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Preface

This volume contains survey articles from the topics of a number of the plenary
talks of the 101st LMS-EPSRC Symposium entitled Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential Equations
held at Durham University between 8 and 16 July 2014.

The symposium was devoted to recent advances in numerical methods for partial
differential equations (PDEs) using non-polynomial basis functions, mimetic finite
difference methods, and discontinuous Galerkin (dG) methods. Moreover, since
recent works in these directions have highlighted unforeseen pairwise connections
between the different approaches, a particular emphasis in this symposium has been
to explore further links and to exchange ideas and techniques between them.

The scientific program included six short courses given by Tom Hughes (Austin,
Texas) on isogeometric analysis, Ralf Hiptmair (ETH, Zurich) on plane wave
discontinuous Galerkin methods, Leszek Demkowicz (Austin, Texas) on discontin-
uous Petrov-Galerkin method, Bernardo Cockburn (Minnesota) on hybridized DG
methods, Chi-Wang Shu (Brown) on discontinuous Galerkin methods for hyper-
bolic equations with delta-singularities, and Konstantin Lipnikov (Los Alamos)
on mimetic finite difference methods. These were complemented by plenary
lectures by Assyr Abdulle (EPFL, Lausanne), Mark Ainsworth (Brown), Lourenco
Beirão Da Veiga (Milan), Pavel Bochev (Sandia), Annalisa Buffa (Pavia), Erik
Burman (UCL), Alexandre Ern (EPC, Paris), Oleg Davydov (Giessen), Charles
Elliott (Warwick), Alexandre Ern (Paris), Ivan Graham (Bath), Paul Houston (Not-
tingham), Charalambos Makridakis (Sussex), Gianmarco Manzini (Pavia), Peter
Monk (Delaware), Alessandro Russo (Milan), Robert Scheichl (Bath), and Frédéric
Valentin (Petropolis). Further, a session with speakers from industry was organized
with invited speakers Paul Childs (Schlumberger Gould Research, Cambridge) and
Halvor Nilsen (SINTEF, Norway) who presented very interesting lectures closely
related to the symposium’s topics.

During the symposium, a number of extremely interesting discussions took place,
in particular, on the connections, similarities, and differences of related numerical
methods, especially in the context of variational methods on polytopic meshes,
such as mimetic finite difference methods, virtual element methods, polygonal dis-

v



vi Preface

continuous Galerkin methods, and hybrid-type discontinuous Galerkin approaches.
Further, a number of stimulating discussions and talks were given on abstraction
of numerical methods through different frameworks (such as the HDG and DPG
frameworks of discontinuous variational methods). As an example of an outcome
from the aforementioned discussions, two of the main speakers in the symposium,
B. Cockburn and A. Ern, recently wrote a research article entitled “Bridging the
hybrid high-order and hybridizable discontinuous Galerkin methods”.

This volume collects 13 contributions, by several of the main speakers. The type
of contributions ranges from new applications of some of the emerging techniques,
to new powerful frameworks in which many of the new techniques can be inserted
and better understood, to careful analyses of the differences and of the similarities
of wide ranges of new methods that have been proposed independently, by various
groups all over the planet, in the very last few years.

Only an intensive comparison of all these new ideas on realistic problems of
interest in applications will help in understanding which method is more suited for
each class of problems. However, we believe that this book could be an excellent
guide for young (and less young) researchers who are willing to get closer, to
familiarize, and possibly to start working, on some of these new methods, trying
to dig into their inner mathematical nature and/or testing them on new problems.

If you have been curious about all these new instruments, this book is an
ideal help to start learning more about them, their main features, their reciprocal
relationships, and their possibilities in applications.

We would like to express our gratitude to Mark Ainsworth (Brown) and Endre
Süli (Oxford), for their help and support as scientific advisors to the meeting, and to
the LMS and EPRSC for giving us the opportunity to organize this event. Moreover,
we would also like to thank the Numerical Algorithms and Intelligent Software
(NAIS) consortium for additional financial support. Finally, we would like to extend
our thanks to the Durham Symposia administration staff for all their help.

Glasgow, UK Gabriel R. Barrenechea
Pavia, Italy Franco Brezzi
Leicester, UK Andrea Cangiani
Leicester, UK & Athens, Greece Emmanuil H. Georgoulis
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Numerical Homogenization Methods
for Parabolic Monotone Problems

Assyr Abdulle

Abstract In this paper we review various numerical homogenization methods for
monotone parabolic problems with multiple scales. The spatial discretisation is
based on finite element methods and the multiscale strategy relies on the heteroge-
neous multiscale method. The time discretization is performed by several classes
of Runge-Kutta methods (strongly A-stable or explicit stabilized methods). We
discuss the construction and the analysis of such methods for a range of problems,
from linear parabolic problems to nonlinear monotone parabolic problems in the
very general Lp.W1;p/ setting. We also show that under appropriate assumptions,
a computationally attractive linearized method can be constructed for nonlinear
problems.

1 Introduction

Parabolic problems with multiple scales enter in the modelling of a wide range
of problems, e.g., thermal diffusion in composite materials, flow problems in
heterogeneous medium, etc. We are interested in problems in which the microscopic
heterogeneities occur at a much smaller scale than the macroscopic length scale
of interest that describes the physical phenomenon of interest. For such problems
mathematical homogenization [18, 40] gives the adequate theoretical framework to
describe an effective solution originating from the limit of the fine scale solution
when the size of the small scales tends to zero. An effective equation for this
effective solution can also be established. However, except for special cases,
there are no explicit expressions for the effective coefficients (diffusion tensor)
of the upscaled equation. The aim of numerical homogenization is to construct
computational strategy to compute an approximation of these effective equations
and sometimes to capture fine scale oscillations of the multiscale solution. The
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2 A. Abdulle

theory of homogenization is at the root of two classes of numerical methods that
we briefly discuss

• methods based on oscillatory basis functions built into a coarse FE space: this
idea goes back to Babuška and Osborn [16] and is based on solving local
fine scale problems within each macroscopic element of the coarse FE space.
Elaboration and generalization have been developed within the multiscale finite
element method (MsFEM) [15, 38];

• methods supplementing upscaled data for resolving the effective equation:
this idea has been widely used by engineer (see e.g., the references in [32])
and turned into a general framework in the heterogeneous multiscale method
(HMM) [3, 4, 55]. In the finite element context, this latter method is called
the finite element heterogeneous multiscale method (FE-HMM) and is based
on a macroscopic finite element method with input data given by microscopic
sampling of the original fine scale problem in patches of size proportional to the
fine scale oscillation.

These two classes of methods use either in their formulation or in their analysis the
theory of homogenization in an essential way. Further related to homogenization
theory we mention the sparse tensor product FEM based on the two-scale con-
vergence theory and its generalization [14, 48] and the projection based numerical
homogenization [20, 31] using successive projection of a fine scale discretization of
the multiscale equation into a lower dimensional space and iteratively eliminating
the fine scale component of the numerical solution.

We also mention multiscale methods that share some similarities with numerical
homogenization methods and have been used for homogenization problems. We
start with the variational multiscale method [39]. In this approach one starts from
a coarse finite element space that cannot resolve the multiscale structure of the fine
scale problem. This coarse space is supplemented by a fine scale space and one
seeks a numerical solution in the form of a coarse and fine scale components. The
fine scale component is obtained by solving localized fine scale problems. Once
these problems solved one can solve the coarse scale approximation. Using local
quasi-interpolation and an orthogonal decomposition of the coarse and fine spaces,
exponential decay of the localisation error has been first proved in [46] (see also
[37]). This new approach of the variational multiscale method is called Localised
Orthogonal Decomposition (LOD). Finally we also mention methods based on
harmonic coordinates [49]. The idea of this method is to compute an appropriate
change of coordinates (based on the full fine scale problem) so its composition with
the fine scale problem is a slowly varying function that can be approximated in a
coarse space. This approach share some similarity with the MsFEM proposed in
[15].

In this article, we review several numerical homogenization methods based on
the HMM for the solution of the following class of monotone parabolic multiscale
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problems in a finite time interval .0;T/

@tu
".x; t/ � div.A".x;ru".x; t/// D f .x/ in ˝ � .0;T/;

u".x; t/ D 0 on @˝ � .0;T/; u".x; 0/ D g.x/ in ˝;
(1)

with initial source and initial conditions f and g. The maps A"W˝ � R
d ! R

d are
defined on a domain ˝ � R

d; where ˝ � R
d d 6 3, and A".�; �/W˝ ! R

d are
Lebesgue measurable for every � 2 R

d. The indexing by an (abstract) parameter
" > 0 indicates that these maps are subject to rapid variations on a very fine scale
relative to the size of the domain ˝ . For the finite element method we will assume
that ˝ is a polygonal domain and we will sometimes assume that it is convex. For
simplicity neither time dependent source terms f .x; t/ or time-dependent maps of the
formA".x; t;ru".x; t// are considered but we note that many of the results presented
in this review can be extended for these situations.

Let us briefly review the literature on multiscale methods for the parabolic
problems (1). For linear problems, most of the methods described above can be used.
We mention [29] for MsFEM type methods, [11, 47] for HMM type methods, [45]
for LOD type methods. While most of the numerical method have been analysed
for the Euler explicit or implicit time discretization, a fully discrete a priori error
analysis in space and time for several classes of implicit and explicit Runge-Kutta
methods has been given in [9]. For nonlinear monotone parabolic problems, the
literature is much more scarce and only methods supplementing upscaled data for
resolving the effective equation have been analyzed. In [30] monotone problems
with stochastic heterogeneities have been analysed however without convergence
rates and for non-discretized micro-problems. In [6, 13] a priori error analysis
(in space and time) for two different types of HMM is established under general
assumption on the nonlinearity. We close this review by mentioning that for elliptic
problems, a posteriori error estimates have been obtained for an HMM type method
in the strongly monotone and Lipschitz case in [36] and a priori error estimates
for general numerical quadrature methods have been derived in [5]. Finally in
[33] numerical homogenization methods (both of HMM and MsFEM types) for
monotone PDEs associated to minimization problems have been studied. We note
in contrast that for the class of problems (1) discussed in this review, we make no
assumptions of an associated scalar potential for A".

In this paper we aim at reviewing the numerical homogenization methods based
on the HMM that have been developed in [6, 9, 13] for parabolic problems (1).
We aim at giving a unified description of various error estimates and numerical
discretization variant of the FE-HMM

• for linear problem the spatial discretisation based on the FE-HMM is coupled
with general classes of Runge-Kutta methods (strongly A-stable and explicit
stabilized methods), and fully-discrete space-time analysis is proposed for this
family of space-time multiscale solvers [9];

• for nonlinear monotone problems a fully discrete space-time method that couples
the FE-HMM in space with the backward Euler method in time is shown to
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converge in the Lp.W1;p/ and C0.L2/ norms towards the homogenized solution
u0 for Problem 1 under the general assumptions. Space-time convergence rates
are established for strongly monotone and Lipschitz maps [6];

• for strongly monotone and Lipschitz maps A" a new linearized scheme that
relies only on linear micro and macro finite element (FE) solvers is proposed
and analyzed. A fully discrete space time analysis is also provided for this
scheme [13].

We briefly sketch the type of convergence rates that we aim at deriving in this
paper: under appropriate assumptions on the tensor A"; the family of solutions
u" converges, up to a subsequence, to a homogenized solution u0 solution of a
homogenized equation similar to (1) but with A" replaced by an effective map A0

that is unknown explicitly (see Sect. 2). In the context of an FE-HMM method, the
goal is to derive an error estimate of the type

max
16n6N

�
�u0.�; tn/ �uHn

�
�
L2.˝/

C
 

NX

nD1
�t
�
�ru0.�; tn/� ruHn

�
�
2

L2.˝/

!1=2

(2)

6 C

�

.�t/r C Hs C
�
h

"

�q

C rmod C �
�g � uH0

�
�
L2.˝/

�

;

where C is independent of �t;H; h and rmod. Here H is the size of a macroscopic
triangulation that is used in the FE-HMM to approximate the effective solution u0

and h is the mesh size of a microscopic triangulation used on a patch Kı around
macroscopic quadrature points. The diameter of the patch Kı is of size ı typically
ı D O."/. As h must resolve the fine scale oscillation we have h < " 6 ı. We notice
two important facts

• as h=" D 1=Nmic, where Nmic is the number of points per oscillation length
and the quantity h=" in the estimate (2) is thus independent of " and measure
the degrees of freedom used to resolve the oscillation; if " ! 0; so does the
patch Kı hence we solve the fine scale only on small fraction of the macroscopic
computational domain and the overall computational cost is independent of ";

• the quantities, �t;H; h are discretisation parameters while rmod quantifies the
error due to the upscaling procedure, i.e., by replacing the true homogenized map
A0 by a map computed from some microscopic models. The coupling condition
(periodic, Dirichlet), the size of the sampling domain enter in this modelling error
that is not influenced by the macro or micro discretisation parameter H; h. In the
most favourable case (e.g., locally periodic homogenization), rmod can be shown
to vanish.

In view of the above prototypical error estimate in this paper we will speak about
fully discrete spatial error estimates when we have an estimate in terms of both the
macroscopic and microscopic spatial mesh H; h and a fully discrete space-time error
estimate when we derive an estimate in terms of H; h and �t.
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Several difficulties arise when analyzing a numerical homogenization method:
first as the effective data are only available at quadrature points, we necessarily
rely on a FEM with numerical quadrature on the macroscale and have to deal
with variational crimes. Second, as the upscaled data are obtained from micro
solvers (FEM) one has to precisely quantify the propagation of the errors across
scales. Finally the modelling error that originates from the averaging procedure
designed to recover the effective data need also to be quantified. To close this
introduction, we review several important contributions concerning FE methods
for single scale nonlinear monotone problems and contrast these results with the
numerical homogenization literature. Using quasi-norm techniques, convergence
rates have been derived in [17, 27] in the Lp.W1;p/ setting for single scale parabolic
monotone problems with the following p-structure

jA.�/ � A.�/j 6 L.�1 C j�j C j�j/p�2j� � �j;
.A.�/ � A.�// � .� � �/ > �.�2 C j�j C j�j/p�2j� � �j2; 8 �; � 2 R

d

including for example the p-Laplacian. Note however that under the most general
assumptions on the map A" under which homogenization results are proved (see
e.g. [50]) and under which we can show convergence of an FE-HMM method [6],
we have a p-structure if and only if the map A" is strongly monotone and Lipschitz.

This review is organized as follows. In Sect. 2 we briefly review the homoge-
nization theory for the class of parabolic problems considered and introduce the
numerical homogenization method. In Sect. 3 we review the coupling of the FE-
HMM with various families of Runge-Kutta methods and explain the techniques
used to derive a fully-discrete space-time error analysis. Convergence of a fully-
discrete numerical method for general nonlinear monotone parabolic problems is
discussed in Sect. 4 and a linearized method is presented in Sect. 5.

2 Assumptions and Homogenization

We consider Problem 1 and the “evolution triple” W1;p.˝/ � L2.˝/ � W1;p.˝/0,
f 2 Lp

0

.˝/, g 2 L2.˝/. Very general hypotheses for the maps A" under
which homogenization for (1) can be established, see [21, 50] are the following
assumptions assumed to hold uniformly in " > 0 for all �1; �2 2 R

d and almost
every x 2 ˝: For 1 < p < 1 and p > 2d=.d C 2/ we assume

(A0) there is some C0 > 0 such that jA".x; 0/j 6 C0 for almost every (a.e.)
x 2 ˝;

(A1) there exist �1 > 0, L > 0 and 0 < ˛ 6 minfp � 1; 1g such that

jA".x; �1/� A".x; �2/j 6 L.�1 C j�1j C j�2j/p�1�˛j�1 � �2j˛I
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(A2) there exist �2 > 0, � > 0 and maxf2; pg 6 ˇ < 1 such that

.A".x; �1/ � A".x; �2// � .�1 � �2/ > �.�2 C j�1j C j�2j/p�ˇj�1 � �2jˇ:

Then under the assumptions (A0�2) the problem (1) has a unique solution u" 2 E
for any " > 0

E D fv 2 Lp.0;TIW1;p
0 .˝// j @tv 2 Lp

0

.0;TI .W1;p
0 .˝//0/g; (3)

endowed with the norm kvkE D kvk
Lp.0;TIW1;p

0 .˝//
C k@tvk

Lp0
.0;TI.W1;p

0 .˝//0/
(see e.g.,

[57, Theorem 30.A]).
The aim of homogenization is to find a limiting effective solution for the family

of oscillatory solutions fu"g and an equation for this effective solution involving a
parabolic PDE, where the small scales have been averaged out. We briefly describe
this procedure. First, observe that the solution satisfies the bound

ku"kp
Lp.0;TIW1;p

0 .˝//
C k@tu"kp

0

Lp0
.0;TI.W1;p

0 .˝//0/

6 C..L0 C �1 C �2/
p C kfkp0

Lp0
.˝/

C kgk2L2.˝//;

independently of " and fu"g is a bounded sequence in E. By compactness, there
exists a subsequence, still denoted by fu"g, and some u0 2 E, such that

u" * u0 in Lp.0;TIW1;p
0 .˝// and @tu

" * @tu
0 in Lp

0

.0;TI .W1;p
0 .˝//0/

(4)

for " ! 0:

The question answered in the framework of homogenization theory is that of
a limiting equation for u0. For the above parabolic problems, one refers to the so
called G-convergence of parabolic operators, sometimes called PG for strong G-
convergence [50, 52].

The following compactness result can be shown: there exists a subsequence of
fu"g (still denoted by fu"g) and a map A0W˝ � R

d ! R
d, such that u" weakly

converges to u0 in the sense of (4) and the corresponding maps A".x;ru"/ *
A0.x;ru0/ weakly converges in Lp

0

.0;TI .Lp0

.˝//d/. The homogenized solution
u0 2 E is the solution of the following homogenized problem

@tu
0.x; t/ � div.A0.x;ru0.x; t/// D f .x/ in ˝ � .0;T/;

u0.x; t/ D 0 on @˝ � .0;T/; u0.x; 0/ D g.x/ in ˝;
(5)

whereA0 satisfies (A0�2) (with possibly different constantsC0; �1; �2; � and L) with
Hölder exponent � D ˛=.ˇ � ˛/ in (A1). We note that � D ˛, if and only if p D 2,
˛ D 1, ˇ D 2. Convergence of the whole sequence fu"g to u0 can be obtained under
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additional structure of the maps A", for example if A".x; �/ D A.x="; �/; where
A.y; �/ is a Y D .0; 1/d-periodic function in y. In this case one can also derive
a description of A0 in terms of the solutions of a boundary value problems in the
reference domain Y. When the maps A" depend on both a slow and a fast variable,
i.e. A.x; x="; �/, the boundary value problems depends on x 2 ˝ . For completeness
we introduce the weak formulation of the homogenized problem, by introducing the
map B0WW1;p

0 .˝/� W1;p
0 .˝/ ! R given by

B0.vIw/ D
Z

˝

A0.x;rv.x// � rw.x/dx; v;w 2 W1;p
0 .˝/; (6)

We will also sometimes need a discrete weak form based on a quadrature formula
fxKj ; !KjgJjD1 defined in the next section that reads

OB0.vH IwH/ D
X

K2TH

JX

jD1
!KjA0.xKj ;rvH.xKj// � rwH.xKj/; v

H ;wH 2 S10.˝; TH/;

(7)

provided A0.�; �/ has a continuous representative for every � 2 R
d.

2.1 Multiscale Methods: The Finite Element Heterogeneous
Multiscale Methods

We give in this section a general formulation of the FE-HMM for parabolic problem.
The method relies on

• a macroscopic FE method based on a macroscopic spatial discretization of˝;
• a microscopic solver defined in sampling domains around sampling points x 2
˝; where an approximation of the map A0.x/ is required;

• a time discretization method.

Macro Discretization Let TH be a family of macro partitions of the polygonal
domain ˝ consisting of conforming, shape-regular meshes with simplicial ele-
ments.1 The macro elements K 2 TH are open and such that [K2TH

NK D ˝ .
Let diamK be the diameter of K 2 TH we define by H D maxK2TH diamK the
macroscopic mesh size and consider the macro finite element space

S`0.˝; TH/ D fvH 2 W1;p
0 .˝/ j vHjK 2 P`.K/;8K 2 THg; (8)

1We concentrate on simplicial elements for simplicity but note that many results presented in this
paper can be extended to rectangular elements (see for example [9]).
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where P`.K/ is the space of polynomials on K 2 TH of degree at most `. We also
consider within each macro element K 2 TH quadrature points xKj 2 K and weights
!Kj for j D 1; : : : ; J: We assume that fxKj ; !KjgJjD1 are obtained from a quadrature
formula fOxj; O!jgJjD1 by xKj D FK.Oxj/; !Kj D O!jjdet.@FK/j; j D 1; : : : ; J where FK is

the affine mapping such that K D FK. OK/. We will make the following assumption
on the quadrature formula

(Q1)
R

OK Op.Ox/dOx D P

j2J O!j Op.Oxj/; 8Op.Ox/ 2 P�. OK/; where � D max.2` � 2; `/.
These requirements on the quadrature formula ensure that the optimal convergence
rates for elliptic FEM hold when using numerical integration [23].

Multiscale Method The FE-HMM method for parabolic problems can be defined
as follows. Find uH 2 Œ0;T	 � S`0.˝; TH/ ! R such that

.@tu
H; vH/C BH.u

H ; vH/ D .f ; vH/ 8vH 2 S`0.˝; TH/

uH D 0 on @˝ � .0;T/ (9)

uH.x; 0/ D uH0 ;

where

BH.v
H IwH/ D

X

K2TH

JX

jD1
!KjA0;h

Kj
.rvH.xKj// � rwH.xKj/ vH ;wH 2 S`0.˝; TH/

(10)

and A0;h
Kj
.�/ is a numerically upscaled tensor defined in (13).

Micro Solver We see that for the map BH in (9), we need to a procedure to recover
the effective data A0;h

Kj
.rvH.xKj//. This rely on micro solvers in each sampling

domain Kıj ; j D 1; : : : ; J, associated to a macro element K 2 TH . Let Kıj D
xXj C ıI; I D .�1=2; 1=2/d; ı > " be discretized by micro meshes Th consisting of
simplicial elements T 2 Th, with size h is defined by h D maxT2Th diamT. We then
consider the micro finite element spaces

Sq.Kıj ; Th/ D fvh 2 W.Kıj / j vhjT 2 Pq.T/;8 T 2 Thg; (11)

where Pq.T/ is the space of linear polynomials on T 2 Th and W.Kıj/ � W1;p.Kıj /
is some Sobolev space. The choice of the space W.Kıj / sets the coupling condition
between the macro and micro solver, e.g.,

• W.Kıj / D W1;p
per.Kıj/ D fv 2 W1;p

per.Kıj/ j RKıj v dx D 0g (periodic coupling);

• W.Kıj / D W1;p
0 .Kıj/ (Dirichlet coupling).
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For � 2 R
d and Kıj � K 2 TH , we introduce the function 
�;hKj

as the solution to the

variational problem: find 
�;hKj
2 Sq.Kıj ; Th/ such that

Z

Kıj

A".x; � C r
�;hKj
/ � rwh dx D 0; 8wh 2 Sq.Kıj ; Th/: (12)

Based on the functions 
�;hKj
we can compute the effective data by

A0;h
Kj
.�/ D 1

ˇ
ˇKıj

ˇ
ˇ

Z

Kıj

A".x; � C r
�;hKj
/dx: (13)

We also define an auxiliary flux useful for the analysis

NA0
Kj
.�/ D 1

ˇ
ˇKıj

ˇ
ˇ

Z

Kıj

A".x; � C r N
�Kj
/dx; (14)

where N
�Kj
2 W.Kıj / solve (12) in the infinite dimensional space W.Kıj /.

Upscaling Error We define the upscaling error, called rHMM , as the total error made
by approximating the effective flux A0 by the numerics flux A0;h

Kj
, precisely for any

vH 2 S`0.˝; TH/ we define

rHMM.rvH/ D
�
P

K2TH

PJ
jD1 !Kj

ˇ
ˇ
ˇA0.xKj ;rvH.xKj// � A0;h

Kj
.rvH.xKj//

ˇ
ˇ
ˇ

p0
� 1

p0

;

(15)

where p0 D p=.p � 1/ is the dual exponent of 1 < p < 1. Thanks to the auxiliary
flux, we can further decompose rHMM into two components

rmic.rvH/ D
�
P

K2TH

PJ
jD1 !Kj

ˇ
ˇ
ˇ NA0

Kj
.rvH.xKj//� A0;h

Kj
.rvH.xKj//

ˇ
ˇ
ˇ

p0
� 1

p0

;

(16a)

rmod.rvH/ D
�
P

K2TH

PJ
jD1 !Kj

ˇ
ˇ
ˇA0.xKj ;rvH.xKj// � NA0

Kj
.rvH.xKj//

ˇ
ˇ
ˇ

p0
� 1

p0

:

(16b)

We observe that using the Minkowski inequality we get rHMM.rvH/ 6 rmic.rvH/C
rmod.rvH/ for every vH 2 S10.˝; TH/. The first term rmic.rvH/ quantifies the
error made by solving the micro problems (12) in Sq.Kıj ; Th/. The second term
rmod quantifies the error due to the upscaling procedure used to replace the true
homogenized flux A0 by (14). The coupling condition (periodic, Dirichlet), the size
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of the sampling domain enter in this modelling error that is not influenced by the
macro or micro discretisation parameter H and h. In the most favourable case (e.g.,
locally periodic homogenization), when ı=" 2 N

� and periodic coupling is used we
can have rmod.rvH/ D 0 (see [8]).

Existence and Uniqueness of the Micro Nonlinear Problem The assumptions
(A0)–(A2) are sufficient to guarantee existence and uniqueness of a solution to the
nonlinear problem (12). To treat both the exact and the FE approximation of this
nonlinear problem we consider the more general problem: find z 2 X such that

a�Kj
.zIw/ WD

Z

Kıj

A".x; � C rz/ � rwdx D 0; 8w 2 X; (17)

where X is any closed linear subspace of the Banach space W.Kıj /.

Lemma 1 Assume that A" satisfies (A0�2). Then problem (17) has a unique
solution.

Sketch of the Proof Unless specified otherwise, all the constants below depend on
�1; jKıj; �;L and C0 (see (A0�2)). Using a Hölder inequality and (A0) yield for any
z 2 X the bound ja�K.zIw/j 6 C.z/kwkLp.Kı/ for a constant C depending on z, hence

the nonlinear operator M W X ! X� defined by hMz;wi D a�K.zIw/ is well-defined
and the problem (17) is equivalent to the problemMz D 0. We next list the properties
of the operator M:

1) Using (A1) and a Hölder inequality yields

kMz � MwkX� 6 C.kzkLp.Kıj /; kwkLp.Kıj //kz � wk˛Lp.Kıj /;

and M is continuous.
2) Thanks to (A2) we have hMz � Mw; z � wi > 0 for all z ¤ w and the operator

M is strictly monotone.
3) Finally the bound [26, Lemma 3.1]

krz � rwkLp.Kıj / 6
h

�
ˇ
ˇKıj

ˇ
ˇ
1
p C krzkLp.Kıj / C krwkLp.Kıj /

i ˇ�p
ˇ

 
Z

Kıj

.� C jrzj C jrwj/p�ˇjrz � rwjˇdx
! 1

ˇ

;

for any z;w 2 X that holds for 1 < p < 1, ˇ > p and � > 0 together with (A2)
yields

hMz; zi > C1krzkpLp.Kıj / � C2
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where C1;C2 in addition also depends on �2; ˇ; p; � and the operator M is
coercive. Hence we can apply the Browder-Minty theorem that ensure that the
equation Mz D 0 with the operator M that continuous, strictly monotone and
coercive, has a unique solution. �

We next list several properties of the map BH.v
H IwH/ that follows from the

assumption A" (we refer to [6] for a detailed derivation).

Lemma 2 Assume that A" satisfies (A0�2). Let vH ;wH ; zH 2 S`0.˝; TH/ then the
nonlinear map BH defined in (10) satisfies the following properties

ˇ
ˇBH.v

H IwH/
ˇ
ˇ 6 C

h

Cd C �
�rvH��

Lp.˝/

ip�1 �
�rwH

�
�
Lp.˝/

; (18)

ˇ
ˇBH.v

H I zH/ � BH.w
H I zH/ˇˇ 6 C

h

Cd C �
�rvH��

Lp.˝/
C �
�rwH

�
�
Lp.˝/

ip�1��

�
�rvH � rwH

�
�
�

Lp.˝/

�
�rzH

�
�
Lp.˝/

; (19)

BH.v
H I vH � wH/� BH.wH I vH � wH/ > 0 for vH ¤ wH (20)

BH.v
H I vH/ > �c

�
�rvH��p

Lp.˝/
� C.Cd/

p; (21)

where C may depend on p, ˛, ˇ, �, L and the measure of˝ , with �c > 0 depending
only on p, ˇ, � and L and Cd D L0 C �1 C �2, � D ˛=.ˇ � ˛/.

The above properties are sufficient to guarantee the existence and uniqueness
of a solution to the problem (9). We note that while (20) is sufficient to ensure
the strict monotonicity of BH.�; �/ for the error estimate we will need the following
monotonicity estimate

�
�rvH � rwH

�
�
Lp.˝/

6 C
h

1C �
�rvH��

Lp.˝/
C �
�rwH

�
�
Lp.˝/

i ˇ�p
ˇ

� .BH.vH I vH � wH/ � BH.wH I vH � wH//
1
ˇ ; (22)

where C depends on Cd; �c; j˝j; p and ˇ.

Theorem 1 Assume that (A0�2) hold and that f 2 Lp
0

.˝/. Then, for any parameter
H; h; ı > 0, there exists a unique numerical solution of (9) that satisfies

kuHk
Lp.W

1;p
0 /

6 C; kuHkC0.L2/ 6 C; (23)

where C is independent of H; h; ".

Proof The map B W S`0.˝; TH/ ! S`0.˝; TH/, defined by
˝

BvH ;wH
˛ D BH.v

H IwH/

is (strictly) monotone (20), hemicontinuous (the map vH ! ˝

BvH ;wH
˛

is continuous
for all wH 2 S`0.˝; TH/ thanks to (19)), coercive (21) and satisfies a growth condi-
tion kBvk

.W
1;p
0 /�

6 c1 C c2kvhkp�1
W
1;p
0

. Hence the ordinary differential equation (9)



12 A. Abdulle

satisfies the hypothesis of the Caratheodory theorem that guarantees the existence
and uniqueness of a solution [57, Lemma 30.4]. The monotonicity and coercivity of
B yield the a priori bound. �

3 Fully Discrete Space-Time Error Estimates for Linear
Parabolic Problems

In this section we consider linear parabolic multiscale problems for which
A".x; �/ D a".x/�. We assume a".x/ 2 .L1.˝//d�d and for all � 2 R

d and
a.e. x 2 ˝; t 2 .0;T/ there exists �;L > 0 such that, uniformly for all " > 0

�j�j2 6 a".x/� � �; ja".x/�j 6 Lj�j: (24)

The maps A" then satisfy (A0�2) for p D 2, ˛ D 1, ˇ D 2 and with constants
C0 D 0 and �;L given by the ellipticity and continuity constants. For simplicity we
consider tensors a".x/ independent of time but all the results of this section can be
generalised for time dependent tensors [9]. The numerical method that we consider
is still given by (9) but we have now the following explicit expression for the flux

A0;h
Kj
.�/ D 1

ˇ
ˇKıj

ˇ
ˇ

Z

Kıj

a".x/.� C r
�;hKj
/dx:

Now since rvH D Pd
iD1 ei@ivH ; where ei i D 1; : : : ; d is the canonical basis of Rd;

it is easy to see that A0;h
Kj
.rvH.xKj// D a0;h.xKj/rvH.xKj/; where the i-th row of the

matrix a0;h.xKj/ is given by

a0;h.xKj/ D 1
ˇ
ˇKıj

ˇ
ˇ

Z

Kıj

a".x/.I C r
hKj
/dx: (25)

Here I is the d � d identity matrix and 
hKj
is a d � d matrix with column given by

r
ei;h
Kj
; where 
ei;h

Kj
are the (linear) solution of (12). We can thus rewrite the bilinear

form (10) as

BH.v
H ;wH/ D

X

K2TH

JX

jD1
!Kja

0;h.xKj/rvH.xKj/ � rwH.xKj/; (26)

for all vH ;wH 2 S`0.˝; TH/. We will also use below the bilinear form

B0;H.v
H ;wH/ D

X

K2TH

JX

jD1
!Kja

0.xKj/rvH.xKj/ � rwH.xKj/; (27)
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where a0 is the (usually unknown) exact homogenized tensor that is known to satisfy
similar bound (24) as a". The solution of the homogenized problem (5) will be
denoted by u0.t/ and the corresponding bilinear by

B.v;w/ D
Z

˝

a0.x/rv � rwdx: (28)

We next mention classical estimates for FEM with numerical quadrature that are
needed in the analysis below [23, Theorems 4, 5]. Assuming (Q1) and appropriate
regularity of the homogenised solution u0 we have for all vH ;wH 2 S`0.˝; TH/
(where � D 0 or 1),

jB.vH ;wH/� B0;H.v
H ;wH/j6CHkvHkH1.˝/kwHkH1.˝/; (29)

jB.IHu0;wH/ � B0;H.IHu0;wH/j6CH`ku0.t/kW`C1;p.˝/kwHkH1.˝/; (30)

jB.IHu0;wH/ � B0;H.IHu0;wH/j6CH`C�ku0.t/kW`C1;p.˝/ (31)

�
� X

K2TH

kwHk2H2.K/
�1=2

; (32)

where IH W C0.˝/ ! S`0.˝; TH/ is the usual nodal interpolant.
For linear parabolic problems, we can derive fully discrete convergence results in

both space and time. Furthermore we can perform this a priori convergence analysis
for various class of time integrators including “explicit stabilized Runge-Kutta
method”. The strategy is to first derive fully discrete error estimates in space. In
a second step, using semigroup techniques, fully-discrete space time error estimates
can be obtained. In contrast fully discrete space-time estimates could be obtained
at once starting directly from a time-discrete numerical method instead of first
considering (9). With such a strategy we need however new error estimates for each
new time-integrator while with the former approach we can derive error estimates
for classes of time integrators “at once”. In this section we follow the finding of [9].

3.1 Fully Discrete a Priori Convergence Rates in Space

The starting point of the analysis is to define an appropriate elliptic projection: for
all t 2 .0;T/, let ˘Hu0.t/ 2 S`0.˝; TH/ be the solution of the problem

BH.˘Hu
0.t/; zH/ D B.u0.t/; zH/; 8zH 2 S`0.˝; TH/; t 2 .0;T/; (33)

where u0.t/ is the solution of the homogenized problem (5). Thanks to the ellipticity
and continuity of BH, the above problem is well-posed. Using (33), denoting by
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IHu0 the standard nodal interpolant of u0 we get for all zH 2 S`0.˝; TH/,

BH.˘Hu
0 � IHu0; zH/ D B.u0 � IHu0; zH/

C B.IHu0; zH/� B0;H.IHu0; zH/

C B0;H.IHu0; zH/� BH.IHu0; zH/: (34)

Assuming enough regularity of the homogenized solution, the first two terms of the
above inequality are bounded by CH`ku0.t/kW`C1;pkzHkH1.˝/ using the continuity of
B and standard results for nodal interpolant [22] (first term) and (30) (second term).
In view of (26) and (27), the definition (15) for p D p0 D 2 and the assumption (Q1)
on the quadrature formula we have for the third term

jB0;H.IHu0; zH/� BH.IHu0; zH/j 6 rHMM.rIHu0/krzHkL2.˝/: (35)

We note that we can further decompose rHMM.rIHu0/ as

rHMM.rIHu0/ 6 sup
K2TH ;xKj2K

ka0.xKj/ � a0;h.xKj/kFkrIHu0kL2.˝/;

where k � kF denotes the Frobenius norm of a matrix. We first have the following
lemma.

Lemma 3 Let u0.t/ be the solution of (5) and ˘Hu0.t/ be the elliptic projection
defined in (33). Assume that (A0�2) and (Q1) hold. Assume further that the
homogenized tensor satisfies a0ij 2 C0.Œ0;T	 � NK/ for all K 2 TH and all i; j D
1; : : : ; d: Assume further for � D 0 or 1 and ` > d=p that

u0; @tu0 2 L2.0;TIW`C1;p.˝//;

a0ij; @ta
0
ij 2 L1.0;TIW`C�;1.˝//; 8i; j D 1 : : : d:

Then we have for k D 0; 1

k@kt
	

˘Hu
0 � u0


 kL2.0;TIH1.˝// 6 C.H` C rHMM.rIHu0//; (36)

k@kt
	

˘Hu
0 � u0


 kL2.0;TIL2.˝// 6 C.H`C� C rHMM.rIHu0// � D 0; 1; (37)

where we assume that ˝ is convex for the estimates (37) with � D 1. The constant
C is independent of H; h and ı.

Proof In view of (34) and the bound of the different terms of the right-hand side of
this equality, taking zH D ˘Hu0 � IHu0, using the ellipticity of BH and integrating
from 0 to T we obtain k˘Hu0 � IHu0kL2.0;TIH1.˝// 6 C.H` C rHMM.rIHu0///. The
estimate (36) for k D 0 follows by using the triangle inequality and the estimate
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ku0 � IHu0kL2.0;TIH1.˝// 6 CH`: The estimate (36) for k D 1 is obtained by
differentiating (34) and following the same arguments.

For the estimate (37) k D 0 we use the classical Aubin-Nitsche duality argument
and consider for almost every t 2 .0;T/ the solution '.t/ 2 H1

0.˝/ of the problem

B.z; '.t// D .v.t/; z/; 8z 2 H1
0.˝/: (38)

Taking v.t/ D z D ˘Hu0 � u0 using the elliptic projection (33) yields for all 'H

.˘Hu
0 � u0;˘Hu

0 � u0/ D B.˘Hu
0 � u0; ' � 'H/

C B.˘Hu
0 � IHu0; 'H/ � BH.˘Hu

0 � IHu0; 'H/

C B.IHu0; 'H/� BH.IHu0; 'H/: (39)

We take 'H D IH'.t/ use the continuity of B, (29) and (32) to obtain

.˘Hu
0 � u0;˘Hu

0 � u0/ 6 C.H C rHMM.rIHu0//

� k˘Hu
0.t/ � u0.t/kH1.˝/k'.t/kH2.˝/

C .H`C� C rHMM.rIHu0///ku.t/kH`C1.˝/k'.t/kH2.˝/:

Using k'kL2.0;TIH2.˝// 6 Ck˘Hu0 � u0kL2.0;TIL2.˝// that holds thanks to the
regularity a 2 .L1.0;TIW1;1.˝///d�d of the tensor and the convexity of the
polygonal domain ˝ gives (37) for k D 0. The estimate (37) for k D 1 is obtained
by differentiating (39) and following the same arguments. �

Remark 1 Under the assumptions of Lemma 3 the Sobolev embedding H1.0;TIX/
into C0.Œ0;T	IX/ (for a given Banach space) allows to deduce

k˘Hu
0 � u0kC0.0;TIH1.˝// 6 C.H` C rHMM.rIHu0///; (40)

k˘Hu
0 � u0kC0.0;TIL2.˝// 6 C.H`C� C rHMM.rIHu0///: (41)

We state now fully discrete a priori convergence rate in space for the FE-HMM

Theorem 2 Let u0.t/ be the solution of (5) and uH the solutions of (9). Assume the
hypotheses of Lemma 3. Then we have the L2.H1/ and C0.L2/ estimates

ku0 � uHkL2.Œ0;T	IH1.˝// 6 C.H` C rHMM.rIHu0/C kg � uH0 kL2.˝//; (42)

and if � D 1

ku0 � uHkC0.Œ0;T	IL2.˝// 6 C.H`C1 C rHMM.rIHu0/C kg � uH0 kL2.˝//: (43)
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If in addition, the tensor is symmetric, then we have the C0.H1/ estimate

ku0 � uHkC0.Œ0;T	IH1.˝// 6 C.H` C rHMM.rIHu0/C kg � uH0 kH1.˝//: (44)

The constants C are independent of H; rHMM.rIHu0/.

Proof To simplify the notation, we use rHMM D rHMM.rIHu0/ in the proof.

Step 1: Estimation of kuH �˘Hu0kL2.0;TIH1.˝// C kuH �˘Hu0kC0.Œ0;T	IL2.˝//.
We set �H.t/ D uH.t/ � ˘Hu0.t/; t 2 Œ0;T	: In view of the elliptic projec-
tion (33), (5) and (9) we have for all zH 2 S`0.˝; TH/,

.@t�
H ; zH/C BH.�

H ; zH/ D .@tu
0; zH/� .@t˘Hu

0; zH/: (45)

We set zH D �H integrate this equality from 0 to t using the coercivity of BH.�; �/

k�H.t/k2L2.˝/ C c1

Z t

0

k�H.s/k2H1.˝/ds 6 k�H.0/k2L2.˝/ (46)

C c2

Z t

0

k@tu0 � @t˘Hu
0k2L2.˝/ds: (47)

Using the decomposition �.0/ D .u0�˘Hu0/.0/C.uH0 �g/; (41) and (37) yields

k�.0/kL2.˝/ 6 C.H`C� C rHMM/C kuH0 � gkL2.˝/: (48)

Using (48) and (37) gives the L2.H1/ estimate and taking the supremum with
respect to t gives the C0.L2/ estimate. We thus obtain

kuH �˘Hu
0kC0.Œ0;T	IL2.˝// C kuH �˘Hu

0kL2.0;TIH1.˝// (49)

6 C.H`C� C rHMM/C kuH0 � gkL2.˝/:

This last estimate together with Lemma 3 and the triangle inequality gives (42)
and (43).

Step 2: Estimation of kuH �˘Hu0kC0.Œ0;T	IH1.˝//.
For �H.t/ D uH.t/ � ˘Hu0.t/; t 2 Œ0;T	, we set zH D @t�

H in (45). Using the
symmetry of the tensor, and integrating from 0 to t, we obtain for 0 6 t 6 T

2

Z t

0

k@t�H.s/k2L2.˝/ds C BH.�
H.t/; �H.t// D BH.�

H.0/; �H.0//

C 2

Z t

0

.@tu
0 � @t˘Hu

0; @t�
H/ ds:
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Similarity to (46) we obtain

Z t

0

k@t�H.s/k2L2.˝/ds C c1k�H.t/k2H1.˝/ 6 c2.k�H.0/k2H1.˝/ C
Z t

0

k�H.s/k2H1.˝/ds/

C
Z t

0

k@tu0.s/ � @t˘Hu
0.s/k2L2.˝/ds: (50)

As before we set �H.0/ D .u0 �˘Hu0/.0/C .uH0 � g/ and (40) gives

k�H.0/kH1.˝/ 6 C.H` C rHMM C kuH0 � gkH1.˝//: (51)

Taking the supremum with respect to t in (50), and using (51), (49), (36), we
deduce

kuH �˘Hu
0kC0.Œ0;T	IH1.˝// 6 C.H` C rHMM C kuH0 � gkH1.˝//:

This together with (40) concludes the proof of (44). �

The last step to obtain fully discrete estimates in space is to quantify rHMM .
Remember the decomposition rHMM 6 rmod C rmic [see (16a), (16b)]. We can again
rewrite

rmod.rIHu0/ 6 sup
K2TH ;xKj2K

ka0.xKj/ � Na0.xKj/kFkrIHu0kL2.˝/; (52)

rmic.rIHu0/ 6 sup
K2TH ;xKj2K

kNa0.xKj/� a0;h.xKj/kFkrIHu0kL2.˝/; (53)

where we recall that Na0.xKj/ is defined similarly as a0;h.xKj/ [see (25), (14)] but

based on exact micro functions, i.e., when 
�Kj
is solution of (12) in W.Kıj/. These

terms have first been quantified for elliptic problems in [2] and [8, 56]. Using the
definition of the cell problem (12) it is not hard to show (for linear problem) that for
symmetric tensors a".x/ one has

j.Na0.xKj/ � a0;h.xKj//mnj (54)

D
ˇ
ˇ
ˇ
1

jKıj j
Z

Kıj

a".x/
�

r
en
Kj
.x/� r
en;h

Kj
.x/
�

�
�

r
em
Kj
.x/� r
em;h

Kj
.x/
�

dx
ˇ
ˇ
ˇ:

Next assuming j
en
Kj

jHqC1.Kıj /
6 C "�q

q

jKıj j; where C is independent of ", the

quadrature points xKj , and the domain Kıj one obtains

rmic.rIHu0/ 6 C

�
h

"

�2q

; (55)
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when using the micro finite element space (11). The justification of the above
regularity assumption depends on the boundary conditions used for (11). For
Dirichlet boundary conditions and for q D 1 the regularity assumption can be estab-
lished using classical H2 regularity results [42, Chap. 2.6] provided ja"mnjW1;1.˝/ 6
C"�1 for m; n D 1; : : : ; d. For periodic boundary conditions the above regularity
assumption can be established for any given q; provided a" D a.x; x="/ D a.x; y/
is Y-periodic in y; ı=" 2 N; and a" is sufficiently smooth, by following classical
regularity results for periodic problems [19].

