higher dimensions. This

was expected for lda, but appears also to be true for the other methods. Here,
method ir does not show lower error rates than full lda for higher numbers of
dimensions p.

Notice that svm and baggedtree need by far the most training time (cp.
column sec) and are not distinctly better than the other methods. Therefore,
the choice of these methods cannot be justified for the studied problems. Also
note that runtime is near zero for 1NN because the training data set only consists
of n = 12 observations.

3.3 Property 3: Distance Dependency

Let us now illustrate the distance dependence of classifier quality.
Reconsider the situation in Sect. 3.2 and let the p-dimensional mean distance

pmd between the two classes increase with dimension p so that
pmd = p1/ip−0.5 · 2.5/121/ip−0.5, ip = 1, 1.5, 2, 2.5, 3,
guaranteeing a start distance of 2.5. Note that the case ip = 2 is identical with the
left part in Table 1(a) since the norm of the mean vector automatically increases
with p0.5 if the distance between the classes is the same in every dimension. Also
note that the distances in the individual dimensions are decreased for ip > 2.
Moreover, note that we do not assume sampling from independent normal distri-
butions but only from approximately independent distributions for d = 25 (cp.
GDG and Property 3). Let us see whether the theoretical properties are approx-
imately valid also. Table 2 shows that the start distance of 2.5 leads to a high
mean test error rate between 32% and 42%. However, the error rate benefits
from more features if ip < 3, confirming the theoretical result. Only tree leads
to increasing error rates already for ip = 2.5. Also, tree benefits the least for
ip < 2. For ip = 3 all methods except lda only benefit until p = 120. Overall,
the theory for independent coordinates (Property 3) also mainly applies for our
example.

3 This simulation was carried out using the R-packages BatchJobs [2] and mlr on the
SLURM cluster of the Statistics Department of TU Dortmund University.
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Table 2. Comparison of mean error rates (%): p-dimensional mean distance increasing
with p0.5, p0.167, p−0.1, p−0.133 corresponding to ip = 1, 1.5, 2.5, 3

p 12 120 240 360 480 600 1080 2040 12 120 240 360 480 600 1080 2040 sec

ip < 2 pmd = 2.5 · p0.5/120.5, ip = 1 pmd = 2.5 · p0.167/120.167, ip = 1.5

lda 41 1 0 0 0 0 0 0 41 12 4 2 1 1 0 0 1.0

ir 32 0 0 0 0 0 0 0 32 4 1 0 0 0 0 0 0.1

NB 37 0 0 0 0 0 0 0 37 10 4 2 1 1 0 0 1.5

1NN 38 0 0 0 0 0 0 0 38 9 3 1 1 1 0 0 0.0

svm 35 0 0 0 0 0 0 0 34 4 1 1 0 0 0 0 137

tree 42 23 15 11 7 5 2 0 42 37 35 34 33 33 31 29 0.6

baggedtree 41 0 0 0 0 0 0 0 41 22 11 6 3 2 0 0 227

ip > 2 pmd = 2.5 · p−0.1/12−0.1, ip = 2.5 pmd = 2.5 · p−0.133/12−0.133, ip = 3

lda 41 30 25 23 22 21 20 19 41 34 31 30 29 28 28 28 1.0

ir 32 22 19 18 18 19 18 19 32 27 26 26 26 27 27 29 0.1

NB 37 31 29 28 28 27 26 24 37 35 34 35 35 35 35 34 1.5

1NN 38 31 29 29 29 28 28 27 38 35 35 35 36 36 37 37 0.0

svm 34 23 21 20 19 19 19 19 34 28 27 28 27 27 28 29 144

tree 42 43 44 44 45 44 45 46 42 44 45 46 46 46 47 47 0.6

baggedtree 41 39 38 37 35 35 32 31 41 42 41 41 40 40 39 39 225

3.4 Feature Selection

Let us now reconsider the example in Sect. 3.2 in the case of noise factors. We
use only pr = p/6 features influencing the classes. Looking at the results in
Table 1(b), the benefit for higher dimensions is much slower in case md = 2.5
because there is a much smaller class distance increase since only pr = p/6
factors contribute to the distance. Notice, however, that the methods ir and
svm distinctly benefit the most, ir with much less training time than svm. In
the case md = 20/

√
pr the behavior is similar as for pr = p.

In order to possibly eliminate noise factors, let us now have a look on fea-
ture selection methods in high dimensions. Simple filters are the fastest feature
selection methods. In filter methods, numerical scores si are constructed for the
characterization of the influence of feature i on the dependent class variable. Fil-
ters are generally independent of classification models. Easy example filters are
the χ2-statistic for the evaluation of independence between (discretized) feature
i and the class variable, the p-value of a t-test indicating whether the mean of
feature i is different for the two classes, the correlation between feature i and the
class variable, and the mutual information in feature i and the class variable.

Filters can be easily combined with a classification method. First calculate
filter values (scores). Then sort features according to scores and choose the best
k features. Finally, train the classification method on these k features.

Let us demonstrate the possible effect of a filter by reconsidering the example
in Sect. 3.2 (see Table 1(c)). When only p/6 features influence the classes, we
apply filtering by mutual information so that the correct number of features is
selected. The corresponding error rates are then much lower than without feature
selection but at the price of higher computation times (see column “sec”) caused
by the usage of a mutual information criterion for feature selection. Note that
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Table 3. Comparison of mean error rates (%): md = 2.5, pr = p/6, best m ∈
{p/12, 3p/12, p/3, p/2} features selected

p 12 120 240 360 480 600 1080 2040 12 120 240 360 480 600 1080 2040 sec

m = p/12 m = 3p/12

lda 44 45 41 40 38 37 34 30 44 39 37 35 32 31 25 19 10

ir 46 39 37 33 32 30 25 20 43 34 29 25 22 21 16 12 10

NB 46 42 40 39 37 36 34 30 45 39 36 35 32 31 28 23 10

1NN 47 42 38 35 34 31 28 22 46 38 33 31 29 27 23 19 10

tree 47 44 44 44 44 44 43 42 46 44 44 44 44 44 43 42 10

m = p/3 m = p/2

lda 45 41 38 37 34 33 28 22 46 42 41 39 37 36 31 25 10

ir 44 34 30 26 23 22 17 13 45 36 32 28 25 23 18 14 10

NB 45 40 37 36 34 32 29 24 46 42 39 38 36 35 31 26 10

1NN 47 39 35 32 30 28 24 20 47 41 37 34 32 31 26 22 10

tree 46 44 44 44 44 44 43 42 47 44 44 44 44 44 43 42 10

the slowest methods svm and baggedtree are not tested because there were better
methods which were much faster when feature selection was not used.

The most important problem with feature selection is the adequate choice
of k. Let us discuss whether a correct finding of the real number of influential
dimensions is helpful for the considered classification methods.

Reconsider the example in Sect. 3.2 in the case of noise factors with pr = p/6.
We identify the best m = p/12, 3p/12, p/3, p/2 factors by filtering via mutual
information and compare the corresponding error rates with those for m =
p/6 already given in Table 1(c)(fs/6 ). From the results in Tables 3 and 1(b),
(c)(left) it should be clear that choosing the correct number of features is best
corresponding to error rates in the case of noise. However, a too small number of
features (here m = p/12) appears to be more severe than a too big number (here
m = 3p/12, p/3). In the former case, the error rates are similar to the case of no
feature selection, in the latter case the error rates are only slightly too high.

4 Summary and Conclusion

In this paper we discussed the performance of standard classification methods on
Big Data. We concentrated on the case with many more features than observa-
tions. For this case we studied class distance dependency and feature selection.
If the class distance sufficiently increases for higher dimensions, then error rates
are decreasing, whereas for constant Bayes error the estimated errors are increas-
ing up to nearly 0.5 for higher dimensions. Also, feature selection might help to
find better models in high dimensions in the case of noise. In our example, a too
small number of features appears to be more severe than a too big number. ir
and svm performed best in high dimensions, ir in much less time than svm.

We used special example data being normally distributed with nearly diag-
onal invertible covariance matrix and identical contributions of all features to
classification except noise features. This might be extended in different ways.
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A more general invertible covariance matrix might be more adequate. Other
data distributions might be worthwhile studying. Also, different contributions
to class separation should be considered for the non-noise features. Last but not
least, for that many features as studied here it appears to be probable that there
is much more complicated structure than assumed in GDG. This might lead to
much more involved classification models not being covered by standard classi-
fication methods. For example, deep learning methods utilizing neural nets with
more than one layer or complex Bayesian networks might be more adequate and
such structures should be studied also.
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Abstract. Modern data analysis is confronted by increasing dimension-
ality of problems, mainly contributed by higher resolutions available for
data acquisition and by our use of larger models with more degrees
of freedom to investigate complex systems deeper. High dimensionality
constitutes one aspect of “big data”, which brings us not only computa-
tional but also statistical and perceptional challenges. Most data analysis
problems are solved using techniques of optimization, where large-scale
optimization requires faster algorithms and implementations. Computed
solutions must be evaluated for statistical quality, since otherwise false
discoveries can be made. Recent papers suggest to control and modify
algorithms themselves for better statistical properties. Finally, human
perception puts an inherent limit on our understanding to three dimen-
sional spaces, making it almost impossible to grasp complex phenom-
ena. For aid, we use dimensionality reduction or other techniques, but
these usually do not capture relations between interesting objects. Here
graph-based knowledge representation has lots of potential, for instance
to create perceivable and interactive representations and to perform new
types of analysis based on graph theory and network topology. In this
article, we show glimpses of new developments in these aspects.

1 Introduction

Thanks to modern sensing technology, we witness rapid increase in data dimen-
sions in numerous domains, for example high-resolution images, large-scale social
networks, high-throughput genetic profiles, just to name a few. In most cases,
the number of measured entities (features) grows in a much faster rate than
the number of observations: pictures taken with smart phones have few million
pixels, whereas we may have only few hundreds or thousands of photos.

Our main interest is such “high dimensional” data: to be more specific, a
data set is high dimensional when the number of features (p) is larger than

c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 148–167, 2016.
DOI: 10.1007/978-3-319-41706-6 7
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the number of observations (n) by a few magnitude. A good example is gene
expression study data.

Fig. 1. Gene expression
measurement samples of
100 genes (rows) from
50 breast cancer subjects
(columns). GEO accession
no. GSE11121. (Color
figure online)

Figure 1 shows a part of breast cancer data
from the Gene Expression Omnibus1, which contains
expression values of p = 22k transcripts measured
by the Affymetrix GeneChip Human Genome U133A
microarrays. Typically, the number of observations is
much smaller in this type of data, due to the cost
involved to handle human subjects in a limited time.
In the figure, the color represents high (green/bright)
or low (red/dark) values of expression, and a primary
task using the color intensity values is to identify
genes that have different expression patterns in differ-
ent groups of subjects. Genes with differential expres-
sion are then further investigated by wet experiments
to identify their roles in biochemical pathways, their
relations to other genes, and so forth.

A surprising misconception about high dimen-
sionality is that data analysis would produce better
outcome with higher dimensional data, because of increased amount of available
information. In a way, this makes sense, for instance we can see objects more
clearly in high-resolution digital photographs. In data science, an increased num-
ber of input features may allow for building more accurate predictors. However,
realizing such predictors comes with extra cost in several aspects.

First, high dimensionality brings computational challenges to data analysis.
Obviously, extra memory space will be needed, but also efficient computation
algorithms will be required to obtain the best hypothesis for explaining data.
The task of finding such a hypothesis is typically described as an optimization
problem, where a parametrized function is fitted to data minimizing the mis-
match between predictions and observed responses of interest (e.g., categories of
objects, severity levels of a disease, etc.)

Secondly, an important task of identifying a (possibly small) subset of fea-
tures contributing to prediction becomes statistically more challenging as dimen-
sion grows. Simply speaking, the reason is that performing multiple hypothesis
tests to distinguish important features takes more statistical power, in other
words, requires larger sample sizes. There have been quite a few literature on
the conditions when we can identify relevant features: later we will discuss some
of the recent results on lasso-type regression.

Third, due to limitations in human perception, understanding structures in
high dimensional spaces is inherently difficult for us. In particular for interdis-
ciplinary research, the outcome of data analysis would have to be shaped in a
form easily perceivable by domain experts who may not be computer scientists.
Graph-based representations of data space and analysis outcomes have lots of
potential for this purpose: we will demonstrate some examples in biomedical
data analysis.

1 Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/.

http://www.ncbi.nlm.nih.gov/geo/
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2 Sparse Variable Selection and Estimation

There have been a lot of improvements in convex optimization, in particular for
dealing with composite objective functions which are interesting for extracting
understandable structures from high-dimensional data.

We consider a standard setting for data analysis: a set of m training data
points {(xi, yi)}m

i=1 are given, where xi ∈ X is an input point and yi ∈ Y is
a response of interest. Typically, xi is a vector and yi ∈ {−1,+1} for binary
classification and yi ∈ R for regression tasks, but both xi and yi can be more
structured objects such as strings [51] or trees [38]. A goal of data analysis is to
find a function hw(x) parametrized by a vector w ∈ R

n, which best reflects the
data in terms of a certain error measure between responses and predictions made
by hw(x). Finding the best parameters vector w can be formulated as follows,

w∗ = arg min
w∈Rn

1
m

m∑

i=1

�(yi, hw(xi)) + Ψ(w) = f(w) + Ψ(w). (1)

Here, �(yi, hw(xi)) : Rn → R is a loss function between a prediction hw(xi) and
an observed response yi, which is convex in terms of w. A function f(w) : Rn →
dom f is convex if for all w,v ∈ dom f , the following holds for some α ≥ 0,

f((1 − λ)w + λv) ≤ (1 − λ)f(w) + λf(v) − α

2
λ(1 − λ)‖w − v‖2.

If there exists α > 0, f is called α-strongly convex. The second part Ψ(w) : Rn →
R := R∪{+∞} in the objective is a regularizer, which is a proper (Ψ(w) ≡ +∞
is not true) convex function used to control certain statistical properties of the
estimation process. Ψ also can be the indicator function of a convex set W, i.e.,
Ψ(w) = 0 if w ∈ W and Ψ(w) = +∞ otherwise.

2.1 Sparsity-Inducing Regularization

An intriguing use of the convex minimization in (1) is to extract the most relevant
features in data vectors x that contribute to minimizing the averaged loss. In par-
ticular, when a generalized linear model is considered so that hw(x) = f(〈w,x〉)
for a convex function f , where 〈·, ·〉 is an inner product, we can set unimpor-
tant components of w to zero to turn-off their contribution to prediction. Such
componentwise switching-off can be achieved by minimizing Ψ(w) = λ‖w‖1 at
the same time, where λ > 0 is a tuning parameter. With least squares loss func-
tion, i.e., �(yi, hw(xi)) = (yi − hw(xi))2, the problem (1) is called as the lasso
problem [66].

Variants. The idea can be extended to incorporate a combination of �2 and
�1 regularization, i.e., Ψ(w) = λ{(1 − α)‖w‖22 + α‖w‖1} for some given λ > 0
and α ∈ [0, 1]. This regularization is called the elastic net [80], which tends to
select all correlated features together compared to the selection by lasso where
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some correlated features may not be selected. In addition, for α < 1 the regu-
larizer Ψ(w) makes the objective strongly convex in w, which can lead to better
convergence rate e.g. in gradient descent algorithms.

When certain grouping of features is known a priori, then we can use
Ψ(w) =

∑
g∈G ‖wg‖2 for subvectors wg of w ∈ R

n corresponding to groups
g ⊂ {1, 2, . . . , n}. This particular setting is useful when it is preferable to select
groups rather than individual components. For instance, a group of binary vari-
ables may encode a single multinomial variable of interest. This setting within
(1) is known as group-lasso [74]. When groups may overlap, a modified version in
[36] is recommended to avoid turning-off all groups sharing a demoted variable.
Interested readers can find more details in an introductory article [48].

2.2 Accelerated Proximal Gradient Descent Algorithm

When the convex functions � is smooth (continuously differentiable) and Ψ is
possibly nonsmooth but “simple” (the meaning will be clarified later), one of
the best algorithm for solving the optimization problem (1) is the accelerated
proximal gradient descent algorithm, also known as FISTA [7].

Similarly to the gradient descent, the proximal gradient descent algorithm
considers a simple quadratic approximation of the smooth part � in the objective,
augmented with Ψ , that is,

f(w) + Ψ(w) ≈ f(wk) + 〈∇f(wk),w − wk〉 +
L

2
‖w − wk‖22 + Ψ(w), (2)

where L > 0 is the Lipschitz constant of the gradients ∇f ,

‖∇f(w) − ∇f(v)‖ ≤ L‖w − v‖22, ∀w,v ∈ dom f.

Given these, the proximal gradient method chooses the next iterate as the min-
imizer of the right-hand side expression of (2),

wk+1 = arg min
w

〈∇f(wk),w − wk〉 +
L

2
‖w − wk‖2 + Ψ(w)

= arg min
w

1
2
‖w − (wk − (1/L)∇f(wk))‖2 + (1/L)Ψ(v)

= prox(1/L)Ψ (wk − (1/L)∇f(wk)). (3)

Here, we have defined the proximal operator associated with a function h : Rn →
R of a given point z ∈ R

n as

proxh(z) := arg min
w∈Rn

1
2
‖w − z‖2 + h(w).

From this definition, we can interpret that the update in (3) computes the
next iterate wk+1 as a point which is close to the given gradient descent point
z = wk − (1/L)∇f(wk) and minimizes h = (1/L)Ψ at the same time. We call h
(or Ψ) is “simple” if the proximal operator can be computed efficiently.
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This procedure can be accelerated using an ingenious technique due to Nes-
terov [59]. The modified version uses another sequence of vectors vk composed
as a particular linear combination of the two past iterates,

vk+1 = wk +
(

tk − 1
tk+1

)
(wk − wk−1), tk+1 =

1
2
(1 +

√
1 + 4t2k).

Then, the next iterate wk+1 is computed based on vk, not wk,

wk+1 = prox(1/L)Ψ (vk − (1/L)∇f(vk))

This method generate iterates {wk} converging to an optimal solution w∗ with
the a sublinear rate O(1/k2) [7], that is,

[f(wk) + Ψ(wk)] − [f(w∗) + Ψ(w∗)] ≤ 2L‖w0 − w∗‖22
(k + 1)2

.

This achieves the best convergence rate as a first-order optimization method [59],
and it becomes slower only by a constant factor if line-search is involved.

2.3 Consistency in Variable Selection

One of the important questions regarding the solution w∗ of (1) with �1 reg-
ularization is that if the “true” set of important variables (often called as the
support) will be identified. This type of discussion is based on a data generation
model that an m × n training data matrix X = (xT

1 , . . . ,xT
m) and responses

y ∈ R
m are related by

y = Xw◦ + ε

where ε is a vector of m i.i.d. random variables with mean 0 and variance σ2.
Here, w◦ defining the relation is the true weight vector we try to estimate, by a
solution w∗ of (1) with Ψ(w) = λ‖w‖1.

Consistency results has been established first by Knight and Fu [41], for the
cases where n and w◦ are independent of m and some regularity conditions
hold. In estimation consistency, they showed that w∗ → w◦ in probability as
m → ∞, and w∗ is asymptotically normal when λ = o(m). In variable selection
consistency, they also showed that when λ ∝ √

m, the true set of important
variables are identified in probability, that is,

P({i : w∗
i �= 0} = {i : w◦

i �= 0}) → 1, as m → ∞.

In high dimensions, the growth of dimensions n is restricted in a way that
s log(n) = o(m), where s is the sparsity of the true signal w◦ [56,76]. In addi-
tion, other conditions are required for the design matrix X, namely the neighbor-
hood stability conditions [56] or the equivalent irrepresentable conditions [76,79]
that are almost necessary and sufficient for lasso to identify the true support
for the cases where n is fixed or n grows with m. Roughly speaking, these
conditions state that the irrelevant covariates are orthogonal to relevant ones.
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The conditions however may not be satisfied in practice, and finding weaker con-
ditions is in active research, e.g. [37]. Also, more general notions of variable selec-
tion consistency have been discussed in other context, e.g. in stochastic online
learning [49].

3 Sparse Graph Learning

From a sparse solution w∗ of (1), we can find a set of relevant features, and
also can prioritize them by the magnitude of the coefficient vector w∗ for fur-
ther investigation, e.g. bio-chemical studies of chosen genes to clarify their roles
in a complex system. However, its outcome is essentially a ranked list of fea-
tures which does not tell much about the relations of covariates: the latter type
of information would be more helpful to understand the underlying system. In
this view, we consider another learning model which produces a graph of fea-
tures, where connections between nodes (features) represents a certain statistical
dependency.

3.1 Gaussian Markov Random Field

The Gaussian Markov Random Field (GMRF) is a collection of n jointly
Gaussian random variables represented as nodes in a graph G = (V,E), with a
set of n vertices V and a set of undirected edges E. In this model we consider
random vectors x ∼ N (μ,Σ) with a mean vector μ and a covariance matrix Σ,
whose probability density is given as

p(x) = (2π)−n/2 det(Σ)−1/2 exp
(

−1
2
(x − μ)T Σ−1(x − μ)

)
.

The edges represent conditional dependency structure: in GRMFs, the variables
xi and xj associated with the nodes i and j are conditionally independent given
all the other nodes [45] when there is no edge connecting the two nodes, or
equivalently the corresponding entry in the precision matrix satisfies Σ−1

ij = 0.
That is,

Σ−1
ij = 0 ⇔ P (xi,xj |{xk}k∈{1,2,...,n}\{i,j})

= P (xi|{xk}k∈{1,2,...,n}\{i,j})P (xj |{xk}k∈{1,2,...,n}\{i,j}).

This also implies that we can consider the precision matrix Σ−1 as a weighted
adjacency matrix for an undirected graph representing a GMRF.

3.2 Sparse Precision Matrix Estimation

Assuming that μ = 0 without loss of generality (i.e. subtract the mean from data
points), the likelihood function to describe the chance to observe a collection of
m i.i.d. samples D = {x1,x2, . . . ,xm} from N (0, Σ−1) becomes

L(Σ−1,D) =
m∏

i=1

p(xi) ∼
m∏

i=1

det(Σ)−1/2 exp
(

−1
2
xT

i Σ−1xi

)
.
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Therefore the log likelihood function (omitting constant terms and scaling by
2/m) becomes,

LL(Σ−1,D) = log det(Σ−1) − tr (SΣ−1).

Here we have defined S := 1
m

∑m
i=1 xixT

i as the sample covariance matrix.
Minimizing the negative log likelihood plus a sparsity inducing norm on the

prediction matrix Θ = Σ−1 can be stated as

min
Θ∈Rn×n

−LL(Θ,D) + λ‖Θ‖1, subject to Θ � 0, ΘT = Θ. (4)

The �1 norm of Θ here is defined elementwise, that is, ‖Θ‖1 :=
∑n

i=1

∑n
j=1 |Θij |.

The sparse precision matrix estimation in (4) is a convex optimization prob-
lem proposed by Yuan and Lin [75]. Due to its special structure maximizing the
determinant of a matrix, they applied an interior point algorithm [68], which
may not be suitable for high dimensions n due to the complexity O(n6 log(1/ε))
to obtain an ε-suboptimal solution. A more efficient block coordinate descent
algorithm has been suggested by Banerjee et al. [3], to solve the dual problem of
(4). Each subproblem of this block coordinate descent formulation can be cast
as a lasso problem in forms of (1), and this fact has been used by Friedman,
Hastie, and Tibshirani to build the graphical lasso algorithm [24]. However, each
subproblem of these solvers still involves quite large (n − 1) × (n − 1) matrices,
resulting in O(sn4) complexity for s sweeps of all variables. Many research arti-
cles have contributed more efficient optimization algorithms (for a brief survey,
see [47]).

3.3 Graph Selection Consistency

Regarding the statistical quality of the solution Θ∗ of (4), we can ask similar
questions to those in Sect. 2.3, that if the solution identifies the true graphical
structure, or equivalently the true set of edges or the nonzero patterns in the
true model Θ◦. In other word, we check if following property holds:

P
({

(i, j) : Θ∗
ij �= 0

}
=

{
(i, j) : Θ◦

ij �= 0
}) → 1 as m → ∞.

The sparse graph learning problem (4) has a very similar structure to the sparse
variable selection problem (1), and they share very similar consistency results,
e.g. [75]. Algorithms using random sampling have been recently proposed, such
as bolasso [2] and stability selection [57], which require weaker conditions to
achieve variable selection consistency.

3.4 Breast Cancer Gene Dependency Graphs

To demonstrate graph extraction using the Gaussian MRF, we used a genomic
data set consisting of gene expression profiles of n = 20492 features (genes,
more specifically, transcripts) from m = 362 breast cancer patients. The data



Knowledge Discovery from Complex High Dimensional Data 155

set was created combining three gene expression data sets available from the
Gene Expression Omnibus, with the accession IDs GSE1456, GSE7390, and
GSE11121.2

Figure 2 shows the graph learned separately on subgroups of patients deter-
mined by their “grade” of cancer progression: 1 (almost normal), 2 (faster
growth) and 3 (much faster growth). The parameter λ = 1.6 was chosen for
all cases which produced small numbers of connected components. Only the
connected components with at least two nodes are shown for compact visualiza-
tion. The color of node represents the p-values of the likelihood ratio test, for
the case of using each node (gene) as an univariate predictor for overall survival
time under the Cox proportional hazard model [16]. Colors are assigned to five
p-value intervals in [10−5, 1), equally sized in logarithmic scale, where darker
colors indicate smaller p-values.

The visualization in Fig. 2 looks quite easy to comprehend even for no biology
expert. For example, genes with many neighbors in the graphs (so called hub
nodes) turned out to have important roles in breast cancer development, includ-
ing ASPN [11], SFRP1 [40], and ADH1B [50], even though some (e.g. ADH1B)
may not be interesting as univariate predictors considering their p-value.

4 Graph-Based Discovery in Medical Research

An ongoing trend in many scientific areas is the application of network analysis
for knowledge discovery. The underlying methodology is the representation of
the data by a graph representing a relational structure. Benefits can be created
in a blend of different approaches and methods and a combination of disciplines
including graph theory, machine learning, and statistical data analysis. This
is particularly applicable in the biomedical domain: large-scale generation of
various data sources (e.g. from genomics, proteomics, metabolomics, lipidomics,
transcriptomics, epigenetics, microbiomics, fluxomics, phenomics, cytomics, con-
nectomics, environomics, exposomics, exonomics, foodomics, toponomics, etc.)
allows us to build networks that provide a new framework for understanding
the molecular basis of physiological and pathological health states. Many wide-
spread diseases, for example diabetes mellitus, [20], involve enormous interac-
tions between thousands of genes. Although, modern high-throughput techniques
allows the identification of such genes amongst the resulting omics data, a func-
tional understanding is still the grand challenge. A major goal is to find diag-
nostic biomarkers or therapeutic candidate genes.

Network-based methods have been used for quite a while in biology to charac-
terize genomic and genetic mechanisms. Diseases can be considered as abnormal

2 The CEL files from the GEO were normalized and summarized for transcripts
using the frozen RMA algorithm [55]. Then only the verified (grade A) genes were
chosen for further analysis according to the NetAffx probeset annotation v33.1 of
Affymetrix (n = 20492 afterwards). Also, microarrays with low quality according to
the GNUSE [54] error scores > 1 were discarded (m = 392 afterwards).
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Fig. 2. Graphical representation of transcript relations corresponding to breast cancer
subgroups. Node color represents the p-value of each node (genes) as univariate pre-
dictor of overall survival times (darker color = smaller p-value). Edge types represent
correlation: solid = positive and dashed = negative. Node labels show the correspond-
ing gene symbols. (Color figure online)

perturbations of critical cellular networks. The progress and intervention in com-
plex diseases can be analyzed today using network theory. Once the system is
represented by a network, methods of network analysis can be applied, not only
to extract useful information regarding important system properties, but also to
investigate its structure and function. Various statistical and machine learning
methods have been developed for this purpose and have already been applied to
networks [19]. The underlying structure of such networks are graphs. Graph the-
ory [25] provides tools to map data structures and to find unknown connections
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between single data objects [21,65]. The inferred graphs can be further analyzed
by using graph-theoretical, statistical and machine learning techniques [18].

A mapping of already existing and in medical practice approved knowledge
spaces as a conceptual graph and the subsequent visual and graph-theoretical
analysis may bring novel insights on hidden patterns in the data, which exactly
is the goal of knowledge discovery [28]. Another benefit of the graph-based data
structure is in the applicability of methods from network topology and net-
work analysis and data mining, e.g. small-world phenomenon [4,39], and cluster
analysis [42,72].

However, the biomedical domain is significantly different from other real
world domains. Mostly, the processes are data-driven trial-and-error processes,
used as help to extract patterns from large data sets by way of predefined models
through an fully automated tool without human involvement [77]. Many machine
learning researchers pay much attention to find algorithms, models and tools to
support such fully automated approaches. The Google car is currently a best
practice example [64], at the same time little attention is paid to include the
human into this loop.

The reason for this huge difference is the high complexity of the biomed-
ical research domain itself [14]. It is inevitable for the future biomedical domain
expert to switch from the classical consumer-like role [44] to an active part in
the knowledge discovery process [27,30]. However, this is not so easy, because it
is well known that many biomedical research projects fail due to the technical
barriers that arise to the domain experts in data integration, data handling, data
processing, data visualization and analysis [1,34,43]. A survey from 2012 among
hospitals from Germany, Switzerland, South Africa, Lithuania, and Albania [60]
showed that only 29 % of the medical professionals were familiar with any prac-
tical application of data mining methods and tools. Although this survey might
not be representative globally, it clearly shows the trend that medical research
is still widely based on standard statistical methods.

To turn the life sciences into data intensive sciences [28], consequently, there
is urgent need for usable and useful data exploration systems - which are in the
direct work flow of the biomedical domain expert [81]. A possible solution to
solve such problems is in a hybrid approach to put the human into the machine
learning loop [22,63].

4.1 Medical Knowledge Space

This example shows the advantage of representing large data sets of medical
information using graph-based data structures. Here, the graph is derived from
a standard quick reference guide for emergency doctors and paramedics in the
German speaking area; tested in the field, and constantly improved for 20 years:
The handbook “Medikamente und Richtwerte in der Notfallmedizin” [58] (Ger-
man for Drugs and Guideline Values in Emergency Medicine, currently avail-
able in the 11th edition accompanies every German-speaking emergency doctor
as well as many paramedics and nurses. It has been sold 58,000 times in the
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German-speaking area. The 92-pages handbook (size: 8× 13 cm) contains a com-
prehensive list of emergency drugs and proper dosage information. Additionally,
important information for many emergency situations is included.

The data includes more than 100 essential drugs for emergency medicine,
together with instructions on application and dosage depending on the patient
condition, complemented by additional guidelines, algorithms, calculations of
medical scores, and unit conversion tables of common values. However, due to
the traditional list-based interaction style, the interaction is limited to a certain
extent. Collecting all relevant information may require multiple switches between
pages and chapters, and knowledge about the entire content of the booklet. In
consequence to the alphabetical listing of drugs by active agents, certain tasks,
like finding all drugs with common indications, proved to be inefficient and time
consuming.

Modeling relationships between drugs, patient conditions, guidelines, scores
and medical algorithms as a graph (cf. Fig. 3) gives valuable insight into the
structure of the data set. Each drug is associated with details about its active
agent and pharmacological group; brand name, strengths, doses and routes of
administration of different products; indications and contraindication, as well
as additional remarks on application. Consequently, a single drug itself can be
represented as connected concepts. Shared concepts create links between multiple
drugs with medical relevance, and provide a basis for content-aware navigation.

The interconnection of two drugs, namely adrenaline and dobutamine, is
shown in Fig. 4. The left-hand side illustrates the main three types of relations
inducing medical relevance; shared indications, shared contra-indications and
shared pharmacological groups. Different node colors are used to distinguish
between types of nodes such as active agents, pharmacological groups, applica-
tions, dosages, indications and contra-indications. The right-hand side highlights
the connection of adrenaline and dobutamine by a shared indication.

Links to and between clinical guidelines, tables and calculations of medical
scores, algorithms and other medical documents, follow the same principle. On
the contrast to a list-based interaction style, these connections can be used for
identification and visualization of relevant medical documents, to reorganize the
presentation of the medical content and to provide a fast and reliable contextual
navigation.

The explosive growth of complexity of networks have overwhelmed conven-
tional visualization methods and future research should focus on developing more
robust and efficient temporally aware clustering algorithms for dynamic graphs,
i.e. good clustering will produce layouts that meet general criteria, such as clus-
ter colocation and short average edge length, as well as minimize node motion
between time steps [52]. The use of multi-touch interfaces for graph visualiza-
tion [32] extends graph manipulation capabilities of users and thereby can be
used to solve some of the visualization challenges.

4.2 DrugBank

DrugBank is an comprehensive, open, online database that combines detailed
drug data with drug target information, first released in 2006 [71]. The current
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Fig. 3. Graph of the medical data set showing the relationship between drugs, guide-
lines, medical scores and algorithms.

Fig. 4. Interconnection between two drugs, “Adrenaline” and “Dobutamine”; connec-
tions to and between clinical guidelines, tables and calculations of medical scores, algo-
rithms and other medical documents, follow the same principle. (Color figure online)
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version (DrugBank 4.2) includes 7759 drug entries, with each entry containing
more than 200 data fields devoted to drug/chemical data, as well as drug target
and protein data.

DrugBank includes drug descriptions, chemical structures and properties,
food and drug interactions, mechanisms of action, patent and pricing data,
nomenclature, synonyms, etc. Previous versions of DrugBank have been widely
used to facilitate drug discovery and constant updates have it expanded to con-
tain data on drug metabolism, absorption, distribution, metabolism, excretion
and toxicity and other kinds of quantitative structure activity relationships infor-
mation [46]. Users may query DrugBank in several different ways via the pro-
vided web interface, including simple text queries, chemical compounds queries
and protein sequence searches. Alternatively the full database can be downloaded
in XML format for further data processing and exploration.

While the DrugBank database is a comprehensive resource for information
on individual drugs, it does not provide an illustration of the overall structure
of the data set. Representation as a graph can quickly and clearly create new
insight into the DrugBank dataset, such as pattern in drug and food interactions,
structures in drug and drug classification relations, or relations between drugs
by common indications.

The DrugBank database contains 1191 distinct drug entries which list at
least a single interaction with another drug. This allows us to define the node
set representing these drugs, and the set as all edges between drugs, when an
interaction between two drugs is listed. This construced graph contains 1213
nodes linked by 12088 edges, which reveals 22 nodes (e.g. “Sipuleucel-T”, “Pizo-
tifen”, “Iodine”, etc.), listed as drug interaction without a corresponding drug
entry in the DrugBank database. Figure 5 shows the visualization of the drug
interaction graph, with the drug node size weighted by degree.

Fig. 5. Graph of drug interactions in the DrugBank database.
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4.3 Biological Networks

Functions of life on a sub-cellular level rely on various complex interactions
between different entities. Proteins, genes and metabolites interact to produce
either healthy or diseased cellular processes. Our understanding of this network
of interactions, and the interacting objects themselves, is continuously changing;
and the graph structure itself is constantly changing and evolving as we age or
as disease progresses.

Our methods for discovering new relationships and pathways change as well.
A tool from Jurisica Group in Toronto may be of help here: NAViGaTOR 3
addresses such realities by having a very basic core rooted in graph theory, with
the flexibility of a modular plugin architecture that provides data input and out-
put, analysis, layout and visualization capabilities. NAViGaTOR 3 implements
this architecture by following the OSGi standard3. Available API enables devel-
opers to expand standard distribution by integrating new features and extending
the functionality of the program to suit their specific needs [61].

NAViGaTOR 3 was designed with the knowledge that a researcher may need
to combine heterogeneous and distributed data sources. The standard distribu-
tion supports the loading, manipulation, and storage of multiple XML formats
and tabular data. XML data is handled using a suite of file loaders, including
XGMML, PSI-MI, SBML, KGML, and BioPAX, which store richly-annotated
data and provide links to corresponding objects in the graph. Tabular data
is stored using DEX (Martinez-Bazan, Gomez-Villamor and Escale-Claveras,
2011), a dedicated graph database from Sparsity Technologies4.

Figure 6 shows an integrated graph by combining metabolic pathways,
protein-protein interactions, and drug-target data. This metabolic data was col-
lected in the Jurisca Lab, combining several steroid hormone metabolism path-
ways: androgen, glutathione, N-nitrosamine and benzo(a)pyrene pathway, the
ornithine-spermine biosynthesis pathway, the retinol metabolism pathway and
the TCA cycle aerobic respiration pathway. The figure highlights different path-
ways with different edge colors. The edge directionality highlights reactions and
flow between the individual pathways. The data set was centred on steroid hor-
mone metabolism and included data from hormone-related cancers [26]. The
list of FDA-approved drugs used for breast, ovarian and prostate cancer was
retrieved from the National Cancer Institute5. Afterwards the DrugBank6 was
searched for targets for each drug and those integrated in the graph structure.

5 Challenges and Future Research

A grand challenge is to discover relevant structural patterns and/or temporal
patterns (“knowledge”) in high dimensional data, which are often hidden and

3 OSGi Standard http://www.osgi.org/Main/HomePage.
4 DEX Graph Database http://www.sparsity-technologies.com/dex.
5 National Cancer Institute, http://www.cancer.gov.
6 DrugBank, http://www.drugbank.ca.

http://www.osgi.org/Main/HomePage
http://www.sparsity-technologies.com/dex
http://www.cancer.gov
http://www.drugbank.ca
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Fig. 6. Partially explored network: connecting drugs and metabolism. A network com-
prising metabolites, enzymes, and drugs of multiple pathways in the early stages of
exploration. (Color figure online)

not accessible to the human expert but would be urgently needed for better
decision support or for deeper investigation. Also, the fact that most data sets
in the biomedical domain are weakly-structured or non-standardized add extra
difficulties [28].

In medical research, these challenges are closely connected to the search
for personalized medicine, which is a trend resulting in an explosion in data
size (especially dimensionality): for instance “-omics” data, including data of
genomics, proteomics, metabolomics, etc [35]. Whilst personalized medicine is
the ultimate goal, stratified medicine has been the current approach, which aims
to select the best therapy for groups of patients who share common biological
characteristics. Here, machine learning approaches and optimization of knowl-
edge discovery tools become imperative [53,61].

Optimization algorithms and techniques are now at the core of many data
analysis problems. In high dimensional settings, statistical understanding of
these algorithms is crucial not only to obtain quality solutions but also to
invent new types of algorithms, as witnessed in recent literature [2,8,49,57]. Effi-
cient and distributed algorithm implementations also become critical due to high
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computational demands. There are lots of active research in this regard based
on optimization algorithms e.g. the ADMM [9] and block-coordinate descent
methods [6,67].

Graph-based approaches introduced above are closely related to the graph-
based data mining and topological data mining, which are amongst the most
challenging topics [31–33,62]. Graph-based data mining was pioneerined about
two decades ago [15,17,73], and based upon active research subjects includ-
ing subgraph categories, isomorphism, invariance, measures, and solution meth-
ods [70]. It also can involve content-rich information, e.g. relationship among
biological concepts, genes, proteins and drugs, such as in [13] or network medi-
cine [5].

A closely related method is topological data mining, which focuses more
on topological spaces (or manifolds) equipped with measures defined for data
elements. The two most popular topological techniques in the study of data are
homology and persistence. The connectivity of a space is determined by its cycles
of different dimensions. These cycles are organized into groups, called homology
groups. Given a reasonably explicit description of a space, the homology groups
can be computed with linear algebra. Homology groups have a relatively strong
discriminative power and a clear meaning, while having low computational cost.
In the study of persistent homology the invariants are in the form of persistence
diagrams or barcodes [23]. For interested readers, we suggest papers about point
cloud from vector space models [69], and persistent homology [10,12,78].

The grand vision for the future is to effectively support human learning with
machine learning. The HCI-KDD network of excellence7 is an initiative proac-
tively supporting this vision, bringing together people with diverse background
but with a shared goal of finding solutions for dealing with big and complex
data sets. We believe such an endeavor is necessary to deal with the complex
and interdisciplinary nature of the problem. A recent outcome of the network
can be found here [29]. This shows that diverse techniques and new ideas need
to be integrated for successful knowledge discovery with big and complex real
data. Still, there are many emergent challenges and open problems, which we
believe deserve further research.
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Abstract. We propose to mine the topology of a large attributed graph
by finding regularities among vertex descriptors. Such descriptors are of
two types: (1) the vertex attributes that convey the information of the
vertices themselves and (2) some topological properties used to describe
the connectivity of the vertices. These descriptors are mostly of numerical
or ordinal types and their similarity can be captured by quantifying
their co-variation. Mining topological patterns relies on frequent pattern
mining and graph topology analysis to reveal the links that exist between
the relation encoded by the graph and the vertex attributes. In this
paper, we study the network of authors who have cooperated at some
time with Katharina Morik according to the data available in DBLP
database. This is a nice occasion for formalizing different questions that
can be considered when an attributed graph describes both a type of
interaction and node descriptors.

Keywords: Attributed graph mining · Katharina Morik co-authorship

1 Introduction

A timely challenge concerns enriched graph mining to support knowledge discov-
ery. We recently proposed the topological pattern domain [25], a kind of gradual
pattern that extends the rank-correlated sets from [6] to support attributed
graph analysis. In such graphs, the binary relation encoded by the graph is
enriched by vertex numerical attributes. However, existing methods that sup-
port the discovery of local patterns in graphs mainly focus on the topological
structure of the patterns, by extracting specific subgraphs while ignoring the
vertex attributes (cliques [21], quasi-cliques [20,29]), or compute frequent rela-
tionships between vertex attribute values (frequent subgraphs in a collection of
graphs [16] or in a single graph [5]), while ignoring the topological status of the
vertices within the whole graph, e.g., the vertex connectivity or centrality. The
same limitation holds for the methods proposed in [18,24,27,28], which identify
sets of vertices that have similar attribute values and that are close neighbors.
Such approaches only focus on a local neighborhood of the vertices and do not
consider the connectivity of the vertex in the whole graph.
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 168–183, 2016.
DOI: 10.1007/978-3-319-41706-6 8
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To investigate the relations that may exist between the position of the vertices
within the graph and their attribute values, we proposed to extract topological
patterns that are sets made of vertex attributes and topological measures. Such
measures quantify the topological status of each vertex within the graph. Some
of these measures are based on the close neighborhood of the vertices (e.g., the
vertex degree), while others describe the connectivity of a vertex by considering
its relationship with all other vertices (e.g., the centrality measures). Combining
such microscopic and macroscopic properties characterizes the connectivity of
the vertices and it may be a sound basis to explain why some vertices have
similar attribute values.

Topological patterns of interest are composed of vertex properties that behave
similarly over the vertices of the graph. The similarity among vertex properties
can be captured by quantifying their correlation, which may be positive or neg-
ative. To that end, we extend the Kendall rank correlation coefficient to any
number of variables, as well as to negative correlation. Whereas this measure
is rather theoretically sounded, its evaluation is computationally demanding as
it requires to consider all vertex pairs to estimate the proportion of which that
supports the pattern. The well known optimization techniques that are used for
evaluating the correlation between two variables (and that leads to a theoreti-
cal complexity in O(n log n)) do not extend directly when a higher number of
variables is considered. We tackled this issue and proposed several optimiza-
tion and pruning strategies that makes it possible to use this approach on large
graphs. We also introduced several interestingness measures of topological pat-
terns that differ by the pairs of vertices that are considered while evaluating the
correlation between descriptors: (1) While all the vertex pairs are considered,
patterns that are true all over the graph are extracted; (2) When including only
the vertex pairs that are in a specific order regarding to a selected numerical
or ordinal attribute reveals the topological patterns that emerge with respect to
this attribute; (3) Examining the vertex pairs that are connected in the graph
makes it possible to identify patterns that are structurally correlated to the rela-
tionship encoded by the graph. Besides, we designed an operator that identifies
the top k representative vertices of a topological pattern.

In this paper, we study the network of authors who have cooperated at
some time with Katharina Morik according to the data available in the DBLP
database. Doing so, we emphasize powerful mechanisms for detecting new types
of local patterns in interaction graphs. Indeed, we formalize different questions
that can be considered when an attributed graph describes both interactions
and vertex descriptors. This has not yet been studied systematically. It enables
also to discuss the need for new post-processing techniques that exploit both the
patterns and the graph data. Finally, detecting local patterns in various data
types has motivated a lot of research in our group and writing a chapter at this
Festschrift occasion is also an implied reference to the domain that gave us the
first occasion to spend time and work with our smart colleague [22].
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2 Related Work

Graph mining is an active topic in Data Mining. In the literature, there exist
two main trends to analyze graphs. On the one hand, graphs are studied at
a macroscopic level by considering statistical graph properties (e.g., diameter,
degree distribution) [2,7]. On the other hand, sophisticated graph properties are
discovered by using a local pattern mining approach. Recent approaches mine
attributed graphs which convey more information. In such graphs, information
is locally available on vertices by means of attribute values. As argued by Moser
et al. [23], “often features and edges contain complementary information, i.e.,
neither the relationships can be derived from the feature vectors nor vice versa”.

Attributed graphs are extensively studied by means of clustering techniques
(see e.g., [1,8,13,15,19,32]) whereas pattern mining techniques in such graphs
have been less investigated. The pioneering work [23] proposes a method to find
dense homogeneous subgraphs (i.e., subgraphs whose vertices share a large set
of attributes). Similar to this work, Günnemann et al. [14] propose a method
based on subspace clustering and dense subgraph mining to extract non redun-
dant subgraphs that are homogenous with respect to vertex attributes. Silva
et al. [28] extract pairs of dense subgraphs and Boolean attribute sets such
that the Boolean attributes are strongly associated with the dense subgraphs.
In [24], the authors propose the task of finding the collections of homogeneous
k-clique percolated components (i.e., components made of overlapping cliques
sharing a common set of true valued attributes) in Boolean attributed graphs.
Another approach is presented in [18], where a larger neighborhood is consid-
ered. This pattern type relies on a relaxation of the accurate structure constraint
on subgraphs. Roughly speaking, they propose a probabilistic approach to both
construct the neighborhood of a vertex and propagate information into this
neighborhood. Following the same motivation, Sese et al. [26] extract (not nec-
essarily dense) subgraphs with common itemsets. Note that these approaches use
a single type of topological information based on the neighborhood of the ver-
tices. Furthermore, they do not handle numerical attributes as in our proposal.
However, global statistical analysis [11] of a single graph considers several mea-
sures to describe the graph topology, but does not benefit from vertex attributes.
Besides, current local pattern mining techniques on attributed graphs do not con-
sider numerical attributes nor macroscopic topological properties. To the best
of our knowledge, our paper represents a first attempt to combine both micro-
scopic and macroscopic analysis on graphs by means of (emerging) topological
pattern mining. Indeed, several approaches aim at building global models from
local patterns [12], but none of them tries to combine information from different
graph granularity levels.

Co-variation patterns are also known as gradual patterns [9] or rank-
correlated itemsets [6]. Do et al. [9] use a support measure based on the length
of the longest path between ordered objects. This measure has some drawbacks
w.r.t. computational and semantics aspects. Calders et al. [6] introduce a support
measure based on the Kendall’s τ statistical measure. However, their approach
is not defined to simultaneously discover up and down co-variation patterns as
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does our approach. Another novelty of our work is the definition of other inter-
estingness measures to capture emerging co-variations. Finally, this work is also
the first attempt to use co-variation pattern mining in attributed graphs.

3 Topological Vertex Properties

Let us consider a non-directed attributed graph G = (V,E, L), where V is a set of
n vertices, E a set of m edges, and L = {l1, · · · , lp} a set of p numerical or ordinal
attributes associated with each vertex of V . Important properties of the vertices
are encoded by the edges of the graph. From this relation, we can compute some
topological properties that synthesize the role played by each vertex in the graph.
The topological properties we are interested in range from a microscopic level –
those that described a vertex based on its direct neighborhood – to a macroscopic
level – those that characterize a vertex by considering its relationship to all other
vertices in the graph. Statistical distributions of these properties are generally
used to depict large graphs (see, e.g., [2,17]). We propose here to use them as
vertex descriptors.

3.1 Microscopic Properties

Let us consider here only three topological properties to describe the direct
neighborhood of a vertex v:

– The degree of v is the number of edges incident to v (deg(v) = |{u ∈ V, {u, v} ∈
E}|). When normalized by the maximum number of edges a vertex can have,
it is called the degree centrality coefficient: Degree(v) = deg(v)

n−1
.

– The clustering coefficient evaluates the connectivity of the neighbors of v and
thus its local density:

Clust(v) =
2|{{u,w} ∈ E, {u, v} ∈ E ∧ {v, w} ∈ E}|

deg(v)(deg(v) − 1)

3.2 Mesoscopic Property

We also consider the position of each vertex to the center of the graph, that is
the distance – the number of edges of a shortest path – to a peculiar vertex.
In the following, we call this property the Morik number(v) as we consider
the relative position of the vertices to the vertex that corresponds to Katharina
Morik.

3.3 Macroscopic Properties

We consider five macroscopic topological properties to characterize a vertex while
taking into account its connectivity to all other vertices of the graph.
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– The relative importance of vertices in a graph can be obtained through cen-
trality measures [11]. Closeness centrality Close(v) is defined as the inverse of
the average distance between v and all other vertices that are reachable from
it. The distance between two vertices is defined as the number of edges of the
shortest path between them: Close(v) = n∑

u∈V |shortest path(u,v)| .
– The betweenness centrality Betw(v) of v is equal to the number of times

a vertex appears on a shortest path in the graph. It is evaluated by first
computing all the shortest paths between every pair of vertices, and then
counting the number of times a vertex appears on these paths: Betw(v) =
∑

u,w 1shortest path(u,w)(v).
– The eigenvector centrality measure (EgVect) favours vertices that are con-

nected to vertices with high eigenvector centrality. This recursive definition can
be expressed by the following eigenvector equation Ax = λx which is solved
by the eigenvector x associated to the largest eigenvalue λ of the adjacency
matrix A of the graph.

– The PageRank index [4] is based on a random walk on the vertices of the
graph, where the probability to go from one vertex to another is modelled as
a Markov chain in which the states are vertices and the transition probabil-
ities are computed based on the edges of the graph. This index reflects the
probability that the random walk ends at the vertex itself:

PageRank(v) = α
∑

u

1E({u, v})
PageRank(u)

deg(u)
+

1 − α

n

where the parameter α is the probability that a random jump to vertex v
occurs.

– Network constraint [30] evaluates to what extent person’s contacts are redun-
dant

Network(v) =
∑

u|(u,v)∈E
[

1
deg(v)

+
∑

w|(u,w) and (v,w)∈E
(

1
deg(v)

1
deg(u)

)]2

When its value is low, the contacts are rather disconnected, whereas when it
is high, the contacts are close or strongly tied.

These 9 topological properties characterizes the graph relationship encoded
by E. These properties, along with the set of vertex attributes L, constitutes
the set of vertex descriptors D used in this paper.

4 Topological Patterns

Let us now consider topological patterns as a set of vertex attributes and topo-
logical properties that behave similarly over a large part of the vertices of the
graph. We assume that all topological properties and vertex attributes are of
numerical or ordinal type, and we propose to capture their similarity by quanti-
fying their co-variation over the vertices of the graph. Topological patterns are
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defined as P = {D1
s1 , · · · ,D�

s�}, where Dj , j = 1 . . . �, is a vertex descriptor
from D and sj ∈ {+,−} is its co-variation sign. In the following, we propose three
pattern interestingness measures that differ in the pairs of vertices considered
for their evaluation.

