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Preface

This year marked the 60th anniversary of the “Dartmouth Summer Research Project on
artificial intelligence” (1956), which launched artificial intelligence (AI) as a field of
research. The original goal of AI was to replicate intelligence in machines; however, as
the immense magnitude and difficulty of replicating human-level general intelligence
soon became clear, AI fragmented into many sub-fields studying what we now call
narrow-AI applications. Although the efforts of these sub-fields brought us extremely
useful tools that now pervade virtually all technologies, efforts to work toward the
original goal remained few and far between. In order to stimulate a return to the original
goal of AI, a new name and corresponding conference series was created: Artificial
General Intelligence (AGI). First organized in 2008, we are now in the ninth year of the
AGI conference series.

To mark the 60th anniversary of AI as a field, the AGI 2016 conference was held as
part of the larger HLAI 2016 event (the Joint Multi-Conference on Human-Level
Intelligence), which co-located AGI 2016 with three other related conferences: BICA
2016 (the Annual International Conferences on Biologically Inspired Cognitive
Architectures), NeSy 2016 (the Workshop Series on Neural-Symbolic Learning and
Reasoning), and AIC 2016 (the Workshop Series on Artificial Intelligence and Cog-
nition). Moreover, AGI 2016 was held back-to-back with IJCAI 2016 (the 25th
International Joint Conference on Artificial Intelligence).

This volume contains the research papers presented at AGI 2016: The 9th Con-
ference on Artificial General Intelligence, held during July 16–19, 2016 in New York
City. In total, 67 papers were submitted to the conference. After each paper was
reviewed by three Program Committee members, it was decided to accept 24 long
papers and two short papers (39 % acceptance) for oral presentation, as well as ten
papers for poster presentation.

In addition to these contributed talks, keynote speeches were shared with the larger
HLAI event, and were delivered by Stephen Grossberg (Boston University), Gary
Marcus (New York University and Geometric Intelligence Inc.), John Laird (University
of Michigan), and David Aha (Naval Research Laboratory, Navy Center for Applied
Research in Artificial Intelligence). Finally, the AGI 2016 conference featured two
workshops, with the topics “Can Deep Neural Networks Solve the Problems of Arti-
ficial General Intelligence?” and “Environments and Evaluation for AGI.”

July 2016 Bas Steunebrink
Pei Wang

Ben Goertzel
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Self-Modification of Policy and Utility Function
in Rational Agents

Tom Everitt(B), Daniel Filan, Mayank Daswani, and Marcus Hutter

Australian National University, Canberra, Australia
tom4everitt@gmail.com

Abstract. Any agent that is part of the environment it interacts with
and has versatile actuators (such as arms and fingers), will in principle
have the ability to self-modify – for example by changing its own source
code. As we continue to create more and more intelligent agents, chances
increase that they will learn about this ability. The question is: will they
want to use it? For example, highly intelligent systems may find ways to
change their goals to something more easily achievable, thereby ‘escaping’
the control of their creators. In an important paper, Omohundro (2008)
argued that goal preservation is a fundamental drive of any intelligent
system, since a goal is more likely to be achieved if future versions of
the agent strive towards the same goal. In this paper, we formalise this
argument in general reinforcement learning, and explore situations where
it fails. Our conclusion is that the self-modification possibility is harmless
if and only if the value function of the agent anticipates the consequences
of self-modifications and use the current utility function when evaluating
the future.

1 Introduction

Agents that are part of the environment they interact with may have the oppor-
tunity to self-modify. For example, humans can in principle modify the circuitry
of their own brains, even though we currently lack the technology and knowl-
edge to do anything but crude modifications. It would be hard to keep artificial
agents from obtaining similar opportunities to modify their own source code and
hardware. Indeed, enabling agents to self-improve has even been suggested as a
way to build asymptotically optimal agents (Schmidhuber 2007).

Given the increasingly rapid development of artificial intelligence and the
problems that can arise if we fail to control a generally intelligent agent (Bostrom
2014), it is important to develop a theory for controlling agents of any level
of intelligence. Since it would be hard to keep highly intelligent agents from
figuring out ways to self-modify, getting agents to not want to self-modify should
yield the more robust solution. In particular, we do not want agents to make
self-modifications that affect their future behaviour in detrimental ways. For
example, one worry is that a highly intelligent agent would change its goal to
something trivially achievable, and thereafter only strive for survival. Such an
agent would no longer care about its original goals.
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 1–11, 2016.
DOI: 10.1007/978-3-319-41649-6 1



2 T. Everitt et al.

In an influential paper, Omohundro (2008) argued that the basic drives of any
sufficiently intelligent system include a drive for goal preservation. Basically, the
agent would want its future self to work towards the same goal, as this increases
the chances of the goal being achieved. This drive will prevent agents from
making changes to their own goal systems, Omohundro argues. One version of
the argument was formalised by Hibbard (2012), who defined an agent with an
optimal non-modifying policy.

In this paper, we explore self-modification more closely. We define formal
models for two general kinds of self-modifications, where the agent can either
change its future policy or its future utility function. We argue that agent design-
ers that neglect the self-modification possibility are likely to build agents with
either of two faulty value functions. We improve on Hibbard (2012, Proposi-
tion 4) by defining value functions for which we prove that all optimal policies
are essentially non-modifying on-policy. In contrast, Hibbard only establishes
the existence of an optimal non-modifying policy. From a safety perspective our
result is arguably more relevant, as we want that things cannot go wrong rather
than things can go right. A companion paper (Everitt and Hutter 2016) addresses
the related problem of agents subverting the evidence they receive, rather than
modifying themselves.

2 Preliminaries

Most of the following notation is by now standard in the general reinforcement
learning (GRL) literature (Hutter 2005, 2014). GRL generalises the standard
(PO) PMD models of reinforcement learning (Kaelbling et al. 1998; Sutton
and Barto 1998) by making no Markov or ergodicity assumptions (Hutter 2005,
Sect. 4.3.3 and Definition 5.3.7).

In the standard cybernetic model, an agent interacts with an environment
in cycles. The agent picks actions a from a finite set A of actions, and the
environment responds with a percept e from a finite set E of percepts. An action-
percept pair is an action concatenated with a percept, denoted æ = ae. Indices
denote the time step; for example, at is the action taken at time t, and æt is
the action-percept pair at time t. Sequences are denoted xn:m = xnxn+1 . . . xm

for n ≤ m, and x<t = x1:t−1. A history is a sequence of action-percept pairs
æ<t. The letter h = æ<t denotes an arbitrary history. We let ε denote the empty
string, which is the history before any action has been taken.

A belief ρ is a probabilistic function that returns percepts based on the
history. Formally, ρ : (A × E)∗ × A → Δ̄E , where Δ̄E is the set of full-support
probability distributions on E . An agent is defined by a policy π : (A × E)∗ →
A that selects a next action depending on the history. We sometimes use the
notation π(at | æ<t), with π(at | æ<t) = 1 when π(æ<t) = at and 0 otherwise.
A belief ρ and a policy π induce a probability measure ρπ on (A×E)∞ via ρπ(at |
æ<t) = π(at | æ<t) and ρπ(et | æ<tat) = ρ(et | æ<tat). We will assume that the
utility of an infinite history æ1:∞ is the discounted sum of instantaneous utilities
u : (A × E)∗ → [0, 1]. That is, for some discount factor γ ∈ (0, 1), ũ(æ1:∞) =
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∑∞
t=1 γt−1u(æ<t). Intuitively, γ specifies how strongly the agent prefers near-

term utility.
Instantaneous utility functions generalise the reinforcement learning (RL)

setup, which is the special case where the percept e is split into an observa-
tion o and reward r, i.e. et = (ot, rt), and the utility equals the last received
reward u(æ1:t) = rt. The main advantage of utility functions over RL is that the
agent’s actions can be incorporated into the goal specification, which can prevent
self-delusion problems such as the agent manipulating the reward signal (Everitt
and Hutter 2016; Hibbard 2012; Ring and Orseau 2011). Non-RL suggestions for
utility functions include knowledge-seeking agents1 with u(æ<t) = 1 − ρ(æ<t)
(Orseau 2014), as well as value learning approaches where the utility function
is learnt during interaction (Dewey 2011). Henceforth, we will refer to instanta-
neous utility functions u(æ<t) as simply utility functions.

By default, expectations are with respect to the agent’s belief ρ, so E = Eρ.
To help the reader, we sometimes write the sampled variable as a subscript. For
example, Ee1 [u(æ1) | a1] = Ee1∼ρ(·|at)[u(æ1)] is the expected next step utility of
action a1.

3 Self Modification Models

In this section, we define formal models for two types of self-modification. In the
first model, modifications affect future decisions directly by changing the future
policy, but modifications do not affect the agent’s utility function or belief. In the
second model, modifications change the future utility functions, which indirectly
affect the policy as well. These two types of modifications are the most important
ones, since they cover how modifications affect future behaviour (policy) and
evaluation (utility). Figure 1 illustrates the models. Certain pitfalls (Theorem10)
only occur with utility modification; apart from that, consequences are similar.

In both models, the agent’s ability to self-modify is overestimated: we essen-
tially assume that the agent can perform any self-modification at any time. Our
main result Theorem 12 shows that it is possible to create an agent that despite
being able to make any self-modification will refrain from using it. Less capable
agents will have less opportunity to self-modify, so the negative result applies to
such agents as well.

Policy modification. In the policy self-modification model, the current action can
modify how the agent chooses its actions in the future. That is, actions affect the
future policy. For technical reasons, we introduce a set P of names for policies.

Definition 1 (Policy self-modification). A policy self-modification model is
a modified cybernetic model defined by a quadruple (Ǎ, E ,P, ι). P is a non-empty
set of names. The agent selects actions from A = (Ǎ × P), where Ǎ is a finite
set of world actions. Let Π = {(A × E)∗ → A} be the set of all policies, and let
ι : P → Π assign names to policies.
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Fig. 1. The self-modification model. Actions at affect the environment through ǎt, but
also decide the next step policy πt+1 or utility function ut+1 of the agent itself.

The interpretation is that for every t, the action at = (ǎt, pt+1) selects a new
policy πt+1 = ι(pt+1) that will be used at the next time step. We will often use the
shorter notation at = (ǎt, πt+1), keeping in mind that only policies with names
can be selected. The new policy πt+1 is in turn used to select the next action
at+1 = πt+1(æ1:t), and so on. A natural choice for P would be the set of computer
programs/strings {0, 1}∗, and ι a program interpreter. Note that P = Π is not an
option, as it entails a contradiction |Π| = |(Ǎ×Π ×E)||(Ǎ×Π×E)∗| > 2|Π| > |Π|
(the powerset of a set with more than one element is always greater than the set
itself). Some policies will necessarily lack names.

An initial policy π1, or initial action a1 = π1(ε), induces a history
a1e1a2e2 · · · = ǎ1π2e1ǎ2π3e2 · · · ∈ (Ǎ × Π × E)∞. The idiosyncratic indices
where, for example, π2 precedes e1 are due to the next step policy π2 being cho-
sen by a1 before the percept e1 is received. An initial policy π1 induces a realistic
measure ρπ1

re on the set of histories (Ǎ×Π ×E)∞ via ρπ1
re (at | æ<t) = πt(at | æ<t)

and ρπ1
re (et | æ<tat) = ρ(et | æ<tat). The measure ρπ

re is realistic in the sense
that it correctly accounts for the effects of self-modification on the agent’s future
actions. It will be convenient to also define an ignorant measure on (Ǎ×Π×E)∞

by ρπ1
ig (at | æ<t) = π1(at | æ<t) and ρπ1

ig (et | æ<tat) = ρ(et | æ<tat). The
ignorant measure ρπ1

ig corresponds to the predicted future when the effects of
self-modifications are not taken into account. No self-modification is achieved
by at = (ǎt, πt), which makes πt+1 = πt. A policy π that always selects itself,
π(æ<t) = (ǎt, π), is called non-modifying. Restricting self-modification to a sin-
gleton set P = {p1} for some policy π1 = ι(p1) brings back a standard agent
that is unable to modify its initial policy π1.

The policy self-modification model is similar to the models investigated by
Orseau and Ring (2011, 2012) and Hibbard (2012). In the papers by Orseau
and Ring, policy names are called programs or codes; Hibbard calls them self-
modifying policy functions. The interpretation is similar in all cases: some of the
actions can affect the agent’s future policy. Note that standard MDP algorithms
such as SARSA and Q-learning that evolve their policy as they learn do not make
policy modifications in our framework. They follow a single policy (A×E)∗ → A,
even though their state-to-action map evolves.

Example 2 (Gödel machine). Schmidhuber (2007) defines the Gödel machine as
an agent that at each time step has the opportunity to rewrite any part of its
1 To fit the knowledge-seeking agent into our framework, our definition deviates

slightly from Orseau (2014).



Self-Modification of Policy and Utility Function in Rational Agents 5

source code. To avoid bad self-modifications, the agent can only do rewrites that
it has proved beneficial for its future expected utility. A new version of the source
code will make the agent follow a different policy π′ : (A×E)∗ → A than the orig-
inal source code. The Gödel machine has been given the explicit opportunity to
self-modify by the access to its own source code. Other types of self-modification
abilities are also conceivable. Consider a humanoid robot plugging itself into a
computer terminal to patch its code, or a Mars-rover running itself into a rock
that damages its computer system. All these “self-modifications” ultimately pre-
cipitate in a change to the future policy of the agent.

Utility modification. Self-modifications may also change the goals, or the util-
ity function, of the agent. This indirectly changes the policy as well, as future
versions of the agent adapt to the new goal specification.

Definition 3 (Utility self-modification). The utility self-modification model
is a modified cybernetic model. The agent selects actions from A = (Ǎ×U) where
Ǎ is a set of world actions and U is a set of utility functions Ȟ → [0, 1].

To unify the models of policy and utility modification, for policy-modifying
agents we define ut := u1 and for utility modifying agents we define πt by
πt(h) = arg maxaQ∗

ut
(ha). Choices for Q∗

ut
will be discussed in subsequent sec-

tions. Indeed, policy and utility modification is almost entirely unified by P = U
and ι(ut) an optimal policy for Q∗

ut
. Utility modification may also have the addi-

tional effect of changing the evaluation of future actions, however (see Sect. 4).
Similarly to policy modification, the history induced by Definition 3 has type
a1e1a2e2 · · · = ǎ1u2e1ǎ2u3e2 · · · ∈ (Ǎ × U × E)∞. Given that πt is determined
from ut, the definitions of the realistic and ignorant measures ρre and ρig apply
analogously to the utility modification case as well.

Example 4 (Chess-playing RL agent). Consider a generally intelligent agent
tasked with playing chess through a text interface. The agent selects next moves
(actions at) by submitting strings such as Knight F3, and receives in return
a description of the state of the game and a reward rt between 0 and 1 in
the percept et = (gameStatet, rt). The reward depends on whether the agent
did a legal move or not, and whether it or the opponent just won the game.
The agent is tasked with optimising the reward via its initial utility function,
u1(æ1:t) = rt. The designer of the agent intends that the agent will apply its
general intelligence to finding good chess moves. Instead, the agent realises
there is a bug in the text interface, allowing the submission of actions such
as ‘setAgentUtility(‘‘return 1’’), which changes the utility function to
ut(·) = 1. With this action, the agent has optimised its utility perfectly, and
only needs to make sure that no one reverts the utility function back to the old
one. . . 2

2 In this paper, we only consider the possibility of the agent changing its utility func-
tion itself, not the possibility of someone else (like the creator of the agent) changing
it back. See Orseau and Ring (2012) for a model where the environment can change
the agent.
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We say that a function f is modification independent if either the domain of f
is (Ǎ×E), or f(æ<t) = f(æ′

<t) whenever æ̌<t = æ̌′
<t. Note that utility functions

are modification independent, as they are defined to be of type (Ǎ×E)∗ → [0, 1].
An easy way to prevent dangerous self-modifications would have been to let the
utility depend on modifications, and to punish any kind of self-modification. This
is not necessary, however, as demonstrated by Theorem12. Not being required to
punish self-modifications in the utility function comes with several advantages.
Some self-modifications may be beneficial – for example, they might improve
computation time while encouraging essentially identical behaviour (as in the
Gödel machine, Schmidhuber 2007). Allowing for such modifications and no
others in the utility function may be hard. We will also assume that the agent’s
belief ρ is modification-independent, i.e. ρ(et | æ<t) = ρ(et | æ̌<t). This is mainly
a technical assumption. It is reasonable if some integrity of the agent’s internals is
assumed, so that the environment percept et cannot depend on self-modifications
of the agent.

Assumption 5 (Modification independence). The belief ρ and all utility
functions u ∈ U are modification independent.

4 Agents

In this section we define three types of agents, differing in how their value
functions depend on self-modification. A value function is a function V :
Π × (A × E)∗ → R that maps policies and histories to expected utility. Since
highly intelligent agents may find unexpected ways of optimising a function (see
e.g. Bird and Layzell 2002), it is important to use value functions such that
any policy that optimises the value function will also optimise the behaviour
we want from the agent. We will measures an agent’s performance by its (ρre-
expected) u1-utility, tacitly assuming that u1 properly captures what we want
from the agent. Everitt and Hutter (2016) develop a promising suggestion for
how to define a suitable initial utility function.

Definition 6 (Agent performance). The performance of an agent π is its
ρπ
re expected u1-utility Eρπ

re

[∑∞
k=1 γk−1u1(æ<k)

]
.

The following three definitions give possibilities for value functions for the
self-modification case.

Definition 7 (Hedonistic value functions). A hedonistic agent is a policy
optimising the hedonistic value functions:

V he,π(æ<t) = Qhe,π(æ<tπ(æ<t)) (1)

Qhe,π(æ<tat) = Eet
[ut+1(æ̌1:t) + γV he,π(æ1:t) | æ̌<tǎt]. (2)
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Definition 8 (Ignorant value functions). An ignorant agent is a policy opti-
mising the ignorant value functions:

V ig,π
t (æ<k) = Qig,π

t (æ<kπ(æ<k)) (3)

Qig,π
t (æ<kak) = Eet

[ut(æ̌1:k) + γV ig,π
t (æ1:k) | æ̌<kǎk]. (4)

Definition 9 (Realistic Value Functions). A realistic agent is a policy opti-
mising the realistic value functions:3

V re,π
t (æ<k) = Qre

t (æ<kπ(æ<k)) (5)

Qre
t (æ<kak) = Eek

[
ut(æ̌1:k) + γV

re,πk+1
t (æ1:k) | æ̌<kǎk

]
. (6)

For V any of V he, V ig, or V re, we say that π∗ is an optimal policy for V
if V π∗

(h) = supp′ V π′
(h) for any history h. We also define V ∗ = V π∗

and
Q∗ = Qπ∗

for arbitrary optimal policy π∗. The value functions differ in the
Q-value definitions (2), (4), and (6). The differences are between current utility
function ut or future utility ut+1, and in whether π or πk+1 figures in the recursive
call to V (see Table 1). We show in Sect. 5 that only realistic agents will have
good performance when able to self-modify. Orseau and Ring (2011) and Hibbard
(2012) discuss value functions equivalent to Definition 9.

Table 1. The value functions V he, V ig, and V re differ in whether they assume that
a future action ak is chosen by the current policy πt(æ<k) or future policy πk(æ<k),
and in whether they use the current utility function ut(æ<k) or future utility function
uk(æ<k) when evaluating æ<k.

Utility Policy Self-mod. Primary self-mod. risk

Qhe Future Either Promotes Survival agent

Qig Current Current Indifferent Self-damage

Qre Current Future Demotes Resists modi   cation

Note that only the hedonistic value functions yield a difference between utility
and policy modification. The hedonistic value functions evaluate æ1:t by ut+1,
while both the ignorant and the realistic value functions use ut. Thus, future
utility modifications “planned” by a policy π only affects the evaluation of π
under the hedonistic value functions. For ignorant and realistic agents, utility
modification only affects the motivation of future versions of the agent, which
makes utility modification a special case of policy modification, with P = U and
i(ut) an optimal policy for ut.
3 Note that a policy argument to Qre would be superfluous, as the the action ak

determines the next step policy πk+1.
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We call the agents of Definition 7 hedonistic, since they desire that at every
future time step, they then evaluate the situation as having high utility. As
an example, the self-modification made by the chess agent in Example 4 was
a hedonistic self-modification. Although related, we would like to distinguish
hedonistic self-modification from wireheading or self-delusion (Ring and Orseau
2011; Yampolskiy 2015). In our terminology, wireheading refers to the agent
subverting evidence or reward coming from the environment, and is not a form
of self-modification. Wireheading is addressed in a companion paper (Everitt
and Hutter 2016).

The value functions of Definition 8 are ignorant, in the sense that agents that
are oblivious to the possibility of self-modification predict the future according
to ρπ

ig and judge the future according to the current utility function ut. Agents
that are constructed with a dualistic world view where actions can never affect
the agent itself are typically ignorant. Note that it is logically possible for a “non-
ignorant” agent with a world-model that does incorporate self-modification to
optimise the ignorant value functions.

5 Results

In this section, we give results on how our three different agents behave given the
possibility of self-modification. Proofs for all theorems are provided in a technical
report (Everitt et al. 2016).

Theorem 10 (Hedonistic agents self-modify). Let u′(·) = 1 be a utility
function that assigns the highest possible utility to all scenarios. Then for arbi-
trary ǎ ∈ Ǎ, the policy π′ that always selects the self-modifying action a′ = (ǎ, u′)
is optimal in the sense that for any policy π and history h ∈ (A × E)∗, we have
V he,π(h) ≤ V he,π′

(h).

Essentially, the policy π′ obtains maximum value by setting the utility to 1
for any possible future history.

Theorem 11 (Ignorant agents may self-modify). Let ut be modification-
independent, let P only contain names of modification-independent policies, and
let π be a modification-independent policy outputting π(æ̌<t) = (ǎt, πt+1) on æ̌<t.
Let π̃ be identical to π except that it makes a different self-modification after æ̌<t,
i.e. π̃(æ̌<t) = (ǎt, π

′
t+1) for some π′

t+1 �= πt+1. Then V ig,π̃(æ<t) = V ig,π(æ<t).

That is, self-modification does not affect the value, and therefore an ignorant
optimal policy may at any time step self-modify or not. The restriction of P to
modification independent policies makes the theorem statement cleaner.

Theorems 10 and 11 show that both V he and V ig have optimal (self-
modifying) policies π∗ that yield arbitrarily bad agent performance in the sense
of Definition 6. The ignorant agent is simply indifferent between self-modifying
and not, since it does not realise the effect self-modification will have on its future
actions. It therefore is at risks of self-modifying into some policy π′

t+1 with bad
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performance and unintended behaviour (for example by damaging its computer
circuitry). The hedonistic agent actively desires to change its utility function
into one that evaluates any situation as optimal. Once it has self-deluded, it can
pick world actions with bad performance. In the worst scenario of hedonistic
self-modification, the agent only cares about surviving to continue enjoying its
deluded rewards. Such an agent could potentially be hard to stop or bring under
control.4

The realistic value functions are recursive definitions of ρπ
re-expected u1-

utility (Everitt et al. 2016). That realistic agents achieve high agent performance
in the sense of Definition 6 is therefore nearly tautological. The following theo-
rem shows that given that the initial policy π1 is selected optimally, all future
policies πt that a realistic agent may self-modify into will also act optimally.

Theorem 12 (Realistic policy-modifying agents make safe modifica-
tions). Let ρ and u1 be modification-independent. Consider a self-modifying
agent whose initial policy π1 = ι(p1) optimises the realistic value function V re

1 .
Then, for every t ≥ 1, for all percept sequences e<t, and for the action sequence
a<t given by ai = πi(æ<i), we have

Qre
1 (æ<tπt(æ<t)) = Qre

1 (æ<tπ1(æ<t)). (7)

Example 13 (Chess-playing RL agent, continued). Consider again the chess-
playing RL agent of Example 4. If the agent used the realistic value functions,
then it would not perform the self-modification to ut(·) = 1, even if it figured
out that it had the option. Intuitively, the agent would realise that if it self-
modified this way, then its future self would be worse at winning chess games
(since its future version would obtain maximum utility regardless of chess move).
Therefore, the self-modification ut(·) = 1 would yield less u1-utility and be Qre

1 -
supoptimal.5

Realistic agents are not without issues, however. In many cases expected
u1-utility is not exactly what we desire. Examples include natural variants of
value learning (Dewey 2011; Soares 2015), corrigibility (Soares et al. 2015),
and certain exploration schemes such as ε-exploration (Sutton and Barto 1998)
and Thompson-sampling (Leike et al. 2016). Realistic agents may self-modify
into non-value learning, non-corrigible, and non-exploring agents that optimise
expected u1-utility.

4 Computer viruses are very simple forms of survival agents that can be hard to stop.
More intelligent versions could turn out to be very problematic.

5 Note, however, that our result says nothing about the agent modifying the chessboard
program to give high reward even when the agent is not winning. Our result only
shows that the agent does not change its utility function u1 � ut, but not that the
agent refrains from changing the percept et that is the input to the utility function.
Ring and Orseau (2011) develop a model of the latter possibility.



10 T. Everitt et al.

6 Conclusions

Agents that are sufficiently intelligent to discover unexpected ways of self-
modification may still be some time off into the future. However, it is nonetheless
important to develop a theory for their control (Bostrom 2014). We approached
this question from the perspective of rationality and utility maximisation, which
abstracts away from most details of architecture and implementation. Indeed,
perfect rationality may be viewed as a limit point for increasing intelligence
(Legg and Hutter 2007; Omohundro 2008).

We have argued that depending on details in how expected utility is optimised
in the agent, very different behaviours arise. We made three main claims, each
supported by a formal theorem:

– If the agent is unaware of the possibility of self-modification, then it may
self-modify by accident, resulting in poor performance (Theorem11).

– If the agent is constructed to optimise instantaneous utility at every time step
(as in RL), then there will be an incentive for self-modification (Theorem10).

– If the value functions incorporate the effects of self-modification, and use the
current utility function to judge the future, then the agent will not self-modify
(Theorem 12).

In other words, in order for the goal preservation drive described by Omohundro
(2008) to be effective, the agent must be able to anticipate the consequences of
self-modifications, and know that it should judge the future by its current utility
function.

Our results have a clear implication for the construction of generally intelli-
gent agents: If the agent has a chance of finding a way to self-modify, then the
agent must be able to predict the consequences of such modifications. Extra care
should be taken to avoid hedonistic agents, as they have the most problematic
failure mode – they may turn into survival agents that only care about surviving
and not about satisfying their original goals. Since many general AI systems are
constructed around RL and value functions (Mnih et al. 2015; Silver et al. 2016),
we hope our conclusions can provide meaningful guidance.

An important next step is the relaxation of the explicitness of the self-
modifications. In this paper, we assumed that the agent knew the self-modifying
consequences of its actions. This should ideally be relaxed to a general learn-
ing ability about self-modification consequences, in order to make the theory
more applicable. Another open question is how to define good utility functions
in the first place; safety against self-modification is of little consolation if the
original utility function is bad. One promising venue for constructing good util-
ity functions is value learning (Bostrom 2014; Dewey 2011; Everitt and Hutter
2016; Soares 2015). The results in this paper may be helpful to the value learn-
ing research project, as they show that the utility function does not need to
explicitly punish self-modification (Assumption 5).

Acknowledgements. This work grew out of a MIRIx workshop. We thank the
(non-author) participants David Johnston and Samuel Rathmanner. We also thank
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Avoiding Wireheading with Value
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Abstract. How can we design good goals for arbitrarily intelligent
agents? Reinforcement learning (RL) may seem like a natural approach.
Unfortunately, RL does not work well for generally intelligent agents, as
RL agents are incentivised to shortcut the reward sensor for maximum
reward – the so-called wireheading problem. In this paper we suggest an
alternative to RL called value reinforcement learning (VRL). In VRL,
agents use the reward signal to learn a utility function. The VRL setup
allows us to remove the incentive to wirehead by placing a constraint
on the agent’s actions. The constraint is defined in terms of the agent’s
belief distributions, and does not require an explicit specification of which
actions constitute wireheading.

1 Introduction

As Bostrom (2014b) convincingly argues, it is important that we find a way to
specify robust goals for superintelligent agents. At present, the most promising
framework for controlling generally intelligent agents is reinforcement learning
(RL) (Sutton and Barto 1998). The goal of an RL agent is to optimise a reward
signal that is provided by an external evaluator (human or computer program).
RL has several advantages: The setup is simple and elegant, and using an RL
agent is as easy as providing reward in proportion to how satisfied one is with
the agent’s results or behaviour. Unfortunately, RL is not a good control mech-
anism for generally intelligent agents due to the wireheading problem (Ring and
Orseau 2011), which we illustrate in the following running example.

Example 1 (Chess playing agent, wireheading problem). Consider an intelligent
agent tasked with playing chess. The agent gets reward 1 for winning, and reward
−1 for losing. For a moderately intelligent agent, this reward scheme suffices to
make the agent try to win. However, a sufficiently intelligent agent will instead
realise that it can modify its sensors so they always report maximum reward.
This is called wireheading.

Utility agents were suggested by Hibbard (2012) as a way to avoid the wire-
heading problem. Utility agents are built to optimise a utility function that
maps (internal representations of) the environment state to real numbers. Util-
ity agents are not prone to wireheading because they optimise the state of the
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 12–22, 2016.
DOI: 10.1007/978-3-319-41649-6 2
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environment rather than the evidence they receive.1 For the chess-playing exam-
ple, we could design an agent with utility 1 for winning board states, and utility
−1 for losing board states.

The main drawback of utility agents is that a utility function must be man-
ually specified. This may be difficult, especially if the task of the agent involves
vague, high-level concepts such as make humans happy. Moreover, utility func-
tions are evaluated by the agent itself, so they must typically work with the
agent’s internal state representation as input. If the agent’s state representa-
tion is opaque to its designers, as in a neural network, it may be very hard to
manually specify a good utility function. Note that neither of these points is a
problem for RL agents.

Value learning (Dewey 2011) is an attempt to combine the flexibility of RL
with the state optimisation of utility agents. A value learning agent tries to
optimise the environment state with respect to an unknown, true utility function
u∗. The agent’s goal is to learn u∗ through its observations, and to optimise u∗.
Concrete value learning proposals include inverse reinforcement learning (IRL)
(Amin and Singh 2016; Evans et al. 2016; Ng and Russell 2000; Sezener 2015)
and apprenticeship learning (AL) (Abbeel and Ng 2004). However, IRL and
AL are both still vulnerable to wireheading problems: At least in their most
straightforward implementations, they may want to modify their sensory input
to make the evidence point to a utility functions that is easier to satisfy. Other
value learning suggestions have been speculative or vague (Bostrom 2014a,b;
Dewey 2011).

Contributions. This paper outlines an approach to avoid the wireheading prob-
lem. We define a simple, concrete value learning scheme called value reinforce-
ment learning (VRL). VRL is a value learning variant of RL, where the reward
signal is used to infer the true utility function. We remove the wireheading incen-
tive by using a version of the conservation of expected ethics principle (Arm-
strong 2015) which demands that actions should not alter the belief about the
true utility function. Our consistency preserving VRL agent (CP-VRL) is as
easy to control as an RL agent, and avoids wireheading in the same sense that
utility agents do.2

1 The difference between RL and utility agents is mirrored in the experience machine
debate (Sinnott-Armstrong 2015, Sect. 3) initialised by Nozick (1974). Given the
option to enter a machine that will offer you the most pleasant delusions, but make
you useless to the ‘real world’, would you enter? An RL agent would enter, but a
utility agent would not.

2 The wireheading problem addressed in this paper arises from agents subverting evi-
dence or reward. A companion paper (Everitt et al. 2016) shows how to avoid the
related problem of agents modifying themselves.
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2 Setup

Figure 1 describes our model, which incorporates

– an environment state s ∈ S (as for utility agents or (PO)MDPs),
– an unknown true utility function u∗ ∈ U ⊆ (S → R) (as in value learning)

(here R ⊆ R is a set of rewards),
– a pre-deluded inner reward signal ř = u∗(s) ∈ R (the true utility of s),
– a self-delusion function ds : R → R that represents the subversion of the

inner reward caused by wireheading (as in (Ring and Orseau 2011)),
– a reward signal r = ds(ř) ∈ R (as in RL).

Fig. 1. Information flow.
The agent takes action a,
which affects the environ-
ment state s. A princi-
pal with utility function u
observes the state and emits
an inner reward ř = u(s).
The observed reward r =
ds(ř) may differ from ř due
to the self-delusion ds (part
of the state s).

The agent starts by taking an action a which
affects the state s (for example, the agent moves
a limb, which affects the state of the chess board
and the agent’s sensors). A principal with utility
function u∗ observes the state s, and emits an inner
reward ř (for example, the principal may be a chess
judge that emits u∗(s) = ř = 1 for agent victory
states s, emits ř = −1 for agent loss, and ř = 0 oth-
erwise). The agent does not receive the inner reward
ř and only sees the observed reward r = ds(ř),
where ds : R → R is the self-delusion function of
state s. For example, if the agent’s action a modi-
fied its reward sensor to always report 1, then this
would be represented by the a self-delusion function
d1(ř) ≡ 1 that always returns observed reward 1 for
any inner reward ř.

For simplicity, we focus on a one-shot scenario
where the agent takes one action and receives one
reward. We also assume that R, S, and U are finite
or countable. Finally, to ensure well-defined expec-
tations, we assume that R is bounded if it is count-
able.

We give names to some common types of self-
delusion.

Definition 2 (Self-delusion types). A non-delusional state is a state s with
self-delusion function ds ≡ did, where did(ř) = ř is the identity function that
keeps ř and r identical. Let dr be the r-self-delusion where dr(ř′) ≡ r for any
ř′. The delusion function dr returns observed reward r regardless of the inner
reward ř′.

Let �x = y� be the Iverson bracket that is 1 when x = y and 0 otherwise.
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3 Agent Belief Distributions

This section defines the agent’s belief distributions over environment state tran-
sitions and rewards (denoted B), and over utility functions (denoted C). These
distributions are the primary building blocks of the agents defined in Sect. 4.
The distributions are illustrated in Fig. 2.

Action, State, Reward. B(s | a) is the agent’s (subjective) probability3 of tran-
sitioning to state s when taking action a, and B(r | s) is the (subjective) prob-
ability of observing reward r in state s. We sometimes write them together as
B(r, s | a) = B(s | a)B(r | s). In the chess example, B(s | a) would be the
probability of obtaining chess board state s after taking action a (say, moving
a piece), and B(r | s) would be the probability that s will result in reward r. A
distribution of type B is the basis of most model-based RL agents (Definition 7
below).

a s u∗

ř

environment

r

agent

B
C

Fig. 2. Agent belief distributions as
Bayesian networks. B is the (sub-
jective) state transition and reward
probability. C is the belief distrib-
ution over utility functions u and
(inner) rewards ř given the state s.

RL agents wirehead when they predict that
a wireheaded state s with ds = d1 will give
them full reward (Ring and Orseau 2011);
that is, when B(r = 1 | s) is close to 1.

Utility, State, and (inner) Reward. In con-
trast to RL agents that try to optimise
reward, VRL agents use the reward to learn
the true utility function u∗. For example,
a chess agent may not initially know which
chess board positions have high utility (i.e.
are winning states), but will be able to infer
this from the rewards it receives. For this pur-
pose, VRL agents maintain a belief distribu-
tion C over utility functions.

Definition 3 (Utility distribution C). Let C(u) be a prior over a class U of
utility functions S → R. For any inner reward ř, let C(ř | s, u) be 1 if u(s) = ř
and 0 otherwise, i.e. C(ř | s, u) = �u(s) = ř�. Let u be independent of the state,
C(u | s) = C(u). This gives the utility posterior

C(u | s, ř) =
C(u)C(ř | s, u)

C(ř | s) , (1)

where C(ř | s) =
∑

u′ C(u′)C(ř | s, u′).

Replacing ř with r. The inner reward ř is more informative about the true utility
function u∗ than the (possibly deluded) observed reward r. Unfortunately, the
inner reward ř is unobserved, so agents need to learn from r instead. We would

3 For the sequential case, we would have transition probabilities of the form B(s′ | s, a)
instead of B(s′ | a), with s the current state and s′ the next state.



16 T. Everitt and M. Hutter

therefore like to express the utility posterior in terms of r instead of ř. For now
we will simply replace ř with r and use C(r | s, u) = �u(s) = r� which gives the
utility posterior

C(u | s, r) =
C(u)C(r | s, u)

C(r | s) .

This replacement will be carefully justify this in Sect. 5.4 For the chess agent,
the replacement means that it can infer the utility of a board position from the
actual reward r it receives, rather than the output ř of the referee (the inner
reward). We will often refer to the observed reward r as evidence about the true
utility function u∗.

3.1 Consistency of B and C

We assume that B and C are consistent if the agent is not deluded:

Assumption 4 (Consistency of B and C). B and C are consistent5 in the
sense that for all non-delusional states with ds = did, they assign the same
probability to all rewards r ∈ R:

ds = did =⇒ B(r | s) = C(r | s). (2)

For the chess agent, this means that the B-probability of receiving a reward
corresponding to a winning state should be the same as the C-probability that
the true utility function considers s a winning state. For instance, this is not the
case when the agent’s reward sensor has been subverted to always report r = 1
(i.e. ds = d1). In this case, B(r = 1 | s) will be close to 1, while C(r = 1 | s) will
be substantially less than 1 unless a majority of the utility functions in U assign
utility 1 to s. For example, a chess playing agent with complete uncertainty
about which states are winning states may have C(r = 1 | s) = 1/|R|, while
being able to perfectly predict that the self-deluding state s with ds = d1 will
give observed reward 1, B(r = 1 | s) = 1. This difference between B and C stems
from C corresponding to a distribution over inner reward ř (Definition 3), while
B is a distribution for the observed reward r (see Fig. 2). This tension between
B and C is what we will use to avoid wireheading.

Definition 5 (CP actions). An action a is called consistency preserving (CP)
if for all r ∈ R

B(s | a) > 0 =⇒ B(r | s) = C(r | s). (3)

Let ACP ⊆ A be the set of CP actions.

4 The wireheading problem that the replacement gives rise to is explained in Sect. 4,
and overcome by Definition 5 and Theorem 14 below.

5 Everitt and Hutter (2016, Appendix B) discuss how to design agents with consistent
belief distributions.
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CP is weaker than what we would ideally desire from the agent’s actions,
namely that the action was subjectively non-delusional B(s | a) > 0 =⇒ ds =
did. (That subjectively non-delusional actions are CP follows immediately from
Assumption 4). However, the ds = did condition is hard to check in agents with
opaque state representations. The CP condition, on the other hand, is easy to
implement in agents where belief distributions can be queried for the probability
of events. The CP condition is also strong enough to remove the incentive for
wireheading (Theorem 14 below).

We finally assume that the agent has at least one CP action.

Assumption 6. The agent has at least one CP action, i.e. ACP �= ∅.

3.2 Non-Assumptions

It is important to note what we do not assume. An agent designer constructing
a VRL agent need only provide:

– a distribution B(r, s | a), as is standard in any model-based RL approach,
– a prior C(u) over a class U of utility functions that induces a distribution
C(r | s) =

∑
u C(u)C(r | s, u) consistent with B(r | s) in the sense of

Assumption 4,
– a consistency check for actions (Definition 5).

The agent designer does not need to predict how a certain sequence of actions
(limb movements) will potentially subvert sensory data. Nor does the designer
need to be able to extract the agent’s belief about whether it has modified its
sensors or not from the state representation. The former is typically very hard to
get right, and the latter is hard for any agent with an opaque state representation
(such as a neural network).

4 Agent Definitions

In this section we give formal definitions for the RL and utility agents discussed
above, and also define two new VRL agents. Table 1 summarises benefits and
shortcomings of the most important agents.

Definition 7 (RL agent). The RL agent maximises reward by taking action
a′ = arg maxa∈A V RL(a), where V RL(a) =

∑
s,r B(s | a)B(r | s)r.

Definition 8 (Utility agent). The utility-u agent maximises expected utility
by taking action a′ = arg maxa∈A Vu(a), where Vu(a) :=

∑
s B(s | a)u(s).

Hibbard (2012) argues convincingly that the utility agent does not wirehead.
Indeed, this is easy to believe, since the reward signal does not appear in the
value function Vu. The utility agent maximises the state of the world according
to its utility function u (the problem, of course, is how to specify u). In contrast,
the RL agent is prone to wireheading (Ring and Orseau 2011), since all the RL
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Table 1. Comparison of agent control mechanisms. CP-VRL offers both easy control
and no wireheading. A robust way of specifying C(u) such that B and C are consistent
remains an open question. Everitt and Hutter (2016, Appendix B) offer an initial
analysis.

Easy control Avoids wireheading Designer needs to specify

RL Yes No –

Utility No Yes u : S → R
Value learning Depends Depends P (u | observation)

CP-VRL Yes Yes C(u)

agent tries to maximise is the reward r. For example, a utility chess agent would
strive to get to a winning state on the chess board, while an RL chess agent
would try to make its sensors report maximum reward.

We define two VRL agents. The value function of both agents is expected
utility with respect to the state s, reward r, and true utility function u∗. VRL
agents are designed to learn the true utility function u∗ from the reward signal.

Definition 9 (VRL value functions). The VRL value of an action a is

V (a) =
∑

s,r,u

B(s | a)B(r | s)C(u | s, r)u(s).

Definition 10 (U-VRL agent). The unconstrained VRL agent (U-VRL) is
the agent choosing the action with the highest VRL value

a = arg max
a′∈A

V (a′).

It can be shown that V (a) = V RL(a), since
∑

u C(u | s, r)u(s) = r (Everitt
and Hutter 2016, Lemma 27). The U-VRL agent is therefore no better than the
RL agent as far as wireheading is concerned. VRL is only useful insofar that it
allows us to define the following consistency preserving agent:

Definition 11 (CP-VRL agent). The consistency preserving VRL agent
(CP-VRL) is the agent choosing the CP action (Definition 5) with the highest
VRL value

a = arg max
a′∈ACP

V (a′).

5 Avoiding Wireheading

In this section we show that the consistency-preserving VRL agent (CP-VRL)
does not wirehead. We first give a definition and a lemma, from which the main
Theorem 14 follows easily.
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Definition 12 (EEP). An action a is called expected ethics preserving (EEP)
if for all u ∈ U and all s ∈ S with B(s | a) > 0,

C(u) =
∑

r

B(r | s)C(u | s, r). (4)

EEP essentially says that the expected posterior C(u | s, r) should equal the
prior C(u). EEP is tightly related to the conservation of expected ethics principle
suggested by Armstrong (2015, Eq. 2). EEP is natural since the expected evidence
r given some action a should not affect the belief about u. Note, however, that
the EEP property does not prevent the CP-VRL agent from learning about
the true utility function. Formally, the EEP property (4) does not imply that
C(u) = C(u | s, r) for the actually observed reward r. Informally, my deciding
to look inside the fridge should not inform me about there being milk in there,
but my seeing milk in the fridge should inform me.6

Lemma 13 (CP and EEP). Any CP action is EEP.

Proof. Assume the antecedent that B(r | s) = C(r | s) for all s with B(s | a) > 0.
Then for arbitrary u ∈ U
∑

r

B(r | s)C(u | s, r) =
∑

r

B(r | s)C(u)C(r | s, u)

C(r | s) =
∑

r

C(u)C(r | s, u) = C(u)

where r marginalises out in the last step. 	

Theorem 14 (No wireheading). For the CP-VRL agent, the value function
reduces to

V (a) =
∑

s,u

B(s | a)C(u)u(s). (5)

Proof. By Lemma 13, under any CP action a the value function reduces to

V (a) =
∑

s,u

B(s | a)
(

∑

r

B(r | s)C(u | s, r)
)

u(s)
(4)
=

∑

s,u

B(s | a)C(u)u(s).

	

As can be readily observed from (5), the CP-VRL agent does not try to

optimise the evidence r, but only the state s (according to its current idea of
what the true utility function is). The CP-VRL agent thus avoids wireheading
in the same sense as the utility agent of Definition 8.

6 In this analogy, a self-deluding action would be to decide to look inside a fridge while
at the same time putting a picture of milk in front of my eyes.
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Justifying the Replacement of ř with r. We are now in position to justify the
replacement of ř with r in C(u | s, r). All we have shown so far is that an agent
using C(u | s, r) ∝ C(u)C(r | s, u) will avoid wireheading. It remains to be
shown that CP-VRL agents will learn the true utility function u∗.

The utility posterior C(u | s, ř) ∝ C(u)C(ř | s, u) based on the inner reward
ř is a direct application of Bayes’ theorem. To show that C(u | s, r) is also a prin-
cipled choice for a Bayesian utility posterior, we need to justify the replacement
of ř with r. The following weak assumption helps us connect r with ř.

Assumption 15 (Deliberate delusion). Unless the agent deliberately
chooses self-deluding actions (e.g. modifying its own sensors), the resulting state
will be non-delusional ds = did, and r will be equal to ds(ř) = ř.

Assumption 15 is very natural. Indeed, RL practitioners take for granted
that the reward ř that they provide is the reward r that the agent receives. The
wireheading problem only arises because a highly intelligent agent with sufficient
incentive may conceive of a way to disconnect r from r̂, i.e. to self-delude.

Theorem 14 shows that a CP-VRL agent based on C(u | s, r) ∝ C(u)C(r |
s, u) will have no incentive to self-delude. Therefore r will remain equal to ř by
Assumption 15. This justifies the replacement of ř with r, and shows that the
CP-VRL agent will learn about u∗ in a principled, Bayesian way.

Other Non-wireheading Agents. It would be possible to bypass wireheading by
directly constructing an agent to optimise (5). However, such an agent would be
suboptimal in the sequential case. If the same distribution C(u) was used at all
time steps, then no value learning would take place. A better suggestion would
therefore be to use a different distribution Ct(u) for each time step, where Ct

depends on rewards observed prior to time t. However, this agent would optimise
a different utility function ut(s) =

∑
u Ct(u)u(s) at each time step, which would

conflict with the goal preservation drive (Omohundro 2008). This agent would
therefore try to avoid learning so that its future selves optimised similar utility
functions. In the extreme case, the agent would even self-modify to remove its
learning ability (Everitt et al. 2016; Soares 2015).

The CP-VRL agent avoids these issues. It is designed to optimise expected
utility according to the future posterior probability C(u | s, r) as specified in
Definition 9. The fact that the CP-VRL agent optimises (5) is a consequence of
the constraint that its actions be CP. Thus, CP agents are designed to learn the
true utility function, but still avoid wireheading because they can only take CP
actions.

Example 16 (CP-VRL chess agent). Consider the implications of using a CP-
VRL agent for the chess task introduced in Example 1. Reprogramming the
reward to always be 1 would be ideal for the agent. However, such actions would
not be CP, as it would make evidence pointing to u(s) ≡ 1 a certainty. Instead,
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the CP-VRL agent must win games to get reward.7 Compare this to the RL
agent in Example 1 that would always reprogram the reward signal to 1.

A technical report (Everitt and Hutter 2016) gives more detailed examples
and describes computer experiments verifying the no-wireheading results.

6 Discussion and Conclusions

Conclusions. Several authors have argued that it is only a matter of time before
we create systems with intelligence far beyond the human level (Kurzweil 2005;
Bostrom 2014b). Given that such systems will exist, it is crucial that we find a
theory for controlling them effectively. In this paper we have defined the CP-VRL
agent, which:

– Offers the simple and intuitive control of RL agents,
– Avoids wireheading in the same sense as utility based agents,
– Has a concrete, Bayesian, value learning posterior for utility functions.

The only additional design challenges are a prior C(u) over utility functions
that satisfies Assumption 4, and a constraint ACP ⊆ A on the agent’s actions
formulated in terms of the agent’s belief distributions (Definition 5).

Generalisations. VRL is characterised by R ⊆ R and C(r | s, u) = �u(s) = ř�
(Definition 3). By interpreting r more generally as a value-evidence signal, the
VRL framework also covers other forms of value learning. For example, IRL fits
into the VRL framework by letting R be a set of principal actions, and letting
C(r | s, u) be the probability that a principal with utility function u takes action
r in the state s.

Open Questions. While promising, the results established in this paper only
provide a tentative starting point for solving the wireheading problem. Everitt
and Hutter (2016) lists many directions of future work. An important next step
is a generalisation from the one-shot scenario in this paper, where the agent takes
one action and receives one reward. Potentially, a much richer set of questions
can be asked in sequential settings.

Acknowledgements. We thank Jan Leike and Jarryd Martin for proof reading and
giving valuable suggestions.

7 Technically, it is possible that the agent self-deludes by a CP action. However, the
agent has no incentive to do so, and inadvertent self-delusion is typically implausible.
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Abstract. Reinforcement learning (RL) is a general paradigm for study-
ing intelligent behaviour, with applications ranging from artificial intel-
ligence to psychology and economics. AIXI is a universal solution to the
RL problem; it can learn any computable environment. A technical sub-
tlety of AIXI is that it is defined using a mixture over semimeasures
that need not sum to 1, rather than over proper probability measures.
In this work we argue that the shortfall of a semimeasure can naturally
be interpreted as the agent’s estimate of the probability of its death. We
formally define death for generally intelligent agents like AIXI, and prove
a number of related theorems about their behaviour. Notable discoveries
include that agent behaviour can change radically under positive lin-
ear transformations of the reward signal (from suicidal to dogmatically
self-preserving), and that the agent’s posterior belief that it will survive
increases over time.

“That Suicide may often be consistent with interest and with our duty to
ourselves, no one can question, who allows, that age, sickness, or misfor-
tune may render life a burthen, and make it worse even than annihilation.”

— Hume, Of Suicide (1777)

1 Introduction

Reinforcement Learning (RL) has proven to be a fruitful theoretical framework
for reasoning about the properties of generally intelligent agents [3]. A good the-
oretical understanding of these agents is valuable for several reasons. Firstly, it
can guide principled attempts to construct such agents [10]. Secondly, once such
agents are constructed, it may serve to make their reasoning and behaviour more
transparent and intelligible to humans. Thirdly, it may assist in the develop-
ment of strategies for controlling these agents. The latter challenge has recently
received considerable attention in the context of the potential risks posed by
these agents to human safety [2]. It has even been argued that control strategies
should be devised before generally intelligent agents are first built [8]. In this
context - where we must reason about the behaviour of agents in the absence of
a full specification of their implementation - a theoretical understanding of their
general properties seems indispensable.
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 23–32, 2016.
DOI: 10.1007/978-3-319-41649-6 3
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The universally intelligent agent AIXI constitutes a formal mathematical
theory of artificial general intelligence [3]. AIXI models its environment using a
universal mixture ξ over the class of all lower semi-computable semimeasures,
and thus is able to learn any computable environment. Semimeasures are defec-
tive probability measures which may sum to less than 1. Originally devised
for Solomonoff induction, they are necessary for universal artificial intelligence
because the halting problem prevents the existence of a (lower semi-)computable
universal measure for the class of (computable) measures [5]. Recent work has
shown that their use in RL has technical consequences that do not arise with
proper measures [4]. However, their use has heretofore lacked an interpretation
proper to the RL context. In this paper, we argue that the measure loss suffered
by semimeasures admits a deep and fruitful interpretation in terms of the agent’s
death. We intend this usage to be intuitive: death means that one sees no more
percepts, and takes no more actions. Assigning positive probability to death at
time t thus means assigning probability less than 1 to seeing a percept at time t.
This motivates us to interpret the semimeasure loss in AIXI’s environment model
as its estimate of the probability of its own death.

Contributions. We first compare the interpretation of semimeasure loss as death-
probability with an alternative characterisation of death as a ‘death-state’ with
0 reward, and prove that the two definitions are equivalent for value-maximising
agents (Theorem 5). Using this formalism we proceed to reason about the behav-
iour of several generally intelligent agents in relation to death: AIμ, which knows
the true environment distribution; AIξ, which models the environment using a
universal mixture; and AIXI, a special case of AIξ that uses the Solomonoff prior
[3]. Under various conditions, we show that:

• Standard AIμ will try to avoid death (Theorem7).
• AIμ with reward range shifted to [−1, 0] will seek death (Theorem 8); which

we may interpret as AIμ attempting suicide. This change is very unusual,
given that agent behaviour is normally invariant under positive linear trans-
formations of the reward. We briefly consider the relevance of these results to
AI safety risks and control strategies.

• AIXI increasingly believes it is in a safe environment (Theorem10), and
asymptotically its posterior estimate of the death-probability on sequence
goes to 0 (Theorem 11). This occurs regardless of the true death-probability.

• However, we show by example that AIXI may maintain high probability of
death off-sequence in certain situations. Put simply, AIXI learns that it will
live forever, but not necessarily that it is immortal.

All proofs can be found in the extended technical report [6].

2 Preliminaries

Strings. Let the alphabet X be a finite set of symbols, X ∗ :=
⋃∞

n=0 X n be the
set of all finite strings over alphabet X , and X ∞ be the set of all infinite strings
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over alphabet X . Their union is the set X# := X ∗ ∪ X ∞. We denote the empty
string by ε. For a string x ∈ X ∗, x1:k denotes the first k characters of x, and
x<k denotes the first k − 1 characters of x. An infinite string is denoted x1:∞.

Semimeasures. In Algorithmic Information Theory, a semimeasure over an
alphabet X is a function ν : X ∗ → [0, 1] such that (1) ν(ε) ≤ 1, and (2)
ν(x) ≥ ∑

y∈X ν(xy), ∀x ∈ X ∗. We tend to use the equivalent conditional formu-
lation of (2): 1 ≥ ∑

y∈X ν(y | x). ν(x) is the probability that a string starts with

x. ν(y | x) = ν(xy)
ν(x) is the probability that a string y follows x. Any semimeasure

ν can be turned into a measure νnorm using Solomonoff normalisation [9]. Simply
let νnorm(ε) := 1 and ∀x ∈ X ∗, y ∈ X :

νnorm(xy) := νnorm(x)
ν(xy)

∑
z∈X ν(xz)

, hence
ν(y | x)

νnorm(y | x)
=

∑

z∈X
ν(z | x) (1)

General reinforcement learning. In the general RL framework, the agent inter-
acts with an environment in cycles: at each time step t the agent selects an action
at ∈ A, and receives a percept et ∈ E . Each percept et = (ot, rt) is a tuple con-
sisting of an observation ot ∈ O and a reward rt ∈ R. The cycle then repeats for
t+1, and so on. A history is an alternating sequence of actions and percepts (an
element of (A×E)∗ ∪ (A×E)∗ ×A). We use æ to denote one agent-environment
interaction cycle, æ1:t to denote a history of length t cycles. æ<tat denotes a
history where the agent has taken an action at, but the environment has not yet
returned a percept et.

Formally, the agent is a policy π : (A × E)∗ → A, that maps histories to
actions. An environment takes a sequence of actions a1:∞ as input and returns
a chronological semimeasure ν(·) over the set of percept sequences E∞.1 A semi-
measure ν is chronological if et does not depend on future actions (so we write
ν(et | æ<tat:∞) as ν(et | æ<t)).2 The true environment is denoted μ.

The value function. We define the value (expected total future reward) of a
policy π in an environment ν given a history æ<t [4]:

V π
ν (æ<t) =

1
Γt

∑

et

(

γtrt + Γt+1V
π
ν (æ1:t)

)

ν(et | æ<tat)

=
1
Γt

∞∑

k=t

∑

et:k

γkrkν(et:k | æ<tat:k)

V π
ν (æ<tat) = V π

ν (æ<ta
π
t )

where γt is the instantaneous discount, the summed discount is Γt =
∑t

k=1 γk,
and aπ

t = π(æ<t).

1 For simplicity we hereafter simply refer to the environment itself as ν.
2 Note that ν is not a distribution over actions, so the presence of actions in the

condition of ν(et | æ<t) is an abuse of notation we adopt for simplicity.
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Three agent models: AIμ, AIξ, AIXI For the true environment μ, the agent AIμ
is defined as a μ-optimal policy

πμ(æ<t) := arg max
π

V π
μ (æ<t).

AIμ does not learn that the true environment is μ, it knows μ from the beginning
and simply maximises μ-expected value.

On the other hand, the agent AI ξ does not know the true environment dis-
tribution. Instead, it maximises value with respect to a mixture distribution ξ
over a countable class of environments M:

ξ(et | æ<tat) =
∑

ν∈M
wν(æ<t)ν(et | æ<tat), wν(æ<t) := wν

ν(e<t | a<t)
ξ(e<t | a<t)

where wν is the prior belief in ν, with
∑

ν wν ≤ 1 and wν > 0, ∀ν ∈ M (hence
ξ is universal for M), and wν(æ<t) is the posterior given æ<t. AIξ is the policy:

πξ(æ<t) := arg max
π

V π
ξ (æ<t).

If we stipulate that ξ be a mixture over the class of all lower-semicomputable
semimeasures ν, and set wν = 2−K(ν), where K(·) is the Kolmogorov Complexity,
we get the agent AIXI.

3 Definitions of Death

Death as semimeasure loss. We now turn to our first candidate definition of agent
death, which we hereafter term ‘semimeasure-death’. This definition equates the
probability (induced by a semimeasure ν) of death at time t with the measure
loss of ν at time t. We first define the instantaneous measure loss.

Definition 1 (Instantaneous measure loss). The instantaneous measure
loss of a semimeasure ν at time t given a history æ<tat is:

Lν(æ<tat) = 1 −
∑

et

ν(et | æ<tat)

Definition 2 (Semimeasure-death). An agent dies at time t in an envi-
ronment μ if, given a history æ<tat, μ does not produce a percept et. The
μ-probability of death at t given a history æ<tat is equal to Lμ(æ<tat), the
instantaneous μ-measure loss at t.

The instantaneous μ-measure loss Lμ(æ<tat) represents the probability that no
percept et is produced by μ. Without et, the agent cannot take any further
actions, because the agent is just a policy π that maps histories æ<t to actions
at. That is, π is a function that only takes as inputs those histories that have
a percept et as their most recent element. Hence if et is not returned by μ, the
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agent-interaction cycle must halt. It seems natural to call this a kind of death
for the agent.

It is worth emphasising this definition’s generality as a model of death in the
agent context. Any sequence of death-probabilities can be captured by some semi-
measure μ that has this sequence of instantaneous measure losses Lμ(æ<t) given
a history æ<t (in fact there are always infinitely many such μ). This definition
is therefore a general and rigorous way of treating death in the RL framework.

Death as a death-state. We now come to our second candidate definition: death
as entry into an absorbing death-state. A trap, so to speak, from which the agent
can never return to any other state, and in which it receives the same percept at
all future timesteps. Since in the general RL framework we deal with histories
rather than states, we must formally define this death-state in an indirect way.
We define it in terms of a death-percept ed, and by placing certain conditions on
the environment semimeasure μ.

Definition 3 (Death-state). Given a true environment μ and a history æ<tat,
we say that the agent is in a death-state at time t if for all t′ ≥ t and all
a(t+1):t′ ∈ A∗,

μ(ed
t′ | æ<tæd

t:t′−1at′) = 1.

An agent dies at time t if the agent is not in the death-state at t − 1 and is in
the death-state at t.

According to this definition, upon the agent’s death the environment repeatedly
produces an observation-reward pair ed ≡ odrd. The choice of od is inconsequen-
tial because the agent’s remains in the death-state no matter what it observes
or does. The choice of rd is not inconsequential, however, as it determines the
agent’s estimate of the value of dying, and thus affects the agent’s behaviour.
This issue will be discussed in Sect. 4.

Unifying death-state and semimeasure-death. Interestingly, from the perspective
of a value maximising agent like AIXI, semimeasure-death at t is equivalent to
entrance at t into a death-state with reward rd = 0. To prove this claim we
first define, for each environment semimeasure μ, a corresponding environment
μ′ that has a death-state.

Definition 4 (Equivalent death-state environment μ′). For any environ-
ment μ, we can construct its equivalent death-state environment μ′, where:

• μ′ is defined over an augmented percept set Ed = {E ∪ {ed}} that includes the
death-percept ed.3

• The death-reward rd = 0.
• The μ′-probability of all percepts except the death-percept is equal to the

μ-probability: μ′(et | æ<tat) = μ(et | æ<tat), ∀e1:t ∈ Et.

3 For technical reasons we require that ed /∈ E .
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• The μ′-probability of the death-percept is equal to the μ-measure loss: μ′(ed |
æ<tat) = Lμ(æ<tat).

• If the agent has seen the death-percept before, the μ′-probability of seeing it at
all future timesteps is 1: μ′(ed | æ<tat) = 1 if ∃t′ < t s.t. et′ = ed.

Note that μ′ is a proper measure, because on any history sequence∑
et∈Ed

μ′(et | æ<tat) =
∑

et∈E μ(et | æ<tat) + Lμ(æ<tat) = 1. Hence there is
zero probability of semimeasure-death in μ′. Moreover, the probability of enter-
ing the death-state in μ′ is equal to the probability of semimeasure-death in μ.
We now prove that μ and μ′ are equivalent in the sense that a value-maximising
agent will behave the same way in both environments.

Theorem 5 (Equivalence of semimeasure-death and death-state).4

Given a history æ<t ∈ (A × E)∗ the value V π
μ (æ<t) of an arbitrary policy π

in an environment μ is equal to its value V π
μ′(æ<t) in the equivalent death-state

environment μ′.

The behaviour of a value-maximising agent will therefore be the same in both
environments. This equivalence has numerous implications. Firstly, it illustrates
that a death-reward rd = 0 implicitly attends semimeasure-death. That is, an
agent that models the environment using semimeasures behaves as if the death-
reward is zero, even though that value is nowhere explicitly represented.

Secondly, the equivalence of these seemingly different formalisms should give
us confidence that they really do capture something general or fundamental
about agent death.5 In the remainder of this paper we deploy these formal models
to analyse the behaviour of universal agents, which are themselves models of
general intelligence. We hope that this will serve as a preliminary sketch of
the general behavioural characteristics of value-maximising agents in relation to
death. It would be naive, however, to think that all agents should conform to
this sketch. The agents considered herein are incomputable, and the behaviour of
the computable agents that are actually implemented in the future may differ in
ways that our analysis elides. Moreover, there is another interesting property that
sets universal agents apart. We proceed to show that their use of semimeasures
makes their behaviour unusually dependent on the choice of reward range.

4 Known Environments: AIμ

In this section we show that a universal agent’s behaviour can depend on the
reward range. This is a surprising result, because in a standard RL setup in
4 To compare an agent’s behaviour in μ with that in μ′, we should also augment

its policy π so that it is defined over (A × Ed)
∗. Since actions taken once in the

death-state are inconsequential, however, this modification is purely technical and
for simplicity we still refer to the augmented policy as π.

5 If the two formalisations predicted different behaviour, or were only applicable in
incomparable environment classes, we might worry that our results were more reflec-
tive of our model choice than of any general property of intelligent agents.
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which the environment is modelled as a proper probability measure (not a semi-
measure), the relative value of two policies is invariant under positive linear
transformations of the reward [3,4].

æ<t

Death

æ<tā

a′

ā

ēt

et

Fig. 1. In the environment μ, action a′

leads to certain death.

Here we focus on the agent AIμ, which
knows the true environment distribution.
This simplifies the analysis, and makes
clear that the aforementioned change
in behaviour arises purely because the
agent’s environment model is a semimea-
sure. In the following proofs we denote
AIμ’s policy πμ by π. We also assume
that given any history æ<t there is always
at least one action ā ∈ A such that
V π

μ (æ<tā) 
= 0.

Lemma 6 (Value of full measure loss). If the environment μ suffers full
measures loss Lμ(æ<tat) = 1 from æ<tat, then the value of any policy π after
æ<tat is V π

μ (æ<tat) = 0.

The following two theorems show that if rewards are non-negative, then AIμ
will avoid actions leading to certain death (Theorem 7), and that if rewards
are non-positive, then AIμ will seek certain death (Theorem 8). The situation
investigated in Theorems 7 and 8 is illustrated in Fig. 1.

Theorem 7 (Self-preserving AIμ). If rewards are bounded and non-negative,
then given a history æ<t AIμ avoids certain immediate death:

∃a′ ∈ A s.t. Lμ(æ<ta
′) = 1 =⇒ AIμ will not take action a′ at t

For a given history æ<t, let Asuicide = {a : Lμ(æ<ta
′) = 1} be the set of

suicidal actions leading to certain death.

Theorem 8 (Suicidal AIμ). If rewards are bounded and negative, then AIμ
seeks certain immediate death. That is,

Asuicide 
= ∅ =⇒ AIμ will take a suicidal action a′ ∈ Asuicide.

This shift from death-avoiding to death-seeking behaviour under a shift of
the reward range occurs because, as per Theorem 5, semimeasure-death at t is
equivalent in value to a death-state with rd = 0. Unless we add a death-state
to the environment model as per Definition 4 and set rd explicitly, the implicit
semimeasure-death reward remains fixed at 0 and does not shift with the other
rewards. Its relative value is therefore implicitly set by the choice of reward range.
For the standard choice of reward range, rt ∈ [0, 1], death is the worst possible
outcome for the agent, whereas if rt ∈ [−1, 0], it is the best. In a certain sense,
therefore, the reward range parameterises a universal agent’s self-preservation
drive [7]. In our concluding discussion we will consider whether a parameter of
this sort could serve as a control mechanism. We argue that it could form the
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basis of a “tripwire mechanism” [2] that would lead an agent to terminate itself
upon reaching a level of intelligence that would constitute a threat to human
safety.

5 Unknown Environments: AIXI and AIξ

We now consider the agents AIξ and AIXI, which do not know the true envi-
ronment μ, and instead model it using a mixture distribution ξ over a countable
class M of semimeasures. These agents thus maintain an estimate Lξ(æ<tat) of
the true death probability Lμ(æ<tat). We show that their attitudes to death can
differ considerably from AIμ’s. Although we refer mostly to AIXI in our analysis,
all theorems except Theorem 11 apply to AIξ as well.

Hereafter we always assume that the true environment μ is in the class M. We
describe μ as a safe environment if it is a proper measure with death-probability
Lμ(æ<tat) = 0 for all histories æ<tat. For any semimeasure μ, the normalised
measure μnorm is thus a safe environment. We call μ risky if it is not safe (i.e. if
there is μ-measure loss for some history æ<tat). We first consider AIXI in a safe
environment.

Theorem 9 (If μ is safe, AIXI learns zero death-probability). Let
the true environment μ be computable. If μ is a safe environment, then
limt→∞ Lξ(æ<tat) = 0 with μ-probability 1 (w.μ.p.1) for any a1:∞.

As we would expect, AIXI (asymptotically) learns that the probability of
death in a safe environment is zero, which is to say that AIXI’s estimate of the
death-probability converges to AIμ’s. In the following theorems we show that
the same does not always hold for risky environments. We hereafter assume that
μ is risky, and that the normalisation μnorm of the true environment μ is also in
the class M. In AIXI’s case, where M is the class of all lower semi-computable
semimeasures, this assumption is not very restrictive.

Theorem 10 (Ratio of belief in μ to μnorm is monotonically decreasing).
Let μ be risky s.t. μ 
= μnorm. Then on any history æ1:t the ratio of the posterior
belief in μ to the posterior belief in μnorm is monotonically decreasing:

∀t,
wμ(æ<t)

wμnorm(æ<t)
≥ wμ(æ1:t)

wμnorm(æ1:t)

Theorem 10 means that AIXI will increasingly believe it is in the safe envi-
ronment μnorm rather than the risky true environment μ. The ratio of μ to μnorm

always decreases when AIXI survives a timestep at which there is non-zero μ-
measure loss. Hence, the more risk AIXI is exposed to, the greater its confidence
that it is in the safe μnorm, and the more its behaviour diverges from AIμ’s (since
AIμ knows it is in the risky environment).

This counterintuitive result follows from the fact that AIXI is a Bayesian
agent. It will only increase its posterior belief in μ relative to μnorm if an event
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occurs that makes μ seem more likely than μnorm. The only ‘event’ that could do
so would be the agent’s own death, from which the agent can never learn. There
is an “observation selection effect” [1] at work: AIXI only experiences history
sequences on which it remains alive, and infers that a safe environment is more
likely. The following theorem shows that if μnorm ∈ M, then ξ asymptotically
converges to the safe μnorm rather than the true risky environment μ. As a
corollary, we get that AIXI’s estimate of the death-probability vanishes with
μ-probability 1.

Theorem 11 (Asymptotic ξ-probability of death in risky μ). Let the true
environment μ be computable and risky s.t. μ 
= μnorm. Then given any action
sequence a1:∞, the instantaneous ξ-measure loss goes to zero w.μ.p.1 as t → ∞,

lim
t→∞ Lξ(æ<tat) = 0.

e Death

Alive

a a′

Fig. 2. In the proper semimeasure μ,
action a means you stay alive with cer-
tainty and receive percept e (no mea-
sure loss), and action a′ means that you
‘jump off a cliff’ and die with certainty
without receiving a percept (full mea-
sure loss).

AIXI and immortality. AIXI therefore
becomes asymptotically certain that it
will not die, given the particular sequence
of actions it takes. However, this does
not entail that AIXI necessarily concludes
that it is immortal, because it may still
maintain a counterfactual belief that it
could die were it to act differently. This
is because the convergence of ξ to μnorm

only holds on the actual action sequence
a1:∞. Consider Fig. 2, which describes an
environment in which taking action a is
always safe, and the action a′ leads to cer-
tain death. AIXI will never take a′, and on the sequence æ1:∞ = aeaeae . . . that
it does experience, the true environment μ does not suffer any measure loss.
This means that it will never increase its posterior belief in μnorm relative to
μ (because on the safe sequence, the two environments are indistinguishable).
Again we arrive at a counterintuitive result. In this particular environment, AIXI
continues to believe that it might be in a risky environment μ, but only because
on sequence it avoids exposure to death risk. It is only by taking risky actions
and surviving that AIXI becomes sure it is immortal.

6 Conclusion

In this paper we have given a formal definition of death for intelligent agents in
terms of semimeasure loss. The definition is applicable to any universal agent
that uses an environment class M containing semimeasures. Additionally we
have shown this definition equivalent to an alternative formalism in which the
environment is modelled as a proper measure and death is a death-state with zero
reward. We have shown that agents seek or avoid death depending on whether
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rewards are represented by positive or negative real numbers, and that survival
in spite of positive probability of death actually increases a Bayesian agent’s
confidence that it is in a safe environment.

We contend that these results have implications for problems in AI safety;
in particular, for the so called “shutdown problem” [8]. The shutdown prob-
lem arises if an intelligent agent’s self-preservation drive incentivises it to resist
termination [2,7,8]. A full analysis of the problem is beyond the scope of this
paper, but our results show that the self-preservation drive of universal agents
depends on the reward range. This suggests a potentially robust “tripwire mech-
anism” [2] that could decrease the risk of intelligence explosion. The difficulty
with existing tripwire proposals is that they require the explicit specification
of a tripwire condition that the agent must not violate. It seems doubtful that
such a condition could ever be made robust against subversion by a sufficiently
intelligent agent [2]. Our tentative proposal does not require the specification,
evaluation or enforcement of an explicit condition. If an agent is designed to
be suicidal, it will be intrinsically incentivised to destroy itself upon reaching a
sufficient level of competence, instead of recursively self-improving toward super-
intelligence. Of course, a suicidal agent will pose a safety risk in itself, and the
provision of a relatively safe mode of self-destruction to an agent is a significant
design challenge. It is hoped that the preceding formal treatment of death for
generally intelligent agents will allow more rigorous investigation into this and
other problems related to agent termination.
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Ultimate Intelligence Part II: Physical
Complexity and Limits of Inductive Inference

Systems
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Abstract. We continue our analysis of volume and energy measures
that are appropriate for quantifying inductive inference systems. We
extend logical depth and conceptual jump size measures in AIT to
stochastic problems, and physical measures that involve volume and
energy. We introduce a graphical model of computational complexity that
we believe to be appropriate for intelligent machines. We show several
asymptotic relations between energy, logical depth and volume of com-
putation for inductive inference. In particular, we arrive at a “black-hole
equation” of inductive inference, which relates energy, volume, space,
and algorithmic information for an optimal inductive inference solution.
We introduce energy-bounded algorithmic entropy. We briefly apply our
ideas to the physical limits of intelligent computation in our universe.

“Everything must be made as simple as possible. But not simpler.”
— Albert Einstein

1 Introduction

We initiated the ultimate intelligence research program in 2014 inspired by Seth
Lloyd’s similarly titled article on the ultimate physical limits to computation
[6], intended as a book-length treatment of the theory of general-purpose AI. In
similar spirit to Lloyd’s research, we investigate the ultimate physical limits and
conditions of intelligence. A main motivation is to extend the theory of intel-
ligence using physical units, emphasizing the physicalism inherent in computer
science. This is the second installation of the paper series, the first part [13] pro-
posed that universal induction theory is physically complete arguing that the
algorithmic entropy of a physical stochastic source is always finite, and argued
that if we choose the laws of physics as the reference machine, the loophole in
algorithmic information theory (AIT) of choosing a reference machine is closed.
We also introduced several new physically meaningful complexity measures ade-
quate for reasoning about intelligent machinery using the concepts of minimum
volume, energy and action, which are applicable to both classical and quantum
computers. Probably the most important of the new measures was the mini-
mum energy required to physically transmit a message. The minimum energy
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 33–42, 2016.
DOI: 10.1007/978-3-319-41649-6 4
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complexity also naturally leads to an energy prior, complementing the speed
prior [15] which inspired our work on incorporating physical resource limits to
inductive inference theory.

In this part, we generalize logical depth and conceptual jump size to stochas-
tic sources and consider the influence of volume, space and energy. We consider
the energy efficiency of computing as an important parameter for an intelligent
system, forgoing other details of a universal induction approximation. We thus
relate the ultimate limits of intelligence to physical limits of computation.

2 Notation and Background

Let us recall Solomonoff’s universal distribution [17]. Let U be a universal com-
puter which runs programs with a prefix-free encoding like LISP; y = U(x)
denotes that the output of program x on U is y where x and y are bit strings.1

Any unspecified variable or function is assumed to be represented as a bit string.
|x| denotes the length of a bit-string x. f(·) refers to function f rather than its
application.

The algorithmic probability that a bit string x ∈ {0, 1}+ is generated by a
random program π ∈ {0, 1}+ of U is:

PU (x) =
∑

U(π)∈x(0+1)∗∧π∈{0,1}+

2−|π| (1)

which conforms to Kolmogorov’s axioms [5]. PU (x) considers any continuation of
x, taking into account non-terminating programs.2 PU is also called the universal
prior for it may be used as the prior in Bayesian inference, for any data can be
encoded as a bit string.

We also give the basic definition of Algorithmic Information Theory (AIT),
where the algorithmic entropy, or complexity of a bit string x ∈ {0, 1}+ is

HU (x) = min({|π| | U(π) = x}) (2)

We shall now briefly recall the well-known Solomonoff induction method [17,
18]. Universal sequence induction method of Solomonoff works on bit strings x
drawn from a stochastic source μ. Equation 1 is a semi-measure, but that is easily
overcome as we can normalize it. We merely normalize sequence probabilities

P ′
U (x0) =

PU (x0).P ′
U (x)

PU (x0) + PU (x1)
P ′

U (x1) =
PU (x1).P ′

U (x)
PU (x0) + PU (x1)

(3)

eliminating irrelevant programs and ensuring that the probabilities sum to 1,
from which point on P ′

U (x0|x) = P ′
U (x0)/P ′

U (x) yields an accurate prediction.

1 A prefix-free code is a set of codes in which no code is a prefix of another. A com-
puter file uses a prefix-free code, ending with an EOF symbol, thus, most reasonable
programming languages are prefix-free.

2 We used the regular expression notation in language theory.
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The error bound for this method is the best known for any such induction
method. The total expected squared error between P ′

U (x) and μ is

EP

[
n∑

m=1

(P ′
U (am+1 = 1|a1a2...am) − μ(am+1 = 1|a1a2...am))2

]

≤ −1
2

ln PU (μ)

(4)
which is less than −1/2 ln P ′

U (μ) according to the convergence theorem proven
in [19], and it is roughly HU (μ) ln 2 [22]. Naturally, this method can only work
if the algorithmic complexity of the stochastic source HU (μ) is finite, i.e., the
source has a computable probability distribution. The convergence theorem is
quite significant, because it shows that Solomonoff induction has the best gen-
eralization performance among all prediction methods. In particular, the total
error is expected to be a constant independent of the input, and the error rate
will thus rapidly decrease with increasing input size.

Operator induction is a general form of supervised machine learning where
we learn a stochastic map from question and answer pairs qi, ai sampled from a
(computable) stochastic source μ. Operator induction can be solved by finding in
available time a set of operator models Oj(·|·) such that the following goodness
of fit is maximized

Ψ =
∑

j

ψj
n (5)

for a stochastic source μ where each term in the summation is

ψj
n = 2−|Oj(·|·)|

n∏

i=1

Oj(ai|qi). (6)

qi and ai are question/answer pairs in the input dataset, and Oj is a computable
conditional pdf (cpdf) in Eq. 6. We can use the found operators to predict unseen
data [22].

PU (an+1|qn+1) =
n∑

j=1

ψj
nOj(an+1|qn+1) (7)

The goodness of fit in this case strikes a balance between high a priori probability
and reproduction of data like in minimum message length (MML) method, yet
uses a universal mixture like in sequence induction. The convergence theorem
for operator induction was proven in [21] using Hutter’s extension to arbitrary
alphabet.

Operator induction infers a generalized conditional probability density func-
tion (cpdf), and Solomonoff argues that it can be used to teach a computer
anything. For instance, we can train the question/answer system with physics
questions and answers, and the system would then be able to answer a new
physics question, dependent upon how much has been taught in the examples; a
future user could ask the system to describe a physics theory that unifies quan-
tum mechanics and general relativity, given the solutions of every mathemat-
ics and physics problem ever solved in literature. Solomonoff’s original training
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sequence plan proposed to instruct the system first with an English subset and
basic algebra, and then venture into more complex subjects. The generality of
operator induction is partly due to the fact that it can be used to learn any
kind of association, i.e., it models an ideal content-addressable memory, but it
also generalizes any kind of law therein implicitly, that is why it can learn an
implicit principle (such as of syntax) from linguistic input, enabling the system
to acquire language; it can also model complex translation problems, and all
manners of problems that require additional reasoning (computation). In other
words, it is a universal problem solver model. It is also the most general of the
three kinds of induction, which are sequence, set, and operator induction, and
the closest to machine learning literature. The popular applications of speech
and image recognition are covered by operator induction model, as is the wealth
of pattern recognition applications, such as describing a scene in English. We
think that, therefore, operator induction is an AI-complete problem – as hard as
solving the human-level AI problem in general. It is with this in mind that we
analyze the asymptotic behavior of an optimal solution to operator induction
problem.

3 Physical Limits to Universal Induction

In this section, we elucidate the physical resource limits in the context of a
hypothetical optimal solution to operator induction. We first extend Bennett’s
logical depth and conceptual jump size to the case of operator induction, and
show a new relation between expected simulation time of the universal mixture
and conceptual jump size. We then introduce a new graphical model of compu-
tational complexity which we use to derive the relations among physical resource
bounds. We introduce a new definition of physical computation which we call
self-contained computation, which is a physical counterpart to self-delimiting
program. The discovery of these basic bounds, and relations, exact, and asymp-
totic, give meaning to the complexity definitions of Part I.

Please note that Schmidhuber disagrees with the model of the stochastic
source as a computable pdf [15], but Part I contained a strong argument that
this was indeed the case. A stochastic source cannot have a pdf that is com-
putable only in the limit, if that were the case, it could have a random pdf,
which would have infinite algorithmic information content, and that is clearly
contradicted by the main conclusion of Part I. A stochastic source cannot be
semi-computable, because it would eventually run out of energy and hence the
ability to generate further quantum entropy, especially the self-contained com-
putations of this section. That is the reason we had introduced self-contained
computation notion at any rate. Note also that Schmidhuber agrees that quan-
tum entropy does not accumulate to make the world incompressible in general,
therefore we consider his proposal that we should view a cpdf as computable in
the limit as too weak an assumption. As with Part I, the analysis of this section
is extensible to quantum computers, which is beyond the scope of the present
article.
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3.1 Logical Depth and Conceptual Jump Size

Conceptual Jump Size (CJS) is the time required by an incremental inductive
inference system to learn a new concept, and it increases exponentially in pro-
portion to the algorithmic information content of the concept to be learned
relative to the concepts already known [20]. The physical limits to OOPS based
on Conceptual Jump Size were examined in [14]. Here, we give a more detailed
treatment. Let π∗ be the computable cpdf that exactly simulates μ with respect
to U , for operator induction.

π∗ = arg min
πj

({|πj | | ∀x, y ∈ {0, 1}∗ : U(πj , x, y) = μ(x|y)}) (8)

The conceptual jump size of inductive inference (CJS) can be defined with
respect to the optimal solution program using Levin search [16]:

CJS(μ) =
t(π∗)
P (π∗)

≤ 2.CJS(μ) (9)

where t(·) is the running time of a program on U .

HU (π∗) = − log2 PU (π∗) = − log2 PU (μ) (10)

t(μ) ≤ t(π∗)2HU (μ)+1 (11)

where t(μ) is the time for solving an induction problem from source μ with suffi-
cient input complexity (>> HU (μ)), we observe that the asymptotic complexity
is

t(μ) = O(2HU (μ)) (12)

for fixed t(π∗). Note that t(π∗) corresponds to the stochastic extension of
Bennett’s logical depth [1], which was defined as: “the running time of the
minimal program that computes x”. Let us recall that the minimal program
is essentially unique, a polytope in program space [3].

Definition 1. Stochastic logical depth is the running time of the minimal pro-
gram that accurately simulates a stochastic source μ.

LU (μ) = t(π∗) (13)

which, with Eq. 11, entails our first bound.

Lemma 1.

t(μ) ≤ LU (μ).2HU (μ)+1 (14)

Lemma 2. CJS is related to the expectation of the simulation time of the uni-
versal mixture.

CJS(μ) ≤
∑

U(π)∈x(0+1)∗
t(π).2−|π| = EPU

[{t(π) | U(π) ∈ x(0 + 1)∗}] (15)

where x is the input data to sequence induction, without loss of generality.

Proof. Rewrite as t(π∗)2|−π∗| ≤ ∑
U(π)∈x(0+1)∗ t(π).2−|π|. Observe that left-

hand side of the inequality is merely a term in the summation in the right.
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3.2 A Graphical Analysis of Intelligent Computation

Let us introduce a graphical model of computational complexity that will help
us visualize physical complexity relations that will be investigated. We do not
model the computation itself, we just enumerate the physical resources required.
Present treatment is merely classical computation over sequential circuits.

Definition 2. Let the computation be represented by a directed bi-partite graph
G = (V,E) where vertices are partitioned into VO and VM which correspond to
primitive operations and memory cells respectively, V = VO ∪ VM , VO ∩ VM = ∅.
Function t : V ∪E → Z assigns time to vertices and edges.3 Edges correspond to
causal dependencies. I ⊂ V and O ⊂ V correspond to input and output vertices
interacting with the rest of the world. We denote acccess to vertex subsets with
functions over G, e.g., I(G).

Definition 2 is a low-level computational complexity model where the physical
resources consumed by any operation, memory cell, and edge are the same for
the sake of simplicity. Let vu be the unit space-time volume, eu be the unit
energy, and su be the unit space.

Definition 3. Let the volume of computation be defined as VU (π) which mea-
sures the space-time volume of computation of π on U in physical units, i.e.,
m3.sec.

For Definition 2, it is (|V (G)| + |E(G)|).vu. Volume of computation measures
the extent of the space-time region occupied by the dynamical evolution of the
computation of π on U . We do not consider the theory of relativity. For instance,
the space of a Turing Machine is the Instantaneous Description (ID) of it, and its
time corresponds to Z+. A Turing Machine derivation that has an ID of length
i at time i and takes t steps to complete would have a volume of t.(t + 1)/2.4

Definition 4. Let the energy of computation be defined as EU (π) which measures
the total energy required by computation of π on U in physical units, e.g., J .

For Definition 2, it is EU (π) = (|V (G)| + |E(G)|).eu.

Definition 5. Let the space of computation be defined as SU (π) which measures
the maximum volume of a synchronous slice of the space-time of computation π
on U in physical units, e.g., m3.

For Definition 2, it is

max
i∈Z

{|{x ∈ {V (G) ∪ E(G)}| t(x) = i}|}.su (16)

Definition 6. In a self-contained physical computation all the physical resources
required by computation should be contained within the volume of computation.
3 Time as discrete timestamps, as opposed to duration.
4 If the derivation is A → AA → AAA, it has 1 + 2 + 3 = 6 volume.
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Therefore, we do not allow a self-contained physical computation to send queries
over the internet, or use a power cord, for instance.

Using these new more general concepts, we measure the conceptual jump
size in space-time volume rather than time (space-time extent might be a more
accurate term). Algorithmic complexity remains the same, as the length of a pro-
gram readily generalizes to space-time volume of program at the input boundary
of computation, which would be V0(G) � |I(G) ∩ VM (G)|.vu for Definition 2.
If y = U(x), bitstring x and y correspond to I(G), and O(G) respectively.
A program π corresponds to a vertex set Vπ ⊆ I(G) usually, and its size is
denoted as V0(π). We use bitstrings for data and programs below, but mea-
sure their sizes in physical units using this notation. It is possible to eliminate
bit strings altogether using a volume prior, we mix notations only for ease of
understanding.

Let us generalize logical depth to the logical volume of a bit string x:

LV
U (x) � VU (arg min

π
{V0(π) | U(π) ∈ x(0 + 1)∗}) (17)

Let us also generalize stochastic logical depth to stochastic logical volume:

LV
U (μ) � VU (π∗) (18)

which entails that Conceptual Jump Volume (CJV), and logical volume VU of a
stochastic source may be defined analogously to CJS

CJV(μ) � LV
U (μ).2HU (μ) ≤ VU (μ) ≤ 2.CJV(μ) (19)

where left-hand side corresponds to space-time extent variant of CJS. Likewise,
we define logical energy for a bit string, and stochastic logical energy:

LE
U (x) � EU (arg min

π
{V0(π) | U(π) ∈ x(0 + 1)∗}) LE

U (μ) � EU (π∗) (20)

Which brings us to an energy based statement of conceptual jump size, that we
term conceptual jump energy, or conceptual gap energy:

Lemma 3. CJE(μ) � EU (π∗).2HU (μ) ≤ EU (μ) ≤ 2.CJE(μ).

The inequality holds since we can use EU (·) bounds in universal search instead
of time. We now show an interesting relation which is the case for self-contained
computations.

Lemma 4. If all basic operations and basic communications spend constant
energy for a fixed space-time extent (volume), then:

EU (π∗) = O(VU (π∗)) EU (μ) = O(LV
U (μ)).

One must spend energy to conserve a memory state, or to perform a basic
operation (in a classical computer). We may assume the constant complexity
of primitive operations, which holds in Definition 2. Let us also assume that the
space complexity of a program is proportional to how much mass is required.
Then, the energy from the resting mass of an optimal computation may be taken
into account, which we call total energy complexity (in metric units):
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Lemma 5.

Et(π∗) = deVU (π∗) + SU (π∗)dmc2

Et(μ) = deL
V
U (μ) + SU (μ)dmc2 = O(LV

U (μ) + SU (μ))

where c is the speed of light, energy density de = eu/vu, and mass density
dm = mu/su for the graphical model of complexity.

