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Preface

This volume contains survey articles from the topics of a number of the plenary
talks of the 101st LMS-EPSRC Symposium entitled Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential Equations
held at Durham University between 8 and 16 July 2014.

The symposium was devoted to recent advances in numerical methods for partial
differential equations (PDEs) using non-polynomial basis functions, mimetic finite
difference methods, and discontinuous Galerkin (dG) methods. Moreover, since
recent works in these directions have highlighted unforeseen pairwise connections
between the different approaches, a particular emphasis in this symposium has been
to explore further links and to exchange ideas and techniques between them.

The scientific program included six short courses given by Tom Hughes (Austin,
Texas) on isogeometric analysis, Ralf Hiptmair (ETH, Zurich) on plane wave
discontinuous Galerkin methods, Leszek Demkowicz (Austin, Texas) on discontin-
uous Petrov-Galerkin method, Bernardo Cockburn (Minnesota) on hybridized DG
methods, Chi-Wang Shu (Brown) on discontinuous Galerkin methods for hyper-
bolic equations with delta-singularities, and Konstantin Lipnikov (Los Alamos)
on mimetic finite difference methods. These were complemented by plenary
lectures by Assyr Abdulle (EPFL, Lausanne), Mark Ainsworth (Brown), Lourenco
Beirdo Da Veiga (Milan), Pavel Bochev (Sandia), Annalisa Buffa (Pavia), Erik
Burman (UCL), Alexandre Ern (EPC, Paris), Oleg Davydov (Giessen), Charles
Elliott (Warwick), Alexandre Ern (Paris), Ivan Graham (Bath), Paul Houston (Not-
tingham), Charalambos Makridakis (Sussex), Gianmarco Manzini (Pavia), Peter
Monk (Delaware), Alessandro Russo (Milan), Robert Scheichl (Bath), and Frédéric
Valentin (Petropolis). Further, a session with speakers from industry was organized
with invited speakers Paul Childs (Schlumberger Gould Research, Cambridge) and
Halvor Nilsen (SINTEF, Norway) who presented very interesting lectures closely
related to the symposium’s topics.

During the symposium, a number of extremely interesting discussions took place,
in particular, on the connections, similarities, and differences of related numerical
methods, especially in the context of variational methods on polytopic meshes,
such as mimetic finite difference methods, virtual element methods, polygonal dis-

v



vi Preface

continuous Galerkin methods, and hybrid-type discontinuous Galerkin approaches.
Further, a number of stimulating discussions and talks were given on abstraction
of numerical methods through different frameworks (such as the HDG and DPG
frameworks of discontinuous variational methods). As an example of an outcome
from the aforementioned discussions, two of the main speakers in the symposium,
B. Cockburn and A. Ern, recently wrote a research article entitled “Bridging the
hybrid high-order and hybridizable discontinuous Galerkin methods”.

This volume collects 13 contributions, by several of the main speakers. The type
of contributions ranges from new applications of some of the emerging techniques,
to new powerful frameworks in which many of the new techniques can be inserted
and better understood, to careful analyses of the differences and of the similarities
of wide ranges of new methods that have been proposed independently, by various
groups all over the planet, in the very last few years.

Only an intensive comparison of all these new ideas on realistic problems of
interest in applications will help in understanding which method is more suited for
each class of problems. However, we believe that this book could be an excellent
guide for young (and less young) researchers who are willing to get closer, to
familiarize, and possibly to start working, on some of these new methods, trying
to dig into their inner mathematical nature and/or testing them on new problems.

If you have been curious about all these new instruments, this book is an
ideal help to start learning more about them, their main features, their reciprocal
relationships, and their possibilities in applications.

We would like to express our gratitude to Mark Ainsworth (Brown) and Endre
Siili (Oxford), for their help and support as scientific advisors to the meeting, and to
the LMS and EPRSC for giving us the opportunity to organize this event. Moreover,
we would also like to thank the Numerical Algorithms and Intelligent Software
(NAIS) consortium for additional financial support. Finally, we would like to extend
our thanks to the Durham Symposia administration staff for all their help.

Glasgow, UK Gabriel R. Barrenechea
Pavia, Italy Franco Brezzi
Leicester, UK Andrea Cangiani

Leicester, UK & Athens, Greece Emmanuil H. Georgoulis
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Numerical Homogenization Methods
for Parabolic Monotone Problems

Assyr Abdulle

Abstract In this paper we review various numerical homogenization methods for
monotone parabolic problems with multiple scales. The spatial discretisation is
based on finite element methods and the multiscale strategy relies on the heteroge-
neous multiscale method. The time discretization is performed by several classes
of Runge-Kutta methods (strongly A-stable or explicit stabilized methods). We
discuss the construction and the analysis of such methods for a range of problems,
from linear parabolic problems to nonlinear monotone parabolic problems in the
very general 17 (W!?) setting. We also show that under appropriate assumptions,
a computationally attractive linearized method can be constructed for nonlinear
problems.

1 Introduction

Parabolic problems with multiple scales enter in the modelling of a wide range
of problems, e.g., thermal diffusion in composite materials, flow problems in
heterogeneous medium, etc. We are interested in problems in which the microscopic
heterogeneities occur at a much smaller scale than the macroscopic length scale
of interest that describes the physical phenomenon of interest. For such problems
mathematical homogenization [18, 40] gives the adequate theoretical framework to
describe an effective solution originating from the limit of the fine scale solution
when the size of the small scales tends to zero. An effective equation for this
effective solution can also be established. However, except for special cases,
there are no explicit expressions for the effective coefficients (diffusion tensor)
of the upscaled equation. The aim of numerical homogenization is to construct
computational strategy to compute an approximation of these effective equations
and sometimes to capture fine scale oscillations of the multiscale solution. The
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2 A. Abdulle

theory of homogenization is at the root of two classes of numerical methods that
we briefly discuss

* methods based on oscillatory basis functions built into a coarse FE space: this
idea goes back to Babuska and Osborn [16] and is based on solving local
fine scale problems within each macroscopic element of the coarse FE space.
Elaboration and generalization have been developed within the multiscale finite
element method (MSFEM) [15, 38];

* methods supplementing upscaled data for resolving the effective equation:
this idea has been widely used by engineer (see e.g., the references in [32])
and turned into a general framework in the heterogeneous multiscale method
(HMM) [3, 4, 55]. In the finite element context, this latter method is called
the finite element heterogeneous multiscale method (FE-HMM) and is based
on a macroscopic finite element method with input data given by microscopic
sampling of the original fine scale problem in patches of size proportional to the
fine scale oscillation.

These two classes of methods use either in their formulation or in their analysis the
theory of homogenization in an essential way. Further related to homogenization
theory we mention the sparse tensor product FEM based on the two-scale con-
vergence theory and its generalization [14, 48] and the projection based numerical
homogenization [20, 31] using successive projection of a fine scale discretization of
the multiscale equation into a lower dimensional space and iteratively eliminating
the fine scale component of the numerical solution.

We also mention multiscale methods that share some similarities with numerical
homogenization methods and have been used for homogenization problems. We
start with the variational multiscale method [39]. In this approach one starts from
a coarse finite element space that cannot resolve the multiscale structure of the fine
scale problem. This coarse space is supplemented by a fine scale space and one
seeks a numerical solution in the form of a coarse and fine scale components. The
fine scale component is obtained by solving localized fine scale problems. Once
these problems solved one can solve the coarse scale approximation. Using local
quasi-interpolation and an orthogonal decomposition of the coarse and fine spaces,
exponential decay of the localisation error has been first proved in [46] (see also
[37]). This new approach of the variational multiscale method is called Localised
Orthogonal Decomposition (LOD). Finally we also mention methods based on
harmonic coordinates [49]. The idea of this method is to compute an appropriate
change of coordinates (based on the full fine scale problem) so its composition with
the fine scale problem is a slowly varying function that can be approximated in a
coarse space. This approach share some similarity with the MsFEM proposed in
[15].

In this article, we review several numerical homogenization methods based on
the HMM for the solution of the following class of monotone parabolic multiscale
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problems in a finite time interval (0, 7)

duf (x, 1) — div(A®(x, Vu®(x, 1)) = f(x) in 2 x (0,7),

u*(x,1) =0 on 32 x (0,7), u®(x,0) = g(x) in £2, M
with initial source and initial conditions f and g. The maps A°: 2 x R? — R? are
defined on a domain £2 x RY, where 2 C R? d < 3, and A°(-, £): 2 — R are
Lebesgue measurable for every £ € RY. The indexing by an (abstract) parameter
e > 0 indicates that these maps are subject to rapid variations on a very fine scale
relative to the size of the domain §2. For the finite element method we will assume
that §2 is a polygonal domain and we will sometimes assume that it is convex. For
simplicity neither time dependent source terms f(x, f) or time-dependent maps of the
form A°®(x, t, Vu®(x, t)) are considered but we note that many of the results presented
in this review can be extended for these situations.

Let us briefly review the literature on multiscale methods for the parabolic
problems (1). For linear problems, most of the methods described above can be used.
We mention [29] for MSFEM type methods, [11, 47] for HMM type methods, [45]
for LOD type methods. While most of the numerical method have been analysed
for the Euler explicit or implicit time discretization, a fully discrete a priori error
analysis in space and time for several classes of implicit and explicit Runge-Kutta
methods has been given in [9]. For nonlinear monotone parabolic problems, the
literature is much more scarce and only methods supplementing upscaled data for
resolving the effective equation have been analyzed. In [30] monotone problems
with stochastic heterogeneities have been analysed however without convergence
rates and for non-discretized micro-problems. In [6, 13] a priori error analysis
(in space and time) for two different types of HMM is established under general
assumption on the nonlinearity. We close this review by mentioning that for elliptic
problems, a posteriori error estimates have been obtained for an HMM type method
in the strongly monotone and Lipschitz case in [36] and a priori error estimates
for general numerical quadrature methods have been derived in [5]. Finally in
[33] numerical homogenization methods (both of HMM and MsFEM types) for
monotone PDEs associated to minimization problems have been studied. We note
in contrast that for the class of problems (1) discussed in this review, we make no
assumptions of an associated scalar potential for A°.

In this paper we aim at reviewing the numerical homogenization methods based
on the HMM that have been developed in [6, 9, 13] for parabolic problems (1).
We aim at giving a unified description of various error estimates and numerical
discretization variant of the FE-HMM

 for linear problem the spatial discretisation based on the FE-HMM is coupled
with general classes of Runge-Kutta methods (strongly A-stable and explicit
stabilized methods), and fully-discrete space-time analysis is proposed for this
family of space-time multiscale solvers [9];

» for nonlinear monotone problems a fully discrete space-time method that couples
the FE-HMM in space with the backward Euler method in time is shown to
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converge in the I’(W!”) and C°(L?) norms towards the homogenized solution
u® for Problem 1 under the general assumptions. Space-time convergence rates
are established for strongly monotone and Lipschitz maps [6];

 for strongly monotone and Lipschitz maps A° a new linearized scheme that
relies only on linear micro and macro finite element (FE) solvers is proposed
and analyzed. A fully discrete space time analysis is also provided for this
scheme [13].

We briefly sketch the type of convergence rates that we aim at deriving in this
paper: under appropriate assumptions on the tensor 4%, the family of solutions
u® converges, up to a subsequence, to a homogenized solution u° solution of a
homogenized equation similar to (1) but with .A¢ replaced by an effective map .A°
that is unknown explicitly (see Sect. 2). In the context of an FE-HMM method, the
goal is to derive an error estimate of the type

. 12
max [0 1) —ull] ) + (Z AL| Vi (1) — VunHHiz(Q)> 2)

n=1
ro o (MY H
<C |:(At) + H + (8) + Tmod + Hg — Uy ||L2(.Q):| ’

where C is independent of Af, H, h and ry,,;. Here H is the size of a macroscopic
triangulation that is used in the FE-HMM to approximate the effective solution u°
and £ is the mesh size of a microscopic triangulation used on a patch Ks around
macroscopic quadrature points. The diameter of the patch K is of size § typically
8 = O(e). As h must resolve the fine scale oscillation we have h < & < §. We notice
two important facts

e as h/e = 1/Ny, where N, is the number of points per oscillation length
and the quantity //¢ in the estimate (2) is thus independent of ¢ and measure
the degrees of freedom used to resolve the oscillation; if ¢ — 0, so does the
patch Ks hence we solve the fine scale only on small fraction of the macroscopic
computational domain and the overall computational cost is independent of ¢;

¢ the quantities, At, H, h are discretisation parameters while r,,,; quantifies the
error due to the upscaling procedure, i.e., by replacing the true homogenized map
A° by a map computed from some microscopic models. The coupling condition
(periodic, Dirichlet), the size of the sampling domain enter in this modelling error
that is not influenced by the macro or micro discretisation parameter H, 4. In the
most favourable case (e.g., locally periodic homogenization), 7,,,4 can be shown
to vanish.

In view of the above prototypical error estimate in this paper we will speak about
fully discrete spatial error estimates when we have an estimate in terms of both the
macroscopic and microscopic spatial mesh H, k and a fully discrete space-time error
estimate when we derive an estimate in terms of H, & and At.
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Several difficulties arise when analyzing a numerical homogenization method:
first as the effective data are only available at quadrature points, we necessarily
rely on a FEM with numerical quadrature on the macroscale and have to deal
with variational crimes. Second, as the upscaled data are obtained from micro
solvers (FEM) one has to precisely quantify the propagation of the errors across
scales. Finally the modelling error that originates from the averaging procedure
designed to recover the effective data need also to be quantified. To close this
introduction, we review several important contributions concerning FE methods
for single scale nonlinear monotone problems and contrast these results with the
numerical homogenization literature. Using quasi-norm techniques, convergence
rates have been derived in [17, 27] in the L7 (W) setting for single scale parabolic
monotone problems with the following p-structure

JAE) — A()| < Liky + [ + [y ~[€ — ],
(AE) = AM) - (=) = A2 + & + [n)"* 1§ =0, VEn e R

including for example the p-Laplacian. Note however that under the most general
assumptions on the map .A° under which homogenization results are proved (see
e.g. [50]) and under which we can show convergence of an FE-HMM method [6],
we have a p-structure if and only if the map .A°® is strongly monotone and Lipschitz.

This review is organized as follows. In Sect.2 we briefly review the homoge-
nization theory for the class of parabolic problems considered and introduce the
numerical homogenization method. In Sect.3 we review the coupling of the FE-
HMM with various families of Runge-Kutta methods and explain the techniques
used to derive a fully-discrete space-time error analysis. Convergence of a fully-
discrete numerical method for general nonlinear monotone parabolic problems is
discussed in Sect. 4 and a linearized method is presented in Sect. 5.

2 Assumptions and Homogenization

We consider Problem 1 and the “evolution triple” W' (2) C L*(2) ¢ W'?(R2)/,
f € L”/(Q), g € [*(2). Very general hypotheses for the maps A° under
which homogenization for (1) can be established, see [21, 50] are the following
assumptions assumed to hold uniformly in & > 0 for all £,& € R¢ and almost
every x € 2. For 1 < p < oo andp > 2d/(d + 2) we assume

(Ap) there is some Cp = O such that | A°(x,0)] < Cp for almost every (a.e.)
x € §2;
(A;) thereexistx; = 0,L > 0and 0 < o < min{p — 1, 1} such that

A (x, 61) — A, 62)] < Ll + [&1] + 15D 76 — &I
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(Az) there exist k; = 0, A > 0 and max{2, p} < § < oo such that

(A, 6) = A(r, £)) - (61 — &) = Ao + 61| + 18Dl - &)

Then under the assumptions (Ay—,) the problem (1) has a unique solution u® € E
forany ¢ > 0

E={vel’0,T;W,"(2))|dv € IV (0, T; (Wy”(2)))}, 3)

endowed with the norm |[v||g = ||v]| + [|o,v]]
[57, Theorem 30.A]).

The aim of homogenization is to find a limiting effective solution for the family
of oscillatory solutions {u°} and an equation for this effective solution involving a
parabolic PDE, where the small scales have been averaged out. We briefly describe

this procedure. First, observe that the solution satisfies the bound

(seee.g.,

L2 (0,75 Wy * (£2)) ' 0.T;(Wy " (2)))

NP e’
[ porwray T 107, 0w @)

’ 2
< C((L() + K1 + K2)p + ”f”[l)f’/(.Q) + ||g||Lz(Q)),
independently of ¢ and {u°} is a bounded sequence in E. By compactness, there
exists a subsequence, still denoted by {u°}, and some u° € E, such that

w —u® in 20, T;W,”(2)) and  du® — 3’ in L7 (0, T;: (Wy"(2))')
“4)

fore — 0.

The question answered in the framework of homogenization theory is that of
a limiting equation for #°. For the above parabolic problems, one refers to the so
called G-convergence of parabolic operators, sometimes called PG for strong G-
convergence [50, 52].

The following compactness result can be shown: there exists a subsequence of
{uf} (still denoted by {u°}) and a map A% 2 x RY — RY, such that u® weakly
converges to u” in the sense of (4) and the corresponding maps A°(x, Vu®) —
A°(x, Vu®) weakly converges in U 0,T; 124 (£2))%). The homogenized solution
u° € E is the solution of the following homogenized problem

9’ (x, 1) — div(A°(x, V' (x, 1)) = f(x) in £2 x (0,T),

&)

W, 1) =0 ond2 x (0,7), u’(x,0) = g(x) in £2,
where A satisfies (Ag—,) (with possibly different constants Cy, k1, k2, A and L) with
Holder exponent y = /(8 — «) in (A;). We note that y = «, if and only if p = 2,
a = 1, B = 2. Convergence of the whole sequence {u°} to u° can be obtained under
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additional structure of the maps A°, for example if A°(x,&) = A(x/e, &), where
Ay, &) is a Y = (0, 1)?-periodic function in y. In this case one can also derive
a description of A° in terms of the solutions of a boundary value problems in the
reference domain Y. When the maps .4° depend on both a slow and a fast variable,
ie. A(x, x/e, ), the boundary value problems depends on x € §2. For completeness
we introduce the weak formulation of the homogenized problem, by introducing the
map B: Wé’p(.Q) X WS”’(.Q) — R given by

B(viw) = / A(x, Vo(x)) - Vw(x)dx, v,we Wé’P(.Q), (6)
2

We will also sometimes need a discrete weak form based on a quadrature formula
{xx;, wk; }/1=1 defined in the next section that reads

J
B™w)y = Y " ag Ak Vol (xg)) - V(). o ow e S5, T,
KeTy j=1

(N

provided A°(-, £) has a continuous representative for every £ € R9.

2.1 Multiscale Methods: The Finite Element Heterogeneous
Multiscale Methods

We give in this section a general formulation of the FE-HMM for parabolic problem.
The method relies on

¢ a macroscopic FE method based on a macroscopic spatial discretization of £2;

* a microscopic solver defined in sampling domains around sampling points x €
£, where an approximation of the map A°(x) is required;

* atime discretization method.

Macro Discretization Let 75 be a family of macro partitions of the polygonal
domain £2 consisting of conforming, shape-regular meshes with simplicial ele-
ments.! The macro elements K € 7T are open and such that UKeml_( = .
Let diamK be the diameter of K € 7y we define by H = maxge7;, diamK the
macroscopic mesh size and consider the macro finite element space

S5(2,Tir) = € Wy (2) | v |k € PUK), VK € Til, (8)

'We concentrate on simplicial elements for simplicity but note that many results presented in this
paper can be extended to rectangular elements (see for example [9]).
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where P*(K) is the space of polynomials on K € Ty of degree at most £. We also
consider within each macro element K € Ty quadrature points xx; € K and weights

wk; forj = 1,...,J. We assume that {xK]., wk; }]le are obtained from a quadrature
formula {3, &;}7_, by xk, = Fx(%), wg, = @j|det(dFx)|.j = 1....,J where Fx is

the affine mapping such that K = Fg (12). We will make the following assumption
on the quadrature formula

Q1) [ p(R)di = Y, @ip(E). Vp() € P?(K), where 0 = max(2£ — 2, ().

These requirements on the quadrature formula ensure that the optimal convergence
rates for elliptic FEM hold when using numerical integration [23].

Multiscale Method The FE-HMM method for parabolic problems can be defined
as follows. Find u” € [0, T] x S§(£2, Trr) — R such that

@ ™) + By o) = (. 0") Vo' e S((2. Tn)
u =0 on a2 x (0,7) 9)

uH(x, 0) = uOH,

where

J
Bu(0";w') = Y 3" ag AN (Vo () - I () o™ w e S5, Ta)
KeTy j=1
(10)

and A?(’jh (-) is a numerically upscaled tensor defined in (13).

Micro Solver We see that for the map By in (9), we need to a procedure to recover
the effective data A?{’]_”(VUH (xk;)). This rely on micro solvers in each sampling
domain ng, j = 1,...,J, associated to a macro element K € Tg. Let ng =
Xy, +61, 1= (-1/2,1/ 2)4, § > & be discretized by micro meshes 7}, consisting of
simplicial elements T € T, with size h is defined by 4 = maxye7;, diam 7. We then
consider the micro finite element spaces

SU(Ks,, Ta) = {v" € W(Ks) [ V|7 € PUT). VT € Ty}, (11)

where P4(T) is the space of linear polynomials on 7' € 7, and W(Ks,) C wir (Ks;)
is some Sobolev space. The choice of the space W(Kj;) sets the coupling condition
between the macro and micro solver, e.g.,

c W(Ks) = W[}L’,’,’(ng) ={ve Wl*”(ng) | be’,- v dx = 0} (periodic coupling);

per

* W(Ks) = W,”(Ks,) (Dirichlet coupling).
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For £ € R and Ks, C K € Ty, we introduce the function )(ijh as the solution to the

variational problem: find Xf{]h € S9(Ks;, Tn) such that

A E+ VD - Vwhde =0, Vw'eSUKy, Tp). (12)
ng

Based on the functions )(%h we can compute the effective data by

1

A (E) =
K] (g) ‘ng‘ Ksj

A E+V Xi*jh)dx. (13)

We also define an auxiliary flux useful for the analysis

1

AL () =
K] (S) |K8j | K{gj

A(x,E+V )zij )dx, (14)
where )Zij € W(Kj) solve (12) in the infinite dimensional space W (K;).

Upscaling Error We define the upscaling error, called rgy, as the total error made
by approximating the effective flux A by the numerics flux Ao’j_h, precisely for any

vl e SS(.Q, Tr) we define

1
4
9

p/

ravm (Vo) = (ZKGTH Zle wi; | A (xk;, Vo (xg,)) — A?(’jh(VvH(ij))} )

(15)

where p’ = p/(p — 1) is the dual exponent of 1 < p < 0o. Thanks to the auxiliary

flux, we can further decompose rgus into two components

, 1
4 ) I

(16a)

1

1”) I

(16b)

Fnic (V') = (ZKGTH Yot o[ AR (Vo () — AR (Vor! (xk;)

A (xg, Vo (k) — A (Vo (x;))

rmod(va) = (ZKG'TH Zf:l ij

We observe that using the Minkowski inequality we get iy (Vo) < rpic (VO +
Tmoa (VM) for every v¥ € S}(£2,Ty). The first term 7, (Vo) quantifies the
error made by solving the micro problems (12) in S(Ks;, 7). The second term
Tmoa quantifies the error due to the upscaling procedure used to replace the true
homogenized flux .A° by (14). The coupling condition (periodic, Dirichlet), the size
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of the sampling domain enter in this modelling error that is not influenced by the
macro or micro discretisation parameter H and 4. In the most favourable case (e.g.,
locally periodic homogenization), when §/¢ € N* and periodic coupling is used we
can have 7,,0¢(Vv™) = 0 (see [8]).

Existence and Uniqueness of the Micro Nonlinear Problem The assumptions
(Ap)—(A,) are sufficient to guarantee existence and uniqueness of a solution to the
nonlinear problem (12). To treat both the exact and the FE approximation of this
nonlinear problem we consider the more general problem: find z € X such that

ag(@w) = [ A(E+V2) -Vwdx=0, VYweXx, (17)

K

where X is any closed linear subspace of the Banach space W(Kj).

Lemma 1 Assume that A° satisfies (Ao—z). Then problem (17) has a unique
solution.

Sketch of the Proof Unless specified otherwise, all the constants below depend on
K1, |Ks|, &, L and Cy (see (Ap—2)). Using a Holder inequality and (.Ay) yield for any
z € X the bound |a§<(z; w)| < C(2)|w|lzr x5 for a constant C depending on z, hence
the nonlinear operator M : X — X* defined by (Mz, w) = ai(z; w) is well-defined
and the problem (17) is equivalent to the problem Mz = 0. We next list the properties
of the operator M:

1) Using (A;) and a Holder inequality yields
1Mz = Mwlix= < Cllzller s Wl )iz = Wiz k)

and M is continuous.
2) Thanks to (A,) we have (Mz — Mw,z —w) > 0 for all z # w and the operator
M is strictly monotone.
3) Finally the bound [26, Lemma 3.1]
B—r

! B
192 = Yl < [KKs |7 + 1Yzl + IVl

B
( (k + |Vz| + |Vw|)P—ﬁ|vz—vW|ﬂdx) ,
K

for any z, w € X that holds for 1 < p < o0, B = p and ¥ = 0 together with (A,)
yields

(Mz,z) = C, ||VZ||[[)}’(K§/.) -G



Numerical Homogenization Methods for Parabolic Monotone Problems 11

where Cj, C, in addition also depends on k,, 8,p, A and the operator M is
coercive. Hence we can apply the Browder-Minty theorem that ensure that the
equation Mz = 0 with the operator M that continuous, strictly monotone and
coercive, has a unique solution. O

We next list several properties of the map By (v; wH) that follows from the
assumption 4° (we refer to [6] for a detailed derivation).

Lemma 2 Assume that A° satisfies (Ag—z). Let v, wf 1 € Sé(.Q, Tw) then the
nonlinear map By defined in (10) satisfies the following properties

p—1
[Bu )| < €[ Cot [V oy | 19970 (18)
_l_
\BH(UHJH) —BH(WH;ZH)| <C [Cd + ”VUH “U’(.Q) + ” vt HU’(.Q):IP ’
HVUH -V HZ’(Q) ” vz HU’(Q)’ (19)
By v —wf)y — BEWH: v —wHY > 0 for v #£ wH (20)
By (™ v") = A || Vo), ) — C(Co)P . @2n

Q)
where C may depend on p, o, B, A, L and the measure of §2, with A, > 0 depending
onlyonp, B, AandLand Cq; = Ly + k1 + k2, y = /(B — o).

The above properties are sufficient to guarantee the existence and uniqueness
of a solution to the problem (9). We note that while (20) is sufficient to ensure
the strict monotonicity of By(-, -) for the error estimate we will need the following
monotonicity estimate

s
| Vo' - VWH”U’(Q) <C [1 + ||VUH||U’(Q) + VWH”U(Q)] ’
x (BH (v ot — Wy — BE(wH: o —wiy)s (22)

where C depends on Cy, A, |£2|, p and B.

Theorem 1 Assume that (Ao—z) hold and that f € U (82). Then, for any parameter
H,h,8 > 0, there exists a unique numerical solution of (9) that satisfies

Iy iy < € oz < C. (23)

where C is independent of H, h, ¢.

