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Abstract. The concept of understanding is commonly used in everyday
communications, and seems to lie at the heart of human intelligence.
However, no concrete theory of understanding has been fielded as of yet
in artificial intelligence (AI), and references on this subject are far from
abundant in the research literature. We contend that the ability of an
artificial system to autonomously deepen its understanding of phenom-
ena in its surroundings must be part of any system design targeting
general intelligence. We present a theory of pragmatic understanding,
discuss its implications for architectural design and analyze the behav-
ior of an intelligent agent implementing the theory. Our agent learns to
understand how to perform multimodal dialogue with humans through
observation, becoming capable of constructing sentences with complex
grammar, generating proper question-answer patterns, correctly resolv-
ing and generating anaphora with coordinated deictic gestures, produc-
ing efficient turntaking, and following the structure of interviews, without
any information on this being provided up front.

1 Introduction

A rudimentary investigation into the use of the term “understanding” in the field
of artificial intelligence (AI) reveals that occurrences are few and far between.
When it does appear it is primarily in the context of natural language (“language
understanding”), where parsing and manipulation of linguistic tokens (read:
good old-fashioned AI) takes the front seat. A distant second is its coupling
with the words “scene” and “image” in computer vision research (scene under-
standing, image understanding), with an identical emphasis on parsing: Rather
than talking about the phenomenon of understanding proper, understanding is
equated with syntactic manipulation, which, as everyone who has studied phi-
losophy knows, is not the same thing (cf. [18]).

A coherent conceptualization of understanding is of importance to the field
of AGI for several reasons. First, if the concept of understanding is left unde-
fined it cannot, as a phenomenon, be effectively investigated; second, without a
good definition of understanding it may be difficult to compare different systems
with respect to their level of understanding, and similarly, to compare the same
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system or different systems with respect to their levels of understanding regard-
ing different areas of expertise or performance; and third, a coherent account
of understanding is needed such that system builders can create new systems,
improve current systems, and train systems where understanding is a specific
goal. A formalized account of understanding would seem crucial to the contin-
ued and successful progress of the field of AGI.

The apparent indifference of AI researchers to the phenomenon of under-
standing is curious considering the available evidence about its role in human
intelligence. If “understanding” is simply a descriptive term used to classify the
effectiveness of a given behavior for a particular goal, after it has been observed –
behavior referring here to perception, thinking, and action control – then perhaps
it could be said that intelligence and understanding are synonyms, and ignoring
the concept altogether is justified. If, however, understanding is a unique ingre-
dient or property of natural thinking systems which affects their abilities and
intelligence – and especially: their potential for growing their own knowledge –
then we would be well-served by studying understanding as a phenomenon. We
argue for the latter view and outline here a pragmatic theory of understanding
rooted in an analysis of how predictive controllers compute meaning. First we
look at some of the relevant background work from philosophy and AI, then we
present our theory of pragmatic understanding and meaning, and then give an
overview of the results of a prototype system whose knowledge acquisition and
application was constructed according to the theory. The results represent strong
evidence for the potential of the theory to elucidate the relationship between
meaning, understanding, prediction, and explanation, in a manner relevant to
artificial general intelligence.

2 Related Work

An important question that has been discussed, mostly in the philosophical
literature, is the extent to which machines could be given understanding, if
at all. Sloman has stated that the question of whether machines can “really”
understand is more of a minor question of definition than anything else [18],
arguing that the appropriate answer to the question “Can you understand?” is
not binary and can take the form of infinite features and gradations. It seems a
latent view of many that once a machine can do some human task, that task is
no longer deemed as requiring “intelligence,” and by extension, requires no “real
understanding”. This view might explain why Searle’s Chinese Room argument
still has appeal, in spite of the numerous publications that have long since refuted
it by illustrating its numerous fallacies [2,3,16]. Convincing arguments for the
impossibility of machines to understand remain scarce.