We finally come to the modelling error: here we need to assume some structure
for the oscillatory tensor such as periodicity or random stationarity. For locally
periodic problems assuming a" D a.x; x="/ D a.x; y/ Y D .0; 1/d-periodic in y;
that the sampling domain size is such that ı=" 2 N and that periodic micro boundary
conditions are used, we have rmod 6 Cı [2, 8]. Furthermore, if we assume a tensor
a.xKj ; x="/ collocated in the slow variable x D xKj for the micro and the macro
problem, one can show that rmod D 0. For Dirichlet boundary condition assuming
ı > " the bound rmod 6 C.ı C "

ı
/ can be established [56].

We note that for non-symmetric problems, an expression similar to (54) can
still be established [10, 28], replacing the second parenthesis in the right-hand side

of (54) by
�

r N
em
Kj
.x/ � r N
em ;h

Kj
.x/
�

; where r N
em
Kj
; N
em ;h

Kj
are exact, respectively FE

solutions of the adjoint problem of (12). The rest of the discussion is then similar.
Finally we mention that by using a perturbed micro-problem, using a zeroth order
term, higher order rates have been obtained in [34] for the modeling error.

3.2 Fully Discrete A Priori Convergence Rates
in Space and Time

In this section we analyse the time-discretization error, when using various classes
of time-integrators for the parabolic problems. We will concentrate on strongly
A.�/-stable implicit Runge-Kutta methods and explicit stabilized (Chebyshev)
methods.

Consider a basis fjgMjD1 of S`0.˝; TH/ and denote by UH the column vector of

the coefficients of uH D PM
jD1Uj.t/j in this basis. This allows to rewrite (9) as an

ordinary differential equation

d

dt
UH.t/ D AHU

H.t/C GH.t/ D F.t;UH.t//; UH.0/ D U0; (56)

where AH D M�1 OAH and GH.t/ D M�1PH. The matrice OAH is defined by the
map OAH W S`0.˝; TH/ ! S`0.˝; TH/; where .� OAHv

H ;wH/ D BH.v
H ;wH/; the

mass matrix M is given by M D ..j; i//
M
i;jD1 and PH corresponds to the source

term. Of course in practical computations we never invert the matrix M, but instead
solve a linear system. In some situation we can also use mass lumping techniques
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that transform M into a matrix that is trivial to invert [53]. As mentioned in the
beginning of Sect. 3, the FE-HMM method and the spatial convergence results
can be generalised for time-dependent tensors a".t; x/ and time-dependent right-
hand side f .t; x/. In this situation we would have BH.vH ;wH/; AH D AH.t/ and
PH D PH.t/ (see [9] for details).

Resolvent and ˛-Accretive Operator To apply semi-group techniques to estimate
the error when applying a Runge-Kutta method to (56), we need bound on the
resolvent of �AH. For the type of ODE (56) originating from a spatial discretisation
of a parabolic problem, it can be shown that �AH (see for example [24]) is a so-
called ˛-accretive operator, i.e., there exist 0 6 ˛ 6 �=2 and C > 0 such that for
all z … S˛, the operator zI C AH.t/ is an isomorphism and

k.zI C AH.t//
�1kL2.˝/!L2.˝/ 6 1

d.z; S˛/
for all z … S˛; (57)

where d.z; S˛/ is the distance between z and S˛ D f�ei� I � > 0; j� j 6 ˛g. We
note that the operator AH can be extended straightforwardly to a complex Hilbert
space based on S`0.˝; TH/ equipped with the complex scalar product .u; v/ D
R

˝
u.x/v.x/dx which is an extension of the usual L2 scalar product. If we denote

by �1; �2 the coercivity and continuity constant of the bilinear form BH.�; �/, it can
be shown that ˛ 6 arccos.�1=�2/: Hence AH generates an analytic semi-group in S˛
(see [41]).

Runge-Kutta Methods For the time discretisation of (56) we consider an s-stage
Runge-Kutta method

UnC1 D Un C�t
sX

iD1
biKni; Uni D Un C�t

sX

jD1
�ijKnj; (58)

Kni D F.tn C ci�tUni/; i D 1 : : : s: (59)

where �ij; bj; ci with i; j D 1 : : : s are the coefficients of the method (with
Ps

jD1 �ij D
ci) and tn D n�t. We further define

� D .�ij/
s
i;jD1; b D .b1; : : : ; bs/

T ; c D .c1; : : : ; cs/
T D � 1; 1 D .1; : : : ; 1/T :

The method is said to have “order r” if the error after one step between the exact
and the numerical solutions (with the same initial condition) satisfies

U1 � U.t1/ D O
	

�trC1



; for�t ! 0;

for all sufficiently differentiable systems of differential equations. We recall that the
rational function R.�t�/ D R.z/ D 1CzbT.I�z� /�11 obtained after one step�t of
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a Runge-Kutta method applied to the scalar problem dy=dt D �y; y.0/ D 1; � 2 C

is called the stability function of the method.

Strongly A.�/-Stable Methods We consider a subclass of implicit Runge-Kutta
methods which are of order r and whose stage order (the accuracy of the internal
stages) is r�1. We further recall that a Runge-Kutta method is strongly A.�/-stable
with 0 6 � 6 �=2 if I � z� is a nonsingular matrix in the sector jarg.�z/j 6 �

and the stability function satisfies jR.z/j < 1 in jarg.�z/j 6 � . Notice that all s-
stage Radau Runge-Kutta methods satisfy the above assumptions (with � > �=2).
In particular, for s D 1, we retrieve the implicit Euler method. We refer to [35,
Sect. IV.3, IV.15] for details on the stability concepts mentioned here.

Under the assumptions of Theorem (2) we have the following theorem.

Theorem 3 Let u0.t/ be the solution of (5) and let uHn be a strongly A.�/ stable
Runge-Kutta approximation of order r and stage order r � 1 of (56) with time
step �t. Assume the hypotheses of Theorem (2), (55), that rMOD D 0 and a" 2
Cr.Œ0;T	;L1.˝/d�d/; k@rt uH.0/kL2.˝/ 6 C. Then,

max
06n6N

kuHn � u0.tn/kL2.˝/ 6 C

�

H`C1 C
�h

"

�2q C�tr
�

:

Assuming in addition kuH.0/� gkH1.˝/ 6 C.H`/ and a" is symmetric, then

N�1X

nD0
�tnkuHn � u0.tn/k2H1.˝/ 6 C

�

H` C
�h

"

�2q C�tr
�2

:

All the above constants C are independent of H; h; ";�t.

The idea of the proof is to consider the decomposition: uHn �u0.tn/ D .uHn �uH.tn//C
.uH.tn/ � u0.tn//. Then the first term is estimated using semigroup techniques (for
time independent operators) + perturbation techniques (following [44]). The second
term is estimated using Theorem 2. We note that the analysis for implicit methods
covers variable time step methods under some mild assumptions on the sequence
of time-steps [9]. Finally we mention that the bound k@rt uH.0/kL2.˝/ 6 C can be
established provided that we assume an inverse assumption H

HK
6 C for all K 2 TH

and all TH for the macroscopic finite element mesh and appropriate regularity of
@kt u

0; k D 1; : : : ; r: We refer to [9] for a detailed proof of the above theorem.

Chebyshev Methods Chebyshev methods are a subclass of explicit Runge-Kutta
methods with extended stability along the negative real axis suitable for parabolic
(advection-diffusion) problems. Such methods have been constructed for order up
to r D 4 [1, 7, 43, 54]. They are based on s-stage stability functions satisfying

jRs.x/j 6 1 for x 2 Œ�Ls; 0	 (60)
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with Ls D Cs2;where the constant C depends on the order of the method. First order
methods are based on

Rs.x/ D Ts.1C x=s2/; (61)

where Ts.�/ denotes the Chebyshev polynomial of degree s and Ls D 2s2. The
corresponding Runge-Kutta method can be efficiently implemented by using the
three-term recurrence relation of the Chebyshev polynomials [54]. For stiff diffusion
problems, such methods are much more efficient than classical explicit methods.
Indeed let �H be the spectral radius of the discretized parabolic problem (depending
on the macro spatial meshsize H) and let �t be the stepsize to achieve the desired
accuracy. Using a classical explicit method such as the forward Euler method
requires a stepsize ıt satisfying the CFL constraints ıt 6 2=�H. The number of
function evaluations per time-step �t (taken here a the measure of the numerical
work) is therefore �t=ıt > .�t�H/=2. Using a Chebyshev method (of order one)
with stability function (61) we choose the number of stages s of the method to
ensure stability �t�H 6 2s2. As for Chebyshev methods, there is one new function
evaluation per stage the total number of function evaluations per time-step �t is
given by s D p

.�t�H/=2.
Chebyshev method are usually used in a slightly modified form obtained by

changing the stability function (61) to

Rs.z/ D Ts.!0 C !1z/

Ts.!0/
; with !0 D 1C �

s2
; !1 D Ts.!0/

T 0
s.!0/

; (62)

we obtain the “damped form” of the Chebyshev method. For any fixed � > 0 (called
the damping parameter) we obtain a damped stability function satisfying

sup
z2Œ�Ls;��	; s>1

jRs.z/j < 1; for all � > 0: (63)

This modification also ensure that a strip around the negative real axis is contained
in the stability domain S WD fz 2 CI jRs.z/j 6 1g. The growth on the negative real
axis for the damped form is reduced but remains quadratic [51],[35, Chap. IV.2].
For the analysis we assume the order of the Chebyshev method is r > 1 for linear
problem, precisely,

lim
z!0

ˇ
ˇ
ˇ
ˇ

ez � Rs.z/

zrC1

ˇ
ˇ
ˇ
ˇ
< 1 for all s > 1: (64)

We also assume that the stability functions are bounded in a neighbourhood of zero
uniformly with respect to s, precisely, there exist ı > 0 and C > 0 such that

jRs.z/j 6 C for all jzj 6 ı and all s: (65)

This can be checked for the Chebyshev methods with stability functions (61), (62).
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Theorem 4 Let u0.t/ be the solution of (5) with f D 0 and a time-independent
symmetric tensor a". Let uHn be a Runge-Kutta-Chebyshev approximation of the
corresponding discretized problem (56) with timestep �t. Assume that the method
satisfies (64) (order r), (63) (strong stability) and (65). Assume in addition that the
stage number s of the Chebyshev method is chosen such that �H�t 6 Ls holds.
Assume the hypotheses of Theorem 2 with � D 1; (55) and that rMOD D 0. Then,

max
06n6N

kuHn � u0.tn/kL2.˝/ 6 C

�

H`C1 C
�h

"

�2q C�tr
�

:

where C is independent of H; h; ";�t.

The ideas of the proof are as follows. Consider again the decomposition uHn �
u0.tn/ D .uHn � uH.tn//C .uH.tn/� u0.tn//: The second term is estimated as before
using Theorem 2.

For the first term we follow ideas developed in [24, 25] for implicit methods,
adapted here for stabilized methods. Using the symmetry of AH , there exists an
orthonormal basis where the operator AH is in diagonal form. Define next 'n;s.z/ D
enz � Rs.z/n. Then we have

k'n;s.�tAH/kL2.˝/!L2.˝/ D sup
z2sp.AH/

j'n;s.�tz/j;

where sp.AH/ denotes the spectrum of AH . Using (63)–(65) we show that j'n;s.z/j 6
C1n�r for all z 2 Œ�ı; 0	; where C1 is independent of n and s. For the case z 2
Œ�Ls;�ı	 we denote by � < 1 the quantity in the left-hand side of (63). We can then
estimate

j'n;s.z/j 6 e�njzj C �n 6 e�n� C e�n.1��/ 6 .r=e/r.��r C .1 � �/�r/

nr
D C2n

�r;

where we used twice the estimate e�x 6 . r
ex/

r (valid for x > 0). We have thus
j'n;s.z/j 6 Cn�r for all z 2 Œ�Ls; 0	, hence

kuHn � uH.tn/kL2.˝/ D k'n;s.�tAH/u
H
0 kL2.˝/ 6 Cn�rkuH0 kL2.˝/;

where C is independent of n; s. By noting that n 6 T=�t we get the result.

4 Fully Discrete Space-Time Error Estimates for Nonlinear
Monotone Parabolic Problem

In this section we describe convergence and error estimates for the numerical
method (9) applied to the general problem (1). We focus here on a simple time
integrator, namely the implicit Euler method and take piecewise linear macro and
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micro FEM. We consider a uniform subdivision of the time interval .0;T/ with time
step �t D T=N and discrete time tn D n�t for 0 6 n 6 N and N 2 N>0. The
method then reads as follows: for 0 6 n 6 N � 1 find uHnC1 2 S10.˝; TH/ such that

Z

˝

uHnC1 � uHn
�t

wHdx C BH.u
H
nC1IwH/ D

Z

˝

f wHdx; 8wH 2 S10.˝; TH/;

(66)

with the nonlinear macro map BH given by

BH.v
H IwH/ D

X

K2TH

jKjA0;h
K .rvH.xK// � rwH.xK/; vH ;wH 2 S10.˝; TH/;

(67)

where A0;h
K is given by (13) with micro problems (12) computed in S1.Kı; Th/.

Here we have just one quadrature point and sampling domain Kı located at the
barycenter of each macro element K. We note that we will sometimes use the short-
hand notation N@tvn D .vnC1 � vn/=�t. The proof of the existence and uniqueness of
a numerical solution can be establish similarly to the proof of Theorem 1. Further,
the numerical solution fuHn gNnD1 satisfies the bound

max
16n6N

�
�uHn

�
�
2

L2.˝/
C

NX

nD1
�t
�
�ruHn

�
�
p

Lp.˝/
6 C.1C kfkp0

Lp0
.˝/

C �
�uH0

�
�
2

L2.˝/
/; (68)

where C only depends on p; ˇ; �L; ;L0; �1; �2, the measure of ˝ and the Poincaré
constant CP on ˝ .

4.1 General Estimates in the W1;p Setting

For the scheme (66), (67) in the general nonlinear monotone setting we have the
following fully discrete convergence result.

Theorem 5 Let u0 2 E be the solution to the homogenized problem (5) and uHn
the HMM solution obtained from (66) with initial conditions uH0 satisfying kg �
uH0 kL2.˝/ ! 0 for H ! 0. Assume that A" satisfies (A0�2). Let A0 be Hölder
continuous in space, i.e., there exists 0 < Q� 6 1 such that

ˇ
ˇA0.x1; �/ � A0.x2; �/

ˇ
ˇ 6 Cjx1 � x2jQ� .1C .�1 C j�j/p�1/; 8 x1; x2 2 ˝;8 � 2 R

d:

(69)
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Assume in addition that the coupling is such that rmod D 0. Then we have the
convergence

lim
.�t;H/!0

lim
h!0

�

max
16n6N

�
�u0.�; tn/� uHn

�
�
L2.˝/

C �
�ru0 � ruH

�
�
eLp.Lp.˝//;

�

D 0:

where

�
�ru0 � ruH

�
�
p

eLp.Lp.˝//
D

N�1X

nD0

Z tnC1

tn

�
�ru0.�; s/ � ruHnC1

�
�
p

Lp.˝/
ds:

We sketch the proof of this result.

Step 1: Approximation by smooth function. Due to the low regularity of the
true solution we can only rely on a weak approximation in time. Indeed,
for u0 we can only use the formulation

R tnC1

tn

˝

@tu0.�; s/;wH
˛

ds instead of
R tnC1

tn

R

˝
@tu0.x; s/wH.x/dxds that only make sense with additional regularity.

We therefore consider U 2 E with U 2 C0.Œ0;T	;W1;p
0 .˝// and @tU 2

C0.Œ0;T	;L2.˝//. Further, let UH.�; t/ 2 S10.˝; TH/ be an approximation of
U.�; t/ for t 2 Œ0;T	 and define UH

n D UH.�; tn/ for 0 6 n 6 N. We will then
decompose the error as

�
�u0.�; tn/ � uHn

�
�
L2.˝/ 6

�
�u0.�; tn/ � UH

n

�
�
L2.˝/ C �

��Hn
�
�
L2.˝/ (70)

�
�ru0 � ruH

�
�
eLp.Lp.˝/ 6

�
�ru0 � UH

�
�
eLp.Lp.˝// C .

N�1X

nD0

�tkr�HnC1kpLp.˝//1=p; (71)

where �Hn D uHn � UH
n .

Step 2: Density argument, weak approximation in time. To bound the first terms
in (70), (71) we use that U ; @tU 2 C0.Œ0;T	;W1;p.˝// to obtain for tn 6 s 6 tnC1

krU.�; tnC1/� rU.�; s/kLp.˝/ D
�
�
�
�

Z tnC1

s
@trU.�; �/d�

�
�
�
�
Lp.˝/

(72)

6 �tk@trUkC0.Œ0;T	;Lp .˝//: (73)

Now if we take UH
n D IHU.�; tn/ the above inequality together with standard

interpolation results yields (72) in time we get that for s 2 Œtn; tnC1	 and 0 6 n 6
N � 1

�
�rU.�; s/� rUH

nC1
�
�
Lp.˝/

6 C.�t C H/
�

kUkC0.Œ0;T	;W2;p�
.˝// (74)

C k@trUkC0.Œ0;T	;Lp.˝//
�

: (75)
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We also have

max
16n6N

�
�u0.�; tn/ � UH

n

�
�
L2.˝/ 6 CE

�
�u0 � U

�
�
E C CHkUkC0.Œ0;T	;W2;p�

.˝//;

(76)

where we used the embeddingsE ,! C0.Œ0;T	;L2.˝// (with operator norm CE),
W1;p.˝/ ,! L2.˝/ and standard interpolation estimates. We then choose U 2
C1.˝ � Œ0;T	/ such that U.�; t/ 2 C1

0 .˝/ for any t 2 Œ0;T	 and ku0 � UkE <
�=2. Then, using (72), (74) we find that for each � > 0 there exists D.�/ such
that for all �t;H 6 D1.�/ we have

�
�ru0 � rUH

�
�
eLp.Lp.˝/ 6 �; max

16n6N

�
�u0.�; tn/ � UH

n

�
�
L2.˝/ 6 .CE C 1/�:

(77)

Step 3: Macro discretization error. We next need to estimate �Hn D uHn � UH
n ,

0 6 n 6 N. Hölder inequality and the monotonicity estimate (22) gives

N�1X

nD0
�t
�
�r�HnC1

�
�
p

Lp.˝/
6 R.uHn ;UH

n /
p.ˇ�p/
ˇ (78)

�
 
N�1X

nD0
�t.BH.u

H
nC1I �HnC1/� BH.UH

nC1I �HnC1//
! p

ˇ

;

(79)

where

R.uHn ;UH
n / D ��p=ˇ

c .C C
 
N�1X

nD0

�t
�
�ruHnC1

�
�
p

Lp.˝/

! 1
p

C
 
N�1X

nD0

�t
�
�rUH

nC1

�
�
p

Lp.˝/

! 1
p

/;

(80)

with C depending on Cd;T; j˝j. We observe that

R.uHn ;UH
n / 6 C; (81)

where C is independent of U ; �;�t;H (for small enough discretization param-
eters). Indeed, using (68) and kg � uH0 kL2.˝/ ! 0 for H ! 0 we can

find H0 such that for all H 6 H0 we have
�
PN�1

nD0 �t
�
�ruHnC1

�
�
p

Lp.˝/

� 1
p 6

C independently of the initial approximation uH0 . Using (74) we find that
�
PN�1

nD0 �t
�
�rUH

nC1
�
�
p

Lp.˝/

�1=p
6
�
�u0

�
�
E

C 1 for all �t;H 6 minfH0;D1.�0/g.
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We need next to estimate BH.uHnC1I �HnC1/ � BH.UH
nC1I �HnC1/. This is done by a

decomposition

N�1X

nD0
�t.BH.uHnC1I �HnC1/� BH.UH

nC1I �HnC1// D
N�1X

nD0
Btot
n �

N�1X

nD0
�t
Z

˝

N@t�Hn �HnC1dx

(82)

where Btot
n contains a number of terms that represent the contribution to the error

due to the weak approximation in time, the macroscopic numerical discretization,
the time discretization, the quadrature error, the micro and the modelling error [6,
Sect. 5.1]. We also have in view of

1

2
N@t
�
��Hn

�
�
2

L2.˝/
6
Z

˝

N@t�Hn �HnC1dx; for 0 6 n 6 N � 1; (83)

that

�
N�1X

nD0
�t
Z

˝

N@t�Hn �HnC1dx 6 1

2

�
��H0

�
�
2

L2.˝/
� 1

2

�
��HN

�
�
2

L2.˝/
: (84)

The initial error �H0 in (84) can be bounded by using interpolant estimates and
the embedding E ,! C0.Œ0;T	;L2.˝// as

�
��H0

�
�
L2.˝/

6
�
�g � uH0

�
�
L2.˝/

C CE

�
�u0 � U

�
�
E

C CHkUkC0.Œ0;T	;W2;p�
.˝//:

(85)

Next it can be shown, in view of (85) and the properties of U derived in step 2,
that for �t;H 6 D2.�/, with D2.�/ small enough we have (see [6, Sect. 5.2] for
details)

 
N�1X

nD0
Btot
n �

N�1X

nD0
�t
Z

˝

N@t�Hn �HnC1dx
! 1

ˇ

6 C� (86)

Step 3: Upscaling error. First as rmod D 0we have rHMM.rUH
nC1/ D rmic.rUH

nC1/,
where rmic is given by (16a). Let the macro mesh size H > 0; the time step size
�t > 0 and the micro finite element space in (12) be given. Then, assuming
that A" satisfies (A0�2) it can be shown that for any sequence fUH

n g16n6N �
S10.˝; TH/ for which

PN�1
nD0 �tkrUH

nC1kpLp.˝/ is bounded independently of the
micro mesh size h, we have

lim
h!0

 
N�1X

nD0
�t rmic.rUH

nC1/p
0

! 1
p0

D 0:
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This result follows from a density argument, classical FE interpolation results
and the general estimate obtained from (A2)

rmic.rvH/ 6 C
h

Cd C �
�rvH��

Lp.˝/

ip�1��

�
0

@
X

K2TH

jKj
jKıj inf

zh2S1.Kı;Th/

�
�
�r N
rvH .xK /

K � rzh
�
�
�

p

Lp.Kı/

1

A

�
p

;

for any vH 2 S10.˝; TH/, where N
�K solves (12) inW.Kıj/ and C is independent of
H, h, ı and ".

Step 4: Assembling the pieces: convergence in Lp.W1;p/ and C0.L2/ norm. In view
of (79), (81), (86) if we set 0 < D3.�/ 6 minfD1.�0/;H0;D2.�/g then for
�t;H 6 D3.�/ we have

lim
h!0

 
N�1X

nD0
�t
�
�r�HnC1

�
�
p

Lp.˝/

! 1
p

6 C�; (87)

where C is independent of U ; �;H; �t; ı and h. Combining this inequality
with (71) and the density estimates of step 2 yields the convergence in the
Lp.W1;p/ norm.
Next to derive a bound in the C0.L2/, we first observe that (83) together with the
monotonicity estimate (22) yield

1

2
N@t
�
��Hn

�
�
2

L2.˝/
6
Z

˝

N@t�Hn �HnC1dx C BH.u
H
nC1I �HnC1/� BH.UH

nC1I �HnC1/; (88)

Summing this inequality for n D 0; : : : ;K � 1, taking the maximum over K;
using (83) and the monotonicity of BH from Lemma 2 we get

1

2

�
��HK

�
�
2

L2.˝/
� 1

2

�
��H0

�
�
2

L2.˝/
6

K�1X

nD0
Btot
n ;

where Btot
n is defined in (82). Using then (85) and an estimate similar to (86) we

find that

lim
h!0

. max
16n6N

�
��Hn

�
�
L2.˝/

/ 6 C�; (89)

for all�t;H small enough, whereC is independent of U ; �;H; �t; ı and h. Hence
together with (77) this shows the C0.L2/ estimate of Theorem 5.
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4.2 Convergence for Strongly Monotone and Lipschitz
Nonlinear Maps

Optimal convergence rates can be derived for p D 2 and ˛ D 1, ˇ D 2 in (A1�2),
i.e., when the nonlinear map A".x; �/ is Lipschitz continuous with respect to its first
argument and strongly monotone. In this case we can derive optimal macroscopic,
microscopic and temporal error estimates without any structural assumptions such
as local periodicity or random stationarity of A". Explicit bounds of the modelling
error are however derived only for locally periodic data A".

Theorem 6 For the case p D 2 assume thatA" satisfies (A0�2) with ˛ D 1, ˇ D 2.
Let u0 be the solution to the homogenized problem (5) and uHn the numerical solution
obtained from (66) with initial condition uH0 . Provided in addition that

u0; @tu
0 2 C0.Œ0;T	;H2.˝//; @2t u

0 2 C0.Œ0;T	;L2.˝//; (90a)

A0.�; �/ 2 W1;1.˝IRd/ with
�
�A0.�; �/��

W1;1.˝IRd/
6 C.L0 C j�j/; 8 � 2 R

d;

(90b)

then, the following discrete C0.L2/ and L2.H1/ error estimate holds

max
16n6N

�
�u0.�; tn/ �uHn

�
�
L2.˝/

C
 

NX

nD1
�t
�
�ru0.�; tn/� ruHn

�
�
2

L2.˝/

!1=2

(91)

6 C

�

�t C H C max
16n6N

rHMM.rIHu0.�; tn//C �
�g � uH0

�
�
L2.˝/

�

;

where IHu0 denotes the nodal interpolant of u0 and C is independent of �t;H and
rHMM.

Remark 2 Under additional regularity assumptions, assuming elliptic regularity and
quasi-uniform meshes, one can derive the following improved (discrete) C0.L2/
error estimate

max
16n6N

�
�u0.�; tn/� uHn

�
�
L2.˝/ 6 C

�

�t C H2 C max
16n6N

rHMM.rQuH;0.�; tn//C �
�g � uH0

�
�
L2.˝/

�

;

where QuH;0 is given by an elliptic projection and C is independent of�t;H and rHMM

(see [6, Theorem 4.4]).

We sketch the proof of Theorem 6.
Owing to regularity assumptions for u0 , we can use a strong formulation in time

Z

˝

@tu
0.x; t/wdx C B0.u0.�; t/Iw/ D

Z

˝

f w dx; 8w 2 W1;2
0 .˝/;8 t 2 .0;T	:
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Hence the argument density used in Sect. 4.1 is not needed here. We can then
directly define UH

n D IHu0.�; tn/ and with �Hn D UH
n � uHn we obtain instead of (82)

the following error propagation formula

Z

˝

N@t�Hn wH dx C �

BH.u
H
nC1IwH/ � BH.UH

nC1IwH/
�

D
Z

˝

�

@tu
0.x; tnC1/� N@tu0.x; tn/

�

wHdx ds (92a)

C
Z

˝

�

@tu
0.x; tn/� N@tUH

n

�

wHdx (92b)

C �

B0.u0.�; tnC1/IwH/ � B0.UH
nC1IwH/

�

(92c)

C
h

B0.UH
nC1IwH/ � OB0.UH

nC1IwH/
i

(92d)

C
h OB0.UH

nC1IwH/ � BH.UH
nC1IwH/

i

: (92e)

In the above formula the term (92a) is due to the time discretization error, the
terms (92b) and (92c) account for the finite element error at the discrete time
levels tn. The influence of the quadrature formula is captured by (92d). Finally the
components (92a)–(92d) are independent of the temporal and macro spatial error,
while last term (92e) is only due to the upscaling strategy and averaging techniques
used to define and compute numerically the upscaled tensor. All these terms can be
estimated quantitatively [6]. If we set wH D �HnC1 use the inequality (83) we obtain

1

2
N@t
�
��Hn

�
�
2

L2.˝/
C �

�
�r�HnC1

�
�
2

L2.˝/

6 C�t
�
�@2t u

0
�
�
C0.Œ0;T	;L2.˝//

�
��HnC1

�
�
L2.˝/

C CH
�
�u0

�
�
C0.Œ0;T	;H2.˝//

�
��HnC1

�
�
L2.˝/

C CH
�
�u0

�
�
C0.Œ0;T	;H2.˝//

�
�r�HnC1

�
�
L2.˝/

C rHMM.rUH
nC1/

�
�r�HnC1

�
�
L2.˝/

: (93)

Multiplying the above inequality by�t and summing first from n D 0; : : : ;K �1 6
N � 1 and taking the maximum over K yields

max
16n6N

�
��HN

�
�
2

L2.˝/
C �

NX

nD1
�t
�
�r�Hn

�
�
2

L2.˝/

6
�
��H0

�
�
2

L2.˝/ C C.�t C H C max
16n6N

rHMM.rUH
n //

2: (94)
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The classical estimates for nodal interpolant kIHz � zkH1.˝/ 6 CHkzkH2.˝/ for
u0.�; tn/ � UH

n together with the regularity of (90a) and the triangle inequality gives
finally the estimate of Theorem 6.

Fully Discrete Space-Time Result Recall that rHMM.�/ 6 rmod.�/ C rmic.�/
(see (16a), (16b)). Following the results for linear problems (with additional
technicalities due to the nonlinear micro-problems) we can estimate both rmod.�/
and rmic.�/. First under the assumptions of Theorem 6 and assuming that the exact

solution of Problem (12) satisfies N
�K 2 H2.Kı/ and
ˇ
ˇ
ˇ N
�K

ˇ
ˇ
ˇ
H2.Kı/

6 C"�1.L0 C
j�j/pjKıj we have the following error estimate for the micro error

rmic 6 C
h

"
;

where C is independent of �t;H; h; "; ı. By defining a appropriate linear adjoint
auxiliary problem derived from (12) and assuming W1;1.Kı/ regularity of the
solutions of these (linear) problems one can get the optimal micro error

rmic 6 C

�
h

"

�2

; (95)

with the same rate as for linear problem [2].
For the modelling error we need structural assumptions and assume that

A".x; �/ D A.x; x="; �/ where A.x; y; �/ is Y-periodic in y, i.e., A" is locally
periodic. Then, for any vH 2 S10.˝; TH/, the modelling error rmod.rvH/ defined
in (16b) is bounded by

rmod.rvH/ 6

8

ˆ̂

<̂

ˆ̂

:̂

0;
if W.Kı/ D W1

per.Kı/; ı=" 2 N and
A" D A.xK ; x="; �/ collocated at xK ;

C1mod ı; if W.Kı/ D W1
per.Kı/; ı=" 2 N;

C2mod.ı Cp

"=ı/; if W.Kı/ D H1
0.Kı/; ı > ";

(96)

with C1mod and C2mod given by

C1mod D C.L0 C krvHkL2.˝//; C2mod D C.C1mod C max
K2TH

k N
rvH .xK /.xK ; �/kW1;1.Y//;

where 
�.xK; �/, for � 2 R
d, K 2 TH , denote the exact solutions to the

homogenization cell problems find N
�.x; �/ 2 W1
per.Y/ such that

Z

Y
A.x; y; � C r N
�.x; y// � rz dy D 0; 8 z 2 W1

per.Y/; (97)
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and C is independent of �t;H; h; "; ı and vH . We refer to [6] for a detailed proof
of these micro and modelling a priori error estimates. We observe that the first two
estimates for the modelling error are similar as for linear problem (see Sect. 3.1).
A better estimate can however be derived for linear problem for the third case for
which it is possible to derive the estimate .ı C "=ı/ (see again Sect. 3.1).

5 A Linearized Method

We consider again nonlinear monotone problems of the type (1) with strongly
monotone and Lipschitz continuous maps A".x; �/, i.e., for the case p D 2 and
˛ D 1, ˇ D 2 in (A1�2). We further assume that the nonlinear map is of the form
A".x; �/ D a".x; �/�. We first rewrite the method (66) in a slightly different form:
find uHnC1 2 S10.˝; TH/ such that

Z

˝

uHnC1 � uHn
�t

wHdx C BH.u
H
nC1IwH/ D

Z

˝

f wHdx; 8wH 2 S10.˝; TH/; (98)

with the nonlinear macro map BH given by

BH.v
H IwH/ D

X

K2TH

jKj
jKıj

Z

Kı

a".x;r OvhK/r OvhKdx � rwH.xK/; v
H ;wH 2 S10.˝; TH/;

(99)

and the micro functions vhK are given similarly to (12) by the following problem:
find OvhK such that OvhK � vH D vhK 2 S1.Kı; Th/ and

Z

Kı

a".x;r OvhK/r OvhK � rwhdx D 0; 8wh 2 S1.Kı; Th/: (100)

The equivalence of the above formulation and the one in (66) with micro problems
given by (12) is easy to check. Following [12] we propose a linearized scheme. The
idea is to decouple the micro-solutions in (99) and to consider

BH.OzI vH ;wH/ D
X

K2TH

jKj
jKıj

Z

Kı

a".x;rzhK/r Ovh;zhKK dx � rwH.xK/; v
H ;wH 2 S10.˝; TH/

(101)

where for given fzhKg 2 Q

K2TH
S1.Kı; Th/; Ovh;zhKK is such that Ovh;zhKK � vH D v

h;zhK
K 2

S1.Kı; Th/ and solution of the linear micro problem

Z

Kı

a".x;rzhK/r Ovh;zhKK � rwhdx D 0; 8wh 2 S1.Kı; Th/: (102)
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To formalize the numerical method we consider the product of FE spaces

SH;h D S10.˝; TH/ �
Y

K2TH

S1.Kı; Th/; (103)

and define Oz D .zH ; fzhKg/ 2 SH;h. Next for a given Ou1 D .uH1 ; fuh1;Kg/ 2 SH;h we
define one step of the method as a map SH;h 7! SH;h given by Oun D .uHn ; fuhn;Kg/ 7!
OunC1 D .uHnC1; fuhnC1;Kg/. To compute this map we implement the following two
steps:

1. update the macroscopic state: find uHnC1 2 S10.˝; TH/, the solution of the linear
problem

Z

˝

1

�t
.uHnC1 � uHn /w

Hdx C BH.OunI uHnC1;wH/ D
Z

˝

fwHdx; 8wH 2 S10.˝; TH/I
(104)

2. update the microscopic states: for each K 2 TH , compute Ovh;u
h
n;K

K such that

Ovh;u
h
n;K

K � uHnC1 2 S1.Kı; Th/ and solution of (102) with parameter uhn;K and update

uhnC1;K WD Ovh;u
h
n;K

K � uHnC1.

To completely describe the algorithm we still need to discuss the initialization
procedure, i.e., how to define Ou1 D .uH1 ; fuh1;Kg/ 2 SH;h given the approximation
uH0 2 S10.˝; TH/ of the initial condition g.x/ of (5). We suggest to use one step of
the nonlinear method (66) to set Ou1. This choice allows to prove optimal convergence
rates. In turns out that the trivial initialisation obtained by setting Ou0 D .uH0 ; f0g/ and
using one step of the linearised method to define Ou1 deteriorates the accuracy of the
linearised scheme [13]. It is also shown in [13] that the above linearised method is
up to ten times faster than the fully nonlinear method (66)–(67).

Well-posedness of the linearized method can be proved assuming that a".x; �/ is
uniformly elliptic and bounded, i.e.,

�aj�j2 6 a".x; �/� � �; ja".x; �/�j 6 �aj�j; 8 �; � 2 R
d; a.e. x 2 ˝; " > 0:

It then follows from similar argument as for linear elliptic problem [2] that

BH.OzI vH ; vH/ > �a
�
�rvH��2

L2.˝/
;
ˇ
ˇBH.OzI vH ;wH/

ˇ
ˇ 6 �2

a

�a

�
�rvH��

L2.˝/

�
�rwH

�
�
L2.˝/

:

Combining the above estimate for BH with the existence and uniqueness of the
nonlinear initialisation obtained in Sect. 4 allows to prove existence and uniqueness
of a solution to (104) and an a priori estimate similar to (68) with a right-hand side
simply given by C.kfkL2.˝/ C �

�uH0
�
�
L2.˝/

/.
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5.1 A Priori Error Estimates

Fully discrete a priori error estimates of the linearized method can be established
following the steps of Sect. 4.2, with nontrivial modifications due to the linearisation
procedure. It will be convenient in the sequel to introduce the two following semi-
norm on the space SH;h. For Oz D .zH ; fzhKg/ 2 SH;h we therefore define

krOzkSH;h D
0

@
X

K2TH

jKj
jKıj

�
�rOzhK

�
�
2

L2.Kı /

1

A

1=2

; krOzkSH;h
1

D max
K2TH

�
�rOzhK

�
�
L1.Kı/

;

where OzhK D zhK C zH on Kı . In fact due to the Poincaré (or Poincaré-Wirtinger)
inequality, k�kSH;h is a norm. Observe that since

R

Kı
rzhKdx � rzH.xK/ D 0 for

micro spaces S1.Kı; Th/ with periodic and Dirichlet boundary conditions we have
�
�rOzhK

�
�
2

L2.Kı/
D �
�rzH.xK/

�
�
2

L2.Kı/
C��rzhK

�
�
2

L2.Kı/
;which yield for all Oz D .zH ; fzhKg/ 2

SH;h the inequality
�
�rzH

�
�
L2.˝/

6 krOzkSH;h :

Next consider the numerical solution obtained by the linearized multiscale
method (104) Oun D .uHn ; fuhn;Kg/ 2 SH;h and set Ouhn;K D uHn C uhn;K on Kı . We
also define the nodal interpolation associated to the homogenized solution UH

n D
IHu0.�; tn/ and consider OU n D .UH

n ; fUh
n;Kg/ 2 SH;h such that OU h

n;K D Uh
n;K C UH

n
is the solution to the nonlinear micro problem (100). Define for 0 6 n 6 N and
K 2 TH

O�n D Oun � OUn; i.e., �Hn D uHn � UH
n ;

O�hn;K D Ouhn;K � OUh
n;K : (105)

A formula similar to (92) leads to

1

2
N@t
�
��Hn

�
�
2

L2.˝/
C �a

�
�
�r O�HnC1

�
�
�

2

SH;h

6 C.�t C H C rHMM.rUH
nC1//

�
�
�r O�HnC1

�
�
�
L2.˝/

C
ˇ
ˇ
ˇLn.r O�nC1/

ˇ
ˇ
ˇ; (106)

where the additional term involves a function; LnWSH;h ! R defined by

Ln.r Ow/ D
X

K2TH

jKj
jKıj

Z

Kı

h

a".x;r OUh
n;K/ � a".x;r Ouhn;K/

i

r OUh
n;K � r Owh

Kdx: (107)

This term arises from the linearization error and it can be bounded by

jLn.r Ow/j 6 Ln

�
�
�r O�n

�
�
�
SH;h

kr OwkSH;h ; (108)
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where Ln will be discussed below. Hence using Young’s inequality we obtain

1

2
N@t
�
��Hn

�
�
2

L2.˝/
C �a

�
�
�r O�HnC1

�
�
�

2

SH;h

6 C.�t2 C H2 C rHMM.rUH
nC1/2/C L2n

�a

�
�
�r O�n

�
�
�

2

SH;h
C �a

2

�
�
�r O�nC1

�
�
�

2

SH;h
: (109)

Recall that we use the fully nonlinear method for the first step. Hence the
convergence results of Sect. 4.2 yield

�
��H1

�
�
2

L2.˝/ � �
��H0

�
�
2

L2.˝/ C ��t
�
�r�H1

�
�
2

L2.˝/ 6 C�t
	

�t2 C H2 C rHMM.rUH
1 /

2



;

(110)

where � is the monotonicity constant of A".
Similarly to (94) summing (109) from n D 1 to n D N�1; adding the term (110)

and using the inequality
�
�rzH

�
�
L2.˝/ 6 krOzkSH;h gives

max
16n6N

�
��Hn

�
�
2

L2.˝/ C ��t
�
�r�H1

�
�
2

L2.˝/ C CL�t
NX

nD2

�
�r�Hn

�
�
2

L2.˝/ (111)

6 C
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�t2 C H2 C max
16n6N

rHMM.rUH
n /

2
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C �
��H0

�
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L2.˝/
C 2

�a
�tL21

�
�
�r O�1

�
�
�

2

SH;h
:

where CL D �a � 2
�a

max26n6N�1 L2n: Recall that O�h1;K D Ouh1;K � OUh
1;K where OuhK;1

and OUh
K;1 are solutions to the nonlinear micro problem (100) constrained by uH1 and

UH
1 , respectively. The difference of two such micro solutions can be estimated by

the difference of their respective macro constraints as

�
�
�r O�h1;K

�
�
�
L2.Kı/

6 L

�

p

jKıj
ˇ
ˇruH1 .xK/ � rUH

1 .xK/
ˇ
ˇ; (112)

hence
�
�
�r O�1

�
�
�
SH;h

6 L
�

�
�r�H1

�
�
L2.˝/

: Assuming L1 is bounded and CL > 0 we obtain

max
16n6N

�
��Hn

�
�
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L2.˝/ C�t
NX

nD1

�
�
�r O�n

�
�
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2

L2.˝/
(113)

6 C

�

�t2 C H2 C max
16n6N

rHMM.rUH
n /

2

�

C C
�
��H0

�
�
2

L2.˝/
: (114)

Finally as
�
��H0

�
�
L2.˝/ 6

�
�uH0 � g

�
�
L2.˝/ C �

�g � UH
0

�
�
L2.˝/ using the bound

�
�g � UH

0

�
�
L2.˝/

6 CH gives an estimate similar to (94). In view of (113), classical
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estimates for nodal interpolants give under the assumptions of Theorem 6, provided
L1 is bounded and CL > 0, the error estimate (91).

We briefly discuss the additional assumptions on L1 and CL. These assumptions
can be derived in two ways [13]. Under some regularity assumptions on the exact
solutions of the micro problems (100), assuming that u0 2 C0.Œ0;T	;W2;1.˝//
and maxt2Œ0;T	

ˇ
ˇu0.x; t/

ˇ
ˇ
W1;1.˝/

is small enough (smallness assumption), then there
exist H0; h0 such that for any H < H0; h < h0; CL > 0 and L1 is bounded.
Alternatively we can prove the boundedness of L1 and the positivity of CL without
a smallness assumption on u0 and without the additional regularity assumption
C0.Œ0;T	;W2;1.˝// on u0 if in addition to the assumptions of Theorem 6 we have

max
K2TH

16n6N�1

ken;Kk.L1.Kı//d�d <
�a

2
p
2
; (115)

where the error term en;K 2 .L1.Kı//d�d is given by

en;K.x/ D a".x;r Ouhn;K/�
Z 1

0

a".x;r Ouhn;K � �r O�hn;K/d�; a.e. x 2 Kı: (116)

The term (116) represent the linearization error. It has been shown numerically
for tensors with various ellipticity constant �a that (116) holds if the spatial and
temporal discretization parameters are small enough [13]. Optimal (discrete) C0.L2/
can also be derived under the same additional assumptions as for the fully nonlinear
method. Finally fully discrete results, i.e., quantitative estimates for the component
rmic and rmod of rHMM can be obtained similarly as in Sect. 4.2, with similar rates.