Proof The map B : S§(£2, Tyy) — S5(82, Tn), defined by (Bvf,w) = By (v*; wH)

is (strictly) monotone (20), hemicontinuous (the map v — (Bv¥ , w#) is continuous

for all wf e Sf;([?, Tr) thanks to (19)), coercive (21) and satisfies a growth condi-

tion ||Bv|| wirye S €1+ cz||vh||’v";.lp. Hence the ordinary differential equation (9)
0 0
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satisfies the hypothesis of the Caratheodory theorem that guarantees the existence
and uniqueness of a solution [57, Lemma 30.4]. The monotonicity and coercivity of
B yield the a priori bound. |

3 Fully Discrete Space-Time Error Estimates for Linear
Parabolic Problems

In this section we consider linear parabolic multiscale problems for which
Af(x,£) = a®(x)E. We assume a®(x) € (L*°(£2))¥*¢ and for all £ € R? and
a.e.x € £2,t € (0,T) there exists A, L > 0 such that, uniformly for all £ > 0

AEP < a* (g - £, |a"(0)E| < LIE]. 24)

The maps A° then satisfy (Ao—p) forp = 2, « = 1, § = 2 and with constants
Co = 0 and A, L given by the ellipticity and continuity constants. For simplicity we
consider tensors a°(x) independent of time but all the results of this section can be
generalised for time dependent tensors [9]. The numerical method that we consider
is still given by (9) but we have now the following explicit expression for the flux

1
A© = [ @+ e
! ‘K‘;j‘ Ks; !
Now since Vo = Y% 0,0, where e;i = 1,...,d is the canonical basis of R,
i=1

it is easy to see that A?{’jh(VvH(xK/.)) = ao'h(ij)VvH(xK_/), where the i-th row of the
matrix a®”(x;) is given by

a(xg,) = ax) (I +V Xﬁgj )dx. (25)

‘ng | Ks;

Here [ is the d x d identity matrix and X%‘ is a d X d matrix with column given by

\Y X?’("/_’h, where X%h are the (linear) solution of (12). We can thus rewrite the bilinear
form (10) as

7
By W) = YY" wga® (k) Vo (k) - V! (xi). (26)
KeTy j=1
for all v, w € S5(£2, Ty). We will also use below the bilinear form

J
Bou (v, wh) = Z Z a)KjaO(ij)VvH(ij) . VWH()C[(j), 27
KeTy j=1
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where " is the (usually unknown) exact homogenized tensor that is known to satisfy
similar bound (24) as a®. The solution of the homogenized problem (5) will be
denoted by u°(7) and the corresponding bilinear by

B(v,w) = / a’(x)Vv - Vwdx. (28)
Q2

We next mention classical estimates for FEM with numerical quadrature that are
needed in the analysis below [23, Theorems4, 5]. Assuming (Q1) and appropriate
regularity of the homogenised solution u® we have for all v#,w# € Sf)(.Q,ﬁ;)
(where u = 0orl),

IB™, w") — Bo (v, W) |[<CH|[v"|| g1 () IW! 121 (2)- (29)

|BZuuo, w) — Bo.s(Zuuo, w) | SCH uo (1) et 1o W 1), (30)

|B(Zuto. W) — Bo.sy (Zruo. w ) [SCH ™ [luo(8) | et 12 (3D
12
(D W) (32)
KeTu

where Z; : C°(2) — Sé(.Q, Tr) is the usual nodal interpolant.

For linear parabolic problems, we can derive fully discrete convergence results in
both space and time. Furthermore we can perform this a priori convergence analysis
for various class of time integrators including “explicit stabilized Runge-Kutta
method”. The strategy is to first derive fully discrete error estimates in space. In
a second step, using semigroup techniques, fully-discrete space time error estimates
can be obtained. In contrast fully discrete space-time estimates could be obtained
at once starting directly from a time-discrete numerical method instead of first
considering (9). With such a strategy we need however new error estimates for each
new time-integrator while with the former approach we can derive error estimates
for classes of time integrators “at once”. In this section we follow the finding of [9].

3.1 Fully Discrete a Priori Convergence Rates in Space

The starting point of the analysis is to define an appropriate elliptic projection: for
allr € (0, 7), let ITyu’(z) € Sé(.Q, Tr) be the solution of the problem

By (ITyu® (1), ) = B(u® (1), 2), v e S§2.Ty), 1€ (0,7), (33)

where u’(¢) is the solution of the homogenized problem (5). Thanks to the ellipticity
and continuity of By, the above problem is well-posed. Using (33), denoting by
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Tyu° the standard nodal interpolant of u® we get for all z# € S§(£2, Tr),

By(IMyu’® — Tyu®, 2") = B’ — Zyu®, )
+ B(Zyu, ") = Bo s (Tyu®, ")
+ Bou(Zyu®, 2") — By(Tuu®, ). (34)
Assuming enough regularity of the homogenized solution, the first two terms of the
above inequality are bounded by CH||uo (1) |yy¢+1, |2 | ;1 () using the continuity of
B and standard results for nodal interpolant [22] (first term) and (30) (second term).

In view of (26) and (27), the definition (15) for p = p’ = 2 and the assumption (Q1)
on the quadrature formula we have for the third term

|Bo.t(Zuu®, 2y — By(Tyu®, 2")| < raant (VZau®) | V27 || 12y (35)
We note that we can further decompose rgym (VZyu®) as

rm(VIgu®) < sup ||610(X1<j) - ao’h(xK,-)||F||VIHM0||L2(:2)»
K€77~1,XKJ- exK

where | - ||r denotes the Frobenius norm of a matrix. We first have the following
lemma.

Lemma 3 Let u’(t) be the solution of (5) and ITyu°(t) be the elliptic projection
defined in (33). Assume that (Ag—2) and (QI_) hold. Assume further that the
homogenized tensor satisfies a € C°([0,T] x K) for all K € Ty and all i,j =

1,...,d. Assume further for u = 0 or 1 and £ > d/p that

ug, dug € L2(0, T; WP (£2)),

al,8,a% € L0, T; WH(Q)), Vij=1...d.

Then we have for k = 0, 1

0F (MTru® — u°) 2012y < CHE + ram (VIaul)), (36)
105 (M’ — u®) | 20 222y < CEHTH + rgpay (V) p = 0,1, (37)

where we assume that §2 is convex for the estimates (37) with 4 = 1. The constant
C is independent of H, h and §.

Proof In view of (34) and the bound of the different terms of the right-hand side of
this equality, taking 77 = ITyu® — Tyu®, using the ellipticity of By and integrating
from O to 7 we obtain || [Tyu’ — IHu0||Lz(O’T;H1(Q)) < C(H" + rgpm (VIyu®))). The
estimate (36) for k = 0 follows by using the triangle inequality and the estimate
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4 — Tyl 2.1 (@)) < CHE. The estimate (36) for k = 1 is obtained by
differentiating (34) and following the same arguments.

For the estimate (37) k = 0 we use the classical Aubin-Nitsche duality argument
and consider for almost every ¢ € (0, T') the solution ¢(7) € HO1 (£2) of the problem

B(z.¢(1) = (v(1).2), Vz € Hy(2). (38)
Taking v(f) = z = ITyu® — u® using the elliptic projection (33) yields for all ¢*/
(ITgu® — u®, Myu® — u®) = BUTyu® —u®, ¢ — ¢™)

+ B(ITyu’ — Iyu®, ") — By(IMpu’ — Tyu', ™)

+ BTyt ") — Bu(Zyu®, o). (39)
We take ¢ = Ty () use the continuity of B, (29) and (32) to obtain

(Tgu® — u®, My’ — u°) < C(H + rgpp(VZgu®))
T (1) = uo () i (@)l () l22)

+ (H + raan (VIO ) [u(®) e @ |0 O |2 2)-

Using |l@ll2o.rm@) < C|\Tyu’® — u0||Lz(0qT;Lz(Q)) that holds thanks to the
regularity a € (L*(0, T; W' (£2)))9*? of the tensor and the convexity of the
polygonal domain §2 gives (37) for k = 0. The estimate (37) for k = 1 is obtained
by differentiating (39) and following the same arguments. O

Remark 1 Under the assumptions of Lemma 3 the Sobolev embedding H' (0, T'; X)
into C°([0, T]; X) (for a given Banach space) allows to deduce

1T — w0l coo 21 (2y) < CHE + raym (VIuuP))), (40)
1Tu’ — ulleo a2y < CHTH + ram (VIgu))). 41)

We state now fully discrete a priori convergence rate in space for the FE-HMM

Theorem 2 Let u’(t) be the solution of (5) and u the solutions of (9). Assume the
hypotheses of Lemma 3. Then we have the L*(H") and C°(L?) estimates

lu® — || 20 10 2y) < CCH + renan (VIgu®) + |lg — ullll12()).  (42)
andif p =1

lu® — ufll ooz 2y < CAHT + ram (VIau®) + llg — ufl 20y (43)
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If in addition, the tensor is symmetric, then we have the C°(H") estimate
lu® — u |l eo oz () < CH" + ramm(VIuu®) + g — ufl |1 @2))- (44)

The constants C are independent of H, rHMM(VIHuo).
Proof To simplify the notation, we use rgyys = v (VIZgu®) in the proof.
Step 1: Estimation Of”MH — HHMOHLZ(O,T;HI(Q)) + ||MH — HHMOHCO([O,T];LZ(Q))'
We set £7(t) = ufl(t1) — Muu®(t).t € [0,T)]. In view of the elliptic projec-
tion (33), (5) and (9) we have for all 2/ € S(£2, Ty),
0", ") + ByE". ") = @, ") — (0T, ). (45)

We set 717 = SH integrate this equality from O to 7 using the coercivity of By(-, -)
t
”S}I(t)”iz(g) + CI/O ”SH(S)Hill(.Q)dS < ”%-H(O)”iZ(_Q) (46)
t
+ e / 19:” = 8, T35 ds.  (47)
0

Using the decomposition & (0) = (u® — ITxu°)(0) + (u — g), (41) and (37) yields

IEO)l1200) < CHT" + rapm) + ull — glli2@)- (48)

Using (48) and (37) gives the L>(H') estimate and taking the supremum with
respect to ¢ gives the C°(L?) estimate. We thus obtain
lu" = T coqo. ez ey + N4 — M 20 m3m 2)) (49)
< COH"™ + rgpm) + ||ul! — gl
This last estimate together with Lemma 3 and the triangle inequality gives (42)
and (43).
Step 2:  Estimation of ||uf — HHu0||Co([O’T];H1(Q)).

For £7(t) = ul(t) — Myul(1),t € [0, T], we set 2 = 9,7 in (45). Using the
symmetry of the tensor, and integrating from O to ¢, we obtainfor0 <t < T

2 /0 106" (5)]12 s + Bu(€" (). £" (1)) = Bu(€"(0).£" (0))

t
+2 / @u® — 3, ITyu®, 3,€M) ds.
0
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Similarity to (46) we obtain
t t
[ 108 Ol oy + Al Oy < 21 Oy + [ 16760 )
t
+/0 ||3,u0(s)—8,1'[Hu0(s)||iz(g)ds. (50)

As before we set £7(0) = (u® — Myu®)(0) + (ull — g) and (40) gives

IEX (O 1 2y < CH" + ramam + lulf — gl (@))- (51)

Taking the supremum with respect to ¢ in (50), and using (51), (49), (36), we
deduce

4
|IMH - HHMO||CO([0’T];H1(Q)) < CH" + rgmm + ”uOH - g”Hl(.Q))'

This together with (40) concludes the proof of (44). O

The last step to obtain fully discrete estimates in space is to quantify rgpm.
Remember the decomposition rgyy < Fimod + Tmic [see (16a), (16b)]. We can again
rewrite

Tmod(VIuu’) < sup @ (xk;) — @ () lF I Vi1 | 120 (52)
K€77.1,XKJ-€K

Fmie(VIgu®) < sup (@ (xg) — a™" ) IVt |2y (53)
KEm,ijEK

where we recall that EzO(xK) is defined similarly as aOh(xK) [see (25), (14)] but

based on exact micro functions, i.e., when )( K is solution of (12) in W(Kj;). These
terms have first been quantified for elliptic problems in [2] and [8, 56]. Using the
definition of the cell problem (12) it is not hard to show (for linear problem) that for
symmetric tensors a°(x) one has

1@ (k) = " (o) 54)
‘MKM/K o) (V20 = Vit 0) - (Va0 = Vit ) |

Next assuming | X§};| HIH (Ks) S C &1 \/ |Ks;|, where C is independent of &, the

quadrature points xg;, and the domain Kj; one obtains

n\%
rmic(VIHu(’)sC( ) : (55)
&
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when using the micro finite element space (11). The justification of the above
regularity assumption depends on the boundary conditions used for (11). For
Dirichlet boundary conditions and for ¢ = 1 the regularity assumption can be estab-
lished using classical H? regularity results [42, Chap. 2.6] provided @y, lwioo(2) <
Ce™! for m,n = 1,...,d. For periodic boundary conditions the above regularity
assumption can be established for any given ¢, provided a®* = a(x,x/e) = a(x,y)
is Y-periodiciny, §/¢ € N, and a° is sufficiently smooth, by following classical
regularity results for periodic problems [19].

We finally come to the modelling error: here we need to assume some structure
for the oscillatory tensor such as periodicity or random stationarity. For locally
periodic problems assuming a® = a(x,x/g) = a(x,y) Y = (0, 1)%-periodic in y,
that the sampling domain size is such that § /& € N and that periodic micro boundary
conditions are used, we have r,,,g < C§ [2, 8]. Furthermore, if we assume a tensor
a(xg;, x/e) collocated in the slow variable x = xk; for the micro and the macro
problem, one can show that r,,,; = 0. For Dirichlet boundary condition assuming
8 > e the bound 1,00 < C(8 + §) can be established [56].

We note that for non-symmetric problems, an expression similar to (54) can
still be established [10, 28], replacing the second parenthesis in the right-hand side

of (54) by (V )"(2’; x)—V X%’h (x)) , where V )Zf(’;, )"(f;;’h are exact, respectively FE
solutions of the adjoint problem of (12). The rest of the discussion is then similar.

Finally we mention that by using a perturbed micro-problem, using a zeroth order
term, higher order rates have been obtained in [34] for the modeling error.

3.2 Fully Discrete A Priori Convergence Rates
in Space and Time

In this section we analyse the time-discretization error, when using various classes
of time-integrators for the parabolic problems. We will concentrate on strongly
A(6)-stable implicit Runge-Kutta methods and explicit stabilized (Chebyshev)
methods.

Consider a basis {¢; jﬁil of Sé(.Q, Tr) and denote by U the column vector of

the coefficients of u/ = Zfil Uj(f)¢; in this basis. This allows to rewrite (9) as an
ordinary differential equation

thH (1) = AgUT (1) + GM (1) = F(r, UM (1)), U"(0) = Uy, (56)

where Ay = M~ 'Ay and G¥(f) = M~'PH. The matrice Ay is defined by the
map Ay : S5(2,Tu) — S5(82,Tu), where (—Apvf,wf) = By, wH), the
mass matrix M is given by M = ((¢, q&,-))%zl and P corresponds to the source
term. Of course in practical computations we never invert the matrix M, but instead
solve a linear system. In some situation we can also use mass lumping techniques
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that transform M into a matrix that is trivial to invert [53]. As mentioned in the
beginning of Sect.3, the FE-HMM method and the spatial convergence results
can be generalised for time-dependent tensors a°(z, x) and time-dependent right-
hand side f(¢, x). In this situation we would have By(vy, wy), Ay = Ag(t) and
PH = PH(z) (see [9] for details).

Resolvent and «-Accretive Operator To apply semi-group techniques to estimate
the error when applying a Runge-Kutta method to (56), we need bound on the
resolvent of —Ag. For the type of ODE (56) originating from a spatial discretisation
of a parabolic problem, it can be shown that —Ay (see for example [24]) is a so-
called a-accretive operator, i.e., there exist 0 < o < 7/2 and C > 0 such that for
all z ¢ Sy, the operator zI 4+ Ay (?) is an isomorphism and

_ 1
I+ Ap()) " l2@)>2@) < d(z.S.) forall z ¢ Sq, (57

where d(z, S,) is the distance between z and S, = {pe’” ; p = 0,|0] < a}. We
note that the operator Ay can be extended straightforwardly to a complex Hilbert
space based on S5(£2,Ty) equipped with the complex scalar product (u,v) =
/. o U(x¥)v(x)dx which is an extension of the usual L? scalar product. If we denote
by y1, 2 the coercivity and continuity constant of the bilinear form By (-, -), it can
be shown that & < arccos(y;/y2). Hence Ay generates an analytic semi-group in S,
(see [41]).

Runge-Kutta Methods For the time discretisation of (56) we consider an s-stage
Runge-Kutta method

U1 =U, + AthiKm‘, Uy =U, + AZ‘Z Vinnja (58)

i=1 j=1

Ku = F(t, + c;iAtU,), i=1...s. (59)

where y;;, b;, ¢; with i,j = 1. .. s are the coefficients of the method (with Z;=1 Vi =
¢;) and 1, = nAt. We further define

==, b=01....b)", c=(ci,....c)" =T1, 1=(,....)"

The method is said to have “order r” if the error after one step between the exact
and the numerical solutions (with the same initial condition) satisfies

U, —U(h) = O (ArT"), forAt — 0,

for all sufficiently differentiable systems of differential equations. We recall that the
rational function R(AtA) = R(z) = 1+42zb" (I—zI")~'1 obtained after one step At of
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a Runge-Kutta method applied to the scalar problem dy/dr = Ay, y(0) =1, A € C
is called the stability function of the method.

Strongly A (6)-Stable Methods We consider a subclass of implicit Runge-Kutta
methods which are of order r and whose stage order (the accuracy of the internal
stages) is r — 1. We further recall that a Runge-Kutta method is strongly A(6)-stable
with 0 < 6 < /2 if I — zI" is a nonsingular matrix in the sector |arg(—z)| < 6
and the stability function satisfies |R(z)| < 1 in |arg(—z)| < 6. Notice that all s-
stage Radau Runge-Kutta methods satisfy the above assumptions (with 6 = 7/2).
In particular, for s = 1, we retrieve the implicit Euler method. We refer to [35,
Sect.IV.3, IV.15] for details on the stability concepts mentioned here.
Under the assumptions of Theorem (2) we have the following theorem.

Theorem 3 Let u’(t) be the solution of (5) and let u! be a strongly A(9) stable
Runge-Kutta approximation of order r and stage order r — 1 of (56) with time
step At. Assume the hypotheses of Theorem (2), (55), that ryop = 0 and a® €
Cr([0.71.L%(2)). " (0) |22y < C. Then,

0<n<N

h\24
max_[|ut! — u"(t) | 2@) < C (H“l + (8) + At’) .

Assuming in addition ||u" (0) — gl < C(H') and a® is symmetric, then

N—1 I\ 2 2
Z Aty||f] = (@) |1 ) < € (H/Z + ( ) + At’) .
&
=0

All the above constants C are independent of H, h, e, At.

The idea of the proof is to consider the decomposition: u —u°(t,) = (uf —u(1,))+
(u!(t,) — u°(t,)). Then the first term is estimated using semigroup techniques (for
time independent operators) + perturbation techniques (following [44]). The second
term is estimated using Theorem 2. We note that the analysis for implicit methods
covers variable time step methods under some mild assumptions on the sequence
of time-steps [9]. Finally we mention that the bound ||37u!(0)|| 2(2) < C can be
established provided that we assume an inverse assumption FZ < CforallK € Ty
and all 7 for the macroscopic finite element mesh and appropriate regularity of

afuo, k=1,...,r. We refer to [9] for a detailed proof of the above theorem.

Chebyshev Methods Chebyshev methods are a subclass of explicit Runge-Kutta
methods with extended stability along the negative real axis suitable for parabolic
(advection-diffusion) problems. Such methods have been constructed for order up
tor =41[1,7, 43, 54]. They are based on s-stage stability functions satisfying

IRy(x)| <1 forx € [~L,,0] (60)
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with L, = Cs?, where the constant C depends on the order of the method. First order
methods are based on

Ry(x) = Ts(1 + x/5%), (61)

where T(-) denotes the Chebyshev polynomial of degree s and L, = 2s>. The
corresponding Runge-Kutta method can be efficiently implemented by using the
three-term recurrence relation of the Chebyshev polynomials [54]. For stiff diffusion
problems, such methods are much more efficient than classical explicit methods.
Indeed let py be the spectral radius of the discretized parabolic problem (depending
on the macro spatial meshsize H) and let Az be the stepsize to achieve the desired
accuracy. Using a classical explicit method such as the forward Euler method
requires a stepsize §t satisfying the CFL constraints §t < 2/pg. The number of
function evaluations per time-step At (taken here a the measure of the numerical
work) is therefore At/§t = (Atpg)/2. Using a Chebyshev method (of order one)
with stability function (61) we choose the number of stages s of the method to
ensure stability Atpy < 2s. As for Chebyshev methods, there is one new function
evaluation per stage the total number of function evaluations per time-step At is
given by s = \/(AtpH)/Z.

Chebyshev method are usually used in a slightly modified form obtained by
changing the stability function (61) to

_ Ti(wo + w12) 1 _ Ts(wo)

Ri(z) = , ith =1 , = , 62
(@) Ti(eo) with @y t o @ T/ (w0) (62)

we obtain the “damped form” of the Chebyshev method. For any fixed n > 0 (called
the damping parameter) we obtain a damped stability function satisfying

sup |Rs(z)] < 1, forall y > 0. (63)

z€[—Lg,—y], s=1

This modification also ensure that a strip around the negative real axis is contained
in the stability domain S := {z € C;|Rs(z)| < 1}. The growth on the negative real
axis for the damped form is reduced but remains quadratic [51],[35, Chap.IV.2].
For the analysis we assume the order of the Chebyshev method is » = 1 for linear
problem, precisely,

€ —Rs(2)

lim Zr+1

z—0

<oo foralls=>1. (64)

We also assume that the stability functions are bounded in a neighbourhood of zero
uniformly with respect to s, precisely, there exist § > 0 and C > 0 such that

|Rs(z)] < Cforall |z] < 6 and all s. (65)

This can be checked for the Chebyshev methods with stability functions (61), (62).
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Theorem 4 Let u’(t) be the solution of (5) with f = 0 and a time-independent
symmetric tensor af. Let u! be a Runge-Kutta-Chebyshev approximation of the
corresponding discretized problem (56) with timestep At. Assume that the method
satisfies (64) (order r), (63) (strong stability) and (65). Assume in addition that the
stage number s of the Chebyshev method is chosen such that pyAt < L holds.
Assume the hypotheses of Theorem 2 with . = 1, (55) and that ryop = 0. Then,

h\24
H 0 {+1
Jmax fluy —u(@)lze) < € (H + (8) + At’) :

where C is independent of H, h, €, At.

The ideas of the proof are as follows. Consider again the decomposition u? —

u(ty) = W —ul'(t,)) + (u(t,) — u’(t,)). The second term is estimated as before
using Theorem 2.

For the first term we follow ideas developed in [24, 25] for implicit methods,
adapted here for stabilized methods. Using the symmetry of Ay, there exists an
orthonormal basis where the operator Ay is in diagonal form. Define next ¢, ;(z) =
€™ — Ry(z)". Then we have

lons(AtAR) |12 2)—12(2) = SUP  |@ns(AL2)],
zEsp(An)

where sp(Ag) denotes the spectrum of Ag. Using (63)—(65) we show that |¢, 5(z)| <
Cin~" forall z € [—4,0], where C; is independent of n and s. For the case z €
[—Ly, —8] we denote by p < 1 the quantity in the left-hand side of (63). We can then
estimate

(r/ey (r "+ (1= p) ") _

nr

|0ns(2)] < e 4 p" < e eI < Con™,

where we used twice the estimate e™ < ()" (valid for x = 0). We have thus
|¢ns(z)] < Cn™" forall z € [—Ly, 0], hence

H_ H H ey H
lw, —u"(t)ll22) = @ns(AtAR) UG | 12(2) < Cn " lug |l 12(2)

where C is independent of n, s. By noting that n < T/ At we get the result.

4 Fully Discrete Space-Time Error Estimates for Nonlinear
Monotone Parabolic Problem

In this section we describe convergence and error estimates for the numerical
method (9) applied to the general problem (1). We focus here on a simple time
integrator, namely the implicit Euler method and take piecewise linear macro and
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micro FEM. We consider a uniform subdivision of the time interval (0, T') with time
step At = T/N and discrete time t, = nAz for0 < n < N and N € N.g. The
method then reads as follows: for 0 < n < N — 1 find ”nH+1 S S(l)(.Q, Tr) such that

H _ . H
/ i1 ™t dex+BH(uf+l;wH):/wadx, v wi e S§(82, Tw),
e At Q
(66)

with the nonlinear macro map By given by

By (™) = 3 KA (Vo (k) - VW (k). v oW e Si(R. T,
KeTy
(67)

where A(,)gh is given by (13) with micro problems (12) computed in S'(Ks, 7y).
Here we have just one quadrature point and sampling domain K5 located at the
barycenter of each macro element K. We note that we will sometimes use the short-
hand notation d,v, = (v,+1 — v,)/ At. The proof of the existence and uniqueness of
a numerical solution can be establish similarly to the proof of Theorem 1. Further,

the numerical solution {u/}"_, satisfies the bound

N
2 v 2
\Dax H”nH”LZ(m + ; At” V”nHH[z),n(g) <C(+ ”f”[LP’(Q) + H”OHHLZ(.Q))’ (68)

where C only depends on p, 8, AL, , Ly, k1, k2, the measure of §2 and the Poincaré
constant Cp on £2.

4.1 General Estimates in the W' Setting

For the scheme (66), (67) in the general nonlinear monotone setting we have the
following fully discrete convergence result.

Theorem 5 Let u’ € E be the solution to the homogenized problem (5) and u®

the HMM solution obtained from (66) with initial conditions uOH satisfying ||g —
ul2¢2y — 0 for H — 0. Assume that A° satisfies (Ao—). Let A° be Holder
continuous in space, i.e., there exists 0 < y < 1 such that

| A1, §) = A2, §)] < Cha = (1+ (1 + [E)P7), Vaix e 2,VEeRY
(69)
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Assume in addition that the coupling is such that r,,g = 0. Then we have the
convergence

it | ma 1600 = gy + [0 = 90 5, | =0

(At H)—0 h—0 | 1<n<N

where

||Vu0 — Vul

p = [ 0 H P
Q) Z(:)/t ” Vi (-, s) = Vg, ”U’(Q)ds'
n= n

We sketch the proof of this result.

Step 1: Approximation by smooth function. Due to the low regularity of the
true solution we can only rely on a weak approximation in time. Indeed,
for u° we can only use the formulation frr”““‘ (00, s), w)ds instead of

ti”*‘ [ 9,u°(x, s)w (x)dxds that only make sense with additional regularity.
We therefore consider 4 € E with U € C°([0,T], W,”(£2)) and dU €
C°([0,T), L*(£2)). Further, let U (-,1) € S}(£2,Ty) be an approximation of
U(-, 1) for t € [0, T] and define U = U"(-,1,) for 0 < n < N. We will then
decompose the error as

””0(” t) = ”fzIHLZ(.Q) S ” “0(" 1n) _uf”LZ(.Q) + ” Hf ”LZ(Q) (70)

N—1
H 1
Faran + (L VO o). (7D

n=0

[V~ Vi[5 < |V

r(£2)

where 07 = uft —UH.
Step 2: Density argument, weak approximation in time.  To bound the first terms
in (70), (71) we use that U, .U € C°([0, T], W'?(£2)) to obtain for #, < s < t,4,

In+1
VU, 1) = VUC ) o) = / 9, VU(-, t)dt (72)

r(£2)
< At]|o: VU coqo.11.00 (2))- (73)
Now if we take U = Tyl(-,1,) the above inequality together with standard
interpolation results yields (72) in time we get that for s € [t,,,f,4+1] and 0 < n <
N-1
Vi) = Vil ] o < CAr+ H)(||U||C°<[0’T],Wz.,,* @) (74)

+ | 3tvu||c0([o,r],m(9)))- (75)
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We also have

max [u’(, 1) —UY HLZ(Q) < Celu® —u|, + CH Ul oo 17.w20% (2>

1<n<N

(76)

where we used the embeddings E < C°([0, T], L*(£2)) (with operator norm Cf),
WP (£2) < L?(£2) and standard interpolation estimates. We then choose I/ €
C>® (£ x [0, T]) such that U(-, 1) € C($2) forany ¢ € [0,T] and ||u® — U ||z <
/2. Then, using (72), (74) we find that for each n > 0 there exists D(n) such
that for all Af, H < D;(n) we have

[vu® —WH”i(mm <n,  max [u’C.t,) — u,f’||L2(m < (Cg + Dn.