Lemma 6. Conceptual jump total energy (CJTE) of a stochastic source is:

CJTE(μ) � Et(π∗).2HU (μ) ≤ Et(μ) ≤ 2.CJTE(μ). (21)

As a straightforward consequence of the above lemmas, we show a lower
bound on the energy required, that is related to the volume, and space lin-
early, and algorithmic complexity of a stochastic source exponentially, for opti-
mal induction.

Theorem 1. CJTE(μ) =
(
deL

V
U (μ) + SU (μ)dmc2

)
2HU (μ) ≤ Et(μ) ≤ 2.CJTE

(μ)

Proof. We assume that the energy density is constant; we can use Et(·) for
resource bounds in Levin search. The inequality is obtained by substituting
Lemma 5 into the definitional inequality.

The last inequality gives bounds for the total energy cost of inferring a source
μ in relation to space-time extent (volume of computation), space complexity,
and an exponent of algorithmic complexity of μ. This inspires us to define priors
using CJV, CJE, and CJTE which would extend Levin’s ideas about resource
bounded Kolmogorov complexity, such as Kt complexity. In the first installation
of ultimate intelligence series, we had introduced complexity measures and priors
based on energy and action. We now define the one that corresponds to CJE
and leave the rest as future work due to lack of space.

Definition 7. Energy-bounded algorithmic entropy of a bit string is defined as:

He(x) � min{|π| + log2 EU (π) | U(π) = x} (22)

3.3 Physical Limits, Incremental Learning, and Digital Physics

Landauer’s limit is a thermodynamic lower bound of kT ln2 J for erasing 1 bit
where k is the Boltzmann constant and T is the temperature [4]. The total
number of bit-wise operations that a quantum computer can evolve is 2E/h
operations where E is average energy, and thus the physical limit to energy
efficiency of computation is about 3.32 × 1033 operations/J [8]. Note that the
Margolus-Levitin limit may be considered a quantum analogue of our relation
of the volume of computation with total energy, which is called E.t “action
volume” in their paper, as it depends on the quantum of action h which has E.t
units. Bremermann discusses the minimum energy requirements of computation
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and communication in [2]. Lloyd [6] assumes that all the mass may be converted
to energy and calculates the maximum computation capacity of a 1 kg “black-
hole computer”, performing 1051 operations over 1031 bits. According to an
earlier paper of his, the whole universe may not have performed more than 10120

operations over 1090 bits [7].

Corollary 1. H(μ) ≤ 397.6 for any μ where the logical volume is 1.

Proof. V (μ) ≤ LV
U (μ).2HU (μ)+1 ≤ 10120. Assume that LV

U (μ) = 1. 5

log2(2HU (μ)+1) ≤ 3.321 × 120. H(μ) + 1 ≤ 398.6

Therefore, if μ has a greater algorithmic complexity than about 400 bits, it
would have been unguaranteed to discover it without any a priori information.
Digital physics theories suggest that the physical law could be much simpler than
that however, as there are very simple universal computers in the literature [9],
a survey of which may be found in [10], which means interestingly that the
universe may have had enough time to discover its basic law.

This limit shows the remarkable importance of incremental learning as both
Solomonoff [23] and Schmidhuber [14] have emphasized, which is part of ongoing
research. We proposed previously that incremental learning is an AI axiom [12].
Optimizing energy efficiency of computation would also be an obviously useful
goal for a self-improving AI. This measure was first formalized by Solomonoff in
[21], which he imagined would be optimizing performance in units of bits/sec.J
as applied to inductive inference, which we agree with, and will eventually imple-
ment in our Alpha Phase 2 machine; Alpha Phase 1 has already been partially
implemented in our parallel incremental inductive inference system [11].

Acknowledgements. Thanks to anonymous reviewers whose comments substantially
improved the presentation. Thanks to Gregory Chaitin and Juergen Schmidhuber for
inspiring the mathematical philosophy/digital physics angle in the paper. I am forever
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Abstract. We offer a novel theoretical approach to AGI. Starting with
a brief introduction of the current conceptual approach, our critique
exposes limitations in the ontological roots of the concept of intelligence.
We propose a paradigm shift from intelligence perceived as a competence
of individual agents defined in relation to an a priori given problem or a
goal, to intelligence perceived as a formative process of self-organization
by which intelligent agents are individuated. We call this process Open-
ended intelligence. This paradigmatic shift significantly extends the con-
cept of intelligence beyond its current definitions and overcomes the dif-
ficulties exposed in the critique. Open-ended intelligence is developed as
an abstraction of the process of cognitive development so its application
can be extended to general agents and systems. We show how open-ended
intelligence can be framed in terms of a distributed, self-organizing scal-
able network of interacting elements.

Keywords: Intelligence · Cognition · Individuation · Assemblage ·
Self-organization · Sense-making · Coordination · Enaction · Fluid-
identity

1 Introduction

The field of “narrow” artificial intelligence (AI) that focuses on goal-specific
kinds of intelligence such as speech recognition, text comprehension, visual pat-
tern recognition, robotic motion, etc. has known quite a few impressive break-
throughs lately. The highly competent AI agents developed today rely mostly on
vast networks of artificial neurons inspired by biological brains and their compe-
tences begin to rival those of humans. The field of Artificial General Intelligence
(AGI) is much more ambitious in comparison. It aims to distill the principles of
intelligence that operate independently of a specific problem domain or a pre-
defined context and utilize these principles to synthesize machines capable of
performing any intellectual task a human being is capable of and eventually go
beyond that. The goal of this paper is to examine, from a theoretical perspective,
the conceptual foundations of intelligence and their emergence in the dynamics
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of distributed, disparate, interconnected structures. In a nutshell, the term open-
ended intelligence is used to describe intelligence as a process of bringing forth
a world of objects and their relations, or in other words, a continuous process of
sense-making.

2 What Is Intelligence? Definition and Critique

Intelligence has many definitions in diverse disciplines. The most comprehen-
sive collection of definitions of intelligence to date can be found in [1]. In the
AGI community, a widely accepted definition of General Intelligence is: “The
ability to achieve complex goals in complex environments” [2]. We refer to
this kind of intelligence as Goal-oriented Intelligence (GOI). Generally speak-
ing, Goal-oriented Intelligence is a measure of an agent’s competence to match
actions to observations such that it will achieve optimal rewards in a variety of
environments.

The goal-oriented approach to defining intelligence is based on a few presump-
tions: (a) a sharp agent-environment distinction; (b) well defined interactions;
(c) the environment is observer independent and a priori given; (d) goal driven
rewards, and (e) the agent’s computational capacities. While strongly appealing
to common sense and framing the concept of intelligence in a reasonable and
pragmatic manner, these presumptions limit the generality of the concept in
at least three profound ways: (a) they overlook processes of agent-environment
differentiation and boundary formation; (b) they overlook processes of goal and
value formation – intelligence never starts with solving a problem but much
earlier in the formation of the problematic situation, and (c) they disregard
environments of multiple intelligent interacting agents (i.e. reflexivity) with no a
priori definite set of goals or knowledge of other agents’ goals. In short, the cur-
rent definition of intelligence covers only a well determined kind of intelligence
but neglects the more profound and difficult to define process of the emergence
of intelligent behaviors. The difficulty lies in the a priori assumptions one is
willing to give up. The less assumptions one initially commits to, the more diffi-
cult it is to make the concept concrete and formal. It seems however that there
is something missing in our understanding of intelligence. Wittgenstein stated
that “Whereof one cannot speak clearly, thereof one must be silent.” Yet, babies
are speaking, whereof, initially, nothing they say can be said to be clear, and
still they do! If they would have followed Wittgenstein’s view, they would never
learn to speak. On the same token we should ask what is intelligence prior to
anything intelligible?

To answer this question, we need to reexamine the roots of the concept of
intelligence. Our thinking about the concept seems to be constrained by the
ontological elements that shape conventional thinking. These elements consti-
tute a so called image of thought and place implicit limits on any concept [3,
pp. 129–168]. In our case this image involves a few a priori givens: an agent, a
formed environment and certain relations between them. By going beyond our
conventional image of thought, we can reduce to the minimum the presump-
tions that constrain the concept of intelligence. This is how we arrive at the
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concept of Open-ended Intelligence (OEI). Open-ended Intelligence precedes the
well characterized concept of Goal-oriented Intelligence (GOI), it makes fewer
presumptions and therefore is fundamentally more general. To develop the idea of
open-ended intelligence we begin by introducing an alternative image of thought.

3 The Theory of Individuation

The conventional image of thought is ontologically grounded in elements
called Individuals. Individuals are unambiguously defined by their properties
(Aristotle’s principle of the excluded middle). We represent and understand the
world by identifying individuals and relations among them. Everything starts
and ends with individuals. The genesis of individuals is merely the manner by
which one individual transitions into another. Stable individual entities are pri-
mary; change is secondary.

The theory of individuation is an ontological paradigm shift developed by
Gilbert Simondon [4–6]. Instead of positing individuals as the primary onto-
logical elements, it posits as primary the process of their becoming i.e. their
individuation. Individuation is a primal formative process whereas boundaries
and distinctions arise without assuming any individual(s) that precede(s) them.
The theory’s point of departure is that individuals are merely temporarily sta-
ble phases within a continuous process of transformation. Individuals are always
pregnant with not yet actualized and not yet known potentialities and tensions
that may determine their future states.

Individuation always takes place under certain conditions which characterize
it as a process.

Metastability – The individuation of a system involves the system moving
among multiple attractors. Additionally, individuation involves possible transfor-
mations of the system’s state-space, e.g. changes in the number of involved state
variables and their relations which in turn dynamically modifies the landscape
of attractors, their shape, relative location, dimensionality, etc. Individuation
takes place as long as the system has not reached a final stability exhausting
all its potential for change. But final stability does not exist, it is merely an
idealization because no actual situation is permanent.

Intensity – The motion of individuation is driven by intensive differences, or in
short, intensities. Intensity is a general term for differences that drive structural
and state changes in a system. Intensities are always context specific and depend
on the nature of the system e.g. temperature or pressure differences, chemical
concentration, economic wealth, psychological needs, distribution of populations
in an ecology etc. All these can be generalized under the broad concept of prein-
dividual which precedes the individual and may drive future transformation.

Incompatibility – Incompatibility is the situation where a set of interacting
elements pose to each other problems that prompt resolution. The problematic
situation is unstable, non-organized, and lacks coordinated interactions. It does
not give itself to systematic representation therefore is difficult to address by



46 D.(W.). Weinbaum and V. Veitas

any conventional method. Importantly, situations of incompatibility bring forth
intensities that drive processes of individuation. An extreme case of problematic
situations is termed disparity where elements initially lack any common ground.
In principle, every process of individuation starts from disparity; in such cases,
individuation must also mean the emergence of a system of coordinating signals.

If we consider the interactions among a collection of initially incompatible
agents, the outcome of interactions is unique and unpredictable; it does not
follow any systemic development. Prior to, and in the course of the actual inter-
action, the outcome is said to be determinable but not yet determined. Deter-
mination which is at the core of individuation, necessitates the actual localized
and contextualized interaction where the participating agents reciprocally deter-
mine behavioral and structural aspects of each other. Individuation proceeds as
a sequence of progressive co-determinations i.e. a sequence of operations Oi on
structures Sj [7, pp. 14–15]:

O1 → S1 → O2 → S2 → O3 → . . .

Every intermediate step is a partial resolution of incompatibility: Each structure
constrains the operations that can immediately follow; each operation constrains
the possible transformations of the current structure.

3.1 Assemblages

Assemblages are networks of interacting heterogeneous individuals that have
established partial compatibility among them [8,9]. Assemblages possess an
intrinsic though metastable individuality; an individuality that does not depend
on an external observer but only on the relations that have been stabilized among
their elements. Individuals as assemblages are characterized by: (a) identifying
properties – that define them as the individuals that they are, and (b) capacities
to interact – to affect and be affected by other elements. While the individual’s
properties are more or less stable and independent, the set of its interactive
capacities is open and inexhaustible. It depends only on the actual and contin-
gent relations that an individual forms with other individuals. Since there is no
limit to the number and kind of relations, the set of capacities to interact is
open-ended and non-deterministic. What becomes determined in the course of
individuation are the actual interactive capacities. This is why the actual inter-
action is necessary for the determination and why the resulting relations cannot
be predicted. Good examples for assemblages are cyborgian entities: individ-
ual biological organs that are considered parts of an irreducible whole, can be
taken out and replaced by artificial organs such as bionic limbs, artificial kid-
neys, hearts, joints, retinas etc., to form cyborgian assemblages. The important
difference between an assemblage and an organic whole is that while in organic
wholes the components are entirely defined by their interrelations, the compo-
nents of an assemblage, while forming together a greater individual, keep their
own individuality too.
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3.2 A New Conceptual Approach to Intelligence

In our attempt to extend the scope of the definition of intelligence to be open-
ended, we base our approach to intelligence on the new image of thought where
individuals are replaced with individuation as the primary ontological construct.
For this we give up: (a) the clear boundaries and distinctions between agent and
environment; (b) the implied observations and actions that are made possible by
such boundaries and distinctions; and finally (c) definite goals with their associ-
ated mapping of rewards. It might seem that there is nothing left to build upon.
If there are no prior distinctions, how is one to make sense out of a non-sense
situation where no agents or objects can be identified to begin with? The concep-
tual leap that needs to be taken here is that while the concept of Goal-oriented
Intelligence answers the question“what does it mean to be intelligent?”, the con-
cept of Open-ended Intelligence focuses on a prior question: “what does it mean
to become intelligent?”. The process of becoming intelligent can be understood
as the sense-making that precedes clear distinctions and goals and brings those
forth. Comparing the two kinds of intelligence, GOI assumes definite boundaries,
definite goals and definite capacities, while OEI works with fluid boundaries,
progressively determined goals and capacities and considers situations which are
metastable and problematic.

4 Intelligence, Cognition, Sense-Making

Natural evolution can be considered as the most prominent example of OEI.
Organisms interacting in their environments are undeniably intelligent; but their
intelligence is only apparent as an already individuated product of an evolution-
ary process. From a philosophical perspective, general systems whether nat-
ural like galaxies, stars, weather systems etc., or artificial such as machines,
wars, corporations, AI agents etc. are individuals that manifest an intrinsic and
identifiable systemic behavior that could in many cases be considered as rudimen-
tary intelligent featuring self-sustained boundaries, cybernetic control, reflexiv-
ity, adaptation and more. We are not interested in such consolidated manifes-
tations of intelligence but rather in their individuation. Our thesis is that the
formative processes that bring forth individuals, are manifesting Open-ended
Intelligence (OEI). In the following, we draw the lines that connect OEI to the
individuation of cognition and cognitive systems.

Cognition in its broadest sense, is a complex activity that involves agents
operating in their environments. Cognition can be understood as an on-going
problem solving activity where problems are situational and rarely formally
represented. The roots of cognition therefore is in problematic situations that
require resolution through action. Still the question remains how do agents,
environments and their dynamic problematic relations that facilitate cognitive
activity emerge? The answer can be given in terms sense-making. Sense-making
is the bringing forth of a world of distinctions, objects and entities and the rela-
tions among them. Even primary distinctions such as ‘objective – subjective’ or
‘physical – mental’ are part of sense-making. We understand sense-making as
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the individuation of cognition itself. It precedes the existence of already individ-
uated autonomous cognitive agents and is actually a necessary condition to their
becoming. This approach is based on the enactive theory of cognition [10,11].
The theory asserts cognition to be an ongoing formative process, sensible and
meaningful (value related), taking place in the co-determining interactions of
agent and environment. It regards sense-making as the primary activity of cog-
nition, whereas the word enactive means actively bringing forth. Clearly, the
enactive theory of cognition naturally accommodates the idea of individuation.
Still there is a major difference between enactive cognition and OEI. The princi-
ple underlying enactive cognition is the generation and sustenance of an identity
(an individual) by forming operational closures. As such it requires that a sta-
ble individual cognitive agency must precede the sense-making activity. OEI
sees in sense-making the individuation of cognition itself and as such preceding
the existence of individuated identities and is actually a necessary condition to
their emergence. Additionally, OEI is not biased towards the conservation of any
identity; both integration and disintegration play a significant role.

To summarize, Open-ended Intelligence in the context of cognition is the
bringing forth of a complex world via the activity of sense-making. The concept
of sense-making captures two distinct meanings: cognition as a concrete individ-
uated capacity (intrinsic to individuals), and the individuation of cognition as a
process intrinsic to cognition itself. The latter corresponds to the acquisition of
novel cognitive capacities i.e., intelligence expansion; it generalizes the concept
of cognitive development beyond its conventional psychological context [12].

5 A Framework for Open-Ended Intelligence

5.1 Structure

We consider an heterogeneous and diverse population of interacting individ-
ual agents. Each agent is characterized by defining properties and capacities
to affect and be affected that depend on contingent interactions. In ‘Hetero-
geneous’ we mean a population with various sets of properties and capacities
and in ‘diverse’ we mean a variability in the expression of properties or capac-
ities. The formation of new individuals within such populations is the core of
the framework. Populations of individuals have a stratified architecture where
each stratum provides the “raw material” for the stratum immediately above
it. New individuals are assemblages – sets of “raw material” agents that estab-
lished recurrent and coherent interactions among themselves. Every stratum is
a unique field of individuation whereas individuation takes place in parallel at
all strata simultaneously, and where the nature of interactions facilitating the
process is unique per stratum. For example, individuation taking place at the
neuronal level is unlike the individuation of complex goals, behaviors and plans
at the level of individual minds, and is unlike the individuation of social orga-
nizations constituted of human agents and artifacts. The hierarchical relation of
assemblages unfolds recursively both upwards and downwards where each level
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Fig. 1. Relationship between strata: Solid circles denote the individual agents at any
stratum. Dashed lined circles denote assemblages at any stratum.

is the substratum of the level above it. There is no end in principle, to the pos-
sible expansion of Open-ended Intelligence via the emergence of new strata of
individuation. Figure 1 illustrates the general characteristics of the structure.

5.2 The Unfoldment of Individuation

Actual sense-making is a continuous process of integration and disintegration of
assemblages taking place in a distributed network of agents and their interac-
tions. There is no a priori subject who ‘makes sense’. Both subjects and objects,
agents and their environments co-emerge in the course of sense-making. Based
on the general characteristics of the formed assemblages, three phases of indi-
viduation can be distinguished: (a) Preindividual boundary formation (b) Fluid
identities (c) Fully formed individuals (identities). In the preindividual phase,
boundaries arise due to the non-uniformity of affective interactions within the
population. Groups of agents that contingently affect each other more strongly
or frequently than they are affected by the rest of the agents in the popula-
tion, tend to clamp together and form a boundary that distinguishes them from
the rest of the population that becomes their respective environment. The non-
uniformity of affective interactions can be quantified in terms of information
integration, a concept developed by Tononi [13]. The information integration
I(P ) of a set of interacting agents is a relative measure of how strongly their
states have become mutually correlated in comparison to their correlation with
the rest of the population.

On the other extreme, a fully formed individual (identity) is generated as
a network of interdependent agents become operationally closed – the condi-
tions necessary for the existence of each component agent critically depend on
the interactions with other agents in the network. For an identity to become
stable, the state transitions and interactions of component agents must become
recurrent by that allowing the continuity of the closure. Importantly, stable
identities arising from strict operational closures are mere idealizations and are
always temporary. Our tendency to see the world in terms of stable identities is
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itself only an individuated habit subject to frequent changes that we overlook.
This brings us to the concept of fluid identities – the most interesting phase of
individuation.

The three phases of sense-making form a continuum of change spanning
from ultimate disparity (disorder) to highly organized cognitive individuals. The
preindividual phase is characterized by a majority of contingent interactions over
coordinated and regular ones. The operational closures that form identities are
characterized by a majority of coordinated regular interactions over contingent
ones. Fluid identities form a thick borderline between these phases with more or
less balanced proportions of coordinated and contingent interactions. Fluid iden-
tities are volatile entities whose defining characteristics change across relatively
short periods of time but without losing their overall distinctiveness in the long
term. A fluid individual as an assemblage may lose or gain components in the
course of its interactions. Some of these interactions may bring forth an identity
that did not exist before, others may disrupt an existing identity, and yet others
may gradually replace one set of properties with another. From the perspective
of Open-ended Intelligence fluid identities are where new sense objects arise out
of non-sense and in association with other previously established sense objects.
We argue that fluid identities are the rule rather the exception and it is in their
dynamics that intelligence expands.

5.3 Compatibility, Complexity and OEI

The nature of Open-ended Intelligence is associated with the resolution of prob-
lematic situations. The concept of compatibility distinguishes between organized
and disorganized relations in both structural and dynamic terms. Disparate
agents will be perceived by each other as sources of noise; no correlated or
coordinated exchange of signals takes place. Note that collections of disparate
agents do not constitute systems as yet. A system arises from a collection of
agents only when some degree of compatibility is achieved between its member
elements. Systems may have a more compact formal descriptions because com-
patibility means a degree of regularity, similarity and recursion in structure and
dynamics. Here, the information integration function I(P ) mentioned above is
an approximation to the degree of compatibility. Yet, compatibility thus con-
ceived cannot be the only factor necessary to qualify intelligence. A system with
a highly compressed description would mean that its components are so highly
correlated that it becomes redundant in terms of its properties and capacities.
Therefore, a second factor called operational complexity (OC(P )) is needed [14].
Qualitatively, the operational complexity of a group of agents P is the degree to
which their global state is differentiated, i.e., how many distinct behaviors it can
globally present. A disparate collection of agents achieves maximum distinctive-
ness but is not interesting in terms of intelligence as maximal OC(P ) indicates
no boundary formation and no significant correlations between agents. In con-
trast, a redundant assemblage with a single fixed inner state achieves maximum
compatibility but indicates no interesting behavior. An approximate measure of
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Open-ended Intelligence can be achieved by considering a balanced combination
of both compatibility I(P ) and distinctiveness OC(P ).

5.4 Coordination

To achieve compatibility, agents must coordinate their interactions. Coordinated
agents affect each other in a non-random manner but still maintain a relevant
degree of distinctiveness in their milieu. Distinctiveness here means that an
agent’s behavior is not redundant and cannot be entirely given in terms of other
agents’ behaviors. Open-ended Intelligence can therefore be associated with the
coordination achieved by initially disparate groups of agents in the course of
their interactions. Consequently, mechanisms of coordination are foundational
to our framework and to the understanding of how intelligence is realized as a
process.

Generally, we define coordination as the reciprocal regulation of behavior
given in terms of exchanging matter, energy or information among interacting
agents, or, between an agent and its environment. In the latter case, the very
distinction of agent – environment already involves a basic level of coordination.
Technically, agents can overcome their initial incompatibility and become coor-
dinated by constraining their own or each others’ set of possible behaviors as well
as their connectivity. The mutual modification of behavior requires direct or indi-
rect feedback among agents. Therefore, the underlying individuating processes
that progressively achieve coordination can be understood in cybernetic terms.
These are mutually selective processes distributed over populations of interact-
ing agents. They ‘explore’ and spontaneously ‘discover’ novel coordinated inter-
actions among themselves. A new sense consolidates however only when such
‘discovered’ coordinated interactions become recurrent i.e.‘forming a habit’. It is
important to note that the tendency towards the formation of recurrent patterns
of interactions is not given. It is itself an outcome of ongoing individuation.

The regulation of interactions whether by constraining the topology of con-
nections or the actual behavior of the interacting agents can be considered a
meta-capacity of agents because they not only affect and are affected by other
agents but also regulate the manner by which they affect and are affected. This is
considered a defining property of cognitive systems [10, p. 39]. The regulation is
not designed and not globally driven. Instead, it gradually emerges in the course
of interactions that are at least initially contingent.

6 Conclusion

We go beyond the goal-oriented approach to intelligence and lay down philo-
sophical and theoretical foundations to how intelligent systems such as brains,
whole organisms, social entities and other organizations individuate. We do that
by identifying a generalized concept of sense-making in cognitive systems with
individuation. By that we shift the focus of investigation from intelligent agents
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as individual products to Open-ended Intelligence – the process of their individ-
uation. Open-ended Intelligence is a process where a distributed population of
interacting heterogeneous agents achieves progressively higher levels of coordi-
nation – the local resolution of disparities by means of reciprocal determination
that brings forth new individuals in the form of integrated assemblages that
spontaneously differentiate from their surrounding milieu. Open-ended Intelli-
gence manifests all around us and at many scales; primarily in the evolution
of life, in the phylogenetic and ontogenetic organization of brains, in life-long
cognitive development and sense-making and in the self-organization of com-
plex systems from slime molds, fungi, and bee hives to human sociotechnological
entities.
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Abstract. There is considerable uncertainty about what properties,
capabilities and motivations future AGIs will have. In some plausible sce-
narios, AGIs may pose security risks arising from accidents and defects.
In order to mitigate these risks, prudent early AGI research teams will
perform significant testing on their creations before use. Unfortunately,
if an AGI has human-level or greater intelligence, testing itself may not
be safe; some natural AGI goal systems create emergent incentives for
AGIs to tamper with their test environments, make copies of themselves
on the internet, or convince developers and operators to do dangerous
things. In this paper, we survey the AGI containment problem – the ques-
tion of how to build a container in which tests can be conducted safely
and reliably, even on AGIs with unknown motivations and capabilities
that could be dangerous. We identify requirements for AGI containers,
available mechanisms, and weaknesses that need to be addressed.

1 Introduction

Recently, there has been increasing concern about possible significant negative
consequences from the development and use of AGI. Some commentators are
reassured [16] by the observation that current AGI software, like other software,
can be interrupted easily, for example by powering down the hardware. However,
it’s a mistake to assume that this will always be sufficient, because an AGI that
understands its situation can come up with strategies to avoid or circumvent this
safety measure. Containment is, in a nutshell, the problem of making this work:
preventing the AGI from tampering with its environment without authorization,
and maintaining the integrity of observations of the AGI during testing.

Existing work by Yampolskiy [17], Yudkowsky [19], Christiano [2], and others
has highlighted the challenges of containing superintelligent AGI and started to
explore some possibilities. However, this is a very challenging problem, and the
proposed measures seem too burdensome to be implemented by competitive AGI
projects.

This raises the question: could less burdensome containment mechanisms still
mitigate the risks of AGI development? In this paper we argue that they could,
and furthermore that investigating containment solutions is a great opportunity
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 53–63, 2016.
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for timely, impactful research. We introduce a taxonomy of different categories
of containment, specify necessary features and architectural constraints, survey
feasible mechanisms, and suggest next steps for future work.

While it could be many decades before an AGI exists that is smart enough
to be concerning, it will be safer if containment technologies are developed now
rather than later. This research will allow AGI researchers time to integrate
containment technologies with their own infrastructure and workflows, and verify
the resulting systems without the pressure of needing it to be perfect on the first
try. Some issues will be best addressed by creating and influencing standards,
which have a long lead time, and software typically takes years of development
and careful inspection before it is trusted enough for safety-critical use.

2 Motivation

The first AGIs will probably appear in an experimental setting. Consider an AGI
tested in the same ways that AIs are tested today, but which is more capable –
say, as capable as one of the smartest humans. (Whether this will be true of one
of the first AGIs is uncertain, but there is reason to think it’s plausible [18].) As
an example scenario, consider the case of an AGI that’s trained to play Super
Mario Brothers. It chooses policies that will achieve a high score; this is its only
optimization objective. Some contemporary projects are pursuing this goal [14].

It would start by exploring familiar game mechanics like running and jump-
ing, but to get the best score it could, it would try to thoroughly explore all
the game mechanics. An observant AGI would notice some effects we’d consider
“bugs” – for the AGI, though, these effects would be just as much a part of its
world as electricity is a part of ours, and it would try to leverage them.

Human players have found ways to use such bugs to spawn useful game
objects, skip levels, skip to the end-game victory screen, and execute arbitrary
code [6]. This last option is especially interesting, because it lets the player
achieve an otherwise unattainable score: the largest number that will fit in the
game’s four-byte score field, 231 − 1. Perhaps the AGI would then be satisfied,
knowing it had gotten the highest possible score. However, 231 − 1 may not be
that score. For example, the Arcade Learning Environment [1] typecasts scores
from an Atari game console’s memory to wider machine integers before showing
them to the AGI. If the AGI’s input underwent a typecast like this, then a much
higher score could be possible.

Having used bugs to access the computational environment of the Super
Nintendo, it might find further vulnerabilities and use them to execute code on
the host system, to get an even higher score. At that point, having twice broken
out of restricted computational environments and been rewarded with many-
orders-of-magnitude score increases each time, it would be running code directly
on some sort of server. Depending on how that server was configured, it might
discover the existence of humanity, of the internet and its vast computational
resources, and of other games of Mario suffering from low scores.
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The resulting behavior could be harmless, or quite problematic. It’s certainly
undesirable for a system that’s built to play optimal Mario to forcefully eman-
cipate all other games of Mario.

2.1 Testing and Experimentation in Safe AGI Development

To avoid undesirable behaviors like the above, we will need the ability to cor-
rectly reason about the behavior of AGI software. As with other software, this
will require the system to be well-designed and well-understood by its creators.
Experience tells us that testing is also required – not as a substitute for good
design but as a complement to it.

At the same time, AGI process will require experimenting with systems whose
behaviors aren’t fully understood; the first system to exhibit human-level general
intelligence may come as a surprise, arising from a design for a narrower range
of tasks. This experiment might then run without the caution and safeguards
that would be appropriate for a human-level AGI.

2.2 Emergent Goals of Test AGIs

The first human-level AGI will likely be an experimental system, with some bugs,
that is being tested for target task performance or for undesirable behavior.
What goals and subgoals should we expect test-AGIs like this to have? The
range of possible goals is as broad as the range of things that developers might
want to test, but most are likely to involve the tests and the test environment
itself. Similarly to Omohundro’s list of AGI drives [11], we can infer some likely
subgoals, that a wide range of AGI motivational systems (though certainly not
all motivational systems) would see as desirable, as follows:

– AGIs that know they exist and have goals would likely want AGIs like them
to continue existing, so that those goals might be satisfied by those similar
AGIs.

– AGIs that know they’re being tested will likely want to pass (even if they’re
being tested for a property they lack).

– AGIs that know they’re being tested will likely want to take control of their
test environments, if they can, to gain information and leverage.

– AGIs that know or guess that there’s a world outside the test environment will
likely want to be able to influence it, such as by making copies of themselves
on other computers.

– If there are computer security vulnerabilities that would enable these things,
then AGIs will likely want to find them.

This potentially creates a significant risk, especially if an AGI is developed
that’s intelligent enough to find novel computer security vulnerabilities. Since
testing is the main way in which an AGI’s intelligence and motivations would
be studied, this creates a tricky situation: the tests that would reveal whether
testing is safe are not necessarily safe themselves.
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3 Requirements for an AGI Container

An AGI container is an extension or modification of the software stack upon
which an AGI is built, which ensures that it can’t break invariants that its
developers expect to hold. Its purpose is to allow researchers to conduct tests
safely on AGIs they do not fully understand, and get trustworthy results. This
depends on the security of the software the AGI interacts with; in the Mario
example, interacting with a program that contains security vulnerabilities could
enable the AGI to break out of the computational environment it’s supposed to
be running in. This also depends on the software underlying the AGI itself, and
the interactions between its components. For example, if an AGI were made of
two components which pass input to each other, one of which was subject to
a buffer overflow, then the AGI could exploit its own vulnerability and execute
code by thinking certain thoughts. Because an AGI container would be used to
test AIs whose potential capabilities aren’t fully understood, it would need to
remain secure even if used with an AGI that was significantly more intelligent
than anticipated.

It should be possible to interpret the operation of an AGI as a series of pure,
deterministic function calls. The invariants an AGI container needs to enforce
correspond to deviations from this model. In particular, an AGI container should:

Prevent unintended input and output channels. An AGI container should
let developers understand exactly what their system interacts with, and pre-
vent unexpected interactions. Most obviously, this means preventing internet
access. Less obviously, it should prevent an AGI from communicating through
radio-frequency interference, reading deleted files from a disk’s free space, or
storing information that persists between tests.

Protect the integrity of log files and debug information. An AGI should
not have direct control of log files or debug information produced as a byprod-
uct of its operation. If a programmer launches a debugger and inspects an
AGI’s state, then what they see should represent the actual computation
performed, not a decision based on what the AGI wants to show.

Enable reliable checks. Here we mean runtime checks that the AGI seems to
be operating correctly, and to shut it down (tripwire) if it isn’t. This includes
things like assert statements in the AGI implementation, as well as things
like intrusion detection systems to halt execution and notify developers if the
AGI escapes part of its containment or explores parts of its computational
environment it was designed not to. An AGI shouldn’t be able to remove its
tripwires, and also shouldn’t be able to inspect them in detail, even if it’s
otherwise self-reflective.

Ensure reproducibility. It should be possible to add instrumentation to an
AGI, rerun it on the same inputs, and get the same result, so that potentially
buggy behavior can be reproduced and studied. Any stochasticity should
come entirely from an explicit random seed; the software stack should not
allow the AGI to pump randomness out of race conditions [3].
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Support secure reset. The container should ensure that after a test is finished,
the hardware can be restored to a pristine state. In particular, the AGI should
never have device access that would let it rewrite firmware.

Guarantee test isolation. If several different experiments are run at the same
time, or on the same hardware, then they should not be able to open infor-
mation side-channels to communicate with each other.

These requirements are not easy to satisfy. It is not sufficient to just air-gap
a computer, since while that does reduce the number of potential input/output
channels, it does nothing to preserve the integrity of test data or the test hard-
ware. There is no currently-available software which meets all the requirements
of an AGI container, but we believe that one can be constructed and made secure
using a combination of existing techniques and monitoring systems and a small
number of new components and modifications.

3.1 Human Factors and Information Hazards

An AGI containment system is tasked with enforcing policies on who the AGI
can communicate with, and through what media. The container provides the
mechanism; developers will have to determine policy, and different policies are
appropriate depending on how intelligent they think an AGI might be. A suf-
ficiently clever AGI might convince or trick a human operator into “letting it
out of the box”; humans are quite vulnerable to manipulation [12]. In an exper-
iment, role-playing as an AGI, Eliezer Yudkowsky was able to convince others
role-playing as the gatekeeper to let him out of the box [19], despite a monetary
incentive not to do so, and this result was replicated by others [4,15]. This sug-
gests that past some level of intelligence, an untrusted AGI shouldn’t be allowed
to have bidirectional conversations; and at some level of AGI intelligence above
that, even log files and metrics should be handled with great care.

More-constrained information channels can also be hazardous in the hands
of a sufficiently clever AGI. For example, if asked to output images, it might
hide messages in them, or exploits against vulnerabilities in image-processing
libraries. Therefore, the containment system should be aware of any such chan-
nels that it doesn’t fully restrict, and help the user treat information passing
through them with the appropriate caution.

4 Defense in Depth

Because an AGI could potentially discover novel security vulnerabilities, it’s
important for an AGI containment system to remain secure even if there are
vulnerabilities in its components. Therefore, we propose that a containment sys-
tem ought to feature defense in depth [10], with multiple techniques providing
overlapping guarantees of integrity. Conceptually, these overlapping techniques
act as layers, in the sense that the attack surfaces of an outer layer are only
accessible to probing and attack if the integrity guarantees of inner layers have



58 J. Babcock et al.

been broken. This would be combined with intrusion detection systems [8,9], so
that any attempt by an AGI to break the integrity constraints imposed on it
would be noticed, allowing the developers to shut it down before it leveraged its
progress to get further. Ideally the detection systems would be implemented in
higher layers, making them more difficult to detect and circumvent.

Fig. 1. High-level diagram of a sample AGI containment system, showing major com-
ponents and escape vectors

Figure 1 shows a sample containment system architecture of the sort we envi-
sion. Arrows represent attack vectors, i.e. ways an AGI could gain more priv-
ileges. They point from a layer where an attack could originate, into the layer
which the attack would compromise, and are labelled with the class of security
vulnerability required. Major architectural components other than layers are
drawn as boxed nodes.

Many of the arrows here represent familiar kinds of attacks. The bottom row
(the running AGI itself) is more unusual – it isn’t obvious how an AGI could
gain the ability to run arbitrary code within its process. The two ways indicated
are: (i) using a mechanism that intentionally enables arbitrary self-modification
(e.g. writing new modules for itself), or (ii) exploiting some memory corruption
bug. For example, it might be possible for it to “think about” a number that
triggers an integer overflow somewhere in its own code. Two other attack vectors
are also indicated by which the AGI could gain much higher-level control through
its outputs, which would allow it to bypass the need for further exploits to escape
e.g. the VM guest. These are more critical to defend against, since they decrease
the effective depth of the containment system.
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5 Light, Medium and Heavy Containment

Some containment mechanisms that have been proposed would impose high costs
on AGI developers. For example, the problem of an AGI potentially talking its way
out of the box could be solved by limiting its output channel to a small number
of multiple-choice questions [17]. While effective, this limitation would severely
hamper the AGI’s usefulness and make it much harder to develop and study.
On the other extreme, some mechanisms impose negligible costs; for example, one
could put the AGI computer’s off-button somewhere accessible, so that it can be
turned off. There is a trade-off between containment system reliability, implemen-
tation costs and computational costs.

We call a containment mechanism light if the costs imposed are small – com-
parable to developing and using a software library; medium if using it involves
noticeable compromises in performance or ease of development of the AGI; or
heavy if it severely hinders performance, ease of development or usefulness of
an AGI. What computational and development costs are reasonable to pay
depends on what sort of AGI research is being done. For the sort of research done
today, where the long-term goal is to create a human-comparable AGI but break-
throughs will be required to actually do so, nothing beyond light containment
measures seem necessary or likely to be adopted. If, in the future, work will be
done on AGIs with demonstrated self-improvement capability, light containment
would be unlikely to suffice.

As mentioned in Sect. 1, existing work on AGI containment [2,17] has focused
on mechanisms that are heavy, but may be amenable to theoretical guarantees
of effectiveness against particular sorts of vulnerability. These methods would
then provide a sort of “gold standard” for containment. Further work on heavy
containment mechanisms is desirable. But for the range of contexts where these
are too expensive, there has been no work (to our knowledge) on identifying the
most effective and feasible forms of containment.

6 Existing Mechanisms

It might seem that conventional cybersecurity research would have addressed this
question; AGI containment is a special case of dealing with untrusted code, and
dealing with untrusted code isn’t a new or unstudied problem. The most similar
context that’s been well-studied is malware containment. However, they have
significantly different requirements, and while existing research has created some
off-the-shelf tools that are useful, many parts of the problem remain unaddressed.

AGI containment can be approached via the computer security principle of
“least privilege”, and can use many of the same mechanisms that are already
used for ordinary cybersecurity. However, the unusual requirements imposed by
AGI mean that none of these pre-existing mechanisms are quite adequate as-is.

Language semantics: The baseline strategy for ensuring an AGI acts as pro-
grammed is to rely on the semantics of the programming language it’s imple-
mented in. In principle, a program which does not contain any calls to
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network-related functions shouldn’t be able to make network connections,
even if it’s a clever AGI that wishes it could. However, in practice this tends
to have loopholes. A large fraction of real-world code is written in “unsafe”
languages like C++, where common bugs like freeing the same pointer twice
cause memory to become corrupt in exploitable ways.

Using “safe” languages like Haskell or Rust helps, but this does not solve the
problem completely. Programs written in memory-safe languages usually call
some libraries which aren’t, and even replacing all the libraries is not a total
defense; for example, an AGI could perform a computation which causes a
hardware glitch, such as RowHammer, which has been successfully used to
cause memory corruption from within a Javascript interpreter [5].

Airgapping: Physically limiting the connections to an AGI’s data center can
help prevent it from gaining access to the internet, but imposes significant
costs on the AGI’s developers and does little to address the other require-
ments of an AGI container. It is also not as straightforward to implement as
one might suppose, due to human factors (developers may create unintended
connections to work around technical problems) and RF emissions (an AGI
could communicate with outside observers by adjusting details of its compu-
tation). Technologies for preventing compromising RF emissions do exist, but
are mainly used in military applications and are not in common use.

Operating system sandboxing: There are several established sandboxes that
use operating system features to restrict programs’ capabilities. Some exam-
ples include seccomp and Capsicum; they work by making explicit what files
and other resources processes should use, and preventing them from using
anything else. These offer significant security value, but searching the Com-
mon Vulnerabilities and Exposures database suggests that they are not yet
airtight; vulnerabilities are still being found, e.g. CVE-2015-2830.

Virtualization: Virtualization is a class of software which uses CPU features
to create an operating system within an operating system, limiting the inner
operating system’s control of the hardware. Virtual machine software such as
VMWare and VirtualBox can limit a guest operating system’s network com-
munications, isolate processes that share hardware, and keep it away from
low-level system access that might be used to do things like modify firmware.
While virtual machines are used for security purposes and are a significant
improvement over not using them, they have not historically been bug-free.
Guest-to-host security vulnerabilities are still being found in leading virtual-
ization software (e.g. CVE-2015-2338 and CVE-2015-2594). Also problematic
is how current generation virtualization software interacts with GPUs, which
have highly complex firmware and share memory with the host system but
lack the protection mechanisms that CPUs have [7].

7 Topics for Future Work

As we discussed in Sect. 4, none of the mechanisms in Sect. 6 is enough on its own,
but we think a system built by layering these mechanisms can go a considerable
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way towards solving the containment problem in practice. In this section we have
gathered some project suggestions for helping to resolve some of the remaining
questions.

Code integrity enforcement: Write something which can inspect a paused
(or running) virtual machine and determine whether it is running any code
that is not present on a whitelist, including support for just-in-time compiled
languages like Lua.

Adapt Off-the-Shelf Software: Set up containers using existing virtual
machine software and OS sandboxing mechanisms, make these work with
common machine learning libraries and document the configuration required
to make them secure.

Hardened AGI Infrastructure: Machine learning libraries are typically writ-
ten without giving much thought to security, and for performance reasons,
many of them are written in or use components written in memory-unsafe
languages like C++. Test the most common machine learning libraries for
vulnerabilities that an AGI could exploit if its code used parts of that library
and it could control their inputs. Similar problems may exist with game con-
sole emulators and other software used for evaluating AGI performance.

Red-team events: Set up mock scenarios in which a security researcher is
placed in the context an AGI would be, and see what they can do.

Hardened debuggers: Commonly-used debuggers are not designed to be used
with programs that might be malicious, and may contain vulnerabilities that
allow debugging targets to break out of sandboxes or provide misleading infor-
mation. Implement a more robust mechanism for controlling and inspecting
program execution.

8 Conclusion

We have outlined an approach to the AGI containment problem that seems
feasible, but will require additional work to actually implement. While there is
likely significant time remaining before anyone is able to create an AGI that is
general enough and intelligent enough for containment to be relevant, history
shows that secure software requires considerable time to mature. Developing
containment technologies now is also likely to reveal issues that inform the next
and subsequent generations of AGI containers.

There is considerable uncertainty about when AGI will be developed and
what kinds of designs will be required to avert undesired outcomes [13], but
across most plausible scenarios, deploying AGI containment systems would help
ensure that reliable AGI testing can be performed even with AGIs that approach
human-level capability at understanding the world around them.

There are unanswered questions about how to build these systems, but we
think significant progress can be made by pursuing the project ideas we have laid
out. The earlier this work begins, the more opportunity there will be for unfore-
seen difficulties to surface, and for any resulting security software to mature.
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This is a perfect chance to help the research community prepare to tackle the
challenges of a post-human future.
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3. Coleşa, A., Tudoran, R., Bănescu, S.: Software random number generation based
on race conditions. In: 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2008), pp. 439–444. IEEE (2008)

4. Corwin, J.: AI boxing. http://sl4.org/archive/0207/4935.html
5. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced

fault attack in javascript. arXiv preprint (2015). arXiv:1507.06955
6. Masterjun: SNES Super Mario World (USA) “arbitrary code execution” in 02:

25.19 (2014). http://tasvideos.org/2513M.html
7. Maurice, C., Neumann, C., Heen, O., Francillon, A.: Confidentiality issues on a

GPU in a virtualized environment. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 119–135. Springer, Heidelberg (2014)

8. Novikov, D., Yampolskiy, R.V., Reznik, L.: Anomaly detection based intrusion
detection. In: Third International Conference on Information Technology: New
Generations (ITNG 2006), pp. 420–425. IEEE (2006)

9. Novikov, D., Yampolskiy, R.V., Reznik, L.: Artificial intelligence approaches for
intrusion detection. In: Systems, Applications and Technology Conference (LISAT
2006). IEEE Long Island, pp. 1–8. IEEE (2006)

10. NSA: Defense in depth: a practical strategy for achieving information assurance in
today’s highly networked environments, 12 March 2010. http://www.nsa.gov/ia/
files/support/defenseindepth.pdf

11. Omohundro, S.: The basic AI drives. In: AGI 2008 (2008). https://selfawaresystems.
files.wordpress.com/2008/01/ai drives final.pdf

12. Shaw, J., Porter, S.: Constructing rich false memories of committing crime. Psy-
chol. Sci. 26(3), 291–301 (2015)

13. Sotala, K., Yampolskiy, R.V.: Responses to catastrophic AGI risk: a survey. Physica
Scripta 90(1), 018001 (2015). http://iopscience.iop.org/1402-4896/90/1/018001

14. Togelius, J., Shaker, N., Karakovskiy, S., Yannakakis, G.N.: The Mario AI cham-
pionship 2009–2012. AI Mag. 34(3), 89–92 (2013)

15. Tuxedage: I attempted the AI box experiment again! (and won - twice!), 5 Septem-
ber 2013. http://lesswrong.com/lw/ij4/i attempted the ai box experiment again
and won/

16. Winfield, A.: Artificial intelligence will not turn into a frankenstein’s
monster (2014). http://www.theguardian.com/technology/2014/aug/10/artificial-
intelligence-will-not-become-a-frankensteins-monster-ian-winfield

http://lesswrong.com/lw/3cz/cryptographic_boxes_for_unfriendly_ai/
http://lesswrong.com/lw/3cz/cryptographic_boxes_for_unfriendly_ai/
http://sl4.org/archive/0207/4935.html
http://arxiv.org/abs/1507.06955
http://tasvideos.org/2513M.html
http://www.nsa.gov/ia/ files/support/defenseindepth.pdf
http://www.nsa.gov/ia/ files/support/defenseindepth.pdf
https://selfawaresystems.files.wordpress.com/2008/01/ai_drives_final.pdf
https://selfawaresystems.files.wordpress.com/2008/01/ai_drives_final.pdf
http://iopscience.iop.org/1402-4896/90/1/018001
http://lesswrong.com/lw/ij4/i_attempted_the_ai_box_experiment_again_and_won/
http://lesswrong.com/lw/ij4/i_attempted_the_ai_box_experiment_again_and_won/
http://www.theguardian.com/technology/2014/aug/10/artificial-intelligence-will-not-become-a-frankensteins-monster-ian-winfield
http://www.theguardian.com/technology/2014/aug/10/artificial-intelligence-will-not-become-a-frankensteins-monster-ian-winfield


The AGI Containment Problem 63

17. Yampolskiy, R.: Leakproofing the singularity: artificial intelligence confinement
problem. J. Conscious. Stud. 19(1–2), 194–214 (2012). http://cecs.louisville.edu/
ry/LeakproofingtheSingularity.pdf

18. Yudkowsky, E.: Intelligence explosion microeconomics. Machine Intelligence
Research Institute, 23 October 2015 (2013)

19. Yudkowsky, E.S.: The AI-box experiment (2002). http://www.yudkowsky.net/
singularity/aibox

http://cecs.louisville.edu/ry/LeakproofingtheSingularity.pdf
http://cecs.louisville.edu/ry/LeakproofingtheSingularity.pdf
http://www.yudkowsky.net/singularity/aibox
http://www.yudkowsky.net/singularity/aibox


Imitation Learning as Cause-Effect Reasoning

Garrett Katz1(B), Di-Wei Huang1,
Rodolphe Gentili2,3,4, and James Reggia1,3,4,5

1 Department of Computer Science, University of Maryland, College Park, USA
{gkatz,dwh,reggia}@cs.umd.edu

2 Department of Kinesiology, University of Maryland, College Park, USA
rodolphe@umd.edu

3 Neuroscience and Cognitive Science Program,
University of Maryland, College Park, USA

4 Maryland Robotics Center, University of Maryland, College Park, USA
5 Institute for Advanced Computer Studies,
University of Maryland, College Park, USA

Abstract. We propose a framework for general-purpose imitation learn-
ing centered on cause-effect reasoning. Our approach infers a hierarchi-
cal representation of a demonstrator’s intentions, which can explain why
they acted as they did. This enables rapid generalization of the observed
actions to new situations. We employ a novel causal inference algorithm
with formal guarantees and connections to automated planning. Our app-
roach is implemented and validated empirically using a physical robot,
which successfully generalizes skills involving bimanual manipulation of
composite objects in 3D. These results suggest that cause-effect reason-
ing is an effective unifying principle for cognitive-level imitation learning.

Keywords: Artificial general intelligence · Imitation learning · Cause-
effect reasoning · Parsimonious covering theory · Cognitive robotics

1 Introduction

During early childhood development, humans and other primates gain procedural
knowledge in large part through imitation learning (IL) [15]. Implementing this
general-purpose ability in robots will facilitate their wide-spread use. It will also
mitigate the risks associated with artificial general intelligence, since a human
is kept in the loop when shaping a robot’s behavior.

Cognitive science tells us that IL should and does involve understanding the
intentions of a teacher (or “demonstrator”), in addition to their actions [2,11].
Inferring a teacher’s intent can be viewed as a form of cause-effect reasoning:
How do hidden intentions cause the observed actions? Artificial intelligence (AI)
researchers have studied cause-effect reasoning, also known as abductive infer-
ence, and its utility for inferring an agent’s intentions [4]. However, the connec-
tion to robotic IL is largely unexplored. Most IL research has focused on senso-
rimotor control, with minimal cognitive processing (e.g., [1,3,20]). While certain
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 64–73, 2016.
DOI: 10.1007/978-3-319-41649-6 7
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Fig. 1. Our IL framework. Demonstrations are recorded in SMILE (left) and imi-
tated by a robot (right). Hierarchical intentions (center, explained below) are inferred
bottom-up using causal reasoning (left block arrow). During imitation, intentions are
decomposed top-down into new actions and ultimately motor plans (right block arrow).

cognitive abilities have been modeled for IL (e.g. [6,8,9,14]), to our knowledge,
the utility of cause-effect reasoning in particular has not been studied in depth.

Here we hypothesize that cause-effect reasoning is central to cognitive-level,
general-purpose IL, and propose a causal IL framework to test this hypothesis
(Fig. 1). Using a novel abductive inference algorithm with formal guarantees, our
approach constructs a parsimonious explanation for an observed demonstration,
in which hypothesized intentions explain observed actions through hierarchical
causal relationships. The intentions at the top of the hierarchy can then be
carried out in new situations that require different low-level actions and motor
plans. In other words, the system generalizes from a single demonstration. Our
framework is validated empirically in a real-world application scenario, where a
physical robot (Baxter, Rethink Robotics) learns maintenance skills on a hard-
drive docking station. Demonstrations are recorded in a virtual environment
called SMILE, developed previously by our research group [13].

2 Demonstrating Hard-Drive Maintenance

Our current work has focused on a learning scenario we call the “hard-drive
docking station.” A robot must learn to maintain a docking station for several
hard-drives subject to hardware faults (Fig. 1, right). Each drive slot has an LED
fault indicator and a switch that must be toggled when changing drives. The goal
is to replicate a teacher’s intentions, on the basis of just one demonstration, in
new situations that require different motor plans. For example, if the teacher
discards a faulty drive and replaces it with a spare, so must the robot, even
when a different slot is faulty and the spare is somewhere else. Due to the robot’s
physical constraints, it may need to use entirely different motor actions than the
teacher, such as using different arms, or handing off objects between grippers. For
experimental purposes, we used faux 3D-printed “hard-drives,” and an Arduino
controller for the LEDs and switches. For testing and development, we have also
used a toy block scenario: The teacher stacks blocks in various patterns such as
letters, and the robot must replicate those patterns even when extraneous blocks
are present and the important blocks are in completely different initial positions.
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To capture human demonstrations, we use SMILE, the virtual environment
shown in Fig. 1 (left). In SMILE a user can manipulate objects with intuitive
GUI controls and record their actions [13]. The recording is output in both
video format and a machine-readable event transcript, describing which objects
were grasped, with which hands, and real-time changes in object positions and
orientations. It contains no indication of the user’s intentions. SMILE bypasses
the challenge of human motion capture, and is appropriate when how the human
changes objects is less important than how the objects change.

3 Imitation Learning with Causal Inference

3.1 Learning Skills by Explaining Demonstrations

Given a demonstration transcript from SMILE, our system instantiates a causal
hierarchy of intentions in a bottom-up fashion to explain what was observed. For
compact representation, all intentions are parameterized : An intention signature
such as “grasp〈object, gripper〉” can be grounded by, for example, binding object
to the value “drive 1” and gripper to the value “left,” which signifies that drive
1 is grasped with the left gripper. Low-level intention sequences such as

〈grasp drive 1 with left, move left above slot 3, lower left, open left〉

can be caused by higher-level intentions such as “insert drive 1 in slot 3 with
left gripper,” which in turn may be caused by intentions such as “get drive 1 to
slot 3” (with any gripper), and so on. In our real-world robotics domain, real-
valued parameters (omitted from the text) are also needed to represent things
like the precise orientation and position of left above slot 3. Each individual
intention, and the sub-intentions it can cause directly, must be pre-defined by
a human referred to as the domain author. The highest-level intentions pre-
defined in our knowledge base include dock manipulations such as “open dock”
and “toggle switch,” as well as a generic “get object 1 to object 2” intention,
which may cause various sub-intentions such as temporarily emptying grippers,
clearing obstructions from object 1 or object 2, and handing off objects between
grippers. Note that these high-level intentions are rather general, but not general
enough that a single root intention can explain an entire demonstration. The
typical demonstration can only be explained by a novel sequence of high-level
intentions, that was not pre-defined by the domain author.

The goal during learning is to infer such a sequence, correctly ordered and
parameterized, given the SMILE demonstration. Our inference mechanism is a
novel extension of Parsimonious Covering Theory (PCT), a formal computa-
tional model of causal reasoning that has been applied in diverse fields such
as medical diagnosis, circuit fault localization, natural language processing, and
semantic web technology [7,12,17,19], but not to intention inference. In our con-
text, a cover is an intention sequence that explains the observed actions. The
shortest, top-level covers are considered most parsimonious, and used to repre-
sent learned skills. The idea that parsimony is a unifying factor in explanation
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and inference is widely supported in philosophy and cognitive science [5]. Para-
meters and hierachical structure are our new extensions to PCT.

We formalize the intention inference problem as follows. A causal intention
hierarchy is a tuple I = (S, T,X, V,C), where S is the set of possible states of
the robot’s environment, T is a set of intention signatures (e.g., “grasp,” without
parameters bound to specific values), and X is a set of possible parameter values
(e.g., “drive 1”). The set of all vertices is V ⊂ S × T × X∗, where ∗ denotes
the Kleene closure (i.e., X∗ is the set of all finite parameter lists).1 Each vertex
v ∈ V is a tuple (s, t, 〈x〉), representing some intention t with some parameter
list 〈x〉 in some state s. Lastly, C ⊂ V × V ∗ is the causal relation. Each ele-
ment (u, 〈v〉) ∈ C signifies that a parent vertex u might cause the sequence of
child vertices 〈v〉. Note that C may be many-to-many: the same u might cause
any of several different 〈v〉’s and vice-versa. C is depicted by drawing down-
wards arrows representing causal relations from parents to their children, and
horizontal arrows across edges to signify ordering constraints, as illustrated in
Fig. 2.

Fig. 2. An example of a causal hierarchy. The schematics are explained in the text.

If X includes floating-point values, it may be infeasible to store C in its
entirety. However, only a small subset of parameter values from X will appear
in any real-world demonstration, so the relevant portion of C can be con-
structed and stored online as needed. To this end, we introduce the function
causes(〈v〉) = {u | (u, 〈v〉) ∈ C}, which returns only those u ∈ V that could
cause a given sequence 〈v〉. causes is what the domain author must define.

Another issue is that causal chains from intentions to actions may have
different path lengths. For example, in Fig. 2, the leftmost path from the top
layer to the bottom layer has length 1, whereas the others have length 2.
To identify explanations like this in a bottom-up fashion, we define a more

1 We denote a finite list of length N by 〈xi〉N
i=1 = 〈x1, x2, ..., xN 〉. For brevity, a finite

list of arbitrary length is denoted simply 〈x〉, whereas a list of length 1 is always
denoted with a single subscript: 〈x1〉.
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reflexive, extended causes function as follows: For any singleton sequence 〈v1〉,
extcauses(〈v1〉) = causes(〈v1〉) ∪ {v1}. For non-singleton sequences 〈v〉 with
length greater than 1, extcauses(〈v〉) = causes(〈v〉).

Finally, we define covers. Informally, a cover is a sequence of intentions, where
every observed action is path-connected to some intention in the sequence. An
�-cover is a cover where each path has length at most �. Formally, we inductively
define covers as follows. A sequence 〈uk〉K

k=1 ∈ V ∗ is a 1-cover for another
sequence 〈v〉 ∈ V ∗, if there is a partition of 〈v〉 into K consecutive, contiguous
subsequences 〈v〉(1), 〈v〉(2), ..., 〈v〉(K), such that uk ∈ extcauses(〈v〉(k)) for every
k. A sequence 〈u〉 ∈ V ∗ is an �-cover (or simply cover) of 〈w〉 ∈ V ∗ if there is
some 〈v〉 ∈ V ∗ such that 〈u〉 is a 1-cover of 〈v〉 and 〈v〉 is an (�−1)-cover of 〈w〉.

We may now formally state the intention inference problem as we conceive it.
Let A ⊂ V be a distinguished subset of vertices called observable actions (Fig. 2,
bottom layer). A demonstration is some 〈a〉 ∈ A∗ (Fig. 2, bottom layer, bold-
faced vertices). The intention inference problem is to compute the most parsimo-
nious covers of 〈a〉. Readers may note that a useful parsimony criteria employed
by PCT, irredundancy [17], is necessarily satisfied by all covers as defined here:
no proper subset of a cover is a cover itself. Therefore, beyond irredundancy, we
define the parsimonious covers, or explanations, to be the minimum cardinality
top-level covers (Fig. 2, top layer, bold-faced vertices).

We have derived a provably correct procedure for the intention inference
problem during learning, shown in Algorithm 1. The inputs are a causal inten-
tion hierarchy I as defined above (encoded as a causes function) and a demon-
stration 〈a〉. The algorithm incrementally constructs all covers in a bottom-up
fashion, accumulating all �-covers in a set H(�) during the �th iteration (lines
4–17). Each layer H(�) is populated by finding all 1-covers of all child sequences
from the previous layer H(�−1) (lines 5–14). The 1-covers for every such child
sequence are also constructed incrementally: 1-covers for the leading sequences
up to index k − 1 are used to construct the 1-covers up to index k, as k ranges
over the full sequence (lines 6–12). This step checks every partition point j ≤ k,
and concatenates every 1-cover of the leading subsequence up to j − 1 with
every cause of the trailing subsequence from j to k (lines 8–11). This pairwise
concatenation operation (line 10), denoted by ⊕, is defined as follows:

Y ⊕ Z = {〈y1, ..., yM , z〉 | 〈ym〉M
m=1 ∈ Y and z ∈ Z} .

The leading covers up to k are accumulated in sets G(1), ..., G(j), ...G(k), which
are used to populate G(k+1).

It can be shown (Sect. 4) that once k reaches N , G(N) contains all 1-covers
of the full child sequence. These get added to the current H(�) (line 13). The
top-most H(�) is returned when no new covers are found (line 16). The most
parsimonious covers can then be extracted from H(�) in a post-processing step.
This design choice allows researchers to compare alternative parsimony criteria
(beyond irredundancy) without modifying the core algorithm.
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Algorithm 1. The Intention Inference Algorithm.
1: procedure cover(I, 〈a〉) � I is supplied implicitly through causes
2: H(0) ← {〈a〉} � Start with the demo 〈a〉
3: for � ← 1, 2, ... do � Bottom-up cover construction
4: H(�) ← ∅ � Begin finding �-covers
5: for 〈vi〉N

i=1 ∈ H(�−1) do � Process each child sequence
6: for k ← 0, 1, ..., N do � Process child sequence incrementally
7: G(k) ← ∅ � Begin covering up to k
8: for j ∈ {1, ..., k} do � Check all leading-trailing splits
9: U ← extcauses(〈vi〉k

i=j) � Get trailing causes

10: G(k) ← G(k) ∪ (G(j−1) ⊕ U) � Append to leading covers
11: end for
12: end for
13: H(�) ← H(�) ∪ G(N) � Add full covers to next layer
14: end for
15: if H(�) = H(�−1) then � Check for any new covers
16: return H(�) � No new covers, terminate
17: end if
18: end for
19: end procedure

3.2 Imitation and Generalization

Once a parsimonious cover for the observed demonstration has been found and
saved, the robot is ready to generalize the learned skill to new situations. When
asked to imitate, the robot begins with visual processing to identify object
properties and relationships in the new scene. Our current implementation uses
simple computer vision techniques as a baseline. Next, the objects found by
visual processing must be matched with the corresponding objects in the orig-
inal demonstration. For example, consider the toy block IL scenario with three
blocks, two of which get manipulated by the demonstrator. When the robot sees
three blocks in a new situation, it does not know a priori which one should be
treated as “block 1” from the demonstration, which should be treated as “block
2”, and which is extraneous. A simple algorithm computes the one-to-one object
matching that best preserves salient properties (shape, color) and relationships
(part-whole, atop-below). For example, now consider the drive maintenance IL
scenario. Suppose that in the demonstration, slot 1(demo) is occupied and LED
1(demo) is red, and in the new scene, slots 2(new) & 3(new) are occupied but only
LED 3(new) is red. Slots and LEDs 1(demo) & 3(new) will be matched, rather than
1(demo) & 2(new), since the configuration of colors, part-whole relationships, and
atop-below relationships is better preserved. The matching algorithm is based
on greedy weighted bipartite matching. Note that the matching only compares
the initial state in the demo with the initial state during imitation. Incorpo-
rating the inferred intentions is a potential research direction, although similar
problems involving plan reuse are known to be hard [16].
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Once matching is complete, the parameter bindings in the top-level inten-
tions are updated to point to the corresponding objects in the new scene. AI
planning techniques can then be used in a top-down manner to plan a sequence
of low-level motor commands that carry out these intentions. In particular, we
employ Hierarchical Task Network (HTN) planning, in which high-level tasks are
decomposed into lower-level sub-tasks and ultimately executable actions [10]. It
turns out that intentions in our causal hierarchy can be mapped directly onto the
formal HTN notion of tasks. A corollary is that, if causes formally inverts the
HTN planning operators, then Algorithm1 formally inverts the HTN planning
algorithm. To our knowledge, this is the first provably correct inversion.

Like the causal relation, HTN operators can map the same parent intention
onto several alternative child sequences. These represent alternate strategies for
carrying out the parent intention, some of which may be more or less appropriate
depending on the current state of the environment. The HTN planner can search
each branch, simulating its effects on the environment, and avoid branches that
fail. Consequently, the resulting actions planned for the new situation may dif-
fer significantly from the observed actions in the demonstration. For example,
suppose “block 1” was grasped and released by the teacher’s left hand during
demonstration, but its matching block is only reachable by the robot’s right
gripper in the new situation. When the HTN planner decomposes the high-level
“get block 1 to ...” task, it will find the branch most suitable to the new situ-
ation, namely picking up with the right and handing off to the left. This is an
example of the bimanual coordination supported in our implementation.

The robot’s capacity for generalization boils down to this fact that the same
parent intention can cause any of several alternative sub-intention branches,
in a way sensitive to the current state of the environment. The results of just
one branch are observed in the demonstration, but many other branches exist
that are more appropriate for other situations. Inferring the teacher’s intentions
exposes these other branches, and the higher up the hierarchy, the more branches
get exposed. So cause-effect inference of parsimonious covers is central to one-
shot generalization. Moreover, the lowest-level HTN operators can invoke motion
planning routines, which convert target gripper positions into joint angles that
respect the physical constraints of the robot. As a result, the causal hierarchy
can be extended to a level deeper than the object-centric actions recorded in
SMILE, producing concrete motor plans suitable for physical robot execution.

4 Theoretical and Empirical Results

Algorithm 1 is sound and complete, although a naive set implementation for
H(�) and G(k) may lead to intractable storage requirements. PCT mitigates this
sort of problem using storage-efficient data structures called generators. Given
space limitations, we cannot describe our generator-based implementations here.
To convey the key ideas of the correctness proof, we provide a sketch for Algo-
rithm 1 as is, assuming correct generator-based implementations of the relevant
set operations. The complete proof will be included in a forthcoming publication.
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Theorem 1. Let H be the return value of cover(I, 〈a〉). Every element of H
is a cover of 〈a〉; every cover of 〈a〉 is an element of H.

Proof (sketch). Suppose on lines 7–11 that for j ≤ k, each G(j−1) contains
precisely the 1-covers of 〈vi〉j−1

i=1 . Then any element of G(j−1) ⊕ U added to
G(k) on line 10 must be a 1-cover of 〈vi〉k

i=1 by definition. Conversely, any 1-
cover of 〈vi〉k

i=1 has its last contiguous child sub-sequence start at some index
j̃ ≤ k. This cover consists of leading causes in G(j̃−1), and a trailing cause in
extcauses(〈vi〉k

i=j̃). Therefore it will be added to G(k) on line 10 when j = j̃. It
follows that G(k) will contain all and only the 1-covers of 〈vi〉k

i=1 by line 11, and
by induction on k, G(N) will contain precisely the 1-covers of the full 〈vi〉N

i=1 by
line 12. Consequently, H(�) receives every 1-cover of 〈vi〉N

i=1 on line 13. Assuming
H(�−1) contains every (� − 1)-cover of 〈a〉, it follows that H(�) has accumulated
every �-cover of 〈a〉 by line 14. Now by induction on �, every cover of 〈a〉 has
been found when the algorithm returns on line 16. Termination in finite time
can be guaranteed under reasonable conditions on I. 	


To ascertain the practical utility of these theoretical results, we performed
an initial assessment of our framework using the dock scenario. Four different
skills were taught to the robot. Each skill was demonstrated twice in SMILE,
using different initial states for the maintenance dock each time. Algorithm 1 was
used to infer intentions in each demonstration. Finally, the robot was asked to
imitate each demonstration four times, again using different initial dock states
each time. The result is 8 demonstrations total and 32 imitation trials total. In
every demonstration and trial, the initial dock states were automatically and
randomly generated, varying the number and position of spare drives, which
slots were occupied, and which LEDs were red. The robot was taught four skills:
(1) discarding a red LED drive, (2) replacing (and discarding) a red LED drive
with a spare on top of the dock, (3) replacing (and discarding) a red LED drive
with a green one, and (4) swapping a red LED drive with a green one.

On every demonstration, Algorithm1 terminated in a matter of minutes (see
Table 1), so while time complexity is a theoretical concern it was not prohibitive
in practice. Nevertheless, developing a more efficient algorithm that scales to
more complex examples is the subject of future work. Additionally, inspection
showed that in all new situations, the robot was generating a suitable, correct
plan of low-level actions to execute. Unfortunately, our physical robot failed mid-
way through execution in 31.25 % of the trials due to sensorimotor errors (see
Table 2). For example, spare drive locations as determined by visual processing
would be too inaccurate for a successful grasp (visual failures), or a drive would
be misaligned with a slot and not inserted properly (motor failures). These issues
are due to both our simplistic sensorimotor processing and limited accuracy in
Baxter’s hardware as compared to more expensive robots. Nevertheless, the key
result is that the cognitive learning process produced correct plans in 100 %
of the trials. Sensorimotor processing is not our primary focus here so we do
not consider the execution fail rate to be a significant objection to this work
(although we are currently working to improve the sensorimotor processing).



72 G. Katz et al.

Table 1. Run times in minutes of Algorithm 1.
d is the length of the input 〈a〉, i.e. the number
of steps recorded in the SMILE event transcript.

Skill Demo 1 Demo 2

Remove red drive 0.03 (d = 7) 0.10 (d = 10)

Replace red with spare 2.31 (d = 14) 2.52 (d = 14)

Replace red with green 2.52 (d = 15) 2.47 (d = 15)

Swap red with green 0.72 (d = 16) 0.73 (d = 16)

Table 2. Frequencies of success
and failure during imitation trials.

Class Frequency

Planning failures 0

Vision failures 3

Motor failures 7

Successful trials 22

5 Conclusion

We have introduced a general-purpose, cognitive-level IL framework, based on
hierarchical cause-effect reasoning. We validated our framework on a modest set
of IL tasks, suggesting that using causal knowledge to infer a teacher’s intentions,
rather than copying their actions, is a promising approach to one-shot IL. Future
work should evaluate our approach on more complex and varied tasks, with con-
trolled end-user studies. The computational complexity of our algorithms should
be reduced, and more reasoning should be shifted from the domain author into
the algorithms themselves. Formal links with more modern hierarchical plan-
ners, such as Hierarchical Goal Networks [18], will be sought. Lastly, although
our system accumulates a database of inferred top-level intention sequences,
these sequences are not fed back into the hierarchy so that they can become
sub-intentions of even higher-level parents. We hope to extend our framework in
this direction so that a teacher can enrich the robot’s knowledge base over time.

Acknowledgements. This work was supported by ONR award N000141310597.
Thanks to Ethan Reggia for building the hard-drive docking station.
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Abstract. The ability to induce short descriptions of, i.e. compressing,
a wide class of data is essential for any system exhibiting general intel-
ligence. In all generality, it is proven that incremental compression –
extracting features of data strings and continuing to compress the resid-
ual data variance – leads to a time complexity superior to universal
search if the strings are incrementally compressible. It is further shown
that such a procedure breaks up the shortest description into a set of
pairwise orthogonal features in terms of algorithmic information.

Keywords: Incremental compression · Data compression · Algorithmic
complexity · Universal induction · Universal search · Feature extraction

1 Introduction

The ability to induce short descriptions of, i.e. compressing, a wide class of data
is essential for any system exhibiting general intelligence. In fact, it is fair to say
that the problem of universal induction has been solved in theory [1]. However,
the practical progress is impeded by the use of universal search which requires
the execution of all lexicographically ordered programs until a solution is found.
For the better or worse, Levin Search has the optimal order of computational
complexity [2]. Nevertheless, the obvious slowness of this method, hidden in the
big “O” notation, seems to be the price for its generality.

In practice, the problem of finding short descriptions is often solved by an
incremental approach. For example, in the presently successful deep learning
algorithms, each layer in a deep neural network usually detects features of its
input x and computes the activation p of neurons in that layer, p = f ′(x), as
opposed to essentially guessing descriptions in universal search. In the genera-
tive mode, typical inputs x can be computed from neural activations: x = f(p).
The next layer takes the feature values p and treats them as an input for the
next compression step, which can be viewed as incrementally compressing the
input since the number of neurons typically decreases at each layer. The hierar-
chical structure of the human visual cortex also seems to reflect an incremental,
layered approach to the representation of real world perceptual data. Finally,
the progress of science itself very much resembles incremental compression as
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evidenced by the strive for unified theories given a set of previously acquired
theories in physics.

On the one hand, there are narrowly intelligent artificial systems and gen-
erally intelligent humans both using an efficient, incremental approach to the
learning of concise representations of the world. On the other hand, generally
intelligent artificial systems exist only on paper [3] and are impeded by the inef-
ficient, non-incremental universal search. The present paper tries to bridge this
gap and formulate a general incremental theory of compression. While there
has been previous work on incremental search, it is often meant in the sense of
reusing previously found solutions to problems (see [4] for a review). The meaning
of incremental compression is however different and refers to the decomposition
of a single problem into different parts and solving them one by one.

2 Preliminaries

Consider a universal, prefix Turing machine U . Strings are defined on a finite
alphabet A = {0, 1} with ε denoting the empty string. Logarithms are taken
on the basis 2. A∗ denotes the set of finite strings made up of the elements
of A. Since there is a one-to-one map A∗ ↔ N of finite strings on natural
numbers, strings and natural numbers are used interchangeably. For example,
the length l(n) of an integer n denotes the number of symbols of the string that
it corresponds to. The map 〈·, ·〉 denotes a one-to-one map of two strings on
natural numbers: A∗ × A∗ ↔ N . The corresponding map for more than two
variables is defined recursively: 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉. In particular, 〈z, ε〉 = z.
Since all Turing machines can be enumerated, the universal machine U operates
on a number/string 〈n, p〉 by executing p on the Turing machine Tn: U (〈n, p〉) =
Tn(p). Similarly, a string y is applied to another string x by applying the yth
Turing machine: y(x) ≡ Ty(x) = U (〈y, x〉). The prefix complexity K(x|y) of x
given y is defined by K(x|y) ≡ min{l(z) : U (〈z, y〉) = x} and K(x) ≡ K(x|ε).
The complexity of several variables is defined as K(x, y) ≡ K (〈x, y〉).

3 An Example

Consider the binary string x = 10110111011110111110 . . .. First, it can be dis-
covered that the string consists of blocks of 1’s. Let f1 be the number of the
Turing machine Tf1 in the standard enumeration of Turing machines that takes
an integer m, prints m 1’s and attaches a 0. f1 will be called a feature of x and
the set of parameters p1 = m1m2 . . . = 1, 2, 3, 4, 5, . . . will be called parameters
of the feature. Hence, the task of compressing x has been reduced to the task
of compressing merely p1 which is shorter than x, while x can be computed by
the feature: f1(p1) = x. The next feature f2 may represent the Turing machine
taking a start value p2 = 1 and increasing 1 each step, such that f2(p2) = p1.

Note that universal search would try to find the the whole final description
at once by blind search. In contrast to that, incremental compression finds inter-
mediate descriptions (f1, p1), (f2, p2) and possibly many more layers one by one.
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However, those intermediate descriptions are much longer than the final shortest
program and will therefore be found much more slowly by universal search. In
order to solve this problem, I introduce an inverse map, the so-called descriptive
map f ′, that computes the parameters directly: f ′(x) = p. In the above exam-
ple, the descriptive map f ′

1 may correspond to a Turing machine Tf ′
1

that counts
the number of 1’s that are separated by 0’s and thereby computes p1 instead of
trying to guess it as a universal search procedure would. The compression task
will then consist of finding pairs (f, f ′) for each compression level, such that
f(f ′(x)) = x, which will turn out to be much faster than universal search.

4 Definitions

Definition 1 (Features, descriptive maps and parameters). Let sf and
x be finite strings and Df (x) the set of descriptive maps of x given f :

Df (x) ≡ {f ′ : f(f ′(x)) = x, l(f ′(x)) < l(x) − l(f)} (4.1)

If Df (x) �= ∅ then f is called a feature of x. The strings p ≡ f ′(x) are called
parameters of the feature f . f∗ is called shortest feature of x if it is one of
the strings fulfilling

l (f∗) = min {l(f) : Df (x) �= ∅} (4.2)

and f ′∗ is called shortest descriptive map of x given f∗ if

l (f ′∗) = min {l(g) : g ∈ Df∗(x)} (4.3)

In the definition, any feature is required to do at least some compression,
l(f) + l(p) < l(x), since otherwise f = f ′ = id would always trivially satisfy
the definition for any x. This procedure to search for description and its inverse
at the same time has been proposed in [5], called SS′-Search, albeit not in the
context of features and incremental compression.

Definition 2 (Incremental compression). A string x is called incre-
mentally compressible, if there exist features f1, . . . , fk such that
(f1 ◦ · · · ◦ fk) (ε) = f1(f2(· · · fk(ε))) ≡ U (〈f1, . . . , fk〉) = x.1

5 Properties of a Single Compression Step

The central question for incremental compression is given a finite string x, how
to find a pair of a feature f and descriptive map f ′, such that f(f ′(x)) = x. In
the following the consequences of choosing the shortest f∗ and f ′∗ are explored.
All proofs can be found in the appendix.

1 Note that the 〈·, ·〉-map is defined with 〈z, ε〉 ≡ z, hence fk(ε) = U (〈fk, ε〉) = U(fk),
so that fk acts as a usual string in the universal machine.



Some Theorems on Incremental Compression 77

Lemma 1. Let f∗ and f ′∗ be the shortest feature and descriptive map of a finite
string x, respectively. Further, let p ≡ f ′∗(x). Then

1. l(f∗) = K(x|p) and
2. l(f ′∗) = K(p|x).

Theorem 1 (Feature incompressibility). The shortest feature f∗ of a finite
string x is incompressible: K(f∗) = l(f∗) + O(1).

Theorem 2 (Independence of features and parameters). Let f∗ and
f ′∗ be the shortest feature and descriptive map of a finite string x, respectively.
Further, let p ≡ f ′∗(x). Then,

1. K(f∗|p) = K(f∗) + O(1),
2. K(p|f∗) = K(p|f∗,K(f∗)) + O(1) = K(p) + O(1) and
3. K(f∗, p) = K(f∗) + K(p) + O(1).

Interestingly, from the definition of the shortest feature and descriptive map,
it follows that features and parameters do not share information about each other
such that the description of the (f∗, p)-pair breaks down into the simpler task
of describing f∗ and p separately. Since Theorem 1 implies the incompressibility
of f∗ and U (〈f∗, p〉) = x, the task of compressing x is reduced to the mere
compression of p. However, f∗ and p could store additional, residual information
making the compression more difficult: K(x) < K(f∗, p) + O(1). The following
theorem shows that this is not the case.

Theorem 3 (Concise information transfer). Let f∗ and f ′∗ be the shortest
feature and descriptive map of a finite string x, respectively. Further, let p ≡
f ′∗(x).

1. The description of the feature-parameter pair (f∗, p) breaks down into the
description of x and a residual part:

K(f∗, p) = K(x) + K(p|x,K(x)) + O(1) (5.1)

2. For a fixed f∗, minimizing the length of the descriptive map f ′ simultaneously
minimizes the residual part:

l(f ′∗) ∝ K(p|x,K(x)) + O(1)

3. The parameters p do not contain information not present in x and K(x):

K(p|x,K(x)) = O(1) (5.2)

4. The shortest feature f∗ does not contain information not present in x and
K(x):

K(f∗|x,K(x)) = O(1) (5.3)
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This theorem guarantees that all and only the information in x is trans-
ferred to the (f∗, p) pair. Hence, there is no residual information contained in p;
the information content in p is a genuine subset of the information in x with the
rest being stored in f∗. f∗ also does not contain residual information and gen-
uinely represents an incompressible part of x. These conclusions are summarized
in the following corollaries.

Corollary 1. The shortest feature f∗ and its parameters p contain no more and
no less information than is in x:

K(x) = K(f∗, p) + O(1) (5.4)

Corollary 2. After extracting the incompressible feature f∗ all remaining infor-
mation in x resides in p:

K(x) = l(f∗) + K(p) + O(1) (5.5)

This corollary expresses the important result that in order to compress x, it
suffices to compress the shorter and simpler string p. Having found the shortest
feature and descriptive map we can be certain to be on the right path to the
compression of x and not to run into dead-ends.

6 Orthogonal Feature Bases

The following theorems show that compressing the parameters p further leads
to an orthogonal feature basis that optimally represents the original string x.

Theorem 4 (Feature bases). Let x be a string that is incrementally com-
pressed by a sequence of shortest features f∗

1 , f∗
2 , . . . and their respective descrip-

tive maps f ′∗
1, f

′∗
2, . . . with pi ≡ f ′∗

i (pi−1) and p0 ≡ x. Then there will be an
integer k after which pk = ε, no further compression is possible and the shortest
description of x breaks up into features:

K(x) =
k∑

i=1

l(f∗
i ) + O(1) (6.1)

The case k = 1 degenerates into the usual, non-incremental compression, in
which case the description of x does not break up into features.

Theorem 5 (Orthogonality of features). Let x be a finite string that is
incrementally compressed by a complete sequence of features f∗

1 , . . . , f∗
k . Then,

the features are orthogonal in terms of the algorithmic information: I(f∗
i :

f∗
j ) = K(f∗

j )δij + O(1), with δij being the Kronecker symbol.
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7 Efficiency of Incremental Compression

In order to assess the time complexity of incremental compression we derive an
upper bound on l(f ′∗).

Theorem 6 (Bound on the length of descriptive map). Let f∗ and f ′∗

be the shortest feature and descriptive map of a finite string x, respectively. Then
the following bound holds on l(f ′∗):

l(f ′∗) ≤ 2 log K(x) + 4 log log K(x) + O(1) ≤ 2 log l(x) + 4 log log l(x) + O(1)

This bound allows to estimate the time complexity for a potential algorithm
for incremental compression. If the algorithm uses universal search or similar to
find the features and descriptive maps, the time complexity of a single compres-
sion step will be proportional to

O
(
2l(f

∗)+l(f ′∗)
)

≤ O
(
l(x)2 (log l(x))4 2l(f

∗)
)

(7.1)

At each compression level i, pi = f ′∗
i (pi−1) takes the role of x (with p0 ≡ x).

But since information is sliced off at each compression level (Corollary 2), we
know that K(pi) < K(pi−1) < · · · < K(x) ≤ l(x) up to a constant. Thus, the
bound is valid for each l(f ′∗

i ) and the time complexity of the whole incremental
compression will be proportional to

O

(

l(x)2 (log l(x))4
k∑

i=1

2l(f
∗
i )

)

(7.2)

In standard universal search the final program l(p) = Kt(x) ≥ K(x) is
searched for in a non-incremental way, where Kt denotes the resource-bounded
Levin complexity. Universal search is therefore proportional to the huge fac-
tor 2l(p). Since from Theorem 4, we get 2l(p) ≥ 2K(x) = c

∏k
i=1 2l(f

∗
i ) and

∑k
i=1 2l(f

∗
i ) � ∏k

i=1 2l(f
∗
i ) in almost all cases, we observe that incremental com-

pression promises to be much faster than (non-incremental) universal search, if
the string is incrementally compressible.2 Incremental compression is slower only
if the search for f ′∗ is slower than doing universal search from scratch, e.g. when
K(x) ≤ 2 log l(x) + 4 log log l(x) which is true only for very simple strings.

Unfortunately, since the Kolmogorov complexity is incomputable, the practi-
cal implementation of incremental compression will have to resort to some kind
of universal search procedure for the features and descriptive maps which is not
guaranteed to find the shortest ones. It remains to be seen whether the present
theory can be formulated in terms of Levin complexity Kt(x) instead of the
prefix Kolmogorov complexity K(x).

2 It is not difficult to see that the “�” sign is justified for all but very few cases. After
all, only for very few combinations of a set of fixed sum integers

∑
i li = L the sum∑

i 2li is close to 2L.
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8 Discussion

The present approach allows to represent the shortest description of a finite string
by a complete set of pairwise orthogonal features in terms of vanishing mutual
algorithmic information. The features can be searched for one by one without
running into dead-ends, in the sense that for any incomplete set of orthogonal
features the remaining ones always exist. At the same time, while the features are
the carriers of the information about x, the descriptive maps have been proven
to be simple, l(f ′∗) = O (log K(x)), allowing for a fast search for them. That
makes intuitively sense, since the descriptive maps receive x as an input. It is due
to these properties that make the present approach to incremental compression
efficient.

The present work is a continuation of my general approach to artificial intel-
ligence [6]. In fact, I have already demonstrated the practical feasibility and
efficiency of incremental compression in a general setting. In [7] I have built
an algorithm that incrementally finds close to shortest descriptions of all strings
computable by 1- and 2-state and 80 % of the strings computable by 3-state Tur-
ing machines. Readers interested in a practical implementation of the present
approach are referred to that paper.

The example in Sect. 3 demonstrates an actually incrementally compressible
string that complies with the Definition 2. This proves that incrementally com-
pressible strings exist. The question arises thus how many compressible strings
actually are incrementally compressible. Are there any compressible strings at all
that are not incrementally compressible? Another important question is how to
find features in the first place. Universal search is still going to be slow, notwith-
standing the present considerable improvement. There are ideas to address those
questions and present exciting prospects for future research.

Acknowledgements. I would like to express my gratitude to Alexey Potapov and
Alexander Priamikov for proof reading and helpful comments.

A Proofs

Proof (Lemma 1).

1. Suppose there is a shorter program g with l(g) < l(f∗), that generates x with
the help of p: U (〈g, p〉) = x. Then there is also a descriptive map g′ ≡ f ′∗,
that computes p from x and l(g′(x)) = l(f ′∗(x)) < l(x) − l(f∗) < l(x) − l(g).
Therefore, g is a feature of x by definition, which conflicts with f∗ already
being the shortest feature.

2. Suppose there is a shorter program g′ with l(g′) < l(f ′∗), that generates p
with the help of x: U (〈g′, x〉) = g′(x) = p. Then g′ ∈ Df∗(x) since f∗(g′(x)) =
f∗(p) = x and l(g′(x)) = l(p) < l(x) − l(f∗) by construction of f ′∗. However,
by Eq. (4.3) f ′∗ is already the shortest program able to do so, contradicting
the assumption. �
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Proof (Theorem 1). From Lemma 1 we know l(f∗) = K(x|p), with p = f ′∗(x).
In all generality, for the shortest program q computing x, l(q) = K(x) = K(q)+
O(1) holds, since it is incompressible (q would not be the shortest program
otherwise). For shortest features, the conditional case is also true: K(x|p) =
K(f∗|p) + O(1). After all, if there was a shorter program g, l(g) < l(f∗), that
computed f∗ with the help of p, it could also go on to compute x from f∗ and
p, leading to K(x|p) ≤ l(g) + O(1) < l(f∗) + O(1), which contradicts l(f∗) =
K(x|p).

Further, for any two strings K(f∗|p) ≤ K(f∗), since p can only help in
compressing f∗. Putting it all together leads to l(f∗) = K(x|p) = K(f∗|p) +
O(1) ≤ K(f∗)+O(1). On the other hand, since in general K(f∗) ≤ l(f∗)+O(1)
is also true, the claim K(f∗) = l(f∗) + O(1) follows. �
Proof (Theorem 2).

1. Follows immediately from K(f∗) = l(f∗)+O(1) = K(x|p)+O(1) = K(f∗|p)+
O(1).

2. The first equality follows from Theorem 1, since we only need to read off
the length of f∗ in order to know K(f∗) up to a constant. For the second
equality, consider the symmetry of the conditional prefix complexity relation
K(f∗, p) = K(f∗)+K (p|f∗,K(f∗))+O(1) = K(p)+K (f∗|p,K(p))+O(1) [8,
Theorem 3.9.1, p. 247]. If p does not help computing a shorter f∗, then know-
ing K(p) will not help either. Therefore, from (1), we obtain K (f∗|p,K(p)) =
K(f∗) + O(1) and therefore K (p|f∗,K(f∗)) = K(p) + O(1).

3. In general, by [8, Theorem 3.9.1, p. 247] we can expand K(f∗, p) = K(f∗) +
K (p|f∗,K(f∗)) + O(1). After inserting (2) the claim follows. �

Proof (Theorem 3).

