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Abstract Future applications in ITS and automated driving require high precise
digital maps including a lane-specific transportation network. The paper presents a
method for estimating lane center lines based on vehicle trajectories from
floating-car data. Kernel density estimation was applied for estimating lane center
lines. The floating-car dataset is based on measurements on three different road
types (urban 3-lane freeway, urban arterial, rural 2-lane freeway) using different
low-cost GNSS receivers (GPS data logger and several smartphone GPS posi-
tioning apps). As reference, some test runs were conducted with high precise
D-GPS measurement equipment. The longitudinal and lateral positioning errors
were analyzed within a roadway and trip based distance analysis. The final results
show deviations less than 0.14 m in median between measured and estimated lane
center lines. This accurate estimation of lane center lines allows a generation of
lane-specific transportation networks based on common floating-car data.
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1 Introduction

Transport planners usually model roads as one single edge between two nodes (e.g.
intersections) in transportation networks, irrespective of the number of lanes.
Therefore, single lines as part of an entire road graph represent the road sections.
Often lane-specific information like the number of lanes is included in additional
attributes of the graph. This generalization of road geometries reduces the resolu-
tion of the data as well as costs in the development and maintenance of a trans-
portation network [1].

However, existing and emerging ITS services might require digital road network
graphs with a higher level of detail and accuracy regarding the representation of
lane center lines. Cooperative services, for instance, often either need the lane
specific localization of messages or provide information for specific lanes [2].
Examples would be lane departure warnings, local hazard messages (e.g. road
bumps, accidents, congestion) or lane specific route information (speed limit, turn
relations, curvature).

In the context of (highly) automated driving, transportation networks acts as a
priori basic information, so that a vehicle can localize itself on the road using its
own position relative to the road geometry. For this purpose, highly detailed maps,
which include among others the lane center positions, the exact lane widths,
associations between neighboring lanes and road hierarchy of single lanes, are
required [3].

The development of such detailed maps, which contain a lane-specific trans-
portation network, needs extensive measurement campaigns using highly accurate
localization equipment or technologies. This is a costly and time-consuming pro-
cess especially for wide areas or spacious transportation networks. On the other
hand positioning data from moving observers (vehicles) so called floating-car data
(FCD) is a GNSS based data source and is often available for wide areas.

Methodologies to derive geometries and topologies for digital street maps using
GNSS-based FCD has been the focus of several research projects and studies in
recent years. Davies et al. [4] focused on determining road center lines by assigning
GNSS-positions to raster cells and creating histograms. Cells with high sums of
allocated GNSS-points were assumed to represent the road center line. Sato et al.
[5] also observed the frequency distribution of GNSS-points in raster cells, but
focused on identifying the correct number of lanes. While they could reliably
identify the correct number of lanes, they did not evaluate their exact center line
positions.

This was the aim of a study by Knoop et al. [6], who introduced the Precise Point
Positioning (PPP) technique in order to determine the lane a vehicle is travelling on
and to create a self-learning street map in real-time. Uduwaragoda et al. [7] also
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focused on identifying the number of lanes and their center lines using GNSS data.
They analyzed the probability density distribution of vehicle trajectories at road
cross sections using a non-parametric Kernel Density Estimation. Results showed
that lane center lines can be computed accurately enough if a minimum of 150
trajectories are available, independently of road type and characteristic.

Traffic management operators often use FCD for different applications like traffic
monitoring and forecast [8]. Generally particular vehicle fleets (e.g. city taxi fleet)
are equipped with GNSS positioning systems (e.g. GPS receiver) and provides FCD
for traffic management centers in different forms, either as raw positioning data
(vehicle trajectories) or as processed and map-matched data (e.g. link related travel
times). The quality and accuracy of raw FCD in terms of positioning depends
strongly on the measurement equipment. In general, low-cost GPS receivers are
used which are installed either fixed in the vehicle itself or within other devices
inside the vehicle (smartphone, route guidance system, GPS data logger).