1<n<N
7
Step 3:  Macro discretization error. We next need to estimate 67 = uff — UH,
0 < n < N. Holder inequality and the monotonicity estimate (22) gives
- p PP
Z AL VO o) < RO UT) 7 (78)
P
N—1 B
(Z AtBywly,: 0% 1) — BaUL, e}:’H))) :
n=0
(79)
where
1 1
N—1 P P
H o Hy _ . — H ||
w04 (L alvdlyn) + (5 150l a)
(80)
with C depending on C,, T, |§2|. We observe that
R U < (81)

where C is independent of U, n, At, H (for small enough discretization param-

eters). Indeed, using (68) and ||g — u0H||Lz(Q) — 0 for H — 0 we can
1

find Ho such that for all H < Ho we have (Z S AVt ) <
C independently of the initial approximation u. Using (74) we find that

1/p
(020 A VU [gy) < 0] + 1 for all At H < min{Ho, Dy (10)}-
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We need next to estimate BY (ufl, ;0% ) — B (U™, ;62 ). This is done by a
decomposition

N—1 N—1 N—1
> AuB 608 ) — BIUL 00 ) =D B = At/Q 9,010 dx
n=0 n=0 n=0

(82)

where B contains a number of terms that represent the contribution to the error
due to the weak approximation in time, the macroscopic numerical discretization,
the time discretization, the quadrature error, the micro and the modelling error [6,
Sect. 5.1]. We also have in view of

;5,”95”;(9) s/ 9,0M0m dx,  for0<n<N-1, (83)
2
that
N—1 _ 1 ) 1 )
_ Zm/ﬂ 30108 dx < 5 165122 — ) 163 12 ) (84)
n=0

The initial error 9(1;1 in (84) can be bounded by using interpolant estimates and
the embedding E < C°([0, T], L*(£2)) as

166" 12 () < |8 — ) | ) + Cel|u® = Ul + CHIUI cogo 11, w20% (2))-
(85)

Next it can be shown, in view of (85) and the properties of ¢/ derived in step 2,
that for At, H < D,(n), with D,(n) small enough we have (see [6, Sect. 5.2] for
details)

N—1 N—1 ~ /;
(Z B - Y ar /9 3,6 Gf+ldx) <Cp (86)
n=0 n=0

Step 3:  Upscaling error. First as 1,04 = 0 we have rHMM(VL{fH) = rmiC(VUfH),
where 1, is given by (16a). Let the macro mesh size H > 0, the time step size
At > 0 and the micro finite element space in (12) be given. Then, assuming
that A° satisfies (Ag—») it can be shown that for any sequence {U7}1<,<n C
$5(82. Ty) for which Yonzo At VU |7, o, is bounded independently of the
micro mesh size i, we have

N—1 pl/
;l_rf(l) ( Atrmic(vuyﬁ_l)p ) =0.
0
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This result follows from a density argument, classical FE interpolation results
and the general estimate obtained from (.A)

rmic(VUH) < ¢ [Cd + HVUH ||U(Q)]p_l_y

p

x Z IK] inf

KeTy |Ks| hest (ks Th)

—VvH (xg) hH
\Y% -V
‘ Xk < 17(Ks)

for any v € S}(£2, Trr), where )Zi solves (12) inW(Kj;) and C is independent of
H, h,§ande.

Step 4:  Assembling the pieces: convergence in L (W'P) and C°(L*) norm. In view
of (79), (81), (86) if we set 0 < Ds3(n) < min{D;(no), Ho, D>(n)} then for
At, H < D3(n) we have

N—1 r

. H p

lim (Z At| Vo m)) <an, 87)
n=0

where C is independent of U, n, H, At,§ and h. Combining this inequality
with (71) and the density estimates of step 2 yields the convergence in the
L7 (W'?) norm.

Next to derive a bound in the C°(L?), we first observe that (83) together with the
monotonicity estimate (22) yield

1- _
2afH95Hiz(9) S /Q 9,070, dx + Bu(ufl ;07 ) — BuUyy 300y, (88)

Summing this inequality for n = 0,...,K — 1, taking the maximum over K,
using (83) and the monotonicity of By from Lemma 2 we get

Ly g2 Ly g2 - 1ot
N2 = 10 22y < DB
n=0

where B is defined in (82). Using then (85) and an estimate similar to (86) we
find that

lim ( max H QfHLz(Q)) < Cp, (89)

h—0 1<n<N

for all Az, H small enough, where C is independentof U, 1, H, At, § and h. Hence
together with (77) this shows the C°(L?) estimate of Theorem 5.
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4.2 Convergence for Strongly Monotone and Lipschitz
Nonlinear Maps

Optimal convergence rates can be derived forp = 2 and @ = 1, 8 = 2 in (A;-»),
i.e., when the nonlinear map A°(x, &) is Lipschitz continuous with respect to its first
argument and strongly monotone. In this case we can derive optimal macroscopic,
microscopic and temporal error estimates without any structural assumptions such
as local periodicity or random stationarity of .A°. Explicit bounds of the modelling
error are however derived only for locally periodic data .4°.

Theorem 6 For the case p = 2 assume that A°® satisfies (Ao—z) witha = 1, B = 2.
Let u® be the solution to the homogenized problem (5) and u® the numerical solution
obtained from (66) with initial condition ugl . Provided in addition that

u®, 0, € C°([0,T], H*(2)), 9*u® € C°([0, T], L*(£2)), (90a)
AO(" S) € WIOO(Q’Rd) with “AO(’ g) le.OO(Q;Rd) < C(LO + |S|)’ VS € Rd’
(90b)

then, the following discrete C°(L?) and L?(H") error estimate holds

N 1/2
2
121:2(1\] HMO('7 tn) _unH “LZ(Q) + (2:; At“V’/‘O('a tn) - VMnH “LZ(Q)) (91)

0 H
<C [m + H A+ max i (V' 1)) + |lg—ufl|,> (Q)} ,

where Tyu® denotes the nodal interpolant of u° and C is independent of At, H and
THMM -

Remark 2 Under additional regularity assumptions, assuming elliptic regularity and
quasi-uniform meshes, one can derive the following improved (discrete) C°(L?)
error estimate

I<n<N

max [ u®(,5,) — uf||L2(Q) <C |:At + H?+ lggNrHMM(VﬁHD(.Jn)) + |g— MOHHLZ(.Q)] :

where i1"* is given by an elliptic projection and C is independent of Az, H and ry

(see [6, Theorem 4.4]).

We sketch the proof of Theorem 6.
Owing to regularity assumptions for u° , we can use a strong formulation in time

/a,uo(x,t)wdx—i-Bo(uo(-,t);w)z/fwdx, Vwe Wy (82),¥1 e (0,T).
2 2
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Hence the argument density used in Sect.4.1 is not needed here. We can then
directly define U = Zyu®(-, ,) and with 6/ = U{ — u!! we obtain instead of (82)
the following error propagation formula

/ 3,05 wH dx + [Br(ully s w") — Bp@ i w™)]
o

=/ [B,MO(x,t,H_l)—étuo(x,tn)] wHdx ds (92a)

2

+ / [0, (x, 1) — O UM | w dx (92b)

+[BO(”( bnt1): WH) BO( 1> W H)] 92¢)
+ B @) — Bt ] (92d)

+ [3’0 @l w™h) =By (U wH)] : (92¢)

In the above formula the term (92a) is due to the time discretization error, the
terms (92b) and (92c) account for the finite element error at the discrete time
levels t,. The influence of the quadrature formula is captured by (92d). Finally the
components (92a)-(92d) are independent of the temporal and macro spatial error,
while last term (92e) is only due to the upscaling strategy and averaging techniques
used to define and compute numerically the upscaled tensor. All these terms can be
estimated quantitatively [6]. If we set w? = 6 1 use the inequality (83) we obtain

1= 2

Ve

HIIV%IHLz

(£2) (2)

< CAIH u’ HC"([O T1.L2(2)) HH +1 ”LZ(Q)

+ CH” u’ H CO([0,T],H2(2)) H 9n+1 ||L2(Q)

+ CH” u’ H CO([0,T],H2(2)) H Ven+1 ||L2(Q)

+ ram (VUL )| VOE HLZ(Q) ©3)

Multiplying the above inequality by Af and summing first fromn =0,...,K—1 <
N — 1 and taking the maximum over K yields

N
2
max. |6k ||Lz(m +A Z_:l AlVO! 2o

2
< 06" 12(e) + C(A1 + H + max rim (VUL). (94)
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The classical estimates for nodal interpolant ||Zyz — 2zl ;1) < CH|\z|lp2(g) for
u®(-,1,) — U together with the regularity of (90a) and the triangle inequality gives
finally the estimate of Theorem 6.

Fully Discrete Space-Time Result Recall that rgyp () < 7o) 4+ Fmic(+)
(see (16a), (16b)). Following the results for linear problems (with additional
technicalities due to the nonlinear micro-problems) we can estimate both 7,,,4(+)
and 7. (). First under the assumptions of Theorem 6 and assuming that the exact

solution of Problem (12) satisfies )Zi € H?*(K;s) and ‘)‘(i < Ce MLy +

/

H%(K5)
1&]) \/ |Ks| we have the following error estimate for the micro error

h

rmicsc s
&

where C is independent of Az, H, h,e,§. By defining a appropriate linear adjoint
auxiliary problem derived from (12) and assuming W' (Kj) regularity of the
solutions of these (linear) problems one can get the optimal micro error

h 2
rmiCSC( ) ; 95)

&

with the same rate as for linear problem [2].

For the modelling error we need structural assumptions and assume that
Af(x, &) = A(x,x/e, &) where A(x,y, &) is Y-periodic in y, i.e., A® is locally
periodic. Then, for any vl e S(l)(.Q, Tw), the modelling error rm,,d(VvH) defined
in (16b) is bounded by

if W(Ks) = W,,,(Ks).8/¢ € Nand
A = A(xg, x/ e, €) collocated at x,
cl s if W(K;) = W', (K).8/s € N,

mod *°

C2 (8 + \/e/8), if W(Ks) = H)(K5), 6 > e,

0.

rmod(va) < (96)

with C! ,and C2_, given by

= UHX
Cooa = CLo + IV ll22)): Crog = CCroq + max 177 G ) lwnoo )

m

where x%(xg,-), for & € R? K € Ty, denote the exact solutions to the
homogenization cell problems find j¢ (x,-) € W[}er(Y ) such that

/ Ay, € + Vit (x,y)) - Vzdy = 0, VzeW! (V). 97)
Y

per
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and C is independent of At,H, h, ¢, 8§ and vH. We refer to [6] for a detailed proof
of these micro and modelling a priori error estimates. We observe that the first two
estimates for the modelling error are similar as for linear problem (see Sect.3.1).
A better estimate can however be derived for linear problem for the third case for
which it is possible to derive the estimate (§ + ¢/§) (see again Sect. 3.1).

5 A Linearized Method

We consider again nonlinear monotone problems of the type (1) with strongly
monotone and Lipschitz continuous maps A°(x, ), i.e., for the case p = 2 and
a = 1,8 = 2in (A;—,). We further assume that the nonlinear map is of the form
Af(x, &) = a®(x, £)&. We first rewrite the method (66) in a slightly different form:
find u”_ | € S{($2, Ty) such that

H _ H
/ k1~ dex—i—BH(ufH;wH):/wadx, vw e Sy(2, Tw),  (98)
e At Q
with the nonlinear macro map By given by
K
By (v wh) = Z | |/as(x,VﬁK)VﬁIh(diwH(xK), v Wi e SN, Th),
KeT; |K8| Ks
H
99

and the micro functions v/ are given similarly to (12) by the following problem:

find 9% such that o, — v = vl € S'(K;, Tp) and
/ at(x, VoR) Vil - Vw'dx = 0, Vw" € S'(Ks, Th). (100)
Ks

The equivalence of the above formulation and the one in (66) with micro problems
given by (12) is easy to check. Following [12] we propose a linearized scheme. The
idea is to decouple the micro-solutions in (99) and to consider

K .2t
By(z; v wh) = Z IK] a’(x, VZ}I’()Vﬁ;dew VwH (xg), v, wH e S§(2, Tu)

KETy |K5| Ks
(101)
. n 1 N R D2 H hl
where for given {zz} € [[xer, S (Ks, Ta), O is such that 97 — v = v €

S'(Ks, Tp) and solution of the linear micro problem

e hyo ok h hoo gl
/ a’(x, Vg )Vo ™ - Vw'dx = 0, Yw"' € §'(Ks, Tp). (102)
Ks
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To formalize the numerical method we consider the product of FE spaces

SHh = 542, Tu) x ]_[ SY (K5, Th). (103)

KeTw

and define z = (¢, {z}}) € S"". Next for a given it; = (uff, {u} }) € S*" we
define one step of the method as a map 7 > S# given by &, = (!, {u’ . }) —
Uy = (U e {u! +1x)- To compute this map we implement the following two
steps:

1. update the macroscopic state: find u!!, | € S{(82, Ty;), the solution of the linear
problem

1
/ At(u"HH —unH)dex—i—BH(itn;unHH,wH) = /wadx, v wh 655(9,7}1);
Q 17
(104)

. . <,
2. update the microscopic states: for each K € 7Ty, compute vKu”‘K such that

h
’\h’un.K

O " —ull | € S'(Ks,Ts) and solution of (102) with parameter u’ , and update
hul
h — K H
Wiy =0 " —ull

To completely describe the algorithm we still need to discuss the initialization
procedure, i.e., how to define &, = (uff, {“}IL,K}) € S given the approximation
ufl € S(l)([?, Tr) of the initial condition g(x) of (5). We suggest to use one step of
the nonlinear method (66) to set it; . This choice allows to prove optimal convergence
rates. In turns out that the trivial initialisation obtained by setting iy = (uf, {0}) and
using one step of the linearised method to define i deteriorates the accuracy of the
linearised scheme [13]. It is also shown in [13] that the above linearised method is
up to ten times faster than the fully nonlinear method (66)—(67).

Well-posedness of the linearized method can be proved assuming that a®(x, £) is
uniformly elliptic and bounded, i.e.,

Aa|n|2 <ad(x,&)n-n, [a®(x,En| < Ayn|, V& ne R, ae.xe 2,e> 0.

It then follows from similar argument as for linear elliptic problem [2] that

By (z o™ o) = A4V ||12<9>’ @

AZ
s H L H a H H
B v W] < [VoR [ g [V 2
Combining the above estimate for By with the existence and uniqueness of the
nonlinear initialisation obtained in Sect. 4 allows to prove existence and uniqueness
of a solution to (104) and an a priori estimate similar to (68) with a right-hand side

simply given by C(|[f[|,2(e) + H”gl HLZ(Q))'
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5.1 A Priori Error Estimates

Fully discrete a priori error estimates of the linearized method can be established
following the steps of Sect. 4.2, with nontrivial modifications due to the linearisation
procedure. It will be convenient in the sequel to introduce the two following semi-
norm on the space S¥". For z = (71, {z.}) € S#" we therefore define

1/2

IVl = max [V e,

Vil = Y| K| o v

KeTn

where 2};{ = z};{ + 7' on Kj. In fact due to the Poincaré (or Poincaré-Wirtinger)
inequality, ||-||gwx is @ norm. Observe that since ber Vzitdx - Vi (xg) = 0 for
micro spaces S'(Ks, 7,) with periodic and Dirichlet boundary conditions we have
I ZiK 1%, o = H.VZH()C[;I) e+ Vi | 72x,- Which yield forall £ = (2, {zh}) €
S the inequality HVZ ||L2(Q) < ||\VZ|| gpn

Next consider the numerical solution obtained by the linearized multiscale
method (104) &, = (uf? {ul }) € S*" and set & , = uf? + u! ;. on Ks. We
also define the nodal interpolation associated to the homogenized solution Y =
Zyu®(-.1,) and consider U, = (U, Ut} € S"" such that U"K = U, +U?
is the solution to the nonlinear micro problem (100). Define for 0 < n < N and
KeTn

Oy =ity —U,, ie, 07 =ull —yM o' =il —U", (105)

A formula similar to (92) leads to

Ls g2 2
R PR L
C(Al‘ + H + FHMM(V n+1 2@ (106)
where the additional term involves a function; L,: S7" — R defined by
Ly(Viv) = |K | / (VU ) — a5, Vil )| VU - Vs, (107)

KeTu

This term arises from the linearization error and it can be bounded by

ILn(VW)| < L

AR (108)
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where £, will be discussed below. Hence using Young’s inequality we obtain

VO

1- 2 2
T TR L

~ |12 Ag A 2
V911 + 2 V911+1

. (109)

EZ
< C(AP + H? + rHMM(VurfIH)Z) + An

SH.h

Recall that we use the fully nonlinear method for the first step. Hence the
convergence results of Sect. 4.2 yield

107 izc) = 1061y + A 901 |12y < CAU(AL + B2 + s (VUT)?).
(110)

where A is the monotonicity constant of A4°.
Similarly to (94) summing (109) fromn = 1ton = N —1, adding the term (110)
and using the inequality H el || 2@ S (| VZ|| gua gives

N
max | erf]”iZ(:z) + AAIHVHFHZ(Q) + CﬁAtZ Hverf]”iz(g) (11D

1<n<N
n=2

) .
LA Hvel

2 H\2 H|2 2
< C(At2 +H A+ max ram (VU ) + 65| 20y + i

2
Aa

and L?f,’(l are solutions to the nonlinear micro problem (100) constrained by 4 and
UM, respectively. The difference of two such micro solutions can be estimated by
the difference of their respective macro constraints as

Vit

h

where Cy = A, — 7 maXp<,<y—1 ﬁi. Recall that 0}, = ’2}11.1( — U}I‘K where ﬁ;‘m

L
< VIKs| |Vl (xx) — VUL (xk)|. (112)

L*(Ks)

hence H Vél Hsﬂh <L HV@{’ ||L2 Assuming £ is bounded and C, > 0 we obtain

@
2 A A2
H
s 107 ey + 213 [V, a3
< C(A;Z +H? + max rHMM(vuf)z) +C|og “imz)' (114)

Finally as [05'] o0 < [uf 2] + |8 —Us'| 2 using the bound

Hg — Z/{é{ HLZ(Q) < CH gives an estimate similar to (94). In view of (113), classical
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estimates for nodal interpolants give under the assumptions of Theorem 6, provided
L is bounded and C, > 0, the error estimate (91).

We briefly discuss the additional assumptions on £; and C.. These assumptions
can be derived in two ways [13]. Under some regularity assumptions on the exact
solutions of the micro problems (100), assuming that u° € C°([0, T], W>*°(£2))
and max;efo, 1 ‘uo(x, t)‘Wl_C>o @) is small enough (smallness assumption), then there
exist Hy, hp such that for any H < Hy,h < hyg, C, > 0 and L; is bounded.
Alternatively we can prove the boundedness of £; and the positivity of C, without
a smallness assumption on #° and without the additional regularity assumption
C°([0, T], W2 (£2)) on u’ if in addition to the assumptions of Theorem 6 we have

max ”en,K”(LOO(KH))dxd < s (115)
e 22

where the error term e, x € (L™®(K;3))?*? is given by

1
enx(x) = a'(x, Vil ) — / a(x, Vil p — VO ydr,  ae.xeKs.  (116)
A , ,

The term (116) represent the linearization error. It has been shown numerically
for tensors with various ellipticity constant A, that (116) holds if the spatial and
temporal discretization parameters are small enough [13]. Optimal (discrete) C°(L?)
can also be derived under the same additional assumptions as for the fully nonlinear
method. Finally fully discrete results, i.e., quantitative estimates for the component
Tmic and Fyoq Of rapmy can be obtained similarly as in Sect. 4.2, with similar rates.

6 Conclusion

We have presented a unified framework and analysis for the FE-HMM applied
to monotone parabolic problems. We have shown that under the most general
assumptions for which homogenization can be established, we can construct an
FE-HMM and establish its convergence. Under more restrictive assumptions, e.g.
Lipschitz continuous and strongly monotone maps, fully discrete space time a
priori error estimates can be derived and in some situation an efficient linearized
scheme can be constructed and analyzed. Finally for linear problems we have
shown that the FE-HMM can be coupled with classes of Runge-Kutta methods
(Radau or Chebyshev methods) and analyzed by combining fully discrete spatial
estimates with semi-group techniques in a Hilbert space framework. We have neither
discussed implementation issue nor given numerical experiments. This is carefully
documented in [6, 9, 13], where the issue of choosing the right coupling of the micro
and macro solvers (i.e., the micro boundary conditions) and the size of the sampling
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domains are discussed. Numerical experiments for non-periodic problems (e.g., log-
normal stochastic field) [9] and degenerate problems [13] illustrate the robustness
of the numerical homogenization strategy.

Acknowledgement This research is partially supported by the Swiss National Foundation under
Grant 200021_150019.
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Virtual Element Implementation for General
Elliptic Equations

Lourenco Beirao da Veiga, Franco Brezzi, Luisa Donatella Marini,
and Alessandro Russo

Abstract In the present paper we detail the implementation of the Virtual Element
Method for two dimensional elliptic equations in primal and mixed form with
variable coefficients.

1 Introduction

The Virtual Element Method (VEM) is a recent generalization of the Finite
Element Method that, in addition to other useful features, can easily handle general
polygonal and polyhedral meshes. The interest in numerical methods that can use
polytopal elements has a long and relevant history. We just recall the review works
[3, 4, 14, 21, 22, 26, 27] and the references therein. However, the use of polytopes
showed recently a significant growth both in the mathematical and in the engineering
literature, with the emergence of a new class of methods where the traditional
approach (based on the approximation and/or numerical integration of test and trial
functions) was substituted by various alternative strategies based on suitable differ-
ent formulations. Among these alternative frameworks (all, deep inside, very similar
to each other) we could see the (older) Mimetic Finite Differences (see e.g. [9]
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and the references therein), the Hybridizable Discontinuous Galerkin (see e.g. [18]
and the references therein) the Gradient Schemes (see e.g. [20] and the references
therein) the Weak Galerkin Methods (see e.g. [29] and the references therein), and
the Hybrid High Order methods (see e.g. [19] and the references therein), together
with the main object of the present paper: the Virtual Element Method.

The subject of polygonal and polyhedral mesh generation is a very active area of
research on its own. Here we only refer to [28] for a simple and reliable MATLAB
polygonal mesh generator in 2D, and to [24] and the references therein for some
insights into the issues of the three-dimensional case.

Very briefly, the key idea of the Virtual Element Method is to adopt also non-
polynomial shape functions (that are necessary in order to build conforming discrete
spaces on complex polytopal grids) but avoiding their explicit computation, not even
in an approximate way. This is achieved by introducing the right set of degrees
of freedom and defining computable projection operators on polynomial spaces.
In the initial paper [6] the Virtual Element Method was presented for the two
dimensional Poisson problem in primal form, while the three dimensional case (still
for constant coefficients) was discussed later in [1]. In the more recent papers [12]
and [11] the Virtual Element Method was then extended to more general elliptic
equations (including variable coefficients with the possible presence of convection
and reaction term), respectively in primal and mixed form. At the same time, the
method has been applied with success to a wide range of other problems. We just
recall [2, 5, 7, 10, 13, 15-17, 23, 25].

The present work can be considered as a natural continuation of [8], where all
the coding aspects of the model scheme presented in [6] and [1] where detailed.
Here we describe all the tools for the practical implementation of the methods
analysed in [12] and [11]. Since the assembly of the global matrix follows the same
identical procedure as in the Finite Element case, the focus of this work is on the
construction of the local matrices. After a brief description of the discrete spaces and
the associated degrees of freedom, we detail step by step the implementation of the
projection operators and all the other involved matrices. At the end of each part the
reader can find an “algorithm” section where the whole procedure is summarized.
Although we believe that the VEM is very elegant and, once some familiarity is
acquired, quite easy to implement, we advice the reader to look into the previous
work [8] before reading the present one.

The paper is organized as follows. After presenting some minimal notation in
Sect. 2, we briefly describe in Sect.3 the problem under consideration, including
its primal and mixed variational formulations. In Sects.4 and 5 we briefly recall
the discrete spaces, the degrees of freedom and the construction of the projection
operator of [6]. In Sect.6 we detail the implementation of the method analysed
in [12]; a useful summary can be found in Sect.7. Section 8 is devoted to a brief
description of the discrete spaces and of the degrees of freedom introduced in
[11], while the implementation aspects are described in Sects.9 and 10. A useful
summary can be found in Sect. 11.

In this paper we have studied in details the implementation of the Virtual Element
Method in two dimensions only. The extension to the three dimensional case does
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not present any major difficulties, as long as all the 2D machinery is developed with
respect to each face of a general polyhedron. We will soon release a full MATLAB
implementation for both the 2D and the 3D case.

2 Basic Notation

In the present section we introduce some minimal notation needed in the rest of the
paper.

2.1 Polynomial Spaces

For a given a domain D C R? and an integer k > 1, we will denote by P;(D)
the linear space of polynomials of degree less than or equal to k. When d = 2, the
dimension of P, (D) will be denoted by ny:

k+ Dk +2)

ny := dim Py(D) = 5

2.2 Polygons

A generic polygon will be denoted by E; the number of vertices will be denoted by
Ny and the number of edges by N,. Of course N, = Ny, but it will be useful to
keep separate names. The diameter of the polygon E will be denoted by hg and its
centroid by (x., y.). The outward normal to E will be denoted by ng or simply by n
when no confusion can arise. The normal ng restricted to ad edge e will be indicated
by n,.

2.3 Scaled Monomials

Let a = (o, ory) be a multi-index. We define the scaled monomial m, on E by:

Mo (x.y) = (x ;Exc)ax(y ;Eyc)l)ty. W

For k an integer, let

M(E) := {my, 0 < || <k} (2)
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where |a| = o, + a,. With a small abuse of notation we will indicate with « (in
contrast with boldface «) a linear index running from 1 to ny. Obviously, M(E) is
a basis for Py(E).

2.4 Functional Spaces

The scalar product in L?(D) will be denoted by (-, )o.p or simply by (-, -) when the
domain is clear from the context.

3 The Elliptic Problem

Let 2 C R? be a bounded convex polygonal domain with boundary I', let ¥ and
y be smooth functions £2 — R with k(x) = ko > 0 for all x € £2, and let b be a
smooth vector field £2 — R2. We consider the following elliptic problem:

Lp:=div(—«Vp+bp)+yp=f in 2 ;
(3)
p=0 on I

We assume that problem (3) is solvable for any f € H~!(£2), and that the a-priori
estimate

lrlhe < Clfll-1.e 4

and the regularity estimate

IPl2.2 < Cllfllo.e &)

hold with a constant C independent of f. As shown in [12] and [11], these hypotheses
are sufficient to prove the convergence of the Virtual Element approximation, both
in primal and in mixed form.

3.1 The Primal Variational Formulation
Set:
a(p,q):=/QKVp-qux, b(p,q) :=—/Qp(b-Vq)dx,

c(p,q) :=/9qudx, (f,q)=/9fqu,
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and define

B(p.q) :=a(p,.q) +b(p,q) + c(p.q). (6)

The primal variational formulation of problem (3) is then

findp eV := Hé (£2) such that

B(p,q) = (f,q) forallgeV. @
3.2 The Mixed Variational Formulation
In order to build the mixed variational formulation of problem (3), we define
vi=«, Bi=«""b,
and re-write (3) as
u=v ' (=Vp+Bp). divut+yp=fin2, p=0onTl. (8)

Introducing the spaces
V:=H(div;:2), and Q:=L*(£2),
the mixed variational formulation of problem (3) is:

Find (u, p) € V x Q such that
(vu,v) — (p,dive) —(B-v,p) =0 forallveV, )
(dive,q) + (yp.q) = (f.q) forallg € Q.

4 Approximation with the Virtual Element Method

The Virtual Element approximation of problems (7) and (9) fits in the classical con-
forming Galerkin methods: in principle, in both cases we define finite-dimensional
subspaces V;, C V (for problem (7)) and V;, C V, Q;, C Q (for problem (9)) and
we restrict the various bilinear forms to the spaces Vj, and V), x Q;, respectively.
However, given that for the VEM the functions are not explicitly known, we will
also have to approximate the various bilinear forms.
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As usual, the virtual spaces Vj,, V}, and Q) will be defined at the element level,
and on the boundary of the elements the degrees of freedom will be chosen in such
a way that they will nicely glue together.

Hence, given a polygon E of the decomposition, we will first define the local
virtual spaces Vj,(E), V;,(E) and Qy(E) and then we will set

Vi = {p € V such that pp € V), (E)} (10)
Vi ={v € Vsuchthat vy € V,(E)} an
O = {q € QO such that gz € Oy(E)}. (12)

Also the approximation of the various bilinear forms will be made element by
element.

To encourage the reader, we point out that the space Oy, will consist, as usual in
finite element methods, of piecewise discontinuous polynomials of degree k.

5 Virtual Element Space for the Primal Formulation

Before defining the local virtual space V,(E), we need to become familiar with the
projection operator I7 kv which will play a major role in the rest of the paper.

The operator 17, ,Y is the orthogonal projection onto the space of polynomials of
degree k with respect to the scalar product [, Vp - Vgdx. Given a function p €
H'(E), the polynomial IT kV p is defined by the condition

/ V(ITYp—p)-Vrdx =0 forall r, € Pi(E). (13)
E

When r; is a constant, condition (13) is the identity 0 = 0 so the polynomial /7, kV p
itself is determined up to a constant. This is fixed by imposing an extra condition,
for instance,

/ (1Y p —p)ds = 0. (14)
oE

The following easy lemma will be useful throughout the section:
Lemma 1 The polynomial Il kV p depends only on

* the value of p on the boundary of E;
» the moments of p in E up to order k — 2.

