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Abstract Trefftz methods are finite element-type schemes whose test and trial
functions are (locally) solutions of the targeted differential equation. They are
particularly popular for time-harmonic wave problems, as their trial spaces contain
oscillating basis functions and may achieve better approximation properties than
classical piecewise-polynomial spaces.

We review the construction and properties of several Trefftz variational formula-
tions developed for the Helmholtz equation, including least squares, discontinuous
Galerkin, ultra weak variational formulation, variational theory of complex rays
and wave based methods. The most common discrete Trefftz spaces used for
this equation employ generalised harmonic polynomials (circular and spherical
waves), plane and evanescent waves, fundamental solutions and multipoles as
basis functions; we describe theoretical and computational aspects of these spaces,
focusing in particular on their approximation properties.

One of the most promising, but not yet well developed, features of Trefftz
methods is the use of adaptivity in the choice of the propagation directions for
the basis functions. The main difficulties encountered in the implementation are
the assembly and the ill-conditioning of linear systems, we briefly survey some
strategies that have been proposed to cope with these problems.
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1 Introduction

Given a linear PDE, a Trefftz method is a volume-oriented discretisation scheme, for
which all trial and test functions, when restricted to any element of a given mesh,
are solutions of the PDE under consideration. The name comes from the work
[112] of Trefftz, dating back to 1926, where this idea was applied to the Laplace
equation. Since then, several versions of Trefftz methods have been proposed and
applied to a range of PDEs by different groups of mathematicians, engineers and
computational scientists, often unaware of each other. Typical PDEs addressed are
linear, with piecewise-constant coefficients and homogeneous, i.e. with vanishing
volume source term.

Trefftz methods are related to both finite element (FEM) and boundary element
methods (BEM). With the former they have in common that they provide a dis-
cretisation in the volume. With the latter they share some characteristics such as the
need of integration on lower-dimensional manifolds only. Compared to conventional
FEMs, Trefftz methods have attracted attention mainly for two reasons: (i) they may
need much fewer degrees of freedom than standard schemes to achieve the same
accuracy, and (ii) they incorporate some properties of the problem’s solution (such
as oscillatory character, wavelength, maximum principle, boundary layers) in the
trial spaces, and thus also in the discrete solution. In addition, compared to BEMs,
an advantage of Trefftz schemes is that they do not require the evaluation of singular
integrals.

Comparing with finite and boundary elements, in 1997 Zienkiewicz [121] stated:
“. . . it seems without doubt that in the future Trefftz type elements will frequently
be encountered in general finite element codes.. . . It is the author’s belief that the
simple Trefftz approach will in the future displace much of the boundary type
analysis with singular kernels.” While this prediction has not yet come true, in the
last years more and more work has been devoted to the formulation, the analysis and
the validation of these methods and substantial progress has been accomplished.

In this chapter we survey Trefftz finite element methods for the homogeneous
Helmholtz equation (��u � k2u D 0), which models acoustic wave propagation in
time-harmonic regime. For medium and high frequencies, i.e. for values of kL in a
range of 102 to 104, where k > 0 is the wavenumber, and L a characteristic length of
the region of interest, the numerical solution of the Helmholtz equation in 2D and
3D is particularly challenging. A main reason is that Helmholtz solutions oscillate
with a wavelength proportional to the inverse of k. Hence, piecewise polynomials do
not provide efficient approximation. Trefftz schemes are thus particularly relevant
as they can improve on the point where (polynomial) FEMs fail: the approximation
properties of the basis functions. Moreover, some Trefftz methods can remedy other
shortcomings that often haunt discretisations of time-harmonic problems, such as
the lack of coercivity and the presence of minimal resolution conditions to guarantee
unique solvability. Theorem 2 in this chapter is an example. Earlier overviews of
Trefftz schemes for the Helmholtz equation, together with numerous references,
can be found in [98], [85, Chap. 1] and [76, Chap. 3]. Surveys of Trefftz schemes
for other equations are in [67, 75, 99, 121].
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For most of the Trefftz spaces used, continuity across interfaces separating mesh
elements cannot be enforced strongly, as Trefftz functions are not as “flexible”
as piecewise polynomials. As a consequence, the standard Helmholtz variational
formulation posed in subspaces of the Sobolev space H1 is not applicable and
discretisations must be used that can accommodate discontinuous trial functions. A
wide array of different variational formulations has been proposed and in Sect. 2 we
attempt a classification and a comparison of the best known. We identify three main
classes of formulations: (i) least squares (LS, Sect. 2.1), where squares of suitable
norms of residuals are minimised; (ii) discontinuous Galerkin (DG, Sect. 2.2),
whose formulations arise from local integration by parts and which may or may
not use Lagrange multipliers on mesh interfaces; (iii) weighted residual (Sect. 2.3),
which are defined by testing residuals against suitable traces of test functions.
The methods discussed include: the Trefftz-discontinuous Galerkin (TDG), the
ultra weak variational formulation (UWVF), the discontinuous enrichment method
(DEM), the variational theory of complex rays (VTCR) and the wave based method
(WBM). Moreover, in the spirit of the symposium that led up to the present volume,
to “build bridges” with a wider portion of the literature and of the computational
PDE community, in Sect. 2.4 we describe some older Trefftz schemes defined on a
single element and in Sect. 2.5 we consider some methods that are not Trefftz but
use oscillating basis functions that are “approximately Trefftz”, such as the partition
of unity method (PUM). To easily compare them, we write all formulations for the
same Robin–Dirichlet model boundary value problem (see Sect. 1.1).

In Sect. 2 we completely gloss over the choice of basis functions and discrete
spaces employed, whose description is postponed to Sect. 3. This is because, apart
from few exceptions such as unbounded elements, any Trefftz discrete space can
be employed in any Trefftz variational formulation. We believe that separating the
discussion of the two main components in the definition of a Trefftz method, i.e.
variational formulations and discrete spaces, will make the presentation clearer. The
most common basis functions for Trefftz methods are plane waves (x 7! eikd�x for
a fixed unit vector d) and generalised harmonic polynomials (i.e. circular/spherical
waves, products of circular/spherical harmonics and Bessel functions), for which
quite a complete approximation theory exists, see Sects. 3.1 and 3.2. Other basis
functions include fundamental solutions, multipoles, evanescent waves and corner
waves. We note that, since the Helmholtz operator is the sum of a second- and a zero-
order term, no non-vanishing piecewise-polynomial Trefftz function is possible.

In this chapter we state a few theorems, none of them is entirely new. Lemma 1
exemplifies the technique of [88] to control the L2 norm of Trefftz functions with
mesh-dependent norms containing interface jumps. If a Trefftz method is well-posed
in a suitable skeleton norm, this allows to control the error in the volume; we do
this for the LS method in Theorem 1 and for the TDG method (well-posed by
Theorem 2) in Corollary 1. This can be combined with the approximation results
for circular/spherical and plane waves in Sects. 3.1 and 3.2. In brief: we provide the
tools to derive stability and orders of L2-convergence in the volume for all Trefftz
methods that are well-posed in suitable skeleton norms.
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Trefftz methods suffer from two main problems: ill-conditioning due to the poor
linear independence of the basis functions, and the need for numerical quadrature
for oscillating integrands. On the other hand, since the PDE is solved exactly in each
element, only low-dimensional integrals on the mesh skeleton need to be evaluated,
leading to massively reduced computational cost for the assembly of the linear
systems. Moreover, if plane wave bases are used, on any polygonal/polyhedral mesh
the integrals can be computed analytically in a cheap way. In Sect. 4 we briefly
review strategies developed to deal with the computation of matrix entries and to
cope with ill-conditioning.

Some Trefftz methods also provide an attractive framework for implementing
non-standard adaptive policies, like directional adaptivity following dominant wave
directions. This is made possible, because plane wave-type Trefftz functions
naturally encode a direction of propagation. More details are given in Sect. 4.2.

As mentioned, in this chapter we only discuss the Helmholtz equation, i.e.
acoustic problems, and constant material parameters. The discrete Trefftz spaces
used for the Helmholtz equation with variable coefficients are briefly addressed in
Sect. 3.4. Other time-harmonic wave problems that have been tackled with Trefftz
methods include electromagnetism (Maxwell equations) [18, 85], linearised Euler
equation and general hyperbolic systems [37], linear elasticity (Navier equation)
[76], (fourth order) Kirchhoff–Love plates [27, 71, 76, 102], Koiter’s linear shell
theory [102], poro-elasticity [27, Sect. 5.4], coupled vibro-acoustic problems [27].
A list of applications and references can be found in [25, Sect. 5.1] (with a focus
in vibrational mechanics) and in [76, 85]. A related application is tackled by the
method of particular solutions (MPS) of [15, 36], which uses Helmholtz solutions to
approximate Laplace eigenvalue problems; in this setting the wavenumber is part of
the unknowns. For recent work on space–time Trefftz methods for wave propagation
in time-domain see [69] and references therein.

Several comparisons of the numerical performances of different Trefftz schemes
for simple model problems have been published, e.g. [7] (PUM, DEM, generalised
FEM), [40] (LS, UWVF), [61] (PUM, UWVF), [39] (DG, UWVF, LS), [115]
(DEM, UWVF, PUM), [59] (LS, UWVF, VTCR), where we have included the PUM
even if strictly speaking it is not a Trefftz method. However, from these results it is
difficult to conclude that any formulation is clearly preferable from a computational
point of view. A general conclusion might be that, in order to achieve the best
accuracy and conditioning, the choice of the approximation space matters more than
that of the variational formulation. We reiterate that these two choices are mutually
independent: any Trefftz discrete space might be used in any Trefftz variational
formulation. We make some further concluding remarks in Sect. 5.

1.1 Model Boundary Value Problem

We rely on a simple model boundary value problem (BVP) for the Helmholtz
equation that will be used to describe and compare the different Trefftz methods. Let
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˝ � R
n, n D 2; 3, be a bounded, Lipschitz, connected domain, with @˝ D �D[�R,

where �D and �R are disjoint components of @˝; �R ¤ ; while �D might be empty.
Denote by n the outward-pointing unit normal vector field on @˝ . We consider the
homogeneous Robin–Dirichlet BVP

��u � k2u D 0 in ˝;

u D gD on �D;

@u

@n
C ik#u D gR on �R:

(1)

Here gD and gR are the boundary data, i is the imaginary unit, k 2 R (the
wavenumber) and # (the impedance parameter) are positive constants. We assume
that˝ , gD and gR are such that u 2 H3=2Cs.˝/, for some s > 0. In typical sound-soft
acoustic scattering problems, �D represents the boundary of the scatterer, and �R

stands for an artificial truncation of the unbounded region where waves propagate;
see e.g. [55, Sect. 2].

Simple generalisations of the BVP (1) that can be tackled by Trefftz methods
are:

• Neumann boundary conditions @u=@n D gN on �D;
• discontinuous and piecewise-constant wavenumber k;
• piecewise constant and discontinuous tensor coefficient A in the more general

Helmholtz equation �r � .Aru/ � k2u D 0, e.g. [60] and [18, Chap. I.5];
• spatially varying impedance 0 < # 2 L1.�R/;
• absorbing media k 2 C;
• inhomogeneous Helmholtz equation ��u � k2u D f , where the source term f

might be either localised [37, Sect. 5], [25, 57, 58], or not [1, Sect. 2.2];
• scattering in unbounded domains;
• scattering by periodic diffraction gratings in [20, 119];
• scattering by screens (i.e. manifolds with boundary, leading to non-Lipschitz

computational domains) in [120].

The presence of smoothly varying coefficients is more challenging for Trefftz
methods, as in general no Trefftz functions in analytical form are available; this
extension is briefly addressed in Sect. 3.4.

1.2 Notation

We introduce a finite element partition Th D fKg of˝ , not necessarily conforming.
We write nK for the outward-pointing unit normal vector on @K, and h for the
mesh width of Th, i.e. h WD maxK2Th hK , with hK WD diamK. We denote by
Fh WD S

K2Th
@K and F I

h WD Fh n @˝ the skeleton of the mesh and its inner part.
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We also introduce some standard DG notation. Given two elements K1;K2 2 Th,
a piecewise-smooth function v and vector field � on Th, we define on @K1 \ @K2

the averages: ffvgg WD 1
2
.vjK1 C vjK2 /; ff�gg WD 1

2
.�jK1 C �jK2 /;

the normal jumps: ŒŒv��N WD vjK1nK1 C vjK2nK2 ; ŒŒ���N WD �jK1 � nK1 C �jK2 � nK2 :

We denote by rh the element-wise application of the gradient r, and write @n D
n � rh on @˝ and @nK D nK � rh on @K for the normal derivatives.