Some research has argued for the importance of understanding in cognition,
citing it as distinct from knowledge (cf. [6]), claiming that acquisition (deepen-
ing) of understanding constitutes a more accurate reflection of the world than
knowledge acquisition [7,8], and is thus a greater intellectual achievement. Oth-
ers have taken the exact opposing view (cf. [10]). Without proper and reasonably
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specific definitions of these terms and their context, as these accounts tend to
be, they can be somewhat incoherent, too heavily steered by the many senses in
which the term might be used colloquially. As a result many seemingly irrecon-
cilable polarities and contradictions are uncovered [9] (for instance, pitting the
internal organization of phenomena against its relation to various other phenom-
ena as some sort of contradiction). As we shall attempt to demonstrate below,
such inconsistencies may be reconciled with proper definitions and the right
unifying approach.

While understanding as a phenomenon has received more attention in the
philosophical than the AI literature [7,8], even there it has nevertheless been
claimed to have “virtually escaped investigation in English-speaking philosophy”
([5]: 307); this dearth of interest in the subject is evidenced not only there but
also in the fields of AI and cognitive science.1 A few books have been published
with the word pair “understanding understanding” in the title [4,15]. Interesting
as they may be, one of these contains selected writings by cybernetics pioneer
Heinz von Forrester, which, in spite of its promising title, is not about under-
standing at all (as evidenced by the word “understanding” not appearing the
index); the other gives a cursory (albeit a decent) summary of the subject in the
context of epistemological philosophy.

In the context of the work presented here, few authors if any have addressed
the more relevant question of what kinds of architectures could deepen their
understanding automatically, as this would seem of key importance for an AGI
system for growing its knowledge. Here we attempt a unification of several prior
ideas, through the concepts of prediction, granular model generation and eval-
uation, and knowledge acquisition through experience [19]. While the literature
has presented a multitude of ways to look at and define understanding, and vir-
tually all of the concepts we talk about have appeared in the AI literature in one
form or another, we are not aware of any that propose the kind of unification
presented here.

3 Towards a Theory of Pragmatic Understanding

Our concern here is with an agent’s understanding of phenomena of interest that
allows it to act intelligently towards it, in a practical and goal-directed way. We
refer to our theory of understanding as pragmatic, as we are concerned with the
usefulness that levels of understanding may achieve in guiding behavior.

Phenomenon. A phenomenon Φ (process, state of affairs, occurrence) — where
W is the world and Φ ⊂ W — is made up of a set of elements2 {ϕ1 . . . ϕn ∈ Φ}
1 Exceptions do exist of course (cf. [1]), but not in the obvious areas such as language-,

image- and scene-understanding, where the word makes a mere superfluous
appearance.

2 By “elements” and “sub-parts” we mean any sub-division of Φ, including sub-
structures, component processes, whole-part relations, causal relations, etc.
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of various kinds including relations �Φ (causal, mereological, etc.) that couple
elements of Φ with each other, and with those of other phenomena.

Phenomenon and Context. The relations �Φ ⊆ 2W × 2W that extend to
other phenomena identify the phenomenon’s context. We partition �Φ in inward
facing relations �in

Φ = �Φ ∩ (2Φ × 2Φ) and outward facing relations �out
Φ =

�Φ \ �in
Φ . An agent whose models are only accurate for �in

Φ understands Φ but
not Φ’s relation to other phenomena; an agent whose models are only accurate
for �out

Φ understands Φ’s relation to other phenomena but will have limited or
no understanding of Φ’s internals.

Models. MΦ is a set containing models of a phenomenon Φ {m1 . . . mn ∈ MΦ}
– information structures that can be used to (a) explain Φ, (b) predict Φ, (c) pro-
duce effective plans for achieving goals G with respect to Φ, and (d) (re)create Φ.

For any set of models M and a phenomenon Φ, the closer the information
structures mi ∈ M represent elements (sub-parts) ϕ ∈ Φ, at any level of detail,
including their couplings �Φ, the greater the accuracy of M with respect to Φ.

Insofar as an agent A’s knowledge consists of models M , we can define under-
standing in the following way:

Understanding. An agent A’s understanding of phenomenon Φ depends on the
accuracy of M with respect to Φ, MΦ. Understanding is a (multidimensional)
gradient from low to high levels, determined by the quality (correctness) of
representation of two main factors in MΦ:

U1: The completeness of the set of elements ϕ ∈ Φ represented by MΦ.
U2: The accuracy of the relevant elements ϕ represented by MΦ.