Proof By Eqgs.(13) and (14) it is clear that the polynomial I'[kvp is completely
determined by the integrals

/Vp -Vrdx and / pds.
E IE
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The second integral clearly depends only on the value of p on the boundary of E.
Concerning the first integral, integrating by parts we have

d
/Vp'Vrkdx:—/pArkdx—}—/p rkds
E E o On

and since Ary € Pr—2(E) the proof is completed.

We are now ready to introduce the local virtual space Vj(E). The space Vj(E)
consists of functions pj, such that:

* pj is continuous on E;
* p,on each edge e is a polynomial of degree k;
s Apy € Pu(E);

. phmadx:/H,thmadxfor|a|:nk—land|oc|:nk.
E E

In [1, 8] we have shown the following results:

1. Vi(E) has dimension Ny + (k — 1)N, + ng—p = kNy + ng—;
2. Pk(E) C Vh(E);
3. for the space Vj,(E) we can take the following degrees of freedom:

Boundary degrees of freedom [Ny + (k — 1) x N, = k x Ny]

* the values of pj, at the Ny vertices of the polygon E;
» for each edge e, the values of p;, at k — 1 distinct points of e (for instance
equispaced points).

Internal degrees of freedom (only for k > 1) [n;—;]

* the moments of pj up to degree k — 2, i.e. the integrals

1
|E|/phmadx, l| < k—2.
E

We will indicate by dof;(pp) (i = 1, ..., Ngot := dim V},(E)) the degrees of freedom
of p,. We define the local basis functions ¢; € Vi(E), i = 1,...,Ngof, by the

property:
dofi(¢j)) =38 i,j=1,...,Naof (15)
so that we have a Lagrange-type decomposition:
Naof

pr ="y _ dofi(py) ¢ (16)

i=1
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Given a function p;, € V,(E), by Lemma 1 the polynomial /7 kv pi, depends only on
the value of p; on the boundary of E and on the moments of p; in E up to order
k — 2. Hence, the polynomial /7 kv pi, depends only on the degrees of freedom of pj,.
In [8] it is shown that also the L? projection H;?Ph of a function p;, € V,(E) onto
‘Px(E) depends only on its degrees of freedom, and all the details to compute and
code IT kV ¢;and IT ,9¢,-, for a generic basis function ¢;, are given. For the convenience
of the reader we report here the various steps. Write

Nk

MY ¢i=) stmy. i=1.... Nt (17)
a=1
and define
Pog; := / ¢ids.
E
Then, defining
Pomy Pomy ... Pom,,
G 0 (Vmy, 'sz)o,E . (Vmy, V.mnk)O,E , as)
6 (ank, 'sz)o,E (ank, .ank)O,E
Pogi
b = (Vimy, .V(,bi)O,E ’ (19
(anks'vqﬁi)O,E
for each i, the coefficients s¥, @ = 1, ..., n; are solution of the n; x ny linear system:
Gs; = b;.
Denoting by B the n; x Ngor matrix given by
Pogh ‘e Podns
Bim[bibs ... by, = (Vmy, 'V(PI)O,E - (Vmy, V‘¢Nd0f)0,E ’ 20)

(Vmy, Véi)ok .. (Vim,, Vén,)o.E
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*
the matrix representation l'[kV of the operator I7, kv acting from V,(E) to Px(E) in the

*
basis M, (E) is given by (l'[kv)m = s¥, that s,

ﬁ,Y =G 'B. 1)

We will also need the matrix representation, in the basis (15), of the same operator
11 ,Y , this time thought as an operator V,(E) —> V},(E). Hence, let

Ndof

Hkvqﬁzzzﬂ{(ﬁ], i=1,...Ngof,
=1

with
n} = dofy (1T ¢).
From (17) and (16) we have

ng ng Ndof

M= simg =y 7Y dofi(me) ¢

a=1 a=1 j=1

so that

N

= Zs;' dof;(my). (22)
a=1
In order to express (22) in matrix form, we define the Nyor X n; matrix D by:
D,'a = dof,-(ma), izl,...,Ndof, Olzl,...,l’lk,

that is,

dof; (ml) dof; (WZQ) ... dof (m,,k)
dsz(ml) dsz(le) ... dof, (m,,k)

(23)
dOdeof(ml) dOdeof(mz) e dodeof(mnk)
Equation (22) becomes:

7 =) (G"'B)uiDj = (DG™'B);.

a=1
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Hence, the matrix representation l'[kV of the operator HkV : Vi(E) — Vi (E) in the
basis (15), is given by
*
ny =DbG 'B=DI,. (24)

Remark 1 We point out that, as shown in [8], the matrix G can be expressed in
terms of the matrices D and B as

G = BD. (25)

Always following [8], we can show that also the L? projection onto P(E) of a
function p;, € V,,(E) depends only on its degrees of freedom. If we write

Ndof

Mg =Y tm,
=1

and define
(my,m)oe (mi,ma)oe ... (M1, my)oE
H— (ma, ’i”l)O,E (ma, I?iz)o,E . (ma, n:lnk)O,E ’ 26)
(mnks;nl)O,E (mnk,;nz)o,E (myy., My )o £
(m1, ¢i)o.e
¢ — (mg, fpi)O,E ’ on
(1 5 '¢i)0,E
then, for each i, the coefficients 1, @ = 1, ..., n; are solution of the ny x ny linear
system:
Ht =¢;, (28)
which descends directly from the definition of the L?-projection.
We denote by C the n; x Ngof matrix given by
(mi, @0 (M1, $2)0E - (M1, PNy)o.E
Cimferes ... eny] = (m2s<'151)0,E ("’127?2)0,E (mzvd){vdof)O,E 29)

(mnks ¢l)0,E (Wlnk, ¢2)0,E “ee (mnks ¢Ndof)0,E
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The first ng—, lines of the matrix C can be computed directly from the degrees of
freedom, and the resulting matrix is

00 ... 0010...0

00 ... 0001 0
first ny—; lines of C = |E|

00..0000...1

where the rightmost block is the identity matrix of size ny—, Xny—p. The last ny—nx—
lines of the matrix C correspond to m, being a monomial of degree k — 1 or k and
we need to resort to the fundamental property

[ oo = [ 117 gim ax.
E E
Hence in this case we have

-1
Coi = (HG 'B)ui, m—2 <o < ny.

*
It follows that the matrix representation l'[,(: of the operator 1 acting from V}(E)

*
to Pi(E) in the basis My(E) is given by (I1})4; = #*, that i,

M =H'C. (30)

Arguing as before, the matrix representation, in the basis (15), of the same operator
I1?, this time thought as an operator V,,(E) —> V,(E), is

M) = DH™'C = DII). (31

*
In a similar fashion we can also compute the matrix representations IT§_, and IIj_,
of the L? projection onto the space of polynomials of degree k — 1. To this end, we
consider:

o the ng—; X ng—; matrix H' obtained by taking the first n;—; rows and the first n;—;
columns of the matrix H defined in (26);

o the mg_q X Nyof matrix C’ obtained by taking the first n;— lines of the matrix C
defined in (29);

o the Nyof X ng—; matrix D’ obtained by taking the first nz—; columns of the matrix
D defined in (23).

Then we have:

* *
ny_,=MH)"'C’ and Mm)_, =D'M}_,.



50 L. Beirfio da Veiga et al.

To summarize, given a “virtual” function p, € Vj(E), we can compute the
polynomials I'[kvph, 11 ,?ph and I7, ,?_ \Pn in terms of its degrees of freedom.

6 VEM Approximation of the Primal Formulation

As shown in [6], the projectors I1 kv and IT_, allow us to solve the Laplace equation
with a reaction term. Indeed, according to [1], if problem (3) reduces to

—Ap+yp=f in{2

u=g ondf2

then we have
a(p.q) := /9 Vp-Vqdx, b(p.q):=0, c(p.q):= /9 ypqdx.
The local VEM approximation for a(-, -) is
ay (Phs qn) = /EVHkVph - VITY g dx + Sp((I— 1Y )py, (I = T1Y )qn)

where the stability term Sg (-, -) is the symmetric and positive definite bilinear form
which is the identity on the basis function, i.e. Sg(¢i, ¢;)) = §;. The local VEM
approximation for c(:, -) is

cE(pnrqn) = / y I \pi IT_ g1 dx
E

and similarly the load term (f, g;,) is approximated locally by (f, IT)_,qn)o k-

If the diffusion « is not constant or a first-order term is present, then we cannot
simply approximate Vp;, with VII, kvph; as shown in [12], we would loose the
optimal convergence rates. Instead, we should approximate

Vpn  with ), Vp,.
Note that for k = 1 the two approximations of Vpj, coincide; in fact,

1
v p, = ] /EVphdx = I1)Vpy.

We will see now how to compute 7, ,?_1 Vpy, in terms of the degrees of freedom. To
this end, we observe that in order to obtain I7 ,?_1 Vpp, we need to compute

/ Vph Fg—1 dx
E
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where ry—; is any vector whose components are polynomials of degree k — 1.
Integrating by parts, we have

/Vph-rk_ldx = —/phdivrk_l dx+/ Phli—1 -nds
E E oE

and since divri—; € Py—»(E), both integrals are directly computable from the
degrees of freedom of p,. In order to find the matrix representations of the operator

*
1YV, we define the nj—; X Nyor matrix l'[gfl by
M=l o
i, = Z (T, e (32)

a=1

The polynomial I1 /?_1¢i,x is defined by

/Hl?—lqbi,xmﬂdx:/qbi,xmﬂdx, ,3 =1,...,m—
E E

which becomes the linear system

Nk—1

*
Z(l’[gfl)m/mamﬁdx:/d),-,xmﬁdx, B=1,...,m.
E E

a=1

The term | £ $i.x mg dx can be computed integrating by parts:

/¢1xmﬂdx:_/¢tmﬁxdx+/ ¢imﬂnx- (33)
E E JoE

If we define the matrices E* and E” by

/q&,xmﬁdx Ey /d),ymﬁdx ,3—1 (34)
then we have:
10, = A E* A'e
L., = ) Hk 1=
where H is the submatrix of H defined in (26) obtained taking the first n;—; rows
and columns of H.

We can now compute the local VEM stiffness matrices for the variable coefficient
case.
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6.1 Diffusion Term
We have:

(K% = af (. ) = /E K IO,V IO, Vb de
+ & Sp((I = 1Y)y, (I — 1Y )¢

where k is a constant approximation of « (for instance, the mean value). We compute
separately the consistency term and the stability term.

* consistency term:
(Ko = /KHI?—1V¢/‘ T Ve dx
E
- / A0 ] + [T, LT ) e

and

-l *

/E e T gl il dx = ) (TR%) (T / Kk m mg dx,
a,f=1
Ng—1 * 0 * 0

/EK [Hl?—lfpj,y][nl?—l(bi,y]dx = Z (Hki1)aj(nki1)ﬁi/EKma mg dx.

a,f=1

If we define the n;—; x m—; matrix H* by
(H)op = //cma mgdx, 1<a,pB<m,
E
then we have
KE = (12) WA, + (1) e,
which can be written as
iy,

* (35)
0 H* ||,
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o stability term:

(K& = & Se(U — 117 )¢y, (I — ITY )¢

Naof
=& Y (8 — (Y )) Seler. be) (5 — (Y )ie)
k=1
Naof
=K (8¢ (Hkv)jé)(&z (HZ)M)
=1
i.e.
Ke=k(—1Y)T(—1y). (36)

If the diffusion « happens to be a 2 x 2 symmetric matrix, i.e.

. [Kxx ny} 7
Kxy Kyy
then we can proceed similarly by defining the n;—; x n—; matrices H*, H*» and
H“» as follows:

(Hxxx)aﬂ = /EKxxmaI’H5 dx, (H’ny)aﬂ ::/;nymamﬁdx,

and the local virtual diffusion consistency matrix K¢ can be written as

H’Cxx H’ny * 0x

- ., -
Ke = [(m)" (m)"]
H*y H< l'[k"_1

In this case, the stability matrix K‘; can still be taken of the form (36), where this
time the constant scalar k can be defined as the arithmetic mean of the mean values
of k., and k,,. Note that here we are not considering the problem of optimizing the
stability matrix with respect to the anisotropy of the diffusion matrix «, but we are
only interested in the convergence as i goes to zero.

6.2 Transport Term

The local VEM approximation for the transport term is

BE (i) = — /E 10 pn (6110, Vay) dx
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and the corresponding local matrix is
(€)= b0y 80 = [ 162112, V) .
Define the n;_; x n;_; matrices H?* and H? by

(be)aﬂ = /bx my mg dx, (Hb"')aﬂ = /by My mg dx.
E E
By (32) we have

b- [T V] = bi[IT_ V] + by [[T)_ Vi,
ng—1

= b, Z(Hk Vpimp + by Z(Hk Vpi mp
B=1 B=1

so that
- / M) ¢ (b-IT)_ V) dx =
E

/E|:Z(Hk 1)a1ma] |:b Z(Hk Vgimp + by Z(Hk Vi m5:|dx =

p=1

Nk—1 Ng—1
-/ {b D () () mpma by 3 (11 m<n£i1>ﬂimﬂma§dx=

a,f=1 a,f=1
Ni—1 Nk—1
S ILHBFIL AN [ bamgma dx= Y- (I )uy (022,050 [ by, dx =
a,f=1 a,f=1 E
Ni—1 Ng—1 *
- Z (Hk 1 a] 1)/31 (Hb )aﬁ - Z (Hk 1aj (Hgil)ﬂi (Hb'\y)aﬂ =
a.f=1 a,f=1

* *
B [(H2f1)THb"H12—1 + (Hgil)THbyng—l]ij -

= () e+ a2
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Hence the elementary VEM matrix for the transport term is

Kb — _<(r[,‘:fl)TH”*‘ + (n,‘iil)TH"y)n,‘g_l.

6.3 Reaction Term

The local VEM approximation for the reaction term is

¢y (pn.qn) == /EV[HI?—lph] [T gn] dx

and in matrix form

(K)j 1= cE(y, ) = /E y [T 5] (110, ] dx.

Define the matrix
(Hy)aﬂ = / Y mqmpg dx
E
and we have immediately

N—1 Rg—1

(K); = /EV [Z(Hg—l)ﬂéi ma] [Z(Hg—l)ﬂi mﬂ] dx =
e=1 p=1

Ng—1
a,f=1 E

ie.

K = (_)"H'I;._,.

7 Algorithm for the Primal Formulation

> ()i [ ymams s = [T/

55

(37)

i

(38)

For the convenience of the reader, we summarize the results of the previous Section

in form of an algorithm ready to be implemented.
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7.1 Projectors

1. Compute the ny; X Ngor matrix B given by

Pog .. Podno
(Vmy, Véi)og ... (Vma, Vén,)oE

(ank’ V¢l)0,E e (ank’ V¢Ndof)0,E

where the terms of type (Vimy,, V¢;)o £ can be determined as shown in Lemma 1.
2. Compute the Ngo X 1, matrix D defined by:

D, = dofi(my), i=1,...,Nagot, @« = 1,...,n.

3. Set
G = BD. (39)

Note that the n; xn; matrix G can be computed independently (see (18)), and (39)
can be used as a check of the correctness of the code.
4. Set

* V 1 *
Iy =G 'B and M} =DIH).
5. Compute the n; x n; matrix H defined by:
Hys = /mam,g dx a,B=1,...,n.
E
6. Compute the n; X Ngof matrix C defined by
Cm-:/maq&,-dx, azl,...,nk,izl,...,Ndof.
E

The matrix C has the following structure:

00..0010...0
00..0001...0

o first ;4 linesof C = [E|| =~ | where the last
00...0000...1

block is the identity matrix of size ny—» X ng—s;
 last ny — ny_» lines of C:

*
Coi=(H HZ)M, Ng— < o < Ny
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7. Set

* *
M) =H'C and M =DM}

8. Compute the Nyor X ny—1 matrices E* and E” (see (33) and (34)) by

/¢1xmﬂdx Ey /d’l}mﬂdx

9. Set

* A — * A —
n, =A'e, 0% =H &

57

where H is the submatrix of H obtained by taking the first 7;—; rows and columns

of H.

7.2 Coefficient Matrices

Compute the ny—; X ng—; matrices

(Hx)aﬂ = / K mg mg dx,
E
(be)aﬂ = /be my mg dx, (Hb'v)aﬂ = /Eb} my mg dx,
(H)op = / y mgmg dx.
E
7.3 Local Stiffness Matrices
Finally, set
F0x \T [0y \T © 0 m'-
K* = [(Hgfl) (2y) ] * f)_l +e(-mY)Ta—my)
0 H || IO,

K = _((Hgfl)THb" + (Hgil)THb}.) m_,

= (Mg_) "W I,

(40)

(41)

(42)
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8 Virtual Element Spaces for the Mixed Formulation

Before defining the virtual space V,(E), we need to study certain spaces of
polynomials which will play a major role in the definition of the degrees of freedom.

We start by defining an easily computable basis {m;} for [P;(E)]*. Let I be an
index running from 1 to 2 n; = dim[Px(E)]?. Set:

my = [";’] ifl1<I<m

0
my = ifn,+1<1<2n.
mp—p;

We introduce the (vector) polynomial spaces
GY (E) := VPis1(E)
and
g,f‘(E) := L*-orthogonal complement of ng (E) in [P (E)]?
or, more generally,
G2 (E) := any complement of GY (E) in [P (E)]%.
An easy computation shows that
dimGY(E) =n) :=m + (k+1) and dimGE(E) =n® :=m — (k+ 1).

We construct now a basis for ng (E) and g,fB (E). It is easy to check that a basis for
ng(E) is given by

Vi ._ _ v
8 =Vmgy, a=1,...,n.

Let now the nkV X 2n; matrix TV be such that

2ny

vk v v
g, :ZTa,ml, a=1,....,n.
=1

A way to obtain a basis in g,fB (E) is to complete the matrix TV with a n,fB X 2ny,

\Y
matrix T® to form a non-singular (nkv + n,fB = 2ny) X 2n square matrix T = [T®:|'
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A basis for g,fB (E) is then given by

2ny

Dk .__ D _ @
gy '_ZTVImI’ y—l,...,nk.
I=1

An obvious way of constructing the matrix T is to define the rows of T® as a basis
for the kernel of T". This can be easily done symbolically in MATLAB:

TO = null(IN)’; T = [TN; TO]; go = Txm;

where TN = TY and TO = T®. In the appendix we present the basis so obtained up
tok =5.

8.1 The Space Vy(E)

We are ready now to define the local VEM space V,(E) which consists of functions
vy, such that:

e v, € H(div; E) N H(rot; E);

* v, -n,is apolynomial of degree k on each edge e;
e divv, € Pr(E);

e rotv, € Pi—1(E).

In [11] we have shown the following results:

1. the dimension of V,(E) on a polygon E is

Nyot := dim V,(E) = N, x (k + 1) + dim G, (E) + dim GP(E)
=N, x (k+ 1)—}—nkv_1 +n,€(B:Ne Xtk+1)+2m—k—2

2. [P(BE))* C Vi(E);
3. for the space V;(E) we can take the following degrees of freedom:

* Edge dofs [N, x (kK + 1)]

Since on each edge v, - n, is a polynomial of degree k and no continuity is
enforced at the vertices, we need to identify a polynomial of degree k on each
edge without using the values at the vertices.

This can be done in several ways, the most natural being taking the value
of v, - n, at k + 1 internal distinct {x{} points of the edge e, obtained by
subdividing e in k + 2 equal parts:

dof/(vy) == (v -m)(xp), £=1,....k+ 1.
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This choice automatically ensures the continuity of v, - n, across two
adjacent elements.
¢ Internal V dofs [nkv_1 =n; —1]
Let @ be an index running from 1 to dim G\ | (E) = n}_,. We define:

1 B _
dofy (vy) = E| / viege e, gt e gl (E).
E

« Internal @ dofs [n® = n; — (k + 1)]
Let y be an index running from 1 to dim g,fB (E) = n,fB. We define:

1
dof® (vy) := | / vi-gPtde,  g24 e GR(E).
E

Let i be an index running through all dofs. We define ¢, € V,,(E) by
dofi(¢,) =385, j=1,....Naot

in such a way that we have again a Lagrange-type identity:

Ndof

v, = Z dof;(vy) ¢;.

i=1

8.2 The Space Qy(E)

As promised, the space Q;(E) is simply the space P;(E) and as basis functions we
take the set of scaled monomials M, (E) defined in (2).

9 VEM Approximation of the Mixed Formulation

As show in [11], the VEM approximation of problem (9) is
Find (uy, pr) € Vi, x Qp, such that

Z {af(uh, ‘Uh) — (ph, div vh)(),E — (ﬂ . H,?vh,ph)(),E} =0 for all v, € V},
E

Y (divan, gi)os + (vpi gidoe = (f, a)oe for all g, € Qy
E
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where
a (p, vi) 1= (v My, Tv4)o s + Se(( — T)up, (I — I17)vy).

The symmetric and positive bilinear form Sg(:, ), needed for the stability of the
method, is defined by requiring

Se(¢;. ¢/) = v|E|dy,

with v = mean value of v on E, or v = v(x, y.). The corresponding local stiffness
matrices are obtained by restricting all integrals to E and by setting u;, = ¢;, v, =

¢i’ph = Mgy, gp = Mmg.
9.1 Computation of the L*-projection in V;(E)

Let ¢, be a basis function for V(E). We need to compute I10$; € [Pi(E)]>. We
shall write IT¢, in terms of the basis {gk} = {ga”‘,g?’k} of [P(E)]?:

2ny

e, —Zs“ V"+Zsy Ok — Zs (43)

Multiplying by {gg’k , g;?’k} and integrating, we get a linear system in the unknowns
{s¥, s/} = s! (note that [ IT)$, -p,dx = [, §; - p; dx):

/Vk dx—l—Z / @ ¥k gy =/E¢i~gZ"
/Vk

kdx+Z /e;k g®* dx =/¢i_g§Bk
E

Il M*‘q Il M*‘q

Set
Gy = /glf - g5 dx,
E

and define the 2n; X Ngor matrices

*
MY :=s' and By := / o, -gkdx. (44)
E
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We have

2nk * * *
ZG” MY, =B; ie. GHO!=B sothat I)=G 'B.
J=1

We split B as
\/
B= [Be} .
B
We start from BZ!‘ = [ ¢ -gg‘k dx. Since

Vi
85 = Vmpyi,

we have

Bﬂ=/¢,wwﬂmz—/QW@mHuu+/¢,Mm“ms
E E JE

-\4 \'4

=:BY +BY.

The term Bg can be readily computed because ¢; - n is a known polynomial on
the boundary of E. Concerning the term BlV , we first observe that we can directly
compute div ¢; € Pr(E). In fact, write div ¢, as

ng
dive, = E d? mg,
o=1

multiply by m, and integrate over E:

ng
ZW/%WM:/M@WM
o=1 E E

Define the n; x n; matrix H (as already done in (26)) by
H,; .= / mgm; dx,
E
and the n; X Ngof matrices V and W as

Voio =d?, Wy = /divq&imrdx (45)
E

1
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so that
HV=W and V=H"'W.
Now,
W= [divgmear=— [ Vmart [ gmemas
E E IE
=: Wil + [W2]q;.
Observing that
Vm, = gY’_kl_l,
we have

(Wil.: = —|E| dof® () = —|E| ificorrespondstot — 1
T = —19) =

(46)

0 otherwise.

Concerning the term W», we observe that it can be immediately computed since
@, - ng is a known polynomial on the boundary. Consider now BY:

ng
BY s = —[Ediv¢im5+1dx = —Zdﬁ/EmamﬁH dx.

o=1

Define the nkv X 1 matrix
# .
H S /mgm5+1dx.
E

Obviously, most of the entries of the matrix H* are also entries of the matrix H
already computed. Then

— [ aiv iy ax = VI, = —(HH W
E
so that
BY = —H*H™'(W; + W,).
Concerning the term B®, we simply observe that

Bg _ /‘P; -ggB‘k _ B dOftg@(¢,‘) _ |E| if § corresponds to i
E 0  otherwise.
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We will also need I1 ,?q) ; in terms of the basis {¢,} itself. To this end, we define ”}l

as

Ndof
¢, =Y nl¢, orml:=dofi(ITp,)

J=1

and the Nyor X Nyor matrix l'[,(: as

(TRY;i = /.
From (43) we have
2ng 2ng Ndof Ndof [ 2mx
M, =) sigi= si| D dofigng; | = [Z sjdof;(g})
I=1 I=1 j=1 j=1 Li=1

and comparing with (47) we obtain
2nk

] = ) sidof;(g)).
=1

If we define the Ngof X 2n; matrix
Dj; := dofj(g})
we have:
m’ =DM ie. M’=DG'B.

We observe that

Ndof

G, = /Eg’; ghdx, and gt = ZdOfi(gl})¢i

i=1
so that

Naof Naot

G, = Zdofi(gﬁ)/Eg’; -, dx = Z D;B; hence G = BD.
i=1 i=1

We have the following useful identities:

*

MD=1 since MD=G 'BD=G 'G=1

(47)

(48)



VEM Implementation for Elliptic Problems 65
and
MD=D since TN’D = DIYD = DI = D.
Another way of arguing is that since /T is a projection, then (l'[,(:)2 = l'[,(:. Hence
(nY)?> = DG 'BDG 'B = D[G 'BD|G 'B=1I! = DG 'B

hence G™'BD must be the identity matrix as stated in (48).

Remark 2 1t can be shown that the lower part of the matrix l'[,? corresponding to
the internal dofs (last nkv_l + n,fB rows) is the identity matrix. This property can be
exploited in the definition of the stability matrix (50) described below (see [11]).

10 Local Matrices

We are now ready to compute the VEM local matrices for the mixed formulation.

10.1 Term a; (up, vy)

The corresponding local matrix is given by
aj/ (i b)) = v I106;, TT0¢)0.x + Se(( = )@, (I — T),)
= (KQ)ij + (K$)y-
Using (43), the consistency matrix Kg is given by
o 2
[Kgl; = ZZS?S}/Evg’} g dx.
I=1J=1

Defining the 2n; X 2n; matrix G”

G}, = / vg’,‘-gﬁdx,
E

and using (44) we obtain:

2ng 2ng

Key = 3 S M0 {Y),G)

I=1J=1
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i.e.
S 0T av g0
K = [II}]" G"II,,. (49)
If v(x) = 1, i.e. we have the Laplace operator, then G* = G and
K =[G 'B|"G[G'B]=B"G'B.

The stability matrix Kg can be taken as

K =0 IE|(1- )" (I - TI) (50)

where V is a constant approximation of v.

10.2 Term —(pun,div vp)o,E

By (45) we see that the corresponding local matrix is —W which has already been
computed.
The local matrix K corresponding to § = (0,0) and y = 0 is then given by:

K — [Ke +Ks -W?
w o0

10.3 Term —(B - Hkovhaph)O,E

The corresponding local matrix is

2ny

T == [ 100 ax = = 31010 [ gl e

I=1

Defining the matrix

Up, = /[ﬂ ik de
E
we have

T — —(IY)'U.
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10.4  Term (ypun,qn)o.E

The corresponding local matrix is H” defined in (38).
10.5 Complete Stiffness Matrix
The local stiffness matrix K for the complete problem is then given by:

K- |Ke+Ke-W'+T7)
w HY

11 Algorithm for the Mixed Formulation

We summarize here the steps needed to compute the VEM local matrix for the mixed
approximation. We indicate in square brackets the size of each matrix.

11.1 L* Projection

1. Compute
G[J = /gl,‘ g/}dx [an X an]
E
2. Compute the [n; X Ngof] matrix Wy
—|E| if i correspondsto v — 1
Wil = —IE|dofé_, () = | "] P
0 otherwise
3. Compute
W, (boundary term) [1x X Ngof]
4. Set

W=W,;+W, [7x X Ngot]
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10.

11.

12.

13.

