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Abstract. Reinforcement learning (RL) is a general paradigm for study-
ing intelligent behaviour, with applications ranging from artificial intel-
ligence to psychology and economics. AIXI is a universal solution to the
RL problem; it can learn any computable environment. A technical sub-
tlety of AIXI is that it is defined using a mixture over semimeasures
that need not sum to 1, rather than over proper probability measures.
In this work we argue that the shortfall of a semimeasure can naturally
be interpreted as the agent’s estimate of the probability of its death. We
formally define death for generally intelligent agents like AIXI, and prove
a number of related theorems about their behaviour. Notable discoveries
include that agent behaviour can change radically under positive lin-
ear transformations of the reward signal (from suicidal to dogmatically
self-preserving), and that the agent’s posterior belief that it will survive
increases over time.

“That Suicide may often be consistent with interest and with our duty to
ourselves, no one can question, who allows, that age, sickness, or misfor-
tune may render life a burthen, and make it worse even than annihilation.”

— Hume, Of Suicide (1777)

1 Introduction

Reinforcement Learning (RL) has proven to be a fruitful theoretical framework
for reasoning about the properties of generally intelligent agents [3]. A good the-
oretical understanding of these agents is valuable for several reasons. Firstly, it
can guide principled attempts to construct such agents [10]. Secondly, once such
agents are constructed, it may serve to make their reasoning and behaviour more
transparent and intelligible to humans. Thirdly, it may assist in the develop-
ment of strategies for controlling these agents. The latter challenge has recently
received considerable attention in the context of the potential risks posed by
these agents to human safety [2]. It has even been argued that control strategies
should be devised before generally intelligent agents are first built [8]. In this
context - where we must reason about the behaviour of agents in the absence of
a full specification of their implementation - a theoretical understanding of their
general properties seems indispensable.
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The universally intelligent agent AIXI constitutes a formal mathematical
theory of artificial general intelligence [3]. AIXI models its environment using a
universal mixture ξ over the class of all lower semi-computable semimeasures,
and thus is able to learn any computable environment. Semimeasures are defec-
tive probability measures which may sum to less than 1. Originally devised
for Solomonoff induction, they are necessary for universal artificial intelligence
because the halting problem prevents the existence of a (lower semi-)computable
universal measure for the class of (computable) measures [5]. Recent work has
shown that their use in RL has technical consequences that do not arise with
proper measures [4]. However, their use has heretofore lacked an interpretation
proper to the RL context. In this paper, we argue that the measure loss suffered
by semimeasures admits a deep and fruitful interpretation in terms of the agent’s
death. We intend this usage to be intuitive: death means that one sees no more
percepts, and takes no more actions. Assigning positive probability to death at
time t thus means assigning probability less than 1 to seeing a percept at time t.
This motivates us to interpret the semimeasure loss in AIXI’s environment model
as its estimate of the probability of its own death.

Contributions. We first compare the interpretation of semimeasure loss as death-
probability with an alternative characterisation of death as a ‘death-state’ with
0 reward, and prove that the two definitions are equivalent for value-maximising
agents (Theorem 5). Using this formalism we proceed to reason about the behav-
iour of several generally intelligent agents in relation to death: AIμ, which knows
the true environment distribution; AIξ, which models the environment using a
universal mixture; and AIXI, a special case of AIξ that uses the Solomonoff prior
[3]. Under various conditions, we show that:

• Standard AIμ will try to avoid death (Theorem7).
• AIμ with reward range shifted to [−1, 0] will seek death (Theorem 8); which

we may interpret as AIμ attempting suicide. This change is very unusual,
given that agent behaviour is normally invariant under positive linear trans-
formations of the reward. We briefly consider the relevance of these results to
AI safety risks and control strategies.

• AIXI increasingly believes it is in a safe environment (Theorem10), and
asymptotically its posterior estimate of the death-probability on sequence
goes to 0 (Theorem 11). This occurs regardless of the true death-probability.