4.1 Topological Patterns over the Whole Graph

Several signed vertex descriptors co-vary if the orders induced by each of them
on the set of vertices are consistent. This consistency is evaluated by the number
of vertex pairs ordered the same way by all descriptors. The number of such pairs
constitutes the so-called support of the pattern. This measure can be seen as a
generalization of the Kendall’s τ measure. When we consider all possible vertex
pairs, this interestingness measure is defined as follows:

Definition 1 (Suppall). The support of a topological pattern P over all possible
pairs of vertices is:

Suppall(P ) =
|{(u, v) ∈ V 2 | ∀D

sj

j ∈ P : Dj(u) �sj
Dj(v)}|

(
n
2

)

where �sj
denotes < when sj is equal to +, and �sj

denotes > when sj is equal
to −.

This measure gives the number of vertex pairs (u, v) such that u is strictly
lower than v on all descriptors with sign +, and u is strictly higher than v on
descriptors with sign −.

As mentioned in [6], Suppall is an anti-monotonic measure for positively
signed descriptors. This is still true when considering negatively signed ones:
adding D−

l+1 to a pattern P leads to a support lower than or equal to that of
P since the pairs (u, v) that support P must also satisfy Dl+1(u) > Dl+1(v).
Besides, when adding descriptors with negative sign, the support of some pat-
terns can be deduced from others, the latter referred to as symmetrical patterns.

Property 1 (Support of symmetrical patterns). Let P be a topological pattern
and P be its symmetrical, that is, ∀D

sj

j ∈ P , D
sj

j ∈ P , with sj = {+,−}\{sj}. If
a pair (u, v) of V 2 contributes to the support of P , then the pair (v, u) contributes
to the support of P . Thus, we have Suppall(P ) = Suppall(P ).

Topological patterns and their symmetrical patterns are semantically equiv-
alent. To avoid the irrelevant computation of duplicate topological patterns, we
exploit Property 1 and enforce the first descriptor of a pattern P to be signed
by +.

Mining frequent topological patterns consists in computing all sets of signed
descriptors P , but not their symmetrical ones, such that Suppall(P ) ≥ minsup,
where minsup is a user-defined minimum support threshold.



174 J.-F. Boulicaut et al.

4.2 Other Interestingness Measures

To identify most interesting topological patterns, we propose to give to the end-
user the possibility of guiding its data mining process by querying the patterns
with respect to their correlation with the relationship encoded by the graph
or with a selected descriptor. Therefore, we revisit the notion of emerging pat-
terns [10] by identifying the patterns whose support is significantly greater (i.e.,
according to a growth-rate threshold) in a specific subset of vertex pairs than in
the remaining ones. This subset can be defined in different ways according to the
end-user’s motivations: either it is defined by the vertex pairs that are ordered
with respect to a selected descriptor called the class descriptor, or it is equal to
E, the set of edges. Whereas the former highlights the correlation of a pattern
with the class descriptor, the latter enables to characterize the importance of
the graph structure within the support of the topological pattern.

Emerging Patterns w.r.t. a Selected Descriptor. Let us consider a selected
descriptor C ∈ D and a sign r ∈ {+,−}. The set of pairs of vertices that are
ordered by Cr is

CCr = {(u, v) ∈ V 2 | C(u) �r C(v)}
The support measure based on the vertex pairs of CCr is defined below.

Definition 2 (SuppCr). The support of a topological pattern P over Cr is:

SuppCr (P ) =
|{(u, v) ∈ CCr | ∀D

sj

j ∈ P : Dj(u) �sj
Dj(v)}|

|CCr |
Analogously, the support of P over the pairs of vertices that do not belong to
CCr is denoted SuppCr (P ). To evaluate the impact of Cr on the support of P ,
we consider the growth rate of the support of P over the partition of vertex pairs
{CCr , CCr}: Gr(P,Cr) = SuppCr (P )

SuppCr (P )

If Gr(P,Cr) is greater than a minimum growth-rate threshold, then P is
referred to as emerging with respect to Cr. If Gr(P,Cr) ≈ 1, P is as frequent in
CCr as in CCr . If gr(P,Cr) � 1, P is much more frequent in CCr than in CCr . For
example, Gr({h+, i−,Betw+}, t+) = 2.31. The intuition behind this definition is
to identify the topological patterns that are mostly supported by pairs of vertices
that are also ordered by the selected descriptor.

Emerging Patterns w.r.t. the Graph Structure. It is interesting to mea-
sure if the graph structure plays an important role in the support of a topological
pattern P . To this end, we define a similar support measure based on pairs that
belongs to E, the set of edges of the graph:

CE = {(u, v) ∈ V 2 | {u, v} ∈ E}
Based on this set of pairs, we define the support of P as:
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Definition 3 (SuppE). The support of a topological pattern P over the pairs
of vertices that are linked in G is:

SuppE(P ) =
2|{(u, v) ∈ CE | ∀D

sj

j ∈ P : Dj(u) �sj
Dj(v)}|

|CE |

The maximum value of the numerator is |CE |
2 since: (1) if (u, v) ∈ CE then

(v, u) ∈ CE , and (2) it is not possible that ∀D
sj

j ∈ P , Dj(u) �sj
Dj(v) and

Dj(v)�sj
Dj(u) at the same time. For instance, the pattern {h+, i−} is supported

by all the twenty possible pairs that are edges, its support is thus equal to 1.
The support of P over the pairs of vertices that do not belong to CE is denoted
SuppE(P ).

As before, to evaluate the impact of E on the support of P , we consider
the growth rate of the support of P over the partition of vertex pairs {CE , CE}:
Gr(P,E) = SuppE(P )

Supp
E
(P )

.

Gr(P,E) enables to assess the impact of the graph structure on the pattern.
Therefore, ifGr(P,E) � 1,P is said tobe structurally correlated. IfGr(P,E) � 1,
the graph structure tends to inhibit the support of P .

5 Top k Representative Vertices

The user may be interested in identifying the vertices that are the most rep-
resentative of a given topological pattern, thus enabling the projection of the
patterns back into the graph. For example, the representative vertices of the
pattern {t+, Betw−} would be researchers with a relatively large number of
IEEE TKDE papers and a low betweenness centrality measure.

We denote by S(P ) the set of vertex pairs (u, v) that constitutes the support
of a topological pattern P :

S(P ) = {(u, v) ∈ V 2 | ∀D
sj

j ∈ P : Dj(u) �sj
Dj(v)}

which forms, with V , a directed graph GP = (V, S(P )). This graph satisfies the
following property.

Property 2. The graph GP = (V, S(P )) is transitive and acyclic.

Proof. Let us consider (u, v) ∈ V 2 and (v, w) ∈ V 2 such that, ∀D
sj

j ∈ P :
Dj(u)�sj

Dj(v) and Dj(v)�sj
Dj(w). Thus, Dj(u)�sj

Dj(w) and (u,w) ∈ S(P ).
Therefore, GP is transitive.

As �s ∈ {<,>}, it stands for a strict inequality. Thus, if (u, v) ∈ S(P ),
(v, u) 	∈ S(P ). Furthermore, as GP is transitive, if there exists a path between
u and v, there is also an arc (u, v) ∈ S(P ). Therefore, (v, u) 	∈ S(P ) and we can
conclude that GP is acyclic.

As GP is acyclic, it admits a topological ordering of its vertices, which is, in
the general case, not unique. The top k representative vertices of a topological
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pattern P are identified on the basis of such a topological ordering of V and
are the k last vertices with respect to this ordering. Considering that an arc
(u, v) ∈ S(P ) is such that v dominates u on P , this vertex set contains the most
dominant vertices on P . The top k representative vertices of P can be easily
identified by ordering the vertices by their incoming degree.

Although the support of topological patterns is an anti-monotonic measure,
its computation is quadratic in the number of vertices of the graph which pre-
vents the extraction of such patterns on large graph using classical pattern min-
ing algorithms. To overcome this problem, we proposed in [25] an upper bound
on this measure that can be computed linearly in the number of vertices. This
upper bound takes advantages of the presence of ties in the descriptor values. By
pre-computing some indexes on the descriptors, almost all non frequent patterns
are pruned without computing their support when the minimum support is high.

The computation of topological patterns is done in an ECLAT-based way
[31]. More precisely, all the subsets of a pattern P are always evaluated before
P itself. In this way, by storing all frequent patterns in the hash-tree M, the
anti-monotonic frequency constraint is fully-checked on the fly. We compute the
upper bound on the support to prune non-promising topological patterns. When
this upper bound is greater than the minimum threshold, the exact support is
computed. Another optimization is based on the deduction of the support from
already evaluated patterns: A pair of vertices that supports a pattern P can
support pattern PA+ or pattern PA−, or none of them. Thus, another upper
bound on Suppall(PA−) is Suppall(P )−Suppall(PA+). Note that these patterns
have already been considered before the evaluation of PA−. So, to be stringent,
we bound the support by taking the minimum between this value and the upper
bound. When computing the support of the pattern, the top k representative
vertices are also identified.

6 Studying Katharina Morik’s Network

In the following, we propose to use TopGraphMiner to study the scientific co-
authorship network of Katharina Morik. After presenting the attributed graph
we generate from the DBLP digital library1, we provide qualitative results that
show the implication of Katharina in the machine learning community.

6.1 Katharina Morik’s Co-authorship Network

The co-authorship graph is built from the DBLP digital library. Regarding
Katharina’s bibliography, we select all the conference venues and journals in
which Katharina has at least one DBLP entry2. We gather all the publications
in these conference venues and journals since their foundation, and derived a
graph where the vertices stand for the authors and edges link two authors who

1 http://dblp.uni-trier.de/.
2 http://www.dblp.org/search/index.php?query=author:katharina morik.

http://dblp.uni-trier.de/
http://www.dblp.org/search/index.php?query=author:katharina_morik
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co-authored at least one paper in this corpus. To each vertex, we associate the
number of publications in each of these 53 selected conferences or journals as
vertex properties. We then removed isolated vertices, that is to say, authors who
has no co-author in the selected publications. The resulting attributed graphs
involves 81 222 vertices and 466 152 undirected edges. Notice that, even if this
attributed graph is generated based on Katharina’s publications, her co-authors
only represent 0.1% of the vertices of the whole graph, while the vertices whose
distance to Katharina is at most 2 represent less than 2% of the whole set of
vertices. The average Morik number is 4.05 and 4033 authors have no path to
Katharina (infinite Morik number). There are 1428 connected components.

Figure 1 presents this co-authorship graph restricted to the authors that are
at most at a distance of 2 from Katharina and that have a degree value greater
than 20. Applying the community detection Chinese Whisper algorithm [3], we
obtain 68 communities whose most salient are represented on the figure. The pur-
ple community, that gathers 177 authors including Katharina, is very dense (1096
edges). It brings together well identified researchers in data mining, machine
learning and data bases. The other main communities are labeled on the graph.
Our goal is to analyse this graph with regard to several questions:

– Are there any interesting patterns among publications?

Fig. 1. Research domains associated to Katharina’s co-authors. (Color figure online)
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Table 1. Emerging patterns w.r.t. morik number−.

Pattern Top 20

IJCAI+, KI+, GWAI+,
Informatik Spektrum+, morik number−

Katharina Morik, Wolfgang
Wahlster, Bernhard Nebel,
Thomas Christaller, Wolfgang
Hoeppner, Jörg H. Siekmann,
Günther Görz, Frank Puppe,
Udo Hahn, Hans-Hellmut Nagel,
Franz Baader, Christopher
Habel, Bernd Neumann, Ulrich
Furbach, Joachim Hertzberg

IJCAI+, ICML+, Machine Learning+,
Knowl. Inf. Syst.+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Wray L.
Buntine, Kristian Kersting,
Floriana Esposito, Xindong Wu,
Eamonn J. Keogh, Zhi-Hua
Zhou, Siegfried Nijssen, Hiroshi
Motoda, João Gama, Jie Tang,
Salvatore J. Stolfo, Dacheng
Tao, Michael J. Pazzani, Wei
Liu, Chris H. Q. Ding, Tao Li,
Bin Li

– Are there interesting trends between some authors’ publications and topolog-
ical properties?

– What about Katharina’s role in this graph? Can we characterize the proximity
to Katharina in terms of co-authorship?

6.2 Most Emerging Pattern with Respect to Morik Number

Table 1 presents two interesting patterns that strongly emerge with the Morik
number. The first pattern gathers 4 conferences that are positively signed and
the Morik number that is negatively signed: The more authors are close to
Katharina, the more they publish in IJCAI as well as in three other German
conferences (KI - Künstliche Intelligenz, GWAI - German workshop on artificial
intelligence and Informatik Spektrum) Notice that GWAI changes its name to
KI in 1993. The top 20 supporting authors gathers the German researchers in
Artificial Intelligence. They are close to Katharina who is wellknown in the AI
community research, and she also actively contributes to the animation of her
national community.

The second pattern presented in Table 1 gathers the major conference venues
and journals in Artificial Intelligence, Data Mining and Machine Learning. The
top 20 supporting authors are all well established researchers in these research
areas.

The first pattern with the Morik number positively signed is presented in
Table 2. It gathers the conference ICASSP in signal processing that is positively
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Table 2. Emerging pattern w.r.t. morik number+.

Pattern Top 20

ICASSP+, IJCAI−, KR−, KI−,
morik number+

Gyula Hermann, Victor Lazzarini, Joseph
Timoney, Fred Kitson, Manuel Duarte
Ortigueira, Abbas Mohammadi, Riwal
Lefort, Jean-Marc Boucher, Artur
Przelaskowski, Kenichi Miyamoto, Emiru
Tsunoo, Olaf Schreiner, Murtaza Taj, Salim
Chitroub, Saptarshi Das, Ales Procházka,
Amrane Houacine, Yasuyuki Ichihashi,
Pablo Javier Alsina, Valeri Mladenov

Table 3. Emerging patterns w.r.t. Morik number that mix vertex and topological
attributes.

Pattern Top 20

ICASSP+, IJCAI−, Degree−,
Closeness−, Betweennes−,
NetworkConstraint+,
morik number+

Jacob Ninan, Marc Beacken, Hinrich R.
Martens, Jyun-Jie Wang, William H. Haas,
J. G. Cook, Lawrence J. Ziomek, José R.
Nombela, T. J. Edwards, Judith G.
Claassen, Shigekatsu Irie, Alberto R.
Calero, Takaaki Ueda, Hisham Hassanein,
Peter Strobach, Liubomire G. Iordanov, N.
A. M. Verhoeckx, Guy R. L. Sohie, Sultan
Mahmood, Matt Townsend

KI+, Degree+, Closeness+,
NetworkConstraint−,
morik number−

Bernhard Nebel, Katharina Morik, Deborah L.
McGuinness, Mark A. Musen, Rudi Studer,
Steffen Staab, Hans W. Guesgen, Bamshad
Mobasher, Simon Parsons, Thorsten
Joachims, Alex Waibel, Kristian Kersting,
Matthias Jarke, Manuela M. Veloso,
Wolfgang Nejdl, Alfred Kobsa, Virginia
Dignum, Alessandro Saffiotti, Hans
Uszkoreit, Antonio Krüger

signed and 3 conferences in Machine Learning that are negatively signed: The
farther the authors from Katharina, the more they published at ICASSP and
the less they contribute to AI conferences IJCAI, KI and KR (Principles of
knowledge representation and reasoning). The support of this pattern is rather
low.

The most emerging patterns w.r.t. Morik number that mix vertex and topo-
logical attributes are presented in Table 3. The first pattern is similar to the pat-
tern of Table 2 and the additional topological attributes corroborate the eccen-
tricity of the pattern relative to the graph. The second pattern brings together
confirmed researchers in artificial intelligence and machine learning, who have
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Table 4. Emerging patterns involving the French-speaking data mining conference
EGC.

Pattern Top 20

EGC+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Bart Goethals, Céline
Robardet, Didier Dubois, Michèle Sebag, Luc
De Raedt, Mohammed Javeed Zaki, Einoshin
Suzuki, Heikki Mannila, Jian Pei, Élisa
Fromont, Toon Calders, Adriana Prado, Gilles
Venturini, Szymon Jaroszewicz, João Gama,
Alice Marascu, Osmar R. Zäıane, Pascal
Poncelet, Jean-François Boulicaut

EGC+, Knowl. Inf. Syst.+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Bart Goethals, João Gama,
Mohammed Javeed Zaki, Jian Pei, Heikki
Mannila, Osmar R. Zäıane, Toon Calders,
Szymon Jaroszewicz, Einoshin Suzuki, Pascal
Poncelet, Christophe Rigotti, Jean-François
Boulicaut, Marie-Christine Rousset,
Maguelonne Teisseire, Florent Masseglia,
Gregory Piatetsky-Shapiro

EGC+, Knowl. Inf. Syst.+,
morik number−

Katharina Morik, Bart Goethals, Fosca Giannotti,
Mohand-Said Hacid, Toon Calders, Mohammed
Javeed Zaki, Osmar R. Zäıane, Heikki Mannila,
João Gama, Dominique Laurent, Jian Pei,
Szymon Jaroszewicz, Einoshin Suzuki, Patrick
Gallinari, David Genest, Mohand Boughanem,
François Scharffe, Marc Plantevit, Laure
Berti-Equille, Zbigniew W. Ras

published at Künstliche Intelligenz. They are very central in the graph and their
neighborhood is not so much connected.

6.3 Where Are We in Katharina’s Network? An Interactive
Exploration of the Patterns

After considering the patterns that maximize the growth rate w.r.t. Morik num-
ber, we now look for patterns supported by the authors of this paper. Many of
these patterns involve the French-speaking conference EGC (see Table 4) and
journals in data mining. This is due to the fact that Katharina gave a keynote
at EGC in 2009. The top 20 supporting authors are either French or prestigious
invited speakers at this conference.

The first pattern of Table 5 can be interpreted thanks to a Dagstuhl seminar
organized by Katharina called Local Pattern Detection. The goal of this seminar
was to bring together prominent European researchers in the field of local pat-
tern discovery. The Data Mining and Knowledge Discovery journal is the most
important one that publishes results in that area. The second one is around
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Table 5. Patterns related to Dagstuhl seminars.

Pattern Top 20

LocalPatternDetection+,
Data Min. Knowl. Discov.+,
morik number−

Katharina Morik, Stefan Rüping,
Francesco Bonchi, Niall M. Adams,
Marko Grobelnik, David J. Hand,
Dunja Mladenic, Frank Höppner, Saso
Dzeroski, Einoshin Suzuki, Nada
Lavrac, Jean-François Boulicaut,
Myra Spiliopoulou, Ruggero G. Pensa,
Johannes Fürnkranz, Filip Zelezny

Parallel Universes and Local Patterns+,
morik number−

Katharina Morik, Arno Siebes, Michael
R. Berthold, Michael Wurst, David J.
Hand, Bernd Wiswedel, Frank
Höppner, Emmanuel Müller, Élisa
Fromont, Claus Weihs, Niall M.
Adams, Mirko Böttcher, Ralph
Krieger, Bruno Crémilleux, Ira
Assent, Marie-Odile Cordier, Thomas
Seidl, Heike Trautmann, Rene
Quiniou, Arnaud Soulet

the seminar Parallel Universes and Local Patterns that was also organized by
Katharina and colleagues.

7 Conclusion

We have been using an algorithm that supports network analysis by finding reg-
ularities among vertex topological properties and attributes. It mines frequent
topological patterns as up and down co-variations involving both attributes and
topological properties of graph vertices. In addition, we defined two interesting-
ness measures to capture the significance of a pattern with respect to either a
given descriptor, or the relationship encoded by the graph edges. Furthermore,
by identifying the top k representative vertices of a topological pattern, we sup-
port a better interaction with end-users. While [25] has given details about the
whole methodology and has sketched several case studies, we decided in this
chapter to analyze co-authorship network of our colleague Katharina Morik. We
have shown that it supports the discovery of sensible patterns.

Acknowledgments. We thank Adriana Prado for her help. We also gratefully
acknowledge support from the CNRS/IN2P3 Computing Center.
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Abstract. Exploratory analysis of ubiquitous data and social media
includes resources created by humans as well as those generated by sen-
sor devices. This paper reviews recent advances concerning according
approaches and methods, and provides additional review and discussion.
Specifically, we focus on exploratory pattern analytics implemented using
subgroup discovery and exceptional model mining methods, and put
these into context. We summarize recent work on description-oriented
community detection, spatio-semantic analysis using local exceptional-
ity detection, and class association rule mining for activity recognition.
Furthermore, we discuss results and implications.

1 Introduction

In ubiquitous and social environments, a variety of heterogenous data is gener-
ated, e.g., by sensors and social media, cf. [3]. For obtaining first insights into
the data, description-oriented exploratory data mining approaches can then be
applied.

Subgroup discovery [2,8,50,87,88] is such an exploratory approach for discov-
ering interesting subgroups – as an instance of local pattern detection [52,67,68].
The interestingness is usually defined by a certain property of interesting for-
malized by a quality function. In the simplest case, a binary target variable
is considered, where the share in a subgroup can be compared to the share in
the dataset in order to detect (exceptional) deviations. More complex target
concepts consider sets of target variables. In particular, exceptional model min-
ing [8,55] focuses on more complex quality functions, considering complex target
models, e.g., given by regression models or Bayesian networks with a deviating
behavior for certain subgroups, cf. [37,38]. In the context of ubiquitous data
and social media [3–5], interesting target concepts are given, e.g., by densely
connected graph structures (communities) [17], exceptional spatio-semantic dis-
tributions [24], or class association rules [18].

This paper summarizes recent work on community detection, behavior char-
acterization and spatio-temporal analysis using subgroup discovery and excep-
tional model mining. We start with the introduction of necessary foundational
concepts in Sect. 2. After that, Sect. 3 provides a compact overview of recent

c© Springer International Publishing Switzerland 2016
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scientific advances summarizing our recent work [4,6,7,17,21,24]. Furthermore,
we describe exemplary results, and conclude with a discussion of implications
and future directions in Sect. 4.

2 Background

Below, we first introduce some basic notation. After that, we provide a brief
summary of basic concepts with respect to subgroup discovery

2.1 Basic Notation

Formally, a database D = (I,A) is given by a set of individuals I and a set of
attributes A. A selector or basic pattern selai=vj

is a Boolean function I → {0, 1}
that is true if the value of attribute ai ∈ A is equal to vj for the respective
individual. The set of all basic patterns is denoted by S.

For a numeric attribute anum selectors selanum∈[minj ;maxj ] can be defined
analogously for each interval [minj ;maxj ] in the domain of anum. The Boolean
function is then set to true if the value of attribute anum is within the respective
range.

2.2 Patterns and Subgroups

Basic elements used in subgroup discovery are patterns and subgroups. Intu-
itively, a pattern describes a subgroup, i.e., the subgroup consists of instances that
are covered by the respective pattern. It is easy to see, that a pattern describes
a fixed set of instances (subgroup), while a subgroup can also be described by a
set of patterns, if there are different options for covering the subgroup’ instances.
In the following, we define these concepts more formally.

Definition 1. A subgroup description or (complex) pattern sd is given by a set
of basic patterns sd = {sel1, . . . , sell} , where sel i ∈ S, which is interpreted as a
conjunction, i.e., sd(I) = sel1 ∧ . . . ∧ sel l, with length(sd) = l.

Without loss of generality, we focus on a conjunctive pattern language using
nominal attribute – value pairs as defined above in this paper; internal dis-
junctions can also be generated by appropriate attribute – value construction
methods, if necessary. We call a pattern sd ′ a superpattern (or refinement) of a
subpattern sd , iff sd ⊂ sd ′.

Definition 2. A subgroup (extension)

sgsd := ext(sd) := {i ∈ I|sd(i) = true}
is the set of all individuals which are covered by the pattern sd.

As search space for subgroup discovery the set of all possible patterns 2S

is used, that is, all combinations of the basic patterns contained in S. Then,
appropriate efficient algorithms, e.g., [19,27,58] can be applied.
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2.3 Interestingness of a Pattern

A large number of quality functions has been proposed in literature, cf. [41] for
estimating the interestingness of a pattern – selected according to the analysis
task.

Definition 3. A quality function q : 2S → R maps every pattern in the search
space to a real number that reflects the interestingness of a pattern (or the exten-
sion of the pattern, respectively).

Many quality functions for a single target concept (e.g., binary [8,50] or
numerical [8,56]), trade-off the size n = |ext(sd)| of a subgroup and the deviation
tsd − t0, where tsd is the average value of a given target concept in the subgroup
identified by the pattern sd and t0 the average value of the target concept in the
general population. In the binary case, the averages relate to the share of the
target concept. Thus, typical quality functions are of the form

qa(sd) = na · (tsd − t0), a ∈ [0; 1] . (1)

For binary target concepts, this includes, for example, the weighted relative accu-
racy for the size parameter a = 1 or a simplified binomial function, for a = 0.5.
Multi-target concepts, e.g., [24,51,88] that define a target concept captured by a
set of variables can be defined similarly, e.g., by extending an univariate statis-
tical test to the multivariate case, e.g., [24]: Then, the multivariate distributions
of a subgroup and the general population are compared in order to identify
interesting (and exceptional) patterns.

While a quality function provides a ranking of the discovered subgroup pat-
terns, often also a statistical assessment of the patterns is useful in data explo-
ration. Quality functions that directly apply a statistical test, for example, the
Chi-Square quality function, e.g., [8] provide a p-Value for simple interpretation.
However, the Chi-Square quality function estimates deviations in two directions.
An alternative, which can also be directly mapped to a p-Value is given by the
adjusted residual quality function qr, since the values of qr follow a large standard
normal distribution, cf. [1]:

qr = n(p − p0) · 1√
np0(1 − p0)(1 − n

N )
(2)

The result of top-k subgroup discovery is the set of the k patterns
sd1, . . . , sdk , where sd i ∈ 2S with the highest interestingness according to the
applied quality function. A subgroup discovery task can now be specified by the
5-tuple: (D , c, S, q, k) , where c indicates the target concept; the search space 2S

is defined by set of basic patterns S. In addition, we can consider constraints
with respect to the complexity of the patterns. We can restrict the length l of the
descriptions to a certain maximal value, e.g., with length l = 1 we only consider
subgroup descriptions containing one selector, etc.

For several quality functions optimistic estimates [8,19,43,56] can be applied
for determining upper quality bounds: Consider the search for the k best sub-
groups: If it can be proven, that no subset of the currently investigated hypothesis
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is interesting enough to be included in the result set of k subgroups, then we can
skip the evaluation of any subsets of this hypothesis, but can still guarantee the
optimality of the result. More formally, an optimistic estimate oe(q) of a quality
function q is a function such that p ⊆ p′ → oe(q(p)) ≥ q(p′), i.e., such that no
refinement p′ of the pattern p can exceed the quality obtained by oe(q(p)).

3 Methods

With the rise of ubiquitous and mobile devices, social software and social media,
a wealth of user-generated data is being created covering the according inter-
actions in the respective systems an environments. In the following, we focus
on social media and ubiquitous data: We adopt an intuitive definition of social
media, regarding it as online systems and services in the ubiquitous web, which
create and provide social data generated by human interaction and communica-
tion, cf. [4,7].

In this context, exploratory analytics provides the means to get insights into
a number of exemplary analysis options, e.g., focusing on social behavior in
mobile social networks. In the context of ubiquitous and social environments,
exploratory data analysis is therefore a rather important approach, e.g., for
getting first insights into the data: Here, subgroup discovery and exceptional
model mining are prominent methods that can be configured and adapted to
various analytical tasks. As outlined above, subgroup discovery [2,8,50,87,88]
has been established as a general and broadly applicable technique for descrip-
tive and exploratory data mining: It aims at identifying descriptions of subsets
of a dataset that show an interesting behavior with respect to certain inter-
estingness criteria, formalized by a quality function. Standard subgroup discov-
ery approaches commonly focus on a single target concept as the property of
interest [87], that can already be applied for common analytical questions like
deviations of some parameters. Furthermore, since the quality function frame-
work also enables multi-target concepts, e.g., [8,24,51,88] these enable even more
powerful approaches for data analytics.

Figure 1 shows an overview on methods adapted and extended to the specific
analytical tasks in the context of social media and ubiquitous data. Below, we
discuss these in more detail, summarizing our recent work [17,18,24].

3.1 Description-Oriented Community Detection Using Subgroup
Discovery

Important inherent structures in ubiquitous and social environments are given
by communities, cf. [72,86]. Typically, these are seen as certain subsets of nodes
of a graph with a dense structure. Classic community detection, e.g., [39] for
a survey, just identifies subgroups of nodes with a dense structure, lacking an
interpretable description. That is, no concise nor easily interpretable community
description is provided.
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Fig. 1. Overview on the applied subgroup discovery and exceptional model mining
approaches: We focus on the exploratory mining and analysis of social interaction in
ubiquitous data and social media, tackling communities, human activities and behavior,
and spatial-temporal characteristics, e.g., relating to events.

In [17], we focus on description-oriented community detection using sub-
group discovery. For providing both structurally valid and interpretable com-
munities we utilize the graph structure as well as additional descriptive features
of the graph’s nodes. Using additional descriptive features of the nodes con-
tained in the network, we approach the task of identifying communities as sets
of nodes together with a description, i.e., a logical formula on the values of the
nodes’ descriptive features. Such a community pattern then provides an intu-
itive description of the community, e.g., by an easily interpretable conjunction
of attribute-value pairs. Basically, we aim at identifying communities according
to standard community quality measures, while providing characteristic descrip-
tions at the same time.

As a simple example, we can consider a friendship graph common in online
social systems. In the social bookmarking system BibSonomy1 [35], for example,
users can declare their friendship toward other users. This results in a directed
graph, where nodes are denoted by users, and edges denote the friendship rela-
tions. Furthermore, in BibSonomy each user can tag resources like publications
and web pages, i.e., assign a set of descriptive tags to certain resources. Then,
the set of tags of a user can be considered as a description of that user’s interests.
Thus, the description-oriented community detection task in this context is to find
user groups, where users are well connected given the friendship link structure,
and also share a set of tags, as common features. Description-oriented commu-
nity detection thus both needs to mine the graph-space and the description-
space in an efficient way. In the following, we summarize the approach presented
in [17], outlining the COMODO algorithm for fast description-oriented commu-
nity detection, and present exemplary results.

1 http://www.bibsonomy.org.

http://www.bibsonomy.org


Advances in Exploratory Pattern Analytics 189

Overview. The COMODO algorithm for description-oriented community
detection aims at discovering the top-k communities (described by community
patterns) with respect to a number of standard community evaluation func-
tions. The method is based on a generalized subgroup discovery approach [23,57]
adapted to attributed graph data, and also tackles typical problems that are not
addressed by standard approaches for community detection such as pathological
cases like small community sizes.

In [17] the approach is demonstrated on data sets from three social systems
namely, i.e., from the social bookmarking systems BibSonomy and delicious2,
and from the social media platform last.fm3. However, the presented approach
is not limited to such systems and can be applied to any kind of graph-structured
data for which additional descriptive features (node labels) are available, e.g.,
certain activity in telephone networks, interactions in face-to-face contacts [16],
and according edge-attributed graphs.

Algorithm. COMODO is a fast branch-and-bound algorithm utilizing opti-
mistic estimates [43,87] which are efficient to compute. This allows COMODO
to prune the search space significantly, as we will see below.

As outlined above, COMODO utilizes both the graph structure, as well as
descriptive information of the attributed graph, i.e., the label information of the
nodes. This information is contained in two data structures: The graph structure
is encoded in graph G while the attribute information is contained in database
D describing the respective attribute values of each node. In a preprocessing
step, we merge these data sources. Since the communities considered in our
approach do not contain isolated nodes, we can describe them as sets of edges.
We transform the data (of the given graph G and the database D containing the
nodes’ descriptive information) into a new data set focusing on the edges of the
graph G: Each data record in the new data set represents an edge between two
nodes. The attribute values of each such data record are the common attributes
of the edge’s two nodes. For a more detailed description, we refer to [17].

The FP-growth algorithm (cf. [44]) for mining association rules, the SD-Map*
algorithm for fast exhaustive subgroup discovery [19], as well as quality functions
operating on the graph structure form the basis of COMODO. COMODO
utilizes an extended FP-tree structure, called the community pattern tree (CP-
tree) to efficiently traverse the solution space. The tree is built in two scans of
the graph data set and is then mined in a recursive divide-and-conquer manner,
cf. [19,57]. The CP-tree contains the frequent nodes in a header table, and links
to all occurrences of the frequent basic patterns in the tree structure.

The main algorithmic procedure of COMODO is shown in Algorithm 1.
First, patterns containing only one basic pattern are mined. Then recursively,
patterns conditioned on the occurrence of a (prefixed) complex pattern (as a
set of basic patterns, chosen in the previous recursion step) are considered. For
each following recursive step, a conditional CP-tree is constructed, given the
2 http://www.delicious.com.
3 http://last.fm.

http://www.delicious.com
http://last.fm
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Algorithm 1. COMODO

procedure COMODO-Mine (cf. [17] for an extended description)
Input: Current community pattern tree CPT , pattern p̂, priority queue top-k, int k (max. number

of patterns), int maxLength (max. length of a pattern), int τn (min. community size)

1: COM = new dictionary: basicpattern → pattern

2: minQ = minQuality(top-k)

3: for all b in CPT .getBasicPatterns do

4: p = createRefinement(p̂, b)

5: COM [b] = p

6: if size(p,CPT) ≥ τn then

7: if quality(p, F ) ≥ minQ then

8: addToQueue(top-k, p)

9: minQ = minQuality(top-k)

10: if length(p̂) + 1 < maxLength then

11: refinements = sortBasicPatternsByOptimisticEstimateDescending(COM )

12: for all b in refinements do

13: if optimisticEstimate(COM [b]) ≥ minQ then

14: CCPT = getConditionalCPT(b,CPT ,minQ)

15: Call COMODO-Mine(CCPT , COM [b] , top-k)

conditional pattern base of a frequent basic pattern (CP-node). The conditional
pattern base consists of all the prefix paths of such a CP-node, i.e., all the paths
from the root node to the CP-node.

Given the conditional pattern base, a (smaller) CP-tree is generated: the
conditional CP-tree of the respective CP-Node. If the conditional CP-tree just
consists of one path, then the community descriptions can be generated by con-
sidering all the combinations of the nodes contained in the path. Otherwise, the
new tree is subjected to the next recursion step. We refer to [44] for more details
on CP-trees and FP-growth.

As shown in the algorithm, we consider three options for pruning and sorting
according to the current optimistic estimates:

1. Sorting: During the iteration on the currently active basic pattern queue
when processing a (conditional) CP-tree, we can dynamically reorder the
basic patterns that have not been evaluated so far by their optimistic estimate
value. In this way, we evaluate the more promising basic patterns first. This
heuristic can help to obtain and to propagate higher values for the pruning
threshold early in the process, thus, helping to prune larger portions of the
search space (line 11).

2. Pruning: If the optimistic estimate for the conditioning basic pattern is
below the threshold given by the k best community pattern qualities (line
13), then we can omit a branch.

3. Pruning: When building a (conditional) community pattern tree, we can
omit all the CP-nodes with an optimistic estimate below the mentioned qual-
ity threshold (line 14).

To efficiently compute the community evaluation functions together with
their optimistic estimates COMODO stores additional information in the com-
munity pattern nodes (CP-nodes) of the CP-tree, depending on the used quality
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function. Each CP-node of the CP-tree captures information about the aggre-
gated edge information concerning the database D and the respective graph. For
each node, we store the following information:

– The basic pattern (selector) corresponding to the attribute value of the CP-
node. This selector describes the community (given by a set of edges) covering
the CP-node.

– The edge count of the (partial) community represented by the CP-node, i.e.,
the aggregated count of all edges that are accounted for by the CP-node and
its basic pattern, respectively.

– The set of nodes that are connected by the set of edges of the CP-node, i.e.,
the nodes making up the respective subgroup.

Each edge data record also stores the contributing nodes and their degrees
(in- and out-degree in the directed case). Then, as outlined in [17] we can com-
pute standard quality functions efficiently, e.g., for the Modularity [71–73] or the
Segregation Index [40].

Exemplary Evaluation Results. In our evaluation, we focused on two
aspects: The efficiency of the proposed optimistic estimates, and the validity of
the obtained community patterns. In order to evaluate the efficiency, we count
the number of search steps, i.e., community allocations that are considered by
the COMODO algorithm. We compared the total number of search steps (no
optimistic estimate pruning) to optimistic estimate pruning using different com-
munity quality measures. Additionally, we measured the impact of using different
minimal community size thresholds. Exemplary results are shown in Figs. 2 and 3
for the BibSonomy click graph and the delicious friend graph, for k = 10, 20, 50
and minimal size thresholds τn = 10, 20. We consider a number of standard com-
munity quality functions: The segregation index [40], the inverse average ODF
(out degree fraction) [59], and the modularity [71].

The large, exponential search space can be exemplified, e.g., for the click
graph with a total of about 2 · 1010 search steps for a minimal community size
threshold τn = 10. The results demonstrate the effectiveness of the proposed
descriptive mining approach applying the presented optimistic estimates. The
implemented pruning scheme makes the approach scalable for larger data sets,
especially when the local modularity quality function is chosen to assess the
communities’ quality. Concerning the validity of the patterns, we focused on
structural properties of the patterns and the subgraphs induced by the respective
community patterns. We applied the significance test described in [53] for testing
the statistical significance of the density of a discovered subgraph. Furthermore,
we compared COMODO to three baseline community detection algorithms [42,
63,75], where COMODO shows a significantly better performance concerning
validity and description length (for more details, we refer to [17]).

Overall, the results of the structural evaluations indicate statistically valid
and significant results. Also, these show that COMODO does not exhibit the
typical problems and pathological cases such as small community sizes that are
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Fig. 2. Runtime performance of COMODO on BibSonomy click graph [17]: Search
steps with no optimistic estimate pruning (NOP) vs. community quality functions with
optimistic estimate pruning: MODL (Local Modularity), SIDX (Segregation Index) and
IAODF (Inverse Average-ODF), for minimal size thresholds τn = 10, 20.
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Fig. 3. Runtime performance of COMODO on the Delicious friend graph [17]: Search
steps with no optimistic estimate pruning (NOP) vs. community quality functions with
optimistic estimate pruning: MODL (Local Modularity), SIDX (Segregation Index) and
IAODF (Inverse Average-ODF), for minimal size thresholds τn = 10, 20.

often encountered when using typical community mining methods. Furthermore,
COMODO is able to detect communities that are typically captured by shorter
descriptions leading to a lower description complexity, compared to the baselines,
cf. [17].

3.2 Exceptional Model Mining for Spatio-Semantic Analysis

Ubiquitous data mining has many facets including descriptive approaches: These
can help for obtaining a first overview on a dataset, for summarization, for
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uncovering a set of interesting patterns, analyzing their inter-relations [6,24,65,
66], and refinement [9]. Exploratory analysis on ubiquitous data needs to handle
different heterogenous and complex data types, e.g., considering a combination
of a dataset containing attributive and context information about certain data
points with spatial and/or temporal information, cf. [46,62,79,80]. Then, also
semantic aspects concerning attributes, locations, and time can be considered.

In [6,24], we present an adaptation of subgroup discovery using excep-
tional model mining formalizations on ubiquitous data – focusing the on spatio-
semantic analysis in [24]: We consider subgroup discovery and assessment
approaches for obtaining interesting descriptive patterns, cf. [28,29,32]. The
proposed exploratory approach enables to obtain first insights into the spatio-
semantic space. In the context of an environmental application, the presented
approach provides for the detailed inspection and analysis of objective and sub-
jective data and according measurements. Below, we sketch the approach pre-
sented in [24] and summarize illustrating results.

Overview. The approach for exploratory subgroup analytics utilizes concepts
of exceptional model mining in order to analyze complex target concepts on
ubiquitous data. In particular, we focus on the interrelation between sensor mea-
surements, subjective perceptions, and descriptive tags. Here, we propose a novel
multi-target quality function for ranking the discovered subgroups, based on the
Hotelling’s T-squared test [45], see [24] for a detailed discussion.

Our application context is given by the WideNoise Plus smartphone appli-
cation for measuring environmental noise. The individual data points include
the measured noise in decibel (dB), associated subjective perceptions (feeling,
disturbance, isolation, and artificiality) and a set of tags (free text) for providing
an extended semantic context for the individual measurements. For the practi-
cal implementation, we utilize the VIKAMINE4 tool [20] for subgroup discovery
and analytics; it is complemented by methods of the R environment for statis-
tical computing [77] in order to implement a semi-automatic pattern discovery
process5 based on automatic discovery and visual analysis methods.

Dataset – WideNoise Plus. For the analysis, we utilize real-world data from
the EveryAware project6, specifically, on collectively organized noise measure-
ments collected using the WideNoise Plus application between December 14,
2011 and June 6, 2014. WideNoise Plus allows the collection of noise measure-
ments using smartphones, including noise level (dB) measured using the micro-
phone, location (latitude/longitude), as well as a timestamp when the measure-
ment was taken. In addition, when taking a measurement the user can add
subjective information about the context perceptions, encoded in the interval
[−5; 5] for feeling : [hate;love], disturbance: [hectic;calm], isolation: [alone;social],
artificiality : [man-made;nature]. Furthermore, the user can assign tags to the

4 http://vikamine.org.
5 http://rsubgroup.org.
6 http://www.everyaware.eu.

http://vikamine.org
http://rsubgroup.org
http://www.everyaware.eu
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Fig. 4. Cumulated tag count distribu-
tion in the dataset. The y-axis provides
the probability of observing a tag count
larger than a certain threshold on the
x-axis, cf. [24].

Fig. 5. Cumulated distribution of noise
measurement (dB). The y-axis provides
the probability for observing a mea-
surement with a dB value larger than a
certain threshold on the x-axis, cf. [24].

measurement for additional descriptive information, e.g., “noisy”, “indoor”, or
“calm”, providing the semantic context of the specific measurement. The data are
stored and processed by the backend based on the UBICON platform [13,14].7

The applied dataset contains 6,600 data records and 2,009 distinct tags: The
available tagging information was cleaned such that only tags with a length
of at least three characters were considered. Only data records with valid tag
assignments were included. Furthermore, we applied stemming and split multi-
word tags into distinct single word tags.

Exemplary Analysis Results. In our experiments, we initially performed
some basic statistical analysis of the observed distributions as well as experiments
on correlating the subjective and objective data. Doing that, we observed typical
phenomena in the domain of tagging data, while the correlations are expressed
on a medium level. This directly motivated the development and application of
the proposed advanced techniques using our subgroup analytics approach. This
allows us to focus on the relation between objective and subjective data given
patterns of tagging data in more detail.

Figures 4, 5, 6 and 7 provide basic statistics about the tag count and measured
noise distributions, as well as the value distributions of the perceptions and the
number of tags assigned to a measurement. Figure 5 shows the distribution of
the collected dB values, with a mean of 67.42 dB.

7 http://www.ubicon.eu.

http://www.ubicon.eu
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Fig. 6. Cumulated tag per record dis-
tribution in the dataset. The y-axis
provides the probability of observing a
tag per record count larger than a cer-
tain threshold on the x-axis, cf. [24].

Fig. 7. Distribution of assigned tags
per resource/data record, cf. [24].

In Fig. 6, we observe a typical heavy-tailed distributions of the tag assign-
ments. Also, as can be observed in Figs. 4 and 7, the tag assignment data is rather
sparse, especially concerning larger sets of assigned tags. However, it already
allows to draw some conclusions on the tagging semantics and perceptions. In
this context, the relation between (subjective) perceptions and (objective) noise
measurements is of special interest. Table 1 shows the results of analyzing the
correlation between the subjective and objective data. As shown in the table, we
observe the expected trend that higher noise values correlate with the subjec-
tive “hate”, “hectic” or “man-made” situations. While the individual correlation
values demonstrate only medium correlations, they are nevertheless statistically
significant.

Table 1. Correlation analysis between subjective (perceptions) and objective (dB)
measurements; all values are statistically significant (p < 0.01).

Feeling Disturbance Isolation Artificiality

dB −0.27 −0.32 −0.32 0.19

For a detailed analysis, we first focused on subgroup patterns for hot-spots
of low or high noise levels, i.e., on patterns that are characteristic for areas with
low or high noise. We were able to identify several characteristic tags for noisy
environments, for example, north AND runway, heathrow, and aeroplan, which
relate to Heathrow noise monitoring case study, cf. [13] for more details. For
more quiet environments, we also observed typical patterns, e.g., focusing on
the tags park, forest, outdoor, and room, and combinations of these. Due to the
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limited space, we refer to [24] for more details on this analysis. We also extended
the analysis in exploratory fashion by providing a semi-automatic approach for
inspecting the geo-spatial characteristics of the discovered patterns by assessing
their geo-spatial distribution in terms of its peakiness [90].

In the following, we focus on the discovery of subgroups with respect to a
distinctive perception profile – relating to subjective perception patterns – which
we describe in terms of their assigned tags. For analyzing the characteristics of
the subjective data given by the perception values assigned to the individual
measurements we applied the multi-target quality function qH (based on the
Hotelling’s T-squared test), cf. [24]. This function allows us to detect exceptional
subgroups, i.e., patterns that show a perception profile (given by the means of the
individual perceptions) that is exceptionally different from the overall picture of
the perceptions (respectively, their means estimated on the complete dataset). In
addition, we also analyzed, which patterns show a rather “conforming” behavior
to the overall mean values. For that, we applied the quality function q′

H =
1

qH
. Using the reciprocal of qH we could then identify patterns for which their

deviation was quite small, i.e., close to the general trend in the complete dataset.
Table 2 presents the obtained results, where the rows 1–10 in the table denote
deviating patterns (qH), while rows 11–20 show conforming patterns.

For comparison, the overall means of the perceptions are given by: feel-
ing = −0.83, disturbance =−0.64, isolation =−0.19, artificiality =−2.33. As we
can observe in the table, the deviating patterns tend to correspond to more
noisy patterns; the majority of the patterns shows a dB value above the mean
in the complete dataset (67.42 dB). Furthermore, most of the patterns relate
to the Heathrow case study, e.g., north AND runway, plane AND south; an
interesting pattern is given by plane AND runway AND garden – people liv-
ing close to Heathrow obviously tend to measure noise often in their garden.
For the conforming patterns we mostly observe patterns with a mean dB close
to the general mean. However, interestingly there are some patterns that show
an increased mean and also “unexpected” patterns, e.g., street AND traffic or
airport.

Overall, these results confirm the trends that we observed in the statistical
analysis above indicating a medium correlation of the perceptions with the noise
patterns. However, combinations of descriptive tags, and the contributions of
individual perceptions is only provided using advanced techniques, like the pro-
posed subgroup discovery approach using a complex multi-target concept for the
detection of local exceptional patterns. While the initial statistical analysis of
the perceptions provides some initial insights on subjective and objective data,
again these results motivate our proposed approach as a flexible and powerful
tool for the analysis of subgroups and their relations in this spatio-semantic
context. Further steps then include appropriate visualization and introspection
techniques, e.g., [2,8,25,28].
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Table 2. Exemplary perception patterns [24]: rows 1–10 show deviating patterns, while
rows 11–20 show conforming patterns. Overall means (perceptions): feeling = −0.83,
disturbance= −0.64, isolation = −0.19, artificiality = −2.33. The table shows the size
of the subgroups, their quality according to the applied quality function, the mean of
the measured dB values, and the means of the individual perceptions.

3.3 Class Association Rule Mining Using Subgroup Discovery

With more and more ubiquitous devices, sensor data capturing human activi-
ties is becoming a universal data source for the analysis of human behavioral
patterns. In particular, activity recognition has become a prominent research
field with many successful methods for the classification of human activities.
However, often the learned models are either “black-box” models such as neural
networks, or are rather complex, e.g., in the case of random forests or large
decision trees. In this context, we propose exploratory pattern analytics for con-
structing rule-based models in order to aid interpretation by humans, supported
using appropriate quality and complexity measures [11,12].

Below, we summarize a novel approach for class association rule min-
ing [60,61,84,89] presented in [18]. We propose an adaptive framework for min-
ing such rules using subgroup discovery, and demonstrate the effectiveness of our
approach using real-world activity data collected using mobile phone sensors. We
summarize the proposed approach and algorithmic framework, before we pro-
vide exemplary results of an evaluation using real world activity data obtained
by mobile phone sensors. The effectiveness of the approach is demonstrated by a
comparison with typical descriptive models, i.e., using a rule-based (Ripper [36])
and a decision tree classifier (C4.5 [76]) as a baseline.
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Overview. Associative classification approaches integrate association rule min-
ing and classification strategies. Basically, class association rules are special asso-
ciation rules with a fixed class attribute in the rule consequent. In order to mine
such rules, we apply subgroup discovery. In the case of class association rules,
the respective class can be defined as the target concept (i.e., the rule head) of
the subgroups. Then, subgroup discovery can be adapted as a rule generator for
class association rule mining.

In summary, in [18] we adapt subgroup discovery to class association rule
mining, and embed it into an adaptive approach for obtaining a rule set that
aims to target a simple rule base with an adequate level of predictive power, i.e.,
combining simplicity and accuracy. We utilize standard methods of rule selection
and evaluation, that can be integrated into our framework: Liu et al. [61], for
example, propose the CBA algorithm, which includes association rule mining
and subsequent rule selection. It applies a covering strategy, selecting rules one
by one, minimizing the total error. In addition to the rule mining and selection
techniques, there are several strategies for the final decision of how to combine
rules for classification (“voting” of the matching rules), e.g., [81].

Algorithmic Framework. For our adaptive framework, we distinguish the
learning phase that constructs the model, and the classification phase that
applies the model.

Model Construction. For the construction of the model, we apply the steps
described in Algorithm 2. Basically, Carma starts with discovering class associ-
ation rules for each class c contained in the dataset. Using subgroup discovery, we
collect a set of class association rules for the specific class, considering a maximal
length of the concerned patterns. After that, we apply a boolean ruleset assess-
ment function a in order to check, if the quality of the ruleset is good enough. If
the outcome of this test is positive, we continue with the next class. Otherwise,
we increase the maximal length of a rule (up to a certain user-definable threshold
Tl). After the final set of all class association rules for all classes has been deter-
mined, we apply the rule selection function r in order to obtain a set of class
association rules that optimizes predictive power on the trainingset. That is, the
rule selection function aims to estimate classification error and should select the
rules according to coverage and accuracy of the rules on the trainingset.

Classification. In the classification phase, we apply the rules contained in a
model. For aggregating the predictions of the matching rules, we apply a specific
rule combination strategy, cf. [81]. Examples include unweighted voting (majority
vote according to the matching rules for the respective class), weighted voting
(including weights for the matching rules), or best rule (classification according
to the matching rule with the highest confidence).

Summary. In contrast to existing approaches, the Carma framework is based
on subgroup discovery for class association rule mining. This allows for selection
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Algorithm 2. CARMA: Framework for Adaptive Class Association Rule
Mining [18]
Input: Database D , set of classes C, parameter k specifying the cardinality of top-

k pattern set, parameter Tl denoting the maximal possible length of a subgroup
pattern, quality function q, ruleset assessment function a, rule selection function r.