6 Conclusion

We have presented a unified framework and analysis for the FE-HMM applied
to monotone parabolic problems. We have shown that under the most general
assumptions for which homogenization can be established, we can construct an
FE-HMM and establish its convergence. Under more restrictive assumptions, e.g.
Lipschitz continuous and strongly monotone maps, fully discrete space time a
priori error estimates can be derived and in some situation an efficient linearized
scheme can be constructed and analyzed. Finally for linear problems we have
shown that the FE-HMM can be coupled with classes of Runge-Kutta methods
(Radau or Chebyshev methods) and analyzed by combining fully discrete spatial
estimates with semi-group techniques in a Hilbert space framework. We have neither
discussed implementation issue nor given numerical experiments. This is carefully
documented in [6, 9, 13], where the issue of choosing the right coupling of the micro
and macro solvers (i.e., the micro boundary conditions) and the size of the sampling



36 A. Abdulle

domains are discussed. Numerical experiments for non-periodic problems (e.g., log-
normal stochastic field) [9] and degenerate problems [13] illustrate the robustness
of the numerical homogenization strategy.
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Virtual Element Implementation for General
Elliptic Equations

Lourenco Beirão da Veiga, Franco Brezzi, Luisa Donatella Marini,
and Alessandro Russo

Abstract In the present paper we detail the implementation of the Virtual Element
Method for two dimensional elliptic equations in primal and mixed form with
variable coefficients.

1 Introduction

The Virtual Element Method (VEM) is a recent generalization of the Finite
Element Method that, in addition to other useful features, can easily handle general
polygonal and polyhedral meshes. The interest in numerical methods that can use
polytopal elements has a long and relevant history. We just recall the review works
[3, 4, 14, 21, 22, 26, 27] and the references therein. However, the use of polytopes
showed recently a significant growth both in the mathematical and in the engineering
literature, with the emergence of a new class of methods where the traditional
approach (based on the approximation and/or numerical integration of test and trial
functions) was substituted by various alternative strategies based on suitable differ-
ent formulations. Among these alternative frameworks (all, deep inside, very similar
to each other) we could see the (older) Mimetic Finite Differences (see e.g. [9]
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and the references therein), the Hybridizable Discontinuous Galerkin (see e.g. [18]
and the references therein) the Gradient Schemes (see e.g. [20] and the references
therein) the Weak Galerkin Methods (see e.g. [29] and the references therein), and
the Hybrid High Order methods (see e.g. [19] and the references therein), together
with the main object of the present paper: the Virtual Element Method.

The subject of polygonal and polyhedral mesh generation is a very active area of
research on its own. Here we only refer to [28] for a simple and reliable MATLAB
polygonal mesh generator in 2D, and to [24] and the references therein for some
insights into the issues of the three-dimensional case.

Very briefly, the key idea of the Virtual Element Method is to adopt also non-
polynomial shape functions (that are necessary in order to build conforming discrete
spaces on complex polytopal grids) but avoiding their explicit computation, not even
in an approximate way. This is achieved by introducing the right set of degrees
of freedom and defining computable projection operators on polynomial spaces.
In the initial paper [6] the Virtual Element Method was presented for the two
dimensional Poisson problem in primal form, while the three dimensional case (still
for constant coefficients) was discussed later in [1]. In the more recent papers [12]
and [11] the Virtual Element Method was then extended to more general elliptic
equations (including variable coefficients with the possible presence of convection
and reaction term), respectively in primal and mixed form. At the same time, the
method has been applied with success to a wide range of other problems. We just
recall [2, 5, 7, 10, 13, 15–17, 23, 25].

The present work can be considered as a natural continuation of [8], where all
the coding aspects of the model scheme presented in [6] and [1] where detailed.
Here we describe all the tools for the practical implementation of the methods
analysed in [12] and [11]. Since the assembly of the global matrix follows the same
identical procedure as in the Finite Element case, the focus of this work is on the
construction of the local matrices. After a brief description of the discrete spaces and
the associated degrees of freedom, we detail step by step the implementation of the
projection operators and all the other involved matrices. At the end of each part the
reader can find an “algorithm” section where the whole procedure is summarized.
Although we believe that the VEM is very elegant and, once some familiarity is
acquired, quite easy to implement, we advice the reader to look into the previous
work [8] before reading the present one.

The paper is organized as follows. After presenting some minimal notation in
Sect. 2, we briefly describe in Sect. 3 the problem under consideration, including
its primal and mixed variational formulations. In Sects. 4 and 5 we briefly recall
the discrete spaces, the degrees of freedom and the construction of the projection
operator of [6]. In Sect. 6 we detail the implementation of the method analysed
in [12]; a useful summary can be found in Sect. 7. Section 8 is devoted to a brief
description of the discrete spaces and of the degrees of freedom introduced in
[11], while the implementation aspects are described in Sects. 9 and 10. A useful
summary can be found in Sect. 11.

In this paper we have studied in details the implementation of the Virtual Element
Method in two dimensions only. The extension to the three dimensional case does
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not present any major difficulties, as long as all the 2D machinery is developed with
respect to each face of a general polyhedron. We will soon release a full MATLAB
implementation for both the 2D and the 3D case.

2 Basic Notation

In the present section we introduce some minimal notation needed in the rest of the
paper.

2.1 Polynomial Spaces

For a given a domain D � R
d and an integer k > 1, we will denote by Pk.D/

the linear space of polynomials of degree less than or equal to k. When d D 2, the
dimension of Pk.D/ will be denoted by nk:

nk WD dimPk.D/ D .k C 1/.k C 2/

2
:

2.2 Polygons

A generic polygon will be denoted by E; the number of vertices will be denoted by
NV and the number of edges by Ne. Of course Ne D NV , but it will be useful to
keep separate names. The diameter of the polygon E will be denoted by hE and its
centroid by .xc; yc/. The outward normal to E will be denoted by nE or simply by n
when no confusion can arise. The normal nE restricted to ad edge e will be indicated
by ne.

2.3 Scaled Monomials

Let ˛ D .˛x; ˛y/ be a multi-index. We define the scaled monomial m˛ on E by:

m˛.x; y/ WD
�x � xc

hE

�˛x
�y � yc

hE

�˛y
: (1)

For k an integer, let

Mk.E/ WD fm˛; 0 6 j˛j 6 kg (2)
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where j˛j D ˛x C ˛y. With a small abuse of notation we will indicate with ˛ (in
contrast with boldface ˛) a linear index running from 1 to nk. Obviously, Mk.E/ is
a basis for Pk.E/.

2.4 Functional Spaces

The scalar product in L2.D/ will be denoted by .�; �/0;D or simply by .�; �/ when the
domain is clear from the context.

3 The Elliptic Problem

Let ˝ � R
2 be a bounded convex polygonal domain with boundary � , let � and

� be smooth functions ˝ ! R with �.x/ > �0 > 0 for all x 2 ˝ , and let b be a
smooth vector field ˝ ! R

2. We consider the following elliptic problem:

(

Lp WD div .��rp C bp/C � p D f in ˝

p D 0 on �:
(3)

We assume that problem (3) is solvable for any f 2 H�1.˝/, and that the a-priori
estimate

k pk1;˝ 6 Ck fk�1;˝ (4)

and the regularity estimate

k pk2;˝ 6 Ck fk0;˝ (5)

hold with a constantC independent of f . As shown in [12] and [11], these hypotheses
are sufficient to prove the convergence of the Virtual Element approximation, both
in primal and in mixed form.

3.1 The Primal Variational Formulation

Set:

a. p; q/ WD
Z

˝

� rp � rq dx; b. p; q/ WD �
Z

˝

p .b � rq/ dx;

c. p; q/ WD
Z

˝

� p q dx; . f ; q/ D
Z

˝

f q dx;
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and define

B. p; q/ WD a. p; q/C b. p; q/C c. p; q/: (6)

The primal variational formulation of problem (3) is then

(

find p 2 V WD H1
0.˝/ such that

B. p; q/ D . f ; q/ for all q 2 V:
(7)

3.2 The Mixed Variational Formulation

In order to build the mixed variational formulation of problem (3), we define

� WD ��1; ˇ WD ��1b;

and re-write (3) as

u D ��1.�rp C ˇp/; divu C � p D f in ˝; p D 0 on �: (8)

Introducing the spaces

V WD H.div I˝/; and Q WD L2.˝/;

the mixed variational formulation of problem (3) is:

8

ˆ̂
<

ˆ̂
:

Find .u; p/ 2 V � Q such that

.�u; v/ � . p; div v/� .ˇ � v; p/ D 0 for all v 2 V;

.divu; q/C .�p; q/ D . f ; q/ for all q 2 Q:

(9)

4 Approximation with the Virtual Element Method

The Virtual Element approximation of problems (7) and (9) fits in the classical con-
forming Galerkin methods: in principle, in both cases we define finite-dimensional
subspaces Vh � V (for problem (7)) and Vh � V, Qh � Q (for problem (9)) and
we restrict the various bilinear forms to the spaces Vh and Vh � Qh respectively.
However, given that for the VEM the functions are not explicitly known, we will
also have to approximate the various bilinear forms.
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As usual, the virtual spaces Vh, Vh and Qh will be defined at the element level,
and on the boundary of the elements the degrees of freedom will be chosen in such
a way that they will nicely glue together.

Hence, given a polygon E of the decomposition, we will first define the local
virtual spaces Vh.E/, Vh.E/ and Qh.E/ and then we will set

Vh D f p 2 V such that pjE 2 Vh.E/g (10)

Vh D fv 2 V such that vjE 2 Vh.E/g (11)

Qh D fq 2 Q such that qjE 2 Qh.E/g: (12)

Also the approximation of the various bilinear forms will be made element by
element.

To encourage the reader, we point out that the space Qh will consist, as usual in
finite element methods, of piecewise discontinuous polynomials of degree k.

5 Virtual Element Space for the Primal Formulation

Before defining the local virtual space Vh.E/, we need to become familiar with the
projection operator˘r

k which will play a major role in the rest of the paper.
The operator ˘r

k is the orthogonal projection onto the space of polynomials of
degree k with respect to the scalar product

R

E rp � rq dx. Given a function p 2
H1.E/, the polynomial˘r

k p is defined by the condition
Z

E
r.˘r

k p � p/ � rrk dx D 0 for all rk 2 Pk.E/: (13)

When rk is a constant, condition (13) is the identity 0 � 0 so the polynomial ˘r
k p

itself is determined up to a constant. This is fixed by imposing an extra condition,
for instance,

Z

@E
.˘r

k p � p/ ds D 0: (14)

The following easy lemma will be useful throughout the section:

Lemma 1 The polynomial˘r
k p depends only on

• the value of p on the boundary of E;
• the moments of p in E up to order k � 2.
Proof By Eqs. (13) and (14) it is clear that the polynomial ˘r

k p is completely
determined by the integrals

Z

E
rp � rrk dx and

Z

@E
p ds:
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The second integral clearly depends only on the value of p on the boundary of E.
Concerning the first integral, integrating by parts we have

Z

E
rp � rrk dx D �

Z

E
p�rk dx C

Z

@E
p
@rk
@n

ds

and since �rk 2 Pk�2.E/ the proof is completed.

We are now ready to introduce the local virtual space Vh.E/. The space Vh.E/
consists of functions ph such that:

• ph is continuous on E;
• ph on each edge e is a polynomial of degree k;
• �ph 2 Pk.E/;

•
Z

E
ph m˛ dx D

Z

E
˘r

k ph m˛ dx for j˛j D nk � 1 and j˛j D nk.

In [1, 8] we have shown the following results:

1. Vh.E/ has dimension NV C .k � 1/Ne C nk�2 D kNV C nk�2;
2. Pk.E/ � Vh.E/;
3. for the space Vh.E/ we can take the following degrees of freedom:

Boundary degrees of freedom [NV C .k � 1/ � Ne D k � NV]

• the values of ph at the NV vertices of the polygon E;
• for each edge e, the values of ph at k � 1 distinct points of e (for instance

equispaced points).

Internal degrees of freedom (only for k > 1) [nk�2]

• the moments of ph up to degree k � 2, i.e. the integrals

1

jEj
Z

E
ph m˛ dx; j˛j 6 k � 2:

We will indicate by dofi. ph/ (i D 1; : : : ;Ndof WD dimVh.E/) the degrees of freedom
of ph. We define the local basis functions i 2 Vh.E/, i D 1; : : : ;Ndof, by the
property:

dofi.j/ D ıij i; j D 1; : : : ;Ndof (15)

so that we have a Lagrange-type decomposition:

ph D
NdofX

iD1
dofi. ph/ i: (16)
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Given a function ph 2 Vh.E/, by Lemma 1 the polynomial ˘r
k ph depends only on

the value of ph on the boundary of E and on the moments of ph in E up to order
k � 2. Hence, the polynomial˘r

k ph depends only on the degrees of freedom of ph.
In [8] it is shown that also the L2 projection ˘0

k ph of a function ph 2 Vh.E/ onto
Pk.E/ depends only on its degrees of freedom, and all the details to compute and
code˘r

k i and˘0
k i, for a generic basis function i, are given. For the convenience

of the reader we report here the various steps. Write

˘r
k i D

nkX

˛D1
s˛i m˛; i D 1; : : :Ndof (17)

and define

P0i WD
Z

@E
i ds:

Then, defining

G D

2

6
6
6
4

P0m1 P0m2 : : : P0mnk

0 .rm2;rm2/0;E : : : .rm2;rmnk/0;E
:::

:::
: : :

:::

0 .rmnk ;rm2/0;E : : : .rmnk ;rmnk /0;E

3

7
7
7
5
; (18)

bi D

2

6
6
6
4

P0i
.rm2;ri/0;E

:::

.rmnk ;ri/0;E

3

7
7
7
5
; (19)

for each i, the coefficients s˛i , ˛ D 1; : : : ; nk are solution of the nk�nk linear system:

Gsi D bi:

Denoting by B the nk � Ndof matrix given by

B WD �

b1 b2 : : : bNdof

� D

2

6
6
6
4

P01 : : : P0Ndof

.rm2;r1/0;E : : : .rm2;rNdof/0;E
:::

: : :
:::

.rmnk ;r1/0;E : : : .rmnk ;rNdof/0;E

3

7
7
7
5
; (20)
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the matrix representation
�
…r

k of the operator˘r
k acting from Vh.E/ to Pk.E/ in the

basis Mk.E/ is given by .
�
…r

k /˛i D s˛i , that is,

�
…r

k D G�1B: (21)

We will also need the matrix representation, in the basis (15), of the same operator
˘r

k , this time thought as an operator Vh.E/ �! Vh.E/. Hence, let

˘r
k i D

NdofX

jD1
�
j
ij; i D 1; : : :Ndof;

with

�
j
i D dofj

	

˘r
k i




:

From (17) and (16) we have

˘r
k i D

nkX

˛D1
s˛i m˛ D

nkX

˛D1
s˛i

NdofX

jD1
dofj.m˛/ j

so that

�
j
i D

nkX

˛D1
s˛i dofj.m˛/: (22)

In order to express (22) in matrix form, we define the Ndof � nk matrix D by:

Di˛ WD dofi.m˛/; i D 1; : : : ;Ndof; ˛ D 1; : : : ; nk;

that is,

D D

2

6
6
6
4

dof1.m1/ dof1.m2/ : : : dof1.mnk/

dof2.m1/ dof2.m2/ : : : dof2.mnk/
:::

:::
: : :

:::

dofNdof.m1/ dofNdof.m2/ : : : dofNdof.mnk/

3

7
7
7
5
: (23)

Equation (22) becomes:

�
j
i D

nkX

˛D1
.G�1B/˛iDj˛ D .DG�1B/ji:
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Hence, the matrix representation …r
k of the operator˘r

k W Vh.E/ �! Vh.E/ in the
basis (15), is given by

…r
k D DG�1B D D

�
…r

k : (24)

Remark 1 We point out that, as shown in [8], the matrix G can be expressed in
terms of the matrices D and B as

G D BD. (25)

Always following [8], we can show that also the L2 projection onto Pk.E/ of a
function ph 2 Vh.E/ depends only on its degrees of freedom. If we write

˘0
k i D

NdofX

iD1
t˛i m˛;

and define

H D

2

6
6
6
4

.m1;m1/0;E .m1;m2/0;E : : : .m1;mnk /0;E

.m2;m1/0;E .m2;m2/0;E : : : .m2;mnk /0;E
:::

:::
: : :

:::

.mnk ;m1/0;E .mnk ;m2/0;E : : : .mnk ;mnk/0;E

3

7
7
7
5
; (26)

ci D

2

6
6
6
4

.m1; i/0;E

.m2; i/0;E
:::

.mnk ; i/0;E

3

7
7
7
5
; (27)

then, for each i, the coefficients t˛i , ˛ D 1; : : : ; nk are solution of the nk � nk linear
system:

H ti D ci; (28)

which descends directly from the definition of the L2-projection.
We denote by C the nk � Ndof matrix given by

C WD �

c1 c2 : : : cNdof

� D

2

6
6
6
4

.m1; 1/0;E .m1; 2/0;E : : : .m1; Ndof/0;E

.m2; 1/0;E .m2; 2/0;E : : : .m2; Ndof/0;E
:::

:::
: : :

:::

.mnk ; 1/0;E .mnk ; 2/0;E : : : .mnk ; Ndof/0;E

3

7
7
7
5
: (29)
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The first nk�2 lines of the matrix C can be computed directly from the degrees of
freedom, and the resulting matrix is

first nk�2 lines of C D jEj

2

6
6
6
4

0 0 : : : 0 0 1 0 : : : 0
0 0 : : : 0 0 0 1 : : : 0

:::
:::
: : :

:::
:::
:::
:::
: : :

:::
0 0 : : : 0 0 0 0 : : : 1

3

7
7
7
5

where the rightmost block is the identity matrix of size nk�2�nk�2. The last nk�nk�2
lines of the matrix C correspond to m˛ being a monomial of degree k � 1 or k and
we need to resort to the fundamental property

Z

E
i m˛ dx D

Z

E
˘r

k i m˛ dx:

Hence in this case we have

C˛i D .HG�1B/˛i; nk�2 < ˛ 6 nk:

It follows that the matrix representation
�
…0

k of the operator ˘0
k acting from Vh.E/

to Pk.E/ in the basis Mk.E/ is given by .
�
…0

k/˛i D t˛i , that is,

�
…0

k D H�1C: (30)

Arguing as before, the matrix representation, in the basis (15), of the same operator
˘0

k , this time thought as an operator Vh.E/ �! Vh.E/, is

…0
k D DH�1C D D

�
…0

k: (31)

In a similar fashion we can also compute the matrix representations
�
…0

k�1 and …0
k�1

of the L2 projection onto the space of polynomials of degree k � 1. To this end, we
consider:

• the nk�1 � nk�1 matrix H0 obtained by taking the first nk�1 rows and the first nk�1
columns of the matrix H defined in (26);

• the nk�1 � Ndof matrix C0 obtained by taking the first nk�1 lines of the matrix C
defined in (29);

• the Ndof � nk�1 matrix D0 obtained by taking the first nk�1 columns of the matrix
D defined in (23).

Then we have:

�
…0

k�1 D .H0/�1C0 and …0
k�1 D D0 �

…0
k�1:
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To summarize, given a “virtual” function ph 2 Vh.E/, we can compute the
polynomials˘r

k ph, ˘0
k ph and ˘0

k�1ph in terms of its degrees of freedom.

6 VEM Approximation of the Primal Formulation

As shown in [6], the projectors˘r
k and˘0

k�1 allow us to solve the Laplace equation
with a reaction term. Indeed, according to [1], if problem (3) reduces to

( ��p C �p D f in ˝

u D g on @˝

then we have

a. p; q/ WD
Z

˝

rp � rq dx; b. p; q/ WD 0; c. p; q/ WD
Z

˝

� p q dx:

The local VEM approximation for a.�; �/ is

aEh . ph; qh/ WD
Z

E
r˘r

k ph � r˘r
k qh dx C SE

	

.I �˘r
k /ph; .I �˘r

k /qh



where the stability term SE.�; �/ is the symmetric and positive definite bilinear form
which is the identity on the basis function, i.e. SE.i; j/ D ıij. The local VEM
approximation for c.�; �/ is

cEh . ph; qh/ WD
Z

E
� ˘0

k�1ph˘0
k�1qh dx

and similarly the load term . f ; qh/ is approximated locally by . f ; ˘0
k�1qh/0;E.

If the diffusion � is not constant or a first-order term is present, then we cannot
simply approximate rph with r˘r

k ph; as shown in [12], we would loose the
optimal convergence rates. Instead, we should approximate

rph with ˘0
k�1rph:

Note that for k D 1 the two approximations of rph coincide; in fact,

r˘r
1 ph D 1

jEj
Z

E
rph dx D ˘0

0rph:

We will see now how to compute ˘0
k�1rph in terms of the degrees of freedom. To

this end, we observe that in order to obtain˘0
k�1rph, we need to compute

Z

E
rph � rk�1 dx
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where rk�1 is any vector whose components are polynomials of degree k � 1.
Integrating by parts, we have

Z

E
rph � rk�1 dx D �

Z

E
ph div rk�1 dx C

Z

@E
ph rk�1 � n ds

and since div rk�1 2 Pk�2.E/, both integrals are directly computable from the
degrees of freedom of ph. In order to find the matrix representations of the operator

˘0
k�1r, we define the nk�1 � Ndof matrix

�
…

0;x
k�1 by

˘0
k�1i;x D

nk�1X

˛D1

	 �
…

0;x
k�1




˛i
m˛: (32)

The polynomial˘0
k�1i;x is defined by

Z

E
˘0

k�1i;x mˇ dx D
Z

E
i;x mˇ dx; ˇ D 1; : : : ; nk�1

which becomes the linear system

nk�1X

˛D1

	 �
…

0;x
k�1




˛i

Z

E
m˛ mˇ dx D

Z

E
i;x mˇ dx; ˇ D 1; : : : ; nk�1:

The term
R

E i;x mˇ dx can be computed integrating by parts:

Z

E
i;x mˇ dx D �

Z

E
i mˇ;x dx C

Z

@E
i mˇ nx: (33)

If we define the matrices Ex and Ey by

	

Ex


iˇ
D
Z

E
i;x mˇ dx;

	

Ey


iˇ
D
Z

E
i;y mˇ dx; ˇ D 1; : : : nk�1 (34)

then we have:

�
…

0;x
k�1 D OH�1

Ex;
�
…

0;y
k�1 D OH�1

Ey

where OH is the submatrix of H defined in (26) obtained taking the first nk�1 rows
and columns of H.

We can now compute the local VEM stiffness matrices for the variable coefficient
case.
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6.1 Diffusion Term

We have:

.Ka/ij WD aEh .j; i/ D
Z

E
� ˘0

k�1rj �˘0
k�1ri dx

C N� SE
	

.I �˘r
k /j; .I �˘r

k /i



where N� is a constant approximation of � (for instance, the mean value). We compute
separately the consistency term and the stability term.

• consistency term:

.Ka
c/ij WD

Z

E
� ˘0

k�1rj �˘0
k�1ri dx

D
Z

E
�
˚

Œ˘0
k�1j;x	Œ˘0

k�1i;x	C Œ˘0
k�1j;y	Œ˘0

k�1i;y	


dx

and

Z

E
� Œ˘0

k�1j;x	Œ˘0
k�1i;x	 dx D

nk�1X

˛;ˇD1

	 �
…

0;x
k�1




˛j

	 �
…

0;x
k�1




ˇi

Z

E
� m˛ mˇ dx;

Z

E
� Œ˘0

k�1j;y	Œ˘0
k�1i;y	 dx D

nk�1X

˛;ˇD1

	 �
…

0;y
k�1




˛j

	 �
…

0;y
k�1




ˇi

Z

E
� m˛ mˇ dx:

If we define the nk�1 � nk�1 matrix H� by

.H�/˛ˇ WD
Z

E
� m˛ mˇ dx; 1 6 ˛; ˇ 6 nk�1;

then we have

Ka
c D 	 �

…
0;x
k�1


TH�
�
…

0;x
k�1 C 	 �

…
0;y
k�1


TH�
�
…

0;y
k�1

which can be written as

Ka
c D

h	 �
…

0;x
k�1


T 	 �
…

0;y
k�1


T
i

2

4

H� 0

0 H�

3

5

2

4

�
…

0;x
k�1�

…
0;y
k�1

3

5: (35)
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• stability term:

.Ka
s/ij WD N� SE

	

.I �˘r
k /j; .I �˘r

k /i



D N�
NdofX

k;`D1

	

ıjk � .…r
k /jk




SE.k; `/
	

ıi` � .…r
k /i`




D N�
NdofX

`D1

	

ıj` � .…r
k /j`


	

ıi` � .…r
k /i`




i.e.

Ka
s D N� .I � …r

k /
T.I � …r

k /: (36)

If the diffusion � happens to be a 2 � 2 symmetric matrix, i.e.

� D
�
�xx �xy

�xy �yy

�

;

then we can proceed similarly by defining the nk�1 � nk�1 matrices H�xx , H�xy and
H�yy as follows:

.H�xx/˛ˇ WD
Z

E
�xx m˛ mˇ dx; .H�xy/˛ˇ WD

Z

E
�xy m˛ mˇ dx; : : :

and the local virtual diffusion consistency matrix Ka
c can be written as

Ka
c D

h	 �
…

0;x
k�1


T 	 �
…

0;y
k�1


T
i

2

4

H�xx H�xy

H�xy H�yy

3

5

2

4

�
…

0;x
k�1�

…
0;y
k�1

3

5:

In this case, the stability matrix Ka
s can still be taken of the form (36), where this

time the constant scalar N� can be defined as the arithmetic mean of the mean values
of �xx and �yy. Note that here we are not considering the problem of optimizing the
stability matrix with respect to the anisotropy of the diffusion matrix �, but we are
only interested in the convergence as h goes to zero.

6.2 Transport Term

The local VEM approximation for the transport term is

bEh . ph; qh/ WD �
Z

E
˘0

k�1ph .b �˘0
k�1rqh/ dx
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and the corresponding local matrix is

.Kb/ij WD bEh .j; i/ D �
Z

E
˘0

k�1j .b �˘0
k�1ri/ dx:

Define the nk�1 � nk�1 matrices Hbx and Hby by

.Hbx/˛ˇ WD
Z

E
bx m˛ mˇ dx; .Hby/˛ˇ WD

Z

E
by m˛ mˇ dx:

By (32) we have

b � Œ˘0
k�1ri	 D bxŒ˘0

k�1ri;x	C byŒ˘0
k�1ri;y	

D bx
nk�1X

ˇD1
.

�
…

0;x
k�1/ˇi mˇ C by

nk�1X

ˇD1
.

�
…

0;y
k�1/ˇi mˇ

so that

�
Z

E
˘0

k�1j .b �˘0
k�1ri/ dx D

�
Z

E

"
nk�1X

˛D1
.…0

k�1/˛j m˛

#"

bx
nk�1X

ˇD1
.

�
…

0;x
k�1/ˇi mˇ C by

nk�1X

ˇD1
.

�
…

0;y
k�1/ˇi mˇ

#

dx D

�
Z

E

(

bx
nk�1X

˛;ˇD1
.…0

k�1/˛j .
�
…

0;x
k�1/ˇi mˇm˛ C by

nk�1X

˛;ˇD1
.…0

k�1/˛j .
�
…

0;y
k�1/ˇi mˇm˛

)

dx D

�
nk�1X

˛;ˇD1
.…0

k�1/˛j .
�
…

0;x
k�1/ˇi

Z

E
bxmˇm˛ dx�

nk�1X

˛;ˇD1
.…0

k�1/˛j .
�
…

0;y
k�1/ˇi

Z

E
bymˇm˛ dxD

�
nk�1X

˛;ˇD1
.…0

k�1/˛j .
�
…

0;x
k�1/ˇi .H

bx/˛ˇ �
nk�1X

˛;ˇD1
.…0

k�1/˛j .
�
…

0;y
k�1/ˇi .H

by/˛ˇ D

�
h

.
�
…

0;x
k�1/

THbx…0
k�1 C .

�
…

0;y
k�1/

THby…0
k�1

i

ij
D

�
h�

.
�
…

0;x
k�1/

THbx C .
�
…

0;y
k�1/

THby
�

…0
k�1

i

ij
:
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Hence the elementary VEM matrix for the transport term is

Kb D �
�

.
�
…

0;x
k�1/

THbx C .
�
…

0;y
k�1/

THby
�

…0
k�1: (37)

6.3 Reaction Term

The local VEM approximation for the reaction term is

cEh . ph; qh/ WD
Z

E
� Œ˘0

k�1ph	 Œ˘0
k�1qh	 dx

and in matrix form

.Kc/ij WD cEh .j; i/ D
Z

E
� Œ˘0

k�1j	 Œ˘0
k�1i	 dx:

Define the matrix

.H� /˛ˇ WD
Z

E
� m˛mˇ dx

and we have immediately

.Kc/ij D
Z

E
�
h nk�1X

˛D1
.…0

k�1/˛j m˛
i h nk�1X

ˇD1
.…0

k�1/ˇi mˇ
i

dx D

nk�1X

˛;ˇD1
.…0

k�1/˛j.…
0
k�1/ˇi

Z

E
� m˛mˇ dx D �

.…0
k�1/

TH�…0
k�1

�

ij

i.e.

Kc D .…0
k�1/

TH�…0
k�1: (38)

7 Algorithm for the Primal Formulation

For the convenience of the reader, we summarize the results of the previous Section
in form of an algorithm ready to be implemented.
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7.1 Projectors

1. Compute the nk � Ndof matrix B given by

B D

2

6
6
6
4

P01 : : : P0Ndof

.rm2;r1/0;E : : : .rm2;rNdof/0;E
:::

: : :
:::

.rmnk ;r1/0;E : : : .rmnk ;rNdof/0;E

3

7
7
7
5
;

where the terms of type .rm˛;ri/0;E can be determined as shown in Lemma 1.
2. Compute the Ndof � nk matrix D defined by:

Di˛ D dofi.m˛/; i D 1; : : : ;Ndof; ˛ D 1; : : : ; nk:

3. Set

G D BD. (39)

Note that the nk�nk matrix G can be computed independently (see (18)), and (39)
can be used as a check of the correctness of the code.

4. Set

�
…r

k D G�1B and …0
k D D

�
…0

k:

5. Compute the nk � nk matrix H defined by:

H˛ˇ D
Z

E
m˛mˇ dx ˛; ˇ D 1; : : : ; nk:

6. Compute the nk � Ndof matrix C defined by

C˛i D
Z

E
m˛ i dx; ˛ D 1; : : : ; nk; i D 1; : : : ;Ndof:

The matrix C has the following structure:

• first nk�2 lines of C D jEj

2

6
6
6
4

0 0 : : : 0 0 1 0 : : : 0
0 0 : : : 0 0 0 1 : : : 0

:::
:::
: : :

:::
:::
:::
:::
: : :

:::
0 0 : : : 0 0 0 0 : : : 1

3

7
7
7
5

where the last

block is the identity matrix of size nk�2 � nk�2;
• last nk � nk�2 lines of C:

C˛i D .H
�
…r

k /˛i; nk�2 < ˛ 6 nk:
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7. Set

�
…0

k D H�1C and …0
k D D

�
…0

k:

8. Compute the Ndof � nk�1 matrices Ex and Ey (see (33) and (34)) by

	

Ex


iˇ
D
Z

E
i;x mˇ dx;

	

Ey


iˇ
D
Z

E
i;y mˇ dx:

9. Set

�
…

0;x
k�1 D OH�1

Ex;
�
…

0;y
k�1 D OH�1

Ey

where OH is the submatrix of H obtained by taking the first nk�1 rows and columns
of H.

7.2 Coefficient Matrices

Compute the nk�1 � nk�1 matrices

.H�/˛ˇ D
Z

E
� m˛ mˇ dx; (40)

.Hbx/˛ˇ D
Z

E
bx m˛ mˇ dx; .Hby/˛ˇ D

Z

E
by m˛ mˇ dx; (41)

.H� /˛ˇ D
Z

E
� m˛mˇ dx: (42)

7.3 Local Stiffness Matrices

Finally, set

Ka D
h	 �

…
0;x
k�1


T 	 �
…

0;y
k�1


T
i

2

4

H� 0

0 H�

3

5

2

4

�
…

0;x
k�1�

…
0;y
k�1

3

5C N� .I � …r
k /

T.I � …r
k /

Kb D �
�

.
�
…

0;x
k�1/

THbx C .
�
…

0;y
k�1/

THby
�

…0
k�1

Kc D .…0
k�1/

TH�…0
k�1:
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8 Virtual Element Spaces for the Mixed Formulation

Before defining the virtual space Vh.E/, we need to study certain spaces of
polynomials which will play a major role in the definition of the degrees of freedom.

We start by defining an easily computable basis fmIg for ŒPk.E/	2. Let I be an
index running from 1 to 2 nk D dimŒPk.E/	2. Set:

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

mI WD
"

mI

0

#

if 1 6 I 6 nk

mI WD
"

0

mI�nk

#

if nk C 1 6 I 6 2nk:

We introduce the (vector) polynomial spaces

Gr
k .E/ WD rPkC1.E/

and

G?
k .E/ WD L2-orthogonal complement of Gr

k .E/ in ŒPk.E/	
2

or, more generally,

G˚
k .E/ WD any complement of Gr

k .E/ in ŒPk.E/	
2:

An easy computation shows that

dimGr
k .E/ D nr

k WD nk C .k C 1/ and dimG˚
k .E/ D n˚

k WD nk � .k C 1/:

We construct now a basis for Gr
k .E/ and G˚

k .E/. It is easy to check that a basis for
Gr
k .E/ is given by

gr;k
˛ WD rm˛C1; ˛ D 1; : : : ; nr

k :

Let now the nr
k � 2nk matrix Tr be such that

gr;k
˛ D

2nkX

ID1
Tr
˛ImI ; ˛ D 1; : : : ; nr

k :

A way to obtain a basis in G˚
k .E/ is to complete the matrix Tr with a n˚

k � 2nk

matrix T˚ to form a non-singular .nr
k Cn˚

k D 2nk/�2nk square matrix T D
�
Tr
T˚
�

.
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A basis for G˚
k .E/ is then given by

g˚;k
� WD

2nkX

ID1
T˚
� ImI; � D 1; : : : ; n˚

k :

An obvious way of constructing the matrix T is to define the rows of T˚ as a basis
for the kernel of Tr . This can be easily done symbolically in MATLAB:

TO = null(TN)’; T = [TN; TO]; go = T*m;

where TN D Tr and TO D T˚. In the appendix we present the basis so obtained up
to k D 5.

8.1 The Space Vh.E/

We are ready now to define the local VEM space Vh.E/ which consists of functions
vh such that:

• vh 2 H.divIE/\ H.rotIE/;
• vh � ne is a polynomial of degree k on each edge e;
• div vh 2 Pk.E/;
• rot vh 2 Pk�1.E/.

In [11] we have shown the following results:

1. the dimension of Vh.E/ on a polygon E is

Ndof WD dimVh.E/ D Ne � .k C 1/C dimGr
k�1.E/C dimG˚

k .E/

D Ne � .k C 1/C nr
k�1 C n˚

k DNe � .k C 1/C 2nk � k � 2

2. ŒPk.E/	2 � Vh.E/;
3. for the space Vh.E/ we can take the following degrees of freedom:

• Edge dofs [Ne � .k C 1/]
Since on each edge vh � ne is a polynomial of degree k and no continuity is

enforced at the vertices, we need to identify a polynomial of degree k on each
edge without using the values at the vertices.

This can be done in several ways, the most natural being taking the value
of vh � ne at k C 1 internal distinct fxe`g points of the edge e, obtained by
subdividing e in k C 2 equal parts:

dof e` .vh/ WD .vh � ne/.xe`/; ` D 1; : : : ; k C 1:
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This choice automatically ensures the continuity of vh � ne across two
adjacent elements.

• Internal r dofs [nr
k�1

D nk � 1]
Let ˛ be an index running from 1 to dimGr

k�1.E/ D nr
k�1. We define:

dofr̨.vh/ WD 1

jEj
Z

E
vh � gr;k�1

˛ dx; gr;k�1
˛ 2 Gr

k�1.E/:

• Internal ˚ dofs [n˚
k D nk � .k C 1/]

Let � be an index running from 1 to dimG˚
k .E/ D n˚

k . We define:

dof�̊ .vh/ WD 1

jEj
Z

E
vh � g˚;k

� dx; g˚;k
� 2 G˚

k .E/:

Let i be an index running through all dofs. We define �i 2 Vh.E/ by

dofj.�i/ D ıij; j D 1; : : : ;Ndof

in such a way that we have again a Lagrange-type identity:

vh D
NdofX

iD1
dofi.vh/�i:

8.2 The Space Qh.E/

As promised, the space Qh.E/ is simply the space Pk.E/ and as basis functions we
take the set of scaled monomials Mk.E/ defined in (2).

9 VEM Approximation of the Mixed Formulation

As show in [11], the VEM approximation of problem (9) is

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

Find .uh; ph/ 2 Vh � Qh such that
X

E

˚

aEh .uh; vh/� . ph; div vh/0;E � .ˇ �˘0
k vh; ph/0;E

 D 0 for all vh 2 Vh;

X

E

.divuh; qh/0;E C .�ph; qh/0;˝ D . f ; qh/0;˝ for all qh 2 Qh
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where

aEh .uh; vh/ WD .� ˘0
k uh; ˘

0
k vh/0;E C SE

	

.I �˘0
k /uh; .I �˘0

k /vh



:

The symmetric and positive bilinear form SE.�; �/, needed for the stability of the
method, is defined by requiring

SE.�i;�j/ D �jEj ıij;

with � D mean value of � on E, or � D �.xc; yc/. The corresponding local stiffness
matrices are obtained by restricting all integrals to E and by setting uh D �j, vh D
�i, ph D m˛, qh D mˇ .

9.1 Computation of the L2-projection in Vh.E/

Let �i be a basis function for Vh.E/. We need to compute ˘0
k �i 2 ŒPk.E/	2. We

shall write ˘0
k �i in terms of the basis fgkI g D fgr;k

˛ ; g˚;k
� g of ŒPk.E/	2:

˘0
k �i D

nr

kX

˛D1
s˛i g

r;k
˛ C

n˚

kX

�D1
s�i g

˚;k
� D

2nkX

ID1
sIi g

k
I : (43)

Multiplying by fgr;k
ˇ ; g˚;k

� g and integrating, we get a linear system in the unknowns

fs˛i ; s�i g D sIi (note that
R

E˘
0
k �i � pk dx D R

E �i � pk dx):

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

nr

kX

˛D1
s˛i

Z

E
gr;k
˛ � gr;k

ˇ dx C
n˚

kX

�D1
s�i

Z

E
g˚;k
� � gr;k

ˇ dx D
Z

E
�i � gr;k

ˇ dx

nr

kX

˛D1
s˛i

Z

E
gr;k
˛ � g˚;k

ı dx C
n˚

kX

�D1
s�i

Z

E
g˚;k
� � g˚;k

ı dx D
Z

E
�i � g˚;k

ı dx:

Set

GIJ WD
Z

E
gkI � gkJ dx;

and define the 2nk � Ndof matrices

Œ
�
…0

k	Ii WD sIi and BIi WD
Z

E
�i � gkI dx: (44)
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We have

2nkX

JD1
GIJ Œ

�
…0

k	Ji D BIi i.e. G
�
…0

k D B so that
�
…0

k D G�1B:

We split B as

B D
�

Br

B˚

�

:

We start from Br
ˇi D R

E �i � gr;k
ˇ dx. Since

gr;k
ˇ D rmˇC1;

we have

Br
ˇi D

Z

E
�i � rmˇC1 dx D �

Z

E
div �i mˇC1 dx C

Z

@E
�i � nE mˇC1 ds

DW Br
1 C Br

2 :

The term Br
2 can be readily computed because �i � n is a known polynomial on

the boundary of E. Concerning the term Br
1 , we first observe that we can directly

compute div �i 2 Pk.E/. In fact, write div �i as

div �i D
nkX

�D1
d �i m� ;

multiply by m� and integrate over E:

nkX

�D1
d �i

Z

E
m�m� dx D

Z

E
div �i m� dx:

Define the nk � nk matrix H (as already done in (26)) by

H�� WD
Z

E
m�m� dx;

and the nk � Ndof matrices V and W as

V� iW D d �i ; W� i WD
Z

E
div �i m� dx (45)
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so that

HV D W and V D H�1W:

Now,

W� i D
Z

E
div �i m� dx D �

Z

E
�i � rm� dx C

Z

@E
�i � nE m� ds

DW ŒW1	� i C ŒW2	� i:

Observing that

rm� D gr;k�1
��1 ;

we have

ŒW1	� i D �jEj dofg��1.�i/ D
(

�jEj if i corresponds to � � 1

0 otherwise.
(46)

Concerning the term W2, we observe that it can be immediately computed since
�i � nE is a known polynomial on the boundary. Consider now Br

1 :

ŒBr
1 	ˇi D �

Z

E
div �i mˇC1 dx D �

nkX

�D1
d �i

Z

E
m� mˇC1 dx:

Define the nr
k � nk matrix

H#
ˇ� WD

Z

E
m� mˇC1 dx:

Obviously, most of the entries of the matrix H# are also entries of the matrix H
already computed. Then

�
Z

E
div �i mˇC1 dx D �ŒH#V	ˇi D �ŒH#H�1W	ˇi

so that

Br
1 D �H#H�1.W1 C W2/:

Concerning the term B˚, we simply observe that

B˚
ıi D

Z

E
�i � g˚;k

ı D jEj dof˚
ı .�i/ D

(

jEj if ı corresponds to i

0 otherwise:
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We will also need ˘0
k �i in terms of the basis f�ig itself. To this end, we define � j

i
as

˘0
k �i D

NdofX

jD1
�
j
i�j or � j

i WD dofj.˘
0
k �i/ (47)

and the Ndof � Ndof matrix …0
k as

Œ…0
k	ji WD �

j
i :

From (43) we have

˘0
k �i D

2nkX

ID1
sIig

k
I D

2nkX

ID1
sIi

2

4

NdofX

jD1
dofj.gkI /�j

3

5 D
NdofX

jD1

"
2nkX

ID1
sIidofj.gkI /

#

�j;

and comparing with (47) we obtain

�
j
i D

2nkX

ID1
sIidofj.gkI /:

If we define the Ndof � 2nk matrix

DjI WD dofj.gkI /

we have:

…0
k D D

�
…0

k i.e. …0
k D DG�1B:

We observe that

GIJ D
Z

E
gkI � gkJ dx; and gkJ D

NdofX

iD1
dofi.gkJ/�i

so that

GIJ D
NdofX

iD1
dofi.gkJ/

Z

E
gkI � �i dx D

NdofX

iD1
DiJBIi hence G D BD: (48)

We have the following useful identities:

�
…0

kD D I since
�
…0

kD D G�1BD D G�1G D I
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and

…0
kD D D since …0

kD D D
�
…0

kD D DI D D:

Another way of arguing is that since ˘0
k is a projection, then .…0

k/
2 D …0

k. Hence

.…0
k/
2 D DG�1BDG�1B D DŒG�1BD	G�1B D …0

k D DG�1B

hence G�1BD must be the identity matrix as stated in (48).

Remark 2 It can be shown that the lower part of the matrix …0
k corresponding to

the internal dofs (last nr
k�1 C n˚

k rows) is the identity matrix. This property can be
exploited in the definition of the stability matrix (50) described below (see [11]).

10 Local Matrices

We are now ready to compute the VEM local matrices for the mixed formulation.

10.1 Term aEh .uh; vh/

The corresponding local matrix is given by

aEh .�i;�j/ D .� ˘0
k �j; ˘

0
k �i/0;E C SE

	

.I �˘0
k /�j; .I �˘0

k /�i




WD .Ka
c/ij C .Ka

s/ij:

Using (43), the consistency matrix Ka
c is given by

ŒKa
c	ij D

2nkX

ID1

2nkX

JD1
sIi s

J
j

Z

E
� gkI � gkJ dx:

Defining the 2nk � 2nk matrix G�

G�
IJ WD

Z

E
� gkI � gkJ dx;

and using (44) we obtain:

ŒKa
c	ij D

2nkX

ID1

2nkX

JD1
Œ

�
…0

k	IiŒ
�
…0

k	JjG
�
IJ
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i.e.

Ka
c D Œ

�
…0

k	
TG�

�
…0

k: (49)

If �.x/ � 1, i.e. we have the Laplace operator, then G� D G and

Ka
c D ŒG�1B	T G ŒG�1B	 D BTG�1B:

The stability matrix Ka
s can be taken as

Ka
s D N� jEj .I � …0

k/
T .I � …0

k/ (50)

where N� is a constant approximation of �.