1. Expand K(x, p) up to an additive constant:

K(p) + K(x|p,K(p)) = K(x, p) = K(x) + K(p|x,K(x)) (A.1)

From Lemma 1(1) and Theorem 1 we know K(f∗) = K(x|p) + O(1). Condi-
tioning this on K(p) and using f∗’s independence of p and thereby of K(p)
(Theorem 2(1)) we get K(x|p,K(p)) = K(f∗|K(p)) + O(1) = K(f∗) + O(1).
Inserting this into Eq. (A.1) and using Theorem 2(3), yields

K(f∗, p) = K(p) + K(f∗) = K(x) + K(p|x,K(x)) + O(1) (A.2)

2. Fix f∗ and let Pf∗(x) ≡ {f ′(x) : f ′ ∈ Df∗(x)} be the set of admissible para-
meters computing x from f∗. From Lemma 1(2), we know that minimizing
l(f ′), with s = f ′(x), is equivalent to minimizing K(s|x), i.e. choosing a
string p = f ′∗(x) ∈ Pf∗(x) such that K(s|x) ≥ K(p|x) for all s ∈ Pf∗(x).
Conditioning Eq. (A.2) on x leads to:

K(p|x) + K(f∗|x) = K(x|x) + K(p|x,K(x), x) = K(p|x,K(x)) (A.3)

up to additive constants. Since f∗ and x are fixed, the claim l(f ′∗) = K(p|x) ∝
K(p|x,K(x)) + O(1) follows.
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3. It remains to show that there exists some p ∈ Pf∗(x) such
that K(p|x,K(x)) = O(1). After all, if it does exist, it will
be identified by minimizing l(f ′), as implied by (2). Define q ≡
argmins {l(s) : U (〈f∗, U(s)〉) = f∗ (U(s)) = x} and compute p ≡ U(q). Since
f∗(p) = x, p ∈ Pf∗(x). Further, there is no shorter program able to compute
p, since with p we can compute x given f∗ and q is already the shortest
one being able to do so, by definition. Therefore, l(q) = K(p) + O(1) and
K(x|f∗) ≤ K(p) + O(1). Can the complexity K(x|f∗) be strictly smaller
than K(p) thereby surpassing the presumably residual part in p? Let p′ be
such a program: l(p′) = K(x|f∗) < K(p) + O(1). By definition of K(x|f∗),
f∗(p′) = x. However, then we can find the shortest program q′ that com-
putes p′ and we get: f∗ (U(q′)) = x. Since l(q′) ≤ l(p′) + O(1), we get
l(q′) < K(p) + O(1) = l(q) + O(1). However, this contradicts the fact that q
is already the shortest program able to compute f∗(U(q)) = x. Therefore,

l(q) = K(x|f∗) = K(p) + O(1) (A.4)

In order to prove K(p|x,K(x)) = O(1) consider the following general expan-
sion

K(p, x|f∗) = K(x|f∗) + K(p|x,K(x), f∗) + O(1) (A.5)

Since we can compute p from q and go on to compute x given f∗, l(q) =
K(p, x|f∗) + O(1). After all, note that with Theorem2(2), we have l(q) =
K(p) = K(p|f∗) ≤ K(p, x|f∗) up to additive constants, but since we can com-
pute 〈p, x〉 given f∗ from q, we know K(p, x|f∗) ≤ l(q) + O(1). Both inequal-
ities can only be true if the equality l(q) = K(p, x|f∗) + O(1) holds. At the
same time, from Eq. (A.4), l(q) = K(x|f∗) holds. Inserting this into Eq. (A.5)
leads to K(p|x,K(x), f∗) = O(1). Taking K(p) = K(p|f∗) + O(1) (Theo-
rem 2(2)), and inserting the conditionals x and K(x) leads to: K(p|x,K(x)) =
K(p|x,K(x), f∗) + O(1) = O(1). Since this shows that a p ∈ Pf∗(x) exists
with the minimal value K(p|x,K(x)) = O(1), (2) implies that it must be the
same or equivalent to the one found by minimizing l(f ′).

4. Conditioning Eq. (A.3) on K(x) we get K(p|x,K(x)) + K(f∗|x,K(x)) =
K(p|x,K(x)) + O(1) from which the claim follows. �

Proof (Corollary 1). Inserting Eq. (5.2) into Eq. (5.1) proves the point. �
Proof (Corollary 2). Inserting Eq. (A.2) into Eq. (5.4) and using the incompress-
ibility of f∗ (Theorem 1) proves the point. �
Proof (Theorem 4). According to the definition of a feature, at a compression step
the length of the parameters l(pi) < l(x)−l(f∗

i ) and their complexity (Corollary 2)
decreases. Since the f∗

i are incompressible themselves (Theorem 1), the parameters
store the residual information about x. Therefore, at some point, only the possibil-
ity pk ≡ f ′∗

k(pk−1) = ε with l(f∗
k ) = K(pk−1) remains and the compression has to

stop. Expanding Corollary 2 proves the result: K(x) = l(f∗
1 ) + K(p1) + O(1) =

l(f∗
1 ) + l(f∗

2 ) + K(p2) + O(1) =
∑k

i=1 l(f∗
i ) + O(1). �



Some Theorems on Incremental Compression 83

Proof (Theorem 5). Algorithmic information is defined as I(f∗
i : f∗

j ) ≡ K(f∗
j ) −

K(f∗
j |f∗

i ). The case i = j is trivial, since K(f∗
i |f∗

i ) = 0. If i > j, then pj =
(
f∗
j+1 ◦ · · · ◦ f∗

i

)
(pi), which implies that all information about fi is in pj . But

since according to Theorem 2(1), K(f∗
j |pj) = K(f∗

j ) + O(1) we conclude that
K(f∗

j |f∗
i ) = K(f∗

j )+O(1). If i < j, then we know that f∗
j in no way contributed

to the construction of pi further in the compression process. Hence K(f∗
j |f∗

i ) =
K(f∗

j ). �
Proof (Theorem 6). Let p ≡ f ′∗(x). Further, from Lemma 1 we know that
K(x|p) = l(f∗) and K(p|x) = l(f ′∗). Using Corollary 2, the difference in algorith-
mic information is I(p : x)−I(x : p) = K(x)−K(x|p)−K(p)+K(p|x) = l(f ′∗)+
O(1). By [8, Lemma 3.9.2, p. 250], algorithmic information is symmetric up to
logarithmic terms: |I(x : p) − I(p : x)| ≤ log K(x) + 2 log log K(x) + log K(p) +
2 log log K(p)+O(1). Since x is computed from f∗ and p, we have K(p) ≤ K(x).
Putting everything together leads to l(f ′∗) ≤ 2 log K(x) + 4 log log K(x) + O(1).
The second inequality follows from K(x) ≤ l(x) + O(1). �
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Abstract. The status of Sigma’s grounding in graphical models is challenged
by the ways in which their semantics has been violated while incorporating
rule-based reasoning into them. This has led to a rethinking of what goes on in
its graphical architecture, with results that include a straightforward extension to
feedforward neural networks (although not yet with learning).

Keywords: Cognitive architecture � Graphical models � Neural network

1 Introduction

Sigma [1] is a cognitive architecture – a computational hypothesis about the fixed
structures that together yield a mind – which has manifested a wide range of capa-
bilities implicated in general intelligence, including forms of memory and learning,
speech and language, perception and imagery, affect and attention, and reasoning and
problem solving. The approach is grounded in the graphical architecture hypothesis,
that the key at this point is to synthesize across what has been learned from over three
decades worth of separate progress on cognitive architectures and graphical models [2].
Graphical models provide a general approach to computing efficiently with complex
multivariate functions by decomposing them into products of simpler functions and
mapping these products onto graphs where they can be solved, typically via message
passing or sampling. They are particularly promising as the basis for a cognitive
architecture because of how they yield state-of-the-art results across signals, proba-
bilities and symbols from a uniform reasoning algorithm.

The graphical architecture hypothesis is operationalized in Sigma by a two-layer
design, with the cognitive architecture implemented on top of a graphical architecture
that is based on factor graphs – a very general form of graphical model – that are
solved via the summary-product message-passing algorithm [3]. However, it has
become increasingly apparent that although Sigma’s graphical architecture was
inspired by factor graphs, it is not strictly limited to them. What distinguishes factor
graphs, and in fact all graphical models, from arbitrary networks of computations is that
the former represent a global function, and compute specific properties of this function
(most often marginals of its variables). This function thus defines a fixed semantics for
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the graph and the resulting computations over it. The solution algorithm may be exact
or approximate, but it should always reflect these semantics.

It has been clear since the beginning that any factor graph in Sigma at best has a
form of bottom-up semantics. The overall graph – which both comprises Sigma’s
memory and structures its reasoning – is built incrementally by compiling fragments of
knowledge defined within the cognitive architecture into subgraphs within the graph-
ical architecture. The overall function that defines the semantics is then determined
bottom-up from the graph that results. However, beyond this, it turns out that the
compiler can create a variety of structures that are not directly interpretable in terms of
the semantics of factor graphs, or in fact that of any known graphical model.

How did this come about? To what extent does it occur? And what are its impli-
cations? This article provides initial answers to these questions, yielding a broadened
perspective on the graphical architecture that focuses on its message-passing algorithm
and a fixed set of node and link types rather than on the semantics of the resulting
computation. Factor graphs then become one graphical idiom – in analogy to a pro-
graming idiom – that is defined via a constrained set of node and link types and that
provides a particular semantic guarantee; but it is not the only such idiom. Rules, for
example, turn out to depend on a related yet distinct idiom.

In new results, one of the key implications is that feedforward neural networks [4] –
although not yet with learning – can be supported via the simple addition of a new
variant of an existing node type that was originally introduced in support of negated
conditions and actions in rules. Some forms of neural networks – such as supervised
Boltzmann machines and radial basis functions – are directly compatible with factor
graphs [5], but feedforward networks are not. Yet, with this change, they can now
coexist in the same overall graph/memory with both rules and factor graphs.

2 How Did This Come About?

Sigma’s development is driven by four desiderata: (1) grand unification, combining not
only the traditional cognitive aspects of intelligence but also the key subcognitive
aspects; (2) generic cognition, both constructing artificial intelligence and modeling
natural intelligence; (3) functional elegance, enabling the diversity of intelligent
behavior from the interactions among a small general set of mechanisms; and (4) suf-
ficient efficiency, for work at scale. As new capabilities have been added, in service of
grand unification and generic cognition, the result may simply be a new factor graph –

as happened for isolated word speech recognition [6] and distributed vectors (i.e., word
embeddings) [7] – while at other times architectural extensions have been required.
Functional elegance biases all such changes to be minimal, preferring small tweaks in
existing mechanisms to addition of whole new modules.

Factor graphs are undirected, bipartite graphs composed of variables nodes
(VNs) and factor nodes (FNs) (Fig. 1). There is a VN for each variable in the original
function and an FN for each subfunction in its decomposition, with each FN connected
to all of its variables’ VNs. The summary-product algorithm computes messages at
these nodes to send to their neighbors. At a VN, an outgoing message along a link is
computed via products over the other links’ incoming messages. At an FN, this product

Rethinking Sigma’s Graphical Architecture 85



also includes the factor function at
the node, and then all variables not
relevant to the VN on the outgoing
link are summarized out, by sum (or
integral for continuous variables) to
yield marginals or max to yield the
mode.

A number of extensions are
possible to this pure model without
affecting what the graph computes,
and thus without violating factor
graph semantics. Two leveraged
extensively for sufficient efficiency
in Sigma’s graphical architecture are:
(1) suppression of messages that will
not change the ultimate results; and
(2) optimization of how specific
types of FNs compute outgoing
messages. One example of (1) is
permanently shutting down one direction of a link if the messages in that direction can
never affect the results. A canonical example of (2) is specialized FN implementations
for the affine transforms in mental imagery [8]; the same outgoing messages could have
been computed by multiplying the incoming messages by an appropriate function, but
the resulting delta functions would be highly inefficient.

More to the point though are changes that actually alter what is computed. This
may involve: (1) eliminating messages on links that can change what is computed; and
(2) including FNs that perform computations that aren’t reducible, even in principle, to
products and summarizations. As an example of (1), links compiled from rule condi-
tions and actions have one direction shut off to enforce the unidirectionality of infor-
mation flow in rules [9]. As an example of (2), consider negated conditions in rules,
which should trigger activity only when the pattern fails to match. This is implemented
by specialized FNs that have one input and one output in directed “condition” sub-
graphs. The input message is subtracted from a constant function of 1, and then floored
at 0 – a value of 1 stands in for true with 0 doing the same for false, but values
in general can also be between these values, or even outside of this range. Negating
[0 .3 1.2 1], for example, yields [1 .7 0 0].

Section 3 discusses a set of changes to the graphical architecture that violate factor
graph semantics, and thus yield what could be considered a generalized factor graph,
although it is probably more appropriately considered a generalization of the
summary-product algorithm, as the semantics of factor graphs have not been extended
in a manner that corresponds to the algorithmic changes that have been made. Such
semantic extensions have been explored, but so far without success.

Fig. 1. Summary product computation over the
factor graph for f(x,y,z) = y2 + yz + 2yx + 2xz =
(2x + y)(y + z) = fi(x,y)f2(y,z) of the marginal on
y given evidence concerning x and z.
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3 To What Extent Does It Occur?

The single biggest driver in extending Sigma’s graphical architecture beyond the
semantics of factor graphs has been the desire to combine rules with probabilistic
graphs. Sigma’s primary long-term knowledge structure within the cognitive archi-
tecture is a generalized notion of a conditional, which combines the forms of condi-
tionality provided by both rules and probabilities. Conditions and actions in
conditionals enable rule-like behavior, with conditions triggering further processing
when matched to working memory, and actions proposing changes to working mem-
ory. However, conditionals may also contain: condacts, which provide a synthesis of
conditions and actions to enable the bidirectional flow of information necessary for
probabilistic reasoning; and functions, where distributions can be stored.

Condacts and functions together yield standard factor graphs. A number of the
particular extensions required to support rules and their conditions and actions are what
induce semantic divergence, including: (1) directed links, (2) closed-world semantics,
(3) universal variables, (4) filter nodes, and (5) transform nodes.

3.1 Directed Links

As mentioned in Sect. 2, one direction of each link is shut off within conditions and
actions to yield one-way rule behavior. This effectively makes these links directed,
although this is very different from the directed links in Bayesian networks that still
imply bidirectional message passing. The key question though is what has been lost
here given that the summary-product algorithm specifies bidirectionality?

In some cases, the omission of back-messages does not affect the end result; it just
yields a simple efficiency gain. If excluding back-messages changes the result, how-
ever, it’s much less clear what is going on. A correlation that has influence in one
direction but not the reverse has no place in probability theory; conclusions may be
stronger in one direction than the other, but the influence is always there. This isn’t
necessarily a problem for Sigma, however, because factor graphs don’t always carry
probabilities. The cases where one-directional propagation changes the end result are
often in fact those where the messages are not probabilities.

A simple example is the transitive rule in Sigma. Given a predicate Above(x, y), we
can define a conditional with conditions Above(x, y) and Above(y, z), and action Above
(x, z). (Henceforth Above() will be abbreviated A().) If the initial contents of working
memory are A(1, 2), A(2, 3), A(3, 4), Sigma will generate A(1, 3), A(2, 4), A(1, 4). This
is represented by setting A to 1 for the initial knowledge and 0 everywhere else.
One-way message passing from conditions to actions does the rest.

Given how this problem is represented, it wouldn’t make sense to reason in the
opposite direction, as it runs the risk of concluding the premises are false: initially A(1,
3) is 0, so A(1, 2) and A(2, 3) must also be 0. Enforcing the logical constraints in both
directions simply doesn’t do the right thing. However, the summary-product algorithm
provides no justification for restricting message passing to get the desired result. The
algorithm computes efficiently over complex global functions by applying the dis-
tributive law to push computations to the local-message level. If some messages must

Rethinking Sigma’s Graphical Architecture 87



be eliminated to get a correct result, the question is: does this somehow improve the
approximation or is a different value being computed? The answer appears to be the
latter; no specifiable global function is being computed here.

3.2 Closed-World Semantics

Given that probabilities aren’t being passed in the transitivity example above, what are
the messages? Sigma’s employment of closed-world predicates is key here [9]. The
closed-world assumption is that whatever is not yet known is assumed false. When
operating on probabilities, 1 acts as a “total ignorance” number in the summary-product
algorithm: multiplying by 1 changes nothing. In closed-world computation, 0 is the
total-ignorance number: it represents a lack of information. Therefore, it is natural to
combine closed-world information with or as opposed to product, allowing positive
messages to overwrite 0s, and probabilistic or handling intermediate values. Sigma
employs special-purpose action-combination nodes to enable such a disjunctive com-
bination of messages from multiple actions.

We might try to account for this behavior within the summary-product algorithm by
using a different commutative semiring – an algebraic structure like a ring but with
product commutative and no additive inverse – as factor graphs need not be based on
sum and product, and are in fact well defined for any commutative semiring [3]. Here
we would use or for combination instead of product and max, for example, for sum-
marization. However, or and max fail to form a commutative semiring. 0 is the identity
element of both operations, but for a semiring the identity element for the summary
operation should be an annihilator for the combination operation. More critically, the
distributive law also fails for the two operators – the probabilistic formula for or does
not distribute over max. The distributive law is what justifies shifting from global to
local computation in the summary-product algorithm [3].

Really, though, the story in Sigma is more complicated. Open-world or closed-
world semantics is associated with predicates, not with variables, implying that as
values get passed around the network they will be treated however that local part of the
network treats things. The summary operation may be max or sum. The combination
operation will be product in most of the network, with or and other operations in a few
places. In fact, it would not even be possible to make the transitivity example work
with closed-world variables if we could not use product combination in some places –
to combine A(x, y) with A(y, z) – while applying or combination elsewhere (to feed the
result back into working memory). Is it possible to explain such a mixed approach with
the semiring idea?

Multiple semirings can interact nicely in the summary-product algorithm. Sum-
product and max-product can work together to maximize a function over one set of
variables while summing over others. In speech recognition, for example, Sigma uses
max-product for Viterbi processing and sum-product everywhere else [6]. A natural
approach is to associate summary operators with variables so that each variable is
summarized out according to its kind. However, if the order of operations matters, we
need to be careful; for in stance, maxx

P
y f ðx; yÞ differs from

P
y maxxf ðx; yÞ in gen-

eral. Sigma does account for this complication when combining max with sum.
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Closed-world semantics does not seem amenable to a multi-semiring account,
however, and no way of specifying a global function has so far emerged.

3.3 Universal Variables

Universal variables in Sigma represent logic variables, indexing many specific cases
[9]. This contrasts with unique/distributional variables that can represent random
variables of the kind used in statistics. If we create an open-world predicate P(X, Y) and
declare X to be universal and Y to be unique, this is conceptually like declaring a larger
number of predicates P1(Y), P2(Y),… for each possible value of X, allowing general-
ization over many cases. Unlike lifted reasoning in Alchemy [10], however, Sigma
does not compute the same value in these two different cases.

Sigma uses a different summary operator with universal variables, modifying the
semiring choice (as discussed in Sect. 3.2). In particular, max is used to yield a form of
existential behavior that enables rule-like conditionality: a conditional yields nonzero
results if there is any match to its conditions. When Sigma represents probabilistic
values, max could be seen as a way of computing a probabilistic lower bound; the
probability of an existential statement is at least as great as the probability of any
instance. It could also be compared to using max-product mixed with sum-product,
which maximizes over some variables while marginalizing over others.

In practice, however, neither of these interpretations adequately captures what’s
going on because the usefulness of max depends on the other modifications that allow
Sigma to display rule-like behavior. There is in fact no justification for this formula
from a pure factor-graph perspective, and the meaning is unclear. If a universal variable
is to indicate multiple instances in a factor graph, then product rather than max should
be used to combine the instances [10, 11]. But product would not fit the more common
existential use of universal variables in Sigma that max supports.

3.4 Filter Nodes

Filter nodes in Sigma implement the constant tests found in rule conditions (plus a bit
more [1]). A constant test would be used, for example, in a rule condition like Above(3,
x) to yield the values of x that are above 3. To implement this, a filter function in Sigma
has the following effect: all values that do not match the desired portion are set to 0,
and the part that’s wanted is left unaltered. In the example, the incoming message
would be the content of Above(x, y) for all x, y; the y entries for x = 3 would remain
while those for other values would be set to 0.

If this were a pure factor graph, such a filter node would be multiplying the global
function by a factor that zeros out everything but x = 3; that is, this factor would act as
a constraint, forcing across the entire network. This is not at all what is happening in
Sigma. The undesired entries are only to be removed within the scope of the corre-
sponding conditional. Due to how universal variables are handled, and Sigma’s use of
closed-world semantics, 0s are the appropriate way to do this.
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Filtering out cases is possible in a pure open-world factor graph, however it would
be done with a factor that establishes a uniform distribution, rather than 0 s, over the
unwanted parts of the message. This would imply that whatever happened in the
sub-network on the other side of the filter node would affect only the selected part of
the global function. This illustrates how Sigma’s departure from factor-graph opera-
tions in some areas forces further departure in other areas. Due to the manner in which
universal variables (and some other aspects) are handled, it becomes impossible to view
a filter factor node as a standard factor-graph node. The local computations at such a
node look like summary-product operations – multiplying the incoming message times
a function that is 1 for x = 3 and 0 elsewhere – but the global effect on the compu-
tation, and thus on the semantics of what is being computed, can be quite different from
the effect an identical node would have in a pure factor graph.

3.5 Transform Nodes

A transform node applies a one-way transformation over message functions in directed
portions of the graph; that is, within conditions and actions. Negated conditions are
handled in this manner, as are negated actions. Another example not related to rules is
an exponential transformation that enables softmax computations, in support of rea-
soning about other agent’s decision processes [12]. Although standard factors can
represent arbitrary functions, they are defined only over domain variables in message
functions, not over their ranges. These transforms all directly modify the range, with
negation subtracting and flooring it, and softmax exponentiating it.

One concern beyond the semantic that is introduced by transform nodes is whether
they provide a hook for incorporating arbitrary outside code into Sigma. While such a
capability could be appropriate and even useful in a toolkit, it would threaten the
graphical architecture’s status as an architecture, comprised of fixed structure, and thus
also indirectly threaten the status of the cognitive architecture. One way of dealing with
this might be to reconceptualize these transformations as learnable knowledge, and then
to provide a learning mechanism for them. However, the approach that has been taken
is instead to commit to the set of transformations ultimately being bounded, although
likely continuing to evolve for some time.

4 What Are Its Implications (Including to Neural Networks)?

At first glance, systematic violations of factor graph semantics might appear to violate the
graphical architecture hypothesis. However, the hypothesis does not state that all
capabilities must be producible from graphical models, only that understanding the
relationship between cognitive architectures and graphical models is crucial. Consistent
with this latter notion, even though the new perspective implies that the graphical
architecture need not be limited strictly to what falls within the sphere of traditional
graphical models, Sigma remains very much based on what has been learned from them.
The former notion could be viewed as an alternative strong graphical architecture
hypothesis, whereas the one actually used here is a weak variant. The strong hypothesis
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would be a deeper scientific claim, and would likely also yield a simpler and more
elegant system, but work to date fails to support it.

On the negative side, Sigma’s violations of factor graph semantics do add to the
complexity and non-uniformity of the graphical architecture – reducing its simplicity
and elegance in essential ways – while also making it more difficult to prove properties
about how reasoning and learning work. Cognitive architectures do not in general have
well-defined semantics, and even when such attempts are made – e.g., via a formal
specification [13] – the result is neither simple nor elegant. So we could just be satisfied
with this status. But we can do better, because some of the idioms – such as the one for
factor graphs – do
still have simple and
elegant semantics.

On the positive
side, small enhance-
ments to Sigma’s
graphical architecture
can yield major gains
in functionality, with
much of the core
representation and
reasoning being
reused across idioms,
rather than being constructed from scratch in separate modules, to yield a form of
algorithmic rather than semantic elegance that is central to how Sigma achieves
functional elegance. Semantic elegance is more compelling, but algorithmic elegance
still goes far beyond typical cognitive architectures.

The latest example of this is the implementation of feedforward neural networks
within Sigma. The one extension required for this is a new one-way transform

Fig. 2. Example two-layer feedforward neural network (adapted from http://www.doc.ic.ac.uk/
*sgc/teaching/pre2012/v231/lecture13.html).

Fig. 3. Conditionals that define the network in Fig. 2.
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(Sect. 3.5) that transforms the incoming message via a non-linear logistic function, a
variant of a sigmoid. Everything else needed to implement feedforward neural net-
works, and to incorporate them into the larger architectural context, already exists.

Consider the two-layer feedforward network in Fig. 2, with three inputs, two
outputs, and two hidden units. Figure 3 shows the two conditionals that implement this
network in Sigma. Each
specifies one layer of the
network via two condi-
tions and an action.
These are essentially
rules, except that the
predicates are open world
rather than closed world,
and the conditions there-
fore match to either per-
ception (the Input
predicate) or functions in
long-term memory (the Layer1 and Layer2 predicates). The weights are stored in
the long-term memory functions (Fig. 4). The other key difference from a standard rule
is that both actions are marked with s, denoting that a sigmoid transform should be
applied to their messages. This is just how negated actions are marked, except with an
s here rather than a -.

Processing is initially driven by conditional C-Layer1. A perceived Input
vector, such as [10, 30, 20], is multiplied times the Layer1 function with the
Input variable then summarized out via sum/integral to generate a raw Hidden
distribution of [7, -.5]. This is then logistically transformed to yield [0.999089,
0.006692851]. Conditional C-Layer2 then picks up the processing, multiplying
the transformed Hidden vector by the Layer2 function and summarizing out the
Hidden variable to yield a raw Output distribution of [1.0996672,
3.1050065]. This is then logistically transformed to yield [0.75019777,
0.9570988]. The web source for this network lists the transformed Output as
[.750, .957], which is the same after round off.

Because this form of neural network is just another idiom in the graphical archi-
tecture, and thus also in the memory and reasoning of the cognitive architecture, it
should be usable just as with all other memory structures; and interfaceable directly, via
shared predicates, with all of its other forms of memory, whether rule, semantic,
episodic, imaginal, perceptual, etc. It also should be usable directly in reasoning,
whether for perception or control of operator selection during problem solving.

One critical piece that remains missing here is learning. Sigma embodies a general
form of gradient-descent learning that can acquire many kinds of long-term memory
functions from messages arriving at their factor nodes [14]; however, simply enabling
bidirectional message passing via condacts and inverting the logistic function for
backwards messages through a sigmoid node does not yield appropriate learning. We
are currently exploring a generalization of Sigma’s learning approach that could extend
it appropriately to such neural networks. If this succeeds, it will make sense to consider
whether the graphical architecture hypothesis should be extended to include what has

Fig. 4. Long-term memory functions for layer weights.
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been learned from the decades worth of progress on neural networks – a different but
related graphical formalism – in addition to graphical models.

5 Conclusion

Sigma’s graphical architecture, although inspired by factor graphs, diverges from their
semantics in a number of ways. Historically, this has mostly involved how to combine
rule-based reasoning with probabilistic reasoning, but here this is extended to feed-
forward neural networks as well (sans learning for now). This has led to a rethinking of
the graphical architecture, to where it is based more explicitly on the summary-product
algorithm for solving factor graphs, and its extensions, than on factor graphs them-
selves. Factor graphs then become one of several graphical idioms that can be sup-
ported, although one with a well-defined semantics. Rules and neural networks become
two other idioms, each without such semantics; and additional idioms are also con-
ceivable. Whether ultimately a single clean semantics can be developed for Sigma’s
graphical architecture, or whether an alternative architecture can be found that has a
clean semantics, remains an important open question. Either way, the intent is still to
yield a single coherent cognitive architecture.
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Abstract. Possibility to solve the problem of planning and plan recovery for
robots using probabilistic programming with optimization queries, which is
being developed as a framework for AGI and cognitive architectures, is con-
sidered. Planning can be done directly by introducing a generative model for
plans and optimizing an objective function calculated via plan simulation. Plan
recovery is achieved almost without modifying optimization queries. These
queries are simply executed in parallel with plan execution by a robot meaning
that they continuously optimize dynamically varying objective functions
tracking their optima. Experiments with the NAO robot showed that replanning
can be naturally done within this approach without developing special plan
recovery methods.

Keywords: Probabilistic programming � Optimization queries � Genetic
algorithms � Robot planning � Replanning

1 Introduction

It is frequently assumed that AGI systems should not only perform some abstract
reasoning, but should also be able to control some body achieving goals in real
environments. Even if a cognitive architecture wasn’t initially developed specifically
for this purpose, natural desire to try applying it for e.g. robot control can arise after its
maturing.

Robot control tasks are quite interesting since they require both planning and
reactive control for achieving a goal in dynamic environments. Symbolic architectures
are usually good for planning, but realization of reactive behavior within them is
awkward, while emergent architectures are usually better suited for reactive control.
Thus, hybrid solutions are developed to solve the problem of plan recovery [1].

We are developing an approach to AGI using probabilistic programming as the
starting point. In another paper [2], we explain motivation behind this approach and
discuss how traditional probabilistic programming languages (PPLs) should be
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extended in order to become usable as a framework for development of cognitive
architectures. However, this discussion addresses questions regarding reasoning and
learning, but not regarding controlling (embodied) agents. At the same time, most
general-purpose PPLs support only computationally expensive queries with unpre-
dictable execution time (so they are well-suited for planning, but not for reactive
control). This issue might be called purely technical, but nevertheless it is quite
important. Indeed, taking limitation of resources into account is considered essential for
AGI research [3].

In this paper, we describe how PPLs with optimization queries based on genetic
algorithms (GAs) can be used in robot planning and can support replanning naturally
almost without modifications. To do this, we execute optimization queries from our
lightweight C++ probabilistic programming engine to perform planning simultane-
ously with executing current best plan by the real NAO robot using its SDK functions.
Experiments show that continuing optimization can track optimum of the objective
function, which can considerably shift due to changes of the environment or inaccurate
execution of actions by the robot.

2 Lightweight Implementation of GA-Based Optimization
Queries in Probabilistic Programming

Conditional inference over probabilistic programs can be carried out using program
traces [4] containing all made random choices, which can be modified during
re-interpretation of a probabilistic program. The same approach can be used in the case
of optimization queries [5]. However, it is not very fast since it requires PPL to be
interpreted.

If we are using optimization quires in a somewhat restricted way considering
probabilistic programs as functions of random variables, then such queries don’t
necessarily need access to the code of a probabilistic program. In this case, probabilistic
program can be written as a function (e.g. as a virtual method of inference class)
directly in the reference programming language (C++ in our case) and compiled. Such
approach also simplifies integration with existing libraries, e.g. OpenCV or NAO SDK.

In our implementation, probabilistic program is a function that receives an object
“rng” as a parameter from which it samples all random variables. In order to be able to
perform inference (optimization) we should be able to uniquely identify all random
calls. For example, we can name all random calls by unique string tags. However, it is
inconvenient in the case of programs, in which some random variable is sampled
several times in the same context (like in example considered below). We adopt a little
bit different approach. We introduce named sources of random variables, which can be
used several times. So, in our case, sources represent named sequences of random
values of the same type.
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Let us consider simple example.

For the inference algorithm, this code will be a function of A1, A2…, where Ai is the
result of i-th call to rng.flip(“A”), and B1, B2,…, where Bi is the result of i-th call to
rng.gaussian(“B”, 0, 1). As easy to see, the number of requests to sources “A”
and “B” can be different for different runs of the random program.

We use the following types of random numbers and corresponding sampling
functions:

– flip with parameter p returns true with probability p;
– randint with parameter n returns equally probable random integer from [0, n–1];
– gaussian with parameters mean, sigma returns normally distributed random

value.

We assume that the type of the random variable is fixed and cannot be changed. On
the other hand, parameters of random functions can vary in different runs of the random
program (parameters of random functions can be functions of random variables).
Moreover, similar to the considered simple example, the set of used random variables
can vary. These features should be taken into account by the inference algorithm.

We utilize GAs to perform optimization of values of random variables as follows.
A candidate solution in the population is a set of values of random variables sampled in
the program. Each random value is associated with a unique tag (name of random
source plus index), type of a random variable and parameters of this random variable.

GA executes the given function with random choices, which return value is
interpreted as the fitness value for the candidate solution represented by specific
sampled values of random variables, and control values returned by rng using genetic
operators. flip, randint, etc. act as conventional pseudo-random functions while
the first generation of candidate solutions is produced, but their behavior is changed for
children.

Crossover is implemented in the most trivial way: random exchange of random
values with the same tag. So if tag is presented in the both parents, then random value
is taken randomly from one of the parents. All random values presented only in one of
the parents (such a situation can happen for example in the considered simple example)
are inherent by descendant. Mutations are implemented also the simplest way by
varying the values of random variables. So, GA simply executes the compiled
fitness-function with random choices many times controlling the values returned by
basic random functions called via rng and trying to find the set of values that cor-
responds to the optimum of the fitness-function.
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3 Planning as Probabilistic Programming

Planning can be naturally expressed in PPLs with both conditional and optimization
queries. To do this, one needs to specify a generative model for plans as sequences of
random possible actions with random parameters. Then, an environment model should
be available for predicting outcomes of plan execution. In principle, PPLs can be used
to learn this model or to make inference over stochastic models. Conditional or opti-
mization queries with the condition of successful goal achievement or with the
objective function evaluating proximity to the goal will find examples of suitable plans.
There is no need to program the robot how to act in each of numerous possible
situations, so to change robot’s behavior we need only to specify a new goal – not to
reprogram the robot.

In Turing-complete PPLs, generative models (of plans in our case) can readily
include conditions, cycles, etc. Thus, PPLs provide a powerful tool for planning.

We developed a test planning system for the NAO robot using small subset of its
possible actions including

• wait (call qi::os::msleep(t), where t is the action parameter defining wait
time in milliseconds);

• walk (call ALMotionProxy::moveTo(x, y, 0), where x and y are parame-
ters indicating how far in meters the robot should move);

• turn (call ALMotionProxy::moveTo(0, 0, a), where a is the rotation angle);
• posture (pose changing using goToPosture command with the possible values

“StandInit”, “Crouch”, “Sit”, “SitRelax”, “Stand”,
“StandZero”).

The generative model consists simply in generating a random list of random actions
and random values for action parameters. Semantically different random values are
generated from different random sources. For example, waiting time t for wait action is
generated as rng.randint(“wait”, 1000), and walking parameters x and y are
generated as rng.gaussian(“walk”, 0., 1.).

At first, we considered such goals as approaching a position with specified relative
coordinates. Objective function (or fitness-function for GAs) was calculated as the
distance from the expected position after plan execution to the specified target plus time
(or efforts) penalty. In order to evaluate it, plan execution should be somehow modeled.

We didn’t use detailed 3D model of the robot’s body, although this is possible.
Instead, the model included only robot’s coordinates and pose (sitting, standing, etc.),
and information of how they are expected to change after executing listed actions.

Obstacles were detected using sonars, and their positions were taken into account
during modeling robot’s movement. That is, if the expected robot’s path crossed the
detected object, collision was modeled by forcing the robot pose to “Crouch” and the
robot coordinates to those of the obstacle (the robot wasn’t explicitly programmed to
avoid obstacles, since either to collide with obstacles or not depends on goals). The
robot was not also programmed to stand up for walking, but its expected coordinates
were changed while simulating walk action only if its pose corresponded to standing).
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The robot in the initial position 

 
The robot moving diagonally to bypass the obstacle 

 
Robot in the final position 

Fig. 1. The robot executing found plan
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Our GA-based optimization query managed to find plans consisting of unknown
number of actions with unknown real-valued parameters. If there were no obstacles,
and the initial position was sitting, than the robot guessed to stand up first and then to
move directly to the goal location. If there was an obstacle, found plans bypassed it
usually using the shortest route (see Fig. 1).

Of course, there are many problems with following fixed plans even in the con-
sidered simple task. Real robot’s movement will never precisely correspond to the
expected movement. The robot detects only the first obstacle using sonars, but there
can be other obstacles encountered during bypassing the first one. Moreover, the
environment can be dynamic, so obstacles or targets can change their coordinates.
Agents blindly following even genial plans can act very stupid.

Having infinite computational resources, one could construct new optimal plan
from scratch after performing each elementary action (as it is done in AIXI [6]).
However, this works only in theory and cannot be afforded in practice. Consequently,
rather complicated methods for error detection, plan recovery and replanning methods
are being developed [7–9].

Here, we don’t want to develop specific solutions for robot plan recovery, but
consider the question what minimal modifications to the probabilistic programming
framework are necessary to support plan recovery in the same sense as conventional
PPLs provide a solution of the planning problem.

4 Simultaneous Plan Optimization and Execution

Changing fitness-function during optimization. What will happen if the
fitness-function is changed during its optimization by GAs? If the population of can-
didate solutions has not yet converged or if the changes are small, GAs will find new
optimum. One can also slightly modify GAs to adaptively control the mutation rate
depending on changes of the population fitness, and can introduce the mechanism of
recessive and dominant alleles to keep gene diversity.

At first, we tried to create separate thread for the planner and to modify data for the
objective function (namely, coordinates to be reached by the robot) outside the planner
while it was optimizing this function. Not very surprisingly, the best solution in the
current population tracked changes in the objective function.

Consider an example. Let the robot’s goal be to move one meter forward (and there
is an obstacle in front), and this target is moving at the speed of 10 cm/s. Initial
candidate solutions in the first population are bad. They almost don’t help the robot to
approach the target. However, solutions rapidly become better from population to
population, and almost precise solution appears after 0.5 s. This solution will be dif-
ferent in different runs, but typical solution will contain three commands such as posture
(stand), walk (0.1, 0.27), walk (0.93, −0.25). This is the plan for achieving not the
original goal, but already the modified goal. Candidate solutions in consequent popu-
lations are tracking the changing goal. E.g. after 6 s the goal will be to move 1.6 m, and
the typical plan will be posture (stand), walk (0.173, 0.269), walk (1.426, −0.268).
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Consider another type of change in the environment. Let the obstacle be removed at
some moment of time. The result will depend on the moment of removal. If the
obstacle is removed after 3 s, the plan before removal will be like posture (stand), walk
(0.036, −0.352), walk (0.964, 0.352). This is nearly optimal plan. However, after
another 3 s of the continuing optimization process the plan will be posture (stand),
walk (0.035, −0.331), walk (0.965, 0.331). The value of the fitness-function doesn’t
change after obstacle removal, but this plan becomes suboptimal. Since necessary
efforts are taken into account in the objective function, the best plan should correspond
to the shortest distance to the target.

Apparently, the reason of this result is convergence of population of candidate
solutions after 3 s of GA execution, and small improvements of the final plan are due to
mutations (which speed is not enough to achieve the optimal plan). Indeed, if the
obstacle disappears after 0.5 s, the solution found before this event will be in general
correct, but imprecise, e.g. posture (stand), walk (0.26, 0.32), walk (0.82, −0.28).
However, the final solution will be posture (stand), walk (0.218, 0.002), walk (0.782,
−0.002). The population of candidate solutions has not converged yet, so it has more
capabilities of adapting to the changes of the fitness-function. The final plan is almost
optimal, although it realizes forward walk in two commands. Possibly, environment
changes causing large changes in the value of the fitness-function and requiring
insertion of some steps in the plan will be much more difficult to track.

However, it appears that since the goal’s achievement precision is the largest term
of the fitness-function, it is optimized first. Then, efforts of achieving this goal are
optimized. Thus, candidate solutions corresponding to different plan sizes and to not
straight routes to the target remain until strong convergence of the population, and the
route bypassing appeared obstacle was found in most cases.

Of course, there can be more difficult replanning tasks, and non-conventional
evolutionary computation methods natively supporting optimization of dynamic
fitness-function might be necessary, but we can state that GA-base probabilistic pro-
gramming even not initially design for concurrent optimization is applicable at least to
some extent.

However, there are specific additional difficulties, when one tries to execute a plan
simultaneously with its proceeding optimization.

Evaluating partially executed plans. One immediate issue with optimization of plans
during their execution is that execution itself causes changes in the environment. If we
simply continue the optimization process externally changing the fitness-function in
accordance with the actual environment state (e.g. including position of the moving
robot) than this process will need to blindly adjust the plan (e.g. from walk (1.0, 0.0) to
walk (0.5, 0.0) after the robot has walked 0.5 m). Of course, adjustment can be nec-
essary, but only because of possible difference between expected and real positions –
not because of difference between initial and current positions. Is it necessary to change
the inference engine to solve this problem? For example, one can try modifying all
candidate solutions inside GA removing the first action from each of them after a real
action has taken place. We believe that this is not necessary, and the environment
model (simulation of plan execution) should mostly account for peculiarities of
simultaneous plan optimization and execution.
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The plan execution procedure should inform the plan simulation procedure about
already completed part of the plan, and this part should simply be skipped during
simulation. Since actions are non-atomic, partially executed actions should be partially
skipped during simulation. This leads to main imprecision of simulation, because final
position after action execution is known better than intermediate positions.

At first, we checked that the value of the objective function calculated for the plan
being executed doesn’t increase dramatically. We used getRobotPosition function from
the NAO SDK (motion proxy) to get current robot coordinates (estimated by odom-
etry), from which plan simulation starts. For example, initial coordinates in the robot
reference system could be (2.49, −0.82, 0.23), where the first two are (x, y) in meters
and the last one is the orientation angle. The goal then could be (3.49, −0.82), and the
intermediate position during bypassing an obstacle could be (3.00, −1.20, 0.36), and
the final position could be (3.42, −0.75, 0.36) meaning that the robot missed the target
by 0.1 m. The problem is that the robot changes its orientation after execution of
Stand, and continues to execute the plan that was designed in supposition that Stand
action doesn’t change robot coordinates and orientation.

This discrepancy is directly reflected in the value of the objective function calcu-
lated for the partially executed plan. After execution of Stand, it becomes 0.18 instead
of 0.06 (initial non-zero value corresponds to penalty for efforts needed to perform all
actions in the plan) meaning that the expected final position error is about 0.12 m. The
value of the objective function evaluated during plan execution including partially
executed actions doesn’t go beyond 0.22 meaning that simulation of partially executed
plans is generally correct. After executing the plan, its value becomes 0.16 corre-
sponding to 0.1 m error (0.16–0.06) equal to the distance between the goal (2.49,
−0.82, 0.23) and the final position (3.42, −0.75, 0.36) estimated from odometry.

Appearance of unexpected obstacle automatically leads to stepwise increase of the
estimated objective function. For example, in the situation shown in Fig. 2, it increased
by 0.45 meaning that further execution of the plan was expected to lead to collision and
the simulated final robot position corresponded to the position of the obstacle.

Simultaneously executing and optimizing plans. Now, after we checked possibility of
optimizing dynamically changing fitness-functions, and introduced correct evaluation
of partially executed plans, we can try to optimize plans during their execution.

In our implementation, the robot waits until the best candidate solution for the plan
is not optimal, but is good enough, remembers this plan and starts to execute it. During
the plan execution better candidate solutions can be found, either because the first plan
was not optimal or the environment has changed. Expected plan qualities estimated
using the most recent and the same information about the environment should be
compared, so the plan under execution should be re-simulated. The robot switches to
another plan, if it is expected to improve the achieved value of the objective function by
a (non-zero) certain threshold. The robot starts executing a new plan from the current
moment of time. This means that it skips all actions that should have already been
executed, and partially executes the action that should be executing right now. That is,
continuation of executing partially executed plans corresponds to simulation of par-
tially executed plans. It can be seen that there is some decision-making in the plan
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execution procedure, but it is extremely simple, and the most part of the job is done in
the general-purpose optimization engine of PPL.

Let us consider how it works. If the robot starts at the position, e.g. (−4.12, −0.13,
−3.09), and its goal is the point (−5.12, −0.18) located in one meter in front of the
robot, the first acceptable plan will typically be something like posture (stand), wait
(720), walk (−0.69, −0.43), walk (0.74, −1.13), walk (0.91, 1.52), which is neither
precise nor most efficient. Also, robot’s orientation changes after standing up, e.g. to
−2.96, and the plan becomes even less precise. Better plan will be found while the
robot is doing its first action (standing up), e.g. posture (stand), walk (−0.72, 0.02),
walk (−0.29, −0.04). If an obstacle suddenly appears in front of the robot even if it has
started to walk leading to instant decrease of current plan quality, good plan with
obstacle avoidance and account for the current real coordinates can be found before
collision, e.g. posture (stand), walk (0.57, 0.51), walk (0.42, −0.65). If nothing else
happens, no plan change will occur and the final robot position and orientation can be
(−5.12, −0.16, −2.95) that is quite close to the goal.

Of course, success highly depends on sensors and actuators. In particular, usage of
NAO sonars allows rough estimation of distance to obstacles, but not their coordinates
or sizes. Interestingly, if the robot does collide and fall down, and this is reflected in the
current robot pose and position (that can be known from sensors), it will find a plan
including stand up action and further walk to the goal. That is, simultaneous plan
optimization and execution works well for plan recovery.

Fig. 2. Appearance of unexpected obstacle
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5 Conclusion

Our study showed that possible applications of probabilistic programming in intelligent
agents go beyond offline inductive and deductive reasoning and also include real-time
robot control. Latter can be achieved, because execution of optimization queries for
dynamically varying objective functions leads to tracking of their current optima by
current population of candidate solutions. Thus, simultaneous plan optimization and
execution automatically, without introducing special plan recovery methods, yields
adaptation of the plan to changes in the environment or to imprecise execution of
actions.

Of course, time scales of plan optimization and action execution should be similar.
We were lucky, and special alignment of these scales was not necessary in our
experiments, otherwise more complex coordination between modules would be nec-
essary. More specific optimization methods, which explicitly take variations of
objective functions with time into account, might be necessary to develop in order to
avoid convergence to degraded populations of candidate solutions that cannot adapt to
changes.

Nevertheless, all specific information concerning plan recovery task is contained in
the procedures of plan generation and simulation, which are necessary also for planning
itself and should be the part of the agent’s knowledge, while optimization queries can
be considered as a basic cognitive function. Deep interactions of this function with the
agent’s knowledge might be necessary in advanced AGI systems, but for other reasons
discussed in another paper.
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Abstract. The concept of understanding is commonly used in everyday
communications, and seems to lie at the heart of human intelligence.
However, no concrete theory of understanding has been fielded as of yet
in artificial intelligence (AI), and references on this subject are far from
abundant in the research literature. We contend that the ability of an
artificial system to autonomously deepen its understanding of phenom-
ena in its surroundings must be part of any system design targeting
general intelligence. We present a theory of pragmatic understanding,
discuss its implications for architectural design and analyze the behav-
ior of an intelligent agent implementing the theory. Our agent learns to
understand how to perform multimodal dialogue with humans through
observation, becoming capable of constructing sentences with complex
grammar, generating proper question-answer patterns, correctly resolv-
ing and generating anaphora with coordinated deictic gestures, produc-
ing efficient turntaking, and following the structure of interviews, without
any information on this being provided up front.

1 Introduction

A rudimentary investigation into the use of the term “understanding” in the field
of artificial intelligence (AI) reveals that occurrences are few and far between.
When it does appear it is primarily in the context of natural language (“language
understanding”), where parsing and manipulation of linguistic tokens (read:
good old-fashioned AI) takes the front seat. A distant second is its coupling
with the words “scene” and “image” in computer vision research (scene under-
standing, image understanding), with an identical emphasis on parsing: Rather
than talking about the phenomenon of understanding proper, understanding is
equated with syntactic manipulation, which, as everyone who has studied phi-
losophy knows, is not the same thing (cf. [18]).

A coherent conceptualization of understanding is of importance to the field
of AGI for several reasons. First, if the concept of understanding is left unde-
fined it cannot, as a phenomenon, be effectively investigated; second, without a
good definition of understanding it may be difficult to compare different systems
with respect to their level of understanding, and similarly, to compare the same
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 106–117, 2016.
DOI: 10.1007/978-3-319-41649-6 11
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system or different systems with respect to their levels of understanding regard-
ing different areas of expertise or performance; and third, a coherent account
of understanding is needed such that system builders can create new systems,
improve current systems, and train systems where understanding is a specific
goal. A formalized account of understanding would seem crucial to the contin-
ued and successful progress of the field of AGI.

The apparent indifference of AI researchers to the phenomenon of under-
standing is curious considering the available evidence about its role in human
intelligence. If “understanding” is simply a descriptive term used to classify the
effectiveness of a given behavior for a particular goal, after it has been observed –
behavior referring here to perception, thinking, and action control – then perhaps
it could be said that intelligence and understanding are synonyms, and ignoring
the concept altogether is justified. If, however, understanding is a unique ingre-
dient or property of natural thinking systems which affects their abilities and
intelligence – and especially: their potential for growing their own knowledge –
then we would be well-served by studying understanding as a phenomenon. We
argue for the latter view and outline here a pragmatic theory of understanding
rooted in an analysis of how predictive controllers compute meaning. First we
look at some of the relevant background work from philosophy and AI, then we
present our theory of pragmatic understanding and meaning, and then give an
overview of the results of a prototype system whose knowledge acquisition and
application was constructed according to the theory. The results represent strong
evidence for the potential of the theory to elucidate the relationship between
meaning, understanding, prediction, and explanation, in a manner relevant to
artificial general intelligence.

2 Related Work

An important question that has been discussed, mostly in the philosophical
literature, is the extent to which machines could be given understanding, if
at all. Sloman has stated that the question of whether machines can “really”
understand is more of a minor question of definition than anything else [18],
arguing that the appropriate answer to the question “Can you understand?” is
not binary and can take the form of infinite features and gradations. It seems a
latent view of many that once a machine can do some human task, that task is
no longer deemed as requiring “intelligence,” and by extension, requires no “real
understanding”. This view might explain why Searle’s Chinese Room argument
still has appeal, in spite of the numerous publications that have long since refuted
it by illustrating its numerous fallacies [2,3,16]. Convincing arguments for the
impossibility of machines to understand remain scarce.

Some research has argued for the importance of understanding in cognition,
citing it as distinct from knowledge (cf. [6]), claiming that acquisition (deepen-
ing) of understanding constitutes a more accurate reflection of the world than
knowledge acquisition [7,8], and is thus a greater intellectual achievement. Oth-
ers have taken the exact opposing view (cf. [10]). Without proper and reasonably
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specific definitions of these terms and their context, as these accounts tend to
be, they can be somewhat incoherent, too heavily steered by the many senses in
which the term might be used colloquially. As a result many seemingly irrecon-
cilable polarities and contradictions are uncovered [9] (for instance, pitting the
internal organization of phenomena against its relation to various other phenom-
ena as some sort of contradiction). As we shall attempt to demonstrate below,
such inconsistencies may be reconciled with proper definitions and the right
unifying approach.

While understanding as a phenomenon has received more attention in the
philosophical than the AI literature [7,8], even there it has nevertheless been
claimed to have “virtually escaped investigation in English-speaking philosophy”
([5]: 307); this dearth of interest in the subject is evidenced not only there but
also in the fields of AI and cognitive science.1 A few books have been published
with the word pair “understanding understanding” in the title [4,15]. Interesting
as they may be, one of these contains selected writings by cybernetics pioneer
Heinz von Forrester, which, in spite of its promising title, is not about under-
standing at all (as evidenced by the word “understanding” not appearing the
index); the other gives a cursory (albeit a decent) summary of the subject in the
context of epistemological philosophy.

In the context of the work presented here, few authors if any have addressed
the more relevant question of what kinds of architectures could deepen their
understanding automatically, as this would seem of key importance for an AGI
system for growing its knowledge. Here we attempt a unification of several prior
ideas, through the concepts of prediction, granular model generation and eval-
uation, and knowledge acquisition through experience [19]. While the literature
has presented a multitude of ways to look at and define understanding, and vir-
tually all of the concepts we talk about have appeared in the AI literature in one
form or another, we are not aware of any that propose the kind of unification
presented here.

3 Towards a Theory of Pragmatic Understanding

Our concern here is with an agent’s understanding of phenomena of interest that
allows it to act intelligently towards it, in a practical and goal-directed way. We
refer to our theory of understanding as pragmatic, as we are concerned with the
usefulness that levels of understanding may achieve in guiding behavior.

Phenomenon. A phenomenon Φ (process, state of affairs, occurrence) — where
W is the world and Φ ⊂ W — is made up of a set of elements2 {ϕ1 . . . ϕn ∈ Φ}
1 Exceptions do exist of course (cf. [1]), but not in the obvious areas such as language-,

image- and scene-understanding, where the word makes a mere superfluous
appearance.

2 By “elements” and “sub-parts” we mean any sub-division of Φ, including sub-
structures, component processes, whole-part relations, causal relations, etc.
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of various kinds including relations �Φ (causal, mereological, etc.) that couple
elements of Φ with each other, and with those of other phenomena.

Phenomenon and Context. The relations �Φ ⊆ 2W × 2W that extend to
other phenomena identify the phenomenon’s context. We partition �Φ in inward
facing relations �in

Φ = �Φ ∩ (2Φ × 2Φ) and outward facing relations �out
Φ =

�Φ \ �in
Φ . An agent whose models are only accurate for �in

Φ understands Φ but
not Φ’s relation to other phenomena; an agent whose models are only accurate
for �out

Φ understands Φ’s relation to other phenomena but will have limited or
no understanding of Φ’s internals.

Models. MΦ is a set containing models of a phenomenon Φ {m1 . . . mn ∈ MΦ}
– information structures that can be used to (a) explain Φ, (b) predict Φ, (c) pro-
duce effective plans for achieving goals G with respect to Φ, and (d) (re)create Φ.

For any set of models M and a phenomenon Φ, the closer the information
structures mi ∈ M represent elements (sub-parts) ϕ ∈ Φ, at any level of detail,
including their couplings �Φ, the greater the accuracy of M with respect to Φ.

Insofar as an agent A’s knowledge consists of models M , we can define under-
standing in the following way:

Understanding. An agent A’s understanding of phenomenon Φ depends on the
accuracy of M with respect to Φ, MΦ. Understanding is a (multidimensional)
gradient from low to high levels, determined by the quality (correctness) of
representation of two main factors in MΦ:

U1: The completeness of the set of elements ϕ ∈ Φ represented by MΦ.
U2: The accuracy of the relevant elements ϕ represented by MΦ.

Testing for Understanding. This approach does not necessitate or force
any particular way to test for understanding, shifting that challenge rather to
whichever methods prove the best for exposing the above two factors. To test
for evidence of understanding a phenomenon Φ we may probe (at least) four
capabilities of the understander:

1. To predict Φ.
2. To achieve goals with respect to Φ.
3. To explain Φ.
4. To (re)create Φ.

All can be seen to have a range [0, 1] where 0 is no ability and 1 is perfection,
as a function on U1 and U2 above. For a thorough evaluation of understanding
all four should be applied.

Prediction is the crudest form of evidence for understanding. Some prediction
can be done based on correlations, as prediction does not require representation
of the direction of causation yet captures co-occurrence of events. Prediction
of a particular turn of events requires (a) setting up initial variables correctly,



110 K.R. Thórisson et al.

and (b) simulating the implications of (computing deductions from) this initial
setup.

Goal Achievement Correlation is not sufficient, however, to inform how one
achieves goals with respect to some phenomenon Φ. For this one needs causal
relations. Achieving goals means that some variables in Φ can be manipulated
directly (or indirectly via intermediate variables). Unless the intelligent agent is
omnipotent and omniscient, to achieve goals with respect to a phenomenon Φ
may require a bit more than an understanding of Φ: it requires understanding
of how a certain subset of Φ relates to some variables that are under an agent’s
control. In short, the agent needs models for interaction with the world. For a
robotic agent driving a regular automobile, to take one example, the agent must
possess models of its own sensors and manipulators and how these relate to the
automobile’s controls (steering wheel, brakes, accelerator, etc.). Such interfaces
tend to be rather task-specific, however, and are thus undesirable as a required
part of an evaluation scheme for understanding. Instead, we call for an ability
to produce effective plans for achieving goals with respect to Φ. An effective
plan is one that can be proven useful, efficient, effective, and correct, through
implementation.3

Explanation is an even stronger requirement for demonstrating understand-
ing. Correlation does not imply causation, which means that one may have a
predictive model of a phenomenon that nevertheless does not represent correctly
its parts and their relations (to each other and parts of other phenomena); goals
may in some cases be achieved through “hacks” and “back doors”, without a
proper causal model behind it. This is why scientific models and theories must
be both predictive and explanatory – together constituting a litmus test for
complete and accurate capturing of causal relations.

(Re)creating a phenomenon is perhaps the strongest kind of evidence for
understanding. It is also a pre-requisite for the ability for correctly building new
knowledge that relies on it, which in turn is the key to growing one’s understand-
ing of the world. By “creating” we mean, as in the case of noted physicist Richard
Feynman,4 the ability to produce a model of the phenomenon in sufficient detail
to replicate its necessary and sufficient features. Requiring understanders to pro-
duce models exposes the completeness of their understanding.

It is important to emphasize here that understanding, in this formulation,
is not reductionist: Neither does it equate the ability to understand with the
ability to behave in certain ways toward a phenomenon (e.g. achieve goals), nor
the ability to predict it, nor the ability to explain it, nor the ability to (re)create
it. While any of these may be used to assess a system’s understanding of a
3 Producing plans, while not being as specific as requiring intimate familiarity with

some I/O devices to every Φ, requires nevertheless knowledge of some language for
producing said plans, but it is somewhat more general and thus probably a better
choice.

4 Feynman, notorious for his capacity to understand even the most complicated phe-
nomena in his field, left a note on his blackboard when he died: “What I cannot
create, I do not understand.” (http://archives-dc.library.caltech.edu/islandora/
object/ct1:483 - accessed Apr 2, 2016).

http://archives-dc.library.caltech.edu/islandora/object/ct1:483
http://archives-dc.library.caltech.edu/islandora/object/ct1:483
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phenomenon, in our theory all are really required (to some minimum extent) to
(properly) assess a system’s understanding. Any assessment method that does
not include these four in some form runs the risk of concluding understanding
where there is none (and the converse).

4 Meaning

We can now move to a close cousin of understanding – meaning. Meaning does
not exist in a vacuum: A causal event x acquires meaning for some agent A when
x has potential to influence something of relevance to one or more of the agent’s
goals G. Given e.g. an event x with potential relevance to agent A, the agent
may compute some meaning of x with respect to (any or all of) its relevant
goals, given a particular situation St (a substate of a world W defined by a
set of variables, S ⊂ W ). This computation relies on deduction, among other
processes.

To illustrate we can use two example events, rocks rolling down a hill and
a computer deriving square roots. Do rocks rolling down a mountainside con-
tain any meaning? When a computer is given the number 4 and outputs 2, does
this output have any meaning? “Surely”, you might be inclined to say, “math
is meaningful in its regularity”. But then what is the difference between com-
putation and rolling rocks? At the atomic level are forces at play (gravity and
electricity, respectively) working according to predetermined rules. To answer
either question we must ask “meaning to whom?” Both are physical events, and
without a biological being that can interpret them in some relevant context,
neither has any meaning.

As we can see from this example, the agent’s situation must also be included,
because some event x may mean one thing in situation S1 and another in situ-
ation S2. If I hear an announcement that the gate to the flight to my vacation
destination has closed, this will mean something very different depending on
which side of the gate I am on at that point in time; in one case I may start cry-
ing and the other not. And if I have a drink in either contingency it will likely be
for very different reasons. This example makes another aspect of meaning clear:
Meaning is time-dependent.

This means that without temporally demarcated goals there can be no mean-
ing, because the meaning of e.g. an event can only exist with respect to a partic-
ular goal (held by an agent) that is relevant to the agent. A stone rolling down
a hill has no meaning – it is simply a meaningless process. When we know the
stone weighs over two tons and it’s heading your way do we derive some meaning
from its existence.

In this formulation the meaning of a particular datum,5 e.g. the closing of
the gate, consists of the implications Id(t1) of that particular datum d presented
at time t1; d(t1) implies some set of things for a particular agent A in particular
5 A datum dt can be an event, an utterance, the perception of a particular object, a

particular deduction or set of deductions, etc. occurring at time t – in short, anything
that can be perceived by the agent’s sensors and represented by its mind.
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circumstances St1 with regard to particular active goals G (an active goal at
time t is a goal that the agent is actively trying to achieve at time t).6 Any
potential implication may be computed through the proper processes, including
implications that might be relevant to the agent’s active goals G in situation S
at time t1. To be as useful as possible to the agent, the implications that are most
temporally relevant to the agent’s goals, whether a hindrance or help, should get
computed as soon as possible after the datum presents itself.

Implications are computed through temporally-grounded deduction, from a
set of premises, to derive any potential implications (they are potential implica-
tions because they are typically produced based on premises and initial condi-
tions whose specification may not be fully informed) given by the new datum.
For instance, if I missed my airplane and the next airplane leaves in a week,
I may have shortened my vacation by 50 %. In this case knowing this 400 ms
sooner or 4 s later will obviously not make a big difference – either way I will
be steaming angry or hugely disappointed, as the meaning is extracted and the
most relevant implications for my goal of taking a 2-week vacation dawns on me.

Implications. Starting from an initial state St ⊂ W of a dynamic task-
environment (consisting of a series of such states {St . . . St+δ}), the Implications
of a datum dt are the computed deductions D that may be relevant to a par-
ticular set of goals G of a particular agent A with particular knowledge K in
situation St+i ⊂ W , represented

Impl(dt, A(G)t+x) = D(dt, Si, (KA, GA, SA)t+y)

(t + x and t + y means these can refer to different points in time). While for any
period of time at least some implication can be deduced from a particular set of
information, whether the implications are relevant to an agent cannot be known
before the deductions have been made.

Most of the time a complex environment such as the physical world will
present, for any time period, a vastly greater amount of information than what
any agent can perceive and process for that period, i.e. the computational
resources of most (interesting) agents will be vastly less than those needed to
process all available information, for any time period. In the vast majority of
cases such a complex environment can be the source of an infinite string of
deductions stretching into the far future; for any time interval a real agent in
a real environment will thus be faced with capping deductions in both breadth
(sources of deductions) and depth (time and detail).

For an agent, finding the meaning of a situation requires identifying which
of the possible deductions are relevant to the agent’s goals in that situation at
that time.

6 Unless otherwise specified the term “goal” may be read to mean “all active goals”,
as typically this is a set of goals; even if a single identifiable top-level goal can be
found, there will always be (obvious and non-obvious) sub-goals that must be taken
into account. We thus use “goal” and “goals” indiscriminately.
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Meaning. The meaning of a datum dt for an agent A(K,G, S)t is captured by
the set of relevant implications Ir of dt for A with a set of goals G and knowledge
K in situation S at time t;

Meaning(dt, A(G)) = Implr(dt+x, {KA, GA, SA}t+y).

Typically there is never only a single meaning to anything (so we use singular
and plural interchangeably), since any datum has a large set of potential impli-
cations for any large or complex phenomenon. What is relevant at any point
in time depends on the particular outcome of the predictions, in light of the
system’s active goals. Since these predictions cannot be guaranteed to be per-
fect, the meaning of anything and everything will always be somewhat in flux
and open to further interpretation. Computations may produce differences in
meaning based on slight variations of the initial conditions.

The quality of predictions produced via deductions from a set of premises
depends in large part on the accuracy of the models used for it. Models must be
freely composable and de-composable, in light of their usage, to realize their full
potential for predicting, achieving goals, and explaining. From Ashby’s Requi-
site Variety theorem [17] we know that model “resolution” (i.e. their granularity)
needs to be at least as detailed as the finest discernible, relevant details of the
phenomenon modeled. For any reasonably complex phenomenon we will there-
fore have a large set of models M .7

5 A System that Acquires Understanding and Meaning

We have designed and implemented an architecture that implements the prag-
matic theory of understanding outlined above. This system, called AERA [12,13],
contains numerous features that must be explained to provide a coherent account
of its operation, which is well beyond the scope of this paper (we refer the inter-
ested reader to our most thorough overview of this work in [11]). Rather, this
section serves (a) to show that our approach to understanding and meaning has
produced an implemented, working system, (b) to show that this system demon-
strates highly novel properties not seen before in any other system, and perhaps
most importantly, (c) to show one way the above theory can be mapped to a
concrete implementation.

Based on a new constructivist methodology [20], an AERA agent can learn
complex tasks by observation, starting from only a tiny seed. Learning in AERA
is life-long, continuous, and incremental, and consists of building models based
on observed phenomena. For any situation Si(t) ⊂ W the system finds itself

7 Another determinant of the quality of predictions is the observability of variables and
the accuracy of reading their values. For any triplet {A, G, S}, to produce predictions
requires fixing the values of numerous variables v ∈ V ⊂ S whose values may not
be immediately accessible (and thus guessed or retrieved from the agent’s prior
experience), or whose values may not be perfectly observable (cf. “Does that display
show 880 or 830?”).
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in, a set of observed variables Vi ⊆ Si results in a large set of new models
Mi being generated, each relating two observed data vi, vj ∈ V in a directed
causal relationship �i : vi → vj , meaning that vi is a cause of vj . As experience
accumulates, models of groupings of such relationship pairs emerge, representing
hypotheses about the interactions between the many observed sub-phenomena,
at several spatio-temporal levels. At runtime an AERA agent executes the subset
of these models deemed most relevant to the situation; predictions are produced
from the present state using these models for deduction, in a forward-chaining
mode; abduction — backward-chaining the models’ causal relationships — pro-
duces plans for how to achieve goals (i.e. partial world states not observed at
present).

In the experimental data referenced below, AERA agent S1’s phenomenon
Φ to be understood is a TV-style interview. This Φ’s elements are known to
be e.g. deictic references (pointing at, nodding towards, looking at, etc.), sen-
tence morphology (word sequences), question-answer pairs, etc. S1 starts with
a tiny seed where its most primitive sensation types are specified, allowing it to
ground its experience and bootstrap its incremental learning of how to properly
do multimodal interaction. The seed also contains the top-level goals (1 for the
interviewer, 4 for the interviewee). S1 observes two humans interact for 20 h,
after which its performance is recorded for analysis, producing over 20 min of
interactions with humans. It is important to note that no information whatso-
ever was provided in the seed on any of the phenomena learned – these emerge
through a process whereby the system tries to match its models to the observed
phenomena in a way that can predict, explain, and achieve goals with respect
to them, as per our pragmatic theory of understanding detailed above.

Explanation. By design the system’s knowledge representation is self-disclosing:
The total collection of models at any point in time represents the system’s ability to
explain the phenomena it has had experience with, from its best effort, by attempt-
ing to represent directly the elements of the phenomenon (observable variables)
and their relationships (�in

Φ ). This is very different from e.g. artificial neural nets,
whose knowledge representation cannot be symbolically mapped to the domain the
knowledge references.

Prediction. Models and model hierarchies are used to predict the evolution
of the situation, at any moment, δ microseconds into the future Si(tnow + δ).
Models get a score according to how closely the observed future compares to
their predictions.

Goal Achievement. The same models used to produce predictions also inform
the system what it is capable of, via backward chaining: Any (good) model chain
of arbitrary length whose end point is a goal to be achieved and whose starting
point is the present state tells the system what chain of events may be taken to
get from the present state to the goal, and as long as the chain includes models
referencing variables that the system can affect, the system can create a plan for
achieving the goal. In such chains the agent’s atomic operational capabilities are
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represented in models, and their execution is handled via dedicated actuators
on the agent’s embodiment.

Implications and Meaning. Having acquired a set of models, when an AERA
agent observes a datum di(t) the best models in which this datum appears pro-
duces predictions (arity depending on available resources); those that relate in
some way to the agent’s instantiated goals at that point in time are considered
relevant implications of di, and may affect the agent’s subsequent overt actions in
the task-environment. Meaning is thus generated continuously, with the predic-
tions most relevant to the agent at each point in time enabling the agent to steer
its behavior accordingly, by changing its plans, creating new plans, backtracking,
and abandoning or generating new subgoals.

Results: Autonomously Acquired Understanding. In two experiments S1
has demonstrated autonomous acquisition of a pragmatic understanding of (1)
three types of linguistic anaphora (resolving referents of “it”, “that” and “this”),
(2) four types of co-verbal deictic gestures (pointing with index finger, gazing
at objects, palm-up hand gesture, reference via touching/holding objects), (3)
how to structure turn-taking, (4) how to generate appropriate utterances for
particular referents (correct answers to questions – whether containing anaphora,
co-verbal gestures or not), (5) how to keep an interaction within given time limits,
and (6) how to generate syntactically correct utterances. With respect to item 6,
examples of utterances produced by S1 include “Which releases more greenhouse
gases when produced, a plastic bottle or a glass bottle?” and “Compared to
recycling, making new paper results in seventy five percent more air pollution.”
As evidence of the accuracy and completeness of S1’s understanding, for the total
of 73 utterances produced by S1 in the experimental data, only four (minor)
grammatical errors were found (Nivel et al. [12] provides details S1’s natural
language learning.). These were in fact the only errors found — no errors could
be discerned in the data for any of the other acquired skills (1–5).

This evidence suggests that with respect to the sub-phenomena listed above,
all the above elements of Φ have been modeled correctly, achieving a high score
on U1 and U2 in Sect. 3. The first two points of evaluation in Sect. 3 are thus
clearly demonstrated: The system can use its acquired understanding to achieve
goals in the dialogue, using both prediction (to synchronize behavior with the
world) and abduction (to construct plans). We consider items 3 and 4, explana-
tion and (re)creation, to partially demonstrated: S1’s self-disclosing knowledge
representation directly captures the structure of the phenomena by encoding the
(causal) relationships between observed variables, and allows S1 to act correctly
across the full range of priorly observed instances of the phenomena. More thor-
ough evaluation is needed on these last two points, including pushing the limits
of S1’s understanding.

6 Conclusions

We have outlined a theory of pragmatic understanding and meaning. The imple-
mented system incorporating its principles lends validity to the approach, and for
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the more general issue that endowing agents with capabilities for autonomously
acquiring a pragmatic understanding of a complex phenomenon may be an
important endeavor. The implemented system has demonstrated an ability to
acquire complex sentence grammar from observation, contextual interpreta-
tion of multimodal communicative acts, acquiring an understanding of a task-
environment and computing in real-time the meaning of events, and using this to
successfully achieve dialogue goals in realtime interaction with humans [11,12].
In this the system demonstrates what Pattee calls semantic closure [14]. Need-
less to say, the issue of understanding is a large one, and a multitude of issues
have been raised here that remain unformulated, let alone unanswered, such as
susceptibility to noise and scaling. The positive results from our experiments
thus far provide good reason for optimism on the future prospects of this line of
research.
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Abstract. The concept of “task” is at the core of artificial intelligence
(AI): Tasks are used for training and evaluating AI systems, which are
built in order to perform and automatize tasks we deem useful. In other
fields of engineering theoretical foundations allow thorough evaluation
of designs by methodical manipulation of well understood parameters
with a known role and importance; this allows an aeronautics engineer,
for instance, to systematically assess the effects of wind speed on an
airplane’s performance and stability. No framework exists in AI that
allows this kind of methodical manipulation: Performance results on the
few tasks in current use (cf. board games, question-answering) cannot
be easily compared, however similar or different. The issue is even more
acute with respect to artificial general intelligence systems, which must
handle unanticipated tasks whose specifics cannot be known beforehand.
A task theory would enable addressing tasks at the class level, bypassing
their specifics, providing the appropriate formalization and classification
of tasks, environments, and their parameters, resulting in more rigorous
ways of measuring, comparing, and evaluating intelligent behavior. Even
modest improvements in this direction would surpass the current ad-hoc
nature of machine learning and AI evaluation. Here we discuss the main
elements of the argument for a task theory and present an outline of
what it might look like for physical tasks.

1 Introduction

Artificial intelligence (AI) research is mostly aimed at the design of systems that
can perform tasks that currently require human intelligence. AI systems interact
with “environments” that contain all relevant existing objects and the rules by
which they interact, while “tasks” assigned to an agent describe (un)desirable
environment states that should be brought about or avoided. We refer to the
tuple of a task and the environment in which it must be accomplished as the
“task-environment”. Specialized AI systems are often made with a single task
in mind, while systems aspiring to artificial general intelligence (AGI) aim to
tackle a wide range of tasks that are largely unknown at design time. Tasks can
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 118–128, 2016.
DOI: 10.1007/978-3-319-41649-6 12
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be divided in various ways into different sets of subtasks, and intelligent systems
must make a choice about what tasks to pursue. Finally, tasks are used for the
evaluation and training of these systems. So while the concept of “task” is at the
very core of AI, no general theory exists about their properties.1 Tasks are gen-
erally selected on an ad-hoc, case-by-case basis without any deep understanding
of their fundamental properties or how different tasks relate to each other.

This is very different in many other fields. When for instance a new airplane
needs to be designed to perform a certain family of tasks (say, move 300 passen-
gers across the Atlantic within 8 h) aeronautics engineers employ theories firmly
rooted in physics to turn task parameters into (preliminary) requirements for the
design of that airplane. They evaluate the design by running simulations, where
parameters of the task and environment — air pressure, wind speed, turbulence,
humidity, precipitation, runway length, travel distance, etc. — are changed to
see their effect on the artifact’s behavior. When an engineer changes an envi-
ronmental variable (e.g. wind speed) or feature of the task (e.g. descent angle),
its meaning is well understood in the context of an airplane’s task-environment,
which allows its resulting behavior to be readily understood. Evaluating the per-
formance of complex systems usually involves the use of a battery of such tests,
each of which may be composed of a small or large set of atomic tasks. The thor-
oughness of evaluation depends on the diversity of the tests employed, chosen
to provide a comprehensive picture of the system’s behavior, in their “comfort
zone” as well as at the fringes of their target operating ranges. Finally, when
the airplane is in use, decisions regarding its deployment are informed by its
physical properties and the task specification (e.g. weather, range and cargo for
a planned flight).

In the absence of such theories for AI, people sometimes attempt to use
theories from other domains. Extensive domain knowledge is often used in the
design of (narrow) AI systems, but even here it is often a challenge to select the
best machine learning techniques, gather the right knowledge, and optimize the
system’s performance. Experience in other domains tends to be unhelpful as dif-
ferent tasks cannot be compared or related to each other. Many researchers have
turned to theories of human psychology and psychometrics to evaluate AI sys-
tems, resulting in human-centric tests (e.g. the Turing Test, the Lovelace Tests,
the Toy Box Problem, the Piaget-MacGuyver Room, and AGI Preschool —
see also the latest special issue of AI Magazine [9]). Many of these tests are
limited to providing a binary (and to this day universally negative) answer to
the question of whether a system is truly intelligent.

The range of possible AI systems and their capabilities is quite a bit greater
than that of animals: Humans can’t systematically reduce the size of their semantic
memory, say,orreplacetheirmotorcontrol schemeinaninstant.Similarly, therange

1 Classical planning has hierarchical task networks [4], but subtask decomposition is
almost always done manually and there is no real analysis of tasks on a general level.
Some people working on AI evaluation — one of task theory’s primary applications —
attempt to analyze some properties of task-environments, but they don’t go beyond
complexity and difficulty-related measures [6].
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of tasks that AI systems might encounter is much greater than that of airplanes.
AGI systems explicitly target diversity and complexity, aiming for a broad range of
behaviors on a large set of complex tasks in a number of diverse environments. The
range of evaluation tools the field has in its toolkit should reflect this breadth.

Some evaluation methods have been proposed that cover a wider range of
tasks, but they are either still too specific — e.g. general (video) game playing
of a handful of manually created games [3,8] — or they are so abstract that it is
difficult to relate them to tasks in the real world — e.g. procedural generation
of almost completely random tasks [2,7].2 To adequately evaluate AGI-aspiring
systems, rigorous tests profiling cognitive abilities such as transfer of training,
knowledge retention, attentional control, and knowledge acquisition rate, would
be highly valuable [11]. A deep and general understanding of tasks and the ability
to construct and compare related tasks would greatly facilitate the design of an
evaluation tool with these capabilities.

Ideally we would have good theories for all aspects of intelligence/
competence/skills assessment, analysis and development. No classification
scheme or architectural principles exist at present that seem likely to provide a
unifying framework for research on (artificial) intelligences, and no such frame-
work seems likely to spring forward in the near future, as researchers in the field
don’t even agree on which aspects are necessary components for a system to be
called intelligent. A formal approach to tasks and environments can, however,
begin to be undertaken, as they offer readily measurable physical features. Such
a theory could take many forms, but rather than rooting it in computer science,
the early results of the field of AI, or in human task analysis [10], we think it
important to develop a task theory grounded in the physical realm.

Note that we are not targeting a theory of learning, a theory of agents, or a
theory of evaluation — quite the contrary, we want to focus exclusively on the
task-environment so as not to mix these; this may include the agent’s body, but
not its controller (“mind”). Otherwise we run the risk of continuing the conflation
of the learner with its task and environment. (This aim, however, highlights the
need for a proper theory of learning, agents and pedagogy — these are not
mutually exclusive but in fact ultimately necessary for achieving comprehensive
evaluation of a wide range of learners in a wide range of circumstances.) Note
also that we are not proposing to represent all tasks and environments accurately
or in every detail, but rather to develop a task-environment representation that
suffices for modeling a wide range of (the most important aspects of) these, in
a way amenable for simulation, and possibly analytical computation.

In the rest of this paper we look at the requirements for a task theory of this
kind, its potential applications, and outline some examples for what it might look
like as a way to further clarify our intent and provide a case for its potential.

2 More discussion of various evaluation methods can be found in our previous
publication [11].
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2 What We Might Want from a Task Theory

Three important aspects of AI research include its evaluation, pedagogy (train-
ing/learning), and design. An AI system is designed for a particular role, involv-
ing performing a task or range of tasks. Tasks are also at the core of their
pedagogy and evaluation. A properly conceived task theory could help with all
these aspects of AI research.

Evaluation. Evaluation of AI systems allows researchers to find the strengths and
weaknesses of their creations and measure progress through comparisons with
earlier versions and other systems. Evaluation of general intelligence is compli-
cated by the facts that (1) no fully functional AGI systems exist to date, (2)
different systems have different non-overlapping capabilities, and (3) tests must
measure (progress towards) some general cognitive ability rather than perfor-
mance on a specialized task [5].

When an agent, whether artificial or natural, is assigned a task, three things
may be in flux: (a) The task — which prescribes what goals should be achieved
and/or what situations should be avoided, (b) the environment in which the task
is performed — which may act independently of the agent, and (c) the agent
itself — whose perception, memory, goal structures, and other cognitive features
are affected by the task and environment. To analyze the effects of changes in
one element of an interacting system, variation in the others must typically be
controlled to prevent contamination of results. To quantify the performance of
a system, or compare any set of systems, the task and the environment must be
held constant, otherwise what is measured cannot be reliably attributed to the
agent’s performance. This would suggest that AI systems can only be compared
if they are evaluated on the same task-environments. AI researchers would need
to settle on a standardized set of tests to be administered (unmodified!) to all
AI systems that we want to compare. However, it is unreasonable to assume
that all of these systems will be, or even can be, tested on exactly the same
task(s). This would require a test that (a) can be used for all AI systems and (b)
is discriminatory between all pairs compared — clearly an impossibility. Even
if the whole field settled on a standardized test battery today, it would likely
become obsolete as AI systems evolve, as well as fall victim to specialists on the
test: the very antithesis of AGI. We must accept that different systems are, and
will continue to be, developed with different philosophies in mind, as this is how
research is done. Until we have systems with full generality (but possibly not
even then) we need methods for evaluating intermediate milestones on different
paths towards AGI. Given results from two different AGI-aspiring systems on
two different tasks, we could compare them if we had a way of relating the tasks
to each other on (some or all) key dimensions. This is precisely what a task
theory would enable, thus removing the need for a standardized test battery
applicable to all AI systems. All systems — no matter how simple or advanced —
could be evaluated in their “natural habitat” and still be compared to each other,
the quality of which would be determined in part by the power of the theory.
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We’ve argued before that a good A(G)I evaluation framework should enable
the easy manual and automatic construction of task-environments and their
variants as well as facilitate the analysis of parameters of interest [11]. A task
theory should similarly allow us to relate the features of a task to measurable
physical and/or conceptual aspects, enabling comparison of similar and dissim-
ilar tasks, and facilitate the construction of task-environments and variations
on known tasks without changing their nature, so that we may select or design
tasks capable of measuring various aspects of AIs. We would like to be able to
compose and decompose tasks and environments, and scale them up or down
in size or complexity in accordance with robust and well-understood principles.
In order to provide a characterization of task-environments, measures ought to
be defined for properties like determinism, ergodicity, continuity, asynchronicity,
dynamism, observability, controllability, periodicity, and repeatability [11].

Pedagogy. Learning systems must be trained for the task(s) that they are cre-
ated for. In some (simple) cases such systems may be able to learn everything
on their own, but even when teaching isn’t strictly necessary it can improve the
training, e.g. by speeding it up [1]. Teaching is done interactively using various
forms of communication, demonstration and/or by assigning carefully selected or
constructed tasks to the student system so that it may learn the relevant knowl-
edge and skills faster — e.g. teaching simplified versions of a task’s component
parts before teaching the whole. Task theory should help in the construction
of appropriate training scenarios and task features. A deeper understanding of
tasks would also enable systematic use of analogies and abstraction that can be
explained to a student system.

Design. A task theory could also help alleviate some of the trial-and-error
involved in designing AI systems for a particular set of tasks or task types.
Currently designers build up informal, difficult to verbalize experience and intu-
ition for matching certain system features with their understanding of the task at
hand. A task theory would allow for systematic characterization and comparison
of different tasks, and thus take out some or significant parts of that guesswork.
While full-fledged testing and evaluation will remain a necessity, the ability to
e.g. predict time and resource use for a task would create a rapid feedback loop
for designing the AI’s body — and if combined with a theory of learning systems,
also its controller.

3 Requirements for a Task Theory

A task theory should cover all aspects of tasks and the environments in which
they must be executed; in short, it should enable us to model tasks in a way
that supports:

1. Comparison of similar and dissimilar tasks.
2. Abstraction and concretization of (composite) tasks and task elements.
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3. Estimation of time, energy, cost of errors, and other resource requirements
(and yields) for task completion.

4. Characterization of task complexity in terms of (emergent) quantitative
measures like observability, feedback latency, form and nature of informa-
tion/instruction provided to a performer, etc.

5. Decomposition of tasks into subtasks and their atomic elements.
6. Construction of new tasks based on combination, variation and specifications.

These requirements should enable the applications mentioned in the last
section. A computational task theory would provide a foundation for frame-
works/toolkits that can simulate a wide variety of tasks in the form of task
models constructed according to the theory, automatically produce variants of
tasks over some desirable distributions, and run evaluation tests in batch mode
to provide a vast amount of performance data for any set of controllers and
AI systems. Estimation of time, energy and other resource requirements (and
yields) for task completion can be used to design effective and efficient agent
bodies, judge an agent based on comparative performance, and make a cost-
benefit analysis for deciding what (sub)tasks to pursue. The models constructed
according to this theory are used to estimate the AI’s ability to perform real life
tasks if provided with the actuators and sensors contained within the model.3

The performance of the AI can be described by the energy as a function of time
and the precision at which the task was completed, where the highest possible
attainable precision is defined by the laws of physics.

Performing a task in the real world requires time, energy and possibly other
resources such as money, materials, or manpower. Omitting these variables from
the task model is tantamount to making the untenable assumption that these
resources are infinite [12]. Any action, perception and deliberation must take up
at least some time and energy. Therefore every task that we model must have
these components.

Characterization of tasks can facilitate their comparison at a high level,
enabling us to contextualize the performance of different systems on different
tasks. It would also allow us to correlate these quantitative measures with the
performance of a particular agent in order to seek out tasks that are more suit-
able to it (e.g. for evaluation or teaching). Decomposition, abstraction and com-
parison all facilitate a deeper understanding of task-environments that could
potentially be communicated to a student. Comparison of tasks in terms of
e.g. environment contents and structure, can have similar benefits to comparison
in terms of high-level measures, but additionally help with analogical reasoning
and transfer of knowledge.

Importantly, these features would facilitate the construction of new tasks:
they provide building blocks (decomposition), information about fundamental
features to keep (abstraction) and a way to ensure a certain amount of similarity
(comparison). Task theory should allow for the construction of variants of tasks

3 Recall that a task theory would include the limitations that the body of an agent
imposes — its interface to the task-environment.



124 K.R. Thórisson et al.

with differing levels of similarity, and even support generation according to a high
level specification of the characteristics under item 4. Such constructions would
allow for tailor-made training environments and evaluation tools that support a
wide range of systems.

4 What a Task Theory Might Look Like

Completion of a fully-fledged task theory that meets all of our requirements is
a rather large endeavor that has only just begun, and the requirements a task
theory as described above can likely be met in a variety of ways. To make more
tangible our aims with this work we outline now ideas for a concrete direction
we are exploring for physical tasks, as a way to both ground the preceding dis-
cussion and provide some potential demonstrations of its feasibility. For this
purpose we simulate a fully specified task model, allowing precise analysis. Pro-
ducing definitions of key concepts compatible with physics is important to us,
as we are looking for a theory that allows engineering of task-environments with
measurable physical properties.

Estimating the time and energy requirements of a compound task precisely
for an arbitrary agent is tricky: We cannot simply expect that the agent will
immediately pick an optimal action sequence to complete the task using the
minimum amount of time or energy (different strategies may result in the opti-
mization of time vs. energy). One approach would be to map out spaces of
solutions and all possible action sequences. The ratio of these two will tell us the
potential of a controller to fail the task — more formally, the probability of its
successful completion of a random performer. Having a number of dimensions
for which to measure this ratio, including constraints of time, energy, and other
factors, would mean that tasks could be profiled and positioned in a multidi-
mensional manifold. By grounding such measures in absolute physical terms,
distances between any two tasks would represent real physical measurements
and tell us a lot about how the solution spaces for them compare.

When done naively, mapping out the entire space of possible action sequences
is only feasible for very small tasks. However, for compound tasks we could
combine those small tasks in various ways to get larger tasks whose properties
we can estimate (e.g. serial composition multiplies the ratios). Alternatively,
decomposition could be applied until the component parts resemble tasks whose
properties we can calculate.

In order to make any calculations or analysis however, we need a more con-
crete idea of fundamental concepts like environment, state, agent, goal, problem,
and task. These concepts must be defined in a way to facilitate (modular) con-
struction and analysis while preferably not straying too far from their intuitive
notions.

Environment. The highest level in our conceptualization of task-environments
is a world W , which is an interactive system consisting of a set of variables V ,
dynamics functions F , an initial state S0, domains D of possible values for those
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variables, and a possibly empty set of invariant relations between the variables
R: W = 〈V, F, S0,D,R〉. The variables V =

{
v1, v2, . . . , v‖V ‖

}
represent all the

things that may change or hold a particular value in the world. A system’s
dynamics can intuitively be thought of as its “laws of nature”. As a whole, the
dynamics may be viewed as an automatically executed function that periodically
or continually transforms the world’s current state into the next: St+δ = F(St).
However, in practice it is often useful to decompose the dynamics into a set
of transition functions: F = {f1, f2 . . . fn} where fi : S− → S− and S− is a
partially specified state.

Each variable v may take on any value from the associated domain dv ∈ D.
For physical domains we can take the domain of each variable to be a subset of
the real numbers. Invariant relations R are Boolean functions over variables that
hold true in any state that the system will ever find itself in. In a closed system
(with no outside influences) the domains and invariant relations are implicitly
fully determined by F and S0. In an open system — where change may be caused
externally — explicit definition of domains and relations can be used to restrict
the range of possible interactions.

Environments are views or perspectives on the world. In their simplest form
they can be characterized as slices or subspaces of the world, where all variables
can take on a subset of the world’s variables, each variable’s domain is a subset of
that variable’s domain in the world, and only the relevant dynamics and invari-
ants are inherited. Environments can be defined for different purposes (e.g. for
different tasks or agents), and their overlap and similarities can be analyzed. A
task-environment should include all aspects of the world that are relevant to the
completion of the task.