14.
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. Compute
Hy,: = /Emamf dx [ % ng]
Compute
H#U = /Emg mg1 dx [nkv X ng)
Set
BY = -HH'W [} x No]
Compute
BZ (boundary term) [nY X Nyot]
Set

\Y \Y \ v
B' = Bl + B2 [nk X Ndof]
® - R®
Compute the [n;” x Ngof] matrix B

B®);; = |E|dof®(¢,) = |E| 85 = |E| if i corresponds to §
§ i .
0  otherwise

Set
BY

B = |:B$:| [21; X Nyof]
Set

s 1

M) =G 'B  [2m x Naof]
Compute

Dj[ = dij(gl;) [Ndof X an]

Set

*
H](: = Dl'[,‘: [ZNdOf X 2Nd0f]
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15. Check that

11.2 Coefficient Matrices

1. Compute
G, = / veh-ghde  [2m x 2m]
E
2. Define
U[U = /[ﬂ gl,‘] mlf, dx [an X nk]
E
3. Set
*
TA = M)V, 2m x ]
4. Define

H)op = / y mgmg dx [ X ]
E

11.3 Local Matrix
Set
Ke = (MG I and K% =o|E|(1—TY)T (- Y.

The full local matrix is then

K- |Ke+ Kg -W' 4+ T7)
w HY
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Appendix

We list here the basis gy * and g®+* obtained with MATLAB for k up to 5. We point
out that in order to have the right scaling, the variable x and y must be replaced by

<x - Xc) and (x - C) respectively.

hg hg
et g+

k=1 [ 1 12 0 ] [ -Y X]
[ 0, 1]
[ 2%X, 0]
[ Y, x]
[ 0, 2%y]

k=2 [ 3xx™2, 0] [ - (xxy) /2, x*2]
[ 24X*Y, x*21] [ -2xy72, x*y]
[ v*2, 2%X*y]
[ 0, 3xy™2]

k=3 [ 4+x™3, 0] [ - (x"2xy) /3, x*3]
[ 3xx"2xy, x*3] [ -x*y™2, x*2xy]
[ 2%x+y"2, 2xx2%y] [ -3xy™3, xxy"2]
[ v*3, 3xxxy 2]
[ 0, 4%xy"3]

k=4 [ 5xx™4, 0] [ - (x"3%y) /4, x*4]
[ 4%x"3xy, x*4] [ -(2xx™2xy™2)/3, x*3xy]
[ 3%xx™2%y"2, 24x"3xy] [ - (3xx+y™3) /2, x"2xy"2]
[ 2#%x+y™3, 3xx"2xy"2] [ -4xy™4, xxy"3]
[ vt4, 44x+y 3]
[ 0, 5xy™4]

k=5 [ 6%xx"5, 0] [ - (x™axy) /5, x*5]
[ 5xx™4xy, x*5] [ - (x"3x%y72) /2, x*4xy]
[ 4%x™3%y"2, 24x 4 xy] [ -x"2xy"3, x"3xy”21]
[ 3%x™2xy™3, 3%x"3xy”2] [ -24xxy™4, x*24y"3]
[ 24xxy "4, 4*xx"2xy"3] [ -5xy”"5, xxy™4]
[ v’5, 5xxxy 4]
[ 0, 6%xy”"5]
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On Quasi-Interpolation Operators in Spline
Spaces

Annalisa Buffa, Eduardo M. Garau, Carlotta Giannelli, and Giancarlo
Sangalli

Abstract We propose the construction of a class of L? stable quasi-interpolation
operators onto the space of splines on tensor-product meshes, in any space dimen-
sion. The estimate we propose is robust with respect to knot repetition and to knot
“vicinity” (up to p + 1 knots), so it applies to the most general scenario in which the
B-spline functions are known to be well defined.

1 Introduction

The use of splines as a tool for the numerical discretization of partial differential
equations is experiencing a very fast spreading thanks to the advent of isogeometric
analysis [8, 13]. Besides the many engineering applications that are object of study
within the isogeometric framework, there is also a renewed attention towards the
development of theoretical tools that may provide a clear mathematical understand-
ing and solid groundings for isogeometric methods.
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A state-of-the-art review on the existing mathematical results can be found
in the review paper [6] published in 2014. Indeed, several results exists today
starting from approximation properties, to wellposedness for various classes of
spline discretizations and problems showing that splines, and the isogeometric
framework, can be suitably used in the numerical analysis for a variety of PDEs
(elliptic, saddle points, Hodge laplacian, etc.). In this paper, we focus on a rather
fundamental question that is the approximation properties and the techniques to
study them in the most general setting of interests. In [6] and in all the literature
until now, approximation properties for splines are analysed under the assumption
of local quasi-uniform meshes (see Assumption 3.1 below), possibly in presence of
knot repetition. These results are surely useful but fail to analyse the approximation
error in the most general framework: indeed, the spline basis remain stable when
up to p + 1 knots are made closer and closer to each-other (up to becoming
coincident) while the interpolation operators proposed become unstable when knot
spans collapse to zero.

In the present paper, we fill this gap and we put ourselves in the most general
situation. Instead of considering one single choice of interpolation operator, we
consider an entire class of operators, mostly inspired by Lee et al. [15] and
we analyse there approximation properties under the milder Assumption 3.2 (see
below).

Quasi-interpolants in spline spaces are usually defined as linear combination of
locally supported functions 8 € /5 that form a convex partition of unity, namely

P(f) = Y (N8B,

BeB

where the linear functionals Ag(f) may be defined in different ways, by e.g. taking
into account the evaluation of the function f, or even related integral/derivative
information, at certain points or in regions included in (or close to) the support
of B, see for example [10, 15, 16, 18]. The use of spline-based quasi-interpolation
schemes is an established technique for the design of effective and reliable
approximation algorithms.

In this paper we derive an approximation method in terms of local L? projection
by exploiting the local stability of the univariate B-spline basis and its tensor-
product extension. The stability and approximation properties of the corresponding
quasi-interpolation operators are presented. The analysis includes the discussion of
mild assumptions on the admissible mesh configuration to be considered.

The remaining of the paper is organised as follows. Section 2 provides a brief
overview of isogeometric analysis and introduces some basic notation. In Sect. 3
we state the assumptions on the meshes that we consider. We analyse the stability
properties of the B-spline basis in Sect. 4 through some estimations for the inverse
of the local Bézier extraction operator. The local approximation method is then
presented in Sect. 5, while Sect. 6 defines the locally supported dual basis. Finally,
the properties of the quasi-interpolation operator are discussed in Sect. 7.
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2 Motivation: The Isogeometric Setting

One of the main motivation of our work is to provide mathematical foundation of
isogeometric methods and a rigorous understanding of the properties splines have in
practice. To this aim, this section is meant to introduce splines and shortly discuss
the isogeometric setting where they are meant to be used.

2.1 Univariate and Tensor-Product B-splines

Let & := {sj};‘: v *1 be a p-open knot (ordered) vector such that

0=&==5n<frs- <& <&bn==bpr=1,

where the two positive integers p and n denote a given polynomial degree, and
the corresponding number of B-splines defined over the considered knot sequence,
respectively. We also introduce the vector Z := {{; jﬁzl of knots without repetitions,
and denote by m; the multiplicity of the breakpoint {;, such that

E={Q,...,é‘:éz,...,§2,...§g,...,§j},

-_— - N -
mp times myp times m;; times

n
with Z m; = n+ p + 1. Note that the two extreme knots are repeated p + 1 times,
ie., nl11 l= m; = p + 1. We assume that an internal knot can be repeated at most
p+ ltimes,ie.,mj<p+1,forj=2,...,a—1.

Let {81, B2, ..., B} be the univariate B-spline basis of degree p associated to
the knot vector =, see e.g., [9, 19]. Each B-spline is a piecewise polynomial of
degree p on the subdivision {{i, ..., {;} and it has p — m; continuous derivatives at
the breakpoint {;. We remark that B-splines are non-negative, locally supported, and
form a convex partition of unity, namely

Bi=0.  suppBi=[§.Erpr]. D B =1 VYxe(0.1).
i=1

Let Z be the univariate mesh defined by
=45, Gnlli=1,....n—1}.

For each I = [{;, {;+1] € Z there exists a unique k = /L:=1 m; such that [ =
[&, Ex+1] and & # &i4+1. The union of the supports of the B-splines acting on /



76 A. Buffa et al.

identifies the support extension 1, namely

I:= [Ec—p. &k pr1l, (1
Moreover, we define
I:= [Gipr. Eerp)- 0y
An example of quadratic B-splines constructed from the open knot vector
£ =1{0,0,0,1/5,2/5,3/5,3/5,4/5,1,1, 1}
= 3/5 has

is presented in Fig. 1. Notice that, since the knot & = & = {4
multiplicity ms = 2, the fourth, fifth and sixth functions are only continuous at

that point. .
In order to define a tensor-product d-variate spline space on £2 := [0, 1] C R,

let p := (p1,p2,---,pa) be the set of polynomial degrees with respect to each
coordinate direction. Fori = 1,2,...,d, let &; := {Ej(') }7’:}’"“ be a p;-open knot

vector such that
_ e _ _ 0 (@) i o _ _ 0 _
0= 1 _'”_EH—I E,+2s§§£lf)< i+l — T n,-+[7,‘+1_1’

! ' ' ' ' ' 1
0.9
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |

0.1
0 01 02 03 04 05

£

Fig. 1 Quadratic B-splines basis functions constructed from the open knot vector
{0,0,0,1/5,2/5,3/5,3/5,4/5,1,1, 1}

06 07 08 09 1

=
=]
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where the two extreme knots are repeated p; 4 1 times and any internal knot can
be repeated at most p; 4+ 1 times. We denote by V the tensor-product spline space
spanned by the B-spline basis B defined as the tensor-product of the univariate B-
spline bases 5y, ..., By. Let Q be tensor-product mesh consisting of the elements
QO =1, x---x 1, where I; is an element (closed interval) of the i-th univariate mesh,
fori=1,...,d.

2.2 The Geometric Map and Isogeometric Refinements

In isogeometric analysis, the physical domain §2 is parametrized by the map F :
2 — §2 given by

x=F®), %€,

where F is a linear combination of the set of B-splines (or their rational extension)
defined on an initial, usually coarse, tensor-product grid Q. The map F is assumed
to be invertible, with smooth inverse, on each mesh element.

The approximation space on §2 is given by span{fo F ~!} <3 as the push-forward
of the spline space on £2 and its approximation properties influence the accuracy of
the corresponding isogeometric method. Three refinement possibilities are available
and are usually indicated as h-refinement (mesh refinement), p-refinement (degree
raising) and k-refinement (mesh refinement and degree raising) [1, 2, 4, 11, 13].
The different kinds of refinements are all constructed by applying the standard knot
insertion and degree elevation algorithms, see [9, 13]. By exploiting these refinement
procedures, refined approximation spaces with various mesh-size, order, and global
regularity may be obtained from the initial spline space.

3 Assumptions

The main goal of this article is to build a quasi-interpolant operator for tensor-
product spline spaces, assuming that the underlying univariate meshes with respect
to the different coordinate directions satisfy one of the following assumptions.

Assumption 3.1 (Local Quasi-Uniformity) There exists a constant 8 > 0 such
that

o1 < 8 <6, Vj=2,...a-1
Gr1 — &
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Assumption 3.2 There exists a constant 6 > 0 such that for every I € T and
I<jij2<n

~1 _ |supp By

< <.
| supp Bj, |

whenever supp B, N supp B, D I.

Remark I Assumption 3.2 holds if and only if there exists a constant! C, > 0 such
that

g,
| supp B3] ’

forall/ € 7 and 1 <j < nsuch that I C supp f;.

Remark 2 Assumption 3.1 implies Assumption 3.2. On the other hand, Assump-
tion 3.2 allows the shrinking of (at most) p + 1 knots and thus, it is weaker than
Assumption 3.1. As an example we can consider p = 2 and

Z:=1{0,0,0,1/2—¢,1/2+¢,1,1,1},
or

g :={0,0,0,1/2—¢,1/2,1/2+¢,1,1,1},
for0 < ¢ < i. In this case, Assumption 3.2 holds but Assumption 3.1 does not,
since 6 would depend on ¢ in Assumption 3.1.

4 Some Results in Spline Spaces

In this section, we introduce bounds for the operator performing the change of basis
from univariate B-splines restricted to the single knot span to Bernstein polynomials.
This operator is commonly known as Bézier extraction operator. We extend such
bounds for the tensor-product case and then, we analyse the local stability of the
B-spline basis.

I'This constant depends on the polynomial degree p, since the number of B-spline basis functions
acting on a single mesh element is p + 1.
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4.1 The Inverse of the Local Bézier Extraction Operator

The Bernstein polynomials of degree p on the knot interval I = [&, &41] € Z are
defined by

feoy— [P x—& j_1(§k+1—x)p_j+l .
o= (2 (0 5) (@2 e

The set B; := {BI, ... ,BII) 41) 1s a basis for the space P, of polynomials of degree
at most p over the interval of interest. We also consider the alternative basis B; :=
B..., ,311) 41> consisting of the B-spline basis functions in 3 that are nonzero over
I. More precisely, we have that

ﬂ{Eﬂk-H'—p—lv onl, Vl=1,,p+1,

where supp Biti—p—1 = [Ecti—p—1, Extil- Let Dy = (dyj) € RPTDX(HD pe the
change of basis matrix such that

p+1
=Y dipl. forj=1....p+1. 3)

Foreachj = 1,...,p+1, the coefficients {dj,-}‘i’il1 can be computed by evaluating
the blossom of B} via

dji = Bj’[ék-l—i—pv oo il

see, e.g. [17, p. 65]. Thus, we have that (cf. [12, 17])

1 = Ektie a(r) - §k Er+1 §k+z —a(r)
d'i = . . ’
T G=Dp—j+ 1) 2 1_[ [1

P\ Sk — el

where X' denotes the set of the permutations in {1, ..., p}. In particular, for j = 1
we have that

_ Gt =81 Gkt = Er1—p) _ TSkt 1—p i1 — &)

(Er1 — &P (B =&
4

di; =0, i=2,...,p+1,
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andforj =p+1,

dp+l,i:07 izls---spv

vz =6 o Eerp =50 _ [T 2006 — 80
Er1 — &)t i1 — &t

Let now consider the case j = 2, ..., p. We may observe that either & or &4 are in
{&+ip, ... &ri1) foriequalsto 1 or p 4 1, respectively. Both & and &1 belong
to this knot interval of interest for all the intermediate cases of i = 2,...,p. At
least one of the two can be then fixed and we may consider the remaining nonzero
contributions in the sum over the permutations defining dj;, obtaining

dpt1p+1 = (i=p+1.

(p—D! (Ergict — Ekyip) !
G=DWp—=j+ D! Gy —E)!
1 ( P ) (Errio1 — Exrip)!

B AVES! (Eky1 — &Pt

dii| <

i=1,....p+1.

By taking into account that ; o ( p . ) = ;(21’ — 2), we then obtain
j—

p+1

1 ! .
Yoldil< | @-2+1 . di=1,....p+1.
= P 7]~

Thus, we have proved the following result.
Lemmal Let! € T and D; = (dy) € RPHDX(HD pe the change of basis matrix
satisfying (3). Then,

r - i
= L <
107 lloo = _max Zl il < )
p=

where ¢, := ;(2" —2) + 1 and I is given by (2).

Whereas Assumption 3.1 allows to bound by above uniformly the right hand
side of (5), in the next example we show that this is not the case when only
Assumption 3.2 holds.

Example 1 Letp = 2 and let ¢ > 0. We consider

Z:=1{0,...,0,1/2,1/24¢6,....1/24+pe,1,... 1}

p+1 times p+1 times
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Note that in this case Assumption 3.2 holds. In particular, we show that it is not
possible to bound ||D!||o uniformly by above, and that, in fact, the behaviour
predicted by the right hand side of estimation (5) can be reached. Let I :=
[1/2,1/2 + &] = [5p+2,6p+3]- We have I = [&3,E42] = [0,1/2 + pe], and,
1

p—1
‘ Il) = O(e'™P) as ¢ — 0. According to (4), we then obtain

consequently, (

1/2 rl
”DIT”oo = |dn| = ( / 8+ 8) =0, ase—0.

4.2 Local Stability of the B-spline Basis

Let Q € Qand p := (p1,p2,....pa). We denote by P, the space of tensor-product
polynomials with degree at most p; in the coordinate direction x;, fori = 1,2, ...,d.
Let N := dimP, = IT,(p; + 1). In this section we analyse the local stability of
the B-spline basis. More precisely, we study the existence of a constant C > 0
(independent of Q) such that

N
Ixlloo < C ijﬂjg , Vx=(x....xy) € RY, (6)
= L%(0)
where ,BQ, e ,31% are the B-spline basis functions in 5 restricted to Q.

Remark 3 (The Inverse of the Local Bézier Extraction Operator) We now gener-
alise the results of Sect. 4.1 to the tensor-product case. Let Q = I} x --- x I; € Q
be given. We consider the set By = {BIQ, . ,B]%} of tensor-product Bernstein
polynomials on Q, which constitutes a basis for Pp. On the other hand, we consider
the alternative basis By 1= {,BIQ, ey ,3]%}, consisting of the B-spline basis functions
in B restricted to Q. Let Dp = (d;}) € RV be the matrix such that

N
B® =Y "dip?.  forj=1.....N.
i=1

Notice that Dy is the matrix for the change of bases and satisfies

[f1s, = D§lf1ee.  Yf € Py, ()

where [f]5, and [f], denote the vector of coefficients for writing f as a linear
combination of the functions in By and By, respectively.
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It is easy to check that Dy = Dy, ® --- ® Dy, and that
d
10500 = 107 oo
i=1

where D,TI_ denotes the corresponding univariate local Bézier extraction operator
defined in Sect. 4.1, fori =1, ...,d. In view of (5) we have that

!
|[Lifp=t

d
IDjlle < G [ | ®)
i=1

where Cp := [[, ¢ = 1_[7=1(,,1,. (27 — 2) + 1). We remark that (8) generalises
Lemma 1 for the tensor-product case. Notice that under Assumption 3.1 (in each
coordinate direction), we can bound ||D£ |loo uniformly by a constant which depends
only on p and 6.

Remark 4 (L®-local Stability of the Bernstein Basis) Let Q = [0, 1]%. Using the
fact that all the norms are equivalent in 7P, we have that there exists a constant
Csg > 0 depending only on p such that

N
[Ixloo < Css ZX,’BJQ , 9)

=1 1°°(0)
forall x = (x1,...,xy) € RY. The same result holds for an arbitrary rectangle

0 C R4
Now, using (7) and (9) we have the following result.

Lemma 2 (L°°-Local Stability of the B-spline Basis) Let QO € Q. Then,

N
T
¥loo < CsallDlloo | Y %82 ,
=1 1°°(Q)
forall x = (x,...,xy) € RV,

Under Assumption 3.1, taking into account (8), we can bound ||D£ |loo uniformly by
a constant which depends only on p and 6. In this case, we have that the B-spline
basis is L°>°-locally stable (see also [12]). On the other hand, under Assumption 3.2,
estimate (6) does not hold, as it is showed in the following example.

Example 2 If we consider again the open-knot vector = of Example 1, we have that

Bl =dy\f.
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p—1
where dj; = (1/2;'8) . Since ||B} || o1y = 1 we obtain

S sup i —> 00,
& +1 P Rl
ekt | 0 )

(1/2+e)"—1 i _ I¥lo

Le(I)

ase — 0.

S Local Approximation Methods

Regarding the stability estimation of Lemma 2, in this section we present a local
approximation method.

Lemma 3 (Local L*-projection) Let Q € Q and let [y : L'(Q) — Pp be the
L2-projection operator defined by

/Q(f—ﬂgf)g —0, VgeP, (10)

Then, there exists a constant Cr; > 0 depending only on p such that

I Tof o) < CrlQI™ If Il g)- VfeL(Q).

Proof Letf € L'(Q). From the definition of Iy it follows that

| Hef s g = /Q FTaf < fllo o1 MTof (o

On the other hand, since P, is a finite dimensional space, we have that there exists
a constant C; > 0 depending only on p such that the following inverse inequality
holds:

1
I8llzeo o) < CilQI2 118122 (0)- VgePp.

Therefore,

1Tof 12000y < GO 1of 120, < GO Il 01 Tef (0,

and thus,

1Tof =) < CHOI™ If Iz -
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Remark 5 Notice that
N
Mof =Y 22(NHBL.  Yfel Q) (1
i=1

where A2(f) := (A2(f), ..., A2(f))" is the solution of the linear system
MQX = FQ,

where

My = (/ ﬁ?ﬁ?) eRVN  and Fy= (/fﬁ?) e RV,
0 ij=1....N Q0 i=1,..N

Lj=

On the other hand, {AIQ :LY(Q) — R|i=1,...,N} is a dual basis for By in the
sense that

MBP) =8 ij=1.....N. (12)

As a consequence of the L°°-local stability of the B-spline basis (Lemma 2) we
can state the following result.

Theorem 1 Let Q € Q and let [Ty : L'(Q) — Py be the L*-projection operator
defined by (10). Let g be such that 1 < g < oo. Then,

IA2()llo < CHCSB||D£||OO|Q|_‘I’ e, VS € LUQ), (13)

where A2(f) = ()LlQ(f), e, kg(f))T are the coefficients of Il1o(f) with respect to
the local B-spline basis By (cf. (11)).

Proof Let g be such that 1 < g < oo and f € L?(Q). Using Lemmas 2 and 3 we
have that

122(Hlloo < CssllDglloo o 00 gy < CrrCsalDgllool Q1 f Izt 0)-

Finally, (13) is as consequence of Holder inequality.

6 Locally Supported Dual Basis for B-splines

The goal of this section is to define a dual basis for the multivariate B-spline basis
B, i.e., a set of linear functionals

(Ap:L'(2) > R|B € B},
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such that Ag,(8;) = §;, for all B;, B; € B. More precisely, we are interested in
defining such functionals satisfying the following properties:

(1) Local support: Ag is supported in Ag C supp B, i.e.,
VIEL(@), fi,=0 =  A(f)=0.

(ii) Dual basis: For B;, B; € B, Ag,(B;) = 8.
(iii) L?-Stability: Let 1 < g < oo. There exists a constant Cs > 0 such that

1

[As()] < Cslsupp Bl < fllasupppy. YV € LU82), B € B. (14)
Remark 6 Condition (iii) will be a key tool for proving the local stability of a quasi-
interpolant operator in Sect. 7.

We will use the technique in [15] to define linear functionals {A4}ges satisfying
the desired properties. Roughly speaking, we define the functional Ag as a convex
combination of the local projections onto some Q € Q such that Q C supp . For
B € B, we define

Qp :=1{0 € Q|Q C supp B},

and for each Q € Qg, let Ag = /\l.%, where iy = ip(B, Q) with 1 < iy < N is such
that ,Bg = f on Q. Thus, the functional Ag is given by

/Xﬂ = Z CQ.ﬂAg, (15)
0€Qp
where
VQe Qs cop =0, and > cop=1. (16)
0€Qp

Notice that A4 is supported in Ag := U Q C supp B, and therefore, condition

0€Qp
co.p>0

(i) holds. On the other hand, condition (ii) is a consequence of (12) and (16). In the
rest of this section we analyse the validity of (iii).

We propose some possible choices for the coefficients cg g, in order to guarantee
the validity of condition (iii) under different assumptions on the underlying univari-
ate meshes.
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Case 1: Locally Quasi-Uniform Meshes (Assumption 3.1)

Under the Assumption 3.1 there is no restriction on the choice of the coefficients
cop, 1.€., condition (iii) always holds. In fact, taking into account (13), we have
that (14) holds with a constant Cs > 0 which depends on p and 6.

Case 2: Non Locally Quasi-Uniform Meshes (Assumption 3.2)

If Assumption 3.1 does not hold, but Assumption 3.2 does, we propose two ways of
defining cg g in order to obtain the validity of condition (iii).

2 d |1;] pity
. Lett cpg = ~ an
LLecs:= Y [] i d

0eQp i=1

1 li[(|1i|)1’f—l+; voeo
Cop = ~ ) € Up.
¢p iy \|L

Then, using the definition of A4 given by (15) and the bound for /\g given by
Theorem 1 we have that

1
AN < CrnCss Y coplDllool Q177 [If ll2(0)-
0€Qp

Now, regarding the definition of c¢ g and the bound for ||D£||oo given in (8), we
obtain

CnCspCy

c

As(f)] < > 10 If lsco-

0€Qp
Since | supp 8| < |Q|, forall Q € Qg,

1
CrCspCp(#Qp)' 4
c

_1
Ap(N] < | supp BI™ (1| o supp p) -

2For each Q we consider the representation Q = I} X - -+ X I.
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Under the Assumption 3.2,> we can bound cg uniformly by below. More
precisely, if ppax 1= max;—; 4 pi, then

rh s M)

0€Qp i=1 0€Qp \i=1
Pmax—1+1
ax—1+] !
|Q| Pmax q o |Q|
-2 o) e X
0€Qp |Q| 0eQy IQI
[’max_1+(ll
- 1 0]
Z (#Qﬂ)z Pmax— ¢ Z
d( max_l+l)
i 2 | geo, IsupP Al
~ —_— -
=1
d(l’max—1+,1])
C.
Thus, ! o S 2 ., and
B (#Qﬂ )z_l’max— q
d(Pmax 1+ ) 1
IAg(f)| < CrCspCp(#Qp)m=" | supp BI™ < If lla(supp -

which in turn implies (14).
2. For each B we associate an element Qg € Qg with size equivalent to the size of
its support, i.e., such that

| supp B <c
|0p]

with a constant C depending on p. For example, we can select Qg € arg max|Q|
0€Qp

and in this case Is"gglﬁ\ <#Qp < N.

Under the Assumption 3.2 we have that

|0g]

Pmax—1
<C (Cd C)Pmax_l
|Qﬁ|) P

1Dg, llos < Cp (

3Without loss of generality, we denote by C, the constant in Remark 1 for each coordinate

direction, and thus, lsxfplﬁl < Cg, for all Q € Q such that Q C supp B.
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—_—

. ifQ=0p

In this case, we define cppg := ) , le, Ag = .
0. ifQ#0Qs ’
Finally, (14) follows from Theorem 1.

7 Quasi-Interpolation in Spline Spaces

We consider a dual basis {A}ge from (15), satisfying conditions (i)-(ii)-(iii) stated
in the previous section, for some ¢ such that 1 < g < oco. Let P : L1(§2) - V =
span B3 be given by

P(f):=Y Ap(HB.  VfeLi(R). (17)

peB

The next result states some important properties of P.
Theorem 2 The following holds:

(a) PisaprojectiononV, i.e., forallf €V, P(f) =f.
(b) Local stability: Let 1 < g < oco. For Q = I} X ... x I; € Q, the operator P
satisfies

1Pf oo < Cslf ). V. € L9(82).

where Q = 1) x ... x I; denotes the support extension (see (1)) and Cs > 0 is
the constant appearing in (14).

(c) Local approximation: Let s := (sy,...,S;) be such that 0 < s; < p; +
fori = 1,...,d. Then, there exists a constant C4 > 0 such that, for Q
I x...x1; € Q, it holds that

17

d
If = Pl < Ca Y L1 ID S pagy Vo € WIS(R),
i=1

where W95(82) :=={f e L1(2) : Dif e L1(2), 0<r, <s;, i=1,....d}.

Proof (a) It is an immediate consequence of condition (ii).
(b) Let Q € Q. Then, taking into account the definition of P given by (17), the
spline partition-of-unity property and the L?-stability in (14), we have

_1
PO < max (D] < Gl gy on .
supp B0
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Therefore,

IP(N20) < Cslif lla()-

(c) Let Q € Q. By the classical polynomial approximation property, there exists
Pp € Pp such that

d
If = pgllog < Cr Y 1L IDEF |0 - (18)
i=1

where the constant C7 > 0 only depends on d, p, s and ¢g. Taking into account
the local stability of P given in (b) and (18) we have that

If = Pfllieaco) < If = pplleaco) + llpg — Pf Nl
= If = pgllzace) + 1P(Pg =Nl
< (1 + Gollf _PQ”Lq(Q)

d
< (L+COCr Y T ID )

i=1

Remark 7 The operator defined in [21] and called Bézier projection fits in this
framework and consists in a specific choice of coefficients cg g in (15). Our results
of Sect. 6 provide stability for this operator under Assumption 3.1.

8 Conclusions

We have defined a class of quasi-interpolation operators onto spline spaces that
enjoy L? stability properties and optimal locality properties, under very general
assumption on the knot distributions. These operators are proved to deliver optimal
approximation properties with respect to £ for tensor product spline spaces. It should
be noted though that the behaviour of constants with respect to the degree p is not
analysed and is likely not optimal.

The class of operators we consider are associated with the construction of
a dual basis and for this reason, they can be used in situations that are more
general than tensor product B-splines. In particular, following [3] and [5], it is
clear that the same construction would provide a dual basis in the case of analysis
suitable (or dual compatible) T-splines (see [6] and the references there in). In
the same lines, following [20] and [7], our class of operators can be used to
provide quasi-interpolation operators for hierarchical splines (see [14, 22]) as well.
The analysis presented in this paper can provide a general framework for the
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study of the local approximation properties for such quasi-interpolants on either T-
splines or Hierarchical splines, but such results are beyond the scope of the present
contribution.