10.2 Term �. ph; div vh/0;E

By (45) we see that the corresponding local matrix is �WT which has already been
computed.

The local matrix K corresponding to ˇ D .0; 0/ and � D 0 is then given by:

K D
�
Ka

c C Ka
s �WT

W 0

�

10.3 Term �.ˇ � ˘ 0
k vh; ph/0;E

The corresponding local matrix is

Tˇ
j� WD �

Z

E
Œˇ �˘0

k �j	m
k
� dx D �

2nkX

ID1
Œ

�
…0

k	Ij

Z

E
Œˇ � gkI 	mk

� dx:

Defining the matrix

UI� WD
Z

E
Œˇ � gkI 	mk

� dx

we have

Tˇ D �. �
…0

k/
TU:
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10.4 Term .�ph; qh/0;E

The corresponding local matrix is H� defined in (38).

10.5 Complete Stiffness Matrix

The local stiffness matrix K for the complete problem is then given by:

K WD
�
Ka

c C Ka
s �WT C Tˇ

W H�

�

:

11 Algorithm for the Mixed Formulation

We summarize here the steps needed to compute the VEM local matrix for the mixed
approximation. We indicate in square brackets the size of each matrix.

11.1 L2 Projection

1. Compute

GIJ D
Z

E
gkI � gkJ dx Œ2nk � 2nk	

2. Compute the Œnk � Ndof	 matrix W1

ŒW1	� i D �jEj dofg��1.�i/ D
(

�jEj if i corresponds to � � 1

0 otherwise

3. Compute

W2 (boundary term) Œnk � Ndof	

4. Set

W D W1 C W2 Œnk � Ndof	
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5. Compute

H�� D
Z

E
m�m� dx Œnk � nk	

6. Compute

H#
ˇ� D

Z

E
m� mˇC1 dx Œnr

k � nk	

7. Set

Br
1 D �H#H�1W Œnr

k � Ndof	

8. Compute

Br
2 (boundary term) Œnr

k � Ndof	

9. Set

Br D Br
1 C Br

2 Œnr
k � Ndof	

10. Compute the Œn˚
k � Ndof	 matrix B˚

ŒB˚	ıi D jEj dof˚
ı .�i/ D jEj ııi D

(

jEj if i corresponds to ı

0 otherwise

11. Set

B D
�

Br

B˚

�

Œ2nk � Ndof	

12. Set

�
…0

k D G�1B Œ2nk � Ndof	

13. Compute

DjI WD dofj.gkI / ŒNdof � 2nk	

14. Set

…0
k D D

�
…0

k Œ2Ndof � 2Ndof	
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15. Check that

G D BD

11.2 Coefficient Matrices

1. Compute

G�
IJ D

Z

E
� gkI � gkJ dx Œ2nk � 2nk	

2. Define

UI� D
Z

E
Œˇ � gkI 	mk

� dx Œ2nk � nk	

3. Set

Tˇ D �. �
…0

k/
TU: Œ2nk � nk	

4. Define

.H� /˛ˇ WD
Z

E
� m˛mˇ dx Œnk � nk	

11.3 Local Matrix

Set

Ka
c D Œ

�
…0

k	
TG�

�
…0

k and Ka
s D N� jEj .I � …0

k/
T .I � …0

k/:

The full local matrix is then

K WD
�

Ka
c C Ka

s �WT C Tˇ

W H�

�

:
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Appendix

We list here the basis gr;k
˛ and g˚;k

� obtained with MATLAB for k up to 5. We point
out that in order to have the right scaling, the variable x and y must be replaced by
�x � xc

hE

�

and
�x � yc

hE

�

respectively.

gr;k
˛ g˚;k

�

k=1 [ 1, 0] [ -y, x]
[ 0, 1]
[ 2*x, 0]
[ y, x]
[ 0, 2*y]

k=2 [ 3*x^2, 0] [ -(x*y)/2, x^2]
[ 2*x*y, x^2] [ -2*y^2, x*y]
[ y^2, 2*x*y]
[ 0, 3*y^2]

k=3 [ 4*x^3, 0] [ -(x^2*y)/3, x^3]
[ 3*x^2*y, x^3] [ -x*y^2, x^2*y]
[ 2*x*y^2, 2*x^2*y] [ -3*y^3, x*y^2]
[ y^3, 3*x*y^2]
[ 0, 4*y^3]

k=4 [ 5*x^4, 0] [ -(x^3*y)/4, x^4]
[ 4*x^3*y, x^4] [ -(2*x^2*y^2)/3, x^3*y]
[ 3*x^2*y^2, 2*x^3*y] [ -(3*x*y^3)/2, x^2*y^2]
[ 2*x*y^3, 3*x^2*y^2] [ -4*y^4, x*y^3]
[ y^4, 4*x*y^3]
[ 0, 5*y^4]

k=5 [ 6*x^5, 0] [ -(x^4*y)/5, x^5]
[ 5*x^4*y, x^5] [ -(x^3*y^2)/2, x^4*y]
[ 4*x^3*y^2, 2*x^4*y] [ -x^2*y^3, x^3*y^2]
[ 3*x^2*y^3, 3*x^3*y^2] [ -2*x*y^4, x^2*y^3]
[ 2*x*y^4, 4*x^2*y^3] [ -5*y^5, x*y^4]
[ y^5, 5*x*y^4]
[ 0, 6*y^5]
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On Quasi-Interpolation Operators in Spline
Spaces

Annalisa Buffa, Eduardo M. Garau, Carlotta Giannelli, and Giancarlo
Sangalli

Abstract We propose the construction of a class of L2 stable quasi-interpolation
operators onto the space of splines on tensor-product meshes, in any space dimen-
sion. The estimate we propose is robust with respect to knot repetition and to knot
“vicinity” (up to pC1 knots), so it applies to the most general scenario in which the
B-spline functions are known to be well defined.

1 Introduction

The use of splines as a tool for the numerical discretization of partial differential
equations is experiencing a very fast spreading thanks to the advent of isogeometric
analysis [8, 13]. Besides the many engineering applications that are object of study
within the isogeometric framework, there is also a renewed attention towards the
development of theoretical tools that may provide a clear mathematical understand-
ing and solid groundings for isogeometric methods.
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A state-of-the-art review on the existing mathematical results can be found
in the review paper [6] published in 2014. Indeed, several results exists today
starting from approximation properties, to wellposedness for various classes of
spline discretizations and problems showing that splines, and the isogeometric
framework, can be suitably used in the numerical analysis for a variety of PDEs
(elliptic, saddle points, Hodge laplacian, etc.). In this paper, we focus on a rather
fundamental question that is the approximation properties and the techniques to
study them in the most general setting of interests. In [6] and in all the literature
until now, approximation properties for splines are analysed under the assumption
of local quasi-uniform meshes (see Assumption 3.1 below), possibly in presence of
knot repetition. These results are surely useful but fail to analyse the approximation
error in the most general framework: indeed, the spline basis remain stable when
up to p C 1 knots are made closer and closer to each-other (up to becoming
coincident) while the interpolation operators proposed become unstable when knot
spans collapse to zero.

In the present paper, we fill this gap and we put ourselves in the most general
situation. Instead of considering one single choice of interpolation operator, we
consider an entire class of operators, mostly inspired by Lee et al. [15] and
we analyse there approximation properties under the milder Assumption 3.2 (see
below).

Quasi-interpolants in spline spaces are usually defined as linear combination of
locally supported functions ˇ 2 B that form a convex partition of unity, namely

P. f / D
X

ˇ2B
�ˇ. f /ˇ ;

where the linear functionals �ˇ. f / may be defined in different ways, by e.g. taking
into account the evaluation of the function f , or even related integral/derivative
information, at certain points or in regions included in (or close to) the support
of ˇ, see for example [10, 15, 16, 18]. The use of spline-based quasi-interpolation
schemes is an established technique for the design of effective and reliable
approximation algorithms.

In this paper we derive an approximation method in terms of local L2 projection
by exploiting the local stability of the univariate B-spline basis and its tensor-
product extension. The stability and approximation properties of the corresponding
quasi-interpolation operators are presented. The analysis includes the discussion of
mild assumptions on the admissible mesh configuration to be considered.

The remaining of the paper is organised as follows. Section 2 provides a brief
overview of isogeometric analysis and introduces some basic notation. In Sect. 3
we state the assumptions on the meshes that we consider. We analyse the stability
properties of the B-spline basis in Sect. 4 through some estimations for the inverse
of the local Bézier extraction operator. The local approximation method is then
presented in Sect. 5, while Sect. 6 defines the locally supported dual basis. Finally,
the properties of the quasi-interpolation operator are discussed in Sect. 7.
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2 Motivation: The Isogeometric Setting

One of the main motivation of our work is to provide mathematical foundation of
isogeometric methods and a rigorous understanding of the properties splines have in
practice. To this aim, this section is meant to introduce splines and shortly discuss
the isogeometric setting where they are meant to be used.

2.1 Univariate and Tensor-Product B-splines

Let � WD f�jgnCpC1
jD1 be a p-open knot (ordered) vector such that

0 D �1 D � � � D �pC1 < �pC2 6 � � � 6 �n < �nC1 D � � � D �nCpC1 D 1;

where the two positive integers p and n denote a given polynomial degree, and
the corresponding number of B-splines defined over the considered knot sequence,
respectively. We also introduce the vector Z WD f�jgQn

jD1 of knots without repetitions,
and denote by mj the multiplicity of the breakpoint �j, such that

� D f�1; : : : ; �1;
„ ƒ‚ …

m1 times

�2; : : : ; �2;
„ ƒ‚ …

m2 times

: : : �Qn; : : : ; �Qn
„ ƒ‚ …

mQn times

g;

with
QnX

iD1
mi D nC pC 1. Note that the two extreme knots are repeated pC 1 times,

i.e., m1 D mQn D p C 1. We assume that an internal knot can be repeated at most
p C 1 times, i.e., mj 6 p C 1, for j D 2; : : : ; Qn � 1.

Let fˇ1; ˇ2; : : : ; ˇng be the univariate B-spline basis of degree p associated to
the knot vector � , see e.g., [9, 19]. Each B-spline is a piecewise polynomial of
degree p on the subdivision f�1; : : : ; �Qng and it has p � mj continuous derivatives at
the breakpoint �j. We remark that B-splines are non-negative, locally supported, and
form a convex partition of unity, namely

ˇj > 0; suppˇj D Œ�j; �jCpC1	;
nX

iD1
ˇi.x/ D 1 8x 2 .0; 1/:

Let I be the univariate mesh defined by

I WD fŒ�j; �jC1	 j j D 1; : : : ; Qn � 1g:

For each I D Œ�j; �jC1	 2 I there exists a unique k D Pj
iD1mj such that I D

Œ�k; �kC1	 and �k ¤ �kC1. The union of the supports of the B-splines acting on I
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identifies the support extension QI, namely

QI WD Œ�k�p; �kCpC1	; (1)

Moreover, we define

OI WD Œ�k�pC1; �kCp	: (2)

An example of quadratic B-splines constructed from the open knot vector

� D f0; 0; 0; 1=5; 2=5; 3=5; 3=5; 4=5; 1; 1; 1g

is presented in Fig. 1. Notice that, since the knot �6 D �7 D �4 D 3=5 has
multiplicity m4 D 2, the fourth, fifth and sixth functions are only continuous at
that point.

In order to define a tensor-product d-variate spline space on Ő WD Œ0; 1	d � R
d,

let p WD . p1; p2; : : : ; pd/ be the set of polynomial degrees with respect to each
coordinate direction. For i D 1; 2; : : : ; d, let �i WD f�.i/j gniCpiC1

jD1 be a pi-open knot
vector such that

0 D �
.i/
1 D � � � D �

.i/
piC1 < �

.i/
piC2 6 � � � 6 �.i/ni < �

.i/
niC1 D � � � D �

.i/
niCpiC1 D 1;
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Fig. 1 Quadratic B-splines basis functions constructed from the open knot vector � D
f0; 0; 0; 1=5; 2=5; 3=5; 3=5; 4=5; 1; 1; 1g
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where the two extreme knots are repeated pi C 1 times and any internal knot can
be repeated at most pi C 1 times. We denote by V the tensor-product spline space
spanned by the B-spline basis B defined as the tensor-product of the univariate B-
spline bases B1; : : : ;Bd. Let Q be tensor-product mesh consisting of the elements
Q D I1�� � �� Id, where Ii is an element (closed interval) of the i-th univariate mesh,
for i D 1; : : : ; d.

2.2 The Geometric Map and Isogeometric Refinements

In isogeometric analysis, the physical domain ˝ is parametrized by the map F W
Ő ! ˝ given by

x D F .Ox/; Ox 2 Ő ;

where F is a linear combination of the set of B-splines (or their rational extension)
defined on an initial, usually coarse, tensor-product grid Q0. The map F is assumed
to be invertible, with smooth inverse, on each mesh element.

The approximation space on˝ is given by spanfˇı F �1gˇ2B as the push-forward
of the spline space on Ő and its approximation properties influence the accuracy of
the corresponding isogeometric method. Three refinement possibilities are available
and are usually indicated as h-refinement (mesh refinement), p-refinement (degree
raising) and k-refinement (mesh refinement and degree raising) [1, 2, 4, 11, 13].
The different kinds of refinements are all constructed by applying the standard knot
insertion and degree elevation algorithms, see [9, 13]. By exploiting these refinement
procedures, refined approximation spaces with various mesh-size, order, and global
regularity may be obtained from the initial spline space.

3 Assumptions

The main goal of this article is to build a quasi-interpolant operator for tensor-
product spline spaces, assuming that the underlying univariate meshes with respect
to the different coordinate directions satisfy one of the following assumptions.

Assumption 3.1 (Local Quasi-Uniformity) There exists a constant � > 0 such
that

��1 6 �j � �j�1
�jC1 � �j 6 �; 8 j D 2; : : : ; Qn � 1:
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Assumption 3.2 There exists a constant � > 0 such that for every I 2 I and
1 6 j1; j2 6 n,

��1 6 j suppˇj1 j
j suppˇj2 j

6 �:

whenever suppˇj1 \ suppˇj2 � I.

Remark 1 Assumption 3.2 holds if and only if there exists a constant1 C2 > 0 such
that

jQIj
j suppˇjj 6 C2;

for all I 2 I and 1 6 j 6 n such that I � suppˇj.

Remark 2 Assumption 3.1 implies Assumption 3.2. On the other hand, Assump-
tion 3.2 allows the shrinking of (at most) p C 1 knots and thus, it is weaker than
Assumption 3.1. As an example we can consider p D 2 and

� WD f0; 0; 0; 1=2� "; 1=2C "; 1; 1; 1g;

or

� WD f0; 0; 0; 1=2� "; 1=2; 1=2C "; 1; 1; 1g;

for 0 < " < 1
4
. In this case, Assumption 3.2 holds but Assumption 3.1 does not,

since � would depend on " in Assumption 3.1.

4 Some Results in Spline Spaces

In this section, we introduce bounds for the operator performing the change of basis
from univariate B-splines restricted to the single knot span to Bernstein polynomials.
This operator is commonly known as Bézier extraction operator. We extend such
bounds for the tensor-product case and then, we analyse the local stability of the
B-spline basis.

1This constant depends on the polynomial degree p, since the number of B-spline basis functions
acting on a single mesh element is p C 1.
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4.1 The Inverse of the Local Bézier Extraction Operator

The Bernstein polynomials of degree p on the knot interval I D Œ�k; �kC1	 2 I are
defined by

BI
j .x/ WD

�
p

j � 1
��

x � �k

�kC1 � �k
�j�1 �

�kC1 � x

�kC1 � �k
�p�jC1

; j D 1; : : : ; p C 1:

The set BI WD fBI
1; : : : ;B

I
pC1g is a basis for the space Pp of polynomials of degree

at most p over the interval of interest. We also consider the alternative basis BI WD
fˇI

1; : : : ; ˇ
I
pC1g, consisting of the B-spline basis functions in B that are nonzero over

I. More precisely, we have that

ˇI
i � ˇkCi�p�1; on I; 8 i D 1; : : : ; p C 1;

where suppˇkCi�p�1 D Œ�kCi�p�1; �kCi	. Let DI D .dij/ 2 R
. pC1/�. pC1/ be the

change of basis matrix such that

BI
j D

pC1
X

iD1
djiˇ

I
i ; for j D 1; : : : ; p C 1: (3)

For each j D 1; : : : ; pC1, the coefficients fdjigpC1
iD1 can be computed by evaluating

the blossom of BI
j via

dji D BI
j Œ�kCi�p; : : : ; �kCi�1	;

see, e.g. [17, p. 65]. Thus, we have that (cf. [12, 17])

dji D 1

. j � 1/Š. p � j C 1/Š

X

�2˙

0

@

j�1
Y

rD1

�kCi��.r/ � �k

�kC1 � �k

p
Y

rDj

�kC1 � �kCi��.r/
�kC1 � �k

1

A ;

where ˙ denotes the set of the permutations in f1; : : : ; pg. In particular, for j D 1
we have that

d11 D .�kC1 � �k�1/ : : : .�kC1 � �kC1�p/

.�kC1 � �k/p�1 D
Qk�1

rDkC1�p.�kC1 � �r/
.�kC1 � �k/p�1 ; .i D 1/

(4)

d1i D 0; i D 2; : : : ; p C 1;
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and for j D p C 1,

dpC1;i D 0; i D 1; : : : ; p;

dpC1;pC1 D .�kC2 � �k/ : : : .�kCp � �k/

.�kC1 � �k/p�1 D
QkCp

rDkC2.�r � �k/

.�kC1 � �k/p�1 ; .i D p C 1/:

Let now consider the case j D 2; : : : ; p. We may observe that either �k or �kC1 are in
f�kCi�p; : : : ; �kCi�1g for i equals to 1 or pC 1, respectively. Both �k and �kC1 belong
to this knot interval of interest for all the intermediate cases of i D 2; : : : ; p. At
least one of the two can be then fixed and we may consider the remaining nonzero
contributions in the sum over the permutations defining dji, obtaining

jdjij 6 . p � 1/Š
. j � 1/Š. p � j C 1/Š

.�kCi�1 � �kCi�p/
p�1

.�kC1 � �k/p�1

D 1

p

�
p

j � 1

�
.�kCi�1 � �kCi�p/

p�1

.�kC1 � �k/p�1 ; i D 1; : : : ; p C 1:

By taking into account that 1p
Pp

jD2
�

p
j � 1

�

D 1
p .2

p � 2/, we then obtain

pC1
X

jD1
jdjij 6

�
1

p
.2p � 2/C 1

� j OIjp�1

jIjp�1 ; i D 1; : : : ; p C 1:

Thus, we have proved the following result.

Lemma 1 Let I 2 I and DI D .dij/ 2 R
. pC1/�. pC1/ be the change of basis matrix

satisfying (3). Then,

kDT
I k1 D max

iD1;:::;pC1

pC1
X

jD1
jdjij 6 cp

j OIjp�1

jIjp�1 ; (5)

where cp WD 1
p .2

p � 2/C 1 and OI is given by (2).

Whereas Assumption 3.1 allows to bound by above uniformly the right hand
side of (5), in the next example we show that this is not the case when only
Assumption 3.2 holds.

Example 1 Let p > 2 and let " > 0. We consider

� WD f0; : : : ; 0;
„ ƒ‚ …

pC1 times

1=2; 1=2C "; : : : ; 1=2C p"; 1; : : : ; 1
„ ƒ‚ …

pC1 times

g:
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Note that in this case Assumption 3.2 holds. In particular, we show that it is not
possible to bound kDT

I k1 uniformly by above, and that, in fact, the behaviour
predicted by the right hand side of estimation (5) can be reached. Let I WD
Œ1=2; 1=2 C "	 D Œ�pC2; �pC3	. We have OI D Œ�3; �2pC2	 D Œ0; 1=2 C p"	, and,

consequently,
� j OIj

jIj
�p�1 D O."1�p/ as " ! 0. According to (4), we then obtain

kDT
I k1 > jd11j D

�
1=2C "

"

�p�1
D O."1�p/; as " ! 0:

4.2 Local Stability of the B-spline Basis

Let Q 2 Q and p WD . p1; p2; : : : ; pd/. We denote by Pp the space of tensor-product
polynomials with degree at most pi in the coordinate direction xi, for i D 1; 2; : : : ; d.
Let N WD dimPp D ˘ d

iD1. pi C 1/. In this section we analyse the local stability of
the B-spline basis. More precisely, we study the existence of a constant C > 0

(independent of Q) such that

kxk1 6 C

�
�
�
�
�
�

NX

jD1
xjˇ

Q
j

�
�
�
�
�
�
L1.Q/

; 8 x D .x1; : : : ; xN/ 2 R
N ; (6)

where ˇQ
1 ; : : : ; ˇ

Q
N are the B-spline basis functions in B restricted to Q.

Remark 3 (The Inverse of the Local Bézier Extraction Operator) We now gener-
alise the results of Sect. 4.1 to the tensor-product case. Let Q D I1 � � � � � Id 2 Q
be given. We consider the set BQ WD fBQ

1 ; : : : ;B
Q
Ng of tensor-product Bernstein

polynomials on Q, which constitutes a basis for Pp. On the other hand, we consider
the alternative basis BQ WD fˇQ

1 ; : : : ; ˇ
Q
N g, consisting of the B-spline basis functions

in B restricted to Q. Let DQ D .dij/ 2 R
N�N be the matrix such that

BQ
j D

NX

iD1
djiˇ

Q
i ; for j D 1; : : : ;N:

Notice that DQ is the matrix for the change of bases and satisfies

Œf 	BQ D DT
QŒf 	BQ ; 8 f 2 Pp; (7)

where Œf 	BQ and Œf 	BQ denote the vector of coefficients for writing f as a linear
combination of the functions in BQ and BQ, respectively.
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It is easy to check that DQ D DId ˝ � � � ˝ DI1 and that

kDT
Qk1 D

dY

iD1
kDT

Ii
k1;

where DT
Ii

denotes the corresponding univariate local Bézier extraction operator
defined in Sect. 4.1, for i D 1; : : : ; d. In view of (5) we have that

kDT
Qk1 6 Cp

dY

iD1

j OIijpi�1
jIijpi�1 ; (8)

where Cp WD Qd
iD1 cpi D Qd

iD1. 1pi .2
pi � 2/ C 1/. We remark that (8) generalises

Lemma 1 for the tensor-product case. Notice that under Assumption 3.1 (in each
coordinate direction), we can bound kDT

Qk1 uniformly by a constant which depends
only on p and � .

Remark 4 (L1-local Stability of the Bernstein Basis) Let Q D Œ0; 1	d. Using the
fact that all the norms are equivalent in Pp we have that there exists a constant
CSB > 0 depending only on p such that

kxk1 6 CSB

�
�
�
�
�
�

NX

jD1
xjB

Q
j

�
�
�
�
�
�
L1.Q/

; (9)

for all x D .x1; : : : ; xN/ 2 R
N . The same result holds for an arbitrary rectangle

Q � R
d.

Now, using (7) and (9) we have the following result.

Lemma 2 (L1-Local Stability of the B-spline Basis) Let Q 2 Q. Then,

kxk1 6 CSBkDT
Qk1

�
�
�
�
�
�

NX

jD1
xjˇ

Q
j

�
�
�
�
�
�
L1.Q/

;

for all x D .x1; : : : ; xN/ 2 R
N.

Under Assumption 3.1, taking into account (8), we can bound kDT
Qk1 uniformly by

a constant which depends only on p and � . In this case, we have that the B-spline
basis is L1-locally stable (see also [12]). On the other hand, under Assumption 3.2,
estimate (6) does not hold, as it is showed in the following example.

Example 2 If we consider again the open-knot vector� of Example 1, we have that

BI
1 D d11ˇ

I
1;
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where d11 D
�
1=2C"
"

�p�1
. Since kBI

1kL1.I/ D 1 we obtain

�
1=2C "

"

�p�1
D d11

1
6 sup

x2RpC1

kxk1
�
�
�

PpC1
jD1 xjˇI

j

�
�
�
L1.I/

�! 1;

as " ! 0.

5 Local Approximation Methods

Regarding the stability estimation of Lemma 2, in this section we present a local
approximation method.

Lemma 3 (Local L2-projection) Let Q 2 Q and let ˘Q W L1.Q/ ! Pp be the
L2-projection operator defined by

Z

Q
. f �˘Qf /g D 0; 8 g 2 Pp: (10)

Then, there exists a constant C˘ > 0 depending only on p such that

k˘QfkL1.Q/ 6 C˘ jQj�1kfkL1.Q/; 8 f 2 L1.Q/:

Proof Let f 2 L1.Q/. From the definition of ˘Q it follows that

k˘Qfk2L2.Q/ D
Z

Q
f˘Qf 6 kfkL1.Q/k˘QfkL1.Q/:

On the other hand, since Pp is a finite dimensional space, we have that there exists
a constant CI > 0 depending only on p such that the following inverse inequality
holds:

kgkL1.Q/ 6 CI jQj� 1
2 kgkL2.Q/; 8 g 2 Pp:

Therefore,

k˘Qfk2L1.Q/ 6 C2I jQj�1k˘Qfk2L2.Q/ 6 C2I jQj�1kfkL1.Q/k˘QfkL1.Q/;

and thus,

k˘QfkL1.Q/ 6 C2I jQj�1kfkL1.Q/:
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Remark 5 Notice that

˘Qf D
NX

iD1
�
Q
i . f /ˇ

Q
i ; 8 f 2 L1.Q/; (11)

where �Q. f / WD .�
Q
1 . f /; : : : ; �

Q
N. f //

T is the solution of the linear system

MQx D FQ;

where

MQ D
�Z

Q
ˇ
Q
j ˇ

Q
i

�

i;jD1;:::;N
2 R

N�N ; and FQ D
�Z

Q
fˇQ

i

�

iD1;:::;N
2 R

N�1:

On the other hand, f�Qi W L1.Q/ ! R j i D 1; : : : ;Ng is a dual basis for BQ in the
sense that

�
Q
i .ˇ

Q
j / D ıij; i; j D 1; : : : ;N: (12)

As a consequence of the L1-local stability of the B-spline basis (Lemma 2) we
can state the following result.

Theorem 1 Let Q 2 Q and let ˘Q W L1.Q/ ! Pp be the L2-projection operator
defined by (10). Let q be such that 1 6 q 6 1. Then,

k�Q. f /k1 6 C˘CSBkDT
Qk1jQj� 1

q kfkLq.Q/; 8 f 2 Lq.Q/; (13)

where �Q. f / D .�
Q
1 . f /; : : : ; �

Q
N. f //

T are the coefficients of ˘Q. f / with respect to
the local B-spline basis BQ (cf. (11)).

Proof Let q be such that 1 6 q 6 1 and f 2 Lq.Q/. Using Lemmas 2 and 3 we
have that

k�Q. f /k1 6 CSBkDT
Qk1 k˘QfkL1.Q/ 6 C˘CSBkDT

Qk1jQj�1kfkL1.Q/:

Finally, (13) is as consequence of Hölder inequality.

6 Locally Supported Dual Basis for B-splines

The goal of this section is to define a dual basis for the multivariate B-spline basis
B, i.e., a set of linear functionals

f�ˇ W L1.˝/ ! R jˇ 2 Bg;
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such that �ˇi.ˇj/ D ıij, for all ˇi; ˇj 2 B. More precisely, we are interested in
defining such functionals satisfying the following properties:

(i) Local support: �ˇ is supported in �ˇ � suppˇ, i.e.,

8 f 2 L1.˝/; fj�ˇ � 0 H) �ˇ. f / D 0:

(ii) Dual basis: For ˇi; ˇj 2 B, �ˇi.ˇj/ D ıij:

(iii) Lq-Stability: Let 1 6 q 6 1. There exists a constant CS > 0 such that

j�ˇ. f /j 6 CSj suppˇj� 1
q kfkLq.suppˇ/; 8 f 2 Lq.˝/; ˇ 2 B: (14)

Remark 6 Condition (iii) will be a key tool for proving the local stability of a quasi-
interpolant operator in Sect. 7.

We will use the technique in [15] to define linear functionals f�ˇgˇ2B satisfying
the desired properties. Roughly speaking, we define the functional �ˇ as a convex
combination of the local projections onto some Q 2 Q such that Q � suppˇ. For
ˇ 2 B, we define

Qˇ WD fQ 2 Q jQ � suppˇg;

and for each Q 2 Qˇ, let �Qˇ WD �
Q
i0

, where i0 D i0.ˇ;Q/ with 1 6 i0 6 N is such

that ˇQ
i0

� ˇ on Q. Thus, the functional �ˇ is given by

�ˇ WD
X

Q2Qˇ

cQ;ˇ�
Q
ˇ ; (15)

where

8Q 2 Qˇ; cQ;ˇ > 0; and
X

Q2Qˇ

cQ;ˇ D 1: (16)

Notice that �ˇ is supported in�ˇ WD
[

Q2Qˇ

cQ;ˇ>0

Q � suppˇ, and therefore, condition

(i) holds. On the other hand, condition (ii) is a consequence of (12) and (16). In the
rest of this section we analyse the validity of (iii).

We propose some possible choices for the coefficients cQ;ˇ , in order to guarantee
the validity of condition (iii) under different assumptions on the underlying univari-
ate meshes.
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Case 1: Locally Quasi-Uniform Meshes (Assumption 3.1)

Under the Assumption 3.1 there is no restriction on the choice of the coefficients
cQ;ˇ, i.e., condition (iii) always holds. In fact, taking into account (13), we have
that (14) holds with a constant CS > 0 which depends on p and � .

Case 2: Non Locally Quasi-Uniform Meshes (Assumption 3.2)

If Assumption 3.1 does not hold, but Assumption 3.2 does, we propose two ways of
defining cQ;ˇ in order to obtain the validity of condition (iii).

1. Let2 cˇ WD
X

Q2Qˇ

dY

iD1

� jIij
jQIij
�pi�1C 1

q

and

cQ;ˇ WD 1

cˇ

dY

iD1

� jIij
jQIij
�pi�1C 1

q

; 8Q 2 Qˇ:

Then, using the definition of �ˇ given by (15) and the bound for �Qˇ given by
Theorem 1 we have that

j�ˇ. f /j 6 C˘CSB

X

Q2Qˇ

cQ;ˇkDT
Qk1jQj� 1

q kfkLq.Q/:

Now, regarding the definition of cQ;ˇ and the bound for kDT
Qk1 given in (8), we

obtain

j�ˇ. f /j 6 C˘CSBCp

cˇ

X

Q2Qˇ

j QQj� 1
q kfkLq.Q/:

Since j suppˇj 6 j QQj, for all Q 2 Qˇ ,

j�ˇ. f /j 6 C˘CSBCp.#Qˇ/
1� 1

q

cˇ
j suppˇj� 1

q kfkLq.suppˇ/:

2For each Q we consider the representation Q D I1 � � � � � Id .
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Under the Assumption 3.2,3 we can bound cˇ uniformly by below. More
precisely, if pmax WD maxiD1;:::;d pi, then

cˇ D
X

Q2Qˇ

dY

iD1

� jIij
jQIij
�pi�1C 1

q

>
X

Q2Qˇ

 
dY

iD1

jIij
jQIij

!pmax�1C 1
q

D
X

Q2Qˇ

� jQj
j QQj

�pmax�1C 1
q

> .#Qˇ/
2�pmax� 1

q

0

@
X

Q2Qˇ

jQj
j QQj

1

A

pmax�1C 1
q

> .#Qˇ/
2�pmax� 1

q
1

C
d. pmax�1C 1

q /

2

0

B
B
B
B
@

X

Q2Qˇ

jQj
j suppˇj

„ ƒ‚ …

D1

1

C
C
C
C
A

pmax�1C 1
q

:

Thus, 1
cˇ

6 C
d. pmax�1C 1

q /

2

.#Qˇ/
2�pmax�

1
q

, and

j�ˇ. f /j 6 C˘CSBCp.#Qˇ/
pmax�1C

d. pmax�1C 1
q /

2 j suppˇj� 1
q kfkLq.suppˇ/;

which in turn implies (14).
2. For each ˇ we associate an element Qˇ 2 Qˇ with size equivalent to the size of

its support, i.e., such that

j suppˇj
jQˇj 6 C;

with a constant C depending on p. For example, we can select Qˇ 2 arg max
Q2Qˇ

jQj

and in this case j suppˇj
jQˇ j 6 #Qˇ 6 N.

Under the Assumption 3.2 we have that

kDT
Qˇ

k1 6 Cp

 

j QQˇj
jQˇj

!pmax�1
6 Cp.C

d
2C/

pmax�1:

3Without loss of generality, we denote by C2 the constant in Remark 1 for each coordinate

direction, and thus, j QQj

j suppˇj
6 Cd

2 , for all Q 2 Q such that Q � suppˇ.



88 A. Buffa et al.

In this case, we define cQ;ˇ WD
(

1; if Q D Qˇ

0; if Q ¤ Qˇ
, i.e., �ˇ D �

Qˇ
ˇ .

Finally, (14) follows from Theorem 1.

7 Quasi-Interpolation in Spline Spaces

We consider a dual basis f�ˇgˇ2B from (15), satisfying conditions (i)-(ii)-(iii) stated
in the previous section, for some q such that 1 6 q 6 1. Let P W Lq.˝/ ! V D
spanB be given by

P. f / WD
X

ˇ2B
�ˇ. f /ˇ; 8 f 2 Lq.˝/: (17)

The next result states some important properties of P.

Theorem 2 The following holds:

(a) P is a projection on V, i.e., for all f 2 V, P. f / D f .
(b) Local stability: Let 1 6 q 6 1. For Q D I1 � : : : � Id 2 Q, the operator P

satisfies

kPfkLq.Q/ 6 CSkfkLq. QQ/; 8 f 2 Lq.˝/:

where QQ D QI1 � : : : � QId denotes the support extension (see (1)) and CS > 0 is
the constant appearing in (14).

(c) Local approximation: Let s WD .s1; : : : ; sd/ be such that 0 6 si 6 pi C 1,
for i D 1; : : : ; d. Then, there exists a constant CA > 0 such that, for Q D
I1 � : : : � Id 2 Q, it holds that

kf � PfkLq.Q/ 6 CA

dX

iD1
jQIijsikDsi

xi fkLq. QQ/; 8 f 2 Wq;s.˝/;

where Wq;s.˝/ WD ff 2 Lq.˝/ W Dri
xi f 2 Lq.˝/; 0 6 ri 6 si; i D 1; : : : ; dg.

Proof (a) It is an immediate consequence of condition (ii).
(b) Let Q 2 Q. Then, taking into account the definition of P given by (17), the

spline partition-of-unity property and the Lq-stability in (14), we have

jP. f /j 6 max
ˇ2B

suppˇ�Q

j�ˇ. f /j 6 CSjQj� 1
q kfkLq. QQ/; on Q:
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Therefore,

kP. f /kLq.Q/ 6 CSkfkLq. QQ/:

(c) Let Q 2 Q. By the classical polynomial approximation property, there exists
p QQ 2 Pp such that

kf � p QQkLq. QQ/ 6 CT

dX

iD1
jQIijsikDsi

xi fkLq. QQ/; (18)

where the constant CT > 0 only depends on d, p, s and q. Taking into account
the local stability of P given in (b) and (18) we have that

kf � PfkLq.Q/ 6 kf � p QQkLq.Q/ C kp QQ � PfkLq.Q/
D kf � p QQkLq.Q/ C kP. p QQ � f /kLq.Q/
6 .1C CS/kf � p QQkLq. QQ/

6 .1C CS/CT

dX

iD1
jQIijsikDsi

xi
fkLq. QQ/:

Remark 7 The operator defined in [21] and called Bézier projection fits in this
framework and consists in a specific choice of coefficients cQ;ˇ in (15). Our results
of Sect. 6 provide stability for this operator under Assumption 3.1.

8 Conclusions

We have defined a class of quasi-interpolation operators onto spline spaces that
enjoy L2 stability properties and optimal locality properties, under very general
assumption on the knot distributions. These operators are proved to deliver optimal
approximation properties with respect to h for tensor product spline spaces. It should
be noted though that the behaviour of constants with respect to the degree p is not
analysed and is likely not optimal.

The class of operators we consider are associated with the construction of
a dual basis and for this reason, they can be used in situations that are more
general than tensor product B-splines. In particular, following [3] and [5], it is
clear that the same construction would provide a dual basis in the case of analysis
suitable (or dual compatible) T-splines (see [6] and the references there in). In
the same lines, following [20] and [7], our class of operators can be used to
provide quasi-interpolation operators for hierarchical splines (see [14, 22]) as well.
The analysis presented in this paper can provide a general framework for the
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study of the local approximation properties for such quasi-interpolants on either T-
splines or Hierarchical splines, but such results are beyond the scope of the present
contribution.
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Stabilised Finite Element Methods for Ill-Posed
Problems with Conditional Stability

Erik Burman

Abstract In this paper we discuss the adjoint stabilised finite element method
introduced in Burman (SIAM J Sci Comput 35(6):A2752–A2780, 2013) and how
it may be used for the computation of solutions to problems for which the standard
stability theory given by the Lax-Milgram Lemma or the Babuska-Brezzi Theorem
fails. We pay particular attention to ill-posed problems that have some conditional
stability property and prove (conditional) error estimates in an abstract framework.
As a model problem we consider the elliptic Cauchy problem and provide a
complete numerical analysis for this case. Some numerical examples are given to
illustrate the theory.

1 Introduction

Most methods in numerical analysis are designed making explicit use of the well-
posedness [23] of the underlying continuous problem. This is natural as long as the
problem at hand indeed is well-posed, but even for well-posed continuous problems
the resulting discrete problem may be unstable if the finite element spaces are not
well chosen or if the mesh-size is not small enough. This is for instance the case for
indefinite problems, such as the Helmholtz problem, or constrained problems such
as Stokes’ equations. For problems that are ill-posed on the continuous level on the
other hand the approach makes less sense and leads to the need of regularization on
the continuous level so that the ill-posed problem can be approximated by solving a
sequence of well-posed problems. The regularization of the continuous problem can
consist for example of Tikhonov regularization [29] or a so-called quasi reversibility
method [27]. In both cases the underlying problem is perturbed and the original solu-
tion (if it exists) is recovered only in the limit as some regularization parameter goes
to zero. The disadvantage of this approach from a numerical analysis perspective is
that once the continuous problem has been perturbed to some order, the accuracy
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of the computational method must be made to match that of the regularization. The
strength of the regularization on the other hand must make the continuous problem
stable and damp perturbations induced by errors in measurement data. This leads
to a twofold matching problem where the regularization introduces a perturbation
of first order, essentially excluding the efficient use of many tools from numerical
analysis such as high order methods, adaptivity and stabilisation. The situation is
vaguely reminiscent of that in conservation laws where in the beginning low order
methods inspired by viscosity solution arguments dominated, to later give way for
high resolution techniques, based on flux limiter finite volume schemes or (weakly)
consistent stabilised finite element methods such as the Galerkin Least Squares
methods (GaLS) or discontinuous Galerkin methods (dG) (see for instance [18]
and references therein). These methods allow for high resolution in the smooth
zone while introducing sufficient viscous stabilisation in zones with nonlinear
phenomena such as shocks or rarefaction waves.

In this paper our aim is to advocate a similar shift towards weakly consistent
stabilisation methods for the computation of ill-posed problems. The philosophy
behind this is to cast the problem in the form of a constrained optimisation problem,
that is first discretized, leading to a possibly unstable discrete problem. The problem
is then regularized on the discrete level using techniques known from the theory
of stabilised finite element methods. This approach has the following potential
advantages some of which will be explored below:

• the optimal scaling of the penalty parameter with respect to the mesh parameter
follows from the error analysis;

• for ill-posed problems where a conditional stability estimate holds, error esti-
mates may be derived that are in a certain sense optimal with respect to the
discretization parameters;

• discretization errors and perturbation errors may be handled in the same frame-
work;

• a posteriori error estimates may be used to drive adaptivity;
• a range of stabilised finite element methods may be used for the regularization of

the discrete problem;
• the theory can be adapted to many different problems.

Stabilised finite element methods represent a general technique for the regular-
ization of the standard Galerkin method in order to improve its stability properties
for instance for advection–diffusion problems at high Péclet number or to achieve
inf-sup stability for the pressure-velocity coupling in the Stokes’ system. To achieve
optimal order convergence the stabilisation terms must have some consistency
properties, i.e. they decrease at a sufficiently high rate when applied to the exact
solution or to any smooth enough function. Such stabilising terms appear to have
much in common with Tikhonov regularization in inverse problems, although the
connection does not seem to have been made in general. In the recent papers [10, 13]
we considered stabilised finite element methods for problems where coercivity fails
for the continuous problem and showed that optimal error estimates can be obtained
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without, or under very weak, conditions on the physical parameters and the mesh
parameters, also for problems where the standard Galerkin method may fail.

In the first part of this series [10] we considered the analysis of elliptic problems
without coercivity using duality arguments. The second part [13] was consecrated to
problems for which coercivity fails, but which satisfy the Babuska-Brezzi Theorem,
illustrated by the transport equation. Finally in the note [12] we extended the
analysis of [10] to the case of ill-posed problems with some conditional stability
property.

Our aim in the present essay is to review and unify some of these results and
give some further examples of how stabilised methods can be used for the solution
of ill-posed problem. To exemplify the theory we will restrict the discussion to the
case of scalar second order elliptic problems on the form

Lu D f in ˝ (1)

where L is a linear second order elliptic operator, u is the unknown and f is some
known data and˝ is some simply connected, open subset of Rd, d D 2; 3. Observe
that the operator L does not necessarily have to be on divergence form, although
we will only consider this case here to make the exposition concise (see [30] for an
analysis of well-posed elliptic problems on nondivergence form).

The discussion below will also be restricted to finite element spaces that are
subsets of H1.˝/. For the extension of these results to a nonconforming finite
element method we refer to [11].

1.1 Conditional Stability for Ill-Posed Problems

There is a rich literature on conditional stability estimates for ill-posed problems.
Such estimates often take the form of three sphere’s inequalities or Carleman
estimates, we refer the reader to [2] and references therein.

The estimates are conditional, in the sense that they only hold under the condition
that the exact solution exists in some Sobolev space V , equipped with scalar product
.�; �/V and associated norm k � kV WD .�; �/V . Herein we will only consider the case
where V � H1.˝/. Then we introduce V0 � V and consider the problem: find
u 2 V0 such that

a.u;w/ D l.w/; 8w 2 W; (2)

Observe that V0 and W typically are different subsets of H1.˝/ and we do not
assume that W is a subset or V0 or vice versa. The operators a.�; �/ W V � V !
R; l.�/ W W ! R denote a bounded bilinear and a bounded linear form respectively.
The form a.�; �/ is a weak form of Lu. We let k � kC denote the norm for which the
condition must be satisfied and k � kS denote the norm in which the stability holds.
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We then assume that a stability estimate of the following form holds: if for some
x 2 V0, with kxkC 6 E there exist " < 1 and r 2 W 0 such that

�
a.x; v/ D .r; v/hW0 ;Wi 8v 2 W
krkW0 6 "

I then kxkS 6 �E."/; (3)

where�E.�/ W RC ! R
C is a smooth, positive, function, depending on the problem,

k�kS and E, with lims!0C�E.s/ D 0. Depending on the problem different smallness
conditions may be required to hold on ".

The idea is that the stabilised methods we propose may use the estimate (3)
directly for the derivation of error estimates, without relying on the Lax-Milgram
Lemma or the Babuska-Brezzi Theorem. Let us first make two observations valid
also for well-posed problems. When the assumptions of the Lax-Milgram’s lemma
are satisfied (3) holds unconditionally for the energy norm and �E."/ D C", for
some problem dependent constant C. If for a given problem the adjoint equation
a.v; z/ D j.v/ admits a solution z 2 W, with kzkW 6 Ej, for some linear functional
j 2 V 0 then

j j.x/j D ja.x; z/j D jr.z/j 6 EjkrkW0 (4)

and we see that for this case the condition of the conditional stability applies to the
adjoint solution.

Herein we will focus on the case of the elliptic Cauchy problem as presented
in [2]. In this problem both Dirichlet and Neumann data are given on a part of the
boundary, whereas nothing is known on the complement. We will end this section
by detailing the conditional stability (3) of the elliptic Cauchy problem. We give the
result here with reduced technical detail and refer to [2] for the exact dependencies
of the constants on the physical parameters and the geometry.