Herrera et al. [9] analyzed traffic data obtained via GPS-enabled phones for
purposes of traffic management applications and found out that FCD is suitable for
average speed estimation on roads if 2–3 % of all vehicles are equipped with
GPS-enabled phones. Zheng et al. [10] evaluated the accuracy of GPS-based taxi
trajectory records in Guangzhou, China. Zheng et al. identified different types of
erroneous data using a four filter criteria. Most outliers were detected by the low
accurate signal criterion. Zheng et al. conclude that 65 % of records seem valid, so
GPS often fail in positioning correct coordinates.

The development of a lane-specific transportation network based on vehicle
trajectories from FCD is the key objective in the research project “LaneS”, funded
by the Austrian Federal Ministry for Transport, Innovation and Technology. The
idea is to estimate the center lines of each lane based on a wide set of lane-specific
trajectories obtained from measurements with low-cost GPS devices. The quality of
measured vehicle trajectories is evaluated already in advance by comparing them
with trajectories from high accurate positioning measurements.

2 Methodology

2.1 General Approach

The general approach in this study within the research project “LaneS” is sum-
marized in Fig. 1. The basis is a broad data collection of vehicle trajectories
(VT) from test runs with different GNSS-based positioning technologies on various
road sections. For positioning a high accurate differential GPS (D-GPS) measure-
ment equipment is used as well as common GPS-devices like smartphones and data
loggers.

The quality of VT was evaluated afterwards within a roadway based (lateral
deviations of several VT) and a trip based (longitudinal and lateral deviations of
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single VT) distance analysis. Therefore, the VT were compared with the high
accurate D-GPS measurements to identify outliers and erroneous trajectories.

The generation of a lane-specific graph was realized with kernel density esti-
mation (KDE), which is a non-parametric probability density function. First per-
pendicular lines (PL) on an input graph (e.g. from Open-Street-Map) of the
considered road section were created every 5 m. Then the VT were cut with all PL
to establish intersection points. Applying KDE the position of lane center lines
(maximum of probability density function) were estimated for each PL. Connecting
every center point per lane over all PL achieves finally a lane-specific transportation
network.

2.2 Study Area and Measurement Systems

The measurements of the floating-car data (FCD) took place at three different
measurement sites (section A, B, C) near Graz (Austria) to cover various road
categories. Section A is an urban 3-lane section on the freeway A2 near the city of
Graz with a length of 14 km (8.7 mi). Section B is a 2-lane section on the urban
arterial road Triesterstrasse in the city of Graz. A characteristic of urban sections is
that shadowing effects caused by buildings may occur when measuring the vehicle
position with a GPS receiver. Section C is a rural 2-lane section on the freeway S35
in the north of Graz with a length of 12 km (7.5 mi). Within the choice of these
sections, we paid attention to avoid tunnels and bridges, because these sites can
disturb the sensitive GPS receivers.

In total 369 test runs over more than 4000 km (2500 mi) were conducted on the
three measurement sections. Within some of these trips, one vehicle was equipped
with a differential GPS measurement system (D-GPS), which consists of an inertial
measurement unit (IMU) combined with a GPS receiver. The correction data of a

Fig. 1 General methodology
to generate a lane-specific
transportation network
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reference station are received with a GSM antenna. The achieved positioning
accuracy is about 0.02 m at 100 Hz recording rate. During the measurements, we
installed several low-cost GPS receivers in the vehicles. Therefore, several
Qstarz GPS data logger with an update rate of 1 or 5 Hz and some smartphones
with different GPS logging applications were used. Four apps for Android and one
for iPhone was tested, all of them recording with an update rate of 1 Hz.

At all three measurement sites each lane was surveyed separately at several
constant vehicle speeds. First, there were no lane changes within the test runs. The
vehicle moved as close as possible to the center of the road lane. This is necessary
especially for the generation of the reference trajectory based on D-GPS. After that,
we also performed measurements with lane changes, because common and avail-
able FCD in real, used for generating map data, will contain irregular distributed
lane changes and will not contain data only from one defined lane.