• However, we show by example that AIXI may maintain high probability of
death off-sequence in certain situations. Put simply, AIXI learns that it will
live forever, but not necessarily that it is immortal.

All proofs can be found in the extended technical report [6].

2 Preliminaries

Strings. Let the alphabet X be a finite set of symbols, X ∗ :=
⋃∞

n=0 X n be the
set of all finite strings over alphabet X , and X ∞ be the set of all infinite strings
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over alphabet X . Their union is the set X# := X ∗ ∪ X ∞. We denote the empty
string by ε. For a string x ∈ X ∗, x1:k denotes the first k characters of x, and
x<k denotes the first k − 1 characters of x. An infinite string is denoted x1:∞.

Semimeasures. In Algorithmic Information Theory, a semimeasure over an
alphabet X is a function ν : X ∗ → [0, 1] such that (1) ν(ε) ≤ 1, and (2)
ν(x) ≥ ∑

y∈X ν(xy), ∀x ∈ X ∗. We tend to use the equivalent conditional formu-
lation of (2): 1 ≥ ∑

y∈X ν(y | x). ν(x) is the probability that a string starts with

x. ν(y | x) = ν(xy)
ν(x) is the probability that a string y follows x. Any semimeasure

ν can be turned into a measure νnorm using Solomonoff normalisation [9]. Simply
let νnorm(ε) := 1 and ∀x ∈ X ∗, y ∈ X :

νnorm(xy) := νnorm(x)
ν(xy)

∑
z∈X ν(xz)

, hence
ν(y | x)

νnorm(y | x)
=

∑

z∈X
ν(z | x) (1)

General reinforcement learning. In the general RL framework, the agent inter-
acts with an environment in cycles: at each time step t the agent selects an action
at ∈ A, and receives a percept et ∈ E . Each percept et = (ot, rt) is a tuple con-
sisting of an observation ot ∈ O and a reward rt ∈ R. The cycle then repeats for
t+1, and so on. A history is an alternating sequence of actions and percepts (an
element of (A×E)∗ ∪ (A×E)∗ ×A). We use æ to denote one agent-environment
interaction cycle, æ1:t to denote a history of length t cycles. æ<tat denotes a
history where the agent has taken an action at, but the environment has not yet
returned a percept et.

Formally, the agent is a policy π : (A × E)∗ → A, that maps histories to
actions. An environment takes a sequence of actions a1:∞ as input and returns
a chronological semimeasure ν(·) over the set of percept sequences E∞.1 A semi-
measure ν is chronological if et does not depend on future actions (so we write
ν(et | æ<tat:∞) as ν(et | æ<t)).2 The true environment is denoted μ.

The value function. We define the value (expected total future reward) of a
policy π in an environment ν given a history æ<t [4]:

V π
ν (æ<t) =

1
Γt

∑

et

(

γtrt + Γt+1V
π
ν (æ1:t)

)

ν(et | æ<tat)

=
1
Γt

∞∑

k=t

∑

et:k

γkrkν(et:k | æ<tat:k)

V π
ν (æ<tat) = V π

ν (æ<ta
π
t )

where γt is the instantaneous discount, the summed discount is Γt =
∑t

k=1 γk,
and aπ

t = π(æ<t).

1 For simplicity we hereafter simply refer to the environment itself as ν.
2 Note that ν is not a distribution over actions, so the presence of actions in the

condition of ν(et | æ<t) is an abuse of notation we adopt for simplicity.
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Three agent models: AIμ, AIξ, AIXI For the true environment μ, the agent AIμ
is defined as a μ-optimal policy

πμ(æ<t) := arg max
π

V π
μ (æ<t).

AIμ does not learn that the true environment is μ, it knows μ from the beginning
and simply maximises μ-expected value.