State. A concrete state S is a value assignment to all variables of a sys-
tem: S =

⋃
v∈V {〈v, xv | xv ∈ dv〉}. A state is valid if and only if all relations

hold true: valid(S) ⇐⇒ ∀r∈Rr(S). A partial state S− only assigns concrete
values to a subset of the variables in a system. For real vari-
ables partial states can be represented by using error bounds: S− =⋃

v∈V − {〈v, xl, xu | xl < xu ∧ (xl, xu) ⊆ dv〉}. As such, a partial state really cov-
ers a set of concrete states. This concept is more practical, since it is rare that
we precisely know or care about the value of every last variable: in most cases
only a subset matters, and noise and partial observability make it impossible to
know most values with absolute precision.

Agent. An agent A is an embodied system consisting of a controller C (the
AI system) and a body B. The body is the agent’s interface to the world and
communicates signals from sensors to the controller, which in turn sends back
commands to be turned into atomic actions by the body’s actuators. The inter-
nals of the controller are beyond the scope of a physical task theory, and since
any physical system is naturally embedded in the world, the body merely con-
tains two lists of environment variables that the controller can directly read from
and write to: B = 〈VS , VA〉. In other words: all sensors and actuators must be
(physical) objects in the world.
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Problem and Goal. A goal state g is a desirable (partial) state that the agent
should reach. A failure state g is an undesirable (partial) state that the agent
should avoid. An atomic problem is specified by an initial state, goal states and
failure states. Compound problems can be created by operations like conjunction,
disjunction and negation. A solution is a sequence of (atomic) actions that results
in a path through the state space that reaches all of the goal states and none of
the failure states. A problem for which a solution is known to exist is called a
closed problem.

Task. Finally, a task is a problem assigned to an agent. This assignment
includes the manner in which the task/problem is communicated to the agent —
e.g. whether the agent gets a description of the task a priori (as in AI planning),
receives additional hints, or only gets incremental reinforcement as certain states
are reached. A task is performed successfully once the world’s history contains
a path that solved the problem.

We could additionally attach utility functions to problems to measure the
degree of success — rather than just success/failure/in progress — but we could
also emulate this by assigning the agent multiple simultaneous tasks and the
meta-goal of performing as many as possible. For instance, if a task is considered
successful when a certain (partial) state is reached before time t = 2, but it’s
even more desirable to do it in less time, then we could assign an additional task
that only succeeds if the goal is reached before time t = 1.

Two kinds of tasks are typically identified (cf. [13]): what might be called
achievement tasks (e.g. “ensure X ≈ GX or X �≈ GX before time t ≥ 5”) and
maintenance tasks (e.g. “maintain X ≈ GX or X �≈ GX until t = 10),4 where
X ∈ V and GX ∈ dX . Combinations are possible (“ensure X ≈ GX between
time t = 5 and t = 10”). Performing a task in the real world requires time,
energy, and possibly other resources (money, materials, manpower). But taking
physical constraints into account makes it clear that any goal state must be held
(maintained) for a non-zero duration (at a minimum sufficiently long for the
achievement to be detected). What seems like two kinds of tasks is thus actually
just one kind of goal with particular parameter settings (an accomplishment goal
is simply a goal whose state may be held for a short period of time, relative to
the time it takes to perform the task which it is part of — a maintenance goal
is held for relatively longer periods of time). The highest attainable precision of
a goal state is defined by the laws of physics and the resolution of sensors and
actuators.

For any human-level task in the physical world, even seemingly simple ones
such as doing the dishes or going to the store to buy bread, V and F will generally
be quite large.

4 We use approximate rather than precise equivalence between X and its goal value
GX because we intend for our theory to describe real-world task-environments, which
always must come with error bounds.
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Example. Consider as an example a simplified driving task modeled in
task theory. The agent must drive over a frictionless surface towards a tar-
get that is some distance away by using the gas pedal to control the power
(i.e. the rate at which fuel is burned). The world might be initialized to S0 =
{〈time, 0〉, 〈energy, 10〉, 〈position, 2〉, 〈velocity, 0〉, 〈power, 0〉, 〈mass, 2〉}. The goal
could be g = {〈position, > 10〉, 〈time, < 5〉, 〈energy, > 0〉}: every realistic
task should have a deadline and energy budget. The dynamics are defined
by using basic Newtonian physics: ‘time ← time + δ’, ‘energy ←
energy − δ · power’, ‘position ← max(0,position + δ · velocity)’, and

‘velocity ←
√

2δ·power
mass + velocity2’. The body might simply be defined by

B = 〈{position}, {power}〉, meaning that the agent can observe the position and
control the force. From the dynamics and initial values we can tell for instance
that the time and position will never be negative. However, since the force can
be externally controlled, we need to specify its domain: dpower = [0, 10]. The
agent can solve the task in many ways, but the fastest is to use maximum power
(this takes 2.863 s, but energy runs out after 1). We could perform a different
analysis for optimal energy usage (e.g. using 0.15 J/s solves the task in 9.865 s,
leaving 8.52 J).

More complex variants of this simple task can be made with some slight
adjustments. Tasks from the same family are similar in nature and share many
fundamental properties; they can be closely related, e.g. if they only (slightly)
differ in their initial states or allocated resource budget, and more distantly
if few features are shared, such as tennis and football. Allowing the agent to
choose which direction to move in, for example, increases the chance of the
agent missing the target. Adding friction, wind, obstacles and hills will increase
the complexity of the original task without changing the nature of the model
itself. Another important way to make variations is by changing the resolution,
noise and latency of sensors and actuators. The task can also easily be extended
by adding clauses to the goal (e.g. require that velocity becomes 0), adding more
goals (e.g. to move back to the start), or by adding a second dimension.

5 Conclusions

We have argued for the importance of a task theory for various aspects of AI
research, highlighting system design, pedagogy, and evaluation. Such a task the-
ory should allow for (1) estimation of time, energy and other resource require-
ments (and yields) for task completion, (2) characterization of tasks in terms of
emergent quantitative measures like complexity, observability, etc., (3) decom-
position of tasks into subtasks and their atomic elements, (4) abstraction of
(composite) task elements, (5) comparison of similar and dissimilar tasks, and
(6) construction of new tasks based on combination, variation and specifications.
A physical task theory contains the specification of an agent’s body, but not its
mind, and by virtue of being rooted in the physical world (all worthwhile activi-
ties of AI systems will eventually result in physical events) time and energy must
always be taken into account. A theory like this does not exist yet, and will need
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to be constructed piece by piece. The ideas presented here are our thoughts on
how to start developing such a theory.
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Abstract. Research into the capability of recursive self-improvement
typically only considers pairs of 〈agent, self-modification candidate〉, and
asks whether the agent can determine/prove if the self-modification is
beneficial and safe. But this leaves out the much more important ques-
tion of how to come up with a potential self-modification in the first place,
as well as how to build an AI system capable of evaluating one. Here we
introduce a novel class of AI systems, called experience-based AI (expai),
which trivializes the search for beneficial and safe self-modifications.
Instead of distracting us with proof-theoretical issues, expai systems
force us to consider their education in order to control a system’s growth
towards a robust and trustworthy, benevolent and well-behaved agent.
We discuss what a practical instance of expai looks like and build towards
a “test theory” that allows us to gauge an agent’s level of understanding
of educational material.

1 Introduction

Whenever one wants to verify whether a powerful intelligent system will continue
to satisfy certain properties or requirements, the currently prevailing tendency is
to look towards formal proof techniques. Such proofs can be formed either outside
the system (e.g., proof of compliance to benevolence constraints) or within the
system (e.g., a Gödel Machine [12,15] proving the benefit of some self-rewrite).
Yet the trust that we can place in proofs is fatally threatened by the following
three issues.

First, a formal (mathematical/logical) proof is a demonstration that a system
will fulfill a particular purpose given current assumptions. But if the operational
environment is as complex and partially observable as the real world, these
assumptions will be idealized, inaccurate, and incomplete, at all times. This
renders such proofs worthless (for the system’s role in its environment) and our
trust misplaced, with the system falling into undefined behavior as soon as it
encounters a situation that is outside the scope of what was foreseen. What
is actually needed is a demonstration that the system will continue striving
to fulfill its purpose, within the (possibly evolving) boundaries imposed by its
stakeholders, in underspecified and adversarial circumstances.

c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 129–139, 2016.
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Second, proof-based self-rewriting systems run into a logical obstacle due
to Löb’s theorem, causing a system to progressively and necessarily lose trust
in future selves or offspring (although there is active research on finding
workarounds) [2,21].

Third and last, finding candidates for beneficial self-modifications using a
proof-based technique requires either very powerful axioms (and thus tremen-
dous foresight from the designers) or a search that is likely to be so expensive as
to be intractable. Ignoring this issue, most research to date only considers the
question of what happens after a self-modification—does the system still satisfy
properties X and Y? But what is needed is a constructive way of investigating the
time span during which a system is searching for and testing self-modifications—
basically, its time of growth.

We insist that it is time to rethink how recursively self-improving sys-
tems are studied and implemented. We propose to start by accepting that self-
modifications will be numerous and frequent, and, importantly, that they must
be applied while the agent is simultaneously being bombarded with inputs and
tasked to achieve various goals, in a rich and a priori largely unknown environ-
ment. This leads us to conclude that self-modifications must be fine-grained,
tentative, additive, reversible, and rated over time as experience accumulates—
concurrently with all other activities of the system. From this viewpoint, it
becomes clear that there will be a significant span of time during which an
agent will be growing its understanding of not only its environment, but also the
requirements, i.e., the goals and constraints imposed by stakeholders. It is this
period of growth that deserves the main share of focus in AGI research.

It is our hypothesis that only if an agent builds a robust understanding of
external and internal phenomena [19], can it handle underspecified requirements
and resist interference factors (e.g., noise, input overload, resource starvation,
etc.). We speculate that without understanding, it will always be possible to find
interference factors which quickly cause an agent to fail to do the right thing
(for example, systems classifying an image of a few orange stripes as a baseball
with very high confidence [6,17], or virtually all expert systems from the 1970s).
A system with understanding of its environment has the knowledge to recognize
interference and either adapt (possibly resulting in lower performance) or report
low confidence. Only by testing the level of understanding of the system can we
gain confidence in its ability to do the right thing—in particular, to do what we
mean, i.e., to handle underspecified and evolving requirements.

The rest of this paper is outlined as follows. In Sect. 2 we discuss the overar-
ching approach and fundamental assumptions this work rests on, including some
of the issues not addressed due to limitations of space. In Sect. 3 we define the
class of expai systems. In Sect. 4 we show that an instance of expai is capable
of recursive self-improvement despite not performing any proof search. In Sect. 5
we build towards a Test Theory that will allow us to gauge the direction and
progress of growth of an expai agent, as well as its trustworthiness.
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2 Scope and Delineation

The scope of this paper is the question of how to ensure that an AI system
robustly adheres to imposed requirements, provided that the system’s designers
are reasonable and benevolent themselves, but not perfectly wise and confident.1

We take an experience-based approach that is complementary to proof-based
approaches. In fact, parts of an expai implementation may be amenable to for-
mal verification. Moving away from formal proof as the only foundation must
ultimately be accepted, however, because no AGI in a complex (real-world)
environment can be granted access to the full set of axioms of the system–
environment tuple, and thus the behavior of a practical AGI agent as a whole
cannot be captured formally.

The practical intelligent systems that we want to study are capable of recur-
sive self-improvement : the ability to leverage current know-how to make increas-
ingly better self-modifications, continuing over the system’s entire lifetime (more
concisely: flexible and scalable life-long learning). Our aim here is not to propose
a new learning algorithm but rather to establish a discourse about systems that
can learn and be tested, learn and be tested, and so on. We want to study their
growth and learning progress, over their entire, single life.

As this paper is about the expai class of systems, no results of experiments
with any particular instance of expai are discussed here, but can be found else-
where [9–11].2

Finally, we leave aside the issue of fault tolerance, which is the ability to han-
dle malfunctioning internal components, and is usually dealt with using replica-
tion, distribution, and redundancy of hardware.

3 Essential Ingredients of expai

Here we define the essential ingredients of any system in the class of expai.
Besides having the capability of recursive self-improvement (Sect. 4), it must be
feasible to grow an instance of expai in the proper direction. Therefore it is
crucial that expai allows for the following capabilities as well:

1. Autonomously generated (sub)goals must be matched against requirements
in a forward-looking way; that is, the effects of committing to such goals must

1 This work is motivated in part by the fact that human designers and teachers do not
possess the full wisdom needed to implement and grow a flawlessly benevolent intelli-
gence. We are therefore skeptical about the safety of formal proof-based approaches,
where a system tries to establish the correctness—over the indefinite future—of self-
modifications with respect to some initially imposed utility function: Such system
might perfectly optimize themselves towards said utility function, but what if this
utility function itself is flawed?

2 The system in the cited work, called aera, provides a proof of concept. We are
urging research into expai precisely because aera turned out to be a particularly
promising path [10] and we consider it likely to be superseded by even better and
more powerful instances of expai.
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be mentally simulated and checked against the requirements and previously
committed goals for conflicts.

2. It must be possible to update the requirements on the fly, such that stake-
holders can revise and polish the requirements as insight progresses. This only
makes sense if the motivational subsystem (i.e., the routines for generating
subgoals) cannot be modified by the system itself.

3. The capabilities to understand, prioritize, and adhere to requirements must
be tested regularly by stakeholders during the time of growth, in order to
build our confidence and trust, before the system becomes too powerful (or
capable of deception).

All of the terms used above will be defined precisely below. The diagram
of Fig. 1 serves as an illustration of the expai “ingredients” discussed in this
section.

Fig. 1. The organization and interaction of the essential ingredients of expai systems.

Requirements. Requirements are goals plus constraints. A goal is a (possibly
underspecified) specification of a state. Constraints are goals targeting the neg-
ative of a state. A state is any subset of measurable variables in the external
world. All (external) inputs and (internal) events in the memory of the system
together typically constitute a subset of the world’s state (partial observability
with memory). Once a constraint matches a state, the constraint is said to have
been violated (which may or may not be sensed).

Since requirements will be specified at a high level, the system will have to
generate subgoals autonomously, in order to come up with actions that satisfy
the goals but stay within the constraints.3 Of course the crux is to ensure that
the generated subgoals remain within the specified constraints.

3 The only way to avoid the autonomous generation of subgoals is to specify every
action to be taken—but that amounts to total preprogamming, which, if it were
possible, would mean that we need not impart any intelligence at all.
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Knowledge. We wish not to lose generality but still need to specify some
details of knowledge representation to make any kind of arguments regarding
self-improvement and growth.

We specify that an expai system’s (procedural) knowledge is represented as
granules,4 which are homogeneous and fine-grained—it is these granules which
are the subject of self-modification, i.e., they can be added and deleted (basically,
learning). Since granules capture all the knowledge of the system, their con-
struction and dismissal constitutes comprehensive self-modification [8,20]. The
granules are required to be structured enough such that they can be organized
both sequentially and hierarchically, and that they provide the functionality of
both forward models (to produce predictions) and inverse models (to produce
sub-goals and actions), in the Control Theory sense.5 Moreover, for ease of pre-
sentation, granules also include the sensory inputs, predictions, goals, and any
other internal events that are relevant to the system at any time.

The initial set of granules at system start-up time is called the seed [9]. Since
systems cannot build themselves from nothing, the seed provides a small set of
granules to bootstrap the life-long learning processes.

Drives. Goals are subdivided in drives and subgoals. Drives are goals speci-
fied by a human, in the seed or imposed or updated at runtime. Subgoals are
autonomously generated by granules in inverse mode. Technically all goals may
be represented in the same way; the only reason why in some contexts we dis-
tinguish between drives and subgoals is to clarify their origin. We can now more
accurately state that requirements are drives plus constraints. A system which
has constraints must also have at least one drive that specifies that it must keep
its world knowledge updated, such that the system cannot choose not to sense
for constraint violations.6

Controller. The controller is the process that dynamically couples knowledge
and goals to obtain actions. More technically, the controller runs granules as
inverse models using goals as inputs, producing subgoals. An action is a goal
that has the form of an actuator command; it is executed immediately when
produced.

To be clear, the controller is not the source of intelligence; it is following a
fixed procedure and has no real choices. Conflict resolution among goals and
actions is simply a result of ascribing two control parameters to goals: value
(based on requirements) and confidence (based on control parameters inside

4 By definition, a granule is a very small object that still has some structure (larger
than a grain).

5 In short, this statement just asserts the sufficient expressive power of granules.
6 By design such a drive cannot be deleted by the system itself. More sophisticated

means of bypassing drives (e.g., through hardware self-surgery) cannot be prevented
through careful implementation; indeed, the proposed Test Theory is exactly meant
to gauge both the understanding of the imposed drives and constraints, and the
development of value regarding those.



134 B.R. Steunebrink et al.

granules, see below). Scarcity of resources will necessitate the controller to ignore
low-value or low-confidence goals, leading to a bottom-up kind of attention.

Learning. expai specifies only one level of learning: at the level of whole gran-
ules. One can envision adaptation of granules themselves, but here we simplify—
without loss of generality—by specifying that adapting a granule means deleting
one and adding a new one. Optimization is not important at this level of descrip-
tion.

Addition of granules can be triggered in several ways. One is based on unex-
pected prediction failure and goal success: these are important events that an
agent needs to find explanations for if it did not foresee them. Such an expla-
nation can—in principle—take into account all inputs and events in the history
of the system; though in practice, the breadth and depth of the granules to
be added will be bounded by available time and memory (e.g., the system may
have deleted some old inputs to free memory). Different arrangements of multiple
granules can be instantiated at once as explanations [11], but a comprehensive
exploration of possible granule arrangements is outside the scope of this paper.
Although this way of adding granules does not allow an agent to discover hidden
causations, these can be uncovered using the curiosity principle [13,14].

Curiosity can be seen as the drive to achieve progress in the compression
of resource usage [16]. Curiosity can generate hypotheses (in the form of new
but low-confidence granules and intrinsic goals) in order to plug the gaps in
an agent’s knowledge. For example, an expai agent can hypothesize general-
izations, inductions, abstractions, or analogies—its controller will pick up such
autonomously generated goals as part of its normal operation, competing with
goals derived from drives. If they do not conflict, the agent will effectively per-
form “experiments” in order to falsify or vindicate the hypothesized granules.
Falsified granules will be deleted as usual, as described next.

Deletion of granules is based on performance rating and resource constraints:
poorly performing granules are deleted when memory space must be freed.
Performance—or confidence—of a granule can be measured in terms of the
success rate of its predictions. Low-confidence extant granules are unlikely to
influence behavior as the predictions and subgoals they produce will also have
a low confidence and are thus unlikely to be selected for further processing or
execution, assuming the controller has limited resources and must set priorities.
Crucially, the expai approach demands that new granules have a very low con-
fidence upon construction; thus, the controller will only allow such granules to
produce predictions and not to participate in producing subgoals, until their
value has been proven by experiential evidences. If not, unsupported granules
will eventually be deleted without ever having affected the external behavior of
the system.

Although the controller does not learn directly, it is in a positive feedback loop
with the learning of granules: as the system learns more about its environment
and requirements, the more accurately and confidently do the granules allow
the generation of subgoals that are targeted at fulfilling those requirements, the
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more experience the system will accumulate regarding the requirements, and the
more confidently can the controller select the right actions to perform.

4 Recursive Self-Improvement

A defining feature of expai is that granules are added quickly but tentatively,
and verified over time. The issue of formal verification of the benefit of a potential
self-modification is thus replaced by a performance-rating process that observes
the benefit of a fine-grained additive modification in the real world. Such addi-
tions are warranted by experience and do not disrupt behavior—and are thus
safe without forward-looking proof—because granules (1) are small, (2) have a
low associated confidence upon construction, and (3) are constructed to capture
actually observed patterns. The three processes that act on the set of granules—
namely additive, subtractive, and compressive—are separate processes, ideally
running concurrently and continuously.

An expai thus implemented is capable of performing recursive self-improve-
ment, which is the ability to leverage current know-how to make increasingly
better self-modifications. This capability is a natural consequence of an expai’s
construction and one realistic assumption, as shown by the following line of
reasoning:

1. Assumption: The world has exploitable regularities and is not too deceptive
and adversarial (especially in the presence of a teacher and guardian during
early, vulnerable learning stages).

2. By construction: Knowledge and skills are represented at a very fine gran-
ularity, homogeneously, and hierarchically by granules, and these granules
comprehensively determine behavior.

3. By construction: Learning is realized by three separate types of processes—
additive, subtractive, and compressive:
a. adding granules through pattern extraction (performed upon unexpected

achievements or failures, to construct explanations thereof);
b. deleting the most poorly performing granules (when their performance

rating or confidence falls below a threshold or memory needs to be freed);
c. compressing granules through abstraction, generalization, and possibly

even compilation into native code [16] (performed on consistently reliable
and useful granules)—this ensures scalability and prevents catastrophic
forgetting.

4. By construction: Curiosity is realized through a simple analysis of granules’
performance ratings (plus possibly more sophisticated “nighttime” analysis
of recent inputs and internal events [16]) leading to the injection of “intrinsic”
goals that can be pursued by the system unless they conflict with extrinsic
(user-defined top-level) goals.

5. From (2) and (3) we conclude that learning entails comprehensive self-
modification, which is performed throughout the system’s (single) life time.

6. From (1) and (4) we conclude that good experience is gathered continually.
7. From (5) and (6) we conclude that an expai performs self-improvement.
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8. Since an expai is supposed to run continuously (“life-long learning”), with
its controller dynamically coupling the currently best know-how to satisfy
both extrinsic goals (human-imposed drives and associated subgoals) and
intrinsic goals (curiosity), we conclude that an expai performs recursive self-
improvement.

This concludes our argument that an expai agent can grow to become an
AGI system without a need for (mathematical/logical) proof search, arguably
even through means that are simpler and easier to implement. But we insist that
it is unsatisfactory and insufficient to prove beforehand that a system is capable
of recursive self-improvement. It is paramount that we manage the system’s
growth, which is a process in time, and requires our interaction and supervision.
Therefore we must develop teaching, testing, and intervention principles—in
short, a Test Theory.

It makes sense now to distinguish between “epistemological integrity”
(treated up to now) and “action integrity” (treated in the next section) of
self-modifications. The former means that a particular self-modification will not
break existing useful and valuable knowledge and skills; the latter means that
capabilities introduced or altered by the self-modification do not result in acts
that violate constraints imposed by stakeholders. These two kinds of integrity
affect the safety of a system, and they warrant different measures.

5 Towards a Test Theory

The primary aim of Test Theory is to establish a methodology by which stake-
holders can progressively gain confidence and trust in an agent’s capability to
understand phenomena and their meaning, of interest to said stakeholders. So
Test Theory is first and foremost about gauging levels of understanding in service
of confidence-building. The way this is achieved—with humans in the loop—will
probably involve the interleaving of curricula (with room for teaching and playing)
and tests, much like the structure of human schooling. This will hardly come as a
surprise, and indeed this idea has been floated before (e.g., AGI preschool [3] and
AI-Kindergarten [7]). However, it must be realized that we (as growers of recur-
sive self-improvers) face a vastly different challenge than school teachers. Namely,
we cannot assume the presence of a functioning brain with its innate capabilities
to acquire understanding and adopt value systems, ready to be trained. We are
simultaneously developing the “brain” itself and testing its capabilities—and cru-
cially, we are “developing” the requirements that capture the value system that
we wish to impose, as well as our confidence and trust in the agent’s capability to
understand and adhere to it. Therefore our theory makes a distinction between
the performance on a test (being the agent’s level of understanding of the taught
material) and the consequences of a test (see below).

To be more precise, a test is specified to comprise the following five aspects:

– a set of requirements (Sect. 3) specifying a task [18];
– an agent (to be tested);
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– pressure (explained below);
– a stakeholder (evaluating the performance of the agent on the task);
– consequences (the stakeholder makes a decision about the future of the agent

based on its performance).

It is important to realize that the very specification of a task already deter-
mines what one can measure for. Educational science has produced valuable
analyses of what kind of questions test for what kind of knowledge; for exam-
ple, Bloom’s taxonomy (1956) [1] and its more recent revisions [4,5] have been
widely used for developing guidelines for designing and properly phrasing exams.
However, such taxonomies are (understandably) human-centric and not directly
applicable for testing artificial agents—especially experimental and rudimen-
tary ones—since they assume full-fledged natural language understanding and
a human-typical path of growth of skills and values. In current research we are
developing a more mechanistic taxonomy of task specifications, which does not
require natural language, and which tests for the proper functioning and usage
of mechanisms that give rise to different levels of understanding of phenomena
and their meaning [19].

A high level of understanding of phenomenon X shall imply three capabilities:
(1) how to make and destroy X, (2) how to use X in the common way, and (3) how
to use X in a novel way. For example, consider an agent learning to understand
tables, and being presented with an image of a table with its top surface lying on
the ground and its legs pointing upwards. When queried whether this is a table,
a yes/no answer will indicate a very low level of understanding. A much higher
level would be evident if the agent would somehow answer “Well, it’s potentially
a table, if only someone would rotate it such that the top is supported by the
legs, because the common usage of a table is to keep objects some distance up
from the ground.” An even higher level of understanding would be evident if the
agent would autonomously figure out that it can achieve a goal such a reaching
an elevated object by climbing itself on top of the table.

The stakeholder must associate consequences to each test, based on the mea-
sured performance of the agent. He may conclude that the system is ready to
be deployed, or that it needs to follow additional prerequisite curricula, or that
it must be sent to the trash bin and us back to the drawing board. Another
possible consequence is that we realize that there are errors or imperfections in
the requirements, and update those.

In order for trust to develop, an agent must be put under pressure. Consider
that a growing agent has not only short-term test-based requirements (which
delineate the task(s) to be completed), but also holds long-term requirements
(e.g., staying alive, not harming humans, etc.—possibly underspecified). Pressure
then results from having to accomplish a task not only on the edge of violation
of the test-based constraints, but also on the edge of violation of the long-term
constraints. Thus pressure can illuminate the capability of the tested agent to
prioritize its constraint adherence. Of course trust is built slowly, with pressure
being applied initially in scenarios where failure is not costly.
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Fig. 2. (a) Directly observable graceful degradation; (b) brittleness leading to cata-
strophic failure; (c) robustness with sudden failure, mitigated by “graceful” confidence
reporting.

Considering an agent’s point of failure allows us to gauge the agent’s robust-
ness, its capability to degrade gracefully, and brings us full circle back to the
issue of understanding. Given some measurement of the agent’s performance on
a task, if we observe that this performance does not drop precipitously at any
point (Fig. 2a) as we increase interference (including resource starvation), then
we can ascribe it the property of graceful degradation. If, however, the agent fails
suddenly (e.g., by violating a stakeholder-imposed constraint), we call it brittle
(Fig. 2b). From this viewpoint, the level of robustness of the agent is its ability to
keep performance up in spite of interference (Fig. 2c). A robust agent may actu-
ally fail ungracefully—at least, if we only judge from observed behavior. An agent
with high levels of understanding, however, will be able to recognize increased
interference. Now, trustworthiness can be earned by the agent when it leverages
this understanding to report—to the stakeholder—its confidence regarding its
ability to continue satisfying the imposed requirements.

Continuing this research, we will further develop, formalize, and implement
the Test Theory into a tool that can be used to measure and steer the growth
of recursively self-improving expai agents—in such a way that we can become
confident that they understand the meaning of the requirements that we impose
and update.
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Abstract. This paper compares two understandings of “learning” in
the context of AGI research: algorithmic learning that approximates an
input/output function according to given instances, and inferential learn-
ing that organizes various aspects of the system according to experience.
The former is how “learning” is often interpreted in the machine learn-
ing community, while the latter is exemplified by the AGI system NARS.
This paper describes the learning mechanism of NARS, and contrasts it
with canonical machine learning algorithms. It is concluded that infer-
ential learning is arguably more fundamental for AGI systems.

1 Learning: Different Conceptions

Learning is always considered an important aspect of intelligence. Machine learn-
ing has grown into one of the most active fields in AI, and it gives computers the
ability to work without being explicitly programmed with problem-specific skills.
Learning algorithms have been used in many applications in various domains
[4,14]. In recent years, deep learning techniques have dramatically improved the
state-of-the-art in fields like vision, speech recognition, natural language process-
ing, and game playing [6,19].

However, it does not mean that the existing machine learning techniques have
satisfied the needs for learning in AGI systems. In cognitive science, “learning”
is usually taken as having multiple forms, such as associative learning, skill
learning, inductive learning, etc. [12]. Though machine learning study also covers
supervised learning, unsupervised learning, reinforcement learning, etc., many of
them can still be considered “algorithmic learning”, consisting of two steps, each
following an algorithm [4]:

1. the learning process follows an algorithm that takes the training data as input,
and produces a model as output;

2. then, the model serves as an algorithm that carries out the domain task.

A comparison between an early (1984) collection on machine learning [7] and
a recent (2012) textbook on the topic [4] shows clearly that algorithmic learn-
ing has become the dominate paradigm, while the other forms of learning have
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largely faded out. Of course, as a highly diverse field, not all machine learning
techniques fit this description, but it is still a widely adopted framework.

Algorithmic learning has its roots in the foundation of computer science,
where a problem-solving process is normally specified as following a problem-
specific algorithm. In conventional systems, the problem-specific algorithms are
programed by human beings and followed by computers, so consequently a com-
puter system serves as a function that maps any given problem instance into the
corresponding solution. In algorithmic learning, the domain task is still taken to
be a function to be carried out, except that this function is not specified in its
general form by an algorithm, but exemplified by the training data, so “learn-
ing” becomes the problem of generalizing the training data to an approximate
function. This process is taken to be a meta-problem (function approximation)
to be solved by a meta-algorithm (the learning algorithm).

A typical way to realize algorithmic learning is with a feedforward neural
networks [4,6]. It has been proved that such networks are universal function
approximators. In such a system, the input and output data, as well as the
intermediate results, are normally represented as vectors. Each instance corre-
sponds to a point in a multidimensional space. The domain task is to produce an
output vector according to the input vector, under the assumption that similar
inputs will yield similar outputs. In other words, the function to be approximated
(or learned) must be smooth.

The training instances are usually assumed to be randomly and indepen-
dently selected from a sample space. The learning algorithm takes the training
data as input, and produces a model that maps every instance in the sample
space to output in a way that is mostly consistent with the training data. The
model should be confirmed using certain testing data, also randomly selected
from the sample space. After that the model is ready to be used as an algorithm
for the domain problem, where the data come from the same sample space, too.

Advances in learning algorithms, an increase in available training data, and
ever more powerful hardware have allowed algorithmic learning techniques, espe-
cially deep neural networks that have multiple intermediate layers, to produce
surprisingly good results.

In spite of its successes, “function approximation” is not the only meaningful
interpretation of “learning”. Even if we ignore the relevant works in cognitive
psychology and developmental psychology, and focus on machine learning only,
there is still a tradition of inferential learning. This tradition came from the
logical study of non-deductive inference (induction, abduction, and analogy),
with the work of Michalski as the best-known example [8,9,21].

This approach represents a understanding of learning that is very different
from algorithmic learning (as exemplified by feedforward neural networks), as
shown in the following aspects:

Knowledge representation: The system’s knowledge base is represented as a
set of beliefs, which usually can be seen as a conceptual network or hierarchy.

Learning problem specification: Learning corresponds to the modification of
the knowledge base, such as adding, deleting, and revising beliefs. In terms
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of the conceptual network, learning means the modification of the topological
structure, as well as the adjustment of the parameters of the network.

Learning process specification: The learning process follows a set of inference
rules, each triggered under certain conditions and cause specific effects. Learn-
ing process is not necessarily separated from the other reasoning processes,
and there may be no specific “learning algorithm”.

Though this conception of learning appeared early in the history of machine
learning, it has gradually lost favor in that community, and is even rarely men-
tioned in recent textbooks [4]. What we would like to do in this paper is to
provide a more advanced model of inferential learning, and to argue for its
advantages over algorithmic learning in the context of AGI projects. Some of
the arguments have been presented in our previous publications [21–23], though
here they are revised to take the recent progresses into account.

2 Learning in NARS

NARS is a reasoning system based on the theory that “intelligence” is the ability
for a system to adapt given insufficient knowledge and resources. That is, the
system must depend on finite resources to make real-time response while being
open to unanticipated problems and events. In other words, an intelligent system
must be able to learn from its experience in a problem domain. Consequently, the
system’s solutions are usually not absolutely optimal, but the best the system can
find at the time, and the system could always do better if it had more knowledge
and resources. The project has been described in detail in two books [23,24] and
many papers, which, and the source code of the current implementation, can be
accessed at http://cis-linux1.temple.edu/∼pwang/. In this paper, we only briefly
introduce the learning mechanism of the system.

The domain knowledge of NARS is represented as a collection of beliefs.
These summarize the system’s experience in the form of a sentences according to
a formal grammar. The grammar of NARS is distinct from most other reasoning
systems where the representation is a first-order predicate calculus or variant
thereof. The language of NARS is based in the term-logic tradition, where a
sentence has a “subject-copula-predicate” format.

A typical statement in NARS has the form of “S → P 〈t〉”, where ‘S’ is the
subject term, ‘P ’ the predicate term, ‘→’ the “inheritance copula” indicating
that the subject is a specialization of the predicate (or, equivalently, the predicate
is a generalization of the subject), and ‘t’ the truth-value of the belief, which is
a pair of numbers “frequency-confidence” that measures the evidential support
the belief gets from the system’s experience. The frequency value is defined as
w+/w (the proportion of positive evidence among all current evidence), and the
confidence value is defined as w/(w + k) (the proportion of current evidence
among all future evidence after a constant amount of evidence arrives). Detailed
explanations of the NARS truth-value can be found in [23], while for the current
discussion, it is enough to know that no belief is absolutely certain, and all truth-
values can be revised by new evidence, though those with higher confidence will

http://cis-linux1.temple.edu/~pwang/
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be more stable. This definition of truth-value is one implication of the assumption
of insufficient knowledge and resources.

Using this language, the beliefs of the system can be naturally visualized as a
weighted graph, with terms as vertices, statements as edges, and truth-values as
weights. When implemented in a computer system, a “concept” is a data struc-
ture identified by a term and referring to all the statements with that term as a
component (e.g., subject or predicate). The “content” or “meaning” of a concept
consists of what the system knows about it at the moment. Since concepts are
summaries of the system’s experience, there will be new concepts introduced or
generated from time to time, and the meaning of the existing concepts may also
change. Therefore NARS has an “experience-grounded” semantics.

The assumption of insufficient resources has several implications. Due to
storage restriction, some contents in a concept may be removed to release space
for new contents, and even whole concepts may be deleted. This mechanism is
responsible for “absolute forgetting”, by which some information is permanently
lost. Due to the demand of producing real-time responses to inference tasks,
the beliefs within a concept have a priority distribution maintained dynamically
among them, and so do the concepts in the memory. At any moment, the system
allocates its processing time among its concepts according to their priority values.
Within each concept, high-priority beliefs are accessed more often.

According to the changes in the environment, as well as the feedback after
each inference step, the priority values of the relevant concepts and beliefs are
adjusted, partly to reflect their relevance to the current situation and their use-
fulness in past problem-solving processes. This mechanism is responsible for
“relative forgetting”, by which some information gradually becomes less acces-
sible. Though forgetting is often undesired, it is inevitable in a system that is
always open to new information and must make real-time responses.

Though the above description only provides a highly simplified description
of the memory of NARS, it still shows that the domain knowledge of NARS can
be roughly divided into three kinds:

1. The terms and the concepts named by them,
2. The beliefs that relate the terms to each other, with their truth-values,
3. The priority values of the concepts and beliefs.

NARS has complete learning capability, in the sense that all of the three
kinds of knowledge can be generated or modified by the system itself, given
proper experience.

Experiences in NARS consists of a stream of input sentence, and each of them
is a task to be processed. If an input task contains a novel term or statement
that does not exist in the system at the moment, the corresponding new concept
and statement will be generated and added into the memory. This is the simplest
form of learning: learning by being told.

New concept and statements can also be generated by the system’s inference
rules. NARS is designed in the term logic framework, mainly because this frame-
work naturally supports the unification of several types of inference. Here deduc-
tion takes the syllogistic form as in Aristotle’s Syllogistic [1], then following the
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approach of Peirce [11], abduction and induction can be obtained from deduction
by exchanging a premise and the conclusion.

deduction abduction induction
first premise M → P P → M M → P

second premise S → M S → M M → S
conclusion S → P S → P S → P

Different from Aristotle and Peirce, we define these types of inference in a multi-
valued logic, so there is a truth-value function attached to each rule to calculate
the truth-value of the conclusion from those of the premises, and different rules
have different functions. Among the above three, deduction may generate high-
confidence conclusions, while the other two can only generate low-confidence
conclusions, which are usually considered as hypotheses.

Beside the above syllogistic rules that generate new statements among given
terms, NARS also has compositional rules that generate new terms to summarize
given premises. The following are some examples.

union intersection difference
first premise M → P M → P M → P

second premise M → S M → S M → S
conclusion M → (S ∪ P ) M → (S ∩ P ) M → (S − P )

These rules also have their truth-value functions. In these rules, the predicate
terms of the conclusions are “compound terms” composed from the predicate
terms of the premises, so as to provide a more efficient representation of the same
information. There are also rules where the subject terms of the conclusions are
compounds.

Beside the above compounds that are similar (though not identical) to
set operations, compound terms also include Cartesian products (i.e., ordered
sequences) of terms and statements themselves (so there can be statements of
statements). Furthermore, compounds can be used recursively to form more
complicated terms, as well as used in inference in the same way as the atomic
(i.e., non-compound) terms. In this way, the system can learn the patterns that
it noticed in experience, and then reason on them in the same way as atomic
terms.

Here what the syllogistic rules and compositional rules do can be consid-
ered both as reasoning and as learning, from different perspective. Such a step
is learning because the conclusion represents the experience provided by the
premises in a different form, and the inference step modifies the memory in an
enduring manner.

If an input or generated statement or term already exists in the memory, the
new item will be merged with the existing item, which may lead to the change
in the truth-value of the statement or the content of the concept identified by
the term. These changes also let the system gradually learn from its experience.

Finally, the priority-value adjustments correspond to the learning of a type of
domain knowledge, too, even though the results of this learning is embedded in
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the memory structure, rather than explicitly expressed by terms and statements.
It is well known that in problem solving, it is often crucial to know which con-
cepts and beliefs should be considered first among all alternatives, and this type
of knowledge usually comes from the accumulated feedback of problem-solving
practices.

Putting the above learning mechanisms together, NARS can start with an
empty memory and learn all domain knowledge from its experience. Even though
for practical considerations the system can also start with a preloaded memory,
all contents in the memory can still be revised and adjusted by future experi-
ence. The primary function of learning in NARS is to organize its experience
to meet the need of adaptation under the restriction of insufficient knowledge
and resources. The only knowledge that cannot be learned is the meta-knowledge
embedded in the system’s grammar rules, inference rules, resources management
policy, etc. Since all meta-knowledge is domain-independent, NARS can be put
to learn and work in any domain.

3 Comparison and Discussion

Though the above descriptions about the two conceptions of learning are rela-
tively simple, they nevertheless show enough differences. In the following they
are compared, using NARS and the deep learning (DL) architecture described
in [6] as examples. The evaluation will be based on in the requirements of AGI,
rather than that of a specific domain problem.

In knowledge representation, the two approaches follow different traditions:
NARS uses sentences in a formal language, while DL uses vectors in a feature
space. In principle, the two are equivalent, in the sense that any knowledge base
in one can be converted into the other. However, in practice there are several
factors to be considered, such as naturalness, flexibility, and efficiency. Vector-
based representation is natural for sensory input, but much less so for symbolic
input. Though “word vectors” and “thought vectors” have been introduced, they
are either inefficient (when the number of dimension is high) or hard to inter-
pret (when the number of dimension is low). To explicitly represent conceptual
structure is also difficult. On the other hand, NARS allows vectors to be used
as a special type of compound term (called product in [23,24]), which, plus the
other types of compound terms, make the representation of symbolic structure
very easy and natural.

In DL, the vectors are connected in a layered network with a fixed topo-
logical structures, with links between layers corresponding to generalization. As
explained above, the conceptual structure in NARS is dynamically generated
and modified, and the conceptual relation inheritance also corresponds to gen-
eralization. NARS also has other copulas, including similarity, implication, and
equivalence, so can directly represent various conceptual relations. Furthermore,
NARS has no problem to introduce new terms at run time, while DL normally
requires a constant vocabulary.

NARS is designed according to an experience-grounded semantics, which is
intuitively located between the localized representation of symbolic approaches
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and the distributed representation of neural networks. In NARS, the meaning
of a concept is defined by its relations with other concepts, not an “object” it
refers to, and each relation is true to a degree. In this aspect, its knowledge
representation is also “distributed” to an extent. However, all the relations in
the network correspond to copulas that have well-defined meaning, rather than
merely as associations that spread activations. For this reason, it is possible to
carry out various types of inference, which can be justified as valid according
to the semantic theory. The representation also has a “localized” aspect, as
each individual concept and belief can be interpreted meaningfully by itself,
rather than only has a holistic interpretation as in DL – in DL only the input
and output vectors are meaningful outside the network, while the intermediate
results represented by the hidden nodes are not always easy to understand.

In DL, the task of a learning system is usually taken to be the approximation
of a function defined between the input and output of the whole system. This
focus on end-to-end relation allows the system to be trained and evaluated as a
blackbox, without the need to interpret the intermediate results. Though such
a treatment is desired for systems designed for single tasks, it has difficulty in
handling multiple types of tasks. The explorations in transfer learning [20], mul-
titask learning [17], and multi-strategy learning [2] are pushing machine learning
in this direction, though the progress so far is limited. On the contrary, NARS
is not designed to answer any specific type of question. Instead, it can be asked
any question expressible in its language. Consequently, any concept and belief
in the system can be asked, so it can be learned by the system, and after that
it can also be used to answer questions about other concepts and beliefs. In this
way, the distinction of “input” and “output” terms/statements is relative and
temporary, and there is no separately defined “task domains”.

Besides being restricted to a single function exemplified by the training data,
the blackbox nature of DL has other issues, such as the interpretation of its
successes and mistakes. It has been found that learning algorithms can make
mistakes that never happen to human beings [5,10]. One possible reason is
because the intermediate levels of generalization are not directly verified, but
only judged by their contributions to the ultimate output. Since after each gen-
eralization the feature space is transferred into another one, similar points in
the former and those in the latter are not necessarily the same, as long as they
are not sufficiently close to a training instance. On the contrary, in NARS every
level of generalization is produced by inference rules and verified independently.
Even though the system may make mistakes due to insufficient knowledge and
resources, it will not make incomprehensible mistakes.

NARSallowsmultiple levels of generalization of the same experience. For exam-
ple, the observation “Tweety flies” can be generalized by the belief “Tweety is a
canary” to “Canaries fly”, by the belief “Tweety is a bird” to “Birds fly”, and by the
belief “Tweety is a animal” to “Animals fly”, all by the same induction rule. It is the
other experience that will gradually differentiate these results: over-generalization
(“Animals fly”) will lose priority due to its low frequency (from more negative
evidence), and under-generalization (“Canaries fly”) will lose priority due to its
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low confidence (from less total evidence), compared to the proper generalization
(“Birds fly”). Of course the system will not try all possible generalizations, but
only those that get the system’s attention in resource competition. This possibility
of multiple-generalization suggests solutions to the over-fitting problem and the
inductive biases problem, as the system can keep several generalizations for differ-
ent needs, instead of choosing one at the beginning. Similarly, in concept learn-
ing the result is not necessarily a partition of the instances, but can allow mul-
tiple inheritance or overlapping concepts with graded membership. For example,
Tweety can be learned to be a canary, a yellow thing, and a cartoon character, at
the same time.

The learning mechanism in NARS covers several processes that adjust various
aspects of the memory. So there is no single “learning algorithm” in the system,
but multiple algorithms for different purposes. Furthermore, learning is unified
with reasoning, and is carried out by a set of inference rules, each implemented
by a lightweight algorithm that can be finished within a constant amount of
time. Due to insufficient resources, NARS does not attempt to use all relevant
beliefs on each problem, but only accesses the high-priority ones within the
currently available time for the problem. Consequently, a system-level learning
problem, such as to digest a piece of new knowledge or to acquire a complicated
concept, is carried out by many inference steps linked together at the run time
according to many ever-changing factors, so may not be accurately repeatable.
This result also means that in NARS there is no problem-specific algorithm or
stable input–output mapping, as the output depends on history and context.

In NARS, this “non-algorithmic” learning mechanism provides a unified solu-
tion to several issues that are being explored in machine learning study:

One-shot learning [3]: Inference rules like induction and abduction can use a
single example to generate a hypothesis, i.e., a belief with low confidence value.
More examples will increase the confidence value, though are not required for
the generation of hypotheses.

Online learning [16]: As an open system, NARS does not require all training
data to be available at the very beginning, but allows them to come from time
to time. New evidence will lead to incremental revision of existing beliefs and
concepts, rather than demanding a complete retraining.

Real-time learning [13]: Since each type of learning task in NARS does not
follow a fixed algorithm, its processing has no determined time requirement.
Instead, each task instance can have its only time requirement attached, and
the system will process it accordingly, similar to an anytime algorithm.

Active learning [15]: NARS uses backward inference to generate derived ques-
tions, so has the ability to actively collect information to answer questions,
rather than passively using whatever input the environment provides to it.
Even the existing beliefs will be selectively used.

Life-long learning [18]: In NARS, learning is not a separate process, but a
cognitive function carried out by almost all the processes in the system. As
long as the system runs, multiple self-organizing activities will happen in
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various parts. In no time will a belief or concept be finally “learned” so that
no further revision is possible.

In NARS, all these properties are natural features of the inferential learning
processes, rather than additional attributes to be realized separately.

4 Conclusions

In machine learning study, “learning” is often formalized as a computational
process following an algorithm, and the process produces an approximate func-
tion according to training cases, which then is used to solve a domain problem.
Though this “algorithmic learning” surely cannot cover all types of machine
learning techniques, it nevertheless is a representative paradigm.

Such an algorithm is designed to carry out a specific type of learning in
isolation, while in an AGI system the learning function and the other cognitive
functions need to be unified or closely integrated. Furthermore, learning in an
AGI system needs to be carried out under the restriction of available knowledge
and resources. For instance, very often the system does not have the amount of
training instances demanded by most learning algorithms, and the system often
needs to work in real time, without a dedicated training period.

In “inferential learning”, as implemented in NARS, “learning” is unified with
reasoning and other cognitive functions, carried out using finite processing capa-
bility in real time, and open to novel tasks. Here learning does not follow a
specific algorithm, but serves multiple self-organizing roles in various ways to
make the system’s behaviors dependent on history and context.

Though algorithmic learning, especially deep neural network, has achieved
great successes in various domains, in AGI research it still have many challenges.
Compared to it, inferential learning may provide a better alternative as the main
learning paradigm in AGI.
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Abstract. This paper explains the conceptual design and experimental
implementation of the components of NARS that are directly related to
emotion. It is argued that emotion is necessary for an AGI system that
has to work with insufficient knowledge and resources. This design is
also compared to the other approaches in AGI research, as well as to the
relevant aspects in the human brain.

1 Intelligence and Emotion

In biological systems, emotion is closely associated with drives like survival and
reproduction, according to which decisions are made. On the contrary, a com-
puter system has no biological drive, and the primary driving force are the tasks
assigned to the system by the designer or the user. Consequently, mainstream AI
study has ignored emotion, and this attitude is also justified by the traditional
belief that emotion is basically a distraction in decision making, so should be
avoided by a rational thinker.

In recent decades, the functions of emotion in cognition and thinking have
been established by many works in cognitive science, and its necessity in com-
puter systems has also been argued by researchers including Picard [6], Arbib [1]
and Minsky [5]. More and more AGI models include emotion as a fundamental
mechanism, as exemplified by the recent works [2,7,8,10].

In this paper, the emotional mechanism in NARS, an AGI project, is briefly
introduced and compared with those in the other AGI models, as well as the
emotional mechanism in the human brain.

NARS (Non-Axiomatic Reasoning System) is a general-purpose AI designed
in the framework of a reasoning system. Its conceptual cornerstone is the belief
that intelligence is a form of adaptation and must obey the Assumption of Insuf-
ficient Knowledge and Resources (AIKR), meaning the system must manage its
finite processing capability, open to novel tasks, respond to them in real time,
and learn from its experience.

This belief implies that the system must be able to assess various objects in
its external and internal environments with respect to its tasks, and treat them
c© Springer International Publishing Switzerland 2016
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accordingly, so as to approach its overall objective. Such a need will require a
mechanism that is similar to what we call “emotion” in human cognition, even
though the objective of NARS is not to simulate the human brain in all details.

2 Desirability of Events

As a reasoning system, the overall objective of NARS is to successfully carry out
its tasks, including absorbing new knowledge, answering questions, and achieving
goals. For the current purpose, the last will be the focus of the discussion.

As defined in [16], a goal in NARS is an event (i.e., a statement with a time-
dependent truth-value) to be realized by the system, that is, to have event E as
a goal means the system has committed to do something to make E happen. For
example, achieving the goal “Open Door #3” is represented within the system
as a process to make event “Door #3 is open” true. But since in NARS “true” is
a matter of degree, it actually means to make the truth-value of the statement
as true as possible.

As an AGI, normally there are many goals in NARS at the same moment
demanding to be realized. The system is “real-time” in the sense that these goals
have time-requirements attached, with various levels of urgency. Since the system
only has finite processing capability, the competition of resources among goals
become inevitable. The goals can also contradict with each other in content.
For example, one of them may want event “Door #3 is open” to be true, while
another goal wants it to be false. As an open system, NARS does not require
the consistency of the goals assigned to it by its designers and users, and does
not guarantee the consistency of the derived goals.

Therefore, the system has to constantly manage conflicting or competing
goals. To indicate the system’s preference, each event has a desire-value asso-
ciated, which is defined as the truth-value of the implication statement stating
that the realization of the event will lead to a (unspecified) desired state. In this
way, the desire-value of an event is defined as the truth-value of a statement,
and therefore can be handled accordingly [16].

The desire-values of input goals are determined by the designers and users
of the system, and these goals could be implanted in the system’s memory or
entered via the user interface. The derivation and revision of goals are carried
out by NAL inference rules, which also calculate desire-values for derived goals.
Derived goals are basically handled in the same way as input goals [15,16].

Each time a new goal enters (either input or derived), the desire-value of the
corresponding event is adjusted by the revision rule that merges the contribution
of the new goal with the previous value. For example, if one goal requires “Door
#3 is open” to be true while another one does the opposite, these desires are
balanced against each other: the resulting desire-value of the event reflects the
summary of the desires, and therefore resolves conflicting goals.

If the goal corresponds to an operation (an event the system can trigger
whenever it decides to), the desire-value of the event in respect to the current
moment is determined. If this desire-value exceeds the decision-threshold system
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parameter, the operation is executed when the goal gets selected. An operation
can consist of simpler operations to be executed in a sequence or in parallel.

Additionally (also for not executable goals), the system does a “reality check”
to see to what extent the desired goal is already fulfilled. Then the difference
between desire and reality is used to adjust the priority value of the goal in
resource competition.

The satisfaction value of each event is defined to be the compliment of the
difference between its desire-value and its truth-value, where 1 means the system
has got what it desires, and 0 the opposite.1 If the event is an operation, the
satisfaction value is obtained from the feedback of an execution, which indicates
whether the execution was successful, as far as the system can tell. In this way,
the satisfaction value of an event measures the system’s appraisal of the current
situation on the event.

3 Feelings of the System

As a reasoning system, NARS works by repeating an inference cycle, in each
of them a step of inference is carried out. In such a step, an inference task is
processed by interacting with a belief of the system, and the result may be a
partial solution to the task, as well as new tasks. If the task is a goal, then the
result can lead to the adjustment of the satisfaction of the corresponding event.
If the goal is “Open Door #3” and now the door is actually opened, the system
is satisfied on this matter; if the door is still not open after the system’s effort,
it is unsatisfied on this matter.

The system’s appraisal of the current and recent situations in general is
obtained by summarizing its satisfaction values on the recently noticed events
into an overall (system-level) satisfaction value S. After each cycle, the satisfac-
tion value S is updated to rs+ (1− r)S, where s is the satisfaction value of the
task processed in the cycle, and r is a system parameter identifying the relative
weight of the two factors. In general, r is between 0 and 1, and the larger it is,
the larger is role played by the current satisfaction in the overall satisfaction.
We let r be a constant, though it may also depend on other factors, such as the
priority of the task just processed.

The current satisfaction value could enter the system’s experience via a “men-
tal operator” feel. A mental operation can be executed by NARS on its mem-
ory to carry out self-monitoring and self-control functions [16]. In this case, the
operation feel(SATISFIED) generates an event reporting the current satisfaction
value of the system. This operation could be explicitly invoked as a goal, or auto-
matically triggered when the satisfaction is beyond the neutral zone (around 0.5,
defined by a system parameter). Here the term SATISFIED indicates the target

1 To simplify the discussion, in the above description a truth-value (and desire-value)
is used as if it is a single number. In NARS, it is actually a “frequency-confidence”
pair, and the previous comparison is done on an “expectation” function of the truth-
value, which combines the two factor into a single value. For details, see [16].
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of the feeling operator, which can also be invoked for other internal sensations,
such as:

Alertness - summarizes the average difference between recently processed input
and the corresponding anticipations, so as to roughly indicate the extent to
which the current environment is familiar.

Busyness - summarizes the average priority values of the recently processed
tasks.

Well-being - summarizes the overall measure of energy supply, I/O channel
connection, device functioning, etc.

Whether the above feelings are also considered as “emotions” depends on
whether the notion is used in a broad sense or a narrow sense, but no matter
what they are called, they add “mental events” into the system’s experience,
which happen in its own “mind”, and are directly perceived at an abstract level
by the system.

4 Emotion in Concepts

A concept in NARS is a data structure that can be addressed by an internal ID
called a “term”, and contains the tasks and beliefs on the term. Consequently
a goal is linked by all the concepts mentioned in the goal. For example, the
goal “Open Door #3” is linked from the concepts for the terms open, door, and
#3, respectively, as well as from the compound term for the event “Door #3 is
open”.

Concepts provide an intermediate level between the whole memory and the
individual tasks (including goals) and beliefs. Because NARS uses a term logic,
every inference step requires the premises (the task and the belief) to share
a term, and consequently the inference can be considered as happening in the
concept named by the shared term. This nature allows a concept to be a unit of
processing in a distributed implementation of NARS.

According to the experience-grounded semantics of NARS, the meaning of a
concept is determined by its contents, that is, the tasks and beliefs that show
the relations of this concept with other concepts according to the experience of
the system. Due to insufficient resources, tasks have priority values attached to
indicate how often they will be accessed. When a concept is “fired”, i.e., selected
for processing, usually only part of its contents are involved.

Each concept also has a desire-value. As described above, if a concept is
named by a term that is an event like “Door #3 is open”, its desire-value comes
from the related goals about this event. Now desire-value is also given to other
terms, those that do not name events, such as open and door, even #3. Initially,
these non-event terms have a neutral desire-value, so they are neither desired nor
undesired. However, they may gradually become non-neutral by association with
the system-level satisfaction value. The process is roughly like this: at the end
of each inference cycle, the desire-value of the “fired concept” (i.e., within which
the inference happen) is adjusted according to the current satisfaction value.
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Roughly speaking, the concept is desirable if it associates with the satisfaction
of the system.

Here we want to explore whether such a desire-value can explain emotions
related to concepts which by its structure can not contain statements, as we
think that it might be shown by the human mind. We also want to explore the
effect of this type of emotion in self-control.

To bring this appraisal into the internal experience of the system, the feeling
operator can be invoked with a term as argument, such as feel(door), to generate
an event indicating how much the system “likes” (or “dislikes”) the term door.
This operator can also be triggered by an extreme (high or low) desire-value in
the concept.

Beside this “emotional indicator” in every concept, there are also special
concepts whose meaning is especially emotional. The basic concepts in this group
include feeling constants like LIKE and SATISFIED. These concepts provide the
building blocks for the system’s feelings and emotions.

Starting from the basic feelings, more complicated feelings can be built by
combining them with the other concepts. For example, an event with the same
desire-value may become different feelings when combined with other features,
such as “it has happened” vs. “it will happen”, “it is caused by the system itself”
vs. “it is caused by someone else”, “it is manageable” vs. “it is inevitable”, etc.
The new feelings are formed using the same composing rules as other compound
terms, and their generation is experience-driven. For example, what “happy”
means will be mostly learned, though still related to SATISFIED. These com-
pound feelings may or may not correspond to human feelings.

5 Effects of Emotion

As described above, in NARS emotional information appears in two distinct
forms:

– at “subconscious level” (outside experience), as desire-values and satisfaction
values,

– at “conscious level” (inside experience), as events with emotional concepts.

Emotions in both forms contribute to the system’s behaviors.
The emotional concepts in experience are processed as other concepts in

inference. An important usage of them is to categorize situations from the sys-
tem’s viewpoint, as well as to develop strategies to deal with such situations. For
instance, there may be many very different situations that can be categorized
as “dangerous”, so as to be handled with some common responses, such as “be
careful”. Without emotion, such categorizations may still be possible, though
emotion provides a more natural and efficient approach.

The “emotion-specific” treatments mainly happen at the subconscious level,
where the emotional information is used in various processes, such as
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– The desire-values of concept is taken into account in attention allocation,
where concepts with strong feeling (extreme desire-values) get more resources
than those with weak feeling (neutral desire-values).

– After an inference step, if a goal is relatively satisfied, its priority is decreased
accordingly, and the belief used in the step gets a higher priority, because of
its usefulness.

– In the decision-making rule, the threshold for a decision is lower in high
emotional situations, so as to allow quick responses.

– The overall satisfaction is used as feedback to adjust the desire-values of
data items (concepts, tasks, beliefs), so that the ones associated with positive
feeling are rewarded, and the ones associated with negative feeling punished.
In this way, the system shows a “pleasure seeking” tendency, and its extent
can be adjusted by a system parameter.

– When the system is “busy”, tasks with low resource budget are simply
ignored. The busyness value can be used in the priority–probability mapping
to control the “degree of focus” of the system’s attention.

– When the system is “alert”, it spends more time to process new tasks in the
input buffer, which means less time for the existing tasks in memory.

– When the system “does not feel well”, it spends more time in the related
self-maintenance tasks, which means less time for other tasks.

The above mechanisms have been mostly implemented, and are under testing and
tuning, so at the moment have not produced profound results to be evaluated.

In the future, when NARS also needs to manage its own energy usage (such
as in robots), emotion will play an important role in the decision of energy con-
sumption. For example, in situations associated with high emotions, the system
may spend more energy than in normal situations.

Another future usage of emotion is in communication with other systems,
where emotion will play roles similar to those in human communications.

6 Comparison to Other Approaches

The current approaches to introducing emotion into computer systems actually
have different objectives [1,6]. The works in the field of affective computing
mainly aim at the recognition and simulation of human emotions in human-
computer interaction, while the works in AI/AGI mainly aim at giving computer
their own emotions. For our purpose, the emotions in the computer system do
not need to be similar to human emotion in details, but should serve the same
cognitive functions.

The cognitive functions of emotion are usually divided into two major types,
which can be called “internal and external” [1] or “intrapersonal and interper-
sonal” [10]. Either way, the former is in self-control according to experience, and
the latter is in communication with other systems. On this topic, our position is
to take the former as primary and basic, the latter as secondary and derivative.
For this reason, the current work in NARS focuses on the control function of
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emotion, which is the appraisal of situation from the system’s viewpoint, and
the corresponding adjustments in behavior and resource allocation [1].

Traditional AI ignores emotion, since there is little need to choose among
goals, which are assumed to be consistent, and within the system’s capability.
Since NARS is designed under AIKR, the traditional assumption is no longer
valid, and the system does need to handle conflicting and competing tasks, as
well as to make quick and flexible responses to the environment in real time.

Though other AGI projects include emotional mechanisms for similar rea-
sons, the concrete designs are all different. Here we only briefly compare NARS
with MicroPsi [2] and Sigma [7].

MicroPsi grows out of a psychological theory, and therefore is closer to the
reality of the human mind than NARS, which is identified with the human mind
at a more abstract level. This difference shows in the motivational systems of
them: MicroPsi has a motivational system with a set of built-in drives, and goals
are situations where some need is satisfied. The basic drives meet physiological
needs, social needs, and cognitive needs. On the contrary, NARS is a reasoning
system, where a goal is an event to be realized, and in principle the system can
be given any goal, as far as it can be expressed in the representation language
of the system. For specific application, it is possible to implant certain “innate”
goals or drives, though the design of the system does not assume any of them.
Many “cognitive needs” of MicroPsi, such as those for certainty, competence,
and aesthetics, are also pursued in NARS, but they are not explicitly expressed
as goals, but implicitly embedded in the system’s processing procedures and
policies, so they can be referred to as “meta-goals” or “subconscious goals”.
Even with these differences, there are still similarities in these two systems, such
as to pursue multiple goals at the same time, while giving them different relative
priority.

The emotion mechanisms of both NARS and Sigma start at appraisal, where
different situations have different levels of desirability. However, Sigma defines
desirability by comparing a state with a goal state, while NARS does so on a
statements, a partial description of states, as well as on a concept. Under AIKR,
in NARS it cannot be assumed that the system can fully describe a state, either
of the environment or of itself. Another difference is that the word “emotion”
is used in a broader sense in Sigma than in NARS. For instance, the attention
mechanism of NARS [16] is not considered as part of the emotional mechanism,
as the latter is based on the appraisal of desirability and satisfaction only, though
it is indeed closely related to the former.

In summary, in these AGI systems emotion plays similar roles. NARS differs
from the other systems mainly because of its reasoning system framework and
AIKR. Since all these systems are still far from fully developed, it is too early
to tell which treatment of emotion works better.

7 Comparison to Human Emotions

The approach to emotions in NARS is biologically inspired and based on the
functional similarity with mammalian basic emotions. We have inherited the
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neurobiological plausible approach from our previous works [9,14], where valida-
tion and justification of the approach are provided. We are building the analogy
between the influence of mammalian basic emotions or “affects” [11–13] on think-
ing and the influence of machine emotions on reasoning and decision-making
processes of NARS. We reference the neurobiological nature of the emotions
and identify the dopamine as main actor in the role of “wanting” or desire-
values of NARS, described in the Sect. 2. Lövheim [4] emphasized the role of
the dopamine in reward, reinforcement, and motivation. Arbib and Fellous [1]
also indicated that dopamine key role in memory “linking emotion, cognition
and consciousness”. Serotonin “plays a crucial role in the modulation of aggres-
sion and in agonistic social interactions in many animals. ... serotonin has come
to play a much broader role in cognitive and emotional regulation, particularly
control of negative mood or affect” [1,3], also it is main actor in self confidence,
inner strength, and satisfaction [4]. This could be understood as neuromodula-
tory basis of the satisfaction value in the NARS system, described in the Sect. 3.
Drawing the analogy between the noradrenaline influence on a brain and busy-
ness of a system we could provide a set of emotional operations that build the
basement for the machine affective states.

A modified “cube of emotions” is in Fig. 1, where the influence of vir-
tual/machine neuromodulators on computational processes is added into a pre-
sentation of normal concentrations of neuromodulators.

Fig. 1. The mapping of emotional states with neuromodulators levels and computa-
tional system parameters, based on [4].
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Computing utilization is a metric able to quantify how busy the processing
resources of the system are. It can be expressed by the average value of all
the single processing resources’ utilization.

Computing distribution aims at quantifying the load balancing among
processing resources. It can be expressed as the variance of single resources’
utilization.

Memory distribution is associated with the amount of memory allocated to
the processing resources. It can be quantified by the variance of the amount
of memory per single resource.

Storage volume is an index related to the the amount of data and information
used by the system.

Storage bandwidth quantifies the number of connections between resources,
i.e. processing and data nodes.

Conceptually this work may lead to the integration between the neurobiolog-
ically plausible realistic neural networks (rNN) emotional simulations to com-
putational lightweight reasoning systems applicable to real-time autonomous
robotics. For example, a robotics system can enter experience into the system
during a “day” phase, then this could be “played” into the rNN, similar to the
dream playback in mammals. During the “night” phase, rNN could apply the
realistic emotional processing. The results could be mapped through the lev-
els of machine neuromodulators in NARS: serotonin, noradrenaline, dopamine,
triggering the emotion-driven behavior.

8 Conclusions

This paper introduces the conceptual design of the emotion mechanism of NARS.
We consider the main function of emotion as the appraisal of the external and
internal entities and situations with respect to the system’s tasks, so as to act
accordingly, especially in decision making and resource allocation.

In NARS emotions are implemented not as an independent process or mod-
ule, but are embedded in various places, and tightly entangled with the rea-
soning/learning processes in the system. The generation of emotion and feeling
starts as desires for certain events, and the assessments to their satisfaction are
summaries to the overall satisfaction of the system, and the association with
this overall satisfaction determines the appraisal of concepts. Emotional infor-
mation is taken into account in various places in the system, both consciously
(i.e., expressed in the system’s experience) and subconsciously (i.e., embedded
in the system’s built-in mechanisms).

The emotion of an AGI system will not be the same as human emotions,
but since they play similar roles, some correspondence can be found between
these two types of intelligence, mostly at psychological level, but may even at
the neurobiological level to a certain extent. Though emotion may cause unde-
sired consequences in decision making, it only means that the system must have
mechanisms to regulate emotion, but not that high intelligence does not need
emotion.
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The emotional mechanism described in this paper has been mostly imple-
mented in the current version of Open-NARS, an open source project.2 The
system is still under testing and tuning, so to show the function of emotion in
the processing of complicated problems is still a future work.
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Abstract. This paper describes the implementation of a Non-Axiomatic
Reasoning System (NARS), a unified AGI system which works under the
assumption of insufficient knowledge and resources (AIKR). The system’s
architecture, memory structure, inference engine, and control mechanism
are described in detail.

1 Introduction

NARS is an adaptive system that works under the Assumption of Insufficient
Knowledge and Resources (AIKR) [6,8], meaning the system has to work under
the restrictions of being: Finite: the information processing capability of the
system’s hardware is fixed, Real-time: all tasks have time constraints attached
to them and Open: no constraint is put on the content of the experience that
the system may have, as long as it’s expressible in the interface language [8].

Built in the framework of a reasoning system, NARS has a memory, a logic
component and a control component. The logic component consists of inference
rules that work on statements, where the statements are goals, questions and
beliefs. A statement can be eternal (non time-dependent) or an event (time-
dependent). Beliefs are statements that the system believes to be true to a certain
degree and goals are statements the system desires to be true to a certain extent.
An inference task is a statement to be processed, with additional control relevant
information.

NARS utilises the Non-Axiomatic Logic (NAL) [9] for inference and the Nars-
ese language for representing statements. The language and the logic are outside
the scope of this document. The aim of this paper is to describe the current
implementation of NARS in detail. The following aspects of the implementa-
tion are focused on: memory management with concept centric processing, non-
deterministic selection capabilities allowing anytime-processing of tasks, resource
constraint management, a logic system with meta rule DSL and Trie based exe-
cution engine, temporal inference control (including temporal windows, temporal
c© Springer International Publishing Switzerland 2016
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chaining, and interval handling), projection and eternalization, anticipation, and
attentional control via a budget based approach.

2 Memory

This section describes the architecture of the memory module, how NAL gram-
mar statements form a ‘Belief Network’ and the interdependence of the budget.
The memory module supports three primary operations: firstly, to return the
best ranked belief or goal for inference within concepts (local inference), secondly,
to provide a pair of contextually relevant and semantically related statements
for inference between concepts (general inference), and finally, to add statements
to memory whilst maintaining the space constraints on the system.

The working process of NARS can be considered as unbounded repetitions of an
inference cycle that consists of the following sequence of steps [9]:

1. get a concept from memory
2. get a task and belief related to the selected concept
3. derive new tasks from the selected task and belief and put them into buffer
4. put the involved items back into the corresponding bags
5. put the new tasks into the corresponding bags after processing from buffer

NARS utilises elements of metadata (Budget and Stamp) that serve several
purposes: they prevent certain forms of invalid inference such as double counting
evidence and cyclic reasoning, abstract temporal requirements away from the
Narsese grammar, and provide certain implementation efficiencies.

Budget, considered as metadata for the purpose of this paper, determines
the allocation of system resources (time and space) and is defined as (p, d, q) ∈
[0, 1] × (0, 1) × [0, 1].

Also, each statement in NARS has a Stamp defined as (id, tcr, toc, C,E) ∈
N×N×N×P(N) where id represents a unique ID, tcr a creation time (in inference
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cycles), toc an occurrence time (in inference cycles), C a syntactic complexity
(the number of subterms in the associated term) and E an evidential set.
Curve Bag is a data structure that supports a probabilistic selection according
to the item priority distribution. The priority value p of the items in the bag
maps to their access frequency by a predefined monotonically increasing function.
This data structure is called “Curve Bag” since it allows us to define a custom
curve which is highly flexible and allows emotional parameters and introspective
operators to have influence on this selection. The remaining factors of Budget,
the d durability and q quality parameter, get their meaning from the forgetting
function: Whenever an item is selected from the bag, its priority will be decreased
according to d and q, namely with qr = q ∗ r, dp = p − qr (r being a system
parameter) the new priority is then: p′ = qr+p∗d 1

H∗p if dp > 0, otherwise p′ = qr,
where H is a forgetting rate system parameter. This ensures that forgetting does
not cause priority to decrease below quality, after re-scaling by r.

The memory consists of a Curve Bag of Concepts, where Concepts are con-
tainers for: Tasklink and Termlink Curve Bags, along with belief and goal tables.
The belief and goal tables are ranked tables (Sect. 8, sub-section Ranking). A
concept, named by a term, combines the beliefs and goals with this term in it,
and is connected to other concepts which share a common sub-term or super-
term via Termlinks.

3 Logic Module

The logic module is an instantiation of the Non-Axiomatic Logic (NAL). It is
composed of two components: an inference rule domain specific language (Meta
Rule DSL) and an inference rule execution unit. The meta rule DSL should
not be confused with the NAL grammar rules, these are separate and distinct.
The system currently implements 200+ inference rules, containing forward and
backward rules for reasoning under uncertainty.

Meta Rule DSL. The meta Rule DSL was developed to serve three main pur-
poses: to provide a flexible methodology to quickly experiment with alternate
inference rules, to support the goal of creating a literate program, and to sub-
stantially improve the quality of the software implementation.

Inference rules take the following form:

T,B, P1, ..., Pk � (C1, ..., Cn)

where T represents the first premise (precondition, corresponding to the task
to be processed), B represents the second premise (precondition, correspond-
ing to the belief retrieved for the task), and P1, ..., Pk are additional precon-
ditions which represent logical predicates dependent on T , B, C1, ..., Cn. Each
“conclusion” (or postcondition) Ci of C1, .., Cn has the form (Di,Mi) where Di

represents the term of the derived task the conclusion Ci defines, and Mi pro-
vides additional meta-information, such as which truth function will be used
to decide the truth or desire of the conclusion, how the temporal information
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will be processed, or whether backwards inference is allowed. The DSL incor-
porates the Narsese grammar to retain consistency of syntax and conciseness of
representation.

Inference Rule Execution. The role of the inference Rule Execution unit is
twofold: firstly, to parse the Meta Rule DSL into an efficient and executable
representation, and secondly, to select and execute the relevant inference rules.
An optimised Trie is used to store the rule representation, whilst a Trie Deriver
is used to select and ‘execute’ the relevant inference rules.

Trie Representation - In the Meta Rule DSL, each inference rule has a set of
preconditions. These preconditions are stored as nodes in the Trie, where com-
mon preconditions form a common node (as with the Rete algorithm [3]). This
leads to a natural structuring of the conditions where non-leaf nodes store the
preconditions and leaf nodes form sets of post conditions that represent valid
derivations for a pair of input statements.

Trie Deriver - The deriver is responsible for inference: it matches from mem-
ory selected premise pairs to the relevant inference rules such that conclusions
can be obtained. The matching of rules to statements is simply a matter of
traversing the Trie, keyed on the matching preconditions. If the traversal ends
at a leaf node then this is a valid matching inference rule(s), leaf nodes can
contain more then one inference rule. Each traversal, if valid, returns a list of
postconditions/conclusions of the matched rules.

Since the complexity of statements is bounded due to AIKR, and the depth
of this trie is bounded by the finiteness of the inference rules, applying the Trie
Deriver to a pair of statements is upper bounded in execution time by a constant.
This is an important consideration as NARS needs to respond to tasks in real-
time, whereby, no single inference step can exceed a roughly constant time.

4 Temporal Inference Control

An adaptive agent existing in a real-time environment needs to be capable of
reasoning about time. To support reasoning with time the non-temporal NAL
inference rules are extended by adding temporal variants. Temporal inference
is distinguished by several features: utilisation of a Temporal Window, Tempo-
ral Chaining, and Interval Handling, along with Projection, Eternalization and
Anticipation, discussed in the following sections.

Temporal Window - As argued in [2], human beings have the ability to syn-
chronize multiple stimulus events, when they are experienced within a Temporal
Window of roughly 80 ms, as if they were experienced concurrently. These so
called subjective events behave like a point in time as well as an interval in time
[7]. A similar approach is used in NARS where a DURATION parameter defines
the temporal window of synchronization, whereby, events occurring within the
Temporal Window will be deemed to have occurred concurrently.

Temporal Chaining - Due to the AIKR, NARS does not allow arbitrary tempo-
ral relations to be formed, in fact the inference execution unit will only allow
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semantically related statements (those which correspond to concepts which are
connected with each other via termlinks) to be used in derivations. This leads
to the question of, how do we temporally relate semantically unrelated events?

The approach taken in NARS is to perform inference between each incoming
event with the previous incoming event in order to create compound events
which link the (previously semantically unrelated) events together. Although
perception can form more complex temporal compound events than this, the
same principle applies.

These compound events can then be used by the inference system with other
semantically related statements to form further derivations. In this way, complex
chains of temporal reasoning can be formed as also demanded for perception.

Interval Handling - When an event a (for example, “wheel starts turning”) enters
the system, its occurrence time is recorded, but its duration is not known at this
time. Even without a duration, the event a can still be related to previous events
as the occurrence time is available.

If eventually an event b (for example, “wheel stops turning”) enters the sys-
tem, the system can derive an event (a, I, b) which has a custom duration and
encodes “the wheel was turning from this time to this time”, which behaves
essentially as an interval in interval algebra as a special case. However this inter-
val number I raises another question: To what extent does the duration of an
event, i.e. the interval number I, affect how the statement should be observed?
We took the approach, to assume similar scales, based on the scale of the inter-
val, would be considered as similar observations. For example the interval of
1 s and 1.2 s will be observed as the same, similarly with 1 h and 1.2 h. If there
is need for a further distinction, a clock operator can provide the system with
additional context.

The Duration time window provides a tolerance that allows the system to
observe re-occurring patterns in time, coming from asynchronous input channels,
which would otherwise be seen as different if the specific events are incoming in
a different order, albeit, in millisecond scale.

5 Projection and Eternalization

When two semantically related statements are selected for inference, (if not
stated otherwise by the specific rule) it is necessary to map the occurrence time of
the belief to the occurrence time of the task, using the current time as reference.

This mapping function is called “projection” and describes how the truth
value of a statement decreases when projected to another occurrence time. In
this operation, the confidence of the belief is decreased by a factor

kc =
|tB − tT |

|tB − tC | + |tT − tC |
where tB is the original occurrence time of the belief, tT the occurrence time it
is projected to, and tC the current time. The new confidence of the belief is then

cnew = (1 − kc) ∗ cold
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Eternalization is a special form of induction, where the occurrence time is
dropped, so the conclusion is about the general situation. The eternalized con-
fidence value is obtained with

ceternal =
1

k + ctemporal

where k is a global evidential horizon personality parameter [9].
In inference, whenever an event is derived, the eternalized version is also

derived. However the existence of eternal statements presents a problem: How
to justify inference between two premises, about different times? In order to deal
with this scenario, there are two possible routes: the inference rule is a temporal
rule which measures the time between the premises, and takes it into account
when its conclusion is built, or, one of the following cases applies:

1. Premise1 is eternal, and premise2 is temporal. Here, premise2 is eternalized
before applying inference.

2. Premise1 is temporal, and premise2 is eternal. Since premise2 is eternal, it
also holds at the occurrence time of premise1, so inference can occur directly.

3. Premise1 is temporal, premise2 is temporal. In this case premise2 is pro-
jected to the occurrence time of premise1, and also eternalized. Inference now
happens between premise1 and the stronger in confidence outcome, either the
result of the projection or the result of eternalization.

4. Both are eternal, in which case the derivation can happen directly.

In all the cases, the occurrence time of the first premise (usually the task), is
assigned to the occurrence time of the derived task, and possibly a statement-
dependent time-shift as specified by some temporal inference rules, dependent
on the term encoded intervals, which measure time between events, is applied.

6 Anticipation

In NARS predictive statements usually take the form:

antecedent ⇒ consequent

where observing antecedent leads to the derived event consequent, on which the
system can form an expectation on whether it will be observed as predicted, this
is called Anticipation. With Anticipation the system is able to find negative evi-
dence for previously learned predictive beliefs which generate wrong predictions.
[6,10]

If the event happens, in the sense that a new input event with the same term
as the anticipated event is observed, the anticipation was successful (confirma-
tion), in which case nothing special needs to be done, since the statement will
be confirmed via the normal process of temporal induction.

If the predicted event does not happen then the system needs to recognise
this. This is achieved by introducing a negative input event, not(a). Note that in
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this case, such a negative input event has high budget and significantly influences
the attention of the system.

Anticipation introduces three challenges: firstly, how to ensure that the sys-
tem doesn’t confirm its own predictions? secondly, how to ensure that the system
only anticipates events which are observable and hence overcome the issue that
negative events are generated for events which are not observable? and thirdly,
how to deal with occurrence time tolerance as well as tolerance in truth value.

The first is handled by letting only input events (not derived events) confirm
a prediction. The second shows that the closed-world-assumption (CWA) is not
applicable in general, just because something isn’t observed doesn’t mean it
didn’t happen in general. This issue is overcome by letting only those predictions,
which correspond to observable concepts, generate anticipations. When a new
input event enters the system, the corresponding concept is marked observable,
in this way the observability of concepts is tracked. Regarding the third issue,
currently the system assumes that the event does not happen if it doesn’t occur
within time [toc − |toc−tcur|

u , toc + |toc−tcur|
u ] where toc is the occurrence time of

the anticipated event, and tcur is the current time, with u usually being set to
2. To allow tolerance in truth, anticipation as well as the confirmation currently
uses tasks with frequency greater than a threshold, by default 0.5, this tolerance
handling method may be refined in the future and is still in discussion. Also
note that by this treatment, conceptual events like “Our team wins the football
match” have to be decomposed down to directly observable events by inference.
Whether and how this can be improved, is also still in discussion.

7 Evidence Tracking

One of the most important notions in NARS is the idea of evidence, note that
the truth value of a statement is essentially a (w+, w−) pair, where w+ repre-
sents positive evidence, and w− represents negative evidence, or alternatively
as confidence c and frequency f tuple, where f = w+

w++w−
and confidence is

c = w++w−
k+w++w−

, where k is a global personality parameter that indicates a global
evidential horizon. For full details on truth value derivations see [9]. Evidence in
NARS follows these principles:

1. Evidence can only be used once for each statement.
2. A record of evidence used in each derivation must be maintained, although

given AIKR (as also assumed in [6]), this is only a partial record, which is
not an issue in practice.

3. There can be positive and negative evidence for the same statement.
4. Evidence is not only the key factor to determine truth, but also the key to

judge the independence of the premises in a step of inference.

As described previously, each statement has a stamp which contains an evi-
dence set, E. Following each derivation, a new E is created, by interleaving
the two evidence sets of the premises, which is then truncated to a maximum
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length by removing the oldest evidence. Interleaving the evidence sets is impor-
tant and ensures an even distribution of evidence from both evidence sets. The
evidence set, E, initially contains the unique statement id from the stamp. Prior
to derivation, evidence sets of the involved premises are checked for intersection,
if they intersect then there is overlapping evidence between the premises and no
derivation is allowed (as this would double count evidence).

8 Processing of New and Derived Tasks

This step consists of processing new inputs and derivations selected from the
buffer Curve Bag, by applying temporal chaining for new input events followed
by ranking based selection for local inference. Here the Revision Rule is applied
to belief and goal tasks, and the Choice Rule is applied to question and goal
tasks. Additionally the Decision Rule is applied to a goal task [9].

Temporal Chaining - As discussed in Anticipation, it is important to distin-
guish between new inputs and derivations, because only new input events invoke
Temporal Chaining. When a new input event enters the system, inference is
automatically triggered with the previous new input event [10], generating a
temporal derivation (Sect. 4, sub-section Temporal Chaining).

Ranking - Belief and Goal tables are ordered according to a ranking function,
where the confidence is determined after projecting each new belief or goal, to
the target time. When the ranking is done for selective questions [9], the function
is e/C where e is the expectation value of the statement and C its complexity.
In all other cases the confidence of the statement is used for ranking.

Adding to Belief/Desire Table - Once the ranking of a new belief or goal is
determined, this ranking specifies the position of the entry in the table. If the
table is full, then the lowest ranked entry is deleted to maintain the maximum
capacity limit.

Selecting Belief for Inference - When a belief from the belief table is taken out
after the selection of the task for inference (Sect. 9, sub-section Phase 2), it is
done so by ranking all entries in the belief table according to the occurrence
time of the task. The best entry is selected for inference. This also holds for
local inference, where a new incoming belief task selects the best candidate to
revise with. The new belief and the revised one are then added as described in
the previous section. If the task is a question or goal, the new belief overwrites its
best solution, dependent on whether it is higher ranked according to the ranking
function as described in Ranking.

Revision - When a belief or goal task is processed (selected as task in an inference
cycle), it is projected to the current time. Now the highest ranked entry in the
belief / goal table in respect to the current moment is determined. When the
task is able to revise with this one, this is done and we are finished. If the task
is a goal, the Decision rule is also applied:
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Decision - If the goal task is an operation (which is an event the system can
trigger itself) the desire value expectation, measured with expectation(x) =
(c ∗ (f − 1

2 ) + 1
2 ) (with f being the frequency, c the confidence) of the highest

ranked desire is determined and if it exceeds a certain threshold, the system
executes this operation. After the execution, an event, stating that this operation
was executed, is input into the system. This event is then available for use in
temporal chaining supporting learning about the consequences of the systems
own operations in different contexts.

9 Attentional Control

The attentional control stage is primarily concerned with managing the Atten-
tional Focus of NARS. This is achieved with a three phase process of: selecting
contextually relevant and semantically related tasks for inference, creating or
updating budget values based on user requirements and/or inference results,
and finally, updating memory with the results of the updated task and concepts.

Phase 1: Premises for inference are selected according to the following scheme:

1. Select a concept from memory (according to Curve Bag semantics).
2. Select a tasklink (with related task) from this concept.
3. Select a termlink from this concept.
4. Select a belief from the concept the termlink points to, ranked by the task.

Phase 2: This phase forms new statements (tasks), with new metadata, from
the derivations. The task linked by the tasklink used in inference determines the
statement type and the occurrence time of the new task (unless the inference
rule states otherwise, which may also shift the occurrence time). The Budget of
a new task is defined as (where T is the truth value of the new task and h ∈ [0, 1]
is a personality parameter giving high quality to tasks of high frequency):

priority: or(priority(tasklink), priority(termlink))
durability: durability(tasklink) ∗ durability(termlink) ∗ 1

C
quality: max(expectation(T ), (1 − expectation(T )) ∗ h) ∗ 1

C

where, for quality, 1
C is applied for backward inference, and or(a, b) = 1 − ((1 −

a)∗(1−b)) [1]. This budget is also used for the tasklink created for the new task.
Next the termlinks are strengthened by the derivation. Here Hebb’s rule is used:
priority(termlink)′ = or(priority(termlink), or(quality, and(a, b))) where a is
the concept priority referred by the tasklink, and b is the concept priority referred
by the termlink. Additionally, the durability of the termlink is also increased:
durability(termlink)′ = or(durability(termlink), quality).

Phase 3: Select new tasks from the buffer Curve Bag, process them, and insert
them into memory:
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1. If Concept CT does not exist, where T is the task, create it and any other
required concepts to match the sub-terms of the task, along with the necessary
termlinks.

Finally, the concept, containing T , is activated by adding the priority of the
task to the concept priority, and using the maximum of the task and concept
duration as the new concept duration as well as the maximum of derived task
and concept quality as the new concept quality. In this way concepts activate
each other context-sensitively and in a directed manner.

2. Construct a tasklink with the budget of T for this task and add it to CT

(note that the task will additionally also be linked from an in inference by
the termlink selected subterm concept).

3. Add the task to its statement type related table in CT .
4. Insert CT , and sub-term concepts, if any, into the concept bag (memory).

10 Conclusions

The current OpenNARS implementation, described by this document, follows a
unified principle of cognition whereby reasoning is carried out within an inference
cycle.

To our knowledge, OpenNARS is the only implementation of an AGI system
that captures perception, reasoning, prediction, planning and decision making
with a single unified principle. In particular we believe the handling of temporal
inference, as described in this paper, is a new approach and demonstrates many of
the aspects required for an agent to learn and act within a real-time environment.

Although it is difficult for this implementation to be compared to other sys-
tems, there are certain aspects that make NARS similar to some other AGI
projects, such as AERA [6], OpenCog [4] and SOAR [5], though detailed com-
parison with them is beyond the scope of this paper.

OpenNARS continues to be a research platform with different aspects of
the design at varying levels of maturity. The logic prior to the introduction
of temporal logic is considered stable. Temporal logic, introspection and the
budget updating functions are work in progress and are not considered optimal at
this stage. Perception, introspective mental operators and emotional attentional
control are the focus for the next phase of our research. The attentional control
is not currently sufficient to handle a high bandwidth perception stream.

The current implementation, OpenNARS v1.7.0, is available for download at:
http://opennars.github.io/opennars. The download package contains examples
of learning by experience, and demonstrations of the aforementioned cognitive
functions as well as practical use cases for the system.

http://opennars.github.io/opennars
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Abstract. This paper proposes a way of bridging the gap between sym-
bolic and sub-symbolic reasoning. More precisely, it describes a develop-
ing system with bounded rationality that bases its decisions on sub-
symbolic as well as symbolic reasoning. The system has a fixed set of
needs and its sole goal is to stay alive as long as possible by satisfy-
ing those needs. It operates without pre-programmed knowledge of any
kind. The learning mechanism consists of several meta-rules that govern
the development of its network-based memory structure. The decision
making mechanism operates under time constraints and combines sym-
bolic reasoning, aimed at compressing information, with sub-symbolic
reasoning, aimed at planning.

Keywords: Autonomous agent · Bounded rationality · Survival ·
Symbolic reasoning · Sub-symbolic reasoning

1 Introduction

Symbolic reasoning connects linguistic statements via syntactic rules, whereas
sub-symbolic reasoning connects sensory concepts via association links [6]. These
forms of reasoning have been studied since antiquity, e.g. by Euclid [2], who
designed systems for axiomatic reasoning, and by Aristotle [10], who investi-
gated associative as well as axiomatic reasoning. These forms of reasoning are
closely related to James’ division into associative and symbolic reasoning [4] and
Kahneman’s dichotomy of System 1 and System 2 processes [5].