For s > 0, define the broken Sobolev space Hs.Th/ and the Trefftz space T.Th/:

Hs.Th/ WD ˚
v 2 L2.˝/ W vjK 2 Hs.K/ 8K 2 Th

�
;

T.Th/ WD ˚
v 2 H1.Th/ W ��v � k2v D 0 in K and @nKv 2 L2.@K/ 8K 2 Th

�
:

The discrete Trefftz space Vp.Th/ is a finite-dimensional subspace of T.Th/ and
can be represented as Vp.Th/ D L

K2Th
VpK .K/, where VpK .K/ is a pK-dimensional

subspace of T.Th/ of functions supported in K. We use the terms h-convergence to
mean the convergence of a sequence of numerical solutions to u when the mesh Th
is refined, i.e. h ! 0, p-convergence to designate the convergence when the local
spaces are enriched, i.e. p WD minK2Th pK ! 1, and hp-convergence to mean the
convergence for a suitable combination of the two refinement strategies. We remark
that when non-polynomial spaces are used, as it is the case for Trefftz methods in
frequency domain, it is not obvious how to define the “degree” of a space, thus pK
denotes the local number of degrees of freedom. Finally, we denote by Re f�g, Im f�g
and � the real part, the imaginary part and the conjugate of a complex value.

We note that some of the methods in Sect. 2, such as the TDG, the UWVF and the
VTCR, involve sesquilinear forms (i.e. test functions are conjugated) while others,
such as the DEM and the WBM, involve bilinear forms (test functions are not
conjugated). Any method (if no unbounded elements are used) can be modified to
either form, even though sesquilinear forms are more amenable to stability and error
analysis; for each method we follow the conventions of the references we cite.

1.3 Estimation of the L2.˝/ Norm of (Piecewise) Trefftz
Functions

Given two uniformly positive functions � 2 L1.F I
h [ �D/ and � 2 L1.F I

h [ �R/,
we introduce the following skeleton seminorm (defined e.g. on H3=2C".Th/, " > 0):

jjjvjjj2�;� WD k�ŒŒrhv��Nk2L2.F I
h/

C k�ŒŒv��Nk2L2.F I
h/

(2)

C k�.@nv C ik#v/k2L2.�R/ C k�vk2L2.�D/ :
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A special property of the Trefftz space T.Th/ is that this seminorm is actually a
norm for it, and that it controls the L2.˝/ norm, as it was first proved by P. Monk
and D.Q. Wang using a special duality technique in [88, Theorem 3.1].

Lemma 1 jjj � jjj�;� is a norm in T.Th/. Moreover, all Trefftz functions v 2 T.Th/\
H3=2C".Th/, " > 0, satisfy the estimate

kvkL2.˝/ � C�jjjvjjj�;� ;

with a constant C� > 0 depending only on k; �; �; #;˝ and Th. Setting

�K WD ess infx2@Kn�D �.x/; �K WD ess infx2@Kn�R �.x/ 8K 2 TK ;

we can express the dependence of C� on the relevant parameters in the following
situations:

(i) If @˝ D �R and ˝ is either convex or smooth and star-shaped with respect to
a ball, then

kvkL2.˝/ � C1 diam˝ max
K2Th

�� 1

�2Kk
C k

�2K

��
1C 1

khK

��1=2
jjjvjjj�;� ;

where C1 > 0 depends on # , the shape-regularity of the mesh and the shape
of˝ .

(ii) If k > 1,˝ � R
2 has diameter diam˝ D 1 and satisfies

x � n � � > 0 a.e. on �R and x � n � 0 a.e. on �D; (3)

and each element K is star-shaped with respect to a ball of radius �KhK, we
have

kvkL2.˝/ � C2 max
K2Th

�� 1

�2Kk
C k

�2K

��
.khK/

2t C 1

khK

��1=2
jjjvjjj�;� ;

where 0 < t < s˝ � 1=2, s˝ being the “elliptic regularity parameter” of
[55, Eq. (6)], and C2 > 0 depends only on˝ , # , t, and on the shape-regularity
infK2Th �K of the mesh.

The bound in part (i) of Lemma 1 can be verified following the proof of [85,
Lemma 4.3.7], while that in part (ii) requires also the stability and trace estimates
of [56, Eq. (7), (20)] (see also [56, Lemma 4.5] and a weaker but more general
bound in [55, Lemma 4.4]). Conditions (3) on the shape of ˝ are satisfied if �R

is boundary of a domain star-shaped with respect to a ball centred at 0 and �D

is boundary of a smaller domain (a scatterer, or a “hole” in ˝) star-shaped with
respect to 0, see [55, Sect. 2, Fig. 2]. The value of the bounding constants arise
only from (a) trace estimates for mesh elements, and (b) stability bounds for an
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inhomogeneous Helmholtz BVP on˝ , thus more general shapes of˝ give different
dependencies on k (using e.g. the k-explicit H1.˝/ bounds in [30, Theorem 2.4],
[105, Theorem 1.6], and bounds in higher-order norms as in [41, Lemma 2.12]).
This result is relevant because, for Trefftz methods that allow a priori stability or
error estimates, these are typically in a skeleton norm similar to jjj � jjj�;� . Thus
Lemma 1 can lead to error estimates in the mesh- and parameter-independentL2.˝/
norm; we pursue this in Sects. 2.1 and 2.2.1.

2 Trefftz Variational Formulations

2.1 Least Squares (LS) Methods

Least squares methods are perhaps the simplest kind of Trefftz formulations. They
allow simple error and stability analysis, are easy to implement, lead to sign-
definite Hermitian (or symmetric) linear systems, at the price of a possibly worse
conditioning. A description of Trefftz LS schemes for the Helmholtz equation
with numerous references is given by Stojek in [107]. The same method is named
frameless Trefftz elements in [99, Sect. 3.6] and weighted variational formulation
(WVF) in [59]. In [88], Monk and Wang proposed the following Trefftz LS method
for the BVP (1):

find uLS D arg min
vhp2Vp.Th/

J.vhpI gR; gD/; where

J.vI gR; gD/ W D
Z

F I
h

�
�2
ˇ
ˇŒŒv��N

ˇ
ˇ2 C �2

ˇ
ˇŒŒrhv��

ˇ
ˇ2
�

dS (4)

C
Z

�R

�2
ˇ
ˇ@nv C ik#v � gR

ˇ
ˇ2 dS C

Z

�D

�2
ˇ
ˇv � gD

ˇ
ˇ2 dS;

where ŒŒrv�� WD rhvjK1 � rhvjK2 on @K1 \ @K2 is the jump of the complete gradient
(whose “sign” depends on a choice of the ordering of the elements in Fh). The LS
methods in [107, Eq. (7)] and [75, Chap. 10] differ from (4) (apart from the use of
different boundary conditions) in that only the normal component of the jump of the
gradient ŒŒrhv��N is penalised on F I

h, as opposed to the entire jump ŒŒrhv��. Obviously,
every Galerkin discretisation of the variational problem arising from (4) will give
rise to a Hermitian linear system, which is a clear advantage of LS methods.

The choice of the relative weights 0 < �; � 2 L1.Fh/ between the terms in (4)
is a crucial point for the conditioning and the accuracy of LS methods. Different
choices have been proposed (for 2D problems): � D 1 and � D k or �je D 1=he
in [88, Sect. 2]; � D 1 and �je D he=. pK1 C pK2 / in [107, Sect. 3.2]; � D 1

and �je D O.maxfpK1 ; pK2g�1=2/ in [75, Theorem 10.3.4]. Here, e D @K1 \ @K2
denotes a mesh interface, he its length, pK1 and pK2 the dimensions of the local
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Trefftz spaces VpK1
.K1/ and VpK2

.K2/ on the adjacent elements K1 and K2. In 2D
and 3D, [59] suggests to choose � D 1 and � D k and, for BVPs with singular
solutions, �j�R D k1=2.

The LS method computes the element uLS in Vp.Th/ that minimises the error
u � uLS measured in the skeleton norm kvk2LS WD J.vI 0; 0/, thus orders of converge
in this norm follow immediately from approximation bounds for the specific discrete
Trefftz space Vp.Th/ chosen, see e.g. Sect. 3 below or [88]. Since jjjvjjj�;� � kvkLS

(with equality if J in (4) is defined with ŒŒrhv��N instead of ŒŒrhv��), Lemma 1,
following [88, Theorem 3.1], guarantees that the L2.˝/ norm of the error of the LS
solution is controlled by the value of the LS functional, thus convergence follows
also in ˝ . This is summarised in Theorem 1, see Sect. 1.3 for the extension to
different domains.

Theorem 1 Let u be the solution of (1) and uLS 2 Vp.Th/ the discrete LS solution
of (4). Then, for C� > 0 depending only on k; �; �; #;˝ and Th,

ku � uLSkLS D inf
vhp2Vp.Th/

�
�u � vhp

�
�

LS
;

ku � uLSkL2.˝/ � C� inf
vhp2Vp.Th/

�
�u � vhp

�
�

LS
:

If � D k, � D 1, @˝ D �R and˝ is either convex or smooth and star-shaped, then

ku � uLSkL2.˝/ � C0 diam˝ k�1=2
�
1C �

k min
K2Th

hK
	�1=2�

inf
vhp2Vp.Th/

�
�u � vhp

�
�

LS
;

where C0 > 0 depends only on # , the shape of˝ and the shape-regularity of Th.

The hp-convergence theory of [56] easily extends to the LS method. In 2D, if the
LS parameters are defined as �2je D kh=minfhK1 ; hK2g for e D @K1 \ @K2, �2je D
kh=hK for e � @K \ �D, and �2 D 1=k, under the assumptions on ˝ and on the
discretisation stipulated in [56], then the k�kLS norm of the LS error is estimated as in
[56, Eq. (48)] and the L2.˝/ norm of the same error converges to zero exponentially
in the square root of the total number of degrees of freedom used.

In [75, Chap. 10], the Trefftz LS scheme is analysed for pure Dirichlet boundary
conditions (�R D ;); the crucial parameter in the analysis is the relative distance
between k2 and the closest Dirichlet eigenvalue of ��. Error bounds in the broken
Sobolev norm H1.Th/ are derived.

In the numerical tests in [39, 40], the LS method appears to be slightly less
accurate than the UWVF (see Sect. 2.2.2 below) and a DG method, all employed
with the same discrete space. On the other hand, in the examples in [59], the
performance of the LS method is comparable to that of the UWVF and considerably
better than that of the VTCR.
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2.1.1 The Method of Fundamental Solutions (MFS)

A popular class of LS Trefftz methods is the method of fundamental solutions.
A lucid introduction to the MFS for Helmholtz problems, together with numerous
references, is in [31]. The MFS is considered a special case of source simulation
technique in [92]. The characteristic features of the most common form of the
MFS are: (i) the domain is not meshed; (ii) the N basis functions are fundamental
solutions (H.1/

0 .kjx � y`j/ in 2D, ` D 1; : : : ;N, where H.1/
0 is a Hankel function of

the first kind and order zero and y` 2 R
2 n˝ , see Sect. 3.3); (iii) the minimisation

of the L2.@˝/ norm of the error is substituted by the minimisation of the squared
error over M � N points xj 2 @˝ , j D 1; : : : ;M. If M D N, the MFS is not an LS
method but it simply interpolates the boundary conditions with Trefftz functions.

The same method with plane wave bases is compared to the MFS in [1]. A variant
that is popular in acoustics is the Helmholtz equation least-squares (HELS) method,
which uses spherical-wave and multipole basis functions, see the recent book [117]
and references therein. LS variants of MFS relying on higher order multipoles in
addition to simple Hankel functions have a long history in wave simulations [90,
Sect. 2].