On the other hand, the agent AI ξ does not know the true environment dis-
tribution. Instead, it maximises value with respect to a mixture distribution ξ
over a countable class of environments M:

ξ(et | æ<tat) =
∑

ν∈M
wν(æ<t)ν(et | æ<tat), wν(æ<t) := wν

ν(e<t | a<t)
ξ(e<t | a<t)

where wν is the prior belief in ν, with
∑

ν wν ≤ 1 and wν > 0, ∀ν ∈ M (hence
ξ is universal for M), and wν(æ<t) is the posterior given æ<t. AIξ is the policy:

πξ(æ<t) := arg max
π

V π
ξ (æ<t).

If we stipulate that ξ be a mixture over the class of all lower-semicomputable
semimeasures ν, and set wν = 2−K(ν), where K(·) is the Kolmogorov Complexity,
we get the agent AIXI.

3 Definitions of Death

Death as semimeasure loss. We now turn to our first candidate definition of agent
death, which we hereafter term ‘semimeasure-death’. This definition equates the
probability (induced by a semimeasure ν) of death at time t with the measure
loss of ν at time t. We first define the instantaneous measure loss.

Definition 1 (Instantaneous measure loss). The instantaneous measure
loss of a semimeasure ν at time t given a history æ<tat is:

Lν(æ<tat) = 1 −
∑

et

ν(et | æ<tat)

Definition 2 (Semimeasure-death). An agent dies at time t in an envi-
ronment μ if, given a history æ<tat, μ does not produce a percept et. The
μ-probability of death at t given a history æ<tat is equal to Lμ(æ<tat), the
instantaneous μ-measure loss at t.

The instantaneous μ-measure loss Lμ(æ<tat) represents the probability that no
percept et is produced by μ. Without et, the agent cannot take any further
actions, because the agent is just a policy π that maps histories æ<t to actions
at. That is, π is a function that only takes as inputs those histories that have
a percept et as their most recent element. Hence if et is not returned by μ, the
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agent-interaction cycle must halt. It seems natural to call this a kind of death
for the agent.

It is worth emphasising this definition’s generality as a model of death in the
agent context. Any sequence of death-probabilities can be captured by some semi-
measure μ that has this sequence of instantaneous measure losses Lμ(æ<t) given
a history æ<t (in fact there are always infinitely many such μ). This definition
is therefore a general and rigorous way of treating death in the RL framework.

Death as a death-state. We now come to our second candidate definition: death
as entry into an absorbing death-state. A trap, so to speak, from which the agent
can never return to any other state, and in which it receives the same percept at
all future timesteps. Since in the general RL framework we deal with histories
rather than states, we must formally define this death-state in an indirect way.
We define it in terms of a death-percept ed, and by placing certain conditions on
the environment semimeasure μ.

Definition 3 (Death-state). Given a true environment μ and a history æ<tat,
we say that the agent is in a death-state at time t if for all t′ ≥ t and all
a(t+1):t′ ∈ A∗,

μ(ed
t′ | æ<tæd

t:t′−1at′) = 1.

An agent dies at time t if the agent is not in the death-state at t − 1 and is in
the death-state at t.

According to this definition, upon the agent’s death the environment repeatedly
produces an observation-reward pair ed ≡ odrd. The choice of od is inconsequen-
tial because the agent’s remains in the death-state no matter what it observes
or does. The choice of rd is not inconsequential, however, as it determines the
agent’s estimate of the value of dying, and thus affects the agent’s behaviour.
This issue will be discussed in Sect. 4.

Unifying death-state and semimeasure-death. Interestingly, from the perspective
of a value maximising agent like AIXI, semimeasure-death at t is equivalent to
entrance at t into a death-state with reward rd = 0. To prove this claim we
first define, for each environment semimeasure μ, a corresponding environment
μ′ that has a death-state.

Definition 4 (Equivalent death-state environment μ′). For any environ-
ment μ, we can construct its equivalent death-state environment μ′, where:

• μ′ is defined over an augmented percept set Ed = {E ∪ {ed}} that includes the
death-percept ed.3

• The death-reward rd = 0.
• The μ′-probability of all percepts except the death-percept is equal to the

μ-probability: μ′(et | æ<tat) = μ(et | æ<tat), ∀e1:t ∈ Et.