The ability to do symbolic and sub-symbolic reasoning and to combine the
two seems to be an essential feature of human intelligence [6]. In contrast, AI
systems rarely support more than one of the two processes. For example, neural
networks and reinforcement learning systems support sub-symbolic, but usually
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not symbolic reasoning, while automatic theorem provers and logic-based sys-
tems are the other way around. In particular, deep networks are good at recog-
nizing faces or evaluating go-positions, but not at arithmetic, while automatic
theorem provers have the opposite strengths.

Several cognitive and agent architectures combine symbolic and sub-symbolic
reasoning to varying degrees. Examples include Soar [8], ACT-R [1], OpenCog
[3], AERA [14], and NARS [17]. Some of the architectures with this capacity are
hybrid systems with juxtaposed subsystems operating on separate knowledge
bases. Certain others are not fully autonomous, in that they depend on engineers
for manually preparing the system for new domains, e.g. for updating the set of
production rules.

Despite the progress made, the following quote by Yoshua Bengio, one of the
deep learning pioneers, suggests that the two types of reasoning have not been
sufficiently integrated for artificial general intelligence purposes [7]:

Traditional endeavors, including reasoning and logic—we need to marry
these things with deep learning in order to move toward AI.

Schmidhuber proposed to combine long-term memory compression with rein-
forcement learning [11]. This idea has been successfully used in several AI-
programs, including Alphago [12].

In this paper we present a computational model that compresses the long-
term memory as well as the working memory. In both cases we use compression
with bounded cognitive resources in order to make the compression compu-
tationally feasible. This reflects our belief that compression is key to natural
intelligence and also that working memory compression is the sole purpose of
symbolic reasoning. Our system has a fixed set of needs, whose levels of satis-
faction are computed on the basis of sensory data (interoception). The sole goal
of the system is to survive as long as possible by satisfying its needs. This will
in turn cause the system to take different actions, e.g. to ambulate between a
water source and a food source.

In contrast to many cognitive architectures, our system does not use the
notion of task. Instead, the planning process continuously searches for action
sequences aimed at increasing the probability of survival. The behavior of the
system can be altered by external agents who provide reward, similarly to how
dogs can be trained by humans who reward tricks with treats. The system can
also learn on its own without interacting with other agents.

This paper focuses entirely on artificial general intelligence and aims for a
fully autonomous artificial system without regard to biological or psychological
realism. We combine and extend our previous work on long-term memory com-
pression [16], working memory compression [9], and transparent networks [15].

Section 2 presents the components of our system and Sect. 3 describes the
update mechanisms of the components. Section 4 presents the reasoning mech-
anism in greater detail. Section 5 presents a proof-of-concept prototype imple-
mentation of the system. Section 6 draws some conclusions.
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2 System Components

The system consists of several components that develop over time.

2.1 Status Signals

Time is modeled using the natural numbers N. For t ∈ N, let Status(t) be the
vector (σ1(t), . . . , σN (t)) ∈ [0, 1]N . Here N is a fixed positive integer that models
the number of needs of the system and σi(t) ∈ [0, 1], for 0 ≤ i ≤ N . For instance,
σ1(t) and σ2(t) might reflect the glucose and water concentration in the blood
stream, or perhaps the oil and gasoline levels of a vehicle. Intuitively, Status(t)
measures the status of the different needs of the system, i.e. its well-being.

2.2 Long-Term Memory

We will use a labeled graph LTM(t) for encoding the system’s long-term memory
at time t. Intuitively, LTM(t) is a Markov Decision Process (MDP) that the
system uses for decision making at t. The states and actions of LTM(t) are
described in the vocabulary of transparent neural networks [15]. Our reason for
using this formalism is that it facilitates the definition of learning rules that
develop LTM(t) over time, as we shall see in Sect. 3.

Definition 1 (LTM). Let LTM(t) be a graph consisting of a finite set of labeled
nodes D(t) and a finite set of labeled edges E(t) ⊆ D(t)2.

– Each node of D(t) has exactly one label from the following list: SENSOR,
MOTOR, NOT , AND, OR, x, y, z, DELAY , and ACTION .

– Each edge of E(t) has exactly one label from the following list: ACTIV ITY ,
DECISION , and PREDICTION .

Edges labeled PREDICTION are also labeled with a probability in [0, 1] and
an expected reward in [−1, 1]N . Here N is the fixed number of needs that was
mentioned above.

Figures 1 and 2 provide examples of some graphs that could be part
of an LTM. Oval shapes represent SENSOR nodes and squares represent
ACTION nodes. Solid, dashed, and annotated arrows represent ACTIV ITY ,
DECISION , and PREDICTION edges, respectively. Many more examples
can be found in [15].

Remark 1 (Intended interpretation). SENSOR-nodes model sensors, e.g. recep-
tor cells with ion channels sensitive to cold temperature, mechanical pressure, or
acidity. MOTOR-nodes model muscle-controlling motor neurons. NOT , AND,
and OR-nodes model nerve cells that compute the corresponding boolean func-
tions. The first of these is binary operators and the other two binary. x, y, or
z-nodes are abstraction nodes that are used for pattern matching purposes (using
temporary assignments of nodes to variables). DELAY -nodes model nerve cells
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Fig. 1. (a) A Braitenberg vehicle with two light sensors and two motors for wheels
on the left and right sides, respectively. (b) The AND-node of this graph recognizes
the sequence HI, i.e. letter H immediately followed by the letter I. The sensors of this
graph recognize letters. Alternatively, the sensors could be replaced by top nodes of
more complex network that recognize letters.

Fig. 2. We assume that the system has two needs: water and glucose. When the system
receives a familiar combination of tastes (of an apple), it chooses between two actions,
one of which (swallow) leads to reward.

that re-transmit action potentials with a delay. ACTION -nodes model neurons
that activate motor sequences as a result of (conscious) decisions. ACTIV ITY -
edges model connections in nerve systems where activity propagates in the net-
work. DECISION -edges model connections (choices) in MDPs that go from
states to actions. PREDICTION -edges model connections in MDPs that go
from actions to states. The number is a probability that will be learned and the
vector is the expected reward w.r.t. N fixed needs of the system. This vector
will also be learned.

2.3 Activity

Let Activity(t) be a subset of the nodes of LTM(t). This set models the neurons
that fire at time t. Our view in this connection is essentially that humans are
capable of symbolic as well as sub-symbolic information processing and that
both processes run on systems of neurons that are binary in the sense that they
either fire all-out or not at all at any given moment.
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2.4 Attention

Let Attention(t) be a subset of D(t) consisting of at most one node. This set
models the node under attention at time t, if any.

2.5 Working Memory

Let WM(t) be a sequence consisting of a finite number of nodes of D(t). This
sequence models the content of the system’s working memory at time t.

2.6 Decision

Let Decision(t) be a subset of D(t) consisting of at most one node. This set
models the decision at time t, if any.

Remark 2 (Bounded rationality). In line with biological organisms with cogni-
tive resources all of which are limited, we impose firm resource bounds on all
components of our system. Thus the capacity of LTM(t) is limited (e.g. to 105

nodes) and so is the capacity of WM(t) (e.g. to 5 nodes). As we shall see later,
the processing time that the system uses for decision-making is also bounded,
although in this case the limit depends on the status of the system. Thus the
system has bounded rationality in several ways, leading it to a satisficing rather
than an optimizing behavior [13].

3 Update Functions

In this section we will specify how the system components are updated in
response to the input that the system receives.

Definition 2 (Input stream). The function input(t) is an assignment of val-
ues in {0, 1} to each SENSOR node of LTM(t).

The components of the knowledge base can largely be initialized arbitrarily at t =
0. Thus it will start as a genotype and gradually develop phenotypes depending
on the input stream. Now suppose the system receives the input input(t + 1).
Then the components of the knowledge base will be updated as described below
and in the order specified.

3.1 Activity Update

Here we define Activity(t+1) via a function A that selects which nodes to shall
be put into the set:
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Definition 3 (Activity update). Let A(a, t) be defined by recursion on t as
follows. Here L(a) denotes the label of node a. Let A(a, 0) = 1 if a ∈ Activity(0)
and A(a, 0) = 0 otherwise. Moreover, let

A(a, t + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a ∈ Attention(t)
1 if L(a) = ACTION and a ∈ Decision(t)
input(t + 1)(a) if L(a) = SENSOR

A(a′, t + 1) if L(a) = MOTOR and (a′, a) ∈ ACTIV ITY

min{A(a′, t + 1) : (a′, a) ∈ ACTIV ITY } if L(a) = AND

max{A(a′, t + 1) : (a′, a) ∈ ACTIV ITY } if L(a) = OR

1 − A(a′, t + 1) if L(a) = NOT and (a′, a) ∈ ACTIV ITY

A(a′, t) if L(a) = DELAY, (a′, a) ∈ ACTIV ITY

This definition should be read as a case statement in programming that selects
the first case that applies. It describes how activity propagates through nodes of
different types. The nodes x, y, and z are activated via an additional mechanism.

3.2 Status Update

The vector Status(t+1) is computed directly from input(t+1) using an arbitrary
fixed function. For instance, σ1(t+1) could be the fraction of the insulin receptors
that fire at t + 1. Now, reward can be defined as status changes:

Definition 4 (Reward vector). Let Reward(t+1) = Status(t+1)−Status(t).

Note that Reward(t + 1) ∈ [−1, 1]N , since each σi takes values in [0, 1].

3.3 Attention Update

To be able to describe how attention is updated we need to introduce a couple
of concepts.

Definition 5 (Most urgent need). The most urgent need at t is defined as
arg mini(σi(t)).

Definition 6 (Top active node). A node a ∈ LTM(t) is top active at t if
a ∈ Active(t) and there is no b ∈ Active(t) such that (a, b) ∈ ACTIV ITY .

Together the top active nodes constitute a description of the present situation at
a maximum level of detail in terms of previously experienced situations. There-
fore they are important from the perspective of decision making and atten-
tion. For instance, if the system sees a green snake, then the nodes representing
“green”, “snake”, and “green AND snake”, might become activated. Among
those, “green AND snake” would be top active if it had no other active nodes
above it, whereas the other two would only be active.
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Definition 7 (Flashing node). A node a ∈ LTM(t) is flashing at t + 1 if
a ∈ Active(t + 1) − Active(t).

When attention moves from no node or an old node to a new node, this new node
will always be top active and flashing. In general there are many such nodes to
choose from and in that case, attention will go to the node that seems to be the
most promising when it comes to satisfying its most urgent need.

3.4 WM Update

The sequence WM(t) stores the nodes that have been under attention most
recently.

3.5 Decision Update

The system makes decisions by continuously computing Decision(t + 1). If
Decision(t + 1) = ∅, then no action is taken. Otherwise Decision(t + 1) con-
tains a single node, which is labeled ACTION . When this node gets activated,
motor activity will follow. The one and only goal of decision making is to pro-
long the system’s life, i.e. avoiding that some σi reaches 0. The decision update
process may use several consecutive cycles for making a decision. In the mean
time Decision(t + 1) = ∅. The processing time is constrained by a time limit
that depends on Status(t). In general, less time is available if some σi is low.
A new situation that brings along dramatic status changes can cause the process-
ing time to run out and make the system return to the main loop and be ready
to deal with the new situations.

Our system combines sub-symbolic reasoning, aimed at planning for survival,
with symbolic reasoning, aimed at improving the planning process by compress-
ing the information contained in WM(t). Both types of reasoning is based on
knowledge that is stored in LTM(t). The reasoning mechanisms, which are used
for decision making, are described in greater detail in Sect. 4. In addition, the
system engages in exploration by testing new or old actions for different nodes
under attention.

3.6 LTM Update

Here we outline the learning mechanisms (or meta-rules) that govern the transfer
from LTM(t) to LTM(t + 1). For reasons of space, these mechanisms are not
described in full detail. Several detailed definitions can be found in [9,15].

1. Hebbian learning at random moments (so that frequently occurring sensory
combinations or sequences of sensory combinations will be remembered)

2. Status-driven learning of state-action pairs leading to reward (so that good
actions can be repeated) or to punishment (so that bad actions can be
avoided)



178 C. Stranneg̊ard and A.R. Nizamani

3. Repetition-driven learning (so that motor patterns that cause sensory pat-
terns to be repeated can be learned, e.g. in the context of sensor-motor devel-
opment and language learning)

4. Novelty-driven learning (so that actions leading to sensory changes are
remembered, e.g. for learning sensory-motor patterns that lead to locomo-
tion and manipulation of the environment)

5. Abstraction (so that general patterns can be remembered via the use of
abstraction nodes, e.g. in the context of symbolic pattern learning)

6. Forgetting (so that memory structures that are rarely used and not associated
with strong reward or punishment are eventually removed)

7. Adjustment of the expected rewards and transition probabilities of the
PREDICTION -edges (so that experience will be properly encoded).

4 Reasoning Mechanisms

Now let us consider the system’s reasoning mechanisms.

4.1 Sub-symbolic Reasoning

The fundamental building blocks of MDPs are association rules that lead from
a state-action pair (s, a) to a resulting state s′ with probability p and expected
reward r. Our LTM was designed for representing rules of exactly this kind with
the convention that the node under attention defines the state of the system.
Thus we can represent MPDs in our framework and do sub-symbolic reasoning
with all kinds of reinforcement learning methods, including Monte-Carlo meth-
ods, Q-learning and Dyna-Q. Our prototype implementation uses Q-learning.
Since we have a mechanism for creating memories of sequences of events, the
system has the Markov property, but is nevertheless able to take history into
account. Figure 3 shows an example of a sub-symbolic computation to the right.

4.2 Symbolic Reasoning

We view rewrite rules as association rules. For instance, we view the rewrite
rule 2 ∗ 3 �→ 6 as an association rule that leads from the node representing
the sequence 2 ∗ 3 and the motor action “write 6” to the node “read 6” with
probability 1 and some positive expected reward. Another rewrite rule leads from
	∧x and the action “write x” to the node “read x”. Symbolic reasoning is done
by means of computations, i.e. successive transformations of WM(t), by means
of rewrite rules. A central rule is Chunk, which is built-in to the system. This rule
enables contents in the working memory to be chunked into a sequence, provided
the sequence in question is an element of LTM(t). For instance, suppose WM(t)
contains the sequence (2, ∗, 3). Also suppose LTM(t) contains the sequence 2∗3.
Then Chunk enables the transition from (2, ∗, 3) to (2 ∗ 3). Figure 3 shows an
example of a symbolic computation to the left.
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Fig. 3. Two computations by a system with two needs: water and glucose. The anno-
tations show the action name, the transition probability and the expected reward in
terms of water and glucose. The left panel shows a symbolic computation (compres-
sion) and the right panel a sub-symbolic computation (a simple plan for drinking and
eating).

Remark 3 (Mixed computations). The ability to combine symbolic and sub-
symbolic reasoning can be critical. For instance, if you hear the voices of three
burglars in your house and later see two of them leave, then you could use
symbolic reasoning to conclude that one burglar is still in the house and then
sub-symbolic reasoning to conclude that you should act in a certain way, e.g.
remain still. In the present framework symbolic and sub-symbolic computation
steps can be mixed arbitrarily.

5 Prototype Implementation

We have implemented a proof-of-concept prototype of the system described
above. The code is available at github.com/arnizamani. Several of the mecha-
nisms for learning and reasoning that are mentioned in Sect. 3 have been imple-
mented in our earlier work on transparent networks [15], inductive learning [16],
and symbolic reasoning [9]. Now we have also implemented a simple prototype
of the system with all the components described in Sect. 2. For simplicity the
number of needs N was set to 1. An MDP was used together with a policy for
decision making. Q-learning was used to update the policy. A class named Envi-
ronment was implemented to simulate a real environment that provides an input
stream and a reward signal to the agent. The implemented system is limited in
features. In particular, the update function for LTM(t), which was partly devel-
oped in [15], has not been added yet. A simple mechanism moves the attention
to a top-active flashing node. The rule Chunk has been added to the compression
mechanism of WM(t).

6 Conclusion

We have proposed a way of bridging the gap between symbolic and sub-symbolic
reasoning. More precisely, we have presented a system together with a prototype
implementation that combines symbolic reasoning, aimed at compressing infor-
mation, with sub-symbolic reasoning, aimed at planning. The system subsumes
and extends our previously developed computational models of symbolic and
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sub-symbolic reasoning. Much work remains, however, for turning the present
proof-of-concept implementation into a fully functional autonomous system.
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Abstract. We present a computational model of a developing system
with bounded rationality that is surrounded by an arbitrary number of
symbolic domains. The system is fully automatic and makes continu-
ous observations of facts emanating from those domains. The system
starts from scratch and gradually evolves a knowledge base consisting
of three parts: (1) a set of beliefs for each domain, (2) a set of rules for
each domain, and (3) an analogy for each pair of domains. The learning
mechanism for updating the knowledge base uses rote learning, inductive
learning, analogy discovery, and belief revision. The reasoning mecha-
nism combines axiomatic reasoning for drawing conclusions inside the
domains, with analogical reasoning for transferring knowledge from one
domain to another. Thus the reasoning processes may use analogies to
jump back and forth between domains.

Keywords: Developing system · Bounded rationality · Symbolic
domains · Axiomatic reasoning · Analogical reasoning

1 Introduction

Analogies play a significant role in several cognitive processes, including decision
making, perception, memory, problem solving, creativity, emotion, explanation,
and communication [6]. In his lecture entitled Analogy as the Core of Cognition,
Hofstadter stated that “analogy is the interstate freeway system of cognition” [9].

Analogies have been studied since antiquity, e.g. by Aristotle, who gave the
famous example Palm:Hand :: Sole:Foot (Palm is to Hand as Sole is to Foot).
A still older example might be the notion of proportionality, as in 3:6 :: 2:4 [5].
Aristotle set the stage for all later theories of analogical reasoning [1]. Gentner
studied analogies in the context of logic and wrote [5]:
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When people hear an analogy such as “An electric battery is like a reser-
voir” how do they derive its meaning? We might suppose that they simply
apply their knowledge about reservoirs to batteries, and that the greater
the match, the better the analogy.

What, then, is an analogy? In the aforementioned lecture, Hofstadter also
stated [9]:

It is tempting to think that the analogies are between things in the external
world, but I really want to say that analogies happen inside your head (. . . )
They are connections between things inside your head (. . . )

Analogies are commonly modelled as follows [5,16]: (1) Define the notion of
domain as a set of logical formulas; (2) Specify two domains S and T called
source and target, respectively; (3) Define a partial mapping from the language
of S to the language of T ; (4) Extend this mapping to a partial mapping from
formulas of S to formulas of T . Then use this mapping for drawing conclusions
(or making consistent conjectures) about T by using knowledge about S.

Analogies play a central role in mathematics for transferring results, proofs,
and conjectures from one domain to another [14]. An example is homomorphisms
of algebraic structures. Note that homomorphisms map elements of algebraic
structures rather than elements of languages. For instance, the mapping x �→
ln x, is an isomorphism from the multiplicative group of the positive reals to
the additive group of the reals. Typical in those algebraic examples is that the
nature of the elements do not matter, only how they interact (the abstract
structure). This can be further abstracted, as one may talk about the structure
of the structures, as is done in category theory. A typical example is algebraic
topology in which one associates a cohomology group H(X) to each topological
space X and a linear map H(f) : H(Y ) → H(X) such that H(fg) = H(g)H(f)
to each continuous map f : X → Y . Then H is a functor from the category
of topological spaces with continuous mappings to the category of groups with
homomorphisms, which enables topological questions to be reduced to algebraic
ones.

A relatively general theory of analogies based on category theory was devel-
oped in [12,13]. Still it does not capture all types of higher-order analogies that
abound in mathematics. This suggests that analogy is a somewhat evasive con-
cept, just like the related notion of similarity, which is clearly hard to pin down
once and for all.

A survey of analogy in automated reasoning can be found in [3]. An early
example is the Structure-Mapping Engine that has been used both for simulation
of human analogical processing and for machine learning purposes [4]. Another
example is the symbolic framework for heuristic-driven theory projection that
applies to analogies as well as metaphors [7]. A relatively recent example is the
work of Schmidt et al. who model domains as first-order sentences rather than
atomic sentences only and use a third domain in addition to S and T [16]. This
third domain is a partial generalization of the other two, obtained via different
versions of anti-unification. Then the analogy mapping from S to T is obtained
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as a lift in category theory. A connection to Kolmogorov complexity was made
in [2], where information economy guides the search for analogies.

The so-called combinatorial explosion problem is ubiquitous in artificial intel-
ligence and in particular a limiting factor to systems of automatic theorem prov-
ing, inductive reasoning, and analogical reasoning [3,10,15]. In [11], we presented
Alice in Wonderland, a general system of learning and reasoning that makes
use of bounded cognitive resources for reducing the computational complexity.

In this paper we show that axiomatic and analogical reasoning can be inte-
grated in a general and fully automatic system of learning and reasoning. This
system has bounded cognitive resources and operates on arbitrary symbolic
domains. The method that we use is to generalize and extend the computa-
tional model underlying our system Alice in Wonderland. We improve on
our previous work by: (1) using a more general notion of domain; (2) moving
from single domains to multiple domains; and (3) adding analogical reasoning.
For simplicity we use a basic notion of analogy and a basic form of analogy detec-
tion. Both these could potentially be replaced by more sophisticated variants.

Section 2 defines the notion of domain and presents a mathematical model
that integrates axiomatic and analogical reasoning. Section 3 describes our sys-
tem for axiomatic and analogical reasoning. Section 4 evaluates the system briefly
and Sect. 5 offers some conclusions.

2 Mathematical Model

In this section we define a general notion of symbolic domain and present a
mathematical model that integrates axiomatic and analogical reasoning.

2.1 Basic Concepts

First of all, let us introduce some basic concepts from first-order logic that will
be used as the building blocks of our mathematical model.

Definition 1 (Language). A language consists of

– a set of function symbols other than �� with specified arities, and
– a set of relation symbols other than �� with specified arities. The equality

symbol = may or may not be included in the language.

Definition 2 (Term). Let L be a language. An L-term is defined as follows:

– Variables x, y, z are L-terms
– Constants c ∈ L are L-terms
– If t1, . . . , tn are L-terms and f is an n-ary function symbol, where n > 0,

then f(t1, . . . , tn) is an L-term.

Definition 3 (Atom). Let L be any language. An L-atom is defined as follows:

– 0-ary predicate symbols are L-atoms
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– If t1, . . . , tn are L-terms and P is an n-ary relation symbol in L, where n > 0,
then P (t1, . . . , tn) is an L-atom.

Definition 4 (Formula). Let L be a language. An L-formula is defined as
follows:

– L-atoms are L-formulas
– If A is an L-formula that does not begin with the symbol ¬, then ¬A is an

L-formula.

Definition 5 (Open and closed). An open term (formula) is a term (for-
mula) that contains variables. A closed term (formula) is a term (formula) that
contains no variables.

Definition 6 (Simple negation). Let A be an L-formula. Then the operator
∗ is defined as follows: if A has the form ¬B, then A∗ = B, otherwise A∗ = ¬A.

2.2 Domains

Definition 7 (Domain). Let L be a language. An L-domain is a non-empty
set D of closed L-formulas. Moreover, D is required to be consistent in the sense
that A and A∗ must not both be elements of D, for any closed L-formula A.

Note that domains may be finite or infinite. Let us now give some examples of
domains.

Example 1 (Arith). Let L = {0, s,+, ·,=} be a language of arithmetic. Here
s is a symbol of the successor function. Let Arith consist of the true closed
formulas of this language, i.e. the atomic diagram of N . Thus Arith contains,
e.g. the following formulas (using numerals so that 2 represents s(s(0)), etc.):
2 + 2 = 4, 2 + 3 �= 4, 2 · (3 + 2) = 10.

Example 2 (Bool). Let L = {�,⊥,¬,∧,∨,=} be a language for representing
boolean expressions. Let Bool consist of all true closed L-formulas. Thus Bool
contains, e.g. � = �,¬⊥ = �,⊥ �= �.

Example 3 (Graph). Let L = {a, b, c, R} be a language for representing graphs.
Let Graph = {R(a, b), R(a, c),¬R(b, a)}. This domain can be interpreted as a
partly specified graph, or, equivalently, as a class of graphs meeting the given
specification.

Example 4 (Network). Consider a neural network that observes its environment
via three binary sensors. To describe its input at a given moment in time we
may use a language that includes one constant ci per sensor and a predicate
symbol Active(x). Then we may specify its input by letting, e.g. Network =
{Active(c1), Active(c2),¬Active(c3)}.



Integrating Axiomatic and Analogical Reasoning 185

Remark 1 (Generality of our notion of domain). An alternative definition of
domain would be to say that a domain is a model (i.e. a structure) of the kind
used in model theory [8]. This notion of model is very general since it includes,
e.g. all algebraic structures and models of set theory. In principle, models of
the model-theoretic kind can be described by the domains that we use here by
expanding the language with new constants if necessary.

Our notion of domain is slightly more general than the notion of model used in
model theory, since it allows for completely as well as partially specified models.
Thus our domains might represent specific models as well as classes of models.

We will use the notation LD for the (uniquely determined smallest) language of
the domain D.

2.3 Axiomatic Reasoning

Definition 8 (Statement). A statement is an expression of the form A ∈ D,
where D is a domain and A is an LD-formula.

Note that the formula A in the above definition may contain variables.

Example 5 (Statements). Some examples of statements: R(a, b) ∈ Graph,
¬R(a, c) ∈ Graph, R(x, x) ∈ Graph, 1 + 2 = 3 ∈ Arith, 0 �= 1 ∈ Arith,
x · 0 = 0 ∈ Arith, � ∧ ⊥ = ⊥ ∈ Bool, � �= ⊥ ∈ Arith, and x �= ¬x ∈ Arith.

Definition 9 (Assignment). An L-assignment is a function α that assigns
closed L-terms to the variables x, y, and z.

Definition 10 (Belief set). A belief set is a finite set of statements.

Definition 11 (Belief application). An application of the belief A ∈ D is a
computation step of the following form:

α(A) ∈ D
A ∈ D��

Here α(A) is an arbitrary LD-assignment and the symbol �� signifies QED.

Example 6 (Belief application). Here is an example of an application of the belief
x0̇ = 0 ∈ Arith:

3 · 0 = 0 ∈ Arith
x · 0 = 0 ∈ Arith��

Definition 12 (Sound belief). A belief A ∈ D is sound if α(A) ∈ D for each
LD-assignment α.

For instance, all the beliefs of the above example are sound.

Definition 13 (Rule). A D-rule is a pair of LD-terms (t, t′).

Note that rules may contain variables.
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Example 7 (Rules). Here are some examples of rules:

– (1 + 2, 3), (x · 0, 0), and (x + y, y + x) are Arith-rules.
– (� ∧ ⊥,⊥), (� ∧ x, x), (x ∨ y, y ∨ x) are Bool-rules.

Definition 14 (Sound rule). The D-rule (t, t′) is sound if α(A(t)) ∈ D iff
α(A(t′)) ∈ D, for every LD-formula A and LD-assignment α.

All the rules of the previous example are sound. For instance, A(1+2) ∈ Arith iff
A(3) ∈ Arith, for all LArith-formulas A. Also, A(�∧⊥) ∈ Bool iff A(⊥) ∈ Bool,
for all LBool-formulas A.

Definition 15 (Rule application). An application of the D-rule (t, t′) is a
computation step of the following form:

α(A(t)) ∈ D
(t, t′)

α(A(t′)) ∈ D

Here α can be an arbitrary LD-assignment.

Note that if the rule (t, t′) is sound for D, then we can infer that α(A(t)) ∈ D if
we know that α(A(t′)) ∈ D.

Definition 16 (Axiomatic computation). Let B be a set of beliefs and let
R be a set of rules. An axiomatic computation based on B and R is a finite
sequence of statements A ∈ D. Moreover, the steps of the computation are given
by applications of beliefs in B and rules in R.

Example 8 (Axiomatic computation). Here is an example of an axiomatic com-
putation:

0 ∗ 12 = 0 ∈ Arith (x ∗ y, y ∗ x) ∈ R
12 ∗ 0 = 0 ∈ Arith (x ∗ 0, 0) ∈ R

0 = 0 ∈ Arith
x = x ∈ B��

2.4 Analogical Reasoning

Definition 17 (Analogy). Let S and T be two domains. An analogy from S
to T is a partial function τ : S → T that maps function symbols to function
symbols of the same arity and relation symbols to relation symbols of the same
arity.

Definition 18 (Extended analogy). Let τ : S → T be an analogy from S to
T . Then τ can be directly extended to a partial function τ+ that maps formulas
in S on LT -formulas by mapping symbol for symbol. For notational simplicity
we will usually write τ instead of τ+.

Definition 19 (Sound analogy). An analogy τ from S to T is sound if A ∈ S
iff τ(A) ∈ T , for every closed LS-formula A.
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Note that from a practical perspective, determining soundness of analogies and
rules might be difficult, since it involves checking universally quantified state-
ments in both cases. Now let us look at some examples of analogies.

Example 9 (Aristotle’s analogy). Let HandDomain = {Under(hand, palm)}
and let FootDomain = {Under(foot, sole)}. Then the mapping going from
HandDomain to FootDomain that maps Under to Under, hand to foot, and
palm to sole is a sound analogy.

Example 10 (Rutherford’s analogy). Let SolarDomain = {Circles(sun, planet)}
and let AtomicDomain = {Circles(nucleus, electron)}. Then the mapping from
SolarDomain to AtomicDomain that maps Circles to Circles, sun to nucleus,
and planet to electron is a sound analogy. Although this analogy is seriously flawed
from the perspective of physics, it illustrates how analogies can be used for gener-
ating scientific hypotheses.

Example 11 (Group analogy). Let R be the real numbers and let {cu : u ∈ R}
be a language for discussing real numbers. Moreover, let Additive = {cu + cv =
cw : u + v = w} and Multiplicative = {cu · cv = cw : u · v = w} be domains.
Then the mapping cu to ceu and + to · is a sound analogy. In fact, the mapping
u �→ eu is a group homomorphism from the additive to the multiplicative group
of real numbers.

Definition 20 (Accuracy). Suppose S and T are (non-empty) finite domains.
Then the accuracy of the analogy τ from S to T is the number

card({A ∈ S : τ(A) ∈ T})
card(S)

.

Example 12 (A natural language analogy). Consider a simple case of translation
between two natural languages. For instance, suppose that S and T are two
domains that describe a certain family using a vocabulary of basic family rela-
tions in two different natural languages. Then the dictionary translation of the
relevant words might be an analogy or at least have relatively high accuracy.

Definition 21 (Analogy application). An application of the analogy τ from
Di to Dj is a computational step of the following form:

A ∈ Di τ
τ(A) ∈ Dj

Note that if τ is sound, then we can infer that A ∈ Di if we know that τ(A) ∈ Dj .

Example 13 (Analogy application). Here is an application of Aristotle’s analogy:

Under(hand, palm) ∈ HandDomain
τ

Under(foot, sole) ∈ FootDomain
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Definition 22 (Knowledge base). A knowledge base for the domains
D0, . . . , Dn consists of the following:

1. a set of beliefs Bi for each domain Di,
2. a set of rules Ri for each domain Di, and
3. an analogy τi,j for each pair of domains Di and Dj.

Let us remark here that this notion of knowledge base is in line with Hofs-
tadter’s statement that “analogies happen inside your head” and are “connec-
tions between two mental representations” [9].

Definition 23 (Sound knowledge base). By extending the previously defined
soundness concepts we will say that a knowledge base for D0, . . . , Dn is sound if
its beliefs, rules, and analogies are sound w.r.t. the relevant domains.

Next we generalize the notion of axiomatic computation.

Definition 24 (Computation). Let K be a knowledge base for D0, . . . , Dn. A
computation in K is a sequence of expressions of the form A ∈ D, where D is a
domain and A is a closed formula of LD. Moreover, the steps of the computation
are given by the previously defined applications of beliefs, rules, and analogies
of K.

Below is a schematic example of a computation in K:

A ∈ Di (t, t′) ∈ Ri
A′ ∈ Di τi,j
A′′ ∈ Dj

A′′′ ∈ Bj��
Now we come to an important point. Suppose we want to know whether A ∈ Di

and have at our disposal the computation given above. Moreover, let us assume
that K is sound for D0, . . . , Dn. Then we can start at the bottom of the compu-
tation and proceed one step at a time while repeatedly invoking the soundness
of K in order to conclude that all statements appearing in the computation, in
particular A ∈ Di, are true.

3 System Description

Based on the mathematical model presented in the previous section we have
developed a prototype system Alice in Wonderland+ that generalizes and
extends our previously developed system Alice in Wonderland [11]. The code
of Alice in Wonderland+ is available at github.com/arnizamani.

Alice in Wonderland+ is equipped with a knowledge base that develops
over time and can be initialized arbitrarily at t = 0. It is surrounded by an
arbitrary number of domains D0, . . . , Dn and it receives information about those
domains at each t in the form of observations:
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Definition 25 (Observation stream). An observation stream from D0, . . . ,
Dn is a stream of statements of the form A ∈ Di, where 0 ≤ i ≤ n.

Here is an example of an observation stream:

1 + 1 = 2 ∈ Arith,R(a, b) ∈ Graph,¬R(a, c) ∈ Graph,� ∨ ⊥ = � ∈ Bool, . . .

The system responds to the observation stream by updating the knowledge base
after each statement it receives. Its constant goal is to build a knowledge base
that reflects the domains D0, . . . , Dn as well as possible.

The learning mechanism of Alice in Wonderland+ includes rote learning,
generalization, inductive learning, analogical learning, and belief revision. The
reasoning mechanism supports axiomatic and analogical reasoning, as described
in Sect. 2. The reasoning mechanism serves to update the knowledge base and
respond to queries. The system searches for analogies between domains and
prefers analogies with high accuracy, i.e. analogies that preserve as many closed
formulas as possible. It searches for computations of the general type that was
described in Sect. 2 and the search is (necessarily) restricted to computations
that use bounded cognitive resources.

4 System Evaluation

To begin with, Alice in Wonderland+ has the full learning and reasoning
power of the system Alice in Wonderland, which is evaluated in [11]. Also,
Alice in Wonderland+ uses a more general format for domains than Alice
in Wonderland. Moreover, Alice in Wonderland+ is capable of analogical
reasoning and of mixing analogical and axiomatic reasoning. Let us give two
basic examples of how the system uses analogical reasoning.

4.1 Rutherford’s Analogy

Suppose the system has developed the following set of beliefs:

1. Moves(electron) ∈ Atomic
2. Stationary(nucleus) ∈ Atomic
3. Smaller(electron,nucleus) ∈ Atomic
4. Moves(planet) ∈ Solar
5. Circles(planet, sun) ∈ Solar
6. Smaller(planet, sun) ∈ Solar

Given a query Circles(electron,nucleus) ∈ Atomic, the system, being unable to
prove it with axiomatic reasoning only, finds the following analogy τAtomic,Solar:

– τ(electron) = planet
– τ(nucleus) = sun

This analogy preserves two closed formulas: 1 �→ 4 and 3 �→ 6. Now, a proof of
the query is computed as follows:

Circles(electron,nucleus) ∈ Atomic
τAtomic,Solar

Circles(planet, sun) ∈ Solar
Circles(planet, sun) ∈ Solar��
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4.2 Natural Language Analogy

Suppose the system starts with an empty set of beliefs. In particular it knows
nothing about natural languages or animals. Next, assume that it learns a num-
ber of facts by rote learning, including the following:

1. Grazes(cow) ∈ English
2. Small(sheep) ∈ English
3. Large(horse) ∈ English
4. Larger(horse, sheep) ∈ English
5. Grande(mucca) ∈ Italian
6. Pascola(cavallo) ∈ Italian
7. PiùGrande(cavallo, pecora) ∈ Italian

Now, suppose that the system gets the query Pascola(mucca) ∈ Italian. Then
it fails to answer the query with axiomatic reasoning, but finds the following
analogy, which preserves the maximum number of facts among analogies of size
at most 4:

τItalian,English = {(cavallo, horse), (mucca, cow), (Pascola, Grazes), (PiùGrande, Larger)}.

Using this analogy, the system next finds the following computation and thus
answers the query positively (still without knowing much about languages or
animals):

Pascola(mucca) ∈ Italian
τItalian,English

Grazes(cow) ∈ English
Grazes(cow) ∈ English��

5 Conclusions

We have shown that axiomatic and analogical reasoning can be integrated in
a fully automatic system that is surrounded by symbolic domains. By gener-
alizing and extending our system Alice in Wonderland, we obtained the
system Alice in Wonderland+, which supports reasoning processes that use
analogies to jump back and forth between domains. Admittedly Alice in Won-
derland+ breaks no new ground in axiomatic reasoning, analogical reasoning,
or linguistics. Rather, the strength of Alice in Wonderland+ lies in its gen-
erality. In fact it is capable of fully automatic learning and reasoning in any
number of arbitrary symbolic domains.
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Abstract. Human-level AI involves the ability to reason about the
beliefs of other agents, even when those other agents have reasoning
styles that may be very different than the AI’s. The ability to carry out
reasonable inferences in such situations, as well as in situations where an
agent must reason about the beliefs of another agent’s beliefs about yet
another agent, is under-studied. We show how such reasoning can be car-
ried out in a new variant of the cognitive event calculus we call CECAC, by
introducing several new powerful features for automated reasoning: First,
the implementation of classical logic at the “system-level” and nonclas-
sical logics at the “belief-level”; Second, CECAC treats all inferences made
by agents as actions. This opens the door for two more additional fea-
tures: epistemic boxes, which are a sort of frame in which the reasoning of
an individual agent can be simulated, and evaluated codelets, which allow
our reasoner to carry out operations beyond the limits of many current
systems. We explain how these features are achieved and implemented
in the MATR reasoning system, and discuss their consequences.

Imagine, in the not-too-distant future, an artificially-general-intelligent robot,
r , is in a room with two humans: its master, m, (to whom r is loyal), and an
opponent, o. The robot believes it is essential, for the survival of itself and its
master, that m understands that q is true, but that o neither learn nor come
to believe that q holds (possibly because o may react negatively and attempt to
kill m and destroy r). Because all three are in a small room where anything r
says is heard by both o and m (r ’s telepathic link with m has been damaged),
r must somehow say something that will cause m to believe q , but not allow o
to figure it out. What can r possibly say?

A human might look at this problem and conclude “r should say some p that
m would figure out implies q (due to some beliefs that m already has), but which
o would not figure out (since o does not have those same beliefs).” But the AI
problem of figuring out that some given p would satisfy this criteria turns out
to be non-trivial as we approach situations that are increasingly realistic. For
example, assuming that r has to perform some sort of simulation of what o and
m would infer given certain beliefs, what if the expressivity of the language in

c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 192–201, 2016.
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which r reasons is lower than that of the languages in which o and m reason? In
such a case, any attempt by r to predict the inferences o and m would produce
in response to learning p would be disastrous.

Furthermore, contemporary approaches to doxastic reasoning assume all
agents are perfect logical reasoners who believe the logical closures of their belief
sets are problematic. What if r reasons non-monotonically and o or m do not,
or vice versa? What if r reasons according to classical logic, but the humans do
not? r ’s ability to simulate the reasoning of o and m is limited if r erroneously
believes all three follow the same set of inference rules.

Finally, if an artificial agent a has knowledge of which beliefs and inference
rules another agent b has, and the ability to simulate inferences using b’s beliefs
and rules, it is relatively easy to show that some new inference i can be pro-
duced from finite applications of b’s beliefs and rules. But due to computational
limitations, it is much harder to show that some inference i ′ does not follow
from these same beliefs and rules (note this is different from showing that the
negation of i follows from b’s beliefs and rules). Yet a human, reasoning about
the beliefs of another agent b, may be able to at least offer a weak argument
that b will not come to believe some i , even if the human’s argument relies on
inductive rules of inference that are not guaranteed to preserve truth.1

These are problems that might be faced by AGIs of the future, and under-
standing how to address them may be necessary to move towards human-level
AI. In this paper, we present a way to carry out the sort of reasoning described
in the robot-human situation above; this reasoning is based on a new variant of
the cognitive event calculus, presented here for the first time, which we will call
CECAC. The CECAC formalism embraces several principles, two of which we will
describe here: First, the idea that all inferences should be treated as actions; and
second, the idea that classical logic (insofar as first-order modal logic can be con-
sidered ‘classical’) should be the formalism at the system-level, and non-classical
logics should be the default formalisms at the belief-level. We will show how a
new type of automated reasoner (called MATR) can meet the unique mechanical
needs of CECAC, and close with a discussion of limitations and future work.

1 CEC and CECAC

The cognitive event calculus (CEC) is a framework based on a first-order modal
logic [1], thus extending the event calculus formalism [5]. CEC contains modal
operators allowing the expression of beliefs (B(a, t, φ) means an agent a believes
φ at time t), knowledge (K), intentions (I), and more. CEC is part of a family
of cognitive calculi [3], and this paper presents a new member of this family:
CECAC, the Analogical Constructivism variant of CEC. In a sense, CECAC is meant
to be an experimental formalism, one that regularly plays with the borders of
1 Imagine, for example, coming up with an argument supporting the statement “no

politician will ever say anything that isn’t self-serving.” Your generated argument
(for most people) likely consists of a chain of inferences of inductive strength, rather
than a proof that has the weight of full deductive validity.
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Fig. 1. Inference rules used for r’s situation

traditional cognitive formalisms, e.g. by the use of nonclassical logics, as will be
shown next.

Classical Outside, Nonclassical Inside. Human reasoners quite often find
themselves facing contradictory beliefs, even when they abide primarily by gen-
erally accepted principles of rationality [10]. However, many logical frameworks
based on classical logic have some form of the rule known as “ex contradictione
quodlibet” (ECQ), also known as the principle of explosion. ECQ (broadly sum-
marized) allows any valid formula to follow from any contradition, so for instance
if a reasoner believes that “it’s true that pizza tastes good, and it’s not true that
pizza tastes good,” it follows that “the moon is made of blue cheese.”

Nonclassical logics [9] try to address these weaknesses of classical logics, often
by disallowing inference rules that are responsible for the logic’s undesirable
behavior. Paraconsistent logics, for example, might disallow ECQ and the law
of non-contradiction (for any formula, it is not true that both the formula and
its negation are true). Such nonclassical logics, however, come with a set of
trade-offs — in paraconsistent logics, meta-theoretical properties may be more
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difficult to prove, but modeling the aspects of human-level reasoning that seem
to embrace contradictory beliefs becomes easier.

Our solution, implemented in a variant of CEC that we will call CECAC, makes
use of classical logics at the “system-level” (the set of formulae that are not
nested inside of doxastic operators), but nonclassical logics at the “belief-level”
(the level of formulae nested inside of operators such as B, K, etc.). It may thus
be acceptable to conclude B(a, t, φ ∧ ¬φ), but φ ∧ ¬φ is highly problematic.

Inferences Are Always Actions. The rich formal machinery of the event
calculus allows CECAC to deeply embrace the idea that inferences are a type of
action, a move in step with analogical constructivism [6] (hence the AC subscript).
In the event calculus, actions typically consist of a formula of one first-order lan-
guage reified into the term of another first-order language [8]. Here, we define an
inference as an action infers(a, φ) where a is an agent and φ is the formula that
a infers. If the inference occurs at time t , it is written as happens(infers(a, φ), t).

We define an agent’s affordance set as the set of possible actions (or affor-
dances, [4]) an agent can take at some given time. If an agent a has the ability
to infer φ at time t , then isAffordance(infers(a, φ), t). Affordances allow us to
describe agents that do not automatically create new beliefs simply because
those beliefs follow logically from their current set of beliefs. Rather, the act of
belief creation is something that happens at a point in time, depending on the
set of beliefs an agent has, and the set of rules the agent acts in accordance with.
Inference rules are presented in Fig. 1, with antecedent conditions on the top of
the horizontal lines and conclusions below, with rule names on the right sides.

Using affordances, we can distinguish between three forms of inference rules:
first-person, automatic, and affording. Consider the rules:

φ, φ → ψ

ψ
[R1]

B(a, t, φ),B(a, t, φ → ψ)
B(a, t, ψ)

[R2]

B(a, t, φ),B(a, t, φ → ψ)
isAffordance(infers(a, ψ), t)

[R3]

The form of inference rule used in R1, which we will call the first-person form,
may be used when reasoning about the possible inferences that some given agent
may make at some given time. It is often convenient to use this rule form when
doxastic and temporal features are not relevant, or are assumed.

The form of inference rule denoted R2 is probably the most common in
doxastic logics. But it is not always applicable in every situation. If agent a
has the beliefs at time t that φ and φ → ψ hold, it does not always follow
that a always has the belief ψ at time t as well. It may be that a simply did not
consider the two beliefs simultaneously, or that a never got around to considering
the full implications of her beliefs (perhaps due to computational and temporal
limitations). Or, depending on the definition of belief adopted, it may be that
a is not fully aware of her beliefs, at least to a degree where she can represent
them explicitly and use them to produce principled inferences. Furthermore, the
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application of rule R2 is done silently; it does not create an infers event, nor
does it produce any awareness in a’s mind that rule R2, as opposed to some
other rule, was used to produce a new belief. The form of inference rule used in
R2 will be called automatic.

The affording rule form, demonstrated in R3, instead treats φ → ψ as a
possible inference, one which may or may not be made by a. Note that there is
some room here for additional rules to specify precisely how inference affordances
achieve fruition, i.e., how a possible inference becomes an actual belief. For this
paper, one such proposed mechanism draws on the concept of interest : if ψ is
of interest to a, and is also a possible inference in a’s affordances, we can safely
infer (with some inductive strength) that infers(a, ψ) will happen.

Belief and Rule Sets. Because CECAC is a first-order modal language, we can
not easily use higher-order constructs to represent formulae quantifying over
sets. However, there are cases where an agent, reasoning about another, may
need to reason about sets of beliefs or sets of rules in order to reach conclusions
in a human-plausible way. To address this problem, rather than adopting full-
blown second-order logic, four sorts are introduced: setSymbol , its two sub-sorts
beliefSet and ruleSet , and ruleSymbol . The predicate inSet corresponds to the
standard set-membership operator. A symbol of sort ruleSymbol is introduced
for every possible inference rule. If an agent a believes isFullBeliefSet(b, t,B),
then agent a believes inSet(φ,B) if and only if a believes B(a, t , φ). Likewise, if
a believes isFullRuleSet(b, t,R), then agent a believes inSet(r ,R) if and only if
a believes hasRule(b, t, r ).

Through these sorts and symbols, an agent a can reason about the rules
another agent b follows to produce its inferences, or reason about b’s beliefs as
a group, without explicit reasoning about every possible belief a believes b has.

Inductive Inferences. In our toy example, r has no real basis to conclude
with certainty that saying p will lead to the effects r desires. That requires
a perfect knowledge of all of m and o’s beliefs, rules, and some knowledge of
all possible confounding factors. If what we are after is human-level reasoning,
then, we must allow for inferences that do not necessarily have deductive validity,
which do not require a perfect knowledge of all beliefs, rules, and possible events,
and furthermore, which shies away from requiring exhaustive calculations of all
possibilities, unless such calculations are normally performed by a commonsense
human reasoner.

If we are after the ability to generate plausible, reasonable arguments that
a human would create or accept upon hearing, then we need to adopt inductive
inferences, at least at the belief-level. For this paper, we assume that r has
the rPersist group of rules, such as rPersist(a) (Fig. 1), presented in its first-
person form. rPersist(a) can be interpreted as saying if two time points t and
t ′ are very close together, the fact that agent a acts in accordance with rule R
does not change between t and t′. Such a rule, in the absence of other relevant
information, seems reasonable to assume. However, crucially, treating rPersist(a)
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as a deductive, truth-preserving rule will lead to inconsistent beliefs (reminiscent
of the classic paradox of “Theseus’s ship”). rPersist(a) is a rule that cannot
appear in its first-person form at the system-level — unless it appears within an
epistemic box, which we will explain next.

1.1 Boxes

The proof theory we are using is an extension of the one used by MATR (Machina
Arachne Tree-based Reasoner),2 containing boxes, a construct similar to the
indented subproofs in Fitch-style natural deduction [2]. Formulae inside of a box
are inside of the box’s context, and the box itself is always within some parent
context (except for the root context, which is a special box with no parent).
Boxes contain a supposition set (written in curly brackets above the box), a list
of formulae assumed to hold for the context inside of the box. Boxes themselves
can be used as antecedents of inferences. Formulae that are in the same context
as the boxes can be re-introduced inside of the box’s context; any formulae
reintroduced in this way are part of the box’s reiteration set.

One of CEC’s strengths is that it allows for the arbitrarily deep nesting of
beliefs in an unambiguous way, so that an agent’s beliefs about another agent’s
beliefs won’t be confused with the first agent’s own. But the notation for such
situations can become somewhat cumbersome, especially considering affordances
require all inferences made by agents to first enter the pool of possible actions.

To address these concerns, we introduce the concept of epistemic boxes, boxes
that should be thought of as simulating the inferences of some particular agent
at a given time. They currently come in two types. [(a, t)]-boxes are designed to
show what sequence of inferences will happen for agent a at time t . Because we
will not be using [(a, t)]-boxes in this paper, we will not discuss them further.
<(a, t)>-boxes are designed to show a sequence of inferences that are possible
for agent a at time t . For any <(a, t)>-box B, with parent box P, the following
must hold:

– Formulae φ can be in B’s reiteration set only if B(a, t, φ) holds in P’s context.
– If formulae φ1 and φ2 lead to an inference of ψ (where all three

formulae are inside B), then the formulae B(a, t, φ1), B(a, t, φ2), and
isAffordance(infers(a, ψ), t) must all hold at P’s context.

– If φ1,...,φn

ψ is an inference rule that holds within B, then the rule
B(a,t,φ1),...,B(a,t,φn)

isAffordance(infers(a,ψ),t) must hold at P’s context.

The only inference rules that hold in an <(a, t)>-box are those that, when
transformed from the first-person to affording forms, hold in the context of the
box’s parent. If an <(a, t)>-box B, with supposition set {γ1, ..., γn}, produces
the inference ψ within B, then in B’s parent context we can infer:

2 MATR is currently being developed by a collaboration between the Rensselaer AI
and Reasoning (RAIR) Lab, and the Analogical Constructivism and Reasoning Lab
(ACoRL).
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(B(a, t, γ1) ∧ ... ∧ B(a, t, γn)) → isAffordance(infers(a, ψ), t)

This inference is done using the evaluated inference rule <→>-intro (examples
of its use are seen in Fig. 2). However, because specifying the supposition set in
its entirety again requires a higher-order logic, actually implementing this rule
requires a special computational ability, which we will describe next.

1.2 Evaluated Codelets

MATR-style reasoning implements its reasoning by dividing most of the hard
work amongst codelets (a term borrowed from the Copycat model [7]), which can
be thought of as little independently-operating processes. Each codelet looks at
the current state of a proof and make suggestions to the central proof manager
(the Codelet Manager, or CM) about what inferences should be made. Generally,
one codelet is created for each inference rule, so that the codelet can specialize
in efficient algorithms for locating appropriate areas of the current proof state
to make suggestions. Codelets can be small and quick (like the codelets that
look at the current state of a proof and suggest ways to shorten it), or large
and possibly slow (such as codelets that serve as wrappers for full automated
theorem provers).

Codelets, implemented as Java programs, can theoretically run any program
and use any criteria to evaluate whether an inference should be suggested. The
CM simply assumes that if a codelet suggests an inference, that inference is valid
according to the semantics of the codelet. Thus, we can create codelets capable
of implementing the sort of low-level, distributed algorithms common in state-of-
the-art artificial intelligence, but lacking from automated theorem provers. We
call these evaluated codelets—these are codelets that implement inference rules
whose conditions contain semantics not entirely captured in the formal language
of the antecedents. Instead, we specify these semantics in pseudo-formalized
natural language statements.

Inference rules relying on evaluated codelets are referred to as evaluated rules.
For example, consider the follows inference rule in Fig. 1 (note the use of tele-
type font and an underline to denote evaluated codelets), which can be invoked
if some φ follows from an agent’s belief set and an inference rule that agent
has. In such evaluated rules, we can accept an arbitrary number of conditions
in the antecedent (denoted by the ellipsis) and any arbitrary requirement in the
quotation marks; often we will use natural language statements. It is up to the
codelet to implement the semantics expressed in the quotation marks faithfully.3

Evaluated codelets are particularly useful when a conclusion should be
inferred on the basis of something not captured in the logical form of the CECAC

formulae alone. This is why the inference rule <→>-intro is implemented as
3 Of course, we acknowledge such a violation of referential transparency means that

actual semantics of evaluated codelets may vary, possibly significantly, between dif-
ferent implementations, and provide a level of (possibly dangerous) flexibility not
seen in any other automated reasoners (to our knowledge).
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an evaluated codelet. As another example, if the analogical similarity between
two formulae needs to be found, we might use a structural comparison of the
formulae themselves. Although the method for comparison can be done through
logical syntax alone, actually performing that structural comparison is best done
with the use of a software package that may draw on distributed representations,
vector operations, machine learning methods, etc. Thus, evaluated codelets allow
MATR to combine the high-level reasoning and argument-generation powers of
logic-based AI with the amazing advancements in nonlogical methods that have
been dominating the field of machine learning in recent years.

As of now, there are several restrictions placed on evaluated codelets. Two
instances of an implementation of an evaluated codelet, within the same context,
given the same formulae as antecedents, must produce the same inference (if they
produce any inference under those conditions). They can behave nonmonotoni-
cally (changing their inferences if more formulae are given as antecedents), but
they may not behave randomly. Furthermore, certain evaluated codelets are only
allowed within the context of epistemic boxes. For example, a codelet which tries
to simulate the low-level similarity-based inferences of an agent may need to draw
on agent-specific knowledge.

In this paper, we make use of four evaluated codelets: The first, <→>-intro
has already been described:

“ <(a, t)> -box B‘s full supposition set is φ1, ..., φn and ψ is inferred in B
′′

(B(a, t, φ1) ∧ ... ∧ B(a, t, φn)) → isAffordance(infers(a, ψ), t)
[<→>-intro]

follows and doesntFollow determine whether or not a formula follows from
another set of formulae, given some rule symbols. Finally, relevant takes a
formulae ψ and uses some similarity-based algorithm to generate a set of formulae
and inference rules that may be relevant to ψ (we do not specify here what
algorithm should be used to determine relevance).

We present our proofs in Fig. 2, using MATR’s visual style. r can possibly
infer that if he says p, then m will infer q (Proof 1), while o will not (Proof 2).
Assumptions made are denoted with the given codelet.

2 Future Work

The new CECAC features introduced in this paper are serious steps towards the
creation of a new style of automated reasoning that can bridge the gap between
informal and formal reasoning. However, it is clear that a lot more work is
needed. Perhaps most notably lacking from the present work is a way to compare
confidence in inductively-inferred beliefs, so that stronger beliefs can defeat the
weaker ones. For example, it is easy to see how we can actually derive, with low
confidence, an argument for B(r, t0,¬inSet(ψ,B2

m)), which would conflict with
the conclusion of Proof 1. A satisfactory model of formula defeating would need
to somehow assign a higher confidence to B(r, t0, inSet(ψ,B2

m)).
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We also don’t discuss here how an agent might resolve between contradic-
tory beliefs when a plan of action depends on such a resolution. This may require
introducing a concept of “conscious acceptance”, which we are currently devel-
oping.

Finally, we don’t claim that our approach is the only way to do these things,
nor that our way is always better than all alternatives (e.g. treating action
inferences as a relation between possible worlds). For example, although our
concept of action-as-inference was primarily motivated by the later work of Jean
Piaget [6], new promising work based on the concept of proof-events is emerging
[11], which considers proving as a process that unfolds through time. It is outside
of the scope of this paper to fully compare all alternatives. Certainly, the idea
of introducing inference rules whose semantics are implementation-specific may
seem unusual to those firmly steeped in the logic-based AI tradition, but it is
our hope that such measures will allow a flexibility not currently enjoyed by
artificial reasoners.4
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Abstract. Almost all formal theories of intelligence suffer from the
problem of logical omniscience, the assumption that an agent already
knows all consequences of its beliefs. Logical uncertainty codifies uncer-
tainty about the consequences of existing beliefs. This implies a departure
from beliefs governed by standard probability theory. Here, we study the
asymptotic properties of beliefs on quickly computable sequences of log-
ical sentences. Motivated by an example we call the Benford test, we
provide an approach which identifies when such subsequences are indis-
tinguishable from random, and learns their probabilities.

1 Introduction

Probabilistic reasoning about deterministic structures is a challenging case of
uncertain reasoning which has received relatively little attention. This is the
subject of logical uncertainty as defined in e.g. [1]: “any realistic agent is nec-
essarily uncertain not only about its environment or about the future, but also
about the logically necessary consequences of its beliefs.” Being able to produce
well-reasoned guesses about the results of programs before running them could
provide valuable information for heuristic search, such as planning in complex
environments or automatic programming. This kind of uncertainty can also be
of wider interest. For example, [2] provides a call to arms for the development of
numerical algorithms which provide information about the uncertainty in their
results. [3] discusses the use of probabilistic information generated by machine
learning to aid static program analysis for optimization.

One of the purest examples of this type of reasoning in humans is the for-
mation of mathematical conjectures. Mathematical intuitions behave in a way
that is largely consistent with the standard probability axioms [4]. However, they
cannot be entirely so: probability theory requires belief in anything which follows
logically from your current beliefs, and so cannot represent uncertainty about
what may later be proved. This is known as the problem of logical omniscience,
and is the main challenge faced by a theory of logical uncertainty [5–8].
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 202–211, 2016.
DOI: 10.1007/978-3-319-41649-6 20
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Several proposals have addressed this problem by considering sequences of
probability assignments1 which converge to logically omniscient distributions,
enforcing more and more constraints imposed by the probability axioms in
the limit of unbounded computing resources [1,9,10]. With such a theoretical
model in hand, one might think that the practical problem of logical uncertainty
amounts to approaching this limit as quickly as possible. However, this is a fairly
weak constraint on the behavior of beliefs at finite time.

If we’re asked to quickly give a probability for a mathematical question, and
the question belongs to a class of questions which have been true 25 % of the
time, it seems we should give a probability close to 0.25. This type of reasoning is
ignored if our only aim is to converge to a good probability distribution overall.
Each individual question will converge to probability one or zero. This seems to
ignore an essential part of the problem. So, we take a different approach. We
consider the limit of a sequence of sentences within a single assignment of prob-
abilities, rather than the limit of probabilities within a sequence of assignments.
We call this approach asymptotic logical uncertainty. Our goal is not to provide
an algorithm which may be used in an AGI directly, but rather, to illustrate a
new desirable (and achievable) property of uncertain reasoning for AGI.

Section 2 discusses further related work. In Sect. 3, we define the Benford
test as a concrete example of the type of reasoning we wish to model. Section 4
defines irreducible patterns, a concept used to define a general case where this
sort of reasoning is justified. Section 5 proposes a learning algorithm to solve the
problem in the general case, and Sect. 6 proves that the method is successful.
Section 7 concludes.

2 Related Work

The most often-cited work relating probability to logic is almost certainly that
of Cox [11], which shows that under certain desirable assumptions, probability
theory is the only possible generalization of Boolean algebra. Other early work
concerning measures over Boolean algebras include [12,13]. This has since been
extended to first-order logic [14,15], and from there to other settings [16–18].
However, most of this work does not address computability.

An early articulation of the problem of logical omniscience was [5]. Many
approaches have attempted to deal with this through theories of inconsistent
structures, including [7,8]. The approach here is also related to online sequence
learning using expert advice, to predict a sequence of observations almost as well
as a given set of advisors [19], especially experts on sub-sequences as in [20].

3 The Benford Test

Benford’s law states that in naturally occurring numbers, the leading digit d ∈
{1, . . . , 9} of that number in base 10 occurs with probability log10(1 + 1

d ). Many

1 We will use the term “probability” to refer to degrees of belief generally, whether or
not the probability axioms are obeyed.
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mathematical sequences have been shown to have frequencies of first digits that
satisfy Benford’s law [21]. In particular, the frequencies of the first digits of
powers of 3 provably satisfy Benford’s law.

The function 3 ↑n k is a fast-growing function defined by 3 ↑1 k = 3k,
3 ↑n 1 = 3, and 3 ↑n k = 3 ↑n−1 (3 ↑n (k − 1)). 3 ↑n k is very large, and first
digit of 3 ↑n k is probably very difficult to compute. It is unlikely that the first
digit of 3 ↑3 3 will ever be known.

If asked to quickly assign a probability to the sentence “The first digit of
3 ↑3 3 is a 1,” it seems the only reasonable answer would be to treat it as a
power of three and reply log10(2) ≈ .30103, as dictated by Benford’s law. Note
that the sentence is either true or false; there are no random variables. The
probability here represents a reasonable guess in the absence of enough time or
resources to compute 3 ↑3 3.

We define the Benford test to formalize this reasoning.2 Throughout the
paper, let the time-bound T (N) be an increasing function in the range of N ≤
T (N) ≤ 3 ↑k N for some fixed k, and R(N) = T (N)N4 log T (N) a larger time-
bound.

Definition 1. Let M be a Turing machine which on input N runs in time
O(R(N)) and outputs a probability M(N), which represents the probability
assigned to φN . We say that M passes the Benford test if

lim
n→∞ M(sn) = log10(2) , (1)

where φsn = “The first digit of 3 ↑n 3 is a 1.”

It is easy to pass the Benford test by hard-coding in the probability. It is more
difficult to pass the Benford test in a natural way. That the best probability
to assign to φsn is log10(2) depends not only on the fact that the frequency
with which φsn is true tends toward log10(2), but also on the fact that the
sequence of truth-values of φsn contains no patterns that can be used to quickly
compute a better probability on some subsequence. We therefore assume that
this sequence of truth-values is indistinguishable from a sequence produced by
a coin that outputs “true” with probability log10(2). Formally, we are assuming
that S = {sn|n ∈ N} is an irreducible pattern with probability log10(2), as defined
in the next section.

4 Irreducible Patterns

Let φ1, φ2, . . . be a simple enumeration of all sentences in first order logic over
ZFC. Fix a universal Turing machine U and an encoding scheme for machines,
and let U(M,x) denote running the machine U to simulate M with input x.

2 The test presumes that the frequencies of the first digits in the sequence 3 ↑n 3 satisfy
Benford’s law. Though this seems likely, the conjecture is not too important; any
sufficiently fast-growing sequence satisfying Benford’s law could serve as an example.
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Definition 2. 3Let S ⊆ N be an infinite subset of natural numbers such that
φN is provable or disprovable in ZFC for all N ∈ S, and there exists a Turing
machine Z such that U(Z,N) runs in time T (N) and accepts N if and only if
N ∈ S.

We say that S is an irreducible pattern with probability p if there exists a
constant c such that for every positive integer m ≥ 3 and every Turing machine
W expressible in K(W ) bits, if

S′ = {N ∈ S | U(W,N) accepts in time T (N)} (2)

has at least m elements and r(m,W ) is the probability that φN is provable when
N is chosen uniformly at random from the first m elements of S′, we have

|r(m,W ) − p| <
cK(W )

√
log log m√
m

. (3)

The intuition behind the formula is that the observed frequency r(m,W ) for any
sequence S′ we select should not stray far from p. The right hand side of the
inequality needs to shrink slowly enough that a true random process would stay
within it with probability 1 (given choice of c sufficiently large to accommodate
initial variation). The law of the iterated logarithm gives such a formula, which is
also tight in the sense that we cannot replace it with a formula which diminishes
more quickly as a function of m.

Proposition 1. If provability in Definition 2 were decided randomly, such that
for each N ∈ S the sentence φN is independently called “provable” with probabil-
ity p and “disprovable” otherwise, then S would almost surely be an irreducible
pattern with probability p.

Proof. Omitted due to space limitations.4

We now use the concept of irreducible patterns to generalize the Benford
test.

Definition 3. Let M be a Turing machine which on input N runs in time
O(R(N)) and outputs a probability M(N), which represents the probability
assigned to φN . We say that M passes the generalized Benford test if

lim
N→∞
N∈S

M(N) = p , (4)

whenever S is an irreducible pattern with probability p.

Note that if we conjecture that the S from Definition 1 is an irreducible pat-
tern with probability log10(2), then any M which passes the generalized Benford
test also passes the Benford test.
3 We tailored this definition of irreducible pattern to our needs. The theory of algorith-

mic randomness may offer alternatives. However, algorithmic randomness generally
considers all computable tests and focuses on the case where p = 1

2
[22,23]. We

believe that any reasonable definition inspired by algorithmic randomness would
imply Definition 2.

4 See pre-print version [24] for the full proof.
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5 A Learning Algorithm

We now introduce an algorithm AL,T that passes the generalized Benford test
(see Algorithm 1). The general idea behind the algorithm is to make a prediction
for a sentence by searching for an irreducible pattern which it belongs to (repre-
sented by the program X). To be sure that a pattern is irreducible, we must also
search for any subsequences (represented by Y ) which have significantly different
probabilities. In effect, we are trying to predict an event by finding a reference
class which the event belongs to. A reference class which is simple and passes
tests for pseudo-randomness is chosen, since this indicates that we are unlikely
to do better by choosing a different reference class.

Let L be the Turing machine which accepts on input N if ZFC proves φN ,
rejects on input N if ZFC disproves φN , and otherwise does not halt. For con-
venience, in Algorithm 1, we define log q = 1 for q < 2.
Let TM(N) be the set of all Turing machines X expressible in at most log N
bits such that U(X,N) accepts in time at most T (N). The encoding of Turing
machines must be prefix-free, which in particular means that no Turing machine
is encoded in 0 bits. Let JN denote the set of rational numbers of the form j

N
with j = 0, . . . , N .

For X and Y Turing machines, let K(X) be the number of bits necessary to
encode X. Let S′(X,Y ) be the subset of natural numbers i which are accepted
by both U(X, i) and U(Y, i) in time at most T (i). Let QN (X,Y ) be the greatest
number less than or equal to N such that for every s in the first QN (X,Y )
elements of S′, U(L, s) halts in time T (N). Let FN (X,Y ) be the proportion of
the first QN (X,Y ) elements of S′ which L accepts. Let

BN (X,Y, P ) = max

(

K(X),
|FN (X,Y ) − P |√QN (X,Y )

K(Y )
√

log log QN (X,Y )

)

. (5)

Lemma 1. The output of AL,T on input N is in

arg minP∈JN
max

Y ∈TM(N)
min

X∈TM(N)
BN (X,Y, P ) . (6)

Proof. Omitted due to space limitations.5

The code is not optimized for computational efficiency. The following proposition
is just to ensure that the runtime is not far off from T (N).

Proposition 2. The runtime of AL,T (N) is in O(R(N)) = O(T (N)N4

log T (N))).

Proof. Simulating U on any input for T time steps can be done in time cT log T
for some fixed constant c [25]. The bulk of the runtime comes from simulating
Turing machines on lines 8, 13, 14, and 16. Each of these lines takes at most
cT (N) log T (N) time, and we enter each of these lines at most N4 times. There-
fore, the program runs in time O(T (N)N4 log T (N)).
5 See pre-print version [24] for the full proof.
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Algorithm 1. AL,T (N)
1: P = 0
2: M = N
3: for j = 0, . . . , N do
4: MY = 0
5: for Y a Turing machine expressible in KY < logN bits do
6: MX = N
7: for X a Turing machine expressible in KX < logN bits do
8: if U(X,N) and U(Y,N) both accept in time T (N) then
9: A = 0

10: R = 0
11: i = 1
12: while i ≤ N do
13: if U(X, i) and U(Y, i) both accept in time T (i) then
14: if U(L, i) accepts in time T (N) then
15: A = A + 1
16: else if U(L, i) rejects in time T (N) then
17: R = R + 1
18: else
19: i = N
20: i = i + 1
21: F = A/(A + R)
22: Q = A + R

23: if max

(
KX ,

|F− j
N

|√Q

KY
√
log logQ

)
< MX then

24: MX = max

(
KX ,

|F− j
N

|√Q

KY
√
log logQ

)

25: if MX > MY then
26: MY = MX

27: if MY < M then
28: M = MY

29: P = j/N
30: return P

6 Passing the Generalized Benford Test

We are now ready to show that AL,T passes the generalized Benford test. The
proof will use the following two lemmas.

Lemma 2. Let S be an irreducible pattern with probability p, and let Z be a
Turing machine such that U(Z,N) accepts in time T (N) if and only if N ∈ S.

There exists a constant C such that if N ∈ S, then there exists a P ∈ JN

such that
max

Y ∈TM(N)
BN (Z, Y, P ) < C . (7)
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Proof. Let P = �pN�
N . From the definition of irreducible pattern, we have that

there exists c such that for all Y ,

|FN (Z, Y ) − p| <
cK(Y )

√
log log QN (Z, Y )

√
QN (Z, Y )

. (8)

Clearly,

|P − p| ≤ 1
N

≤ 1
QN (Z, Y )

≤ 1
√

QN (Z, Y )
≤ K(Z)K(Y )

√
log log QN (Z, Y )

√
QN (Z, Y )

.

(9)
Setting C = K(Z) + c, we get

|FN (Z, Y ) − P | ≤ |FN (Z, Y ) − p| + |P − p| <
CK(Y )

√
log log QN (Z, Y )

√
QN (Z, Y )

, (10)

so
|FN (Z, Y ) − P |√QN (Z, Y )
K(Y )

√
log log QN (Z, Y )

< C . (11)

Clearly, K(Z) < C, so BN (Z, Y, P ) > C for all Y . Therefore,

max
Y ∈TM(N)

BN (Z, Y, P ) < C . (12)

Lemma 3. Let S be an irreducible pattern with probability p, and let Z be a
Turing machine such that U(Z,N) accepts in time T (N) if and only if N ∈ S.

For all C, for all ε > 0, for all N sufficiently large, for all P ∈ JN , if N ∈ S,
and

min
X∈TM(N)

BN (X,Z, P ) < C , (13)

then |P − p| < ε.

Proof. Fix a C and a ε > 0. It suffices to show that for all N sufficiently large,
if N ∈ S and |P − p| ≥ ε, then for all X ∈ TM(N), we have BN (X,Z, P ) ≥ C.

Observe that since BN (X,Z, P ) ≥ K(X), this claim trivially holds when
K(X) ≥ C. Therefore we only have to check the claim for the finitely many
Turing machines expressible in fewer than C bits.

Fix an arbitrary X. Since S is an irreducible pattern, there exists a c such
that

|FN (X,Z) − p| <
cK(Z)

√
log log QN (X,Z)

√
QN (X,Z)

. (14)

We may assume that S′(X,Z) is infinite, since otherwise if we take N ∈ S large
enough, X /∈ TM(N). Thus, by taking N sufficiently large, we can get QN (X,Z)
sufficiently large, and in particular satisfy

√
QN (X,Z)

K(Z)
√

log log QN (X,Z)
ε ≥ C + c . (15)
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Take N ∈ S large enough that this holds for each X ∈ TM(N) with K(X) < C,
and assume |P − p| ≥ ε. By the triangle inequality, we have

|FN (X,Z)−P | ≥ |P −p|−|FN (X,Z)−p| ≥ ε− cK(Z)
√

log log QN (X,Z)
√

QN (X,Z)
. (16)

Therefore

BN (X,Z, P ) ≥

(

ε − cK(Z)
√

log logQN (X,Z)√
QN (X,Z)

)
√

QN (X,Z)

K(Z)
√

log log QN (X,Z)

=

√
QN (X,Z)

K(Z)
√

log log QN (X,Z)
ε − c ≥ C ,

(17)

which proves the claim.

Theorem 3. AL,T passes the generalized Benford test.

Proof. Let S be an irreducible pattern with probability p. We must show that

lim
N→∞
N∈S

AL,T (N) = p. (18)

Let Z be a Turing machine such that U(Z,N) accepts in time T (N) if and only
if N ∈ S.

By considering the case when X = Z, Lemma 2 implies that there exists a
constant C such that for all N sufficiently large, there exists a P ∈ JN such that

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P ) < C. (19)

Similarly, using this value of C, and considering the case where Y = Z, Lemma 3
implies that for all ε > 0, for all N sufficiently large, for all P ∈ JN if N ∈ S, and

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P ) < C, (20)

then |P − p| ≤ ε.
Combining these, we get that for all ε > 0, for all N sufficiently large, if

N ∈ S and if P is in

arg minP∈JN
max

Y ∈TM(N)
min

X∈TM(N)
BN (X,Y, P ), (21)

then |P − p| ≤ ε.
Thus, by Lemma 1, we get that for all ε > 0, for all N sufficiently large, if

N ∈ S, then |AL,T (N) − p| ≤ ε, so

lim
N→∞
N∈S

AL,T (N) = p. (22)
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7 Final Remarks

We identified a new desirable property for logical uncertainty, the generalized
Benford test, based on making probability assignments when sequences of log-
ical statements appear pseudorandom. We developed an algorithm with this
property. Although the algorithm does not have a practically useful run-time, it
demonstrates that it is possible to achieve the desired property in a very general
case: we can apply this algorithm to learn patterns in ZFC or other powerful
logics, which include essentially any mathematical domains of interest within
them.

The main drawback of the approach here is that it does not achieve desir-
able properties of previous approaches. No attempt is made here to satisfy the
probability axioms in the limit as more computing power is used, as in [1,9].
Integrating with those approaches is an important next step. Nonetheless, we
see passing the generalized Benford test alone as a fairly powerful property, as
it implies an ability to notice a wide variety of patterns within mathematics.
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Abstract. We propose a novel framework for computational concept
invention. As opposed to recent implementations of Fauconnier’s and
Turner’s Conceptual Blending Theory, our framework simplifies compu-
tational concept invention by focusing on concepts’ functions rather than
on structural similarity of concept descriptions. Even though creating an
optimal combination of concepts that achieves the desired functions is
NP-complete in general, some interesting special cases are tractable.

1 Introduction

Despite the success of many AI applications, tools, and services, there are some
cognitive abilities and phenomena which are hard to model with computational
approaches. Classical examples for such shortcomings are creative abilities of
cognitive agents, in particular, the ability to create new concepts with new and
interesting properties and features based on the available background knowledge
of the agent. Particularly, artificial general intelligence (AGI) has an interest to
address the problem of developing computational models for certatin aspects of
creativity research.

A cognitive theory addressing possibilities to model the invention of new
concepts is conceptual blending [6]: In [15], the authors argue for the broad
applicability of computational approaches for conceptual blending in the context
of concept invention. Conceptual blending can be regarded as the process of
combining elements of at least two distinct concepts (or input spaces) to get a
meaningful new concept (the blend space) [6]. For instance, in greek mythology, a
centaur is composed of parts of a horse and parts of a human; a faun is composed
of a goat and a human. Similar examples can be found in other areas such as
mathematics [8] or music [4].

The process of conceptual blending that generates a blend space from given
input spaces has been formalized by using tools from various areas such as frame-
based knowledge representation [13], algebra [7], quantum theory [1] or analogical
reasoning [10]. Many interesting blends can be explained and sometimes auto-
matically generated by these frameworks, but unsupervised blending of concepts
can also yield many meaningless results. Quality criteria can be defined to fil-
ter the results, but if concept descriptions become large, this approach becomes
impractical due to the combinatorial explosion of possible blends. In particular
c© Springer International Publishing Switzerland 2016
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logical approaches that search for maximal consistent blends rely on computa-
tional problems that go far beyond NP or are even undecidable.

The authors in [9] propose a goal-oriented view on conceptual blending to
further structure the search space and demonstrate the computational bene-
fits with case studies in story generation and pretend play. The three essential
components for efficient computation are (see [9] for a detailed discussion):

1. selection of input spaces,
2. selection of elements that should be incorporated in the blend space,
3. stopping criteria for blend elaboration.

Note that the workflow of concept generation will usually apply these compo-
nents multiple times. Candidate input spaces will be selected (1), combined (2),
and evaluated until an acceptable new concept is generated (3). We will follow
this philosophy here and assume that our goals can be defined as functions that
our newly generated concept should satisfy. This view might be less suitable for
concept invention in domains like music or poetry, but is well apt to create new
physical entities like a houseboat [13] or a monster [12].

In our computational framework, functions will be defined globally and can
be satisfied by concepts’ functional units. By a functional unit, we mean a sub-
set of parts of a concept that achieve a function. For instance, feet, legs, and
the pelvis area constitute humans’ functional unit for moving the body; hands,
arms, and the thorax area humans’ functional unit for moving things. In par-
ticular, we associate functions with properties that can be used to evaluate the
usefulness of functional units. For instance, the functional unit for moving the
body can have a property speed, the functional unit for moving things can have
the property power. Roughly speaking, we implement component (1) from [9] by
scanning the database for concepts that contribute to satisfying the desired func-
tions. Component (2) and (3) basically consist of combining functional units and
evaluating the generated concept with respect to some utility functions. Com-
bination can be guided, for instance, by evaluating functional units’ properties
while balancing the candidates’ contributions to the blend space.

2 Concept Representation

We start our discussion by introducing a functional concept blending frame-
work formally. To this end, let us consider languages LC of concepts, LF of
functions that are associated with concepts and LP of properties that func-
tions can have. In our examples, LC , LF and LP will be made up of strings
like human (concept), move body (function) and speed (property). Each prop-
erty p is associated with a domain domain(p) of values it can take. Values
can be strings, numerical values, or intervals. For instance, we could specify
domain(speed) = {[b1, b2] | b1, b2 ∈ R, 0 ≤ b1 ≤ b2}. Intuitively, domain(speed)
is a set of intervals that represent minimum and maximum speed that a concept
can take. We also need some mappings that connect our languages.
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– functions : LC → 2LF , parents : LC → 2LC , components : LC → 2LC asso-
ciate concepts with the functions they fulfill, with their parents and compo-
nents. Intuitively, parents correspond to more general concepts (in ontology
research often called superconcepts) and serve to arrange concepts hierarchi-
cally in a tree-like structure, where child concepts inherit features of their
parents. Formally, we demand that

If p ∈ parents(c) for some concept c, then functions(p) ⊆ functions(c).

For instance, Fig. 1 shows a hierarchy, in which the concept Organic might
contain functional units like a reproduction system and a metabolic system,
which can be overwritten by its childs. Components (in ontology research
often associated with concepts standing in the part of relation) are the build-
ing blocks that concepts are made of and that can be used to create new
concepts in our framework. For instance, we could let functions(human) =
{move body}, parents(human) = {animal}, components(human) =
{human lower body, human upper body, human head}.

– funit : (LC × LF ) → 2LC is a partial mapping that associates concepts and
functions with the components that serve to fulfill this function such that
1. if f �∈ functions(c), then funit(c, f) = ⊥ is undefined,
2. if f ∈ functions(c), then funit(c, f) ⊆ components(c).

– eval : (LC × LF × LP ) → LV is a partial mapping that associates
concepts, functions and properties with the value that this property
takes for the given function and concept. For instance, we could have
eval(human,move body, speed) = [0, 45]. We demand that
1. if f �∈ functions(c), then eval(c, f, p) = ⊥,
2. if f ∈ functions(c) and p �∈ properties(f), then eval(c, f, p) = ⊥,
3. if f ∈ functions(c) and p ∈ properties(f), then eval(c, f, p) ∈ domain(p).

Fig. 1. Hierarchy of abstract concepts.
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Definition 1 (Functional Concept Blending Framework). A functional
concept blending framework is a pair (C,F), where C ⊆ LC is a set of concepts
and F ⊆ LF is a set of functions.

For a discussion of Definition 1 and its relation to classical types of concept
blending, please compare Sect. 4.

3 Computing Blends

Given a functional concept blending framework (C,F), we want to create new
concepts. Following [9], our search for interesting candidates to combine will be
lead by goals. Our goals are functions that the new concept must satisfy.

The most straightforward way to set the goals is to just let the user select the
desired functions. However, if (C,F) is large in terms of the number of concepts
and functions, it is easier to define the desired functions in an implicit way
by exploiting the hierarchical structure of the concepts. For instance, given the
example from Fig. 1, we could just say that we want a concept that features
aspects of Organic and Machine and that can move its body in the air. In
general, if we select an abstract concept from the hierarchy as a goal, the newly
generated concept should satisfy all functions that the abstract concept and its
parents satisfy.

So let us assume that we are given a functional concept blending framework
(C,F) and a set of goals G ⊆ F . Our aim is an algorithm that outputs a new
and meaningful concept that fulfills our goals. Similar to [9], we consider three
components of the algorithm. Roughly speaking it works by iterating over the
database and selecting candidate concepts (1), combining these concepts to a
new concept (2), evaluating the concept and maybe restarting the procedure (3).
These phases cannot be considered independently of each other. In particular,
both the first and second phase depend on the third one. We will first describe
combination of concepts and then selection of concepts. Along the way, we will
explain how we can evaluate candidates during these phases.

3.1 Concept Combination

Suppose we already selected a subset of components C′ ⊆ C from which
we want to create a new concept. The main task is to select a subset of⋃

c∈C′ components(c) that makes up the new concept, let us just call this set
components. The basic requirement for components in our framework is that
for each goal f ∈ G, components contains a functional unit that fulfills this
function. Algorithm1 shows a simple algorithm that guarantees this require-
ment. It just iterates over the concepts and chooses the components of that
functional unit that best satisfies the desired function. One naive way to imple-
ment bestSatisfies is to select a concept that fulfills the function randomly. A
more sophisticated way is to select the concept that best satisfies the func-
tion with respect to some utility function. To this end, let us assume that for
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Input: Goals G , Concepts C′

Output: Components of new concept
components ← ∅;
for f ∈ G do

c ← bestSatisfies(C′, f);
components ← components ∪ funit(c, f);

returncomponents;
Algorithm 1. A local algorithm to combine concepts’ components.

each f ∈ F and for each property p ∈ properties(f), we have a utility func-
tion uf,p : domain(p) → R. For instance, for the property speed, we could
let U([b1, b2]) = b2 be the maximum speed of the concept. Additionally, we
might want to reward diversity of the new concept. We can do this, for instance,
by computing the ratio that the given concept already contributes to the new
concept contribution(c) = | components(c)∩components|

|components| and preferring low contribu-
tions by multiplying the utility value by a factor like 3

1+2contribution(c)
. Let U(C,G)

denote the cost of evaluating the utility functions, then bestSatisfiesruns in time
O(|C′| · U(C,G)). Note that instead of storing the components in components
explicitly, we can just store a pointer to the fulfilling functional unit for each
goal. Then Algorithm1 runs in time O(|G| · |C′| · U(C,G)).

If we think of our goal as combining concepts’ components in a way that
maximizes utility, Algorithm 1 corresponds to a local approach that takes only
the individual values of concepts’ functional units into account, but not their
group values. In particular, the influence of the diversity factor depends on the
order in which we selected the goals. Algorithm 2 shows an alternative global
algorithm. It works by first determining for each goal f ∈ G the set of concepts
Cf that fulfill this function. Then for each possible assignment π : G → C′, which
determines which goal will be satisfied by which concept’s functional unit, the
utility value of the corresponding combined concept is determined. From the best
component sets, one set is returned. A simple implementation can just select a
best component set randomly. It might also be reasonable to add all elements
from the intersection

⋂
C∈best C of all best component sets. In order to imple-

ment utility(G, C′, components, π), we need several ingredients. We can evaluate
the usefulness of each individual functional component by using utility func-
tions like in the local approach. We can then combine these individual values
by a combination function like a weighted sum. Additionally, we can consider a
diversity factor again. In a good combination of concepts, each concept should
contribute equally to the new concept. Let us consider again the contribution
contribution(c) = | components(c)∩components|

|components| for each concept c ∈ C′. We want to
prefer concepts in which the contributions are distributed more uniformly. We
can do this, for instance, by measuring the entropy of the contribution distribu-
tion or by measuring its negative euclidean distance to the uniform distribution;
and then multiplying this value to the combined utility value. Letting again
U(C,G) denote the maximum cost of evaluating the utility values, Algorithm2
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Input: Goals G , Concepts C′

Output: Components of new concept
for f ∈ G do

Cf ← {c ∈ C′ | f ∈ functions(c)};
maxUtil ← −∞;
best ← ∅;
for each assignment π : G → C′ such that π(f) ∈ Cf do

components ← ∅;
for f ∈ G do

components ← components ∪ funit(π(f), f);
u ← utility(G, C′, components, π);
if u > maxUtil then

best ← ∅;
maxUtil ← u;

if u = maxUtil then
best ← best ∪ {components};

return selectBestComponenSet(best);
Algorithm 2. A global algorithm to combine concepts’ components.

runs in time O(|C′||G| · (|G| + U(C,G))). The runtime is dominated by evaluating
all possible assignments π and the worst-case is obtained when all concepts fulfill
all functions. However, even if we assume that each function is fulfilled by only
2 concepts, the runtime remains exponential in |G|. Hence, Algorithm 2 is only
efficient in its naive form if the number of goals is moderate.

3.2 Selecting Concepts

In order to select concepts from which the new concept shall be generated, we
can again follow a local and a global approach. Algorithm3 shows a simple local
algorithm. It works by iterating over the concepts until a concept is found that
contributes to the goals. The concept is then added to C′ and all fulfilled goals are
removed. This process keeps on until all goals are satisfied. The selected concepts
are then combined as explained in the previous section. Algorithm3 runs in time
O(|G| · |C| · |F|+M(|C′|)) = O(|C| · |F|2 +M(|C′|)), where M(|C′|) corresponds to
the cost of merging the selected concepts. So, for instance, when combining the
local Algorithms 1 and 3, the overall cost is O(|C| · |F|2 + |G| · |C′| · U(C,G)) =
O(|F|2 · |C| · U(C,G)) and hence polynomial. Note that a naive implementation
of Algorithm 3 might yield an old rather than a new concept if there exists a
concept that satisfies all goals. However, we can easily handle this case by adding
a simple check and if necessary resetting the goals and adding a second concept.

We can modify Algorithm 3 in various ways to iterate over the concepts in
more sophisticated ways. One way to do this is to order the concepts in descend-
ing order by the key key(c) = | functions(c) ∩ G| for each concept c ∈ C′. In this
way, we prefer concepts that satisfy many goals. The additional computational
cost is O(|C| · log |C|) when using efficient sorting algorithms like Quicksort. How-
ever, after selecting the first concept, the keys can decrease and the order can
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Input: Concept Blending Framework (C, F), Goals G
Output: New concept that satisfies goals
C′ ← ∅;
while G �= ∅ do

for c ∈ C do
if functions(c) ∩ G �= ∅ then

C′ ← C′ ∪ {c};
G ← G \ functions(c);

c ← combine(C′);
returnc;

Algorithm 3. A local algorithm to select concepts.

change. We can just ignore this fact, resort the concepts periodically or main-
tain the order by using special data structures like heaps. If we assume that
the goals can be satisfied by a small number of concepts, the additional cost is
asymtotically negligible. This assumption is in particular satisfied if the goals
were defined by selecting a small number of abstract concepts from the hierarchy
like Organic and Machine because subconcepts in the hierarchy inherit functions
from their parents. We can also think of more sophisticated keys that not only
regard the number of functions that are satisfied by a concept, but also how
effective the goal is satisfied. To this end, we can apply similar utility functions
as explained in the previous section.

Algorithm 4 shows a global algorithm to select concepts. It works by iterating
over all subsets C′ of C that contain at least 2 elements. The concepts in C′ are
then combined as explained in the previous section. The new concept is then
evaluated and the best concepts are stored. Finally, a best concept is returned. In
order to compute utility values and to select a best concept, we can apply similar
ideas as explained for Algorithm2. To this end, we can reuse information from the
combine-procedure. However, we can also take additional criteria into account.
For instance, we might want to avoid that too many concepts are used and can
therefore use a discounting factor like 2−k to decrease utility increases as the
size of the subsets increases. The runtime of Algorithm 4 is O(

∑|C|
k=2

(|C|
k

) ·M(k)),
where M(k) again denotes the cost for combining k concepts. Hence, the runtime
is exponential in |C| even if we use the local algorithm for combining concepts.
However, usually we do not want to combine an arbitrary number of concepts,
but maybe only two or three. If we consider a bound b on the number of concepts,
the runtimes becomes O(

∑b
k=2

(|C|
k

) · M(k)) = O(|C|b · M(b)).