1: Patterns P = ∅
2: for all c ∈ C do
3: Current length threshold length = 1
4: while true do
5: Obtain candidate patterns P ∗ by SubgroupDiscovery(D , c,S , q , k)
6: if Current candidate patterns are good enough, i.e., a(P ∗) = true then
7: P = P ∪ P ∗

8: break
9: else if length > Tl then

10: break
11: else
12: length = length + 1
13: Add a default pattern (rule) for the most frequent class to P
14: Apply rule selection function: P = r(P )
15: return P

of a suitable quality function for generating the rules, in contrast to (simple)
confidence/support-based approaches. Then, e.g., significance criteria can be eas-
ily integrated. Furthermore, Carma applies an adaptive strategy for balancing
rule complexity (size) with predictive accuracy by applying a ruleset assessment
function, in addition to the rule selection function. The framework itself does not
enforce a specific strategy, but leaves this decision to a specific configuration. In
our implementation in [18], for example, we follow the rule selection strategy of
CBA; the ruleset assessment is done by a median-based ranking of the accord-
ing confidences of the rules, i.e., estimated by the respective shares of the class
contained in the subgroup covered by the respective rule. Here, we test if the
median of the rules’ confidences is above a certain threshold τc = 0.5.

Exemplary Evaluation Results. In [18] we compared an instantiation of the
Carma framework against two baselines: The Ripper algorithm [36] as a rule-
based learner, and the C4.5 algorithm [76] for learning decision trees. For the sub-
group discovery step in the Carma framework, we apply the BSD algorithm [58],
utilizing the adjusted residual quality function, cf. Sect. 2, which directly maps
to significance criteria. Furthermore, we apply an adaptation of the CBA algo-
rithm [61] for the rule selection function, We opted for interpretable patterns with
a maximal length of 7 conditions, and set the respective threshold Tl = 7 accord-
ingly. In the evaluation, we used three different TopK values: 100, 200 and 500.
For the rule combination strategy, we experimented with four strategies: taking
the best rule according to confidence and Laplace value, the unweighted voting
strategy, and the weighted voting (Laplace) method, cf. [18,81] for a detailed
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discussion. All experiments were performed using 10-fold cross-validation on an
activity dataset with 27 activities (classes) and 116 features, cf. [18] for details.
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Fig. 8. Comparison of the accuracy of Carma using the standard CBA method for
rule selection, with different rule combination strategies to the baselines, cf. [18]. (Color
figure online)

Figure 8 shows the accuracy of Carma using these parametrizations. Overall,
it is easy to see that the proposed approach is able to outperform the baselines
in accuracy. Furthermore, it outperformed both as well in complexity, since it
always had a significantly lower average complexity regarding the average num-
ber of conditions in a rule. For the baselines, C4.5 showed a better performance
than Ripper, however, with a more complex model (1394 rules) that were also
more complex themselves; Ripper had a slightly lower accuracy but a signif-
icantly lower number of rules and average rule length. The proposed Carma
approach outperforms both concerning the combination of accuracy and simplic-
ity. Considering the voting functions, we observe that the functions (unweighted
voting, and weighted Laplace) always outperforms the rest. In our experiments,
using larger values of k indicates a higher accuracy – here also the complexity
(in the number of rules) can be tuned. We observe a slight trade-off between
accuracy and complexity. Basically, the parameter k seems to have an influence
on the complexity, while the remaining instantiations do not seem to have a
strong influence.
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In summary, the proposed framework always provides a more compact model
than the baseline algorithms. In our experiments, it is at least in the same range
or even better than the baselines. Considering the best parameter instantiation,
the proposed approach is able to outperform both baselines concerning the accu-
racy and always provides a more compact model concerning rule complexity, cf.
[18] for more details.

4 Conclusions and Outlook

Subgroup discovery and exceptional model mining provide powerful and compre-
hensive methods for knowledge discovery and exploratory analysis. In this paper,
we summarized recent advances concerning according approaches and methods
in the context of ubiquitous data and social media. Specifically, we focused on
exploratory pattern analytics implemented using subgroup discovery and excep-
tional model mining methods, summarizing recent work on description-oriented
community detection, spatio-semantic analysis using local exceptionality detec-
tion, and class association rule mining using subgroup discovery. The methods
were embedded into evaluations and case studies demonstrating their theoretical
as well as practical impact and implications.

Interesting future directions include the adaptation and extension of
knowledge-intensive approaches, e.g., [22,26,30,31,54,69,85]. This also concerns
the incorporation of multiple relations, e.g., in the form of partitioning knowl-
edge [10], or making use of multiplex and multi-modal networks [47,64,70,78,82],
for modeling complex relations on ubiquitous data and social media and the
analysis of emerging semantics [15,65,66]. Furthermore, the extended analysis
of sequential data can be applied in both spatio-temporal dimensions [74], also
concerning dynamics in the spatio-temporal space, e.g., for an extended tempo-
ral modeling of ubiquitous relations [48,49]: Here, possible methods for exten-
sion and adaptation include temporal pattern mining for event detection [34],
or temporal subgroup analytics [83], especially considering sophisticated excep-
tional model classes in that area. In addition, for including dynamics of spatial
and temporal properties, for example, Markov chain approaches can be extended
towards exceptional model mining, e.g., for modeling and analyzing sequential
hypotheses and trails [33] in order to detect exceptional sequential transition
patterns.
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Abstract. The paper illustrates basic methods of mobility data mining,
designed to extract from the big mobility data the patterns of collective
movement behavior, i.e., discover the subgroups of travelers character-
ized by a common purpose, profiles of individual movement activity, i.e.,
characterize the routine mobility of each traveler. We illustrate a number
of concrete case studies where mobility data mining is put at work to
create powerful analytical services for policy makers, businesses, public
administrations, and individual citizens.

Keywords: Mobility data mining · Big data analytics

1 Introduction

The large availability of location aware services allows the collection of huge
repositories of movement data. These new sources of data give an unprece-
dented opportunity to have a social microscope of individual collective and global
behaviours. Here we focus on mobility data, such as the call detail records from
mobile phones and the GPS tracks from car navigation devices, which represent
society-wide proxies of human mobile activities. These big mobility data help us
understand human mobility, and discover the hidden patterns and profiles that
characterize the trajectories we follow during our daily activity. The paper illus-
trates the basic methods of mobility data mining, designed to extract from the
big mobility data the patterns of collective movement behavior, i.e., discover the
subgroups of travelers characterized by a common purpose, profiles of individual
movement activity, typical path followed by many travellers. These methods are
the basic breaks to support analytical questions such as:

– What are the most popular itineraries followed from the origin to the desti-
nation of people’s travels? What routes, what timing, what volume for each
such itinerary?

– How do people leave the city toward suburban areas (or vice-versa)? What is
the spatio-temporal distribution of such trips?

c© Springer International Publishing Switzerland 2016
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– How to understand the accessibility to key mobility attractors, such as large
facilities, railway stations or airports? How do people behave when approach-
ing an attractor?

– Are there geographic borders that emerge from the way people use the territory
for their daily activities? If so, how do we define such borders? Are these
borders matching the administrative ones?

This paper shortly illustrates the system Urban Mobility Atlas, that visu-
ally synthesizes the complex analytical processes in a toolset of measures for
various mobility dimensions of a geographical area. We focus on the challenge
of constructing novel mobility indicators from Big Data, capable of capturing
the mobility vocation of a territory: what is the relationship between systematic
and non systematic behavior? Is a territory amenable for adopting a new mobil-
ity behavior such as car-pooling or for massive diffusion of electric vehicles? In
the following we will consider a big dataset of GPS traces of private vehicles
circulating in central Italy, in the region of Tuscany. The owners of these cars
are subscribers of a pay-as-you-drive car insurance contract, under which the
tracked trajectories of each vehicle are periodically sent (through the GSM net-
work) to a central server for anti-fraud and anti-theft purposes. This dataset has
been donated for research purposes by Octo Telematics Italia S.r.l (oct), the
leader for this sector in Europe. The whole dataset describes about 150,000 cars
tracked during a month (May, 2012) in Tuscany.

2 Mobility Data Analysis

The collection of different sources of data is the very first step of an analytical
process that involves several transformations of data to gather useful and novel
knowledge from it. In particular, for mobility data it is necessary, at first, to
process the raw observations of each position at a given time into a trajectory,
i.e. an higher level object representing the movement of an individual from an
origin to a destination.

This process is very complex and depends mainly on the spatio-temporal
granularity of the raw data. In [3] it is settled as the ground for a new research
field, namely Mobility Data Mining (MDM). The majority of methods of MDM
are centred around the concept of trajectory. In [2] the authors present the
advantages of combining different MDM algorithms and methods to derive more
complex analytical processes that can be easily deployed as stand-alone services.

The Origin Destination matrix model provides a very compact representation
of traffic demands, by abstracting the single trajectories to flows between any
two regions. The large availability of sensed tracks enables us to automatically
extract OD matrices, by dividing the territory into a partition of cells and by
counting the movements from each origin to each destination. A visual interface
allows the analyst to browse and select interesting flows. The combination of the
OD matrix model with clustering methods, for example, may enable an analyst to
understand which are the most popular itineraries followed by vehicles entering
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(or exiting) to a given territory. The extraction of OD matrix models strictly
depends on the spatio-temporal granularity of the movement data. When using
a data source with a variable sampling rate, like for example GSM data, it is
necessary to plan reconstruction strategies for missing data. In [4] the authors
use data mining methods and frequency analysis to derive the OD matrix from
a large collection of GSM data. In this approach, the systematic movements
are first identified within the raw data and the OD matrix is derived from this
subset. The outcoming OD model is then fed to a traffic simulator for traffic
assignment to the road network.

Using the OD Matrix Exploration we may select relevant flows that may be
further investigated. For example, we can focus on the set of trajectories leaving
the center of the city and moving towards North-East (Fig. 1 (top)). Despite
all these trips originating in the city center and ending in the NE suburbs, a
broad diversity is still evident, as we can notice from the temporal distribu-
tions of two main clusters in Fig. 3. In order to understand which are the most
popular itineraries followed by the selected travels, we apply an algorithm that
automatically detects significant groups of similar trips.

In particular we use the density-based clustering algorithm with the Spatial
Route distance function. The clustering algorithm produces a set of clusters,
each of which can be visualized by means of a thematic rendering where the
trajectories in the same cluster are drawn with the same color. Figure 2 (bottom)
shows how the most popular clusters highlight the main routes used by drivers to
leave the center towards NE. The frequent behaviors identified by the clustering
processing may be also analyzed by the temporal dimension. For example, in
Fig. 3, the temporal distribution of the trips within the two major clusters, along
a typical day is presented. We can use such statistics to interpret the semantic
of each group of trips.

From the analysis of collective movements we are also able to identify the
actual borders that emerge from daily behaviours of people [6]. The aim of
discovering borders at a meso-scale is motivated by providing decision-support
tools for policy makers, capable of suggesting optimal administrative borders for
the government of the territory. This analytical process is based on techniques
developed for complex network analysis. Figure 4 shows the resulting borders by
analyzing the movements of around 40k vehicles for one month in the center-
west part of Tuscany. From the figure it is possible to recognize the relevant
socio-cultural district of the region. For comparison, we also draw the current
administrative borders of each municipality.

Shifting from the collective behaviors to the individuals, we can investigate
the daily routines of each person. The daily mobility of each user can be essen-
tially summarized by a set of single trips that the user performs during the day.
When trying to extract a mobility profile of users [7] our interest is in the trips
that are part of their habits, therefore neglecting occasional variations that divert
from their typical behavior. Therefore in order to identify the individual mobility
profiles of users from their GPS traces, the following steps will be performed -
see Fig. 5: (1) divide the whole history of the user into trips (Fig. 5(a)); (2) group
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Fig. 1. An example of Matrix model exploration with GPS data. (top) Spatial partition
of the territory: the highlighted cell is linked with the selection on the visual explorer.
(bottom) The visual explorer to browse the OD Matrix: each region is represented
with a node, nodes are displayed in a circular layout. The arc connecting two nodes
represents the flow, i.e., the number of trips from the origin to the destination node;
the arc width is proportional to the flow.
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Fig. 2. The result of clustering from the trajectories moving from the center to the
North-East area. (top) The input dataset for the clustering algorithm: the trajectories
moving from the center to the North-East area. (bottom) The resulting clusters using
the Route Similarity distance function. The clusters are visualized using a themed
color, and the analyst can select and browse them separately. (Color figure online)

trips that are similar, discarding the outliers (Fig. 5(b)); (3) from each group,
extract a set of representative trips, to be used as mobility profiles (Fig. 5(c)).

The concept of individual profiles is also exploited in [1] where the authors
reconstruct the calling habits of customers of a mobile operator to determine
a class for each individual among a set of predefined ones: resident, visitors,
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Fig. 3. Temporal distribution of the trajectories in the clusters of Fig. 2 (bottom).
Cluster 0 (top) do not exhibit significant peaks, while cluster 2 (bottom) has a peak
in the morning and one in the afternoon. The temporal profile of Cluster 2 captures
two commuting behaviors: a group leaving the city in the morning (commuters going
to work outside), and a larger group leaving the city in the late afternoon (commuters
coming back home in the suburbs after work.)

commuters. In this case, the relations between the individual and the collectivity
are exploited.

3 Human Mobility Indicators for the Urban Mobility
Atlas

Starting from the analytical processes presented in the previous section, it is
interesting to derive quantitative estimations of the main characteristics that
distinguish the mobility of a territory. We call such estimators mobility indica-
tors and, for each territory, we compute and aggregate several measurement to
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Fig. 4. Visualization of the mobility borders in Tuscany. As a reference with the existing
administrative borders, the perimeter of each town is drawn with a thicker line. Regions
within the same cluster are themed with the same color. (Color figure online)

Fig. 5. Mobility profile extraction process: (a) trip identification; (b) group detec-
tion/outlier removal; (c) selection of representative mobility profiles

have an overview of the whole mobility. As a first step, it is crucial to iden-
tify the mobility analysis that may be relevant for our objectives. In particular,
we describe here two complex mobility indicators that are based on individual
characteristics of the observed population: the systematicity index measures the
tendency of a population of following frequent routines to move among places;
the radius of gyration measures the tendency of a population of exploring places
far away from their home.

Both these measures are associated to an individual: we need to extend them
from a single user to a group of users. We can imagine the mobility of a user
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as composed of several locations she has visited during her movements. Some of
these locations are more relevant to the individual, for example since she spend
the majority of her time in a few places. By analysing the individual history, we
can determine the Most Frequent Location (MFL) and we may assume this as
the home location. Given the MFL of a user u, we may univocally associate u to
the area where her MFL is located. This association can be exploited to define
a derived estimator for an area A as an aggregation of the measures of all users
whose MFL is located in A.

To determine the systematicity of a user, we exploit the mobility profile
extraction method [7]. This method allows us to separate systematic movements
from the infrequent ones. The individual systematicity index of a user u is given
by the ratio of the systematic trips over the non-systematic ones. This index is
extended to a territory A by averaging the individual indexes of each individual
linked to A.

Moreover, by means of cluster analysis, it is possible to aggregate individual
profiles of users to determine common routes to access a territory. We call such
routes access patterns. The access patterns can be exploited to reason about the
shared strategies of users to access a destination. In combination with the sys-
tematicity index, it is possible to give a qualitative measure of such routes. We
have designed a visual widget to represent the combination of access patterns
for a specific municipality. Figure 6 shows a compact representation of access
patterns arriving to Florence: linestrings represent the individual mobility pro-
files, similar profiles are rendered with the same color, and for each group we
have a pie-chart representing the ratio of systematic mobility over the whole
movements.

From the comparison of the two plots in Fig. 6 we can grasp easily the dif-
ferences between two different cities: on the top we have a large metropolitan
area capable of attracting mobility for services and work; on the bottom we have
a small town whose mobility is mainly influenced by the neighbouring munici-
palities. Besides the differences in volume, we can notice which access patterns
are used for systematic movements. In Florence the ratio of systematic trips is
very high for every access path, in Montepulciano, on the contrary, the differ-
ences among the incoming routes. This result may highlight the relationship and
exchange of commuters with neighbouring cities.

At a glance, it is possible to notice the main routes of systematic movements
arriving from North. On the contrary, the trajectories coming from South are
equally populated by systematic and non-systematic trajectories.

The concept of Radius of Gyration gives a measure of the spreadness of visited
locations of a user over the geography. It is based on the concept of center of
mass rcm of a user, defined as a two-dimensional vector representing the weighted
mean point of the locations visited by an individual. We can measure the mass
associated to a location with its visitation frequency or the time spent in the
location, obtaining the following definition:

rcm =
1
N

∑

i∈L

niri (1)



216 F. Giannotti et al.

Fig. 6. Incoming traffic to Florence (top) and Montepulciano (bottom). Movements are
aggregated by similarity of access point to the city. Each route is annotated with the
Systematicity Indicator, representing the ratio between systematic and regular move-
ments. (Color figure online)

where L is the set of locations visited by the user, ri is a two-dimensional vector
describing the geographic coordinates of location i; ni is the visitation frequency
or the total time spent; and N is the sum over all the locations ni (i.e. total
number of visits or time spent). The radius of gyration rg of a user characterizes
how spread out the visited locations are from the center of mass. In mathematical
terms, it is defined as the root mean square distance of the locations from the
center of mass:

rg =

√
1
N

∑

i∈L

ni(ri − rcm)2 (2)
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where ri and rcm are the vector of coordinates of location i and center of mass
respectively.

The radius of gyration provides us with a measure of mobility volume, indi-
cating the typical distance traveled by an individual and providing an estimation
of her tendency to move.

By analysing the distribution of the values of rg in a city, we can understand
which are the characteristic movements of a city. In Fig. 7 (left) we may notice
a skew distribution of rg in the observed population in Florence.1 The majority
of people has a very limited value of radius, mainly within the city boundaries.
However, there are still a consistent part of people travelling long distances.

Fig. 7. Visual widgets for Radius of Gyration indicator for the city of Florence. (left)
distribution of the rg on the resident population. (right) Spatial distribution of mean
and standard deviation of rg per cell. (Color figure online)

Since each individual is linked to her MFL, we design also a spatial distri-
bution of the rg. In particular, we consider a spatial partition of the territory
(we have used a regular grid in Fig. 7 (right)) and for each cell we aggregate the
corresponding values of rg: the mean value is coded with a color scale (linked
also to the distribution histogram); the standard deviation is represented as the
circle radius. From the widget in Fig. 7 (right) we can notice how the internal
areas of the city have both a low mean value of rg and also a low standard
deviation. On the boundary, instead, we can notice higher values of rg and also
a very high variance.

If we consider another city, like for example Montepulciano in Fig. 8, we
can highlight the different behaviours in mobility of the respective residents.
In this case, people tend to travel longer distances, as it emerges from the rg
distribution. This may be justified with the need of finding services that are not
directly accessible in a small town.

1 An high resolution version of the graphics is available online at http://kdd.isti.cnr.
it/uma.

http://kdd.isti.cnr.it/uma
http://kdd.isti.cnr.it/uma
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Fig. 8. Visual widgets for Radius of Gyration indicator for the city of Montepulciano.
(Color figure online)

4 The Urban Mobility Atlas

In the previous section we demonstrated the advantages of having a compact
visual representation of two complex mobility indicators. We extend such app-
roach to different indicators and we try to aggregate them in an organic and
comprehensible composition. The visual representation of these indicators is
presented in Fig. 9. The layout is composed of four sections: an header con-
taining general information about the city (number of vehicles, period of obser-
vation, etc.); a series of mobility statistics (distribution of length of trajectories,

Fig. 9. Urban Mobility Atlas for the city of Florence. (Color figure online)
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distribution of duration, etc.); distribution of individual mobility characteristics
(radius of gyration, time spent per location,etc.); incoming traffic statistics; out-
going traffic statistics. The Urban Mobility Atlas can be created on a territory
given the availability of a large dataset of vehicular trajectory. We created an
instance of the Urban Mobility Atlas in Tuscany, exploiting the GPS dataset pro-
vided by OCTO Telematics covering around the 5 % of the circulating vehicles.
An interesting question is to assess if the dimension of such a dataset, as well
as the spatial coverage that it shows, are enough to support the accuracy and
representativeness of the overall vehicular mobility; several studies on the liter-
ature [5] have tackled this problem by building an extremely accurate predictor
that, given GPS data observation, estimates the real traffic values as measured
by road sensors (ground truth). The user can navigate through a visual interface,
where she can browse each city on a map.

5 Conclusions

This paper introduces the Urban Mobility Atlas, a visual summary of mobility
indicators, having the objective of synthesizing the mobility of a city. The pro-
posed visualization is based on a set of mobility data mining processes, linked
to specific territories, i.e. city in our case. The indicators are computed at the
individual level, by estimating relevant locations visited by each vehicle and the
complete set of movements observed. The set of individual indicators is then
linked to the territory and aggregated by the chosen spatial partition. The sys-
tem has been implemented and deployed on the set of municipalities in Tuscany.
The current version of the system is accessible at the URL http://kdd.isti.cnr.
it/uma with a static visual interface. We plan to extend the approach by trans-
forming the analytical processes into a set of API (Application Programming
Interface) in order to enable external developer to ensemble new configuration
or new application.
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Abstract. Since the last decades the availability and granularity of
location-based data has been rapidly growing. Besides the proliferation
of smartphones and location-based social networks, also crowdsourcing
and voluntary geographic data led to highly granular mobility data, maps
and street networks. In result, location-aware, smart environments are
created. The trend for personal self-optimization and monitoring named
by the term ‘quantified self’ will speed-up this ongoing process. The cit-
izens in conjunction with their surrounding smart infrastructure turn
into ‘living sensors’ that monitor all aspects of urban living (traffic load,
noise, energy consumption, safety and many others). The “Big Data”-
based intelligent environments and smart cities require algorithms that
process these massive amounts of spatio-temporal data. This article pro-
vides a survey on event processing in spatio-temporal data streams with
a special focus on urban traffic.

1 Introduction

Early detection of anomalies in spatio-temporal data streams provides many
applications for smart cities and is a major research topic since the availabil-
ity and granularity of location-based data has been rapidly growing in the last
decades.

Besides, the proliferation of smartphones and location-based social networks,
also crowdsourcing and voluntary geographic data led to highly granular mobility
data, maps and street networks. In result, location-aware, smart environments
are created. The trend for personal self-optimization and monitoring named
by the term ‘quantified self’ will speed-up this ongoing process. The citizens in
conjunction with their surrounding smart infrastructure turn into ‘living sensors’
that monitor all aspects of urban living (traffic load, noise, energy consumption,
safety and many others).

The “Big Data”-based intelligent environments and smart cities require algo-
rithms that process these massive amounts of spatio-temporal data in real-time.
But key challenges for streaming analysis are (1) one-pass processing (2) limited
amount of memory and (3) limited time to process [6].
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 221–233, 2016.
DOI: 10.1007/978-3-319-41706-6 11
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Spatio-temporal data comes in a variety of forms and representations,
depending on the domain, the observed phenomenon, and the observation
method. In principle, there are three types of spatio-temporal data streams [19]:
spatial time series, events, and trajectories.

– A spatial time series consists of tuples (attribute, object, time, location).
– An event of a particular type eventi is triggered from a spatial time series

under certain conditions and contains the tuples verifying these conditions
(eventi, objectn, timen, locationn).

– A trajectory is a spatial time series for a particular objecti. It contains the
location per time and is a series of tuples (objecti, timen, locationn).

The increasing availability of massive heterogeneous streaming data for pub-
lic organizations, governments and companies pushes their inclusion in incident
recognition systems. Leveraging insights from these data streams offers a more
detailed and real-time picture of traffic, communication, or social networks, to
name a few, which still is a key challenge for early response and disaster manage-
ment. Detecting events in spatio-temporal data is a widely investigated research
area (see e.g. [1] for an overview). Depending on the application, the event detec-
tion can analyze single trajectories (e.g. of persons or vehicles), group move-
ments, spatio-temporal measurements, or heterogeneous data streams. Following
examples highlight capabilities of these approaches:

– Individual Mobility: Within airports (or other security region) it is valuable to
monitor whether individuals enter some restricted area. The analysis of stops
or of sudden decelerations allows detection of unusual behaviour. Sequences
of such events can be matched against predefined mobility patterns [12], e.g.
to identify commuters.

– Group Movement: During public events the early detection of hazardous
pedestrian densities gains much attention. The patterns one could distinguish
and detect in group movement are encounter, flock or leadership pattern [10].

– Spatio Temporal Measurements: A spatio-temporal value spans a whole region.
This could be traffic flow, air pollution, noise, etc. The sudden rise or decline
of these values indicates an anomaly.

– Heterogeneous Data Streams: The combination of previously described types
of anomalies provides event filters in an urban environment based on hetero-
geneous data (e.g. GPS data of pedestrians, traffic loop data, mobile phone
network data).

In the paper at-hand we provide a introductory survey on (1) functions
on heterogeneous spatio-temporal data streams, Sect. 2, (2) pattern match-
ing, Sect. 3, (3) anomaly detection in spatio-temporal time series, Sect. 4, and
(4) streaming frameworks, Sect. 5. All four aspects are relevant for implementing
real-world event detection systems that process heterogeneous data streams.
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2 Function Classes on Heterogeneous Spatio-Temporal
Time Series

In general functions for event detection from heterogeneous data streams can be
classified using a former concept of raster-geography, namely map-algebra [5].
Both, raster geography and heterogeneous spatio-temporal data analysis con-
sider data which is provided in multiple layers (i.e. one layer per data stream).
Functions can be applied to one or multiple layers. Thus, spatial functions split
into four groups: local, focal, zonal and global ones [5], illustrated in Fig. 1.

– Local functions operate on every single cell in a layer. And the cell is processed
without reference to surrounding cells. An example is a map transformation,
the multiplication with a constant, or the comparison with a threshold.

– Focal functions process cell data depending on the values of neighboring cells.
The neighborhood can be defined by arbitrary shapes. Example functions are
moving averages and nearest neighbor methods.

– Zonal functions process cells on the base of zones, these are cells that hold
a common characteristic. Zonal functions allow the combination of heteroge-
neous data streams in various layers by application of functions to one layer
if another layer already fulfills another condition.

– Global functions process the entire data. Examples are distance based opera-
tions.

For heterogeneous data streams analysis, expressiveness of these four function
types is important to derive low-level events (incidents), to combine low-level
events (e.g. aggregation, clustering, prediction etc.) and to trigger high-level
events.

Fig. 1. Function classes on Spatio-Temporal data, Dark blue highlights the currently
processed location. Light blue cells indicate the regions whose values are used for
computation. Best viewed in color. (Color figure online)
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3 Event Pattern Matching

The exploitation of spatio-temporal event patterns is a major research field in
mobility mining. Event pattern matching focuses on the task to match sequences
of events against event patterns and to trigger another event (which is raised for
further analysis) in case the sequence matches. Recently, pattern-graphs were
introduced in [27], their pattern description is capable to express the temporal
relations among various occurring events following the interval-calculus [2]. As
an example the co-occurrence of two low-level events may trigger any high-level
event. With spatio-temporal data streams also spatial relations are important
to consider. The region connection calculus [28] lists relations of spatial events
that are essential for a spatio-temporal pattern matcher.

Possible frameworks for event pattern matchers are the event calculus [32],
finite automaton [12] and other pattern matcher [8,27] or even complex frame-
works which allow application of local, focal, zonal and global functions e.g.
[14,30]. The requirements for spatio-temporal pattern matcher in a smart city
scenario are:

– to operate in real time,
– to incorporate spatial [28] and temporal [2] relations
– to provide local, focal, zonal, and global [5] predicates on the attributes, and
– to pose arbitrary queries formed of these elements (regular language [23],

Kleene closure [18]).

In Table 1 we compare the features of state-of-the-art event detection frame-
works. The temporal expressiveness is split into the following four categories:

– Pattern Duration is a constraint on the temporal distance of first and last
condition in a pattern.

– Condition Duration is a constraint on the duration of a condition to get
matched.

– Inter-Condition Duration is a constraint on the temporal distance among suc-
ceeding conditions.

– Complete indicates the complete integration of the temporal relations [2].

The table also compares the approaches from the literature against the
INSIGHT architecture, we introduced in [31]. This approach is inspired by the
TechniBall system [14], previous works on stream data analysis [13] and follows
the Lambda architecture design principles for Big Data systems [22]. A sketch of
the architecture and the interconnection among the components is presented in
Fig. 2. Every data stream is analysed individually for anomalies. In this detection
functions (e.g. clustering, prediction, thresholds, etc.) on the data streams can
be applied. The resulting anomalies are joined at a round table. A final Complex
Event Processing component allows the formulation of complex regular expres-
sions on the function values derived from heterogeneous data streams.
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Fig. 2. INSIGHT architecture for event detection from heterogeneous data streams
exemplified with two input streams Twitter and traffic loop data derived by SCATS,
compare [4,31].

4 Anomaly Detection on Spatial Time Series

This section discusses state-of-the-art of anomaly detection in traffic condition
data streams as this paper focuses on smart cities and traffic is a major aspect of
a smart city. However, some techniques generalize also to other spatio-temporal
phenomena as noise, pollution, etc. For a comprehensive survey on outlier detec-
tion from spatio-temporal data streams we point the reader to [16].

4.1 Statistical Approach

Pang et al. proposed an approach [25] which extends the Likelihood Ratio Test
(LRT) framework to detect abnormal traffic patterns in taxi trajectory data
(GPS trajectories). The approach partitions the road network of Beijing into a
spatial grid, regions (R), to deal better with the problem of finding abnormal pat-
terns. The extended LRT uses statistical models which are Persistent Spatiotem-
poral Model (PSTO) and Emerging Spatiotemporal Outlier Model (ESTO) to
compute the likelihood of “anomalousness” of a region and detect the emerging
spatio-temporal outliers, respectively. In addition, the proposed statical model
works with the Maximum Likelihood Estimation (MLE) and Upper-bounding
strategy to estimate the parameters of models and prune the non-outliers, respec-
tively. However, this approach does not use other source of data (e.g. weather,
list of events in the city, social network) to reduce the uncertainty of detected
events, as well as it does not present a good ratio of adaptability to face natural
changes in the data stream over time.

In [34], Yang et al. present a non-parametric Bayesian method, or Bayesian
Robust Principal Component Analysis (RPCA) - BRPCA, to detect traffic
events on a road. This method takes the traffic observations as one dimensional
data and converts it into a matrix format which in turn decomposes it into a
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superposition of low-rank, sparse, and noise matrices. In addition, this method
proposed an extended BRPCA to deal with multiple variables/time series/data
streams. The idea of that extended BRPCA is to improve the traffic detection by
sharing a sparsity structure among multiple data streams affected by the same
events. Such an approach uses multiple homogeneous data streams and a static
weather data source in the detection process.

In [26], although the major goal of this work is not detect outlier itself, the
authors propose a novel adaptive Artificial Neural Network (ANN) based filter
to detect and remove them to build a training data. The ANN filter uses the
training set (i.e., usually the 3 months of historical data - information from
street loops) as incoming and thus analyzes whether the readings are twice the
maximum value, if it holds true, then the method marks it as anomaly, otherwise
removed.

In [36], the authors propose an approach to estimate the traffic which uses
mobile probes to detect outliers in Handover Data of a suburban freeway. The
approach detects anomalies in 2 steps. The first step applies Least Squares Sup-
port Vector Machine (LS-SVM) ensemble classifier to identify whether each
individual handover link is an outlier or not, and the second step employs a
statistical-based algorithm which evaluates whether the detected outlier holds
any locally handover link which is anomalous as well.

Trilles et al. [33] propose a variation of the CUmulative SUM (CUSUM) algo-
rithm to detect anomalies in data streams near to real-time. This approach is
only applied when the observations are in-control, that is, the data is normally
distributed. In the anomaly detection process the CUSUM is obtained by com-
puting Si = Si−1 · zi, where zi is a standard normal variable which is computed
as follows zi = xi−x̄

s , where the s is the standard deviation of the time series,
and xi is the i-th data point of the time series. The events are detected by the
Eq. 1, if SHi

exceeds a predefined threshold (CUSUM control charts) Â ± hσx

(h = 5 and σx is the standard deviation), then it is an Up-Event due to its
increase and if SLi

is greater than threshold (CUSUM control charts) Â ± hσx

(h = 5 and σx is the standard deviation), then it is an Down-Event due to
its decrease. The variable k is a slack-variable and denotes the reference value
which is usually set to be one half of the mean. The advantages of this work are
the application of a simple approach for Real-Time anomaly detection and the
dashboard application to visualize the detected events. However, the work does
not present experiments with a data source which has high refresh rate such as
SCATS data stream.

SHi
= MAX[0, (zi − k) + SHi

− 1]
SLi

= MIN [0, (zi − k) + SLi
− 1]

(1)

4.2 Human/Driver’s Behavior

Pan [24] proposes a new method to detect disruptions in typical traffic patterns
(traffic anomalies) using crowd-sourcing and social media. This approach detects
anomalies according to drivers’ routing behaviour instead of traffic volume-based
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and speed on roads. In addition, it provides a view of congested road segments
and their relationships among these segments. It also provides to the end-user
a detour router to avoid or escape the congestions. This method also makes use
of a historical tweets associated with the spatial region to represent the normal
occurrences of each region. In order to retrieve only the relevant contents, this
approach applies a simple filtering technique which compares the frequency of
current tweets with historical tweets and apply a weight to each term according
to its frequency, as well as the location and time information.

4.3 Unsupervised

Yang [35] investigates the problem of outlier detection on large-scale collective
behaviors. His work extracts features from high-dimensional data streams using
K-Nearest Neighbors (KNN) method to detect the anomalies. This method per-
forms the anomaly detection in 3 phases as follows: (1) observations from mul-
tiple sensors, this phase organizes more than 400 sensors as high-dimensional
time series; (2) manifold learning, it applies Locally Linear Embedding (LLE)
computes and Principal Component Analysis (PCA) to obtain a feature at a
higher abstraction level; and (3) outlier detection, this phase performs the out-
lier detection through the K-Nearest Neighbors. The approach works good since
special days, or holidays, which might generate an abnormal flow are known
in advance. For instance, New Year and Independence Day. However, from this
characteristics, it indicates that the method cannot handle historical data as well
as adapt itself according to the changes.

Guo et al. [15] propose a traffic flow outlier detection approach which focuses
on the pattern changing detection problem to detect anomalies in traffic condi-
tional data streams. The traffic data comes from inductive loop sensors of four
regions in United State and United Kingdom as well as this works makes use
of a short-term traffic condition forecasting system to evaluate the proposed
approach. This approach performs the analysis of the incoming data point after
the data point be processed by Integrated Moving Average filter (IMA) which
captures the seasonal effect on the level of traffic conditional series, and then
Kalman filter picks up the local effect flow levels after IMA, and GARCH filter
models and predict time-varying conditional variance of the traffic flow process.
These filters constitute together the integrated forecast system aforementioned.

4.4 Tree Approach

Liu et al. [21] present an approach based on features analysis to detect out-
liers points as well as trees which detects the relationship among anomalies in
traffic data stream. This work uses taxi trajectory data (GPS trajectories) on
the road network of Beijing. The approach presents a model with 3 main steps
which processes the traffic data to build a region graph. The 3 main steps are
(1) Building a region graph, (2) Detect outliers from graph edges, and (3) Dis-
cover relations among outliers (building a tree). Then, this method partitions
the map of traffic into regions by employing Connected Components Labeling.
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Each region holds a link to other region and a link is anomalous whether its fea-
tures have the largest difference from both their temporal and spatial neighbors,
and the STOTree algorithm captures the causal relationship among outliers.
Although this work presents an interesting work about correlated anomalies in
traffic data streams, the work does not provide experiments under an online set-
ting for the traffic anomaly detection. Instead, it describes a set of algorithms
which could be applied in such a setting.

4.5 Discussion

Although these works present some substantial advances in the field of anomaly
detection in data streams, the field is still in its early stage, and therewith it
is possible to see that such works hold some drawbacks as well as open tasks.
Examples of open tasks are incorporate heterogeneous data streams, keep track-
ing of historical data (local and global), apply adaptive data stream models, use
expert knowledge, develop straightforward and lightweight approaches for data
stream analysis. These open tasks aim to improve the anomaly detection in data
streams (in general), that is, decreasing the uncertainty whether the detected
event is a true anomaly.

The use of heterogeneous data streams improves detection of anomalies by
reducing the uncertainty about the events veracity, this issue has been little
exploited in the traffic conditions domain. Outlier detectors should take into
account external factors (e.g., weather and social events), such an issue has
been exploited more than heterogeneous data streams, but their applications
only refer to sources which provide static information, or general information
from online forecast sources (e.g., wind speed, amount of rainfall, humidity),
instead of precise information about what is happening around the city by using
local sensors (e.g., flood in a specific region of a city). The works [4,31] use
heterogeneous data streams to detect anomalies in a smart city, but it is still
some open questions which need answers such as “How to merge the flow of
heterogeneous data streams to obtain a good result?” and “How to join the result
of the analysis of each flow to detect the true anomaly detection?”.

Adaptive classification models react to the natural changes of data stream.
The change of the target variable value in which the model is trying to predict is
well-known as Concept Drift. A model which adapts itself over time holds more
chances to find a true anomaly than another model without such characteristic.
Therefore, this feature is also important to find true anomalies, for more details,
see [11,29]. Except [4] which applies adaptive function in its complex event
processing (CEP), none of the other works we discussed in this work holds this
characteristic in their approaches.

The expert knowledge data issue addresses interesting challenges for the
anomaly detection in traffic condition. The expert knowledge along with a base
of knowledge acquired during the detection process in traffic conditions data
stream is an interesting challenge which should receive more attention from
now on, because this topic has not been well explored in traffic conditions data
streams domain and its use can raise the rate of true anomalies by reducing
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the uncertainty in the data. None of works we present in this work approach
such a concept, the exception are [20,31] which use traffic network data from
OpenStreetMap1 (OSM).

Straightforward and lightweight anomaly detection approaches lead to the
data stream analysis in critical environments (e.g. old devices, or even mobile
ones in smart cities). This open task is important in traffic conditions field
since data emitters might apply some privacy constraints, and therewith the
device next to the sensor (e.g. SCATS - region computer) around the city, or
user mobile device (i.e., small agent running in smartphone), (pre-)processes
part of the data stream before send it to a central server. Therefore, anomaly
detection approaches must also satisfy such resource constraints on consumption
of energy/battery, CPU and memory.

5 Streaming Frameworks for Anomaly Detection

The implementation of previously presented real-time event detection algorithms
(Sect. 4) and event pattern matchers (Sect. 3) is usually done in a streaming
framework. A streaming framework models the data flow in the analysis process
and therefore the connections of the streams to the individual process steps. The
data from one step to the next is transferred as messages. In general, a streaming
framework is characterized by the following features [7]:

– Message Processing Semantics describes how often a message is processed
in the framework, and which ordering of the messages is assumed by the
framework.

– State Handling and Fault Tolerance describing how the streaming framework
provides fault tolerance. Usually, a streaming framework provides fault toler-
ance by resending data that has not been acknowledged by the recipient.

– Scalability describes how the streaming frame work scales out in case of
increasing resources.

– Portability describes whether the execution is bound to a specific platform, or
whether it could also be executed in other, e.g. embedded, environments.

In [7] the state-of-the-art streaming frameworks are compared according to this
feature list.
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francois.schnitzler.ml@gmail.com

Abstract. Linear dynamical systems (LDS) are applied to model data
from various domains—including physics, smart cities, medicine, biol-
ogy, chemistry and social science—as stochastic dynamic process. When-
ever the model dynamics are allowed to change over time, the number
of parameters can easily exceed millions. Hence, an estimation of such
time-variant dynamics on a relatively small—compared to the number of
variables—training sample typically results in dense, overfitted models.
Existing regularization techniques are not able to exploit the temporal
structure in the model parameters. We investigate a combined reparame-
trization and regularization approach which is designed to detect redun-
dancies in the dynamics in order to leverage a new level of sparsity. On
the basis of ordinary linear dynamical systems, the new model, called
ST-LDS, is derived and a proximal parameter optimization procedure
is presented. Differences to l1-regularization-based approaches are dis-
cussed and an evaluation on synthetic data is conducted. The results
show, that the larger the considered system, the more sparsity can be
achieved, compared to plain l1-regularization.

1 Introduction

Linear dynamical systems (LDS) describe relationships among multiple quanti-
ties. The system defines how the quantities evolve over time in response to past
or external values. They are important for analyzing multivariate time-series
in various domains such as economics, smart-cities, computational biology and
computational medicine. This work aims at estimating the transition matrices
of finite, time-variant high-dimensional vector time-series.

Large probabilistic models [8,17] are parameterized by millions of vari-
ables. Moreover, models of spatio-temporal data like dynamic Bayesian networks
(DBN) [3] become large when transition probabilities between time-slices are not
time-invariant. This induces problems in terms of tractability and overfitting.
A generic solution to these problems is a restriction to sparse models. Approaches
to find sparse models by penalizing parameter vectors with many non-zero weights
are available (e.g., the LASSO [5,15]). However, setting model parameters to zero
implies changes to the underlying conditional independence structure [8]. This is
not desired if specific relations between variables are to be studied.
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 234–250, 2016.
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To overcome this issue for spatio-temporal data, a combination of reparame-
trization and regularization has been proposed, called spatio-temporal random
fields (STRF) [12], which enables sparse models while keeping the conditional
independence structure intact. Although the model in the aforementioned work
is presented entirely for discrete data, the underlying concept can be extended to
continuous data as well. Here, this idea is investigated and evaluated for multi-
variate Gaussian data where the conditional independence structure is encoded
by the entries of the inverse covariance matrix [8] and a set of transition matri-
ces. It is assumed, that the spatial structure is known and the goal is to find a
sparse representation of the model’s dynamics.

Related Work. In the literature, known approaches that aim at the reduction of
model parameters are based on the identification of sparse conditional indepen-
dence structures which in turn imply sparse parameter vectors. The basic ideas
of these approaches can be applied to both, (inverse) covariance matrices and
transition matrices. Some important directions are discussed in the following.

General regularization-based methods for sparse estimation may be consid-
ered [5,15], but several approaches for dynamic systems arose in the last decades.
In time-varying dynamic Bayesian networks [14], Song et al. describe how to find
the conditional independence structure of continuous, spatio-temporal data by
performing a kernel reweighting scheme for aggregating observations across time
and applying �1-regularization for sparse structure estimation. In subsequent
work, it is shown how to transfer their ideas to spatio-temporal data with dis-
crete domains [7]. The objective function that is used in the latter approach
contains a regularization term for the difference of the parameter vectors of
consecutive time-slices. Therefore, it is technically the most similar to STRF.
However, the estimation is performed locally for each vertex and the resulting
local models are heuristically combined to arrive at a global model. It can be
shown that this is indeed enough to consistently estimate the neighborhood of
each vertex [13].

Statistical properties of conditional independence structure estimation in
undirected models are presented in [20]. In particular, the authors investigate
(i) the risk consistency and rate of convergence of the covariance matrix and
its inverse, (ii) large deviation results for covariance matrices for non-identically
distributed observations, and (iii) conditions that guarantee smoothness of the
covariances.

Han and Liu [6] present the first analysis of the estimation of transition
matrices under a high-dimensional doubly asymptotic framework in which the
length and the dimensionality of the time-series are allowed to increase. They
provide explicit rates of convergence between the estimator and the population
transition matrix under different matrix norms.

�1-regularization is indeed not the only way for inducing sparsity into the
model. Wong et al. [18] show how to incorporate the non-informative Jeffreys
hyperprior into the estimation procedure. The main benefits of their approach
are the absence of any regularization parameter and approximate unbiasedness
of the estimate. However, the resulting posterior function is non-convex and their
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simulation results indicate that the proposed method tends to underestimate the
number of non-zero parameters.

Instead of regularization, score-based methods deliver a combinatorial alter-
native for structure learning. Therein, multiple independence tests are performed
to detect local structures which are finally merged to a global conditional inde-
pendence structure. Since a large number of tests has to be performed, the app-
roach might not be applicable whenever the number of variables is high. Local
search heuristics [10,16] can leverage such complexity issues by restricting the
test-space to neighboring structures.

Approaches mentioned so far assume that a specific segmentation of the
data in suitable time-slices is already available. Fearnhead [4] developed effi-
cient dynamic programming algorithms for the computation of the posterior
over the number and location of changepoints in time-series. Based on this line
of research, Xuan and Murphy [19] show how to generalize Fearnheads algo-
rithms to multidimensional time-series. Specifically, they model the conditional
independence structure using sparse, �1-regularized, Gaussian graphical models.
The techniques presented therein can be used to identify the maximum a posteri-
ori segmentation of time-series, which is required to apply any of the algorithms
mentioned above.

Contribution and Organization. It is shown how to adapt the STRF model
[12] to time-variant linear dynamical systems. Two alternatives are discussed,
namely a reparametrization of the exponential family form of the system and a
reparametrization of the transition matrices. Furthermore, a proximal-algorithm-
based optimization procedure [1,11] for the joint estimation of the compressed
transition matrices is presented. Finally, we evaluate the proposed procedure on
synthetic data in terms of quality and complexity. The results are compared to
�1-regularization and ordinary LDS.

2 Linear Dynamical Systems

Before our spatio-temporal reparametrization can be explained, we introduce
time-variant linear dynamical systems and their estimation from data. Let
x1:T := (x1,x2, . . . ,xT ) be a n-dimensional real valued time-series. We assume
that its autonomous dynamics are fully specified by a finite, discrete-time, affine
matrix equation

xt = At−1xt−1 + εt for 1 < t ≤ T (1)

with state xt ∈ R
n, transition matrix At ∈ R

n×n and noise εt ∈ R
n. We

call x1 the initial state of the system. In total, there are T − 1 transition
matrices A := (A1,A2, . . . ,AT−1)1. Each εt is drawn from the same multi-
variate Gaussian distribution εt ∼ N (0,Σ). Due to this stochasticity, each
xt with t > 1 is a multivariate Gaussian random variable given xt−1, with

1 Notice that A is a short notation for all transition matrices of the system.
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xt|xt−1 ∼ N (At−1xt−1,Σ). If the initial state is considered as a random vari-
able too, e.g., x1 ∼ N (0,Σ), the full joint probability density of x1:T may be
denoted as:

PA,Σ(x1:T ) = PΣ(x1)
T−1∏

t=1

PAt,Σ(xt+1|xt) (2)

If x1 is deterministic instead, one may simply drop the leading factor in (2).

2.1 Parameter Estimation

Estimating the parameters of an LDS is typically done by maximizing the like-
lihood L(A,Σ−1,D) of a given dataset D = {xi

1:T }N
i=1 that contains N realiza-

tions of the time-series x1:T .

L(A,Σ−1,D) =
N∏

i=1

PA,Σ(xi
1:T ) (3)

Notice that we parameterize the likelihood directly in terms of the inverse
covariance matrix. Since non-degenerate covariance matrices are positive def-
inite, such an inverse is guaranteed to exist. Due to numerical convenience,
it is common to minimize the average negative log-likelihood �(A,Σ−1,D) =
− 1

NT log L(A,Σ−1,D) instead. By plugging (2) into (3) and substituting the
Gaussian density for P, the resulting objective function is:

�(A,Σ−1,D) = − 1
NT

log
N∏

i=1

PA,Σ(xi
1:T )

= − 1
NT

N∑

i=1

(
logPΣ(xi

1) +
T−1∑

t=1

logPA,Σ(xi
t+1|xt)

)

= C − 1
2

log det Σ−1 +
1

2NT

N∑

i=1

T∑

t=1

ri�
t Σ−1ri

t (4)

with residual vector ri
t = xi

t−At−1x
i
t−1, constant C = 1

2n log 2π and � indicates
the transpose of a vector or matrix. Here, PΣ(x1) is absorbed into the summation
by setting x0 := 0 and A0 := 0. In the last equation, we made use of the fact
that (det Σ−1) = (det Σ)−1 since any covariance matrix is positive definite. �
is a convex function of the transition matrices and the inverse noise covariance
matrix, due to the convexity of − log det Σ−1 and (At−1xt−1)2. First or second
order optimization procedures may be applied to find the global minimizer of
(4) w.r.t. A or Σ. Hence, it is useful to know the derivatives.

We adopt the notation from [9] whenever an expression involves matrix dif-
ferential calculus. Let the operator vec : Rm×n → R

mn transform a matrix into a
vector by stacking the columns of the matrix one underneath the other—vec(M)
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represents the matrix M in column-major order. The partial derivative of � w.r.t.
At for 1 ≤ t < T is then

∂�

∂ vec (At)
� =

1
2NT

N∑

i=1

∂
(
ri�

t+1Σ
−1ri

t+1

)

∂ vec (At)
�

= − 1
NT

vec

(
Σ−1

N∑

i=1

(xi
t+1 − Atx

i
t)x

i�
t

)�

(5)

and its partial derivative w.r.t. Σ−1 is

∂�

∂ vec
(
Σ−1

)� = −1
2

∂ log det Σ−1

∂ vec
(
Σ−1

)� +
1

2NT

N∑

i=1

T∑

t=1

∂
(
ri�

t Σ−1ri
t

)

∂ vec
(
Σ−1

)�

= −1
2

vec

(
Σ +

1
2NT

N∑

i=1

T∑

t=1

ri
tr

i�
t

)�

Notice that the first order condition ∂�/∂ vec
(
Σ−1

)�
= 0 implies that the

minimizer Σ∗ must be equal to the empirical second moment of the trans-
formed residual vector. A similar closed form can be derived for A∗

t whenever∑N
i=1 xi

tx
i�
t is invertible.

2.2 Sparse Estimation

Using closed-form expressions for A∗
t or Σ−1∗ typically results in dense matrices,

i.e., solutions with almost no zero entries. This might not be desired, either
because sparse solutions allow for faster computation, or because the resulting
matrices should reveal insights about the dependency between variables. A way
to achieve this is to bias the solution towards sparse matrices by regularizing the
objective function:

�reg(A,Σ−1,D) = �(A,Σ−1,D) + g(A,Σ−1)

where g is an arbitrary non-negative function, the regularizer, that somehow
measures the complexity that is induced by A and Σ−1. Hence, minimizing �reg

will produce solutions that trade off quality (in our case: likelihood) against
complexity. It is common to choose a norm as regularizer. In particular, the l1-
norm is known to induce sparse solution [5,15]. For the LDS objective (4), this
results in

�l1-LDS(A,Σ−1,D) = �(A,Σ−1,D) + λ

T−1∑

t=1

‖At‖1 + δ‖Σ−1‖1 (6)

where ‖ · ‖1 is the entry-wise matrix l1-norm, i.e., ‖M‖1 =
∑n

i=1

∑m
j=1 |[M ]i,j |

for any n × m matrix M . Here, λ and δ are positive weights which control the
strength of the regularization. The larger λ (δ), the smaller will the norm of the
resulting At (Σ−1) be. That is, the larger λ or δ, the higher the number of zero
entries in At or Σ−1, respectively.
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Remark 1. Zeros at the (i, j)-th entry of the inverse covariance matrix correspond
to conditional independence between the variables [xt]i and [xt]j2, given all the
other variables {[xt]k : k �= i �= j} [8]. Since Σ−1 is an inverse covariance matrix,
it is symmetric. Hence, it may be interpreted as the (weighted) adjacency matrix
of an undirected graphical structure G(Σ−1) = (V,U) with n = |V | vertices and
an edge set E. If the estimation is carried out via numerical optimization, special
care has to be taken to ensure that the estimated Σ−1 is symmetric and positive
definite. Results on the estimation of sparse inverse covariance matrices may be
found in [2,5,21]. In what follows, we assume that Σ is known. This is in line
with the original STRF, where a spatial graphical structure is assumed to be
given [12].

Due to the l1 term, (6) can not be optimized by conventional numerical
methods because |x| is not differentiable at x = 0. However, if the gradient of
(6) is Lipschitz continuous with modulus L, the proximal gradient method is
guaranteed to converge with rate O(1/k) when a fixed stepsize η ∈ (0, 1/L] is
used [11].