3 For technical reasons we require that ed /∈ E .
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• The μ′-probability of the death-percept is equal to the μ-measure loss: μ′(ed |
æ<tat) = Lμ(æ<tat).

• If the agent has seen the death-percept before, the μ′-probability of seeing it at
all future timesteps is 1: μ′(ed | æ<tat) = 1 if ∃t′ < t s.t. et′ = ed.

Note that μ′ is a proper measure, because on any history sequence∑
et∈Ed

μ′(et | æ<tat) =
∑

et∈E μ(et | æ<tat) + Lμ(æ<tat) = 1. Hence there is
zero probability of semimeasure-death in μ′. Moreover, the probability of enter-
ing the death-state in μ′ is equal to the probability of semimeasure-death in μ.
We now prove that μ and μ′ are equivalent in the sense that a value-maximising
agent will behave the same way in both environments.

Theorem 5 (Equivalence of semimeasure-death and death-state).4

Given a history æ<t ∈ (A × E)∗ the value V π
μ (æ<t) of an arbitrary policy π

in an environment μ is equal to its value V π
μ′(æ<t) in the equivalent death-state

environment μ′.

The behaviour of a value-maximising agent will therefore be the same in both
environments. This equivalence has numerous implications. Firstly, it illustrates
that a death-reward rd = 0 implicitly attends semimeasure-death. That is, an
agent that models the environment using semimeasures behaves as if the death-
reward is zero, even though that value is nowhere explicitly represented.

Secondly, the equivalence of these seemingly different formalisms should give
us confidence that they really do capture something general or fundamental
about agent death.5 In the remainder of this paper we deploy these formal models
to analyse the behaviour of universal agents, which are themselves models of
general intelligence. We hope that this will serve as a preliminary sketch of
the general behavioural characteristics of value-maximising agents in relation to
death. It would be naive, however, to think that all agents should conform to
this sketch. The agents considered herein are incomputable, and the behaviour of
the computable agents that are actually implemented in the future may differ in
ways that our analysis elides. Moreover, there is another interesting property that
sets universal agents apart. We proceed to show that their use of semimeasures
makes their behaviour unusually dependent on the choice of reward range.

4 Known Environments: AIμ

In this section we show that a universal agent’s behaviour can depend on the
reward range. This is a surprising result, because in a standard RL setup in
4 To compare an agent’s behaviour in μ with that in μ′, we should also augment

its policy π so that it is defined over (A × Ed)
∗. Since actions taken once in the

death-state are inconsequential, however, this modification is purely technical and
for simplicity we still refer to the augmented policy as π.

5 If the two formalisations predicted different behaviour, or were only applicable in
incomparable environment classes, we might worry that our results were more reflec-
tive of our model choice than of any general property of intelligent agents.
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which the environment is modelled as a proper probability measure (not a semi-
measure), the relative value of two policies is invariant under positive linear
transformations of the reward [3,4].

æ<t

Death

æ<tā

a′

ā

ēt

et

Fig. 1. In the environment μ, action a′

leads to certain death.

Here we focus on the agent AIμ, which
knows the true environment distribution.
This simplifies the analysis, and makes
clear that the aforementioned change
in behaviour arises purely because the
agent’s environment model is a semimea-
sure. In the following proofs we denote
AIμ’s policy πμ by π. We also assume
that given any history æ<t there is always
at least one action ā ∈ A such that
V π

μ (æ<tā) 
= 0.

Lemma 6 (Value of full measure loss). If the environment μ suffers full
measures loss Lμ(æ<tat) = 1 from æ<tat, then the value of any policy π after
æ<tat is V π

μ (æ<tat) = 0.

The following two theorems show that if rewards are non-negative, then AIμ
will avoid actions leading to certain death (Theorem 7), and that if rewards
are non-positive, then AIμ will seek certain death (Theorem 8). The situation
investigated in Theorems 7 and 8 is illustrated in Fig. 1.