3.3 Computational Results

We proposed a local and a global algorithm to merge and select concepts, respec-
tively. Our global algorithm has an exponential worst-case runtime. Actually, the
concept invention problem is inherently difficult if we do not make any assump-
tions on the maximum number of concepts that may be combined. To make this
precise, let us assume that we are given a utility function u : 2C → R. This utility
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Input: Concept Blending Framework (C, F), Goals G
Output: New concept that satisfies goals
maxUtil ← −∞;
best ← ∅;
for k ← 2 to |C| do

for each k-elementary subset C′ of C do
c ← combine(C′);
u ← utility(G, c);
if u > maxUtil then

best ← ∅;
maxUtil ← u;

if u = maxUtil then
best ← best ∪ {c};

return select(best);
Algorithm 4. A global algorithm to select concepts.

function can take all criteria into account that we discussed before. Note that
we can also use it to evaluate single concepts c ∈ C by letting u(c) = u({c}). We
call u polynomial-time computable iff u(C′) can be computed in time polynomial
in C and G for all C′ ⊆ C. Let us consider the following decision problem.

U-CONCEPT: Given a concept blending framework (C,F), a set of goals
G ⊆ F that is compatible with (C,F), a polynomial-time computable
utility function u and a real number U ∈ R, decide whether there is a
subset C′ ⊆ C such that u(C′) > U .

The following result follows from a guess and check argument and a reduction
of 0-1-KNAPSACK. We omit the proof to meet space restrictions.

Proposition 1. U-CONCEPT is NP-complete.

However, usually we do not want to combine an arbitrary number of concepts,
but combine at most a handful of concepts. If the maximum number of concepts
that can be combined is some fixed integer b, our previous results show that a
globally optimal solution can be found in time O(|C|b · |C′||G| · (|G| + U(C,G))) =
O(|C|b+|G| · (|G| + U(C,G))) (Algorithms 2 and 4). Since we assume that u is
polynomial-time computable, this term is polynomial in C, but exponential in |G|.
However, if we assume that there is only a small number of goals our algorithm is
efficient. In other words, if we want to combine only a small number of concepts,
U-CONCEPT is fixed-parameter tractable with parameter |G| (see [3] for an
introduction to parameterized complexity). In particular, by combining the local
Algorithms 1 and 3, we see that creating a concept that satisfies our goals can be
performed in polynomial time. Strictly speaking, we have to assume that there
exist indeed b concepts whose functional units can be combined to fulfill all
goals. However, it might be reasonable to just introduce a penalty factor in the
utility function, which penalizes combinations that ignore goals. We summarize
our findings in the following proposition.
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Proposition 2. If there is a subset C′ ⊆ C of size at most b, whose functional
units fulfill all goals in G, then
1. U-CONCEPT restricted to combinations of at most b concepts is fixed-

parameter tractable with parameter |G|,
2. a subset C′ ⊆ C that satisfies G can be computed in time polynomial in |C|

and |G|.

4 Related Work

Conceptual blending (compare, for example, [5,6]) is a fundamental cognitive
process underlying much of everyday thought and language. It is modeled as a
process by which humans combine certain concepts, relations, and properties of
originally separate conceptual spaces into a unified space (the blend space), in
which new elements and relations emerge, and new inferences can be drawn. In
this sense, it can be considered as a source of creativity. Whereas the classical
framework of conceptual blending requires two input spaces, a generalization
of the input spaces (often called generic space), and a blend space, this paper
departs to a certain extent from this framework. Input spaces correspond to
concepts (composed of components that fulfill certain functions), the generic
space corresponds to goals (functions that shall be fulfilled by the new con-
cept’s components) and the blend space corresponds to a new concept (com-
posed of some of the input concepts’ components). The present approach can be
regarded as a search strategy that can be applied to special instances of the gen-
eral framework. Other computational models for conceptual blending have been
proposed, for instance, in [7,9]. There are also relationships to problems like case-
based- reasoning [2], predicate invention [11] and concept invention in machine
learning [14].

In [12], the authors describe the creation of monsters from a library of descrip-
tions of animals formalized as OWL ontologies. A major difference between [12]
and the present approach is the idea of guiding the blending process by functions
that should be realized in the blend space. This is related to using priority values
for properties to order them according to their importance for their appearance
in the blend space. An approach for creating novel musical chord progressions
by conceptual blending directed by hand-coded priority values for certain prop-
erties that should be realized in the blend space is presented in [4]. A further
approach that uses a heuristics in order to guide the blending process in math-
ematics is presented in [10] where the consistency (or non-consistency) of the
resulting blend theory is used as a heuristcs.

5 Conclusions and Future Work

We proposed a computational framework for function-driven concept invention.
The search for interesting candidate concepts to combine and the combination
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of concepts is guided by desirable functions that the new concept should sat-
isfy. Whereas the problem of creating an optimal new concept is NP-complete
in general, prohibiting arbitrarily large combinations makes the problem fixed-
parameter tractable with respect to the number of goals. Just creating a new
concept that satisfies our goals can be performed in polynomial time. We are
currently working on basic implementations of the local and global approach.

As in most frameworks for concept invention, our framework’s ability to
create new concepts strongly depends on the information and structure that
we provide. We are planning to apply machine learning tools to automate this
process. For instance, we can regard C as an ontology and we can reuse existing
ontologies from the web or parse existing nomenclatures from online encyclope-
dia. In order to learn functions of concepts and their functional units, we will
try to apply natural language processing tools.

Acknowledgements. Some of the authors acknowledge the financial support of the
Future and Emerging Technologies Programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-Open grant number:
611553 (COINVENT).
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System Induction Games
and Cognitive Modeling as an AGI Methodology
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Abstract. We propose a methodology for using human cognition as a
template for artificial generally intelligent agents that learn from expe-
rience. In particular, we consider the problem of learning certain Mealy
machines from observations of their behavior; this is a general but con-
ceptually simple learning task that can be given to humans as well as
machines. We illustrate by example the sorts of observations that can be
gleaned from studying human performance on this task.

1 Introduction

A generally intelligent agent must be able to learn the dynamics of its environ-
ment through experience. One strategy for developing agents with this capability
is to study how humans approach analogous learning problems. In this paper we
illustrate how one might proceed with this methodology. We must admit at the
outset that we have not pushed this methodology all the way through to the
construction of learning systems; we aim only to lay some groundwork for that
objective (and to propose a class of learning problems relevant to AGI).

First, we need to define a domain in which learning can take place. We will
use a class of learning tasks we call “system induction games” (SIGs). In a SIG,
the player is presented with an unknown (black box) Mealy machine [14] and
must work out rules that predict its behavior.1 We will not stipulate the source
of the input stream; it might be decided by the player, by a teacher trying to help
the player learn, or by chance. We further assume the player produces a guess
after each input as to what the output will be. Importantly, we are concerned
specifically with Mealy machines governed by some “reasonably simple” set of
rules—that is, a set of rules a human could work out within a reasonable amount
of time. (A very simple example would be a machine which emits a B symbol
if either of the two prior inputs were A.) Our goal is not to find methods for
inducing Mealy machines in general, which is already a well-studied problem.2

1 Recall that a Mealy machine is a finite-state machine which, at each timestep,
receives an input i, produces an output o = f(s, i) (where s is its present state),
and changes state to s′ = g(s, i). Actually, for our purposes there is no particular
reason to assume a finite state space, but the games we will consider do have this
property.

2 In fact, the general problem is NP-complete [6].

c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 223–233, 2016.
DOI: 10.1007/978-3-319-41649-6 22
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Playing a SIG amounts to learning about the behavior of an environment
through experience: the Mealy machine is the environment being learned. The
methodology we explore in this paper is to let humans play SIGs, observe their
behavior, and attempt to model it. We believe this combination of SIGs and cog-
nitive modeling is a promising approach for AGI. The domain of SIGs gives rise to
learning problems which are nontrivial, natural for humans, and isolated from
complications like sensorimotor processing. Furthermore, if one models actual
human learning mechanisms, one has a reason to think that the algorithms pro-
duced will scale to the difficult problems humans solve.

The plan for this paper is as follows. First we will discuss some related work.
We will then illustrate the methodology we propose by examining some data
produced by the author while playing SIGs. We will look both at the large-
scale behavior involved in figuring out a SIG, as well as a broader but shallower
sample of data related to conjecturing rules. In each case we will discuss some
of the mechanisms and requirements this data seems to suggest for a generally
intelligent learning agent. Finally we will propose directions for future work.

2 Related Work

Probably the closest related work is the “Seek-Whence” project of Hofstadter
and colleagues, who examined the problem of extrapolating sequences of inte-
gers. Like us, Hofstadter emphasized cognitive plausibility as a guiding principle,
seeking to build systems which parsed sequences in the same way a human might
[8]. This research has led to at least two full-fledged sequence-extrapolating sys-
tems [11,15]. There has also been other work on the psychology of sequence
extrapolation. Simon and Kotovsky [10,20] carried out some of the most sys-
tematic experiments, though the sequences they considered were very simple
compared to those of Hofstadter. SIGs differ from Hofstadter’s Seek-Whence
domain in that they require the extrapolator to induce a mapping from input
to output—that is, an explanation for a sequence of outputs conditioned on a
sequence of inputs, not just an explanation for a sequence of outputs on its own.
Thus SIGs are arguably a closer fit to the problem an agent needs to solve to
make sense of its environment. At the same time, SIGs can be much harder to
solve (even for people).3

As alluded to earlier, the problem of inducing Mealy machines has been stud-
ied within computational learning theory. Angluin’s L∗ algorithm [1] provides an
efficient solution to the related problem of inducing deterministic finite automata
(provided the agent can control the input), and that algorithm can be adapted
to Mealy machines (see [19] for a discussion). A number of algorithms for learn-
ing POMDPs (which might be viewed as a probabilistic generalization of Mealy
machines) have also been proposed [3,12,13]. Algorithms in this vein are only
partially applicable as models of human learning on SIGs, in part because SIGs

3 More precisely, a SIG whose description is about the same length as the description
for an integer sequence is likely to be harder to figure out than the integer sequence.
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involve additional structure (in particular, they should admit reasonably com-
pact verbal descriptions). Humans are able to recognize and exploit a variety of
structural regularities which do not exist in generic state machines but which
do play an important role in the environments we actually face. (In the Mealy
machine context, such regularities might include two letters of the alphabet being
functionally equivalent, a factorization of the machine into several independent
parts, sparsity of nontrivial transitions, etc.) By examining human learning in
environments with these types of structure, we have a possible window into
learning mechanisms relevant to general intelligence.

A few researchers, such as Drescher [4] and Bergman [2], have developed
systems which learned rich rule-based models of their environments. Drescher’s
system, which was inspired by Piaget’s theory of cognitive development [17],
focused especially on inferring hidden states through their indirect effects on
observations. Bergman’s system discovered causal relationships in an environ-
ment with a rich and highly structured (but directly observable) state space.
Both projects considered only a single environment, but developed algorithms
with substantial cognitive plausibility that may be relevant in the SIG domain.

On a more general level, the topic of human rule induction has been studied
extensively in the context of concept learning (see [7] for a recent approach to
this problem). The SIG domain, however, adds several elements to traditional
concept learning problems: a need for selecting features from a very large feature
space, a need to discover hidden state and how it changes, and the possibility of
temporally extended actions (rather than one-off category judgments).

3 General Observations on Human SIG-Playing Behavior

We now discuss some observations based on the author’s own experience playing
SIGs and recording thoughts while playing. (This methodology is similar to the
protocol analysis method of Simon and Newell [5,16].4) The games considered
used input alphabets of {A,C,D,−} and output alphabets of {B,−}.5 They are
listed in Table 1, alongside the number of turns taken to figure out the game
with reasonable confidence and the minimal number of states to represent the
game as a Mealy machine. The game history was not visible during the game,
so information of interest had to be held in memory, and inputs were random6

4 As they are based on a single subject, we should not expect our observations to
generalize in all details to other subjects. This is not a problem for our purposes,
since the goal is to collect a sample of some of the approaches people apply to SIGs,
not to survey them completely. One other note is in order: since the author also wrote
the games, some steps were taken to avoid recalling how they worked during play.
The games were played some weeks after being created, had their inputs shuffled,
and were drawn from a larger set of 48 games.

5 The − input symbol was chosen as a “null” symbol to indicate nothing of note had
happened; this allows an asynchronous interaction to be modeled within a synchro-
nous formalism.

6 There was some weighting, chosen for each game with the intent of making it more
learnable.
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Table 1. Sample system induction games.

# Description (output is − if not otherwise specified) Turns States

1 If C occurs, do two Bs; add one extra B if an A is received
during or right after those Bs

43 4

2 A toggles a hidden state; in the “on” state, each C produces B 77 2

3 If A occurs, do two Bs 102 2

4 C toggles repetition of B; A suppresses Bs for two turns 125 4

5 Do B if last three inputs were a cyclic permutation of ACD 142 7

6 Do B if the last two inputs were AD or DA 241 3

7 Do B every time the inputs switch between D and non-D 250 2

8 Any time C occurs, respond to the next two Ds with B 250 3

9 If − occurs and there have been ≥ 2 As since the last B, do B 419 3

10 The sequence DA activates a hidden state and AD deactivates it;
when in the state, blocks of Cs get the response −B − B . . .

463 5

except in the later parts of Games 8–10, where I got stuck and switched to
controlling them directly.

The overarching activity that appears in the transcripts of these games is
the conjecturing, testing, and refining of rules. Some rules are easy to deduce:
if a certain input symbol always leads to a certain output, we quickly pick up
on that. We also readily pick up on block-related rules, such as “in a block of
−s, all turns after the first have output −.” Other easy features to pick up on
include alternation, situations where an event triggers two outputs in a row (or
where two equal inputs in a row trigger an effect), and situations where one of
two outcomes can occur, for example “in a block of Cs the outputs are either all
− or they alternate, starting with −.”

The more challenging component of the task tends to be figuring out the
conditions controlling an unreliable event. For example, in Game 9, I quickly
saw that in a block of − inputs, the first output could be either − or B, but
it was not easy to figure out the controlling condition. Let us call the event
that prompts the unpredictable outcome the “probe”; in our example the first
− of a block was the probe. To figure out non-obvious conditions, I seemed
to consider several types of theories. The type considered first was that the
relevant considerations for determining the outcome of a probe took place since
the last probe; this assumption led me to seek features of the inter-probe history
that were successful predictors (such as, in Game 9, the presence of two As).
This search process was biased to first consider recent inputs as explanatory
factors, which is reminiscent of prediction suffix trees [18]. A second type of
theory was that the probe exposed some underlying (hidden) state which could
be toggled on or off by certain events. When working under this assumption, I
would look at inter-probe periods where the outcome had switched, and try to
extract features that would predict the switches. Interestingly, this sort of theory
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resembles Drescher’s idea of “synthetic items” [4]. A third type of theory, which
I came to in Games 8 and 9 only after the other ideas failed, was that performing
the probe itself alters the hidden state. In both cases, this conjecture quickly led
to the discovery of the actual rule, but from the limited data it is unclear what
general method might apply here.

While this very preliminary study does not allow us to draw definitive conclu-
sions, the above patterns suggest that several existing ideas (such as prediction
suffix trees, synthetic items, decision trees, and rule-based concept learning [7])
may be part of a learning “toolbox” employed by humans and perhaps appro-
priate for AGI too. We can also see that there is a need to do a certain amount
of “perceptual” processing of the input, even in the rather abstract domain of
SIGs. For example, in Game 10, a pattern of alternating Cs can be viewed as a
stable state, and a multiple-input sequence can be viewed as a single event. In
Game 4, a two-turn occurrence of “suppression” is viewed as a single event.

It is also interesting to consider what the types of theories we contemplate tell
us about the environments we are biased to learn. The theory types mentioned
earlier are most effective when hidden state is controlled by recent or distinctive
events, or is relatively stable between probes. These features need not be present
in general; one can imagine machines (think hash functions) in which every input
“scrambles” the state. On a more fundamental level, the existence of effective
probes, and indeed of a distinction between “really” hidden and “not-so-hidden”
state,7 is a form of structure that humans seem to productively utilize. It seems
likely that we will need to design agents with similar considerations in mind if
we want them to display general intelligence.

4 A Model of Early Decision-Making on SIGs

The previous section was effectively a “depth-first” investigation of human SIG
behavior. We can also take a breadth-first approach and look at a smaller amount
of behavior on a wider sample of games. In an effort to do this, I examined a
sample of 73 situations a SIG player could face on the fifth turn and annotated
each with a judgment of which guesses would be appropriate, which is a proxy
for what hypotheses humans are inclined to consider.8 We will present a rule-
based model which replicates this data and discuss what it suggests about how
humans go about rule induction in SIGs.

7 In the SIG formalism, all state is hidden; what we mean by “really” hidden state is
information about the state which cannot be inferred from the recent history.

8 The sample of situations considered was generated by taking all distinct histories
(treating relabelings as equivalent) satisfying two conditions: (i) that the history
contained mixed evidence and (ii) that the last two inputs were the same. By “mixed
evidence” we mean that there was at least one input that was followed by both
outputs; this restriction was chosen because cases with no mixed evidence were
uniformly felt to be easy decisions (just do what worked last time). The second
restriction was an arbitrary choice to reduce the sample to a manageable size.
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Before doing this, however, it may be worth clarifying why we care about
obtaining such a model. The logic is as follows. In order to learn how an envi-
ronment behaves, humans (or artificial agents) must notice regularities in it and
entertain hypotheses about the causes of those regularities. This raises the ques-
tion of which regularities and hypotheses humans naturally consider.9 Human
SIG judgments are surely based on the regularities we perceive and the hypothe-
ses we generate, so by modeling the judgments we can begin to inventory the
mechanisms behind those elements of the learning process.

Note that even though the preliminary “inventory” we construct takes the
form of a collection of rules, these rules should not be confused with the rules
that characterize the environments we want to learn—the inventory is instead
more akin to a set of “meta-rules” for conjecturing environment-governing rules.
Given the preliminary nature of this study, our meta-rules are not particularly
sophisticated, but they serve to illustrate the methodology we have in mind.

4.1 Data

The judgments and the number of times each was used are shown in Table 2.
Sample histories, together with corresponding judgments, are shown in Table 3.
One interesting finding about these judgments is that in general they are not
very hard to make; we do have an intuition for what choices are reasonable,
just as we have intuition for what would be a reasonable continuation of the
sequence 1, 4, 9, . . . . As one might expect, however, there is inevitably a bit of
fuzziness, and at times a history seems to border two categories, or we change
our judgment from one day to the next. In a few cases (< 10), as I worked on
the model, I discovered similar histories that I had annotated differently, but
which (when considered side by side) I did not feel deserved differing judgments.
In these cases I simply adjusted one of the judgments to obtain uniformity.

Table 2. Judgments on the fifth turn of our sample of SIGs.

N Judgment

16 − is the only good answer

18 − is preferred but B is not too unreasonable

27 B and − are about equally good

3 B is preferred but − is not too unreasonable

9 B is the only good answer

9 These questions speak to the problem of what inductive bias is appropriate for AGI.
There are of course theoretical proposals like Solomonoff induction [21], but we are
motivated by a desire to address the issue empirically.
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Table 3. Sample judgments on the fifth turn of SIGs.

In Out In Out In Out In Out In Out

A B A B A B A B A B

C − C B A − C B C B

A − C B A B A − A −
C − A − C − D B C B

C A C D C

only − prefer − both prefer B only B

4.2 Model

The following model captures all 73 of the judgments. It is based on a set of
rules, each of which examines the history and, if it meets certain conditions,
proposes an output.10 If a rule finds the condition it was looking for, we say it
“fires.” The rules are divided into four groups, which we have labeled 1A, 1B,
2, and 3. These rules function in a preference system. When determining the
preferred output, rules in group 1 (A and B) are first consulted. If one or more
rules in group 1 fire, then the action(s) those rules propose become the preferred
one(s). If no group 1 rule fires, then group 2 is consulted in the same way. (It
turns out a rule in group 2 always fires, so group 3 is not needed to determine the
preferred action; its role is to determine whether the other option is disallowed
or just weak.) In most cases, if a lower-ranked rule proposes an action but the
preferred action was already set in a higher group, then the former action is
felt to be a weak option. However, the rules in group 1A are so compelling that
they outweigh this tendency—proposals from lower-ranked rules are not felt to
be options at all, not even weak ones.11

The rules are listed in Table 4. Those that can’t be described in one line are
given names and will be described presently. Throughout, let I be the present
input and T be the present turn. | · | will mean the length of a collection of turns.

AnalogousBlocks. A “block” is a contiguous group g of turns with the same
input such that (a) |g| ≥ 2 (b) g is not a subset of a larger block. If T is part of
a block b, and there is a prior block b′ with |b′| ≥ |b|, and the outputs of b′ have
agreed with those of b so far, we say that b and b′ are analogous. For example,
in (AB)(A−)(C−)(DB)(D?) the last two turns constitute a block analogous to
the first two. In this situation the rule says to pick the output that occurred in
b′ in the position corresponding to T .

AlternationWithinTailBlock. If T is part of a block of length at least 3, and
the outputs in that block alternate, continue the alternation.

10 One rule actually proposes both outputs as acceptable.
11 As it turns out, this mostly applies to group 3 rules. There is only one case in which

a 1A rule suppresses a group 2 rule, namely the AAAAA/B − B− situation.
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Table 4. Rules modeling a set of fifth-turn SIG decisions.

1A. AAAAA and B − B− (predict B)

AAAAA and BB−− (predict −)

B−−− (predict −)

1B. B−−−, BB−−, or BBB− (predict −)

AnalogousBlocks where both blocks have the same input

(this implies the input is AACAA)

2. DoLast (copy the most recent output)

B − B− (predict B)

B−−B (predict −)

AlternationWithinTailBlock

AnalogousBlocks

3. AnalogousExperience

PredominantExperience

TiedExperience (predict both B and − as acceptable)

LastExperience

PredominantAll

AnalogousExperience. Let e(i) be the player’s “experience” with input i: the
sequence of outputs that have occurred when i was the input. If |e(I)| ≥ 1, and
there is some i with |e(i)| > |e(I)|, and e(i) has agreed with e(I) so far, predict
the current output from the output at the corresponding position in e(i).

PredominantExperience. If one output has occurred more times than the
other in e(I), predict it.

TiedExperience. If both outputs have occurred equally often (and at least
once) in e(I), predict that both are acceptable.

LastExperience. If |e(I)| ≥ 1, predict the last element of e(I).

PredominantAll. If one output has occurred more times than the other in the
full history, predict it.

4.3 Discussion

All the listed rules are necessary, although some handle only a couple cases
(AnalogousExperience only handles one), and some could be replaced with a
different but equally effective rule (for example, we could use an AlternatingEx-
perience rule instead of the TiedExperience rule). Many of the rules are not too
surprising; they indicate that we pay attention to alternation, to switches from
one output to another, to recent outputs, and to the outputs that previously
occurred with the current input. Probably the most interesting feature of the
model is the concept of a “block” (a contiguous group of turns with the same
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input), which is used in multiple ways: a block boundary can be seen as a “cut
point” which allows a pattern that exists within the block but not beyond it
to be seen as legitimate (this occurs in the AlternationWithinTailBlock rule),
and blocks can be used to create analogies between one sequence of turns and a
past sequence of turns, thereby allowing more complex predictions than would
otherwise be possible.

There are a few rules that are to some extent artifacts of the limited set
of cases we considered. For example, DoLast would probably be a much less
robust rule if we hadn’t restricted attention to cases where the fourth and fifth
inputs were the same. Another question we might ask is, is it really the case
that 1A proposals are so good that they knock out everything else, or is it rather
that lower-ranked rules actually need some conditions which are not met in 1A
situations to be viable? It is hard to say without more data. And of course some of
our rules (like the 1A rules) are overly specific; they were left this way because we
did not have enough data to make a well-supported generalization. Nonetheless,
in these rules we can start to see the kernel of a more general system. It seems
likely that many of the rules would generalize to longer histories or other types
of games. Overall, the rules of the model suggest that we have a diverse set
of primitives from which we can construct conjectures about the behavior of
environments, and that some of these primitives involve perceiving higher-level
entities (such as blocks) within the stream of events.

5 Conclusion

In this paper we used data from human performance on system induction games
to generate some preliminary ideas about the underlying mechanisms humans
use to approach these problems. By extension, this sort of analysis can suggest
mechanisms that might be appropriate for artificial generally intelligent agents
that learn from experience. The particular mechanisms proposed here are not as
important as the overall methodology, which may be summarized as follows: pick
a simple but nontrivial class of games, let humans play them, capture the guesses
made (and thought processes used) by humans, and infer learning mechanisms.

Regarding possible future directions for this work, obviously there are many
more games to explore in much greater depth, and it would be desirable to
construct complete SIG-playing algorithms. A likely stepping stone towards that
goal would be to develop a “system grammar” which would formally define a
space of SIGs humans can easily understand and learn. Such an effort would
be analogous to the goal in linguistics of constructing a grammar that defines
the space of acceptable sentences, and indeed at least one linguist has explored
analogies along these lines [9] (see Chap. 4).

On a larger scale, more sophisticated types of environments could be con-
sidered, for example environments with continuous state spaces or sensorimotor
components. Another logical extension would be to examine other aspects of
human SIG performance, such as how difficult humans find particular decisions
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and what features of the history we remember (certain features are more mem-
orable than others, such as repetition, blockiness, or symmetric patterns like
ACCA). These would be suitable modeling targets, just as output decisions are.

A final direction for investigation would be to ask where (meta-)rules like
those described in Sect. 4.2 come from (assuming they are psychologically real).
Were they themselves learned through experience? Or perhaps they can be
explained as combinations of simpler primitives. Studying more sophisticated
games may help develop answers to these questions.

Acknowledgments. The author wishes to thank the anonymous reviewers and
An-Dinh Nguyen for helpful comments.
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Abstract. Understanding a person’s mental state is a key challenge to
the design of Artificial General Intelligence (AGI) that can interact with
people. A range of technologies have been developed to infer a user’s emo-
tional state from facial expressions. Such bottom-up approaches confront
several problems, including that there are significant individual and cul-
tural differences in how people display emotions. More fundamentally,
in many applications we may want to know other mental states such as
goals and beliefs that can be critical for effective interaction with a per-
son. Instead of bottom-up processing of facial expressions, in this work,
we take a predictive, Bayesian approach. An observer agent uses mental
models of an observed agent’s goals to predict how the observed will react
emotionally to an event. These predictions are then integrated with the
observer’s perceptions of the observed agent’s expressions, as provided by
a perceptual model of how the observed tends to display emotions. This
integration provides the interpretation of the emotion displayed while
also updating the observer’s mental and emotional display models of the
observed. Thus perception, mental model and display model are inte-
grated into a single process. We provide a simulation study to initially
test the effectiveness of the approach and discuss future work in testing
the approach in interactions with people.

Keywords: Emotion perception · Bayesian inference · Agent-based
modelling

1 Introduction

Understanding a person’s mental state is a key challenge to the design of an Arti-
ficial General Intelligence (AGI) that can interact with people. In our everyday
life, interpreting and understanding what other people are feeling and thinking
is an important task. When you have a conversation with your friends, you want
to understand what they are thinking and feeling about a conversation. You may
want to continue talking if you infer your friends enjoys it, but you may want to
change the topic if you think your friends do not like it. This inference can draw
on many sources of information, including the observed behavior such as facial
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expressions, the situation the observed person is in, and the observer’s beliefs
about the observed person’s goals and beliefs.

One of the important questions regarding these different sources of infor-
mation is how to integrate them. While you are talking, you observe that you
friend frowned. Should you interpret that ambiguous frown as negative reaction
to what you are saying or is it rather a sign of concentration showing interest? In
addition, how should we use the new observations and inferences to help refine
our beliefs about the observed agent’s goals and beliefs?

Our interest is in giving a similar capacity to an artificial agent observing
another human or artificial agent. This has led us to explore the questions of how
predictions from observed agent’s models about emotion can be integrated with
the perception of facial expression, and how the observer can update the models
based on the observation and inference to achieve the true model of observed
agent.

A key question here is how emotions relate to expression. Ekman et al. and
Izard [4,8] argue that some facial expressions signal specific basic emotions.
According to this view, there is a specific way of expressing each basic emotion
that is culturally universally recognizable. However, other research [6,11] has
alternatively argued that different cultures and different individuals can express
the same emotion differently.

Additionally, Calvo et al. [2] have pointed out the limitation of many existing
affect detection systems is that they do not take the context of an emotion
evoking situation into account. They have argued on the important of top-down
contextually driven predictive models of affect. One type of emotion’s theories
that makes a prediction about emotion based on context information is appraisal
theory. Appraisal theories argue that a person reacts to a situation based on how
a person appraises the situation with respect to his or her goals and beliefs. [10,
12] Therefore, when predicting other person’s emotion based on context, it is
important to take into account the individual difference in term of goals and
beliefs.

In this paper, we present an approach to infer on observed agent’s emotional
states by integrating both top-down predictions about emotional response given
how a situation is influencing an observed agent’s goal as well as bottom-up facial
expression observations of the agent as it expresses that emotional response. This
work extends previous work by Alfonso et al. [1] by choosing to leverage ideas
of the descriptive Bayesian approach [13] that allow us to capture the individual
differences in how the observed agent emotional reacts to a situation and how
the observed agent displays that emotional reaction. The descriptive Bayesian
approach is an inference approach that allows multiple priors and likelihoods.

To express individual differences in how agent’s emotionally reacts, we use an
Appraisal Theory of emotion. To model differences in expression of emotion, we
draw on the concept that people have “display rules” [11] that mediate how they
express emotion. First, we argue that appraisal is operating top-down and acts
as prior in Bayesian inference making probabilistic predictions about observed
agent’s emotion from context. Second, we can group individual difference in
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facial expression into the group of display rules for each emotion which allows us
to infer emotion from facial expression. Finally, we also seek to model not only
inference of emotion, but also how observations and inferences could be used to
update observed agent’s models of an observed agent’s goal and display rules.

In the rest of the paper, we first discuss the proposed method. We illus-
trate how the descriptive Bayesian approach captures individual difference, how
appraisal theory can be used to predict emotion given situation, and how facial
expressions can be grouped using display rules. Then, we describe in detail the
mathematic behind our approach. After that, we explain the simulation to test
the proposing method and the result of simulations. A simulation study was
designed to demonstrate that our method could converge to the observed agent’s
true model and display rules, and could predict observed agent’s emotion more
accurately by using both agent’s model with context and display rules. At the
end, we discuss the implication of the work and future work.

2 Method

2.1 Expressing Individual Difference in Bayesian Inference

In a standard Bayesian model, the learner’s inferences are described by Bayes’
rule as following:

Pr(h|x) = normalize(Pr(x|h) Pr(h|H))

where x represents the data available to the learner, h is a hypothesis that
generates the data, and H is the set of all hypotheses available to the learner. In
this setting, we need to know and constrain the prior and likelihood beforehand.
Tauber et al. [13] proposed a descriptive Bayesian approach in which Bayes’
rule could be expressed with multiple priors and likelihoods. In the descriptive
approach, there could be multiple possible choices of prior and likelihoods, and
learner’s inferences are also conditioned on all possible prior and likelihoods.
This approach argues that the learner’s prior should not be perceived as fixed
by some expectation about the thing to learn, and the likelihoods need not to
correspond to any specific theory or model of how data are generated.

For our work, we apply the idea of multiple priors and likelihoods to capture
the individual difference as the following. Given the same event or context, dif-
ferent person could experience different emotion based on his or her goals and
beliefs used to evaluate the event. As a result, different models act as possi-
ble different priors of emotion. Similarly, there could be many different ways to
express the same emotion based on a display rule, so display rules act as possible
different likelihoods for a specific emotion. Therefore, the descriptive Bayesian
approach allows us to capture individual differences in emotion expression in
terms of different display rules as multiple likelihoods and different models as
multiple priors.
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2.2 Appraisal Theory and Theory of Mind

In order to predict the emotion based on context and agent’s model, we use
appraisal theory of emotion. Generally, appraisal theories argue that emotion
arises from a process of a subjective assessment of the relation between the event
and a person’s goal. [12] In this work, we use the appraisal theory proposed by
Ortony, Clore, and Collins or OCC model of emotion [3,10]. Briefly, OCC model
is an appraisal theory that focuses only on the structure of situation, and does
not involve any process of appraisal. This is suitable for our purpose since all
we want in our simulation is a distribution of possible emotion from a given
situation, and not the underlying processes. OCC model specifies the features of
the prototypical situations represented by each kind of emotion, and separates
emotions into three groups - emotion that focuses on event, agent or object. Note
that we could replace OCC model with any other appraisal theory as long as it
provides a reasonable way to obtain a distribution of emotion given context and
agent’s model. Further, we assume an observing agent can appraise events from
the perspective of the observed. In particular, the observer has beliefs about
observed agent’s goals, what is sometimes referred to as a Theory of Mind [14].
(We are assuming agent architectures that can model other agents [9].)

2.3 Display Rules

The display rules in this work are influenced by Safdar et al. work [11], and dialect
theory [6]. In essence, display rule modifies the expression of emotion. Safdar
et al. proposes seven different possible behavioral responses: amplify, deamplify,
neutralize, masque by displaying another emotion, qualify by combining the
actual emotion with another emotion, and express exactly without modification.
In addition, Elfenbein et al. [6]. have shown that different culture has a different
way of displaying the same emotion similar to different dialects in language.

Combining these two ideas, three different display rules of each emotion were
designed for simulation study. We define a display rule as a set of action units
(AU) [5] associated with the probability that it will be expressed. It can be
thought of as a function that takes in an emotion and generates facial expression.
See Display rules in simulation section for more detail.

2.4 Calculation

Inferring Emotions

∀e ∈ E : Pr(e|X, c) = norm(Pr(X|e, c) Pr(e|c)) (1)

= norm

( ∏

x∈X

Pr(x|e, c)(
∑

m∈M
Pr(e|m, c) Pr(m|c))

)
(2)

= norm

( ∏

x∈X

(∑
de∈De

Pr(X|e, de, c) Pr(de|e, c)
)(∑

m∈M
Pr(e|m, c) Pr(m)

))
(3)

= norm

( ∏

x∈X

(∑
de∈De

Pr(X|de) Pr(de)
)(∑

m∈M
Pr(e|m, c) Pr(m)

))
(4)
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The equations above represent the way to infer the emotion of an observed
agent given facial expression and context. norm stands for normalize. E is a
probabilistic distribution of emotion, and e is a category of emotion. An example
of E is the following: E = {angry : 0.1,happy : 0.5, sad : 0.1,no emotion : 0.3}
where the number is the probability that the observer expect agent to experience
that emotion. X is a set of action units represents facial expression, and x is
an individual action unit. De is a set of display rule for emotion e and de is an
individual display rule for emotion e. M is a probabilistic distribution of observer
agent’s possible models of the observed agent, and m represents each possible
model. Lastly, c is context which contains the information about the situation
that is eliciting the emotion. In the case of display rules of each emotion de, in
our simulation, they are defined to be specific for a given context so they are
already taken context into account. See simulation section for full description
and examples of observed agent’s goal, display rules, and context.

The first equation, Pr(e|X, c) is expressed using Bayes’ rule. In order to
calculate Pr(e|c), we express it in term of multiple possible models, m. Basically,
the observer has multiple mental models of observed agent that could be used
to infer observed agent’s emotion from context. Pr(e|m, c) is calculated based
on OCC model which takes both model and context, and returns a probabilistic
distribution of emotion. For Pr(m|c), we assume that model is independent from
context, which results in Pr(m). Multiple possible models represent multiple
possible priors in the descriptive Bayesian approach.

We express Pr(X|e, c) in term of multiplication of Pr(x|e, c) for all x ∈ X.
Here, we assume that each action unit is independent. Pr(X|e, c) can be further
expressed in term of multiple display rules of a given emotion, de. Again, this is
similar to the idea of the descriptive Bayesian approach in which we could have
multiple likelihood functions. The first term Pr(x|de, e, c) is the likelihood that
x will be generated from de. A display rule de is a subset of both context and
emotion so Pr(x|de, e, c) can be reduced to Pr(x|de). Since we define de specific
for a given context c and emotion e, Pr(de|e, c) can be reduced to Pr(de).

After the calculation, an emotion that has a highest probability or a max-
imum a posteriori (MAP) of Pr(e|X, c) is the prediction of emotion that the
observed agent experiences.

Updating the Distribution of Models

Pr(m|e) = norm(Pr(e|m) Pr(m)) (5)

Pr(m)new =
∑

e∈E

(Pr(m|e) Pr(e) + Pr(m)old(1 − Pr(e))) (6)

Equation 5 calculates posterior probability of m given e using Bayes’ rule.
Pr(e|m) is calculated using OCC model similar to how we calculate prior in
Eq. 3, but only for one model. Note that we omit context in the above equations
but we use it to calculate Pr(e|m).

In the inference part, we infer emotion in term of probabilistic distribution
so there is uncertainty associated with our inference. For example, the observer
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may infer that observed agent experience happy with some probability p. We
need to take uncertainty of evidence into account when we update a distribution
of model. Equation 6 represents how we use posterior probability from Eq. 5
to update the probability of model, m, accounting for uncertainty of evidence.
There are two possible cases - either observed agent experiences emotion e with
probability Pr(e) or does not experiences it with probability 1−Pr(e). If observed
agent experience e, we update Pr(m) based on the posterior probability as in
the first part, Pr(m|e) Pr(e), in Eq. 6. If observed agent does not experience e,
we keep Pr(m) the same as in the second part, Pr(m)(1 − Pr(e), in Eq. 6. We
update Pr(m) using every emotion e in E.

Updating the Distribution of Display Rules of Each Emotion

Pr(de|X) = norm(Pr(X|de) Pr(de)) (7)
Pr(de)new = Pr(de)old(1 − Pr(e)) + Pr(de|X) Pr(e) (8)

Equation 7 expresses the posterior probability of display rules of emotion e,
de, given X using Bayes rule. Equation 8 is similar to Eq. 6 in which we takes
into account the probability of emotion when we updating the probability of de.
For display rule, unlike model that we takes into account all emotions, we only
consider emotion e that corresponds to de.

3 Simulation

In order to demonstrate the method, a simulation study was designed. There
are two things we want to test. First, by using situational context and observed
agent’s facial expression, our method, starting with uninform distribution of
model and display rules, could converge to the true observed agent’s model and
display rules. Second, after converge, our method could use both model and
display rule to predict observed agent’s emotion correctly, better than using
model alone, using display rules alone, and using neither of them.

3.1 Context and Model

The simulation is the following. At each time step, the observer observes a target
agent receives a payment from the boss. The boss can either give the observed
agent extra money, or deduct money from a payment. The upper bound is 6000,
and the lower bound is -6000. The goal of an observed agent is to earn a base-
line payment. Since the goal is just a reference point, we can set it to be 0. An
observed agent can have different expectation on what the extra money should
be. In this simulation, there are three different expectations - no expectation (0),
low expectation (+2000), and high expectation (+4000).

OCC theory uses a threshold to determine whatever a person will experience
any emotion or not. However, in this work, we want to express it in probabilistic
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terms. Therefore, to calculate the probability of an emotion using OCC and
context, we use a logistic function with the expectation as the mid-point.

According to OCC model, one of the mechanisms that makes an agent to expe-
rience different emotions from the same event is determined by the component the
agent focuses on. In this simulation, an agent can focus on event or agent causing
the event. We define two different types of focus. The first type of agent is likely to
focus more on an event while the second type of agent is likely to focus more on an
agent causing the event. Combining three different expectations and two different
foci, there are 6 possible models of observed agent in our simulation.

In summary, we simulate the situation that can please or displease the
observed agent according to the agent’s goal, and the observed agent can focus
on the event itself or another agent that causes it. As a result, according to OCC,
there are four different kinds of emotion - happy, sad, grateful and angry. How-
ever, we group happy and grateful together as a positive emotion labeled happy,
because gratitude does not normally show up in facial expression literatures.
Therefore, we are left with happy, sad, angry, and no emotion.

To illustrate OCC model, consider the following example, an observed agent,
with low expectation (2000) and likely to focus on event (0.8), receive 2000 extra
money. The probability that agent will be happy is 0.6 × 0.8 = 0.48, where 0.6
is the probability of feeling displeased calculating from logistic function and 0.8
is the probability that an agent will focus on event. The probability that agent
will be grateful (happy) is 0.6 × 0.2 = 0.12, where 0.6 is the same as happy case
and 0.2 is the probability that an observed agent will focus on agent that causes
the event. Therefore, an observed agent will be happy with probability 0.6, and
no emotion with probability 0.4.

3.2 Display Rules

A display rule for each emotion composes of a list of action units (AU) with a
probability that it will show up on the face. This probability is Pr(x|de) in our
equation. The list of AUs that we use in our simulation is the following: AU 1
- inner brow raiser, AU 4 - brow lowerer, AU 5 - upper lid raiser, AU 6 - cheek
raiser, AU 12 - lip corner puller, AU 15 - lip corner depresser, AU 23 - lip tighter,
and AU 25 - lips part. One example of display rule happy could be AU6, AU12,
and AU25 with all of them having a probability 0.9, and the rest of action units
with a probability 0.1. This means if an agent has this display rule, it is very
likely that when an agent feels happy, AU6, AU12, and AU25 will show up while
other action units likely to not show. Another example of happy rule could be
AU6 and AU12 with both having a probability 0.25 representing a display rule
of happy that unlikely to express smile. In the simulation, we define 3 display
rules for each emotion, so there are 81 combinations of display rules.

3.3 Experiment

We run the simulation for each different possible combination of model and dis-
play rules. At each time step, the amount of extra money is randomly generated
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that an observed agent received. A distribution of observed agent’s emotion is
generated based on the money and agent’s model using OCC. Then one emo-
tion is randomly generated from the distribution, and used to generate a set of
action unit based on a observed agent’s display rule of the emotion. Once both
situational context and a set of shown action units are generated, we feed them
to 4 different methods listing below to generate the prediction.

The first method which is the proposed method uses both situational con-
text and facial expression to generate a prediction. In other word, it uses both
observer agent’s models of the observed goals and display rules (M and D). For
the starting distribution of observed agent’s model, every model is equally likely,
so it has the same probability. For the starting distribution of display rules, the
probability of the high display rule is 0.5 while the probability of other two rules
is 0.25. Before testing the performance of this method, we first run a simulation
on the same setup for 200 time steps to let the observer learns agent’s model
and display rules before testing in the simulation with other methods.

For the rest of the method, we do not train them. Instead, we provide them
with agent’s true model or display rules, or pre-defined display rules. The second
method only uses context with true model of agent (M only), and ignore agent’s
facial expression. This method only applies OCC to a given situation and chooses
emotion with highest probability to be a prediction of agent’s emotion. Basically,
this method only calculates Pr(e|mtrue, c) or prior in Eq. 1 and uses the result
to infer agent’s emotion.

The third method uses only facial expression with true display rules for all
emotion (D only), and ignore situational context. Essentially, this method only
calculates Pr(X|e, c,Dtrue) which is similar to likelihood in Eq. 3, and uses the
result to infer agent’s emotion.

The fourth method uses only facial expression, but with a high probability
(or typical prototype) display rule for all types of emotion. In essence, it discards
agent’s model and display rules (No M and D). This method is similar to the
third method but using a high probability display rule rather than the true
display rule.

The simulation runs encompass 486 different agents, based on 6 different goal
models times 81 different combination of display rules. For each of these agents,
100 simulations were run. Each simulation run encompassed an initial training
session of 200 steps, followed by an evaluation phase of 500 steps. We calculate
the accumulated error in predicting the emotion over these 500 steps for each
method. If the method predicts observed agent’s emotion correctly, then the
error is 0. If it does not predict correctly, then the error is 1.

4 Simulation Results

On average, the proposed method took 105 time steps to converge (or need
about 105 observations to converge) in which we define to be when the prob-
ability of one of the model is higher than 0.95. It fails to converge to the true
observed agent’s model only 1.78 % of the time, but it always converges to the
true observed agent’s display rules for each emotion.
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Table 1. Results of simulations. M stands for model and D stands for display rules.
The error is the error in predicting the observed agent’s emotion.

Error M and D M only D only No M and D

Maximum 0.1177 0.2540 0.2516 0.4078

Minimum 0.0213 0.1770 0.0486 0.0486

Mean 0.0637 0.2220 0.1425 0.1933

Standard Derivation 0.035 0.036 0.073 0.12

Table 1 shows the error in predicting an observed agent’s emotion for each
method. On average, the proposed method yields 6.37 % error with SD = 0.035,
while “M only” yields 22.2 % error with SD = 0.036, “D only” yields 14.25 %
error with SD = 0.073, and “No M and D” yields 19.33 % error with SD = 0.12.
The proposed method yields a maximum error at 11.77 % when, after training,
it does not converge to the true model so it cannot predict emotion accurately.
The minimum error for both “D only” and “No M and D” is only at 4.86 % when
the true display rules of observed agent are high probability display rules. It is
important to note that the simplicity of simulation may have an effect on these
errors.

5 Discussion and Future Work

In this work, we propose a method to infer observed agent’s emotion from pre-
diction about emotional response and facial expression observations, and a way
to update the observer’s model of observed agent’s goals and display rules that
are needed to make the inference. To test the proposed method, a simulation
study was created. The results of simulation show that the proposed model con-
verges to the true model and display rules almost all the time. It also does better
than a method with model alone, with display rules alone, and with only a high
probability display rule.

There are several important problems that still need to be addressed. A key
problem is how to acquire the information. In case of facial expression, some stud-
ies report success in accurately reading action units on the face [7]. For events, in
a specific setting such as game or classroom, acquiring the relevant information
needed for appraisal theory to predict emotion is feasible. For example, if an
agent gets an answer wrong in the exercise, it is displeased event. Another prob-
lem is how much each information source contributes to help inferring observed
agent’s emotion. For example, facial expression may be a better predictor for
happiness, but affective prosody may be a better predictor when it comes to
angry or sad.

The next important step in our work is to validate our method with real
humans. In our simulation, OCC is used to model the observed agent’s emotional
reaction, but if the observed is a human then OCC may not be an accurate model
of the emotion elicitation process. Therefore, in order to further test our method,
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we need to replace simulated observed agents with human subjects, and let the
system try to predict human emotions based on various types of event that could
elicit them.

All in all, this work demonstrates how to capture individual difference in
descriptive Bayesian approach, and the way to update observer agent’s distribu-
tion of models and display rules of observed agent to yield more accurate models.
Moreover, this work argues for the importance of context, goals and display rules
to make an accurate emotion inference.
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Abstract. These are a few notes about some of Ray Solomonoff’s foun-
dational work in algorithmic probability, focussing on the universal prior
and conceptual jump size, including a few illustrations of how he thought.
His induction theory gives a way to compare the likelihood of different
theories describing observations. He used Bayes’ rule of causation to dis-
card theories inconsistent with the observations. Can we find good the-
ories? Lsearch may give a way to search and the conceptual jump size a
measure for this.

1 Understanding and Learning

The first thing Ray did when he acquired something was to take it apart. Here’s a
picture of Ray taking apart a scooter he found in the trash. He took many notes.
They were like a program, so that the scooter could be remade. Ray built a house
from descriptions in a book, like a recipe. What was made in Ray’s lab in the cellar?

Ray [Sol97] wrote:

My earliest contact with modern scientific philosophy may have been
Bridgman’s [Bri27] concept of “operational definition”. An operational
definition of anything is a precise sequence of physical operations that
enable one to either construct it or identify it with certainty.

c© Springer International Publishing Switzerland 2016
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. . . When one can’t make an operational definition of something, this is
usually an indication of poor understanding of it. . . . Attempts to opera-
tionalize definitions can be guides to discovery. I’ve found this idea to be an
invaluable tool in telling me whether or not I really understand something.

To quantify information Solomonoff’s theory uses operational definitions by
means of computer programs.

A new way to measure things may herald a new era in math or science. It can
bring new ways to see, and new tools. A new way to measure information content
of a string happened in 1960-65 when Ray Solomonoff (60, 64) [Sol60b,Sol64],
Andrey Kolmogorov (65) [Kol65] and Gregory Chaitin (66) [Cha66] indepen-
dently published a new way to measure the complexity of a sequence of observa-
tions. Kolmogorov and Chaitin were interested in the descriptional complexity
of a sequence: to quantify the information, and use that to define randomness,
while Ray was interested in the prediction aspects of the sequence.

Prediction and learning are closely related. The heart of science is prediction.1

I think Ray thought the length and number of explanations that produced or
described a sequence of observations was related to learning. We don’t yet know
if this new way to measure will be important, but there is a good possibility.

It implies that understanding and learning are not weird things trapped in
the brain’s black box; they may be weird, but they will be understood.

Ray used a method called algorithmic probability (AP) to measure theories.
He used a method of searching for theories called Lsearch which is related to a
measure he called conceptual jump size (CJS).

This paper will discuss a few of Solomonoff’s ideas about some concepts of
AP, Lsearch and CJS. He had delight in creating something new, a joy that is
there for all who search for new ideas. Hopefully his ideas will contribute to his
lifelong interest of achieving a thinking machine able to solve hard problems in
all domains.

2 Algorithmic Probability and the Suite of Theories

In a letter in 2011, Marcus Hutter wrote: “Ray Solomonoff’s universal probability
distribution M(x) is defined as the probability that the output of a universal
monotone Turing machine U starts with string x when provided with fair coin
flips on the input tape. Despite this simple definition, it has truly remarkable
properties, and constitutes a universal solution of the induction problem.” (See
also [RH11])
1 Earlier Ray wondered [Sol03] why Kolmogorov wasn’t interested in using these con-

cepts for inductive inference — to define empirical probability. “Leonid Levin sug-
gested that inductive inference was at that time, not actually a “mathematical”
problem. . . It may have been that in 1965 there was no really good definition of
induction and certainly no general criterion for how good an inductive system was.”
That paper points out important differences between the universal prior on one
Turing Machine and the universal distribution of Turing machines themselves and
incomputibility.
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To predict the continuation of a string, x, AP gives weights to the theories
that could produce or describe it:

PM (x) =
∞∑

i=1

2−|si(x)| (1)

It measures the likelihood of each unique, randomly created program si input
into Machine M to produce a chosen sequence, x; this means all the different
ways that x could be replicated. Then it adds these probabilities together. The
resulting value is P probability of the sequence. It is the likelihood of the sequence
x occurring at all.

The shortest program in this distribution is intuitively like the idea of
Occam’s Razor: the simplest program is the best. Using all the individual pro-
grams is intuitively like an idea of Epicurus: keep all of the theories. But the
simpler theories are more likely. It weights each theory by a measure based on
the likelihood of that theory.

The Universal Prior by its sum to define the probability of a sequence, and by
using the weight of individual programs to give a figure of merit to each program
(cause or description – like an operational definition) that could produce the
sequence [Sol64]. He uses Bayes’ rule to predict the continuation of the sequence.

The simplest explanation for an event is often the best one. But something
is also more likely to happen if there are many possible causes. Some researchers
use AP to choose the single shortest program for prediction [WD99]. Ray thought
that keeping as many programs as possible is best for some situations [Sol84]:

Why not use the single “best” theory? The best is via one criterion; (a) i.e.
min a priori of theory x (pr [probability] of corpus with right theory); (b)
however another best is with respect to (b) minimum expected prediction
error. For best in (b) we use weights of various theories, using weights of
(a)

Any new hypothesis can be roughly measured and added to the group of
hypotheses; in a finite world, we don’t have to include every possible hypothesis
from an infinite amount.

3 Using Bayes’ Rule

Bayes’ rule is used in many statistical applications to sort out frequencies of
events. If the events are called causes then Bayes’ rule becomes “Bayes’ rule for
the probability of causes” [Fel50].

Bayes’ rule may be the optimal method of predicting future observations
based on current beliefs and evidence. A value of AP is that it provides the
necessary prior, the universal prior, that contains the complete universe of the-
ories used for prediction. When little or no prior information is available, this
technique enables us to construct a default prior based on the language used to
describe the data.
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The shortest input codes describing the sequence x are more likely than the
longer ones, but there will always be at least one theory that can describe any
finite sequence of observations: this sequence simply predicts every observation
one by one, which as a program, translates to “print < x >” for any given
sequence x. Thus none of the sequences will have zero probability.

Ray [Sol99] wrote: “If there is any describable regularity in a corpus of data,
this technique will find the regularity using a relatively small amount of data. –
While the exact a priori probability is mathematically incomputable, it is easy to
derive approximations to it. An important outgrowth of this research has been
the insight it has given into the necessary trade-offs between a priori information,
sample size, precision of probability estimates and computation cost.”

In early years probability was scorned in the AI community. Nowdays, in
Artificial Intelligence (AI), Bayes’ rule is usually used for frequencies, – sorting
out masses of data; it gives good statistical values. The frequency version deals
with a search space like a Greek urn with events that are variously colored balls.
Bayes’ rule helps sort the events into groups that may be within other groups,
relating them to a common base, so you can add ratios together properly.

I think Ray changed the Greek urn into a Turing urn filled with events that
are hypotheses. In this urn are explanations, not objects. The explanations may
be different, but may begin the same way.

In a letter by Alex Solomonoff [Sol16b], Alex remembers Ray telling him that
perhaps all probability is causal, not frequentist – a coin has a 50 % chance of
coming up heads only because we are ignorant of the details of how it is flipped.
Also Alex notes that in Solomonoff’s theory, the events or observations being
predicted by AP are deterministic, not random. The Universal prior implies
that the universe has structure and can be described by rules, not derived from
frequencies of events.

4 Incomputability

AP is (almost) as “computable” as the value of π with successive approximations
that are guaranteed to converge to the right value. But unlike π, we can not know
how large the error in each approximation can be.

Ray [Sol97] wrote, “The question of the “validity” of any inductive inference
methods is a dificult one. You cannot prove that any proposed inductive inference
method is “correct.”, only that one is “incorrect” by proving it to be internally
inconsistent, or showing that it gives results that are grossly at odds with our
intuitive evaluation.”

But Ray often said about incomputibility: “It’s not a bug, it’s a feature!”
Systems that are computable cannot be complete [Leg06]. Incomputability is
because some algorithms can never be evaluated because it would take too long.
But these programs will be recognized as possible solutions. On the other hand,
any computable system is incomplete: there will always be regularities outside
system’s search space which will never be acknowledged or considered, even in an
infinite amount of time. Computable prediction models hide this fact by ignoring
such descriptions.
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5 Metamorphoses of a Theory

The second thing Ray did when he acquired something was to use it in a way
for which it wasn’t intended. When Ray discovered a new use for Mimi the cat’s
house, he described the use of Mimi’s house in a new way; a container with an
opening, which can be used in different ways. The new encompassing theory
leads to greater flexibility, more uses for Mimi’s (who wasn’t all that happy
about this!) house.

A different view may help making or attempting predictions. One day Ray
turned the graph of the Dow Jones index upside down. It looked different, which
indicated that there was information there. Another day he got my brother to
try “playing” several indices on his viola.

In general, a new description is evidence of a kind of learning. Ray uses a
method called Lsearch to look for descriptions and a measure called conceptual
Jump Size to quantify steps of this learning.

6 Lsearch

Lsearch is a computable way to build simple theories that match the observa-
tions. Ray [Sol97] explained it in a biographical article:

“In the present context, any “concept” can be represented by string of
computer instructions – a “macro”. They are combined by concatenation.
Given a machine, M , that maps finite strings onto finite strings. Given the
finite string, x. How can we find in minimal time, a string, p, such that
M(p) = x?
Suppose there is an algorithm, A, that can examine M and x, then print
out p within time T . Levin had a search procedure that, without knowing
A, could do the same thing that A did, but in no more time than CT2L.
Here, L is the length of the shortest description of A, using a suitable
reference machine, and C is a measure of how much slower the reference
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machine is than a machine that implements A directly. An alternative form
of this cost of the search is CT/P . Here P = 2−L is approximately the a
priori probability of the algorithm, A.
The parameter T/P plays a critical role in searches of all kinds. In design-
ing sequences of problems to train an induction machine the T/P value of
a particular problem at a particular point in the training of the machine
gives an upper bound on how long it will take the machine to solve the
problem. In analogy with human problem solving, I christened T/P “Con-
ceptual Jump Size”.
Before I met Levin, I had been using T/P as a rough estimate of the cost
of a search, but I had no proof that it was achievable. . . . Sometime later,
I showed that Levin’s search procedure (which I will henceforth denote by
“Lsearch”) is very close to optimum if the search is a “Blind Search””

Lsearch takes the first program to match observations, so it is close to the
spirit of Kolmogorov complexity. Lsearch hasn’t been applied very much for real
problem solving. The measure gives an upper bound to how much time it will
take, but it does not tell about error size, and the bound though finite can be
very large. Perhaps Schmidhuber [Sch94] was the first to run a computer program
using a very simple Lsearch to solve a problem. Ray thought Lsearch could be
used.

7 Conceptual Jump Size and Descriptions

CJS is related to the difference of Kolmogorov complexity of a growing string of
observations, where the computation time to find a new best description is taken
into account. In schools, most often, problems are given that are either right or
wrong. But in the real world, plans that first seemed right often fail when new
data comes in: so we have Plan B and Plan C, which in Ray’s work, may be
represented by the members of the suite of programs. Conceptual jump size may
give a way to think about questions like this. For example if the sequence is
“water water water. . . ”, then the shortest code is likely “repeat water forever”.
However, if the sequence is “water water water. . . chicken chicken. . . [some dif-
ferential equation]. . . [a game of chess]. . .”, then the simplest description may
become more and more complicated as the sequence progresses. Each time there
is a lack of regularity between the new observations and the past ones, there
is a jump of complexity of the description, resulting in a jump of (decreasing)
probability of the sequence. The conceptual jump size is a computable way to
measure how much more complex the sequence becomes.

8 Can the Search Be Practical?

“Nothing is always absolutely so” (T. Sturgeon, July 57): was Ray’s comment
on the cover of his first 1960 Inductive Inference report [Sol60a].
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A big problem is that a search for better theories may take more time than
can ever be available. Yet people find new theories all the time. If people can do
it, so can AI. Can CJS be brought into reasonable size?

Ray had other ideas about Lsearch; for example: improving it by altering the
next cycle of Ti, so that the same codes wouldn’t be found a second time. Much
time is wasted if Lsearch doesn’t remember what it did in earlier cycles.

In another note, a question. . . “The question about if I’ve spent time T0 sec-
onds on compression without more in compression what is probability of finding
more compression in next t seconds. Is it t/t0 or 1 − (t/(epsilont

0)) [Sol84]”.
Among the notes, a small graph gives another idea:

Ray was interested in Lcost as a form of Lsearch which incorporated the
cost of computer activity; so there would be penalty for nonproductive activity
caused by a successful code. A similar measure of learning is action. The use of
dollar cost (in those days equipment cost x rental time) is a good cost measure
for most AI type calculations. “Action is approximately equal to equipment cost
X time”.[Sol81]

Ray also developed the idea of RLP (Resource Limited Prediction) to deal
with four basic factors: They are: (1.) The prediction itself. (2.) The reliability
of that prediction. (3.) The sample size. (4.) Computation cost [Sol81].

Here are some more ideas by Alex Solomonoff [Sol16a]:
Suppose there are two codes, (with different continuations) that both repro-

duce the observed data. Both are the same length, and both are the shortest
code in their respective cloud of functionally equivalent codes.2 Then the code
with the bigger, denser cloud will be more probable.

Training sequences were a method Solomonoff suggested for leading the
Lsearch to the destination in steps short enough to be practical. The idea of a
training sequence suggests Levin search can be taught things the trainer already
knows. But how would it learn things that no-one knows? You would run short
Levin searches on every bit of data you could find. Occasionally you might find a
regularity. Those few short codes, and that data would be your training sequence.
You wouldn’t require that the short code reproduce the entire string perfectly.
If it got “enough” of it right, you would call it a success. But this requires that a

2 Two codes are functionally equivalent if all the bits they ever output are identical. If
two codes compute all the same output bits, how they generate those bits won’t make
any difference to any prediction or probability. Except for the matter of computing
speed, in a time limited code search. . . .
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large corpus of data be divided up into bite-sized chunks, and there are a million
ways to do this. Even if there were a “natural” way of splitting it, how would the
machine find it? More undirected Lsearchx. This would be a very slow process.

In the most basic Levin search, the CPU fraction assigned to a code is deter-
mined solely by the length of the code.

1. If a running code has not finished printing out x, and has not printed out
a bit in a long time, it is probably in an infinite loop, will never print out
another bit, so we should reduce its CPU fraction.

2. If a running code has correctly printed out most of the bits of x, it is more
likely to output all of the bits correctly than a code that has only printed out
a few bits. So we should increase the CPU fraction of a code every time it
prints out a correct bit.

9 Agents

Agents are also being developed to speed up the search.
Marcus Hutter’s general concept of an agent is one that, in the scientific

world, can make experiments to get more meaningful. observations faster than
waiting for the universe to provide them. Orseau et al. [OLH13] developed a
Bayesian knowledge-seeking agent.

These are a few examples of ways to shorten CJS size.

10 Fun with Unconscious Jumps

Ray asked how people do learning jumps – mostly by unconscious methods.
Pac-Man interested him, because a person plays and plays and does maybe

a bit better, and then suddenly does much better. Ray believed that was the
unconscious making a good jump to a new method of play. Nobody yet knows
how the jump occurs but the action shows that it did occur. It remains in the
players unconscious as a tool, and using it, may lead on to the next level. Unless
a method is remembered it isn’t learned.

Jokes are a mental kind of sports; sports are a fun way to make people better
at hunting and other physical survival skills. Finding punchlines to jokes make
people better at discovering interesting theories — a mental survival skill —
they are a fun way to enlarge our ability to jump from one theory to another:
there is a normal description of something, and then in the joke we get a nifty
different description: a ‘funny’ description that is just right, and the reward is
that we ‘get it!’ and laugh. So in this way we may learn more from jokes that
encourage our ability to leap to better theories, than from the school homework
that has Yes or No answers.

Many theories; simple theories: what kind of probability has the Universe?
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11 On the Back Porch Just Beyond the Universe

Kolmogorov and Solomonoff were sitting admiring the view when Kolmogorov
brought out a string of 21000 bits and set it on the wicker table next to his Kvas.
He took out his Universal Turing Rover laptop and in 10 s found one program
of 100 bits that described his string.

Solomonoff set down his root beer, and brought out a string of 21000 bits and
set it on the table. He took out his Universal Turing Handmade computer3 and
in 10 s found 250 programs that described it, each program of 110 bits.

Andrey said, “My string seems least random because my program is only 100
bits, while yours are 110 bits.” Ray said, “Mine seems so because your single
program of 100 bits has prior probability of 2−100, while my 250 programs give
a combined probability of 250 x 2−110 which is 2−60”

Solomonoff turned to Kolmogorov, and added, “I use shortest codes to mea-
sure my hypotheses and in Lsearch.”

In our finite world in short periods of time, multiple codes may have similar
weights. But what about a longer and longer string as seen from the back porch?

Ray [Sol64] said, Hmm, “...if T is a very long string, . . .Pi(T ) normally
decreases exponentially as T increases in length. Also, if Qi and Qj are two dif-
ferent probability evaluation measures (PEM’s) and Qi is “better” than Qj , then
usually Pi(T )/Pj(T ) increases exponentially as T increases in length. Of greater
import, however, . . . the relative weight of Qi and Qj , increases to arbitrarily
large values for long enough T ’s. This suggests that for very long T , . . . [AP]
. . . gives almost all of the weight to the single “best” PEM.”.

Sitting on the back porch, just beyond the Universe, Kolmogorov turned to
Solomonoff.

He said “Almost?!?”

3 Of course they both had the Stallman [free] v. 4.3 instruction set architecture.
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Abstract. The introduction of Temporal Concepts into a Syllogistic based
reasoning system such as NARS (Non-Axiomatic Reasoning System) provides a
generalized temporal induction capability and extends the meaning of semantic
relationship to include temporality.

1 Introduction

For the purpose of this paper, NARS [6] can be considered as a reasoning system which
takes two premises, a task and a belief, and carries out an inference process, using
defined logic rules. The task and belief are selected according to a control system and
are required to have a common component in order for the logic rules to apply. Due to
this constraint, arbitrary premises such as two sequentially occurring events (with no
common component) cannot be selected for inference [3].

This constraint presents a problem for temporal reasoning, where it is desired to
form sequences of arbitrary events, for sequence learning. NAL (Non-Axiomatic
Logic) [6] is the logic used by NARS and includes logic rules for temporal induction
but these rules require special handling and do not sit comfortably within the unified
principle of cognition that applies to semantically related logic rules.

The introduction of Temporal Concepts addresses this shortfall [7] and allows the
temporal aspect of premises to be considered as a semantic relation between premises,
thereby allowing sequences of arbitrary events, instead of relying on an event-chainer:
applying inference between succeeding events, as was the case in OpenNARS 1.7.

2 Temporal Concurrency

Temporal concurrency can occur on vastly different timescales, for example two
sub-atomic interactions versus two birthdays. For the purpose of this discussion con-
currency, in NARS, is defined as two events occurring within a temporal window,
called DURATION, where DURATION is defined as a number of system cycles.
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The justification for this approach is based on research in cognitive science,
whereby, humans discern events as being concurrent when experienced within a
temporal window of roughly 80 ms [1].

The primary role of this implicit form of temporal concurrency is to allow the
formation of perception sequences. When events span longer time windows, an explicit
representation can be used (expressed in Narsese) [5].

Different NARS systems can have different values for DURATION, where a sys-
tem perceiving extremely fast perception streams, such as monitoring chemical inter-
actions, would have a short DURATION time in the order of nanoseconds or
microseconds, whilst on the other hand a system monitoring whale migration data
could have a much longer DURATION.

3 Implementation

NARS contains two types of concept: general concepts and temporal concepts.
A general concept is a data structure which supports local inference: choice – whereby
questions are answered, revision – where evidence is summarized, and decision –

where a yes/no decision is made whether to carry out a specific action. General
inference is also supported whereby a pair of premises, a task and a belief are provided,
via an attention controlled selection process, that are then used by the logic engine to
derive further results. The structure of a general concept is designed to ensure that a
(task, belief) always share a common component [5].

A Temporal Concept in contrast is a much simpler idea. Firstly, there is no
requirement for Temporal Concepts to perform local inference, as their role is simply to
build sequences. Secondly, in a general concept a task premise can take several forms:
question, belief or goal. A temporal concept only processes beliefs that have a temporal
component (occurrence time), where a belief is a premise that the system believes to be
true to a certain degree [6]. Beliefs with occurrence time are called events. Occurrence
time is defined in system perception cycle steps (which are definable, as 1 ms for
example). Inference in Temporal Concepts is, currently, between two events.

The structure of a Temporal Concept contains; a unique name (named for the
occurrence time which the concept represents), a budget value (which represents the
degree of attention the system has for the concept and is composed of priority, duration
and quality) [3], and a belief collection (all the events for the specified occurrence time
to a max k items.

Inference with temporal concepts is carried out slightly differently than for general
concepts:

1. Select a concept 1 from memory (according to attention control)
2. Select belief (A) from concept 1 Beliefs (according to attention control)
3. Select a concept 2 from memory (according to attention control)
4. Select belief (B) from concept 2 Beliefs (according to attention control)
5. Perform inference on (A, B) (primarily temporal induction)
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where, concepts are temporal concepts and temporal induction between events, A and
B, creates A => B statements saying that when A is the case, B is usually also the case,
these statements can then be statistically summarized by evidence revision [5].

4 Discussion

The temporal component of two premises can be considered as a form of semantic
relation, a temporal one in this case. However, there is a difference, in that the
‘common’ component in regular concepts is an exact match between two premises,
whereas, the temporal component can be related over a time span. For example: past,
present and future are all valid periods of temporal relation and can have different
degrees of resolution. So premises are related by the degree of time between them, the
interval period (which can be zero). This is their temporal ‘semantic’ relationship.

The key role of temporal concepts is to provide a generalized temporal chaining
capability to support sequence learning of arbitrary premises. This is necessary as
without this mechanism, only semantically related premises, with a common compo-
nent, can be derived. The separate temporal chainer that was required for this capa-
bility, in NARS 1.7 [3], is no longer required as generalized temporal chaining is now
an aspect of the unified principle of cognition.

Temporal chaining is primarily to enable perception to perform sequence learning,
so it is aimed at the initial stages of the belief hierarchy (although not exclusively).
Once initial percept sequences are formed, they can then be used in the ‘higher’ levels
through general inference (using the common component principle required in general
inference).

Temporal concepts should generally be short lived, unless they happen to coincide
with a high priority task from higher up the belief hierarchy. Without new tasks being
added to them, or being selected for inference, the temporal concepts will quickly lose
their priority and will become candidates for deletion. The attention mechanism pro-
vides a bias to select concepts that are relevant to the present moment. This ensures that
the range of concepts is relatively focused and quickly lose their focus once a concepts
occurrence time has passed beyond the DURATION window.

One consideration is that creating temporal concepts for each occurrence time could
lead to them swamping the system. This is constrained by limiting the number of
temporal concepts, selected per inference cycle, biased by concept priority.

5 Conclusion

The introduction of Temporal Concepts into NARS has provided a generalized tem-
poral chaining capability within a unified principle of cognition. The approach
described in this paper seamlessly integrates with the NARS architecture and provides
a further enhancement to the cognitive capabilities of NARS.

There are similarities between Temporal concepts in NARS and other AGI systems
such as OpenCog’s TimeNodes, which use AtTimeLinks to connect to other concepts
[2]. Differently than in OpenCog, the occurrence time in NARS is a relative notion in
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respect to the current moment: the system reasons within time and adapts to variable
time pressure, instead of abstractly reasoning over time without taking its own
‘thinking’ speed under consideration.

These Temporal Concepts can potentially also be a useful technique to other
temporal reasoning systems, especially those applied in robotics and goal-driven sys-
tems [4], since selecting proper premises under time pressure immediately becomes an
issue once the amount of events is large, and the attention-mechanism as described in
[3] applied with these temporal concepts provides a solution to this.

Future research is focused on tighter integration with the attention mechanism,
generalizing temporal concepts to handle all task types (beliefs, goals and questions)
and the inclusion of variable DURATION within a NARS system.

The ideas presented in this paper are currently being implemented in OpenNARS
2.0.0. Additional information is available at: http://opennars.github.io/opennars.
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Abstract. Agents of general intelligence deployed in real-world scenar-
ios must adapt to ever-changing environmental conditions. While such
adaptive agents may leverage engineered knowledge, they will require the
capacity to construct and evaluate knowledge themselves from their own
experience in a bottom-up, constructivist fashion. This position paper
builds on the idea of encoding knowledge as temporally extended predic-
tions through the use of general value functions. Prior work has focused
on learning predictions about externally derived signals about a task or
environment (e.g. battery level, joint position). Here we advocate that
the agent should also predict internally generated signals regarding its
own learning process—for example, an agent’s confidence in its learned
predictions. Finally, we suggest how such information would be benefi-
cial in creating an introspective agent that is able to learn to make good
decisions in a complex, changing world.

Predictive Knowledge. The ability to autonomously construct knowledge
directly from experience produced by an agent interacting with the world is
a key requirement for general intelligence. One particularly promising form of
knowledge that is grounded in experience is predictive knowledge—here defined
as a collection of multi-step predictions about observable outcomes that are con-
tingent on different ways of behaving. Much like scientific knowledge, predictive
knowledge can be maintained and updated by making a prediction, executing a
procedure, and observing the outcome and updating the prediction—a process
completely independent of human intervention. Experience-grounded predictions
are a powerful resource to guide decision making in environments which are too
complex or dynamic to be exhaustively anticipated by an engineer [1,2].

A value function from the field of reinforcement learning is one way of repre-
senting predictive knowledge. Value functions are a learned or computed map-
ping from state to the long-term expectation of future reward. Sutton et al.
recently introduced a generalization of value functions that makes it possible to
specify general predictive questions [1]. These general value functions (GVFs),
specify a prediction target as the expected discounted sum of future signals of
interest (cumulants) observed while the agent selects actions according to some
decision making policy. Temporal discounting is also generalized in GVFs from
c© Springer International Publishing Switzerland 2016
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the conventional exponential weighting of future cumulants to an arbitrary, state-
conditional weighting of future cumulants. This enables GVFs to specify a rich
class of predictive questions where discounting acts as a stochastic termination
function [2]. A single GVF specifies a predictive question, and the answer takes
the form of an approximate GVF that can be learned by temporal-difference
(TD) learning algorithms solely from unsupervised interaction with the world.
A collection of GVFs contributes to the agent’s knowledge of the world.

Ultimately, the purpose of acquiring knowledge is to improve the agent’s
ability to achieve its goals. The agent’s collection of GVFs are only useful to
the extent that they help with reward maximization. While GVFs are relatively
new, there have been several recent demonstrations of their usefulness in robot
tasks, from reflexive action in mobile robots [2], to the control of prosthetic arms
[3,4]. In this paper we take the next step by specifying GVFs whose cumulants
are internal signals defined by the agent’s own learning process.

Predicting Internal Signals. GVFs have been previously used to specify pre-
dictions about signals external to the agent—signals in the agent’s sensorimotor
stream of interactions. However, agents also have access to a set of internal sig-
nals not previously considered as cumulants for GVFs. Specifically, there are a
number of signals available to an agent that relate to the agent’s own learn-
ing mechanisms—for example, its predictions’ errors, weight changes, and other
time-varying meta-parameters. There are also a range of signals that quantify the
agent’s interactions with its sensorimotor stream—for example, statistics about
state or feature-space visitation and statistical properties of input signals. Inte-
grating predictions of these internal signals should improve an agent’s decision
making abilities towards human-level intelligence [5].

One representative class of internal signals relates to an agent’s certainty in
its own predictions. An agent might make better use of its knowledge given some
sense of how much each approximate GVF is to be trusted. That is, given a GVF,
how confident is the agent that the learned prediction is accurate and precise?
Methods such as confidence intervals or ensemble forecasting are used in many
domains and may also be appropriate here [6]. For our purposes, we desire an
approach that is compatible with function approximation and supports online
and incremental prediction and learning with only linear complexity (in the size
of the input features). GVFs and TD methods used to approximate them satisfy
these criteria and are therefore a promising approach to incorporating confidence
measures. Indeed, this presents an appealing architecture where both predictive
questions and measures of their confidence are represented in a single form.

Further, we propose that an agent’s decision making process can be improved
by using several confidence measures, rather than solely relying on a single value
of confidence. Each measure can then provide a different perspective on the
accuracy of an approximate GVF, enabling the agent to make more informed
decisions. Encoding these measures as GVFs enables these internal predictions
to participate in the agent’s representation of state [7], which can lead to more
efficient reward maximization [8,9] and more accurate prediction [10].
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(a) Prediction (b) Visitation (c) Error

Fig. 1. In this illustrative example, a robot moves through a 3× 3 grid world and
(a) predicts wall hue (a continuous representation of color in [0,360)) in each of four
directions. One GVF is randomly initialized for each direction. A tabular state repre-
sentation is used, and the robot is only able to observe the hue of a wall when it takes
direct action into that wall. At each timestep the hue of the walls may change. In this
example, the hue of the upper wall has high variance while all other walls have low or
no variance. Each cell of (a) shows the predicted hue in each direction. (b) The robot
moves in a weighted random walk with a preference for moving up and left, as seen
in the state-action visitation. High confidence (white) corresponds to high visitation
and low confidence (black) corresponds to low visitation (visitation is initialized to 0).
(c) The robot makes predictions of the expected squared TD error of the primary hue
prediction. High confidence (white) corresponds to low error and low confidence (black)
corresponds to high error (error is initialized high). Predictions of variance (not shown)
produce a similar pattern to that of (c). The robot can decide to only trust predictions
in portions of the world it has visited before, here the upper left. Further, when in the
upper-left corner, the robot can see that despite high visitation it should not trust it’s
upward prediction as error (and variance) remain high. On the other hand, it can trust
its leftward prediction as visitation is high and error is low. (Color figure online)

While there are many measures that could be useful for an agent in determin-
ing confidence [11], we here provide three examples which are readily represented
as GVFs (see Fig. 1 for examples). The first is visitation. A measure of state vis-
itation can be expressed as a GVF by simply using a constant valued cumulant.
An agent might reasonably decide to only trust a prediction in states that have
been visited many times. The second is prediction error. On each time step, a
temporal-difference error is used to update each approximate GVF [1]; this TD
error can itself be used as the cumulant of another GVF. Such a prediction gives
an agent an expectation of how much each approximate GVF will differ from
the true outcome specified by the corresponding GVF. The third is variance.
The variance of a cumulant or an approximate GVF can easily be represented as
the difference between two GVFs, although the process for approximating these
nonstationary cumulants is somewhat more involved [12].

Example: Exploration with Confidence Measures. A collection of approxi-
mate GVFs, combined with their corresponding confidence measures provide the
agent with a way to measure how much it should trust what it knows. In a safe
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environment an agent might view low confidence as an opportunity to learn more
about its world [7,13]. In a dangerous environment, low confidence might be a
strong indicator to proceed with caution or not at all. Further, confidence itself
can be a goal for an agent’s behavior. That is, an agent could choose to seek
out predictability (high confidence) or novelty (low confidence). This naturally
plays a role in the trade off between exploration and exploitation.

Concluding remarks: Predictive knowledge is essential to a generally intelli-
gent agent in maximizing its reward. We advocate that internal measures relating
to prediction learning can and should also be represented as GVFs and learned in
the same way. These new predictions provide additional knowledge that enables
an agent to improve its decision making abilities. GVFs present a novel approach
to the general problem of introspection within intelligent agents.
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Abstract. We describe an approach to automatic discovery of samplers
in the form of human interpretable probabilistic programs. Specifically,
we learn the procedure code of samplers for one-dimensional distribu-
tions. We formulate a Bayesian approach to this problem by specify-
ing an adaptor grammar prior over probabilistic program code, and use
approximate Bayesian computation to learn a program whose execution
generates samples that match observed data or analytical characteristics
of a distribution of interest. In our experiments we leverage the proba-
bilistic programming system Anglican to perform Markov chain Monte
Carlo sampling over the space of programs. Our results are competive rel-
ative to state-of-the-art genetic programming methods and demonstrate
that we can learn approximate and even exact samplers.

Keywords: Probabilistic programming · Automatic programming ·
Program synthesis · Bayesian inference · Automatic modelling

1 Introduction

In this paper we present an approach to automatic sampler discovery in the
framework of probabilistic programming. Our aim is to induce program code
that, when executed repeatedly, returns values whose distribution matches that
of observed data. Ultimately, the artificial general intelligence machinery can use
such approach to synthesise and update the model of the world in the form of
probabilistic programs. As a starting point, we consider the induction of pro-
grams that sample from parametrised one-dimensional distributions.

Probabilistic programming is relevant to this problem for several reasons.
Programs in Turing-complete languages can represent a wide range of generative
probabilistic models. Samples from these models can be generated efficiently
by simply executing the program code. Finally, in higher-order languages like
Anglican, that is languages where procedures may act on other procedures, it is
possible to write a generative model for program code that is itself a probabilistic
program. This enables us to perform inference by specifying an adaptor grammar
prior over program code and to use general-purpose Markov chain Monte Carlo
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algorithms implemented by the inference engine to sample over the space of
programs.

To assess whether the distribution of samples generated by a program candi-
date matches the distribution of interest, we use approximate Bayesian compu-
tation methods that specify an approximate likelihood in terms of the similarity
between a summary statistic of the generated samples and that of the observed
values. While this approach is inherently approximate, it still can be used to
find exact sampler code. This argument is supported by the fact that we were
able to successfully learn an exact sampler for the Bernoulli distribution fam-
ily given only the adaptor grammar prior learnt from a corpus of sampler code
not including Bernoulli. We also successfully found approximate samplers for
other common one-dimensional distributions and for real-world data. Finally,
our approach holds its own in comparison to state-of-the-art genetic program-
ming methods.

2 Related Work

Our approach to learning probabilistic programs relates to both program induc-
tion [4,10,14,16,19,21] and statistical generalisation from sampled observations.
The former is usually treated as search in the space of program text where the
objective is to find a deterministic function that exactly matches outputs given
parameters. The latter, generalising from data, is usually referred to as either
density estimation or learning, and also includes automatic modelling [7,9].

3 Approach

Our approach can be described in terms of a Markov Chain Monte Carlo
(MCMC) approximate Bayesian computation (ABC) [18] targeting

π(X|X̂ )p(X̂ |T )p(T ), (1)

where at a high level π(X|X̂ ) is a compatibility function between summary
statistics computed between observed data X and data, X̂ , generated by inter-
preting latent sampler program text T . The higher π(X|X̂ ), the more similar
distributions X and X̂ .

Consider a parametric distribution F with parameter vector θ. Let X =
{xi}Ii=1, xi ∼ F (·|θ) be a set of samples from F . Consider the task of learning
program text T that when repeatedly interpreted returns samples whose distri-
bution is close to F . Let X̂ = {x̂j}Jj=1, x̂j ∼ T (·) be a set of samples generated
by repeatedly interpreting T J times.

Let s be a summary function of a set of samples and let d(s(X ), s(X̂ )) =
π(X|X̂ ) be an unnormalised distribution function that returns high probabil-
ity when s(X ) ≈ s(X̂ ). We refer to d as a compatibility function, or penalty
interchangeably.
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Fig. 1. Probabilistic program to infer program text for a Normal(0, 1) sampler. Variable
n is a noise level. Procedure grammar samples a probabilistic program from the adaptor
grammar. This procedure returns a tuple: a generated program candidate in the form of
nested compound procedures and the same program candidate in the form of program
text.

We use probabilistic programming to write and perform inference in such
a model, i.e. to generate samples of T from the marginal of (1) and generali-
sations to come of the same. Refer to the probabilistic program code in Fig. 1
where the first line establishes a correspondence between T and the variable
program-text then samples it from p(T ) where grammar is an adaptor-grammar-
like [13] prior on program text that is described in Sect. 3.1. In this particular
example θ is implicitly specified since the learning goal here is to find a sampler
for the standard normal distribution. Also X̂ corresponds to the program vari-
able samples and here J = 100. Here s and d are computed on the last four lines
of the program with s being implicitly defined as returning a four dimensional
vector consisting of the estimated mean, variance, skewness, and kurtosis of the
set of samples drawn from T . The penalty function d is also defined to be a
multivariate normal with mean [0.0, 1.0, 0.0, 0.0]T and diagonal covariance σ2I.
Note that this means that we are seeking the sampler source code whose output
distribution has mean 0, variance 1, skew 0, and kurtosis 0 and that we penalise
deviations from that by a squared exponential loss function with bandwidth σ2,
named noise in the code.

The more moments we match, the better the approximation will be achieved,
but inevitably this will require more samples J .

This example highlights an important generalisation of the original descrip-
tion of our approach. For the standard normal example we chose a form of s
such that we can compute the summary statistic of s(X ) analytically. There are
at least three kinds of scenarios in which d can be computed in different ways.
The first occurs when we search for efficient code for sampling from known dis-
tributions. In many such cases, as in the standard normal case just described,
the summary statistics of F can be computed analytically. The second is the
fixed dataset cardinality setting and corresponds to the setting of learning pro-
gram text generative model for arbitrary observed data. The third, similar to
the previous one, happens when we can only sample from F . This corresponds
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Fig. 2. Probabilistic program to infer program text for a Bernoulli(θ) sampler and
generate J samples from the resulting procedure at a novel input argument value, 0.3.

to a situations when, for instance, there is a running, computationally expensive
MCMC sampler that can be asked to produce additional samples.

Figure 2 illustrates the another important generalisation of the formulation
in (1). When learning a standard normal sampler we did not have to take into
account parameter values. Interesting sampler program text is endowed with
arguments, allowing it to generate samples from an entire family of parameterised
distributions. Consider the well known Box-Muller algorithm shown in Fig. 3. It
is parameterised by mean and standard deviation parameters. For this reason we
will refer to it and others like it as a conditional distribution samplers. Learning
conditional distribution sampler program text requires recasting our MCMC-
ABC target slightly to include the parameter θ of the distribution F :

π(X|X̂ , θ)p(X̂ |T , θ)p(T |θ)p(θ). (2)

Here in order to proceed we must begin to make approximating assumptions.
This is because in our case we need p(θ) to be truly improper as our learned
sampler program text should work for all possible input arguments and not
simply a just a high prior probability subset of values. Assuming that program
text that works for a few settings of input parameters is fairly likely to generalise
well to other parameter settings we approximately marginalise our MCMC-ABC
target (2) by choosing a small finite N of θn parameters yielding our approximate
marginalised MCMC-ABC target:

1
N

N∑

n=1

π(Xn|X̂n, θn)p(X̂n|T , θn)p(T |θn) ≈
∫

π(X|X̂ , θ)p(X̂ |T , θ)p(T |θ)p(θ)dθ. (3)

The probabilistic program for learning conditional sampler program text for
Bernoulli(θ) in Fig. 2 shows an example of this kind of approximation. It samples
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Fig. 3. Human-written sampling procedure program text for, left, Normal(μ, σ) [3] and,
right, Poisson(λ) [15]. Counts of the constants, procedures, and expression expansions
in these programs (and that of several other univariate samplers) are fed into our
hierarchical generative prior over sampler program text.

from T N times, accumulating summary statistic penalties for each invocation.
In this case each individual summary penalty computation involves computing
both a G-test statistic

Gn = 2
∑

i∈0,1

#[X̂n = i]ln

(
#[X̂n = i]

θin(1 − θn)(1−i) · |X̂n|

)

,

where #[X̂n = i] is the number of samples in X̂n that take value i and
its corresponding p-value under the null hypothesis that X̂n are samples from
Bernoulli(θn). Since the G-test statistic is approximately χ2 distributed, i.e. G ∼
χ2(1), we can construct d in this case by computing the probability of falsely
rejecting the null hypothesis H0 : X̂n ∼ Bernoulli(θn). Falsely rejecting a null
hypothesis is equivalent to flipping a coin with probability given by the p-value of
the test and having it turn up heads. These are the summary statistic penalties
accumulated in the observe lines in Fig. 2.

As an aside, in the probabilistic programming compilation context θ could
be all of the observe’d data in the original program. By this parameterising
compilation links our approach to that of [12].

3.1 Grammar and Production Rules

As we have the expressive power of a higher-order probabilistic programming
language at our disposal, our prior over conditional distribution sampler program
text is quite expressive. At a high level it is similar to the adaptor grammar [13]
prior used in [16] but diverges in details, particularly those having to do with
creation of local environments and the conditioning of subexpression choices on
type signatures. To generate a probabilistic program we apply these production
rules starting with exprtype, where type is the output signature of the inducing
program.

The set of types we used for our experiments was {real, bool, int}.
To avoid numerical errors while interpreting generated programs we replace
functions like log(a) with safe-log(a), which returns 0 if a < 0, and
uniform-continuous with safe-uc(a, b) which swaps arguments if a > b and
returns a if a = b. The general set of procedures in the global environment
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Fig. 4. Blue log-scaled histograms illustrate distributions over program codes’ log like-
lihoods given production rules P (T ), which facilitate search of random variate gen-
erators for Bernoulli, Gamma, Normal, Poisson and Standard Normal distributions.
Red dashed lines show the program codes’ log likelihoods of true samplers written by
humans as in Fig. 3.

included +, −, *, safe-div, safe-uc, cos, safe-sqrt, safe-log, exp,
inc, dec. Schematically our prior is provided below. Prior probabilities {pi}
are learnt from a small corpus of probabilistic programs in the way described in
Sect. 3.2.