1.2 Example: The Elliptic Cauchy Problem

The problem that we are interested in takes the form

8

<

:

�r � .�ru/C cu D f ; in ˝
u D 0 on �D

@nu D  on �N

(5)

where ˝ � R
d, d D 2; 3 is a polyhedral (polygonal) domain with boundary @˝ ,

@nu WD nT � ru, (with n the outward pointing normal on @˝), � 2 R
d�d is a

symmetric matrix for which 9�0 2 R, �0 > 0 such that yT � �y > �0 for all y 2 R
d

and c 2 R. By �N ; �D we denote polygonal subsets of the boundary @˝ , with
union �B WD �D [ �N and that overlap on some set of nonzero .d � 1/-dimensional
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measure, �S WD �D\�N ¤ ;. We denote the complement of the Dirichlet boundary
� 0
D WD @˝ n �D, the complement of the Neumann boundary � 0

N WD @˝ n �N and
the complement of their union � 0

B WD @˝ n �B. To exclude the well-posed case, we
assume that the .d�1/-dimensional measure of �S and � 0

B is non-zero. The practical
interest in (5) stems from engineering problems where the boundary condition, or its
data, is unknown on � 0

B, but additional measurements  of the fluxes are available
on a part of the accessible boundary �S. This results in an ill-posed reconstruction
problem, that in practice most likely does not have a solution due to measurement
errors in the fluxes [5]. However if the underlying physical process is stable, (in
the sense that the problem where boundary data is known is well-posed) we may
assume that it allows for a unique solution in the idealized situation of unperturbed
data. This is the approach we will take below. To this end we assume that f 2 L2.˝/,
 2 L2.�N/ and that a unique u 2 Hs.˝/, s > 3

2
satisfies (5). For the derivation of

a weak formulation we introduce the spaces V0 WD fv 2 H1.˝/ W vj�D D 0g and
W WD fv 2 H1.˝/ W vj� 0

N
D 0g; both equipped with the H1-norm and with dual

spaces denoted by V 0
0 and W 0.

Using these spaces we obtain a weak formulation: find u 2 V0 such that

a.u;w/ D l.w/ 8w 2 W; (6)

where

a.u;w/ D
Z

˝

.�ru/ � rw C cuw dx;

and

l.w/ WD
Z

˝

fw dx C
Z

�N

 w ds:

It is known [2, Theorems 1.7 and 1.9 with Remark 1.8] that if there exists a
solution u 2 H1.˝/, to (6), a conditional stability of the form (3) holds provided
0 6 " < 1 and

kukS WD kukL2.!/, ! � ˝ W dist.!; � 0
B/ DW d!;� 0

B
> 0

with �."/ D C.E/"� , C.E/ > 0, � WD �.d!;� 0

B
/ 2 .0; 1/; E D kukL2.˝/

(7)

and for

kukS WD kukL2.˝/ with �."/ D C1.E/.j log."/j C C2.E//��

with C1.E/;C2.E/ > 0, � 2 .0; 1/; E D kukH1.˝/:
(8)

How to design accurate computational methods that can fully exploit the power
of conditional stability estimates for their analysis remains a challenging problem.
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Nevertheless the elliptic Cauchy problem is particularly well studied. For pioneering
work using logarithmic estimates we refer to [22, 28] and quasi reversibility [26].
For work using regularization and/or energy minimisation see [3, 4, 17, 24, 25].
Recently progress has been made using least squares [19] or quasi reversibility
approaches [6–8] inspired by conditional stability estimates [9]. In this paper we
draw on our experiences from [11, 12], that appear to be the first works where error
estimates for stabilised finite element methods on unstructured meshes have been
derived for this type of problem. For simplicity we will only consider the operator
Lu WD ��u C cu, with c 2 R for the discussion below.

2 Discretization of the Ill-Posed Problem

We will here focus on discretizations using finite element spaces, but the ideas in
this section are general and may be applied to any finite dimensional space.

We consider the setting of Sect. 1.2. Let fThgh denote a family of quasi uniform,
shape regular simplicial triangulations, Th WD fKg, of ˝ , indexed by the maximum
simplex diameter h. The set of faces of the triangulation will be denoted by F and
FI denotes the subset of interior faces. The unit normal of a face of the mesh will
be denoted n, its orientation is arbitrary but fixed, except on faces in @˝ where the
normal is chosen to point outwards from ˝ . Now let Xk

h denote the finite element
space of continuous, piecewise polynomial functions on Th,

Xk
h WD fvh 2 H1.˝/ W vhjK 2 Pk.K/; 8K 2 Thg:

Here Pk.K/ denotes the space of polynomials of degree less than or equal to k on
a simplex K. Letting .�; �/X denote the L2-scalar product over X � R

d and h�; �iX
that over X � R

d�1, with associated L2-norms k � kX , we define the broken scalar
products and the associated norms by,

.uh; vh/h WD
X

K2Th

.uh; vh/K ; kuhkh WD .uh; uh/
1
2

h ;

huh; vhiF WD
X

F2F
huh; vhiF ; kuhkF WD huh; uhi

1
2

F :

If we consider finite dimensional subspaces Vh � V0 and Wh � W, for instance
in the finite element context we may take Vh WD Xk

h \ V0 and Wh WD Xk
h \ W, the

discrete equivalent of problem (2) (with g D 0) reads: find uh WD PNVh
jD1 uj'j 2 Vh

such that

a.uh; i/ D l.i/; i D 1; : : : ;NWh (9)
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where the f'ig and fig are suitable bases for Vh and Wh respectively and NVh WD
dim.Vh/, NWh WD dim.Wh/ This formulation may be written as the linear system

AU D L;

where A is an NWh � NVh matrix, with coefficients Aij WD a.'j; i/, U D
.u1; : : : ; uNV /

T and L D .l.1/; : : : ; l.NWh
//T . Observe that since we have not

assumed NVh D NWh this system may not be square, but even if it is, it may have
zero eigenvalues. This implies

1. non-uniqueness: there exists QU 2 R
NVh n f0g such that A QU D 0;

2. non-existence: there exists L 2 R
NWh such that L 62 Im.A/.

These two problems actually appear also when discretizing well-posed continuous
models. Consider the Stokes’ equation for incompressible elasticity, for this problem
the well-known challenge is to design a method for which the pressure variable is
stable and the velocity field discretely divergence free. Indeed the discrete spaces for
pressures and velocities must be well-balanced. Otherwise, there may be spurious
pressure modes in the solution, comparable to point 1. above, or if the pressure space
is too rich the solution may “lock”, implying that only the zero velocity satisfies
the divergence free constraint, which is comparable to 2. above. Drawing on the
experience of the stabilisation of Stokes’ problem this analogy naturally suggests
the following approach to the stabilisation of (9).

• Consider (9) of the form a.uh;wh/ D l.wh/ as the constraint for a minimisation
problem;

• minimise some (weakly) consistent stabilisation together with a penalty for the
boundary conditions (or other data) under the constraint;

• stabilise the Lagrange multiplier (since discrete inf-sup stability fails in general).

To this end we introduce the Lagrangian functional:

Ł.uh; zh/ WD 1

2
sV.uh � u; uh � u/� 1

2
sW.zh; zh/C ah.uh; zh/ � lh.zh/ (10)

where sV.uh�u; uh�u/ and sW.zh; zh/ represents a penalty term, imposing measured
data through the presence of sV.uh � u; uh � u/ and symmetric, weakly consistent
stabilisations for the primal and adjoint problems respectively. The forms ah.�; �/
and lh.�/ are discrete realisations of a.�; �/ and l.�/, that may account for the
nonconforming case where Vh 6� V and Wh 6� W.

The discrete method that we propose is given by the Euler-Lagrange equations
of (10), find .uh; zh/ 2 Vh � Wh such that

ah.uh;wh/ � sW.zh;wh/ D lh.wh/

ah.vh; zh/C sV.uh; vh/ D sV.u; vh/;
(11)
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for all .vh;wh/ 2 Vh � Wh. This results in a square linear system regardless of the
dimensions of Vh and Wh. Note the appearance of sV.u; vh/ in the right hand side
of the second equation of (11). This means only stabilisations for which sV .u; vh/
can be expressed using known data may be used. This typically is the case for
residual based stabilisations, but also allows for the inclusion of measured data in
the computation in a natural fashion. The stabilising terms in (11) are used both to
include measurements, boundary conditions and regularization. In order to separate
these effects we will sometimes write

sx.�; �/ WD sDx .�; �/C sSx.�; �/; x D V;W

where the sD contribution is associated with assimilation of data (boundary or
measurements) and the sS contribution is associated with the stabilising terms. For
the Cauchy problem sDV .u; vh/ depends on  and sSV.u; vh/ may depend on f as we
shall see below.

Observe that the second equation of (11) is a finite element discretization of
the dual problem associated to the pde-constraint of (10). Hence, assuming that a
unique solution exists for the given data, the solution to approximate is z D 0.
The discrete function zh will most likely not be zero, since it is perturbed by the
stabilisation operator acting on the solution uh, which in general does not coincide
with the stabilisation acting on u. The precise requirements on the forms will be
given in the next section together with the error analysis. We also introduce the
following compact form of the formulation (11), find .uh; zh/ 2 Vh � Wh such that

AhŒ.uh; zh/; .vh;wh/	 D Lh.vh;wh/ for all .vh;wh/ 2 Vh � Wh; (12)

where

AhŒ.uh; zh/; .vh;wh/	 WD ah.uh;wh/� sW.zh;wh/C ah.vh; zh/C sV .uh; vh/ (13)

and

Lh.vh;wh/ WD lh.wh/C sV.u; vh/:

We will end this section by giving some examples of the construction of the discrete
forms. To reduce the amount of generic constants we introduce the notation a . b
for a 6 Cb where C denotes a positive constant independent of the mesh-size h.

2.1 Example: Discrete Bilinear Forms and Penalty Terms
for the Elliptic Cauchy Problem

For the elliptic Cauchy problem of Sect. 1.2 we define Vk
h and Wk

h to be Xk
h (the

superscript will be dropped for general k). Then we use information on the boundary
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conditions to design a form ah.�; �/ that is both forward and adjoint consistent. A
penalty term is also added to enforce the boundary condition.

ah.uh; vh/ WD a.uh; vh/� h@nuh; vhi� 0

N
� h@nvh; uhi�D (14)

sDV .uh;wh/ WD �D
˝

h�1uh;wh
˛

�D
C �D hh@nuh; @nwhi�N ; (15)

where �D 2 RC denotes a penalty parameter that for simplicity is taken to be the
same for all the sD.�; �/ terms, it follows that, if u D g on �D,

sDV .u;wh/ WD �D
˝

h�1g;wh
˛

�D
C �D hh ; @nwhi�N :

The adjoint boundary penalty may then be written

sDW.zh; vh/ WD �D
˝

h�1zh; vh
˛

� 0

N
C �D hh @nzh; @nvhi� 0

D
: (16)

We assume that the computational mesh Th is such that the boundary subdomains
consist of the union of boundary element faces, i.e. the boundaries of �D and
�N coincide with element edges. Finally we let lh.vh/ coincide with l.vh/ for
unperturbed data. Observe that there is much more freedom in the choice of the
stabilisation for zh since the exact solution satisfies z D 0. We will first discuss the
methods so that they are consistent also in the case z ¤ 0, in order to facilitate the
connection to a larger class of control problems. Then we will suggest a stronger
stabilisation for zh.

2.2 Example: Galerkin Least Squares Stabilisation

For the stabilisation term we first consider the classical Galerkin Least Squares
stabilisation. Observe that for the finite element spaces considered herein, the GaLS
stabilisation in the interior of the elements must be complemented with a jump
contribution on the boundary of the element. If C1-continuous approximation spaces
are used this latter contribution may be dropped. First consider the least squares
contribution,

sSV .uh; vh/ WD �S.h
2Luh;Lvh/h C �S hh�@nuh�; �@nvh�iFI

; �S 2 RC: (17)

Here �@nvh� denotes the jump of the normal derivative of vh over an element face F.
It then follows that, considering sufficiently smooth solutions, u 2 Hs.˝/, s > 3=2,

sSV .u; vh/ WD �S.h
2f ;Lvh/h:

Similarly we define

sSW.zh;wh/ D �S.h
2L�zh;L�wh/h C �S hh�@nzh�; �@nwh�iFI

:
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For symmetric operators L we see that sSW.�; �/ � sSV .�; �/, however in the presence
of nonsymmetric terms they must be evaluated separately.

2.3 Example: Continuous Interior Penalty Stabilisation

In this case we may choose the two stabilisations to be the same, sSW.�; �/ � sSV .�; �/
and

sSV .uh; vh/ D �S
˝

h3��uh�; ��vh�
˛

FI
C �S hh�@nuh�; �@nvh�iFI

: (18)

2.4 Example: Stronger Adjoint Stabilisation

Observe that since the exact solution satisfies z D 0 we can also use the adjoint
stabilisation

sSW .zh;wh/ D �S.rzh;rwh/˝ (19)

This simplifies the formulation for non-symmetric problems when the GaLS method
is used and reduces the stencil, but the resulting formulation is no longer adjoint
consistent and optimal L2-estimates may no longer be proved in the well-posed case
(see [10] for a discussion). In this case the formulation corresponds to a weighted
least squares method. This is easily seen by eliminating zh from the formulation (11).

2.5 Penalty Parameters

Above we have introduced the penalty parameters �S and �D. The size of these
parameters play no essential role for the discussion below. Indeed the convergence
orders for unperturbed data are obtained only under the assumption that �S; �D >
0. Therefore the explicit dependence of the constants in the estimates will not be
tracked. Only in some key estimates, relating to stability and preturbed data, will
we indicate the dependence on the parameters in terms of �min WD min.�S; �D/ or
�max WD max.�S; �D/.

3 Hypothesis on Forms and Interpolants

To prepare for the error analysis we here introduce assumptions on the bilinear
forms. The key properties that are needed are a discrete stability estimate, that the
form ah.�; �/ is continuous on a norm that is controlled by the stabilisation terms
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and that the finite element residual can be controlled by the stabilisation terms. To
simplify the presentation we will introduce the space Hs.˝/, with s 2 RC which
corresponds to smoother functions than those in V for which ah.u; vh/ and sV .u; vh/
always are well defined. This typically allows us to treat the data part sDV and the
stabilisation part sSV together using strong consistency. A more detailed analysis
separating the two contributions in sV and handling the conformity error of ah for
u 2 V allows an analysis under weaker regularity assumptions.

Consistency: If u 2 V \Hs.˝/ is the solution of (1), then the following Galerkin
orthogonality holds

ah.uh � u;wh/� sW.zh;wh/ D lh.wh/ � l.wh/; for all wh 2 Wh: (20)

Stabilisation operators: We consider positive semi-definite, symmetric stabili-
sation operators, sV W Vh � Vh 7! R; sW W Wh � Wh 7! R: We assume that
sV .u; vh/, with u the solution of (2) is explicitly known, it may depend on data
from l.�/ or measurements of u. Assume that both sV and sW define semi-norms
on Hs.˝/C Vh and Hs.˝/C Wh respectively,

jv C vhjsZ WD sZ.v C vh; v C vh/
1
2 ;8v 2 Hs.˝/; vh 2 Zh; with Z D V;W:

(21)

Discrete stability: There exists a semi-norm, j.�; �/jL W .Vh C Hs.˝// � .Wh C
Hs.˝// 7! R, such that jvjsV C jwjsW . j.v;w/jL for v;w 2 .Vh C Hs.˝// �
.Wh C Hs.˝//. The semi-norm j.�; �/jL satisfies the following stability. There
exists cs > 0 independent of h such that for all .�h; �h/ 2 Vh � Wh there holds

csj.�h; �h/jL 6 sup
.vh ;wh/2Vh�Wh

AhŒ.�h; �h/; .vh;wh/	

j.vh;wh/jL : (22)

Continuity: There exists interpolation operators iV W V 7! Vh and iW W W 7!
Wh \ W and norms k � k�;V and k � k�;W defined on V C Vh and W respectively,
such that

ah.v � iVv;wh/ . kv � iVvk�;V j.0;wh/jL; 8v 2 V \ Hs.˝/; wh 2 Wh (23)

and for u solution of (2),

a.u � uh;w � iWw/ . kw � iWwk�;W �V.uh/; 8w 2 W; (24)

where the a posteriori quantity �V.uh/ W Vh 7! R satisfies �V .uh/ . j.u�uh; 0/jL
for sufficiently smooth u.

Nonconformity: We assume that the following bounds hold

jah.uh; iWw/ � a.uh; iWw/j . �V .uh/kwkW ; (25)
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and

jlh.iWw/ � l.iWw/j 6 ıl.h/kwkW ; (26)

where ıl W RC 7! R
C, is some continuous function such that limx!0C ıl.x/ D ı0,

with ı0 D 0 for unperturbed data.
Also assume that there exists an interpolation operator rV W H1.˝/ C Vh 7!
V0 \ Vh such that

krVuh � uhkS C krVuh � uhkC C krVuh � uhkV . �V.uh/: (27)

We assume that rV has optimal approximation properties in the V-norm and the
L2-norm for functions in V0 \ Hs.˝/.

Approximability: We assume that the interpolants iV W V 7! Vh, iW W W 7!
Wh \ W have the following approximation and stability properties. For all v 2
V \ Hs.˝/ there holds,

j.v � iVv; 0/jL C kv � iVvk�;V 6 CV.v/h
t; with t > 1: (28)

The factor CV.v/ > 0 will typically depend on some Sobolev norm of v. For iW
we assume that for some CW > 0 there holds

jiWwjL C kw � iWwk�;W 6 CWkwkW ; 8w 2 W: (29)

For smoother functions we assume that iW has approximation properties similar
to (28).

3.1 Satisfaction of the Assumptions for the Methods Discussed

We will now show that the above assumptions are satisfied for the method (14)–
(15) associated to the elliptic Cauchy problem of Sect. 1.2. We will assume that
u 2 V \ Hs.˝/ with s > 3

2
. Consider first the bilinear form given by (14). To prove

the Galerkin orthogonality an integration by parts shows that

ah.u;wh/ D .Lu;wh/C h@nu;whi�N D .f ;wh/C h ;whi�N
D l.wh/� lh.wh/C ah.uh;wh/� sW.zh;wh/:

It is immediate by inspection that the stabilisation operators defined in Sects. 2.2
and 2.3 both define the semi-norm (21). Now define the semi-norm for discrete
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stability

j.uh; zh/jL WD khLuhkh C khL�zhkh C kh 1
2 �@nuh�kFI C kh 1

2 �@nzh�kFI

C kh� 1
2 uhk�D C kh 1

2 @nuhk�N C kh� 1
2 zhk� 0

N
C kh 1

2 @nzhk� 0

D
: (30)

If the adjoint stabilisation (19) is used a term kzhkH1.˝/ may be added to the right
hand side of (30). Observe that for the GaLS method there holds for cs � �min > 0,

csj.uh; zh/j2L 6 AhŒ.uh; zh/; .uh;�zh/	

which implies (22). For the CIP-method one may also prove the inf-sup stabil-
ity (22), we detail the proof in appendix.

For the continuity (23) of the form ah.�; �/ defined by Eq. (14), integrate by parts,
from the left factor to the right, with  2 VhCHs.˝/ and apply the Cauchy-Schwarz
inequality,

ah.;wh/ 6 j.;L�wh/hj C hjj; j�@nwh�jiFI
C j h@n;whi� 0

N
j C j h; @nwhi� 0

D
j

6
�

kh�1k˝ C kh� 1
2 kFI[� 0

D
C kh 1

2 @nk� 0

N

�

j.0;wh/jL:

From this inequality we identify the norm k � k�;V to be

kk�;V WD kh�1k˝ C kh� 1
2 kFI[� 0

D
C kh 1

2 @nk� 0

N
:

Similarly to prove (24) for the form (14) let ' 2 W and integrate by parts in a.u �
uh; '/, identify the functional �V.uh/ and apply the Cauchy-Schwarz inequality with
suitable weights,

a.u � uh; '/ D .f ; '/C h ; 'i�N � a.uh; '/

6 j.f � Luh; '/hj C hj�@nuh�j; j'jiFI
C j h � @nuh; 'i�N j

6 .kh�1'k˝ C kh� 1
2 'kFI[�N / �V.uh/; (31)

where we define

�V.uh/ WD kh.f � Luh/kh C kh 1
2 �@nuh�kFI C kh 1

2 . � @nuh/k�N C kh� 1
2 uhk�D

with �V.uh/ D j.u � uh; 0/jL and we may identify

k'k�;W WD kh�1'k˝ C kh� 1
2 'kFI[�N :
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It is important to observe that the continuity (31) holds for the continuous form
a.; '/, but not for the discrete counterpart ah.; '/, since it is not well defined for
' 2 W.

For the definition of iV and iW we may use Scott-Zhang type interpolators,
preserving the boundary conditions on V0 and W, for rV we use a nodal interpolation
operator in the interior such that rVuj�D D 0. For u 2 Hs.˝/ with s > 3

2
the

approximation estimate (28) then holds with

t WD min.s � 1; k/ and CV .u/ . kukHtC1.˝/: (32)

The bound (29) holds by inverse and trace inequalities and the H1-stability of the
Scott-Zhang interpolation operator. It is also known that

kuh � rVuhkH1.˝/ . kh� 1
2 uhk�D . �V .uh/:

from which (27) follows. The following relation shows (25),

jah.uh; iWw/ � a.uh; iWw/j D j h@nuh; iWwi� 0

N
„ ƒ‚ …

D0

C h@niWw; uhi�D j

6 kh 1
2 @niWwk�Dkh� 1

2 uhk�D . kwkH1.˝/�V.uh/: (33)

Where we used that iWwj� 0

N
D 0, since iWw 2 W.

4 Error Analysis Using Conditional Stability

We will now derive an error analysis using only the continuous dependence (3). First
we prove that assuming smoothness of the exact solution the error converges with
the rate ht in the stabilisation semi-norms defined in Eq. (21), provided that there
are no perturbations in data. Then we show that the computational error satisfies a
perturbation equation in the form (6), and that the right hand side of the perturbation
equation can be upper bounded by the stabilisation semi-norm. Our error bounds are
then a consequence of the assumption (3).

Lemma 1 Let u 2 V0 \ Hs.˝/ be the solution of (2) and .uh; zh/ the solution of
the formulation (12). Assume that (20), (22), (23) and (28) hold. Then

j.u � uh; zh/jL . CV.u/.1C c�1
s /h

t:

Proof Let �h WD uh � iVu. By the triangle inequality

j.u � uh; zh/jL 6 j.u � iVu; 0/jL C j.�h; zh/jL
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and the approximability (28) it is enough to study the error in j.�h; zh/jL. By the
discrete stability (22)

csj.�h; zh/jL 6 sup
.vh;wh/2Vh�Wh

AhŒ.�h; zh/; .vh;wh/	

j.vh;wh/jL :

Using Eq. (20) we then have

csj.�h; zh/jL 6 sup
.vh;wh/2Vh�Wh

lh.wh/ � l.wh/C ah.u � iVu;wh/C sV .u � iVu; vh/

j.vh;wh/jL :

Under the assumption of unperturbed data and applying the continuity (23) in the
third term of the right hand side and the Cauchy-Schwarz inequality in the last we
have

ah.u�iVu;wh/CsV .u�iVu; vh/ . .�
� 1
2

min ku�iVuk�;VC� 1
2
maxj.u�iVu; 0/jL/j.vh;wh/jL

and hence

csj.�h; zh/jL . �
� 1
2

min ku � iVuk�;V C �
1
2
maxj.u � iVu; 0/jL:

Applying (28) we may deduce

csj.�h; zh/jL . CV .u/h
t:

ut
Theorem 1 Let u 2 V0 \ Hs.˝/ be the solution of (2) and .uh; zh/ the solution
of the formulation (12) for which (20)–(29) hold. Assume that the problem (2) has
the stability property (3) and that u and uh satisfy the condition for stability. Let
ca define a positive constant depending only on the constants of inequalities (24),
(25), (27) and (29) and define the a posteriori quantity

�.uh; zh/ WD �V.uh/C jzhjsW : (34)

Then, if �.uh; zh/ < c�1
a , there holds

ku � uhkS . �E.ca�.uh; zh//C �V .uh/ (35)

with �E independent of h.
For sufficiently smooth u there holds

�.uh; zh/ . CV.u/.1C c�1
s /h

t: (36)



108 E. Burman

Proof We will first write the error as one V0-conforming part and one discrete
nonconforming part. It then follows that e WD u � uh D u � rVuh

„ ƒ‚ …

DQe2V0
C rVuh � uh
„ ƒ‚ …

Deh2Vh

.

Observe that

ku � uhkS 6 ku � rVuhkS C kuh � rVuhkS 6 kQekS C �V.uh/:

Since both u and uh satisfy a stability condition it is also satisfied for Qe

kQekC 6 kukC CkuhkC CkehkC . kukC CkuhkC C�V .uh/ . 2ECCV.u/.1Cc�1
s /h

t:

(37)

Here we used the property that �V.uh/ . j.u � uh; 0/Lj 6 CV .u/.1C c�1
s /h

t, which
follows from Lemma 1. Now observe that

a.Qe;w/ D a.e;w/� a.eh;w/ D l.w/ � a.uh;w/ � a.eh;w/ (38)

and since the right hand side is independent of u we identify r 2 W 0 such that
8w 2 W,

.r;w/hW0 ;Wi WD l.w/ � a.uh;w/� a.eh;w/: (39)

It follows that Qe satisfies Eq. (6) with right hand side .r;w/hW0 ;Wi. Hence since Qe
satisfies the stability condition estimate (3) holds for Qe. We must then show that
krkW0 can be made small under mesh refinement. We proceed using an argument
similar to that of Strang’s lemma and (20) to obtain

.r;w/hW0 ;Wi D a.u � uh;w � iWw/
„ ƒ‚ …

T1

C l.iWw/ � lh.iWw/
„ ƒ‚ …

T2

C ah.uh; iWw/� a.uh; iWw/
„ ƒ‚ …

T3

� a.eh;w/
„ ƒ‚ …

T4

� sW.zh; iWw/
„ ƒ‚ …

T5

: (40)

We now use the assumptions of Sect. 3 to bound the terms T1-T5. First by (24)
and (29) there holds

T1 D a.u � uh;w � iWw/ . �.uh; 0/kw � iWwk�;W . �.uh; 0/kwkW :

By the assumption of unperturbed data and exact quadrature we have T2 D 0. Using
the bound of the conformity error (25) we obtain for T3

T3 D ah.uh; iWw/ � a.uh; iWw/ . �.uh; 0/kwkW :
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For the fourth term we use the continuity of a.�; �/, (29) and the properties of rV
to write

T4 D a.eh; iWw/ . kehkVkiWwkW . �.uh; 0/kwkW :

Finally we use the Cauchy-Schwarz inequality and the stability of (29) to get the
bound

T5 D sW.zh; iWw/ 6 jzhjsW jiWwjsW . �.0; zh/kwkW :

Collecting the above bounds on T1; : : : ;T5 in a bound for (40) we obtain

j.r;w/hW0 ;Wij . �.uh; zh/kwkW :

We conclude that there exists ca > 0 such that krkW0 < ca�.uh; zh/. Applying the
conditional stability we obtain the bound

kQekS . �E.ca�.uh; zh//

where the constants in �E are bounded thanks to the assumptions on u and uh
and (37).

The a posteriori estimate (35) follows using the triangle inequality and (27),

ku � uhkS D kQe C ehkS 6 kQekS C kehkS . �E.�.uh; zh//C �V .uh/: (41)

The upper bound of (36) is then an immediate consequence of the inequality

�.uh; zh/ 6 j.u � uh; zh/jL
and Lemma 1. ut
Remark 1 Observe that if weak consistency is used for the proof of Lemma 1 and
the data and stabilisation parts of the term sV are treated separately, then we may
show that the a posteriori part of Theorem 1 holds assuming only u 2 V .

4.1 Application of the Theory to the Cauchy Problem

Since the formulation (12) with the forms defined by (14)–(16) and the stabilisa-
tions (17), (18) or (19) satisfies the assumptions of Theorem 1 as shown in Sect. 3.1,
in principle the error estimates hold for these methods when applied to an elliptic
Cauchy problem (5) which admits a unique solution in V0 \ Hs.˝/, s > 3

2
. The

order t and the constant CV .u/ of the estimates are given by (32).
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However, some important questions are left unanswered related to the a priori
bounds on the discrete solution uh; zh. Observe that we assumed that the discrete
solution uh satisfies the condition for the stability estimate kuhkC 6 E. For the
Cauchy problem this means that kuhkH1.˝/ 6 E uniformly in h. As we shall see
below, this bound can be proven only under additional regularity assumptions on u.
Nevertheless we can prove sufficient stability on the discrete problem to ensure that
the matrix is invertible. We will first show that the L-semi-norm (30) is a norm on
Vh�Wh, which immediately implies the existence of a discrete solution through (22).

Lemma 2 Assume that j.�; �/jL is defined by (30) and the penalty operator (15).
Then j.vh; yh/jL is a norm on Vh � Wh. Moreover for all h > 0 and all k > 1 there
exists uh; zh 2 Vh � Wh solution to (12), with (14)–(16) and either (17) or (18) as
primal and adjoint stabilisation or (19) for adjoint stabilisation.

Proof The proof is a consequence of norm equivalence on discrete spaces. We
know that j.vh; 0/jL is a semi-norm. To show that it is actually norm observe that if
j.vh; 0/jL D 0 then vh 2 H2.˝/, Lvhj˝ D @nuhj�N D uhj�D D 0. It follows that
vh 2 H1.˝/ satisfies (6) with zero data. Therefore by (8) vh D 0 and we conclude
that j.vh; 0/jL is a norm. A similar argument yields the upper bound for yh. The
existence of discrete solution then follows from the inf-sup condition (22). If we
assume that Lh.vh;wh/ D 0 we immediately conclude that j.uh; zh/jL D 0 by which
existence and uniqueness of the discrete solution follows. ut
This result also shows that the method has a unique continuation property. This
property in general fails for the standard Galerkin method (Christiansen, private
communication, 1999).

In the estimate of Theorem 1 above we have assumed that both the exact solution
u and the computed approximation uh satisfy the condition for stability, in particular
we need ku�rVuhkC 6 E . Since u is unknown we have no choice but assuming that
it satisfies the condition and uh on the other hand is known so the constant E for uh
or rVuh can be checked a posteriori. From a theoretical point of view it is however
interesting to ask if the stability of uh can be deduced from the assumptions on u
and the properties of the numerical scheme only. This question in its general form
is open. We will here first give a complete answer in the case of piecewise affine
approximation of the elliptic Cauchy problem and then make some remarks on the
high order case.

Proposition 1 Assume that k � kC is bounded by the H1-norm, that u 2 H2.˝/ is
the solution to (6) and .uh; zh/ 2 Vh � Wh, with k D 1, is the solution to (12) with
the bilinear forms defined by (14)–(15) and (18). Then there holds

kuhkC . kukH2.˝/: (42)



Stabilised FEM for Ill-Posed Problems with Conditional Stability 111

Proof Observe that by a standard Poincaré inequality followed by a discrete
Poincaré inequality for piecewise constant functions [20] we have

kuhkH1.˝/ 6 kiVukH1.˝/ C kiVu � uhkH1.˝/ . kukH2.˝/ C h�1jiVu � uhjsV
. kukH2.˝/ C h�1j.iVu � uh; 0/jL . kukH2.˝/:

ut
A simple way to obtain the conditional stability in the high order case, if the

order t is known is to add a term .h2truh;rvh/˝ to sV.�; �/. This term will be weakly
consistent to the right order and implies the estimate

kuhkH1.˝/ . h�tjuhjsV . kukHtC1.˝/:

An experimental value for t can be obtained by studying the convergence of juhjsV C
jzhjsW under mesh refinement. To summarize we present the error estimate that we
obtain for the Cauchy problem (5) when piecewise affine approximation is used in
the following Corollary to Theorem 1.

Corollary 1 Let u 2 H2.˝/ be the solution to the elliptic Cauchy problem (5) and
uh; zh 2 Vh � Wh the solution of (12), with (14)–(16) and either (18) as primal
and adjoint stabilisation or (19) for adjoint stabilisation. Then the conclusion of
Theorem 1 holds with k � kS WD k � k! , with ! 	 ˝ , the function �E and E given
by (7) or (8) and

�.uh; zh/ WD kh.f�Luh/khCkh�@nuh�kFI Ckh� 1
2 uhk�D Ckh 1

2 . �@nuh/k�N CjzhjsW :

In particular there holds for h sufficiently small,

ku � uhk! . h� with 0 < � < 1 when dist.!; � 0
B/ > 0 (43)

and

ku � uhk˝ . .j log.C1h/j C C2/
�� with 0 < � < 1: (44)

Proof First observe that it was shown in Sect. 3 that the proposed formulation
satisfies the assumptions of Theorem 1. It then only remains to show that the
stability condition is uniformly satisfied, but this was shown in Proposition 1. The
estimates (43) and (44) are then a consequence of (7), (8), (32) and (36). Observe
that by (36) the smallness condition on �.uh; zh/will be satisfied for h small enough.

ut
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5 The Effect of Perturbations in Data

We have shown that the proposed stabilised methods can be considered to have
a certain optimality with respect to the conditional dependence of the ill-posed
problem. In practice however it is important to consider the case of perturbed data.
Then it is now longer realistic to assume that an exact solution exists. The above
error analysis therefore no longer makes sense. Instead we must include the size
of the perturbations, leading to error estimates that measure the relative importance
of the discretization error and the error in data. To keep the discussion concise we
will present the theory for the Cauchy problem and give full detail only in the case
of CIP-stabilisation (the extension to GaLS is straightforward by introducing the
perturbations also in the stabilisation sSV under additional regularity assumptions.)
In the CIP case the perturbations can be included in (12) by assuming that

lh.w/ WD .f C ıf ;w/˝ C h C ı ;wi�N (45)

where ıf and ı denote measurement errors and the unperturbed case still allows
for a unique solution. We obtain for (26),

jlh.wh/ � l.wh/j WD j.ıf ;wh/C hı ;whi�N j . kılk.H1.˝//0kwhkH1.˝/: (46)

Similarly the penalty operator sV.u; vh/ will be perturbed by a ıs.vh/ WD
hh ı ; @nvhi�N , here depending only on ı , but which may depend also on
measurement errors in the Dirichlet data. We may then write

Lh.wh; vh/ WD lh.wh/C sDV .u; vh/C ısD.vh/: (47)

Observe that the perturbations must be assumed smooth enough so that the above
terms make sense, i.e. in the case of the Cauchy problem, ıf 2 .H1.˝//0 and ı 2
L2.�N/. It follows that ısD.vh/ 6 h

1
2 kı k�N jvhjsV .

A natural question to ask is how the approximate solutions of (12) behaves in the
asymptotic limit, in the case where no exact solution exists. In this case we show
that a certain norm of the solution must blow up under mesh refinement.

Proposition 2 Assume that lh 2 .H1.˝//0, but no u 2 V0 satisfies the equation

a.u;w/ D lh.w/; 8w 2 W: (48)

Let .uh; zh/ be the solution of (12)with the stabilisation chosen to be the CIP-method
(Sect. 2.3). Then if sSV � sSW,

kh� 1
2 uhk�D C kruhk˝ C jzhjsW ! 1; when h ! 0:
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If sSW.�; �/ is defined by (19) then

kruhk˝ ! 1; when h ! 0:

Proof Assume that there exists M 2 R such that

kh� 1
2 uhk�D C kruhk˝ C jzhjsW < M

for all h > 0. It then follows by weak compactness that we may extract a
subsequence fuhg for which uh * � 2 V as h ! 0. We will now show that this
function must be a solution of (48), leading to a contradiction. Let  2 C1 \W and
consider

a.�; / D lim
h!0

a.uh; /:

For the right hand side we observe that

a.uh; / D ah.uh;  � iW/C a.uh; / � ah.uh; /

C sW.zh; iW/C lh.iW � /C lh./:

Now we bound the right hand side term by term. First using an argument similar to
that of (31), followed by approximation and trace and inverse inequalities, we have

ah.uh;  � iW/ . k � iWk�;W j.uh; 0/jL 6 ChkkH2.˝/.kh� 1
2 uhk�D C kruhk˝/:

(49)

Then using an argument similar to (33) recalling that  is a smooth function we get
the bound

a.uh; / � ah.uh; / 6 h
1
2 k@nk�Dkh� 1

2 uhk�D : (50)

For the adjoint stabilisation, first assume that it is chosen to be the CIP stabilisation
and add and subtract  in the right slot to get

sW .zh; iW/ 6 sW.zh; /
„ ƒ‚ …

D0
CsW.zh; iW � / 6 CjzhjsW hkkH2.˝/: (51)

If the form (19) is used, we first observe that testing (12) with vh D uh;wh D �zh
yields

juhj2sV C jzhj2sW D AhŒ.uh; zh/; .uh;�zh/	 D lh.zh/C hh ; @nuhi�N
6 klhk.H1.˝//0jzhjsW C h

1
2 k k�N juhjsV :
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It follows that there exists M > 0 such that

kh� 1
2 uhk�D C kh 1

2 @nuhk�N C kh� 1
2 zhk� 0

N
C kzhkH1.˝/ 6 M; 8h > 0:

Assuming also that kruhk˝ 6 M, we may then extract a subsequence uh * � 2 V
as h ! 0 and zh * � 2 W as h ! 0. Using similar arguments as above we may
show that 9C > 0 such that for all ' 2 V \ C1 there holds

a.'; zh/ 6 Ch
1
2

implying that � D 0, by (3) and (8). Therefore sW.zh; iW/ ! 0, for all  2
W. Observing finally that lh.iW � / . klhkW0hkkH2.˝/ we may collect the
bounds (49)–(51) to conclude that by density

a.�; / D lim
h!0

a.uh; / D lh./; 8 2 W

and hence that � is a weak solution to (48). This contradicts the assumption that the
problem has no solution and we have proved the claim. ut
To derive error bounds for the perturbed problem we assume that the W-norm can
be bounded by the L-norm, in the following fashion, 8wh 2 Wh

kwhkW
j.0;wh/jL . h�� (52)

for some � > 0. We may then prove the following perturbed versions of Lemma 1
and Theorem 1.

Lemma 3 Assume that the hypothesis of Lemma 1 are satisfied, with Lh.�/ defined
by (47) and (45). Also assume that (52) holds for some � > 0. Then

j.u � uh; zh/jL . CV .u/.1C c�1
s /h

t C c�1
s h

1
2 kı k�N C c�1

s h��kılk.H1.˝//0 :

Proof We only show how to modify the proof of Lemma 1 to account for the
perturbed data. Observe that the perturbation appears when we apply the Galerkin
orthogonality:

csj.�h; zh/jL 6 sup
fvh;whg2Vh�Wh

ıl.wh/C ah.u � iVu;wh/C sV.u � iVu; vh/C ısD.vh/

j.vh;wh/jL

here ıl.wh/ WD lh.wh/ � l.wh/. We only need to consider the upper bound of the
additional terms related to the perturbations in the following fashion

lh.wh/� l.wh/� ısD.vh/

j.vh;wh/jL . kılk.H1.˝//0
kwhkH1.˝/
j.vh;wh/jL C h

1
2 kı k�N

jvhjsV
j.vh;wh/jL :
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The conclusion then follows as in Lemma 1 and by applying the assumption (52)
and the fact that the L semi-norm controls jvhjsV . ut
Remark 2 In two instances we can give the precise value of the power �. First
assume that the adjoint stabilisation is given by Eq. (19) with j.0;wh/jL defined
by (30) with the added kwhkH1.˝/ term. It then follows that (52) holds with � D 0.
On the other hand if GaLS stabilisation or CIP stabilisation are used also for the
adjoint variable and piecewise affine spaces are used for the approximation we know
that by a discrete Poincaré inequality [20]

kwhkH1.˝/ . h�1j.0;wh/jL
and therefore � D 1 in this case.

Similarly the perturbations will enter the conditional stability estimate and limit
the accuracy that can be obtained in the k � kS norm when the result of Theorem 1 is
applied.

Theorem 2 Let u be the solution of (6) and .uh; zh/ the solution of the formula-
tion (12) with the right hand side given by (47). Assume that the assumptions (21)–
(28) hold, that the problem (6) has the stability property (3) and that u satisfies the
condition for stability. Let

�ı.uh; zh/ WD �.uh; zh/C kılkW0

with �.uh; zh/ defined by (34). Then for �ı.uh; zh/ small enough, there holds

ku � uhkS . �E.cı;a�ı.uh; zh//C �V.uh/ (53)

with �E dependent on uh. For sufficiently smooth u there holds

�ı.uh; zh/ . CV.u/.1Cc�1
s /h

tCc�1
s h

1
2 kı k�N C.1Cc�1

s h��/kılk.H1.˝//0 : (54)

Proof The difference due to the perturbed data appears in the Strang type argument.
We only need to study the term T2 of the Eq. (40) under the assumption (46). Using
the H1-stability of the interpolant iW we immediately get

T2 D l.iWw/ � lh.iWw/ . kılkW0 kiWwkW . kılkW0 kwkW :

It then follows that

j.r;w/hW0 ;Wij 6 .ca�.uh; zh/C CWkılkW0 /kwkW 6 cı;a�ı.uh; zh/kwkW
and assuming that cı;a�ı.uh; zh/ < 1, the a posteriori bound follows by applying the
conditional stability (3). For the a priori estimate we apply the result of Lemma 3
and kılkW0 6 kılk.H1.˝//0 . ut
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Observe that the function �E in the error estimate depends on kuhkC and therefore
is not robust. A natural question is how small we can choose h compared to the size
of the perturbations before the computational error stagnates or even grows. This
leads to a delicate balancing problem since the mesh size must be small so that the
residual is small enough, but not too small, since this will make the perturbation
terms dominate. Therefore the best we can hope for is a window 0 < hmin < h <
hmax, within which the estimates (53) and (54) hold. We will explore this below for
the approximation of the Cauchy problem using piecewise affine elements.

Corollary 2 Assume that the hypothesis of Lemma 3 and Theorem 2 are satisfied.
Also assume that there exists hmin > 0 and Cı.u/ > 0 such that

h��
minkılk.H1.˝//0 C h

1
2 kı k�N 6 Cı.u/h for h > hmin (55)

and hmax > 0 so such that for hmin < h < hmax there holds �ı.uh; zh/ < c�1
ı;a . Then

for hmin < h < hmax there exists �E.�/, independent of uh such that (53) and (54)
hold.

Proof First observe that by Lemma 3 and under the assumption (55) there holds for
h > hmin

j.iVu � uh; zh/jL . .CV.u/C Cı.u//c
�1
s h

It follows by this bound and the discrete Poincaré inequality, that kuhkH1.˝/ .
.CV.u/C Cı.u//c�1

s for h > hmin. We may conclude that the condition for stability
is satisfied for u, uh and the discrete error rVuh � uh. Therefore, since the smallness
assumption on �ı.uh; zh/ is satisfied for h < hmax, there exists �E independent of uh
such that estimates (53) and (54) hold when hmin < h < hmax. ut

6 Numerical Examples

Here we will recall some numerical examples from [10] and discuss them in the
light of the above analysis. We choose ˝ D .0; 1/ � .0; 1/ and limit the study to
CIP-stabilisation and the case where the primal and adjoint stabilisations are the
same. First we will consider the case of a well-posed but non-coercive convection–
diffusion equation,L WD ���uCˇ�ru:Then we study the elliptic Cauchy problem
with Lu WD ��u for unperturbed and perturbed data and finally we revisit the
convection-diffusion equation in the framework of the elliptic Cauchy problem and
study the effect of the flow characteristics on the stability. All computations were
carried out on unstructured meshes. In the convergence plots below the curves have
the following characteristics

• piecewise affine approximation: square markers;
• piecewise quadratic approximation: circle markers;
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• full line: the stabilisation semi-norm juhjSV C jzhjsW ;
• dashed line: the global L2-norm;
• dotted line with markers: the local L2-norm.
• dotted line without markers: reference slopes.