Testing for Understanding. This approach does not necessitate or force
any particular way to test for understanding, shifting that challenge rather to
whichever methods prove the best for exposing the above two factors. To test
for evidence of understanding a phenomenon Φ we may probe (at least) four
capabilities of the understander:

1. To predict Φ.
2. To achieve goals with respect to Φ.
3. To explain Φ.
4. To (re)create Φ.

All can be seen to have a range [0, 1] where 0 is no ability and 1 is perfection,
as a function on U1 and U2 above. For a thorough evaluation of understanding
all four should be applied.

Prediction is the crudest form of evidence for understanding. Some prediction
can be done based on correlations, as prediction does not require representation
of the direction of causation yet captures co-occurrence of events. Prediction
of a particular turn of events requires (a) setting up initial variables correctly,
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and (b) simulating the implications of (computing deductions from) this initial
setup.

Goal Achievement Correlation is not sufficient, however, to inform how one
achieves goals with respect to some phenomenon Φ. For this one needs causal
relations. Achieving goals means that some variables in Φ can be manipulated
directly (or indirectly via intermediate variables). Unless the intelligent agent is
omnipotent and omniscient, to achieve goals with respect to a phenomenon Φ
may require a bit more than an understanding of Φ: it requires understanding
of how a certain subset of Φ relates to some variables that are under an agent’s
control. In short, the agent needs models for interaction with the world. For a
robotic agent driving a regular automobile, to take one example, the agent must
possess models of its own sensors and manipulators and how these relate to the
automobile’s controls (steering wheel, brakes, accelerator, etc.). Such interfaces
tend to be rather task-specific, however, and are thus undesirable as a required
part of an evaluation scheme for understanding. Instead, we call for an ability
to produce effective plans for achieving goals with respect to Φ. An effective
plan is one that can be proven useful, efficient, effective, and correct, through
implementation.3

Explanation is an even stronger requirement for demonstrating understand-
ing. Correlation does not imply causation, which means that one may have a
predictive model of a phenomenon that nevertheless does not represent correctly
its parts and their relations (to each other and parts of other phenomena); goals
may in some cases be achieved through “hacks” and “back doors”, without a
proper causal model behind it. This is why scientific models and theories must
be both predictive and explanatory – together constituting a litmus test for
complete and accurate capturing of causal relations.

(Re)creating a phenomenon is perhaps the strongest kind of evidence for
understanding. It is also a pre-requisite for the ability for correctly building new
knowledge that relies on it, which in turn is the key to growing one’s understand-
ing of the world. By “creating” we mean, as in the case of noted physicist Richard
Feynman,4 the ability to produce a model of the phenomenon in sufficient detail
to replicate its necessary and sufficient features. Requiring understanders to pro-
duce models exposes the completeness of their understanding.

It is important to emphasize here that understanding, in this formulation,
is not reductionist: Neither does it equate the ability to understand with the
ability to behave in certain ways toward a phenomenon (e.g. achieve goals), nor
the ability to predict it, nor the ability to explain it, nor the ability to (re)create
it. While any of these may be used to assess a system’s understanding of a
3 Producing plans, while not being as specific as requiring intimate familiarity with

some I/O devices to every Φ, requires nevertheless knowledge of some language for
producing said plans, but it is somewhat more general and thus probably a better
choice.

4 Feynman, notorious for his capacity to understand even the most complicated phe-
nomena in his field, left a note on his blackboard when he died: “What I cannot
create, I do not understand.” (http://archives-dc.library.caltech.edu/islandora/
object/ct1:483 - accessed Apr 2, 2016).

http://archives-dc.library.caltech.edu/islandora/object/ct1:483
http://archives-dc.library.caltech.edu/islandora/object/ct1:483
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phenomenon, in our theory all are really required (to some minimum extent) to
(properly) assess a system’s understanding. Any assessment method that does
not include these four in some form runs the risk of concluding understanding
where there is none (and the converse).

4 Meaning

We can now move to a close cousin of understanding – meaning. Meaning does
not exist in a vacuum: A causal event x acquires meaning for some agent A when
x has potential to influence something of relevance to one or more of the agent’s
goals G. Given e.g. an event x with potential relevance to agent A, the agent
may compute some meaning of x with respect to (any or all of) its relevant
goals, given a particular situation St (a substate of a world W defined by a
set of variables, S ⊂ W ). This computation relies on deduction, among other
processes.