Recall that we are interested in minimizing (6) w.r.t. all transition matrices
At. Hence, we consider block-wise minimization of the At. The proximal alter-
nating linearized minimization [1] is a variant of the general proximal gradient
algorithm which is designed for a block-wise setting. A closer investigation of
(5) shows, that each partial derivative of (6) w.r.t. At is indeed Lipschitz con-
tinuous. It’s block Lipschitz constant is Lt = 1

T ‖Σ−1‖F ‖ 1
N

∑N
i=1 xi

tx
i�
t ‖F =

‖(∂/∂ vec(At)�)(∂�/∂ vec(At)�)‖F , which is the Frobenius norm of the gra-
dient’s Jacobian w.r.t. to At. This is based on the fact that any differentiable
vector-valued function whose gradient has bounded norm is Lipschitz continuous.

Using these moduli of continuity, the optimization consists of iteratively
updating all transition matrices. Let γ > 1. In each iteration, the transition
matrices are updated according to

vec (Anew
t )� = proxγLt

(
vec (At)

� − 1
γLt

∂�

∂ vec (At)
�

)

with

prox‖·‖1
λ (x) = arg min

y

(
‖y‖1 +

λ

2
‖x − y‖22

)
.

Moreover, since ‖ · ‖1 is fully separable, it can be shown (see, e.g., [11]) that

[prox‖·‖1
λ (x)]j =

⎧
⎪⎨

⎪⎩

xj − λ, xj > λ

0, |xj | ≤ λ

xj + λ, xj < −λ

.

2 [x]i represents the i-th component of vector x. Moreover, [M ]i,j represents the entry
in row i and column j of matrix M .
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2.3 LDS and the Exponential Family

The STRF reparametrization for discrete state Markov random fields is formu-
lated for exponential families [17]. We will now shortly recap the exponential
family form of the multivariate Gaussian, which is also known as information
form. An exponential family with natural parameter θ ∈ R

d may be denoted as

Pθ(x) = exp (〈θ, φ(x)〉 − B(θ)) (7)

with log partition function B(θ) = log
∫

exp (〈θ, φ(x)〉) dx3. In case of the mul-
tivariate Gaussian, parameter and sufficient statistic φ : R

n → R
d are given

by

θ =
(− 1

2 vec(Σ−1)
Σ−1μ

)
and φ(x) =

(
vec(xx�)

x

)
,

respectively. Moreover, the closed form of B(θ) can be computed by the n-
dimensional Gaussian integral:

B(θ) = log
∫

exp (〈θ, φ(x)〉) dx

= log
∫

exp
(

−1
2
x�Σ−1x + x�Σ−1μ

)
dx

= log
(√

(2π)n det Σ−1 exp
(

1
2
μ�Σ−1μ

))
.

Plugging this into Eq. (7) and rearranging, one arrives at the well known expres-
sion for the multivariate Gaussian density:

Pθ(x) = exp (〈θ, φ(x)〉 − B(θ))

=
1√

(2π)n det Σ−1
exp

(
−1

2
x�Σ−1x + x�Σ−1μ − 1

2
μ�Σ−1μ

)

=
1√

(2π)n det Σ−1
exp

(
−1

2
(x − μ)�Σ−1(x − μ)

)
.

Based on this equivalence, the joint density (2) of an LDS can also be rewritten
in terms of exponential families (7)

PA,Σ(x1:T ) = PΣ(x1)
T−1∏

t=1

PAt,Σ(xt+1|xt)

= Pθ1(x1)
T−1∏

t=1

Pθt+1(xt+1|xt)

= exp

(
T∑

t=1

〈θt, φt(xt,xt−1)〉 − B(θt,xt−1)

)

3 The log partition function is usually denoted by A(θ). Since the symbol A is already
reserved for transition matrices, we denote the log partition function with B instead.
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where we used the exponential family form of each xt|xt−1 ∼ N (At−1xt−1,Σ)
and hence, the parameters and sufficient statistic are

θt =
( − 1

2 vec(Σ−1)
vec(Σ−1At−1)

)
, φt(xt,xt−1) =

(
vec(xtx

�
t )

vec(xtx
�
t−1)

)
.

Again, we set x0 := 0 and A0 := 0 to compactify notation. To remove the
functional dependence between the local log-partition functions B(θt,xt−1) and
xt−1, we include the corresponding term − 1

2x�
t−1A

�
t−1Σ

−1At−1xt−1 directly
into the parameters and sufficient statistics:

θ̃t =

⎛

⎝
− 1

2 vec(Σ−1)
vec(Σ−1At−1)

− 1
2 vec(A�

t−1Σ
−1At−1)

⎞

⎠ , φ̃t(xt,xt−1) =

⎛

⎝
vec(xtx

�
t )

vec(xtx
�
t−1)

vec(xt−1x
�
t−1)

⎞

⎠ .

Finally, the joint probability of the LDS in exponential family form is

Pθ̃(x1:T ) = exp
(
〈θ̃, φ̃(x1:T )〉 − B(θ̃)

)

where, θ̃ = (θ̃1, θ̃2, . . . , θ̃T )�, φ̃ = (φ̃1(x1,x0), φ̃2(x2,x1), . . . , φ̃T (xT ,xT−1))�,
and B(θ̃) =

∑T
i=1 B(θ̃t) are the corresponding parameter, sufficient statistics

and log partition function, respectively.
This representation has several drawbacks when compared to the native rep-

resentation in terms of transition matrices. An obvious disadvantage is, that
multiple copies of Σ−1 are encoded into the parameters. Moreover, the transi-
tion matrices can only be recovered via inversion of Σ−1 and subsequent matrix
multiplication with the lower part of θt which encodes Σ−1At−1. Hence, O(n3)
flops are required to extract At−1 from θt which might be prohibitive in a large
system.
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Fig. 1. X-axis: Parameter p of the Bernoulli distribution of the entries of the lower
triangular matrix L̃. Y-axis: Average sparsity of (L̃ + 10In)(L̃ + 10In)�.
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3 Reparametrization of LDS

The main goal of this work is a sparse reparametrization of LDS that does
not alter the dependences which are encoded in the transition matrices. If l1-
regularization is applied to a transition matrix At, some of its entries will be
pushed to 0, and hence, some flow of information between variables is prohibited.
Moreover, if a particular value of At does not change much over time, i.e.,
[At]i,j ≈ c for all 1 ≤ t < T , l1-regularization can not exploit this redundancy.
Here, we aim at finding an alternative representation that is able to sparsify
such redundancies while keeping small interactions between variables intact. For
discrete state Markov random fields, this task has already been solved by STRF.
The core of STRF is a spatio-temporal reparametrization of the exponential
family

θt(Δ) =
t∑

i=1

1
t − i + 1

Δi

with l1 and l2 regularization of the Δi.
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||A
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Sparsity

ST-LDS
l1-LDS

Fig. 2. Sparsity vs. Error. X-axis: Sparsity of estimated transition matrices. Y-axis:
Estimation error of transition matrices, measured in Frobenius norm ‖A∗ − A‖F .

As already mention at the end of Sect. 2, extracting the transition matri-
ces from the exponential family form of an LDS is rather expensive. In practi-
cal applications of LDS, the transition matrices are of special interest. Either
because a prediction of future states of the system has to be computed, or if
particular interactions between variables are investigated. Therefore, we dismiss
the exponential family representation and perform the reparametrization w.r.t.
the transition matrices.

At(Δ) =
t∑

i=1

1
t − i + 1

Δi
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Fig. 3. X-axis: number of variables n. Y-axis: Normalized negative log-likelihood �/n.
Left: T = 4; Right: T = 8. Lower is better.

Analogous to (6), this results in the objective function

�ST-LDS(Δ,Σ−1,D) = �(A(Δ),Σ−1,D) + λ

T−1∑

t=1

‖Δt‖1 (8)

with Δ = (Δ1,Δ2, . . . ,ΔT−1). Notice that we perform only l1-regularization of
Δ, since the results in [12] suggest that the impact of l2-regularization on the
sparse reparametrization is neglectable. In addition, Σ−1 is treated as a constant
as explained in Remark 1.
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Fig. 4. X-axis: number of variables n. Y-axis: Sparsity of estimated transition matrices.
Left: T = 4; Right: T = 8. Higher is better.

The partial derivatives of � w.r.t. Δt are required to apply the proximal
algorithm from Sect. 2.2. We apply the matrix chain rule (see, e.g., [9]) to get

∂�

∂ vec (Δt)
� =

(
∂�

∂ vec (A(Δ))�

)(
∂ vec (A(Δ))

∂ vec (Δt)
�

)

with
∂[At′(Δ)]l,r

∂[Δt]i,j
=

{
1

t′−t+1 , t′ ≥ t ∧ i = l ∧ j = r

0, else
.
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The block Lipschitz constant Ut =
√∑T−1

t′=t (n/(t′ − t + 1))2 of A(Δ) w.r.t. Δt

is derived as described in Sect. 2.2, i.e.,

Ut =

∥∥∥∥∥

(
∂

∂ vec (Δt)
�

)(
∂�

∂ vec (Δt)
�

)∥∥∥∥∥
F

.

Now, since f = � ◦ A is the composition of two Lipschitz continuous functions,
UtLt is the t-th block Lipschitz constant of f(Δ) = �(A(Δ),Σ−1,D).

4 Experiments

Experiments are conducted in order to investigate and compare the (i) loss,
(ii) sparsity and (iii) estimated transition matrices of the following methods:

– Plain time-variant LDS as defined in (1) with objective function (4)
– l1-LDS with objective function (6)
– ST-LDS with objective function (8)

Here, sparsity is defined as the fraction of zero-entries in a parameter θ ∈ R
d,

i.e., sparsity(θ) = 1
d

∑d
i=1 1(θi = 0). The indicator function 1(expr) evaluates

to 1 iff expr is true.
The synthetic data for the experimental evaluation is generated by the fol-

lowing stochastic process:

1. Fix the number of variables n, time-steps T and samples N .
2. Generate a random inverse covariance matrix Σ−1. This is done by generating

a lower triangular binary matrix L̃ where each entry is draw independently
from a Bernoulli distribution with parameter p. The sign of each non-zero off-
diagonal entry is determined by drawing from another Bernoulli with parame-
ter 1/2. Then, the n×n up-scaled identity matrix 10In is added to L̃ and the
result is multiplied by its own transpose, i.e., Σ̃

−1
= (L̃+10In)(L̃+10In)�.

The implied Σ̃ is normalized in order to have unit variances. Figure 1 shows
the sparsity of the final inverse covariance matrix Σ−1 as a function of n
and p.

3. Generate T −1 random transition matrices A1,A2, . . . ,At−1. The entries are
drawn independently from a uniform distribution over [−ω, ω]:
(a) For [At]i,j and all 1 ≤ t < T . (Fully Time-Variant)
(b) For [A1]i,j and [AT/2]i,j and then copied to all [At]i,j with 1 < t < T/2

and T/2 < t < T , respectively. (Step-wise time-variant)
(c) For [A1]i,j and then copied to all [At]i,j for all 1 < t < T . (Time-

Invariant)
4. For i = 1 to N

(a) Draw xi
1 from N (0,Σ).

(b) For t = 2 to T
i. Draw εt from N (0,Σ).
ii. Compute xi

t = At−1x
i
t−1 + εt.
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This procedure is applied for n ∈ {2, 4, 6, 8, 10, 12, 14, 16}, T ∈ {4, 8} and
N = 10000. Random covariance matrices are generated with p = 1/4 and ran-
dom transition matrices are generated with ω = 1/n. For each combination of n
and T , 10 datasets are sampled, which makes a total of 1.6 × 106 data points.
The evaluation of regularized methods l1-LDS and ST-LDS is carried out with
λ ∈ {10−2, 10−3, 10−4, 10−5}. All models are estimated by the proximal algo-
rithm, described in Sect. 2.2. In case of an unregularized objective, the proximal
algorithm reverts to block-wise gradient descent.
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Fig. 5. X-axis: number of variables n. Y-axis: Estimation error of transition matrices,
measured in Frobenius norm ‖A∗ − A‖F . Left: T = 4; Right: T = 8. Lower is better.
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LDS
l1-LDS,λ=10-2

ST-LDS,λ=10-2

l1-LDS,λ=10-3

ST-LDS,λ=10-3

l1-LDS,λ=10-4

ST-LDS,λ=10-4

l1-LDS,λ=10-5

ST-LDS,λ=10-5

Fully Time-Variant

0.000

0.020

0.041

0.061

0.082

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.022

0.045

0.067

0.090

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Step-wise time-variant

0.000

0.021

0.043

0.064

0.085

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.018

0.037

0.055

0.074

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Time-Invariant

0.000

0.013

0.026

0.040

0.053

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
0.000

0.012

0.025

0.037

0.050

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Fig. 6. X-axis: number of variables n. Y-axis: Estimation error of transition matrices,
measured in maximum norm ‖A∗ − A‖∞. Left: T = 4; Right: T = 8. Lower is better.

4.1 Likelihood and Sparsity

Results for the average negative log-likelihood (4) and sparsity of the correspond-
ing transition matrices are depicted in Figs. 3 and 4, where each point is aver-
aged over 10 random data sets. Comparing results among different model sizes
requires normalization of the loss function values by the corresponding number
of variables, hence, Fig. 3 shows �/n. Plots on the left contain results for T = 4
time-steps and plots on the right results for T = 8 time-steps, respectively. In all
cases, a larger value of λ corresponds to more sparsity and a larger loss. Note,
however, that the regularization parameter has a different impact on l1-LDS and
ST-LDS models, i.e., sparsity and loss of ST-LDS models with λ = 10k are in
the range of l1-LDS models with λ = 10k−1. The results suggest the existence of
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a phase transition which is clearly visible for ST-LDS with λ = 10−2 and l1-LDS
λ = 10−3: for small (in terms of n) models, the loss of l1-LDS is larger than the
loss of ST-LDS. However, it can be seen in Fig. 3 that there exists n0 from which
on this relation is interchanged, i.e., the loss of l1-LDS is lower than the loss of
ST-LDS. Remarkably, the sparsity plots (Fig. 4) of the corresponding transition
matrices show a similar behavior. Starting from the same n0, the sparsity of
ST-LDS with λ = 10−2 and the sparsity of l1-LDS with λ = 10−3 converge.
The point of the phase transition and it’s strength depend on the number of
time-steps and the type of transition matrices. In case of ST-LDS models with
λ = 10−5 however, the loss is close to that of plain LDS model and the sparsity
is larger than that of the corresponding l1-LDS models. Moreover, the sparsity
increases with an increasing number of variables.

4.2 Estimation Error and Sparsity

For each random dataset, we store the original transition matrices A∗. This
allows us, to investigate the estimation error in terms of the Frobenius norm
‖A∗ − A‖F and maximum norm ‖A∗ − A‖∞, as shown in Figs. 5 and 6. Again,
each point is averaged over 10 random data sets. The ranking of the meth-
ods in terms of estimation error is coherent with the sparsity results. While
the Frobenius-norm-error increases with an increasing number of variables, the
maximum-norm-error is almost zero for all methods with λ ≤ 10−3. While the
maximum-norm-error of ST-LDS with λ = 10−4 is close to 0, the sparsity of the
corresponding model increases with an increasing number of variables. More-
over, it’s sparsity is higher than the sparsity of the corresponding l1-LDS model.
Finally, the trade-off between sparsity and estimation error is depicted in Fig. 2.
Each error-sparsity pair represents one run of the corresponding method. Tran-
sition matrices which are estimated with the plain LDS model are completely
dense in any case. In general, ST-LDS is able to produce models with a higher
sparsity while incorporating a larger error. Notice, however, that some ST-LDS
models achieve about twice the sparsity as l1-LDS models but with the same
(rather low) estimation error.

5 Conclusion

In this article, we investigated a combined reparametrization and regularization
approach which is designed to detect redundancies in the dynamics of linear
dynamical systems. Based on ordinary linear dynamical systems, the new model,
called ST-LDS, was derived and a proximal parameter optimization procedure
was presented. Expensive line-search techniques or similar step-size adaption
techniques were avoided by deriving the block Lipschitz constants of the cor-
responding objective function w.r.t. the new reparametrization. Differences to
l1-regularization-based approaches were discussed and an evaluation on synthetic
data was carried out. The results show, that with an increasing size of an ST-
LDS, the estimation error is close to that of an ordinary LDS while achieving
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more sparsity than l1-regularization-based models. An investigation of spatio-
temporal regression models with non-Gaussian noise is an appealing direction
for future research, since many real world phenomena might be explained better
by other probability distributions.
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Abstract. The purpose of this paper is to automatically detect local
intensity changes in time series of grayscale images. For each pixel coor-
dinate, a time series of grayscale values is extracted. An intensity change
causes a jump in the level of the time series and affects several adjacent
pixel coordinates at almost the same points in time. We use two-sample
tests in moving windows to identify these jumps. The resulting candi-
date pixels are aggregated to segments using their estimated jump time
and coordinates. As an application we consider data from the plasmon
assisted microscopy of nanosize objects to identify specific particles in a
sample fluid. Tests based on the one-sample Hodges-Lehmann estimator,
the two-sample t-test or the two-sample Wilcoxon rank-sum test achieve
high detection rates and a rather precise estimation of the change time.

Keywords: Change points · Jump detection · Spatio-temporal
analysis · Image sequences

1 Introduction

In this work we deal with the automatic detection of local intensity changes in
time series of digital grayscale images. A single grayscale image can be repre-
sented by a matrix with one entry for each pixel coordinate. Each entry stands
for the brightness (intensity) of the corresponding pixel coordinate. The inten-
sity ranges from black to white on a grayscale. The observed intensity represents
a true intensity signal which is overlaid by noise and possibly outliers.

A local intensity change occurs if the true signals of several neighboring
pixel coordinates change abruptly at the same point in time. We assume that
these changes are permanent. We aim at their detection and estimation of their
time of occurrence. We extract the grayscale values for each pixel coordinate
over time. An intensity change induces a jump in the time series for the related
pixel coordinates. We use two-sample tests in moving windows for the detection
of structural breaks in time series to identify these coordinates. Afterwards,
we aggregate them to coordinate sets using temporal and spatial criteria. The
convex hulls of these sets represent potential locations of intensity changes.
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 251–271, 2016.
DOI: 10.1007/978-3-319-41706-6 13
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As a special application, we use data from the PAMONO (Plasmon Assisted
Microscopy of Nano-Size Objects) biosensor [28], provided to us by the Leibniz-
Institut für Analytische Wissenschaften – ISAS – e.V. in Dortmund. The
PAMONO biosensor is a device to detect specific particles in a sample fluid
by indirectly proving their existence. A primary objective is the detection of
viruses, see e.g. [22,23,28].

The surface of the biosensor is a gold layer which is placed on a glass prism.
A sample fluid is pumped through a flow cell atop the surface. Particles in the
fluid can adhere on the top side of the layer. A laser beam is directed at the
bottom side of the surface. The reflection is recorded by a CCD camera. This
delivers a time series of grayscale images. An adhesion on the sensor surface
causes, due to some physical effects, a permanent intensity increase in the image
sequence for the affected pixel coordinates. In this application we only have
to deal with positive jumps in the time series. The objective is to detect the
particles on the sensor surface automatically, which is made difficult by artifacts
on the sensor surface and noise in the grayscale images.

This work is organized as follows: In Sect. 2 we describe the underlying model
for the grayscale images and the time series formally. The method to detect local
intensity changes in time series of grayscale images is presented in Sect. 3. The
application on the PAMONO data is the main focus of Sect. 4, where we also
describe the data sets in more detail. Finally, in Sect. 5 we summarize and discuss
the results.

2 Model Assumptions

In this section, we describe our model for the grayscale images and the pixel time
series. We refer to the PAMONO data to make the terms better comprehensible.

Let (Yt : t = 1, . . . , N) be a time series of digital grayscale images with reso-
lution K ×L, where K,L ∈ N. The image at time t ∈ N can be interpreted as an
L × K matrix Yt =

(
Y

(i,j)
t : i = 1, . . . , L, j = 1, . . . ,K

)
. The random variable

Y
(i,j)
t describes the intensity at the pixel coordinate which corresponds to the

matrix entry in row i and column j. In an �-bit digital image, � ∈ N, Y
(i,j)
t

has a discrete distribution and takes integer values in
{
0, 1, . . . , 2� − 1

}
, with

the brightness of a pixel in the image increasing with the associated intensity
[9]. For the analysis of the digital images we transform the intensities so that
Y

(i,j)
t ∈

{
0, 1

2� , 2
2� , . . . , 2�−1

2�

}
.

During the generation of a digital image from a real-life object several envi-
ronmental and technical aspects influence the result. The observed digital image
thus corresponds to the true image which is overlaid by random noise [9].

In the following, we assume that the observed intensity at the pixel coordi-
nates can be described by an additive relationship between a background signal,
a target signal, noise and outliers. For the PAMONO data the background signal
is the part of the observed intensity which comes from the sensor surface. The
target signal would then be the part which is induced by the particles. If no
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particle is on the surface, it is zero. When a particle adheres on the gold layer
the target signal increases to a positive value. The noise and outliers arise from
the process of image acquisition.

For the intensity at coordinate (i, j), let b(i,j) describe the true background
signal, which is assumed to be constant over time. The time-dependent true tar-
get signal is given by v

(i,j)
t . The random noise is denoted by ε

(i,j)
t . Furthermore,

we consider an outlier process η
(i,j)
t . Under the assumption that the relationship

between these components is additive, the intensity can be modelled as

Y
(i,j)
t = b(i,j) + v

(i,j)
t + ε

(i,j)
t + η

(i,j)
t . (1)

The intensities for one coordinate (i, j) form a time series(
Y

(i,j)
t : t = 1, . . . , N

)
.

Let t
(i,j)
∗ be the change time of the target signal at coordinate (i, j). For a

change of magnitude Δ
(i,j)
t∗ ∈ R, the target signal is

v
(i,j)
t =

{
Δ

(i,j)
t∗ , if the target signal changes at time t

(i,j)
∗ ≤ t

0, otherwise.

Thus, a change in the target signal leads to an intensity change which corresponds
to a jump in the observed time series

(
Y

(i,j)
t : t = 1, . . . , N

)
.

For simplicity we assume the noise variables ε
(i,j)
1 , . . . , ε

(i,j)
N to be indepen-

dent, identically and symmetrically distributed over time and between the coor-
dinates. The expectation is E

(
ε
(i,j)
t

)
= 0 and the variance is Var

(
ε
(i,j)
t

)
= σ2.

The outlier components η
(i,j)
1 , . . . , η

(i,j)
N are zero most of the time but sporadi-

cally take large absolute values.
Our objective is to detect local intensity changes in a time series of digital

images caused by a specific event. Such relevant changes are assumed to consist
of simultaneous shifts of the intensity values of adjacent pixel coordinates. In
the PAMONO context, the relevant changes are the ones induced by particle
adhesions on the sensor surface. There can be irrelevant changes, e.g. caused by
noise or artifacts [22].

To analyze the images, for each coordinate the time series of observed inten-
sities is extracted. This leads to a set of L × K pixel time series for which we
assume that they can be modelled by (1). By combining the background signal
b(i,j) and the target signal v

(i,j)
t additively to a true underlying signal

μ
(i,j)
t = b(i,j) + v

(i,j)
t ,

model (1) is seen to be an additive components model as in [7]:

Y
(i,j)
t = μ

(i,j)
t + ε

(i,j)
t + η

(i,j)
t .
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3 Methods

In this section, we present a way to detect local intensity changes in a time
series of grayscale images. A general approach is described by Timm et al. [23].
It starts with a preprocessing of the grayscale images. This is followed by an
identification step for determining candidate coordinates. In an aggregation step
they are combined to sets of coordinates representing the candidates for the local
intensity changes.

We use these steps as a guideline for our method. Additionally, we estimate
the time of occurrence for each of the potential intensity changes. The following
subsections describe a concrete proposal for this analysis process.

3.1 Preprocessing

Even if the background signal is assumed to be constant over time, spatially
there can be heavy variations. Furthermore, it can be much stronger than the
target signal which makes it difficult to identify relevant local intensity changes.
In the PAMONO data, the background signal is induced by the gold layer which
is uneven [28], i.e. the structure is not the same for different pixel coordinates.
Moreover, the target signal is small in comparison to the background [22].

The background signal does not contain relevant information on the target
signal and will be removed. We use a constant background removal [25]. The
arithmetic mean of the first B < N images of the sequence is calculated for each
coordinate. This gives us a reference image which is subtracted from all images
thereafter.

If the grayscale images have a high resolution, a large amount of time series
needs to be analyzed. Following [25], we use thresholds to remove time series
for which we do not expect that a relevant intensity jump occurs. If we want to
detect positive intensity changes, we choose an appropriate threshold so that all
time series which never exceed it are removed. Analogously, for negative intensity
changes a threshold can be defined so that time series which never fall below it are
removed from further analysis. The threshold has to be chosen by the operator.
Time series which are almost or exactly constant will also be removed, since they
can be seen as irrelevant for our analysis. For this, we estimate the variability
of each time series by the median absolute deviation from the median (MAD)
[14]. If it is zero, the time series is removed. The MAD is a robust alternative to
the empirical standard deviation. For a time series which is constant most of the
time, the MAD has the advantage that it can still be zero while the standard
deviation would be strictly positive.

3.2 Identification of Candidate Pixels

After extracting the time series (Y (i,j)
t : i = 1, . . . , L, j = 1, . . . , K, t = 1, . . . , N)

from an image sequence we check each coordinate individually for the presence of
a jump in the true signal μt. For better readability the coordinate index (i, j) is
dropped in the following.
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Preliminaries. To detect jumps in the true signal μt of the time series, we use
two-sample tests for the location problem and apply them in a moving time win-
dow of width n = 2 · k. The subwindow width k ∈ N is a tuning parameter and
has to be chosen by the operator.

For each point in time t = k, . . . , N − k we test for a jump between t and t+1
by splitting the whole window of width n

Y t = (Yt−k+1, . . . , Yt, Yt+1, . . . , Yt+k)′

into two subwindows

Y t− =
(
Y −

t,1, . . . , Y
−
t,k

)′
and Y t+ =

(
Y +

t,1, . . . , Y
+
t,k

)′

each of width k, where

Y −
t,u = Yt−k+u and Y +

t,v = Yt+v, u, v = 1, . . . , k .

We assume that the signal μt is locally constant so that

μt−k+u = μt− and μt+v = μt+, u, v = 1, . . . , k .

A jump of magnitude Δt ∈ R in the true signal at time t then corresponds to a
shift in location with

μt+ = μt− + Δt .

We call Y t− the reference window and Y t+ the test window.
Under the previous assumptions, Y −

t,1, . . . , Y
−
t,k as well as Y +

t,1, . . . , Y
+
t,k are inde-

pendent and identically distributed. In addition, Y −
t,1, . . . , Y

−
t,k, Y +

t,1, . . . , Y
+
t,k are

independent.
The null hypothesis H0,t : Δt = 0 to be tested at time t is that there is no

jump in the signal of the two subwindows.
In contrast to global methods, the application of moving windows has the

advantage that relevant signal changes can be detected even if we have a slow trend
in the data. Furthermore, we avoid the fitting of a global parametric model [5].

The subwindow width k has to be chosen under consideration of the applica-
tion [5]. If k is too small, outliers can have a great influence on the results. If it is
too large, the assumption of a locally constant signal is possibly not justified and
the detection of a location shift can be delayed.

Selected Tests for the Two-Sample Location Problem. In the following,
we present some selected tests for the two-sample location problem. The idea is
to compare the test window with the reference window by estimating the location
difference and standardizing it with a scale estimator [6].

A popular test which uses this principle is the classical two-sample t-test. The
magnitude of the location change is estimated by the difference of the arithmetic
means Y t− and Y t+ of the reference and the test window:

Δ̂
(0)
t = Y t+ − Y t− .
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It is standardized by the pooled empirical standard deviation

Ŝ(0) =

√√√√ 1
n − 2

(
k∑

u=1

(
Y −

t,u − Y t−
)2

+
k∑

v=1

(
Y +

t,v − Y t+

)2
)

.

The t-test has the disadvantage of not being robust against outliers. Therefore, in
[6] the arithmetic mean and the pooled standard deviation are replaced by more
robust estimators.

A robust alternative to the arithmetic mean is the sample median. The differ-
ence of the sample medians Ỹt− and Ỹ+ for the reference and the test window,

Δ̂
(1)
t = Ỹt+ − Ỹt−,

can be used as an estimator for the location difference. In [6] the median of the
absolute deviation from the medians of both subwindows is the applied scale esti-
mator:

Ŝ(1) = 2 · med
{

|Y −
t,1 − Ỹt−|, . . . , |Y −

t,k − Ỹt−|, |Y +
t,1 − Ỹt+|, . . . , |Y +

t,k − Ỹt+|
}

.

We will call this test median-differences test (MD-test).
Another robust alternative to the arithmetic mean is the one-sample Hodges-

Lehmann estimator [10]. For both subwindows it is defined as

Ŷt− = med

{
Y −

t,u + Y −
t,v

2
, 1 ≤ u < v ≤ k

}
and

Ŷt+ = med

{
Y +

t,u + Y +
t,v

2
, 1 ≤ u < v ≤ k

}
.

The location difference can be estimated by

Δ̂
(2)
t = Ŷt+ − Ŷt− .

Additionally, we will use the two-sample Hodges-Lehmann estimator for the loca-
tion difference [10], which is given by

Δ̂
(3)
t = med

{
Y +

t,u − Y −
t,v, u, v = 1, . . . , k

}
.

The estimators Δ̂
(2)
t and Δ̂

(3)
t will be standardized by the scale estimator [6]

Ŝ(2) = med {|Xt,u − Xt,v| : 1 ≤ u < v ≤ n} ,

where (Xt,1, . . . , Xt,n)′ =
(
Y −
t,1 − Ỹt−, . . . , Y −

t,k − Ỹt−, Y +
t,1 − Ỹt+, . . . , Y

+
t,k − Ỹt+

)′
.

We will call the test based on the one-sample Hodges-Lehmann-estimator
HL1-test and the one using the two-sample Hodges-Lehmann estimator HL2-test.



Detection of Local Intensity Changes in Grayscale Images 257

The distribution of the t-test statistic in small samples is known under the null
hypothesis if the data come from a normal distribution. In contrast, the small sam-
ple distributions under the null hypothesis for the remaining test statistics are
unknown. In [6] the permutation principle is used to construct distribution-free
tests. When the tests are applied in moving windows, computation of the permu-
tation distribution for each window causes high computational efforts even in case
of small window widths like k = 10. Following [16] we approximate the distribu-
tion under the null hypothesis via simulation under the assumption that the data
stem from a normal distribution. In 50000 replications we generate n = 2k ran-
dom observations from the standard normal distribution and calculate the value
of the test statistic for each sample. We only have to compute the distributions for
the standard normal case because the test statistics are invariant with respect to
linear transformations of the data. In [1] the noise structure of the PAMONO data
is analyzed descriptively. There, the normality assumption is made plausible for
the data at hand. Nevertheless, the distributional assumption is a disadvantage.

Alternative distribution-free approaches to test for a location difference
between two samples are linear rank tests. Here, we will use the two-sample
Wilcoxon rank-sum test. Let R+

t,1, . . . , R
+
t,k be the ranks of Y +

t,1, . . . , Y
+
t,k in the

whole window. The test statistic is given by the sum of the ranks.

Significance Level. The significance level α ∈ (0, 1) is another important tun-
ing parameter [16]. We use N − n + 1 tests to check for signal jumps in a time
series for a fixed k. Thus, the number of tests increases with a decreasing win-
dow width. As we now have a multiple testing problem and to make different
window widths better comparable we adjust the significance level. Two possibil-
ities for this are the Bonferroni and the Bonferroni-Holm method [11]. With the
Bonferroni method, a preselected global significance level αg ∈ (0, 1) is divided by
the number of tests which will be carried out. The Bonferroni-Holm method is a
sequential procedure in which the p-values p1, . . . , pN−n+1 of the individual tests
are sorted in ascending order p(1) ≤ . . . ≤ p(N−n+1). The p-value p(u) is then com-
pared with the adjusted significance level αg

N−n+u , u ∈ {1, . . . , N − n + 1}, start-
ing with p(1), until the first time the p-value is not smaller than it. The hypotheses
for which the p-value is smaller are rejected.

The Bonferroni-Holm method can lead to a higher power of the resulting test
procedure than the Bonferroni method. In the following, the Bonferroni-Holm
method will be abbreviated as Holm method.

3.3 Estimation of Jump Points in Time Series

If the hypothesis H0,t for a jump between t and t + 1 is rejected, it is likely that
the null hypothesis will be rejected for some of the preceding and following times
as well. This is because each window Y t−k+1, . . . ,Y t+k−1 contains at least one
observation from before or after the jump. Therefore, a single jump may cause
several rejections at close-by time points. Besides, a time series can contain mul-
tiple jumps at different times. In the PAMONO data this can happen if several
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particles are overlapping on the surface. That is why we want to estimate the true
jump times out of the set of all potential jump times. Let

I = I1 = {t ∈ {k, . . . , N − k} : H0,t is rejected}
be the candidate set of times at which H0,t is rejected by a two-sample test in a
moving window. Some ways to estimate the true jump time out of the candidates
are described in [16]. The number of estimated jump times is denoted by m̂.

Method of Wu and Chu. The method of Wu and Chu [27] is based on the idea
that all rejections in the neighborhood of a time t belong to the same jump. Let
Iw be the candidate set in step w of the method. Initially, w = 1 and I1 �= ∅:

1. The jump time tw is estimated by choosing the candidate time with the minimal
p-value, t̂w.

2. The candidate set is reduced by removing a neighborhood of t̂w:

Iw+1 := Iw\{t̂w − c · k, t̂w − c · k + 1, . . . , t̂w + c · k}, c ∈ {1, 2} .

3. If Iw+1 = ∅ stop, else set w := w + 1 and go back to 1.

The parameter c controls the number of points in time which are considered to
belong to the same jump as t̂w. If the time with the minimal p-value is not unique,
we take the earliest out of the time sequence in ascending order.

Method of Qiu and Yandell. The method of Qiu and Yandell [18] is another
way to estimate the true jump time. It constructs tie sets which include candidate
times in an interval of a predefined width c · k, c ∈ {1, 2}.

Let t1 < . . . < t|I| be the ordered candidate times in I. Starting with t1 and
ending with t|I|, consecutive candidate times are assigned to the same tie set in
the following way:

Let tr1,w
be the first and tr2,w

be the last index in the w-th tie set, w = 1, . . . , m̂.
A tie set is then defined as follows: If there are two indexes 1 ≤ r1,w ≤ r2,w ≤ |I|
with

tr1,w
− tr1,w−1 > c · k

tr2,w+1 − tr2,w
> c · k

tv+1 − tv ≤ c · k for v ∈ {r1,w, r1,w + 1, . . . , r2,w − 1},

then

Br1,w,r2,w,w =
{
tr1,w

, tr1,w
+ 1, . . . , tr2,w

}

is the w-th tie set. Furthermore, r1,1 = t1 and r2,m̂ = t|I|. Thus, each tie set
contains the candidate times for which it is assumed that they belong to the same
jump. The estimated jump time is the candidate time with minimal p-value in
each tie set. In case that the minimal p-value in a tie set is not unique, we take
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the arithmetic mean of the possible times within the tie set. This should not be
problematic because all candidate times in a tie set are supposed to belong to the
same jump.

It is possible that the two jump-time estimators lead to a different number of
estimated jumps.

3.4 Aggregation of Candidate Pixels

Each pixel coordinate with at least one detected jump in its time series is a can-
didate coordinate. We aggregate these to coordinate sets so that adjacent coor-
dinates which could belong to the same intensity change will be assigned to the
same set. These are represented by their convex hull and can be used to separate
relevant from irrelevant changes.

For the coordinate (i, j) let m̂i,j and t̂
(i,j)

=
{

t̂
(i,j)
1 , . . . , t̂

(i,j)
m̂i,j

}
be the number

and the set of estimated jump times. By using only the information if a coordinate
is a candidate coordinate, the results can be represented by a binary matrix X =(
x(i,j) : i = 1, . . . , L, j = 1, . . . ,K

)
, where

x(i,j) =

{
1, if at least one jump is detected at coordinate (i, j)
0, otherwise.

In the following sections, we will make use of this matrix.

Median Filter. It is likely that many candidate coordinates are induced by
wrong detections due to the type I error of the tests or misleading structures in the
time series. As a local intensity change influences neighboring pixel coordinates it
can be assumed that candidate coordinates with no or only a few neighbors do not
belong to the event of interest. Therefore, they will be removed by applying a spa-
tial median filter [9] with a square window of width 2 · r + 1 to X . The parameter
r has to be chosen by the operator.

Temporal Segmentation. The temporal segmentation is based on two ideas.

1. We expect that the presence of many similar estimated jump times indicates
that a change occurred somewhere in the image sequence.

2. Coordinates with similar estimated jump times could belong to the same
change.

For an intensity change at time t∗ we expect that the estimated jump times for the
influenced coordinates will vary around t∗. For this reason we combine estimated
jump times which differ by at most γ1 ∈ N time units. We construct overlapping
time windows of width γ1:

tκ = {κ, κ + 1, . . . , κ + γ1 − 1}, κ = 1, . . . , N − γ1 + 1 .

The time window tκ contains all points in time from κ to κ + γ1 − 1.
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For each of these time windows we count the number of estimated jumps which
occur within the time window. If the frequency is at least γ2 ∈ N, the window is
retained. This gives us the nt ∈ N, nt ≤ N − γ1 + 1, time windows

tκ1 , . . . , tκnt
, 1 ≤ κ1 < . . . < κnt

≤ N − γ1 + 1 .

It is possible that two successive time windows tκv
and tκv+1 with κv+1−κv = 1

reach or exceed the threshold γ2. This could be induced by the same jump, as the
time windows are overlapping. Hence, we unite consecutive time windows to new
sets. For v = 1, . . . , nt −1, if κv+1−κv = 1, then tκv

and tκv+1 belong to the same
set. If κv+1−κv > 1, a new set is started which again is the union of all subsequent
time windows. This leads to the nτ ∈ N sets τ 1, . . . , τnτ

. The resulting temporal
segments are given by

τw = {(i, j) : there is one t̂ ∈ t̂
(i,j)

with t̂ ∈ τw}, w = 1, . . . , nτ .

The tuning parameters γ1 and γ2 have to be chosen by the operator. It is impor-
tant to choose γ1 not too large because this can lead to many points in time which
are assigned to the same temporal segment even if the distance between them is
large. If γ1 is chosen too small, it could happen that no time window reaches or
exceeds the threshold γ2.

Spatial Segmentation. In the next step, we combine coordinates with a similar
estimated jump time which are in the same region of the image. The resulting
coordinate sets will be called spatial segments and represent the potential local
intensity changes. We create the nρ ∈ N spatial segments ρ1, . . . ,ρnρ

by uniting
neighboring coordinates within the same temporal segment.

The segment ρw, w = 1, . . . , nρ, is constructed in a way that, if (i, j) ∈ ρw

then there exists another coordinate (i′, j′) ∈ ρw with |i − i′| = 1 or |j − j′| = 1.
This means that we remove each coordinate which has no adjacent coordinate. It is
unlikely that such coordinates belong to a relevant local intensity change because
each local intensity change affects more than one coordinate at the same time.

The spatial segments are represented by their convex hull. In this work we use
the area γ3 ∈ R

+ of the convex hull as a simple criterion for the exclusion of very
small segments. This again is a tuning parameter which has to be chosen by the
operator. More sophisticated criteria are possible [22].

3.5 Estimation of the Change Time

In the last step, the time of a local intensity change is estimated.
Let ρ be a spatial segment. The estimator for the corresponding change time is

based on the time at position
⌊

|ρ|+1
2

⌋
in the sequence of all estimated jump times

in ρ in ascending order. A relevant intensity change at time t∗ leads to an intensity
jump at time t∗. In a simplified way, the two-sample tests detect the jump at time
t∗ − 1. Therefore, the value 1 is added to the index from above.
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4 Application

In this section we use the method of Sect. 3 on the PAMONO data as an example
for its application. For the analysis we use the statistical software R [19] version
3.0.1-gcc48-base. We use the R package BatchExperiments [2] to carry out the
computations on the Linux HPC cluster LiDO in Dortmund. The graphics are
created with the R packages ggplot2 [26] and tikzDevice [21]. The tables are gen-
erated using the xtable package [4]. Several other R packages are used for some of
the computations, namely AnnotationDbi [17], png [24], sp [3] and e1071 [15].

4.1 The PAMONO Data

We use two synthetical data sets which are provided to us by the Leibniz-
Institut für Analytische Wissenschaften – ISAS – e.V. The particles of interest
are polysterene particles with a diameter of 200 nm. Both data sets differ in the
way the background signal was generated and in the number of particles on the
surface.

To generate the data sets, the sensor is applied to a sample fluid which con-
tains the particles. The resulting grayscale images are analyzed with a detection
method. From all detected intensity changes, experts try to identify those which
are caused by a particle. Polygons around these local intensity changes are drawn
by hand. The corresponding signals inside these polygons are extracted and added
to the background signals at randomly chosen positions and times. Each data set
consists of 400 16-bit grayscale images with a resolution of 1280 × 256 pixels.

To create the background signal of the first data set, the CCD camera takes
a single image of the reflection when no particles are present so that the back-
ground signal is constant over time. The background is altered for each point in
time according to a Poisson noise model [20]. This is a common noise model for
CCD sensors [13]. The data set contains 100 particles and will be referred to as
BGPoisson.

The background of the second data set is generated by recording the sensor
surface over a specific amount of time while the sample fluid does not contain any
particles. The idea is to capture the background signal with all types of distur-
bances except for the particles. This data set will be called BGReal and has 300
particles.

For each of the two background generation methods we have a training and a
test data set. The test data sets differ from their corresponding training data sets
in the position and the adhesion time of the particles on the surface.

An intensity time series can contain multiple jumps when different particles
overlap. We do not have any information on the expected jump height, but we
know that it gets smaller the farther the corresponding coordinate is away from
the centre of a local intensity change. Values for the area of a local intensity change
are unknown, too.

Moreover, we do not know exactly which coordinates are part of an adhesion.
We only have knowledge of the polygon vertices which surround the particles.
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4.2 Reference Method

To evaluate the performance of the detection method proposed in Sect. 3 we com-
pare the results with a reference method. It is based on the ideas presented in
[22,23]. Its results are provided to us by the Lehrstuhl für Graphische Systeme
of the Department of Computer Science at TU Dortmund University. We only
describe the basic idea behind the algorithm in short.

In the preprocessing step a constant background is removed. Afterwards, a
Haar wavelet is used to reduce the noise in the pixel time series. Candidate coor-
dinates are identified by comparing the time series with a pattern function in a
moving time window. If the sum of squared deviations between the observed values
and the pattern is smaller than a predefined threshold, the corresponding coordi-
nate is a candidate coordinate. The aggregation of these candidate coordinates is
achieved with a marching squares algorithm [8].

4.3 Simulation Study for the Two-Sample Tests

A comparison of the two-sample tests regarding their power and accuracy of the
jump time estimation on the data sets is not easily possible because we do not
know exactly which time series belong to an adhesion and which do not. Therefore,
a simulation study is conducted in [1] to analyze the ability of the tests in moving
time windows to detect jumps in time series with a high accuracy for the true jump
time. Different situations with and without jumps, outliers and linear trends are
studied.

For each simulation 1000 time series are generated from a standard normal
distribution of length 200. At most one jump is included in each time series.
Thus, the simulated time series give a simplified picture of the time series in the
PAMONO data sets. The evaluated criteria are the percentage of detected jumps
to estimate the power of the tests as well as the accuracy of the estimated jump
time. As only one jump occurs in the simulated time series, the time index with
the minimal p-value is used as an estimator for the jump time. If the minimal
p-value is not unique, the arithmetic mean of all indexes with the minimal p-value
is used. The tests are applied with the subwindow widths k = 10, 20, 30, 40, 50.
In the following we summarize the main results of the study.

In the jump situations without outliers, the t-test delivers the best results for
both criteria and all subwindow widths. The Wilcoxon test, the HL1- and the HL2-
test are suitable alternatives. Additionally, they are more robust and provide a
high power and accuracy even if outliers are present in the time series. Concerning
the Wilcoxon test, the subwindow width should not be too small in case of outliers.
The power of the t-test can be zero when outliers are present in a jump situation.
This is also the case for the Wilcoxon test with the small subwindow width k = 10.
For the HL1- and the HL2-test the loss in power for k = 10 is bounded. The MD-
test also has good robustness properties, but a considerably smaller power and
accuracy than the other tests under normality.

The subwindow width has a large influence on the results. A long subwin-
dow increases the power of the test. But in trend situations the assumption of
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a locally linear signal is not justified so that this could lead to many wrong detec-
tions due to the location difference between the subwindows. Regarding the accu-
racy, a shorter subwindow seems to be preferable. Furthermore, this helps to resist
slow monotonic trends. However, the test decision can be more easily influenced
by outliers then.

4.4 Application of Detection Method on the PAMONO Data

In this section, we apply the detection method of Sect. 3 to the PAMONO data.
The training data sets are used to find good parameter combinations while the
test data serve solely for their evaluation. We choose the following presetting:

All tests from Sect. 3.2 are used. The subwindow widths will be chosen as
k = 30, 50. We use αg = 0.2 as the global significance level. The spatial median
filter will be applied with parameter r = 1. We take this value to remove single
candidate coordinates which do not have many neighbors, but we do not want to
reduce the size of the areas which actually belong to an adhesion too much. One-
sided tests are applied to detect positive jumps.

The remaining parameters, namely the window width for the temporal seg-
mentation γ1, the minimal number of detected jumps per window γ2, the minimal
area of the output segments γ3, the correction method for the significance level
and the jump-time estimator will be varied to find a good parameter setting.

For the jump-time estimation we use the methods of Wu and Chu as well as Qiu
and Yandell with the width factor c = 1, 2. We use the following abbreviations:
WC1 for the method of Wu and Chu with c = 1, WC2 for Wu and Chu with c = 2,
QY1 for Qiu and Yandell with c = 1 and QY2 for Qiu and Yandell with c = 2.

Preliminary studies show that the accuracy of the adhesion time estimation
depends strongly on the relation between γ1 and γ2 with the accuracy getting high
if γ2 is substantially larger than γ1. Therefore, we choose γ1 and γ2 so that γ2 ≥
2 · γ1.

To correct the significance level we use the method of Bonferroni and the
method of Holm.

In total, we evaluate each combination of the following settings:

– tests: HL1-test, HL2-test, MD-test, t-test, Wilcoxon test
– subwindow widths: k = 30, 50
– γ1 = 1, 2, 3
– γ2 ∈ {λ ∈ {1, . . . , 20} : λ ≥ 2 · γ1}
– γ3 = 4, 4.5, 5
– jump-time estimation: WC1, WC2, QY1, QY2
– global significance level: αg = 0.2
– correction of the significance level: Bonferroni, Holm

It has to be emphasized that this does not necessarily lead to the best possible
combinations. Our main intention is to show that the approach presented in Sect. 3
is a reasonable way to handle these data.
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Evaluation. For the evaluation, we use three different measures. First, we count
the number of output segments. It should be as close as possible to the true num-
ber of particles on the sensor surface. In addition, the method should detect as
many particles as possible. So we will use the percentage of output segments which
belong to a particle as a criterion for the detection quality. As a third measure we
calculate the mean absolute difference between the true and the estimated adhe-
sion time. This will be called mean absolute temporal deviation (MATD) in the
following.

To find a good parameter combination for each two-sample test, we first choose
the one with the highest detection rate. It is likely that this results in more than
one possibility. In this case, we use the combination with the minimal MATD.
If this is also not unique, we just take the first parameter combination in the list
because all these combinations do not differ in the detection rate and the accuracy.
This situation occurs when we evaluate the results for the parameter settings on
BGReal.

When assigning an output segment to a particle, we have to deal with the diffi-
culty that we do not know exactly which coordinates are affected by particles. We
only have information on the polygon vertices which surround the relevant local
intensity changes. To find out if an output segment actually belongs to a particle,
we check if the segment is completely inside one of the polygons. We assign such
segments to a particle by determining all polygons in which it lies completely. If
this is the case for more than one polygon, we choose the one with the minimal
MATD.

Preprocessing of the Data Sets. The constant background removal is used
based on the first 20 images. Subsequently, to save time for the following compu-
tations, we use a simple threshold approach to remove time series with low intensi-
ties. The maximum for each time series is calculated. We use the arithmetic mean
of all maxima as the threshold. If all values of a time series are below the thresh-
old, it is removed. This approach does not necessarily lead to an optimal solution
and is questionable when almost all time series have similar maximal intensities.
Although we do not know the exact number of time series which belong to a parti-
cle and therefore contain a jump, the amount is small compared to the whole num-
ber of time series. A more suitable approach could be the inclusion of the threshold
as another parameter in the optimization.

After the preprocessing we have 152656 time series for the training data set of
BGPoisson and 152494 for the corresponding test data set. For BGReal we have
152311 time series in the training data set and 152174 in the test data set. Each
time series is of length 380.

Application on BGPoisson. We use the aforementioned parameter settings
on the training data set to find a suitable parameter combination for each of the
different two-sample tests.

First, we will briefly comment on the influence of the subwindow width,
the correction for the significance level and the jump-time estimator on the
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percentage of detected particles. Table 1 shows the maximal detection rates for
the two-sample tests when one of the parameters has a fixed value. The results
indicate that large subwindow widths increase the detection rate. This gets par-
ticularly clear for the MD-test where the rate increases from 52 % to 96 %. Fur-
thermore, there does not seem to be a big difference between the two correction
methods for the significance level and the jump-time estimators concerning the
detection rate. In addition, it can be seen that for the given parameters no two-
sample test leads to a detection of all particles.

Table 1. Particle detection rates in the training data set of BGPoisson for the different
two-sample tests. Each row shows the maximal detection rate.

Parameter Value HL1 HL2 MD t Wilcoxon

k
30 0.93 0.89 0.52 0.92 0.92
50 0.98 0.97 0.96 0.98 0.97

Correction
Bonferroni 0.97 0.97 0.95 0.98 0.97
Holm 0.98 0.97 0.96 0.98 0.97

Jump time

QY1 0.97 0.96 0.96 0.98 0.97
QY2 0.98 0.96 0.95 0.98 0.97
WC1 0.96 0.97 0.95 0.98 0.97
WC2 0.96 0.95 0.95 0.98 0.97

Table 2 shows the best parameter combinations with respect to the detection
rate and the MATD. For all tests, the larger subwindow width k = 50 is chosen.
Moreover, with γ3 = 4, we use the smallest minimal area for the output segments.
The values of k, γ1, γ2 and γ3 for the t-test and the Wilcoxon test are quite simi-
lar, while the correction of the significance level and the jump-time estimators are
different. We make a similar observation for the HL1- and the HL2-test.

In Table 3 the results for the two-sample tests are compared with the reference
method on the training and the test data set. Not shown is the number of false
detections which is zero for each method. On the training data set, the detection
rates for all methods are quite similar. The main differences occur in the num-
ber of output segments and the MATD. The HL2-test and the reference method
detect several particles multiple times. The number of output segments for the
reference method is considerably larger than the 100 existing particles in the data
set. Except for the HL2-test, all two-sample tests result in a smaller MATD than
the reference method, with the t-test and the Wilcoxon test having the smallest
MATD, followed by the HL1-test. The observations on the test data correspond
to those on the training data. Again, we have no false detections by any of the
methods.
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Table 2. Parameter values for each test which lead to the highest particle detection rate
and the smallest mean absolute deviation between the estimated and the true change
time on the training data set of BGPoisson.