The locations y` of the basis singularities are either obtained numerically together
with the coefficients multiplying the basis functions using non-linear LS solvers [31,
Eq. (7)] (leading to a highly adaptive method), or can be fixed a priori on a smooth
boundary in R

n n˝, e.g. using complex analysis techniques (in 2D) as in [9], or are
determined based on heuristic criteria [90, Sect. 3].

The MFS with fixed nodes can be interpreted as a discretisation of a compact
transfer operator related to a single layer potential representation. For this reason
it yields ill-conditioned linear systems; however this does not rule out efficient
computations as demonstrated and analysed in [9] and in [10, Sect. 7]. According
to [31, p. 766], the larger the distance between the nodes and ˝ , the more ill-
conditioned the linear system and the more accurate the solution (though this might
seem counter-intuitive).

A strength of the MFS is its simplicity of implementation, as no mesh is needed
and all geometric information is contained in only two point sets fy`gN`D1 � R

n n
˝, fxjgMjD1 � @˝ . Since fundamental solutions satisfy the Sommerfeld radiation
conditions, the MFS is often used for scattering problems in unbounded domains.

In [9], the convergence of the MFS for Dirichlet problems on a circular domain is
analysed in great detail, and a special design of the curve supporting the fundamental
solutions is proposed for general domains with analytic boundaries. With this
choice, extremely accurate and cheap computations are possible.

In [10], Barnett and Betcke present a finite element scheme that couples the
LS formulation of [107] with the MFS in 2D. They consider the scattering
by sound-soft (non-convex) polygons; the total field is approximated inside an
artificial boundary and the scattered field outside of it. Singular Fourier–Bessel
basis functions depending on the scatterer’s corners (see Sect. 3.4) are used on all
elements adjacent to the scatterer, strongly enforcing the (homogeneous) Dirichlet
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boundary conditions; due to this, no terms on @˝ appear in the method formulation.
Exponential orders of convergence are proved. The strong enforcement of boundary
conditions may be substituted by an LS approach to deal with more general linear
boundary conditions, curved boundaries and transmission problems.

2.2 Discontinuous Galerkin (DG) Methods

The discontinuous Galerkin (DG) methods constitute a wide class of numerical
schemes for the approximation of PDEs, employing discontinuous test and trial
functions [6]. A great number of tools for their design, implementation and error
analysis have been devised, so they are a natural setting for Trefftz methods. In
[54] we showed that when the interior penalty (IP) method, one of most common
DG schemes, is applied to the Laplace equation, the use of Trefftz spaces (made
of harmonic polynomials) offers better accuracy than standard spaces also in an hp-
context. Similar considerations were made in [74] for the h-convergence of the local
DG (LDG) method. To our knowledge, no standard DG variational formulation (e.g.
any of those in [6]) has been proposed in the literature to discretise time-harmonic
problems with Trefftz basis functions. Possible reasons for this are that the error
analysis of standard DG schemes requires inverse estimates, which are well-known
for polynomial spaces but harder in the Trefftz case (however, see [46, Sect. 3.2]
for h-explicit inverse estimates for plane waves in 2D), and that the application of
formulations designed for the Laplace equation to the Helmholtz case requires some
problematic minimal resolution condition to ensure unique solvability [83].

In the next sections we outline some DG formulations that have been designed
specifically for Trefftz discretisations; some of these have later been employed also
with polynomial approximating spaces, e.g. [83, 89].

A note on terminology: all Trefftz methods presented in this survey involve
the discretisation of variational formulations based on discontinuous functions,
however with “DG” we denote only those methods that arrive at local variational
formulations by applying integration by parts to the PDE to be approximated. On
the contrary, least squares and weighted residual methods simply enforce (weakly)
continuity and boundary conditions, irrespectively of the considered PDE.

2.2.1 The Trefftz-DG (TDG) Method

Originally, Trefftz-discontinuous Galerkin (TDG) methods (or plane wave DG,
PWDG, when used in combination with plane wave basis functions) were intro-
duced as a way of recasting the ultra weak variational formulation (UWVF)
of [18, 19] (see Sect. 2.2.2 below) in a framework that would facilitate its theoretical
analysis [17, 46]. A similar, but more general, Trefftz-DG framework was proposed
in [37, 39], arising from methods for hyperbolic equations; see Remark 1 below.
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We first derive the TDG formulation as in [55]. We multiply the Helmholtz
equation (1) by a test function v and integrate by parts twice on each K 2 Th:

0 D
Z

K
.��u � k2u/v dV D

Z

K
.ru � rv � k2uv/ dV �

Z

@K
ru � nK v dS

D
Z

K
u .��v � k2v/ dV C

Z

@K
u @nKv dS �

Z

@K
@nK u v dS:

We then replace u and v by discrete functions uhp; vhp 2 Vp.Th/, the trace of u on
@K by the numerical flux Ouhp, and the trace of ru by the numerical flux ikb� hp (both
defined below), obtaining the elemental TDG formulation:

Z

@K
Ouhp @nKvhp dS �

Z

@K
ikb� hp � nK vhp dS D 0; (5)

where the volume integral vanishes as the test function vhp 2 VP.Th/ � T.Th/
is a Trefftz function. Variants of DG methods are distinguished by the underlying
numerical fluxes. Here we opt for the primal fluxes:

ikb� hp D

8
ˆ̂
<

ˆ̂
:

ffrhuhpgg � ˛ ik ŒŒuhp��N on faces in F I
h;

rhuhp � .1 � ı/ �rhuhp C ik#uhpn � gRn
	

on faces in �R;

rhuhp � ˛ ik .uhp � gD/n on faces in �D;

(6)

Ouhp D

8
ˆ̂
<

ˆ̂
:

ffuhpgg � ˇ .ik/�1ŒŒrhuhp��N on faces in F I
h;

uhp � ı
�
.ik#/�1rhuhp � n C uhp � .ik#/�1gR

	
on faces in �R;

gD on faces in �D;

(7)

where the flux parameters ˛ > 0, ˇ > 0, 0 < ı � 1=2, are bounded functions
defined on suitable unions of edges/faces (see also Table 1). Adding over all
elements, we obtain the following formulation of the TDG method:

find uTDG 2 Vp.Th/ s.t. ATDG.uTDG ; vhp/ D `TDG.vhp/ 8vhp 2 Vp.Th/; where

ATDG.u; v/ WD (8)
Z

F I
h

�
ffuggŒŒrhv��N � ffrhugg � ŒŒv��N C ˛ikŒŒu��N � ŒŒv��N � ˇ.ik/�1ŒŒrhu��N ŒŒrhv��N

�
dS

C
Z

�R

�
.1 � ı/ik#uv C .1 � ı/u@nv � ı@nu v � ı.ik#/�1@nu@nv

�
dS

C
Z

�D

�
� @nu v C ˛ ik u v

�
dS;

`TDG.v/ WD
Z

�R

gR
�
.1 � ı/v � ı.ik#/�1@nv

�
dS C

Z

�D

gD
�
˛ikv � @nv

�
dS:
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Table 1 Different TDG flux parameters in (6) and (7) that have been considered

˛ ˇ ı

Quasi-uniform meshes,
h-convergence

Gittelson et al. [46] a=khK bkhK dkhK

Quasi-uniform meshes,
p-convergence

Hiptmair et al. [53] a b d

UWVF (see Sect. 2.2.2) Cessenat and Després [19] 1=2 1=2 1=2

Locally refined meshes,
hp-convergence

Hiptmair et al. [55] ah=hK bh=hK dh=hK

Geometrically graded meshes,
exponential hp-convergence

Hiptmair et al. [56] ah=hK b d

Polynomial (non Trefftz) basis,
hp-convergence

Melenk et al. [83] aq2K=khK bkhK=qK dkhK=qK

Here a;b;d are positive functions independent of the other parameters; k is the wavenumber; hK is
the local meshwidth; h D maxK2Th hK is the global meshwidth; qK is the local polynomial degree
(for the non-Trefftz version)

The TDG method was introduced in the primal form described here in [44, 46] and in
mixed form in [52], under the name of plane wave DG (PWDG) method, following
the derivation of [6] of general DG schemes for elliptic equations. In [46], first-
order convergence in the meshwidth was established, using Schatz’ argument, for
2D Robin problems with source term f 2 L2.˝/, plane wave discrete spaces and
quasi-uniform families of meshes. This was extended to higher orders in h in [84],
p-convergence in [53], three dimensions in [85], locally-refined meshes in [55], and
finally the exponential convergence in the number of degrees of freedom of its hp-
version was proved in [56]. Its dispersion analysis was performed in [44, 45].

For polynomial discrete spaces, the advantages of using the formulation under-
lying the TDG method, compared to standard DG schemes, were analysed in [83].
In [14], the TDG formulation was utilised with (non-Trefftz) bases defined from
oscillating functions from high-frequency asymptotics modulated with polynomials;
problems with varying coefficients were also considered.

The TDG formulation (8) can be seen as a modification of either the interior
penalty method, or of the local DG (LDG) method (see e.g. [6]): with respect to
the interior penalty method, the stabilisation term multiplied by ˇ is added in the
TDG fluxes (7), while with respect to the LDG method, in the TDG fluxes (6), the
consistency term is written in terms of the primal variable (ffrhuhpgg) instead of in
terms of the auxiliary variable (ffik� hpgg) and the additional stabilisation of the jumps
of � hp is removed. In [106], the TDG and the UWVF are seen as special instances
of a family of methods arising from integration by parts.
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The a priori error analysis of the TDG relies on Theorem 2 below (e.g. [55,
Sect. 4]), which makes use of the following mesh- and flux-dependent seminorms:

jjjvjjj2TDG WD k�1
�
�
�ˇ

1
2 ŒŒrhv��N

�
�
�
2

L2.F I
h/

C k
�
�
�˛

1
2 ŒŒv��N

�
�
�
2

L2.F I
h/

C k�1
�
�
�ı

1
2 #�

1
2 @nv

�
�
�
2

L2.�R/
C k

�
�
�.1 � ı/ 12 # 1

2 v
�
�
�
2

L2.�R/
C k

�
�
�˛

1
2 v
�
�
�
2

L2.�D/
I

jjjvjjj2
TDGC

WD jjjvjjj2TDG C k
�
�
�ˇ�

1
2 ffvgg

�
�
�
2

L2.F I
h/

C k�1
�
�
�˛�

1
2 ffrhvgg

�
�
�
2

L2.F I
h/

C k
�
�
�ı�

1
2 #

1
2 v
�
�
�
2

L2.�R/
C k�1

�
�
�˛�

1
2 @nv

�
�
�
2

L2.�D/
:

Theorem 2 The seminorms jjj � jjjTDG and jjj � jjjTDGC are norms in the Trefftz space
T.Th/. The TDG sesquilinear form is continuous and coercive:

jATDG.v;w/j � 2jjjvjjjTDGC jjjwjjjTDG; Im
˚
ATDG.v; v/

� D jjjvjjj2TDG

for all v;w 2 T.Th/, thus there exists a unique solution uTDG 2 Vp.Th/ to the TDG
formulation (8) and the quasi-optimality bound holds:

jjju � uTDG jjjTDG � 3 inf
vhp2Vp.Th/

jjju � vhpjjjTDGC :

Choosing �2 D ˛k on F I
h [ �D, �2 D ˇ=k on F I

h and �2 D minfı; 1 � ıg=2k#
on �R, the norm (2) is controlled as jjjvjjj�;� � jjjvjjjTDG for all v 2 T.Th/. Thus,
by Lemma 1, the L2.˝/ norm of the TDG error can be controlled by its jjj � jjjTDG

norm, and so by the discrete space approximation properties. This result has been
stated in several slightly different forms, depending on the regularity of the solution
u, the type of mesh used, the choice of the numerical flux parameters ˛; ˇ; ı; see
[85, Lemma 4.3.7], [55, Lemma 4.4] and [56, Lemma 4.5]. To strike a balance
between the size of the constants arising from the duality argument of Lemma 1
and approximation errors, different flux parameters have been chosen on different
meshes and aiming at different types of convergence estimates, see Table 1. For
illustration, we state the result in the case of constant flux parameters, quasi-uniform
meshes, and domains that guarantee sufficiently smooth solutions for the dual
problems; this follows from Lemma 1 and Theorem 2 (cf. [85, Corollary 4.3.8]).