2.3 Distance Analysis of GNSS Based Vehicle Trajectories

The position accuracy of the measured GNSS based vehicle trajectories (VT) was
evaluated within two different approaches of distance analysis. Therefore, we
choose only test runs without lane change. In the roadway based distance analysis,
only lateral deviations to a reference graph of similar test runs (trips) were analyzed
to get results for spatial positioning errors. Therefore, VTs of same lane, direction
and GPS device were considered separately. Afterwards the results were compared
between different lanes and other GPS devices. Additionally in the trip based
distance analysis, lateral and longitudinal deviations of VTs from the same trip (test
run) but from different devices were analyzed to achieve also results for time-based
positioning errors.

Roadway Based Distance Analysis. At first a reference graph was generated
which models the center line of each lane in the study area. This was realized with
the open source statistics program R-project. This reference graph is the result of
smoothing several VTs from the high accurate D-GPS measurements per lane. The
smoothing uses spline curve estimation in R-project. Then we calculated the
Euclidean distances of each GNSS based VT, which are the nearest distances from
each point of trajectory perpendicular to the reference graph. All distances of
similar test runs (same lane, direction and device) were merged. For evaluating the
quality of lateral positioning of the VTs we established two different graphical
analysis: a boxplot to get the distribution of distances and a barplot where all
distance measures were classified in different groups of positioning accuracy. To
compare different measurement devices and road characteristics, average distance
and deviation measures for each measurement device were calculated over all lanes
and both directions per measurement section (section A, B and C).

Trip Based Distance Analysis. This type of analysis sets its focus on the total
two-dimensional error of position fixes contained in typical VTs. Thus, the com-
plete horizontal position error will be determined for each instance in time, for
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which a respective test receiver provides a valid position fix. In order to quantify the
contained error of all accumulated fixes during the test runs, the “true” trajectory—
which the vehicle was actually driving—has to be known with high precision. This
“true” trajectory of the vehicle has been determined on the basis of the D-GPS
measurement equipment. Due to the combination of dual frequency GNSS and an
inertial navigation unit, the accuracy of these “true” reference trajectories (RT), are
in the range of a few centimeters for all RT position fixes. The superior quality of
the RTs are perfectly suited to determine the contained position errors in all valid
fixes of the VTs, which are expected to be in the range of a few meters. While the
roadway based distance analysis cannot distinguish between position errors of the
test receiver and the deviation of the vehicle from the exact center line due to the
driver, the current analysis is capturing the horizontal position error with high
precision. In the course of error determination, the location of the GNSS antenna of
the test receiver inside the vehicle has to be known accurately with respect to the
reference point of the high performance equipment. In the current test setup, the
respective lever arms have been determined a priori to the conducted test runs.
These body offsets between test receiver and reference equipment inside the test
vehicle are taken into account and the RTs are transformed to the exact location of
the VTs before the residuals are drawn. While the position error along the driving
trajectory does not harm the process of center line determination, only the deviation
perpendicular to the driving direction contributes errors into the algorithm of this
study. Thus, the distinction between longitudinal and lateral position error has been
made. The determination of both parts of the position error, require the knowledge
of the exact driving direction, which is also provided with the RT-coordinates. For
the goal of this study, the lateral part of the determined position error is relevant and
it was analyzed whether this part of the VTs is accurate enough to support the
developed approach.

2.4 Lane-Specific Transportation Network Based on Kernel
Density Estimation

The central assumption for estimating lane center lines from a set of standard GNSS
vehicle trajectories (VT) is that the probability to determine a vehicle’s position on
a lane is highest along its central axis. Thus, the density of a population of vehicle
trajectories is highest in the center of a lane and lowest around the edges. It follows
that the density maxima of vehicle positions at a road cross section should corre-
spond to the positions of lane center lines of a road. Moreover, the number of
estimated density maxima indicates the number of lanes on a road.

For the computation of density distributions of GNSS based VTs, a Kernel
Density Estimation (KDE) is applied. It is a non-parametric probability density
function, which centers a smooth kernel function at each data point and sums them
to estimate densities. Deng and Wickham [11] defines it as follows in Eq. (1),
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f̂ kdeðxÞ ¼ 1
n
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h
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where K is the kernel function and h is the bandwidth. In this work, a Gaussian
kernel function is applied. In order to find an appropriate bandwidth as smoothing
factor, a data-driven “solve-the-equation” plug-in approach developed by Sheather
et al. [12] is applied. To further deal with distinct data outliers, confidence intervals
of 5 % from the median later vehicle position are introduced. Trajectories outside
these confidence intervals are not considered in the computation of the KDE.