To illustrate we can use two example events, rocks rolling down a hill and
a computer deriving square roots. Do rocks rolling down a mountainside con-
tain any meaning? When a computer is given the number 4 and outputs 2, does
this output have any meaning? “Surely”, you might be inclined to say, “math
is meaningful in its regularity”. But then what is the difference between com-
putation and rolling rocks? At the atomic level are forces at play (gravity and
electricity, respectively) working according to predetermined rules. To answer
either question we must ask “meaning to whom?” Both are physical events, and
without a biological being that can interpret them in some relevant context,
neither has any meaning.

As we can see from this example, the agent’s situation must also be included,
because some event x may mean one thing in situation S1 and another in situ-
ation S2. If I hear an announcement that the gate to the flight to my vacation
destination has closed, this will mean something very different depending on
which side of the gate I am on at that point in time; in one case I may start cry-
ing and the other not. And if I have a drink in either contingency it will likely be
for very different reasons. This example makes another aspect of meaning clear:
Meaning is time-dependent.

This means that without temporally demarcated goals there can be no mean-
ing, because the meaning of e.g. an event can only exist with respect to a partic-
ular goal (held by an agent) that is relevant to the agent. A stone rolling down
a hill has no meaning – it is simply a meaningless process. When we know the
stone weighs over two tons and it’s heading your way do we derive some meaning
from its existence.

In this formulation the meaning of a particular datum,5 e.g. the closing of
the gate, consists of the implications Id(t1) of that particular datum d presented
at time t1; d(t1) implies some set of things for a particular agent A in particular
5 A datum dt can be an event, an utterance, the perception of a particular object, a

particular deduction or set of deductions, etc. occurring at time t – in short, anything
that can be perceived by the agent’s sensors and represented by its mind.
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circumstances St1 with regard to particular active goals G (an active goal at
time t is a goal that the agent is actively trying to achieve at time t).6 Any
potential implication may be computed through the proper processes, including
implications that might be relevant to the agent’s active goals G in situation S
at time t1. To be as useful as possible to the agent, the implications that are most
temporally relevant to the agent’s goals, whether a hindrance or help, should get
computed as soon as possible after the datum presents itself.

Implications are computed through temporally-grounded deduction, from a
set of premises, to derive any potential implications (they are potential implica-
tions because they are typically produced based on premises and initial condi-
tions whose specification may not be fully informed) given by the new datum.
For instance, if I missed my airplane and the next airplane leaves in a week,
I may have shortened my vacation by 50 %. In this case knowing this 400 ms
sooner or 4 s later will obviously not make a big difference – either way I will
be steaming angry or hugely disappointed, as the meaning is extracted and the
most relevant implications for my goal of taking a 2-week vacation dawns on me.

Implications. Starting from an initial state St ⊂ W of a dynamic task-
environment (consisting of a series of such states {St . . . St+δ}), the Implications
of a datum dt are the computed deductions D that may be relevant to a par-
ticular set of goals G of a particular agent A with particular knowledge K in
situation St+i ⊂ W , represented

Impl(dt, A(G)t+x) = D(dt, Si, (KA, GA, SA)t+y)

(t + x and t + y means these can refer to different points in time). While for any
period of time at least some implication can be deduced from a particular set of
information, whether the implications are relevant to an agent cannot be known
before the deductions have been made.

Most of the time a complex environment such as the physical world will
present, for any time period, a vastly greater amount of information than what
any agent can perceive and process for that period, i.e. the computational
resources of most (interesting) agents will be vastly less than those needed to
process all available information, for any time period. In the vast majority of
cases such a complex environment can be the source of an infinite string of
deductions stretching into the far future; for any time interval a real agent in
a real environment will thus be faced with capping deductions in both breadth
(sources of deductions) and depth (time and detail).

For an agent, finding the meaning of a situation requires identifying which
of the possible deductions are relevant to the agent’s goals in that situation at
that time.