6.1 Convection–Diffusion Problem with Pure Neumann
Boundary Conditions

We consider an example given in [16]. The operator is chosen as

L.�/ WD r � .�r.�/C ˇ�/ (56)

with the physical parameters � D 1,

ˇ WD �100
�
x C y
y � x

�

(see the left plot of Fig. 1) and the exact solution is given by

u.x; y/ D 30x.1� x/y.1 � y/: (57)

This function satisfies homogeneous Dirichlet boundary conditions and has
kuk˝D1. Note that kˇkL1 D 200 and r � ˇ D �200, making the problem
strongly noncoercive with a medium high Péclet number. We solve the problem
with (non-homogeneous) Neumann-boundary conditions .�ru C ˇu/ � n D g on
@˝ . The parameters were set to �D D 10 and �S D 0:01 for piecewise affine
approximation and �S D 0:001 for piecewise quadratic approximation. The average
value of the approximate solutions has been imposed using a Lagrange multiplier.
The right hand side is then chosen as Lu and for the (non-homogeneous) Neumann
conditions, a suitable right hand side is introduced to make the boundary penalty
term consistent. In the right plot of Fig. 1 we observe optimal convergence rates as
predicted by theory (the dual adjoint problem is well-posed, see [10, 15]).

6.2 The Elliptic Cauchy Problem

Here we consider the problem (5) with � the identity matrix and c � 0. We impose
the Cauchy data, i.e. both Dirichlet and Neumann data, on boundaries x D 1; 0 <

y < 1 and y D 1; 0 < x < 1. We then solve (5) using the method (12) with (14)–(16)
and (18) with k D 1 and k D 2.
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Fig. 1 Left: Plot of the velocity vector field. Right: Convergence plot, errors against mesh size,
filled lines juhjsV C jzhjsW , dashed lines L2-norm error, dotted lines reference slopes, from top to
bottom O.h/, O.h2/, O.h3/
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Fig. 2 Study of the global L2-norm error under variation of the stabilisation parameter, circles:
affine elements, squares: quadratic elements

In Fig. 2, we present a study of the L2-norm error under variation of the
stabilisation parameter. The computations are made on one mesh, with 32 elements
per side and the Cauchy problem is solved with k D 1; 2 and different values for �S
with �D D 10 fixed. The level of 10% relative error is indicated by the horizontal
dotted line. Observe that the robustness with respect to stabilisation parameters is
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Fig. 3 Contour plots of the interpolated error iV � uh (left plot) and the error in the dual variable
zh (right plot)
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Fig. 4 Convergence under mesh refinement, the same slopes for the stabilization semi-norm are
represented in both graphics for reference

much better for second order polynomial approximation. Indeed in that case the
10 % error level is met for all parameter values �S 2 Œ2:0E � 5; 1	, whereas in the
case of piecewise affine approximation one has to take �S 2 Œ0:003; 0:05	. Similar
results for the boundary penalty parameter not reported here showed that the method
was even more robust under perturbations of �D. In the left plot of Fig. 3 we present
the contour plot of the interpolated error iVu � uh and in the right, the contour plot
of zh. In both cases the error is concentrated on the boundary where no boundary
conditions are imposed for that particular variable.

In Fig. 4 we present the convergence plots for piecewise affine and quadratic
approximations. The same stabilisation parameters as in the previous example were
used. In both cases we observe the optimal convergence of the stabilisation terms,
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O.hk/, predicted by Lemma 1. For the global L2-norm of the error we observe
experimental convergence of inverse logarithmic type, as predicted by theory. Note
that the main effect of increasing the polynomial order is a decrease in the error
constant as expected.

For the local L2-norm error, measured in the subdomain .0:5; 1/2, higher
convergence orders, O.hk/, were obtained in both cases.

6.2.1 The Effect of Perturbations in Data

In this section we will consider some numerical experiments with perturbed data.
We consider a perturbation of the form ı D &vrand where vrand is a random
function defined as a fourth order polynomial on the mesh with random nodal values
in Œ0; 1	 and & > 0 gives the relative strength of the perturbation. We consider the
same computations as for unperturbed data. In all figures we report the stabilisation
semi-norm jzhjsW C juhjsV to explore to what extent it can be used as an a posteriori
quantity to tune the stabilisation parameter and to detect loss of convergence due to
perturbed data.

First we consider the determination of the penalty parameter. First we fix �D D
10. Then, in Fig. 5 we show the results obtained by varying �S when the data is
perturbed with & D 0:01. We compare the global L2-error with the stabilisation
semi-norm. For the piecewise affine case we observe that the optimal value of the
penalty parameter does not change much. It is taken in the interval Œ0:01; 0:1	, which
corresponds very well with the minimum of the a posteriori quantity jzhjsW C juhjsV .
For piecewise quadratic approximation there is a stronger difference compared to
the unperturbed case. The optimal penalty parameter is now taken in the interval

1x10-7 1x10-6 0.00001 0.0001 0.001 0.01 0.1 1

penalty parameter

0.2

0.4

0.6

0.8

1
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1.4

1x10-7 1x10-6 0.000010.0001 0.001 0.01 0.1 1 10
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0.4

0.6

0.8

1

Fig. 5 Variation of the global L2-error (dashed line) and jzhjsW C juhjsV (full line) against � . Left
k D 1. Right k D 2
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Fig. 6 Variation of the L2-error (global dashed line, local dotted line) and jzhjsW C juhjsV (full
line) against & . Left k D 1. Right k D 2

Œ0:5; 5	. The a posteriori quantity takes its minimum value in the interval Œ0:1; 0:5	.
From this study we fix the penalty parameter to �S D 0:05 for piecewise affine
approximation and to �S D 1:0 in the piecewise quadratic case.

Next we study the sensitivity of the error to variations in the strength of the
perturbation, for the chosen penalty parameters. The results are given in Fig. 6. As
expected the global L2-error is minimal for the perturbation & D 0:01. For smaller
perturbations it remains approximately constant, but for perturbations larger than
1 % the error growth is linear in & for all quantities as predicted by theory, assuming
the stability condition is satisfied uniformly (see Lemma 3 and Theorem 2.)

Finally we study the convergence under mesh refinement when & D 0:01. The
results are presented in Fig. 7. From the theory we expect the reduction of the error
to stagnate or even start to grow when h . & . For the piecewise affine approximation
the minimal global L2-error is 0:065 for h D 0:015625 and it follows that the
stagnation takes place for h � & in this case. For k D 2 the minimal global L2-error
is 0:047 for h D 0:03125, that is one refinement level earlier than for the piecewise
affine case. In both cases we observe that the convergence of the stabilisation semi-
norm degenerates to worse than first order immediately after the critical mesh-size.
The dotted lines without markers immediately below the curve representing the a
posteriori quantity are reference curves with slopes O.h1:1/ for affine elements and
O.h1:4/ for quadratic elements k D 2. This rate is suboptimal in the latter case,
indicating a higher sensibility to perturbations for higher order approximations. It
follows that regardless of the smoothness of the (unperturbed) exact solution, high
order approximation only pays if perturbations in data are small enough so that they
do not dominate before the asymptotic range is reached.
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Fig. 7 Variation of the L2-error (global dashed line, local dotted line) and jzhjsW CjuhjsV (full line,
with markers) against h. Left k D 1, reference O.h1:1/. Right k D 2, reference O.h1:4/

6.3 The Elliptic Cauchy Problem for the Convection–Diffusion
Operator

As a last example we consider the Cauchy problem using the noncoercive
convection–diffusion operator (56). The stability of the problem depends strongly
on where the boundary conditions are imposed in relation to the inflow and outflow
boundaries. Strictly speaking this problem is not covered by the theory developed in
[2]. Indeed in that work the quantitative unique continuation used the symmetry of
the operator. An extension to the convection-diffusion case is likely to be possible,
at least in two space dimensions, by combining the results of [1] with those of [2].

To illustrate the dependence of the stability on how boundary data is distributed
on inflow and outflow boundaries we propose two configurations. Recalling the left
plot of Fig. 1 we observe that the flow enters along the boundaries y D 0, y D 1 and
x D 1 and exits on the boundary x D 0. Note that the strongest inflow takes place on
y D 0 and x D 1, the flow being close to parallel to the boundary in the right half of
the segment y D 1. We propose the two different Cauchy problem configurations:

Case 1. We impose Dirichlet and Neumann data on the two inflow boundaries
y D 0 and x D 1.

Case 2. We impose Dirichlet and Neumann data on the two boundaries x D 0 and
y D 1 comprising both inflow and outflow parts.

The gradient penalty operator has been weighted with the Péclet number as
suggested in [10], to obtain optimal performance in all regimes. In the first case
the main part of the inflow boundary is included in �S whereas in the second case
the outflow portion or the inflow portion of every streamline are included in the
boundary portion �S where data are set. This highlights two different difficulties
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Fig. 8 Left: Convergence for Case 1, k=1. Right: Convergence for Case 2, k=1

for Cauchy problems for the convection–diffusion operator, in Case 1 the crosswind
diffusion must reconstruct missing boundary data whereas in Case 2 we must solve
the problem backward along the characteristics, essentially solving a backward heat
equation.

In Fig. 8, we report the results on the same sequence of unstructured meshes used
in the previous examples for piecewise affine approximations and the two problem
configurations. In the left plot of Fig. 8 we see the convergence behaviour for Case 1,
when piecewise affine approximation is used. The global L2-norm error clearly
reproduces the inverse logarithmic convergence order predicted by the theory for the
symmetric case. In the right plot of Fig. 8 we present the convergence plot for Case 2
(the dotted lines are the same inverse logarithmic reference curves as in the left plot).
In this case we see that the convergence initially is approximately linear, similarly
as that of the stabilisation term. For finer meshes however the inverse logarithmic
error decay is observed, but with a much smaller constant compared to Case 1.
In Case 1 the diffusion is important on all scales, since some characteristics have
no data neither on inflow or outflow, whereas in Case 2, data is set either on the
inflow or the outflow for all characteristics of the flow and the effects of diffusion
are therefore much less important, in particular on coarse scales. Indeed the reduced
transport problem in the limit of zero diffusivity, is not ill-posed. As the flow is
resolved the effect of the diffusion once again dominates and the inverse logarithmic
decay reappears.

7 Conclusion

We have proposed a framework using stabilised finite element methods for the
approximation of ill-posed problems that have a conditional stability property.
The key element is to reformulate the problem as a pde-constrained minimisation
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problem that is regularized on the discrete level using tools known from the theory
of stabilised FEM. Using the conditional stability error estimates are derived that
are optimal with respect to the stability of the problem and the approximation
properties of the finite element spaces. The effect of perturbations in data may also
be accounted for in the framework and leads to limits on the possibility to improve
accuracy by mesh refinement. Some numerical examples were presented illustrating
different aspects of the theory.

There are several open problems both from theoretical and computational point
of view, some of which we will address in future work. Concerning the stabilisation
it is not clear if the primal and adjoint stabilisation operators should be chosen to
be the same, or not? Does the adjoint consistent choice of stabilisation sW have any
advantages compared to the adjoint stabilisation (19), that gives stronger control of
perturbations? Then comes the question of whether or not high order approximation
(i.e. polynomials of order higher than one) can be competitive also in the presence
of perturbed data? Can the a posteriori error estimate derived in Theorem 1 be used
to drive adaptive algorithms? Finally, what is a suitable preconditioner for the linear
system? We hope that the present work will help to stimulate discussion on the
design of numerical methods for ill-posed problems and provide some new ideas
on how to make a bridge between the regularization methods traditionally used and
(weakly) consistent stabilised finite element methods.

Appendix

We will here give a proof that the inf-sup stability (22) holds also for the
stabilisation (18). We do not track the depedence on �D and �S.

Proposition 3 Let AhŒ.�; �/; .�; �/	 be defined by (13) with ah.�; �/, sW .�; �/ and sV .�; �/
defined by Eq. (14)–(16) and (18) (or (19) for sW.�; �/). Then the inf-sup condi-
tion (22) is satisfied for the semi-norm (30).

Proof We must prove that the L2-stabilisation of the jump of the Laplacian gives
sufficient control for the inf-sup stability of Luh evaluated elementwise. It is well
known [14] that for the quasi-interpolation operator defined in each node xi by

.Ios�uh/.xi/ WD N�1
i

X

fKWxi2Kg
�uh.xi/jK ;

Ni WD cardfK W xi 2 Kg the following discrete interpolation result holds

kh.�uh � Ios�uh/kh 6 Coss
S
V .uh; uh/

1
2 (58)
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as well as following the stabilities obtained using trace inequalities, inverse inequal-
ities and the L2-stability of Ios,

kh 3
2 Ios�uhkF Ckh 5

2 @nIos�uhkF CkhIos�uhkhCjh2Ios�uhjsX . kh�uhkh: (59)

First observe that by taking .vh;wh/ D .uh; zh/ we have

juhj2sV C jzhj2sW D AhŒ.uh; zh/; .uh; zh/	:

Now let wL
h D h2IosLuh D h2.Ios�uh C cuh/, vLh D h2IosL�zh. Using (59) it is

straightforward to show that

kh 3
2 IosLuhkF C kh 5

2 @nIosLuhkF C khIosLuhkh C jh2IosLuhjsX 6 QCoskhLuhkh:
(60)

Now observe that (for a suitably chosen orientation of the normal on interior faces)

ah.uh;w
L
h / D khLuhk2h C .Luh; h2.IosLuh � Luh//h C ˝

�@nuh�; h
2IosLuh

˛

FI

C ˝

@nuh; h
2IosLuh

˛

�N
C ˝

@nh
2IosLuh; uh

˛

�D

> 1

2
khLuhk2h � 2kh2.IosLuh � Luh/k2h � 2 QC�2

os s
D
V .uh; uh/

> 1

2
khLuhk2h � 2C2ossSV.uh; uh/� 2 QC�2

os s
D
V .uh; uh/

> 1

2
khLuhk2h � 2.C2os C QC�2

os /juhj2sV

and

sW.zh;w
L
h / > � QC�2

os jzhj2sW � 1

4
khLuhk2h:

Similarly

ah.v
L
h ; zh/ > 1

2
khL�zhk2h � 2.C2os C QC�2

os /jzhj2sW

and

sV.uh; v
L
h / > � QC�2

os juhj2sV � 1

4
khL�zhk2h:
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It follows that for some c1; c2 > 0 there holds

j.uh; zh/j2L . AhŒ.uh; zh/; .uh C c1w
L
h ; zh C c2v

L
h /	:

We conclude by observing that by inverse inequalities and (60) we have the stability

j.uh C c1w
L
h ; zh C c2v

L
h /jL . j.uh; zh/jL:

ut
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Static Condensation, Hybridization,
and the Devising of the HDG Methods

Bernardo Cockburn

Abstract In this paper, we review and refine the main ideas for devising the so-
called hybridizable discontinuous Galerkin (HDG) methods; we do that in the
framework of steady-state diffusion problems. We begin by revisiting the classic
techniques of static condensation of continuous finite element methods and that of
hybridization of mixed methods, and show that they can be reinterpreted as discrete
versions of a characterization of the associated exact solution in terms of solutions
of Dirichlet boundary-value problems on each element of the mesh which are then
patched together by transmission conditions across interelement boundaries. We
then define the HDG methods associated to this characterization as those using
discontinuous Galerkin (DG) methods to approximate the local Dirichlet boundary-
value problems, and using weak impositions of the transmission conditions. We give
simple conditions guaranteeing the existence and uniqueness of their approximate
solutions, and show that, by their very construction, the HDG methods are amenable
to static condensation. We do this assuming that the diffusivity tensor can be
inverted; we also briefly discuss the case in which it cannot. We then show how
a different characterization of the exact solution, gives rise to a different way of
statically condensing an already known HDG method. We devote the rest of the
paper to establishing bridges between the HDG methods and other methods (the
old DG methods, the mixed methods, the staggered DG method and the so-called
Weak Galerkin method) and to describing recent efforts for the construction of HDG
methods (one for systematically obtaining superconvergent methods and another,
quite different, which gives rise to optimally convergent methods). We end by
providing a few bibliographical notes and by briefly describing ongoing work.
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1 Introduction

In this paper, we give a short introduction to the devising of the hybridizable
discontinuous Galerkin (HDG) in the framework of the following steady-state
diffusion model problem:

c q C ru D 0 in ˝ � R
d; (1a)

r � q D f in ˝; (1b)

u D uD on @˝: (1c)

We assume that the data c ; f and uD are smooth functions such that the solution itself
is smooth. Here c is a matrix-valued function which is symmetric and uniformly
positive definite on˝ . We are going to closely follow [33], where the HDG methods
were introduced.

Since the HDG methods are discontinuous Galerkin (DG) methods, [25], we
begin by defining the DG methods for the above boundary-value problem; we follow
[3]. Let us first discretize the domain ˝ . We denote a triangulation of the domain
˝ by ˝h WD fKg and set @˝h WD f@K W K 2 ˝hg. The outward unit normal to the
element K is denoted by n. The set of faces of the element K is denoted by F.K/.
An interior face F of the triangulation˝h is any set of the form @KC \ @K�, where
K˙ are elements of ˝h; we assume that the .d � 1/-Lebesgue measure of F is not
zero. The set of all interior faces is denoted by F i

h. Similarly, a boundary face F of
the triangulation ˝h is any set of the form @K \ @˝ , where K are elements of ˝h;
again, we assume that the .d � 1/ Lebesgue measure of F is not zero. The set of
all boundary faces is denoted by F@

h . The set of interior and boundary faces of the
triangulation is denoted by Fh.

The notation associated to the weak formulation of the method is the following.
We set

.�; �/˝h WD
X

K2˝h

.�; �/K and h�; �i@˝h WD
X

K2˝h

h�; �i@K;

where .�; �/K denotes the standard L2.K/-inner product, and h�; �i@K denotes the
standard L2.@K/-inner product.

We can now introduce the general form of a DG method. The approximate
solution .qh; uh/ given by a DG method is the element of the space Vh � Wh, where

Vh WD fv 2 L2.˝/ WvjK 2 V.K/ 8K 2 ˝hg;
Wh WD fw 2 L2.˝/ WwjK 2 W.K/ 8K 2 ˝hg:
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satisfying the equations

.c qh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0;

�.qh;rw/˝h C hOqh � n;wi@˝h D .f ;w/˝h ;

for all .v;w/ 2 Vh�Wh, where the numerical traces Ouh and Oqh �n are approximations
to uj@˝h and q � nj@˝h , respectively. The finite dimensional space Vh � Wh is chosen
so that all the integrals in the above weak formulation are well defined.

It remains to discuss how to choose the numerical traces. To do that, let us begin
by introducing some useful notation. The traces of the functions � and z defined on
K˙ 2 ˝h on the boundary @K˙ are denoted by �˙ and z˙, respectively. We use
the same notation if the functions � and z are defined on @˝h. Thus, we define the
jumps of � and z across the interior face F D @KC \ @K� by

ŒŒ�		 WD � CnC C � �n� and ŒŒz		 WD zC � nC C z� � n�;

respectively, where n˙ is the outward unit normal to K˙. On boundary faces F, we
simply write

ŒŒ�		 WD �n and ŒŒz		 WD z � n;

with the obvious notation. We say that the numerical traces are single-valued if, on
F i

h, ŒŒOuh		 D 0 and ŒŒOqh		 D 0.
Slightly extending what was done in [3], the numerical traces Ouh and (the normal

component of) Oqh are linear mappings Ouh W H1.˝h/ � H1.˝h/ ! L2.@˝h/ Oqh W
H1.˝h/ � H1.˝h/ ! L2.@˝h/ which approximate the traces of u and (the
normal component of) q on @˝h, respectively. We take these numerical traces to
be consistent. We say that they are consistent if

Ouh.�arv; v/ D vj@˝h ; Oqh.�arv; v/ � n D �.arv/ � nj@˝h ;

whenever ŒŒarv		 D 0 and ŒŒv		 D 0 on the interior faces F i
h. Here a WD c �1. This

completes the description of the DG methods.
The HDG methods are the DG methods just described which are amenable to

static condensation. They are thus efficiently implementable and turn out to be more
accurate than its predecessors in many instances. None of them fit in the unifying
framework developed in [3], since the numerical trace Ouh of the HDG methods
depends on the approximate flux too. The family of DG methods analyzed in [4]
includes some HDG methods.

The paper is organized as follows. In Sect. 2, we show that the classic techniques
of static condensation of continuous finite element methods and that of hybridiza-
tion of mixed methods, introduced back in 1965 in [55] and [52], respectively,
can be reinterpreted as discrete versions of a characterization of the associated
exact solution expressed in terms of solutions of Dirichlet boundary-value problems
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on each element of the mesh patched together by transmission conditions across
interelement boundaries. In Sect. 3, we use this reinterpretation to define the HDG
methods associated to this characterization as those using discontinuous Galerkin
(DG) methods to approximate the local Dirichlet boundary-value problems, and
using weak impositions of the transmission conditions. We show that, by construc-
tion, the global problem of these HDG methods only involves the approximation to
the trace of the scalar variable on the faces of the triangulation. We do this assuming
that the diffusivity tensor a is invertible; in Sect. 4, we show that it is trivial to
treat the case in which it is not. In Sect. 5, we show that a new characterization of
the exact solution, based on the elementwise solution of Neumann boundary-value
problems, can be used to produce a different type of static condensation of already
known HDG methods. In Sect. 6, we establish bridges between the HDG and several
other methods and comment on two promising ways of devising new HDG methods.
We end by providing a few bibliographical notes and by briefly describing ongoing
work.

1.1 Note to the Reader

Engineering and Mathematics Graduate Students interested in numerical methods
for partial differential equations should be able to read this paper. An elementary
background in finite element methods should be enough since here we focus on the
ideas guiding the devising of the methods rather than in their rigorous error analyses.

The material of these notes is strongly related to the one presented at the Durham
Symposium entitled “Building bridges: Connections and challenges in modern
approaches to numerical partial differential equations” at Durham, U.K., July 8–
16, 2014, sponsored by the London Mathematical Society, and EPSRC. I would like
to express my gratitude to the organizers, especially to G.R. Barrenechea and E.
Georgoulis, for the invitation to talk about HDG methods at that meeting.

These notes have evolved from several short courses the author has given: at
the Basque Center of Applied Mathematics, Bilbao, Spain, July 9–17, 2009; at the
University of Pavia, May 28–June 1, 2012; at the Department of Mathematics &
Statistics of the King Fahad University of Petroleum and Minerals, Dec. 2012; at
the International Center for Numerical Methods in Engineering, and Universidad
Polytecnica de Catalunya, Barcelona, Spain, July 11–15, 2012; at the US National
Conference on Computational Mechanics 12, Raleigh, North Carolina, July 22–25,
2013; and at the Department of Mathematics of the Chinese University of Hong
Kong, March 19–21, 2014.
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2 Static Condensation and Hybridization

Here we argue that the static condensation of the continuous Galerkin method,
an implementation technique introduced by R.J. Guyan 1965 in [55], can be
reinterpreted as a discrete version of a characterization of the exact solution. We
also argue that a similar interpretation can be given to the static condensation of a
mixed method as proposed by Fraejis de Veubeque also in 1965 [52], who showed
that this can be achieved provided the mixed method is hybridized first. Although
the above-mentioned procedures were carried out in the setting of linear elasticity,
we present them for our simpler model problem of steady-state diffusion (1).

We proceed as follows. First, we present a characterization of the exact solution
in terms of solutions of local problems patched together by means of transmission
and boundary conditions. We then show how the original static condensation of
the continuous Galerkin method and that of a mixed method can be thought of as
discrete versions of such characterization.

2.1 Static Condensation of the Exact Solution

2.1.1 A Characterization of the Exact Solution

Here, for any given triangulation˝h WD fKg of˝ , we give a characterization of the
exact solution in terms of solutions on each of the elements K 2 ˝h, and a single
global problem expressed in terms of transmission and boundary conditions.

Suppose that, for each element K 2 ˝h, we define .Q;U/ as the solution of the
local problem

cQ C rU D 0 in K;

r � Q D f in K;

U D Ou on @K;

where we want the single-valued function Ou to be such that .Q;U/ D .q; u/ on each
element K 2 ˝h. We know that this happens if and only if Ou enforces the following
transmission and boundary conditions:

ŒŒQ		 D 0 on F 2 F i
h;

Ou D uD on F 2 F@
h :

If we now separate the influence of Ou form that of f , we can easily see that we
obtained the following result.
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Theorem 1 (Characterization of the Exact Solution) We have that

.q; u/ D .Q;U/ D .QOu;UOu/C .Qf ;Uf /;

where, on the element K 2 ˝h, .QOu;UOu/ and .Qf ;Uf / are the solutions of

cQOu C rUOu D 0 in K; cQf C rUf D 0 in K;

r � QOu D 0 in K; r � Qf D f in K;

UOu D Ou on @K; Uf D 0 on @K;

and where Ou is the single-valued function solution of

� ŒŒQOu		 D ŒŒQf 		 if F 2 F i
h;

Ou D uD if F 2 F@
h :

2.1.2 An Example

Let us illustrate this result with a simple but revealing case. Take ˝ WD .0; 1/ with
K D .xi�1; xi/ for i D 1; : : : ;N where x0 D 0 and xN D 1. For simplicity, we take
c to be a constant. We then have that

.q; u/ D .QOu;UOu/C .Qf ;Uf /;

where, for i D 1; : : : ;N, the functions .QOu;UOu/ and .Qf ;Uf / are the solutions of the
local problem

cQOu C d

dx
UOu D 0 in .xi�1; xi/; cQf C d

dx
Uf D 0 in .xi�1; xi/;

d

dx
QOu D 0 in .xi�1; xi/;

d

dx
Qf D f in .xi�1; xi/;

UOu D Ou on fxi�1; xig; Uf D 0 on fxi�1; xig:

Note that we still do not know the actual values of the function Ou W fxigNiD0 7! R,
but once we obtain them, we can readily get the exact solution .q; u/. To find those
values, we only have to solve the global problem

�QOu.x�
i /C QOu.xC

i / D Qf .x
�
i / � Qf .x

C
i / for i D 1; : : : ;N � 1;

Ou.xi/ D uD.xi/ for i D 0;N:
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Now, let us solve the local problems and then find the global problem. A simple
computation gives that the solutions of the local problems are

QOu.x/ D � Oui � Oui�1
c hi

; Qf .x/ D �c �1
Z xi

xi�1

Gi
x.x; s/f .s/ ds;

UOu.x/ D 'i.x/ Oui C 'i�1.x/ Oui�1; Uf .x/ D
Z xi

xi�1

Gi.x; s/f .s/ ds;

where hi WD xi � xi�1 and Gi is the Green’s function of the second local problem,
namely,

Gi.x; s/ WD
(

c hi 'i.s/ 'i�1.x/ if xi�1 6 s 6 x;

c hi 'i.x/ 'i�1.s/ if x 6 s 6 xi:

where

'i.s/ WD
(

.s � xi�1/=hi if xi�1 6 s 6 xi;

.xiC1 � s/=hiC1 if xi 6 s 6 xiC1:

As a consequence, the global problem for the values fOuigNiD0 is

Oui � Oui�1
c hi

� OuiC1 � Oui
c hiC1

D
Z xiC1

xi�1

'i.s/ f .s/ ds for i D 1; : : : ;N � 1;

Ouj D uD.xj/ for j D 0;N:

In other words, the values of the exact solution at the nodes of the triangulation,
fOuigNiD0, can be obtained by inverting a (symmetric positive definite) tridiagonal
matrix of order N C 1.

2.2 Static Condensation of the Continuous Galerkin Method

Now, we show that a characterization of the continuous Galerkin method similar to
that one just obtained for the exact solution can be interpreted as the original static
condensation of the method [55].

2.2.1 A Characterization of the Approximate Solution

The continuous Galerkin method provides an approximation to u, uh, in the space

Wh D fw 2 C0.˝/ W wjK 2 W.K/ 8K 2 ˝hg:
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It determines it by requiring that it be the only solution in Wh.uD/ of the equation

.aruh;rw/˝ D . f ;w/˝ 8w 2 Wh.0/:

where Wh.g/ D fw 2 Wh W w D Ih.g/ on @˝g; and Ih is a suitably defined
interpolation operator.

Now, to obtain our characterization of the approximate solution, we need to split
the spaces in a suitable manner. Thus, for each element K 2 ˝h, we define the space
associated to the interior degrees of freedom,

W0.K/ WD fw 2 W.K/ W wj@K D 0g;

and the space associated to the degrees of freedom on the boundary,

W@.K/ WD fw 2 W.K/ W wj@K D 0 H) wjK D 0g:

Clearly, W.K/ D W0.K/C W@.K/ for all K 2 ˝h, and so Wh D W0;h C WFh where

W0;h WD fw 2 Wh W wjK 2 W0.K/ 8K 2 ˝hg;
WFh WD fw 2 Wh W wjK 2 W@.K/ 8K 2 ˝hg:

We also need to introduce the following sets of traces on Fh:

Mh WD fwjFh W w 2 Whg;
Mh.g/ WD f� 2 Mh W �j@˝ D Ih.g/g:

Note that the trace into Fh is an isomorphism between WFh and Mh.
Suppose that, for each element K 2 ˝h, we define U 2 W.K/ as the solution of

the local problem

.arU;rw/K D . f ;w/K 8w 2 W0.K/;

U D Ouh on @K;

where we want to chose the function Ouh 2 Mh in such a way that U D uh on each
element K 2 ˝h. This happens if and only Ouh is such that

.arU;rw/˝ D . f ;w/˝ 8w 2 WFh ;

Ouh D Ih.uD/ on @˝:

If we separate the influence of Ouh from that of f in the definition of the local
problems, and rework the formulation of the global problem, we get the following
result.
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Theorem 2 (Characterization of the Continuous Galerkin Method) The
approximation given by the continuous Galerkin method can be written as

uh D U D UOuh C Uf ;

where, on the element K 2 ˝h, UOuh and Uf are the elements of W.K/ that solve the
local problems

.arUOuh ;rw/K D 0 8w 2 W0.K/ .arUf ;rw/K D . f ;w/K 8w 2 W0.K/;

UOuh D Ouh on @K Uf D 0 on @K;

and Ouh is the element of Mh.uD/ that solves the global problem

.arUOuh ;rU�/˝ D . f ;U�/˝ 8 � 2 Mh.0/:

Note that, although the static condensation [55] is carried out directly on the
stiffness matrix of the method, this result shows how to use (local and global) weak
formulations to achieve exactly the same thing.

Proof By the linearity of the problem, we only have to justify the characterization
of the function Ouh. Let us start from the fact that Ouh is the element of Mh.uD/ which
solves the global problem

.arUOuh ;rw/˝ C .arUf ;rw/˝ D . f ;w/˝ 8 w 2 WFh :

Now, note that, for any w 2 Wh, we can define the function w0 by the equation

w D U� C w0;

where � WD wjFh ; this readily implies that w0 2 W0;h. If we now insert this
expression in the equation and take into consideration the definition of the solution
of the local problems, that is, that

.arUOuh ;rw0/˝ D 0;

.arUf ;rU�/˝ D 0;

.arUf ;rw0/˝ D . f ;w0/˝;

we finally get the wanted formulation. This completes the proof. �

2.2.2 The Numerical Trace of the Flux

A quick comparison of the above result with the one for the exact solution, suggests
that the global problem for the continuous Galerkin method is a transmission
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condition on a discrete version of the normal component of the flux. This little
known fact will allow us to identify the numerical trace of the approximate flux
for the continuous Galerkin method.

To do this, we first write the global problem in its original form, that is,

.aruh;rw/˝ D . f ;w/˝ 8 w 2 WFh ;

and perform a simple integration by parts to get

�.r � .aruh/;w/˝h C h.aruh/ � n;wi@˝h D . f ;w/˝ 8 w 2 WFh ;

Let us now define, for each element K 2 ˝h, the function Rh 2 W@.K/ satisfying
the equation

hRh;wi@K D .r � .aruh/C f ;w/K 8w 2 W@.K/:

Thus, the function Rh is a projection of the residual r � .aruh/ C f . With this
definition, we get that

h.�aruh/ � n C Rh;wi@˝h D 0 8 w 2 WFh ;

which can be interpreted as a transmission condition forcing the normal component
of numerical trace of the flux

Oqh � n WD .�aruh/ � n C Rh on @˝h;

to be weakly continuous across interelement boundaries.

2.2.3 Relation with Static Condensation

Let us now show that this characterization is nothing but an application of the well-
known technique of static condensation [55]. Static condensation was conceived
as a way to reducing the size of the stiffness matrix. Indeed, if Œuh	 is the vector
of degrees of freedom of the approximation uh, and the matrix equation of the
continuous Galerkin method is

K Œuh	 D Œ f 	;

the static condensation consists in partitioning the vector of degrees of freedom Œuh	
into two smaller vectors, namely, the degrees of freedom interior to the elements,
ŒU	, and the degrees of freedom associated to the boundaries of the elements,
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ŒOuh	, and then eliminating ŒU	 from the equations. Indeed, taking into account this
partition, the above equation reads

�
K00 K0@
K@0 K@@

� �
ŒU	
ŒOuh	

�

D
�
f0
f@

�

:

By our choice of the degrees of freedom, the matrix K00 is easy to invert since it is
block diagonal, each block being associated to a local problem. We thus get

ŒU	 D �K�1
00 K0@ŒOuh	C K�1

00 Œ f0	:

We can now eliminate ŒU	 from the original matrix equation to obtain

.�K@0 K
�1
00 K0@ C K@@/ŒOuh	 D �K@0 K

�1
00 Œ f0	C Œ f@	:

The matrix in the left-hand side, nowadays called the Schur complement of the
matrix K00, is clearly smaller than the original matrix K and is also easier to
numerically invert. We have thus shown that our characterization of the approximate
solution of the continuous Galerkin method is nothing but another way of carrying
out the good, old static condensation. The former expresses in terms of weak
formulations what the latter does directly on the matrix equations itself.

2.2.4 An Example

Let us now illustrate this procedure in our simple one-dimensional example. We
take

W.K/ WD Pk.K/;

where Pk.K/ denotes the space of polynomials of degree at most k defined on the
set K. We begin by solving the local problems. If we use the notation Oui D Ouh.xi/
for i D 0; : : : ;N, a few manipulations (and the proper choice of the basis functions)
allow us to see that the solutions of the local problems are

UOu.x/ D 'i.x/ Oui C 'i�1.x/ Oui�1 Uf .x/ D
Z xi

xi�1

Gi
h.x; s/f .s/ ds;

where hi WD xi � xi�1 and Gi
h is the discrete Green’s function of the second local

problem, namely,

Gi
h.x; s/ WD hi

4a

k�1X

`D1

1

2`C 1
.Pi

`C1 � Pi
`�1/.x/ .P

i
`C1 � Pi

`�1/.s/
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where Pi
n.x/ WD Pn.Ti.x//, Ti.�/ WD .� � .xi C xi�1/=2/=.hi=2/ and Pn is the

Legendre polynomial of degree n. As a consequence, the global problem for the
values fOuigNiD0 is

a
Oui � Oui�1

hi
� a

OuiC1 � Oui
hiC1

D
Z xiC1

xi�1

'i.s/ f .s/ ds for i D 1; : : : ;N � 1;

Ouj D uD.xj/ for j D 0;N:

Note that the size of the matrix equation of the global problem is independent of
the value of the polynomial degree k, a reflection of the effectiveness of the static
condensation technique. Note also that the values of the approximate solution at the
nodes of the triangulation, fOuigNiD0, are actually exact, as expected.

2.3 Static Condensation of Mixed Methods by Hybridization

Next, we show how to extend what was done for the continuous Galerkin method
to mixed methods. A particular important point we want to emphasize here is that
hybridization of a mixed method is what allows it to be statically condensed, as first
realized in [52].

2.3.1 A Characterization of the Approximate Solution

A mixed method seeks approximations to the flux q WD �aru, qh, and the scalar u,
uh, in the finite dimensional spaces

Vh D fv 2 H.div;˝/ W vjK 2 V.K/ 8K 2 ˝hg:
Wh D fw 2 L2.˝/ W wjK 2 W.K/ 8K 2 ˝hg;

respectively. It determines the function .qh; uh/ as the only element of Vh � Wh

satisfying the equations

.c qh; v/˝ � .uh;r � v/˝ D �huD; v � ni@˝ 8v 2 Vh;

.r � qh;w/˝ D .f ;w/˝ 8w 2 Wh:

For mixed methods, the choice of the finite dimensional space Vh � Wh is not
simple, but here we assume that it has been properly chosen as to define a unique
approximate solution.
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Now, suppose that, for each element K 2 ˝h, we define .Q;U/ 2 V.K/ � W.K/
as the solution of the local problem

.cQ; v/K � .U;r � v/K D hOuh; v � ni@K 8v 2 V.K/;

.r � Q;w/K D . f ;w/K 8w 2 W.K/:

This problem is well defined since it is nothing but the application of the mixed
method, which we assume to be well defined, to the single element K 2 ˝h. As
before, we want to choose the function Ouh in some finite dimensional space Mh in
such a way that .Q;U/ D .qh; uh/ on each element K 2 ˝h. For this to hold, we
only need to guarantee that

Q 2 Vh;

hOuh; v � ni@˝ D huD; v � ni@˝ 8 v 2 Vh:

The first property is a transmission condition since it holds if and only if the normal
component of Q is continuous across interelement boundaries. The second condition
is nothing but a weak form of the Dirichlet boundary condition.

As for the case of the continuous Galerkin method, the choice of the space Mh has
to be made in such a way that the above two conditions do determine the numerical
trace Ouh. Typically, we take

Mh WD f� 2 L2.Fh/ W 9 v 2 Vh W � D ŒŒv		 on Fhg:

Thus, if we set Mh.g/ WD f� 2 Mh W h�; �i@˝ D hg; �i@˝ 8� 2 Mhg; the global
problem can be expressed as follows:

hQ � n; �i@˝h D 0 8 � 2 Mh.0/;

Ouh 2 Mh.uD/:

Indeed, note that, for any � 2 Mh.0/;

hQ � n; �i@˝h D hQ; �i@˝hn@˝ D h ŒŒQ		; �iF i
h
;

and if this quantity is zero, we certainly have that Q 2 Vh, as wanted. So, let us
assume then that the above global problem for Ou 2 Mh is well defined.

So, we have obtained the following result.

Theorem 3 (Characterization of the Mixed Method) The solution of the mixed
method can be written as

.qh; uh/ D .Q;U/ D .QOuh ;UOuh/C .Qf ;Uf /;
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where, on each element K 2 ˝h, for any � 2 L2.@K/ and f 2 L2.K/, the functions
.Q�;U�/ and .Qf ;Uf / are the elements of V.K/ � W.K/ which solve the local
problems

.cQ�; v/K � .U�;r � v/K D �h�; v � ni@K ; .cQf ; v/K � .Uf ;r � v/K D 0;

.r � Q�;w/K D 0; .r � Qf ;w/K D . f ;w/K;

for all .v;w/ 2 V.K/ � W.K/, and the function Ouh is the element of Mh.uD/ which
solves the global problem

.cQOuh ;Q�/˝h D . f ;U�/˝h 8 � 2 Mh.0/;

Proof We only have to prove that Ouh 2 Mh.uD/ satisfies the equation

�hQOuh � n; �i@˝h D hQf � n; �i@˝h 8 � 2 Mh.0/:

But, by the definition of the local problems, we have

�hQOuh � n; �i@˝h D .cQ�;QOuh/˝h ;

hQf � n; �i@˝h D �.cQ�;Qf /˝h C .U�;r � Qf /˝h

D �.Uf ;r � QOuh/˝h C .U�;r � Qf /˝h

D .U�;r � Qf /˝h

D . f ;U�/˝h ;

and the identity follows. This completes the proof. �

2.3.2 Relation with Static Condensation and Hybridization

Let us now show that what we have done is nothing but the static condensation of
the hybridized version of the mixed method as done by Fraejis de Veubeke in [52].
Suppose that the matrix equation of the mixed method reads

�
A B
Bt 0

� �
Œqh	
Œuh	

�

D
�
ŒuD	
Œ f 	

�

:

It is not easy to eliminate Œqh	 from this equation since the matrix A is not block
diagonal because, since qh 2 Vh, its normal component is continuous across
inter element boundaries. To overcome this unwanted feature, Fraejis de Veubeque
relaxed the continuity condition on qh and worked with a totally discontinuous
approximation Q instead. Because of this, he had to introduce the hybrid unknown
Ouh, an approximation to the trace of u on each element; this is why this procedure
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receives the name of hybridization of the mixed method. Finally, in order to
guarantee that Q be identical to the original function qh, he then forced it to have
a continuous normal component at the interelement boundaries. This operation
resulted the following matrix equation:

2

4

A B C
Bt 0 0

Ct 0 0

3

5

2

4

ŒQ	
ŒU	
ŒOuh	

3

5 D
2

4

�C@ŒuD	
Œf 	
0

3

5 :

Here, ŒOuh	 denotes the digressive freedom of the function Ouh restricted to the interior
faces. On the boundary faces, the relation of Ouh to uD is already captured by the
right-hand side of the first equation. Note that, since the first two equations define
the local problems, we can easily solve them to obtain

�

ŒQ	
ŒU	

�

D
�

A B
Bt 0

��1 ��CŒOuh	 � C@ŒuD	
Œf 	

�

:

The third equation, C ŒQ	 D 0 enforces the continuity of the normal component
of Q across inter element boundaries; it is this equation that determines the hybrid
unknown in the interior faces, ŒOuh	. A few computations show that the resulting
matrix equation is of the form

HŒ Ou 	 D H@Œ uD 	CJ Œ f 	; H WD CtE C; E WD A�1�A�1B .BtA�1B/�1 BtA�1;

and we see that, as expected, the matrix H is symmetric. Moreover, H is positive
definite and E is block-diagonal.

2.3.3 An Example

Next, let us illustrate this procedure in our simple one-dimensional example. We
take

V.K/ � W.K/ WD PkC1.K/ � Pk.K/:

We begin by solving the local problems. A little computation gives that the solutions
of the local problems are

QOu.x/ D � Oui � Oui�1
c hi

; Qf .x/ D
Z xi

xi�1

Hi
h.x; s/f .s/ ds;

UOu.x/ D 'i.x/ Oui C 'i�1.x/ Oui�1; Uf .x/ D
Z xi

xi�1

Gi
h.x; s/f .s/ ds;
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where hi WD xi � xi�1 and

Hi
h.x; s/ WD 'i.x/ 'i.s/ � 'i�1.x/ 'i�1.s/C 1

2

kX

`D1
.Pi

`C1 � Pi
`�1/.x/Pi

`.s/;

Gi
h.x; s/ WD c hi

4

k�1X

`D1

1

2`C 1
.Pi

`C1 � Pi
`�1/.x/ .P

i
`C1 � Pi

`�1/.s/:

Let us recall that Pi
n.x/ WD Pn.Ti.x//, Ti.�/ WD .� � .xi C xi�1/=2/=.hi=2/ and Pn

is the Legendre polynomial of degree n. Note that the function Gi
h approximates

the Green function Gi whereas �cHi
h approximates its partial derivative Gi

x. As a
consequence, the global problem for the values fOuigNiD0 is

Oui � Oui�1
c hi

� OuiC1 � Oui
c hiC1

D
Z xiC1

xi�1

'i.s/ f .s/ ds for i D 1; : : : ;N � 1;

Ouj D uD.xj/ for j D 0;N:

We thus see that the values of the approximate solution at the nodes of the
triangulation, fOuigNiD0, are actually exact, as expected.

3 HDG Methods

In this section, we show how to use a discrete version of the characterization of
the exact solution obtained in the previous section to devise HDG methods for
our model problem (1). The local problems are solved by using a DG method
and the transmission conditions by a simple weak formulation. As a consequence,
the resulting HDG methods are DG methods whose distinctive feature is that they
are amenable to hybridization and hence to static condensation. Let us emphasize
that this does not happen by accident, but because they are constructed by using
a discrete version of the characterization of the exact solution worked out in the
previous section.

After defining the HDG methods, we establish a simple result about the existence
and uniqueness of their approximate solution and display some examples. We end by
showing several different ways of presenting them which will be useful for relating
them to other numerical methods.

We follow closely the work done in 2009 [33] for the original HDG methods,
as well as the work done in the 2014 review paper [23] for HDG methods for the
Stokes system of incompressible fluid flow.
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3.1 Definition

We take the approximate solution of the HDG methods to be the function

.qh; uh/ D .Q;U/;

where, on the element K 2 ˝h, .Q;U/ 2 V.K/ � W.K/ is the solution of the local
problem

.cQ; v/K � .U;r � v/K C hOuh; v � ni@K D 0 8v 2 V.K/;

�.Q;rw/K C h OQ � n;wi@K D . f ;w/K 8w 2 W.K/;

where the numerical trace OQ has to be suitably chosen. Ideally, the numerical trace
of the flux OQ should be chosen so that it

1. is consistent,
2. only depends (linearly) on QjK ;UjK and Ouhj@K ,
3. renders the local problem solvable.