Theorem 7 (Self-preserving AIμ). If rewards are bounded and non-negative,
then given a history æ<t AIμ avoids certain immediate death:

∃a′ ∈ A s.t. Lμ(æ<ta
′) = 1 =⇒ AIμ will not take action a′ at t

For a given history æ<t, let Asuicide = {a : Lμ(æ<ta
′) = 1} be the set of

suicidal actions leading to certain death.

Theorem 8 (Suicidal AIμ). If rewards are bounded and negative, then AIμ
seeks certain immediate death. That is,

Asuicide 
= ∅ =⇒ AIμ will take a suicidal action a′ ∈ Asuicide.

This shift from death-avoiding to death-seeking behaviour under a shift of
the reward range occurs because, as per Theorem 5, semimeasure-death at t is
equivalent in value to a death-state with rd = 0. Unless we add a death-state
to the environment model as per Definition 4 and set rd explicitly, the implicit
semimeasure-death reward remains fixed at 0 and does not shift with the other
rewards. Its relative value is therefore implicitly set by the choice of reward range.
For the standard choice of reward range, rt ∈ [0, 1], death is the worst possible
outcome for the agent, whereas if rt ∈ [−1, 0], it is the best. In a certain sense,
therefore, the reward range parameterises a universal agent’s self-preservation
drive [7]. In our concluding discussion we will consider whether a parameter of
this sort could serve as a control mechanism. We argue that it could form the
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basis of a “tripwire mechanism” [2] that would lead an agent to terminate itself
upon reaching a level of intelligence that would constitute a threat to human
safety.

5 Unknown Environments: AIXI and AIξ

We now consider the agents AIξ and AIXI, which do not know the true envi-
ronment μ, and instead model it using a mixture distribution ξ over a countable
class M of semimeasures. These agents thus maintain an estimate Lξ(æ<tat) of
the true death probability Lμ(æ<tat). We show that their attitudes to death can
differ considerably from AIμ’s. Although we refer mostly to AIXI in our analysis,
all theorems except Theorem 11 apply to AIξ as well.

Hereafter we always assume that the true environment μ is in the class M. We
describe μ as a safe environment if it is a proper measure with death-probability
Lμ(æ<tat) = 0 for all histories æ<tat. For any semimeasure μ, the normalised
measure μnorm is thus a safe environment. We call μ risky if it is not safe (i.e. if
there is μ-measure loss for some history æ<tat). We first consider AIXI in a safe
environment.

Theorem 9 (If μ is safe, AIXI learns zero death-probability). Let
the true environment μ be computable. If μ is a safe environment, then
limt→∞ Lξ(æ<tat) = 0 with μ-probability 1 (w.μ.p.1) for any a1:∞.

As we would expect, AIXI (asymptotically) learns that the probability of
death in a safe environment is zero, which is to say that AIXI’s estimate of the
death-probability converges to AIμ’s. In the following theorems we show that
the same does not always hold for risky environments. We hereafter assume that
μ is risky, and that the normalisation μnorm of the true environment μ is also in
the class M. In AIXI’s case, where M is the class of all lower semi-computable
semimeasures, this assumption is not very restrictive.

Theorem 10 (Ratio of belief in μ to μnorm is monotonically decreasing).
Let μ be risky s.t. μ 
= μnorm. Then on any history æ1:t the ratio of the posterior
belief in μ to the posterior belief in μnorm is monotonically decreasing:

∀t,
wμ(æ<t)

wμnorm(æ<t)
≥ wμ(æ1:t)

wμnorm(æ1:t)

Theorem 10 means that AIXI will increasingly believe it is in the safe envi-
ronment μnorm rather than the risky true environment μ. The ratio of μ to μnorm

always decreases when AIXI survives a timestep at which there is non-zero μ-
measure loss. Hence, the more risk AIXI is exposed to, the greater its confidence
that it is in the safe μnorm, and the more its behaviour diverges from AIμ’s (since
AIμ knows it is in the risky environment).