Corollary 1 Let u be the solution of (1), where ˝ is either convex or smooth and
star-shaped, and let uTDG 2 Vp.Th/ be the solution of the TDG method with flux
parameters chosen as in the second row of Table 1. Then

ku � uTDGkL2.˝/ � C0 diam˝
�
1C �

k min
K2Th

hK
	�1=2�

inf
vhp2Vp.Th/

jjju � vhpjjjTDGC ;

where C0 > 0 depends only on # , the shape of ˝ and the shape-regularity of the
mesh, but is independent of k and Vp.Th/.
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The combination of the abstract error analysis outlined above and approximation
estimates for plane, circular and spherical waves (see Sect. 3) leads to a priori h-, p-
and hp-convergence estimates in jjj�jjjTDG and L2 norms, see [46, 53, 55, 56, 85]. The
dependence of the error bounds on the wavenumber k is explicit, as in Corollary 1.

Remark 1 The Helmholtz equation may be written as the first order hyperbolic
system �iku C Pn

jD1 @xj.A. j/u/ D 0, where u WD .uI ru=.ik// and A.j/ are
the .1 C n/ � .1 C n/ symmetric matrices whose only non-zero elements are
A.j/1;jC1 D A.j/jC1;1 D 1, for 1 � j � n. Then, similarly to [37, Eq. (22)] or [39, Eq. (5)],
a general Trefftz-DG method can be written as:

seek u 2 Vp.Th/ WD ˚
.u; � / W u 2 Vp.Th/; � D ru=.ik/

�
s.t. 8v 2 Vp.Th/

X

K1;K22Th;
K1¤K2

Z

@K1\@K2

�
Fin

jK1
ujK1 � Fin

jK2
ujK2

	 � �vjK1 � vjK2

	
dS C

Z

@˝

.Finu � g/ � v dS D 0

where the flux-splitting matrices Fin;Fout are defined on
Q

K2Th
@K and satisfy Fin �

0, Fout � 0 (i.e. are negative and positive semi-definite, respectively), Fin C Fout D
. 0 n>

K
nK 0

/ on @K, and Fin
K1

D �Fout
K2

on @K1 \ @K2. The boundary data are represented

by a suitable vector field g D �Foutu. The TDG in (8) (up to a factor �ik) is obtained
by choosing:

Fin
K D Fout

K D
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

 
�˛ 1

2
n>
K

1
2
nK �ˇn ˝ n>

!

 
�.1 � ı/# ın>

K

.1 � ı/n � ı
#
n ˝ n>

!

 
�˛ n>

K

0 0

!

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

 
˛ 1

2
n>
K

1
2
nK ˇn ˝ n>

!

on @K \ F I
h;

 
.1 � ı/# .1 � ı/n>

K

ın ı
#
n ˝ n>

!

on @K \ �R;

 
˛ 0>

nK 0

!

on @K \ �D:

The right-hand side is represented by the vector g D � 1
ik .

1�ı
ı#�1nK

/gR on �R and
g D �. ˛nK /gD on �D.

2.2.2 The Ultra Weak Variational Formulation (UWVF)

The ultra weak variational formulation (UWVF) has been introduced in the 1990s by
Cessenat and Després in [18, 19]. Since then it has received a great deal of attention
and has been applied to numerous PDEs and BVPs; we refer to [60] for a description
of its computational aspects and to [76, Sect. 3.5.2] for an extensive bibliography.
Different derivations can be found e.g. in [17, 19, 37, 39, 46]; in particular [17, 46]
obtain the UWVF in the setting of DG schemes for elliptic problems of [6], while
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[37, 39] derive it for general first-order hyperbolic systems using a flux-splitting
approach as we did for the TDG in Remark 1. Note that different papers use different
sign conventions. The extension of the UWVF to problems with smooth coefficients
has been tackled in [65].

To write its formulation for the BVP (1) in the Robin case, i.e. �D D ;, we
first define the trace space X WD Q

K2Th
L2.@K/, and the operators FK W L2.@K/ !

L2.@K/, mapping the boundary datum yK of a local adjoint-impedance Helmholtz
BVP into the impedance trace of the BVP solution eK itself:

FK. yK/ WD .@nK C ik/eK ; where

(
��eK � k2eK D 0 in K;

.�@nK C ik/eK D yK on @K:

The Helmholtz BVP is written as a transmission problem across the mesh interfaces,
i.e., for all K;K0 2 Th,

��u � k2u D 0 in K;

@nK u C iku D �@nK0
u C iku on @K \ @K0;

@nK u C ik#u D gR on @K \ �R:

Then, after multiplying the first equation by ejK , e 2 T.Th/, integrating by parts
twice, taking into account transmission and boundary conditions, and introducing
x; y 2 X defined as xj@K D �@nK u C iku and yj@K D �@nK e C ike, the UWVF of
problem (1) [19, (1.4)] reads: find x 2 X such that, for every y 2 X,

X

K2Th

Z

@K
xj@K yj@K dS �

X

K;K02Th

Z

@K\@K0

xj@K0 FK. yj@K/ dS (9)

�
X

K2Th

Z

@K\�R
1 � #
1C #

xj@K FK. yj@K/ dS D
X

K2Th

Z

@K\�R
2

1C #
gR FK. yj@K/ dS:

(Note that for # D 1 the term on @K\�R at left-hand side vanishes and 2=.1C#/ D
1.) The expression (9) is a variational formulation for the skeleton unknown x; after
the equation is solved for x, the Helmholtz solution ujK can be recovered in the
interior of each element by solving a local (in K) adjoint-impedance Helmholtz
BVP with datum .�@nK C ik/ujK D xj@K . If the formulation is discretised choosing
a finite dimensional subspace Xh of X corresponding to the impedance traces of a
Trefftz space, namely

Xh WD ˚
xh 2 X W xhj@K D .�@nK C ik/vjK 8K 2 Th; v 2 Vp.Th/

�
;

then the action of FK and the reconstruction of uK in K are immediately computed.
Theorem 2.1 of [19] states that the discrete problem obtained by substituting Xh

to X in (9) is solvable, independently of the meshsize h; Corollary 3.8 shows that,
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for plane wave discrete spaces, the Dirichlet and Robin traces of the UWVF solution
converge to the corresponding traces of u with algebraic orders of convergence
in L2.�R/. In [17, Sect. 4], these results have been used together with the duality
technique of [88] to prove orders of convergence for the L2.˝/ norm of the error.

The UWVF has been recast as a DG method with Trefftz basis functions in
several different ways in [17, 37, 39, 46]. In particular, [46, Remark 2.1] shows
that the UWVF is a special case of the TDG formulation (8) for flux parameters
˛ D ˇ D ı D 1=2. As a consequence, the orders of convergence in h and p proved
for the TDG on quasi-uniform meshes in [46, 53] carry over to the UWVF (with
suboptimal orders in h); on the other hand, the hp-type results of [55, 56] require
variable numerical flux parameters to cope with elements of different sizes (see
Table 1), so they do not apply to the UWVF. Thus, the TDG can be understood
as the extension of the UWVF to non quasi-uniform meshes. Alternatively, in
[89, Sect. 4.3, 5.2], the UWVF is employed on meshes refined towards solution
singularities by choosing Trefftz spaces on large elements and polynomial spaces
on small ones. No applications of the TDG combining mesh-dependent parameters
and polynomial spaces in small elements have been documented.

2.2.3 DG Schemes with Lagrange Multipliers

The DG schemes described so far enforce weak continuity between elements using
numerical fluxes, in the spirit of [6]. A different approach is to enforce continuity
using Lagrange multipliers. This was probably first proposed for Trefftz methods in
[63, Sect. 2.3], for the 1D Helmholtz equation.

This strategy has been followed in the discontinuous enrichment method (DEM),
introduced by Farhat et al. in [32], combining a space of piecewise-constant
Lagrange multipliers on mesh interfaces with a discrete space composed by sums
of continuous piecewise polynomials and discontinuous plane waves. Subsequently,
in [33], the polynomial part of the trial space was dropped, leaving a plane wave
trial space and thus reducing to a Trefftz method; in this version, the DEM was
renamed discontinuous Galerkin method (DGM) and the Lagrange multipliers
were approximated by oscillatory functions. This formulation performed very well
for test cases and was later extended to “higher order elements” (i.e. elements
containing more plane waves) and other PDEs. We refer again to [76, Sect. 3.5.3]
for a comprehensive bibliography.

Here we briefly describe the formulation of the DGM following [33, Sect. 2]:

find .u; �/ 2 H1.Th/ � W.Th/ s.t.
8
ˆ̂
<

ˆ̂
:

ADGM.u; v/C BDGM.�; v/ D
Z

�R

gR v dS 8v 2 H1.Th/;

BDGM.	; u/ D
Z

�D

	 gD dS 8	 2 W.Th/;
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where

ADGM.w; v/ W D
X

K2Th

Z

K
.rw � rv � k2u v/ dV C

Z

�R

ik# w v dS;

BDGM.	;w/ W D
X

K;K02Th

Z

@K\@K0

	.wjK0 � wjK/ dS C
Z

�D

	w dS;

W.Th/ W D
� Y

K;K02Th

QH�1=2.@K \ @K0/
�

� H�1=2.�D/:

It is immediate to verify that the solution u to BVP (1) satisfies this formulation,
and that the multiplier � represents the normal derivative of u on the mesh interfaces
and on �D. This formulation is then discretised by restricting it to finite dimensional
spaces Vp.Th/ � H1.Th/ and Wp.Th/ � W.Th/. In the DEM of [32], Vp.Th/ is the
direct sum of a continuous polynomial and a plane wave space, in the DGM of [33]
and subsequent papers only the plane wave part is retained, so Vp.Th/ � T.Th/. The
volume degrees of freedom, i.e. those corresponding to Vp.Th/, are then eliminated
by static condensation in order to reduce the computational cost of the scheme.

A stability and convergence analysis of the simplest version of the DGM (four
plane waves per element and piecewise-constant multipliers) is attempted in [2]:
for a Robin–Neumann BVP on a domain decomposed in rectangles, under a mesh
resolution condition, the scheme is shown to be well-posed, and a priori orders of
convergence are proved (in H1.Th/ norm for the primal variable and in L2.Fh/ for
the multipliers), along with residual-type a posteriori error bounds.

We are not aware of any error analysis for the DGM method holding in more
general situations (e.g. more than four plane waves per elements, propagation
directions not aligned to the mesh, non-rectangular mesh elements).

A similar formulation, named hybrid-Trefftz finite element method, is described
in [99, Sect. 3.5] (deriving the functional in Eq. (65) therein): the same form ADGM

above is used, while BDGM is substituted by BHT.	;w/ WD � RF I
h
	 ŒŒrhw��N dS �

R
�N
	@nw dS, where now the multiplier 	 approximates the Dirichlet trace of u, the

right-hand sides and the space W.Th/ are changed accordingly. A further variant of
hybrid-Trefftz methods is presented in [109] and related papers.

Another DG method with Trefftz basis, called modified DG method (mDGM),
has been proposed in [48]. The Lagrange multipliers are double-valued on the inter-
faces (differently from the DEM/DGM of [32, 33]) and belong to

Q
K2Th

L2.@K n
�R/. A two-step procedure is adopted. First, for each basis element � 2 L2.@K n�R/

of the discrete Lagrange multiplier space, a well-posed Helmholtz BVP on K
with impedance datum � is solved in the local Trefftz space VpK .K/ using the
classical H1.K/-conforming variational formulation. Second, these local solutions
are combined in a global LS formulation leading to a positive semi-definite system
whose unknowns are the Lagrange multipliers themselves. The mDGM was further
improved in [3] leading to the stable DG method (SDGM), which differs from
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the mDGM in that the local impedance problems are solved with a least squares
formulation posed on @K, which gives local Hermitian matrices.

Lagrange multipliers are also used to tackle problems with discontinuous
coefficients by means of the partition of unity method, see [73] and Sect. 2.5 below.