Acknowledgements Annalisa Buffa and Giancarlo Sangalli were partially supported by the
European Research Council through the FP7 ERC Consolidator Grant n.616563 HIGEOM, and
by the Italian MIUR through the PRIN “Metodologie innovative nella modellistica differenziale
numerica”. Eduardo M. Garau was partially supported by CONICET through grant PIP 112-
2011-0100742, by Universidad Nacional del Litoral through grants CAI+D 500 201101 00029
LI 501 201101 00476 LI, by Agencia Nacional de Promocién Cientifica y Tecnoldgica, through
grants PICT-2012-2590 and PICT-2014-2522 (Argentina). Carlotta Giannelli was supported by the
project DREAMS (MIUR “Futuro in Ricerca” RBFR13FBI3) and by the Gruppo Nazionale per il
Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica INdAM). This support
is gratefully acknowledged.

References

1. Y. Bazilevs, L. Beirdo da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric
analysis: approximation, stability and error estimates for h-refined meshes. Math. Models
Methods Appl. Sci. 16, 1031-1090 (2006)

2. L. Beirao da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h-p-k-refinement in
isogeometric analysis. Numer. Math. 118, 271-305 (2011)

3. L. Beirdo da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable T-splines are dual-
compatible. Comput. Methods Appl. Mech. Eng. 249/252, 42-51 (2012)

4. L. Beirdo da Veiga, D. Cho, G. Sangalli, Anisotropic NURBS approximation in isogeometric
analysis. Comput. Methods Appl. Mech. Eng. 209/212, 1-11 (2012)

5. L. Beirdo da Veiga, A. Buffa, G. Sangalli, R. Vizquez, Analysis-suitable T-splines of arbitrary
degree: definition, linear independence and approximation properties. Math. Models Methods
Appl. Sci. 23(2), 1-25 (2013)

6. L. Beirdo da Veiga, A. Buffa, G. Sangalli, R.Vizquez, Mathematical analysis of variational
isogeometric methods. Acta Numer. 23, 157-287 (2014)

7. A. Buffa, E.M. Garau, New refinable spaces and local approximation estimates for hierarchical
splines. IMA J. Numer Anal. (2016, to appear)

8. JLA. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD
and FEA (Wiley, New York, 2009)

9. C. de Boor, A Practical Guide to Splines, Revised edition. Applied Mathematical Sciences,
vol. 27 (Springer, New York, 2001)

10. C. de Boor, G.J. Fix, Spline approximation by quasi-interpolants. J. Approx. Theory 8, 1945
(1973)

11. J. Evans, Y. Bazilevs, 1. Babuska, T. Hughes, N-widths, sup-infs, and optimality ratios for the
k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198,
1726-1741 (2009)

12. C. Giannelli, B. Jittler, H. Speleers, Strongly stable bases for adaptively refined multilevel
spline spaces. Adv. Comput. Math. 40(2), 459-490 (2014)

13. TJ.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194,
4135-4195 (2005)

14. R. Kraft, Adaptive und linear unabhiingige multilevel B-Splines und ihre Anwendungen, Ph.D.
thesis, Universitét Stuttgart, 1998



On Quasi-Interpolation Operators in Spline Spaces 91

15.

16.

17.

18.

19.

20.

21.

22.

B.-G. Lee, T. Lyche, K. Mgrken, Some examples of quasi-interpolants constructed from local
spline projectors, in Mathematical Methods for Curves and Surfaces (Oslo, 2000). Innov. Appl.
Math. (Vanderbilt University Press, Nashville, TN, 2001), pp. 243-252

T. Lyche, L.L. Schumaker, Local spline approximation methods. J. Approx. Theory 15, 294—
325 (1975)

H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline Techniques. Mathematics and
Visualization (Springer, Berlin, 2002), xiv+304 pp. ISBN: 3-540-43761-4

P. Sablonniére, Recent progress on univariate and multivariate polynomial and spline quasi-
interpolants, in Trends and Applications in Constructive Approximation, ed. by M.G. de Brujn,
D.H. Mache, J. Szabadoz. ISNM, vol. 151 (Birhduser Verlag, Basel, 2005), pp. 229-245

L.L. Schumaker, Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn.
(Cambridge University Press, Cambridge, 2007)

H. Speleers, C. Manni, Effortless quasi-interpolation in hierarchical spaces. Numer. Math.
132(1), 55-184 (2016)

D.C. Thomas, M.A. Scott, J.A. Evans, K. Tew, E.J. Evans, Bézier projection: a unified approach
for local projection and quadrature-free refinement and coarsening of NURBS and T-splines
with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech.
Eng. 284, 55-105 (2015)

A.-V. Vuong, C. Giannelli, B. Jiittler, B. Simeon, A hierarchical approach to adaptive local
refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200(49-52), 3554—
3567 (2011)



Stabilised Finite Element Methods for I11-Posed
Problems with Conditional Stability

Erik Burman

Abstract In this paper we discuss the adjoint stabilised finite element method
introduced in Burman (SIAM J Sci Comput 35(6):A2752-A2780, 2013) and how
it may be used for the computation of solutions to problems for which the standard
stability theory given by the Lax-Milgram Lemma or the Babuska-Brezzi Theorem
fails. We pay particular attention to ill-posed problems that have some conditional
stability property and prove (conditional) error estimates in an abstract framework.
As a model problem we consider the elliptic Cauchy problem and provide a
complete numerical analysis for this case. Some numerical examples are given to
illustrate the theory.

1 Introduction

Most methods in numerical analysis are designed making explicit use of the well-
posedness [23] of the underlying continuous problem. This is natural as long as the
problem at hand indeed is well-posed, but even for well-posed continuous problems
the resulting discrete problem may be unstable if the finite element spaces are not
well chosen or if the mesh-size is not small enough. This is for instance the case for
indefinite problems, such as the Helmholtz problem, or constrained problems such
as Stokes’ equations. For problems that are ill-posed on the continuous level on the
other hand the approach makes less sense and leads to the need of regularization on
the continuous level so that the ill-posed problem can be approximated by solving a
sequence of well-posed problems. The regularization of the continuous problem can
consist for example of Tikhonov regularization [29] or a so-called quasi reversibility
method [27]. In both cases the underlying problem is perturbed and the original solu-
tion (if it exists) is recovered only in the limit as some regularization parameter goes
to zero. The disadvantage of this approach from a numerical analysis perspective is
that once the continuous problem has been perturbed to some order, the accuracy
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94 E. Burman

of the computational method must be made to match that of the regularization. The
strength of the regularization on the other hand must make the continuous problem
stable and damp perturbations induced by errors in measurement data. This leads
to a twofold matching problem where the regularization introduces a perturbation
of first order, essentially excluding the efficient use of many tools from numerical
analysis such as high order methods, adaptivity and stabilisation. The situation is
vaguely reminiscent of that in conservation laws where in the beginning low order
methods inspired by viscosity solution arguments dominated, to later give way for
high resolution techniques, based on flux limiter finite volume schemes or (weakly)
consistent stabilised finite element methods such as the Galerkin Least Squares
methods (GaLS) or discontinuous Galerkin methods (dG) (see for instance [18]
and references therein). These methods allow for high resolution in the smooth
zone while introducing sufficient viscous stabilisation in zones with nonlinear
phenomena such as shocks or rarefaction waves.

In this paper our aim is to advocate a similar shift towards weakly consistent
stabilisation methods for the computation of ill-posed problems. The philosophy
behind this is to cast the problem in the form of a constrained optimisation problem,
that is first discretized, leading to a possibly unstable discrete problem. The problem
is then regularized on the discrete level using techniques known from the theory
of stabilised finite element methods. This approach has the following potential
advantages some of which will be explored below:

* the optimal scaling of the penalty parameter with respect to the mesh parameter
follows from the error analysis;

» for ill-posed problems where a conditional stability estimate holds, error esti-
mates may be derived that are in a certain sense optimal with respect to the
discretization parameters;

 discretization errors and perturbation errors may be handled in the same frame-
work;

* a posteriori error estimates may be used to drive adaptivity;

* arange of stabilised finite element methods may be used for the regularization of
the discrete problem;

* the theory can be adapted to many different problems.

Stabilised finite element methods represent a general technique for the regular-
ization of the standard Galerkin method in order to improve its stability properties
for instance for advection—diffusion problems at high Péclet number or to achieve
inf-sup stability for the pressure-velocity coupling in the Stokes’ system. To achieve
optimal order convergence the stabilisation terms must have some consistency
properties, i.e. they decrease at a sufficiently high rate when applied to the exact
solution or to any smooth enough function. Such stabilising terms appear to have
much in common with Tikhonov regularization in inverse problems, although the
connection does not seem to have been made in general. In the recent papers [10, 13]
we considered stabilised finite element methods for problems where coercivity fails
for the continuous problem and showed that optimal error estimates can be obtained
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without, or under very weak, conditions on the physical parameters and the mesh
parameters, also for problems where the standard Galerkin method may fail.

In the first part of this series [10] we considered the analysis of elliptic problems
without coercivity using duality arguments. The second part [13] was consecrated to
problems for which coercivity fails, but which satisfy the Babuska-Brezzi Theorem,
illustrated by the transport equation. Finally in the note [12] we extended the
analysis of [10] to the case of ill-posed problems with some conditional stability
property.

Our aim in the present essay is to review and unify some of these results and
give some further examples of how stabilised methods can be used for the solution
of ill-posed problem. To exemplify the theory we will restrict the discussion to the
case of scalar second order elliptic problems on the form

Lu=f in (1)

where L is a linear second order elliptic operator, u is the unknown and f is some
known data and §2 is some simply connected, open subset of RY, d = 2, 3. Observe
that the operator £ does not necessarily have to be on divergence form, although
we will only consider this case here to make the exposition concise (see [30] for an
analysis of well-posed elliptic problems on nondivergence form).

The discussion below will also be restricted to finite element spaces that are
subsets of H'(£2). For the extension of these results to a nonconforming finite
element method we refer to [11].

1.1 Conditional Stability for Ill-Posed Problems

There is a rich literature on conditional stability estimates for ill-posed problems.
Such estimates often take the form of three sphere’s inequalities or Carleman
estimates, we refer the reader to [2] and references therein.

The estimates are conditional, in the sense that they only hold under the condition
that the exact solution exists in some Sobolev space V, equipped with scalar product
(+,-)v and associated norm || - ||y := (-, -)y. Herein we will only consider the case
where V = H!(£2). Then we introduce V, C V and consider the problem: find
u € Vy such that

a(u,w) =1l(w), YweWw, 2)

Observe that Vo and W typically are different subsets of H'(£2) and we do not
assume that W is a subset or V) or vice versa. The operators a(-,?) : VxV —
R, I(-) : W — R denote a bounded bilinear and a bounded linear form respectively.
The form a(-,-) is a weak form of Lu. We let || - ||¢ denote the norm for which the
condition must be satisfied and || - ||s denote the norm in which the stability holds.
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We then assume that a stability estimate of the following form holds: if for some
x € Vy, with ||x||c < E there exist e < 1 and r € W’ such that

@t v) = (70w Y0 EW L hen s < Ze(e). )
Il < e

where E¢(-) : RT — R is a smooth, positive, function, depending on the problem,
|I-]ls and E, with lims—04+ &g (s) = 0. Depending on the problem different smallness
conditions may be required to hold on €.

The idea is that the stabilised methods we propose may use the estimate (3)
directly for the derivation of error estimates, without relying on the Lax-Milgram
Lemma or the Babuska-Brezzi Theorem. Let us first make two observations valid
also for well-posed problems. When the assumptions of the Lax-Milgram’s lemma
are satisfied (3) holds unconditionally for the energy norm and &Eg(¢) = Ce, for
some problem dependent constant C. If for a given problem the adjoint equation
a(v, z) = j(v) admits a solution z € W, with ||z||w < Ej, for some linear functional
Jj € V' then

lJ@)| = la(x. 2)| = |r@)| < Ejllr|w )

and we see that for this case the condition of the conditional stability applies to the
adjoint solution.

Herein we will focus on the case of the elliptic Cauchy problem as presented
in [2]. In this problem both Dirichlet and Neumann data are given on a part of the
boundary, whereas nothing is known on the complement. We will end this section
by detailing the conditional stability (3) of the elliptic Cauchy problem. We give the
result here with reduced technical detail and refer to [2] for the exact dependencies
of the constants on the physical parameters and the geometry.

1.2 Example: The Elliptic Cauchy Problem

The problem that we are interested in takes the form

—V-(oVu)+cu=f, in2
u=0onlp (®)]
dpu = Y only

where 2 C RY, d = 2,3 is a polyhedral (polygonal) domain with boundary 32,
d,u := n’ - Vu, (with n the outward pointing normal on 9R2), 0 € R is a
symmetric matrix for which 3oy € R, 69 > 0 such that y” - oy > o for all y € R?
and ¢ € R. By I'y, I'p we denote polygonal subsets of the boundary 92, with
union [ := I'p U I'y and that overlap on some set of nonzero (d — 1)-dimensional
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measure, ['s := I'pN Iy # @. We denote the complement of the Dirichlet boundary
I}, := 02 \ I'p, the complement of the Neumann boundary Iy := 952 \ Iy and
the complement of their union I'y := 982 \ I'z. To exclude the well-posed case, we
assume that the (d— 1)-dimensional measure of Iy and I'); is non-zero. The practical
interest in (5) stems from engineering problems where the boundary condition, or its
data, is unknown on Fé, but additional measurements i of the fluxes are available
on a part of the accessible boundary I's. This results in an ill-posed reconstruction
problem, that in practice most likely does not have a solution due to measurement
errors in the fluxes [5]. However if the underlying physical process is stable, (in
the sense that the problem where boundary data is known is well-posed) we may
assume that it allows for a unique solution in the idealized situation of unperturbed
data. This is the approach we will take below. To this end we assume that f € L*(£2),
Y € L?(I'y) and that a unique u € H*(2), s > ; satisfies (5). For the derivation of
a weak formulation we introduce the spaces Vy := {v € H'(£2) : v|r, = 0} and
W= {v e H(R): V|, = 0}, both equipped with the H'-norm and with dual
spaces denoted by V; and W'.
Using these spaces we obtain a weak formulation: find u € Vj such that

a(u,w) =1w) VweWw, (6)
where
a(u,w) = / (oVu) - Vw + cuw dx,
Q

and

l(w):z/ﬂfwdx—i— Y wds.

I'n

It is known [2, Theorems 1.7 and 1.9 with Remark 1.8] that if there exists a
solution u € H'(£2), to (6), a conditional stability of the form (3) holds provided
0<e<land

ulls := Nl 2y, @ © 2 dist(@, I =t dyy g > 0 .
with &(e) = C(E)e", C(E) > 0,7 :=1(dy y) € (0, 1), E = [lull;2(o)
and for
llulls = llull 2@y with E(e) = Ci(E)(|log(e)| + C2(E)) " ©

with CI(E), CZ(E) > 0, T E (O, 1), E = ||M||HI(Q)

How to design accurate computational methods that can fully exploit the power
of conditional stability estimates for their analysis remains a challenging problem.
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Nevertheless the elliptic Cauchy problem is particularly well studied. For pioneering
work using logarithmic estimates we refer to [22, 28] and quasi reversibility [26].
For work using regularization and/or energy minimisation see [3, 4, 17, 24, 25].
Recently progress has been made using least squares [19] or quasi reversibility
approaches [6-8] inspired by conditional stability estimates [9]. In this paper we
draw on our experiences from [11, 12], that appear to be the first works where error
estimates for stabilised finite element methods on unstructured meshes have been
derived for this type of problem. For simplicity we will only consider the operator
Lu = —Au + cu, with ¢ € R for the discussion below.

2 Discretization of the Ill-Posed Problem

We will here focus on discretizations using finite element spaces, but the ideas in
this section are general and may be applied to any finite dimensional space.

We consider the setting of Sect. 1.2. Let {7}, denote a family of quasi uniform,
shape regular simplicial triangulations, 7, := {K}, of £2, indexed by the maximum
simplex diameter h. The set of faces of the triangulation will be denoted by F and
JFr denotes the subset of interior faces. The unit normal of a face of the mesh will
be denoted n, its orientation is arbitrary but fixed, except on faces in 952 where the
normal is chosen to point outwards from £2. Now let X’,j denote the finite element
space of continuous, piecewise polynomial functions on 7y,

Xﬁ:: {UhEHl(Q)ZUh|KEPk(K), VKEE}

Here P;(K) denotes the space of polynomials of degree less than or equal to k on
a simplex K. Letting (-,-)x denote the L?-scalar product over X C R? and {(,-)y
that over X C RY~!, with associated L>-norms || - ||x, we define the broken scalar
products and the associated norms by,

1
(un, vp)p 1= Z (n, vk, Nunlle = (un, un);

KeTh

1
(s on) = D (s von) s Nwnllz = (uns i) 3
FeF

If we consider finite dimensional subspaces V;, C V, and W), C W, for instance
in the finite element context we may take V, := X} NV, and W), := X} N W, the

discrete equivalent of problem (2) (with g = 0) reads: find u;, := Z;VZV’] ujp; € Vj,
such that

a(”hv ¢1) = l(d)l)s i= 15 cee sNWh (9)
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where the {¢;} and {¢;} are suitable bases for V;, and W), respectively and Ny, :=
dim(V}), Nw, := dim(W,) This formulation may be written as the linear system

AU =1L,
where A is an Ny, x Ny, matrix, with coefficients A; = a(g;, ¢), U =
(ur,...,uy,)" and L = (1), ....U(¢ny,))". Observe that since we have not

assumed Ny, = Ny, this system may not be square, but even if it is, it may have
zero eigenvalues. This implies

1. non-uniqueness: there exists U € R \ {0} such that AU = 0;
2. non-existence: there exists L € R¥: such that L & Im(A).

These two problems actually appear also when discretizing well-posed continuous
models. Consider the Stokes’ equation for incompressible elasticity, for this problem
the well-known challenge is to design a method for which the pressure variable is
stable and the velocity field discretely divergence free. Indeed the discrete spaces for
pressures and velocities must be well-balanced. Otherwise, there may be spurious
pressure modes in the solution, comparable to point 1. above, or if the pressure space
is too rich the solution may “lock”, implying that only the zero velocity satisfies
the divergence free constraint, which is comparable to 2. above. Drawing on the
experience of the stabilisation of Stokes’ problem this analogy naturally suggests
the following approach to the stabilisation of (9).

¢ Consider (9) of the form a(u;, w,) = I(wy,) as the constraint for a minimisation
problem;

* minimise some (weakly) consistent stabilisation together with a penalty for the
boundary conditions (or other data) under the constraint;

* stabilise the Lagrange multiplier (since discrete inf-sup stability fails in general).

To this end we introduce the Lagrangian functional:

1 1
L(up, zp) == ZSV(”h — U, up—u) — ZSW(Zhs zn) + an(un, 2n) — In(2n) (10)

where sy (u —u, u,—u) and sy (z;, ) represents a penalty term, imposing measured
data through the presence of sy (u, — u, u;, — u) and symmetric, weakly consistent
stabilisations for the primal and adjoint problems respectively. The forms ay(:, )
and [,(-) are discrete realisations of a(-,-) and I(-), that may account for the
nonconforming case where V;, ¢ Vand W), ¢ W.

The discrete method that we propose is given by the Euler-Lagrange equations
of (10), find (uy, z;) € V;, x W, such that

an(up, wi) — sw(zn, wi) = In(wp)
(11)

an(Vh, zn) + sy (up, vp) = sy(u, v),
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for all (vj, w,) € Vj, x Wy, This results in a square linear system regardless of the
dimensions of Vj, and W,. Note the appearance of sy (i, v,) in the right hand side
of the second equation of (11). This means only stabilisations for which sy (u, vj)
can be expressed using known data may be used. This typically is the case for
residual based stabilisations, but also allows for the inclusion of measured data in
the computation in a natural fashion. The stabilising terms in (11) are used both to
include measurements, boundary conditions and regularization. In order to separate
these effects we will sometimes write

5:() = s0C ) +55C.), x=V. W

where the sP contribution is associated with assimilation of data (boundary or
measurements) and the s5 contribution is associated with the stabilising terms. For
the Cauchy problem s% (u, vj,) depends on ¥ and s3,(u, vs,) may depend on f as we
shall see below.

Observe that the second equation of (11) is a finite element discretization of
the dual problem associated to the pde-constraint of (10). Hence, assuming that a
unique solution exists for the given data, the solution to approximate is z = 0.
The discrete function z, will most likely not be zero, since it is perturbed by the
stabilisation operator acting on the solution uj, which in general does not coincide
with the stabilisation acting on u. The precise requirements on the forms will be
given in the next section together with the error analysis. We also introduce the
following compact form of the formulation (11), find (uy, z5) € Vi, X W), such that

Anl(n, zn), (Vn, wi)] = Ly(vp, wy) for all (vy, wy) € Viy x W, (12)
where
Anl(un, zn), (Vn, wn)] := an(up, w) — sw(@n, wa) + an(vn, zn) + sv(up, vn)  (13)
and
Ly(vp, wi) := ly(wp) + sv(u, vp).
We will end this section by giving some examples of the construction of the discrete

forms. To reduce the amount of generic constants we introduce the notationa < b
for a < Cb where C denotes a positive constant independent of the mesh-size h.

2.1 Example: Discrete Bilinear Forms and Penalty Terms
Jor the Elliptic Cauchy Problem

For the elliptic Cauchy problem of Sect. 1.2 we define V¥ and W¥ to be X} (the
superscript will be dropped for general k). Then we use information on the boundary
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conditions to design a form ay(-,-) that is both forward and adjoint consistent. A
penalty term is also added to enforce the boundary condition.

ah(uh, Uh) = a(uh, Uh) — (8nuh, Uh)p[\// — (8nvh, Mh)[“l) (14)
s‘D,(uh, wy) == ¥vp (h_luh, Wh)FD + v (hdnun, 3,Wn) r, » (15)

where yp € Ry denotes a penalty parameter that for simplicity is taken to be the
same for all the s (-, -) terms, it follows that, if u = g on I'p,

se(u, wp) 1= Vp (h_lg, Wh)FD + yp (h, 8nwh)rN .
The adjoint boundary penalty may then be written
sy @n.vn) == yp (B2, Uh)p[\; + b (h Onzn, 0nvn) - (16)

We assume that the computational mesh 7}, is such that the boundary subdomains
consist of the union of boundary element faces, i.e. the boundaries of I'p and
I'y coincide with element edges. Finally we let [,(v,) coincide with I(v,) for
unperturbed data. Observe that there is much more freedom in the choice of the
stabilisation for z;, since the exact solution satisfies z = 0. We will first discuss the
methods so that they are consistent also in the case z # 0, in order to facilitate the
connection to a larger class of control problems. Then we will suggest a stronger
stabilisation for zj,.

2.2 Example: Galerkin Least Squares Stabilisation

For the stabilisation term we first consider the classical Galerkin Least Squares
stabilisation. Observe that for the finite element spaces considered herein, the GaL.S
stabilisation in the interior of the elements must be complemented with a jump
contribution on the boundary of the element. If C!-continuous approximation spaces
are used this latter contribution may be dropped. First consider the least squares
contribution,

sy (un, va) 2= ys(h* Lup, Loy + vs (h[duun], [9204]) 7, » vs € R a7

Here [0, v;]] denotes the jump of the normal derivative of v, over an element face F.
It then follows that, considering sufficiently smooth solutions, u € H*(£2), s > 3/2,

sy (u, vp) == ys(h*f, Lop).
Similarly we define

sy (znwi) = ys(BP Lz, LW + vs (h[0a24], [02wi]) £, -
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For symmetric operators £ we see that s3,(-,-) = s}.(-,-), however in the presence
of nonsymmetric terms they must be evaluated separately.

2.3 Example: Continuous Interior Penalty Stabilisation

In this case we may choose the two stabilisations to be the same, sf)v(-, ) = s§,(~, )
and

sy (uns v) = ys (R [Aus], [Ava]) 7, + s (R[8,us], [8n0a]) £, - (18)

2.4 Example: Stronger Adjoint Stabilisation

Observe that since the exact solution satisfies z = 0 we can also use the adjoint
stabilisation

sy (@nwi) = ys(Vzn, V) (19)

This simplifies the formulation for non-symmetric problems when the GaLLS method
is used and reduces the stencil, but the resulting formulation is no longer adjoint
consistent and optimal L2-estimates may no longer be proved in the well-posed case
(see [10] for a discussion). In this case the formulation corresponds to a weighted
least squares method. This is easily seen by eliminating z;, from the formulation (11).

2.5 Penalty Parameters

Above we have introduced the penalty parameters ys and yp. The size of these
parameters play no essential role for the discussion below. Indeed the convergence
orders for unperturbed data are obtained only under the assumption that ys, yp >
0. Therefore the explicit dependence of the constants in the estimates will not be
tracked. Only in some key estimates, relating to stability and preturbed data, will
we indicate the dependence on the parameters in terms of y,,;, := min(ys, yp) or

Ymax = maX(VS, VD)

3 Hypothesis on Forms and Interpolants

To prepare for the error analysis we here introduce assumptions on the bilinear
forms. The key properties that are needed are a discrete stability estimate, that the
form ay(-,-) is continuous on a norm that is controlled by the stabilisation terms
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and that the finite element residual can be controlled by the stabilisation terms. To
simplify the presentation we will introduce the space H*(£2), with s € R4 which
corresponds to smoother functions than those in V for which a;,(u, v,) and sy (&, vp,)
always are well defined. This typically allows us to treat the data part s¥ and the
stabilisation part s} together using strong consistency. A more detailed analysis
separating the two contributions in sy and handling the conformity error of a; for
u € V allows an analysis under weaker regularity assumptions.

Consistency: Ifu € VN H*($2) is the solution of (1), then the following Galerkin
orthogonality holds

ah(uh — U, Wh) — Sw(zh, Wh) = lh(wh) — l(Wh), for all wp € Wh. (20)

Stabilisation operators: We consider positive semi-definite, symmetric stabili-
sation operators, sy : V, x V, = R, sy : W, x W, — R. We assume that
sy (u, vy), with u the solution of (2) is explicitly known, it may depend on data
from I(-) or measurements of u. Assume that both sy and sy define semi-norms
on H*($2) + V), and H*(§2) + W), respectively,

[v 4+ vpls, 1= 52V + vy, v + vh);,Vv € H'(2), vy, € Zy,, withZ =V, W.
(21)

Discrete stability: There exists a semi-norm, |(-, )|z : (V, + H*(£2)) x (W, +
H*(£2)) — R, such that |v|s, + [w|s, < [(v,w)|z forv,w € (Vi + H*(£2)) x
(W), + H*(£2)). The semi-norm |(-, )| satisfies the following stability. There
exists ¢; > 0 independent of % such that for all (v, {;) € V), x W), there holds

Anl(vn, 81, (vps
cs|(vr, i)l < sup L ). (on Wh)]- (22)
(o w1) EVX W), [(n, W) 2

Continuity: There exists interpolation operators iy : V +— Vj, and iy : W
Wi, N W and norms || - ||«,v and || - ||«.w defined on V + V,, and W respectively,
such that

ap(v —iyv,wp) < v —ivollxv[(0,wi)lz, Yo € VO H(82), wp € W, (23)
and for u solution of (2),

a(u —up,w —iww) < |w—iww|sw nv(uy), Yw e W, 24)

where the a posteriori quantity ny (1) : V;, +— R satisfies ny (uy) < |(u—up, 0)|2

for sufficiently smooth u.
Nonconformity: We assume that the following bounds hold

lan(up, iww) — a(up, iww)| < nv(up)|[wllw, (25)
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and
[ Gww) — LAww)| < &(W)|[wllw, (26)

where §; : RT — R, is some continuous function such that lim,_, 4+ &§;(x) = 8o,
with 69 = O for unperturbed data.

Also assume that there exists an interpolation operator ry : H'(£2) + V,, —
Vo NV}, such that

lrvun — unlls + lrvun — unllc + lrvun — unllv < nv(up). 27

We assume that ry has optimal approximation properties in the V-norm and the
L2-norm for functions in Vo N H*(£2).

Approximability: We assume that the interpolants iy : V +— Vi, iy 1 W
Wy, N W have the following approximation and stability properties. For all v €
V N H*($2) there holds,

|(v —iyv,0)|z + [v —ivvlley < Cy(V)I', witht > 1. (28)

The factor Cy(v) > 0 will typically depend on some Sobolev norm of v. For iy
we assume that for some Cy > 0 there holds

liwwle + lw —iwwlsw < Cwlwllw, YweW. (29)

For smoother functions we assume that iy has approximation properties similar
to (28).