Our favorite choice is

OQ � n WD Q � n C �.U � Ouh/ on @K;

where the function � is linear. We are also going to require that � be symmetric, that
is, that, for all K 2 ˝h,

h�.w/; !i@K D hw; �.!/i@K 8 w; ! 2 W.K/C Mh.@K/:

Although there are many other choices, we are going to use this one from now on;
not only it is very natural but it actually covers all the known HDG methods.

To complete the definition of the HDG methods, we take the function Ouh in the
space

Mh WD f� 2 L2.Fh/ W �F 2 M.F/ 8F 2 Fhg;

where M.F/ is a suitably chosen finite dimensional space, and require that it
be determined as the solution of the following weakly imposed transmission and
boundary conditions:

h�; ŒŒ OQ		iF i
h

D h�; OQ � ni@˝hn@˝ D 0;

h�; Ouhi@˝ D h�; uDi@˝;

for all � 2 Mh. This completes the definition of the HDG methods.
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The HDG methods are obtained by choosing different functions � and
different local spaces V.K/, W.K/ and M.F/.

3.2 Existence and Uniqueness

We now provide simple conditions on the local spaces and the function � ensuring,
not only that the local problems are solvable, but that the global problem is also
well posed. To do that, we use an energy identity we obtain next which will also
shed light on the role to the function � .

Proposition 1 (The Local Energy Identity) For any element K 2 ˝h, we have

.cQ;Q/K C h.U � Ouh/; �.U � Ouh/i@K D . f ;U/K � hOuh; OQ � ni@K :

Note that the exact solution satisfies the following energy identity:

.c q; q/K D . f ; u/K � hu; q � ni@K :
Typically, the terms .c q; q/K and .cQ;Q/K are interpreted as the energy stored
inside the element K. It is thus reasonable to interpret the term h.U � Ouh/; �.U �
Ouh/i@K as an energy associated with the jumps U� Ouh at the boundary of the element
@K. Since all energies are nonnegative, we assume that the function � is such that

h�.w � �/;w � �i@K > 0 8.w; �/ 2 W.K/ � M.@K/; (2a)

where

M.@K/ WD f� 2 L2.@K/ W �jF 2 M.F/; for any face F 2 Fh lying on @Kg:
(2b)

We now see that the role of � is to transform the discrepancy between U and Ouh
on @K into an energy. Since an increase of energy is typically associated with an
enhancement of the stability properties of the numerical method, � is called the
stabilization function.

Let us now prove Proposition 1.

Proof If we take .v;w/ WD .Q;U/ in the equations of the local problems, we get

.cQ;Q/K � .U;r � Q/K C hOuh;Q � ni@K D 0;

�.Q;rU/K C h OQ � n;Ui@K D . f ;U/K ;

and adding the two equations, we obtain

.cQ;Q/K C h. OQ � Q/ � n;U � Ouhi@K D . f ;U/K � h OQ � n; Ouhi@K:
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The energy identity now follows by simply inserting the definition of the numerical
trace OQ. This completes the proof. �

We are now ready to present our main result. It is a variation of a similar result
in [33].

Theorem 4 Assume that the stabilization function � satisfies the nonnegativity
condition (2). Assume also that, for each element K 2 ˝h, we have that if
.w; �/ 2 W.K/ � M.@K/ is such that

(i) h�.w � �/;w � �i@K D 0;

(ii) .rw; v/K C h� � w; v � ni@K D 0 8 v 2 V.K/;

then w is a constant on K and w D � on @K. Then the approximate solution
.qh; uh; Ouh/ 2 Vh � Wh � Mh of the HDG method is well defined.

Note that condition (ii) establishes a relation between the local spaces V.K/,
W.K/ and M.@K/ and the stabilization function � guaranteeing that the local
problems as well as the global problem have a unique solution. Note also that if
condition (i) were not necessary to obtain that w is a constant on K and w D � on
@K, we can simply take � � 0. However, for most cases, without condition (i), the
method might simply fail to be well defined. The role of � , is thus to prevent this
failure.

Let us now prove Theorem 4.

Proof Since the HDG method defines a finite dimensional square system for the
unknowns .Q;U; Ouh/ 2 Vh � Wh � Mh, we only have to show that, when we set the
data f and uD to zero, the only solution is the trivial one.

Thus, setting � WD Ouh in the transmission condition, and recalling that, by the
boundary condition, Ouh D 0 on @˝ , we get

0 D � hOuh; OQ � ni@˝h D .cQ;Q/˝h C h.U � Ouh/; �.U � Ouh/i@˝h ;

by the energy identity of the previous proposition. By assumption (i), we get that
Q D 0 on ˝ and that h.U � Ouh/; �.U � Ouh/i@K D 0 for any K 2 ˝h. Moreover, the
first equation defining the local problem now reads

.rU; v/K C hOuh � U; v � ni@K D 0 8 v 2 V.K/:

By assumption (ii) with .w; �/ WD .U; Ouh/, we have that, on each element K 2 ˝h,
U is a constant on K and that U D Ouh on @K. As a consequence, U is a constant on
˝ and U D Ouh on Fh. Since Ouh D 0 on @˝ we finally get that U D 0 on ˝ and that
Ouh D 0 on Fh. This completes the proof. �

Let us now present an almost direct consequence of the previous result in a case
in which the stabilization function � is very strong.
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Corollary 1 ([33]) Assume that the stabilization function � satisfies the nonnega-
tivity condition (2). Assume also that, for every element K 2 ˝h,

(a) .w; �/ 2 W.K/ � M.@K/ W h�.w � �/;w � �i@K D 0 H) w D � on @K,
(b) rW.K/ � V.K/.

Then the approximate solution .qh; uh; Ouh/ 2 Vh � Wh � Mh of the HDG method is
well defined.

A remarkable feature of this result is that the method is well defined completely
independently of the choice of the space Mh. This is a direct consequence of
condition (a), which is clearly stronger than condition (i) of Theorem 4 on the
stabilization function � . Thanks to condition (a) , we can replace condition (ii) of
Theorem 4 by the simpler condition (b), as we see next.

Proof We only have to show that the assumptions the previous result are satisfied.
Since � is a linear mapping, assumption (a) implies condition (i) of Theorem 4.
Now, by assumption (a), if h�.w � �/;w � �i@K D 0, we have that w D � on @K
and we get that condition (ii) of Theorem 4 reads

.rw; v/K D 0 8v 2 V.K/:

By assumption (b), we can take v WD rw and conclude that w is a constant on K.
This implies that the second assumption of Theorem 4 holds. This completes the
proof. �

3.3 Characterizations of the HDG Methods

Here, we provide two characterizations of the approximate solution provided by the
HDG methods just introduced. We are going to use the set

Mh.g/ WD f� 2 Mh W h�; �i@˝ WD hg; �i@˝8� 2 Mhg:

3.3.1 Formulation in Terms of .qh; uh; Ouh/

Static Condensation Formulation

The following result reflects the way in which the HDG methods were devised and
renders evident the way in which their implementation by static condensation can
be achieved.



Static Condensation, Hybridization, and the Devising of the HDG Methods 149

Theorem 5 (First Characterization of HDG Methods) The approximate solution
of the HDG method is given by

.qh; uh/ D .Q;U/ D .QOuh ;UOuh/C .Qf ;Uf /;

where, on the element K 2 ˝h, for any � 2 L2.@K/, the function .Q�;U�/ 2
V.K/ � W.K/ is the solution of the local problem

.cQ�; v/K � .U�;r � v/K C h�; v � ni@K D 0 8v 2 V.K/;

�.Q�;rw/K C h OQ� � n;wi@K D 0 8w 2 W.K/;

OQ� � n WD Q� � n C �.U� � �/ on @K;

and, for any f 2 L2.K/, the function .Qf ;Uf / 2 V.K/ � W.K/ is the solution of the
local problem

.cQf ; v/K � .Uf ;r � v/K D 0 8v 2 V.K/;

�.Qf ;rw/K C h OQf � n;wi@K D . f ;w/K 8w 2 W.K/;

OQf � n WD Qf � n C �.Uf / on @K:

The function Ouh is the element of Mh.uD/ such that

ah.Ouh; �/ D `h.�/ 8 � 2 Mh.0/;

where ah.�; �/ WD �h�; OQ� � ni@˝h , and `h.�/ WD h�; OQf � ni@˝h . Moreover,

ah.�; �/ D .cQ�;Q�/˝h C hU� � �; �.U� � �/i@˝h ; `h.�/D . f ;U�/;

and ah.�; �/ is symmetric and positive definite on Mh.0/�Mh.0/. Thus, Ouh minimizes
the total energy functional Jh.�/ WD 1

2
ah.�; �/ � `h.�/ over Mh.uD/.

Proof We only need to prove the last two identities and the property of positive
definiteness of the bilinear form ah.�; �/.

Let us prove the first identity. If we take v WD Q� in the first equation defining
the first local problem, replace � by � in the second equation defining the first local
problem and set w WD U�, we get

.cQ�;Q�/K � .U�;r � Q�/K C h�;Q� � ni@K D 0;

�.Q�;rU�/K C h OQ� � n;U�i@K D 0:
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Adding the two equations, we obtain

.cQ�;Q�/K C h. OQ� � Q�/ � n;U� � �i@K D �h OQ� � n; �i@K :

The first identity follows by inserting the definition of the numerical trace OQ� and
adding over the elements K 2 ˝h.

Let us prove the second identity. If we take v WD Qf in the first equation defining
the first local problem and w WD U� in the second equation defining the second local
problem, we get

.cQ�;Qf /K � .U�;r � Qf /K C h�;Qf � ni@K D 0;

�.Qf ;rU�/K C h OQf � n;U�i@K D . f ;U�/k

and if we add the two equations and insert the definition of OQf , we obtain

.cQ�;Qf /K C h�.Uf /;U� � �i@K D . f ;U�/K � h OQf � n; �i@K :

If we now take v WD Q� in the first equation defining the second local problem and
w WD Uf in the second equation defining the first local problem with Ouh WD �, we
get

.cQf ;Q�/K � .Uf ;r � Q�/K D 0;

�.Q�;rUf /K C h OQ� � n;Uf i@K D 0;

and if we proceed as before, we get

.cQf ;Q�/K C h�.U� � �/;Uf i@K D 0:

This implies that

�h�.U� � �/;Uf i@K C h�.Uf /;U� � �i@K D . f ;U�/K � h OQf � n; �i@K ;

and the result follows by the fact that � is symmetric.
The fact that ah.�; �/ is symmetric follows from the previous identities and the fact

that � is also symmetric. Finally the fact that it is positive definite on Mh.0/�Mh.0/

follows exactly as in the proof of Theorem 4. This completes the proof. �

Two Compact Formulations

Let us now show how to rewrite the HDG methods in a more compact manner. It
does not suggest a way to statically condense the methods but it is our favorite way
of presenting them concisely. It emphasizes the role of the numerical traces of the
methods and is suitable for carrying out their analysis. It is the following.
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The approximate solution given by the HDG method is the function .qh; uh; Ouh/ 2
Vh � Wh � Mh.uD/ satisfying the equations

.c qh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0 8v 2 Vh; (3a)

�.qh;rw/˝h C hOqh � n;wi@˝h D . f ;w/˝h 8w 2 Wh; (3b)

Oqh � n WD qh � n C �.uh � Ouh/ on @˝h; (3c)

h�; Oqh � ni@˝h D 0 8� 2 Mh.0/: (3d)

Indeed, note that the first, second and third equations correspond to the definition of
the local problems and that the weakly imposed boundary conditions are enforced
by requesting that Ouh be an element of Mh.uD/.

We can also eliminate the numerical trace Oqh to obtain yet another rewriting of the
methods. Once again, it hides the numerical trace of the flux, but emphasizes what
we could call the stabilized mixed method structure of the methods. The formulation
is the following. The approximate solution given by the HDG method is the function
.qh; uh; Ouh/ 2 Vh � Wh � Mh.uD/ satisfying the equations

Ah.qh; v/C Bh.uh; OuhI v/ D 0 8v 2 Vh;

�Bh.w; �I qh/C Sh.uh; OuhIw; �/ D . f ;w/˝h 8.w; �/ 2 Wh � Mh.0/;

where

Ah.p; v/ WD .c p; v/˝h 8p; v 2 Vh;

Bh.w; �I v/ WD �.w;r � v/˝h C h�; v � ni@˝h 8.v;w; �/ 2 Vh � Wh � Mh;

Sh.!; �Iw; �/ WD h�.! � �/;w � �i@˝h 8.!; �/; .w; �/ 2 Wh � Mh:

Indeed, the first equation follows from the definition of the bilinear forms Ah.�; �/
and Bh.�; �/. It remains to prove that

Bh.w; �I qh/C Sh.uh; OuhIw; �/ D �.qh;rw/˝h C hOqh � n;wi@˝h � hOqh � n; �i@˝h :

But, we have, by the definition of the bilinear forms Bh.�; �/ and Sh.�; �/, that

� WD � Bh.w; �I qh/C Sh.uh; OuhIw; �/
D .w;r � q/˝h � h�; q � ni@˝h C h�.uh � Ouh/;w � �i@˝h

D � .qh;rw/˝h C hq � n C �.uh � Ouh/;w � �i@˝h ;

by integration by parts. The identity we want follows now by using the definition of
the numerical trace of the flux.
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To end, we note that, thanks to the structure of the methods, it is easy to see that
the solution .qh; uh; Ouh/ 2 Vh � Wh � Mh.uD/ minimizes the functional

Jh.v;w; �/ WD 1

2
fAh.v; v/C Sh.w; �Iw; �/g � . f ;w/˝h (4a)

over all functions .v;w; �/ in Vh � Wh � Mh.uD/ such that

Ah.v; p/C Bh.w; �I p/ D 0 8p 2 Vh: (4b)

Note that the last equation can be interpreted as the elimination of qh from the
equations. The minimization problem would then be one on the affine space
Wh � Mh.uD/ and would correspond to a problem formulated solely in terms of
uh and Ouh. Next, we explore the static condensation of such reformulation.

3.3.2 Formulation in Terms of .uh; Ouh/

So, here we eliminate the approximate flux qh from the equations defining the HDG
method in order to formulate it solely in terms of .uh; Ouh/. To achieve this, we simply
rewrite qh as a linear mapping applied to .uh; Ouh/. This mapping is defined by using
the first equation defining the HDG methods. Thus, for any .w; �/ 2 Wh � Mh, we
define Qw;� 2 Vh as the solution of

.cQw;�; v/˝h � .w;r � v/˝h C h�; v � ni@˝h D 0 8 v 2 Vh;

In this way, we are going to have that qh D Quh;Ouh . Note that the above equation is
nothing but a rewriting of Eq. (4b).

Static Condensation Formulation

Using this approach, we obtain the following characterization of the HDG methods.
It is useful for their implementation and involves less unknowns than the previous
characterization since the unknown for the approximate flux has been eliminated.
(Of course, the price to pay for this is that we now we have to work with the mapping
.w; �/ 7! Qw;�.) This characterization better shows the role of � as a stabilization
function but it hides its relation with the numerical trace of the flux and does not
clearly indicate the associated transmission condition.

Theorem 6 (Second Characterization of HDG Methods) The approximate solu-
tion of the HDG method is given by

.qh; uh/ D .Q;U/ D .QU
Ouh ;Ouh ;UOuh/C .QUf ;0;Uf /;
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where, on the element K 2 ˝h, for any� 2 L2.@K/ and any f 2 L2.K/, the functions
U�;Uf 2 W.K/ are the solutions of the local problems

.cQU�;�;Qw;0/K C h�.U� � �/;wi@K D 0 8w 2 W.K/;

.cQUf ;0;Qw;0/K C h�.Uf /;wi@K D . f ;w/K 8w 2 W.K/;

respectively. The function Ouh is the element of Mh.uD/ such that

ah.Ouh; �/ D `h.�/ 8 � 2 Mh.0/;

where ah.�; �/ WD �h�; OQU�;� � ni@˝h and `h.�/ WD h�; OQUf ;0
� ni@˝h . Moreover,

ah.�; �/ D .c QU�;�;QU�;�/@˝h C hU� � �; �.U� � �/i@˝h ; `h.�/D . f ;U�/;

and ah.�; �/ is symmetric and positive definite on Mh.0/�Mh.0/. Thus, Ouh minimizes
the total energy functional Jh.�/ WD 1

2
ah.�; �/ � `h.�/ over Mh.uD/.

Proof This results follows easily from the first characterization of the HDG methods
given in Theorem 5. We only have to show that the solutions of the local problems
coincide, that is, that .QU�;�;U�/ 2 V.K/ � W.K/ is the solution of

.cQU�;�; v/K � .U�;r � v/K C h�; v � ni@K D 0 8v 2 V.K/;

�.QU�;�;rw/K C h OQU�;� � n;wi@K D 0 8w 2 W.K/;

OQ� � n WD Q� � n C �.U� � �/ on @K;

and that .QUf ;0;Uf / 2 V.K/ � W.K/ is the solution of

.cQUf ;0; v/K � .Uf ;r � v/K D 0 8v 2 V.K/;

�.QUf ;0;rw/K C h OQUf ;0 � n;wi@K D . f ;w/K 8w 2 W.K/;

OQf � n WD Qf � n C �.Uf / on @K:

Since the first equation of these problems is nothing but the definition of the operator
Qw;�, we only have to show that

.r � QU�;�;w/K C h�.U� � �/;wi@K D 0 8w 2 W.K/;

.r � QUf ;0;w/K C h�.Uf /;wi@K D . f ;w/K 8w 2 W.K/:
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But, by the definition of Qw;0, we have

.r � QU�;�;w/K D .cQw;0;QU�;�/K ;

.r � QUf ;0;w/K D .cQw;0;QUf ;0/K ;

and the result follows. This completes the proof. �

A Compact Formulation

As we did for the first characterization of the HDG methods, we can rewrite the
above result in a compact manner as follows. The approximate flux provided by the
HDG method is qh D Quh;Ouh and .uh; Ouh/ 2 Wh � Mh.uD/ is the solution of

.cQuh;Ouh ;Qw;�/˝h C h�.uh � Ouh/;w � �i@˝h D . f ;w/˝h 8.w; �/ 2 Wh � Mh.0/:

We immediately see that .uh; Ouh/ is the only minimum over Wh � Mh.0/ of the total
energy functional

Jh.w; �/ WD 1

2
f.cQw;�;Qw;�/˝h C h�.w � �/;w � �i@˝hg � . f ;w/˝h :

This minimization problem is identical to the minimization (with restrictions)
problem (4).

4 HDG Methods Using Only the Tensor a WD c �1

4.1 Motivation

Note that the the first three equations of the weak formulation of the DG methods
we have been considering can also be expressed as

�.gh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0;

.c qh; v/˝h D �.gh; v/˝h ;

�.qh;rw/˝h C hOqh � n;wi@˝h D . f ;w/˝h ;

where the approximate gradient gh is taken in Vh If one prefers to work with the
tensor a WD c �1, we can simply use the equations

�.gh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0;

.qh; v/˝h D �.a gh; v/˝h ;

�.qh;rw/˝h C hOqh � n;wi@˝h D . f ;w/˝h ;
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for all .v;w/ 2 Vh�Wh, where the numerical traces Ouh and Oqh �n are approximations
to uj@˝h and q � nj@˝h , respectively. The difference between these two DG methods
is certainly not abysmal since it consists in picking one of the two ways of relating
the approximate gradient gh to the approximate flux qh, namely,

.c qh; v/˝h D �.gh; v/˝h or .qh; v/˝h D �.a gh; v/˝h :

As a consequence, there is a one-to-one correspondence between these two weak
formulations, provided both a and c are well defined. Moreover, both formulations
coincide whenever a and c are constant on each element K 2 ˝h which gives rise
to super-closeness of their approximations, as noted in [45].

However, if a degenerates and is not invertible at every point, the second for-
mulation might be preferable. This is also what motivated the so-called “extended”
form of the mixed methods introduced in [1, 9, 61].

Finally, let us note that in elasticity, g corresponds to the strain, q to the stress, a to
the so-called constitutive tensor and c to the so-called compliance tensor. Thus, the
HDG methods obtained for linear and nonlinear elasticity, see the HDG methods for
elasticity considered in 2008 [85], 2009 [86] and 2014 [53] and in 2015 [59], can be
immediately reduced to our simpler case; see also the 2006 DG method proposed in
[87]. It is well known that to work with the constitutive tensor is usually preferred in
the case of nonlinear elasticity. Next, we briefly show how to define and characterize
the HDG methods associated with using the tensor a WD c �1.

4.2 Definition, Existence and Uniqueness

We take the approximate solution of the HDG methods to be the function

.qh; gh; uh/ D .Q;G;U/;

where, on the element K 2 ˝h, .Q;G;U/ 2 V.K/ � V.K/ � W.K/ is the solution
of the local problem

�.G; v/K � .U;r � v/K C hOuh; v � ni@K D 0 8v 2 V.K/;

.Q; v/K D �.aG; v/K 8v 2 V.K/;

�.Q;rw/K C h OQ � n;wi@K D . f ;w/K 8w 2 W.K/;
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where the numerical trace OQ is suitably chosen, and Ouh 2 Mh is the solution of the
following weakly imposed transmission and boundary conditions:

h�; OQ � ni@˝hn@˝ D 0;

h�; Ouhi@˝ D h�; uDi@˝;

for all � 2 Mh. This completes the definition of the HDG methods.
It is not difficult to see that the existence and uniqueness in Theorem 4 and its

Corollary 1 do hold unchanged.

4.3 Characterizations of the HDG Methods

4.3.1 Formulation in Terms of .qh; gh; uh; Ouh/

Static Condensation Formulation

We have the following result which is analogous to Theorem 5.

Theorem 7 (First Characterization of HDG Methods) The approximate solution
of the HDG method is given by

.qh; gh; uh/ D .Q;G;U/ D .QOuh ;GOuh ;UOuh/C .Qf ;Gf ;Uf /;

where, on the element K 2 ˝h, for any � 2 L2.@K/, the function .Q�;G�;U�/ 2
V.K/ � V.K/ � W.K/ is the solution of the local problem

�.G�; v/K � .U�;r � v/K C h�; v � ni@K D 0 8v 2 V.K/;

.Q�; v/K D �.aG�; v/K 8v 2 V.K/;

�.Q�;rw/K C h OQ� � n;wi@K D 0 8w 2 W.K/;

OQ� � n WD Q� � n C �.U� � �/ on @K;

and, for any f 2 L2.K/, the function .Qf ;Gf ;Uf / 2 V.K/ � V.K/ � W.K/ is the
solution of the local problem

�.Gf ; v/K � .Uf ;r � v/K D 0 8v 2 V.K/;

.Qf ; v/K D �.aGf ; v/K 8v 2 V.K/;

�.Qf ;rw/K C h OQf � n;wi@K D . f ;w/K 8w 2 W.K/;

OQf � n WD Qf � n C �.Uf / on @K:
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The function Ouh is the element of Mh.uD/ such that

ah.Ouh; �/ D `h.�/ 8 � 2 Mh.0/;

where ah.�; �/ WD �h�; OQ� � ni@˝h , and `h.�/ WD h�; OQf � ni@˝h . Moreover,

ah.�; �/ D .aG�;G�/@˝h C hU� � �; �.U� � �/i@˝h ; `h.�/D . f ;U�/;

and ah.�; �/ is symmetric and positive definite on Mh.0/�Mh.0/. Thus, Ouh minimizes
the functional Jh.�/ WD 1

2
ah.�; �/ � `h.�/ over Mh.uD/.

Two Compact Formulations

Proceeding as for the first family of HDG methods, we obtain the following two
compact formulations. The first emphasized the role of the numerical traces. It reads
as follows. The approximate solution given by the HDG method is the function
.qh; gh; uh; Ouh/ 2 Vh � Vh � Wh � Mh.uD/ satisfying the equations

�.gh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0 8v 2 Vh;

.qh; v/˝h D �.a gh; v/˝h 8v 2 Vh;

�.qh;rw/˝h C hOqh � n;wi@˝h D .f ;w/˝h 8w 2 Wh;

Oqh � n WD qh � n C �.uh � Ouh/ on @˝h;

h�; Oqh � ni@˝h D 0 8� 2 Mh.0/:

The second emphasizes the stabilized mixed structure of the method. It is the
following. The approximate solution given by the HDG method is the function
.qh; uh; Ouh/ 2 Vh � Wh � Mh.uD/ satisfying the equations

Ah.gh; v/C Bh.qh; v/ D 0 8v 2 Vh;

�Bh.v; gh/C Bh.uh; OuhI v/ D 0 8v 2 Vh;

�Bh.w; �I qh/C Sh.uh; OuhIw; �/ D . f ;w/˝h 8.w; �/ 2 Wh � Mh.0/;

where

Ah.p; v/ WD .a p; v/˝h ; 8p; v 2 Vh;

Bh.p; v/ WD .p; v/˝h ; 8p; v 2 Vh;

Bh.w; �I v/ WD �.w;r � v/˝h C h�; v � ni@˝h 8.v;w; �/ 2 Vh � Wh � Mh;

Sh.!; �Iw; �/ WD h�.! � �/;w � �i@˝h 8.!; �/; .w; �/ 2 Wh � Mh:
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Thanks to the structure of the method, it is easy to see that the solution .gh; uh; Ouh/ 2
Vh � Wh � Mh.uD/ minimizes the functional

Jh.v;w; �/ WD 1

2
fAh.v; v/C Sh.w; �Iw; �/g � . f ;w/˝h (5a)

over the functions .v;w; �/ in the space Vh � Wh � Mh.uD/ such that there exist
qh D qh.v;w; �/ 2 Vh such that

Ah.v; p/C Bh.qh; p/ D 0 8p 2 Vh; (5b)

�Bh.p; v/C Bh.w; �I p/ D 0 8p 2 Vh: (5c)

Once again, Note that the last two equations can be interpreted as the elimination
of .qh; gh/ from the equations. The minimization problem would then be one on the
affine space Wh � Mh.uD/ and would correspond to a problem formulated solely in
terms of uh and Ouh. Next, we explore such reformulation.

4.3.2 Formulation in Terms of .uh; Ouh/

We eliminate the approximate gradient gh and the approximate flux qh from the
equations defining the HDG method in order to formulate it solely in terms of
.uh; Ouh/. To achieve that, we simply rewrite gh and qh as a linear mappings applied
to .uh; Ouh/. These mappings are defined by using the first equation defining the HDG
methods. Thus, for any .w; �/ 2 Wh �Mh, we define .Gw;�;Qw;�/ 2 Vh �Vh as the
solution of

�.Gw;�; v/˝h � .w;r � v/˝h C h�; v � ni@˝h D 0 8 v 2 Vh;

.Qw;�; v/˝h D �.aGw;�; v/˝h 8 v 2 Vh:

In this way, we are going to have that .qh; gh/ D .Quh;Ouh ;Guh;Ouh/. Note that these
two equations are nothing but a rewriting of Eqs. (5b) and (5c).

Static Condensation Formulation

We have the following result.

Theorem 8 (Second Characterization of HDG Methods) The approximate solu-
tion of the HDG method is given by

.qh; gh; uh/ D .Q;G;U/ D .QU
Ouh ;Ou;GU

Ouh ;Ouh ;UOuh/C .QUf ;0;GUf ;0;Uf /;
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where, on the element K 2 ˝h, for any � 2 L2.@K/ and f 2 L2.K/, the functions
U�;Uf 2 W.K/ are the solutions of the local problems

.aGU�;�;Gw;0/K C h�.U� � �/;wi@K D 0 8w 2 W.K/;

.aGUf ;0;Gw;0/K C h�.Uf /;wi@K D . f ;w/K 8w 2 W.K/;

respectively. The function Ouh is the element of Mh.uD/ such that

ah.Ouh; �/ D `h.�/ 8 � 2 Mh.0/;

where ah.�; �/ WD �h�; OQU�;� � ni@˝h , and `h.�/ WD h�; OQUf ;0
� ni@˝h . Moreover,

ah.�; �/ D .aGU�;�;GU�;�/@˝h C hU� � �; �.U� � �/i@˝h ; `h.�/D . f ;U�/;

and ah.�; �/ is symmetric and positive definite on Mh.0/�Mh.0/. Thus, Ouh minimizes
the functional Jh.�/ WD 1

2
ah.�; �/ � `h.�/ over Mh.uD/.

Compact Formulation

Finally, we display the compact form of this formulation of the HDG method. We
have that .qh; gh/ D .Quh;Ouh ;Guh;Ouh/ where .uh; Ouh/ 2 Wh �Mh.uD/ is the solution of

.aGuh;Ouh ;Gw;�/˝h Ch�.uh � Ouh/;w � �i@˝h D . f ;w/˝h 8.w; �/ 2 Wh � Mh.0/:

(6)

In other words, .uh; Ouh/ is the only minimum over Wh � Mh.0/ of the functional

Jh.w; �/ WD 1

2
f.aGw;�;Gu;�/˝h C h�.w � �/;w � �i@˝hg � . f ;w/˝h :

This is exactly the minimization problem (5).

5 Using Neumann Instead of Dirichlet Boundary Conditions

In the previous two sections, we have shown how a characterization of the exact
solution can be used to generate HDG methods. Here we show how a different
characterization of the exact solution can be used to produce a different static
condensation, that is, a different way of implementing, an already known HDG
method.

We proceed as follows. First, we present a characterization of the exact solution
which uses Neumann boundary-value problems instead of the Dirichlet boundary-
value problems to define the local problems. Then, we consider some HDG methods
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devised in the previous sections and show how a discrete version of the new
characterization of the exact solution is nothing but a new way of implementing
them. The resulting form of the HDG method has already been used in the work on
multiscale methods in [50]. Recently, two different ways of statically condensing
the very same method were proposed in [49].

The idea of using different characterizations of the exact solution to devise HDG
methods was introduced back in 2009 in [17] where four different ways were
presented to devise HDG methods for the vorticity-velocity-pressure formulation
of the Stokes system, as the exact solution could be characterized in terms of four
different local problems and transmissions conditions. Just as it happens with the
exact solution, the very same HDG method could be obtained by using any of the
four ways. In other words, the HDG method could be hybridized and then statically
condensed in each of the above-mentioned four different manners.

5.1 A Second Characterization of the Exact Solution

Let us then show how to use local Neumann boundary-value problems to obtain a
characterization of the exact solution.

Suppose that, for every element K 2 ˝h, we define .Q;U/ as the solution of the
local problem

cQ C rU D 0 in K;

r � Q D f C fhOq � n; 1i@K � . f ; 1/Kg=jKj in K;

Q � n D Oq � n on @K;

.U; 1/K D .u; 1/K ;

where we want the function Oq, which has a single-valued normal component, and
the constant u, to be such .q; u/ D .Q;U/ on K. This happens if and only if Oq and u
satisfy the equations

ŒŒU		 D 0 for F 2 F i
h;

hOq � n; 1i@K D . f ; 1/K for K 2 Th;

U D uD for F 2 F@
h :

Note that we have to provide the average to U on the element, u, otherwise the
solution U is not uniquely determined. Note also that, we have had to add an
additional term to the right-hand side of the second equation in order to ensure
that the local problem has a solution for any boundary data Oq � n. As a consequence,
we have to make sure that such term is zero. This explains why the global problem
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consists not only of transmission and boundary conditions, as in the case of Dirichlet
boundary-value local problems.

If we now separate the influence of Oq; u and f , we readily get the following
characterization of the exact solution.

Theorem 9 (Characterization of the Exact Solution) We have that

.q; u/ D .Q;U/ D .QOq;UOq/C .0; u/C .Qf ;Uf /;

where .QOq;UOq/ and .Qf ;Uf / are the solution of the local problems

cQ
Oq C rU

Oq D 0 in K; cQf C rUf D 0 in K;

r � Q
Oq D hOq � n; 1i@K=jKj in K; r � Qf D f � . f ; 1/K=jKj in K;

Q
Oq � n D Oq � n on @K; Qf � n D 0 on @K;

.U
Oq; 1/K D 0; .Uf ; 1/K D 0:

where the functions Oq � n and u are determined as the solution of the equations

� ŒŒUOq		 � ŒŒu		 D ŒŒUf 		 on F i
h;

hOq � n; 1i@K D . f ; 1/K for K 2 Th;

UOq C u D �Uf C uD on F@
h :

5.2 An Example

In the case of our one-dimensional example, this result reads as follows. We have
that

.q; u/ D .QOq;UOq/C .0; u/C .Qf ;Uf /;

where

cQ
Oq C d

dx
UOq D 0 in .xi�1; xi/; cQf C d

dx
Uf D 0 in .xi�1; xi/;

d

dx
Q

Oq D 1

hi
.Oqi � Oqi�1/ in .xi�1; xi/;

d

dx
Qf D f � 1

hi

Z xi

xi�1

f in .xi�1; xi/;

Q
Oq � nD Oq � n on fxi�1; xig; Qf � nD 0; on fxi�1; xig;

Z xi

xi�1

UOq D 0;

Z xi

xi�1

Uf D 0;
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and where the functions Oq and u are the solution of

UOq.x
C

i /� UOq.x
�

i /C uiC1=2 � ui�1=2 D �Uf .x
C

i /C Uf .x
�

i / for i D 1; : : : ;N � 1;

Oqi � Oqi�1 D
Z xi

xi�1

f for i D 1; : : : ;N � 1;

UOq.x
C

0 /C u1=2 D �Uf .x
C

0 /C uD.x0/;

UOq.x
�

N /C uN�1=2 D �Uf .x
C

0 /C uD.xN/:

Since the solution of the local problems are

Q
Oq.x/ D 'i.x/Oqi C 'i�1.x/Oqi�1; Qf .x/ D �c�1

Z xi

xi�1

Gi
x.x; s/ f .s/ ds;

UOq.x/ D c hi
6

f i.x/Oqi �  i�1.x/Oqi�1g Uf .x/ D
Z xi

xi�1

Gi.x; s/ f .s/ ds:

where Gi is the Green’s function of the second local problem, namely,

Gi.x; s/ WD
(

c hi
6
Œ1 � 3'2i .s/ � 3'2i�1.x/	 if xi�1 6 s 6 x;

c hi
6
Œ1 � 3'2i .x/ � 3'2i�1.s/	 if x 6 s 6 xi:

and  i WD 1 � 3'2i , and where the functions Oq and u are the solution of

c hi
6
.Oqi�1 C 2 Oqi/C c hiC1

6
.2 Oqi C OqiC1/

C uiC1=2 � ui�1=2 D �Uf .x
C

i /C Uf .x
�

i / for i D 1; : : : ;N � 1;

Oqi � Oqi�1 D
Z xi

xi�1

f for i D 1; : : : ;N � 1;

c h1
6
.2Oq0 C Oq1/C u1=2 D �Uf .x

C

0 /C uD.x0/;

c hN
6
.OqN�1 � 2OqN/� uN�1=2 D Uf .x

�

N /� uD.xN/:

5.3 Another Static Condensation of Known HDG Methods

Let us consider the HDG methods introduced in Sect. 3. Next, we show that
those methods can be statically condensed in the way suggested by our new
characterization of the exact solution.
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5.3.1 Rewriting the Compact Formulation Based on the Numerical Traces

First, we rewrite them in such a way that the numerical trace Oqh, and not Ouh, is an
independent unknown. We can do that very easily if we use the compact formulation
of those methods based on the numerical traces, (3). It states that the approximate
solution given by the HDG method is the function .qh; uh; Ouh/ 2 Vh � Wh � Mh.uD/
satisfying the equations

.c qh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0 8v 2 Vh;

�.qh;rw/˝h C hOqh � n;wi@˝h D .f ;w/˝h 8w 2 Wh;

Oqh � n WD qh � n C �.uh � Ouh/ on @˝h;

h�; Oqh � ni@˝h D 0 8� 2 Mh.0/:

Now, if we take the stabilization function �.�/ to be the simple multiplication by the
scalar function � , we have that

Ouh D uh C ��1.qh � n � Oqh � n/ on @˝h:

If the local space V.K/ � W.K/ is such that, for each face F of the element K,

V.K/ � njF � M.F/;

W.K/jF � M.F/;

and take � to be constant on each face of the triangulation, we have that Oqh belongs
to the space

Nh WD f� 2 L2.Fh/ W � � nj@K 2 M.@K/; ŒŒ�		 D 0 on F i
hg:

We can thus rewrite the HDG method as follows. The approximate solution given
by the HDG method is the function .qh; uh; Oqh/ 2 Vh � Wh � Nh satisfying the
equations

.c qh; v/˝h � .uh;r � v/˝h C hOuh; v � ni@˝h D 0 8v 2 Vh;

�.qh;rw/˝h C hOqh � n;wi@˝h D .f ;w/˝h 8w 2 Wh;

Ouh D uh C ��1.qh � n � Oqh � n/ on @˝h;

hOuh; � � ni@˝h D huD; � � ni@˝ 8� 2 Nh:
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Note that the last equation enforces both the single-valuedness of Ouh as well as the
Dirichlet boundary conditions of the model problem (1).

5.3.2 The New Static Condensation

So, suppose that, for every element K 2 ˝h, we define .Q;U/ 2 V.K/ � W.K/ to
be the solution of the local problem

.cQ; v/K � .U;r � v/K C h OU; v � ni@K D 0 8v 2 V.K/;

�.Q;rw/K C hOqh � n;w � wi@K D .f ;w � w/@K 8w 2 W.K/;

OU WD U C ��1.Q � Oqh/ � n on @K;

.U; 1/K D .uh; 1/K;

where wjK WD .w; 1/K=jKj, and where we want to take Oqh 2 Nh and the piecewise
constant function uh such that .qh; uh/ D .Q;U/. Clearly, this happens if we have
that .Oqh; uh/ is the solution of the global problem

h� � n; OUi@˝h D h� � n; uDi@˝ 8� 2 Nh;

hOqh � n; 1i@K D .f ; 1/@K 8 K 2 ˝h:

Separating the influence of Oqh from that of uh and f , we obtain the following, new
static condensation of the HDG method. In what follows, Wh denotes the space of
real-valued functions which are constant on each element K 2 ˝h.

Theorem 10 (New Static Condensation of HDG Methods) The approximate
solution of the HDG method is

.qh; uh/ D .Q;U/ D .QOqh ;UOqh/C .0; uh/C .Qf ;Uf /;

where, for each element K 2 ˝h, for any � 2 L2.@K/, the function .Q�;U�/ 2
V.K/ � W.K/ is the solution of the local problem

.cQ�; v/K � .U�;r � v/K C h OU�; v � ni@K D 0 8v 2 V.K/;

�.Q�;rw/K C h� � n;w � wi@K D 0 8w 2 W.K/;

OU� WD U� C ��1.Q� � �/ � n on @K;

.U�; 1/K D 0;
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and, for any f 2 L2.K/, the function .Qf ;Uf / 2 V.K/ � W.K/ is the solution of the
local problem

.cQf ; v/K � .Uf ;r � v/K C h OUf ; v � ni@K D 0 8v 2 V.K/;

�.Qf ;rw/K D .f ;w � w/@K 8w 2 W.K/;

OUf WD Uf C ��1Qf � n on @K;

.Uf ; 1/K D 0;

and where .Oqh; uh/ 2 Nh � Wh is the solution of the global problem

ah.Oqh; �/C bh.uh; �/ D `h.�/ � huD; � � ni@˝ 8� 2 Nh;

bh.!; Oqh/ D . f ; !/˝h 8! 2 Wh;

where

ah.�; �/ WD �h� �n; OU�i@˝h ; bh.!; �/ WD �h� �n; !i@˝h ; `h.�/ WD h� �n; OUf i@˝h :

Moreover,

ah.�; �/D .cQ�;Q�/@˝h C h.Q� � �/ � n; ��1.Q� � �/ � ni@˝h ; `h.�/D . f ;U�/˝h ;

and Oqh minimizes the complementary energy functional

Jh.�/ WD 1

2
ah.�; �/� `h.�/C huD; � � ni@˝;

over the functions � 2 Nh such that bh.!; �/ D . f ; !/˝h 8! 2 Wh.

The proof of this result goes along the very same lines of the proof of the
characterization Theorem 5.

5.3.3 The Stabilized Mixed Compact Formulation

Let us end this section by displaying the compact formulation of the method
obtained when we eliminate the numerical trace Ouh. Proceeding as for the first
characterization, we can obtain that the approximate solution given by the HDG
method is the function .qh; uh; Oqh/ 2 Vh � Wh � Nh satisfying the equations

Ah.qh; v/C Sh.qh; OqhI v; �/C Bh.uhI v; �/ D �huD; � � ni@˝h ; (7a)

�Bh.wI qh; Oqh/ D . f ;w/˝h ; (7b)
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for all .v;w; �/ 2 Vh � Wh � Nh, where

Ah.p; v/ WD .c p; v/˝h 8p; v 2 Vh; (7c)

Bh.wI v; �/ WD .rw; v/˝h � hw; � � ni@˝h 8.v;w; �/ 2 Vh � Wh � Nh;

(7d)

Sh.p;�I v; �/ WD h.p � �/ � n; ��1.v � �/ � ni@˝h 8.p;�/; .v; �/ 2 Vh � Nh:

(7e)

As a consequence, the solution .qh; Oqh/ 2 Vh � Nh minimizes the complementary
energy functional

Jh.v; �/ WD 1

2
fAh.v; v/C Sh.v; �I v; �/g C huD; � � ni@˝h

over all functions .v; �/ in Vh � Mh.uD/ such that Bh.wI v; �/ D . f ;w/ 8w 2 Wh.

6 Building Bridges and Constructing Methods

Here, we briefly discuss the evolution of the HDG methods. We being by showing
that (some of the earliest) HDG methods can be seen as a particular case of the
DG methods introduced in 1998 [24] and analyzed in 2000 [4]. We then recall the
strong relation between the HDG and the mixed methods, already pointed out in
2009 [33], and show how this relation drove (and is still driving) the development
of superconvergent HDG methods. The bridge built in 2014 [14] between the HDG
and the so-called staggered discontinuous Galerkin (SDG), a DG method introduced
in 2009 [13] and apparently unrelated to the HDG methods, can be seen as part
of this development. We discuss the stabilization introduced by Lehrenfeld (and
Schöberl) in 2010 [62]. We end by showing that the so-called Weak-Galerkin
methods proposed in 2014 [89] and in 2015 [65, 66], are nothing but rewritings
of the HDG methods.

6.1 Relating HDG to Old DG Methods

Here, we consider HDG methods whose numerical method defining the local
problems is the so-called local discontinuous Galerkin (LDG) method introduced
in [24]. The resulting HDG methods are then called the LDG-H methods. For all of
them, the stabilization function � on any face F 2 Fh is a simple multiplication by
a constant which we also denote by � , that is,

Oqh � n WD qh � n C � � .uh � Ouh/ on @˝h:
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Examples of local spaces, taken from [33], are shown in the table below.

Method V.K/ W.K/ M.F/

LDG-H Pk�1.K/ Pk.K/ Pk.F/

LDG-H Pk.K/ Pk.K/ Pk.F/

LDG-H Pk.K/ Pk�1.K/ Pk.F/

In all these cases, we have that the local spaces V.K/ � W.K/ are such that, for
each face F of the element K,

V.K/ � njF � M.F/;

W.K/jF � M.F/:

This implies that ŒŒqh		 2 Mh and the transmission condition becomes ŒŒOqh		 D 0 on
F i

h. This can only hold if and only if, on F i
h,

Ouh D �CuhC C ��uh�

�C C �� C 1

�C C �� ŒŒqh		;

Oqh D ��qhC C �Cqh
�

�C C �� C �C��

�C C �� ŒŒuh		:

This implies that the DG methods introduced in [24] and analyzed in [4] that
have the above choice of numerical traces can be hybridized and then statically
condensed. This is why we call these methods the hybridizable DG methods.