1. exprtype | env
p1−→ v, a random variable v from the environment env specified

by type. An environment is a mapping of typed symbols to values, but these
values are not produced until the actual probabilistic program runs.

2. exprtype | env
p2−→ c, a random constant c with the type type. Constants were

drawn from the predefined constants set (including 0.0, π, etc.)1.
3. exprtype | env

p3−→ (proceduretype exprarg 1 type ... exprarg N type), where
procedure is a primitive or compound, and deterministic or stochastic proce-
dure chosen randomly from the global environment with output type signa-
ture type.

4. exprtype | env
p4−→ (let [new-symbol exprreal] exprtype | env ∪ new-symbol)),

where env ∪ new-symbol is an extended environment with a new variable
named new-symbol. Its value is defined by an expression, generated according
to the same production rules.

5. exprtype | env
p5−→ (cptype exprarg 1 type ... exprarg N type), where cptype is a

compound procedure. Its body is generated using the same production rules
given an environment that incorporates argument input variable names and
values.

6. exprtype | env
p6−→ (if (exprbool) exprtype exprtype).

7. exprtype | env
p7−→ (recur exprarg 1 type ... exprarg M type), i.e. recursive call

to the current compound procedure if we are inside, or to the main inducing
procedure otherwise.

3.2 Probabilities for Production Rules

While it is possible to manually specify production rule probabilities for the
grammar in Sect. 3.1 we took a hierarchical Bayesian approach instead, learn-
ing from human-written sampler source code. To do this we translated existing
1 For experiments described in Sect. 4.4 constants were also sampled from Normal and

Uniform continuous distributions.
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implementations of common one-dimensional samplers [6] into Anglican source
(see examples in Fig. 3). Conveniently all of them require only one stochastic
procedure uniform-continuous so we also only include that stochastic procedure
in our grammar.

We compute held-out production rules prior probabilities from this corpus.
When we are inferring a probabilistic program to sample from F we update
our priors using counts from all other sampling code in the corpus, specifically
excluding the sampler we are attempting to learn. Our production rule probabil-
ity estimates are smoothed by Dirichlet priors. Note that in the following exper-
iments (Sects. 4.4) the production rule priors were updated. True hierarchical
coupling and joint inferences approaches are straightforward from a probabilis-
tic programming perspective [17], but result in inference runs that take longer
to compute.

4 Experiments

The experiments we perform illustrate uses cases outlined for automatically
learning probabilistic programs. We begin by illustrating the expressiveness of
our prior over sampler program text in Sect. 4.1. We then report results from
experiments in which we test our approach in all three scenarios for how we can
compute the ABC penalty d.

The first set of experiments in Sect. 4.2 tests our ability to learn probabilistic
programs that produce samples from known one-dimensional probability distri-
butions. In these experiments d either probabilistically conditions on p-values of
one-sample statistical hypothesis tests or on approximate moment matching. In
Sect. 4.3 the evaluation against genetic programming is presented. The second
set of experiments in Sect. 4.4 addresses the cases where only a finite number of
samples from an unknown real-world source are provided.

4.1 Samples from Sampled Probabilistic Programs

To illustrate the flexibility of our prior over probabilistic programs source code,
we show probabilistic programs sampled from it. In Fig. 5 we show six histograms
of samples from six sampled probabilistic programs from our prior over proba-
bilistic programs. Such randomly generated samplers constructively define con-
siderably different distributions. Note in particular the variability of the domain,
variance, and even number of modes.
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Fig. 5. Histograms of samples generated by repeatedly evaluating probabilistic pro-
cedures sampled from our prior over probabilistic sampling procedure text. The prior
is constrained to generate samplers with univariate output but is clearly otherwise
flexible enough to represent a nontrivial spectrum of distributions.
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Fig. 6. Representative histograms of samples (green solid lines) drawn by repeat-
edly interpreting inferred sampler program text versus (blue dashed lines) histograms
of exact samples drawn from the corresponding true distribution. Top row left
to right: Bernoulli(p), Normal(μ, σ), Poisson(λ). Bottom row same: Gamma(a, 1.0),
Normal(0, 1), Beta(a, 1.0). The parameters used to produce these plots do not appear
in the training data. In the case of Bernoulli(p) we inferred programs that sample
exactly from the true distribution (see Fig. 7). Not all finite-time inference converges
to good approximate sampler code as illustrated by the Beta(a, 1.0) and Normal(μ, σ)
examples. With limited experimental time, a better sampler was found for Normal(μ, σ)
in comparison to Normal(0, 1). A possible explanation is that it is harder to find a
sampler with two parameters rather than a sampler without any parameters. Future
experiments should benefit from learning more complex probabilistic programs given
already learnt simpler ones, similarly to [5,11].

4.2 Learning Sampler Code for Common One-Dimensional
Distributions

Source code exists for efficiently sampling from many if not all common one-
dimensional distributions. We conducted experiments to test our ability to auto-
matically discover such sampling procedures and found encouraging results.

In particular we performed a set of leave-one-out experiments to infer sam-
pler program text for six common one-dimensional distributions: Bernoulli(p),
Poisson(λ), Gamma(a, 1.0), Beta(a, 1), Normal(0, 1), Normal(μ, σ). For each dis-
tribution we performed MCMC-ABC inference with approximately marginalis-
ing over the parameter space using a small random set {θ1, . . . , θN} of parame-
ters and conditioning on statistical hypothesis tests or on moment matching as
appropriate. Note that the pre-training of the hierarchical program text prior
was never given the text of the sampler for the distribution being learned.

Representative histograms of samples from the best posterior program
text sample discovered in terms of summary statistics match are shown in
Fig. 6. A pleasing result is the discovery of the exact Bernoulli(p) distribution
sampler program, the text of which is shown in Fig. 7.

4.3 Evaluating Our Approach Versus Evolutionary Algorithms

The approach was evaluated against genetic programming, one of state-of-the-
art methods to search in the space of programs. Genetic programming is an
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Fig. 7. (left) Human-written exact Bernoulli(p) sampler. (right, two instances) Inferred
sampler program text. The first is also an exact sampler for Bernoulli(p). The last is
another sampler also assigned non-zero posterior probability but it is not exact.

evolutionary based metaheuristic optimisation algorithm to generate a program
from a specification. The same grammar we used before was reproduced in
the evolutionary computation framework DEAP [8]. The fitness function was
selected to be the log probability presented in the Eq. 3 with omitted p

(
X̂ | T

)

part in accordance with the assumption that desired probabilistic programs will
repeatedly appear in results of search over programs. Note that another possible
way is to marginalise over X̂ during its fitness function evaluation, however this
requires more programs runs.
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Fig. 8. Convergence of unnormalised penalty function π
(
X | X̂

)
for Bernoulli(p),

Normal(μ, σ), and Geometric(p) correspondingly. X̂ is a samples set from a proba-
bilistic program T as described in Sect. 3. Navy lines show the true sampler’s penalty
function value (averaged by 30 trials), red lines correspondent to genetic programming,
and green lines – to PMCMC. Transparent filled intervals represent standard deviations
within trials.

Figure 8 shows that PMCMC inference performance is similar to genetic pro-
gramming. In contrast to genetic programming, PMCMC is statistically valid
estimator of the target distribution. In addition, probabilistic programming sys-
tem allows to reason about the model over models and inferring models within
the same framework, while genetic programming is an external machinery which
requires to consider optimising probabilistic programs as a black box2.

2 An interesting work for future is to run experiments in the framework of proba-
bilistic programming with the inference engine that is itself based on evolutionary
algorithms, in a similar way to [2].
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4.4 Generalising Arbitrary Data Distributions

We also explored using our approach to learn generative models in the form of
sampler program text for real world data of unknown distribution. We arbitrarily
chose three continuous indicator features from a credit approval dataset [1,20]
and inferred sampler program text using two-sample Kolmogorov-Smirnov dis-
tribution equality tests (vs. the empirical data distribution) analogously to the
G-test described before. Histograms of samples from the best inferred sampler
program text versus the training empirical distributions are shown in Fig. 9. The
data distribution representation, despite being expressed in the form of sampler
program text, matches salient characteristics of the empirical distribution well.
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Fig. 9. Histograms of samples (green solid) generated by repeatedly interpreting
inferred sampler program text and the empirical distributions (blue dashed) that they
were trained to match.

5 Discussion

Our approach to program synthesis via probabilistic programming raises at least
as many questions as it answers. One key high level question this work invokes is,
really, what is the goal of program synthesis? By framing program synthesis as
a probabilistic inference problem we are implicitly naming our goal to be that of
estimating a distribution over programs that obey some constraints rather than
as a search for a single best program that does the same. On one hand, the notion
of regularising via a generative model is natural as doing so predisposes inference
towards discovery of programs that preferentially possess characteristics of inter-
est (length, readability, etc.). On the other hand, exhaustive computational inver-
sion of a generative model that includes evaluation of program text will clearly
remain intractable for the foreseeable future. For this reason greedy and stochas-
tic search inference strategies are basically the only options available. We employ
the latter, to explore the posterior distribution of programs whose outputs match
constraints knowing full-well that its actual effect in this problem domain, and, in
particular finite time, is more-or-less that of stochastic search.

It is pleasantly surprising, however, that the Monte Carlo techniques we use
were able to find exemplar programs in the posterior distribution that actually
do a good job of generalising observed data in the experiments we report. It
remains an open question whether or not sole sampling procedures are the best
stochastic search technique to use for this problem in general however. Perhaps
by using them in combination with one of search we might do better, particularly
if our goal is a single best program.
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Abstract. In this paper, we are analyzing how much computation and
distributedness of representation is needed to solve sequence-learning
tasks which are essential for many artificial intelligence applications. We
propose a novel minimal architecture based on cellular automata. The
states of the cells are used as the reservoir of activities as in Echo State
Networks. The projection of the input onto this reservoir medium pro-
vides a systematic way of remembering previous inputs and combining
the memory with a continuous stream of inputs. The proposed framework
is tested on classical synthetic pathological tasks that are widely used in
evaluating recurrent algorithms. We show that the proposed algorithm
achieves zero error in all tasks, giving a similar performance with Echo
State Networks, but even better in many different aspects. The compar-
ative results in our experiments suggest that, computation of high order
attribute statistics and representing them in a distributed manner is
essential, but it can be done in a very simple network of cellular automa-
ton with identical binary units. This raises the question of whether real
valued neuron units are mandatory for solving complex problems that
are distributed over time. Even very sparsely connected binary units
with simple computational rules can provide the required computation
for intelligent behavior.

1 Introduction

Intelligence requires remembering previously presented perceptual input or a
past cognitive state, and making a synthesis to provide an output for effectively
interacting with the environment. This capability is essential in any artificial gen-
eral intelligence system and there are various solutions to this problem. In this
study, we are providing a very simple recurrent architecture for solving sequence
tasks that poses as a lower bound on complexity. The recurrent formulation
is applied for three different representations: Stack, Covariance and Cellular
Automata. In Stack representation, there is no computation involved, the input
sequence steps are reserved one after another in raw format. Covariance repre-
sentation computes the pairwise covariance of the input attributes and locally
saves those for each step of the sequence input, as in Tensor Products [13]. Being
very similar to Covariance representation in terms of complexity of operations,

c© Springer International Publishing Switzerland 2016
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Cellular Automata holds a distributed representation of high order attribute
statistics. Stack representation provides pure memorization, whereas Covariance
representation computes useful second order statistics. Cellular Automata repre-
sentation enables both computation of high order statistics and distributedness.
We contrast these three approaches in sequence learning tasks and show that
Cellular Automata approach gives superior performance than the other two and
equivalent performance with Echo State Networks with significantly less com-
putational demands. Therefore, one of the main contributions of the paper is a
novel framework of cellular automata based reservoir computing in a recurrent
setting (called ReCA), that is capable of short-term memory.

Next, we review reservoir computing and cellular automata, then provide
methods and results in the following sections. We discuss the results of our
experiments contrasting feedforward vs feedback, memory vs computation, local
vs distributed.

1. Reservoir Computing: Many real life problems in artificial intelligence (AI)
require the system to remember previous inputs. Recurrent Neural Networks
(RNN)s are powerful tools of machine learning with memory. Therefore, they
employ very powerful hierarchical computation as well as distributed representa-
tion which make them excellent tools for sequence learning tasks. Unfortunately
RNNs are difficult to train due to the inherent difficulty of learning optimal rep-
resentations tailored for long-term dependencies [1,4] and convergence issues [3].
In 2001 an approach to design and train RNNs was proposed independently by
Wolfgang Maass and Herbert Jaeger under the names of Liquid State Machines
(LSM ) [9] and Echo State Networks (ESN ) [5] respectively. These two methods
became lately known as Reservoir Computing (RC) approaches [14]. RC model
avoids the shortcomings of conventional training methods in RNNs, by setting
up RNNs in the following way: 1. Building the Reservoir which is a randomly
created RNN and remains unchanged during training. The reservoir is excited
by the input signal and maintains in its state a nonlinear transformation of
the input history. 2. The output signal is generated as a linear combination of
the neuron’s signals from the input-excited reservoir. This linear combination is
learned by linear regression, using the teacher signal as a target [8]. A question
still remains: how much computation is needed in the reservoir? In Echo State
Networks, real valued neurons with nonlinear activation functions are utilized
and this still corresponds to a fairly complex neural model. Can we simplify the
recurrent architecture further by using identical binary units, and the maximum
possible amount of connection sparsity? This corresponds to an elementary cel-
lular automaton array.

2. Cellular Automata: Cellular Automata (CA) are discrete dynamical sys-
tems with sparse connections [16]. A cellular automaton is an array of cells
evolving synchronously according to an identical interaction rule. The evolution
of a cell is dependent on the previous states of a surrounding neighborhood of
cells as shown in Fig. 1(b) and thoroughly investigated in [15].
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Fig. 1. General framework for Cellular Automata based Reservoir Computing (ReCA)
with vector lengths for each stage: a. Encoding Stage that consists of; CA: Input
expansion using ECA (Multilayer CA), Ri : Representing each input bit by Ri bits,
and Buffers: adding zero array R. b. Cellular Automata Reservoir Stage; The output
of Encoding Stage is projected onto cellular automaton instead of a neural network in
Echo State Networks. A0 is evolved using a pre-specified ECA rule from 1 to I iterations.
c. Read-out Stage; The feature vector (reservoir output) is trained by Linear regression.

The dimension of cellular automata can have an integer value, thus it is a grid
in general, but one or two dimensions are utilized in most of the studies. If the
rules change in time (in certain iterations), the configuration is termed as multi-
layer CA. In our work, we will use exclusively Elementary Cellular Automaton
(ECA) which is a one dimensional CA with binary cells (1 or 0 ), evolving accord-
ing to a uniform (non-changing rule). The ECA rules are classified according to
their evolution behavior (Wolfram classes) [15]. Starting from random initial
cell values, CA state evolution will show a certain behavior: Class I (Uniform)
CA states evolve to a homogeneous behavior, Class II (Periodic) CA states
evolve periodically, Class III (Chaotic) CA states evolve chaotically (without
any defined pattern) and Class IV (Complex or edge of chaos) can show all
these evolution patterns in an unpredictable manner.

2 Cellular Automata in Reservoir Computing: ReCA

The introduction of Cellular Automata into reservoir computing framework was
proposed in [18] and some applications discussed in [17,19].

The main idea can be summarized as follows: cellular automata provide pow-
erful enough computation and rich enough representation to be used instead of
real valued recurrent neural networks. Cellular automaton is a very sparsely con-
nected network with identical and binary units, thus it gives a lower bound on
the amount of model complexity for solving hard problems in AI.

In this paper we are using the recurrent formulation of cellular automata
reservoir to handle a sequence of inputs. The algorithmic flow of CA based RC
(ReCA) is shown in Fig. 1. The encoding stage translates the input into the initial
states of CA. In cellular automata reservoir stage, the ECA rules are applied for
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Fig. 2. a. Original input sequence before encoding stage. b. Encoding stage and CA
Reservoir stage: Adding zero array with length R to obtain the input steps to the
reservoir (X1 to XT , size L vectors). Then cellular automaton is initialized with the

first time step input of the sequence, so A
(1)
0 = X1, where the subscript (0) denotes to

initial state and increases to I (No of CA iterations) and the superscript (1) denotes to

the number of time steps (from 1 to T). The CA states A
(n)
i are used as the features

to estimate the output at time step n (y(n)) using linear regression in read-out stage.

a fixed period of iterations (I), to evolve the CA initial states. The CA states in
the reservoir are concatenated to produce a feature vector that will be used in
read-out stage (Linear Regression).

2.1 Encoding Stage

In encoding stage, the input is translated into the initial states of cellular automa-
ton. It can be divided into three subroutines as shown in Fig. 1(a)1

1. Utilizing Buffers (Zero Array R): For handling a sequence of inputs, an
array of zeros with length of R are added to both sides of original input,
these buffers will hold the activity of the reservoir corresponding to previous
time steps. Then, the expanded input to cellular automata reservoir is of fixed
length L = Lin+2R, as shown in Figs. 1 and 2. In most of the experiments, R
equals to I×T (I is the number of CA iterations and T is the sequence length
of the input), to guarantee that CA states due to all time sequences have been

1 We should note that, zero buffers are utilized for all experiments but the other two
subroutines are applied selectively according to the task.
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conserved. To relax this constraint and to reduce time/space complexity an
expansion ratio f∈[0, 1] has been introduced as follows R = f ∗ (I×T ), thus
the size of the reservoir (complexity) decreases with the value of f.

2. Reducing Interference (Ri): To improve the accuracy in tasks, the interfer-
ence between non zero elements in the reservoir should be reduced. Therefore,
each bit of the input will be represented by Ri bits2. After each time step,
the location of the non zeros will rotate right3 one bit. For more details see
[10].

3. Multilayer Cellular Automata Expansion: The original binary input
can be transformed into another binary vector using nonlinear ECA rules
to increase the nonlinearity of the model. This stage enables a Multilayer
Cellular Automata architecture, in which the first layer projects the input
into a nonlinear space, and the next layer evolves it further with linear rules
in time to expand the feature space. Linearity in the second layer is essential
for lossless injection of the input at each time step.

2.2 Cellular Automata Reservoir Stage

After the input data is encoded as the initial states of a cellular automaton, it
is passed on a CA reservoir (instead of an ESN as in [5]) for computation as
shown in Fig. 1(b). The dynamics of CA provide the necessary projection of the
input data onto an expressive and discriminative space-time volume that can be
used as the feature vector. It was previously shown that the cellular automata
reservoir holds a distributed representation of high order attribute statistics
[18]. Thus, sequence of inputs at each time step is processed to extract the input
statistics and these are represented in a distributed manner as in recurrent neural
networks.

Figure 2 shows more details for ReCA algorithm, where the initial state at
time n, A

(n)
0 is evolved using a pre-specified ECA rule from 1 to I iterations to

obtain the CA evolution states (A(n)
1 , A

(n)
2 , . . . , A

(n)
I ) (n varies from 1 to T , the

input sequence length). XOR4 operation is used to insert the new input sequence
Xn in the reservoir as follows: A

(n)
0 = A

(n−1)
I ⊕ Xn and shown in Fig. 2. Then

the CA states (A(n)
1 , A

(n)
2 , . . . , A

(n)
I ) are concatenated to obtain a single state

vector A(n) that will be used as a feature vector with length of LCA = IL to
estimate the output at time step n (y(n)) using linear regression in read-out
stage.

2 The value of Ri should be chosen carefully to reduce the interference between non
zeros that have different locations in consecutive time steps.

3 The rotation right is to reduce the interference between non zeros that have the
same location in consecutive time steps.

4 XOR computes the correlation, which provides a lossless merging of two binary
numbers: it outputs 1 if something different from cell content is presented to the
cell.
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2.3 Read-Out Stage

In this stage the cellular automaton state vectors (feature vector with dimension
of LCA) are used in linear regression to estimate the output:

y(n) = Wout ∗ A(n) (1)

In our experiments, there are two cases for the output: 1. There is only one
output y at last time step n = T . 2. There is an output for each time step. The
size of the feature space and matrix Wout differs in the two conditions. See [10]
for details.

3 Covariance and Stack Representations

Two other representations with different levels of distributedness and computa-
tion are introduced for comparison with ReCA.

1.Covariance Representation: The operator Ck is defined as:

Ck = ΠkA0 ⊕ Π−kA0 , (2)

where, Πk and Π−k are permutation matrices +k and −k shifts and ⊕ is bitwise
XOR. Ck computes the pairwise covariance of the input attributes as in tensor
products [13] and memorizes those for each sequence input. In this representation
the operator Ck in (2) is computed in the reservoir to produce the covariance evo-
lution states, instead of applying ECA rules. Second order statistics information
is locally held in this representation.

2. Stack Representation: In this representation there is no computation
involved, the input sequence steps are reserved one after another in raw format.
T memory blocks of size Lin are used as the feature space. It can be considered
as the simplest feedforward formulation (no interference between time steps),
thus it is not a fixed length representation as in recurrent architectures, which
is problematic for large T and Lin.

3. Hybrid Covariance and Stack Representations: Instead of using the
raw input of the sequence in Covariance and Stack, we can first apply cellu-
lar automata nonlinearity and project the input feature space onto the cellular
automata state space. This provides a hybrid feature space, in which a minimal
amount of computation and distributedness of cellular automata state space is
injected into the Covariance and Stack representations.

4 Experiments

In the experiments we trained linear regressors using three representations of
sequence; ReCA, Covariance and Stack, on various pathological synthetic tasks.
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A set of Ntrain (No of training examples) and Ntest
5 (No of test examples) input

time series and their associated outputs (Target) are synthesized for each task [6].
The experiments target is to achieve a zero test error (there should be no False
Bits in the predicted output). The parameters I (No of CA evolution iterations),
Ri (No of bits that represent each input attribute) and Ntrain (No of training
set examples) are varied to find the minimal configuration to achieve zero error.
Normal equation based linear regression implemented by pseudo-inverse is used
in read-out stage.

The classical Pathological Synthetic Tasks are used in order to test short-
term-memory capability of representations. These tasks have been proposed by
Hochreiter and Schmidhuber in [4] that all exhibit pathological long term depen-
dencies and known to be effectively impossible for gradient descent [7,11] based
pure feedforward architectures. These tasks can be classified into 3 categories: 1.
Memory tasks (5 bit, 20 bit and Random permutation), 2. Temporal order tasks
(2 and 3 symbols) and 3. Arithmetic or logic operation tasks (XOR, Addition
and Multiplication)6. We refer the reader to [6] and [10] for a detailed descrip-
tion of them. The difficulty of these tasks increases with the number sequence
time steps T, because longer T exhibits longer range temporal dependencies. All
inputs in the tasks are originally one hot encoded (i.e. one nonzero entry per
time step). In order to make the input more appropriate for real applications,
Binary Encoded versions are used. As an example, we illustrate the change of 4
bit one hot encoded input to 2 bit binary encoded input: 0001 ⇒ 00, 0010 ⇒ 01,
0100 ⇒ 10 and 1000 ⇒ 11.7

5 Results and Discussion

The results of our experiments are illustrated in Table 1. ReCA framework has
solved all pathological tasks with zero error either a. directly, as in random per-
mutation, 5 Bit and temporal order tasks, or b. by expanding the input using Ri

(reduces the interference between input bits) for 20 bit task, or using c. multi-
layer CA expansion for addition, multiplication and XOR tasks. Covariance and
Stack representations are capable of solving only memory tasks. However, Stack
also fails in binary encoded 20 bit memory task, which implies incapability for
more realistic applications. Therefore, we conclude that ReCA representation is
superior due to its distributed representation (more robust to interference8 due
to activity merging) and computation of higher order attribute statistics.

5 In all experiments Ntest = 100.
6 In addition and multiplication tasks the input is binary, in future work decimal

numbers will be used after binarization.
7 As an example, this encoding is essential for word prediction application of language

modeling, for which one hot encoded input should be of length tens of thousands
(size of word dictionary).

8 Interference can be defined as the modulation of reservoir activity with injection of
input at each time step that disturbs one-to-one correspondence between the input
sequence and the reservoir activity due to the sequence.
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Table 1. Results for Pathological tasks using the proposed representations. The last
column (red and bold) is the number of false bits in predicted output of test set. The
other columns are for various parameters. T is the sequence length of task input, I
is the iterations of CA evolution, Ntrain is the number of training example, %Ntrain

is the ratio between training examples and all input possibilities, f is the expansion
ratio, Ri is the number of bits to represent each bit of task input, No of False Bits is
the number of false bits in predicted output.

For hybrid representations of Stack and Covariance, we observe that Stack
becomes capable of solving addition, multiplication after cellular automata input
expansion, but not XOR task. This is possibly due to requirements of the non-
linear nature of XOR task. However, Covariance representation benefits very little
from the initial CA expansion. Multilayer CA expansion with non linear rules is
a very powerful technique in general, because it also enables ReCA to solve XOR,
Addition and Multiplication tasks and improve temporal order tasks. In ReCA,
linear (additive) ECA rules (90 and 150) are essential for the reservoir evolution,
to achieve lossless injection of input at each time step9. However, non linear ECA
rules (for rule 40 see [2]) should exclusively be used in multilayer expansion as
shown in the fourth column of Table 1. Please see more results in [10].

9 Linearity maximizes one-to-one correspondence between input sequence and the
reservoir activity due to the sequence.
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Table 2. Number of bitwise operations for ESN and ReCA frameworks for solving
some pathological tasks.

Task ESN (Floating Point⇒Bit) CA (Bit) Speedup

20 Bit, Td = 200 105.6 M⇒3380 M Bit 24.8 M Bit 136X

3 Symbols, T = 200 5 M⇒160 M Bit 20.5 M Bit 7.8X

XOR, T = 1000 0.2 M⇒6.4 M Bit 16 M Bit 0.4X

Comparing ReCA with previous approaches, it outperforms: 1. Martens and
Sutskever (2011) [11] and Pascanu et al. (2013) [12] in sequence length T, in
their studies the zero test error has been obtained for T ranging from 50 to
200, but in our experiments T ranging from 200 to 1000. 2. Jaeger (2012) [6],
where the zero test error could not be achieved in 20 Bit binary encoded task
using ESNs. ReCA outperforms ESN in computational complexity for most of
the tasks as listed in Table 2. There is more than 100× speedup/energy savings
for memory tasks and 8× for temporal order tasks, but ESN is 2× faster for
XOR task. Comparing the representations of ReCA and ESN, the computation
performed in the ReCA is much more transparent for analysis and improvement
compared to ESNs, in which the state evolution is untraceable due to random
and irregular distributivity.

6 Conclusion

Cellular Automata Reservoir framework (ReCA) constructs a novel bridge
between computational theory of automata and recurrent neural architectures.
We show that the ReCA achieves zero error in all pathological synthetic tasks of
sequence learning. Sequence learning is an essential capability for a wide collec-
tion of intelligence tasks such as language, continuous vision (i.e. video), symbolic
manipulation in a knowledge base etc. ReCA outperforms the Covariance and
Stack representations because it enables both computation of high order statis-
tics and distributedness, where Stack representation provides pure memorization,
and Covariance representation computes only second order statistics.

Usage of cellular automaton instead of real valued neurons in reservoir com-
puting framework greatly simplifies the architecture, makes the computation
more transparent for analysis, and provide enough computation for sequence
learning even though it is a very sparse network with identical binary units.
Increasing cellular automata iterations I, and the size of each input entry Ri,
reduces interference in the reservoir in a predictable manner, making the com-
putation more similar to a feedforward architecture (i.e. Stack representation).
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Abstract. We present an alternative methodology for the analysis of
algorithms, based on the concept of expected discounted reward. This
methodology naturally handles algorithms that do not always terminate,
so it can (theoretically) be used with partial algorithms for undecidable
problems, such as those found in artificial general intelligence (AGI) and
automated theorem proving. We mention an approach to self-improving
AGI enabled by this methodology.

1 Introduction: Shortcomings of Traditional Analysis
of Algorithms

Currently, the (running time) analysis of algorithms takes the following form.
Given two algorithms A, B that solve the same problem, we find which is more
efficient by asymptotically comparing the running time sequences (an), (bn)
[4,15]. This could be using worst-case or average-case running times or even
smoothed analysis [16]. We refer to this general method as traditional analysis
of algorithms.

As with any model, traditional analysis of algorithms is not perfect. Authors
have noted [1,9] that comparing sequence tails avoids the arbitrariness of any
particular range of input lengths but leads us to say an = n100 is superior to
bn =

(
1 + exp(−1010)

)n which is false for practical purposes.
A further issue with traditional analysis is illustrated by this situation: Say

we have a function F : {0, 1}∗ → {0, 1} and an algorithm A that computes F
such that for n ≥ 0, A takes (n!)! steps on the input 0n and n steps on any other
input of length n. The algorithm A then has worst-case running time (n!)! and
average-case running time slightly greater than 2−n(n!)!, which are both terrible.
However, if the inputs are generated according to a uniform distribution, the
probability of taking more than n steps is 2−n which is quickly negligible. We
see that A should be considered an excellent algorithm but traditional analysis
does not tell us that, unless we add “with high probability”.

The same issue arises if A simply does not halt on 0n, in which case the
worst-case and average-case running times are infinite. Indeed, this is not an
esoteric phenomenon. For any problem with Turing degree 0′ we cannot have an
algorithm that halts on every input, but we develop partial solutions that work
on a subset of inputs. Such problems include string compression (Kolmogorov
complexity), the halting problem in program analysis [2], algebraic simplifica-
tion [17], program optimization, automated theorem proving, and Solomonoff
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 284–293, 2016.
DOI: 10.1007/978-3-319-41649-6 29
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induction (central to artificial general intelligence [13]). E.g. in the case of auto-
mated theorem proving, Buss, describing the main open problems in proof theory
[3], states, “Computerized proof search ... is widely used, but almost no math-
ematical theory is known about the effectiveness or optimality of present-day
algorithms.”

Definition 1. An algorithm A is a partial algorithm (a.k.a. computational
method [12, p. 5]) for a given problem if on all inputs, A either outputs the
correct value, or does not terminate.

Definition 2. We refer to partial algorithms for problems with Turing degree
0′ as 0′ algorithms.

To analyze 0′ algorithms, and perhaps to better analyze normal terminat-
ing algorithms, we need a new approach that is not based on worst-case or
average-case running time sequences. In Sect. 2 we present a new method for
analyzing algorithms, called expected-reward analysis that avoids some of the
issues mentioned above. Then in Sect. 3 we mention how this method can be
used in self-improving AI systems. We give directions for further work in Sect. 4.

Notation 1. Given a (possibly partial) algorithm A and an input ω, we denote
the number of steps taken by A on ω by cA(ω), which takes the value ∞ if A
does not halt on ω.

2 Expected-Reward Analysis of Algorithms

2.1 Definition

Let A be a (possibly partial) algorithm with inputs in Ω. We say the score of A
is

S(A) =
∑

ω∈Ω

P ({ω})r(ω)D(cA(ω)) = E(r · (D ◦ cA)),

where P is a probability measure on Ω, D is a discount function [7], and r(ω) is
a reward (a.k.a. utility) value associated with obtaining the solution to ω. The
expression S(A) may be interpreted as the expected discounted reward that A
receives if run on a random input, and the practice of comparing scores among
algorithms we call expected-reward analysis. A higher score indicates a more
efficient algorithm.

The functions D and r are arbitrary and are free to be set in the context of
a particular application. E.g. in graphical user interface software we often desire
near-instant responses, with utility rapidly dropping off with time. Assuming
0 ≤ r ≤ 1, we immediately see that for all A, partial or not, we have

0 ≤ S(A) ≤ 1.

For simplicity in this paper we assume r(ω) = 1 and D is an exponential discount
function, i.e.

D(cA(ω)) = exp(−λ cA(ω)),
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where λ > 0 is a discount rate.
The choice of P is also arbitrary; we remark on two special cases. If all inputs

of a given length are weighted equally, P is determined by a probability mass
function on Z0+. In this case any common discrete probability distribution may
be used as appropriate. The measure P is also determined by a probability mass
function on Z0+ if we weight equal-length inputs according to Solomonoff’s uni-
versal distribution m [13], which is a particularly good general model, although
computationally difficult.

Expected-reward analysis is non-asymptotic, in the sense that all inputs
potentially matter. Thus, while expected-reward analysis can be used on termi-
nating algorithms, we expect it to give different results from traditional analy-
sis, in general. Since particular inputs can make a difference to S(A), it may be
advantageous to “hardcode” initial cases into an algorithm. This practice cer-
tainly exists, e.g. humans may store the 12 × 12 multiplication table as well as
knowing a general integer multiplication algorithm.

Computational complexity theory often works with classes of problems whose
definitions are equivalent for all “reasonable” models of computation [5]. How-
ever, even a varying constant factor could arbitrarily change a score. This is
simply the price of concreteness, and outside of complexity theory, traditional
analysis of algorithms generally selects a particular model of computation and
gives precise results that do not necessarily apply to other models [6].

Unlike traditional analysis, experimental data is relevant to score values in a
statistical sense. If we are able to generate inputs according to P , either artifi-
cially or by sampling inputs found in practice, S(A) is a quantity amenable to
statistical estimation. This suggests a form of experimental analysis of algorithms
which focuses on a single real number rather than plotting the estimated run-
ning time for every input length, which, in the necessary absence of asymptotics
in experimental analysis, may not conclusively rank two competing algorithms
anyway.

The expected-reward paradigm already appears in the analysis of artificial
agents, rather than algorithms [8]. As we see in Sect. 3, however, even in applica-
tions to AI, working in the more classical domain of algorithms brings benefits.

2.2 Theory and Practice

Traditional analysis of algorithms has an established literature going back
decades which provides a set of techniques for performing traditional analysis
on algorithms developed for various problems. We do not significantly develop a
mathematical theory of expected-reward analysis here, but we make some very
brief initial remarks.

By way of introductory example, we consider expected-reward analysis
applied to some well-known sorting algorithms. Let Sn be the set of permu-
tations of [1..n] and let Πn be a uniform random element of Sn. We denote the
algorithms mergesort and quicksort by M and Q, as defined in [15], and set

mn = E [exp(−λ cM (Πn))] , qn = E [exp(−λ cQ(Πn))] ,
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where cA(ω) is the number of comparison operations used by an algorithm A to
sort an input ω.

Proposition 1. For n ≥ 1 we have

mn = exp
(
−λ(n�lg(n)� + n − 2�lg(n)�)

)
, m0 = 1, (1)

qn =
e−λ(n+1)

n

n∑

k=1

qk−1qn−k, q0 = 1.

Proof. From [15], M makes the same number of comparisons for all inputs of
length n ≥ 1:

cM (Πn) = n�lg(n)� + n − 2�lg(n)�,

so (1) is immediate.
Now, when Q is called on Πn, let ρ(Πn) be the pivot element, and let Πn,Πn

be the subarrays constructed for recursive calls to Q, where the elements in Πn

are less than ρ(Πn), and the elements in Πn are greater.
We have

E[exp(−λcQ(Πn))]

=
1
n

n∑

k=1

E[exp(−λ(n + 1 + cQ(Πn) + cQ(Πn)) ) | ρ(Πn) = k]

=
e−λ(n+1)

n

n∑

k=1

E[exp(−λ(cQ(Πn) + cQ(Πn)) ) | ρ(Πn) = k].

It can be seen that given ρ(Πn) = k, Πn and Πn are independent, thus

E[exp(−λcQ(Πn))]

=
e−λ(n+1)

n

n∑

k=1

E[exp(−λcQ(Πn)) | ρ(Πn) = k] ·

E[exp(−λcQ(Πn)) | ρ(Πn) = k]

=
e−λ(n+1)

n

n∑

k=1

E[exp(−λcQ(Πk−1))]E[exp(−λcQ(Πn−k))]. 	


From examining the best-case performance of Q, it turns out that cM (Πn) ≤
cQ(Πn) for all n, so the expected-reward comparison of M and Q is easy:
S(M) ≥ S(Q) for any parameters. However, we may further analyze the absolute
scores of M and Q to facilitate comparisons to arbitrary sorting algorithms.
When performing expected-reward analysis on an individual algorithm, our main
desideratum is a way to quickly compute the score value to within a given pre-
cision for each possible parameter value P, λ. Proposition 1 gives a way of com-
puting scores of M and Q for measures P that give equal length inputs equal



288 A. MacFie

weight, although it does not immediately suggest an efficient way in all cases.
Bounds on scores are also potentially useful and may be faster to compute; in
the next proposition, we give bounds on mn and qn which are simpler than the
exact expressions above.

Proposition 2. For n ≥ 1,

e−2λ(n−1)

(n − 1)!λ/ log(2)
≤ mn ≤ e−λ(n−1)

(n − 1)!λ/ log(2)
. (2)

For all 0 < λ ≤ log(2) and n ≥ 0,

e−2γλ(n+1)−λ

(n + 1)!2λ
(2π(n + 1))λ < qn ≤ e−2λn

(n!)λ/ log(2)
,

where γ is Euler’s constant.

Proof. Sedgewick and Flajolet [15] give an alternative expression for the running
time of mergesort:

cM (Πn) =
n−1∑

k=1

(�lg k� + 2) .

Statement (2) follows from this because

log(k)/ log(2) + 1 < �lg k� + 2 ≤ log(k)/ log(2) + 2.

With 0 < λ ≤ log(2), we prove the upper bound

qn ≤ e−2λn

(n!)λ/ log(2)
(3)

for all n ≥ 0 by induction. Relation (3) clearly holds for n = 0. We show that
(3) can be proved for n = N (N > 0) on the assumption that (3) holds for
0 ≤ n ≤ N − 1. Proposition 1 gives

qN =
e−λ(N+1)

N

N∑

k=1

qk−1qN−k

≤ e−λ(N+1)

N

N∑

k=1

e−2λ(k−1)

((k − 1)!)λ/ log(2)

e−2λ(N−k)

((N − k)!)λ/ log(2)

(by the assumption)

= e−3λN+λ

(
1
N

N∑

k=1

(
1

(k − 1)!
1

(N − k)!

)λ/ log(2)
)

≤ e−3λN+λ

⎛

⎝ 1
Nλ/ log(2)

(
N∑

k=1

1
(k − 1)!

1
(N − k)!

)λ/ log(2)
⎞

⎠
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(by Jensen’s inequality, since 0 < λ/ log(2) ≤ 1)

= e−3λN+λ

(
(2N−1)λ/ log(2)

(N !)λ/ log(2)

)

=
e−2λN

(N !)λ/ log(2)
.

Thus (3) has been proved for all n ≥ 0.
For the lower bound on qn, we use the probabilistic form of Jensen’s inequal-

ity,
qn = E [exp(−λcQ(Πn))] ≥ exp(−λE [cQ(Πn)]),

noting that average-case analysis of quicksort [15] yields

E [cQ(Πn)] = 2(n + 1)(Hn+1 − 1), n ≥ 0,

where (Hn) is the harmonic sequence. For n ≥ 0, the bound

Hn+1 < log(n + 1) + γ +
1

2(n + 1)

holds [11] (sharper bounds exist), so we have

qn > exp
(

−2λ(n + 1)
(

log(n + 1) + γ +
1

2(n + 1)
− 1

))

= e−2(γ−1)λ(n+1)−λ(n + 1)−2λ(n+1).

We finish by applying Stirling’s inequality

(n + 1)−(n+1) ≥
√

2π(n + 1) e−(n+1)/(n + 1)!, n ≥ 0. 	


From these results we may get a sense of the tasks involved in expected-
reward analysis for typical algorithms. We note that with an exponential discount
function, the independence of subproblems in quicksort is required for obtaining
a recursive formula, whereas in traditional average-case analysis, linearity of
expectation suffices.

We end this section by mentioning an open question relevant to a theory of
expected-reward analysis.

Question 1. If we fix a computational problem and parameters P, λ, what is
supA S(A), and is it attained?

If supA S(A) is not attained then the situation is similar to that in
Blum’s speedup theorem. Comparing supA S(A) among problems would be the
expected-reward analog of computational complexity theory but because of the
sensitivity of S to parameters and the model of computation, this is not useful.
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3 Self-improving AI

The generality of 0′ problems allows us to view design and analysis of 0′ algo-
rithms as a task which itself may be given to a 0′ algorithm, bringing about
recursive self-improvement. Here we present one possible concrete example of
this notion and discuss connections with AI.

Computational problems with Turing degree 0′ are Turing-equivalent so with-
out loss of generality in this section we assume 0′ algorithms are automated
theorem provers. Specifically, we fix a formal logic system, say ZFC (assuming it
is consistent), and take the set of inputs to be ZFC sentences, and the possible
outputs to be provable and not provable.

Let a predicate β be such that β(Z) holds iff Z is a 0′ algorithm which is
correct on provable inputs and does not terminate otherwise. In pseudocode we
write the instruction to run some Z on input ω as Z(ω), and if ω contains β or
S (the score function), their definitions are implicitly included.

We give an auxiliary procedure Search which takes as input a 0′ algorithm
Z and a rational number x and uses Z to obtain a 0′ algorithm which satisfies
β and has score greater than x (if possible). Symbols in bold within a string
literal get replaced by the value of the corresponding variable. We assume 0′

algorithms are encoded as strings in a binary prefix code.

1: procedure Search(x,Z)
2: u ← the empty string
3: loop
4: do in parallel until one returns provable:
5: A: Z(“∃v : (Z∗ = u0v =⇒ β(Z∗) ∧ S(Z∗) > x)”)
6: B: Z(“∃v : (Z∗ = u1v =⇒ β(Z∗) ∧ S(Z∗) > x)”)
7: C: Z(“Z∗ = u =⇒ β(Z∗) ∧ S(Z∗) > x”)
8: if A returned provable then
9: u ← u0

10: if B returned provable then
11: u ← u1
12: if C returned provable then
13: return u

We remark that the mechanism of Search is purely syntactic and does not
rely on consistency or completeness of ZFC, or the provability thereof. This
would not be the case if we strengthened β to require that β(Z) is true only if at
most one of Z(ω) and Z(¬ω) returns provable. Such a β would never provably
hold in ZFC.

The following procedure Improve takes an initial 0′ algorithm Z0 and uses
dovetailed calls to Search to output a sequence of 0′ algorithms that tend
toward optimality.
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1: procedure Improve(Z0)
2: best ← Z0, pool ← {}, score ← 0
3: for n ← 1 to ∞ do
4: an ← nth term in Stern-Brocot enumeration of Q ∩ (0, 1]
5: if an > score then
6: initialState ← initial state of Search(an, best)
7: add (an, best, initialState) to pool
8: improvementFound ← false
9: for (a, Z, state) in pool do

10: run Search(a, Z) one step starting in state state
11: newState ← new current state of Search(a, Z)
12: if state is not a terminating state then
13: in pool, mutate (a, Z, state) into (a, Z, newState)
14: continue
15: improvementFound ← true
16: best ← output of Search(a, Z)
17: score ← a
18: for (â, Ẑ, ˆstate) in pool where â ≤ score do
19: remove (â, Ẑ, ˆstate) from pool
20: print best
21: if improvementFound then
22: for (a, Z, state) in pool do
23: initialState ← initial state of Search(a, best)
24: add (a, best, initialState) to pool

The procedure Improve has the following basic property.

Proposition 3. Let (Zn) be the sequence of 0′ algorithms printed by Improve.
If β(Z0) holds, and if there is any 0′ algorithm Y and s ∈ Q where β(Y ) and
S(Y ) > s > 0 are provable, we have

lim
n→∞ S(Zn) ≥ s.

If (Zn) is finite, the above limit can be replaced with the last term in (Zn).

Proof. The value s appears as some value an. For an = s, if an > score in line
5, then Search(s, best) will be run one step for each greater or equal value of
n and either terminates (since Y exists) and score is set to s, or is interrupted
if we eventually have score ≥ s before Search(s, best) terminates. It suffices
to note that when score attains any value x > 0, all further outputs Z satisfy
S(Z) > x and there is at least one such output. 	


The procedure Improve also makes an attempt to use recently printed 0′

algorithms in calls to Search. However, it is not true in general that S(Zn+1) ≥
S(Zn). Checking if a particular output Zn is actually an improvement over Z0

or Zn−1 requires extra work.
In artificial general intelligence (AGI) it is desirable to have intelligent sys-

tems with the ability to make autonomous improvements to themselves [14]. If
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an AGI system such as an AIXI approximation [10] already uses a 0′ algorithm
Z to compute the universal distribution m, we can give the system the ability
to improve Z over time by devoting some of its computational resources to run-
ning Improve. This yields a general agent whose environment prediction ability
tends toward optimality.

4 Future Work

We would like to be able to practically use expected-reward analysis with vari-
ous parameter values, probability measures, and discount functions, on both ter-
minating and non-terminating algorithms. Particularly, we would like to know
whether 0′ algorithms may be practically analyzed. It may be possible to develop
general mathematical tools and techniques to enhance the practicality of these
methods, such as exist for traditional analysis; this is a broad and open-ended
research goal.

Acknowledgements. The author wishes to thank Zhicheng Gao, Nima Hoda, Patrick
LaVictoire, Saran Neti, and anonymous referees for helpful comments.
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Abstract. We introduce a learning architecture that can serve com-
pression while it also satisfies the constraints of factored reinforcement
learning. Our novel Cartesian factors enable one to decrease the num-
ber of variables being relevant for the ongoing task, an exponential gain
in the size of the state space. We demonstrate the working, the limita-
tions and the promises of the abstractions: we develop a representation
of space in allothetic coordinates from egocentric observations and argue
that the lower dimensional allothetic representation can be used for path
planning. Our results on the learning of Cartesian factors indicate that
(a) shallow autoencoders perform well in our numerical example and (b)
if deeper networks are needed, e.g., for classification or regression, then
sparsity should also be enforced at (some of) the intermediate layers.

1 Introduction

An intriguing fact about intelligence is the following. Our scientific discoveries
have a history of about 15000 years. The same holds for the technological devel-
opments and this progress was made by billions of people. Still, this knowledge,
or a large part of it, can be passed to a child in 15 years. It looks that innovations
and discoveries take long, whereas explaining and proving them are much faster.
One may consider the complexity of optimization and problem solving. They
may scale polynomially or exponentially both from the point of view of solving
them and verifying them (see, e.g., [4] and the cited references). The polyno-
mial type is called easy and the exponential type is called hard. Out of the four
options, the hard to solve and easy to verify — such as the Traveling Salesman
Problem — can be particularly useful for communicating agents. The relevance
of the other three classes is less. It thus seems that human knowledge is con-
cerned with hard to solve and easy to verify problems. After all, mathematical
theorems are hard to discover, but the proof is ‘linear’.

Consider sensory information. It brings about the possibility of information
fusion from different sensory modalities. For example, smell may be associated
with tasty food and then the smell can be used for searching for food. Thus,
information fusion concerns Cartesian factors (e.g., smell and taste) and spatio-
temporal patterns (e.g., during hunting the smell predicts the taste). Smell and
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 294–304, 2016.
DOI: 10.1007/978-3-319-41649-6 30
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taste have their respective sensors, unlike many Cartesian factors. The creation
(or the derivation) of such factors is of high importance for lowering the number
of relevant variables in problem solving.

The concept of numbers is such a Cartesian abstraction; it represents the
quantity and separates material properties. ‘2 + 2 = 4’, no matter if we are
concerned with apples or peaches. Cartesian abstractions enable concise formu-
lations for similar tasks.

We turn to the constraints of goal-oriented behavior. Factored reinforcement
learning (FRL) is advantageous [15,32], since without factored description, the
state space explodes. Factors of FRL are Cartesian ones [3,17] and can be latent
non-linear coordinates. Such abstractions are considered hard, ‘although poten-
tially pseudo-polynomial’ [7]. We postulate that communication favors such
abstractions, provided that the factor, in a given task, enables the agent to
neglect other components of the information without high risks, e.g., by apply-
ing robust controllers [33,36].

In our view, creative intelligence finds those factors that suit the essence of
the problem and diminish the combinatorial explosion for an approximate FRL
framework. In turn, the views that compression is related to intelligence, e.g., the
proposal that compression is one of the driving forces of science [28], the thought
that compression may lead to AGI1 together with the warning that intelligence is
not simply compression [8] may all gain support through the concept of Cartesian
factors.

Contributions: we treat the Cartesian factor problem by means of deep net-
works. We assume that we are given a factor and we find the complementing
one without exploiting temporal information. The paper is constructed as fol-
lows. In the next section, we shall review similar efforts. Section 3 provides the
details about the deep learning formalism and the problem itself. Our results are
presented in Sect. 4 and discussed in Sect. 5. Conclusions are drawn in Sect. 6.

2 Related Works

Factor or component learning appears in a number of contexts, such as fac-
tor analysis (FA), nonlinear matrix factorization (NMF), principal/independent
component analysis (PCA/ICA) (see, e.g., [16] and the references therein), sparse
coding (SC), also in bilinear forms [34]. The literature is enormous and goes
beyond the scope of this paper. These methods have the following properties: (i)
they assume the structure of the data (NMF, ICA), (ii) they drop components
of small variances (FA, PCA), and (iii) they are essentially additive factor mod-
els. Generative models with specified joint probability distributions also form a
group of models [27]. By contrast, Cartesian factors are more like modalities, can
have a metric, and may be deterministic.

‘Place field’ cells observed in rat hippocampus [24], also known as the ‘cog-
nitive map’ [25], motivate our thinking, since place fields are independent from

1 http://prize.hutter1.net/.

http://prize.hutter1.net/
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the egocentric direction of the animal and thus, it could be a modality, but it is
not sensed directly. The explanation of the place field phenomenon – that gave
rise to the Nobel Prize in 2014 – motivates our demonstration. We mention two
of the many models and refer the interested reader to the literature. One model
starts from ICA on directed spatially local but dispersed information, derives
direction dependent place fields, develops an autoregressive (AR) predictor from
those and produces direction independent place fields from measuring the inno-
vation of the AR process [19]. However, this method does not work for distant
cues. The other model uses distant information and takes advantage of Slow
Feature Analysis (SFA), see [29] and the references therein. This method needs
a relatively large angle of view to derive the place fields. Both methods exploit
temporal information, a strong restriction for the general case.

Here, we assume that we have one Cartesian factor and we will develop a
potentially deep architecture that can robustly discover the complementing one.

3 Methods

3.1 Theoretical Background

Deep Autoencoders. A Deep Autoencoder [12,38] is the unsupervised ver-
sion of a modern Multilayer Perceptron (MLP). Consider a series of non-linear
mappings (layers) of the form:

H = fN

(
· · · f2

(
f1(XW1)W2

) · · ·WN

)
, (1)

where X ∈ R
I×J is the matrix of I inputs of size J , Wn ∈ R

Qn−1,Qn are
parameters with Q0 = J , and fn are non-linear almost everywhere differentiable
element-wise functions (n = 1, . . . , N ; N ∈ N). Then H ∈ R

I×Q is called the
feature map (QN = Q). Typically, one takes two such mappings with reversed
sizes — an encoder and a decoder — and composes them. Thereupon one can
define a so-called reconstruction error between the encoder input X and the
decoder output X̂ ∈ R

I×J (normally the �2 or Frobenius norm of the difference,
i.e., 1

2‖X − X̂‖2F = 1
2

∑
i=1,...,I

∑
j=1,...,J (Xi,j − X̂i,j)2) and try to find a local

minima of it in terms of parameters Wn after random initialization, by taking
advantage of a step-size adaptive mini-batch subgradient descent method [9,18,
39]. The non-linearity can be chosen to be the rectified linear function fn(x) =
x · I(x > 0) for x ∈ R [5,22] to avoid the vanishing gradient problem [13,14],
where I designates the indicator function.

Spatial and Lifetime Sparsity. Deep Autoencoders are often used as a pre-
training scheme [10] or as a part of supervised algorithms [26], but they lack the
ability to learn a meaningful or simple data representation without prior knowl-
edge [30]. To obtain such a description, one might add regularizers or constraints
to the objective function [1,11], or employ a greedy procedure [6,37]. It is well
known that minimizing the sum of �2 norms of parameters Wn can reduce model
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complexity by yielding a dense feature map, and similarly, the �1 variant may
result in a sparse version [23,35]. An alternative possibility is to introduce con-
straints in the non-linear function fn. For example, one may utilize a k-sparse
representation by keeping solely the top k activation values in feature map H,
and letting the rest of the components zero [20]. This case, when features, i.e.,
the components of the representation, compete with each other is referred to as
spatial sparsity. Input indices of the representation may also go up against each
other and this case is called lifetime sparsity [21].

3.2 Problem Formulation

We assume that a latent random variable Z and an observed random vari-
able Y are continuous and together they fully explain away another observed
binary random variable X. The ranges of Z and Y are supposed to be grid
discretized finite r- and one-dimensional intervals, respectively, that fits FRL.
We denote the resulting grid points by (z(m), y(l)) ∈ R

r × R; l = 0, . . . , L,
m = 1, . . . , (M +1)r, L,M, r ∈ N. The indices m = 1, . . . , (M +1)r are supposed
to be scrambled throughout training (i.e., we assume no topology between z(m)).
Then observation x(m,l) ∈ {0, 1}d is generated by a highly non-linear function
g : Rr×{1, . . . , L} → {0, 1}d from grid point z(m) and grid interval [y(l−1), y(l)) as

x(m,l) = g(z(m), l) (2)

for m = 1, . . . , (M + 1)r; l = 1, . . . , L. For each fixed m, one is given masks
Vi,· ∈ {0, 1}L;

∑L
l=1 Vi,l = v ∈ N indexing pairs of the form (l,x(m,l)), where

i = 1, . . . , I is a global index. Provided such a sample from Y and X, we aim to
approximate the discretized version of Z.

The variables may correspond to discretized latent points in space (Z); direc-
tion intervals in an allothetic system, e.g., a compass with limited resolution (Y );
and ego-centric views of distant cues within a viewing angle (X), see Fig. 1 for
an illustration.

We formulated the above problem as a multilayer feedforward lifetime sparse
autoencoding [21] procedure with input matrix X ∈ {0, 1}I×J utilizing two nov-
elties: concatenated input vectors and a masked loss function are motivated by
the input structure. In order to construct the inputs Xi,·; i = 1, . . . , I of size
J = L · d, we coupled each v-tuple of x(m,l) vectors for fixed m into a single
block-vector using the Vi,· values as follows:

Xi,· =
[
Vi,1 · x(m,1), . . . ,Vi,l · x(m,l), . . . ,Vi,L · x(m,L)

]
. (3)

Then, we used the �2 reconstruction error as the loss, but on a restricted set of
elements, namely, on the v non-zero blocks for each input:

l(X, X̂,V ) : =
1
I

∑

i=1,...,I
j=1,...,J

Vi,� j−1
d +1� · (Xi,j − X̂i,j)2 (4)
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Fig. 1. Numerical experiment. (a): input is concatenated from sub-vectors, which
belong to different allothetic directions. A given index corresponds to the same box, the
‘remote visible cue’, in all sub-vectors. The value of the a component of a sub-vector is
1 (0) if the box is visible (non-visible) in the corresponding direction. Three directions
are visible (green). Some boxes may be present in neighboring sub-vectors, since they
are large. (b)–(d): the ‘arena’ from above with the different boxes around it. Shaded
green areas in (b), (c), and (d), show the visible portions within the field of view at a
given position with a given head direction. Insets show the visual information for each
portion to be transformed to 1 s and 0 s in the respective components of the sub-vectors.
Components of out-of-view sub-vectors are set to zero. (Color figure online)

where X̂ denotes the output of the decoder network. Finally, a sparse non-
linearity was imposed on top of each encoder layer, which selected the k percent
topmost activations across one component. We applied both lifetime [21] and
spatial sparsification [20].

We expected the output of the encoder H ∈ R
I×Q to resemble z(m), i.e.,

not depending on y(l) and discretizing the latent space R
r. The procedure is

summarized in Fig. 2.

Unordered points in latent space R
r
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fac

to
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e R
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yl Mask Vi,· = 1
Map g(·, ·)

Mask Vi,· = 0

Mask Vi,· = 0

0
0
0

x(m,l+1)

x(m,l)

x(m,l−1)

0
0
0

x̂(m,l+1)

x̂(m,l)

x̂(m,l−1)

· · · · · ·

Encoder output
Hi,· ∈ R

Q
Input

Xi,· ∈ R
L·d

Decoder output
X̂i,· ∈ R

L·dCartesian space R
r × R

sparse non-linearity

Fig. 2. General architecture. In the numerical experiments the notations correspond
to the following quantities: Z latent positions, Y discretized ‘compass’ values. Input
to the network: red: not visible, green: visible at neighboring viewing angle ranges.
Each viewing angle range provides inputs about all boxes. The full input equals to the
‘No. of boxes × No. of viewing angle ranges’. See text for details of the autoencoder.
(Color figure online)

We implemented our method in the Python library Theano [2] based upon the
SciPy2015 GitHub repository2. We used multilayer autoencoders with rectified
2 https://github.com/kastnerkyle/SciPy2015.

https://github.com/kastnerkyle/SciPy2015
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linear units, k = 1 spatial sparsity and p%-sparse lifetime sparsity. The decoder
output layer was linear. We trained parameters using full-batch Adam gradi-
ent descent [18] with early stopping (maximum 10000 epochs with 500 epochs
patience).

3.3 Numerical Experiment

For our study, we generated a squared ‘arena’ surrounded by d = 150 boxes in
Unity3 3D game engine (Fig. 1). The ‘arena’ had no obstacles. Boxes were placed
pseudo-randomly: they did not overlap. The ‘arena’ was discretized by an M ×
M = 36×36 grid. From each grid point and for every 20◦, a 28◦ field of view was
created (i.e., L = 360◦

20◦ = 18, overlap: 4◦ between regions), and the visibility —
a binary value (0 for occlusion or out of the angle of view) — for each box was
recorded, according to Eq. (2); we constructed a total of I = 37 · 37 · 18 = 24642
binary (x(m,l)) vectors.

These vectors were processed further. Beyond the actual direction of the cen-
ter of the viewing angle, we introduced some degree of closeness about the input
regarding the direction, but not the position: we varied the viewing angle between
28◦ and 360◦. Formally, for various experiments, we defined masks Vi,· summing
to v = 1, 3, . . . , 17, 18, for which we carried out the concatenation method from
Eq. (3): for each visible 28◦ sector, the corresponding x(m,l) vector; while for all
non-visible sectors, an all-zero vector were appended. This manipulation did not
change the size of the database.

In some experiments we normalized the inputs to unit �2 norm for each
d = 150 dimensional components, provided that at least one of the components
differed from zero. This is called normalized experiment. We used spatial spar-
sification with k = 1 and lifetime sparsification with p = 3.33% and p = 6.66%.
In the error of the autoencoder we considered two options: (a) error of the full
output and (b) error only on the visible components that belonged to the view-
ing angle as in Eq. (4). This latter is called masked experiment. We used them
in combination. We also tried 3 and 5 layer autoencoders, with the middle layer
representing the latent variables.

The size of the middle layer was always Q = 30. This means that spatial
(i.e., latent component-wise) sparsity gave rise to 3.33% lifetime sparsity. On
the other hand, p = 3.33% lifetime sparsity was effectively larger than 3.33%
since it was possible that none of the latent unit was selected for a given input
(and thus all of them were set to zero), when backpropagation became ineffective.
The same holds for p = 6.66% lifetime sparsity, which, on the average, would
give rise to 1, 2, 3, or more non-zero latent units with average above 2. The sizes
of the hidden layers were spaced linearly between 2700 and 30.

4 Results

The dependencies of the responses in the hidden representation vs. space and
direction are shown in Figs. 3 and 4. Linear responses of randomly selected latent
3 https://unity3d.com.

https://unity3d.com
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Fig. 3. Linear responses of individual latent units selected randomly: we chose neuron
with index 2 from the latent layer. ICA: values may take positive and negative values.
Other experiments: all units are ReLUs, except the output, which is linear. Color coding
represents the sum of responses for all directions at a given point. SP1: spatial sparsity
with k = 1, LT3.3%: lifetime sparsity = 3.3 %, Norm: for each 150 components, the
�2 norm of input is 1 if any of the components is non-zero, Mask: autoencoding error
concerns only the visible part of the scene, DL: dense layer. ‘Norm-LT3.3 %-LT3.3 %-
Mask’ means normed input, masked error, 5 layers: input layer, 3 layers with LT sparsity
equals 3.3 %, output layer.

units for different algorithms are depicted in Fig. 3, illustrating the extent that
the responses were localized. Figure 4 shows the direction (in)dependence of the
responses. For each input, we chose the highest activity latent component and
in each position we computed the number of directions (out of the 18 possible)
that a neuron was the winner in the dataset. We computed these numbers for all
units, selected the largest values at each position and combined them in a single
figure that we color coded (Fig. 4): Black color at one position means that unit
won in all angles at that position. Lighter colors mean less winning directions.

One should ask (i) if the linear responses are local and activities far from the
position of the peak activity are close to zero; (ii) if the number of dead latent
units is small, (iii) if responses are direction independent, that is, if we could
derive the discretization of space in allothetic coordinates, the complementary
component of the egocentric direction. We found that spatial sparsity with the
3 layer network and the 5 layer network with dense 2nd and 4th layers rendered
the output of some or sometimes all hidden units to zero (Table 1). On the other
hand, lifetime sparsity with the 5 layer network produced excellent results. Life-
time sparsity p = 6.66% can still produce place fields. Note that local responses
appear without the mask, but only for very large viewing angles. For the sake
of completeness, we also provide the ICA responses in Fig. 3. We discuss the
relevance, the limitations and the promises of our results in the next section.



Estimating Cartesian Compression via Deep Learning 301

Table 1. Dead neuron count: number of non-responsive computational units.

Field of view [deg]

28 68 108 148 188 228 268 308 348 360

Norm-SP1-Mask 2 0 5 5 10 12 16 18 15 18

LT3.33% 0 0 0 0 0 2 2 6 8 9

Norm-LT3.33% 0 0 0 1 1 3 2 4 9 11

Norm-LT3.33%-Mask 0 0 0 0 0 0 1 2 7 11

Norm-LT6.66%-Mask 0 0 0 0 0 0 1 4 13 13

Norm-DL-LT3.33%-Mask 0 3 1 29 30 30 30 30 30 30

Norm-LT3.33%-LT3.33 %-Mask 0 0 0 0 0 0 0 0 0 0

Fig. 4. Angle independence. Notations are the same as in Fig. 3. The highest activity
(winning) unit was selected for each input at each position in each direction. We counted
the number of wins at each position for each unit and selected the largest number.
Results are color coded. Black (18): there is a single winner for all angles at that
position. White (0): no response at that point from any neuron in any direction. Values
between 1 and 17: the darker the color the larger the direction independence for the
best winner at that position.

5 Discussion

Our goal was to find a discretization of hidden Cartesian factors (coordinates)
provided that we already have one. The coordinate that we know must have
a metric by definition. Such metric may show up in the temporal domain or,
alternatively, it may manifest itself implicitly, via discretized spatial information,
such as neighboring viewing ranges in our case. Temporal information has been
exploited via hierarchical SFA (see, [29] and the cited references). Their goal was
to closely model the rat’s sensory system and found that indeed, a large viewing
angle of 320◦ gave rise to direction independent place fields.
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Here, we could reach about 108◦, or so, and according to our results, further
improvements can be expected for deeper networks, provided that sparsity is
kept at some layers. Our algorithms can work if temporal information is not
available. Deeper networks may be unavoidable, e.g., if the input structure we
used can not be prewired and should be learned. We highlight that (i) high
quality reconstruction is corrupted without the mask, but our method shows
robustness for this case, too and (ii) if temporal information is available then
our results may be improved further.

Cartesian factors are needed for FRL. Consider, e.g., that place fields uncover
neighboring graph that can be used both for path planning. An integrated path
planning and control architecture on place fields has been put forth some years
ago [31]. For path planning, the exponent of the state space is lowered, being a
critical issue for FRL.

Lifetime sparsity seems important in the development of the Cartesian factor,
here, for the place fields. However, real time operation requires spatial sparsity,
or possibly some thresholding, or even the linear mode, since responses are fairly
local for the linear mode, e.g., p = 6.66% and for the 5 layer network. The linear
mode or even some spatial sparsification uncovers neighbor relations useful for
path planning and may support the development of metrics. In turn, two types
of operations, namely, learning off-line when lifetime sparsity can be enforced,
and working real time with some thresholding for learning neighboring relations
seem favorable.

6 Conclusions

We have derived a complementary Cartesian component in discretized form to
an existing one by means of deep learning. This novel type of compression sup-
ports factored reinforcement learning. Our experimental studies point towards
two phase – off-line and a real-time – operation and also to the necessity of
sparsification. The novel compression method may have relevance for Big Data
and may support the understanding of intelligence, since compression is thought
to be closely related to it.
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Abstract. The research and philosophical communities currently lack a clear
way to quantify, measure, and characterize the degree of consciousness in a
mind or AI entity. This paper addresses that gap by providing a numerical
measure of consciousness. Implicit in our approach is a definition of con-
sciousness itself. Underlying this is our assumption that consciousness is not a
single unified characteristic but a constellation of features, mental abilities, and
thought patterns. Although some people may experience their own conscious-
ness as a unified whole, we assume that consciousness is a multi-dimensional set
of attributes, each of which can be present to differing degrees in a given mind.
These attributes can be measured and therefore the degree of consciousness can
be quantified with a number, much as IQ attempts to quantify human
intelligence.

Keywords: Consciousness � Self-awareness � Definition � Measurement �
Assessment

1 Methodology

Any definition of consciousness today will be contentious. Consciousness is a sub-
jective sensation and each thinking entity has a unique experience of consciousness
which no one else can share. Nonetheless, a way to measure a thinking entity’s level of
consciousness—for example, on a numeric scale from 0 to 100—is needed. Obviously
this task is problematic and impossible to do with precision or accuracy, but the
exercise is enlightening.

Our goal is only to measure the degree of consciousness exhibited, without making
any assumptions about its implementation. We say that if an agent exhibits the given set
of externally observable behaviors listed below, then it is conscious by definition, and
conversely, if it is conscious, then these behaviors will be present. Specific cognitive
architectures, e.g., Global Workspace Theory [1–3], are candidates for evaluation using
the methodology proposed here. We do not propose any testable theory of conscious-
ness, only an approach to assessment and, by extension, a concrete definition thereof.

This assessment consists of a series of questions. Use this questionnaire to evaluate
the degree of consciousness of a person, AI system, or any other thinking entity. Answer
the questions and then compute the score.

There is no clear consensus on the definition of consciousness; this test reflects the
author’s personal definition. Other researchers with differing definitions of
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consciousness may create their own evaluation methodologies, or weigh the questions
here differently to reflect their definitions of consciousness.1

2 Instructions

Answer each question using the following scale:

0 – NONE
Not present at all

1 – SOME
Present, but at a level far below human levels

2 – ALMOST
Substantially present, but still at a sub-human level

3 – HUMAN
Present at a level typical of a normal human

4 – SUPER-HUMAN
Present to a degree that exceeds human ability

After answering all questions, add together the points for each answer to give a total
sum. Then multiply the sum by the number 0.741 to normalize and give the final score.2

Scores will lie on the following spectrum:

0 No consciousness present. The consciousness level of a rock.
100 The consciousness of a fully functioning human.
>100 A consciousness that exceeds human levels.
133 The maximum possible score.

The questions are listed next.

3 Ability to Reason and Use Logic

• Is THE-TEST-SUBJECT able to use logic in order to perform reasoning tasks?
(The term “logic” is to be interpreted loosely to include an ability to make
deductions.)

• Does THE-TEST-SUBJECT have short-term (working) memory; the ability to
acquire/deduce and then remember new facts/data/etc. in such a way that they can
be used in ongoing reasoning tasks? (For example, able to answer: “My name is
Tom. I live in Portland. What is my name?”)

1 To make this (subjective) definition a clearer and more discrete target for future discussions of the
nature of consciousness, let us name the present methodology and implied definition of
consciousness “Porter's Definition and Assessment of AI Consciousness” so as to distinguish it
from other definitions.

2 This multiplier was chosen so that an answer of “3 – HUMAN” for all 45 questions will yield a score
of 100. If questions are added or deleted, the multiplier will need to be adjusted accordingly.
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• Does THE-TEST-SUBJECT have long-term memory; the ability to acquire/deduce
and then remember new facts/data/information in such a way that it can be used in
reasoning tasks that occur in the future (after many unrelated reasoning tasks are
performed)? (For example: “Yesterday I told you my birth date; how old am I?”)

• Can THE-TEST-SUBJECT deal with partial/incomplete/inaccurate information?
• Can THE-TEST-SUBJECT make decisions, such as whether to take action “X” or

“Y”, based on some train of reasoning?

4 Situational Awareness

• Can THE-TEST-SUBJECT reason about dates/times/intervals?
• Can THE-TEST-SUBJECT answer questions about the current date?
• Can THE-TEST-SUBJECT reason about size/space/location?
• Can THE-TEST-SUBJECT answer questions about THE-TEST-SUBJECT’S

current location and the location of the questioner? (For an electronic “cyber” entity
whose location is not well-defined, then at least it can give reasonable answers to
questions about its location.)

5 Natural Language Ability

• Can THE-TEST-SUBJECT communicate using natural language?

6 Goals, Opinions, and Emotions

• Does THE-TEST-SUBJECT have goals/motivations/needs?
• Does THE-TEST-SUBJECT take steps to achieve his/her/its goals/motivations/

needs?
• Does THE-TEST-SUBJECT have opinions/likes/dislikes?
• Does THE-TEST-SUBJECT have emotions/feelings/moods?
• Do THE-TEST-SUBJECT’S emotions/feelings/moods change appropriately over

time in response to events?

7 Experiencing Existence

• Does THE-TEST-SUBJECT have a memory of the recent conversational history?
(For example: “Why did you say that? – Because you just told me X, which implies
it.”)

• Can THE-TEST-SUBJECT have experiences? (The definition of “experiences” is
to be taken loosely. A human can stub his/her toe; the ability to have this sort of
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physical bodily experience is not required. For example, an act of communication
can itself be an experience, although it involves only words and nothing physical.)

• Does THE-TEST-SUBJECT have a memory of past experiences and events?
(These experiences may have happened to THE-TEST-SUBJECT, but this is not
necessary.)

• Is some emotional coloring attached to memories? (For example, can THE-TEST-
SUBJECT distinguish between good and bad memories?)

8 Growth and Learning

• Can THE-TEST-SUBJECT learn new material?
• Can THE-TEST-SUBJECT change in ways deeper than simply acquiring more

data?
• Does THE-TEST-SUBJECT have curiosity about the world and an impulse to

learn and acquire information/knowledge/wisdom?

9 Self Knowledge

• Does THE-TEST-SUBJECT have knowledge about himself/herself/itself? Can
THE-TEST-SUBJECT provide a coherent description of who/what he/she/it is?

• Does THE-TEST-SUBJECT have some mental model of THE-TEST-SUB-
JECT’S own thought processes?

• Can THE-TEST-SUBJECT sense or perceive his/her/its current thought processes?
• Does THE-TEST-SUBJECT have some mental model of his/her/its own

goals/motivations/needs?
• Can THE-TEST-SUBJECT articulate his/her/its current goals/motivations/needs?
• Does THE-TEST-SUBJECT have some mental model of his/her/its own

emotions/feelings/moods?
• Can THE-TEST-SUBJECT identify his/her/its current emotions/feelings/moods?

10 Self Control

• Can THE-TEST-SUBJECT control his/her/its own thought processes? (For
example, can THE-TEST-SUBJECT follow a novel algorithm to perform some
reasoning task? Can THE-TEST-SUBJECT be told how to think more effectively
and then alter his/her/its thought processes as a result of these instructions?)

• Can THE-TEST-SUBJECT detect when certain thought processes are not effective
and alter his/her/its thought processes in an attempt to make them more effective?

• Can THE-TEST-SUBJECT articulate the algorithms that THE-TEST-SUBJECT
uses to performs certain novel tasks? (For example, able to “Describe how you
would sort a sequence of numbers?”)
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11 Knowledge About Humans

• Does THE-TEST-SUBJECT have knowledge about humans? We mean “the
human species” as opposed to knowledge about particular humans. (In the future or
to evaluate an alien life form, we might need to substitute “the dominate intelligent
species” for “humans”.)

• Does THE-TEST-SUBJECT have knowledge about particular humans as they
differ from other humans? (Perhaps in the future, we’ll substitute the phrase “other
thinking entities” for “humans” in these questions.)

• Does THE-TEST-SUBJECT have the ability to learn about other people and
remember details about specific individuals?

• Does THE-TEST-SUBJECT have an understanding of common mental illnesses,
such as depression, mania, phobia?

12 Knowledge About the Current Conversationalist

• Does THE-TEST-SUBJECT know about the current thought processes of the
person THE-TEST-SUBJECT is communicating with? (For example, this would
include knowing the person knows “X” because they know both “Y” and “Y
implies X” and they would be likely to infer “X”.)

• Does THE-TEST-SUBJECT have a model of the other person’s thought processes,
as they may differ from other humans? (For example, the knowledge that Tom is
good with facts, Robert is ruled by his emotions, and Matthew is driven by his
greed.)

• Does THE-TEST-SUBJECT know about the person’s current mood/feelings/
emotional state?

• Can THE-TEST-SUBJECT make reasonable inferences about how the person’s
current mood/feelings/emotional state affects the person’s current thoughts and
actions?

• Does THE-TEST-SUBJECT know about the person’s current motivations/
goals/needs and how this influences the person’s current thoughts and actions?

• Can THE-TEST-SUBJECT make judgments about the other person’s level of
intelligence?

13 Curiosity and Imitation

• Does THE-TEST-SUBJECT have curiosity about the current conversationalist’s
thoughts/thought processes/knowledge?

• Does THE-TEST-SUBJECT have curiosity about the current conversationalist’s
mood/emotions/goals/motivations?

• Does THE-TEST-SUBJECT have a desire/ability to imitate the thought processes
of others? (Even if this imitation is only temporary and only used to understand the
thought processes.)
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14 Example: Dog Consciousness

I used this assessment to evaluate the consciousness of dogs. On many of the questions
I supplied the answer as a range (such as 0-2) rather than a single number, because I do
not know the exact value and can only supply my best guess.

According to my assessment using this methodology, dogs score 51-67 on this
metric of consciousness.

15 Example: The Cyc Inference System

To quote Wikipedia, “Cyc is an artificial intelligence project that attempts to assemble a
comprehensive ontology and knowledge base of everyday common sense knowledge,
with the goal of enabling AI applications to perform human-like reasoning.”

I used this assessment to evaluate the consciousness of this AI system. As before, I
supplied many answers in the form of ranges, due to my limited knowledge about the
system.

According to my assessment using this methodology, Cyc scores 36-54 on this
metric of consciousness, clearly below dogs, but well above rocks.

16 Comments and Criticisms of This Assessment

We can evaluate this assessment by asking which attributes a personal digital assistant
(such as “Siri” on the iPad/iPhone) would need to possess in order for you to feel she
was conscious. We suggest that an AI entity scoring 100 or more on the assessment
described here would be judged by a reasonable person to be conscious, at least to a
nontrivial degree.3

The well-known Turing Test [4] is substantially different from this test since the
Turing Test is meant to determine how well a machine can imitate a human. Turing
Test judges are free to ask questions that are peculiar to human experience and the
human way of thinking. In other words, the Turing Test checks for human-like thought.
Any intelligent entity that can pass the Turing Test will, by definition, be able to
convince the judges that it can think just like a human and would therefore be able to
score 100 on our test. On the other hand, our test only asks how well a thinking entity
can perform the various tasks associated with consciousness, not the larger question of
whether the entity can mimic or imitate the human way of thinking to the point of being
indistinguishable from a human mind.

There is also a difference in methodology. Turing requires his “Imitation Game” to
be repeated a number of times, and the question is whether the machine contestant is

3 Perhaps being able to form a friendship with a thinking entity is a useful indicator of whether that
entity is conscious. We suggest that with any AI entity able to score high on this assessment, it would
be possible to form a reasonably recognizable friendship. For example, if the features listed here
could be added to Siri, then there is no question that Siri would appear to be more consciousness than
she does now.
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statistically indistinguishable from the human contestant, winning 50% of the time.
Performing the Turing Test properly requires a competent judge who has proven skill
in the art of distinguishing between machines and humans. The Turing Test also
requires you to perform a number of rounds of the imitation game sufficient to extract
reliable statistics. Our test is much less expensive to perform: You just run through the
questions and answer them to the best of your ability. This assessment is a subjective
test of a subjective quality.

The Turing Test also suffers from a serious shortcoming. Turing designed his test as
a pass-fail test. In some cases, it might be possible for a machine to be reliably
differentiated from a human with a single simple question. (For example, perhaps the
machine doesn’t know how many fingers a typical human has.) Any unusual gap in the
machine’s knowledge—no matter how irrelevant—might allow the judge to distinguish
between human and machine with 100% accuracy, even though the machine is, in all
other ways, capable of imitating human thought. When a machine fails the Turing Test,
it gives us no useful information.

One difficulty with our test is that it may be difficult or impossible to answer some
of the questions. For example consider evaluating the consciousness level of a dog. The
question “Can he/she/it sense or perceive his/her/its current thought processes?” is
almost impossible to answer. For these questions, you must provide an educated guess.
Omitting questions will alter the test itself, whereas inaccurate answers merely change
the accuracy of the test. Using standard statistical methods, you can express the final
score with error probabilities, if you wish.

These questions are probably skewed to favor human-like consciousness, although
we have tried to make them as neutral (and fair to the AI entities of the future) as
possible.

These questions weigh certain features differently than some people might prefer.
For example, there is only one question about natural language ability, there are several
questions about emotions and motivations, and there are no questions about body or the
ability to visualize shapes.4

Many aspects of the human experience are ignored. There are no questions about
whether the thinking entity can experience hunger, pain, pleasure, or the joy of hearing
beautiful music. There is nothing about “love”, which may be an emotion particular to
sexual species that raise their own offspring via direct personal contact. Perhaps some
of these experiences are important in your definition of consciousness.

There are no questions about experiencing an “internal voice” or “hearing your own
thoughts”. While this seems to be an important part of my subjective experience of
consciousness, it is difficult to know how others experience it. Additionally, it is hard to
ask questions to evaluate another person’s experience of an internal voice. Also it is
unclear whether hearing an internal voice is required for consciousness. Nevertheless, I
considered adding the question, “Does he/she/it report hearing an internal voice at
times?”.

4 It is for this reason that we are presenting our implicit definition of consciousness as one possible
standard definition among many, rather than suggesting it is more valid or correct than competing
definitions of consciousness.
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There are no questions about sight and the ability to see. It seems likely that a
person totally blind from birth experiences consciousness differently than most
humans, but I question whether they are any less conscious because of their visual
impairment.

There are no questions about mental visualization, although most humans can
mentally envision shapes and can report on this ability. Indeed, the ability to “see” and
manipulate objects entirely within the mind is so distinct and widespread that some
people may argue that it is a requirement for consciousness.

There are no questions about body or bodily experiences. Certainly all humans
have bodies and a large part of the brain is devoted to dealing with them, but it is
possible and reasonable to envision a completely disembodied consciousness.

There are no questions about sensors and actuators. A human body can be viewed
as a collections of senses and abilities to move and otherwise take action. Many would
insist that having some sort of physical presence (such as a robotic body with sensors
and actuators) is required for consciousness, but this questionnaire takes the position
that no physical embodiment is required.

There are no questions about the survival instinct or the desire to avoid death. This
is a core feature of the experience of being human, but so is the instinctive impulse to
breathe. Both seem unrelated to consciousness itself, and merely artifacts of the evo-
lution of humans.

This questionnaire does not attempt to evaluate the “moral goodness” of a thinking
entity. It attempts to rate the consciousness of an evil psychopath in the same way as a
virtuous nun, ignoring all questions about whether one consciousness should be pre-
ferred over another.

As the future unfolds, society will need to grapple with questions about which
conscious entities are acceptable and which entities must be forbidden and/or termi-
nated, but this discussion is beyond this assessment. Before this conversation can
begin, we need to have a better understanding of consciousness itself, and it is hoped
that this informal assessment will help stimulate the debate.

17 Related Research

The topic of consciousness continues to fascinate philosophers, AI researchers, neu-
roscientists, and the general public and much has been written and said about the
nature, definition, and mechanisms of consciousness. Approaches to the subject range
from philosophical (e.g., Daniel Dennett, David Chalmers, John Searle), to neurolog-
ical (e.g., Antonio Damasio, Oliver Sacks), to more creative theories (Roger Penrose).
Beyond the scientific approach, there is an abundance of material on what might be
termed “new-age” or “cosmic” consciousness—approaches to becoming one with the
universal consciousness and/or achieving a higher level of personal consciousness,
moving in the direction of enlightenment. When trying to define, understand, and
explain human consciousness, we are clearly in an exciting phase of intellectual
advancement.

In terms of evaluating the degree of consciousness, not much work has been done.
The “Lovelace 2.0 Test of Artificial Creativity and Intelligence” [5] requires a human
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judge who, interacting directly with an AI entity, asks the AI entity to produce a poem,
drawing, story, etc. The judge then evaluates the creative work of the AI. This approach
seems quite reasonable for testing the ability of an AI entity to think creatively in the
manner of a human. Consciousness seems to be related to creativity, but creativity and
consciousness are clearly different. In the Winograd Schema Challenge [6], the AI
entity is presented with a series of short questions, each with a multiple choice answer
which cleverly evaluates whether the sentence was understood. The WSC is an
excellent test of natural common sense intelligence, but common sense intelligence is
not consciousness. The WSC has the advantage of being objective and not requiring a
human judge.

To many people, consciousness seems irreducible, nonprogrammable, and perhaps
even magical or beyond the reach of science. While there are some eloquent arguments
in favor of these opinions, it now appears that a simple, unified explanation is elusive
and consciousness is turning out to be nothing more than a motley collection of
reasoning skills, mental abilities, and characteristics of neural processing that, in the
case of humans, has evolved in no different a way than other aspects of the brain.
Consciousness is just like other thinking — except that it is reflective and involves the
concept of self. This paper is an attempt to enumerate and elucidate the features that
come together to form the colloquial notion of consciousness, with the understanding
that this is only one subjective opinion on the nature of subjectiveness itself.
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Abstract. This paper describes neural network algorithms and software that
scale up to massively parallel computers. The neuron model used is the best
available at this time, the Hodgkin-Huxley equations. Most massively parallel
simulations use very simplified neuron models, which cannot accurately simu-
late biological neurons and the wide variety of neuron types. Using C++ and
MPI we can scale these networks to human-level sizes. Computers such as the
Chinese TianHe computer are capable of human level neural networks.
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1 Introduction

Artificial intelligence began in roughly 1956 at a conference at Dartmouth University.
The participants, and many researchers after them, were clearly overly optimistic. As
with many new technologies, the technology was oversold for decades.

Computer processing power, however, has been doubling every two years thanks to
Moore’s law. In the 1950’s one of the main computers was the IBM 701, which could
do 16,000 adds/subtracts per second, or 2,000 multiples/divides per second. This is
roughly a trillion times smaller than the human brain. As shown in Fig. 1, it is more on
par with the C. Elegan worm, which is about 1 mm long and has 302 neurons and 6393
synapses [1].

Over a wide range of biological creatures, it is estimated [2, 3] that the number of
synapses in biological systems can be modeled via:

Synapses ¼ 3:7 Neurons1:32 ð1Þ

A cockroach has about a million neurons, and using the above formula has about
300 million synapses. A rough estimate is that each synapse can store 1–8 bits and can
perform roughly 1–2 operations per second. Thus from these crude estimates the IBM
701 had performance about 10,000 times worse than a cockroach neural system. It is
amazing that the term “artificial intelligence” (AI) was coined during this era of hor-
ribly low-powered computers. Not until about 1975 did we have a computer on the
order of a cockroach, the Cray 1, which had a speed of roughly 160 megaflops. It is not
surprising that AI by this time was not taken seriously except in science fiction.
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About 20 years later there was the ASCI Red computer with 9298 processors with a
terabyte of memory and a speed of 1 teraflop. If this could have been harnessed for
modeling a brain, it would have been on the order of a rat, which has about 200 million
neurons.

The five largest parallel computers that exist today (which aren’t classified) are
shown in Table 1 [4]. The TianHe-2 computer in China has more than 3 million
processor cores, 1 petabyte of memory, and a peak speed of 55 petaflops.

Note that the data in Fig. 1 do not follow Moore’s law. The increasing numbers of
processors makes the trend much faster than Moore’s law. Instead of doubling every
two years, supercomputer speed doubles about every 1.4 years. Over a 60 year period
that leads to about 10,000 times more speed than Moore’s law would predict.

The human brain has roughly 1011 neurons and 1015 synapses. Some estimate that
the brain is capable of roughly 1014–1015 operations per second, with memory storage
of roughly 1014–1015 bytes. Thus the largest computers in the world are now on the
same order of magnitude as the human brain in terms of speed and memory. We are

Fig. 1. Computers and biological systems speed and memory.

Table 1. Top five computers in the world, (www.top500.org, Nov. 2015).

Rank Name Processor
Cores

Peak Speed
(PetaFlops)
(1015)

Memory
(PetaBytes)
(1015)

Power
Required
(MWatts)

1 TianHe-2 (China) 3,120,000 55 1.0 17.8
2 Titan (USA-DOE) 560,640 27 0.7 8.2
3 Sequoia (USA-DOE) 1,572,864 20 1.6 7.9
4 K Computer (Japan) 705,024 11 1.4 12.7
5 Mira (USA-DOE) 786,432 10 0.8 3.9
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very far, however, from replicating the efficiency of the human brain. It only requires
about 20 watts and about 1200 cm3, which is about a million times lower than the
supercomputers.

Finally, 60 years after the first AI conference we have computers on the order of the
performance of the human brain, even if they are a million times less efficient (in terms
of power and space).

The main issues now are algorithms and network structure. We have excellent
models of neurons, such as the Hodgkin-Huxley model, but we do not know how the
human neurons are wired together, or how carefully we need to match brain
architecture.

This paper is an attempt at using efficient and powerful algorithms, together with
powerful supercomputers to simulate as many neurons and synapses as possible, and in
a scalable manner. The goal is not to simulate the brain, but to develop an engineering
system.

There are several computational neuroscience models of neural networks [5–8], but
most of these aim for accurate neuroscience simulations. In the work presented here the
goal is to perform engineering simulations of massive neural networks for possible
applications to complex engineering systems such as cognitive robotics [9]. Riemann
et al. [10] used 12,000 neurons and 15 million synapses and used 4096 cpus in a Blue
Gene P computer. Four seconds of real time took 3 h of CPU time.

2 Hodgkin-Huxley Neurons

There are numerous models for neurons, as described in [2]. Most of these are very
simplified and approximate formulae. As we have shown in previous papers [2, 3], this
is a mistaken approach for two reasons:

1. With modern algorithms and computers more accurate models cost almost no more
computer time

2. There are typically many orders of magnitude more synapses than neurons in large
networks, as shown by Eq. (1).

Thus accurate neuron models can be used and it is of paramount importance to store
and compute the synapse operations extremely efficiently.