3.1 Satisfaction of the Assumptions for the Methods Discussed

We will now show that the above assumptions are satisfied for the method (14)-
(15) associated to the elliptic Cauchy problem of Sect. 1.2. We will assume that
ue VN H($2) withs > g Consider first the bilinear form given by (14). To prove
the Galerkin orthogonality an integration by parts shows that

an(u, wy) = (Lu, wp) + (0tt, wi) p, = (F, wn) + (¥, wa)

= l(wp) — In(wn) + an(un, wi) — sw(zn, wp).

It is immediate by inspection that the stabilisation operators defined in Sects. 2.2
and 2.3 both define the semi-norm (21). Now define the semi-norm for discrete
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stability

1 1
|, z0) 2 := NhLup|lw + 1AL znlln + 172 [0pun] | 7 + (172 [9nza]ll 7,
_1 1 _1 1
+ 1A~ 2 unllry + 122 Onunll 1y + 02 znllry + A2 0uzall - (30)

If the adjoint stabilisation (19) is used a term ||z, || 1(sz) may be added to the right
hand side of (30). Observe that for the GaLLS method there holds for ¢; ~ Y, > 0,

es| s 2|7 < Anl(un, z0), (un, —z1)]
which implies (22). For the CIP-method one may also prove the inf-sup stabil-
ity (22), we detail the proof in appendix.
For the continuity (23) of the form ay(-, ) defined by Eq. (14), integrate by parts,

from the left factor to the right, with ¢ € V;,+H?*(£2) and apply the Cauchy-Schwarz
inequality,

an(@.wn) < (@, L Wil + (1@ [[9.walD) 7, + [ (Ond wa) ;| + 1 (. Inwn) 1y |

_ _1 1
< (579 le + 12 @l oy + 12 8l ) 100 W)
From this inequality we identify the norm || - ||«.v to be
_ _1 1
¢y = I bl + 12 bl 7 ury + 172 8.l ;-
Similarly to prove (24) for the form (14) let ¢ € W and integrate by parts in a(u —

uy, @), identify the functional ny (u;,) and apply the Cauchy-Schwarz inequality with
suitable weights,

a(u—up, @) = (f, @) + (¥, ), — alun, )
< (= Lun, @)l + ([[0nun]l, @1} 7, + | {¥ — Onttn, @) 1y, |

_ _1
< (I ele + Ik 20llmun) v, B

where we define

nv(up) = [|h(f — Lup)|ln + ||h; [0nun]ll 7 + ||hé(1ﬂ — Opup)llry + ”h_;uh”FD

with ny (up) = |(u — up, 0)| - and we may identify

_ _1
lolew := I plle + 12l 7ury-
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It is important to observe that the continuity (31) holds for the continuous form
a(¢, ¢), but not for the discrete counterpart a; (¢, ), since it is not well defined for
peW.

For the definition of iy and iy we may use Scott-Zhang type interpolators,

preserving the boundary conditions on Vy and W, for ry we use a nodal interpolation
3

operator in the interior such that ryu|r, = 0. For u € H*(£2) with s > J the
approximation estimate (28) then holds with
t:=min(s — 1,k) and Cy(u) < ||ullg+1(g)- (32)

The bound (29) holds by inverse and trace inequalities and the H'-stability of the
Scott-Zhang interpolation operator. It is also known that

1
lun — rvunllm @y < 1 2unlln, < nv(un).

from which (27) follows. The following relation shows (25),

|ah(uh, iww) — a(uh, iww)| = | (8nuh, iww)p]\/, + (aniww, uh)FD I
- -_— -
=0
1 . _1
< ||h2 0niwwllrp 12 2unllrpy < IWla 2y v (un). (33)

Where we used that iyw| = 0, since iww € W.

4 Error Analysis Using Conditional Stability

We will now derive an error analysis using only the continuous dependence (3). First
we prove that assuming smoothness of the exact solution the error converges with
the rate /' in the stabilisation semi-norms defined in Eq. (21), provided that there
are no perturbations in data. Then we show that the computational error satisfies a
perturbation equation in the form (6), and that the right hand side of the perturbation
equation can be upper bounded by the stabilisation semi-norm. Our error bounds are
then a consequence of the assumption (3).

Lemma 1 Let u € Vy N H*(S2) be the solution of (2) and (uy, z;,) the solution of
the formulation (12). Assume that (20), (22), (23) and (28) hold. Then

| =zl S Cy@)(1+c7 DI
Proof Let &, := uy, — iyu. By the triangle inequality

[ — un, zn)| e < [(u—ivu,0)| 2 + [(5n,20) |2



Stabilised FEM for IlI-Posed Problems with Conditional Stability 107

and the approximability (28) it is enough to study the error in |(&, z4)|z- By the
discrete stability (22)

A ,zn), (vp, w,
el Enale < sup w[Ens zn)s (Vn, wp)]
(o) EVAX W [V, wi) |2

Using Eq. (20) we then have

Ly(wp) = lwp) + an(u — ivu, wy) + sv(u —ivu, vp)
cslEnyzn)le < sup ]
(o Wi) EVEX W), [(n, W)z

Under the assumption of unperturbed data and applying the continuity (23) in the

third term of the right hand side and the Cauchy-Schwarz inequality in the last we
have

_1 1
an(u—ivu, wp)+svu—ivit, V3) < (Vypir lt—iviel[« v + Vimax| (u—ivu, 0) | £) | (Vs wi) | 2

and hence

_1 1
CslEnz)le S Vyin It — ivitll sy + Vinax|(u — iy, 0)| 2.

Applying (28) we may deduce

cs|(Enzn)l e S Cyv(w)h'.

|

Theorem 1 Let u € Vy N H*(§2) be the solution of (2) and (uy, z;,) the solution
of the formulation (12) for which (20)—(29) hold. Assume that the problem (2) has
the stability property (3) and that u and uy, satisfy the condition for stability. Let
cq define a positive constant depending only on the constants of inequalities (24),
(25), (27) and (29) and define the a posteriori quantity

n(un, zn) = nv(un) + |2n]sy- (34)
Then, if n(un, z) < ¢, there holds
lu — unlls < Ee(canun, zn)) + nv(un) (35)

with E independent of h.
For sufficiently smooth u there holds

nQun. z1) < Cyv(u)(1 + ¢ . (36)
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Proof We will first write the error as one V- conforming part and one discrete

nonconforming part. It then follows that e := u — u;, = u—ryiy + ryup — up,.
_ = =~
—eEV() =ep€Vy
Observe that

e —unlls < lu— rvunlls + lun — rvunlls < llells + nv(un).
Since both u and uy, satisfy a stability condition it is also satisfied for e

lellc < llullc+ llunllc+ llenllc < llulle+ llunllc+nv(un) S 2E+Cy(u)(14c; HA'.
(37)

Here we used the property that ny(us) < |(u —us, 0)z| < Cy(u)(1 + ¢ H)A!, which
follows from Lemma 1. Now observe that

a(e,w) = a(e,w) — a(ep, w) = l(w) — a(uy, w) — alep, w) (38)

and since the right hand side is independent of u we identify r € W’ such that
Ywe W,

(r,w)wwy = L(w) — a(uy, w) — alep, w). (39)

It follows that e satisfies Eq. (6) with right hand side (r, w)y~ w). Hence since e
satisfies the stability condition estimate (3) holds for e. We must then show that
|I7]lw can be made small under mesh refinement. We proceed using an argument
similar to that of Strang’s lemma and (20) to obtain

rw)w.wy = au —up, w — iww) + Eiww) — I (iww)

- - -
T, )
+ an(up, iww) — a(up, iww) —alep, w) — sw(zp, iww) . (40)
~ - R
T3 Ty Ts

We now use the assumptions of Sect.3 to bound the terms 7;-7s. First by (24)
and (29) there holds

Ty = a(u—up,w—iww) < nup, 0)[w — iwwllxw < nun, 0)[wllw-

By the assumption of unperturbed data and exact quadrature we have T, = 0. Using
the bound of the conformity error (25) we obtain for T3

T3 = ap(up, iww) — a(up, iww) < n(up, 0)|wllw.
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For the fourth term we use the continuity of a(, -), (29) and the properties of ry
to write

Ty = a(ep, iww) < llenllvIliwwllw < n(un, 0)[[w]lw.

Finally we use the Cauchy-Schwarz inequality and the stability of (29) to get the
bound

T5s = SW(Zh,iWW) < |Zh|SW|iWW|SW s 77(07 Zh)”W”W-
Collecting the above bounds on 77, ..., T5 in a bound for (40) we obtain
[(row)wrwy | < nun, zn) [wllw.

We conclude that there exists ¢, > 0 such that |||y < can(un, z1). Applying the
conditional stability we obtain the bound

lells < Ee(can(un. zn))

where the constants in Zg are bounded thanks to the assumptions on u and u;
and (37).
The a posteriori estimate (35) follows using the triangle inequality and (27),

lu —unlls = lle + enlls < llells + llenlls < Ee(n(un, zn)) + nv (un). (41)
The upper bound of (36) is then an immediate consequence of the inequality

n(up, zn) < | — un, z0)| 2

and Lemma 1. O

Remark 1 Observe that if weak consistency is used for the proof of Lemma 1 and
the data and stabilisation parts of the term sy are treated separately, then we may
show that the a posteriori part of Theorem 1 holds assuming only u € V.

4.1 Application of the Theory to the Cauchy Problem

Since the formulation (12) with the forms defined by (14)-(16) and the stabilisa-
tions (17), (18) or (19) satisfies the assumptions of Theorem 1 as shown in Sect. 3.1,
in principle the error estimates hold for these methods when applied to an elliptic
Cauchy problem (5) which admits a unique solution in Vy N H*(£2), s > g The
order ¢ and the constant Cy () of the estimates are given by (32).
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However, some important questions are left unanswered related to the a priori
bounds on the discrete solution u;, z;,. Observe that we assumed that the discrete
solution u, satisfies the condition for the stability estimate |u;||c < E. For the
Cauchy problem this means that [|up||g1 (o) < E uniformly in 2. As we shall see
below, this bound can be proven only under additional regularity assumptions on u.
Nevertheless we can prove sufficient stability on the discrete problem to ensure that
the matrix is invertible. We will first show that the £-semi-norm (30) is a norm on
Vi x Wy, which immediately implies the existence of a discrete solution through (22).

Lemma 2 Assume that |(-,-)|z is defined by (30) and the penalty operator (15).
Then |(vp, yn)|z is a norm on V, X Wy,. Moreover for all h > 0 and all k = 1 there
exists up, 7, € Vi, x Wy, solution to (12), with (14)—(16) and either (17) or (18) as
primal and adjoint stabilisation or (19) for adjoint stabilisation.

Proof The proof is a consequence of norm equivalence on discrete spaces. We
know that |(vy, 0)| ¢ is a semi-norm. To show that it is actually norm observe that if
|(Vp, 0)|z = O then vy, € Hz(.Q), Loyl = anuher = uh|pD = 0. It follows that
v, € H'(R) satisfies (6) with zero data. Therefore by (8) v, = 0 and we conclude
that |(vs, 0)|2 is @ norm. A similar argument yields the upper bound for y;,. The
existence of discrete solution then follows from the inf-sup condition (22). If we
assume that Ly, (v,, w,) = 0 we immediately conclude that |(uy, z,)| 2 = 0 by which
existence and uniqueness of the discrete solution follows. O

This result also shows that the method has a unique continuation property. This
property in general fails for the standard Galerkin method (Christiansen, private
communication, 1999).

In the estimate of Theorem 1 above we have assumed that both the exact solution
u and the computed approximation uy, satisfy the condition for stability, in particular
we need ||u—ryup|c < E . Since u is unknown we have no choice but assuming that
it satisfies the condition and u;, on the other hand is known so the constant E for u,
or ryuy, can be checked a posteriori. From a theoretical point of view it is however
interesting to ask if the stability of u;, can be deduced from the assumptions on u
and the properties of the numerical scheme only. This question in its general form
is open. We will here first give a complete answer in the case of piecewise affine
approximation of the elliptic Cauchy problem and then make some remarks on the
high order case.

Proposition 1 Assume that || - ||c is bounded by the H'-norm, that u € H*($2) is
the solution to (6) and (up, z) € Vi X Wy, with k = 1, is the solution to (12) with
the bilinear forms defined by (14)—(15) and (18). Then there holds

lunlle < llullp(o)- (42)
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Proof Observe that by a standard Poincaré inequality followed by a discrete
Poincaré inequality for piecewise constant functions [20] we have

. . 1.
lunllm 2y < livullp o) + live — unllg o) < lullpe) + A livie — unls,
1y
S ullpeey + 2 |Gy — un, 0) 2 S llull g2

|

A simple way to obtain the conditional stability in the high order case, if the
order ¢ is known is to add a term (hz’Vuh, Vup) e to sy(+, ). This term will be weakly
consistent to the right order and implies the estimate

lunlle ) S B Tunlsy < Nutll gt ()

An experimental value for ¢ can be obtained by studying the convergence of |up|s, +
|zn]s,, under mesh refinement. To summarize we present the error estimate that we
obtain for the Cauchy problem (5) when piecewise affine approximation is used in
the following Corollary to Theorem 1.

Corollary 1 Let u € H*(2) be the solution to the elliptic Cauchy problem (5) and
un, zn € Vi x Wy, the solution of (12), with (14)—(16) and either (18) as primal
and adjoint stabilisation or (19) for adjoint stabilisation. Then the conclusion of
Theorem 1 holds with || - ||ls := || + |le, with @ C £2, the function Er and E given
by (7) or (8) and

1 1
N> z) 2= PG —=Lu) |+ 1l0nun] | 7 + 1A 2 il 1y + A2 (= Onten) Loy + 12 Ly -
In particular there holds for h sufficiently small,

lu — upllw < h° with0 <t < 1 when dist(w, I'y) > 0 (43)

~

and
lu —unlle < (Jlog(Cih)| 4+ Co)™F with0 < 7 < 1. (44)

Proof First observe that it was shown in Sect.3 that the proposed formulation
satisfies the assumptions of Theorem 1. It then only remains to show that the
stability condition is uniformly satisfied, but this was shown in Proposition 1. The
estimates (43) and (44) are then a consequence of (7), (8), (32) and (36). Observe
that by (36) the smallness condition on 71(u;, z;) will be satisfied for 4 small enough.

O
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5 The Effect of Perturbations in Data

We have shown that the proposed stabilised methods can be considered to have
a certain optimality with respect to the conditional dependence of the ill-posed
problem. In practice however it is important to consider the case of perturbed data.
Then it is now longer realistic to assume that an exact solution exists. The above
error analysis therefore no longer makes sense. Instead we must include the size
of the perturbations, leading to error estimates that measure the relative importance
of the discretization error and the error in data. To keep the discussion concise we
will present the theory for the Cauchy problem and give full detail only in the case
of CIP-stabilisation (the extension to GaLS is straightforward by introducing the
perturbations also in the stabilisation s}, under additional regularity assumptions.)
In the CIP case the perturbations can be included in (12) by assuming that

hw) :== (f + 8f . we + (¥ + 8¢ w) (45)

where §f and 8§y denote measurement errors and the unperturbed case still allows
for a unique solution. We obtain for (26),

[ln(wn) — Lwn)| == [(&f, wi) + 8V, wi) 1y | S N8y Wl 2)- (46)

Similarly the penalty operator sy(u,v;) will be perturbed by a d&s(vy) =
(hdv, 9yvn) f,» here depending only on &y, but which may depend also on
measurement errors in the Dirichlet data. We may then write

Ly (wh, vp) := Ly(wn) + 55 @, vp) + 85” (v). 47)

Observe that the perturbations must be assumed smooth enough so that the above
terms make sense, i.e. in the case of the Cauchy problem, §f € (H'(£2))’ and 8y €
12(I'y). Tt follows that 852 (vy,) < h2 [|8Y || 1y |vals, -

A natural question to ask is how the approximate solutions of (12) behaves in the
asymptotic limit, in the case where no exact solution exists. In this case we show
that a certain norm of the solution must blow up under mesh refinement.

Proposition 2 Assume that I, € (H'(2))', but no u € V,, satisfies the equation
a(u,w) = L,(w), YweWw. (48)

Let (up, zj,) be the solution of (12) with the stabilisation chosen to be the CIP-method
(Sect. 2.3). Then lfs?, = sf,v,

||h_éuh||r0 + |Vunlle + |zulsy — o0, when h — 0.
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If s3,(-,-) is defined by (19) then
IVup||e — oo, when h — 0.

Proof Assume that there exists M € R such that

1
1A~ 2unllry + | Vurlle + lznlsy, <M

for all &~ > 0. It then follows by weak compactness that we may extract a
subsequence {u,} for which u, — v € V as h — 0. We will now show that this
function must be a solution of (48), leading to a contradiction. Let ¢ € C*° N W and
consider

a(v.¢) = lim a(us, ¢).

For the right hand side we observe that

a(un, §) = an(un, ¢ — iwd) + alun, §) — an(un, )
+ sw(zn, iw®) + Lh(iwg — @) + (P).

Now we bound the right hand side term by term. First using an argument similar to
that of (31), followed by approximation and trace and inverse inequalities, we have

. . 1
an(up, @ —iw¢) < |16 — iwdll«wl(n, 0)2 < Chl@llm2e) (1A 2 unllry, + [[Vunll2).
(49)

Then using an argument similar to (33) recalling that ¢ is a smooth function we get
the bound

a(un, ¢) — an(un, §) < 12 18,0l 152 nll - (50)

For the adjoint stabilisation, first assume that it is chosen to be the CIP stabilisation
and add and subtract ¢ in the right slot to get

sw(zn, iwd) < S\W(@#’l +sw(zn, iwd — ¢) < Clanlsy hll Pl m2(2)- (51)
ey
If the form (19) is used, we first observe that testing (12) with v, = up, w, = —2z
yields

lunly, + 1znl2, = Anl(un. 20). @n —20)] = W(zn) + (A, Ouutn)

1
< [l @)y lznlsy + B2 1 [y [un] sy -



114 E. Burman

It follows that there exists M > 0 such that
_1 1 1
Ih™2unllry + A2 0nunliry + A2zl ry + lznllen @) <M. Yh> 0.

Assuming also that | Vuy||e < M, we may then extract a subsequence u, — v € V
ash — Oand z; — ¢ € W as h — 0. Using similar arguments as above we may
show that 3C > 0 such that for all ¢ € V N C* there holds

a(p,zp) < Ch>

implying that { = 0, by (3) and (8). Therefore sw(zs, iwgp) — 0, for all ¢ €
W. Observing finally that ,(iw¢ — ¢) < [lnllwhl@llp2e) we may collect the
bounds (49)—(51) to conclude that by density

a(v.¢) = lim a(uy. §) = (9). Vo €W
and hence that v is a weak solution to (48). This contradicts the assumption that the

problem has no solution and we have proved the claim. O

To derive error bounds for the perturbed problem we assume that the W-norm can
be bounded by the £-norm, in the following fashion, Ywj, € W},

willw
< h™* 52
0wz ™ ©2)

for some k = 0. We may then prove the following perturbed versions of Lemma 1
and Theorem 1.

Lemma 3 Assume that the hypothesis of Lemma 1 are satisfied, with L, (-) defined
by (47) and (45). Also assume that (52) holds for some k = 0. Then
|(u—un,z1) |2 < Cv()(1 + ;' + C;lhé 189 111y + ¢ B 1181 a1 2y

Proof We only show how to modify the proof of Lemma 1 to account for the
perturbed data. Observe that the perturbation appears when we apply the Galerkin
orthogonality:

81(wn) + an(u — ivu, wy) + sy (u — ivu, vy) + 85° (vy)
cslEnzn)le < sup

{v, Wi EVEXW), |(vha Wh)IL

here §l(wy) = In(wn) — I(wy). We only need to consider the upper bound of the
additional terms related to the perturbations in the following fashion

|Uh|sv
[V, wi) |

In(wi) — L(wp) — 8sP (vy) Wl ()

1
S8 a2y +h2||8
(o, W) 621l (11 (2)) (s w) .2 18| ry
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The conclusion then follows as in Lemma 1 and by applying the assumption (52)
and the fact that the £ semi-norm controls |vp]s, . O

Remark 2 In two instances we can give the precise value of the power k. First
assume that the adjoint stabilisation is given by Eq.(19) with |(0,wy)|c defined
by (30) with the added [|wy | 1(s) term. It then follows that (52) holds with k = 0.
On the other hand if GaLS stabilisation or CIP stabilisation are used also for the
adjoint variable and piecewise affine spaces are used for the approximation we know
that by a discrete Poincaré inequality [20]

IWnllan @y < B0, wh)l 2

and therefore k = 1 in this case.

Similarly the perturbations will enter the conditional stability estimate and limit
the accuracy that can be obtained in the | - ||s norm when the result of Theorem 1 is
applied.

Theorem 2 Let u be the solution of (6) and (un, zn) the solution of the formula-
tion (12) with the right hand side given by (47). Assume that the assumptions (21)—
(28) hold, that the problem (6) has the stability property (3) and that u satisfies the
condition for stability. Let

ns(un, zn) == n(un, zn) + [|6lw
with n(uy, z;,) defined by (34). Then for ns(up, z;) small enough, there holds
lu—unlls < Ee(cs.ansun, zn)) + nv(un) (53)

with Eg dependent on uy,. For sufficiently smooth u there holds

- 1,1 -
Ns(unzn) S Cv@) (A 4+cTOR +T R 189 g+ (4T )8l oy (54)
Proof The difference due to the perturbed data appears in the Strang type argument.

We only need to study the term 7, of the Eq. (40) under the assumption (46). Using
the H'-stability of the interpolant iy we immediately get

T = lliww) — lu(iww) < 80w liwwllw < (80w [wllw.
It then follows that
|(rs W) wr . wy | < (can(un, zn) + CwllSUw) Iwllw < cs.ams(un. zn) [wllw
and assuming that cs ,ns(up, zn) < 1, the a posteriori bound follows by applying the

conditional stability (3). For the a priori estimate we apply the result of Lemma 3
and [|8lllw < 181l i1 (2)y - o
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Observe that the function &g in the error estimate depends on ||u||¢ and therefore
is not robust. A natural question is how small we can choose 4 compared to the size
of the perturbations before the computational error stagnates or even grows. This
leads to a delicate balancing problem since the mesh size must be small so that the
residual is small enough, but not too small, since this will make the perturbation
terms dominate. Therefore the best we can hope for is a window 0 < A, < h <
hmax, Within which the estimates (53) and (54) hold. We will explore this below for
the approximation of the Cauchy problem using piecewise affine elements.

Corollary 2 Assume that the hypothesis of Lemma 3 and Theorem 2 are satisfied.
Also assume that there exists hy;,, > 0 and Cs(u) > 0 such that

1
My 18Ul e (2yy + h2 118V Iny < Cs(w)h  for h > hyin (55)

and hya; > 0 so such that for iy, < h < hygy there holds ns(up, zp) < CS_; Then
for hyin < h < hyay there exists Zg(+), independent of wy, such that (53) and (54)
hold.

Proof First observe that by Lemma 3 and under the assumption (55) there holds for
h> hmin

|Givu — un, z1) |2 < (Cy(u) + Cs(u)c; 'h

It follows by this bound and the discrete Poincaré inequality, that [jup | (@) <
(Cv(u) + Cs(u))c; ! for b > hyy,. We may conclude that the condition for stability
is satisfied for u, u;, and the discrete error ryu;, — uy. Therefore, since the smallness
assumption on 71s(up, z,) is satisfied for & < h,,,,, there exists &g independent of uy,
such that estimates (53) and (54) hold when A,,,;, < h < . ]

6 Numerical Examples

Here we will recall some numerical examples from [10] and discuss them in the
light of the above analysis. We choose £2 = (0, 1) x (0, 1) and limit the study to
CIP-stabilisation and the case where the primal and adjoint stabilisations are the
same. First we will consider the case of a well-posed but non-coercive convection—
diffusion equation, £ := —uAu+ B-Vu. Then we study the elliptic Cauchy problem
with Lu := —Au for unperturbed and perturbed data and finally we revisit the
convection-diffusion equation in the framework of the elliptic Cauchy problem and
study the effect of the flow characteristics on the stability. All computations were
carried out on unstructured meshes. In the convergence plots below the curves have
the following characteristics

* piecewise affine approximation: square markers;
* piecewise quadratic approximation: circle markers;
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« full line: the stabilisation semi-norm |us|s, + |2n]sy 3
+ dashed line: the global L?-norm;

+ dotted line with markers: the local L>-norm.

» dotted line without markers: reference slopes.

6.1 Convection-Diffusion Problem with Pure Neumann
Boundary Conditions

We consider an example given in [16]. The operator is chosen as
LO)=V-(uV() +B) (56)

with the physical parameters u = 1,

/3::—100(’“”)
y—x

(see the left plot of Fig. 1) and the exact solution is given by
u(x,y) = 30x(1 —x)y(1 —y). (57)

This function satisfies homogeneous Dirichlet boundary conditions and has
|lu||e=1. Note that ||B]lre = 200 and V - § = —200, making the problem
strongly noncoercive with a medium high Péclet number. We solve the problem
with (non-homogeneous) Neumann-boundary conditions (uVu + Bu) -n = g on
0§2. The parameters were set to yp = 10 and ys = 0.01 for piecewise affine
approximation and ys = 0.001 for piecewise quadratic approximation. The average
value of the approximate solutions has been imposed using a Lagrange multiplier.
The right hand side is then chosen as Lu and for the (non-homogeneous) Neumann
conditions, a suitable right hand side is introduced to make the boundary penalty
term consistent. In the right plot of Fig. 1 we observe optimal convergence rates as
predicted by theory (the dual adjoint problem is well-posed, see [10, 15]).

6.2 The Elliptic Cauchy Problem

Here we consider the problem (5) with o the identity matrix and ¢ = 0. We impose
the Cauchy data, i.e. both Dirichlet and Neumann data, on boundaries x = 1, 0 <
y<landy =1, 0 < x < 1. We then solve (5) using the method (12) with (14)—(16)
and (18) withk = 1 and k = 2.
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Fig. 1 Left: Plot of the velocity vector field. Right: Convergence plot, errors against mesh size,
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Fig. 2 Study of the global L?>-norm error under variation of the stabilisation parameter, circles:
affine elements, squares: quadratic elements

In Fig.2, we present a study of the L’>-norm error under variation of the
stabilisation parameter. The computations are made on one mesh, with 32 elements
per side and the Cauchy problem is solved with k = 1, 2 and different values for y;
with yp = 10 fixed. The level of 10 % relative error is indicated by the horizontal
dotted line. Observe that the robustness with respect to stabilisation parameters is
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Fig. 3 Contour plots of the interpolated error iy — uy, (left plot) and the error in the dual variable
zp, (right plot)
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Fig. 4 Convergence under mesh refinement, the same slopes for the stabilization semi-norm are
represented in both graphics for reference

much better for second order polynomial approximation. Indeed in that case the
10 % error level is met for all parameter values ys € [2.0E — 5, 1], whereas in the
case of piecewise affine approximation one has to take ys € [0.003, 0.05]. Similar
results for the boundary penalty parameter not reported here showed that the method
was even more robust under perturbations of yp. In the left plot of Fig. 3 we present
the contour plot of the interpolated error iyu — u;, and in the right, the contour plot
of z;. In both cases the error is concentrated on the boundary where no boundary
conditions are imposed for that particular variable.

In Fig.4 we present the convergence plots for piecewise affine and quadratic
approximations. The same stabilisation parameters as in the previous example were
used. In both cases we observe the optimal convergence of the stabilisation terms,
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O(h*), predicted by Lemma 1. For the global L?>-norm of the error we observe
experimental convergence of inverse logarithmic type, as predicted by theory. Note
that the main effect of increasing the polynomial order is a decrease in the error
constant as expected.

For the local L?>-norm error, measured in the subdomain (0.5, 1)?, higher
convergence orders, O(h¥), were obtained in both cases.

6.2.1 The Effect of Perturbations in Data

In this section we will consider some numerical experiments with perturbed data.
We consider a perturbation of the form 69 = ¢v;ug¥ Where v,y is a random
function defined as a fourth order polynomial on the mesh with random nodal values
in [0, 1] and ¢ > O gives the relative strength of the perturbation. We consider the
same computations as for unperturbed data. In all figures we report the stabilisation
semi-norm |z s, + |unls, to explore to what extent it can be used as an a posteriori
quantity to tune the stabilisation parameter and to detect loss of convergence due to
perturbed data.