2.3 Weighted Residual Methods

Trefftz discretisations lend themselves well to weighted residual formulations: the
discrete solution is automatically a local solution of the PDE, only the residual on
interfaces (the jumps) and on the boundary (the mismatch with boundary conditions)
need to be enforced by multiplying them to suitable traces of test functions. The
choice of these traces leads to different variational formulations, the most developed
of which are the VTCR and the WBM described in the following. While it is simple
to design weighted residual methods, their error analysis is by no means easy, as
they arise neither from integration by parts, nor from a minimisation principle.

An earlier weighted-residual Trefftz formulation is the weak element method of
[47], where the integral averages of Dirichlet and Neumann jumps on mesh faces
are set to zero (equivalently, test functions are constant on each mesh face).

We note that some of the earliest Trefftz schemes, e.g. the indirect approximation
of [22, Eq. (35)], are of weighted-residual type, even though testing was confined to
the boundary of the domain only, see Sect. 2.4 below.

2.3.1 The Variational Theory of Complex Rays (VTCR)

The VTCR is a weighted residual Trefftz method introduced in the 1990s by
P. Ladevéze and coworkers for problems arising in computational mechanics and
later extended to the Helmholtz case in [100]. Recent surveys are [70, 71, 102].

Several VTCR formulations, slightly different from each other, have been
presented. A general VTCR formulation for the BVP (1) can be written as:

find uVTCR 2Vp.Th/ s.t. AVTCR .uVTCR ; vhp/ D `VTCR.vhp/ 8vhp 2 Vp.Th/; where

AVTCR .u; v/ WD Im

 Z

F I
h

�
ŒŒu��N � ffrhvgg � ŒŒrhu��Nffvgg

�
dS (10)

C
Z

�D

u @nv dS C
Z

�R

� C1
ik#

.@nu C ik#u/@nv C C2.@nu C ik#u/v
�

dS
�

;

`VTCR .v/ WD Im

 Z

�D

gD@nv dS C
Z

�R

� C1
ik#

gR @nv C C2 gR v
�

dS
�

;

where we have reported the formulation with only the imaginary part of the left- and
right-hand side, following the VTCR convention; however dropping “Im” does not
modify the method.
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The formulations in [102, Eq. (21)] and in [70, Eq. (5)] correspond to the choice
of coupling parameters C1 D 1=2 and C2 D �1=2 (up to an overall factor k and
using Re f�izg D Im fzg); that in [101, Eq. (6)] to C1 D 1=2 and C2 D 1=2; that in
[68, Eq. (4)] to C1 D 1 and C2 D 0. The choice of the coupling parameters does not
affect the consistency of the method as all terms in (10) are products of residuals
(internal jumps and boundary conditions) and traces of test functions. In some of
the papers cited, using Im fabg D �Im fabg 8a; b 2 C, the conjugation is written
on the trial, rather than test, functions in some of the terms, without affecting the
formulation.

The VTCR (and similarly the WBM) does not correspond to any of the classical
DG schemes listed in [6]. Indeed, to derive it from the elemental DG equation (5),
one would need to choose numerical fluxes that, in the terminology of [6], are
neither consistent (they do not equal the fields ru and u when applied to the exact
solution u itself) nor conservative (they are not single-valued on the interfaces).

Following [68, Sect. 2.2], it is possible to show that if absorption is present then
the VTCR is well-posed. More precisely, provided that C1 D 1, C2 D 0, Re k > 0

and Im fk2g > 0, the VTCR bilinear form satisfies

AVTCR .v; v/ D �Im fk2g kvk2L2.˝/ � Re k

jkj2
�
�#�1=2@nv

�
�2
L2.�R/

8v 2 T.Th/;

thus the VTCR solution is unique in the Trefftz space and coercivity in L2.˝/ norm
holds (the analogous result for C1 D �C2 D 1=2 is proved in [70, Proposition 2]).
However, this does not extend to the setting we considered so far, i.e. propagating
waves with k 2 R: in this case it can easily be shown that AVTCR.v; v/ D 0 for
all v 2 T.Th/ such that v D 0 on all elements adjacent to the Robin boundary �R

and for any choice C1;C2 2 C, thus well-posedness can not be ensured using a
coercivity argument. Following [70, Proposition 2], for C1 D 1=2;C2 D �1=2; k 2
R, we have:

AVTCR.v; v/ D �1
2

�1

k

�
�#�1=2@nu

�
�2
L2.�R/

C k
�
�#1=2u

�
�2
L2.�R/

�
8v 2 T.Th/;

thus (using Holmgren’s theorem [21, Theorem 2.4]) uniqueness of the solution
of (10) is proved if all mesh elements are adjacent to �R. For more general cases,
coercivity appears to be too strong an argument. We conjecture that discrete inf-sup
conditions might be a more viable way for proving well-posedness of the VTCR.

Sect. 3 of [70] considers the application of the VTCR formulation, corrected with
suitable volume terms, with non-Trefftz (piecewise-polynomial) discrete spaces.
This variation is termed weak Trefftz and analysed therein.



A Survey of Trefftz Methods for the Helmholtz Equation 257

2.3.2 The Wave Based Method (WBM)

The WBM is a weighted residual Trefftz method, analogous to the VTCR, first
introduced in the dissertation of Desmet [26] and later extended to a wide variety
of engineering applications, mainly in the realm of vibro-acoustics. Recent reviews
of the state of the art of the research on the WBM can be found in [25, 27]. The
discrete space typically used together with the WBM is composed of propagating
and evanescent plane waves, as outlined in Sect. 3.2.

The basic variational formulation of the WBM applied to BVP (1), translating
Sect. 4.1.4 of [27] to our notation and multiplying all terms by .�ik/, reads

find uWBM 2 Vp.Th/ s.t. AWBM.uWBM; vhp/ D `WBM.vhp/ 8vhp 2 Vp.Th/, where

AWBM.u; v/ WD
Z

F I
h

�

2ŒŒrhu��Nffvgg C ik

Zint
ŒŒu��N � ŒŒv��N

�

dS

C
Z

�R

�
@nu C ik#u

	
v dS �

Z

�D

u @nv dS

`WBM.v/ WD
Z

�R

gR v dS �
Z

�D

gD @nv dS;

where Zint is an interior coupling factor. In some works, a slightly different
formulation is used, e.g. in [98, Eq. (81)] different terms are used on the internal
interfaces. We are not aware of any rigorous stability or error analysis of the WBM
formulation.

2.4 Single-Element Direct and Indirect Trefftz Methods

Most schemes described so far were introduced not earlier than mid 1990s, but
a lot of research on Trefftz methods has been carried out since the late 1970s
by I. Herrera, J. Jirousek, A.P. Zieliński, O.C. Zienkiewicz and numerous co-
workers, mainly for static elasticity problems. General reviews of these works are
in [67, 121]; the Helmholtz case is described in detail in [22]. A major difference
between these methods and those we described in the previous sections is that in
many instances of the former ones no mesh is introduced on the domain ˝ , so that
the unknowns are defined on @˝ only. For this reason, these Trefftz methods more
closely resemble standard boundary element methods rather than finite element
schemes.

There are two main classes of these Trefftz methods: direct and indirect. (We
use the terms “direct” and “indirect” as in [22, 67] and [98, Sect. 5.1].) We describe
them for a modification of BVP (1) where we drop the Robin boundary �R and
we consider instead a Neumann boundary portion �N with boundary condition
@n u D gN .
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The indirect method is the simplest kind of weighted residual scheme:

Z

�D

u @nv dS �
Z

�N

@nu v dS D
Z

�D

gD @nv dS �
Z

�N

gNv dS; (11)

(see [22, Eq. (35)] for sound-hard scattering problems in unbounded domains, [98,
Eq. (47)], [121, Eq. (16)], [67, Eq. (16), (26)]). For Dirichlet exterior problems this is
also the method of [8, Sect. 3]. In most references the test function is not conjugated.
We note that the indirect method is nothing else than the WBM of Sect. 2.3.2 posed
on a single element, i.e. Th D f˝g and F I

h D ;. In the indirect method, the trial
functions approximating u are global solutions of the Helmholtz equation on the
whole of ˝; on the other hand the test function v only needs to be defined on @˝ .
If the Trefftz test and trial spaces coincide, then the obtained stiffness matrix is
symmetric (by Green’s second identity). If the signs of the terms on �N are changed,
as in [67, Eq. (22)], a non-symmetric formulation is obtained.

Subtracting from (11) the second Green’s identity
R
@˝.u @nv � @nu v/ dS D 0,

which holds for all Helmholtz solutions u and v in ˝ , we derive the direct method:

Z

�D

@nu v dS �
Z

�N

u @nv dS D
Z

�D

gD @nv dS �
Z

�N

gN v dS; (12)

(see [22, Eq. (42)], [98, Eq. (50)]). The direct method for the Dirichlet problem may
be viewed as the TDG of Sect. 2.2.1 with ˛ D 0 posed on a single element K D ˝ .
Conversely to the indirect method, consistency of (12) is guaranteed only if the test
functions are Helmholtz solutions in ˝ , while the trial functions might be defined
(and often are) on @˝ only, for better computational efficiency; the solution is then
evaluated in˝ with a representation formula in a post-processing step as for BEMs.
The stiffness matrix arising from the direct formulation (12) is the transpose to that
of the indirect method (11). Theorem 6.44 in [106] gives sufficient conditions for
the well-posedness of the direct method. Theorem 7.19 in [20] proves that, for well-
posed Dirichlet problems with H1.@˝/ data, if the Neumann traces of the trial space
coincide with the Dirichlet traces of the test space, then the direct method is well-
posed and computes the best approximation of the exact solution in L2.@˝/ norm.
If ˝ is unbounded, the direct and the indirect methods can still be used choosing
discrete functions that satisfy Sommerfeld radiation condition; however in (12) the
conjugation on the test function must be dropped to preserve consistency. In this
case, if a multipole basis is used, Waterman’s null-field method is obtained, see
[78, Chap. 7], which is a special instance of the T-matrix method [78, Sect. 7.9].
(Note that [92] uses the name null-field method for the indirect method with non-
conjugated test functions, and Cremer equations for the same with conjugated test
functions.)

For a special choice of Trefftz test functions v indexed by a complex parameter
(see the last paragraph of Sect. 3.2), method (12) is called “global relation” and
is the variational formulation at the heart of the Fokas transform method, see [23,
Eq. (2)], [106, Eq. (6.142–143)] or [20, Eq. (7.156)]. In this context, this formulation
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is typically discretised using piecewise-polynomial (on @˝) trial functions, even
though Trefftz functions may be used as well.

2.5 Non-Trefftz Methods with Oscillatory Basis Functions

The main reason for the success of Trefftz methods in the context of time-harmonic
wave problems is that the oscillatory basis functions may offer much better
approximation properties than piecewise polynomials used in standard FEMs. On
the other hand, similar approximation can also be achieved if the discrete functions
are not exact local solution of the PDE to be discretised, but are only “approximate
solutions”. If basis functions of this kind are used, the Trefftz formulations described
in the previous sections cannot be employed as they stand, because the residual in
the elements will not vanish any more and consistency will fail.

Approximate Trefftz functions are especially attractive for problems with
smoothly varying material parameters, where no analytic Trefftz function might
be known. Trefftz formulations, possibly with additional volume terms, can be used
with basis functions that are solutions of the equation only up to a certain order; see
[14, 65, 111], where this idea is pursued for DG, UWVF and DEM formulations.

In the following we briefly discuss a few methods that have been proposed
employing oscillatory and k-dependent basis functions that are not Trefftz.