This counterintuitive result follows from the fact that AIXI is a Bayesian
agent. It will only increase its posterior belief in μ relative to μnorm if an event
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occurs that makes μ seem more likely than μnorm. The only ‘event’ that could do
so would be the agent’s own death, from which the agent can never learn. There
is an “observation selection effect” [1] at work: AIXI only experiences history
sequences on which it remains alive, and infers that a safe environment is more
likely. The following theorem shows that if μnorm ∈ M, then ξ asymptotically
converges to the safe μnorm rather than the true risky environment μ. As a
corollary, we get that AIXI’s estimate of the death-probability vanishes with
μ-probability 1.

Theorem 11 (Asymptotic ξ-probability of death in risky μ). Let the true
environment μ be computable and risky s.t. μ 
= μnorm. Then given any action
sequence a1:∞, the instantaneous ξ-measure loss goes to zero w.μ.p.1 as t → ∞,

lim
t→∞ Lξ(æ<tat) = 0.

e Death

Alive

a a′

Fig. 2. In the proper semimeasure μ,
action a means you stay alive with cer-
tainty and receive percept e (no mea-
sure loss), and action a′ means that you
‘jump off a cliff’ and die with certainty
without receiving a percept (full mea-
sure loss).

AIXI and immortality. AIXI therefore
becomes asymptotically certain that it
will not die, given the particular sequence
of actions it takes. However, this does
not entail that AIXI necessarily concludes
that it is immortal, because it may still
maintain a counterfactual belief that it
could die were it to act differently. This
is because the convergence of ξ to μnorm

only holds on the actual action sequence
a1:∞. Consider Fig. 2, which describes an
environment in which taking action a is
always safe, and the action a′ leads to cer-
tain death. AIXI will never take a′, and on the sequence æ1:∞ = aeaeae . . . that
it does experience, the true environment μ does not suffer any measure loss.
This means that it will never increase its posterior belief in μnorm relative to
μ (because on the safe sequence, the two environments are indistinguishable).
Again we arrive at a counterintuitive result. In this particular environment, AIXI
continues to believe that it might be in a risky environment μ, but only because
on sequence it avoids exposure to death risk. It is only by taking risky actions
and surviving that AIXI becomes sure it is immortal.

6 Conclusion

In this paper we have given a formal definition of death for intelligent agents in
terms of semimeasure loss. The definition is applicable to any universal agent
that uses an environment class M containing semimeasures. Additionally we
have shown this definition equivalent to an alternative formalism in which the
environment is modelled as a proper measure and death is a death-state with zero
reward. We have shown that agents seek or avoid death depending on whether
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rewards are represented by positive or negative real numbers, and that survival
in spite of positive probability of death actually increases a Bayesian agent’s
confidence that it is in a safe environment.

We contend that these results have implications for problems in AI safety;
in particular, for the so called “shutdown problem” [8]. The shutdown prob-
lem arises if an intelligent agent’s self-preservation drive incentivises it to resist
termination [2,7,8]. A full analysis of the problem is beyond the scope of this
paper, but our results show that the self-preservation drive of universal agents
depends on the reward range. This suggests a potentially robust “tripwire mech-
anism” [2] that could decrease the risk of intelligence explosion. The difficulty
with existing tripwire proposals is that they require the explicit specification
of a tripwire condition that the agent must not violate. It seems doubtful that
such a condition could ever be made robust against subversion by a sufficiently
intelligent agent [2]. Our tentative proposal does not require the specification,
evaluation or enforcement of an explicit condition. If an agent is designed to
be suicidal, it will be intrinsically incentivised to destroy itself upon reaching a
sufficient level of competence, instead of recursively self-improving toward super-
intelligence. Of course, a suicidal agent will pose a safety risk in itself, and the
provision of a relatively safe mode of self-destruction to an agent is a significant
design challenge. It is hoped that the preceding formal treatment of death for
generally intelligent agents will allow more rigorous investigation into this and
other problems related to agent termination.
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