First we consider the determination of the penalty parameter. First we fix yp =
10. Then, in Fig.5 we show the results obtained by varying ys when the data is
perturbed with ¢ = 0.01. We compare the global L?-error with the stabilisation
semi-norm. For the piecewise affine case we observe that the optimal value of the
penalty parameter does not change much. It is taken in the interval [0.01, 0.1], which
corresponds very well with the minimum of the a posteriori quantity |zx|s, + |unls, -
For piecewise quadratic approximation there is a stronger difference compared to
the unperturbed case. The optimal penalty parameter is now taken in the interval

06 [

02 | . o
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- L O -©
Covvnd v vd vl v vl il 0 A PR BT EETERI ST RSN B T R |
X107 1x1g© 000001 0.0001 0.001 001 01 1 1x107 1x1060.000010.0001 0.001 001 01 1 10

penalty parameter penalty parameter

Fig. 5 Variation of the global L-error (dashed line) and |z|sy, + lupls, (full line) against y. Left
k= 1.Rightk =2
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Fig. 6 Variation of the L?-error (global dashed line, local dotted line) and |z lsw =+ lunls, (full
line) against ¢. Left k = 1. Right k = 2

[0.5, 5]. The a posteriori quantity takes its minimum value in the interval [0.1, 0.5].
From this study we fix the penalty parameter to ys = 0.05 for piecewise affine
approximation and to ys = 1.0 in the piecewise quadratic case.

Next we study the sensitivity of the error to variations in the strength of the
perturbation, for the chosen penalty parameters. The results are given in Fig. 6. As
expected the global L?-error is minimal for the perturbation ¢ = 0.01. For smaller
perturbations it remains approximately constant, but for perturbations larger than
1 % the error growth is linear in ¢ for all quantities as predicted by theory, assuming
the stability condition is satisfied uniformly (see Lemma 3 and Theorem 2.)

Finally we study the convergence under mesh refinement when ¢ = 0.01. The
results are presented in Fig. 7. From the theory we expect the reduction of the error
to stagnate or even start to grow when & < ¢. For the piecewise affine approximation
the minimal global L*-error is 0.065 for 4 = 0.015625 and it follows that the
stagnation takes place for & ~ ¢ in this case. For k = 2 the minimal global L*-error
is 0.047 for h = 0.03125, that is one refinement level earlier than for the piecewise
affine case. In both cases we observe that the convergence of the stabilisation semi-
norm degenerates to worse than first order immediately after the critical mesh-size.
The dotted lines without markers immediately below the curve representing the a
posteriori quantity are reference curves with slopes O(h'"!) for affine elements and
O(h'*) for quadratic elements k = 2. This rate is suboptimal in the latter case,
indicating a higher sensibility to perturbations for higher order approximations. It
follows that regardless of the smoothness of the (unperturbed) exact solution, high
order approximation only pays if perturbations in data are small enough so that they
do not dominate before the asymptotic range is reached.
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Fig. 7 Variation of the L2-error (global dashed line, local dotted line) and |z, |, + |unly, (full line,
with markers) against h. Left k = 1, reference O(h''!). Right k = 2, reference O(h'*)

6.3 The Elliptic Cauchy Problem for the Convection—Diffusion
Operator

As a last example we consider the Cauchy problem using the noncoercive
convection—diffusion operator (56). The stability of the problem depends strongly
on where the boundary conditions are imposed in relation to the inflow and outflow
boundaries. Strictly speaking this problem is not covered by the theory developed in
[2]. Indeed in that work the quantitative unique continuation used the symmetry of
the operator. An extension to the convection-diffusion case is likely to be possible,
at least in two space dimensions, by combining the results of [1] with those of [2].
To illustrate the dependence of the stability on how boundary data is distributed
on inflow and outflow boundaries we propose two configurations. Recalling the left
plot of Fig. 1 we observe that the flow enters along the boundariesy = 0,y = 1 and
x = 1 and exits on the boundary x = 0. Note that the strongest inflow takes place on
y = 0 and x = 1, the flow being close to parallel to the boundary in the right half of
the segment y = 1. We propose the two different Cauchy problem configurations:

Case 1. We impose Dirichlet and Neumann data on the two inflow boundaries
y=0andx=1.

Case 2. We impose Dirichlet and Neumann data on the two boundaries x = 0 and
y = 1 comprising both inflow and outflow parts.

The gradient penalty operator has been weighted with the Péclet number as
suggested in [10], to obtain optimal performance in all regimes. In the first case
the main part of the inflow boundary is included in I's whereas in the second case
the outflow portion or the inflow portion of every streamline are included in the
boundary portion I's where data are set. This highlights two different difficulties
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---—=--- L2-error

——o—— stabilisation semi-norm
Tk y=0.15"(-log(x))(-1)
y=0.075*(-log(x))(-1/2)

1 1 1 1
0.01 0.1 0.01 0.1

Fig. 8 Left: Convergence for Case 1, k=1. Right: Convergence for Case 2, k=1

for Cauchy problems for the convection—diffusion operator, in Case 1 the crosswind
diffusion must reconstruct missing boundary data whereas in Case 2 we must solve
the problem backward along the characteristics, essentially solving a backward heat
equation.

In Fig. 8, we report the results on the same sequence of unstructured meshes used
in the previous examples for piecewise affine approximations and the two problem
configurations. In the left plot of Fig. 8 we see the convergence behaviour for Case 1,
when piecewise affine approximation is used. The global L?>-norm error clearly
reproduces the inverse logarithmic convergence order predicted by the theory for the
symmetric case. In the right plot of Fig. 8§ we present the convergence plot for Case 2
(the dotted lines are the same inverse logarithmic reference curves as in the left plot).
In this case we see that the convergence initially is approximately linear, similarly
as that of the stabilisation term. For finer meshes however the inverse logarithmic
error decay is observed, but with a much smaller constant compared to Case 1.
In Case 1 the diffusion is important on all scales, since some characteristics have
no data neither on inflow or outflow, whereas in Case 2, data is set either on the
inflow or the outflow for all characteristics of the flow and the effects of diffusion
are therefore much less important, in particular on coarse scales. Indeed the reduced
transport problem in the limit of zero diffusivity, is not ill-posed. As the flow is
resolved the effect of the diffusion once again dominates and the inverse logarithmic
decay reappears.

7 Conclusion

We have proposed a framework using stabilised finite element methods for the
approximation of ill-posed problems that have a conditional stability property.
The key element is to reformulate the problem as a pde-constrained minimisation
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problem that is regularized on the discrete level using tools known from the theory
of stabilised FEM. Using the conditional stability error estimates are derived that
are optimal with respect to the stability of the problem and the approximation
properties of the finite element spaces. The effect of perturbations in data may also
be accounted for in the framework and leads to limits on the possibility to improve
accuracy by mesh refinement. Some numerical examples were presented illustrating
different aspects of the theory.

There are several open problems both from theoretical and computational point
of view, some of which we will address in future work. Concerning the stabilisation
it is not clear if the primal and adjoint stabilisation operators should be chosen to
be the same, or not? Does the adjoint consistent choice of stabilisation sy have any
advantages compared to the adjoint stabilisation (19), that gives stronger control of
perturbations? Then comes the question of whether or not high order approximation
(i.e. polynomials of order higher than one) can be competitive also in the presence
of perturbed data? Can the a posteriori error estimate derived in Theorem 1 be used
to drive adaptive algorithms? Finally, what is a suitable preconditioner for the linear
system? We hope that the present work will help to stimulate discussion on the
design of numerical methods for ill-posed problems and provide some new ideas
on how to make a bridge between the regularization methods traditionally used and
(weakly) consistent stabilised finite element methods.

Appendix

We will here give a proof that the inf-sup stability (22) holds also for the
stabilisation (18). We do not track the depedence on yp and ys.

Proposition 3 Let A[(-,-), (-, )] be defined by (13) with a,(-,-), sw(-, ) and sy (-, -)
defined by Eq. (14)—(16) and (18) (or (19) for sw(-,-)). Then the inf-sup condi-
tion (22) is satisfied for the semi-norm (30).

Proof We must prove that the L?-stabilisation of the jump of the Laplacian gives
sufficient control for the inf-sup stability of Luy, evaluated elementwise. It is well
known [14] that for the quasi-interpolation operator defined in each node x; by

Los Aup) (i) := N7 Y Aup(x) i,
{K:xiEK}

N; := card{K : x; € K} the following discrete interpolation result holds

1
”h(Auh - IosAuh)”h < Cossf/(uhv Mh)z (58)
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as well as following the stabilities obtained using trace inequalities, inverse inequal-
ities and the L?-stability of I,,

”h%IosAuh”]:"f‘ ”hg anlosAuh||F+ ”hI()JAuh”h + |h21()SAMh|SX 5 ”hAuh”h (59)
First observe that by taking (v, wy,) = (us, ) we have
lunl?, + 1znl2, = Anl(n zn), (un, z0)]-

Now let wf = Wl Luy = h*(LsAup + cup), vF = h1,sL*z,. Using (59) it is
straightforward to show that

V72 LsLunll 7 + 113 dulosCutnl| 7 + [7dos Lyl + W05 Lty oy < Cos | LU 1.
(60)

Now observe that (for a suitably chosen orientation of the normal on interior faces)

an(up, wi) = I|hCup ||z + (Lup, i LosLup — Lup))i + ([0nttn], hzlosﬁuh)ﬂ

+ (8nuh, hzlosﬁuh)pN + (8nhzlosﬁuh, uh)rD

os

1 -
= I Lunlly = 200 Uog Laty = Lun) [ = 26,257, un)
1 >
= ) ”h‘cuh“i - ZC(%‘VSA\S‘/(M’!’ up) — ZCOSZS\D/(uhv up)

1 >
2, 1Ll = 2G5, + ED i,

os

and
c 2 2 1 2
sw(zn, wy) = —C anly, — 4||h£uh||h-
Similarly
1 -
anvis ) 2 ) L™zl = 2(CE + D)k,
and

- 1
sviwn,vp) 2 =Cllml, = 1ALzl



126 E. Burman

It follows that for some ¢y, ¢, > O there holds
|(un 2% < Anl(uns z0), (un + crwr, 2 + c2vf)].
We conclude by observing that by inverse inequalities and (60) we have the stability

|(un + c1wis zn + 200 2 < [(uny 20 -
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Static Condensation, Hybridization,
and the Devising of the HDG Methods

Bernardo Cockburn

Abstract In this paper, we review and refine the main ideas for devising the so-
called hybridizable discontinuous Galerkin (HDG) methods; we do that in the
framework of steady-state diffusion problems. We begin by revisiting the classic
techniques of static condensation of continuous finite element methods and that of
hybridization of mixed methods, and show that they can be reinterpreted as discrete
versions of a characterization of the associated exact solution in terms of solutions
of Dirichlet boundary-value problems on each element of the mesh which are then
patched together by transmission conditions across interelement boundaries. We
then define the HDG methods associated to this characterization as those using
discontinuous Galerkin (DG) methods to approximate the local Dirichlet boundary-
value problems, and using weak impositions of the transmission conditions. We give
simple conditions guaranteeing the existence and uniqueness of their approximate
solutions, and show that, by their very construction, the HDG methods are amenable
to static condensation. We do this assuming that the diffusivity tensor can be
inverted; we also briefly discuss the case in which it cannot. We then show how
a different characterization of the exact solution, gives rise to a different way of
statically condensing an already known HDG method. We devote the rest of the
paper to establishing bridges between the HDG methods and other methods (the
old DG methods, the mixed methods, the staggered DG method and the so-called
Weak Galerkin method) and to describing recent efforts for the construction of HDG
methods (one for systematically obtaining superconvergent methods and another,
quite different, which gives rise to optimally convergent methods). We end by
providing a few bibliographical notes and by briefly describing ongoing work.
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1 Introduction

In this paper, we give a short introduction to the devising of the hybridizable
discontinuous Galerkin (HDG) in the framework of the following steady-state
diffusion model problem:

cg+Vu=0 in CR? (la)
V.g=f inf, (1b)
u=up onoas2. (Ic)

We assume that the data ¢, f and up are smooth functions such that the solution itself
is smooth. Here ¢ is a matrix-valued function which is symmetric and uniformly
positive definite on £2. We are going to closely follow [33], where the HDG methods
were introduced.

Since the HDG methods are discontinuous Galerkin (DG) methods, [25], we
begin by defining the DG methods for the above boundary-value problem; we follow
[3]. Let us first discretize the domain £2. We denote a triangulation of the domain
2 by 2, := {K} and set 0§2;, := {dK : K € §2;}. The outward unit normal to the
element K is denoted by n. The set of faces of the element K is denoted by F(K).
An interior face F of the triangulation £2;, is any set of the form K™ N dK~, where
K* are elements of £2;; we assume that the (d — 1)-Lebesgue measure of F is not
zero. The set of all interior faces is denoted by }‘;;. Similarly, a boundary face F of
the triangulation £2;, is any set of the form 0K N 352, where K are elements of £2;
again, we assume that the (d — 1) Lebesgue measure of F is not zero. The set of
all boundary faces is denoted by ]-"f. The set of interior and boundary faces of the
triangulation is denoted by F,.

The notation associated to the weak formulation of the method is the following.
We set

('a ').Qh = Z ('a ')K and ('v'>3.Q/, = Z ('7'>3K7

Kes2, Kesy

where (-,-)x denotes the standard L?>(K)-inner product, and (-,-)sx denotes the
standard L*(3K)-inner product.

We can now introduce the general form of a DG method. The approximate
solution (qy,, u;) given by a DG method is the element of the space V), x W, where

Vyi={v e L*(R) :v|g € V(K) VK € 2},
Wy := {w € L*(2) :w|x € W(K) VK € £2;,}.
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satisfying the equations

(€qy,v)2, — (up, V- 0)g, + (ity, v-n)sg, =0,

—(qp, VW)@, +(q, -1, W), = (f.W)e,,

for all (v, w) € V), x W,,, where the numerical traces i, and §, - n are approximations
to ulsp, and q - nlye,, respectively. The finite dimensional space V), x W), is chosen
so that all the integrals in the above weak formulation are well defined.

It remains to discuss how to choose the numerical traces. To do that, let us begin
by introducing some useful notation. The traces of the functions ¢ and z defined on
K* € £, on the boundary 0K are denoted by ¢* and zF, respectively. We use
the same notation if the functions ¢ and z are defined on d2;,. Thus, we define the
jumps of ¢ and z across the interior face F = dK™ N 0K~ by

[El:=¢tnt +¢n~ and [g]:=zt-nt +z7 -0,

respectively, where n™ is the outward unit normal to K*. On boundary faces F, we
simply write

[kl :==¢n and [z] :=z-n,

with the obvious notation. We say that the numerical traces are single-valued if, on
Fi. lin) = 0 and [¢,] = 0.

Slightly extending what was done in [3], the numerical traces i, and (the normal
component of) §, are linear mappings &, : H'(£2,) x H'($2;) — L*(352) q,, :
H'(2;) x H'(2,) — L*(0$2;,) which approximate the traces of u and (the
normal component of) g on 0£2, respectively. We take these numerical traces to
be consistent. We say that they are consistent if

up(—aVvou,v) = v)sg,, q,(—aVu,v) -n = —(aVv) - n|yge,,

whenever [aVv] = 0 and [v] = 0 on the interior faces F}. Here a := ¢ ~!. This
completes the description of the DG methods.

The HDG methods are the DG methods just described which are amenable to
static condensation. They are thus efficiently implementable and turn out to be more
accurate than its predecessors in many instances. None of them fit in the unifying
framework developed in [3], since the numerical trace u; of the HDG methods
depends on the approximate flux too. The family of DG methods analyzed in [4]
includes some HDG methods.

The paper is organized as follows. In Sect. 2, we show that the classic techniques
of static condensation of continuous finite element methods and that of hybridiza-
tion of mixed methods, introduced back in 1965 in [55] and [52], respectively,
can be reinterpreted as discrete versions of a characterization of the associated
exact solution expressed in terms of solutions of Dirichlet boundary-value problems
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on each element of the mesh patched together by transmission conditions across
interelement boundaries. In Sect. 3, we use this reinterpretation to define the HDG
methods associated to this characterization as those using discontinuous Galerkin
(DG) methods to approximate the local Dirichlet boundary-value problems, and
using weak impositions of the transmission conditions. We show that, by construc-
tion, the global problem of these HDG methods only involves the approximation to
the trace of the scalar variable on the faces of the triangulation. We do this assuming
that the diffusivity tensor a is invertible; in Sect.4, we show that it is trivial to
treat the case in which it is not. In Sect. 5, we show that a new characterization of
the exact solution, based on the elementwise solution of Neumann boundary-value
problems, can be used to produce a different type of static condensation of already
known HDG methods. In Sect. 6, we establish bridges between the HDG and several
other methods and comment on two promising ways of devising new HDG methods.
We end by providing a few bibliographical notes and by briefly describing ongoing
work.

1.1 Note to the Reader

Engineering and Mathematics Graduate Students interested in numerical methods
for partial differential equations should be able to read this paper. An elementary
background in finite element methods should be enough since here we focus on the
ideas guiding the devising of the methods rather than in their rigorous error analyses.

The material of these notes is strongly related to the one presented at the Durham
Symposium entitled “Building bridges: Connections and challenges in modern
approaches to numerical partial differential equations” at Durham, U.K., July 8-
16, 2014, sponsored by the London Mathematical Society, and EPSRC. I would like
to express my gratitude to the organizers, especially to G.R. Barrenechea and E.
Georgoulis, for the invitation to talk about HDG methods at that meeting.

These notes have evolved from several short courses the author has given: at
the Basque Center of Applied Mathematics, Bilbao, Spain, July 9-17, 2009; at the
University of Pavia, May 28-June 1, 2012; at the Department of Mathematics &
Statistics of the King Fahad University of Petroleum and Minerals, Dec. 2012; at
the International Center for Numerical Methods in Engineering, and Universidad
Polytecnica de Catalunya, Barcelona, Spain, July 11-15, 2012; at the US National
Conference on Computational Mechanics 12, Raleigh, North Carolina, July 22-25,
2013; and at the Department of Mathematics of the Chinese University of Hong
Kong, March 19-21, 2014.
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2 Static Condensation and Hybridization

Here we argue that the static condensation of the continuous Galerkin method,
an implementation technique introduced by R.J. Guyan 1965 in [55], can be
reinterpreted as a discrete version of a characterization of the exact solution. We
also argue that a similar interpretation can be given to the static condensation of a
mixed method as proposed by Fraejis de Veubeque also in 1965 [52], who showed
that this can be achieved provided the mixed method is hybridized first. Although
the above-mentioned procedures were carried out in the setting of linear elasticity,
we present them for our simpler model problem of steady-state diffusion (1).

We proceed as follows. First, we present a characterization of the exact solution
in terms of solutions of local problems patched together by means of transmission
and boundary conditions. We then show how the original static condensation of
the continuous Galerkin method and that of a mixed method can be thought of as
discrete versions of such characterization.

2.1 Static Condensation of the Exact Solution
2.1.1 A Characterization of the Exact Solution

Here, for any given triangulation §2;, := {K} of §2, we give a characterization of the
exact solution in terms of solutions on each of the elements K € £2, and a single
global problem expressed in terms of transmission and boundary conditions.

Suppose that, for each element K € £2,,, we define (Q, U) as the solution of the
local problem

cQ+VU=0 inKk,
V- Q=f K,
U=2 onok,
where we want the single-valued function & to be such that (Q, U) = (g, u) on each

element K € £2;,. We know that this happens if and only if i enforces the following
transmission and boundary conditions:

[Q] =0 onF e Fi,

o= up onFe]-"f,'.

If we now separate the influence of & form that of f, we can easily see that we
obtained the following result.
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Theorem 1 (Characterization of the Exact Solution) We have that

(q.u) = (Q.U) = (@;.Up) + (@ Up),

where, on the element K € $2;, (Q;,U;) and (Qy, Uy) are the solutions of

CQ,;-l—VU,;:O mnk, CQf+VUf=0 mnk,
V-0,=0 ink, V-0, =f inKk,
U,=u onodk, U =0 ondk,

and where 11 is the single-valued function solution of

—[2:l =191 ifFexF,
i=up ifFeF.

2.1.2 An Example

Let us illustrate this result with a simple but revealing case. Take §2 := (0, 1) with
K = (xi—,x;) fori = 1,...,N where xo = 0 and xy = 1. For simplicity, we take
C to be a constant. We then have that

where, fori = 1,..., N, the functions (Q;, U;) and (Qf, Uy) are the solutions of the
local problem
CQ+dU 0 in( ) CQ+dU 0 in( )
i = Xi—1,Xi), = Xi—1,Xi),
u dx u 1 r dx f 1

d

d
deﬁ =0 in (xi—laxi)a def =f in (xi_l,xi),

U; =

=

on {xi_l,xi}, Uf =0 on {xi_l,xi}.

Note that we still do not know the actual values of the function & : {x;}}_, — R,
but once we obtain them, we can readily get the exact solution (g, u). To find those
values, we only have to solve the global problem

—Q;(x) + Qi(x) = Qi(x) —Qu(x")  fori=1,....N—1,
u(x;)) = up(x;) fori=0,N.
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Now, let us solve the local problems and then find the global problem. A simple
computation gives that the solutions of the local problems are

A

Qui) = 1~ =1, Q) = ¢ / " Gl s)f(s) ds.

Ch; i—1

Ua(x) = @i(x) it; + @im1(x) iti—1, Ur(x) = / i G'(x, $)f (s) ds,

i—1

where h; := x; — x;_; and G’ is the Green’s function of the second local problem,
namely,
Gi(x, S) — Chi (pi(S) goi_l(x) ifxi_l < s < x,
Chi(pi(x) (pi_l(s) ifx<s<ux.

where

(s —xi—1)/hi if i <5< x,

pi(s) == .
(Xig1 —8) /i1 ifx; <5 < xig.

As a consequence, the global problem for the values {I:li}?]:() is

Wi —itim1 i1 — U R .
— = i ds fori=1,...,N—1,
RIS e ds for

I)j = uD(xj) fOI'j =0,N.
In other words, the values of the exact solution at the nodes of the triangulation,

{i1;}Y_,, can be obtained by inverting a (symmetric positive definite) tridiagonal
matrix of order N + 1.

2.2 Static Condensation of the Continuous Galerkin Method

Now, we show that a characterization of the continuous Galerkin method similar to
that one just obtained for the exact solution can be interpreted as the original static
condensation of the method [55].

2.2.1 A Characterization of the Approximate Solution
The continuous Galerkin method provides an approximation to u, uy, in the space

Wy, = {w € C%(R) : wlx € W(K) VK € 2;}.
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It determines it by requiring that it be the only solution in Wj,(up) of the equation
@Vup, Vw)e = (f,w)e  Yw € W,(0).

where Wi (g) = {w € Wy, : w = I,(g) on 982}, and I, is a suitably defined
interpolation operator.

Now, to obtain our characterization of the approximate solution, we need to split
the spaces in a suitable manner. Thus, for each element K € §2;,, we define the space
associated to the interior degrees of freedom,

Wo(K) :={w € W(K) : wlsx = 0},
and the space associated to the degrees of freedom on the boundary,
Wy(K) :={we W(K): wlgx =0 = w|g =0}.
Clearly, W(K) = Wy(K) + Wy(K) forall K € §2;, and so W), = Wy, + W, where
Won :=1{w e W, : wlx € Wo(K) VK € £},
Wz, :={we W, : wlx € Wyo(K) VK € §2;}.
We also need to introduce the following sets of traces on JF:
My = {wlF, : we Wy},
My(g) :={p € My : plog = In(g)}-

Note that the trace into J}, is an isomorphism between W, and Mj,.
Suppose that, for each element K € £2;, we define U € W(K) as the solution of
the local problem
@VvU,Vw)x = (f,w)xk  Vw € Wy(K),
U=u, on 0K,
where we want to chose the function &, € M}, in such a way that U = u;, on each
element K € £2;,. This happens if and only i, is such that
@vuU,Vw)e = (fiw)e VYwe Wg,
i:th = Ih(u[)) on d52.
If we separate the influence of i, from that of f in the definition of the local

problems, and rework the formulation of the global problem, we get the following
result.
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Theorem 2 (Characterization of the Continuous Galerkin Method) The
approximation given by the continuous Galerkin method can be written as

uh:U:U’;h—i_uf’

where, on the element K € §2y,, U;,, and Uy are the elements of W(K) that solve the
local problems

@vu;, . Vw)xk =0  VYw € Wy(K) @vVU, Vw)g = (f,wx  Yw € Wo(K),
Uy, =itn ondk U =0 on dK,
and ty, is the element of My, (up) that solves the global problem
@vU;,.VUpe = (f,Upe VY pe My(0).

Note that, although the static condensation [55] is carried out directly on the
stiffness matrix of the method, this result shows how to use (local and global) weak
formulations to achieve exactly the same thing.

Proof By the linearity of the problem, we only have to justify the characterization
of the function . Let us start from the fact that &, is the element of M), (up) which
solves the global problem

(aVU;,h,VW)_Q + (aVUf,VW)Q = (f.we VYweWsr,.
Now, note that, for any w € W), we can define the function wy by the equation
w = U, + wo,
where i := w|z,; this readily implies that wo € Wy ;. If we now insert this
expression in the equation and take into consideration the definition of the solution

of the local problems, that is, that

(@vu;,, Vwg)e =0,
(a VUf, VUM)Q =0,
(@VUr, Vwo)e = (f.wo) e,

we finally get the wanted formulation. This completes the proof. O

2.2.2 The Numerical Trace of the Flux

A quick comparison of the above result with the one for the exact solution, suggests
that the global problem for the continuous Galerkin method is a transmission
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condition on a discrete version of the normal component of the flux. This little
known fact will allow us to identify the numerical trace of the approximate flux
for the continuous Galerkin method.

To do this, we first write the global problem in its original form, that is,

@Vu,, Vw)o = (f,w)e Vwe Wg,
and perform a simple integration by parts to get
—(V-(@Vup),w)a, + (@Vu) -n,whyg, = (f,w)e Ywe Wg,

Let us now define, for each element K € £2, the function R, € Wy(K) satisfying
the equation

(Rn,w)ox = (V- (@Vup) +f,w)k Yw € Wy(K).

Thus, the function R;, is a projection of the residual V - (aVuy,) + f. With this
definition, we get that

((—aVuy) -n+ Ry, whg, =0 YweWs,

which can be interpreted as a transmission condition forcing the normal component
of numerical trace of the flux

éh-n = (—aVuh)-n+Rh on B.Qh,

to be weakly continuous across interelement boundaries.

2.2.3 Relation with Static Condensation

Let us now show that this characterization is nothing but an application of the well-
known technique of static condensation [55]. Static condensation was conceived
as a way to reducing the size of the stiffness matrix. Indeed, if [u;] is the vector
of degrees of freedom of the approximation u;, and the matrix equation of the
continuous Galerkin method is

K [up) = [f],

the static condensation consists in partitioning the vector of degrees of freedom [uy]
into two smaller vectors, namely, the degrees of freedom interior to the elements,
[U], and the degrees of freedom associated to the boundaries of the elements,
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[it], and then eliminating [U] from the equations. Indeed, taking into account this
partition, the above equation reads

[Koo Koa} [[U]} _ [fo}

Kao Kaa | | [itn] fo

By our choice of the degrees of freedom, the matrix Ky is easy to invert since it is
block diagonal, each block being associated to a local problem. We thus get

U] = =Koo' Koali] + Koq' Lfo].
We can now eliminate [U] from the original matrix equation to obtain
(—Kao Koo' Koy + Kaa)lit] = —Kao Koo' Lfo] + o).

The matrix in the left-hand side, nowadays called the Schur complement of the
matrix Ky, is clearly smaller than the original matrix K and is also easier to
numerically invert. We have thus shown that our characterization of the approximate
solution of the continuous Galerkin method is nothing but another way of carrying
out the good, old static condensation. The former expresses in terms of weak
formulations what the latter does directly on the matrix equations itself.

2.2.4 An Example

Let us now illustrate this procedure in our simple one-dimensional example. We
take

W(K) := Pr(K),

where Pi(K) denotes the space of polynomials of degree at most k defined on the
set K. We begin by solving the local problems. If we use the notation &; = ,(x;)
fori =0,...,N, afew manipulations (and the proper choice of the basis functions)
allow us to see that the solutions of the local problems are

Ui) = o) s + i U = [ Gl e)as,

where h; := x; — x;—; and GZ is the discrete Green’s function of the second local
problem, namely,

k—1

i hi 1 i i i i
G5 = 4o ; 20 41 Pt = P) ) (Pryy = Pr)(s)
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where Pi(x) := P,(T'(x)