Systematically erroneous GNSS trajectories within the underlying input data can
lead to wrong maxima estimations in the sense of not representing an actually
existing lane. Thus, a geographic distance matrix is calculated which contains the
distances taken pairwise between all elements within the found maxima set. If there
are n maxima in the maxima set, the distance matrix is an n * n symmetric
two-dimensional array with n * (n − 1)/2 distinct elements. The probability of
distance relations within the maxima set is evaluated, so that potentially implausible
lane center lines can be detected and omitted. In this way, the potential effects of
accumulated erroneous GNSS trajectories and over smoothed bandwidths are
minimized.

The developed algorithm is applied on equidistant road cross sections every 5 m
along the observed road. For these road cross sections, perpendicular lines are
drawn. The positions of intersections between GNSS based VTs and perpendicular
lines are determined and assigned with IDs. As a result, the lateral positions of VTs
at cross sections every 5 m along the observed road are obtained. Based on these
positions, the KDE is computed. Then, the local maxima of the derived density
distributions are estimated. For this, first and second derivative tests are conducted.
The maxima of consecutive cross sections are connected with line strings using a
shortest distance algorithm. In this way, the geometries and the basic topology of
the lane-specific road network are constructed. The resulting lane numbers and
geometries are then compared to the lane center geometries based on the highly
precise D-GPS measurements.

3 Results and Discussion

3.1 Results of Roadway Based Distance Analysis

In the roadway based distance analysis, distribution and quantity of distances
between measured GPS based vehicle trajectories and the reference graph (repre-
sents the centerline of each lane) were analyzed for each lane and direction of each
section (A, B, C) in the study area. Exemplarily the results over all lanes and both
directions for the section A (urban 3-lane freeway) are presented in Fig. 2
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considering three different measurement devices (one data logger and two smart-
phone apps).

In the example of section A in Fig. 2 the lateral position accuracy is similar for
Qstarz Data Logger and Android GPS Logger, although detection rate (5, 1 Hz) and
number of trips (77, 26) is different. The characteristic of classes of positioning
accuracy of both are similar (about 60 % of distances are less than 2 m to reference
graph) as well as median (about 1.5 m) and mean (about 2 m) but standard devi-
ation is higher for Android GPS Logger (3.21 m against 1.78 m). The quality is
comparatively worse for iPhone GPS Logger (median 3.31 m); only 31 % of dis-
tances are less than 2 m to the reference graph.

Finally, average distance and distribution measures were calculated for all sec-
tions in the study area for different GPS devices (see Table 1). We achieved the best
results with the Qstarz Logger 5 Hz (median 1.2–1.5 m). A detection rate of 1 Hz
for the Qstarz Logger is not recommended here (median 2.5–3 m). Except the
iPhone GPS Logger, the smartphone apps provide similar results to the Qstarz 5 Hz
in terms of the median, but standard deviation is higher especially for the
Android GPS Logger.

Fig. 2 Distances to reference graph on urban 3-lane freeway A2 (section A) for measured GPS
vehicle trajectories based on Qstarz Data Logger (left), Android GPS Logger (middle) and iPhone
GPS Logger (right). The barplot above shows the quantity of distances within classes of lateral
positioning accuracy. The boxplot below shows distribution and statistics (quantity n, median,
mean and standard deviation SD) of the distances
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3.2 Results of Trip Based Distance Analysis

With respect to the approach of this study, we expect that most vehicle trajectories
would arise from the use of smartphones, as modern devices contain GNSS and
data transmission to provide their tracks. In this regard, two different Android
smartphones and a Qstarz data logger have been placed in the same vehicle
equipped with the D-GPS measurement. The data logger is used as reference
device, to check if the GNSS chip set inside the smartphone can achieve similar
performance values of typical mass-market receiver. These tests have been con-
ducted for different road categories, in order to capture the influence of environ-
mental conditions on freeways and urban streets. All three devices have been
analyzed individually for each of the three road sections, to detect whether vehicle
speed or environmental conditions would have significant impact on the overall
performance.