A very well-known scheme of this kind is the partition of unity method (PUM
or PUFEM), introduced by I. Babuška and J.M. Melenk in the mid 1990s, see
e.g. [81]. The PUM combines the approximation properties of Trefftz functions
with the standard variational formulation of the problem, e.g. for the BVP (1) with
�D D ;
Z

˝

�rhu � rhv � k2u v
	

dV C
Z

�R

ik#u v dS D
Z

�R

gR v dS 8v 2 H1.˝/: (13)

This requires the use of H1.˝/-conforming trial and test functions, thus continuity
on interfaces needs to be enforced strongly, which is not viable in Trefftz spaces.
The PUM uses as basis a set of Trefftz functions multiplied to a partition of unity
defined on a FEM mesh, e.g. piecewise linear/multilinear polynomial FEMs on
simplicial/tensor elements. Theorem 2.1 in [81] ensures that the trial space obtained
enjoys the same approximation properties of the Trefftz space employed. If a p-
dimensional local Trefftz space is used in each element, together with a piecewise
linear/multilinear partition of unity, the total number of degrees of freedom used
equals p times the number of mesh vertices, while for a similar Trefftz method on
the same mesh (providing comparable accuracy) it would equal p times the number
of mesh elements; this means that on tensor meshes almost the same number of
DOFs would be employed by the two methods, while on triangles and tetrahedra
a saving of a factor up to two or six, respectively, can be achieved by the PUM.
A shortcoming of the PUM is that the formulation (13) is not sign-definite and
its well-posedness requires a scale resolution condition, while this is not needed
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for some Trefftz schemes such as the TDG/UWVF presented in Sects. 2.2.1 and
2.2.2. Differently from Trefftz schemes, the implementation of the PUM requires
the computation of volume integrals; moreover, the numerical integration of the
PUM basis functions may be more expensive than that of genuine Trefftz functions,
see Sect. 4.1.

The PUM for the Helmholtz and other frequency-domain equations was further
developed by R.J. Astley, P. Bettes, A. El Kacimi, O. Laghrouche, M.S. Mohamed,
E. Perrey-Debain, J. Trevelyan and collaborators, see e.g. [72, 96]. When a PUM
and a standard FEM discrete spaces are combined, e.g. using formulation (13), the
method obtained is termed generalised finite element method (GFEM); e.g. [108]
employs high-order tensor-product polynomials summed to products of plane waves
and bilinear functions. In problems with discontinuous wavenumber k, the PUM can
be applied by coupling the homogeneous regions by means of Lagrange multipliers
as in [73]; this is not necessary as formulation (13) holds on the whole domain, but
enhance the accuracy as in each subdomain only basis functions oscillating with
the correct local wavelength are used. In [51] and related papers, the trigonometric
finite wave elements (TFWE) is described: the PUM is used with special basis
functions adapted to waveguides, lasers and geometries with a single dominant
wave propagation direction. The finite ray element method of [79] consists in the
use of a PUM basis in a first order system of least squares (FOSLS) formulation; as
the unknown is constituted by both u and its gradient, more unknowns are needed
but the system matrix is Hermitian. Finally, in the hybrid numerical asymptotic
method of [42], the PUM space is constructed by multiplying nodal finite elements
to oscillating functions whose phases are derived from geometrical optics (GO) or
geometrical theory of diffraction (GTD), e.g. by solving the eikonal equation, cf.
Sect. 4.2.

Plane wave bases have been combined in [97] with the virtual element method
(VEM) framework [11], in order to design a high-order, conforming method for the
Helmholtz problem, in the spirit of the PUM, but allowing for general polytopic
meshes. The main ingredients of the resulting PW-VEM are (i) a low frequency
space made of low order VEM functions, which do not need to be explicitly
computed in the element interiors, (ii) a proper local projection operator onto a
high-frequency space made of plane waves, and (iii) an approximate stabilisation
term. The implementation of the PW-VEM does not require computation of volume
integrals, and no quadrature formulas are required for the assembly of the stiffness
matrix, for meshes with flat interelement boundaries.

The hybridizable DG method of [91] employs two discontinuous discrete spaces
(one scalar and one vector) and a space of Lagrange multipliers on the mesh
interfaces. Though Trefftz spaces might be used with this formulation, the authors
consider basis functions constructed as products of polynomials and geometrical
optics-based oscillating functions, similar to those in [42] but discontinuous.

A Trefftz approach has been proposed in the context of finite difference schemes
in the flexible local approximation method (FLAME) by I. Tsukerman, see e.g. the
comprehensive review [113]. In the FLAME, the Taylor expansion of the solution
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to be approximated used to define classical finite difference schemes is substituted
by an expansion in a series of Trefftz basis functions, leading to better accuracy.

Oscillatory basis functions have been successfully used in boundary element
methods, in particular for scattering problems, see the review on the hybrid
numerical-asymptotic BEM (HNA-BEM) [21], the plane-wave basis boundary
elements [96, Sect. 3] and the extended isogeometric boundary element method
(XIBEM) [93].

3 Trefftz Discrete Spaces and Approximation

Given a Trefftz variational formulation of a BVP, as those in Sect. 2, the definition
of a Trefftz finite element method is completed by the choice of a discrete space

Vp.Th/ D ˚
v 2 T.Th/ W vjK 2 VpK .K/

� � T.Th/;

where VpK .K/ is a pK-dimensional space of functions v on K such that �v C
k2v D 0. We describe next the main features of the most common local Trefftz
spaces VpK .K/; we do not consider Lagrange multiplier spaces on mesh faces for
the methods in Sect. 2.2.3. The discussion of the conditioning properties of the
basis functions described and of the techniques for their numerical integration is
postponed to Sect. 4.

3.1 Generalised Harmonic Polynomials (GHPs)

Generalised harmonic polynomials are smooth Helmholtz solutions that are separa-
ble in polar and spherical coordinates in 2D and 3D, respectively, i.e. circular and
spherical waves (also called Fourier–Bessel functions or Fourier basis). The local
spaces VpK .K/ are defined as follows:

2D: VpK .K/ D
n
v W v.x/ D

qKX

`D�qK

˛` J`.k jx � xK j/ ei`
 ; ˛` 2 C

o
;

3D: VpK .K/ D
n
v W v.x/ D

qKX

`D0

X̀

mD�`

˛`;m j`.k jx � xK j/Ym
`

� x � xK
jx � xK j

�
; ˛`;m 2 C

o
;

where xK 2 K (e.g. is the mass centre of K), 
 is the angle of x in the local polar
coordinate system centred at xK , J` is the Bessel function of the first kind and order
`, fYm

` g`mD�` is a basis of spherical harmonics of order ` (see e.g. [85, Eq. (B.30)]),

and j` is the spherical Bessel function defined by j`.z/ D
q

�
2z J`C 1

2
.z/. The space

dimension pK is given by pK D 2qK C1 in 2D and by pK D .qK C1/2 in 3D. We call
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qK , the maximal index of the (spherical) Bessel functions used, the “degree” of the
GHP space, as it plays the same role of the polynomial degree in the approximation
theory. A particular feature of GHP spaces is that they are hierarchical.

The name “generalised harmonic polynomials” was coined in [80] and comes
from the fact that they are images of harmonic polynomials under the operator that
maps harmonic functions into Helmholtz solutions, in the framework of Vekua–
Bergman’s theory [12, 114] (see also [50, 87]). The same theory allows to transfer
approximation results for harmonic functions by spaces of harmonic polynomials
into results on the approximation of Helmholtz solutions by GHPs. The density of
GHPs in a space of Helmholtz solutions was proved in [50, Theorem 4.8] and [114,
Sect. 22.8]. Approximation estimates in two dimensions were first proved in [28,
Theorem 6.2] (in L1 norm) and in [80] (in Sobolev norms), and later sharpened
and extended to three dimensions in [86]. We summarise here the estimates of [86,
Theorem 3.2].

Let D 2 R
n, n D 2; 3, be a bounded, open set with Lipschitz boundary and

diameter hD, containing B�hD.xD/ (the ball centred at some xD 2 D and with radius
�hD), and star-shaped with respect to B�0hD.xD/, where 0 < �0 � � � 1=2.
Assume that u 2 HsC1.D/, s 2 N, satisfies �u C k2u D 0 in D and define the
k-weighted Sobolev norm kukj;k;D WD .

Pj
mD0 k2.j�m/ juj2m;D/1=2, j 2 N, where j�jm;D

is the Sobolev seminorm of order m on D.

(i) If n D 2 and D satisfies the exterior cone condition with angle �D� [86,
Definition 3.1] (�D D 1 if D is convex), then for every L � s there exists a
GHP QL of degree at most L such that, for every j � s C 1, it holds

ku � QLkj;k;D � C
�
1C .hDk/

jC6
	
e
3
4 .1��/hDk

�� log.L C 2/

L C 2

��D
hD

�sC1�j

kuksC1;k;D ;

where the constant C > 0 depends only on the shape of D, j and s, but is
independent of hD, k, L and u.

(ii) If n D 3, there exists a constant �D > 0 depending only on the shape of D,
such that for every L � maxfs; 21=�Dg there exists a GHP QL of degree at most
L such that, for every j � s C 1, it holds

ku � QLkj;k;D � C
�
1C .hDk/

jC6	e 3
4 .1��/hDkL��D.sC1�j/hsC1�j

D kuksC1;k;D ;

where the constant C > 0 depends only on the shape of D, j and s, but is
independent of hD, k, L and u.

The main difference between the two results is that the positive shape-dependent
parameter �D entering the exponent of L (thus the p-convergence order) is explicitly
known in 2D (it depends on the largest non-convex corner of D) but not in 3D.

Exponential convergence of the GHP approximation of Helmholtz solutions that
possess analytic extension outside D were proved in [85, Proposition 3.3.3] and
improved in 2D in [56], based upon the corresponding result for harmonic functions
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of [54]. Roughly speaking, the error is bounded by a negative exponential of the
form C exp.�bL/ � C exp.�bp1=.n�1/

D /, while classical bounds for polynomials

achieve at most C exp.�bp1=nD /, since the dimension pD of the GHP space of order
L is O.Ln�1/, while the dimension pD of the polynomial space of degree L is
O.Ln/. Thus, Trefftz methods based on GHPs (and similarly on PWs) can achieve
better asymptotic order than standard schemes; however the value of the positive
coefficients b;C and their dependence on the BVP and discretisation are not entirely
clear.

Approximation estimates in the (discontinuous) spaces Vp.Th/ immediately
follow from the local approximation estimates with D D K, for all K 2 Th. In case
of (H1-conforming) partition of unity spaces enriched with GHPs, global estimates
follow from combining the local estimates with [81, Theorem 2.1].

GHPs have been proposed in numerous Trefftz formulations: LS [88, 107],
UWVF [77], VTCR [68], hybrid-Trefftz [99, Eq. (62)], direct and indirect single-
element schemes [22, 121], HELS [117], MPS [15, 36].

3.2 Plane Waves (PWs)

Plane waves probably constitute the most common choice of Trefftz basis functions.
In this case, the local space VpK .K/ is defined by

VpK .K/ D
n
v W v.x/ D

pKX

`D1
˛` eikd`�.x�xK /; ˛` 2 C

o
; (14)

where fd`gpK`D1 � R
n, jd`j D 1, are distinct propagation directions. To obtain

isotropic approximations, in 2D, uniformly-spaced directions on the unit circle can
be chosen (i.e. d` D .cos.2�`=pK/; sin.2�`=pK//); in 3D, [103] and [94] provide
directions that are “almost equally spaced” (see [1, Sect. 3.4] for a simpler version).
In these cases, the PW spaces are not hierarchical. However, one of the potential
benefits of PW approximations is the possibility to depart from the isotropic case
and to adapt the basis propagation directions to the specific BVP at hand and to
different elements, either a priori or a posteriori, see Sect. 4.2.

The linear independence of arbitrary sets of plane waves (and of their traces)
is proved in [1, 20]. PW bases whose linear independence does not degenerate for
small values of khK were introduced in [46, Sect. 3.1] in 2D and in [86, Sect. 4.1]
in 3D (see also [85, Sect. 3.4.1]) for analysis purposes. These stable PW bases
converge to GHP bases in the low-frequency limit [86, p. 815]. The existence
of these stable bases, which is instrumental to the derivation of approximation
estimates for Helmholtz solutions in PW spaces in [86], is guaranteed, provided
that the set of directions fd`gpK`D1 constitutes a fundamental system for certain
harmonic polynomials. In 2D, any choice of pK D 2qK C 1 distinct directions,
qK being the maximal degree of the considered harmonic polynomials, guarantees
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this property. In 3D, sufficient conditions on pK D .qK C 1/2 directions are stated in
[86, Lemma 4.2].