Parameter HL1 HL2 MD t Wilcoxon

k 50 50 50 50 50
Correction Holm Holm Holm Holm Bonferroni
γ1 1 1 3 2 2
γ2 2 4 12 8 7
γ3 4 4 4 4 4
Jump time QY2 WC1 QY1 WC1 QY1

Table 3. Evaluation of the parameter values on the training and test data sets of
BGPoisson for the two-sample tests and the reference method.

Data set Measure HL1 HL2 MD t Wilcoxon Reference

Training data
Output segments 98 101 96 98 97 149
Detection rate 0.98 0.97 0.96 0.98 0.97 0.98
MATD 0.94 7.69 1.39 0.34 0.30 4.83

Test data
Output segments 98 100 92 97 98 143
Detection rate 0.98 0.97 0.91 0.97 0.98 0.95
MATD 0.83 7.11 1.25 0.33 0.32 5.15

Application on BGReal. Now we compare the detection methods on the data
set BGReal. There are two major challenges with which we have to deal here: First,
we have 300 particles which are on the sensor surface in the same time period as in
BGPoisson. This makes it more likely that several particles adhere on the surface
at similar times and overlap. In this case, the method has to distinguish between at
least two different particles. Another difficulty arises because of the noise structure
which is now real noise and not artificially generated.

Table 4 shows the maximal detection rates if the subwindow width, the cor-
rection method for the significance level or the jump-time estimator are fixed.
The detection rates are generally lower than on BGPoisson. Again, the subwin-
dow width k = 50 leads to higher detection rates than k = 30. Furthermore, at
least for the HL1-, the HL2- and the MD-test, the jump-time estimator seems to
have a larger influence on the detection rate than on BGPoisson.

In Table 5 the parameter combinations which lead to the highest detection rate
and the smallest MATD are shown. The ratio between γ2 and γ1 is much higher
than for BGPoisson. In contrast to the parameter combinations on BGPoisson,
only the method of Qiu and Yandell is selected for the jump-time estimation.
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Table 4. Particle detection rates in the training data set of BGReal for the different
two-sample tests. Each row shows the maximal detection rate.

Parameter Value HL1 HL2 MD t Wilcoxon

k
30 0.66 0.58 0.28 0.68 0.65
50 0.88 0.88 0.74 0.89 0.89

Correction
Bonferroni 0.88 0.88 0.74 0.89 0.89
Holm 0.88 0.87 0.73 0.89 0.89

Jump time

QY1 0.88 0.87 0.74 0.89 0.89
QY2 0.88 0.88 0.74 0.89 0.89
WC1 0.84 0.82 0.70 0.89 0.88
WC2 0.86 0.84 0.70 0.89 0.88

Again, the values for γ1, γ2 and γ3 are similar for the t-test and the Wilcoxon
test. This is also the case for the HL1- and the HL2-test.

Table 6 gives the evaluation results on the training and the test data set. On the
training data, only the reference method detects more than 90 % of the particles.
Except for the MD-test, the rates for the two-sample tests are just slightly smaller
than this. The reference method has a much higher MATD than the test-based
methods. The MATD value for the HL2-test is now similar to those for the other
two-sample tests. Except for the MD-test, each method leads to one false detection
on the training data and to multiple detections of some particles, but its detection
rate is much smaller than for the remaining methods. On the test data, no method
leads to a false detection. The detection rates are comparable with those achieved
on the training data set. All MATD values increase compared to the results on the
training data set.

Table 5. Parameter values for each test which lead to the highest particle detection rate
and the smallest mean absolute deviation between the estimated and the true change
time on the training data set of BGReal.

Parameter HL1 HL2 MD t Wilcoxon

k 50 50 50 50 50
Correction Holm Bonferroni Bonferroni Holm Bonferroni
γ1 1 1 2 2 3
γ2 12 10 13 18 18
γ3 4 4 4 4 4
Jump time QY2 QY2 QY1 QY2 QY2
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Table 6.Evaluation of the parameter values on the training and test data sets of BGReal
for the two-sample tests and the reference method.

Data set Measure HL1 HL2 MD t Wilcoxon Reference

Training data
Output segments 270 269 224 270 270 383
Detection rate 0.88 0.88 0.74 0.89 0.89 0.92
MATD 1.88 2.04 2.28 1.39 1.53 8.59

Test data
Output segments 275 260 239 260 263 379
Detection rate 0.90 0.85 0.78 0.84 0.87 0.92
MATD 2.63 3.06 2.31 2.35 2.48 9.15

Discussion of the Results. The results show that the test-based method for
the detection of local intensity changes from Sect. 3 is able to identify the major-
ity of the particles on the sensor surface. It is possible to achieve detection rates
comparable to those of the reference method. Furthermore, the results indicate
that a much higher accuracy of the change time estimation than for the reference
method can be attained.

Among the considered tests, the MD-test leads to the lowest detection rates,
especially on the data set BGReal. This could be due to its poor power in the jump
detection. The t-test, the Wilcoxon test and the HL1-test are comparable regard-
ing the accuracy and the detection rates. The HL2-test leads to similar detection
rates, but has a higher MATD on BGPoisson. Therefore, the t-test, the Wilcoxon
test and the HL1-test seem to be reasonable choices regarding the criteria detec-
tion rate and accuracy. On the test data set of BGReal the HL1-test delivered the
highest accuracy which could be interpreted in the way that it is more suitable in
real-noise situations.

The big difference between the results of the HL1- and the HL2-test for the
MATD is surprising as the one-sample and the two-sample Hodges-Lehmann esti-
mators behave, at least asymptotically, similar in case of symmetric distributions.
For asymmetric distributions the two-sample Hodges-Lehmann estimator has bet-
ter asymptotic properties [12]. The jump-time estimator could be the reason for
this: For the HL2-test we use the method of Wu and Chu. The time with the min-
imal p-value is not unique in many cases. Choosing the smallest point in time of
those with the minimal p-value can lead to a large estimation error if many points
in time lead to the same minimal p-value. This problem does not occur for the
t-test where we also use the method of Wu and Chu. For the t-test the minimal p-
value should be reached when the reference window contains all non-shifted obser-
vations and the test window contains all shifted ones. When the window is moved,
the test statistic will be directly influenced by the shifted observation in the refer-
ence window. On the contrary, the test statistic of the robust HL2-test will be little
influenced by some shifted observations and therefore several subsequent windows
can deliver the same p-value.
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In general, the two-sample tests lead to a much more accurate estimation of
the adhesion time than the reference method. An explanation could be that we
use the information on the estimated jump time explicitly in our aggregation step.
Furthermore, the reference method detects several particles more than once. Each
output segment delivers an estimator for the adhesion time. It is not clear whether
all of the corresponding adhesion time estimations are the same for the corre-
sponding particle. Thus, a possible variability could lead to a more imprecise esti-
mation. Moreover, the parameters of the reference method are optimized to get a
high detection rate.

Generally, it seems that larger subwindow widths are to be preferred to get a
high detection rate because they lead to a high power and thus more candidate
coordinates can be identified. A problem with a large fixed subwindow width is
that for several observations at the beginning and the end of the time series no
two-sample test can be performed. Besides, it gets difficult to distinguish between
multiple jumps which appear next to each other. Additionally, in other applica-
tions, trends could cause problems for large window widths because they can be
confused with a jump.

The relationship between γ1 and γ2 seems to get more important when the
number of particles in the sample is high. Many particles make it likely that there
are multiple jumps at one point in time. Because of possible wrong detections it is
necessary that the threshold γ2 for the minimal number of jumps per time window
of width γ1 is high. The windows should not be too large as it is possible that too
many consecutive time windows are unified in the temporal segmentation.

The jump-time estimator only seems to be important when there are many
particles in the sample. An explanation could be that a higher amount of particles
leads to more time series with multiple jumps as it is more likely that the particles
are overlapping. In this case the method of Qiu and Yandell seems to be a good
choice as the jump-time candidates are grouped before estimating the jump time.

The adjustment of the significance level does not seem to have much influence
on the results. But it has to be noted that we only used one value for the global
significance level, so that further improvements might be possible.

5 Conclusions

The identification of local intensity changes in time series of grayscale images
based on statistical two-sample tests in moving time windows seems to be a
promising approach. A local intensity change causes a permanent alteration of
the grayscale values at the related pixel coordinates. We extract a time series of
grayscale values for each coordinate. If it belongs to a local intensity change, a
jump at the change time is induced in the signal. We identify these jumps by
applying two-sample tests for the location problem in moving windows to the
time series. Each of the resulting candidate pixels is assigned to a coordinate set
depending on the estimated jump time and its coordinates.

For the exemplary application of this approach we use data from the PAMONO
(Plasmon assisted Microscopy of Nano-Size Objects) biosensor [28]. This device
can be used to detect specific particles, e.g. viruses, in a sample fluid.
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Our method achieves high detection rates and a precise estimation of the
change time. A test based on the one-sample Hodges-Lehmann estimator, the clas-
sical two-sample t-test and the two-sample Wilcoxon rank-sum test deliver the
best results regarding these two criteria. Apart from the two-sample test itself,
another important parameter is the window width which should not be too small
to achieve a high detection rate.

In the evaluation the parameters of our method were optimized in a rather sim-
ple way by trying out several combinations, because the aim was only to investi-
gate the general usefulness of the method. A more structured approach could lead
to even better values for the detection rate and the accuracy.

The given data do not contain any type of trend. In trend situations the appli-
cation of two-sample tests for the location problem could be problematic because
a trend can be confused with a location shift when the subwindow width or the
trend is large. In this case, other test procedures which are capable of dealing with
trends or a preliminary trend removal could be preferable.

Taking all output segments of the detection procedure as the relevant local
intensity changes can cause many false detections. Artifacts can lead to time series
which resemble those of the relevant particles. Additionally, they can have a large
spatial extent, so that the median filtering will not remove them. Thus, the output
segments can contain particles as well as artifacts. Hence, they only should be seen
as candidates and further criteria might be necessary to distinguish between the
particles of interest and other structures. A possibility for future research could be
the combination of the proposed method with a classification based on polygonal
form factors similar to [22].
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Abstract. As is well known since Fürnkranz and Flach’s 2005 ROC ‘n’
Rule Learning paper [6], rule learning can benefit from result evaluation
based on ROC analysis. More specifically, given a (set of) rule(s), the
Area Under the ROC Curve (AUC) can be interpreted as the proba-
bility that the (best) rule(s) will rank a positive example before a neg-
ative example. This interpretation is well-defined (and stimulates the
intuition!) for the situation where the rule (set) concerns a classifica-
tion problem. For a regression problem, however, the concepts of “posi-
tive example” and “negative example” become ill-defined, hindering both
ROC analysis and AUC interpretation. We argue that for a regression
problem, an interesting property to gauge is the probability that the
(best) rule(s) will rank an example with a high target value before an
example with a low target value. Moreover, it will do so consistently for
all possible thresholds separating the target values into the high and the
low. For each such threshold, one can retrieve an old-fashioned binary-
target ROC curve for a given rule set. Aggregating all such ROC curves,
we introduce SCHEP: the Surface of the Convex-Hull-Enclosing Polygon.
This is a geometric quality measure, gauging how consistently a given
rule (set) performs the aforementioned separation when the threshold is
varied through the target space.

1 Preliminaries and Related Work

Formality first: let us start by introducing some notation, which is necessary to
properly discuss the related work. Throughout this paper, we assume a dataset
Ω to be a bag of N records x ∈ Ω of the form x = (a1, . . . , ak, t), where k is
a positive integer. We call a1, . . . , ak the attributes of x, and t the target of x.
Whenever necessary, we will distinguish the ith record from other records by
annotating it and its elements with a superscript i, i.e., xi =

(
ai
1, . . . , a

i
k, ti

)
. We

suppose that the attributes are taken from an unspecified domain A , and assume
that the target is taken from R, following an unspecified probability density
c© Springer International Publishing Switzerland 2016
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function f(y), y ∈ R, of which our t1, . . . , tN form a random sample. Generally,
the parameters and the shape of the pdf are unknown. For convenience, we
assume that Ω is ordered such that the target values are nondecreasing, i.e.,
∀1≤i≤j≤N ti ≤ tj .

For notational simplicity, we will let u1, . . . , uN−1 denote the midpoints of
the intervals between t-values:

∀N−1
i=1 ui =

1
2

(
ti + ti+1

)

1.1 ROC Space

ROC curves have a rich history in signal detection theory. Traditionally they were
used to visualize the tradeoff between hit rates and false alarm rates of classifiers
[3,26]. The importance of the area under the ROC curve was recognized [2,10],
and its relation to the Wilcoxon test of ranks explored [10]. ROC analysis has
found its way in the wider scientific community, through recognition in a paper
concerning the behavior of diagnostic systems which appeared in Science [25],
and an even more general paper regarding math-based aids for decision making
in medicine and industry which appeared in Scientific American [26].

The value of ROC curves for algorithm comparison was first recognized in
the late eighties [23], leading to adoption of ROC analysis by the machine learn-
ing community. Extensive notes have been written on the application of tradi-
tional ROC methodology in machine learning and data mining; see for instance
[4,5,9,22]. We will discuss the general gist of the ROC curve in this section; for
a more comprehensive overview of its applications in data mining, see [22].

Traditional ROC analysis is done with respect to a binary response variable,
i.e., there is a binary target. In this case, we denote the desirable value for the
target by τ . We then distinguish two bags of records: the positives are those
records having target value τ (we denote the bag by Pos), and the negatives are
those records having a target value other than τ (denoted Neg).

Definition 1. The positives are formed by the records whose target has value
τ . Conversely, the negatives are formed by the records whose target has a value
other than τ :

Pos =
{
xi ∈ Ω

∣∣ti = τ
}

Neg =
{
xi ∈ Ω

∣∣ti �= τ
}

This definition also allows for the more general case of a nominal target, in a
one-versus-all setting: the one desirable target value τ is contrasted against all
other, undesirable target values.

In data mining, ROC is usually employed to analyze rules. Sometimes these
rules come in the form of classifier decision bounds, sometimes in the form of
local patterns in the dataset. Regardless of the particular data mining task at
hand, a rule generally strives to separate (all or some) positives from (all or
some) negatives. For the purposes of this paper, we disregard the form in which
a rule is designed, and concentrate only on which records belong to the rule:
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Fig. 1. Rules in ROC space, with convex hull (upper envelope only; the rest isn’t
interesting)

Definition 2. A rule R can be any subbag of the dataset at hand: R ⊆ Ω. The
records x ∈ R are said to be covered by the rule.

The quality of a rule R ⊆ Ω is gauged by considering two quantities: the
fraction of positives that are covered by the rule, and the fraction of negatives
that are covered by the rule:

Definition 3. Suppose a rule R. The True Positive Rate (TPR) is the pro-
portion of positives covered by R. The False Positive Rate is the proportion of
negatives covered by R:

TPR(R) =
|R ∩ Pos|

|Pos| FPR(R) =
|R ∩ Neg|

|Neg|
The TPR is also known as the sensitivity of a rule, while the FPR is equivalent
to one minus the specificity of a rule.

The ROC methodology analyzes found rules in ROC space: the two-dimen-
sional unit square with the FPR on the horizontal axis and the TPR on the
vertical axis. Figure 1 displays an example. The perfect rule R = Pos would be
in the top left corner; its coordinates in ROC space are (0, 1). The empty rule
R = ∅ can be found in the bottom left corner, with coordinates (0, 0), and the
full rule R = Ω can be found in the top right corner, with coordinates (1, 1).

1.2 Pattern Mining

Pattern mining [8,19] is the broad subfield of data mining where only a part of
the data is described at a time, ignoring the coherence of the remainder. One
class of pattern mining problems is theory mining [18], whose goal is finding
subsets S of the dataset Ω that are interesting somehow:

S ⊆ Ω ⇒ interesting
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Typically, not just any subset of the data is sought after: only those subsets
that can be formulated using a predefined description language L are allowed.
A canonical choice for the description language is conjunctions of conditions on
attributes of the dataset. If, for example, the records in our dataset describe
people, then we can find results of the following form:

Age ≥ 30 ∧ Smoker = yes ⇒ interesting

Allowing only results that can be expressed in terms of attributes of the data,
rather than allowing just any subset, ensures that the results are relatively easy
to interpret for a domain expert: the results arrive at his doorstep in terms of
quantities with which he should be familiar. A subset of the dataset that can be
expressed in this way is called a subgroup.

In the best-known form of theory mining, frequent itemset mining [1], the
interestingness of a pattern is gauged in an unsupervised manner. Here, the goal
is to find patterns that occur unusually frequently in the dataset:

Age ≥ 30 ∧ Smoker = yes ⇒ (high frequency)

The most extensively-studied form of supervised theory mining is known as Sub-
group Discovery (SD) [12], where one (typically binary) attribute of the dataset
is singled out as the target. The goal is to find subgroups for which the distribu-
tion of this target is unusual: if the target describes whether the person develops
lung cancer or not, we find subgroups of the following form:

Smoker = yes ⇒ lung cancer = yes
Age < 30 ⇒ lung cancer = no

The target in SD is commonly assumed to be nominal [12]. However, its initial
formulation [13,27] allowed for a more generic target concept, including but not
limited to a numeric target. This paper is concerned with this particular setting:
Subgroup Discovery with a single target taken from a continuous domain.

1.3 ROC Analysis, and ROC ‘n’ Rule Learning [6]

Notwithstanding a certain focal difference, the definitions of a rule R in Sect. 1.1
and a subgroup S in Sect. 1.2 allow us to identify the two concepts with one
another. Hence, we can analyze both subgroups and rules in ROC space. From
now on, we will freely associate subgroups and rules, and to celebrate that con-
fusion, we will from now on write about rule sets denoted by a calligraphic S.

Given the domain at hand, we may assign different costs to the two types of
imperfections we can have for a rule R: false positives (i.e., negatives covered by
R) and false negatives (i.e., positives not covered by R).

Definition 4. Suppose a rule set S , and a cost assignment to false positives
and false negatives. A rule R ∈ S is called optimal for this cost assignment
within S , if its total cost equals the minimum total cost for any rule in S .
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Clearly many rules in Fig. 1 are not optimal for any cost assignment to the
two types of imperfections: for any two rules R1, R2, if TPR(R1) ≥ TPR(R2)
and FPR(R1) ≤ FPR(R2), and at least one of these inequalities is strict, then
R2 cannot be optimal. Within a rule set S , a rule is optimal for some cost
assignment if and only if it lies on the upper envelope of the convex hull of S in
ROC space [22]. We will refer to this ROC convex hull as ROCCH and conflate
the upper envelope and the convex hull in the remainder of this paper.

For any rule set S , we can use its Area Under the Convex Hull (AUCH) to
determine how well S captures the target. We assume that both the empty and
the full rule are part of every rule set, since these rules can always be ‘found’.
Hence the AUCH has minimal value 0.5. If the perfect rule is an element of S ,
then its AUCH equals 1. However, often the perfect rule cannot be found, usually
due to the attribute space being too large to fully explore (for instance when
many attributes are taken from a continuous domain). In this case, a good rule
set contains both relatively small rules that contain almost no negatives, and
relatively large rules that contain almost all positives. The best of these rules
will lie on the ROCCH. Hence the AUCH is a measure for the degree to which
S captures the target.

The AUCH measures only one particular desirable property of a rule set,
and disregards many other desirable properties. For instance, it only looks at
the best rules in the set, and does not take into account how much filler the
rule set contains: if we add many bad-scoring rules to a rule set its AUCH will
not decrease, even though an end-user will prefer the rule set without these
bad-scoring rules. Solving this problem [7,16] is beyond the scope of this paper.

1.4 Keep on ROCing in the Real World?

Like many real-world measurements, the target that we try to capture in this
paper stems from a continuous domain. Hence, we are looking for a set of rules
in a regression setting, or regression rule set for the sake of brevity. This breaks
down the building blocks of ROC space as introduced in Sect. 1.1: the positives
and negatives become ill-defined, which breaks down ROC space and any ensuing
analysis. In this Real World, can we still Keep on ROCing?

Some attention has been spent on ROC analysis for the case where the tar-
get is nominal, but multi-class rather than binary. When the entire target space
is to be managed, the resulting performance can no longer be summarized in
two dimensions; higher-dimensional polytopes are needed. Extension of ROC
convex hull analysis to multiple classes and multi-dimensional convex hulls has
been discussed by Srinivasan [24]. A short paper outlining issues and opportu-
nities was written by Lane [15]. Appropriate attention has also been given to
multi-class AUC analysis [9,21]. However, none of these methodologies can be
straightforwardly generalized from a multi-class target to a continuous target.

Currently, perhaps the most comprehensive work on ROC curves is the
book by Krzanowski and Hand [14], titled “ROC Curves for Continuous Data”.
Although the word “Continuous” features in the title, this refers merely to the
attributes in the data, and not to the target. In the eighth chapter, “Beyond the
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basics”, the authors do discuss the extension of ROC analysis to a multi-class
nominal target (cf. Sect. 8.4), but that is as far as the book goes.

Until recently, no canonical adaptation of ROC analysis for regression existed,
though many have tried. In 2013, however, José Hernández-Orallo published a
paper [11] introducing Regression ROC space (RROC), and showing a direct rela-
tion between the Area Over the RROC curve and the population error variance
of the regression model. The paper goes to great lengths to derive variants for the
regression setting of well-known notions in traditional ROC analysis, including
the convex hull properties discussed in Sect. 1.3. Hence, the paper answers affir-
matively to the question posed in the first paragraph of this section. We think,
however, that we can say more interesting things about a regression rule set, by
actively exploiting the insufficient information that is by definition available to
us when studying a finite sample of a target from a real-valued domain.

2 SCHEP

As we wrote in Sect. 1, we assume that the target is taken from R, and follows
an unspecified probability density function f(y), y ∈ R. The existence of such
a function implies that the probability distribution from which the target is
taken is nondegenerate. For many real-life measurements this assumption and
the implied properties should hold; we will discuss in Sect. 2.2 that the assump-
tion isn’t always met in practice, and how to adapt the forthcoming methods for
this occurrence. For the time being, however, we concern ourselves with a tar-
get representing a continuous random variable, having an absolutely continuous
distribution.

The dataset we consider consists of N records. Our target has a nondegen-
erate probability distribution, whose form is generally unknown. Since we only
have an N -sized sample, there is by definition not enough information about
the target space to capture the distribution; the problem is underdetermined.
Hence, we propose to use all the information about the target space that we
have (Sects. 2.1 and 2.2), and exploit the lack of remaining information to serve
our purpose (Sect. 2.3).

2.1 Decomposing the Regression Problem

Given a continuous target, there is usually not one desirable target value τ .
Instead, we usually strive for a more generic concept of extremity: having a
relatively high or low value for the target. Regardless of this precise concept,
the definitions of the bags of positives and negatives, as introduced in Sect. 1.1,
become fuzzy. Hence, all ensuing ROC methodology is not readily applicable
for the case where the target is continuous. However, a simple thresholding
approach can solve that problem. To facilitate this thresholding, we use the
following notation:

Definition 5. Let a dataset Ω and a y ∈ R be given. The y-binarized-target
version of Ω, denoted Dy, is the dataset obtained from Ω by replacing each ti by
11
{
ti > y

}
.
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Here, 11 {.} denotes the indicator function, which means that the continuous tar-
get value ti is replaced by 1 if it is larger than y, and by 0 if it is not. Hence, Dy

divides the target values in positives and negatives, by comparing them to the
threshold y.

The intuition runs as follows: suppose we are interested in finding rules dis-
criminating the top-ν from the bottom-(N − ν) target values. We can do this
by defining a new binary target t′. Let t′ = 1 for a record if its original target is
among the top-ν, and t′ = 0 otherwise. For this new binary target t′, we can use
binary ROC analysis to determine how well a rule set captures its distribution.
In other words, we determine the probability that a random record with a target
value in the top-ν is ranked before a random record with a target value in the
bottom-(N − ν).

If we use any point in the target space as a threshold to define a binary target
as described in the previous paragraph, we gauge how well a rule set discriminates
the top-ν from the bottom-(N − ν) target values for some choice of ν. Hence, if
we let our threshold slide through the target space, we obtain the discriminatory
capabilities of a rule set for all such separations. Aggregating these performances,
we can measure the consistency with which a rule set captures a continuous
target.

Sliding the threshold y through the entirety of its domain, R, makes little
sense in our setting. After all, we only have information about the target dis-
tribution at a sample of N fixed points in target space. Hence, we cannot make
reasonable assessments outside of the sample range: the most sensible solution
is to disregard values of y such that y < t1 or y > tN .

Within the sample range, our information on the target distribution only
changes at the target values present in our dataset. Suppose a value x ∈ R that
lies strictly between two sample target values: ti < x < ti+1. For a very small
amount ε > 0, the information we can infer from dataset Dx is exactly the same
as the information we can infer from dataset Dx+ε. Intuitively, between two
adjacent target values, we only need to consider a binarized-target version of
the dataset once, since no more information is available. Since the choice is arbi-
trary, for the sake of clarity we will consider only the target interval midpoints
u1, . . . , uN−1. In Sect. 2.3, we analyze the ROC convex hulls of precisely these
N − 1 y-binarized-target versions of the dataset, in order to define a consistency
measure for a regression rule set:

Definition 6. Let a rule set S and a dataset Ω with continuous target be given.
The Collection of Binarized ROCCHs (CBR) is defined as:

CBR (S , Ω) = ρ
(
{ROCCH (S ,Dui

)}N−1
i=1

)
(1)

Here, the operator ROCCH (S ,Dy) returns the ROC convex hull of the rule
set S on the y-binarized-target version of Ω. The aggregation operator ρ remains
undefined for now; we will instantiate it in Sect. 2.3.
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2.2 Dealing with Duplicates

By imposing a probability density on the target domain (cf. Sect. 1), we have
implicitly assumed that all target values are distinct. After all, if we take a finite
random sample from a nondegenerate distribution on R, the probability that
we draw two or more equal values is 0. However, in many real-life datasets this
assumption does not hold. Consider for instance the CMC dataset, available from
the UCI Machine Learning Repository [17]. The main task in this dataset is to
predict the contraceptive method choice made by women, but one could modify
the task to become predicting the age instead. Theoretically, the lifespan of any
living creature can be measured at a level that is finegrained enough to make
it continuous for all practical purposes. However, since the recorded age of the
1 473 women in the dataset is represented by an integer number of years, we find
only 34 different values for the target. This truncating violates the assumption
we made, but the age is still better represented as a numeric target rather than
nominal. Hence we adapt the CBR definitions to allow recurring target values.

As we have discussed in the previous sections, the information we have about
the continuous target distribution remains constant, except for the changes we
observe at the target values that are present in our dataset. Hence, we are only
interested in the N distinct target values in the dataset, which we denote by
t1, . . . , tN. For convenience, we assume that they are ordered ascendingly, i.e.,
∀1≤i<j≤N ti < tj . We let u1, . . . , uN−1 denote the corresponding midpoints:

∀N−1
i=1 ui =

1
2

(
ti + ti+1

)

So, in practice, the formula in Eq. (1) becomes:

CBR (S , Ω) = ρ
(
{ROCCH (S ,Dui

)}N−1
i=1

)
(2)

In this form, the CBR can be determined in practice for every dataset with a
numeric target, even if its distribution is degenerate. We have performed exper-
iments on five UCI [17] datasets, extracting a regression rule set by running
Subgroup Discovery with Absolute Z-score [20] as quality measure. Details on
the datasets can be found in Table 1. The found (non-aggregated) CBRs can be
found in Figs. 2, 3, 4, 5 and 6; different colors correspond to different ROCCHs.

Table 1. Dataset characteristics

Dataset N N k Target

Automobile 205 185 26 Price

Boston housing 506 229 13 MEDV

Contraceptive Method Choice 1473 34 9 Wifes age

Year Prediction MSD 515345 90 90 Year

Zoo 101 6 17 Legs



280 W. Duivesteijn and M. Meeng

Fig. 2. CBR for a rule set found on the Automobile dataset (Color figure online)

2.3 SCHEP

Now that we can practically create the Collection of Binarized ROCCHs for
any dataset, it’s time to actually do something with it, by instantiating the
aggregation operator ρ. We will do so in a very intuitive way, by analyzing what
the CBR components set out to do, when given a dataset Ω and rule set S .

Every convex hull in the CBR is associated with one particular thresh-
old value ui. This threshold converts the continuous-target dataset Ω into its
ui-binarized-target version Dui

. For this dataset, the CH contains information
about how well the optimal rules within S manage to rank positives before
negatives. Hence each convex hull represents the performance of selected rules
in S in separating high from low target values, for a particular instantiation of
‘high’ and ‘low’.

The CBR contains lots of information, and there are several meaningful
things we could do with it to extract interesting properties of our regression
rule set. If we were to compute the AUCH of each ROCCH and aggregate
the scores (for instance by simply averaging them), then we obtain an AUC-
style measure for regression. This Continuous AUCH could be interpreted as
the average probability that a random record with high target value is ranked
before a random record with low target value, where the average is taken over
the instantiations of ‘high’ and ‘low’ present in our target range. This would be a
continuous AUC-style measure that is substantially different from the one intro-
duced by Hernández-Orallo [11], which might be an interesting research avenue
to explore.
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Fig. 3. CBR for a rule set found on the Boston housing dataset (Color figure online)

However, there’s more to explore. Each convex hull tells us something about
the performance of the optimal rules for a particular threshold value. Notice that
the set of rules contributing to this performance may vary with the threshold!
A rule may be very informative (and hence lie on the convex hull) for making
the separation for a relatively high threshold value, but it is likely to be very
irrelevant for making the separation for a relatively low threshold value. Other
rules in the rule set may then step up to the plate, and take their place on
the convex hull for the lower threshold value. This leads to the observation
that the Collection of Binarized ROCCHs, the CBR, contains information of
how consistent a rule set is in finding similarly-well-performing rules for varying
thresholds. Hence, we introduce SCHEP:

Definition 7. The Surface of the Convex-Hull Enclosing Polygon (SCHEP)
is the instantiation of Eq. (2), where the aggregation operator ρ measures the
surface of the smallest polygon enclosing all ROCCHs.

The two extreme cases are: (min) if all ROCCHs overlap, then SCHEP
assumes value 0; (max) if one ROCCH reaches ROC heaven, and another
ROCCH is formed by no rules at all, then SCHEP assumes value 0.5. Lower
values correspond to more consistent rule sets. In some sense, SCHEP gauges
how diverse a rule set S is. SCHEP assumes lower values if S contains elements
that manage to play to their strengths at different parts of the target domain.
No single rule can make every possible separation of high and low target values
on its own: instead one needs enough rules that specialize in enough different
parts of the target domain to reach the best results. Thus formulated, SCHEP
is a metaphor for the ideal research group.
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Fig. 4. CBR for a rule set found on the Contraceptive Method Choice dataset (Color
figure online)

Fig. 5. CBR for a rule set found on the Year Prediction MSD dataset (Color figure
online)
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Fig. 6. CBR for a rule set found on the Zoo dataset (Color figure online)

2.4 Concluding Empirical Observations

If we consider the CBRs on display in Figs. 2, 3, 4, 5 and 6, we can make some
empirical observations that illustrate where SCHEP is a fruitful addition to
existing ROC technology. Traditionally, the rule set found on the Automobile
dataset (cf. Fig. 2) would probably be considered best; all ROCCHs are rela-
tively close to ROC heaven, and a decent amount are extremely close. However,
the consistency is rather less ideal. There is a striking difference between the
ROCCHs for cars priced at $22, 500 and beyond (where the AUCH is extremely
close to one), and the cars that are cheaper than that (where the AUCH is sub-
stantially lower). This difference is clearly visible in Fig. 2 as a nearly completely
white triangle with coordinates (0,0.75), (0,0.9), (0.07,0.091); several ROCCHs
soar above a much larger set of ROCCHs that do not come close to the same
performance. As a consequence, SCHEP will assign a higher value to this rule
set than to the one found on the Boston housing data (cf. Fig. 3), which doesn’t
come nearly as close to ROC heaven but is much more consistent throughout
the target domain.

The rule set found on the Contraceptive Method Choice dataset (cf. Fig. 4)
will not have a very high value for a traditional AUC. Its consistency, however, is
on roughly the same level as the Automobile rule set, and the SCHEP values will
be close. The rule set found on the YearPredictionMSD (cf. Fig. 5), on the other
hand, will have a SCHEP value close to 0.5. This is largely because this dataset
has a very skewed target distribution. It consists of over half a million songs from
the Million Song Dataset, and the task is to predict the year in which the song
was released, based on timbre features. The problematic point is that from 1922,
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when the oldest song in the dataset was released, until 2011, when the youngest
song in the dataset was released, songwriters have become progressively more
prolific. Over half of the songs in the dataset were released after the year 2000,
most of which in turn are from 2011. It must come as no surprise that the big
outlying ROCCH in Fig. 5 belongs to the year 2011, where the rule set comes
quite close to ROC heaven. However, the rule set pays a price for this good fit
in several other years, when the ROCCH barely rises above the diagonal. Hence,
overfitting leads to large (bad) SCHEP values.

Finally, the figure for the Zoo dataset (cf. Fig. 6) leads to some interesting
observations. Traditionally, the task in this dataset is to classify zoo inhabitants
into one of seven broad families (mammals, invertebrates, . . . ). This is a nominal
target, so instead we focus on the only numeric attribute in the dataset, which is
the number of legs the animal has. Available numbers of legs in the dataset are
0, 2, 4, 5, 6, and 8, all of which make sense except the number 5. There is exactly
one of the 101 animals in the dataset with five legs: the starfish. This might be
tricky to classify. However, it turns out that that is not the problematic point
from SCHEP’s point of view. Instead, the two ROCCHs that get extremely close
to ROC heaven are the ones corresponding to ui = 4.5 and 5.5, respectively, and
the red ROCCH (which comes also pretty close) belongs to ui = 7. Instead, by
far the most problematic separation for the found rule set to make is the one
between animals with less or more than three legs; SCHEP has no problems with
the starfish.
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20. Pieters, B.F.I., Knobbe, A., Džeroski, S.: Subgroup discovery in ranked data, with
an application to gene set enrichment. In: Proceedings of the Preference Learning
workshop (PL 2010) at ECML PKDD (2010)

21. Provost, F., Domingos, P.: Well-trained PETs: improving probability estimation
trees. CeDER Working Paper #IS-00-04, Stern School of Business, New York
University (2001)

22. Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Mach.
Learn. 42(3), 203–231 (2001)

23. Spackman, K.A.: Signal detection theory: valuable tools for evaluating inductive
learning. In: Proceedings of the International Workshop on Machine Learning, pp.
160–163 (1989)

24. Srinivasan, A.: Note on the location of optimal classifiers in n-dimensional ROC
space. Technical report PRG-TR-2-99, Oxford University Computing Laboratory,
Oxford, England (1999)

25. Swets, J.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293
(1988)

26. Swets, J.A., Dawes, R.M., Monahan, J.: Better decisions through science. Sci. Am.
283, 82–87 (2000)

27. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Proceed-
ings of the PKDD, pp. 78–87 (1997)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Bayesian Ordinal Aggregation of Peer
Assessments: A Case Study on KDD 2015

Thorsten Joachims(B) and Karthik Raman

Cornell University, Ithaca, NY 14853, USA
{tj,karthik}@cs.cornell.edu

Abstract. Peer assessment is the most common approach to evaluat-
ing scientific work, and it is also gaining popularity for scaling eval-
uation of student work in large and distributed classes. The key idea
is that each peer reviewer or grader rates a relatively small subset of
the items, and that some method of manual, semi-automatic, or fully-
automatic aggregation of all assessments defines the eventual rating of
all items – the grade in peer grading, or whether to accept or reject a
scientific manuscript. In this paper, we explore in how far a Bayesian
Ordinal Peer Assessment (BOPA) method can provide additional deci-
sion support when making acceptance/rejection decisions for a scientific
conference. Using data from the 2015 ACM Conference on Knowledge
Discovery and Data Mining (KDD), where this system was deployed, we
discuss the potential merit of the BOPA approach compared to conven-
tional decision support offered by the Microsoft Conference Management
System (CMT).

Keywords: Peer review · Peer grading · Ordinal feedback · Rank aggre-
gation

1 Introduction

Scientific conferences and large university courses both share the problem of
evaluating large sets of items (e.g. scientific papers, project reports), where the
quality of each item is difficult to evaluate automatically. A common approach is
to use peer reviewing, where each reviewer assesses the quality of a small subset
of the items. In such assessments, reviewers are typically asked to assign numeric
scores regarding aspects and overall quality of the item, justifying each score with
a written explanation. While this approach scales well with the number of items
and allows complex criteria under which to evaluate quality, the key problem
lies in aggregating the scores of a large number of reviewers into a coherent
assessment of the items.

For scientific conferences, the final assessment comes down to the decision
of whether to accept or reject a paper. The most widely used approach for
aggregating reviewer scores into an acceptance decisions relies on a hierarchy of
reviewers, meta-reviewers, and program chairs. This is also the approach taken
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at the 2015 ACM Conference on Knowledge Discovery and Data Mining (KDD),
which will serve as a case study in this paper. Each of the reviewers assessed a
small subset of all submissions, providing an average of 3.9 reviews per paper.
Based on these reviews, meta-reviewers were then asked to make acceptance
recommendations for their subset of papers. The program chairs made the final
acceptance decisions based on the meta-reviewers’ recommendations, oversaw
the process, and intervened in the reviewing process where necessary.

Fig. 1. Information provided to the meta-reviewers and program chairs for three exam-
ple papers. In the posterior marginal rank distributions at the right of each panel, the
x-axis shows the rank of the paper and the y-axis shows the probability of the paper
placing at this rank. The plots also show posterior mean and median of the marginal
distribution.

Under this decision making approach, both the meta-reviewers and the pro-
gram chairs are faced with the problem of interpreting the numeric scores given
by the reviewers. In particular, some reviewers may be more liberal in their use
of “strong accept” (score +5) than others, and reviewers may disagree in their
use of the numeric scale more generally. Such biases make it problematic to sim-
ply average numeric scores across a small number of reviewers, and using such
average scores as a sorting criterion when displaying papers in an online interface
may consciously or subconsciously impact the decision process in an unfair way.

In order to overcome this bias, our aim at KDD 2015 was to provide meta-
reviewers and program chairs (which we jointly refer to as “decision makers”)
with more information that helps interpret reviewer scores. In particular, the
aims were the following:

Mitigate Reviewer Bias. We would like to present decision makers with infor-
mation that identifies whether a reviewer is more liberal or strict, and an
aggregation of the reviewer scores that is unaffected (or at least less affected)
by different reviewer rating scales.
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Communicate Uncertainty. Averaging scores provides a point estimate of
paper quality, but does not communicate the uncertainty of this estimate.
To communicate uncertainty more effectively, we aim to provide decision
makers with a full posterior distribution of the paper’s predicted quality.

To address the problem of mitigating reviewer bias in using the rating scale, we
explore an alternative method for interpreting reviewer scores [14,15]. Instead
of interpreting a reviewer’s assessment on an absolute scale, we merely derive
an ordering from it. Using a Bayesian approach to aggregating these ordinal
assessments, we infer posterior distributions of where each paper ranks among
the set of all papers. We argue that the latter provides a very natural way to
communicate uncertainty of the quality estimate on an intuitively meaningful
scale. Overall, this provides meta-reviewers and program chairs with a more
global assessment of each paper (w.r.t. the pool of all papers) that is not distorted
by mismatched monotonic transformations of the assessment scale.

Figure 1 shows the information provided to the meta-reviewers for three
example papers. The left of each panel shows a histogram of the reviewer scores,
the middle shows how the reviewers scored the other papers they reviewed, and
the right shows the marginal posterior distribution of where the paper ranks
among all papers according to the model explored in this paper. The posterior
rank distribution of the first paper shows that virtually all its probability mass
is contained on the top 200 ranks. The second paper has a posterior that is less
peaked and communicates that the model is very uncertain about where it ranks.
For the third paper, the model is confident that the paper ranks below the top
300 submissions.

In the following, we outline our approach to inferring these posterior rank
distributions from ordinal reviewer assessment. We first formalize the learning
problem and then adapt a Bayesian aggregation model that was originally devel-
oped for peer grading [14]. We then perform a retrospective analysis of how
well the inferred posterior distributions of this model reflect the outcome of the
reviewing process, and how presentation biases interact with the predictions of
the model.

1.1 Peer Assessment Approaches

In the standard reviewing process of computer science conferences, we are faced
with the following peer assessment problem. Given is a set of |D| papers D =
{d1, ..., d|D|} for each of which we need to make a decision yd whether to accept
or reject. The assessment is performed by a set of |G| reviewers G = {g1, ..., g|G|}.
Each reviewer g receives a subset of papers Dg ⊂ D to assess. As feedback, each
reviewer g provides a score y

(g)
d for each of the papers in Dg.

In KDD 2015, there were |G| = 595 reviewers and |D| = 752 for which
we provided decision support analytics. Each reviewer gi received a subset Dg

of average size 4.9. This provided on average 3.9 cardinal assessments for each
papers. The assessment scale was “Strong Reject”, “Reject”, “Weak Reject”,
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“Weak Accept”, “Accept”, “Strong Accept”. Based on these reviews, 68 meta-
reviewers were then asked to make acceptance recommendations for a subset of
on average 11.1 papers.

1.2 Cardinal Peer Assessment

The traditional approach of aggregating assessment scores for each paper that is
embedded in the CMT Conference Management System is to assign a numeric
score y

(g)
d to each level of the assessment scale, and then average the numeric

scores to get a quality estimate for each paper d

ŝd =
1

|{g : d ∈ Dg}|
∑

g:d∈Dg

y
(g)
d (1)

We refer to this aggregation method as score averaging. This average score can
then be used by the meta-reviewers to sort the papers for triage. However, it
is also likely to bias how the meta-reviewers perceive the quality of a paper.
In particular, it depends on the mapping of assessment levels to scores. Follow-
ing past years and given the arbitrariness of this mapping, the Program Chair
decided to keep the mapping y

(g)
d of “Strong Reject”=−5, “Reject”=−2, “Weak

Reject”=−1, “Weak Accept”=1, “Accept”=2, “Strong Accept”=5 (Fig. 1).

1.3 Ordinal Peer Assessment

An alternative to assigning scores to levels is to merely interpret these scores in
an ordinal way. In particular, we can derive a weak ordering σ(g) of the papers
in Dg for each g. This avoids mapping the assessment levels to (arbitrary) scores
and abstract from different interpretations of the assessment scale by the review-
ers. A possible downside is some loss of information, since different assessments
may lead to the same ranking. In order to mitigate this information loss and
“anchor” the ordinal scale, we add a fictitious “borderline” paper dborderline to
each reviewer set Dg, which is given a fictitious rating between “weak reject”
and “weak accept” that only this one paper receives. This models that every
reviewer has an acceptance threshold by comparing the assigned papers to a
fictitious paper that they consider to be right on the acceptance threshold.

Given a collection of rankings from reviewers σ(g) for subsets Dg, we aim to
estimate an overall ranking of all papers in D. We argue that an overall ranking
provides an easy to understand and intuitive way to communicate paper quality,
more so than the average of somewhat arbitrary scores as in Score Averaging.
Furthermore, in order to achieve our goal of communicating uncertainty, we go
beyond a single point estimate of the ranking as in [15] and provide a Bayesian
posterior distribution of the rankings.
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Table 1. Notation overview and reference.

G, g Set of all reviewers, Specific reviewer

D, d Set of all papers, Specific paper

Dg Set of items graded by reviewer g

σ(g) Ranking feedback (with possible ties) from g

ηg Predicted reliability of reviewer g

r
(σ)
d Rank of paper d in ordering σ (rank 1 is best)

d2 �σ d1 d2 is preferred/ranked higher than d1 (in σ)

π(A) Set of all rankings over A ⊆ D

σ1 ∼ σ2 ∃ way of resolving ties in σ2 to obtain σ1

σ̂ Estimated ordering of papers

σ∗ (Latent) True ordering of papers

2 Bayesian Ordinal Peer Assessment (BOPA)

The goal in Bayesian Ordinal Peer Assessment (BOPA) is to infer a posterior
distribution

P (σ|{σ(g);∀g}) =
P ({σ(g);∀g}|σ)P (σ)∑

σ′∈π(D) P ({σ(g);∀g}|σ′)P (σ′)

of the true quality ranking of papers σ∗ from the set of peer rankings σ(g). Fol-
lowing [14], we select the data likelihood P ({σ(g);∀g}|σ) and a prior P (σ) as
follows.

For the prior P (σ), we make the natural choice of using the uniform distribu-
tion over all rankings, since any other choice would lead to an unfair assessment.

For the data likelihood P ({σ(g);∀g}|σ), there is a whole range of possible
options. Several extensions of classical models such as the Mallows and Bradley-
Terry model are explored in [15]. We focus on the Mallows-based method for its
simplicity and good performance in [14,15]. The Mallows-based model defines a
distribution over rankings in terms of the Kendall-Tau distance [7] from the true
ranking σ∗ of assignments.

Definition 1. The Kendall-τ Distance δK between rankings σ1 and σ2 is the
number of incorrectly ordered pairs between the two rankings and is given by

δK(σ1, σ2) =
∑

d1�σ1d2

I[[d2 �σ2 d1]]. (2)

Given the reviewer orderings σ(g), we can define the data likelihood (if the
overall ranking was σ) as

P ({σ(g);∀g}|σ) =

⎧
⎨

⎩
∏

g∈G

∑
σ′∼σ(g)e−δK(σ,σ′)

ZM (|Dg|)

⎫
⎬

⎭ , (3)
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Algorithm 1. Sampling from Mallows Posterior using Metropolis-Hastings
1: Input: Grader orderings σ(g), Grader reliabilities ηg and MLE ordering σ̂.
2: Pre-compute xij ←∑g∈G ηgI[di �σ(g) dj ]−∑g∈G ηgI[dj �σ(g) di[
3: σ0 ← σ̂ � Initialize Markov Chain using MLE estimate
4: for t = 1 . . . T do
5: Sample σ′ from (MALLOWS) jumping distribution: JMAL(σ′|σt−1)

6: Compute ratio rt = P (σ′|{σ(g);∀g})
P (σt−1|{σ(g);∀g}) using Eq. 7

7: With probability min(rt, 1), σt ← σ′ else σt ← σt−1

8: Add σt to samples (if burn-in and thinning conditions met)

where the normalization constant ZM is easy to compute as it only depends on
the ranking length.

ZM (k)=
k∏

i=1

(
1+e−1+· · ·+e−(i−1)

)
=

k∏

i=1

1 − e−i

1 − e−1
(4)

Note that in Eq. 3, ties in the grader rankings are modeled as indifference (i.e.,
agnostic to either ranking), which leads to the summation in the numerator is
over all total orderings σ′ consistent with the weak ordering σ(g).

Under the uniform prior, the posterior distribution of the inferred rankings
σ i.e., P (σ|{σ(g);∀g}) is defined as

P (σ|{σ(g);∀g}) =
P ({σ(g);∀g}|σ)∑

σ′∈π(D) P ({σ(g);∀g}|σ′)
. (5)

With the posterior distribution in hand, we can derive the desired marginal
rank distributions of each assignment, or we can predict a single ranking that
minimizes posterior expected loss.

However, exact computations with this posterior are infeasible given the com-
binatorial number of possible orderings of all assignments. To help us ascertain
information from the posterior, we will employ MCMC based sampling as pre-
viously used for Ordinal Peer Grading of student assessments in [14]. Markov
Chain Monte Carlo (or MCMC in short) are a set of techniques for sampling from
a distribution by constructing a Markov Chain which converges to the desired
distribution asymptotically. Metropolis-Hastings is a specific MCMC algorithm
which is particularly common when the underlying distribution is difficult to
sample from (as is the case here) especially for multi-variate distributions.

Thus to help us estimate the posterior we will design a Markov Chain whose
stationary distribution is the distribution of interest: P (σ|{σ(g);∀g}). Along with
the theoretical guarantees accompanying these methods, an added advantage is
the fact that we can control the desired estimation accuracy (by selecting the
number of samples).

This results in a simple and efficient algorithm, shown in Algorithm 1. To
begin, we pre-compute statistics of the net cumulative weighted total each
assignment di is ranked above another assignment dj . We then initialize the
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Markov Chain using the MLE estimate of the ordering: σ̂. While computing
the Maximum-Likelihood Estimator (MLE) of Eq. 3 is NP-hard [6], several sim-
ple and tractable approximations that are shown to work well in practice are
presented in [15].

At each timestep, to propose a new sample σ′ given the previous sample
σt−1, we sample from a jumping distribution (Line 5). In particular, we use a
Mallows-based jumping distribution:

JMAL(σ′|σ) ∝ e−δK(σ′,σ). (6)

This is a simple distribution to sample from and can be done efficiently in
|D|log|D| time. Furthermore, as this is a symmetric jumping distribution (i.e.,
JMAL(σ′|σ) = JMAL(σ|σ′)), the acceptance ratio computation is simplified.

When it comes to computing the (acceptance) ratio rt (Line 6), we can rely
on the pre-computed statistics to do so efficiently. In particular, we can simplify
the expression for the ratio to:

P (σa|{σ(g);∀g})
P (σb|{σ(g);∀g})

=
∏

g∈G

eδK(σ(g),σb)−δK(σ(g),σa)

=
∏

i,j

exij(I[di�σa dj ]−I[di�σb
dj ]) (7)

This expression is again simple to compute and can be done in time proportional
to the number of flipped pairs between σa and σb, which in the worst case is
O(|D|2). Overall, the algorithm has a worst-case time complexity of O(T |D|2).

The resulting samples produced by the algorithm can be used to estimate
the posterior distributions including the marginal posterior of the rank of each
assignment i.e., P (rd|{σ(g);∀g}, as well as statistics such as the entropy of the
marginal, the posterior mean and median etc.

In order to improve the quality of the resulting estimates, we ensure proper
mixing by targeting a moderate acceptance rate and by thinning samples (in our
experiments we thin every 10 iterations). Furthermore we draw samples once the
chain has started converging i.e., we use a burn-in of around 10,000 iterations.
In total we used 50,000 samples drawn from the Markov Chain in this manner.

We also derive a Metropolis-Hastings based extension of the Mallows model
with reviewer reliabilities. Following [14,15], reviewer reliability can be included
into the model via

P ({σ(g);∀g}|σ, {ηg}) =

⎧
⎨

⎩
∏

g∈G

∑
σ′∼σ(g)e−ηgδK(σ,σ′)

ZM (ηg, |Dg|)

⎫
⎬

⎭ .

In addition to sampling the orderings, we also sample the reliabilities using a
Gaussian jumping distribution (also symmetric). However the acceptance ratio
computation is now more involved and hence less efficient than that for Algo-
rithm 1, but nonetheless can be computed fairly efficiently. We omit the precise
equation and computations for the purpose of brevity.
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Software and an online service that implements these methods is available at
http://www.peergrading.org/.

2.1 Relation to Existing Rank Aggregation Literature

The ordinal peer assessment problem can be viewed as a specific kind of rank
aggregation problem. It is closely related to the ordinal peer grading problem as
discussed in [14,15], with only one main difference. In peer grading it is equally
important to estimate the rank of an assessment anywhere in the ranking, while
for ordinal peer assessment it is more important to get the right order toward
the top of the ranking.

More generally, rank aggregation [8] covers a wide class of problems where the
goal is the combination of ordinal (ranking) information from multiple different
sources. Voting Systems (or Social Choice [1]) are one of the most common
applications of rank aggregation techniques. The goal of these systems is to merge
the preferences of a set of individuals. Condorcet voting methods such as Borda
count amongst others [6,10] are commonly used to tackle these problems. Search
Result Aggregation (also known as Rank Fusion or Metasearch [2]) is perhaps
the most well-known rank-aggregation problem. Given rankings from different
sources (typically different algorithms), the goal is to merge them and produce
a single output ranking. Extensions of classical techniques such as the Mallows
model [11] and Bradley-Terry model [3] have become popular for these problems
[4,9] and have been used to improve ranking performance in different settings [12,
13,16]. While our work also extends the classical Mallows model, a key difference
is the fact that unlike other rank aggregation problems, a single ordering of
assignments does not suffice since it does not communicate uncertainty.