The test area and its surroundings show good GNSS reception conditions on the
urban 3-lane freeway (section A), some influence from topography on the rural
2-lane freeway (section C) and minor urban challenges in the city (section B), since
the buildings have mostly 4–6 floors and have some distance to the road.
Exemplarily the results of trip based distance analysis on the urban 3-lane freeway
(section A) for the Android GPS logger are shown in Fig. 3, which is a repre-
sentative example of the performance that can be expected by using low-cost GPS
receivers.

Table 1 Average distance and distribution measures for distances of different GPS devices for the
three measurement sections A, B and C (SD means the standard deviation)

Average distance and
distribution measures in
meter (m)

Android
GPS
Logger

Android
TopoNa-vigator

iPhone
GPS
Logger

Qstarz
Logger
5 Hz

Qstarz
Logger
1 Hz

Section A
urban 3-lane
freeway

1. Quartile 0.8 1.1 1.6 0.7 1.2

Median 1.6 2.2 3.3 1.5 2.5

Mean 2.0 2.4 4.8 2.0 3.0

3. Quartile 2.9 3.5 6.1 2.7 4.3

SD 3.2 1.7 5.5 1.8 2.5

Section B
urban 2-lane
arterial road

1. Quartile 0.8 0.6 – 0.6 –

Median 1.7 1.2 – 1.3 –

Mean 2.1 1.5 – 1.5 –

3. Quartile 2.8 2.1 – 2.1 –

SD 1.7 1.3 – 1.2 –

Section C
rural 2-lane
freeway

1. Quartile 0.8 0.7 0.8 0.6 1.4

Median 1.8 1.5 1.8 1.2 3.0

Mean 10.6 1.8 2.5 1.4 3.5

3. Quartile 3.5 2.5 3.3 1.9 5.1

SD 77.1 1.6 2.6 1.1 2.7

In section B iPhone GPS Logger and Qstarz Logger 1 Hz were not used, so there are no results here
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The resulting position errors are presented as position error density, since this
representation is most suitable for the current assessment objectives. In Fig. 3 such
an error density is shown for the Android GPS logger over a sample of 25 test runs
within one day. The resulting errors are distributed over eight error classes, from the
half-meter class (the very left bin in both diagrams) to the hundred-meter class (the
very right bin). The separation between two classes is the mean of both center
values of each class. For example, all position errors greater than 1.5 m and smaller
3.5 m have been accumulated into the two-meter class, which represents the biggest
bin in the left diagram of Fig. 3 with a share of 46.5 % of all determined position
errors. The next bin with a high accumulation of error values is the five-meter class,
which is a typical picture for mass-market receivers to have most hits in these two
error classes.

With this understanding the left diagram in Fig. 3 shows that only 22.8 % of the
errors are either contained in the half-meter class or the one-meter class, which
would be sufficient, to be on the correct lane. Now looking at the right diagram in
Fig. 3 the error density for the lateral part of the same Android receiver is depicted
and it can be seen that the two left bins contain 51.2 % of the errors and thus
smaller than 1.5 m. In other words, approximately half of all the valid fixes from
smartphones are on the correct lane.

The results are not perfect, but they encourage the application of the kernel
density estimation, since mass-market receiver would have the majority of all fixes
on the correct lane. This approach also shows the limits of ordinary vehicle tra-
jectories coming from mass-market devices, with respect to its applicability in other
domains. The quality of the lateral position error is suitable for the purposes of this
study, but it has to be noticed that the quality results cannot be assumed in the same
way for other applications. The scientific analysis of mass-market receivers and the
derivation of adequate parameters have been executed with respect to the specific
requirements of the study.