Approximation estimates in PW spaces can be derived from similar bounds for
GHPs such as those in Sect. 3.1. In [80, Chap. 8], GHPs were approximated by PWs
by approximating their smooth Herglotz kernel with delta functions, leading to p-
estimates in 2D, while in [86] the Jacobi–Anger expansion was used to link PWs and
GHPs in 2D and 3D. Theorems 5.2 and 5.3 of [86] (see also [85, Sect. 3.5]) show that
Helmholtz solutions of given Sobolev regularity can be approximated in PW spaces
with hp-estimates similar to those shown in Sect. 3.1 for GHPs. For PWs, these
estimates hold with L D qK , so that qK plays the role of a “degree” for the considered
PW space. As mentioned, for these bounds to hold in 3D, the PW directions have to
satisfy some further conditions. A different derivation of h-approximation estimates
based on a Taylor argument can be found in [19, Theorem 3.7]. In [95], the PW
approximation of Helmholtz solutions on the unit disc is analysed in detail, together
with the conditioning of different linear systems used for its computation (least
squares and collocation for a Dirichlet problem on the disc) and the implications on
the accuracy of the approximation computed in finite-precision arithmetic. We refer
again to [56, Sect. 5.2] for the exponential convergence in 2D of PW approximations
of analytic Helmholtz solutions (see also [85, Remark 3.5.8] which holds in 2D
and 3D).

Similar to PWs are the evanescent waves: the basis elements have the same
expression v.x/ D eikd�x but with a more general d 2 C

n, d �d D 1. If d D dR C idI ,
with dR;dI 2 R

n, then v oscillates in the direction dR (with wavenumber kjdRj � k)
and decays exponentially in the orthogonal direction dI (i.e. jv.x/j D e�kdI �x).
Evanescent waves are used in combination with plane waves to approximate
interface problems in the DEM [110] and the UWVF [77], and to represent outgoing
waves in a 2D unbounded half-strip of the form fa < x < b; y > cg in [20, 119].

A special combination of propagative and evanescent waves is typically used
in the WBM. We describe a 2D version of this space as in [25, Eqs. (14)–(21)]
(see [27, Sect. 4.1] for 3D). This space is not invariant under rotation but depends
on the choice of the Cartesian axes. For a mesh element K, we fix a truncation
parameter N > 0 (typically 1 � N � 6) and define Lx WD sup.x1;y1/;.x2;y2/2K jx1 � x2j
and Ly WD sup.x1;y1/;.x2;y2/2K jy1 � y2j as the edge lengths of the smallest rectangle
containingK and aligned to the Cartesian axes. Two sets of basis functions are used:

cos.kxjx/ e˙i
q
k2�k2xj y; kxj WD j�

LKx
; j D 0; : : : ; bNkLKx =�c;

e˙i
q
k2�k2yj x cos.kyjy/; kyj WD j�

LKy
; j D 0; : : : ; bNkLKy =�c;

for a total dimension pK D 4 C 2.bNkLx=�c C bNkLy=�c/. Each basis function
is half the sum of two plane (or evanescent) waves, symmetric to one another with

respect to the x or y axis: e.g. cos.kxjx/ exp.i
q
k2 � k2xjy/ D 1

2
.eikdC

xj �x C eikd�

xj �x/,
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with dẋj WD .˙kxj=k;
p
1 � .kxj=k/2/. A maximum of 4 C 2.bkLx=�c C bkLy=�c/

basis functions are propagative PWs, this number designed to keep the conditioning
under control. IfN > 1, then roughly a fraction .N�1/=N of the total basis functions
are evanescent waves decaying in a direction parallel to one of the Cartesian axes.
Refinement is obtained by increasing N: for N � 1 only propagative waves are
present, for higher values evanescent waves are introduced.

In 2D, both evanescent and plane waves may be written as expf k
2
.i.�C 1=�/xC

.� � 1=�/yg D expfik.x sin 
 C y cos 
g, parametrised by � 2 C or 
 2 C with
� D ei
 ; these waves constitute the test space (but usually not the trial) for the
Fokas method in [23, 106] and [20, Sect. 7.3.4] (see also Sect. 2.4).

3.3 Fundamental Solutions and Multipoles

Fundamental solutions and multipoles are Helmholtz solution in the complement of
a point and satisfy Sommerfeld radiation condition (limr!1 r

n�1
2 . @u

@r � iku/ D 0,
where r D jxj). They are particularly useful to define Trefftz spaces on unbounded
elements, e.g. for scattering problems.

If the local spaces are spanned by fundamental solutions, simple sources are
located at distinct poles x` in the complement of K:

2D W VpK .K/ D
n
v W v.x/ D

pKX

`D1
˛`H

.1/
0 .k jx � x`j/; ˛` 2 C

o
;

3D W VpK .K/ D
n
v W v.x/ D

pKX

`D1
˛`

e�ikjx�x`j

jx � x`j ; ˛` 2 C

o
;

where H.1/
0 is the Hankel function of the first kind and of order 0. Different a priori

or a posteriori strategies are used to fix the location of the poles, see Sect. 2.1.1
and the references cited therein. As the distance of the points x` from K increases,
these basis functions approach plane waves, so they permit flexibility not only in the
choice of the propagation directions but also in the wavefront curvature.

Apart from the MFS and its modifications (see Sect. 2.1.1 and [1, 9, 10, 31, 92,
120]), spaces of fundamental solutions have been used in connection to the UWVF
(see [57], where ray-tracing is used to determine the poles, and [58]).

Theorem 6 of [104] ensures that Helmholtz solutions in K can be approximated
in Hölder norms by fundamental solutions centred at any “embracing boundary” in
2D and 3D, under weak assumptions on the regularity of @K. We are not aware of
any result providing orders of convergence.

An alternative approach consists in choosing local spaces generated by multipole
expansions, where multiple sources with increasing order are located at a single pole
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x0 (or only at few poles):

2D W VpK .K/ D
n
v W v.x/ D

qKX

`D�qK

˛`H
.1/

` .k jx � x0j/ ei`
 ; ˛` 2 C

o
;

3D W VpK .K/ D
n
v W v.x/ D

qKX

`D0

X̀

mD�`

˛`;m h.1/
`
.k jx � x0j/Ym

`

� x � x0
jx � x0j

�
; ˛`m 2 C

o
;

where H.1/

` (h.1/` ) are Hankel functions (spherical Hankel functions, respectively) of
the first kind and order `. As for the GHPs in Sect. 3.1, 
 is the angle of x in the local
coordinate system centred at x0, which is located in the complement of K, and the
space dimension is pK D 2qKC1 in 2D and pK D .qKC1/2 in 3D. According to [10,
Remark 2.2], fundamental solutions lead to more stable methods than multipoles.

Multipole spaces have been used in connection to LS schemes [90, 107], WBM
[25, Eq. (23)], [27, Sect. 4.1.2], hybrid-Trefftz [99, Eq. (63)], HELS [117], source
simulation techniques [92], null-field [78] and single-element schemes [8, 22, 121].
In [49] and related papers, some 2D multipoles with suitably chosen index ` (not
necessarily integer) are used on infinite sectors, in such a way to ensure continuity
of discrete functions across rays; this might be more efficient than full multipole
spaces for solutions with a preferred propagation direction.

3.4 Other Basis Functions

Other discrete Trefftz spaces have been proposed in literature for use with the
various approaches covered in Sect. 2.

In 2D, corner waves such as J`=˛.kjxj/ sin.`
=˛/, with ` 2 N and 0 < ˛ < 2,
capture the behaviour of Helmholtz solutions near a domain corner of angle �˛.
They have been used e.g. in the WBM [24], in LS methods [10, 107, 119] and
in the MPS [15, 36]. In [120], they are used with ˛ D 2 on tips of 1D screens
to represent the strong singularities of the solution in a non-Lipschitz domain.
Theorem 6.3 of [28] uses Vekua–Bergman theory to give orders of convergence for
the approximation of singular functions by spaces of corner waves and GHPs (see
also [10, Sect. 5] and references therein). We are not aware of any use of similar
functions in 3D.

The wave band functions, introduced in the VTCR context [100], are Herglotz
functions with piecewise-constant kernel, e.g.

R b
a eik.x cos 
Cy sin 
/ d
 in 2D.

In the presence of a circular hole, suitable combinations of Hankel and Bessel
functions a priori fulfil homogeneous boundary conditions [107, Eq. (13)].

If the wavenumber varies inside an element, the basis functions described so
far do not lead to Trefftz methods. In case of linearly variable wavenumber, Airy
functions can be used to construct Trefftz spaces [111]. In [64, 65] generalised plane
waves in the form eP.x/, for suitable polynomials P, are introduced and analysed in
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a UWVF setting: they solve a perturbed Helmholtz problem and converge with high
orders in hK . Similar “almost-Trefftz” waves are used in [43] and named oscillated
polynomials. Modulated plane waves, i.e. products of PWs and polynomials, are
the basis functions of the DG method of [13, 14]; as they are only “approximately
Trefftz”, volume terms appear in the formulation.

Products of (continuous) low-order polynomials and PWs or GHPs constitute the
basis of the PUM [51, 73, 81, 96, 108], while products of polynomials and oscillating
functions derived from high-frequency asymptotics are basis elements in [42, 91].

4 Further Topics

4.1 Assembly of Linear Systems

All the Trefftz finite element methods for (1) discussed in Sect. 2 give rise to dense
or sparse linear systems of equations. Entries of coefficient matrices are obtained
by integrating products of (derivatives of) trial and test functions over bounded d-
dimensional sub-manifolds of ˝ , d < n. The stable and accurate (approximate)
evaluation of these integrals is a key implementation issue.

Among all Trefftz approximation spaces and associated bases presented in
Sect. 3, plane waves (PWs) eikd�x (either propagative with d 2 R

n or evanescent
with d 2 C

n) are exceptional, because they allow a closed-form evaluation of
their integrals over any flat sub-manifold with piecewise flat/straight boundary. For
instance, in all variants of PW-based Trefftz methods on polyhedral meshes in 3D,
expressing mesh faces by 2D parametrisations, we eventually encounter integrals of
the form

Z

F
exp.w � x/ dV; F � R

2 a bounded polygon, w 2 C
2 constant. (15)

Then we can take the cue from [38, Sect. 2.1] or [29, Sect. 4] and apply integration
by parts in order to reduce (15) to integrals over the straight edges e1; e2; : : : eq,
q 2 N of F:

Z

F
exp.w � x/ dV D 1

w � w
Z

F
w � r exp.w � x/ dV D

qX

`D1

w � n`
w � w

Z

e`

exp.w � x/ ds;

where n` is the exterior normal at e`. Then, as in [44, Chap. 2], if e` D Œa;b�,
a;b 2 R

2, we find,
R
e`

exp.w � x/ ds D exp.w � a/jb � aj .w � .b � a//, where
 .z/ WD .exp.z/ � 1/=z. Of course, a numerically stable implementation of this
function for small arguments is essential.1 This approach can be generalised to yield

1A stable algorithm for point evaluations of  even for arguments close to 0 is provided by the
MATLAB function expm1.
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analytic formulas for computing integrals of products of PWs times polynomials,
see [29, 38], with increased computational effort, however.

Approximate evaluation of the integrals becomes inevitable for all choices of
Trefftz basis functions other than PWs, and even for a PW basis on meshes with
curved elements. Then Gauss–Legendre numerical quadrature seems to be the most
widely used option. However, the integrands may be oscillatory, which delays the
onset of (exponential) convergence of the quadrature error until the number of
quadrature points surpasses a threshold roughly proportional to the ratio of the local
mesh size and the wavelength. This leads to higher computational cost per degree of
freedom for larger values of khK . One may think of using special quadrature rules
for oscillatory integrals, as derived, for instance, in [62]. Those avoid an increase in
the number of quadrature points for growing spatial frequency of the oscillations,
but unfortunately require precise knowledge of the oscillatory term in the integrand.

4.2 Adaptive Trefftz Methods

Besides classical h-, p- or hp-adaptivity, Trefftz methods offer scope for more
sophisticated adaptive strategies consisting in the choice of specific basis functions
for different BVPs and in different mesh elements, either a priori or a posteriori.