6 Unless otherwise specified the term “goal” may be read to mean “all active goals”,
as typically this is a set of goals; even if a single identifiable top-level goal can be
found, there will always be (obvious and non-obvious) sub-goals that must be taken
into account. We thus use “goal” and “goals” indiscriminately.
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Meaning. The meaning of a datum dt for an agent A(K,G, S)t is captured by
the set of relevant implications Ir of dt for A with a set of goals G and knowledge
K in situation S at time t;

Meaning(dt, A(G)) = Implr(dt+x, {KA, GA, SA}t+y).

Typically there is never only a single meaning to anything (so we use singular
and plural interchangeably), since any datum has a large set of potential impli-
cations for any large or complex phenomenon. What is relevant at any point
in time depends on the particular outcome of the predictions, in light of the
system’s active goals. Since these predictions cannot be guaranteed to be per-
fect, the meaning of anything and everything will always be somewhat in flux
and open to further interpretation. Computations may produce differences in
meaning based on slight variations of the initial conditions.

The quality of predictions produced via deductions from a set of premises
depends in large part on the accuracy of the models used for it. Models must be
freely composable and de-composable, in light of their usage, to realize their full
potential for predicting, achieving goals, and explaining. From Ashby’s Requi-
site Variety theorem [17] we know that model “resolution” (i.e. their granularity)
needs to be at least as detailed as the finest discernible, relevant details of the
phenomenon modeled. For any reasonably complex phenomenon we will there-
fore have a large set of models M .7

5 A System that Acquires Understanding and Meaning

We have designed and implemented an architecture that implements the prag-
matic theory of understanding outlined above. This system, called AERA [12,13],
contains numerous features that must be explained to provide a coherent account
of its operation, which is well beyond the scope of this paper (we refer the inter-
ested reader to our most thorough overview of this work in [11]). Rather, this
section serves (a) to show that our approach to understanding and meaning has
produced an implemented, working system, (b) to show that this system demon-
strates highly novel properties not seen before in any other system, and perhaps
most importantly, (c) to show one way the above theory can be mapped to a
concrete implementation.

Based on a new constructivist methodology [20], an AERA agent can learn
complex tasks by observation, starting from only a tiny seed. Learning in AERA
is life-long, continuous, and incremental, and consists of building models based
on observed phenomena. For any situation Si(t) ⊂ W the system finds itself

7 Another determinant of the quality of predictions is the observability of variables and
the accuracy of reading their values. For any triplet {A, G, S}, to produce predictions
requires fixing the values of numerous variables v ∈ V ⊂ S whose values may not
be immediately accessible (and thus guessed or retrieved from the agent’s prior
experience), or whose values may not be perfectly observable (cf. “Does that display
show 880 or 830?”).
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in, a set of observed variables Vi ⊆ Si results in a large set of new models
Mi being generated, each relating two observed data vi, vj ∈ V in a directed
causal relationship �i : vi → vj , meaning that vi is a cause of vj . As experience
accumulates, models of groupings of such relationship pairs emerge, representing
hypotheses about the interactions between the many observed sub-phenomena,
at several spatio-temporal levels. At runtime an AERA agent executes the subset
of these models deemed most relevant to the situation; predictions are produced
from the present state using these models for deduction, in a forward-chaining
mode; abduction — backward-chaining the models’ causal relationships — pro-
duces plans for how to achieve goals (i.e. partial world states not observed at
present).

In the experimental data referenced below, AERA agent S1’s phenomenon
Φ to be understood is a TV-style interview. This Φ’s elements are known to
be e.g. deictic references (pointing at, nodding towards, looking at, etc.), sen-
tence morphology (word sequences), question-answer pairs, etc. S1 starts with
a tiny seed where its most primitive sensation types are specified, allowing it to
ground its experience and bootstrap its incremental learning of how to properly
do multimodal interaction. The seed also contains the top-level goals (1 for the
interviewer, 4 for the interviewee). S1 observes two humans interact for 20 h,
after which its performance is recorded for analysis, producing over 20 min of
interactions with humans. It is important to note that no information whatso-
ever was provided in the seed on any of the phenomena learned – these emerge
through a process whereby the system tries to match its models to the observed
phenomena in a way that can predict, explain, and achieve goals with respect
to them, as per our pragmatic theory of understanding detailed above.