Fig. 3 Total (left) and lateral (right) position error distribution on the urban 3-lane freeway
(section A) for the trajectories based on the Android GPS logger application for smartphones
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3.3 Results of Generating a Lane-Specific Transportation
Network

The algorithm described in Sect. 2.4 was applied for each of the three measurement
sites in the study area (section A, B, C). In Fig. 4, exemplary cross sections of each
section with the resulting KDEs are visualized. The punctuated lines show the
x-coordinate positions of the detected maxima along the perpendicular lines of the
road cross section. The light grey lines are equivalent to the positions of the highly
precise D-GPS measurements. Furthermore, the respective derived lane geometries
are depicted next to the diagrams. In these examples, the number of lanes was
estimated correctly. The density distributions show distinctive maxima peaks cor-
responding to the estimated lane center lines. These estimated maxima are situated
close to the lane center lines from the reference measurements. This indicates that
the developed algorithm is capable for estimating the positions of lane center lines
with high accuracy.

The overall performance of the estimation of lane center lines is evaluated based
on the reference measurements. The following boxplot (Fig. 5) shows the distri-
bution of distances of the estimated lane center line positions to the reference lane
center lines which were measured using the highly precise D-GPS equipment. The

Fig. 4 Exemplary road sections in the three study areas, for which lane center lines are estimated
with high accuracy (estimation close to reference). Background Map: basemap.at
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median distance is 0.135 m for section A, 0.123 m for section B and 0.056 m for
section C. The distribution of distances leans towards the upper quartile in all
observed study areas, with outliers up to 1.882 m. Considering lane widths between
2.75 and 3.75 m, the estimation of lane center lines performs with high accuracy.

4 Conclusion

This study was carried out within the Austrian research project “LaneS” with the
goal to generate a lane-specific transportation network as a basis for future ITS
applications and automated driving. A wide set of test runs with different mea-
surement equipment (high precise D-GPS and low-cost GPS receivers like Qstarz
data loggers and different smartphone GPS positioning apps) were conducted on
three road sections (urban 3-lane freeway, urban arterial, rural 2-lane freeway).

First, the position accuracy of the measured vehicle trajectories from the
low-cost GPS receivers was checked against the reference trajectory from D-GPS
within a roadway and trip based distance analysis. Lateral errors with a median of
1.5–3.3 m were determined in the roadway based distance analysis. Best results
were achieved here with the Qstarz data logger with an update rate of 5 Hz. Some
smartphone apps lead to similar good results, but having a higher standard devia-
tion, especially on the freeway sections. In the trip based distance analysis, also the
total positioning error (lateral and longitudinal) was checked for trajectories based
on measurement devices inside the same vehicle. The exemplarily results for the
Android GPS logger on the urban 3-lane freeway showed that looking at the total
error, 22.8 % of distances are less than 1.5 m, but 51.2 % by considering only the
lateral error. This means that the longitudinal error, which can also be time based, is
an essential part of the total positioning error in the analysis.

The generation of the lane-specific transportation network was realized with
kernel density estimation, which is a non-parametric probability density function.
The idea here is that the density maxima of vehicle positions at a road cross section
should correspond to the positions of lane center lines of a road. Moreover, the
number of estimated density maxima indicates the number of lanes on a road. As a
result the maxima of the density curve applied on several trajectories is the esti-
mation of the center of the lane. Compared with the measured lane center line based

Fig. 5 Boxplot of the
distribution of deviations of
lane center lines between the
algorithmic estimations and
the reference measurements in
the three study areas
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on the D-GPS measurement, the distances are less than 0.14 m in median for all
three road sections. Hence, the presented methodology for generating lane-specific
transportation networks provides accurate estimations for lane center lines for
several road characteristics in terms of different speeds, lane width and topology.

The accuracy of estimated lane center lines is diminished especially in areas with
unfavorable environmental conditions or complex road situations. This underscores
the dependency of the developed methodology on the positional accuracy of the
input data. The assumption that the highest density of vehicle trajectories corre-
sponds to lane center lines does not apply for erroneous input dataset with a
significant accumulation of positional errors. Thus, further research is required with
regard to dealing with a high level of distortion in the positions of GNSS vehicle
trajectories in order to apply the developed methodology comprehensively on a
road network, irrespective of road complexity and environmental conditions.
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