The main strand of a priori adaptive Trefftz methods falls into the category of
hybrid numerical-asymptotic methods. High-frequency limit models, such as ray
optics or geometric theory of diffraction (GTD), guide the selection of local Trefftz
spaces in the individual cells of a mesh. In a non-Trefftz PUM framework this
idea was pursued in [42], and within the hybridizable DG method in [91], in both
cases for 2D acoustic scattering at a smooth sound-soft object. In these works, local
phase factors x 7! exp.ikS.x// derived from reflected and diffracted waves multiply
standard continuous nodal basis functions, in [42], or local polynomials, in [91],
thus generating a basis for (local) trial spaces.

The policy of incorporating local directions of rays is particularly attractive for
PW-based methods, because PW basis functions naturally encode a direction of
propagation. For problems where excitation is due to an incident PW and material
properties are piecewise constant, ray tracing and related techniques [91, Sect. 3.2]
based on geometric optics (specular reflection and Snell’s law of refraction at
material interfaces) can provide information about the local orientation of wave
fronts for k ! 1. PWs matching the found ray directions are then used to
build local bases, either exclusively or augmented by a reduced set of generalised
harmonic polynomials (GHPs) or “equi-spaced” PWs.

This idea for TDG was first outlined and tested in [13] and further elaborated
and extended in [57, Chap. 5] (for UWVF). In the latter work, in an attempt to
resolve curved wave fronts and take into account diffracted waves from corners,
also Hankel functions x 7! H.1/

0 .kjx � y�j/ with y� outside a mesh cell have been
proposed as local basis functions. Approximation of curved wave fronts deduced
from GTD corrections is also attempted in [14]. There the authors move beyond
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Trefftz methods and use DG with trial spaces of polynomially modulated PWs,
which are more suitable for approximating propagating circular waves.

In simple 2D situations with convex smooth or polygonal scatterers and incident
plane wave, overall accuracy seems to benefit substantially from a priori directional
adaptivity. However, if there are more than only a few dominant wave directions
as in the case of more complicated geometries, trapping of waves, dark zones and
shadow boundaries, current directional adaptivity soon meets its limitations. On the
other hand, this strategy appears as the most promising way to achieve k-uniform
accuracy with numbers of degrees of freedom that remain k-uniformly bounded
or display only moderate growth as k ! 1. The potential of this idea has been
strikingly demonstrated in the case of BEM for 2D scattering problems [21].

A Posteriori Directional Adaptivity seeks to extract information about dominant
wave directions from intermediate approximations of u. A refine-and-coarsen
strategy is embraced in [13]. In each step of the adaptive cycle it first computes
a PWDG solution u of the scattering problem based on a relatively large number of
local Trefftz basis functions (GHPs and PWs). Subsequently, by solving local non-
linear L2-least squares problems, the directions of fewer PWs are determined so that
u can still be well approximated locally.

A p-hierarchical error indicator is studied in [44]. In a step of the adaptive
scheme starting from the approximate solution u a presumably improved solution Ou
is computed using double the number of local PWs. Then a single local plane wave
direction dK on a mesh element K is extracted from the error e.x/ WD Ou.x/ � u.x/
through the projection formula

edK WD Re
Z

K

re.x/
ike.x/

dV; dK WD
edK

jedK j :

Detailed numerical experiments are reported in [44, Chap. 6]. In the pre-asymptot-
ic regime, when the resolution of the trial spaces is still rather low, one observes
a pronounced gain in accuracy in the case of the adaptive approach compared to
approximation with the same total number of equi-spaced PWs.

Directional adaptivity for Trefftz methods has also been tried in other flavours.
In the context of least squares methods as discussed in Sect. 2.1 an offset angle for
the sets of local equi-spaced PWs is introduced as another degree of freedom in [4],
aiming to align them with a local dominant wave direction. For the VTCR method
presented in Sect. 2.3.1, an error indicator based on local wave energy is used in
[101] to steer angular refinement of local Trefftz spaces.

A Posteriori Mesh Adaptivity is considered in [66], where classical “elliptic”
error estimation and mesh refinement strategies are adapted for the h-version of
TDG. In a low-frequency setting, the method inherits the good performance of the
underlying adaptive mesh refinement algorithms for polynomial DG for the Poisson
equation. However, there is little hope that this carries over to larger wavenumbers k.
A similar error estimator, aimed at adaptive mesh refinement, has been described in
[2, Sect. 3.2] for the DEM/DGM presented in Sect. 2.2.3.
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4.3 Ill-Conditioning and Solvers

The linear systems of equations spawned by PW-based finite element methods are
highly prone to ill-conditioning, when high resolution trial spaces are used, see
e.g. [60, Sect. 5], [37, 40, Sect. 4.3], and [72] for a PUM setting. This is largely
caused by an inherent instability of the PW basis on cells, whose size is relatively
small compared to the wavelength. Intuitively, for jxj 	 k�1, the functions x 7!
eikd`�x from (14) are almost constant, hence, nearly linearly dependent, cf. [72,
Sect. 4.2]. The same heuristics applies, when their density increases; even for cell
sizes comparable to the wavelength, PWs are hardly distinct when their directions
are close, cf. [72, Sect. 4.3].

Empirically, for the local PW Galerkin matrix MK associated with the L2 inner
product on a single mesh cell K, we find that its spectral condition number grows
like � h�q

K for cell size hK ! 0, where q > 0 is proportional to the number pK
of (approximately uniformly spaced) PWs in 2D, and to the square root of pK in
3D. Essentially, q is related to the “degree” of the considered set of pK PWs; see
Sect. 3.2. Even worse, the condition number soars exponentially in q: cond2.MK/ �
e˛q for q ! 1 and ˛ > 0; see Appendix. A similar explosion of condition numbers
is observed for the full systems matrices as meshes are refined or more PW basis
functions per element are used.

There is circumstantial evidence that direct sparse elimination can cope fairly
well with the ill-conditioned linear systems arising from UWVF or PUM, see [40,
Sect. 5.3.3], [77]. Yet, eventually the instability of the basis will impact the quality
of the solution [108, Sect. 5.4]. A remedy proposed in [60] for the UWVF is to
limit pK based on monitoring condition numbers of element matrices. Apparently,
this also curbs the condition number of the global system matrix. Alternatively,
there exist different heuristic recipes for choosing a priori the number of PWs per
element to balance accuracy and conditioning: in 2D, the widely cited [61, Eq. (14)]
suggests pK D round.khK C C.khK/1=3/ with 3 � C � 14 for the UWVF, while
[70, Sect. 5.1.1] proposes pK D b2khKc for the VTCR. For the WBM, [25, Sect. 3.2]
proposes a rule to balance propagative and evanescent basis functions, see Sect. 3.2.

The most straightforward cure for instability would trade the PW basis of VpK .K/
from (14) for a more stable basis, found by local orthonormalisation as in the case
of polynomial FEM, cf. the approach from [91, Sect. 3.1]. However, instability may
sneak in through the back door and manifest itself in severe impact of round-off
errors during orthonormalisation and recombination of element matrices. The use
of high-precision arithmetic may be advisable, but has never been documented.

For the sake of stability, PWs may be replaced by the generalised harmonics
polynomials introduced in Sect. 3.1. In 2D, a scaling of the GHPs has been devised
in [77], in order to lower the condition number of the resulting UWVF:

J`.k jx � xK j/ ei`


k
qˇ
ˇJ 0̀ .khK/

ˇ
ˇ2 C jJ`.khK/j2

:
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In [77], it is also shown that the conditioning of GHP-based UWVF schemes is
better than for methods based on PWs, and that it improves on regular meshes. This
might be related to the orthogonality of GHPs on balls.

The numerical experiments in [57, Sect. 3.7] suggest that the use of fundamental
solutions as basis functions may considerably reduce the conditioning of UWVF
matrices, at the expense of accuracy. Both accuracy and conditioning increase the
further the centres of the fundamental solutions are from the element.

The use of iterative solvers for linear systems generated by Trefftz methods
entails preconditioning. For PW basis functions, the first proposal in [19, Sect. 2.4]
for the UWVF was a local preconditioner, equivalent to an orthonormalisation
of the PW basis with respect to an L2 inner product on the boundary of mesh
cells. An interesting connection of the local preconditioner with non-overlapping
optimised Schwarz domain decomposition methods was discovered in [16]. The
local preconditioner was used in conjunction with a BiCGStab Krylov subspace
solver in [60] and augmented by a coarse-grid correction in the spirit of non-
overlapping domain decomposition in [59, 118]. The coarse space is again spanned
by PWs. This is also true for the two-level sub-structuring preconditioner proposed
for DEM/DGM (see Sect. 2.2.3) in [34]. Two-level, non-overlapping Schwarz
domain decomposition preconditioners for PWDG (essentially UWVF) have been
tested in [5]; these preconditioners seem to be robust with respect to the wavenumber
k and the local number of PW directions, although they do not seem to be perfectly
scalable with respect to the number of subdomains.

5 Assessment and Conclusion

Faced with a flurry of different Trefftz methods and a wealth of numerical
data, we feel at a loss about making unequivocal statements about the merits of
Trefftz methods, let alone ranking them according to some undisputed criteria.
Rigorous theory is available for LS methods (Sect. 2.1), TDG (Sect. 2.2.1), and
PUM (Sect. 2.5). Combined with approximation results for suitable Trefftz bases,
this leads to better asymptotic estimates in terms of orders of convergence in
the number of degrees of freedom to what is available for polynomial FEM (e.g.
[53, 56]). The dependence of crucial constants on the wavenumber k is explicit in
several cases, but the orders in k are usually not better than for polynomial methods.
Thus theory fails to provide information about the key issue of “k-robust” accuracy
with “k-independent” cost. Moreover, numerical dispersion will also haunt local
Trefftz methods in the case of h-refinement; thus they provide no escape from the
pollution error.

We also advise caution when reading numerical experiments, because they may
be tarnished by selection bias, making authors subliminally pick test cases matching
the intended message of an article. Disregarding this, even “objective” comparisons
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are inevitably confined to a few simple model problems. This is problematic,
because different model problems sometimes seem to support opposite conclusions.

From our experience, the power of Trefftz methods can best harnessed by p-
refinement using approximation by Trefftz functions in regions as large as possible.
In the presence of singularities we recommend either the use of corner basis
functions (Sect. 3.4) in 2D, or hp-refinement, maybe using standard polynomial
approximation on small elements as in [89]. There is a solid theoretical foundation,
when this is done in the LS, TDG, or PUM framework. The resulting methods
should be able to compete successfully with polynomial FEM even in their more
sophisticated versions tailored to wave propagation problems [30, 35, 82].

The discussion of adaptive approaches in Sect. 4.2 hints that some Trefftz trial
spaces have approximation capabilities well beyond the reach of polynomials.
Directional adaptivity seems to be very promising, but much research will still be
required to convert it into a reliable practical algorithm. The same applies to iterative
solvers and preconditioners for Trefftz schemes, see Sect. 4.3, which might also
benefit considerably from the extra information contained in Trefftz trial spaces.
Hence, we believe that many exciting possibilities offered by the idea of Trefftz
approximation still await discovery and that the full potential of Trefftz methods is
only gradually being realised.

Appendix: Condition Numbers of Plane Wave Mass Matrices

Given a wave number k > 0 and p 2 N distinct unit vectors d` 2 R
n, ` D 1; : : : ; p,

and a domain K � R
n with barycentre xK , the symmetric positive definite plane

wave element mass matrix MK on K is defined as

MK WD
�Z

K
eikd` �.x�xK / � e�ikdm�.x�xK / dV

�p

`;mD1
:

For n D 2 we computed spectral condition numbers of MK for equi-spaced
directions d` D .cos.2�`=p/; sin.2�`=p//, ` D 0; : : : ; p � 1. For n D 3 we choose
the directions d` as the “minimum norm points” according to Sloan and Womersley
[103, 116]. These points are indexed by a level q 2 N and p D .q C 1/2. The
spectral condition numbers are plotted in Fig. 1 for n D 2, K D .�1; 1/2, and Fig. 2
for n D 3, K D .�1; 1/3. They have been computed with MATLAB using the high-
precision arithmetic (200 decimal digits) provided by the Advanpix Multi-Precision
Toolbox.2

2http://www.advanpix.com/.

http://www.advanpix.com/
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