Explanation. By design the system’s knowledge representation is self-disclosing:
The total collection of models at any point in time represents the system’s ability to
explain the phenomena it has had experience with, from its best effort, by attempt-
ing to represent directly the elements of the phenomenon (observable variables)
and their relationships (�in

Φ ). This is very different from e.g. artificial neural nets,
whose knowledge representation cannot be symbolically mapped to the domain the
knowledge references.

Prediction. Models and model hierarchies are used to predict the evolution
of the situation, at any moment, δ microseconds into the future Si(tnow + δ).
Models get a score according to how closely the observed future compares to
their predictions.

Goal Achievement. The same models used to produce predictions also inform
the system what it is capable of, via backward chaining: Any (good) model chain
of arbitrary length whose end point is a goal to be achieved and whose starting
point is the present state tells the system what chain of events may be taken to
get from the present state to the goal, and as long as the chain includes models
referencing variables that the system can affect, the system can create a plan for
achieving the goal. In such chains the agent’s atomic operational capabilities are
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represented in models, and their execution is handled via dedicated actuators
on the agent’s embodiment.

Implications and Meaning. Having acquired a set of models, when an AERA
agent observes a datum di(t) the best models in which this datum appears pro-
duces predictions (arity depending on available resources); those that relate in
some way to the agent’s instantiated goals at that point in time are considered
relevant implications of di, and may affect the agent’s subsequent overt actions in
the task-environment. Meaning is thus generated continuously, with the predic-
tions most relevant to the agent at each point in time enabling the agent to steer
its behavior accordingly, by changing its plans, creating new plans, backtracking,
and abandoning or generating new subgoals.

Results: Autonomously Acquired Understanding. In two experiments S1
has demonstrated autonomous acquisition of a pragmatic understanding of (1)
three types of linguistic anaphora (resolving referents of “it”, “that” and “this”),
(2) four types of co-verbal deictic gestures (pointing with index finger, gazing
at objects, palm-up hand gesture, reference via touching/holding objects), (3)
how to structure turn-taking, (4) how to generate appropriate utterances for
particular referents (correct answers to questions – whether containing anaphora,
co-verbal gestures or not), (5) how to keep an interaction within given time limits,
and (6) how to generate syntactically correct utterances. With respect to item 6,
examples of utterances produced by S1 include “Which releases more greenhouse
gases when produced, a plastic bottle or a glass bottle?” and “Compared to
recycling, making new paper results in seventy five percent more air pollution.”
As evidence of the accuracy and completeness of S1’s understanding, for the total
of 73 utterances produced by S1 in the experimental data, only four (minor)
grammatical errors were found (Nivel et al. [12] provides details S1’s natural
language learning.). These were in fact the only errors found — no errors could
be discerned in the data for any of the other acquired skills (1–5).

This evidence suggests that with respect to the sub-phenomena listed above,
all the above elements of Φ have been modeled correctly, achieving a high score
on U1 and U2 in Sect. 3. The first two points of evaluation in Sect. 3 are thus
clearly demonstrated: The system can use its acquired understanding to achieve
goals in the dialogue, using both prediction (to synchronize behavior with the
world) and abduction (to construct plans). We consider items 3 and 4, explana-
tion and (re)creation, to partially demonstrated: S1’s self-disclosing knowledge
representation directly captures the structure of the phenomena by encoding the
(causal) relationships between observed variables, and allows S1 to act correctly
across the full range of priorly observed instances of the phenomena. More thor-
ough evaluation is needed on these last two points, including pushing the limits
of S1’s understanding.

6 Conclusions

We have outlined a theory of pragmatic understanding and meaning. The imple-
mented system incorporating its principles lends validity to the approach, and for
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the more general issue that endowing agents with capabilities for autonomously
acquiring a pragmatic understanding of a complex phenomenon may be an
important endeavor. The implemented system has demonstrated an ability to
acquire complex sentence grammar from observation, contextual interpreta-
tion of multimodal communicative acts, acquiring an understanding of a task-
environment and computing in real-time the meaning of events, and using this to
successfully achieve dialogue goals in realtime interaction with humans [11,12].
In this the system demonstrates what Pattee calls semantic closure [14]. Need-
less to say, the issue of understanding is a large one, and a multitude of issues
have been raised here that remain unformulated, let alone unanswered, such as
susceptibility to noise and scaling. The positive results from our experiments
thus far provide good reason for optimism on the future prospects of this line of
research.
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