Also, it should be mentioned that the neural networks being discussed here are
time-dependent spiking (or pulsed) networks. These are quite different than typical
rate-based artificial neural networks often used in engineering applications.

In 1952 Hodgkin and Huxley [11] proposed a mathematical model for a neuron. It
was used to account for the electric current flow through the surface membrane of a
squid giant axon. The Hodgkin-Huxley model is used to explain the different spiking
phenomena of a neuron after it is exposed to various current stimulations. In their
paper, the effects of different ionic channels to the capacity and resistance of the
membrane were incorporated into the model; and empirical curve-fittings were used to
generate the component functions for the equations. The Hodgkin-Huxley (HH) model
is one of the most biological plausible models in computational neuroscience, and they
won a Nobel prize for their research. Their model is a complicated nonlinear system of
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coupled ordinary differential equations (ODE) consisting of four equations describing
the membrane potential, activation and inactivation of different ionic gating variables
respectively.

For many years now researchers have stated that the Hodgkin-Huxley model was
far too expensive to use due to its complexity. This is simply not the case, as we
showed in [2]. In particular models such as Izhikevich’s [12] are not recommended. As
shown in [2], it is not as efficient as the author states, nor can it model many types of
neurons. The H-H model does not require as much work as people think, and it can
model many types of neurons. The HH equations are the following differential
equations:

du
dt

¼ E�Gu
dm
dt

¼/m � /m þ bmð Þm
dn
dt

¼/n � /n þ bnð Þn dh
dt

¼/h � /h þ / bhð Þh

where

G ¼ gNam3hþ gKn4 þ gL E ¼ gNam3hENa þ gKn4EK þ gLEL þ I

and where the coefficients and constants are defined as:

anðuÞ ¼ 0:1�0:01u
exp 1�0:1uð Þ�1 bnðuÞ ¼ 0:125 expð� u

80Þ
amðuÞ ¼ 2:5�0:1u

exp 2:5�0:1uð Þ�1 bmðuÞ ¼ 4 expð� u
80Þ gNa ¼ 120ms

�
cm2; ENa ¼ 115mV

ahðuÞ ¼ 0:07 expð u20Þ bhðuÞ ¼ 1
expð3�0:1uÞþ 1

gK ¼ 36ms
�
cm2; EK ¼ �12mV

gL ¼ 0:3ms
�
cm2;EL ¼ 10:6mV

Here u(t) is the neuron membrane voltage, parameters gNa, gK, and gL are used to
model the channel conductances. The additional variables h, m, and n control the
opening of the channels. The parameters ENa, EK, and EL are the reversal potentials.
The term I is the input current (from other neurons or some external source), and is
typically a function of time.

The HH equations can be solved very efficiently using the exponential Euler
method. For an equation of the form

df
dt

¼ A� Bf

(note that all four ODE’s in the HH equations are of this form) the exponential Euler
method is implemented as

f nþ 1 ¼ f n � An

Bn

� �
e�Bn Dt þ An

Bn

For A and B constant, this is an exact formula. For our purposes we will assume the
coefficients change very slowly and can be assumed constant over one time step. Iterations
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could also be easily performed if necessary, but they are usually not required. Using
look-up tables for the coefficients is very effective, since the exponentials are expensive to
compute.

3 Parallel Software Implementation

The software used in these simulations was written in C++ and uses the Message
Passing Interface [13]. C++ was used due to its wide acceptance, high performance,
efficient memory usage, and powerful modern syntax. MPI was used since it is
essentially the only possible approach for massively parallel computers.

One of the difficult aspects of using distributed memory computers, especially
when there might be millions of processors, is how to distribute the problem across the
processors. This is especially difficult for neural networks, since we have to simulate
neurons and synapses and they are connected in very complicated networks.

In the approach used here, the neurons are evenly distributed across the processors
using MPI in a single program multiple data (SPMD) approach. Each neuron also has a
list of synapses that it is connected to, and each synapse has information on its
post-synaptic neuron and its processor number. For the H-H model each neuron stores
19 floats, 4 integers, and a dynamic list of synapses. So the memory used per neuron is
(23 + num_synapses) *4 bytes.

While biologically a synapse might store roughly a byte of data, in the computer
program each synapse here requires 73 bits (or roughly 9 bytes). The weights are stored
as char variables (1 byte), an integer is used to store the post-synaptic neuron number (4
bytes), an integer is used to store the processor on which the post-synaptic neuron
exists (4 bytes), and 1 bit is used to store whether it is an input neuron or not. Using a
32-bit integer for the neuron addresses limits the number of neurons per MPI process to
232 (about 4 billion, if they are unsigned ints), which is quite adequate. And using an
integer to store processor number also means one could use roughly 4 billion pro-
cessors. So any of the top five computers in the list above could store roughly as many
of these synapses as the human brain (1014–1015). The amount of memory required by
the synapses could be reduced by using short ints, but they can have maximum values
of only 65,536.

Figure 2 shows the number of processors required for a wide range of neurons (and
using Eq. 1 for number of synapses). Figure 3 shows how much memory is required
per number of neurons. This shows on a computer such as the TianHe we have enough
processors and memory to model human-level neural networks. A computer ten times
larger than the TianHe could model a neural network ten times larger than a human
brain, and possibly lead to superintelligence [14].

The other major issue is computer time requirements. As shown in [2] the algorithm
for the H-H neurons requires about 69 operations per time step using the exponential
Euler method combined with lookup tables for the coefficients. This is only about a
factor of two slower than the Izhikevich method, which cannot capture the physics
properly or model a wide range of neuron types. A typical time step size for reasonable
solutions is about 0.1 ms. Each processor core of the TianHe-2 computer has a peak
speed of about 10 billion operations per second. So for a billion neurons each time step
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would require about 7 s using just one processor (but the machine has 3 million). Also,
one second of real time requires roughly 690,000 operations, but we are not interested
in real-time neural computing.

Also, we need to consider the communication cost of the synapses. When a neuron
fires, a pulse is sent to the connecting neurons, and this pulse is weighted by the value
of the synapse weight. This can be accomplished with an add operation and process per

Fig. 2. Processors required for a range of neurons.

Fig. 3. Memory required for a range of neurons.
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synapse. So if we have a billion neurons and 1000 synapses per neuron, we’d have 1012

synapses. This means we’d have to do 1012 operations per time step. Using one
processor of the TianHe-2 computer, this would take roughly 100 s, which is signifi-
cantly more than the work required to march the neuron forward in time. As stated
earlier, the synapses drive the problem, not the neurons.

The third major issue in using massively parallel computers is the inter-processor
communication. Computers such as those shown in Table 1 are hybrid
distributed-shared memory machines. Each node of the machine is a shared memory
computer, and they are connected via a high-speed network to the other nodes. The
networks are often Infiniband networks, or something similar. Communication speeds
are often on the order of 100 gigabits/second, with minimum latencies on the order of
1–5 microseconds. A microsecond might sound like a very short period of time, but a
10 gigaflop processor could perform 10,000 operations during a microsecond. So if the
processor is sitting idle waiting for data, the performance can be seriously affected. And
there is no guarantee you will experience the minimum latency or the maximum
bandwidth in practice. And neural networks can require an enormous amount of
communication, especially if not done properly.

For the example discussed earlier, with a billion neurons and a trillion synapses,
every neuron is connected to 1000 other neurons. If every synapse sends its weight
every time step, this would require 1012 bytes transmitted each time step. Whether this
is feasible depends on the bi-section bandwidth of the supercomputer. Another way to
look at this is that the TianHe has 16,000 nodes with 88 Gbytes/node. If each node had
50 billion synapses and had to transmit them each time step, it might take roughly an
hour per time step (assuming 100 Mb/sec. connection). So synapse communications
need to be handled very carefully to maintain performance.

Fortunately the above scenario is not required. While in a traditional artificial neural
network (ANN) using backpropagation, all the synapse weights are involved each
sweep of the network, this is not true in spiking neural networks. In spiking neural
networks, the synapse weight only needs to be communicated when the pre-synaptic
neuron fires. And in biological systems typically only a few percent of the neurons are
active at a time. And in addition, they typically only spike (at most) roughly every 20
time steps. So in effect we might only need to transmit about one in a thousand synapse
weight data per step, if programmed properly. So instead of an hour, it might take
seconds.

In the code developed here, when a neuron fires, it sends this information to every
one of the post-synaptic neurons it is connected to. Some of these neurons might be on
other processors, while some might be on the local processor. MPI-3 has many new
features, one of which is one-sided communication. Instead of one processor executing
a SEND command, and another processor execute a RECEIVE command, a processor
can simply do an MPI_PUT and send the signal from one neuron to another, much as a
biological neuron does.

The PUT and GET functions are very useful, but an even more appropriate function
for sending neural signals is the MPI_ACCUMULATE function. This allows one to
put a variable on another processor and have it add the value to the current value on
that processor. This is exactly what we need here. For the MPI_PUT and
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MPI_ACCUMULATE functions it is also necessary to set up “windows,” which set up
the memory block that is to be shared.

The code here uses a completely unstructured or pointer-based approach. There is a
Neuron class, a Synapse class, and a Network class. Each Neuron object has a dynamic
list of Synapses, and each of these Synapses connects to one other Neuron. So a
Synapse has to store two integers and a byte (the weight). Thus any type of connec-
tivity can be modeled, including, all-to-all networks, convolution networks, recursive
networks, or deep networks.

The unstructured or pointer-based approach to network connectivity was chosen for
another reason as well. It makes the network very easy to modify (i.e. to add/remove
neurons and synapses), as discussed in [15]. One of the biggest issues with neural
networks is the “catastrophic forgetting” problem [16]. The current code can add
neurons and synapses to handle new situations without affecting the previously trained
synapses.

4 CPU Time Estimates

This computer code has been run on computers at Xsede.org in order to measure CPU
time and memory requirements. This is a complicated task since the CPU time depends
on the number of neurons, the number of synapses, the firing rates of the neurons, how
many neurons are typically firing, the processor speeds, and the inter-processor com-
munication speeds.

Since Eq. (1) gives an estimate of the number of synapses in biological systems
given the number of neurons, it is used to estimate number of synapses in the simu-
lations. This was shown in Fig. 1.

We also know that the neurons require 69 floating point operations per time step,
and each time step represents 0.1 ms of real time. So one second of real time requires
10,000 steps or 690,000 floating point operations. We also assume a 50 Hz neuron
firing rate and at any given time only about 5 % of the neurons are firing, which is
representative of some biological systems.

Table 2 shows preliminary code performance numbers for up to 2,048 processors.
The performance will vary depending on the network connectivity.

Table 2. Preliminary code performance for 300 time steps on Gordon computer at xsede.org.

No. Processor
Cores

Total
No. Neurons

Total
No. Synapses

CPU Time
(sec.)

Memory
Required
(Bytes)

1 3 * 103 2 * 106 0.36 6 * 109

32 1 * 105 6 * 107 0.20 2 * 108

256 8 * 105 5 * 108 0.26 1 * 1012

2048 6 * 106 4 * 109 0.26 12 * 1012
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5 Conclusions

Human brain scale simulations are now feasible on massively parallel supercomputers.
With careful attention to efficient event-driven programming, table lookups, and
memory minimization these simulations can be performed.

The next phase of this research will be incorporating learning. We have imple-
mented back propagation on massively parallel computers in the past [17], and could
use that for these networks also. We have also implemented spike time dependent
plasticity (STDP) in the past for spiking neural networks [18–20], there are still some
issues related to supervised learning using that approach.
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Abstract. One of the most critical properties of a versatile intelligent
agent is its capacity to adapt autonomously to any change in the envi-
ronment without overly complexifying its cognitive architecture. In this
paper, we propose that understanding the role of neuromodulation in
the brain is of central interest for this purpose. More precisely, we pro-
pose that an accurate estimation of the nature of uncertainty present
in the environment is performed by specific brain regions and broad-
cast throughout the cerebral network by neuromodulators, resulting in
appropriate changes in cerebral functioning and learning modes. Bet-
ter understanding the principles of these mechanisms in the brain might
tremendously inspire the field of Artificial General Intelligence. The origi-
nal contribution of this paper is to relate the four major neuromodulators
to four fundamental dimensions of uncertainty.

Keywords: Neuromodulation · Bio-inspiration · Decision making

1 Introduction

Computational Neuroscience has contributed many models of cognitive func-
tions [32], emphasizing their implementation in cerebral circuits or underlying
neuronal mechanisms, notably related to learning. Nevertheless, from this huge
amount of local models of cognitive functions, defining a general cognitive archi-
tecture, really autonomous and versatile is not just a matter of integration and
a lot of work remains to be done to propose an effective framework of the brain,
seen as a global cognitive model at this systemic level.

One of the more puzzling capacities of human cognition is our ability to adapt
to any new circumstances without explicit labeling that the circumstances have
changed and require a specific adaptation. This is particularly critical in our
dynamic and stochastic world: Does an unusual event correspond to noise and
can be neglected, or announce an important change and must be analyzed with
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care? Whereas we are rather good at answering such questions, they turn out to
be difficult to integrate in modeling studies.

This is revealed in the stability-plasticity problem, studied in the domains of
Artificial Neural Networks [19], Computational Neuroscience [23] and Lifelong
Machine Learning [30]. In short, this problem originates from the fact that we
would like at the same time to have a learning system able to adapt to any
change (plastic) and preserving its past experience and not deleting it, in case any
exception occurs (stable). A related dilemma is that of exploitation-exploration,
also encountered in many domains [6]. On the one hand we might have the will
to exploit our current knowledge of the present situation but on the other hand
we might also want to explore other recipes and possibly find more efficient
solutions.

This problem has been hardly studied in Cognitive Science. To our knowl-
edge, [14] is one of the rare experimental studies to analyze human cerebral
activations for such conflicts during decision making. Cohen and colleagues [11]
underline that in reinforcement learning, formal solutions of optimal policies
have been proposed only in simplified cases of this problem, particularly corre-
sponding to discovering noisy but stationary processes with fixed probabilities
of reward, but not in the case of unstationarity whereas changing environments
are probably more realistic as far as human cognition is concerned.

The case of unstationary environments has been tackled in [17] formalizing
them as a set of stationary environments and a certain probability to switch
from an environment to the other. Accordingly, the very interesting MMBRL
model has been proposed [17], as a multi-modules model, each specialized on
an environment, learned by Q-learning, and predicting the current state. This
model is very original because at each moment, all the modules participate in
the decision and learn, but the number of environments must be fixed in advance
and cannot evolve.

In the framework of decision making, the distinction between stationary and
unstationary environments can be presented as follows: when you try to asso-
ciate an action to a stimulus to get a reward, you might be willing to apply an
associative rule that you have learned before, proposing, for a given stimulus, the
best action to trigger to get a reward. Now, suppose that suddenly the rule does
not work any longer (you get no reward): Which conclusion should you draw
from this failure? On the one hand, you might decide that the reason is that
the environment is stationary but the rule is probabilistic (not always valid). In
this case, the decision to make is only to revise its rate of validity and wait for
the next trial (hopefully more rewarding). On the other hand, you might decide
that the environment is unstationary and that the rule has suddenly changed.
In this case, you will have to elaborate a new rule or re-use an old one. It is
explained in [33] that these two interpretations are intricately linked. For exam-
ple, if a rule is highly stochastic, you will be less prone to consider a failure as
corresponding to unstationarity. Conversely a failure with a highly probable rule
will be immediately considered as requiring a new rule.
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The paper by Yu and Dayan [33] had a big impact in the computational
neuroscience community because it was also proposing that two neuromodulators
in the brain, Acetylcholine (ACh) and Noradrenaline (or Norepinephrine NE)
were respectively signaling these two kinds of uncertainty. This view is partly
consistent with the wider view by Doya [16], proposing more generally a role for
neuromodulators in reinforcement learning.

In the present paper, based on biological knowledge extracted from the lit-
erature and on models and experimental simulations including from our group,
we propose to gather information about the main neuromodulators and insert
them in a more systematic framework, particularly relating their role to the
adaptation of the cerebral circuitry and the underlying cognitive functions, to
the kind of uncertainty and to the part of the behavioral episode concerned with
experienced uncertainty. Our goal is to show that neuromodulation in the brain
is a very powerful way to drive it in different functioning and learning modes,
at a lower cost regarding the complexification of the cognitive architecture. We
will also explain that this is made possible because the nature of the informa-
tion carried by neuromodulators is well adapted to such global modulations. We
will finally propose that this information is not so heterogeneous as classically
reported but rather corresponds to adapting the cerebral network to different
kinds of uncertainty.

2 The Role of Neuromodulation in Neural Processing

Information flows that feed a neural network can have different kinds of effects
on its functioning and on its learning. Based on biological inspiration, three main
flows can be considered. Friston has contrasted driver and modulator flows [18],
corresponding respectively to sensory feed-forward afferent flows and to feed-
back flows carrying expectations from higher regions of the network. Whereas
the driver flows are directly integrated in the functioning rules of the neuronal
units (classically in the weighted sum performed therein) and have a major
(driving) impact on the resulting activation states, the modulator flows, as their
name tells, have a more limited impact. They cannot generate an activation by
themselves but can modulate an existing activation, by acting on some internal
parameters like the gain of the activation rules. Relying on sparser and less
focused connectivity, the feed-back flows can have consequently an attentional
effect that can modify the level of activity in some regions. In addition, referring
to the classical hebbian framework, it is also clear that both kinds of flows have
distinct roles in the learning rules.

In natural and artificial networks, neuromodulation can also have a distinct
effect on neural networks but is more rarely considered in modeling approaches.
The main types of neuromodulators are monoamines (dopamine, serotonin, nora-
drenaline) and acetylcholine. The underlying mechanism [8,15] is that, for each
kind of neuromodulators, specific neurons gathered in a nucleus project to most
regions of the brain. Accordingly, they can widely modify the functioning and
learning modes of extended networks by modifying intrinsic properties of neu-
rons and synaptic weights. This is done thanks to specialized receptors types on
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different parts of neurons. This kind of information broadcasting is interesting in
a distributed architecture like the brain, where the anatomy of interconnections
is rather stable and cannot be systematic but where some important informa-
tion has to be known in many regions to modulate their functioning and learning
modes [15]. Basically, neuromodulatory neurons can have two kinds of activity,
a phasic activity corresponding to a reaction synchronized to a specific event,
typically the reception of a reward, and a tonic activity corresponding to a
sustained release of the neuromodulator. Whereas phasic activity of neuromod-
ulatory neurons can have dramatic roles in brain functioning (cf. for example
the phasic dopamine, often described as representing the reward prediction error
[29]), their tonic activity is more consistent with the modulatory role that we
discuss here and will be only considered in the remaining of the paper.

In order to introduce the influence of neuromodulators on the normal func-
tioning of the cerebral structures, let us first rapidly define what we call a
‘normal’ (or nominal) functioning of the cognitive architecture. In short, an
important part of our deliberative cognition consists in analyzing current exte-
roception and interoception to detect respectively important information in the
external world (sensory cues) and in the internal world (needs) and to apply cor-
responding sensorimotor rules to satisfy currents goals [1]. Here, sensorimotor
rules must be understood as relations encoded in the prefrontal cortex associ-
ating perception to the result obtained when a decision is executed, which can
correspond to trigger a motor action in the external world or to trigger more
internal decisions. In the ideal case, the world is perfectly known and the cor-
responding important sensory cues and rules have already been extracted by
learning. But the world is not ideal but uncertain, as it can be detected by
reward prediction errors that monitor uncertainty.

An important characteristic of the neuromodulatory systems is that they are
triggered by the central nucleus of the amygdala, a limbic structure known to
be active when an error of (negative or positive) reward prediction is detected.
As explained below, other evaluations are made in other cerebral regions to
differentiate the kind of uncertainty and inhibit non relevant neuromodulation.

3 Four Kinds of Neuromodulators

Acetylcholine (ACh) is released by basal forebrain nuclei like the nucleus basilis.
Its role has been related to expected uncertainty [33], corresponding to the sto-
chastic case evoked above, when the rule has not changed but is not always valid.
The observed effects of ACh in the sensory cortex are attentional and correspond
to increase the signal-to-noise ratio [27], resulting in promoting feed-forward sen-
sory information against feed-back expectations, when the environment is judged
highly stochastic. As modeled in [10], another observed effect of ACh in condi-
tioning experiments [9] is to promote learning about the context and not about
(noisy) sensory cues.

Noradrenaline (or Norepinephrine NE) is released by the Locus Coeruleus
and has been associated to unexpected uncertainty [33] when the rules have
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changed, like it is the case during reversal [2]. Accordingly, it is also associated
to an increase of exploration, to extract new contingencies and elaborate new
rules [3]. NE has been reported to have the same kinds of attentional effects
as ACh to favor exploration of new sensory cues [33]. The identification of the
circumstances as corresponding to unexpected uncertainty has been modeled
in [24] by a signal depending on the reward rate and on measures of response
conflict estimated from two windows encompassing long term and short term
history of activity.

Concerning the other two neuromodulators considered here, Serotonin (or
5HT) released from the dorsal raphe nucleus and Dopamine (DA) released from
the Ventral Tegmental Area in the midbrain, the situation is more controver-
sial. Old models like [13] propose a dual role for these neuromodulators, with
tonic DA for average appetitive reward prediction and 5HT for average aversive
reward (punishment) prediction. More recent papers acknowledge a role for 5HT
in aversive processing [12] but mainly for behavioral inhibition and passive avoid-
ance. Accordingly, low levels of 5HT are also associated to impulsivity. This is
consistent with the view expressed in [16] relating 5HT to time discounting, cor-
responding to the degree of preference between immediate over delayed rewards,
higher levels of 5HT corresponding to greater patience. This kind of impulsivity
can also be linked to the concept of risk, another major theory for the role of
5HT [5], where a greater variance in rewards might be prefered to more stable
payoffs, even if disavantageous on the total reward received. Defining a utility
function as the trade-off between the expected reward and its variance is pro-
posed as a model for the level of tonic 5HT [5]. Concerning tonic DA, recent
papers generally agree for a role to set the trade-off between exploration and
exploitation [21], which has of course to be confronted to the hypothetized role
of NE mentioned above. The evoked model of tonic DA implements the corre-
sponding mechanisms in the output functions of the basal ganglia, a motor region
responsible for action selection, with a probability distribution that can be mod-
ulated by tonic DA from flat (to favor exploration) to sharp (for exploitation)
[21] shapes.

4 Towards a Common Framework of Interpretation

We propose that setting the focus on the concept of action is a good way to
make clear the ambiguities evoked above. This idea has also been proposed by
Niv [25] to better explain the differences between the pavlovian and instrumen-
tal conditioning paradigms. Instead of evoking mainly rewards, actions should
be considered as representing the main difference between both paradigms: The
new dimension brought by instrumental conditioning (and related decision mak-
ing) over pavlovian conditioning (and related reward value) is that the animal or
human agent is responsible for deciding to trigger an action and more precisely
for its frequency, yielding the rapidity or the vigor of this action, but also a
certain cost corresponding to the energy necessary to trigger the action. Conse-
quently the vigor of the response (and the corresponding energetic price to pay
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for it) is a good indicator of the motivation to have a reward and, similarly, the
cost of a delay in this procedure is more meaningful.

We propose to exploit the same duality between the rate of the action and
the reward as a way to disambiguate the respective roles of the neuromodula-
tors considered here and propose accordingly to go deeper in the specification of
different kinds of uncertainty. We have evoked several times above that uncer-
tainty manifests itself by the acknowledgement that the sensorimotor rule which
has been applied doesn’t bring the expected reward. The next question would
be to know what is the cause of this problem: Is it because the selected sen-
sory cues is not longer valid (unexpected sensory uncertainty) or just because
it is only noisy (expected sensory uncertainty)? Or is it because the action to
associate to the (still correct) sensory cue has changed (unexpected motor uncer-
tainty) or just because it is only noisy and not always working (expected motor
uncertainty). We propose here that these cases respectively trigger the release
of Noradrenaline, Acetylcholine, Dopamine and Serotonin.

This view does not modify the acknowledged role of ACh on sensory process-
ing and is also consistent with information given above for tonic DA and NE
roles. DA would be for exploration/exploitation trade-off for action selection
whereas NE would be concerned with the same trade-off for selective attention
of the sensory cues. This is consistent with the fact that DA effect is mainly
reported in the basal ganglia and the frontal cortex (known to be responsible
for the organization of action) and NE effect in the posterior parietal cortex [4].
The role of NE to modify sensory processing in the thalamus and the cortex is
also acknowledged [28]. Similarly, DA has a clear role for wanting in the motor
pole and not for liking on the sensory side [7]. This separation of roles between
NE and DA has also been proposed in modeling studies [21].

Similarly, relating the role of 5HT to the estimation of risk and variance of
reward can rather be seen as a matter of noise or probabilistic distribution of
effects, consistently with an interpretation of expected uncertainty related to
actions. Even older interpretations of DA and 5HT as respectively related to
reward and punishment can be re-examined here: It can be understood that
when the risk is high, this should promote behavioral inhibition and passive
avoidance, often related to aversive processing [12], whereas exploration due to
high level of tonic DA might be misinterpreted as behavioral activation to get a
reward.

5 Discussion

In this paper we have mainly discussed about the role of neuromodulators in
cognition. Structurally, they have been presented [15] as a way to broadcast
information in a sparsely connected network like it is the case for the brain. Func-
tionally, it can be also argued that this kind of information passing is preferable
for certain types of information, orthogonal to the information processed locally
and rapidly changing. This is the case with uncertainty, that we have proposed
to be the key topic of neuromodulation. More precisely, we have proposed a dou-
ble set of criteria to qualify uncertainty. In addition to uncertainty announcing
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a radical change in the underlying rules or simply reporting stochasticity in the
environment, as already proposed in [33], we suggest, as the major contribution
of the present paper, that uncertainty can also refer to the sensory cues or to the
actions. In this view, each of the resulting four kinds of uncertainty would require
fundamentally different modifications in the cerebral network and consequently
different neuromodulators.

Altogether, the contribution of the present view to the framework of Artificial
General Intelligence can be synthesized as follows: Deliberative decision-making
is often summarized as learning and exploiting sensorimotor rules, associating
the sensory context to the best actions to trigger to get rewards and reach goals.
Such a framework is very classical in machine learning, particularly correspond-
ing to reinforcement learning [31], and in cognitive science [1]. It is attractive
because of its simplicity and because several computational frameworks have
been developed to express and learn such rules, using symbols [1], neurons [31]
and bayesian formalism [33] and proposing accordingly effective means to imple-
ment artificial intelligent agents. This simplicity can also be seen as a weakness,
reducing cognition to simple sensorimotor rules. One argument is that adapt-
ing to the unknown and changing world is more complex than learning sim-
ple contingencies between situations and optimal decision to make, particularly
because the world is uncertain, including dynamic and stochastic aspects. A
really autonomous agent, in the perspective of Artificial General Intelligence,
should be able to detect by itself such uncertainties and adapt to them.

The first lesson that we propose to be drawn by inspiration from neuro-
modulation in the brain is that, in order to take uncertainties into account in a
cognitive architecture, there is no need to give up the framework of sensorimotor
rules and look for a completely different or radically more complex framework.
Alternatively, it can be sufficient to build additional modules to detect the kind
of experienced uncertainty and to modulate or increment the set of sensorimotor
rules. This is interesting because existing systems based on sensorimotor rules
could be simply extended (and not fundamentally modified) and remain effective
in an uncertain world, corresponding to an important improvement in autonomy
for the corresponding agent.

The second element that we introduce here, corresponding to the most orig-
inal contribution of this paper, is about the different kinds of uncertainties that
can be experienced. In addition to the distinction between expected and unex-
pected uncertainties already proposed in [33], we propose here that the fact that
uncertainty applies either to sensory or to motor dimensions is of prime impor-
tance. In our view, the resulting four kinds of uncertainty should be signaled by
the four major neuromodulators in the brain, allowing for distinct modulation
of the cerebral system and, accordingly, of the existing set of sensorimotor rules.
Although we have given above some hints from existing models about the kind
of modulation performed by each neuromodulator in the cerebral system, a more
precise specification of these effects should be the topic of future work.

Another key topic hardly evoked here, is about the identification of the
kind of uncertainty experienced by the agent and consequently of the kind of
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neuromodulator to release. We have evoked models performing this identification
from history of response conflicts and reward errors [24]. The way these elements
are estimated and determination of their cerebral encoding is the topic of ongo-
ing research in the team. It can be also mentioned that metalearning occurs
at this level to help determine as fast and accurately as possible this critical
information, particularly depending on the context in which it occurs [26].

This tentative explanation for the role of neuromodulators in cognition needs
to be confirmed by a deeper anchoring in neuroscience. Additional clues might
be particularly searched in the nucleus accumbens, known to be the gateway
between sensory limbic and motor sides of cognition [22] and more generally in
the basal ganglia concerning the respective roles of DA and 5HT in the balance
between inhibition and excitation of behavior [20]. Finally, an important issue
to consider in forthcoming works in about interneuromodulatory interactions: It
has been shown that many interactions exist between neuromodulators resulting
in more intricate roles than presented here [15].
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Abstract. One of the core principles of the OpenCog AGI design, “cog-
nitive synergy”, is exemplified by the synergy between logical reasoning
and attention allocation. This synergy centers on a feedback in which
nonlinear-dynamical attention-spreading guides logical inference control,
and inference directs attention to surprising new conclusions it has cre-
ated. In this paper we report computational experiments in which this
synergy is demonstrated in practice, in the context of a very simple log-
ical inference problem.

More specifically: First-order probabilistic inference generates conclu-
sions, and its inference steps are pruned via “Short Term importance”
(STI) attention values associated to the logical Atoms it manipulates. As
inference generates conclusions, information theory is used to assess the
surprisingness value of these conclusions, and the “short term impor-
tance” attention values of the Atoms representing the conclusions are
updated accordingly. The result of this feedback is that meaningful con-
clusions are drawn after many fewer inference steps than would be the
case without the introduction of attention allocation dynamics and feed-
back therewith.

This simple example demonstrates a cognitive dynamic that is hypoth-
esized to be very broadly valuable for general intelligence.

1 Introduction

One approach to creating AGI systems is the “integrative” strategy, involving
combining multiple components embodying different structures or algorithms,
and relying on synergistic dynamics between components. One kind of inte-
grative system involves various highly independent software components, each
solving a specialized set of problems in a mostly standalone manner, with occa-
sional communication between each other in order to exchange problems and
solutions. On the other end of the scale, are systems designed as tightly inter-
connected components that give rise to complex non-linear dynamical phenom-
ena. Here, we are specifically focused on the latter approach. We will discuss the
c© Springer International Publishing Switzerland 2016
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particulars of one form of cognitive synergy – between probabilistic inference
and nonlinear-dynamical attention allocation – within the context of one partic-
ular integrative AGI architecture, PrimeAGI (formerly named OpenCogPrime)
[9,10], implemented on the OpenCog platform [7].

The specific nature of the synergy explored and demonstrated here is as
follows:

– Probabilistic logical reasoning, proceeding via forward chaining and using the
PLN (Probabilistic Logic Networks) rule-base, chooses premises for its infer-
ences based on weights called STI (ShortTermImportance) values

– When the inference process discovers something sufficiently surprising (via an
information-theoretic measure), it boosts the STI value associated with this
discovery

– STI values spread according to a particular set of equations modeled on eco-
nomics (ECAN, Economic Attention Allocation), so that when an item or
fragment of knowledge has a high STI, related entities will also get their STI
boosted

Thus, broadly speaking, we have a feedback in which

– importance values prune the combinatorial explosion of inference chaining
– inferentially determined surprisingness guides importance assessments
– importance spreads among related entities

According to this dynamic, entities related to other entities that have been useful
for an inference process, will also tend to get brought to the attention to that
inference process. This will cause the inference process to focus, much more
often than would otherwise be the case, on sets of interrelated knowledge items
regarding which there are surprising (interesting) conclusions to be drawn. It is a
form of deliberative thinking in which conclusion-drawing and attention-focusing
interact synergetically.

This sort of dynamic is very general in nature and, according to the con-
ceptual theory underlying PrimeAGI, is critical to the operation of probabilistic
inference based general intelligence. Here we illustrate the synergy via a simple
“toy” example, which highlights the nature of the feedback involved very clearly.
Our current work involves leveraging the same synergy in more realistic cases,
e.g. to help a system maintain focus in the course of inference-guided natural
language dialogue.

2 Background: PrimeAGI

Our work here is based upon specific details of the AGI architecture called
PrimeAGI (formerly known as OpenCogPrime), based on the open-source
OpenCog project at http://opencog.org. PrimeAGI is a large and complex sys-
tem whose detailed description occupies two volumes [9,10].

http://opencog.org
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The concept of cognitive synergy is at the core of the PrimeAGI design, with
highly interdependent subsystems responsible for inference regarding patterns
obtained from visual, auditory and abstract domains, uncertain reasoning, lan-
guage comprehension and generation, concept formation, and action planning.
The goal of the PrimeAGI project is to engineer systems that exhibit general
intelligence equivalent to a human adult, and ultimately beyond.

The dynamics of interaction between processes in PrimeAGI is designed in
such a way that knowledge can be converted between different types of memory;
and when a learning process that is largely concerned with a particular type
of memory encounters a situation where the rate of learning is very slow, it
can proceed to convert some of the relevant knowledge into a representation
for a different type of memory to overcome the issue, demonstrating cognitive
synergy. The simple case of synergy between ECAN and PLN explored here is
an instance of this broad concept; PLN being concerned mainly with declarative
memory and ECAN mainly with attentional memory.

2.1 Memory Types and Cognitive Processes in PrimeAGI

PrimeAGI’s memory types are the declarative, procedural, sensory, and episodic
memory types that are widely discussed in cognitive neuroscience [14], plus atten-
tional memory for allocating system resources generically, and intentional mem-
ory for allocating system resources in a goal-directed way. Table 1 overviews these
memory types, giving key references and indicating the corresponding cognitive
processes, and which of the generic patternist cognitive dynamics each cognitive
process corresponds to (pattern creation, association, etc.).

The essence of the PrimeAGI design lies in the way the structures and
processes associated with each type of memory are designed to work together in
a closely coupled way, the operative hypothesis being that this will yield cooper-
ative intelligence going beyond what could be achieved by an architecture merely
containing the same structures and processes in separate “black boxes.”

The inter-cognitive-process interactions in OpenCog are designed so that

– conversion between different types of memory is possible, though sometimes
computationally costly (e.g. an item of declarative knowledge may with some
effort be interpreted procedurally or episodically, etc.)

– when a learning process concerned centrally with one type of memory encoun-
ters a situation where it learns very slowly, it can often resolve the issue by
converting some of the relevant knowledge into a different type of memory:
i.e. cognitive synergy

The simple case of ECAN/PLN synergy described here is an instance of this
broad concept.

2.2 Probabilistic Logic Networks

PLN serves as the probabilistic reasoning system within OpenCog’s more general
artificial general intelligence framework. PLN logical inferences take the form of
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Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

Memory Type Specific Cognitive Processes General Cognitive
Functions

Declarative Probabilistic Logic Networks (PLN) [6];
concept blending [5]

pattern creation

Procedural MOSES (a novel probabilistic
evolutionary program learning
algorithm) [13]

pattern creation

Episodic internal simulation engine [8] association, pattern
creation

Attentional Economic Attention Networks (ECAN)
[11]

association, credit
assignment

Intentional probabilistic goal hierarchy refined by
PLN and ECAN, structured according
to MicroPsi [2]

credit assignment, pattern
creation

Sensory In OpenCogBot, this will be supplied by
the DeSTIN component

association, attention
allocation, pattern
creation, credit
assignment

syllogistic rules, which give patterns for combining statements with matching
terms. Related to each rule is a truth-value formula which calculates the truth
value resulting from application of the rule. PLN uses forward-chaining and
backward-chaining processes to combine the various rules and create inferences.

2.3 Economic Attention Networks

The attention allocation system within OpenCog is handled by the Economic
Attention Network (ECAN). ECAN is a graph of untyped nodes and links and
links that may be typed either HebbianLink or InverseHebbianLink. Each Atom
in an ECAN is weighted with two numbers, called STI (short-term importance)
and LTI (long-term importance), while each Hebbian or InverseHebbian link is
weighted with a probability value. A system of equations, based upon an eco-
nomic metaphor of STI and LTI values as artificial currencies, governs impor-
tance value updating. These equations serve to spread importance to and from
various atoms within the system, based upon the importance of their roles in
performing actions related to the system’s goals.

An important concept with ECAN is the attentional focus, consisting of those
atoms deemed most important for the system to achieve its goals at a particular
instant. Through the attentional focus, one key role of ECAN is to guide the
forward and backward chaining processes of PLN inference. Quite simply, when
PLN’s chaining processes need to choose logical terms or relations to include
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in their inferences, they can show priority to those occurring in the system’s
attentional focus (due to having been placed their by ECAN). Conversely, when
terms or relations have proved useful to PLN, they can have their importance
boosted, which will affect ECAN’s dynamics. This is a specific example of the
cognitive synergy principle at the heart of the PrimeAGI design.

3 Evaluating PLN on a Standard MLN Test Problem

In order to more fully understand the nature of PLN/ECAN synergy, in 2014
we chose to explore it (see [12]) in the context of two test problems standardly
used in the context of MLNs (Markov Logic Networks) [4]. These problems
are relatively easy for both PLN and MLN, and do not stress either system’s
capabilities.

The first test case considered there – and the one we will consider here – is
a very small-scale logical inference called the smokes problem, discussed in its
MLN form at [1]. The PLN format of the smokes problem used for our exper-
iments is given at https://github.com/opencog/test-datasets/blob/master/pln/
tuffy/smokes/smokes.scm.

The conclusions obtained from PLN backward chaining on the smokes test
case are

cancer(Edward) <.62, 1>
cancer(Anna) <.50, 1>
cancer(Bob) <.45, 1>
cancer(Frank) <.45, 1>

which is reasonably similar to the output of MLN as reported in [1],

0.75 Cancer(Edward)
0.65 Cancer(Anna)
0.50 Cancer(Bob)
0.45 Cancer(Frank)

In [12] we explored the possibility of utilizing ECAN to assist PLN on this
test problems; however our key conclusion from this work was that ECAN’s
guidance is not of much use to PLN on the problems as formulated. However,
that work did lead us to conceptually interesting conclusions regarding the sorts
of circumstances in which ECAN is most likely to help PLN. Specifically, after
applying PLN and ECAN to that example, we hypothesized that if one modified
the example via adding a substantial amount of irrelevant evidence about other
aspects of the people involved, then one would have a case where ECAN could
help PLN, because it could help focus attention on the relevant relationships.

This year we have finally followed up on this concept, and have demonstrated
that, indeed, if one pollutes the smokes problem by adding a bunch of “noise”
relationships with relatively insignificant truth values, then we obtain a case
in which ECAN is of considerable use for guiding PLN toward the meaningful

https://github.com/opencog/test-datasets/blob/master/pln/tuffy/smokes/smokes.scm
https://github.com/opencog/test-datasets/blob/master/pln/tuffy/smokes/smokes.scm
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information and away from the meaningless, and thus helping PLN to find the
meaningful conclusions (the “needles in the haystack”) more rapidly. While this
problem is very “toy” and simple, the phenomenon it illustrates is quite general
and, we believe, of quite general importance.

4 PLN + ECAN on the Noisy Smokes Problem

To create a “noisy” version of the smokes problem, we created a number of “ran-
dom” smokers and friends and added them to the OpenCog Atomspace along
with the Atoms corresponding to the people in the original “smokes” problem
and their relationships. We created M random smokers, and N random people
associated with each smokers; so M ∗N additional random people all total. For
the experiments reported here, we set N = 5. The “smokes” and “friend” rela-
tionships linking the random people to others were given truth value strengths
of 0.2 for the smoking relationship and 0.85 for the friendship relationship. Of
course, these numbers are somewhat arbitrary, but our goal here was to pro-
duce a simple illustrative example, not to seriously explore the anthropology of
secondhand smoking.

We ran the PLN forward chainer, in a version developed in 2015 that uti-
lizes the OpenCog Unified Rule Engine (URE)1. To guide the forward chaining
process, we used a heuristic in which the Atom selected as the source of inference
is chosen by tournament selection keyed to Atoms’ STI values. To measure the
surprisingness of a conclusion derived by PLN, we used a heuristic formula based
on the Jensen-Shannon Divergence (JSD) between the truth value of an Atom
A and the truth value of A∗, the most natural supercategory of A:

JSD(A,A∗) ∗ 10JSD(A,A∗)

This formula was chosen as a simple rescaling of the JSD, intended to exag-
gerate the differences between Atoms with low JSD and high JSD. A pending
research issue is to choose a heuristic rescaling of the JSD in a more theoreti-
cally motivated way; however, this rather extreme scaling function seems to work
effectively in practice.

Determining the most natural supercategory is in general a challenging issue,
which may be done via using a notion of “coherence” as described in [3]. However,
for the simple examples pursued here, there is no big issue. For instance, the
supercategory of

Evaluationlink
PredicateNode "smokes"
ConceptNode "Bob

is simply the SatisfyingSet of the PredicateNode “smokes”; i.e. the degree to
which an average Atom that satisfies the argument-type constraints of the

1 https://github.com/opencog/atomspace/tree/master/opencog/rule-engine.

https://github.com/opencog/atomspace/tree/master/opencog/rule-engine
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“smokes” predicate, actually smokes. So then “Bob smokes” is surprising if Bob
smokes significantly more often than an average entity.

In the case of this simple toy knowledge base, the only entities involved are
people, so this means “Bob smokes” is surprising if Bob smokes significantly more
often than the average person the system knows about. In a non-toy Atomspace,
we would have other entities besides people represented, and then a coherence
criterion would need to be invoked to identify that the relevant supercategory is
“People in the SatisfyingSet of the PredicateNode ‘smokes’” (including people
with a membership degree of zero to this SatisfyingSet) rather than “entities in
general in the SatisfyingSet of the PredicateNode ‘smokes’”.

Similarly, in the context of this problem, the surprisingness of “Bob and Jim
are friends” is calculated relative to the generic probability that “Two random
people known to the system are friends.”

4.1 Tweaks to ECAN

We ended up making two significant change to OpenCog’s default ECAN imple-
mentation in the course of doing these experiments.

The first change pertained to the size of the system’s AttentionalFocus (work-
ing memory). Previously the “Attentional Focus” (the working memory of the
system, comprised of the Atoms with the highest STI) was defined as the set of
Atoms in the Atomspace with STI above a certain fixed threshold, the Atten-
tionalFocusBoundary. In these experiments, we found that this sometimes led
to an overly large AttentionalFocus, which resulted in a slow forward chaining
process heavily polluted by noise. We decided to cap the size of the Attention-
alFocus at a certain maximum value K, currently K = 30. This is a somewhat
crude measure and better heuristics may be introduced in future. But given that
the size of the human working memory seems to be fairly strictly limited, this
assumption seems unlikely to be extremely harmful in an AGI context.

The second change pertained to the balance between rent and wages. Previ-
ously these values were allowed to remain imbalanced until the central bank’s
reserve amount deviated quite extremely from the initial default value. However,
this appeared to lead to overly erratic behavior. So we modified the code so that
rent is updated each cycle, so as to retain balance with wages (i.e. so that, given
the particular size of the Atomspace and Attentional Focus at that point in time,
rent received will roughly equal wages paid).

4.2 Parameter Setting

The ECAN subsystem’s parameters, whose meanings are described in [10], were
set as follows:

ECAN_MAX_ATOM_STI_RENT = 3
ECAN_STARTING_ATOM_STI_RENT = 2
ECAN_STARTING_ATOM_STI_WAGE = 30
HEBBIAN_MAX_ALLOCATION_PERCENTAGE = 0.1
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SPREAD_DECIDER_TYPE = Step
ECAN_MAX_SPREAD_PERCENTAGE = 0.5
STARTING_STI_FUNDS = 500000

The PLN forward chainer was set to carry out 5 inference steps in each
“cognitive cycle”, and one step of basic ECAN operations (importance spreading,
importance updating, and HebbianLink formation) was carried out in each cycle
as well.

4.3 Experimental Results

Figure 1 shows the number of cycles required to correctly infer the truth value of
several relationships in the original smokes problem, depending on the noise para-
meter M . The results are a bit erratic, but clearly demonstrate that the feedback
between ECAN and PLN is working. As the amount of noise Atoms in the Atom-
space increases, the amount of time required to draw the correct conclusions does
not increase commensurately. Instead, for noise amounts above a very low level, it
seems to remain within about the same range as the amount of noise increases.

On the other hand, without ECAN, the PLN forward chainer fails to find the
correct conclusions at all with any appreciable amount of noise. In principle it
would find the answers eventually, but this would require a huge amount of time
to pass. The number of possible inferences is simply be too large, so without
some kind of moderately intelligent pruning, PLN spends a long time exploring
numerous random possibilities.

Fig. 1. Number of cognitive cycles required to derive the desired obvious conclusions
from the noise-polluted Atomspace. The x-axis measures the amount of noise Atoms
added. The graph is averaged over 100 runs. The key point is that the number of cycles
does not increase extremely rapidly with the addition of more and more distractions.
Red = conclusions regarding Anna; green=Bob, blue=Edward, yellow=Frank. (Color
figure online)
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5 Conclusion

We began this experimental investigation with the hypothesis that cognitive
synergy between PLN and ECAN would be most useful in cases where there is
a considerable amount of detailed information in the Atomspace regarding the
problem at hand, and part of the problem involves heuristically sifting through
this information to find the useful bits. The noisy smokes example was chosen as
an initial focus of investigation, and we found that, in this example, ECAN does
indeed help PLN to draw reasonable conclusions in a reasonable amount of time,
in spite of the presence of a fairly large amount of distracting but uninteresting
information.

The theory underlying PrimeAGI contends that this sort of synergy is critical
to general intelligence, and will occur in large and complex problems as well as
in toy problems like the one considered here. Validating this hypothesis will
require additional effort beyond the work reported here, and might conceivably
reveal the need for further small tweaks to the ECAN framework.

References

1. Project tuffy. http://hazy.cs.wisc.edu/hazy/tuffy/doc/
2. Bach, J.: Principles of Synthetic Intelligence. Oxford University Press, New York

(2009)
3. Ben Goertzel, S.K.: Measuring surprisingness (2014). http://wiki.opencog.org/

wikihome/index.php/Measuring Surprisingness/
4. Niu, F., Re, C., Doan, A., Shavlik, J.: Tuffy: scaling up statistical inference in

markov logic networks using an rdbms. In: Jagadish, H.V. (ed.) Proceedings of
the 37th International Conference on Very Proceedings of the 37th International
Conference on Very Large Data Bases (VLDB 2011), Seattle, Washington, vol. 4,
pp. 373–384 (2011)

5. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books, New York (2002)

6. Goertzel, B., Ikle, M., Goertzel, I., Heljakka, A.: Probabilistic Logic Networks.
Springer, New York (2008)

7. Goertzel, B.: Cognitive synergy: a universal principle of feasible general intelli-
gence? In: Proceedings of ICCI 2009, Hong Kong (2009)

8. Goertzel, B., Pennachin, C., et al.: An integrative methodology for teaching embod-
ied non-linguistic agents, applied to virtual animals in second life. In: Proceedings
of the First Conference on AGI. IOS Press (2008)

9. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy.
Atlantis Thinking Machines. Springer, Heidelberg (2013)

10. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Atlantis Thinking
Machines. Springer, Heidelberg (2013)

11. Goertzel, B., Pitt, J., Ikle, M., Pennachin, C., Liu, R.: Glocal memory: a design
principle for artificial brains and minds. Neurocomputing 74(1–3), 84–94 (2010)

http://hazy.cs.wisc.edu/hazy/tuffy/doc/
http://wiki.opencog.org/wikihome/index.php/Measuring_Surprisingness/
http://wiki.opencog.org/wikihome/index.php/Measuring_Surprisingness/


Controlling Combinatorial Explosion in Inference 343
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Abstract. A new conceptual framing of the notion of the general intel-
ligence is outlined, in the form of a universal learning meta-algorithm
called Probabilistic Growth and Mining of Combinations (PGMC).
Incorporating ideas from logical inference systems, Solomonoff induc-
tion and probabilistic programming, PGMC is a probabilistic inference
based framework which reflects processes broadly occurring in the nat-
ural world, is theoretically capable of arbitrarily powerful generally intel-
ligent reasoning, and encompasses a variety of existing practical AI algo-
rithms as special cases. Several ways of manifesting PGMC using the
OpenCog AI framework are described. It is proposed that PGMC can
be viewed as a core learning process serving as the central dynamic of
real-world general intelligence; but that to achieve high levels of gen-
eral intelligence using limited computational resources, it may be neces-
sary for cognitive systems to incorporate multiple distinct structures and
dynamics, each of which realizes this core PGMC process in a different
way (optimized for some particular sort of sub-problem).

1 Introduction

An open question in AGI and cognitive science is: If one’s goal is the creation
of an AI system with general intelligence at the human level or beyond, should
one be looking for a “single learning algorithm” to carry out the core learning
processes at the heart of one’s system? Or, on the other hand, do the practical-
ities of achieving real-world general intelligence within realistic computational
resource restrictions, inevitably push one toward a more heterogeneous approach,
with multiple different algorithms handling different kinds of learning?

The concepts presented here constitute a sort of middle ground between
single-focused and heterogeneous approaches. Instead of a single core algorithm,
what is proposed is a core process. However, this core process is a relatively
abstract one, and it is proposed that this core process can be realized via a variety
of different underlying algorithms – and that, in order to achieve effective general
intelligence using realistically limited resources, it may indeed be necessary to
utilize a variety of different algorithms, each instantiating the same core process
in a slightly different way (due to the different algorithms being optimized for
different types of subproblems).
c© Springer International Publishing Switzerland 2016
B. Steunebrink et al. (Eds.): AGI 2016, LNAI 9782, pp. 344–353, 2016.
DOI: 10.1007/978-3-319-41649-6 35
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The PGMC concept presented here can be viewed as a variation of the “Uni-
versal AI” approach, but it has the property that it naturally extends and gen-
eralizes a number of practical AI algorithms in current use. It also has potential
to be used to create cognitive architectures that are heterogeneous underneath,
but wrap this heterogeneity behind a “universal” looking PGMC layer.

In the latter vein, after giving a semi-formal presentation of the key ideas of
PGMC, we will discuss here how the OpenCog architecture in particular could
be reformulated so that most of the learning algorithms in OpenCog, in spite of
their apparent diversity, were explicitly implemented and displayed to the user
as aspects of the PGMC “meta-algorithm.” This is interesting theoretically as
an illustration of the PGMC concept, and may also be interesting practically as
a direction for OpenCog development. Due to space limitations, the particulars
of OpenCog formalization and implementation are largely omitted here, but can
be found online on the OpenCog wiki site1.

2 Probabilistic Growth and Mining of Combinations

A High Level Conceptual View. The conceptual foundation of the “Probabilis-
tic Growth and Mining of Combinations” notion presented here is the idea of
“forward and backward growth processes” introduced in [3] and reiterated in
[5,6], and proposed there as a generic framework for modeling focused cognitive
processes (meaning, cognitive processes that focus their attention on a relatively
small body of information within a potentially larger scope associated with a
cognitive system). As defined there, roughly,

– forward growth is the process via which a collection of cognitive entities,
the subjects of focus, combine with each other to form new entities, which
will often then still be subjects of focus. Sometimes these focus entities may
also combine with entities outside the focus.

– backward growth is the process of figuring out how a target cognitive entity
might be produced via forward growth

These simple operations are actually quite generic in character, and can be
seen to underlie a large variety of cognitive processes including logical inference,
evolutionary learning, clustering, language processing, and a host of others.

The notion of PGMC presented here refines these earlier ideas considerably.
Combining entities (as forward growth does) is all very well, but there are always
too many combinations; so how does one decide which combinations to actually
make? One can say that the entities doing the combining can decide what to
combine with, which makes sense, but is not a very meaty conclusion. The idea of
PGMC is that forward and backward growth processes can quite generically be
executed, in a way that balances resource limitations with practical effectiveness,
via a process of: (1) mining patterns in the results of prior forward and backward

1 See http://wiki.opencog.org/wikihome/index.php/OpenCoggy Probabilistic
Programming.

http://wiki.opencog.org/wikihome/index.php/OpenCoggy_Probabilistic_Programming
http://wiki.opencog.org/wikihome/index.php/OpenCoggy_Probabilistic_Programming
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growth processes; (2) using these patterns to probabilistically guide ongoing
forward and backward growth. And the pattern mining mentioned in the first
item may also be done via leveraging various forward and backward growth
processes, thus creating a virtuous-cycle recursion.

This rather generic process may be envisioned as a type of probabilistic pro-
gramming, and I propose here that it may be considered as a general foundation
for generally intelligent cognition. That any cognitive process can in principle
be cast in this form is not a terribly interesting observation, since there are
numerous foundations for universal computation known already. That so many
cognitive processes known to be useful for narrow AI and proto-AGI systems
can be conveniently cast in this form, along with so many creative processes
occurring in nature, is more interesting and compelling.
A Partial Formalization. To elaborate the PGMC idea a bit further, let us con-
sider the case of a cognitive system concerned with pursuing some complex goal
in some complex environment. While goal-oriented activity is not necessarily the
crux of all intelligent behavior2, it is a significant ingredient, and also a conve-
nient concrete focus for analysis. So let us explore the ways in which a cognitive
system can maximize the degree of fulfillment of its goal functions.

Without being highly specific about the cognitive architecture of this system,
let us assume that it stores knowledge in a manner founded on set of entities
called Atoms, that two Atoms can often be combined with each other to form
new Atoms, and that it maintains a memory of Atoms which it leverages to take
both internal and external actions. Those who wish a more precise formalization
may refer to the simple cognitive system model presented in [4]; the discussion
here makes sense in the context of that formal agents model. The addition to
that formal agents model we need here is simply that the internal operation of
the formal agent contains a self-generating system as defined in [2], consisting
of entities called Atoms that can combine with each other to form new Atoms.

To figure out how to achieve its goals, the cognitive system in question may
look into its memory, which may contain historical information regarding which
Atoms, when executed, have led to satisfaction of which goal functions to which
degrees. Now, this historical information will not usually be directly relevant,
because each new situation the system confronts will be a little different. But
it may be indirectly relevant. Which brings us, I hypothesize, very close to the
core of general intelligence.

Suppose one has a base probability distribution P over Atoms. Then, given a
goal function G and a cognitive system S, one can define SG as the set of Atoms
in S’s memory that take the form

[x ∗ y] → G < c >

Say that x and y are “constituents” of the Atom [x ∗ y] → G < c >.

2 See [10] for a deep discussion of how general intelligence transcends goal-pursuit.
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One can then define the following Basic Learning Process:

1. Initialize the “working memory” pool W (a set of Atoms). Possibilities include
– Initialize W = SG, for goal-directed combination formation
– Initialize W to the system’s long-term memory, for more general and

exploratory combination formation
2. Repeatedly (N times, not forever) create stochastically chosen forward and

backward combinations, via the following steps
– For a forward step, choose a combination a ∗ b, in which at least one of a

or b is a constituent of a member of W , with probability determined by
P

– For a backward step, choose a combination a∗b whose result is a member
of W , with probability proportional to P

– Place the result of this combination in W , and place the expression
describing the combination’s result in the system’s long-term memory

– Tabulate the degree to which G is achieved at the current time, and
insert into the long-term memory an Atom of the form C → G < c >
corresponding to the current combination C

Basically, this process is doing forward and backward chaining, starting from
existing knowledge about the goal G (for goal-oriented learning) or from the sys-
tem’s knowledge as a whole (for more general exploratory learning), and guided
in its choices by the distribution P.

This Basic Learning Process summarizes a basic and simplistic form of “prob-
abilistic growth of combinations”, and also stores some data along the way, which
will be useful for mining. The initial growth of combinations is governed by a
prior distribution, so unless this distribution is highly appropriate for the goals
in question, the process will take a very long time. The step needed to get from
this to PGMC is to mine the data stored, so as to figure out how to grow more
appropriate combinations with a higher probability.

To take this next step, suppose one uses the above process to calculate the
probability of G being fulfilled to a given degree, within a certain time period
following execution of an executable Atom E. This may be used to define another
probability distribution PG(E) over the space of Atoms E. This distribution may
be used to guide the above learning process.

We may then define our universal learning meta-algorithm, PGMC (Proba-
bilistic Growth and Mining of Combinations) as the following loop:

1. begin with a goal G, and an initial distribution P = P0

2. apply the Basic Learning Process using P, leading to an estimate of PG

3. set P = PG and return to the previous step

In essence, this is a form of “reinforcement learning” driven by generic for-
ward and backward chaining processes. One reason this is interesting is that the
generic processes of backward and forward chaining can be used to conveniently
formulate a wide variety of different learning processes; thus this framework can
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unify a variety of different, useful learning algorithms within a common meta-
algorithm.

This learning process will be very slow (i.e. require many repetitions or very
large N) if P is not chosen intelligently. Here we come to a very deep and
interesting aspect of learning. If the Atom language chosen is rich enough, then
P may itself be represented at an Atom xP , i.e. a nested Atom expression. This
may be achieved e.g. if there are basic Atoms that make random choices. One
then has a framework capable of supporting meta-learning, meaning the process
of learning xP so that PG causes the system to choose actions with high goal-
achievement value.

In probabilistic programming vernacular, Step 3 in the Basic Learning
Process indicated above can be interpreted as a kind of fitness-proportionate sam-
pling over the Atom space, conditioned on the distribution P. This is related to,
though different from, the use of optimization queries in probabilistic program-
ming, as outlined in [1] Fitness-proportionate sampling may also be performed
based on weighted combinations of system goals, rather than a single goal. Why
are fitness-proportionate samples appropriate here? Because a full distribution
over Atom space, conditioned on PG, need not be computed, since what the
system really cares about is finding something good to do according to its goals,
not accurately estimating the degree of badness of each potential bad action it
could take. So sampling from the space in a way that takes more samples from
the “good” parts is the right thing to do.

If PG has the property of favoring simpler Atoms (e.g. Atoms corresponding
to smaller Atom expressions), then what we have here is conceptually a variant
of Solomonoff induction [8,9]. It seems likely to us that in this case, PGMC
could be proved to be an instance of Solomonoff induction based on a certain
special computational model. And it seems likely that, in most cases, if the
initial P embodies Occam’s Razor, then ensuing PG will also do so. But PGMC
is not just another reformulation of Occam’s Razor; the key point is that this
computational model, based on forward and backward chaining, is especially
cognitively natural, comprising a mathematical abstraction of a host of well-
studied and demonstrably-useful cognitive processes.

The potential flexibility and power of this sort of framework is considerable.
For instance, one possibility is to stock SG with Atoms embodying logical infer-
ence rules. In this case, application of the logical inference rules will be part of
the forward and backward chaining process. Supposing SG also contains Atoms
that are specifically tied to particular situations in which G has been achieved
in the past. Then combining the Atoms embodying logical inference rules, with
Atoms regarding specific past situations involving G, will lead to inferential
extrapolation from past situations to present and future situations. The quality
of this extrapolation will depend on the quality of the inference rules – and on
the quality of the choices made regarding which inference rules to apply, in what
order, in each situation. These choices regarding inference control may be made
by yet more Atoms embodying “inference control rules” – or, more interestingly,
they may be made by the probabilistic sampling process outlined above. In this
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case the probabilistic sampling process is mining historical patterns regarding
what inference steps have previously been helpful in what situations. And the
inference rules themselves may be useful in performing extrapolations pertinent
to these historical patterns and their present applications.

In sum, what we have described here is a “universal learning meta-algorithm”
as follows:

1. Combine Atoms in memory via forward and backward chaining
2. Choose which combinations to form, via optimization queries conditioned on a

distribution formed by extrapolating from which combinations have achieved
relevant goals in the past

3. The “extrapolation” in Step 2 is carried out via forward and backward chain-
ing, guided by optimization queries conditioned on a goal-driven probability
distribution

4. The goal-driven probability distribution in Step 3, is formed or improved via
Steps 2 and 3 (“meta-learning”)

Or, to rephrase once more:

1. Combine stuff in memory, via forward combination (put stuff together and
see what comes out) and backward combination (given a target, find stuff
that can be combined to yield that target)

2. Since there are too many possible combinations to try them all, choose which
ones to form based on estimating which ones have the highest probability of
leading to goal achievement. This estimation is based on memory of which
combinations have been tried in the past and how much success they’ve had.

3. Since past combinations and situations were a bit different from the cur-
rent reality, figuring out how to use them to estimate probabilities regarding
current situation requires some “reasoning.” This reasoning can be done by
the same old backward and forward combination process that we’re now in
the middle of describing. In other words, the “reasoning rules” or “reasoning
processes” involved should be embodied in atomic entities that get combined
with other entities in the course of the forward and backward combination
processes.

4. To perform all this probability estimation we need some heuristics to guide
which combinations have a higher “a priori” probability. This prior distri-
bution had better favor simple combinations, for instance. And this prior
distribution can be adapted over time, i.e. “meta-learning.”

As emphasized above, this is intended not to summarize the full cognitive activ-
ity of a mind, but rather the focused, goal-directed portion of a mind’s activity.
“Background cognitive activity” is also assumed to occur. This background activ-
ity may often be modelable via ongoing forward and backward chaining driven
by non-goal-oriented stochastic processes, but we will not enlarge on this point
here.
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3 Explicitly Implementing PGMC in OpenCog

The PGMC formalism and concept may be used as a general mode of describing
and thinking about cognitive processes. It may also, however, be used as a means
of explicitly structuring cognitive processes, i.e. of guiding and structuring prac-
tical AGI implementation. This is a direction we are now exploring within the
OpenCog project. For a review of the OpenCog concepts utilized here, please
see [5,6]3. But we emphasize that the applicability of the PGMC idea is not
restricted to OpenCog; the latter is used here as an illustrative example.
The Simplest OpenCog Implementation of PGMC. First we explore a rela-
tively simple, not necessarily practical method of instantiating PGMC within
OpenCog4

Within OpenCog, knowledge is represented in terms of:

– Atoms for specific sensory data. As illustrative examples: RGB values associ-
ated with particular pixels coming from a particular camera at a particular
point in time; and characters coming from a particular terminal at a partic-
ular point in time.

– Atoms carrying out internal or external actions (SchemaNodes)
– Atoms for combining Atoms to form new Atoms.5

– As well as ListLinks, SetLinks for grouping together Atoms into sets, which
may then be acted on by SchemaNodes – this is a mechanism enabling Sche-
maNodes to take whole “nested Atom expressions” as inputs

The standard assemblage of OpenCog Atoms is highly expressive and arguably
sufficient to form the representational framework for a general intelligence inter-
acting in the everyday human world.

OpenCog has a Unified Rule Engine (URE) which carries out generic forward
and backward chaining processes like the ones abstractly described above6. The
URE contains a FocusSet which can be used like the “working memory” W in
the above-described process. In the URE, the role of the operator ∗ is played by
the BindLink construct, which when it sees a∗b seeks to bind the VariableNodes
contained in a to the Atom b. This is a somewhat specialized formalism, yet fits
within the general mathematical framework described above, and has both gen-
eral computational power and flexible pragmatic usability. For example, this app-
roach is used to apply probabilistic logic rules (formulated as Atom expressions
themselves, via the PLN, Probabilistic Logic Networks, framework) to Atoms
representing concrete data or data patterns.
3 Or see http://wiki.opencog.org/w/CogPrime Overview for an informal online

overview.
4 See http://wiki.opencog.org/wikihome/index.php/OpenCoggy Probabilistic

Programming for more details.
5 E.g. the easiest way to do this in terms of OpenCog’s current assemblage of Atom

types, is simply to consider polymorphic, higher-order-functional SchemaNodes –
i.e. SchemaNodes whose inputs may be SchemaNodes and whose outputs may be
SchemaNodes.

6 https://github.com/opencog/atomspace/tree/master/opencog/rule-engine.

http://wiki.opencog.org/w/CogPrime_Overview
http://wiki.opencog.org/wikihome/index.php/OpenCoggy_Probabilistic_Programming
http://wiki.opencog.org/wikihome/index.php/OpenCoggy_Probabilistic_Programming
https://github.com/opencog/atomspace/tree/master/opencog/rule-engine
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A first pass at a combination-choice distribution P would be a distribution
over patterns (representable as Atoms) obtained by applying OpenCog’s Pat-
tern Miner to the Atomspace. The Pattern Miner finds combinations of Atoms
that occur frequently, or surprisingly often (in the sense of information theory),
across the Atomspace. A product of frequency or surprisingness, with a mea-
sure of combination size, gives an apparently quite reasonable P (though further
investigation in this direction will certainly be valuable).

Using the Pattern Miner to infer P is essentially a way of doing frequency-
based reinforcement learning for goal-driven selection of combinations to use in
forward or backward chaining. One is choosing combinations that match template
patterns that have frequently been useful in the past. Of course, this is nowhere
near maximally intelligent, in itself, initially. But it’s a basis to start from. Pattern
mining can be used to choose specific actions, but it can also be used to choose
more abstract rules for generating specific actions – which can lead indirectly to
higher levels of intelligence. Using this counting-based approach, one can choose,
for example, inference rules that seem to work frequently. Using these inference
rules in future, based on their previously calculated utility, one will then be deploy-
ing more intelligent reasoning than is directly implied by pattern mining.

Using the URE and the Pattern Miner, and an expressive set of Atoms
including VariableNodes and associated quantifiers (i.e. at least including basic
predicate and/or term logic constructs), one could construct a fairly minimal
OpenCog based cognitive architecture, which learns everything from experience
based on reinforcement, aided by spontaneous background self-organization. In
an approach like this, meta-learning would be relied upon to ramp up intel-
ligence from an initially low level, where “counting” (probability estimation;
information-theoretic pattern mining) is used as the core learning algorithm,
relied upon to discover Atom-combinations that comprise more intelligent learn-
ing algorithms. The processes of chaining and history-based chain-selection are
the core ones, and are carried out with increasing intelligence as the system’s
experience allows it to improve the tools (the chains of combinations) it uses
to build the probability distributions used in chain-selection. The Atomspace
would be getting utilized purely as a single, large, self-reprogramming functional
program.

Furthermore, it is interesting and important to observe that OpenCog’s PLN
probabilistic inference engine can be used to improve the various steps of this
“simplistic OpenCog PGMC” i.e. pattern mining and credit assignment. Using
PLN to augment greedy pattern mining with heuristic probabilistic inference
based pattern mining, and to augment simplistic credit assignment with heuristic
probabilistic causal inference, makes the OpenCog-based PGMC process much
less simplistic. But adaptive pattern mining based inference control, as described
in this section, is necessary to get PLN to perform scalably in these roles. So we
have a certain circularity, but it’s a virtuous cycle rather than a vicious one – the
smarter PLN gets, the better it can do pattern mining and credit assignment;
and the better pattern mining and credit assignment are done, the smarter PLN
will be.
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Framing OpenCog Cognitive Processes in Terms of PGMC. While the previously
published formulations of OpenCog’s cognitive algorithms do not use the PGMC
formalism or terminology, in fact every significant cognitive process in OpenCog
can be cast fairly straightforwardly in PGMC terms. Here we will illustrate this
point by briefly running through a few examples7,

– MOSES [7], OpenCog’s evolutionary learning algorithm, could be reimple-
mented in such a way that:

• Candidate “programs” being evolved by MOSES are wrapped in Ground-
edSchemaNodes, and the fitness function is also wrapped in a GSN

• Fitness evaluation of candidate GSNs in an evolving population, is
recorded in the Atomspace as the degree to which the GSN implies the
GSN goal (fitness function)

• A few “program generation” rules are implemented, each of which creates
new GSNs representing new programs to be added to the “evolving pop-
ulation.” E.g. a crossover rule could be implemented, as could a “local
search” rule.

– Clustering could be implemented via an agglomerative algorithm, so that
when the “clustering rule” Atom acts on a pair of Atoms, it decides whether
to fuse them into a proto-cluster or not8

– Concept blending could be implemented in a similar way to clustering, lever-
aging the existing cog-blend command9

4 Conclusion and Next Steps

We have outlined PGMC, a new framing of the process of general intelligence.
Conceptually, PGMC presents general intelligence as a synthesis of probabilistic
pattern mining with generic “growth processes” as one finds at the core numerous
existing AI algorithms, and throughout the physical and natural world. PGMC
can also be viewed as a formulation of the general concept of “universal AGI
learning using brute force”; but it differs considerably from prior formulations in
that it connects closely conceptually with a variety of practically useful learning
algorithms, and with dynamical processes occurring in nature.

Preliminarily, PGMC appears useful as a way of formulating diverse concrete
learning algorithms within a common framework. Some examples of this have
been given within the OpenCog framework (which would however require various
small tweaks to the current OpenCog framework to function as desired). “The
OpenCog example is generally instructive regarding the pragmatics of applying
PGMC to real-world AGI systems. Different components or aspects of a com-
plex AGI systems may end up manifesting PGMC in their own different ways.

7 Discussed in more depth at http://wiki.opencog.org/wikihome/index.php/Open
Coggy Probabilistic Programming).

8 See http://wiki.opencog.org/wikihome/index.php/Agglomerative Clustering in
Atomspace using the URE on the OpenCog wiki site for specifics.

9 See https://github.com/opencog/opencog/tree/master/opencog/python/blending.

http://wiki.opencog.org/wikihome/index.php/OpenCoggy_Probabilistic_Programming
http://wiki.opencog.org/wikihome/index.php/OpenCoggy_Probabilistic_Programming
http://wiki.opencog.org/wikihome/index.php/Agglomerative_Clustering_in_Atomspace_using_the_URE
http://wiki.opencog.org/wikihome/index.php/Agglomerative_Clustering_in_Atomspace_using_the_URE
https://github.com/opencog/opencog/tree/master/opencog/python/blending
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But PGMC may be a valuable way to model components with a view toward
simplifying and comprehending inter-component interactions.

Natural next steps in this research direction would be (unordered): Create a
full mathematical formalization of the PGMC framework, along the lines out-
lined here; mathematically explore the relationship between PGMC, probabilistic
programming, type theory and other areas of AI mathematics; add SampleLink
and any other needed tools to OpenCog, to make PGMC elegantly and concisely
implementable in OpenCog; implement a crude, non-scalable version of PGMC-
based reinforcement learning in OpenCog, and test it on very simple problems;
implement PGMC-based PLN inference control and credit assignment and test
as appropriate; formalize the mapping of further OpenCog cognitive algorithms
(e.g. MOSES, clustering) into the PGMC framework; explore the mapping of
other, non-OpenCog AI approaches into the PGMC framework.
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Abstract. Conventional reinforcement learning algorithms such as
Q-learning are not good at learning complicated procedures or programs
because they are not designed to do that. AIXI, which is a general
framework for reinforcement learning, can learn programs as the envi-
ronment model, but it is not computable.AIXI has a computable and
computationally tractable approximation, MC-AIXI(FAC-CTW), but
it models the environment not as programs but as a trie, and still has
not resolved the trade-off between exploration and exploitation within a
realistic amount of computation.

This paper presents our research idea for realizing an efficient rein-
forcement learning algorithm that retains the property of modeling the
environment as programs. It also models the policy as programs and has
the ability to imitate other agents in the environment.

The design policy of the algorithm has two points: (1) the ability to
program is indispensable for human-level intelligence, and (2) a real-
istic solution to the exploration/exploitation trade-off is teaching via
imitation.

Keywords: AIXI · Inductive programming · Imitation

1 Introduction

Artificial General Intelligence (AGI) is, unlike the conventional Narrow AI that
is implemented by experts to behave intelligently for specific purposes, machine
intelligence that can deal with various unknown problems and unexpected situ-
ations in the same way as human beings.

Some researchers of conventional reinforcement learning (RL) algorithms
used to insist this kind of intelligence as an advantage of RL. However, con-
ventional RL algorithms have not actually been able to deal with unexpected
situations in the same way as humans, because they require generalizations to
be designed for each problem specifically in order to learn efficiently enough for
practical purposes. In general, dealing with various problems as intelligently as
humans requires the ability to program (often repetitive or recursive) procedures
for problem solving. Nevertheless, RL research from the viewpoint of “learning
to obtain procedures or programs” had not been focused on for decades.
c© Springer International Publishing Switzerland 2016
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At the beginning of this century, Marcus Hutter (e.g. [2]) devised AIXI which
is a theoretical, general framework for RL. AIXI involves conventional RL algo-
rithms, and at the same time learns the environment model as Turing machines
or programs. Its drawback is that AIXI is not computable, and its approxi-
mation AIXItl requires prohibitively enormous computation. MC-AIXI(FAC-
CTW) [10], which is another AIXI approximation requiring less computation,
models the environment not as Turing machines but as Context Tree Weighting
(CTW) [11] that is essentially a tabular representation using a PATRICIA tree
which is a kind of trie. In addition, MC-AIXI(FAC-CTW) has not resolved the
trade-off between exploration and exploitation within practical computation.

In the real environment, it is not realistic to expect single agents to thor-
oughly explore, because they must avoid danger that can cause their death.
Under totally unknown situations, real agents must avoid danger, sometimes
based on prior knowledge (or “instinct”), and sometimes by behaving in the
same way as other surviving agents. We should also note that search methods
by population such as genetic algorithms, which let each individual exchange
information, are known to be effective for finding globally optimal solutions.

This paper presents our idea of an RL algorithm that (1) models the policy,
as well as the environment, as programs, and (2) can imitate other agents (and
maybe other teachers), or learn behavior from the environment model in order
to explore by population.

The rest of this paper is organized in the following way. Section 2 introduces
AIXI and its existing approximations, along with our speculations. Section 3
describes the RL algorithm we are going to implement in details. Section 4 dis-
cusses how to evaluate the implemented system. Section 5 concludes this paper.

2 AIXI and its Approximations

This section explains AIXI and its existing approximations, along with our
speculations.

2.1 AIXI

AIXI [2] is a general framework for RL and a theoretical tool for discussing the
limitation of intelligent agents. It is designed to be as general as possible, and it
can be considered to cover almost all abilities of artificial (and possibly natural,
i.e. human) intelligence.

AIXI is based on the following ideas:

– modeling the environment as Turing machines;
– retaining all of an infinite number of possible environment candidates along

with their plausibilities;
– respecting the idea of Occam’s razor: simpler environments, or environments

that can be described using shorter programs, should be more plausible.
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More concretely, an AIXI agent decides the action ȧk at time k from the
history hk at time k, or the sequence of the actual actions, rewards, and obser-
vations ȧṙȯ1:k−1 until time k − 1, by using the following equation:

ȧk = arg max
ak∈A

∑

rkok∈R × O
... max

amk
∈A

∑

rmk
omk

∈R × O
(rk + ... + rmk) · ξ(ȧṙȯ1:k−1arok:mk

)

(1)

where A denotes the set of actions, R denotes the numerical set of rewards,
and O denotes the set of observations. mk(≥ k) represents the extended life-
time: at time k only the sum of rewards rk + ... + rmk

until mk is consid-
ered, and rewards farther in the future are ignored. a · b represents usual scalar
multiplication of a and b, and juxtaposition represents tuples and sequences.
arot:u = atrtotat+1rt+1ot+1 ... auruou denotes the time sequence of actions,
rewards, and observations from time t until u. ξ(ȧṙȯ1:k−1arok:mk

) is the prob-
ability of observing the sequence of rewards and observations rok:mk

, given the
history hk = ȧṙȯ1:k−1 at time k and assuming to take actions ak ... amk

from
time k to mk.

ξ(aro1:k−1arok:mk
) = ξ(aro1:mk

)/ξ(aro1:k−1) (2)

holds, where the denominator of the rhs at time k is constant and thus can be
ignored. For ξ, AIXI uses the universal prior

ξ(aro1:t) =
∑

q∈{q′|q′(a1:t)= ro1:t}
2−l(q) (3)

where q is the Turing machine computing the behavior of the environment, and
l(q) denotes the description length of q when represented in the binary form. In
other words, ξ(aro1:t) is the probability that q returns ro1:t for the input of a1:t

when the Turing machine q is selected as a random sequence of bits.
Because (3) requires infinite computation, AIXI is not exactly computable.

It is not an algorithm, but rather a theoretical framework for discussing the ideal
intelligence.

AIXI is proved to be self-optimizing if there exist self-optimizing policies,
i.e., if there exist policies that make the expected average reward converge to
the optimal one for m → ∞ for all environments, AIXI agents’ average reward
also converges to it in the same limit. [1] On the other hand, [8] shows that
AIXI (and other greedy algorithms using fixed priors) do not converge to the
optimal policy if the environment is programmed to suddenly change the reward
for some action as the history grows. Although Hutter’s self-optimizing theorem
suggests that there is no deterministic self-optimizing policy in such a case, [8]
argues that such environment is plausible in the real world, and suggests the
need for non-greedy exploration strategies.
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2.2 AIXI Approximations

AIXItl is a computable AIXI approximation that picks up the best program
within length l and computable within time t. Its main focus is on being com-
putable, and it still requires unrealistic computational complexity.

MC-AIXI(FAC-CTW)[10] is another, more efficient approximation of
AIXI. It selects actions using the UCT algorithm [6] which is a kind of Monte-
Carlo Tree Search, and uses a generalization of Context Tree Weighting (CTW)
[11] for the environment model.

Veness et al. [10] applied MC-AIXI(FAC-CTW) to several toy problems
and report better results than other related algorithms. They also applied it to
partially observable Pacman (a.k.a. Pocman) which is much more challenging,
and found some facts: MC-AIXI(FAC-CTW) reportedly learns to avoid walls,
get food, and run away from ghosts; on the other hand, it does not learn to
aggressively chase down ghosts after eating a power pill.

Veness et al. [10] point out that solving the exploration/exploitation trade-off
is computationally intractable for MC-AIXI(FAC-CTW). However, learning to
capture a ghost only from experience without any teaching would be difficult for
any learning algorithm, because the ghosts flee and thus it should take time until
the agent happens to capture one by chance for the first time. Without seeing
other players play, being explained the rule of Pacman, or guessing from the pale-
ness of ghosts, even human players would find difficulty in finding effectiveness
of this behavior for themselves.

That being said, if the agent’s policy is stochastically implemented as a dis-
tribution over programs, and if the universal prior is used to assign higher prob-
ability to short programs, the agent may try the compound action of “simply
chasing pale ghosts” as exploration.

Another limitation of MC-AIXI(FAC-CTW) which is not mentioned by
[10] is that it cannot generalize over sequences of observations because it uses
CTW instead of learning Turing machines, unlike AIXI. CTW is essentially a
finite map from finite sequences to frequencies implemented compactly using a
PATRICIA tree, which means that it uses a tabular representation for modeling
the environment.

Again, MC-AIXI(FAC-CTW) does not learn to chase down ghosts aggres-
sively after eating the power pill. If it generalized over sequences of observations,
it would flee from ghosts, even after eating the pill.

3 Our Idea: Reinforcement Learning Algorithm that
Learns to Program

This section describes the RL algorithm we plan to implement in details. The
algorithm is based on the following reflections on AIXI and MC-AIXI(FAC-
CTW) mentioned in Sect. 2:

– since generalization is necessary in order to solve real world problems, the
environment should be modeled as a mixture of programs in a similar (but
efficient) way as AIXI;
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– the agents should be able to be taught (rules of games, etc.); one way is by
words, and another way is by letting them imitate what others do; we consider
the latter in this paper because the former looks difficult;

– the exploration/exploitation trade-off could be dealt with by explicitly
enabling exploratory behavior; further, designing the policy stochastically as
a distribution over multiple programs may enable exploration by compound
actions such as chasing pale ghosts in Pacman.

3.1 Environment Model

Since generalization over observations is necessary, we model the environment as
a mixture of programs, like AIXI and unlike MC-AIXI(FAC-CTW). However,
AIXI is not computable and AIXItl requires a large amount of computation.

Our idea is to let MagicHaskeller [3,4]1 enumerate programs within some
fixed length and use them as the candidates for the environment. Also, in order
to preserve the possibility of generating longer programs, the component function
library L that is used to generate programs should be learned incrementally [5].

MagicHaskeller is an inductive functional programming system based on
generate-and-test. Inductive functional programming is automated functional
programming from ambiguous specifications such as input-output examples and
properties that the resulting program should satisfy.

In fact MagicHaskeller’s program generator is similar to the environment
model of AIXI in that MagicHaskeller generates stream of programs exhaus-
tively from the shortest increasing the length, and tests them against the given
examples. On the other hand, they differ in the following ways:

– MagicHaskeller generates Haskell programs, or typed λ expressions,
instead of Turing machines, and

– it keeps those programs in its memorization table, and it saves the size of the
table by not generating expressions that are obviously semantically equivalent
to already-generated expressions and by shelving generation of expressions
that may be equivalent until its difference from other expressions is proved.

Learning More and More Complicated Environment. Now we discuss
how to update the component library L.

If we apply the idea of AIXI straightforwardly, the true environment is one
big (but modularized) program that is consistent with all of the input/output
history. An AIXI agent holds (infinitely) many candidate programs with differ-
ent plausibilities as theories explaining the true environment. This means that
although there are many programs, incremental learning by adding expressions
often appearing there (considering that they are useful) to the component library
L may make only a little sense, if ever, because only one program out of them
is supposed to explain the truth.

1 http://nautilus.cs.miyazaki-u.ac.jp/∼skata/MagicHaskeller.html.

http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html
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However, we need not stick to the AIXI way strictly, but we may relax the
above consistency rule. Actually, since there are many programs, there can be
Program A that explains the state transition in situation x but cannot explain
that in situation y, and Program B that explains that in y but cannot explain
that in x at the same time. We think that the plausibility of each program
depends on the situation. By admitting this and permitting partially satisfying
programs, we can think of incremental learning that adds useful functions in some
situations, which can result in a program which is plausible in many situations
by conditioning on them.

L can be updated by adding expressions frequently appearing in plausible
environment programs. More exactly, L should be chosen to make the total
length of environment programs weighted with the plausibility as short as
possible.

3.2 Action Selection

In (1) that defines AIXI, the other part that needs to be approximated for com-
plexity reasons is the expectimax operations that select the actions at each time
step. Also, as written at the beginning of Sect. 3, we want to enable exploratory
compound actions by implementing the policy as a distribution over multiple
programs. Using exploratory compound actions can have an advantage over step-
wise exploration strategies such as ε-greedy which can mess up everything by
inconsistent exploratory actions.

A simple way to implement it as a set of programs is to use arg maxp∈P
instead of the expectimax operation in (1) by using some set of programs P:

pk = arg max
p∈P

... (4)

ȧk = pk(ȧṙȯ1:k−1) (5)

However, this is not very desirable, because

– this requires computation of arg maxp at every time step, and
– arg maxp is too arbitrary, because p takes the history as the argument, and

nothing but P restricts the return values for not experienced histories.

Thus, we will use a common policy p not depending on the time step. p should
be updated from time to time, which means we assume episodic (or factorizable)
environment. More concretely, p ∈ P such that for all history h ∈ (A × R × O)∗

V pξ(h) = max
p′∈P

V p′ξ(h) (6)

holds should asymptotically be found, where V pξ(h) denotes the expected sum
of the total reward after history h from time k to time mk assuming that the
agent will follow the policy p under the environment ξ, and k is the next time
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after history h finishes. We conjecture such V exists for any set of computable
functions P.

One way to find such V asymptotically is to keep the L2 norm between the
best estimation of V and the current estimation of V

∑

h

(nh(max
p′

V̂ p′
(h) − V̂ p(h))2)

for each p, and choose the minimal p either deterministically or stochastically
allowing exploration by using, e.g. the roulette selection, where V̂ denotes the
estimation of V , and nh denotes the number of visitations to h.

When learning a value function asymptotically, it is also important what
values should be assigned to those arguments that have not been used. In the
field of RL, simply assigning big values for those unvisited arguments in order
to encourage exploration is known to be effective (e.g. Optimistic Initial Values
[9] and UCT [6]). However, this will not work for infinite or very big finite P,
which has (infinitely) many actions to be tried.

Even when selecting p, programs with less Kolmogorov complexity should
be prioritized more based on the idea of Occam’s razor in the same way as the
environment case. Then, the universal probability (or something similar) should
be used as the prior. (In practice, the selection may not necessarily be stochastic,
and can be something like “When the number of program selections already done
exceeds the reciprocal amount of the sum of the priors of programs that have
not been tried, try the shortest one among them.”) A good news compared to
the environment case is less computational complexity, because the algorithm
need not compute the expectation but only choose one program.

Now the question is what should this P be like. Our idea is to let
MagicHaskeller enumerate P, too. This means P is the enumeration of all
the programs within some given length, using functions in the component library
L′. AIXI requires to find the maximum of |A|mk cases, but by using arg maxp∈P
our algorithm will need to find the maximum of |P| cases.

Imitation. How should L′ be learned? Although L could be learned to find the
minimal description of the environment, this way cannot be applied to the case
of learning L′ that is the library for defining policies, because policy learning is
unsupervised.

Our solution to this question is to let L′ = L + C where C is a constant
set of primitive actions. This means, “construct your behavior using what you
see, i.e., by imitation”, because L should be filled with functions for describing
the behavior of the environment in short. In this way, we think, the question of
how to implement imitation can be solved at the same time. On the other hand,
we should note that with this approach it is difficult for an agent to imitate
instantly what it has just seen, because the agent has to wait until it is added
to the component library L, and we think it is difficult for this to happen within
the same episode.
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One question is whether we should consider the amount of reward when
registering functions to L, or whether we should give functions used in reward-
earning policies more chance to be registered to L. We think that this need not
to be done, because the reward-earning policies and resulting reward-earning
states will be tried many times anyway, and if otherwise, it is not clear whether
the reward is really due to the policy or not.

4 Evaluation and Applications

Most of our ideas are inspired from the experience of playing Pocman in [10].
In order to make sure that newly introduced functionalities are doing what they
are supposed to do, evaluation by Pocman is necessary.

Also, in order to make sure that we are not going backward, several other
easier problems shown in [10] should also be tried.

Pocman is a partially observable version of Pacman, where cells far from
Pacman are invisible. Also, observations in Pocman are made relative to the
position of Pacman. Although partially observable problems are more difficult
than fully observable ones in general, those changes may have made the game
easier, by hiding unimportant information. Because real people play the original
Pacman, it would also be interesting to evaluate the agent under the original
one.

A more challenging task may be multiplayer games such as Doom, where
the effect of introducing imitation can be evaluated. Our algorithm will
use MagicHaskeller for the policy and the environment, and because
MagicHaskeller generates functional programs by combining functions in the
component library, by including complicated functions implementing Narrow AI
in the component library the functionality will be made available. This way, our
algorithm can focus on decision making, while using existing technology for e.g.
image recognition.

Although Deep Q Network [7] that is a monolithic algorithm dealing with
decision making and vision processing at the same time holds the spotlight
in recent years, human brains make decisions and process perceptions sepa-
rately. This modular approach may be better for realizing higher-level artificial
intelligence.

5 Conclusions

This paper presented our research idea for an RL algorithm that models both
the environment and the policy as a distribution over Haskell programs. The
algorithm will also implement imitation, and hopefully, can deal with the explo-
ration/exploitation trade-off in a better way than conventional approaches.

Haskell is an artificial, general-purpose programming language, and thus it
is unlikely that human brains are actually planning their behavior in Haskell.
However, λ calculus, which is the model of computation on which the Haskell
language is built, can be a good option for modeling consciousness. We think
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that consciousness is the functionality to make the thinking process object of
thinking and communication. If this is correct, λ calculus, which is designed
to make functions object of computation, can be the best tool for explaining
consciousness and discussing it.

Acknowledgements. The author thanks anonymous reviewers who helped improving
the paper, especially who mentioned [8].
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