Related to this work are also the recent experiments conducted as part of
the reviewing process of the Neural Information Processing (NIPS) conference
[5]. Their controlled experiment investigated the variability of the acceptance
decisions. Their findings in part motivated our decision to increase the number
of reviews per paper.

3 Empirical Analysis

We now analyze the BOPA approach outlined above on the reviewing data of
KDD 2015. To give some insights into the data, we first outline the reviewing
process.

On February 20, 2015, a total of 819 paper were submitted. Reviewer assign-
ments Dg were made though CMT’s built-in optimizer based on reviewer bids.
The Program Committee included 595 reviewers that produced a total of 2919
reviews. Reviewers were asked to finish their reviews by March 27, when authors
were given the opportunity to write a short response to the reviews. On April
14, Meta-Reviewers were asked to initiate discussion among the reviewers. The
decision recommendations by the Meta-Reviewers of whether to accept or reject

http://www.peergrading.org/
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a paper were due on May 1. However, many Meta-Reviewers submitted their rec-
ommendations late, but eventually everybody delivered well before the author
notification on May 12. In the time from May 1 to May 12 the Program Chairs
reviewed the Meta-Reviewer recommendations and made final accept/reject deci-
sions. In many cases, the Program Chairs initiated additional discussions for
controversial papers or papers where the meta-reviewer was not confident, using
a variety of strategies to resolve remaining issues (e.g., assigning a second meta
reviewer). In the end, 160 papers were accepted.

On April 15, we took a snapshot of all available reviews at that time and
applied the BOPA model outlined in this paper. We only consider the reviewers
answer to the question

“What is your overall recommendation?”

that is answered on the scale given in Sect. 1.2. We then distributed the results
via email to the Meta-Reviewers for all papers assigned to them on April 29. The
delay was due to creating the PDFs summarizing the results. This means that
most Meta-Reviewer decisions were made without access to the BOPA results.
However, for the more controversial papers which Meta-Reviewers tend to make
decisions on last, the Meta-Reviewers had access to the BOPA results. How-
ever, since access to BOPA results was outside the CMT system, the summary
statistics and ranking that CMT provides were probably more salient.

The analysis we conduct below is based on a review snapshot from May 4,
when most reviews and meta-reviews were submitted and in their final revision.
It covers all 752 papers for which BOPA analytics were provided to the Meta-
Reviewers.

3.1 Do Aggregated Reviewer Scores Predict the Number
of Accepted Papers?

The first aspect we evaluate is in how far BOPA and Score Averaging (with the
numeric scale given in Sect. 1.2) predict how many papers will be accepted. A
natural acceptance threshold for Score Averaging is 0. This would predict that
240 papers1 will be accepted. This substantially exceeds the actual number of
accepted papers of 160.

For BOPA, it is natural to use the mode of the posterior of the artificial
borderline paper dborderline. The mode is located at 202, with 95 % tails spanning
the interval [184, 219]. This is closer to the actual number of accepted papers,
but still significantly high.

Overall, there seems to be a substantial difference in the aggregated opinions
of the reviewers and the final decisions, where papers need to substantially exceed
the aggregate vote threshold of the reviewers in order to be accepted.

1 Papers with average score of exactly 0 were counted as 0.5 each.
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3.2 How Different Are the Predictions of BOPA and Score
Averaging?

The second question we investigate is whether BOPA and Score Averaging actu-
ally make different predictions. If they did not, then any further analysis and
comparison would be somewhat pointless.

In order to calibrate their acceptance threshold to the actual acceptance
number, we adjust the acceptance threshold of Score Averaging to 0.3. This
leads to 161 accepted papers for Score Averaging.

For BOPA, its probabilistic model makes it straightforward to compute the
optimal decisions. We compute

P (yd = accept|{σ(g);∀g}) = P (rd ≤ 160|{σ(g);∀g}) (8)

and predict a paper to be accepted, if it has a probability of being among the top
160 papers that is greater than 0.5. This predicts that 164 papers are accepted.

Counting the number of papers where Score Averaging and BOPA make
different acceptance decisions leads to 51 papers. This is quite a substantial
difference, given 160 accepted papers. As a reference point for the magnitude
of this difference, consider score averaging with a different numeric mapping.
In particular, instead of using the scale [−5,−2,−1, 1, 2, 5], consider the scale
[−3,−2,−1, 1, 2, 3]. Score Averaging with this alternative scale differs in only
2 papers from the original scale. This highlight how different BOPA and Score
Averaging are in their predictions (and how pointless it was for the Program
Chairs to agonize over the selection of the mapping scale).

3.3 How Closely Do Review Aggregation Methods Predict
Acceptance Decisions?

As the previous section showed, BOPA and Score Averaging make substan-
tially different predictions. Which of these predictions more accurately reflect
the actual accept/reject decisions?

Table 2. Confusion matrices for predicting paper acceptance using BOPA (left) and
Score Averaging (right).

BOPA predict accept predict reject
true accept 123 37
true reject 41 551

Score Averaging predict accept predict reject
true accept 125 35
true reject 36 558

Table 2 shows the confusion matrices for both methods. Overall, BOPA dis-
agrees with the actual decisions on 78 papers and Score Averaging disagrees
on 71 papers. The difference between these two disagreement counts is not sig-
nificant (McNemar’s test with 0.95 confidence threshold). These relatively high
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Fig. 2. Area under the ROC Curve (AUC) when ranking papers in the same equivalence
class by BOPA’s posterior probability of acceptance. On the left, papers with the same
reviewer rating average are considered equivalent. On the right, papers with identical
sets of ratings are considered equivalent. Only equivalence classes with more than 10
papers are shown.

disagreement rates indicate that many decisions are not clear-cut and that espe-
cially the Meta-Reviewers use their own insights and their interpretation of the
review text to make the decisions.

The probabilistic nature of the BOPA model makes it possible to verify, if
these disagreement rates were expected by the model. In particular, BOPA’s
predicted error rate can be computed as

disagreement =
∑

d∈D

min{P (yd = accept|{σ(g);∀g}), P (yd = reject|{σ(g);∀g})}.

(9)
For our data, the disagreement as predicted by BOPA is 65.3, which not far off
the actual disagreement of 78. This provides a first indication that BOPA is able
to quantify the amount of uncertainty in the aggregated reviewer scores. We will
further investigate this in Sect. 3.5.

3.4 Can BOPA Distinguish Paper Quality Between Papers
with the Same Reviewer Scores?

The previous section showed that the amount of disagreement of BOPA does not
seem to be better than that of Score Averaging. However, there are biases that
may have influenced that statistic. First, the Score Average was readily available
in CMT for sorting, which may have biased the Meta-Reviewers’ perception of
the paper’s quality. Second, the reviewers acceptance scores are communicated
to the authors, but not the BOPA ranks. Thus, going against the cardinal score
average requires effort from the Meta-Reviewer to justify that recommendation,
which disincentivises the Meta-Reviewer from deviating from the score average.

In order to get results that are unaffected by such biases, we now consider
subgroups of papers that have equal bias. First, Fig. 2 (left) shows how BOPA
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performs for papers that have the same score average. In particular, for each score
average value, we rank all papers with that score average by their probability
of acceptance P (yd = accept|{σ(g);∀g}) as predicted by BOPA. The left plot of
Fig. 2 shows the Area under the ROC Curve (AUC) for all score average values
that have at least 10 papers and for which the AUC exists. For most values,
the AUC is greater than 0.5, indicating that BOPA sorts the papers better than
random. The average AUC over all score averages weighted by the number of
papers in the equivalence class is 0.630, which is substantially better than 0.5.
The right plot in Fig. 2 shows the equivalent results, where the conditioning is
not on the score average, but on a particular set of ratings. The weighted AUC
here is 0.627.

This provides evidence that BOPA is indeed able to mitigate the problem of
different reviewer scales, since it is able to identify papers that are more likely to
be accepted even if they have exactly the same ratings. However, an alternative
explanation is that this may also be affected by bias, since Meta-Reviewers were
given the BOPA results, even if late in the decision process. To fully resolve this
question beyond doubt, a controlled trial may be necessary.
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Fig. 3. Calibration of BOPA posterior acceptance probabilities. Binning is done via
quantiles so that each bin contains roughly 40 papers. The x-axis shows the averaged
posterior acceptance probabilities, and the y-axis the observed fraction of accepted
papers per bin (with 95% binomial confidence intervals).

3.5 How Calibrated Are the BOPA Acceptance Probabilities?

The estimated disagreement rate of BOPA already provided some evidence in
Sect. 3.3 that BOPA is able to accurately capture the uncertainty inherent in
the review process. We now investigate more closely, if BOPA indeed produces
well-calibrated probabilities. In particular, we compute P (yd = accept|{σ(g);∀g})
as in Eq. (8) and ask whether a predicted P (yd = accept|{σ(g);∀g}) of value p
indeed means that the paper d has a p-percent probability of being accepted.
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Figure 3 shows a calibration plot, where papers are binned by P (yd =
accept|{σ(g);∀g}) falling into specific intervals [p1, p2]. The intervals are selected
to include roughly 40 papers each (except the interval closes to 0, which contains
399 papers), and the average value of P (yd = accept|{σ(g);∀g}) for each bin is
plotted on the x-axis. The y-axis shows the ratio of accepted papers in each bin
with 95 % binomial confidence intervals.

For perfectly calibrated prediction probabilities, all points should lie on the
diagonal. Overall, calibration of the BOPA probabilities is remarkably good,
especially in the high-probability region. This verifies that BOPA does indeed
convey an accurate impression of uncertainty, as was desired in our original goals.

3.6 Anecdotal Qualitative Feedback

As mentioned above, the information as illustrated in Fig. 1 was emailed to all
68 Meta Reviewer. While we did not ask for a response to this email, 14 Meta
Reviewer responded to this email. The vast majority of these responses indicated
strong support for providing such information, calling it “helpful” and “useful”.
No response raised any concerns or was negative. Several emails included sug-
gestions for how to better present and layout the information, and how to better
integrate it with CMT.

4 Conclusions

We investigated how additional information and aggregation of reviewer infor-
mation can provide decision support to Meta-Reviewers and Program Chairs
for making accept/reject decisions. Using data from KDD 2015, we adapted a
Bayesian ordinal rank aggregation method to the problem of estimating posterior
rank distributions of submissions. Regarding the goal of providing information
about uncertainty, we find that the BOPA method indeed captures accurately
calibrated probabilites. Regarding the goal of mitigating mismatching reviewer
scales, we find evidence that this is also achieved by BOPA. However, final confir-
mation about whether Meta-Reviewers and Program Chairs actually make bet-
ter decisions using the additional information can only be conclusively answered
through controlled experiments, which are outside the scope of this study.
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IIS-1247637, IIS-1513692, the JTCII Cornell-Technion Research Fund and a Google
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Abstract. A number of recent works have designed algorithms that
allow an agent to revise a relational action model from interactions with
its environment and uses this model for building plans and better explor-
ing its environment. This article addresses Multi Agent Relational Action
Learning: it considers a community of agents, each rationally acting fol-
lowing some relational action model, and assumes that the observed effect
of past actions that led an agent to revise its action model can be commu-
nicated to other agents of the community, potentially speeding up the
on-line learning process of agents in the community. We describe and
experiment a framework for collaborative relational action model revi-
sion where each agent is autonomous and benefits from past observations
memorized by all agents of the community.

1 Introduction

Adaptive behavior studies how an autonomous agent can modify its own behav-
ior in order to adapt to a complex, changing and possibly unknown environment.
Whereas [8] and more recently [9] focused on adapting and grounding a sym-
bolic representation for an agent from sensing information, we assume here a
fixed vocabulary and address the problem of learning an action model from
interactions with the environment. Considering that an adaptive agent needs
to simultaneously learn from its experience and act to fulfill various goals, an
adaptive system thus needs to integrate some kind of online learning together
with action selection mechanisms. Adaptation within relational representations
has been primarily addressed by Relational Reinforcement Learning (RRL) [5]
by extending the classical Reinforcement Learning (RL) problem to handle first
order representations. In the indirect or model-based Reinforcement Learning
framework [20], the agent explicitly learns such an action model, allowing it to
predict the effect of actions, and uses it as an input of a symbolic planner, whose
output is a plan to execute in order to reach its current goal. Indirect RL proved
to be very efficient when handling relational – Datalog – representations [4,10].
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We have recently proposed a relational revision algorithm, implemented in
the IRALe software [17]. IRALe models an agent acting on its environment
according to an action model that predicts the effect of the actions the agent
can perform when applied in the current state. Adapting the inspiring sloppy
modeling paradigm [12] to action model learning, an IRALe agent starts from a
(usually empty) action model and performs online revision of this model, here
a deterministic conditional STRIPS-like action model. The main features of the
learning algorithm in IRALe are that the action model is represented as a rela-
tional rule set and that this model is revised, in a bottom-up way, each time
some observation contradicts the model, i.e. the model makes an error when
predicting the effect of some action in the current state. Among all examples
sequentially encountered by the agent, the IRALe agent only memorizes those,
that we call counter-examples, associated to a prediction error and that have
therefore enforced a revision of its model.

In this article, and following previous work [18,19], we study a community
of autonomous IRALe agents. Each agent acts in its environment following its
current relational action model, and exchanges information with other agents
following the general multi agent learning protocol SMILE [2,3]. Intuitively, the
SMILE protocol is based on a “consistency maintenance” process: when some
new observation contradicts its current model, the agent first revises its current
model in order to ensure that the revised model is consistent with the observa-
tions it has memorized, then the agent communicates this revised model to the
other members of the community, and possibly receives past observations they
have memorized and that in turn contradict the revised model. After a number
of such revision/criticism interactions, resulting in a global revision associated to
the initial contradiction, the revised model is stated as globally consistent with
the observations memorized by all the agents.

To adapt the general SMILE framework for learning action models, we have
stated a number of restrictions: the target relational action model is supposed to
be deterministic, the actions performed by the agents do not interfere, and there
is no common goal for which agents would need coordination. As a counterpart,
agents are autonomous, do not have any shared memory, thus preserving privacy,
and each agent, when revising its model, is ensured to benefit from all past obser-
vations memorized by the community. This allows modelling complex learning
situations in which agents act in independent parts of a global environment, and
still benefit from information exchange.

For instance, consider a classroom of robots, each training on some simple
tasks, as stacking colored cubes. Each robot works on its own table and cubes,
and has to learn the same, universal, action model. The SMILE framework states
how these robots can be each helped by their classmates, by exchanging elements
of their past experience on a utility basis: only past observations in an agent
memory that contradict at some point the current model of some other agent
are transmitted to the latter. Another example would be mobile devices assisting
their owner exploring the same unknown country: the underlying world model
is the same, but one can reasonably assume that agents are far enough so that
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the actions of some agents only have local effects that do not affect the results
of other agents actions. Therefore, each mobile device can safely build its action
model, benefiting from other similar devices’ experiences.

We investigate in this article how the revision of the current model of an
agent can benefit from interactions between agents, in the context of relational
action model learning. In the collaborative relational action model learning pro-
posed here, each agent uses IRALe as a revision mechanism, is equipped with
a symbolic planner and tries to form and execute plans in order to reach some
random goal. Various agents behaviors have been investigated in the SMILE
framework, considering how agents behave with respect to the other members of
the community, in particular considering how they take into account the other
agents’ models they are aware of. We investigate here the individualistic variant
of SMILE [2], denoted by iSMILE, in which each agent plainly cooperates with
the other agents, by communicating counter-examples to their current model,
but only modifies its own model when performing a global revision. In other
words, agents always prefer the model they are currently revising to other agents’
models.

The paper is organized as follows: IRALe is described in Sect. 2, adaptation
of iSMILE to relational action model learning is described in Sect. 3. Finally,
experiments are detailed and interpreted in Sect. 4.

2 IRALe: Revising a Relational Action Model

In this section, we discuss the relational action model revision algorithm IRALe
[17] that each agent uses to revise its relational action model. IRALe learns a
STRIPS-like action model as a set of rules from state/action/effect triples. Sev-
eral rules can be associated to each action, where each rule completely describes
the effect of the action in a given context. In this way, the model allows to repre-
sent conditional effects. IRALe only memorizes counter-examples, namely exam-
ples that have raised a prediction error (the observed effect is not the predicted
one) at some point during the model construction. IRALe learns deterministic
rules, i.e. once the preconditions of some rule are satisfied, the rule always pre-
dicts the same effect. The algorithm is primarily intended to learn in a realizable
case, i.e., when there exists an action model exactly predicting the outcomes
of any action in any state. Note, however, that IRALe has been proven to be
accurate when learning in the presence of some amount of noise [16].

Related Work. Learning planning operators has been studied intensively,
including the problem of learning the effects of actions, in the context of Rela-
tional Reinforcement Learning (RLL). The first model that integrated an incre-
mental action model and policy learning is MARLIE [4]. Learning relational
action rules has also been studied in the context of inductive logical program-
ming by Otero et al. [14]. In both cases, the model predicts the value of each
possible effect literal (positive or negative) separately. Let us also mention the
work of Xu and Laird [21] and Mourao et al. [13], that both learn black box
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models in batch mode. Mourao and colleagues propose an additional step for
extracting rules after a black box model has been learned. [22,23] learn models
as sets of rules from plan traces, but they do not incrementally revise this model.

Other works [10,15] address stochastic effects. Learning is then performed
from scratch and needs prior memorization of the whole set of observations.

2.1 States, Actions, Examples and Rules

States and actions are represented by objects and relations between them. Exam-
ples are observations resulting from the agent actions and the agent minimally
revises the action model when needed. Relations between objects in a state
are described using predicates applied to constants. In the following, objects
are denoted by constants and a lower-case character (a, b, f, . . .). Variables are
denoted by an upper-case character (X, Y, . . .), and may instantiate to any object
of the domain. A term is here a constant or a variable. Actions and relations
between objects are denoted by predicate symbols.

Examples are described as conjunctions of ground literals. Follow-
ing a STRIPS-like notation, state literals that are not affected by the
action are not described in the effect part. The examples are denoted by
x.s/x.a/x.e.add, x.e.del, with x.s a conjunction of literals, x.a a literal of action
and, regarding the effect part, x.e.add a conjunction of positive literals and
x.e.del a conjunction of negated literals. Some examples may have an empty
effect list (i.e., x.del = x.add = ∅), accounting for illegal action applications in
specific contexts [17].

Example 1. Figure 1 displays an example e of the action move in a blocks world:
onTable(a), onTable(b), on(c, a)/move(c, b)/on(c, b),¬on(c, a). �

IRALe builds an action model, made of a set of rules T , according to a set
of observed examples O that have been memorized during the agent history.
Each rule r is composed by a precondition r.p, an action r.a and an effect r.e,
and is denoted by r.p/r.a/r.e. The precondition r.p is a conjunction of positive
literals which have to be satisfied to apply the rule, r.a a is a literal defining
the performed action, r.e is composed of two sets of literals: r.e.add is the set
of literals getting true when the rule is applied, and r.e.del is the set of literals

Fig. 1. Example of a move action in a simple blocks world
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getting false when the rule is applied. According to a rule r, an action r.a has
no other effects but those described by r.e.

Example 2. In the same blocks world of Example 1, r = on(X,Z)/move(X,Y )/
on(X,Y ),¬on(X,Z) is an action rule. When an agent performs the action
move(c, b) in the current state represented on the left of Fig. 1, according to
this rule, the agent should reach, as its new current state, the state represented
on the right of Fig. 1. �

Note that in an action rule, preconditions and effect may contain (existential)
variables that do not appear in the action literal. To complete the model, a
default rule is implicitly added to T : for any action a, whenever no rule for a
applies, the action is predicted to have no effect, i.e. e.del = e.add = ∅.

2.2 Rule Covering and Contradiction

Matching operations between rules and examples relies on subsumption under
Object Identity, denoted as OI-subsumption [6], which is an intuitive partial
order relation when learning action rules for planning [15].

Rule matching definition relies on the definitions of pre-matching sa∼ and post-
matching ae∼ functions. Pre-matching checks whether a given rule may apply to
predict the effect of a given action in a given state, and post-matching checks
which rule(s) of the action model may explain the effect observed in the example.

Definition 1. For any rule r, and example x = (s/a/e), r pre-matches x, (r sa∼
(s, a)) iff there exists two injective substitutions σ and θ such that (i) (r.a)σ = a,
and (ii) (r.p)σθ ⊆ s. r post-matches x (r ae∼ (a, e)) iff there exists two injective
substitutions σ and θ such that (i) (r.a)σ = a (ii) (r.e)σθ = e.

The question of whether the action model contradicts or is consistent with an
example is addressed through the following definitions. Given an example and
a rule pre-matching the example, covering checks whether the effect part of the
example is accurately explained/predicted by the rule, while rule contradiction
appears whenever the rule incorrectly predicts the outcomes of the action.

Definition 2. For any rule r and example x, r covers x (denoted r ≈ x) iff r
pre-matches x and post-matches x for the same injective substitutions σ and θ.
Conversely, x contradicts r (denoted r �≈ x) iff r pre-matches x and does not
post-match x for the same injective substitutions σ and θ.

Definition 3. Given a state s and an action a, the model T predicts a non
empty effect iff there exists a rule r ∈ T such that r pre-matches (s, a) with
injective substitutions σ and θ. The predicted effect e is then (r.p)σθ. If no such
rule r exists, T predicts the empty effect.

The model T needs to be revised whenever the current action model
fails to predict the observed effect of some action in the current state. The
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(state/action/effect) example is then said to contradict the model, is stated as
a counter-example of T , and is then memorized in O. We give hereunder the
necessary definitions.

Definition 4. x = (s, a, e) is a counter-example and is said to contradict the
model T iff the predicted effect of T given (s, a) (see Definition 3) �= e. x may
make T incoherent: there is a rule of T pre matching (s, a) and predicting a non
empty effect whereas x.e = ∅. Alternatively, x may make T incomplete, in that
case x.e �= ∅ and there is no rule pre-matching x.

Example 3. Consider again the block world situation of Fig. 1. The rule of Exam-
ple 2 both pre-matches and post-matches the example x of Example 1, with sub-
stitutions σ = {X/c, Y/b} and θ = {Z/a}. This means that the rule r correctly
predicts the effect x.e of the action x.a in the state x.s. Consider now the fol-
lowing variant y of example x: y = onTable(a), onTable(b), on(c, a)/move(c, b)/
on(c, b). r still pre-matches y but does not post-match y as the observed effect
on(c, b) is only part of the predicted effect on(c, b),¬on(c, a). �

A model T is said complete with respect to O whenever no example in O
makes T incomplete. T is said coherent w.r.t. O whenever no example in O
makes T incoherent. In both cases of contradiction, the model T needs to be
updated to T ′ in order to preserve coherence and completeness w.r.t. x and the
other past counter-examples in O.

Definition 5. A model T is consistent with respect to a set of examples O,
denoted cons(T,O) whenever no example in O contradicts the model, i.e. when-
ever T is both complete and coherent w.r.t. O.

2.3 Online Revision of the Action Model

The interactions between the agent and the environment produce examples, and
when an example contradicts the model, the latter has to be revised by mod-
ifying or adding one or several rules. When such a new counter-example xu is
encountered, two kinds of modifications may have to be performed, either gen-
eralization or specialization (see [17] for details). We focus here on the general-
ization process, that takes place in order to preserve completeness of the model,
whenever no rule of T pre-matches xu. The rules r of T which are candidates for
generalization are such that r, up to the generalization of some constants into
variables, post-matches xu. Preconditions are then generalized with xu using
least general generalization under OI subsumption. If such a generalization does
not contradict any example in O (preserving coherence), r is replaced by the new
minimally generalized rule. If no consistent generalization exists, xu becomes a
rule and is added as such to T . Finally, xu, as a counter-example, is stored in O.

Note that only counter-examples are memorized in Oi, i.e., observations that
contradicted the current model at some time point. This is sufficient to ensure
that learning converges, in the realizable case [16].



306 C. Rodrigues et al.

3 Action Model Learning in a Community of Agents

In this section, we present a framework for collective incremental action model
learning relying on the SMILE framework [2,3]. A community of n agents, or
n-MAS1, is a set of agents a1, . . . , an. Each agent ai has a model, here a set
of action rules Ti, that will be revised during the learning process, and a set
of internal counter-examples Oi. The set of all counter-examples stored in the
MAS is denoted by O (for all agents j ∈ {1, . . . , n}, O = ∪j∈{1,...,n}Oj).

The a-consistency and mas-consistency properties are defined as follows.

Definition 6.

– An IRALe agent ai is a-consistent iff Ti is consistent with respect to Oi (see
Definition 5), i.e., the agent model Ti correctly predicts observed effects for
all counter-examples in Oi.

– An IRALe agent ai is mas-consistent iff Ti is consistent with respect to O,
i.e., to all counter-examples stored by agents of the n-MAS.

How to derive mas-consistency of an agent from consistency of this agent
with respect to other agents memories needs the property of a-consistency to
be compositional : this means that given two sets of examples O1 and O2 and
a set of action rules T , Cons(T,O1 ∪ O2) is true if and only if Cons(T,O1)
and Cons(T,O2) are both true. Compositionality is realized for IRALe agents
described above, provided they act in independent environments – an action
realized by an agent does not affect other agents’ environments. If M denotes
the incremental (local) revision mechanism described in Sect. 2.3, this means
that when encountering a contradiction, an agent applies M to recover its a-
consistency. M is then called a a-consistent revision mechanism. Furthermore,
observations coming from other agents may be used as if the agent had observed
them. It is therefore straightforward to define a mas-consistent global revision
mechanism Ms, i.e. a mechanism that guarantees that the agent applying Ms

recovers its mas-consistency. Such a global revision mechanism consists in a set
of interleaved revisions, using M , and interactions with other agents, until there
is no more contradiction to the current revised action model with respect to
counter-examples stored by all agents of the community.

3.1 A Global Revision Mechanism

We describe below this global revision mechanism Ms, first by defining an inter-
action, then by detailing an iteration together with the termination condition of
the mechanism.

The mechanism is triggered by an agent ai upon direct observation of a con-
tradictory observation x, denoted as an internal counter-example. This counter-
example breaks a-consistency, enforcing revision of Ti into T ′

i and is stored in
Oi. An interaction I(ai, aj) between the learner agent ai and another agent aj ,
acting as a critic, is as follows:
1 MAS stands for Multi Agent System.
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1. Agent ai sends the revision T ′
i to aj ;

2. Agent aj checks the revision T ′
i . If T ′

i is a-consistent with respect to its set of
counter-examples Oj , aj sends a notification of acceptance of T ′

i to ai. Oth-
erwise, aj sends a counter-example x′ ∈ Oj , denoted as an external counter-
example for ai, such that x′ contradicts T ′

i . Then, x′ is stored in Oi.

An iteration of Ms is then composed of a local revision performed by the learner
agent ai, followed by a sequence of interactions I(ai, aj). If an external counter-
example x′ is transmitted to ai, this triggers a new iteration, starting with a new
revision of the learner to restore its a-consistency. When all critics have sent a
notification of acceptance of a proposed revision, ai notifies the other agents
that its mas-consistency is restored. This ensures that, at the end of the revision
process, ai is mas-consistent. We have then the following property [2,3].

Proposition 1. Let a1, . . . , an be a MAS in which agent ai receives an observa-
tion x breaking its a-consistency, and M be an a-consistent local revision mech-
anism. The global revision mechanism Ms, described above, always terminates
and is mas-consistent.

Example 4. Let us assume that we have a community of three agents, a1, a2, a3

with memories O1, O2, O3 and action models T1, T2, T3; each agent works on its
own table on which lies various blocks (3 blocks only in each agent’s environ-
ment). At the current time, agent a1 has an empty model T1 = ∅ together
with an empty memory O1 = ∅ and its world is in the state described on
the left of Fig. 1, while a2 and a3 have one example each in their memo-
ries (their model by the way is equal to this example). Agent a1 applies the
action move(c, b) and then observes the effects on(c, b),¬on(c, a). As this con-
tradicts its empty model, it memorizes the resulting example e1 (see Exam-
ple 1) in O1 and also as a rule r1 in T1, which is now consistent with O1.
Then, a1 sends T1 to agent a2 which finds in its memory the example e2 =
onTable(g), onTable(h), on(k, g)/move(k, h)/on(k, h),¬on(k, g).

This is a counter-example of T1 and a2 sends it to agent a1. Agent
a1 then revises T1, generalizing r1 = e1 and e2 in a new rule:
onTable(X), onTable(Y ), on(Z,X)/move(Z, Y )/on(Z, Y ), on(Z,X), where each
constant in e1 has been turned into a variable.

At that point, the revised T1 is consistent with O2 and agent a1 sends T1

to agent a3. Agent a3 finds in turn a counter-example e3 in its memory, repre-
sents an observation in which the block to move was, before the move, on top
of a stack of three blocks: e3 = on(l,m), on(n, l), onTable(n)/move(l, table)/
onTable(l),¬on(l,m). As the observed effects do not post-match r1’s effect, a
specific rule (e3) is learned. The new revised version of T1 is proposed to agent
a3: T1 = {onTable(X), onTable(Y ), on(Z,X)/move(Z, Y )/on(Z, Y ), on(Z,X);
on(l,m), on(n, l), onTable(n)/move(l, table)/onTable(l),¬on(l,m)}.

It happens that this new revised version is accepted by both a2 and a3, and
as a consequence T1 is now consistent with all the agent memories, and agent a1

is mas-consistent. �
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Consider a community of agents, each equipped with such a global revision mech-
anism. Note that the external counter-examples transmitted by other agents and
memorized by the learner agent are redundant as they are already present in the
memory of the other agents that, as critics, transmitted them. As a consequence,
the size of O = ∪Oi, i.e., the overall number of examples, is smaller than the
sum of the sizes of the counter-examples Oi stored in all agents.

Resources needed by the n-MAS both to perform local revisions and to per-
form the interactions between the agents have to be considered. We consider that
the cost of an interaction is bounded by some constant d. The cost of a local revi-
sion c(m) depends on the example memory size m = |Oi| of the learner agent.
Hereunder, an interaction is stated as contradictory when the critic answers by
sending an external counter-example.

Proposition 2. Let d be the cost of an interaction and c be the revision cost
function. When an MAS of n agents has received ne examples, in the worst case:

1. The total number of local revisions performed during the history of the MAS
is less than ne ∗ n

2. The total cost of interactions is less than ne · (n + 1) · (n − 1) · d
3. The total revision cost is less than ne · n · c(ne).

This means that, for a given ne, the learning cost (considering only contradictory
interactions) is linear with the number of agents n.

3.2 iSMILE: A Revision Mechanism for Individualistic Agents

We consider here the case where an agent never modifies its own current hypoth-
esis but for internal or external counter-examples. Such agents are denoted as
individualistic.

When the learner agent ai observes an internal counter-example x w.r.t its
current hypothesis Ti, applying global revision Ms results in T ′

i , now consistent
with the set of counter-examples O∪{x} stored in the MAS. However, the other
agents aj for j �= i, i.e. the critics, are not guaranteed to be consistent with x.
We define hereunder a weaker property, delayed mas consistency.

Definition 7. Let Ot = ∪Ot
j be the information stored in the MAS at time t

– An agent ai is mas-consistentt iff Cons(Ti, O
t) is true.

– A n-MAS a1, . . . , an is consistentt iff each agent ai is mas-consistentt. It will
be said to be delayed consistent iff it is consistentt with t = min{t1, . . . , tn}
where each ti is the time of the last revision of agent ai.

– A revision mechanism is delayed mas-consistent iff an agent applying at some
time t this global revision mechanism maintains the delayed consistency of the
MAS.

The following property is then the basis of individualistic learning [2].
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Proposition 3. Ms is delayed mas-consistent.

At a given time t, a n-MAS a1, . . . , an is delayed consistent. The set of examples
the MAS is consistent with is Otm where tm = min(ti) and ti is the time of last
revision of agent each ai immediately preceding t. Counter-examples that have
been handled during the interval t− tm have only been seen by subsets of agents
of the MAS.

3.3 The Agent Behavior Model

We consider here a community of individualistic agents acting in their own envi-
ronment. The behavior of an agent i is as follows: at a given moment, the agent
has its own current action model Ti and corresponding counter-examples mem-
ory Oi. It is also provided with some goal it has to reach, as for instance stacking
block b on top of block c. The agent tries to build a plan, using some planning
mechanism. If it succeeds in building a plan, this means that its current action
model predicts some effect ê of the first action a of the plan in the current state
s. It will then perform this action, observing the effect e. If e = ê, this means
that the new current state s′ is as intended in the plan execution and the agent
will apply the next action of the plan. Otherwise, this prediction error defines a
new counter-example x with x.s = s, x.a = a, x.e = e, the current action model
is revised locally and the new model is transmitted to the other agents, there-
fore triggering the iSMILE Ms global revision process. If planning fails, random
actions are selected and performed (note that illegal actions, i.e., actions that
do not produce any observable effect in the current state are not filtered out)
and planning is attempted again until a new plan can be tentatively executed.

We denote as the desynchronization effect, the expected decrease in average
performance (accuracy of the model or number of successful plans built with
this model) resulting from the delay between the various revision times ti (see
Sect. 3.2). This desynchronization effect is expected to increase as the number of
agents increases. Partial resynchronization is an agent behavior whose purpose
is to reduce the desynchronization effect. When considering an agent ai, its
delay is defined as t − ti where times t and ti correspond respectively to the
time of the last revision performed in the whole n-MAS and to the time of
the last revision performed by agent ai. If, since time ti, no other agent has
observed a contradictory example enforcing a revision, then the delay is equal to
0. However, when this delay increases, this means that new examples, that have
been observed and memorized by other agents, might contradict the agent ai

theory. The idea of Partial resynchronization is to bound for each agent ai some
monotonic function f(t − ti) of its delay. We thus add the following behavior to
agents: whenever an agent ai detects that f(t−ti) > δ, ai starts a global revision
of its current model by sending it to the other agents in order to potentially
receive contradictory examples. We use in our experiments f(t−ti) = n(t)−n(ti)
where n(t) is the total number of examples provided by the environment at time
t that contradicted the model of some agent, and therefore triggered a revision
in the n-MAS.
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4 Experiments

We tested our approach on two domains. The first one is a variant of the blocks
world domain in which color predicates for blocks are introduced2. This domain
requires to learn several rules for capturing the impact of blocks color on the
effect of the action move. In the colored-blocks world, when the agent performs
the action move(a, b), a is actually moved on top of b only if a and b have the
same color. Otherwise, a is not moved and its color shifts to the same color as b.
We run experiments for the 7 blocks with 2 colors domain (7b2c) whose target
action model needs 7 rules to model the action move and whose state space is
composed of nearly 5 million states.

The second domain is the Rover domain from the International Planning
Competition3, which is substantially more complex with a larger number of
possibly irrelevant action conditions to consider. This domain has been used
previously to investigate action learning [13], but in a different experimental
protocol in which examples are generated independently and randomly such that
50 % of the examples s/a/e. correspond to a non void effect e. As mentioned
above, in our experimental setting, examples are observations from the agent
trajectory, and the agent revises its current model online after each action whose
outcome contradicts the model. In the Rover domain, the probability that acting
randomly leads to a void effect is greater than 90 %. In this domain, an agent
corresponds to a base monitoring a team of r rovers equipped with c cameras.
The rovers navigate on some area, divided in w way-points, of a planet surface
and the team has to perform o objectives regarding science gathering operations.
The results of the experiments are communicated to the base. A particular Rover
domain in our experiments is described as the tuple (r, w, o, c) and is denoted
Rover-rwoc.

Main features of the two domains, i.e. maximal arities of actions, number
of state and effect predicates, total number of actions and rules in the target
model, are reported hereunder:

Domain Actions State/Effects #rules
#act. arity #pred. arity

7b2c 1 2 4 2 7
Rover 9 6 27 3 12

An experiment consists of N runs and is performed for communities of 1,
5 and 30 agents in the colored blocks domain and 1, 5, 20 agents in the Rover
domain. For each agent, a run is divided into episodes of at most 50 actions
each. The agent starts the first episode with an empty model4 and the current
model at the end of an episode is the starting model at the beginning of the next
2 A problem generator for the colored blocks world problem is available at http://lipn.

univ-paris13.fr/∼rodrigues/colam.
3 http://ipc.icaps-conference.org/.
4 Except in the Rover domain where communication rules are assumed to be known

by the agent.

http://lipn.univ-paris13.fr/~rodrigues/colam
http://lipn.univ-paris13.fr/~rodrigues/colam
http://ipc.icaps-conference.org/
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episode. During an episode, the agent explores its environment, starting from a
random state, and tries to reach a random goal, both provided by some external
controller. Predictive accuracy estimates the probability of correct prediction
following the current model and is computed on 100 random state/action pairs
whose effect is obtained using the correct model. Collaborative learning follows
the iSMILE protocol and exploration is performed according to the agent behav-
ior described in Sect. 3.3. Each agent uses FF [7] as a planner. For that purpose,
the goal, domain and action model are translated into an equivalent PDDL [11]
planning task. The FF planner is then allowed a short time (2 s) to find a plan
or state that planning has failed. The whole framework is implemented using
PROLOG threads.

The Colored-Blocks Domain. We are interested first in the predictive accuracy
of an agent as a function of the total number t of actions it has performed since
the start from the empty model. Figure 2(a) displays the averaged accuracies
on 100 runs for communities of 1, 5 and 30 agents. In the same figure, we have
also reported the predictive accuracy of a single agent using a baseline relational
action model learner, referred to as TILDE on the Fig. 2(a). This baseline learner
closely follows the method implemented in MARLIE [4], but uses the more stable
state of the art batch relational tree learner TILDE [1] which learns a model
from scratch given a set of examples rather than the TG incremental relational
decision tree learner used by MARLIE. The example set used, as for IRALe,
only contains counterexamples. Clearly, this baseline learner starts with very
low accuracies when compared to IRALe. This is because the IRALe starts from
the empty model, that always predicts an empty effect. As many state/action
pairs in the colored blocks world do result in an empty effect, IRALe accuracy
starts at a high level. The MARLIE-like baseline learner does not benefit from
this bias and needs 400 actions to reach the IRALe accuracy.

To interpret the benefit of collaboration, we first note that there is a strong
relation between the accuracy and the total number of revisions the agent has
performed, i.e. the number of internal and external counterexamples in his mem-
ory. Such a memory size is obtained for far less actions than those performed
by an isolated agent (see Table 1). The benefit of collaborative learning then lies
in the proportion of external counterexamples in the agent memory. Figure 2(b)
displays both the total number of counterexamples and the number of inter-
nal counterexamples in the agent memory versus the number of actions it has
performed.

We are now interested in the communication costs. Figure 3(a) displays the
communication cost per agent, i.e. the number of messages exchanged during
its trajectory, as a function of the number of actions performed by the agent,
for communities of 5 and 30 agents. In a community of 30 agents, the learned
model of an agent is accurate (at level 0.99) as soon as the agent performs 40
actions. It has then exchanged in average 200 messages, which is far from the
worst case SMILE bound (see proposition 2) of 40 * 31 * 29 = 35960 messages. In
a community of 5 agents, the same accuracy level requires the agent to perform
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Fig. 2. Predictive accuracy and number of counterexamples (internal only and all coun-
terexamples) vs. Number of actions performed of an agent learning the colored-blocks
problem within communities of 1, 5 and 30 agents
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Table 1. Number of actions and number of counterexamples (total and internal only)
in an agent memory when the agent reaches a fixed accuracy level in 1, 5 and 30 agents
communities

#ag. #actions Accuracy #ex. #intern. ex.

1 250 97.0 21.31 21.31

5 100 96.8 21.32 6.16

30 30 97.2 21.36 2.00

about 100 actions, and to exchange 76 messages. Clearly, the communication
cost does not explode when the number of agents increases.

In Fig. 3(b), we report the average number of goals achieved by an agent
during a run, as a task oriented measure of learning success. We observe that for
all community sizes, there is a critical number of actions an agent has to perform
before it makes accurate plans and reaches its random goals. This number is
much smaller in the 30-MAS case but a benefit is yet obtained in the 5-MAS
case.

We finally investigate in our two application domains the two following set-
tings. The first setting studies Partial Resynchronization as an agent behavior
(see Sect. 3.3), the second one checks whether transfer capabilities are observed
within the community, thanks to the high level relational representation of action
models. For instance, if such transfer occurs, agents learning in the 7 blocks -
2 colors domain can benefit from external observations transmitted by agents
acting in simpler domains such as 3 blocks - 2 colors, for which the target action
model is the same. The former setting is denoted as the Resynchronization set-
ting, while the latter is referred to as the Variable setting.

For the colored blocks domain, and for the Partial Resynchronization setting,
resynchronization parameter δ is set to 5. In the Variable setting, each agent
learns in a n blocks 2 colors domain with n randomly drawn in the range [3..7].
For the Rover domain, in the base line experiment denoted Base, all agents have
the same Rover-2433 domain. In the Resynchronization, δ is set to 3, while in
the Variable setting, each agent has a domain with a parameter tuple (r, w, o, c)
randomly drawn in the range ([1–2], [3–4], [2–3], [2–3]).

Curves are provided in Fig. 4 for the colored blocks domain and Fig. 5 for the
Rover domain, that report the average accuracy of agents vs. the total number
of actions performed in the community. This allows comparing the accuracies
of 1 and 30 agents communities with respect to the total information available
to the community. When comparing agents accuracies in a per agent view, as
in the previous figures, we focus on time as a resource measured in performed
actions per agent, emphasizing that increasing the number of agents gives a
clear advantage when considering the total number of goals achieved. The total
number of actions view emphasizes that there is a price to pay in individual
accuracies when the resources (as, for instance, the total energy available) is
limited.
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Fig. 3. Number of messages exchanged and number of goals achieved by an agent
learning the colored-blocks problem within communities of 1, 5 and 30 agents
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(a) Resynchronization setting

(b) Variable setting

Fig. 4. Average accuracy of agents in the Resynchronization setting (left) and in the
Variable setting (right) versus total number of actions in a 30 agents community learn-
ing the 7 blocks 2 colors action model. In both figures, we also display average accuracies
of a single agent and a 30 agents communities in the standard setting.
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(a) Resynchronization setting

(b) Variable setting

Fig. 5. Average accuracy of agents in the Resynchronization setting (left) and in the
Variable setting (right) versus the total number of actions in a 20 agents community
learning the Rover-2533 action model. In both figures, we also display average accura-
cies of a single agent and a 20 agents community in the standard setting.
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In the colored blocks domain, Fig. 4(a) shows that the Resynchronization
behavior with δ = 5 strongly reduces the negative effect of delayed consistency.
Limiting the resynchronization to δ = 5 does not allow to plainly compensate this
negative effect but avoids an excessive price to pay in terms of communication
cost between agents (data not shown). In Fig. 4(b), we see the transfer effect: the
accuracies are measured in the 7 blocks 2 colors domain, while each agent learns
in a n blocks 2 colors domain with n randomly drawn in the range [3..7]. These
transfer capabilities rely on the relational representation of the action models.

Figure 5 shows similar trends for the Rover domain. In Fig. 5(a), we compare
the average accuracies of a Rover-2433 learning agent belonging to a 20-MAS in
the Base, Variable and Resynchronization settings. We observe again that both
the Variable and Resynchronization settings speed up learning of each agent
with respect to the Base case. In the Variable setting, the agent accuracy shows
even larger improvement over the Base setting in the Rover domain than in the
blocks world, which is a strong support for learning relational models in complex
domains.

5 Conclusion

In this article, we have modeled and simulated a community of agents who
revise their relational action model. Each agent, when revising its current action
model, benefits from past observations communicated by other agents on a util-
ity basis: only observations contradicting the current model of the learner agent
are transmitted. The experiments give various insights about the benefits of com-
municating in a utility basis. We observe that when collaborating, the agents do
learn faster, i.e. reach an accurate model with much less direct observations than
when they are isolated agents, and they learn with a relatively small number of
observations communicated by other agents. Moreover, we see on both domains
addressed that agents exhibit some transfer capabilities, that follow from their
use of first-order explicit domains: counter examples acquired in different (sim-
pler) contexts are useful to other agents and improve convergence to a correct
model. Resynchronization, by ensuring that agents regularly submit their mod-
els to critics and as a consequence revise their model, also substantially improves
the average behaviour of agents in term of accuracy.

Agents are considered as autonomous and separate entities, as for instance
robots or mobile devices, with no access to controllers agents or shared memory.
We argue that such autonomous entities, still able to communicate with similar
entities while preserving their privacy, will play an important role in the future.
The framework proposed here is a first step towards more sophisticated situations
as the plain multi agent learning case, in which agents interfere as they act in
the same environment.
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Abstract. The application of machine learning algorithms on real world
problems rarely encounters ideal conditions. Often either the available data are
imperfect or insufficient, or the learning situation requires a rather complicated
combination of different approaches. In this article I describe an application,
which – in an ideal world – would be solvable by a conventional supervised
classification algorithm. Unfortunately, the available data are neither reliably
classified nor could a manual correct reclassification be derived under restricted
available resources. Since we had a large domain thesaurus available, we were
able to develop a new approach, skipping the learning step and deriving a
classification model directly from this thesaurus. The evaluation showed that for
the intended use the quality of the classification model is more than sufficient.
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1 Background

In 2011 the German federal states Berlin and Brandenburg came to an agreement to
implement a common innovation strategy. Goal of this strategy is the development of
so called cross-border innovation clusters. These clusters summarize economical sec-
tors and branches which are of particular interest for the development of the region
Berlin-Brandenburg.1 These clusters describe sectors with a high potential for
economical development of the region or a need for action:

• Health
• Energy and Environment Technologies
• Transport, Mobility and Logistics
• ICT, Media and Creative Industries
• Optics (including Microsystems Technologies)
• Tourism
• Food
• Metal
• Plastics/Chemistry

1 http://www.berlin.de/sen/wirtschaft/politik/innovationsstrategie.en.html. Accessed 19 July 2014.
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Development of these clusters requires not only the financial support of research
institutions and companies in the region, but also the availability of qualified employees.
Hence the support of professional training and continued education for these clusters
becomes important. This support consists of offering appropriate education offers,
supporting an easy access to these offers and supporting the transition from established
jobs to new job descriptions.

In order to ease the access to professional training and continued education both
federal states have developed and support the “Weiterbildungsdatenbank
Berlin-Brandenburg” (WDB-BB; database for continued education) which is operated
by EUROPUBLIC GmbH. Purpose of this database is to make education offers in the
region Berlin-Brandenburg easy accessible and thus to support the development of the
innovation clusters. Currently this database contains about 30.000 education offers.

With a semantic, thesaurus-based search engine the Ontonym GmbH has developed
the means for making the education offers of the WDB-BB easily searchable by means
of modeling the language usage of users searching for continued education [1]. Figure 1
shows an excerpt of this thesaurus for terms used by users searching for continued
education offers in the context of renewable energies. Grey scales of the nodes denote
different term categories, arrows denote term subsumption and dashed lines general
relations between terms.

We could show by direct comparison against the original full text search that this
semantic search reduces the search time of a user per query by 10 % on average and
that the quality of the search results can be increased by avoiding on average 55 % of
inappropriate search results and substituting them with 27-44 % better fitting results,
thus reducing the entire amount of search results by 12-27 % [2].

Fig. 1. Language Usage for denoting “Windenergieanlage”
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In a precursor project, this thesaurus was extended by cluster-specific and addi-
tional related terms for the nine innovation clusters. The thesaurus currently consists of
about 11.300 recruitment and continued education specific concepts with roughly
17.200 (partially multilingual) terms for which the semantic search is capable of
generating nearly 33.600 alternative writing forms2.

2 Project Goal

Goal of the project described in this chapter was the development and exploration of a
classification approach, which can be used to classify educational offers into the
clusters of the innovation strategy. On the first sight this looked like a conventional
supervised learning task, but although the education offers where pre-classified, their
classification was judged to be unreliable and the effort of reclassifying an appropriate
amount of several thousand offers appeared to be prohibitively expensive. Instead of
learning a classification model from the scratch, we decided to construct it directly from
the existing thesaurus.

The remainder of this chapter describes the general framework of the WDB-BB and
its restrictions, the development process of the classification algorithm and the results
of its validation and evaluation. Although this approach does not use conventional
learning methods and instead derives the classification model from the thesaurus, the
entire development process made use of concepts well-known in machine learning.
Hence it can be seen as an example which shows that the good data analytical practice
of applied machine learning is useful even if no training phase is used.

3 General Framework of the WDB-BB

Until spring 2015 WDB-BB gave educational institutions the opportunity to classify
their offers into so called cutting-edge fields (“Zukunftsfelder”). Although this classi-
fication appeared on the first sight to be useful for the learning of a classification model,
the discussion with EUROPUBLIC showed that

• just few institutions classified their offers, hence
• just a minor part of offers were actually classified, and
• the quality of the classifications were often judged as imprecise or incorrect.

Although nearly 30.000 offers are available in the WDB-BB, it turned out during the
project that just roughly 2/5 of them where unique and that the others are just repeated
editions of the same course, which are described by the same text. Of those unique
offers only 3.500 where poorly classified according to the cutting-edge fields. Of
course, reclassification of this amount of unique offers would in principle be feasible,
but the resources for a correct reclassification of these offers were neither available,
neither in form of available budget nor skilled employees.

2 This number still excludes all variants derivable by stemming, which cannot be estimated.
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The semantic search implemented for the WDB-BB uses the thesaurus to compute
annotations of the textual descriptions of the education offers and for queries posed by
users. The thesaurus is used on one hand for the recognition of terms in the text and on
the other hand for mapping the recognized terms into the controlled vocabulary defined
by the thesaurus. Thus, the semantic search has for every text document, i.e. every
educational offer, already an annotation based on a controlled vocabulary available,
which annotates recruitment, continued education and cluster-specific concepts used in
the offer’s textual description.

4 Development of Ontology-Based Classification

Since the manual classification of the educational offers by their authors was found to
be impracticable the goal of the project was the development of an automatic classi-
fication approach, which either produces highly correct classification or at least pro-
duces good suggestions for suitable classes.

Usually the task of developing such a classification system would be realized with a
supervised learning approach, which uses pre-classified training examples to derive the
classification model. However in this project we were confronted with the restriction,
that neither a reliable pre-classified training set exists, nor that a larger training set
could be classified manually. So instead of learning the classification model we decided
to construct it.

Input for this construction was a set of relevant terms for each cluster and the
thesaurus. Already during the precursor project this thesaurus was extended by
cluster-relevant terms plus additional sub and super concepts, synonyms and relations
between them. Hence, the concepts characterizing a cluster already existed in the
thesaurus, but were distributed over different categories, like position and job titles,
branches, skills and competencies, technologies, tasks and activities, etc.

In order to construct the classification model we needed to collect all the cluster’s
characterizing terms and derive some measure of their importance for the cluster.
Collection of the characterizing terms was realized by traversal of the thesaurus and
collecting for each relevant term all directly related terms. Determination of the weights
was realized by counting how frequently the characterizing terms were encountered
during the traversal.

4.1 Concept Centrality

The occurrence count of the concepts encountered during the traversal represents some
kind of measure of the “concept centrality” with respect to the cluster. Concepts
frequently encountered during the traversal can be considered as more central to the
cluster than concepts encountered less often, since the former are related to a larger
number of other cluster concepts.

Hence, the traversal process derived not only a list of concepts characterizing the
respective cluster, but also a numerical value representing the centrality of the concept.
We call this list the “centrality set” of the cluster.
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Although this concept list and their centrality values do not represent the usual
frequency count of terms in some existing document collection, these counts can be
interpreted as term frequencies of some virtual document describing the cluster. With
this interpretation trick, conventional measures for the comparison of term frequencies
between each education offer’s annotation and the centrality set of the cluster could be
applied.

4.2 Comparison Metrics

For the classification of education offers against the cluster descriptions, we use the
simple approach of measuring the similarity of the offer’s annotation with respect to the
centrality set. We investigated two metrics: Cosine Similarity and Naïve Bayes. For
both measures we considered different variations of parameters:

1. Ignoring concepts with small centrality values
2. Different weightings of the title’s and textual description’s annotations
3. Weighting the term frequency within the offer’s annotation

As we found during a first validation, both metrics gave comparable results. Interest-
ingly, neither the variation of the weightings (2) nor the use of the offer’s concept
frequencies (3) had a significant impact on the classification quality. However, ignoring
concepts with small centrality values improved the classification quality.

4.3 Improving the Classification Quality

These findings gave us the crucial clue that the means for improving the classification
quality reside in the centrality sets (i.e. the constructed classification models). An
inspection of those sets showed that between some clusters a large overlap existed
between their centrality sets and that the centrality sets included – because of the rather
unintelligent – extraction process a number of very general concepts, not indicative for
any cluster.

Manual minimization of the overlap between centrality measures and the removal
of general, non-indicative terms led to a significant improvement during the second
step of the design phase of the classification approach.

5 Validation and Evaluation of the Approach

As usual in machine learning we used the approach of splitting the data into a training
set and a test set. The set of 3.500 poorly classified education offers was split into a set
of 2.800 offers used for the development and a set of 700 offers restrained for the final
evaluation. Since we didn’t used a training phase, we used the training set entirely for
validation purposes to check whether the parameter modifications of the comparison
metrics described in Sect. 4.2 led to improvements during the classification, and to
check whether the minimization of the overlap of the centrality sets described in
Sect. 4.3 led to the expected improvements.
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5.1 Validation

For the validation of the parameter modifications we used the 2.800 education offers
poorly classified in to the cutting-edge fields, which where automatically mapped into
the nine innovation cluster. Since this process maps potential faulty classifications from
the classes of the cutting-edge fields to the classes of the innovation cluster, this
mapping does not improve the quality of the original data. Misclassified offers remain
misclassified.

Of course, it is justified to ask, what do we gain with such a mapping, if the data are
still error-prone? Are these error-prone data really helpful to validate improvements of
the classification approach? The important point here is to note that we do not measure
the overall absolute correctness of the classification approach with respect to these data;
we just use them to estimate the relative improvement in the reduction of misclassified
cases. For this purpose even erroneous classifications can be used as long as they are
not modified between modifications of the classification approach.

The developed approach classifies annotations of offers against constructed anno-
tations of clusters. Although the annotation of a cluster was derived from a thesaurus
capturing the meaning of cluster’s terms partially, the comparison metrics used for
determining the fitting clusters are purely syntactical and numerical. Hence, it can
neither differentiate the different meanings a term might have in different clusters, nor
does it allow disambiguating the term’s meaning in the context of the clusters, nor is it
possible to make the cluster’s annotations completely disjoint. Therefore, misclassifi-
cations cannot be avoided completely; instead they can only be reduced as far as
possible.

Inspection of the Training Data. Already the inspection of the training data showed,
that the cluster’s distribution is skewed and that the number of offers per cluster was
unevenly distributed (see Table 1). Therefore, we expected to obtain from the clusters
“Ernährung”, “Kunststoff”, “Optik”, and “Umwelttechnik” unreliable measurements.

Validation of the Best Parameter Settings. Weexperimentedwith different parameter
settings (see Sect. 4.2) in order to determine the best parameter configurations. Table 2

Table 1. Distribution of offers

Cluster German cluster label No. of offers

Food Ernährung 19
Health Gesundheitswirtschaft 427
ICT, Media & Creative Industries IKT 1837
Plastics/Chemistry Kunststoff 8
Metal Metall 101
Optics (incl. Microsystem Technology) Optik 28
Tourism Tourismus 93
Energy & Environment Technologies Umwelttechnik 46
Transport, Mobility and Logistics Verkehr 162
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reports for both investigated metrics accuracy, precision and recall of the best parameter
configurations. For both metrics these parameter settings ignored terms of the centrality
set with a centrality smaller than 3.While NaïveBayes gave best results, when the number
of term occurrences in the offers was taken into account, the cosine measure worked – as
expected – best, when this frequency information was not used.

As can be seen from Table 2 both metrics achieve a comparable overall accuracy,
while the precision and recall vary significantly for each cluster. Especially the greyed
out clusters “Kunststoff” and “Optik” cannot be correctly estimated, because of the
small number of available training examples.

5.2 Evaluation

The final evaluation of both metrics and their best parameter settings on the 700
retained test cases3 showed a similar behavior and interestingly resulted in a higher
overall accuracy, as can be seen from Table 3.

The clusters “Kunststoff” and “Optik” gave completely wrong resp. no results,
since just few offers resp. no offers where contained in the test set. Because of the low
number of test cases for the clusters “Ernährung” and “Tourism” their determined
classification quality needs to be interpreted with care.

Statistical Bootstrapping. Obviously, splitting the available cases into a training set
and a test set implies that the selected test cases belong to a single randomly chosen
distribution. This distributionmight ormight not be representative for the entire unknown
population of all cases. Hence a single evaluation of the test cases accuracy, precision and
recall gives only a single randomly chosen view on the overall quality of the approach.
What is really needed is a statement about the quality of the approach for a larger number
of possible distributions in the form of confidence intervals of those measures.

Table 2. Validation of best parameter settings

Naïve Bayes Cosine
Precision Recall Precision Recall

Ernährung 59,1% 18,3% 43,8% 29,6%
Gesundheitswirtschaft 84,4% 74,3% 93,7% 68,7%
IKT 88,0% 90,6% 86,6% 88,9%
Kunststoff 5,9% 12,5% 6,7% 12,5%
Metall 96,8% 81,3% 86,9% 94,6%
Optik 6,3% 66,7% 7,3% 100,0%
Tourismus 56,4% 75,7% 37,8% 97,1%
Umwelttechnik 56,7% 95,0% 66,7% 92,5%
Verkehr 78,0% 76,7% 79,6% 73,5%
Accuracy 82,2% 81%

3 Only 600 of these test cases could be classified into the innovation clusters.
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In order to determine these confidence intervals we used bootstrapping [3, 4] on the
classified examples. Since the designed classification approach does not use a learning
step and since only the test set was correctly classified, we had to adopt the boot-
strapping for the evaluation slightly. Instead of randomly choosing for each bootstrap
evaluation the training and test set new, in order to learn the classification models from
a large number of potential data sets, we used for the bootstrapping only the test cases.
Under the assumption, that their distribution is representative for the entire unknown
population, the distribution of the test cases can be considered a “virtual population”
from which we drew 1.000 random samples with replacement.

Table 3. Evaluation of both metrics

No. Of
Offers

Naïve Bayes Cosine
Precision Recall Precision Recall

Ernährung 13 50,0% 23,1% 30,0% 23,1%
Gesundheitswirtschaft 238 89,3% 97,9% 93,2% 92,4%
IKT 132 87,6% 85,6% 84,7% 84,1%
Kunststoff 4 0,0% 0,0% 0,0% 0,0%
Metall 65 98,2% 81,5% 90,8% 90,8%
Optik 0 0,0% 0,0% 0,0% 0,0%
Tourismus 14 46,2% 85,7% 43,8% 100,0%
Umwelttechnik 36 85,3% 80,6% 83,9% 72,2%
Verkehr 98 94,1% 80,6% 96,4% 81,6%
Accuracy 87% 85,5%

Fig. 2. Confidence Intervals for the Classification’s Precision
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Evaluation of both precision and recall resulted in the box plots shown in Figs. 2
and 3. In contrast to the usual Tukey box plots [5] the whiskers of these plots show the
95 % confidence interval for the precision and recall of each cluster, i.e. the interval
which covers 95 % of all samples.

As can be seen from both plots and as expected, the classification quality for the
clusters “Kunststoff” and “Optik” could not be determined, because of the low number
of cases.

Surprisingly the recall for the cluster “Tourismus” is 100 % perfect. Additionally
one might conclude that tossing a coin for the classification of the clusters “Ernährung”
or “Tourismus” would give a better precision than using the developed classification
approach. For both clusters only about 2 % of the cases in the test set belong to the
corresponding clusters, thus the classification quality for these clusters cannot be
estimated correctly and these findings need to be interpreted carefully.

Since only 6 % of the test cases belong to the cluster “Umwelttechnik” it is rea-
sonable to assume that the large variation in its confidence interval could be reduced if
additional test cases would be available for this cluster.

The classification quality for the cluster “Umwelttechnik” can be considered good and
for the remaining clusters “Gesundheitswirtschaft”, “IKT”, “Metall” and “Umwelt-
technik” as very good.

6 Summary

The preconditions for the application of machine learning approaches are not always
fulfilled. In the case of the WDB-BB, we had no reliably classified cases available to
realize a learning phase. However, we have a large thesaurus available from which a
classification model could be constructed. By extracting for each cluster all concepts

Fig. 3. Confidence Intervals for the Classification’s Recall
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related to the class together with a numerical value describing the “concept’s centrality”
within a cluster and interpreting these values as some term frequency of a “virtual
document” describing the cluster, we were able to construct a classification model from
the thesaurus instead of learning it.

Already during the validation, we found that the clusters were not evenly dis-
tributed and therefore not for all clusters an evaluation would give reliable results.
During the validation phase we cleaned up the cluster’s centrality sets and determined
the parameter configurations which resulted in the highest overall accuracy.

The test of the final configurations of the similarity measures eventually showed
that very good classifications results are obtainable with this approach. Although not
for all clusters valid results could be achieved during the evaluation, we are confident,
that the quality of this approach will hold for these clusters too, if additional cases
become available for the evaluation of their classification quality.

6.1 Implementation of the Approach

Purpose of the design of this approach is the automization of the classification of
continued education offers. Often such a course does not fall into just one cluster. E.g. a
course about healthy nutrition may fall into the cluster “health” as well as into the
cluster “food” or a continued education about “secure welding” might fall into the
cluster “metal”, “energy” or “transportation”. Hence it is not so important to determine
the best cluster into which a continued education can be classified; instead it is com-
pletely sufficient to determine the three best clusters under which an offer should
appear.

Moreover, the classification approach should be applied in a context where either
the descriptions of the offers are input manually or where they are obtained from a bulk
upload. In both cases it is important to know, which automatically obtained classifi-
cations are reliable and which are not. The analysis of the confidence intervals has
identified the cluster, where we cannot be completely confident about the quality of the
approach. Identifying the offers which fall into these clusters and asking either the
course supplier or the WDB-BB staff for a manual classification of the corresponding
offers, helps to ensure good classification results as well as it allows the purposeful
collection of additional evaluation cases for these clusters.
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Abstract. One of the challenges to information extraction is the
requirement of human annotated examples, commonly called gold-
standard examples. Many successful approaches alleviate this problem
by employing some form of distant supervision i.e., look into knowledge
bases such as Freebase as a source of supervision to create more exam-
ples. While this is perfectly reasonable, most distant supervision methods
rely on a given set of propositions as a source of supervision. We propose
a different approach: we infer weakly supervised examples for relations
from statistical relational models learned by using knowledge outside
the natural language task. We argue that this deep distant supervision
creates more robust examples that are particularly useful when learn-
ing the entire model (the structure and parameters). We demonstrate on
several domains that this form of weak supervision yields superior results
when learning structure compared to using distant supervision labels or
a smaller set of labels.

1 Introduction

In this chapter, we consider the problem of Information Extraction (IE) from
Natural Language (NL) text, where the goal is to learn relationships between
attributes of interest; e.g., learn the individuals employed by a particular orga-
nization, identifying the winners and losers in a game, etc. There have been two
popular forms of supervised learning used for information extraction.

1. The classical machine learning approach. For instance, the NIST Automatic
Content Extraction (ACE) RDC 2003 and 2004 corpora, has over 1000 doc-
uments that have human-labeled relations leading to over 16, 000 relations in
the documents [10]. ACE systems use textual features – lexical, syntactic and
semantic – to learn mentions of target relations [21,28].
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2. Distant supervision, a more practical approach, where labels of relations in
the text are created by applying a heuristic to a common knowledge base
such as Freebase [10,19,23].

However, both these methods have inherent issues. Pure supervised approaches
are quite limited in scalability due to the requirement of high quality labels,
which can be very expensive to obtain for most NL tasks. While distant super-
vision appears to be a viable alternative, the quality of the generated labels
is crucially dependent on the heuristic that is being used to map the relations
to the knowledge base. Consequently, there have been several approaches that
aim to improve the quality of these labels ranging from multi-instance learn-
ing [5,19,22] to using patterns that frequently appear in the text [23]. As noted
by Riedel et al. [19], the distant supervision assumption can be too strong, partic-
ularly when the source used for labeling the examples is external to the learning
task at hand.

In our earlier work [13], on which the present chapter is based, we took a
drastically different approach that we summarize and explain in this chapter.
Our insight is that the labels are typically created by “domain experts” who
annotate the labels carefully. These domain experts have some inherent rules
in their mind that they use to create examples. For example, when reading a
sports column, there is an inherent bias that we expect that “home teams are
more likely to win a game” or that “in most games, there is a winner and a
loser and they are not the same team”. We call this knowledge world knowledge
as it describes the domain (or the world) and not specific language constructs.
We aim to use such knowledge to create examples for learning from NL text.
More precisely, our hypothesis – which we verify empirically – is that the use
of world knowledge will help in learning from NL text. This is particularly true
when there is a need to learn a model without any prior structure since the
number of examples needed can be large. These weakly supervised examples can
augment the gold-standard examples to improve the quality of the learned mod-
els. To this effect, we use the probabilistic logic formalism called Markov Logic
Networks [4] to perform weak supervision [2] to create more examples. Instead
of directly obtaining the labels from a different source, we perform inference on
outside knowledge (i.e., knowledge not explicitly stated in the corpus) to create
sets of entities that are “potential” relations. This outside knowledge forms the
context MLN – CMLN – to reflect that they need not be linguistic models. An
example of such knowledge could be that “home teams are more likely to win
a game”. Note that this approach enables the domain expert to write rules in
first-order logic so that the knowledge is not specific to any particular textural
wording but is general knowledge about the world (in our example, about the
games played). During the information extraction (IE) phase, unlabeled text is
then parsed through some entity resolution parser to identify potential entities.
These entities are then used as queries to the CMLN which infers the posterior
probability of relations between these entities. These inferred relations become
the probabilistic examples for IE. This is in contrast to distant supervision where
statistical learning is employed at “system build time” to construct a function
from training examples.
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So far, the major hurdle to learning the full models in IE is the large number
of features leading to increased complexity in the search [17]. Most methods use a
prior designed graphical model and only learn the parameters. A key issue with
most structure-learning (model-learning) methods is that, when scoring every
candidate structure, parameter learning has to be performed in the inner loop.
We, on the other hand, employ an algorithm based on Relational Functional
Gradient Boosting (RFGB) [6,7,12] for learning the structure. It must be
emphasized clearly that the main contribution of the paper is not the learning
algorithm, but instead is presenting a method for generation of weakly supervised
examples to augment the gold standard examples. Specifically, we adapt the
RFGB algorithm to learn in the presence of probabilistic examples by explicitly
optimizing the KL-divergence between the weak labels and the current predicted
lables of the algorithm.

To demonstrate the concept, we perform knowledge extraction on the TAC
2015 Cold Start Knowledge Base Population (KBP) task1. Given a large, unan-
notated collection of documents, the KBP task aims to construct a knowledge
base of entities (entity discovery) and facts about these entities (slot filling).
Utilizing a subset of target predicates from the slot filling task, we compare
our weak supervision approach to using gold-standard examples alone. More
precisely, we perform 5-fold cross validation on these tasks and show that the
proposed approach outperforms learning only from gold-standard data.

When we bias the learner with examples created from commonsense knowl-
edge, we can distantly learn model structure. Because we have more training
examples than the limited supply of gold-standard examples and they are of a
higher quality than traditional distant labeling, the proposed approach allows
for a better model to be learned. Our algorithm has two phases:

1. Weak supervision phase, where the goal is to use commonsense knowledge
(CMLN). This CMLN could contain clauses such as “Higher ranked teams
are more likely to win”. “Home teams are more likely to win,” etc. Given this
CMLN, parameters (weights) are learned from a knowledge base by looking
at the previously completed games. Of course, these weights could also be
provided by the domain expert. Once these weights are learned, predictions
are made on entities extracted from unlabeled text and these predictions
serve as weakly supervised examples for our next phase. This phase can be
independent of the linguistic information (once relations are extracted from
text) and simply relies on world knowledge.

2. Information extraction phase, where the noisy examples are combined with
some “gold-standard” examples and a relational model is learned using RFGB
on textual features from the gold-standard and the weakly supervised docu-
ments. Note that this phase only uses the text information for learning the
model. The world knowledge is ignored when learning from linguistic features.

The potential of such advice giving method is not restricted to NL tasks and
is more broadly applicable. For instance, this type advice can be used for labeling

1 http://www.nist.gov/tac/2015/KBP/ColdStart/index.html.
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tasks [24] or to shape rewards in reinforcement learning [3] or to improve the
number of examples in a medical task. Such advice can also be used to provide
guidance to a learner in unforseen situations [9].

We proceed as follows: after reviewing the related work, we present the two
phases of our approach in greater detail. We then present the experimental setup
and results on the three different tasks before concluding by outlining future
research directions.

2 Related Work

We now present the related work in distant supervision and probabilistic logic
models.

Distant Supervision: As mentioned earlier, our approach is quite similar to
distant supervision [2,10] which generates training examples based on exter-
nal knowledge bases. The external database provides pairs of related entities;
sentences in which any of the related entities are mentioned are considered to
contain positive training examples. These examples along with the few annotated
examples are provided to the learning algorithm. These approaches assume that
the sentences that mention the related entities probably express the given rela-
tion. Riedel et al. [19] relax this assumption by introducing a latent variable for
each mention pair to indicate whether the relation is mentioned or not. This
work was further extended to allow overlapping relations between the same pair
of entities (e.g. Founded(Jobs, Apple) and CEO-of(Jobs, Apple)) by using a
multi-instance multi-label approach [5,22]. We employ a model based on non-
linguistic knowledge to generate the distant supervision examples. Although we
rely on world knowledge to obtain the relevant input relations for our CMLN
model, one can imagine tasks where such relations are available as inputs or
extracted earlier in the pipeline.

Statistical Relational Learning: Most NLP approaches define a set of features
by converting structured output such as parse trees, dependency graphs, etc.
to a flat feature vector and use propositional methods such as logistic regres-
sion. Recently, there has been a focus of employing Statistical Relational models
that combine the expressiveness of first-order logic and the ability of probabil-
ity theory to model uncertainty. Many tasks such as BioNLP [8] and TempEval
[25] have been addressed [16,18,27] using SRL models, namely Markov Logic
Networks (MLNs) [4]. But these approaches still relied on generating features
from structured data. Sorower et al. [20] use a similar concept in spirit where
they introduce a mention mode that models the probability of facts mentioned
in the text and use a EM algorithm to learn MLN rules to achieve this. We
represent the structured data (e.g. parse trees) using first-order logic and use
the RFGB algorithm to learn the structure of Relational Dependency Networks
(RDN) [14]. Relational Dependency Networks (RDNs) are SRL models that con-
sider a joint distribution as a product of conditional distributions. One of the
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important advantages of RDNs is that the models are allowed to be cyclic. As
shown in the next section, we use MLNs to specify the weakly supervised world
knowledge.

3 Structure Learning for Information Extraction
Using Weak Supervision

One of the most important challenges facing many natural language tasks is the
paucity of “gold standard” examples. Our proposed method, shown in Fig. 1,
has two distinct phases: weak supervision phase where we create weakly super-
vised examples based on commonsense knowledge and information extraction
phase where we learn the structure and parameters of the models that predict
relations using textual features. The key idea in the weak supervision phase is
to use commonsense knowledge with basic linguistic patterns while “inferring”
the labels of the set of interesting entities. On the other hand, the information
extraction phase considers extensive linguistic patterns when learning the rela-
tions. The intuition is that the labeling phase merely uses the “inductive bias”
of the domain expert while the information extraction phase merely analyzes
the text. We explain each of these in turn now providing the key intuitions. For
more technical details, we refer to our paper [13].

3.1 Weak Supervision Phase

We now explain how our first phase addresses the key challenge of obtaining
additional training examples. As mentioned earlier, the key challenge is obtain-
ing annotated examples. To address this problem, we employ a method that is
commonly taken by humans. For instance, consider identifying a person’s family
relationship from news articles. We may have an inductive bias towards believ-
ing two persons a sentence with the same last name are related. To formalize

Fig. 1. Flowchart of our method. The top-half represents the weak supervision phase
where we generate the examples using the CMLN and facts from an external source.
The bottom-half represents the information extraction phase where we learn a SRL
model using the weakly supervised and gold standard examples.
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this notion, we seek to construct a model that captures this inductive bias along
with gold-standard examples.

We consider a formalism called Markov Logic Networks (MLNs) that extend
a sub-group of first order logic (with finite domain elements) by allowing for
softening of the clauses using numeric weights. We employ MLNs to capture
the world knowledge. MLNs [4] are relational undirected models where first-
order logic formula correspond to the cliques of a Markov network and formula
weights correspond to the clique potentials. A MLN can be instantiated as a
Markov network with a node for each ground predicate (atom) and a clique for
each ground formula. All groundings of the same formula are assigned the same
weight.

Intuitively, a possible world with a formula having a higher weight is more
probable than one with a lower weight2. There have been several weight learning,
rule learning (also called structure learning) and inference algorithms proposed
for MLNs.

We use MLNs because they provide an easy way for the domain expert to
provide the knowledge as simple first-order logic rules. The weights of these
rules can then be learned using training data. Or in other cases (such as our
experiments), we can simply set these weights by a rule-of-thumb where highly
probably rules have higher weights. In our experiments, we found that the dif-
ference between multiple weight settings do not affect the results as long as the
ordering between the rules is maintained. This is due to the fact that we poten-
tially obtain the same ordering of the weakly supervised labels – only the scale of
the probabilities varies. In our experiments, we observed this pattern and hence
note that specific weights do not have a high impact on our labels.

Another important aspect of this phase is that we use the scalable Tuffy
system [15] to perform inference. One of the key attractions of Tuffy is that it
can scale to millions of documents. The inference algorithm implemented inside
Tuffy appears to be robust and hence serves as an ideal package to be used for
capturing the world knowledge.

Our proposed approach for weak supervision is presented in Fig. 2. The first
step is to design an MLN that captures knowledge, called an CMLN. For the
KBP task, some rules that we used are shown in Table 1. For example, the first
rule identifies any number following a person’s name and separated by a comma
is likely to be the person’s age (e.g., “Sharon, 42”). Rules can incorporate more
textual features, such as the fourth rule and fifth rule which state the appearance
of the lemma mother or father between two persons is indicative of a parent
relationship (e.g.,“Malia’s father, Barack, introduced her...”). These rules can be
simply written by the domain’s expert and softened using the weights presented
in the left column of the table. It should be noted, however, that the type of
knowledge we choose to leverage is not limited to domain expertise. Any type
of knowledge (e.g., commonsense or linguistic patterns) can be utilized for weak
supervision, as demonstrated by our sample rules in Table 1. The relative merits

2 The ratio is actually a log-odds of their weights. We refer to the book for more
details [4].
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Fig. 2. Steps involved in creation of weakly supervised examples.

between the different rules can be judged reasonably even though a domain’s
expert may not fully understand the exact impact of the weights. It is quite
natural in several tasks, as we show empirically, to set “reasonable” weights.

The next step is to create weakly supervised learning examples. We use Stan-
ford NLP toolkit to perform entity resolution to identify the potential persons,
organizations, countries, etc. in each document. The target predicates of interest
for the KBP task were binary slots – that is, a relation with two entities as argu-
ments. We use the CMLN to obtain the posterior probability on the relations
being true between entities mentioned in the same sentence – for example, a par-
ent and child pair. Note that to perform inference, evidence is required. Hence,
we constructed a basic set of facts for each word in the document, including
entity type, lemmas, and neighboring words.

Recall that the results of inference are the posterior probabilities of the rela-
tions being true between the entities extracted from the same sentence and they
are used for annotations. One simple annotation scheme is using the MAP esti-
mate (i.e., forcing the soft predictions to a hard true or false). An alternative
would be to use a method that directly learns from probabilistic labels. Choosing
the MAP would make a strong commitment about several examples on the bor-
derline. Since our world knowledge is independent of the text, it may be the case
that for some examples perfect labeling is not easy. In such cases, using a softer
labeling method might be more beneficial. The second phase of our approach –
structure learning using RFGB – is capable of handling either approach. In our
experiments, we chose to maintain probabilistic labels to reflect the confidence
in a weakly supervised prediction. Now these weakly supervised examples are
ready for our next step – information extraction.

3.2 Learning for Information Extraction

Once the weakly supervised examples are created, the next step is inducing the
relations. We employ the procedure from Fig. 3. We run both the gold standard
and weakly supervised annotated documents through Stanford NLP toolkit to
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Table 1. A sample of CMLN clauses used for the KBP task with their corresponding
weights on the left column. A weight different from ∞ means that the clause is a “soft”
constraint.

Weights MLN Clauses
1.0 isEntityType(a, “PERSON”), isEntityType(b, “NUMBER”),

nextWord(a, e), word(e, “,”), nextWord(e, b) → age(a, b)
0.6 isEntityType(a, “PERSON”), isEntityType(b, “NUMBER”),

prevLemma(b, “age”) → age(a, b)
1.0 isEntityType(a, “PERSON”), isEntityType(b, “NUMBER”),

nextLemma(a, “who”), nextOfNextLemma(a, “turn”) → age(a, b)
0.8 isEntityType(a, “PERSON”), isEntityType(b, “PERSON”)

nextLemma(a, “mother”) → parents(a, b)
0.8 isEntityType(a, “PERSON”), isEntityType(b, “PERSON”)

nextLemma(a, “father”) → parents(a, b)
0.6 isEntityType(a, “PERSON”), isEntityType(b, “PERSON”)

lemmaBetweenEntities(a, b, “husband”) → spouse(a, b)
1.0 isEntityType(a, “PERSON”), isEntityType(b, “NATIONALITY”)

prevWord(a, b) → origin(a,b)
1.0 isEntityType(a, “PERSON”), isEntityType(b, “COUNTRY”)

prevOfPrevLemma(b,“citizen”), prevLemma(b,“of”) → origin(a,b)

create linguistic features. Once these features are created, we run the RFGB
algorithm [12]. This allows us to create a joint model between the target relations.
We now briefly describe the adaptation of RFGB to this task.

Our prior work – triggered by the intuition that finding many rough rules
of thumb can be faster and more accurate than finding a single, highly accurate
local model – turned the problem of learning relational models into a series
of relational function approximation problems using functional gradient-based
boosting [11]. The key idea is to represent each relation’s conditional distribution
as a sum of regression models grown incrementally.

Using functional-gradient boosting for learning the structure has several
advantages. First, being a non-parametric approach the number of parameters

Fig. 3. Steps involved in learning using probabilistic examples.
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grows with every boosting iteration. Due to the incremental updates of the struc-
ture and greedy tree-learning, predicates are introduced only as needed; as a
result the potentially large search space is not explicitly considered. Second, such
an approach can take advantage of off-the-shelf regression-tree learners. More-
over, advances made in the tree learners, such as being able to handle continuous
features, can be utilized easily. Third, the use of functional-gradient boosting
makes it possible to learn the structure and parameters simultaneously, which
is an attractive feature as structure learning in SRL models is computationally
quite expensive. Finally, given the success of ensemble methods in machine learn-
ing [1,26], it can be expected and demonstrated extensively that this approach
is superior in predictive performance compared to the other structure learning
methods.

Similar to previous approaches in functional-gradient boosting, we use the
sigmoid function ( ex

ex+1 ) to represent the probability distribution of each exam-
ple, xi:

P (xi = true|Ne(xi)) =
eψ(xi;Ne(xi))

eψ(xi;Ne(xi)) + 1
(1)

log P (xi = true|Ne(xi)) = ψ(xi;Ne(xi)) − log
(
eψ(xi;Ne(xi)) + 1

)

where Ne(xi) corresponds to the neighbors of xi that influence xi. In directed
graphs, Ne(xi) is the parents of the variable, whereas for a Markov network it
is the Markov blanket. For our approach, we define the joint probability dis-
tribution as a product of conditional distributions. In our experiments, when
we perform joint relation extraction, we simply learn the distribution of every
variable assuming the others are observed and repeat the process for all the
relations.

In standard graphical models literature, this is called the pseudo-log-
likelihood (PLL) and is defined as:

PLL(x) ≡ log P (X = x) = log
∏

xi∈x

P (xi|Ne(xi)) =
∑

xi∈x

log P (xi|Ne(xi))

Functional-gradient boosting first computes the functional gradients ( ∂
∂ψ(x) ) of

the score that we wish to maximize. In most previous work, our goal was to learn
a model that maximizes the PLL of the examples in the training data. Hence,
we calculated the functional gradient of PLL for every example.

∂ log P (X = x)
∂ψ(xi;Ne(xi))

=
∂ log P (xi|Ne(xi))

∂ψ(xi;Ne(xi))

=
∂

(
ψ(xi;Ne(xi)) − log

(
eψ(xi;Ne(xi)) + 1

))

∂ψ(xi;Ne(xi))

= I(xi = true) − 1
eψ(xi;Ne(xi)) + 1

∂
(
eψ(xi;Ne(xi)) + 1

)

∂ψ(xi;Ne(xi))
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= I(xi = true) − eψ(xi;Ne(xi)))

eψ(xi;Ne(xi)) + 1
= I(xi = true) − P (xi = true;Ne(xi)) = Δ(xi) (2)

where I is the indicator function, which returns 1 if xi is a positive example
here, otherwise returns 0. The gradient at each example (Δ(xi)) is now simply
the adjustment required for the probabilities to match the observed value for
that example. If xi is a negative example, the gradient for xi is negative, thereby
pushing the ψ value closer to −∞ and the predicted probability of the example
closer to 0. On the other hand if xi is a positive example, the gradients push the
probabilities closer to 13.

Recall that, in our current work, we are employing probabilistic labels that
result from the weak supervision phase. Hence, we resort to optimizing a different
function, namely, KL-divergence. So instead of optimizing PLL, we optimize the
KL-divergence between the observed probabilities of the relations (Pobs(y = ŷ))
and the corresponding predicted probabilities (Ppred(y = ŷ)). We now derive the
gradient for this objective function.

Δm(x) =
∂

∂ψm−1

∑

ŷ

Pobs(y = ŷ) log
(

Pobs(y = ŷ)
Ppred(y = ŷ|ψm−1)

)

= Pobs(y = 1) − Ppred(y = 1|ψm−1)

A careful reader will see the similarity between the use of PLL and KL-
divergence gradients. In the former case, the gradient is simply the difference
between the observed label and the predicted probability of that label. In the
latter case, the gradient is simply the difference between the observed probability
of a label and its current predicted probability. Hence, similar to the original case,
RFGB simply tries to push the examples in the direction of the observation.

Hence the key idea in our work is to use probabilistic examples that we obtain
from the weakly supervised phase as input to our structure learning phase along
with gold standard examples and their associated documents. Then an RDN is
induced by learning to predict the target relations jointly, using features created
by the Stanford NLP toolkit. Since we are learning a RDN, we do not have
to explicitly check for acyclicity. We chose to employ RDNs as they have been
demonstrated to have the state-of-the-art performance in many relational and
noisy domains [12]. We use modified ordered Gibbs sampler [14] for inference.

4 Empirical Evaluation

In this section, we present the results of empirically validating our proposed
approach on relation extraction from natural language text. Since the goal of
3 With probabilistic training examples, it can be shown that minimizing the KL-

divergence between the examples and the current model gives true probability−
predicted probability as the gradient. This has the similar effect of pushing the
predicted probabilities closer to the true probabilities.
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this chapter is to analyze the use of world knowledge, we compare the use of our
learning algorithm with weakly supervised examples. We did not consider other
learning methods because most of them do not consider learning the model
structure and secondly, the aim is to evaluate the use of weakly supervised
examples and not the learning algorithm. Finally, we do not compare against
other distant supervision methods as they have not yet been used on this task.
Instead, in our paper [13], we also included another domain, that of New York
Times articles in which we perform relation extraction and showed the state-of-
the-art results using distant supervision techniques.

4.1 Experimental Domain: Knowledge Base Population Task

In this work, we apply our weak supervision framework to the TAC KBP 2015
Slot-Filling task. For results on other data sets, see our previous work [13] where
we evaluate on joint prediction of game winners and losers from NFL news
articles as well as extracting facts from the NYT articles data set.

KBP slot filling is a relation extraction task to identify slot-filler values (i.e.,
the arguments) and corresponding provenance information for a given relation.
Together, these allow the population of a knowledge base from raw, unannotated
texts. For example, consider the target relation parents(a,b). Slot-filling aims
to find pairs of entities, a and b, mentioned in the text corpus for which a
has a parent b. In addition, the system must produce provenance to justify the
prediction of a parent relationship (i.e., the supporting context in an article).
The challenge posed by this task are two fold – the scale of the data (millions of
documents of text) as well as the inherent complexity of extracting information
from natural language sources.

Here, we analyze five specific slot-filling targets:

– spouse(a, b) – person b is a spouse (e.g., husband or wife) of person a
– parents(a, b) – person b is a parent of person a
– siblings(a, b) – person b is a sibling (e.g., brother or sister) of a
– age(a, b) – b is the reported age of person a
– alternateName(a, b) – b is an alternate name/alias for person a

For each target, a human manually annotated a small subset of the KBP
corpus of news articles for positive examples to create a “gold-standard” set.
This same human generalized the linguistic patterns they observed in several
“commonsense” rules that can be represented in the form of first-order logic
rules. For each relation, the rules were converted to MLN format as in Table 1
and assigned weights based on their ranking. These rules were used to create a
weakly-supervised set of examples for each target relation. In the next section, we
compare the effectiveness of models constructed using weakly-supervised labels.

4.2 Experimental Setup

To evaluate our weak supervision approach, we consider three experimental con-
ditions. First, we train our RDN models using weakly supervised examples only.
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Second, we test our full approach by training our models on a small set of goal
standard examples augmented with our weakly supervised labels. Last, as a
baseline, we consider training our RDN models using gold-standard examples.

In all conditions, we utilize five-fold cross-validation for evaluation. When-
ever training is done on gold-standard examples, we limit our training to 20
positive examples (i.e., entity pairs) for each relation and 40 negative examples.
For cases where weak supervision is considered, the training set consists of 100
(most probable) inferred positive examples from the CMLN as well as 100 (least
probable) negative examples. Each test set included roughly 20 positive and 40
negative examples for each relation.

Training was done as presented in the previous section, with a CMLN run on
the training corpus to generated weakly supervised examples. All labels (weak
and/or gold standard) were then used to train RDN models. Refer to [13] for
details.

4.3 Initial Results

To evaluate our methods we utilize the area under a precision-recall curve and
ROC curve. Results in Tables 2 and 3 present the average area across all five
folds for ROC and PR curves, respectively

These results show that weakly-supervised labels obtain comparable results
to fully-informed models that include expensive gold-standard labels and supe-
rior results to using only gold standard labels. For siblings and parents, we
see equivalent, if not better, performance for using weak labels alone across
both metrics. Two other relations, alternateName and spouse, produce modest

Table 2. Area under the ROC curve results

Target slot Weak labels only Weak+Gold labels Gold labels only

age 0.838 0.972 0.346

alternateName 0.620 0.683 0.844

parents 0.668 0.685 0.482

siblings 0.810 0.744 0.641

spouse 0.730 0.745 0.606

Table 3. Area under the precision-recall curve results

Target slot Weak labels only Weak+Gold labels Gold labels only

age 0.638 0.942 0.111

alternateName 0.055 0.068 0.445

parents 0.221 0.210 0.154

siblings 0.320 0.299 0.254

spouse 0.216 0.239 0.214
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improvement with gold-standard examples. Only age demonstrates substantial
benefits from including gold-standard labels. The only exception is alternate
name where gold standard examples are much more informative than the weak
supervision ones. We hypothesize that the concept of alternate names is hard to
encapsulate with a good first-order logic clause.

5 Conclusion

One of the key challenges for applying learning methods in many real-world
problems is the paucity of good quality labeled examples. While semi-supervised
learning methods have been developed, we explore an alternative method of weak
supervision – where the goal is to create examples of a quality that can be relied
upon. We considered the NLP tasks of relation extraction and document extrac-
tion to demonstrate the usefulness of the weak supervision. Our key insight
is that weak supervision can be provided by a “domain” expert instead of a
“NLP” expert and thus the knowledge is independent of the underlying problem
but is close to the average human thought process. In general, we are exploiting
knowledge that the authors of articles assume their readers already know and
hence the authors do not state it. We used the weighted logic representation of
Markov Logic networks to model the expert knowledge, infer the relations in the
unannotated articles, and adapted functional gradient boosting for predicting
the target relations. Our results demonstrate that with high quality weak super-
vision, we can reduce the need for gold standard examples. In previous, smaller
scale datasets, we actually see models produced with weakly-supervised labels
outperforming training with gold-standard examples.

Our proposed method is closely related to distant supervision methods. So
it will be an interesting future direction to combine the distant and weak super-
vision examples for structure learning. Combining weak supervision with advice
taking methods [3,9,24] is another interesting direction. This method can be seen
as giving advice about the examples, but AI has a long history of using advice on
the model, the search space and examples. Hence, combining them might lead
to a strong knowledge based system where the knowledge can be provided by a
domain expert and not an AI/NLP expert. We envision that we should be able
to “infer” the world knowledge from knowledge bases such as Cyc or Concept-
Net and employ them to generate the weak supervision examples. Finally, it is
important to evaluate the proposed model in similar tasks.
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Abstract. Finding usage patterns of words in documents is an impor-
tant task in language processing. Latent topic or latent factor models can
be used to find hidden connections between words in documents based
on correlations among them. Depending on the representation of the
documents, correlations between different elements can be found. Given
additional labels (either numeric or nominal) for the documents, we can
further infer the usage patterns that reflect this given information. We
present an empirical comparison of topic and factor models for differ-
ent documents representations to find usage patterns of words in a large
document collections that explain given label information.

1 Introduction

The investigation of contextual usages of words or meanings of documents is
an important task in computer linguistic. For example the word “bank” is com-
monly used in two contexts. The word either appears in the context of a financial
institute or as river bank. In each context the word “bank” co-occurs with spe-
cific other works like “money” or “manager” for one meaning, “sea” or “river” for
the other meaning. Statistics on such co-occurrences lead to statistical relations
among the words. Large text corpora like the German text archive (DTA1) pro-
vide large amounts of reference documents to extract statistical relation among
words in the documents. A corpus means a large collection of documents in a
certain language. The documents in a corpus are usually structured to enable
text analysis. To avoid confusion, we use the term document also for texts and
text snippets that might be only a small part of a whole document. This is
important since our methods to extract usage patterns usually use only small
snippets extracted from larger documents as input.

Factor models like Latent Semantic Analyse [4] or topic models like Latent
Dirichlet Allocation [2] have been successfully used to extract such semantic
usages. Depending on how we represent the documents, different methods can
be used to find latent factors. Using the Bag-of-Words representation, topic
models and factorization of the term-document matrix can be used. In case we
want to include further structure from the documents, kernel methods are a
possible choice. Polynomial kernels for instance include combinations of words
1 www.DWDS.de.
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in the documents as representation of the documents. Further, Gaussian kernels
even enable us to integrate all possible combinations of words in the documents.

Despite of the pure co-occurrences of the words in the documents or the
intrinsic structures, additional information about the documents in the cor-
pus provide additional inside. We might have additional information about the
author and the time when the document was written. High level annotation
might also be available. Such annotations could be the sentiment of some text
snippets or words from the document.

In this paper, we investigate how to efficiently integrate such additional infor-
mation in order to extract the semantic relation among words that also explain
the additional information best. If we have information about the sentiments
of certain words, we want to be able to extract from the usage patterns of the
words the semantics that reflect positivity or negativity. Or, from given temporal
information, we want to be able to extract patterns among words that reflect
certain time episodes.

2 Related Work

There are several related approaches that incorporate supervision into topic
models respectively latent factor models. A large number of recent work con-
centrates on integrating labels of documents into LDA topic models. Blei et al.
introduce in [1] supervised Latent Dirichlet Allocation (sLDA). They model given
labels for documents as Normally distributed random variables depending on the
latent variables of the topic model. The parameters are estimated via Variational
Inference. Using Gibbs sampling to train the topic model, EM-style algorithms
can also be used for parameter estimation as done by Nguyen et al. in [13].
Zhu et al. propose in [22] not to use a fully generative model for the labels of
the documents but a max margin classification model similar to Support Vec-
tor Machines. Again, this supervised topic model can be either estimated via
Variational Variance or as proposed by Zhu et al. in [23] via Gibbs sampling.
Besides directly modelling the label information about the document, indirect
methods are also investigated. In [12] Mimno and McCallum propose to make
the prior on the document-topic distributions in an LDA topic model depending
on document features (or labels). By this, documents with similar features or
labels are more likely to be in the same topic. In [14] Rampage et al. integrate
multiple nominal labels as binary vector. These vectors constrain an LDA topic
model such that each document can only be assigned to topics that correspond
to document labels.

For factor models, not much work has been done to integrate supervision.
The most prominent factor models in text domains factorize the term-document
matrices. A term-document matrix contains as rows word vectors for each doc-
ument in the collection. The word vectors contain at each component frequency
information about a certain word in the document. Now, factor models like
Latent Semantic Analysis [4] extract subspaces with most of the variance in the
space spanned by all word vectors. The basis of this space contains k (linear
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independent) “word vectors” and represent the latent factors. The components
of these basis vectors respectively factors can be interpreted as term loadings
telling how much variance the corresponding terms have in these dimensions.
Previous approach integrating label information into such factor models mainly
concentrated on Partial Least Squares (PLS) methods. Zeng et al. use in [21]
PLS to find a low dimensional representation of documents for text classifica-
tion. Yu et al. on the other hand proposed in [20] a supervised version of Latent
Semantic Indexing. They find a projection that captures the correlation between
input vectors and labels while retaining the information in the inputs.

Another factor model is Non-Negative Matrix Factorization (NNMF), see
Lee and Seung in [8]. NNMF factorizes the term-document matrix such that the
resulting factors contain only non-negative entries. This helps interpreting these
factors. There are several previous approaches that integrate supervision into
NNMF. Most of these approaches add constraints in the calculation of the non-
negative factors. In [9] Liu and Wu add constraints forcing the representations of
the documents in the space spanned by the factors to be the same for documents
with the same label.

Latent factor models in Hilbert Spaces using kernels is rather unusual in text
domains. This is due to the fact that the latent factors cannot be simply inter-
preted. Nonetheless, factorizations of Hilbert space using kernel methods have
been successfully used. In [18] Schoelkopf et al. proposed to perform Principle
Component Analysis (PCA) [6] in a kernel defined RKHS based on the eigenfunc-
tions and eigenvalues of the covariance operator C which can be approximated
by kernel matrices. Further, the kernelized version of PLS (kernel PLS) can be
used to integrate labels in the extraction of latent factors in a Hilbert space. In
[16], Rosipal and Trejo give a detailed description of this method.

3 Methods

Depending on the representation of the documents, different methods to extract
contextual usages are possible. If we represent the documents simply as Bag-
of-Words (see [10]), topic models like Latent Dirichlet Allocation (LDA) or lin-
ear factorization methods like Latent Semantic Analysis (LSA) or Partial Least
Squares (PLS) can be used to extract latent topics or factors that correspond
to usage patterns in these texts. For the linear models LSA and PLS, the words
can be additionally weighted by frequency values like tf-idf values (see [15]).
When we represent the documents as elements of a non-linear or high (possibly
infinite) dimensional space, kernel methods can be used. Such representations
can be all n-grams in the documents, all substrings or the parse trees of the con-
tained sentences. Factorization methods in Reproducing Kernel Hilbert spaces
(RKHS) can be used to extract bases corresponding to latent factors in the
corresponding representation. Kernel Principle Component Analysis (kPCA) or
kernel Partial Least Squares (kPLS) extract such bases as linear combinations of
the elements of the Hilbert space by using positive definite kernels. In the next
subsections, we introduce the methods to extract the latent topics and the latent
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factors with respect to the representation of the texts and given labels. First, we
describe topic models with LDA as well as the supervised version of LDA. Next,
we explain LSA as a factor model of the term-document matrix and PLS as a
factor model that integrates labels into the extraction of the factors. Finally,
we explain how we can extract latent factors in (possibly) infinite dimensional
Hilbert spaces by kPCA and kPLS.

3.1 Topic Models

Topic Models are statistical models that group documents and words from a
document collection into so called topics. The words and documents that are
highly associated with a topic are statistically related based on co-occurrences
of words. Latent Dirichlet Allocation (LDA) as introduced by Blei et al. [2] has
been successfully used for the estimation of such topics. In LDA, it is assumed
that the words in a document are drawn from a Multinomial distribution that
depends on latent factors, later interpreted as topics. We briefly summaries the
generative process of documents as the following:

1. For each topic t:
(a) Draw θt ∼ Dir(β)

2. For each document d:
(a) Draw φd ∼ Dir(α)
(b) For each word i:

i. Draw ti ∼ Mult(φd)
ii. Draw wi ∼ Mult(θti)

Assuming a number of topics, we draw for each a Multinomial distribution
of the words for this topic from a Dirichlet distribution Dir(β) with metapara-
meter β. For each document we draw a Multinomial distribution of the topics
in this document from a Dirichlet distribution Dir(α) with metaparameter α.
Finally, for each word in the document we draw a topic with respect to the
topic distribution in the document and a word based on the word distribution
for the drawn topic. The metaparameter α and β are prior probabilities of the
Multinomial distributions drawn from the Dirichlet distributions. These priors
are the expected word probabilities in a topic before we have seen any data.

The generation of the LDA Topic Model is usually done by Variational Infer-
ence, as in the original work by Blei et al. [2], or via Gibbs samplers, as proposed
by Griffiths et al. [5]. We use Gibbs sampler to sample topics directly from the
topic distribution. Integrating θ and φ out, we get for the probability of a topic
zi, given a word w in a document d and all other topic assignments:

p(zi|w, d, z1, · · · zi−1, zi+1, · · · zT )

∝ Nw,zi
− 1 + β

Nzi
− 1 + W · β

· (Nd,zi
+ α)

We denote Nw,z the number of times topic z has been assigned to word w,
Nd,z the number of times topic z has been assigned to any word in document d,
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Nz the number of times topic z has been assigned to any word, W the number
of words in the document collection and T the number of topics.

After a sufficient number of samples from the Gibbs sampler we get esti-
mates of the word distributions for the topics and the topic distributions for the
documents:

θw|t =
Nw,t + β

Nt + W · β

φd|t =
Nd,t + α

Nd + T · α

3.2 Supervised Topic Models

A simple extension of LDA to handle labels for the documents was proposed
by Blei and McAuliffe in [1]. We briefly summarize the generative process of
documents with labels as the following:

1. For each topic t:
(a) Draw θt ∼ Dir(β)

2. For each document d:
(a) Draw φd ∼ Dir(α)
(b) For each word i:

i. Draw ti ∼ Mult(φd)
ii. Draw wi ∼ Mult(θti)

3. Draw yd ∼ p(yd)

The difference to standard LDA is that we additionally draw labels from
a distribution p for each document. Integrating θ and φ out, we get for the
probability of a topic ti, given a word w in a document d and all other topic
assignments in a similar way as for standard LDA:

p(ti|w, d, t1, · · · ti−1, ti+1, · · · , tT , yd)

∝ Nw,ti − 1 + β

Nti − 1 + Wβ
(Nd,ti + α)p(yd)

The last term comes from density of the label. Note that the label can be a
class label for sentiments or a numeric value for time stamps.

For sentiments given for the documents, we assume that the density of the
labels is p(yd) ∝ exp(− (yd−μw,d)

2

2ρ ), the Normal density and μw,d = η′t̂d
′
+ηti with

t̂d
′
the empirical topic frequencies removing the topic assignment of the current

token. After each Gibbs iteration we estimate η by minimizing the likelihood:

L(η) = − 1
2ρ

∑

d

(yd − η′t̂d)2 − − 1
2σ

∑

k

η2
k
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For time stamps given for the documents, we assume that the density of the
labels is p(yd) ∝ (1−td)

a−1·tb−1
d

Beta(a,b) , the Beta density with a = m̂ · ( m̂·(1−m̂)
s2 − 1) and

b = (1 − m̂) · ( m̂·(1−m̂)
s2 − 1) for each topic.

In several situations, we might not have labels for all documents in our corpus.
In such a case, we would like to predict the label on the unlabeled texts. In order
to do so we fold in the texts first. This means we estimate the empirical topic
distributions ˆtdn

of the new text dn by performing a few Gibbs sampling steps
on these texts without changing the words and topic distributions any more.
Finally, we assign the label sign(η′ ˆzdn

) to the new document for sentiments or
a

a+b for time steps. These predictions are simply derived by the expected values
of the corresponding distributions of the labels.

The interpretation of the topic model at the end is quite straight forward.
For each topic t, we extract the most likeliest words from the word distribution
θw|t and use them as summarization of the corresponding topics.

3.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) as described by Landauer et al. in [4] extracts
usage patterns in documents by grouping words into latent dimensions in the
vector space spanned by the word vectors. The term-document matrix is fac-
torized by a Singular Value Decomposition (SVD) to extract a low dimensional
subspace in the space spanned by the documents and in the space spanned by
the terms. Formally, we factorize the term-document matrix D = UEkV , for U
the left singular vectors, V the right singular vectors and Ek the diagonal matrix
of the k largest singular values. The k left singular vectors that correspond to
the largest singular values span the k dimensional subspace in the document
space and the right singular values in the term space that contain most of the
variance of the word vectors. The value of the components of the right singu-
lar vectors multiplied by the corresponding singular values indicate the variance
of the terms in a certain direction of the subspace. The highest values can be
interpreted as the terms most important of a certain usage pattern.

3.4 Partial Least Squares

Partial Least Squares (PLS) is a method that finds low dimensional subspaces
that maximally align with given labels. Given texts as Word Vectors and labels of
the texts as possible sentiments or temporal information, PLS finds low dimen-
sional word vector representations that are the optimal covariates for a linear
regressor to predict the labels. Algorithm 1 describes the steps of PLS for a given
term document matrix X of word vectors and a label vector y as described by
Rosipal and Trejo in [16]. The algorithm successively extracts latent variables or
components as linear combinations of the input word vectors. These components
are removed from the word vectors by deflating the term document matrix by
X − tt′X. This process is repeated until we have found all k components. The
results of the algorithm are so called loadings vectors. Each loadings vector is a
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Algorithm 1. Partial Least Squares to extract the latent factors.
function getComponent(X, y, k)

for i = 1 : k do
u = rand
repeat

w = X ′u
ti = Xw, ti = ti/‖ti‖
c = y′t
u = yc, u = u/‖u‖

until convergence
X = X − tt′X
y = y − tt′y

end for
return XL = [X ′ti]i=1···k

end function

low dimensional representation of a corresponding word vector. These loadings
can be used to estimate the amount of rotation the words in the vector space
experience when mapped onto the loadings.

Similar as before, we want to be able to also predict new unlabeled doc-
uments. PLS is a linear regression model. The label is simple modelled as:
y = Xβ + r for the term document matrix X, the regression coefficients β map-
ping onto the latent factors and a residual vector r. For T = [t1 · · · tk] from PLS
we can simple estimate the coefficients as shown in Eq. 1. Now, a new document
represented as Bag-of-Words vector xn gets assigned label sign(x′

nβ) for nomi-
nal labels like sentiments, respectively x′

nβ for numeric labels like time stamps.
The regression coefficient (including the mapping onto the latent subspace) as
defined as:

β = X ′U(T ′XX ′U)−1T ′y (1)

The interpretation of the latent factors respectively loading vectors is not as
simple as for topic models. One important factor for the importance of a word
for one latent factor is the value of the corresponding component in the loadings
vector li = XLi,: for the ith loadings vector. The amount of the j component
of li tells how much weight the corresponding word has to predict the label
when we project it onto the latent factor ti. Figure 1 illustrates this idea for a
two dimensional example. The loadings vector t spans a latent dimension α · t
that keeps enough variance in the data and separates the classes well. The ith
component of t is the length of the projection of the ith basis vector in the vector
space spanned by the words. This can be interpreted as the importance of word
i in this latent dimension.

In order to better interpret the importance of some words for the latent
factors we can further rotate the loading vectors such that the variance in
these vectors is maximized. Intuitively, we want loadings that have a few large
components and near zeros components elsewhere. The method called Varimax
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Fig. 1. Illustration of a latent dimension spanned by a loadings vector t in two dimen-
sions of the vector space spanned by the words. Blue and red indicate different class
labels of points. (Color figure online)

Rotation by [7] can be used for such a transformation. This method rotates the
coordinate system spanned by the latent factors such that the loadings in the
new coordinate system have maximum variance in their components.

3.5 Kernel Principle Component Analysis

Kernel methods accomplish to apply linear methods on non-linear representa-
tions of data. Any kernel method uses a map X → φ(X) from a compact input
space X, for example �n, into a so called Reproducing Kernel Hilbert Space
(RKHS). In this space, linear methods are applied to the mapped elements like
Linear Regressions or Support Vector Machines. The RKHS is a space of func-
tions f(y) = φ(x)(y) ∀x ∈ X that allows point evaluations by an inner product,
hence f(y) = φ(x)(y) =< φ(x), φ(y) >. φ(x) is a function and φ(x)(y) mean the
function value at y.

For the mapping φ from above, Kφ is the integral operator as defined in Eq. 2
for a probability distribution P on the input space X.

Kφ(f)(t) =
∫

f(x)· < φ(x), φ(t) > ·dP (x) (2)

For this integral operator, we denote < φ(x), φ(y) >= k(x, y) with kernel k.
By Mercer Theorem [11] there is a one to one correspondence of the above defined
RKHS and the integral operator via the kernel k. This correspondence is given
by the expansion k(x, y) =

∑∞
i=1 φi(x) · φj(y) for {φi} an orthonormal basis in

the RKHS.
Now, the covariance operator C on a Hilbert space H is is defined as E[Z×Z∗]

the outer product of a random elements Z ∈ H with its adjoint Z∗. This is
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Algorithm 2. Kernel Principle Component Analysis.
Center kernel Matrix K
Perform Eigenvalue decomposition: [V, Λ] = eig(K)
Calculate kernel matrix KP of the mapped data samples into the subspace: KP

analogue to the covariance of centred random elements in �n where we have
C = E[X ·XT ]. The empirical covariance is estimated via Ĉ = 1

m

∑
φ(xi) · φ(xj)

for a centred sample {φ(x1), · · · , φ(xm)} with xi drawn from distribution P .
Consequently the kernel matrix approximates the covariance operator: K ∼ C.

Schoelkopf et al. [18] proposed to perform Principle Component Analysis
(PCA) [6] in a kernel defined RKHS based on the eigenfunctions and eigenvalues
of the covariance operator C.

Kernel Principle Component Analysis extracts an orthogonal basis, also
called principle components, in a kernel induced RKHS. Projecting the data
onto the subspace spanned by the first k components captures most of the vari-
ance among the data compared to all other possible subspaces where the data
lies in.

The k components are exactly the eigenfunctions corresponding to the largest
k eigenvalues of the covariance operator of the kernel.

The covariance operator is approximated by the empirical covariance matrix
C = 1

b

∑
i φ(xi) · φ(xi)T . An eigenvalue decomposition on C results in a set of

eigenvalues {λi} and eigenvectors {vi} such that λi · vi = C · vi.
A projection of a sample x in the RKHS onto U = {vi} is done by PU (φ(x)) =

(< vi, φ(x) >, · · · , < vk, φ(x) >) ∈ U . Since the vi lie in the span of the {φ(xi)},
each component is given by vi =

∑
j αj,i · φ(xj). This results in the projection

PU (φ(x)) = (
∑

j αj,1 < φ(xi), φ(x) >, · · · ,
∑

j αj,k < φ(xi), φ(x) >) ∈ U . From
the eigenvalue decomposition we have αi,j = ( 1√

λi
· vi)j .

The steps of kernel PCA are summarized in Algorithm 2 as described by
Shawe-Taylor and Cristianini in [19].

3.6 Kernel Partial Least Squares

Kernel Partial Least Squares (kPLS) performs PLS in a kernel defined Repro-
ducing Kernel Hilbert Space (RKHS). From PLS we see that computing a com-
ponent t is done by t = XX ′u. The matrix XX ′ is the empirical covariance
matrix between the word vectors in X. This matrix is an approximation of the
true covariance matrix for random word vectors drawn from the same distrib-
utions as the word vectors. The idea now is to apply kernel methods for the
extractions of the latent factors.

The algorithm of kPLS is analogue to PLS. In Algorithm 3 we shortly state
the difference compared to the standard PLS. The only differences are that we
directly calculate t as Ku and that the projection onto the orthogonal comple-
ment respectively the deflation of t is done by (I − tt′)K(I − tt′).
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Algorithm 3. Kernel Partial Least Squares to extract the latent factors.
function getComponent(K, Y )

· · ·
u = rand
repeat

t = Ku, t = t/‖t‖
c = y′t
u = yc, u = u/‖u‖

until convergence
K = (I − tt′)K(I − tt′)
Y = (I − tt′)Y (I − tt′)
· · ·
return ti

end function

Like PLS, kPLS can be used as regression to prediction the labels for unla-
beled documents. The regression is simply: y = Φβ +r and the coefficients β can
be estimated as described in Eq. 3.

β = Φ′U(T ′KU)−1T ′y (3)

Now, the interpretation of the latent factors t is even more difficult than
before. The factors t are linear combinations of possible infinite dimensional
Hilbert space elements. In order to interpret them we investigate the documents
that are mapped the closest to the one dimensional subspace spanned by each t.
The idea is that these documents contain the (possible not countable) structures
that are important for the corresponding factors. In Fig. 2 we illustrate this idea.

Assuming we have a two class classification problem and a mapping φ of
the data points, a latent factor t should span a dimension in the RKHS that
keeps the structure of the data (hence most of the variance) and best separates
the classes. A mapped data point can be written as p = (p1, p2, · · · , pn, · · · )′ a
(possible infinite) vectors. This is always possible for Hilbert spaces since they are
isomorph to l2 (cf. [17]). The components pi can be interpreted as the length of
the projection onto a basis {φi} which spans the RKHS. Unlike the Vector-Space
spanned by the words, we can have infinitely many φi’s. Instead of investigating
each basis vector, we investigate only the data points that are closest to a latent
factor t. A mapped data point p with large distance to t will most likely not
have large differences in its components compared to t. For points with very
small distances, we expect many very similar components.

This is indeed the pre-image problem in an RKHS where I look at a list of
k closest points. For a latent factor t we find the k closest data points x1, · · · xk

such that ‖t − φ(xi)‖H ≤ ‖t − φ(xj)‖H for i < j and 
 ∃k′ > k : ‖t − φ(xk)‖H ≤
‖t − φ(xk′)‖H .
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Fig. 2. Illustration of a latent dimension t in a two dimensional RKHS after projecting
the data onto a two dimensional subspace spanned by φ1 and φ2. Blue and red indicate
different class labels of points. (Color figure online)

4 Experiments

We show the alignments of latent variable models to given supervisions on two
data sets. As the first data set, we use the Amazon reviews [3] about products
from the categories books (B), DVDs (D), electronics (E) and kitchen (K). The
classification task is to predict a given document as being written in a positive
or negative context. We use stop word removal and keep only the words that
appear less than 95% and more often than 5% of the time on all documents.

For the second data set, we retrieve from the DWDS corpus snippet lists for
the word Platte (with meanings board / disc / hard disc / plate / conductor)
of small document parts containing this word, including time stamps of the
publication date of the corresponding document.

In the first experiment, we investigate how good the topics respectively latent
factors extracted on the reviews data set align with given sentiments for the
Amazon reviews data set. We performed supervised LDA, PLS, and kPLS on
reviews from books and kitchen and used the given sentiments as labels. For each
methods we set the number of topics respectively the number of latent factors
to 2. By this, we want to reflect the bipolarity of the sentiments given for each
review.

Tables 1 and 2 show the top 10 words for the topics respectively the latent fac-
tors on the book and kitchen reviews from the Amazon data set. For supervised
LDA the top words are simply the most likeliest words for the topics. For PLS
the top words are those words that have the largest absolute value in the cor-
responding loadings. For kPLS the top words are those words that appear most
often in those document snippets that are closest to the extracted components
in the RKHS.
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Table 1. Results of the supervised LDA, PLS and kPLS on the reviews data about
books with sentiment information. We extracted two topics by sLDA, respectively two
latent factors by (kernel) PLS.

sLDA PLS kPLS

topic 1 topic 2 factor 1 factor 2 factor 1 factor 2

read read quot quot quot book

num num waste recipe great edition

story great great character love expected

great time boring story highly black

good story bad novel recommend wow

life get money num excellent reference

people people excellent read easy purchase

reading reading love series favorit wait

world author num plot recipe date

work life pages time read modern

Table 2. Results of the supervised LDA, PLS and kPLS on the reviews data about
kitchens with sentiment information. We extracted two topics by sLDA, respectively
two latent factors by (kernel) PLS.

sLDA PLS kPLS

topic 1 topic 2 factor 1 factor 2 factor 1 factor 2

num num easy pan num loves

great use great coffee month wine

use get love knife waste comfortable

time coffee clean knives broke glasses

good time num pans worked filters

pan great perfect stick told hope

easy good waste set service red

get product broke machine costumer kettle

coffee buy works num produce ice

love pan price non item died

The extracted topics respectively factors, all align quite well with judging
adjectives like “great”, “good”, “excellent” or “waste”. Comparing the three
methods, PLS and kPLS seem to favour the adjectives more than sLDA. Further,
the overlap of the top 10 words for sLDA is larger than on the other methods.
Such cases are more likely to happen on (supervised) LDA since the topics a not
orthogonal as the latent factors from (kernel) PLS.
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Table 3. Accuracies for predicting the sentiment of the book reviews.

sLDA PLS kPLS

books 75.20 ± 2.39 78.02 ± 4.98 77.05 ± 5.20

DVDs 78.35 ± 2.08 80.00 ± 7.00 80.42 ± 5.92

electronics 77.18 ± 1.96 81.82 ± 4.82 80.16 ± 5.16

kitchen 79.34 ± 1.93 82.55 ± 4.05 81.00 ± 5.00

Besides the descriptive power of the topics and latent factor, we are also inter-
ested in how good we can generalize the sentiments to given unlabeled reviews.
For the Amazon reviews data set we might receive gradually new reviews. In
Table 3, we show the accuracies on held out test sets for the reviews from the
Amazon reviews data set. PLS and kPLS outperform supervised LDS on all four
data sets. The generative model from sLDA obviously cannot discriminate the
sentiments as good as the pure discriminative models PLS and kPLS.

In the next experiment, we investigate how good the topic respectively latent
factor models align to temporal information about the texts. We use snippets
about the word “Platte” with temporal information about the publication of
the corresponding document from the DWDS core corpus. The dates range from
1900 to 1999. Since we have no idea of how many topics respectively factors
might be appropriate for the models, we simply use a larger number of 20 topics
respectively factors. First, we apply sLDA with 20 topics and visualize the results
to validate that we find interesting topics at all when we use 20 topics.

In Fig. 3 we show the distribution of the topics extracted by supervised LDA
over the time. We see that using supervised LDA, we get a clear distinction
of the topics over time. We can directly read off the topics and the temporal
period when this topic was prominent. The results indicate three possible main
meanings that clearly separate over time. Among the 20 topics respectively latent
factors we identify these three main meanings to validate how good the method
finds word usage patterns over time.

The topics respectively the latent factors extracted by sLDA, PLS and kPLS
are summarize in Table 4. There we show again the most likeliest words for the
topic respectively the latent factors. First, in topic 1 from sLDA, in the latent
factor 1 from PLS and in the latent factor 1 from kLDA, we find computer
related words as most likely. This corresponds “Platte” in the meaning of “hard
drive”. The distribution of the time stamps from sLDA shows a peak between
1990 and 2000. Before this period, this topic has not appeared. For topic 7 from
sLDA, factor 14 from PLS or factor 10 from kPLS, the most probable words
indicate the meaning of a photographic plate for the word “Platte”. The two
most likeliest words are “Abb” which is short for “Abbildung” (engl. picture)
and “zeigt” (engl. to show). The distribution of the time stamps shows a major
usage of this meaning till the 50. Topic 10, respectively factors 16 from PLS
or 3 from kPLS associated corresponds to the meaning conductor for the word
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Fig. 3. Supervised LDA topics extracted from text snippets about the word “Platte”
over a time period from 1900 to 1999. (Color figure online)

“Platte” that is most used in 1920 and 1930. The two most likeliest words are
“Elektronen” (engl. electrons) and “Strom” (engl. current).

Comparing the three methods, sLDA results in a much clearer separation of
topics over time. The alignment of the term-document distributions to the tem-
poral information really reflects usage patterns in certain temporal periods. The
meaning of “hard drive” is well covered by all methods, but the meanings “pho-
tographic plate” and “conductor” are not very pure represented in the factors
from PLS and kernel PLS. Again, this is likely to be due to the orthogonality of

Table 4. Three topics respectively latent factors extracted from text snippets about
the word “Platte” over a time period from 1900 to 1999.

sLDA PLS kPLS

topic 1 topic 7 topic 10 factor 1 factor 14 factor 16 factor 1 factor 2 factor 3

BIOS Abb Elektronen BIOS Licht Bild BIOS Elektronen Abb

EIDE zeigt Strom SCSI Bild Elektronen SCSI Herr Herr

DOS Negativ Abb DOS läßt Tisch IDE Art Judith

MByte Hintergrund Achse MByte Hintergrund Stromquelle MByte Paper Achse

SCSI Hand Stromquelle Zyliner Vater Kellner Sektoren Platz Elektronen

IDE Aufnahme Hand Sektoren Person Röhre Treiber Form Gast

Partition läßt Strahlen IDE Art Strom Adapter Bild Strom

Sektoren Stelle parallel Partition Strahlen Strahlen Controller Bilder Licht

Windows Person senkrecht Adapter Aufnahme Herr DOS Farben Richtung

Daten Licht Röhre EIDI negativ Stück IDE Abb Stromquelle
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the factors. For example electricity related words might already be well present
in the factor that corresponds to “hard drive”. Now, due to the orthogonality of
all factors, in the other factors these words will likely be less present.

5 Conclusion

In this paper we perform empirical comparisons of topic and factor models to
extract textual usage patterns with respect to given supervisions. We give an
introduction in topic and factor models with and without additional labels for
documents. We perform a comparative study of a topic model and two factor
models to extract textual usage patterns that reflect given labels for the texts.
The results show that for interpretability the generative latent topic models like
LDA are better than the latent factor models that factorize the data in a vector
space. In terms of generalization performance of the topics respectively factors
for a classification on unlabeled data, the factorization models show higher accu-
racies.
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Abstract. We present data-driven log file analyses of an electronic text
book for history called the mBook to support teachers in preparing
lessons for their students. We represent user sessions as contextualised
Markov processes of user sessions and propose a probabilistic clustering
using expectation maximisation to detect groups of similar (i) sessions
and (ii) users. We compare our approach to a standard K-means cluster-
ing and report on findings that may have a direct impact on preparing
and revising lessons.

1 Introduction

Electronic text books may offer a multitude of benefits to both teachers and
students. They allow to combine text, images, interactive maps and audiovisual
content in an appealing way, and the usage is supported by hyperlinks, search
functions, and integrated glossaries. By representing learning content in various
ways and enabling alternative trajectories of accessing learning objects, elec-
tronic text books offer great potentials for individualised teaching and learning.
Although technological progress passed by schools for a long time, inexpensive
electronic devices and handhelds have found their way into schools and are now
deployed to complement traditional (paper-based) learning materials.

Particularly text books may benefit from cheap electronic devices. Electronic
versions of text books may revolutionise rigour presentations of learning content
by linking maps, animations, movies, and other multimedia content. However,
these new degrees of freedom in presenting and combining learning materials
may bring about also new challenges for teachers and learners. For instance,
learners need to regulate and direct their learning process to a greater extent if
there are many more options they can choose from. Thus, the ultimate goal is not
only an enriched and more flexible presentation of the content but to effectively
support teachers in preparing lessons and children in learning. To this end, not
only the linkage encourages users to quickly jump through different chapters
but intelligent components such as recommender systems [35] may highlight
alternative pages of interest to the user. Unfortunately, little is known on the
impact of these methods on learning as such and even little is known on how
such electronic text books are used by students.
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 362–376, 2016.
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In this article, we present insights on the usage of an electronic text book
for history called the mBook [36]. Among others, the book has been successfully
deployed in the German-speaking Community of Belgium. We show how data-
driven analyses may support history teachers in preparing their lessons and
showcase possibilities for recommending resources to children. Our approach is
twofold: Firstly, we analyse user sessions to find common behavioural patterns
across children and their sessions. Secondly, we aggregate sessions belonging to
the same user to identify similar types of users. This step could help to detect
deviating learners requiring additional attention and instructional support.

In this paper, we argue that conclusions on an individual session or user
basis can only be drawn by taking the respective population into account and
propose a contextualised clustering of user sessions. We represent user sessions
as fully observed Markov processes that are enriched by context variables such
as timestamps and types of resources. We derive an expectation maximisation
algorithm to group (user-aggregated) sessions according to the learners’ behav-
iour when using the text book. To showcase the expressivity of our approach,
we compare the results to a standard K-means-based [30] solution. While the
latter leads to trivial and insignificant groups, our methodology allows to project
similar sessions (users) onto arbitrary subsets of variables that can easily be visu-
alised and interpreted. We report on observations that can be used to support
teacher instructions and students learning.

The remainder is organised as follows. Section 2 reviews related work. We
introduce the mBook in Sect. 3 and present our probabilistic model in Sect. 4.
We report on empirical results in Sects. 5 and 6 provides a discussion of the
results and Sect. 7 concludes.

2 Related Work

The analysis of log files is common in computer science and widely used to
understand user navigation on the web [1,24]. Often, sequential approaches,
such as Markov models and/or clustering techniques, are used to detect browsing
patterns that are predictive for future events [18,34,38] or interests of the user
[3]. However, previous approaches to modelling user interaction on the Web
mainly focus on the pure sequence of page views or categories thereof, without
taking contextual information into account. Patterns in page view sequences
have been analysed using all sorts of techniques, including relational models [2],
association rule mining [14,15], higher-order Markov models [18], and k-nearest
neighbours [6].

A useful step toward interpretable patterns is to partition navigation behav-
iour into several clusters, each with its own characteristics. Hobble and Zicari
[23] use a hierarchical clustering to group website-visitors and Chevalier et al.
[11] correlate navigation patterns with demographic information about users.
Other heuristic approaches to identify clusterings of user interactions include
sequence alignments [21], graph-mining [19]. The advantage of model-based clus-
terings is that the cluster parameters itself serve as a starting point for interpret-
ing the results. Prior work in this direction focuses on modelling navigational
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sequences using Markov processes [10,32] and hidden Markov models [8,18,39].
Haider et al. [20] cluster user sessions with Markov processes for Yahoo! News.
Their approach is similar to ours as they also propose a nested EM algorithm,
however, we model timestamps with periodic distributions while Haider et al.
resort to simulate periodicity by external filtering processes. They focus on pre-
senting clustering results and do not compare their methods to alternative ones.

In recent years, logfile analyses attract more and more researchers from other
disciplines such as educational research [5]. Although the analysis of log and
process related data is still a new and emerging field in educational research, two
methodologies can be described [4]: Educational data mining (EDM) and learn-
ing analytics. Their common goal is to discover knowledge in educational data,
however, the former is purely data-driven while the latter keeps the user/expert
in the loop to guide the (semi-automatic) analysis. Many approaches are related
to web-based learning environments such as MOOCs [9] and other learning man-
agement systems [31].

Köck and Paramythis [27] cluster learners in a web-based learning environ-
ment according to their performance in exercises and the usage of an interactive
help. Lemieux et al. [29] develop an online exerciser for first year students and
visualise identified patterns of usage and different behaviours. Sheard et al. [37]
and Merceron and Yacef [33] analyse logfile data not only to describe user behav-
iour but also to provide information and feedback to learners and tutors. Gener-
ally, much work is put into visualising and organising the discovered knowledge
as relationships and correlations are often complex and difficult to communi-
cate [16].

Another line of research deals with the assessment of the level of motivation
[22,26]; the time spent on a page and filling in exercises turn out to be predictive
indicators. Cocea [12] and Cocea and Weibelzahl [13] studied disengagement
criteria as a counterpart of motivation. One of their findings showed that a user’s
history needs to be taken into account for predicting engagement/disengagement
as exploratory phases always precede learning phases and vice versa.

3 The mBook

History as a subject is especially promising for a prototype of a multimedia text-
book. The re-construction of past events and the de-construction of historical
narrations is ubiquitously present in our historical consciousness; different nar-
rations about the past contain and provoke a great deal of different intentions
and interpretations. It is therefore crucial to deal with history in various and
different perspectives as a single narration is always a retrospective, subjective,
selective, and thus only a partial re-construction of the past.

The mBook is guided on a constructivist and instructional-driven design.
Predominantly, the procedural model of historical thinking is implemented by
a structural competence model that consists of four competence areas that are
deduced from processes of historical thinking: (i) the competency of posing and
answering historical questions, (ii) the competency of working with historical
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methodologies, and (iii) the competency of capturing history’s potential for
human orientation and identity. The fourth competency includes to acquire and
apply historical terminologies, categories, and scripts and is best summarised as
(iv) declarative, conceptual and procedural knowledge. It is often referred to as
the foundation of structural historical thinking in terms of premises and results
and systematised by principles, conceptions of identity and alterity as well as
categories and methodological scripts [28].

Imparting knowledge in this understanding is therefore not about swotting
historic facts but aims at fostering a reflected and (self-)reflexive way of deal-
ing with our past. The underlying concept of the multimedia history school-
book implements well-known postulations about self-directed learning process
in practice. The use of the mBook allows an open-minded approach to history
and fosters contextualised and detached views of our past (cf. [25]). To this end,
it is crucial that a purely text-based narration is augmented with multimedia
elements such as historic maps, pictures, audio and video tracks, etc. Addition-
ally, the elements of the main narration are transparent to the learners. Learners
quickly realise that the narration of the author of the mBook is also constructed,
as the author reveals his or her construction principle.

The mBook consists of 5+1 chapters, Antiquity, Middle Age, Renaissance,
19th Century, 20th and 21th Century and a chapter on methods. In the German-
speaking Community in Belgium, the mBook has about 1300 regular users. In
our analysis, we focus on about 330.000 sessions collected in Belgium between
March and November 2014 containing approximately 5 million events (clicks,
scrolls, key press, etc.). The book encompasses 648 pages including 462 galleries
and 531 exercises among others.

4 Methodology

4.1 Preliminaries

Let X denote the set of N user sessions given by X = {Xi}N
i=1. A session is

assembled by user events such as page views, clicks, scrolls, text edit, etc. In
this work, we focus on the connection time t, the sequence of the visited page
in terms of the chapter they belong to x = 〈xi

1, . . . , x
i
T i〉, and the sequence of

categories realised by the viewed pages c = 〈ci
1, . . . , c

i
T i〉. The six chapters of the

book together with the homepage and a termination page that encodes the end
of a session form 8 possible realisations for every visited page, i.e., the values
for the variable xi

t. There are five different categories, summary, text, gallery
and the auxiliary variables representing the categories for the homepage and the
termination page.
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4.2 Representation

We deploy a parameterised mixture model with K components to compute the
probability of a session.

p(Xi|Θ) =
K∑

k=1

κkp(Xi|Θk).

The variables κk represent the probability that a random session is generated by
the k-th component and also known as the prior probability for cluster k. The
term p(Xi|Θk) is the likelihood of the session given that it belongs to cluster k
with parameters Θk. Defining sessions in terms of time, chapters, and categories
allows to assemble the likelihood of a session as

p(Xi|Θk) = p(ti|βk)p(xi|αk)p(ci|γk).

The browsing process through chapters is modelled by a first-order Markov chain
so that pages are addressed only by their chapter. We have,

p(x|αk) = p(x1|αinit
k )

L∏

l=2

p(xl|xl−1, α
tr
k )

where αk = (αinit, αtr) is split up into parameters αinit for the first page view
and the transition parameters αtr for the process.

The category model depends on the chapters as we aim to observe correlations
between different types of pages. This may show for example whether galleries of
some of the chapters are more often visited (and thus more attractive) than oth-
ers and thus generate feedback for the teachers (e.g., to draw students attention
to some neglected resources) and developers (e.g., to re-think the accessibility
or even usefulness of resources). Categories are modelled by

p(c|γk) = p(c1|x1, γ
init
k )

L∏

l=2

p(cl|cl−1, xl−1, γ
tr
k )

where again γinit is used for the prior category and γtr for the subsequent tran-
sitions.

4.3 Modeling Time

The model for the connection times is inspired by the approach described in [20].
The goal is to project the continuous time space into a multinomial space to ease
the estimation process. For this purpose, we introduce fixed unique and periodic
components that serve as a new basis for generating continuous time events.
To capture periodic behaviours, 90 time components are defined: 48 daily and
42 weekly components. The connection model is a multinomial law over each
component with parameters βd

k,j and βw
k,j where j encodes the component and
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d and w refer to a daily or weekly setting, respectively. The probability for a
session to start at a certain time t is therefore given by

p(t|βk) =
48∑

j=1

βd
k,jdj(td) +

42∑

j=1

βw
k,jwj(tw).

The components are derived from the normal distribution. Periodic constraints
are embedded in the probabilities, so that the density is composed with the
tangent function which, besides of being periodic, conserves the symmetry. The
generic form can be written as

pμ,σ,T (t) =
1

erfc( 1
σ )T

exp
(

−1 + tan2( π
T (t − μ))

σ2

)
.

The period is governed by the parameter T , and erfc is the complementary
error function. The parameter μ represents the expectation similarly to the
normal law. A component is said to recover a time slot if its density in this
interval is higher than half of its maximum. This condition is parametrised
by standard deviation σ. For a component covering time unit Δ we obtain
σ = tan

(
π
T Δ

)
/
√

log(2).
The daily components are centred every 30 min, have a duration of 30 min,

and the first component is centred at 12:00am. The weekly components are cen-
tred every four hours with a duration of four hours, and the first one is centred
on Monday at 2:00am. This shift allows a synchronisation with the schools work-
ing hours, as we have a slice for the morning between 8:00am and 12:00pm, one
for the afternoon between 12:00pm and 4:00pm and another one for the evening
between 4:00pm and 8:00pm.

To capture the daily and weekly behaviors, connection times are considered
modulo the 48 slices of a day (td) or the 336 slices of a week (tw). The daily dj

and weekly wj distributions are described as follows

dj(t) =
1

48 erfc( 1
σd

)
exp

(
−1 + tan2

(
π
48 (x − j)

)

σ2
d

)

wj(t) =
1

336 erfc( 1
σw

)
exp

(
−1 + tan2

(
π

336 (x − 4 − 8j)
)

σ2
w

)

using the variances σd = tan
(

π
48

1
2

)
/
√

log(2) � 0.039 and σw =
tan

(
4π
336

)
/
√

log(2) � 0.045.

4.4 Optimisation

Given our mixture model and assuming independence of the user sessions, the
likelihood of the sessions is given by

p(X|Θ) =
N∏

i=1

K∑

k=1

κkp(ti|βk)p(xi|αk)p(ci|xi, γk).
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The joint likelihood needs to be maximised with respect to the parameters Θ =
(πk, βk, αk, γk). For computational reasons, we address the equivalent problem
of maximising the log of the likelihood. The optimisation problem becomes

Θ∗ = argmax
Θ

log p(X|Θ).

We develop an expectation maximisation (EM)-like algorithm [10,17]. Expec-
tation maximisation is an iterative approach to approximate a local maximum
from a given set of parameters. The procedure works in two steps: the expec-
tation step (E-Step) computes the expectation of the objective function related
to the problem from the actual set of parameters and deduces two temporary
distributions of the Markov sequences over the cluster and the time components
called class-conditional probability distribution and time component-conditional
probability distribution denoted by Pi,k and Z•

i,k,j , respectively,

Pi,k =
κkp(Xi|Θk)

∑K
k′=1 κk′p(Xi|Θk′)

Zd
i,k,j =

βd
k,jdj(tid)∑48

j′=1 βd
k,j′dj′(tid)

Zw
i,k,j =

βw
k,jwj(tiw)

∑42
j′=1 βw

k,j′wj′(tiw)

The maximisation step (M-Step) re-estimates the parameters from these pro-
posal distributions to increase the value of the objective function and thus also
the likelihood. We give the update formulas of four of the parameters, as they
can be easily translated to the other parameters:

κk =
∑N

i=1 Pi,k∑K
k′=1

∑N
i=1 Pi,k′

βd
k,j =

∑N
i=1 Zd

i,k,jPi,k
∑42

j′=1

∑N
i=1 Zd

i,k,j′Pi,k

γinit
k,g =

∑N
i=1 Pi,kδ(xi

1, g)
∑5

g′=1

∑N
i=1 Pi,kδ(xi

1, g
′)

γtr
k,g,h =

∑N
i=1 Pi,kηg,h(xi)

∑5
h′=1

∑N
i=1 Pi,kηg,h′(xi)

,

where g and h take their values in the fives possible types of pages. The function
δ(xi

1, g) is the Kronecker delta that equals 1 if the two arguments are equal and
0 otherwise. The function ηg,h(xi) returns the number of transitions in session
xi from a page of type g to a page of type h.
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5 Empirical Results

In our empirical analysis, we focus on about 330.000 sessions collected in Belgium
between March and November 2014 containing approximately 5 million events
including clicks, scrolls, key presses, etc. In the remainder, we show results for
K = 8 clusters to trade-off expressivity and interpretability, however, other
choices are possible.1

5.1 Comparison with K-Means

The first experiment demonstrates the expressivity of our approach. We compare
our probabilistic solution with a winner-takes-all clustering by K-means [30].
Since K-means acts in vector spaces, user session are represented as vectors
in a 354 dimensional space, so that both algorithms have access to identical
information.

Figure 1 shows the results from clustering sessions. For lack of space, we focus
on a projection of the final clusterings on the daily components capturing repeti-

Fig. 1. Results for K-means and the proposed model. (Color figure online)

1 Note that we obtain similar results for all 1 ≤ K ≤ 30; this holds in particular for
the comparison with K-means.
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Fig. 2. Cluster distribution across a week. (Color figure online)

tive behaviour across days. The geometric nature of K-means is clearly visible in
Fig. 1 (top): the clusters separate the day into six time slots of about four hours.
The more complex colouring between 4pm and 8pm indicates that more vari-
ables than the connection time are active during that period. Nevertheless, the
simplicity of the result (e.g., most of the clusters differ only in connection time),
particularly for school hours, is clearly inappropriate for further processing or
interpretation.

Figure 1 (bottom) shows the corresponding results for our probabilistic app-
roach. The distribution of the clusters is fairly more interesting and balanced
across the day. Clusters clearly specialise on dependencies across week days which
is also shown in Fig. 2. Cluster C1 and C4 capture recurrent behaviour and cover
a large part of the user activity. Cluster C6 focuses on the activity on Sunday
afternoon and similarly, cluster C5 specialises on Wednesday afternoon. Clusters
C2 and C3 have a similar shape as they occur mainly on Tuesday and Wednes-
day morning, respectively, during school hours. In the remainder, we discard
K-means and focus on the analysis of the proposed approach instead.

5.2 Session-Based View

Figure 3 shows the results of a session-based clustering. User sessions are distrib-
uted across the whole clustering according to the expressed behaviour. Clusters
can therefore be interpreted as similar user behaviours at similar times.

Before we go into details, recall Fig. 2, where the Sunday afternoon is shared
between cluster C1, C4 and C6. The latter aggregates most of the activity and
also most of the text page views. Figure 3 allows for a clearer view on the cluster-
ing. According to Fig. 3, a similar observation can be made for clusters C7 and
C8. Both of them have Antics as the main chapter, and have a similar weekly
distribution, the only difference being that C8 contains more text views. The
latter indicates more experienced users as we will discuss in the following.

The visualisation shows that all categories are clearly visible for all clusters,
indicating a frequent usage of all possible types of resources by the users. Cluster
C6 possesses half of the mass on the weekend of category text. This indicates
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Fig. 3. Resulting clusters for the session-based clustering (Color figure online)

more experienced users who like to form their opinion themselves instead of going
to summary pages. The same holds for cluster C8 that possesses in addition only
a vanishing proportion of the home category. Small probabilities of category
home as well as large quantities of category text indicate that users continuously
read pages and do not rely on the top-level menu for navigation.

5.3 User-Based View

Our approach can also be used to group similar users. To this end, we change
the expectation step of the algorithm so that sessions by the same user are
processed together. That is, there is only a single expectation for the sessions
being in one of the clusters. Clusters therefore encode similar users rather than
similar behaviour as in the previous section.

Figure 4 shows the results. Apparently, the main difference of the clusters is
the intensity of usage during working days and weekends. Cluster C2 for instance
clearly focuses on working day users who hardly work on weekends compared
to Cluster C1 whose users place a high emphasise on Saturdays and Sundays.
Cluster C3 contains low frequency users who rarely use the mBook and exhibit
the smallest amount of sessions and page views per session (see also Fig. 5).
Cluster C8 contains heavy (at night) users with high proportions of category
text. In general, we note that transition matrices are consistent between chapters
in contrast to the session-based clustering, that is, test takers interact with most
of the chapters.

Figure 5 confirms our interpretations with descriptive statistics. Cluster C8
containing the power users possess the highest number of sessions and also the
highest number of sessions per user. Clusters C3 and C7 are the smallest. As
cluster C3 has been identified as encoding low frequency users, it may be com-
forting to know that these users constitute a clear minority. Nevertheless teachers
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Fig. 4. Resulting clusters for the user-based clustering. (Color figure online)

Fig. 5. Number of users (top), sessions (center), and sessions per user (bottom) for the
user-view.

may be well advised to keep an eye on these children and individually support
them by all means.

Figure 6 finally shows differences in clicking behaviour of users. For two clus-
ters, transition matrices for types of resources are visualised, darker colours
indicate more probable transitions. The two bars on top visualise the distrib-
ution of chapters. Both distributions are quite different. While users in cluster
C1 exhibit a broad interest and visit chapters uniformly, their peers in cluster
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Fig. 6. Transitions (row → column) realised by two clusters.

C4 focus clearly on the three chapters Renaissance and the XIX and XX &
XXI centuries. However, the observation also shows that linkage is exploited by
the users who seem to like browsing and learning about the book and thus also
about history.

Users in clusters C1 and C4 exhibit very different click behaviours. While
users in both clusters prefer viewing galleries, users in cluster C1 move deter-
ministically on to a text page, while users in cluster C4 visit summary pages
or terminate the session. This reflects the two possibilities of browsing inside
the mBook: a hierarchical and a flat one. The former is realised by performing
transitions between text pages always through a summary page. By contrast, a
flat navigation makes use of the page to page navigation possibility and hence
reflects the way a regular paper book is read. Knowing these relationships is an
important means to personalise electronic books like the mBook. For instance,
identifying an active session as a member of cluster C1 allows to replace links
to summary pages by other content as these users will almost always go back to
a text page. On the other hand, knowing that a user of cluster C4 is viewing
a gallery may be utilised to actively recommend other resources to prevent her
from churning.

6 Discussion

Our results illustrate potential benefits from clustering learners for instructional
purposes. In the first place, the probabilistic clustering approach shows a way
how to condense a huge amount of logfile information to meaningful patterns
of learner interaction. Classifying a student into one of several clusters reveals
whether, when, and how the learner used the materials offered by the electronic
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text book. Thus, the teacher can get information about the learners’ navigation
speed, whether part of the content was used in self-directed learning processes as
expected, whether learners came up with alternative learning trajectories, and
so on and so forth. This information can be used by the teacher in a formative
way (cf. the concept of formative assessment, e.g., [7]), that is, it is directly used
to further shape the learning process of students. For instance, in a follow-up
lesson the teacher could simply draw the students attention to some parts of the
book that have not or only rarely been visited. Moreover, history and learning
about history could be reflected in a group discussion of learners who used the
mBook resources of a particular chapter in different ways.

An important extension of the presented analyses would be to relate contex-
tual information (e.g., from teacher and class room level) to clusters. This would
help to validate cluster solutions and improve their interpretability. For instance,
a cluster of learners who use the text book mainly Thursday morning may con-
sist of students with history lesson on Thursday morning and with teachers using
the electronic text book only to support lessons and not for homework.

7 Conclusion

We presented contextualised Markov models to represent user sessions and pro-
posed an Expectation Maximisation algorithm for optimisation. We applied our
approach to clustering user sessions of the mBook, an electronic text book for
history. Our results may have a direct impact on teachers and learners and can be
used together with outlier analyses to find students who need individual support.
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Abstract. When building traditional Bag of Visual Words (BOW) for
image classification, the k-Means algorithm is usually used on a large
set of high dimensional local descriptors to build a visual dictionary.
However, it is very likely that, to find a good visual vocabulary, only a
sub-part of the descriptor space of each visual word is truly relevant for
a given classification problem. In this paper, we explore a novel frame-
work for creating a visual dictionary based on Cartification and Pattern
Mining instead of the traditional k-Means algorithm. Preliminary experi-
mental results on face images show that our method is able to successfully
differentiate photos of Elisa Fromont, and Bart Goethals from Katharina
Morik.

1 Introduction

Classification of images is of considerable interest in many image processing and
computer vision applications. A common approach to represent the image con-
tent is to use histograms of color, texture and edge direction features [8,29].
Although they are computationally efficient, such histograms only use global
information and thus only provide a crude representation of the image con-
tent. One trend in image classification is towards the use of bag-of-visual-words
(BOW) features [11] that come from the bag-of-words representation of text
documents [27]. The creation of these features requires four basic steps: (i) key-
points detection (ii) keypoints description, (iii) codebook creation and (iv) image
representation. Keypoints refer to small regions of interest in the image. They
can be sampled densely [16], randomly [31] or extracted with various detectors
[21] commonly used in computer vision. Once extracted, the keypoints are char-
acterized using a local descriptor which encodes a small region of the image
in a D-dimensional vector. The most widely used keypoint descriptor is the
128-dimensional SIFT descriptor [20]. Once the keypoints are described, the col-
lection of descriptors of all images of a training set are clustered, often using
the k-Means algorithm, to obtain a visual codebook. Each cluster representa-
tive (typically the centroid) is considered as a visual word in a visual dictionary
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 377–385, 2016.
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and each image can be mapped into this new space of visual words leading to
a bag-of-visual-words (or a histogram of visual words) representation. The k-
Means algorithm considers all the feature dimensions (128 for SIFT descriptors)
for computing the distances to estimate clusters. As a consequence, the nearest
neighbor estimation can get affected by noisy information from irrelevant feature
dimensions [6,18]. Furthermore, the k-Means algorithm forces every keypoint to
be assigned to a single visual word, while in practice, multiple visual words could
be relevant for a particular keypoint.

Our goal is to use the recently developed Cartification methodology [4,5]
to obtain better subspace clusters that could be used in the clustering phase
of the BOW creation process. Then, standard machine learning classification
algorithms can be used over the set of image descriptions using our BOW rep-
resentation to tackle the image classification problem. As a result, we present
the novel algorithm k -Morik (Mining patterns tO classify caRtified Images of
Katharina), which takes only one parameter, k , to classify images of Katharina
Morik using the proposed methodology. This paper presents the main ideas of
this methodology and provides initial experimental results.

2 Related Work

2.1 Pattern Mining in Computer Vision

Frequent pattern mining techniques have been used to tackle a variety of com-
puter vision problems, including image classification [13,17,23,33,37,38], action
recognition [14,26], scene understanding [36], object recognition and object-part
detection [25]. All these methods use pattern mining to build a set of mid-
level features from low-level image descriptors. Apart from the application, these
methods mostly differ in the image representation used, the way they convert
the original image representation into a transactional description suitable for
pattern mining techniques and the way they select relevant or discriminative
patterns. In this work, we are not interested in building a new set of mid-level
features but to improve the low level BOW-based representation using pattern
mining.

2.2 Subspace Clustering

Subspace clustering methods have only seldom been explored in the context of
visual dictionary creation (for BOW models). In recent work, Chandra et al. [7]
constructed nonlinear subspaces from the raw image space using a Restricted
Boltzmann Machine (RBM) [15]. In the experimental part, they incorporate
additional structural information [19] which makes their method difficult to com-
pare to a standard clustering method when aiming to classify images after a
BOW creation step. Spectral clustering methods [32] have shown to give very
good results in comparison to other existing unsupervised methods for object
discovery [28]. The main difference between existing spectral clustering methods
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comes from the used affinity matrix. Most spectral clustering methods start by
constructing a similarity matrix W ∈ R

N×N between the N data points that we
want to cluster. Let G(V ;E) be an undirected graph where V is the set of N
vertices and E is the set of weighted edges. W might be the adjacency matrix of
G where Wi,j = w,w > 0, when the vertices i and j are in the neighborhood of
each other and Wi,j = 0 otherwise. A degree matrix D ∈ R

N×N is constructed
from W using the degree di of each vertex, vi ∈ V and defined as di =

∑N
j=1 wij .

Then, a Laplacian matrix L ∈ R
N×N is constructed from D and W (for example

by taking L = D − W ). Finally, in most spectral subspace clustering algorithms
[9,12,30,39], the k clusters are found by applying the k-means algorithm to the
k first Eigen vectors of L.

Subspace clustering methods have also been developed in the context of pat-
tern mining. Clique [2] is one of the first subspace clustering algorithm intro-
duced. Clique partitions each dimension into the same number of equal length
intervals i.e. it partitions an m-dimensional data space into non-overlapping rec-
tangular units. A unit is considered dense if the number of data points which fall
in this unit exceeds a given threshold. A cluster is a maximal set of connected
dense units within a subspace. In the algorithm, the size of the intervals and the
density threshold are the input parameters. In Clique, clusters may be found
overlapping or disjoint subspaces which is suitable for our image classification
task as one image patch can be described by different overlapping descriptors
in different relevant subspaces. However, the choice of the parameters (difficult
to tune) can have a dramatic effect on the resulting clusters, and the algorithm
(based on Apriori [3]) does not scale very well. Enclus [10] follows the same
procedure as Clique but uses an entropy and a correlation measures (among
dimensions) rather than the coverage to define dense units. MAFIA [22] is
another Apriori-based algorithm which uses an adaptive grid instead of an equal
length grid for finding dense units based on the distribution of data. MAFIA is
faster and produces more subspace clusters than Clique but still has strong scal-
ing problems. Other algorithms such as Proclus [1], Findit [34], δ-Cluster [35]
follow a top-down approach (contrary to the previous bottom-up algorithms).
They all assign each instance into only one cluster and allow outliers.

Each of the methods presented above requires the user to set the number
and the size of the subspaces in advance and they all tend to find equal-sized
redundant clusters. Moreover, these methods are very sensitive to parameter
tunings which again might lead to overlook the actual interesting subspaces. In
the rest of the paper, we explore the use of the recently developed Cartification
technique to obtain a more robust visual dictionary.

3 Cartification for Images

In a nutshell, the Cartification approach to subspace clustering developed by
Aksehirli et al. [5] transforms the data into a collection of local neighborhoods,
in which it detects clusters by finding the re-occurring object sets. Cartification
allows to exploit a property of most subspace clusters: if a set of objects forms
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a cluster structure in a combination of dimensions, then this set of objects is
likely to also form a cluster structure in subsets of these dimensions. Therefore,
the CLON algorithm, proposed by Aksehirli et al. [4], efficiently discovers the
cluster structures in one-dimensional projections using Cartification, and then
iteratively refines these clusters to find higher-dimensional subspace clusters.
More precisely, for each dimension, Cartification operates as follows:

1. For each data point, create a set consisting of its k nearest data points,
resulting in a neighborhood database in which the i-th row contains a set
of objects representing the k points that are closest to the i-th point. This
neighborhood database is a transaction database and can be represented as
a binary matrix in which each row has k columns that have the value 1 and
the other columns have value 0.

2. Search for large sets of objects that are frequently repeated in the rows of the
resulting binary matrix; each such set represents a set of data points that are
close to each other, and hence represents a cluster for this attribute.

For one dimension, the above algorithm returns a set of (possibly overlapping)
clusters. Then, in a second stage, CLON combines clusters over multiple dimen-
sions, resulting in sets of points that are frequent in multiple dimensions and
as such, subspace clusters are found [4]. An advantage of the Cartification app-
roach is that in step 2, it does not use the distance measure itself, which makes
the approach less scale dependent; for instance, whether a logarithmic scale or a
linear scale is used for an attribute has no impact on the results. Another advan-
tage of Cartification is the interpretability of its parameters: neighborhood size
k and minimum frequency. Setting k and a lower bound on the frequency, both
of which are functions of the expected cluster size, is much easier than determin-
ing settings for parameters such as density or distribution. Aksehirli et al. have
shown that after parameter tuning of all methods, Cartification performs typi-
cally better than other subspace clustering approaches [4,5]. Another advantage
of Cartification is that it can very efficiently find cluster centers and outliers
immediately after transforming the data, that is, already after the first step of
the above procedure, as the cluster centers are represented by the very frequent
singleton objects in the data, and the outliers by the infrequent objects [5]. It
is mainly this aspect that we will explore in this paper. Here, our goal is to
study whether Cartification can give better results for creating a dictionary of
so called visual words. As already explained in the Introduction, such words
are typically discovered using k-Means clustering after which only the centroids
of the clusters are retained. As Cartification already immediately provides the
cluster centers, i.e. the frequent items in the cartified data, without the need
to perform actual clustering, we will use only these items as visual words. Fur-
thermore, for every item, instead of considering all 128 dimensions (of the SIFT
descriptors), we will only consider those (cartified) dimensions in which the item
has a high support (i.e., it is a frequent item in that cartified dimension). In this
way, the relevant subspaces for each cluster center are automatically obtained.
The remaining procedure remains the same as is standard in image classification
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(see Sect. 1). When computing the distances of each descriptor to the cluster
centers, or visual words, only the relevant subspaces are being considered.

4 Experiments

4.1 Experimental Setting

Our dataset consists of 20 pictures of 3 different persons: 8 photos of Katharina
Morik (Fig. 1), 6 photos of Elisa Fromont (Fig. 2), and 6 photos of Bart
Goethals (Fig. 3).

Our goal is to build a classifier that can automatically detect the photos of
Katharina Morik. In order to represent the images in terms of feature descrip-
tors, SIFT descriptors and detectors are used [20]. The parameters of the SIFT
descriptors are tuned to obtain around 400 descriptors per image. The size of
the SIFT patch is kept to 16 × 16 pixels. For computing the SIFT descriptors
the implementation by Lazebnik [19] is used. Our descriptor space contains 8 546
128-dimensional descriptors.

These descriptors are transformed (cartified) to more than a million trans-
actions (8 546 ∗ 128). More specifically, for each descriptor and each dimension a
transaction is created consisting of its k-nearest neighbors among the complete
set of descriptors in that dimension. Then, we select the top-k most frequent
descriptors in this transaction database, representing the descriptors that occur
in the most nearest neighborhoods, and therefore must be central to clusters
of descriptors. Next, for each of these frequent descriptors, we only retain the
dimensions (of the original SIFT vector) in which the descriptor has a support
larger than a given minimum threshold, as these must be the sub-spaces of the
cluster in which the descriptor is central. Then, for every picture, we compute
the histograms of all visual words built from those clusters. That is, for each orig-
inal descriptor, we determine to which cluster center, or visual word its distance,

Fig. 1. Photos of Katharina Morik
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Fig. 2. Photos of Elisa Fromont

Fig. 3. Photos of Bart Goethals

computed over the relevant subspaces only, is the smallest. These histograms are
then used as feature vectors for the classifiers. As such, we obtain a k-dimensional
histogram for each photo which serves as input to the classifiers.

For our experiments, we implemented k-Morik in Python, and used two clas-
sifiers implemented in the SciKit-learn Python modules [24], namely Decision-
TreeClassifier, a basic Decision Tree Classifier implementation using Gini impu-
rity as splitting criterion, and GaussianNB, a Gaussian Naive Bayes implemen-
tation. For both algorithms, we used all default parameter settings. To evaluate
the performance, we used a leave-one-out cross validation.
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4.2 Results

Due to time constraints, we have not been able to run extensive experiments,
or collect more data. We did, however, manipulate the data and ran enough
experiments to find the good parameter settings. Entirely as expected, k-Morik,
is showing very promising results. More specifically, the neighborhood size used
for cartification is set to 50, which is a relatively small number, but large enough
to obtain enough and good cluster centers [5]. The parameter k which determines
the number of visual words, i.e. the top most frequent descriptors occurring in
the nearest neighborhoods, is set to 10. Note, that this is a very small number
as compared to the typical image classification setting where the number of
visual words is typically a few hundreds. The resulting 10 descriptors covered
photos of all three persons in the data. Then, for each of these visual words,
only the dimensions for which the descriptor has a support larger than 100 were
considered when computing the distances to each of them.

Finally, the Decision Tree Classifier classified all 20 photos correctly, resulting
in an accuracy of 100%. The Naive Bayes Classifier classified 18 out of 20 photos
correct.

5 Conclusion

We have presented k-Morik, a new algorithm based on Cartification and ded-
icated to learn better visual vocabularies for image classification. Based on our
preliminary experiments, we are convinced that subspace clustering methods can
be interesting when building visual vocabularies for image classification espe-
cially when the size of the original descriptor is large and when all dimensions
might not be relevant. k -Morik is a a very promising method in this context
as it provides at the same time the relevant subspace clusters, their underlying
dimensions and their centröıds.
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13. Fernando, B., Fromont, É., Tuytelaars, T.: Mining mid-level features for image
classification. Int. J. Comput. Vis. 108(3), 186–203 (2014)

14. Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition
using mined dense spatio-temporal features. In: ICCV, pp. 925–931 (2009)

15. Hinton, G.E.: A practical guide to training restricted boltzmann machines. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade, 2nd edn. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012)

16. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In:
Proceedings of the Tenth IEEE International Conference on Computer Vision
(ICCV’05), vol. 1, pp. 604–610. IEEE Computer Society, Washington (2005)

17. Kim, S., Jin, X., Han, J.: Disiclass: discriminative frequent pattern-based image
classification. In: Tenth International Workshop on Multimedia Data Mining (2010)
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