Note, that none of these LDG-H methods is an LDG method if we take �˙ 2
.0;1/ since for the method to be an LDG method, we must have that 1=.�C C
��/ D 0. This shows that none of the DG methods considered in [3] is an LDG-H
method with finite values of the stabilization function. In fact, these methods can
converge faster than any of the DG methods considered therein. For example, in
the case in which c D Id, V.K/ � W.K/ D Pk.K/ � Pk.K/ and M.F/ D Pk.F/
this LDG-H method was analyzed in [4], where is was proven that, for arbitrary
shape-regular, polyhedral elements, qh converges with order k C 1=2 and uh with
order k C 1, for any k > 0, provided � is of order one. The convergence is in the
L2.˝/-norm. On the other hand, other LDG-H methods do have the same order of
convergence than those considered in [3]. Indeed, by using the same approach in [4],
one can easily show that in the case in which V.K/ � W.K/ D Pk�1.K/ � Pk.K/
and M.F/ D Pk.F/, qh converges with order k and uh with order k C 1, for any
k > 1, provided � is of order 1=h. This result holds for meshes made of general
shape-regular, polyhedral meshes.
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6.2 Relating HDG to Mixed Methods

As pointed out in [33], if the stabilization function � is taken to be identically zero
so that Oqh � n D qh � n on Fh, and the transmission condition implies that ŒŒOqh		 D 0

on F i
h, we recover the so-called (hybridized version of the) mixed methods if the

mixed method is used to define the local problems; see also [2]. In the table below,
we display the main examples of mixed methods with this property when K is a
simplex and we compare it with one of the first HDG methods, the LDG-H method.

Method V.K/ W.K/ M.F/

RT Pk.K/C x QPk.K/ Pk.K/ Pk.F/

LDG-H Pk.K/ Pk.K/ Pk.F/

BDM Pk.K/ Pk�1.K/ Pk.F/

The strong relation between the mixed method and the HDG methods suggested
that the HDG methods might share with the mixed methods some of its convergence
properties. This was proven to be true for a special LDG-H method obtained by
setting � D 0 on all the faces of the simplex K except one. This method, called
the single face-hybridizable (SFH) method, was introduced and analyzed in [30].
Therein, it was shown that the SFH method is strongly related to the RT and BDM
mixed methods. Indeed, the bilinear forms ah.�; �/ of the RT, BDM and SFH methods
are the same, and the SFH shares with the RT and BDM the same superconvergence
properties.

Next, we briefly describe this superconvergence property. For all of the above
methods, the local averages of the error u�uh, converge faster than the errors u�uh
and q � qh. As a consequence, we can define, on the each element K, the new
approximation u?h 2 W�.K/ WD PkC1.K/ as the solution of

.ru?h ;rw/K D � .c qh;rw/K for all w 2 W�.K/;

.u?h ; 1/K D.uh; 1/K ;
Then u�u?h will converge faster than u�uh. The orders of convergence are displayed
in the table below; see [30] for the results on the SFH method and [36] for those on
the general LGD-H method. The symbol ? indicates that the non-zero values of the
stabilization function � only need to be uniformly bounded by below.

Method � qh uh uh k

RT 0 k C 1 k C 1 k C 2 > 0

SFH ? k C 1 k C 1 k C 2 > 1

LDG-H O.1/ k C 1 k C 1 k C 2 > 1

BDM 0 k C 1 k k C 2 > 2

LDG-H O.1=h/ k k C 1 k C 1 > 1
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6.3 The SDG Method as a Limit of SFH Methods

In [14], it was proved that the staggered discontinuous Galerkin (SDG) method,
originally introduced in the framework of wave propagation in [13], can be obtained
as the limit when the non-zero values of the stabilization function of a special SFH
method goes to infinity. The special SFH method is obtained as follows. The mesh
consists of triangles or tetrahedra subdivided into three triangles or four tetrahedra.
On the faces of the bigger simplexes, the stabilization function is not zero; it is equal
to zero on all the remaining faces.

By building this bridge between the SDG and the SFH methods, the SDG
can now be implemented by hybridization and can share the superconvergence
properties of the SFH method. Similarly, the SFH method now share the (related
but different) superconvergence property of the SDG method.

6.4 Constructing Superconvergent HDG Methods

The first superconvergent HDG method was the SFH method. A systematic
approach to uncover superconvergent HDG methods was undertaken in [39] where
the following sufficient conditions were found. The space V.K/ � W.K/ must have
a subspace QV.K/ � QW.K/ satisfying inclusions

P0.K/ � rW.K/ � QV.K/;
P0.K/ � r � V.K/ � QW.K/;
V.K/ � n C W.K/ � M.@K/:

and whose orthogonal complement satisfies the identity

QV? � n ˚ QW? D M.@K/:

Let us present examples taken from [39] in the case in which K is a cube; the first
corresponds to the choice M.F/ D Qk.F/ and the second to the choice M.F/ D
Pk.F/.

In the first example, the HDG method denoted by HDGQ
Œk	 and the mixed method

denoted by TNTŒk	 are new. The 7-dimensional space Hk
7.K/ is obtained by adding

a basis function to the space Hk
6.K/. The precise description of these spaces can be

found in [39] or, better, in [18], where commuting diagrams for the TNT elements
on cubes were obtained for the DeRham complex.

In the second example, the HDG method denoted by HDGP
Œk	 is new. In the

corresponding table, we abuse the notation slightly to keep it simple. Thus, by
PkC1.K/n QPkC1. y; z/ we mean the span of fx˛yˇz� W ˛ C ˇ C � 6 k C 1; ˛ > 0g:
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M.F/ D Qk.F/; k > 1

Method V.K/ W.K/

RTŒk	 PkC1;k;k.K/ Qk.K/

�Pk;kC1;k.K/

�Pk;k;kC1.K/

TNTŒk	 Qk.K/˚ Hk
7.K/ Qk.K/

HDGQ
Œk	 Qk.K/˚ Hk

6.K/ Qk.K/

M.F/ D Pk.F/; k > 1

Method V.K/ W.K/

BDFMŒkC1	 PkC1.K/n QPkC1. y; z/ Pk.K/

�PkC1.K/n QPkC1.x; z/

�PkC1.K/n QPkC1.x; y/

HDGP
Œk	 Pk.K/ Pk.K/

c ˚r � . yz QPk.K/; 0; 0/

˚r � .0; zx QPk.K/; 0/

BDMŒk	 Pk.K/ Pk�1.K/

k > 2 ˚r � .0; 0; xy QPk. y; z//

˚r � .0; xz QPk.x; y/; 0/

˚r � . yz QPk.x; z/; 0; 0/

In [39], many new superconvergence HDG methods were found for simplexes,
squares, cubes and prisms. For curved elements, see [40].

6.5 The Lehrenfeld-Schöberl Stabilization Function

Let us recall that the case in whichM.F/ WD Pk.K/ and V.K/�W.K/ WD Pk�1.K/�
Pk.K/, and the stabilization function � is the multiplicative stabilization function,
namely,

�.uh � Ouh/ WD � � .uh � Ouh/;

the resulting method is an LDG-H method. Moreover, for arbitrary shape-regular,
polyhedral elements, we have that qh converges with order k and uh with order kC1,
for any k > 0, provided � is of order 1=h. Since the size of the stiffness matrix of
the local problem is proportional to the number of faces of the triangulation times
the dimension of the space M.F/, a reduction of the space M.F/ would result in a
smaller global problem. The question is if this is possible to achieve without loosing
the convergence properties of the method.

In 2010, Ch. Lehrenfeld (and J. Schöberl) [62, Remark 1.2.4] noted that the
answer is affirmative, see also [63], if we modify the above stabilization function
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by simply projecting uh into Mh:

�LS.uh � Ouh/ WD h�1 � .PM.uh/� Ouh/:

The error analysis of this HDG method was carried out in 2014 by I. Oikawa [76]
who proved optimal orders of convergence for both qh and uh for regular-shaped,
general polyhedral elements.

For the sake of fairness in the attribution of this simple but remarkable projection,
I would like to emphasize that it was announced in 2009 by J. Schöberl in his plenary
talk at the ICOSAHOM in Trondheim, Norway; at the 2010 Finite Element Circus
in Minneapolis, USA; and then again at Oberwolfach, Germany, February 10–12,
2012; see [84]. I personally knew about it through Ch. Lehrenfeld, who told me
about it during a Ph.D. Course in Pavia, May 28- June 1, 2010. At that time, the error
estimates obtained later by I. Oikawa [76] were already known to Ch. Lehrenfeld
even though he did not include them in [62].

6.6 Relating HDG with the Weak Galerkin Method

So far, no effort has been made to render clear the relation between the HDG and the
so-called Weak Galerkin methods. The first Weak Galerkin method was proposed in
2013 [88] in the framework of convection-diffusion-reaction equations. Therein, it is
pointed out that the Weak Galerkin is identical to some mixed and HDG methods but
only in the purely diffusion case and whenever the diffusivity tensor is a constant.
This is not an accurate statement which will be discussed elsewhere since it requires
addressing issues related to the convective and reaction terms. Instead, here we
restrict ourselves to discussing other versions of the Weak Galerkin method devised
specifically for steady-state diffusion in [65, 66, 89]. We show that all these Weak
Galerkin methods are rewritings of the HDG methods.

The Weak Galerkin method proposed in 2015 [65] (deposited in the archives
in 2012), was described therein as identical to the HDG methods for the Poisson
equation. Here we show that it is also identical for the model problem under
consideration. Indeed, it is nothing but the compact form of the HDG methods (6) in
Sect. 4.3.2 using the multiplication stabilization function �.w � �/ WD h�1:.w � �/
and the tensor a WD c �1. Let us point out that, although the HDG methods were
introduced in 2009 [33] (submitted in 2007) by using the formulation with the tensor
c , the extension to the formulation with a WD c �1 is straightforward. In fact, as
argued in Sect. 4.1, these HDG methods can be obtained by reducing to the model
problem under consideration the HDG methods for the more difficult problem of
linear and nonlinear elasticity. Specifically, the HDG methods for elasticity were
obtained in 2008 in [85] and in 2009 [86] (submitted in 2008). The Weak Galerkin
method in [65] is thus a simple rewriting of HDG methods.

The Weak Galerkin method proposed in 2015 [66] (deposited in the archives in
2013) is nothing but the compact form of the HDG methods (6) in Sect. 4.3.2 using
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the Lehrenfeld-Schöberl stabilization function and the tensor a WD c �1. Thus, the
Weak Galerkin method in [66] is also a simple rewriting of HDG methods.

Finally, the Weak Galerkin method proposed in 2014 [89] (submitted in 2012)
is nothing but the HDG method (7) in Sect. 5.3.3 corresponding to the Lehrenfeld-
Schöberl stabilization function and the tensor c . Although the results of Sect. 5.3
have been obtained when the stabilization function is a simple multiplication,
the extension to the Lehrenfeld-Schöberl function are straightforward. Indeed, the
numerical trace for the HDG method with the Lehrenfeld-Schöberl stabilization is

Oqh � n D qh � n C 1

h
.PM.uh/� Ouh/

which implies that

Ouh D PM.uh/C h.qh � Oqh/ � n:

All the results of Sect. 5.3 now follow from this simple identity and from the fact
that V.K/ � njF � M.F/ for each face F of the triangulation. In other words, the
Weak Galerkin method in [89] is also a simple rewriting of HDG methods.

Let us end by pointing out that, by the previous argument, the Weak Galerkin in
[89] is identical to the Weak Galerkin method in [66] when the tensors c and a are
piecewise constant.

7 Bibliographical Notes and Ongoing Work

After the introduction of the HDG methods in 2009 [33], we have extended the
methods to a variety of partial differential equations and introduced a variation of
the methods called the embedded discontinuous Galerkn (EDG) methods. The EDG
methods were introduced in 2007 [56] in the framework of linear shells, and then
analyzed in 2009 [34] for steady-state diffusion. (The HDG and EDG methods were
devised almost at the same time but the publication of the HDG methods [33] took
much more time than the publication of the EDG methods [34]).

The HDG methods for diffusion were devised and analyzed in [8, 10, 11, 20, 30,
35, 36, 38–41, 58], multigrid methods for them in [42], a posteriori error estimation
for HDG methods in [26–28], and the convergence of adaptive HDG methods in
[44]. The implementation of the HDG methods in 2D was considered in [60] and in
3D in [54]. The methods have been extended to convection-diffusion in [32, 68, 69,
81], to the Stokes flow of incompressible fluids in [15, 16, 21–23, 37, 70, 71, 80],
to the Oseen equations in [7], to the incompressible Navier-Stokes equations in
[72, 82], to the compressible Euler and Navier-Stokes Equations [75, 77], to several
problems in continuum mechanics in [5, 6, 22, 53, 56, 59, 67, 85, 86], to wave
propagation in [19, 73, 74], to the biharmonic in [31] and to scalar conservation
laws in [64].
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The current search for more efficient, superconvergent or optimally convergent,
HDG methods seems to be going in three main directions: (1) The refinement of
the sufficient conditions guaranteeing the superconvergence of the HDG methods
through the so-called technique of M-decompositions [43], (2) the exploration of
the properties of the Lehrenfeld-Schöberl stabilization function [63, 76, 78, 79], and
(3) the exploration of the new, remarkable technique for devising numerical traces
for the hybrid high-order (HHO) methods [46–48].

In fact, a bridge between the HHO and HDG methods was recently established
in [29]. It would also be interesting to establish bridges with other numerical
methods like, for example, the SUSHI methods [51], the elements constructed by
Christiansen and Gillette [12], the BEM-based methods proposed in [83, 90], and
the methods introduced in [57] for multiscale problems.
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Robust DPG Methods for Transient
Convection-Diffusion

Truman Ellis, Jesse Chan, and Leszek Demkowicz

Abstract We introduce two robust DPG methods for transient convection-diffusion
problems. Once a variational formulation is selected, the choice of test norm
critically influences the quality of a particular DPG method. It is desirable that a
test norm produce convergence of the solution in a norm equivalent to L2 while
producing optimal test functions that can be accurately computed and maintaining
good conditioning of the optimal test function solve on highly adaptive meshes.
Two such robust norms are introduced and proven to guarantee close to L2

convergence of the primary solution variable. Numerical experiments demonstrate
robust convergence of the two methods.

1 Introduction

The discontinuous Petrov-Galerkin finite element method presents an attractive new
framework for developing robust numerical methods for computational mechanics.
DPG contains the promise of being an automated scientific computing technology—
it provides stability for any variational formulation, optimal convergence rates in a
user-defined norm, virtually no pre-asymptotic stability issues on coarse meshes,
and a measure of the error residual which can be used to robustly drive adaptivity.
The method also delivers Hermitian positive definite stiffness matrices for any
problem, weak enforcement of boundary conditions, and several other attractive
properties [9, 11, 12]. For the most recent review of DPG, see [13]. The process
of developing robust DPG methods for steady convection-diffusion was explored
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in [7, 14]. In the sense, the main challenge is to come up with a correct test norm.
The residual is measured in the dual test norm, and the DPG method minimizes the
residual. The residual can be interpreted as a special energy norm. In other words,
the DPG method delivers an orthogonal projection in the energy norm. The task is
especially challenging for singular perturbation problems. Given a trial norm, we
strive to determine a quasi-optimal test norm such that the corresponding energy
norm is robustly equivalent to the trial norm of choice. An additional difficulty
comes from the fact that the optimal test functions should be easily approximated
with a simple enrichment strategy. For convection dominated diffusion, this means
that the test functions should not develop boundary layers. The task of determining
the quasi optimal test norm (we call it a robust test norm) leads then to a stability
analysis for the adjoint equation which is the subject of this paper. For a more
general discussion on the subject, see [13]. We start with an abstract derivation of
the DPG framework then define the concept of a robust test norm and specialize
to transient convection-diffusion. Two new robust norms are derived and numerical
verifications of the theory are presented.

It is worth mentioning connections to other modern stabilized finite element
methods. DPG can be thought of as a generalization of least-squares finite element
methods, and in fact simplifies to this case when the L2 topology is chosen for the
test space. Connections to multi-scale methods have been studied in [8] and [6]. In
the particular case of ultra-weak variational formulation and scaled adjoint graph
norm used for the test norm, the DPG method delivers optimal test functions of
Barrett and Morton (see [5]). For each trial basis function, these test functions are
defined as solutions of the global adjoint equation with the basis function as the
forcing term. It can be shown that the Petrov-Galerkin method with the resulting
test space delivers L2-projection. DPG approximates this test space (though not
each individual optimal test function) using an enriched (i.e. multiscale) mortar
least squares formulation. In a similar sense, DPG can also be interpreted as a
Variational Multiscale Method which approximates the fine-scale contribution by
enforcing the orthogonality of the fine scales under a specific inner product. The
connection to HDG is less clear; DPG shares much with the more classical mortar
method, but its connection to HDG has primarily been explored in [22]. Similarities
include the use of trace unknowns which live on the mesh skeleton and the use of
static condensation to eliminate the interior degrees of freedom, but the means of
stabilization for the two methods are very different.

1.1 Space-Time Finite Elements

Most finite element simulations of transient phenomena use a semi-discrete for-
mulation: the PDE is first discretized in space using finite elements and then the
leftover system of ordinary differential equations in time is usually solved by a
finite difference method. But it is possible to treat time as just another dimension to
be discretized with finite elements. Some of the earliest proponents of this approach
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were Kaczkowski [20], Argyris and Scharpf [2], Fried [17], and Oden [25]. These
techniques were built on the underlying concept of Hamilton’s principle.

van der Vegt and van der Ven [30] have advanced a space-time discontinu-
ous Galerkin method for 3D inviscid compressible moving boundary problems.
Klaij et al. [21] then extended the method to compressible Navier-Stokes while
Rhebergen et al. [27] developed the method for incompressible Navier-Stokes.
Rhebergen and Cockburn [26] also developed a space-time HDG method for
incompressible Navier-Stokes. Tezduyar and Behr [29] develop a deforming-
spatial-domain/space-time procedure coupled with Galerkin/least-squares to handle
incompressible Navier-Stokes flows with moving boundaries and later Aliabadi and
Tezduyar [1] apply the procedure to compressible flows. Hughes and Stewart [19]
develop a general space-time multiscale framework for deriving stabilized methods
for transient phenomena.

It is possible to use the semi-discrete approach to solving transient problems
with DPG, but it doesn’t appear to be a natural fit with the adaptive nature of DPG.
The Courant-Friedrichs-Lewy (CFL) condition is not binding with implicit time
integration schemes, but it can be a guiding principle for temporal accuracy. If we
are interested in temporally accurate solutions, we are limited by the fact that our
smallest mesh elements (which may be orders of magnitude smaller than the largest
elements) are constrained to proceed at a much smaller time step than the mesh as
a whole. We can either restrict the whole mesh to the smallest time step, or we can
attempt some sort of local time stepping. A space-time DPG formulation presents an
attractive choice as we will be able to preserve our natural adaptivity from the steady
problems while extending it in time. Thus we achieve an adaptive solution technique
for transient problems in a unified framework. This paper expands previous work
developing robust DPG methods for steady convection-diffusion to the space-time
form.

2 Overview of DPG

2.1 A Generalized Minimum Residual Method

We begin with a well posed variational problem: find u 2 U such that

b.u; v/ D l.v/ 8v 2 V;

where b.u; v/ is a bilinear (sesquilinear) form on U � V and l 2 V 0. Introducing
operator B W U ! V 0 (V 0 is the dual space to V) defined by b.u; v/ D hBu; viV0�V ,
we can reformulate the equation in operator form:

Bu D l 2 V 0 :
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We wish to find the element uh of a finite dimensional subspace which minimizes
the residual Bu � l in V 0:

uh D arg min
wh2Uh

1

2
kBu � lk2V0 :

This mathematical framework is very natural, but it is not yet practical as the V 0
norm is not especially amenable to computations. With the assumption that we are
working with Hilbert spaces, we can use the Riesz representation theorem to find a
complementary object in V rather than V 0. Let RV W V 3 v ! .v; �/ 2 V 0 be the
Riesz map, which is an isometry. Then the inverse Riesz map lets us represent our
residual in V:

uh D arg min
wh2Uh

1

2

�
�R�1

V .Bu � l/
�
�
2

V
:

Since this is a convex minimization problem, the solution is given by the critical
points where the Gâteaux derivative is zero in all directions ıu 2 Uh:

	

R�1
V .Buh � l/;R�1

V Bıu



V
D 0; 8ıu 2 U :

By definition of the Riesz map this is equivalent to the duality pairing

˝

Buh � l;R�1
V Bıuh

˛ D 0 8ıuh 2 Uh :

We can define an optimal test function vıuh :D R�1
V Bıuh for each trial function ıuh.

This allows us to revert back to our original bilinear form with a finite dimensional
set of trial and test functions:

b.uh; vıuh/ D l.vıuh/:

Note that vıuh 2 V comes from the auxiliary problem

.vıuh ; ıv/V D hRVvıuh ; ıvi D hBıuh; ıvi D b.ıuh; ıv/ 8ıv 2 V:

We might refer to this as an optimal Petrov-Galerkin method. We arrive at the same
method by realizing the supremum in the inf-sup condition (see [12]), motivating
the optimal nomenclature. As a minimum residual method, optimal Petrov-Galerkin
methods produce Hermitian, positive-definite stiffness matrices since

b.uh; vıuh/ D .vuh ; vıuh/V D .vıuh ; vuh/ D b.ıuh; vuh/ :
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The energy norm of the error is directly related to the residual:

kuh � ukE D kB.uh � u/kV0 D kBuh � lkV0 D �
�R�1

V .Buh � l/
�
�
V ;

where we designate R�1
V .Buh � l/ the error representation function. This has proven

to be a very robust a-posteriori error estimator for driving adaptivity [15].

2.2 Transient Convection-Diffusion

2.2.1 Problem Description

In order to better illustrate choice of the U and V spaces, we introduce the transient
convection-diffusion problem. Consider spatial domain˝ and corresponding space-
time domain Q D ˝ � Œ0;T	 with boundary � D �� [ �C [ �0 [ �T where ��
is the inflow boundary (ˇ � nx < 0, where ˇ is the convection vector and nx is
the outward spatial normal), �C is the outflow boundary (ˇ � nx 
 0), �0 is the
initial time boundary, and �T is the final time boundary. Let �h WD S

@K denote the
entire mesh skeleton, where @K denotes the boundary of element K. �hx denotes any
parts of the skeleton with a nonzero spatial normal and �ht have a nonzero temporal
normal.

The transient convection-diffusion equation is

@u

@t
C r � .ˇu/� ��u D f ;

where u is the quantity of interest, often interpreted to be a concentration of some
quantity, � is the diffusion coefficient, and f is the source term.

We apply flux boundary conditions on the inflow and trace boundary conditions
on the outflow

tr .ˇ � u � �ru/ � nx D t� on ��
tr .u/ D uC on �C
tr .u/ D u0 on �0 :

We note that Dirichlet boundary conditions also induce Dirichlet boundary con-
ditions for the adjoint problem. Since the direction of convection is reversed for
the adjoint convection-diffusion problem, this results in boundary layer adjoint
solutions, which must be controlled using special weighted norms [14, 28]. How-
ever, since the convection-diffusion operator is not self-adjoint, the Cauchy inflow
boundary condition induces a Neumann boundary condition for the adjoint problem.
As a result, the adjoint solution does not contain boundary layers, simplifying the
construction of a robust DPG method.
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2.2.2 Relevant Sobolev Spaces

We begin by defining operators rxtu WD
�ru

@u
@t

�

and rxt � u WD r � ux C @ut
@t , where

u D .ux; ut/. We will need the following Sobolev spaces defined on our space-time
domain:

H1.Q/ D ˚

u 2 L2 .Q/ W ru 2 L2 .Q/


H1
xt.Q/ D ˚

u 2 L2 .Q/ W rxtu 2 L2 .Q/


H.div;Q/ D ˚

� 2 L2 .Q/ W r � � 2 L2 .Q/


H.divxt;Q/ D ˚

� 2 L2 .Q/ W rxt � � 2 L2 .Q/


:

We will also need the corresponding broken Sobolev spaces:

H1.Qh/ D ˚

u 2 L2 .Q/ W ujK 2 H1.K/; K 2 Qh
 D

Y

K2Qh

H1.K/

H1
xt.Qh/ D ˚

u 2 L2 .Q/ W ujK 2 H1
xt.K/; K 2 Qh

 D
Y

K2Qh

H1
xt.K/

H.div;Qh/ D ˚

� 2 L2 .Q/ W ujK 2 H.div;K/; K 2 Qh
 D

Y

K2Qh

H.div;K/

H.divxt;Qh/ D ˚

� 2 L2 .Q/ W ujK 2 H.divxt;K/; K 2 Qh
 D

Y

K2Qh

H.divxt;K/:

Consider the following trace operators:

trKgradu D uj@Kx u 2 H1.K/;

trKdivxt� D � j@Kxt � nKxt � 2 H.divxt;K/;

where @Kx refers to spatial faces of element K, @Kxt to the full space-time boundary,
and nKxt is the unit outward normal on @Kxt. The operators trgrad and trdivxt perform
the same operation element by element to produce the linear maps

trgrad W H1.Qh/ !
Y

K2Qh

H1=2.@Kx/;

trdivxt W H.divxt;Qh/ !
Y

K2Qh

H�1=2.@Kxt/:
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Finally, we define spaces of interface functions. In order that our functions be single
valued, we use the following definitions:

H1=2.�hx/ D trgradH
1.Q/ ;

H�1=2
xt .�h/ D trdivxtH.divxt;Q/ :

For more details on broken and trace Sobolev spaces, see [3].

2.2.3 Variational Formulations

There are many possible manipulations that could be performed before arriving at a
variational formulation. We begin by reformulating the problem in terms of the first
order system:

1

�
� � ru D 0

rxt �
�

ˇu � �

u

�

D f :

(1)

Multiplying (1) by test functions 	 2 L2 .Q/ and v 2 L2 .Q/, we obtain the
following “trivial” variational formulation equivalent to the strong form:

u 2 H1
xt.Q/ u D uC on �C

u D u0 on �0

� 2 H.div;Q/ .ˇu � �ru/ � n D t� on ��
�
1

�
� ;	

�

� .ru;	/ D 0 8	 2 L2 .Q/

�

rxt �
�

ˇu � �

u

�

; v

�

D f 8v 2 L2 .Q/ :

(2)

We can now choose either to relax (integrate by parts and build in the boundary
conditions) or strongly enforce each equation. The steady state case and resulting
options are explored and analyzed in further detail in [10] and are termed the
trivial formulation (don’t relax anything), the classical formulation (relax the second
equation), the mixed formulation (relax the first equation), and the ultra-weak
formulation (relax both equations). The stability constants for the four formulations
are related, but the functional settings and norms of convergence change. Early
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DPG work emphasized the ultra-weak formulation since in many ways it was the
easiest to analyze, though recently the classical formulation has been under very
active consideration. In the interests of simpler analysis, we focus on the ultra-weak
formulation in this paper:

u 2 L2.Q/ ; � 2 L2 .Q/
�
1

�
� ;	

�

C .u;r � 	/ D 0 8	 2 H.div;Q/ W 	 � nx D 0 on ��

�
��

ˇu � �

u

�

;rxtv

�

D f 8v 2 H1
xt.Q/ W v D 0 on �C [ �0 :

(3)

We can remove the conditions on the test functions by introducing trace unknowns

Ou D tr.u/ on @Qx;

Ot D tr

�
ˇu � �

u

�

� nxt on @Qxt :

Our new ultra-weak formulation with conforming test functions is

u 2 L2.Q/ ; � 2 L2 .Q/ Ou D uC on �C

Ou 2 H1=2.@Qx/ ; Ot D t� on �� ; Ot D �u0 on �0

Ot 2 H�1=2
xt .@Q/ ;

�
1

�
� ;	

�

C .u;r � 	/� hOu;	 � nxi D 0 8	 2 H.div;Q/

�
��

ˇu � �

u

�

;rxtv

�

C ˝Ot; v˛ D f 8v 2 H1
xt.Q/ :

(4)

2.2.4 Broken Test Functions

One of the key insights that led to the development of the DPG framework was the
process of breaking test functions, that is testing with functions from larger broken
Sobolev spaces, replacing H1

xt.Q/ with H1
xt.Qh/ and H.div;Q/ with H.div;Qh/.

Discretizing such spaces is much simpler than standard spaces which require
enforcement of global continuity conditions. The cost of introducing broken spaces
is that we have to extend our interface unknowns Ou and Ot to live on the mesh skeleton.
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Our ultra-weak formulation with broken test functions looks like

u 2 L2.Q/ ; � 2 L2 .Q/ Ou D uC on �C

Ou 2 H1=2.�hx/ ; Ot D t� on �� ; Ot D �u0 on �0

Ot 2 H�1=2
xt .�h/ ;

�
1

�
� ;	

�

C .u;r � 	/� hOu;	 � nxi D 0 8	 2 H.div;Qh/

�
��

ˇu � �

u

�

;rxtv

�

C ˝Ot; v˛ D f 8v 2 H1
xt.Qh/ :

(5)

The main consequence of breaking test functions is that it reduces the cost of solving
for optimal test functions from a global solve to an embarrassingly parallel solve
element-by-element. Now that we’ve derived a suitable variational formulation, we
are left with the task of selecting a test norm with which to compute our optimal test
functions.

3 Robust Test Norms

The final unresolved choice is what norm to apply to the V space. This is one of
the most important factors in designing a robust DPG method as the corresponding
Riesz operator needs to be inverted to solve for the optimal test functions. If the
norm produces unresolved boundary layers in the auxiliary problem, then many of
the attractive features of DPG may fall apart. This is the primary emphasis of this
paper. The problem of constructing stable test norms for steady convection-diffusion
was addressed in [7, 14]. In this paper, we extend that work to transient convection-
diffusion in space-time.

We define a robust test norm such that the L2 norm of the solution is bounded by
the energy norm of the solution with a constant independent of �. We can rewrite
any ultra-weak formulation with broken test functions as the following bilinear form
with group variables:

b ..u; Ou/ ; v/ D 	

u;A�v



L2
C hOu; ŒŒv		i�h ;

where A� represents the adjoint. In the case of convection-diffusion, u WD fu; � g,
Ou WD ˚Ou; Ot, v WD fv;	g.

Note that for conforming v� satisfying A�v� D u:

kuk2L2 D b.u; v�/ D b.u; v�/
kv�kV

kv�kV

� sup
v�¤0

jb.u; v�/j
kv�k kv�k D kukE kv�kV :
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This defines a necessary condition for robustness, namely that

kv�kV . kukL2 : (6)

If this condition is satisfied, then we get our final result:

kukL2 . kukE :

So far, we’ve assumed that our finite set of optimal test functions are assembled
from an infinite dimensional space. In practice, we have found it to be sufficient
to use an “enriched” space of higher polynomial dimension than the trial space
[18]. This adds an additional requirement when assembling a robust test norm,
namely that our optimal test functions should be adequately representable within
this enriched space. We illustrate this point by considering three norms which
satisfy the above conditions for 1D steady convection-diffusion. The graph norm

is
�

kA�vk2L2 C kvk2L2
� 1
2
:

k.v;	/k2 D kr � 	 � ˇ � rvk2 C
�
�
�
�

1

�
	 C rv

�
�
�
�

2

C kvk2 C k	k2 :

Remark 1 In the DPG technology, the test norm must be localizable, i.e.,

kvk2V D
X

K

kvk2V.K/;

where kvkV.K/ denotes a test norm (and not just a seminorm) for the element test
space. In practice this means the addition of properly scaled L2-terms. Without those
terms, we could not invert the Riesz operator on the element level. Addition of the L2

terms does not necessarily contradict the robustness of the norm, see the discussion
in [13] on bounded below operators. An alternate strategy has been explored in
[16] where we enforce element conservation property by securing the presence of a
constant function in the element test space. The residual is then minimized only over
the orthogonal complement to the constants which eliminates the need for adding
the L2-term to the test norm.

The robust norm was derived in [7]:

k.v;	/k2 D kˇ � rvk2 C � krvk2 C min
� �

h2
; 1
�

kvk2

C kr � 	k2 C min

�
1

h2
;
1

�

�

k	k2 :
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The case for the coupled robust norm was made in [4]:

k.v;	/k2 D kˇ � rvk2 C � krvk2 C min
� �

h2
; 1
�

kvk2

C kr � 	 � ˇ � rvk2 C min

�
1

h2
;
1

�

�

k	k2 :

The argument for the coupled norm was that in certain cases we noticed pollution of
u from errors in � , for example at singularities in � , u also exhibited degraded
quality with the robust norm. The coupled robust norm seemed to relax this
behavior, i.e. errors in u appear more independent of errors in � .

The bilinear form and test norm define a mapping from input trial functions to an
optimal test function:

T D R�1
V B W U ! V :

Below, we plot the optimal test functions produced given � D 10�2; a representative
trial function u D x � 1

2
, and either the graph norm, the robust norm, or the coupled

robust norm. Note that the optimal test functions will be different for any other trial
function. In the left column, we see the fully resolved ideal optimal test function that
DPG theory relies on. On the right, we see the approximated optimal test function
using a enriched cubic test space (Figs. 1, 2, and 3).

Mathematically, the graph norm satisfies the necessary condition to be a robust
norm, but the ideal optimal test functions contain strong boundary layers which
can not be realistically approximated with the provided enriched space. If the
approximated optimal test functions can not come sufficiently close to the ideal,
then the whole DPG theory falls apart. See [18] for more discussion. This provides
an additional condition on a test norm before we can truly call it robust: the ideal test
functions must be adequately representable within the provided enriched space. This
ultimately comes down to an analysis of the relative magnitudes of individual terms
within the test norm, usually attempting to bound reactive or convective terms by
diffusive terms. The coupled robust norm satisfies condition (6) and also produces
relatively smooth optimal test functions that can be sufficiently approximated with
a cubic polynomial space. Niemi et al. attempted to approximate boundary layers in
optimal shape functions with Shishkin meshes [23, 24].

3.1 Application to Transient Convection-Diffusion

Now we present the analysis leading to two robust norms for transient convection-
diffusion. Consider the problem with homogeneous boundary conditions:

1

�
� � ru D 0

@u

@t
C ˇ � ru � r � � D f
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(a) (b)

Fig. 1 Graph norm optimal test functions for u D x � 1
2
. (a) Ideal. (b) Approximated

ˇnu � �
@u

@n
D 0 on ��

u D 0 on �C
u D u0 on �0:

Let Q̌ WD
�

ˇ

1

�

, then we can rewrite this as

1

�
� � ru D 0

Q̌ � rxtu � r � � D f

ˇnu � � @u
@n

D 0 on ��

u D 0 on �C
u D u0 on �0:
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(a) (b)

Fig. 2 Robust norm optimal test functions for u D x � 1
2
. (a) Ideal. (b) Approximated

The adjoint operator A� is given by

A�.v;	/ D
�
1

�
	 C rv;� Q̌ � rxtv C r � 	

�

:

We decompose now the continuous adjoint problem

A�.v;	/ D . f ; g/

into two cases a continuous part with forcing term g:

1

�
	1 C rv1 D 0

� Q̌ � rxtv1 C r � 	1 D g

	1 � nx D 0 on ��
v1 D 0 on �C
v1 D 0 on �T ;
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(a) (b)

Fig. 3 Coupled robust norm optimal test functions for u D x � 1
2
. (a) Ideal. (b) Approximated

and a continuous part with forcing f :

1

�
	2 C rv2 D f

� Q̌ � rxtv2 C r � 	2 D 0

	2 � nx D 0 on ��
v2 D 0 on �C
v2 D 0 on �T :

(The boundary conditions can be derived by taking the ultra-weak formulation and
choosing boundary conditions such that the temporal flux and spatial flux terms
hOu; ŒŒ�n		i�out and

˝Otn; ŒŒv		
˛

�in
are zero.)
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We can then derive that the test norms

k.v;	/k2V;K :D
�
�
� Q̌ � rxtv

�
�
�

2

K
C � krvk2K C kvk2K (7)

C kr � 	k2K C 1

�
k	k2K ;

and

k.v;	/k2V;K :D
�
�
� Q̌ � rxtv

�
�
�

2

K
C � krvk2K C kvk2K (8)

C
�
�
�r � 	 � Q̌ � rxtv

�
�
�

2

K
C 1

�
k	k2K ;

respectively designated the robust test norm and the coupled robust test norm,
provide the necessary bound kv�kV . kukL2.Q/.

In the following lemmas we establish the following bounds:

• Bound on k.v1;	1/kV . Lemma 2 gives
�
�
� Q̌ � rxtv1

�
�
� � kgk. Since r � 	1 D g C

Q̌ � rxtv1,

kr � 	1k � kgk C
�
�
� Q̌ � rxtv1

�
�
� � 2 kgk :

Or, the fact that r � 	 � Q̌ � rxtv1 D g clearly gives

�
�
�r � 	 � Q̌ � rxtv1

�
�
� D kgk :

Lemma 1 gives kv1k2 C � krv1k2 � kgk2. Since �1=2rv1 D ���1=2	1,

1

�
k	1k2 � kgk2 :

Thus, all .v1;	1/ terms in (7) and (8) are accounted for, guaranteeing at least
robust control of u.

• Bound on k.v2;	2/kV . The fact that r � 	 � Q̌ � rxtv D 0 clearly gives

�
�
�r � 	 � Q̌ � rxtv2

�
�
� D 0 � k fk :

Lemma 1 gives kv2k2 C � krv2k2 � � k fk2. Since �1=2rv2 D f � ��1=2	2,

1

�
k	2k2 � .1C �/ k fk2 :
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We have not been able to develop bounds on
�
�
� Q̌ � rxtv2

�
�
� and kr � 	k which

means that we can not guarantee robust control of � with provided test norms.

We proceed now with the technical estimates.

Lemma 1 For the duration of this lemma, let v WD v1Cv2. Assuming the advection
field ˇ is incompressible, i.e. r � ˇ D 0,

kvk2 C � krvk2 � kgk2 C � k fk2 :

Proof Define w D etv and note that @w
@t D 	

@v
@t C v




et while all spatial derivatives
go through. Multiplying the adjoint by w and integrating over Q gives

�
Z

Q

Q̌ � rxtvw � ��vw D
Z

Q
gw � �

Z

Q
r � fw

or

�
Z

Q
etv Q̌ � rxtv � �

Z

Q
etv�v D

Z

Q
etgv � �

Z

Q
etvr � f :

Integrating by parts:

Z

Q
rxt �

�

et Q̌ v
�

v �
Z

�

et Q̌ � nv2 C �

Z

Q
etrv � rv � �

Z

�x

etv � rv � nx

D
Z

Q
etgv C �

Z

Q
etrv � f � �

Z

�x

etvf � nx:

Note that rxt � etv Q̌ D et. Q̌ � rxtvC v/ if r � ˇ D 0. Moving some terms to the right
hand side, we get

Z

Q
etv2 C

Z

Q
�etrv � rv

D
Z

Q
etgv C �

Z

Q
etrv � f � �

Z

�x

etvf � nx

�
Z

Q
et Q̌ � rxtvv C

Z

�

et Q̌ � nv2 C �

Z

�x

etv � rv � nx:
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Note that 1 � ketk1 D eT . Then

kvk2 C � krvk2

� eT

0

B
B
B
@

Z

Q
gv C �

Z

Q
rv � f � �

Z

��

v f � nx
„ƒ‚…

D���
0

�nC @v
@nx

��
Z

�C

v
„ƒ‚…

D0
f � nx

�
Z

Q

Q̌ � rxtvv C
Z

�

Q̌ � nv2 C �

Z

��

v � rv � nx C �

Z

�C

v
„ƒ‚…

D0

@v

@nx

1

A

Note: boundary conditions give 	n D 0 on �� and v D 0 on �C

D eT
 
Z

Q
gv C �

Z

Q
rv � f

������������
��
Z

��

v
@v

@nx
C �

Z

�x

v
@v

@nx

�1
2

Z

Q

Q̌ � rxtv
2 C

Z

�

Q̌ � nv2
�

Note: �x D �� [ �C and v D 0 on ��

D eT
 
Z

Q
gv C �

Z

Q
rv � f C 1

2

Z

Q
�����0
rxt � Q̌ v2 � 1
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Lemma 2 If
�
�rˇ � 1

2
r � ˇI

�
�
L1

� Cˇ we can bound

�
�
� Q̌ � rxtv1

�
�
� . kgk :

Proof Multiply � Q̌ � rxtv1 D g � r � 	1 by � Q̌ � rxtv1 and integrate over Q to get

�
�
� Q̌ � rxtv1

�
�
�

2 D �
Z

Q
g Q̌ � rxtv1 C

Z

Q

Q̌ � rxtv1r � 	1 : (9)
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Note: rv1 � rv1 D rv1 � rv1nx � nx D .rv1 � nxnx/ � .rv1 � nxnx/

D �
Z

Q
g Q̌ � rxtv1 C �

Z

Q
rv1.rˇ � 1

2
r � ˇI/rv1

� �
2

Z

�C

�
@v1

@nx

�2

ˇ � nx
„ ƒ‚ …

<0

� �
Z

Q
g Q̌ � rxtv1 C �

Z

Q
rv1.rˇ � 1

2
r � ˇI/rv1

� kgk2
2

C
�
�
� Q̌ � rxtv1

�
�
�

2

2
C �

Z

Q
rv1.rˇ � 1

2
r � ˇI/rv1

Note: Young’s inequality

� kgk2
2

C
�
�
� Q̌ � rxtv1

�
�
�

2

2
C �Cˇ krv1k2

Note: Assumption on ˇ

�
�
1

2
C Cˇ

�

kgk2 C
�
�
� Q̌ � rxtv1

�
�
�

2

2
:

In conclusion, with either robust test norm, we can claim the following stability
result,

ku � uhk . k.u; � ; Ou; Ot/� .uh; � h; Ouh; Oth/kE
D inf.uh;� h;Ouh;Oth/ k.u; � ; Ou; Ot/ � .uh; � h; Ouh; Oth/kE :

Notice that, contrary to the steady-state case, we have not been able to secure a
robust L2 bound for the stress. The best approximation error in the energy norm
can be estimated locally, i.e. element-wise, see [7, 14]. This leads to an ultimate,
final h estimate but not necessarily with robust constants. The loss of robustness in
the best approximation error estimate is the consequence of rescaling the L2-terms
to avoid boundary layers in the optimal test functions. However, similarly to the
steady-state case, with refinements, the mesh-dependent L2-terms converge to the
optimal ones so we hope to regain robustness in the limit. We do not attempt to
analyze the best approximation error in this contribution and restrict ourselves to
numerical experiments only.
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4 Numerical Tests

The norms given in (7) and (8) are robust, but the reaction (zeroth order) terms
still dominate the diffusion terms which produces boundary layers in optimal test
functions and prohibits their resolution with a simple enrichment strategy. We can
mitigate this by introducing mesh-dependent norms:

k.v;	/k2V;K :D
�
�
� Q̌ � rxtv

�
�
�

2

K
C � krvk2K C min

� �

h2
; 1
�

kvk2K (10)

C kr � 	k2K C min

�
1

�
;
1

h2

�

k	k2K ;

and

k.v;	/k2V;K :D
�
�
� Q̌ � rxtv

�
�
�

2

K
C � krvk2K C min

� �

h2
; 1
�

kvk2K (11)

C
�
�
�r � 	 � Q̌ � rxtv

�
�
�

2

K
C min

�
1

�
;
1

h2

�

k	k2K :

Note that any version of (7) and (8) with smaller coefficients also satisfies the
criteria for robustness. The mesh dependent coefficients were chosen in an attempt
to balance the relative size of “reaction” terms like kvk which scale like hd with
“diffusive” terms like � krvk which scale like hd�2. This is also the mechanism
by which we avoid creating sharp boundary layers in our optimal test functions—
by correctly balancing reactive and diffusive terms. In the following numerical
experiments, we compute with these mesh dependent norms.

We verify robust convergence of our transient coupled robust norm on an
analytical solution (shown in Fig. 4) that decays to a steady state Eriksson-Johnson

Fig. 4 Transient Eriksson-Johnson solution. (a) t D 0:0. (b) t D 0:5. (c) t D 1:0
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(a)

(c) (d)

(b)

Fig. 5 Convergence to analytical solution. (a) � D 10�2. (b) � D 10�4. (c) � D 10�6. (d)
� D 10�8

problem:

u D exp.�lt/ Œexp.�1x/ � exp.�2x/	C cos.�y/
exp.s1x/ � exp.r1x/

exp.�s1/ � exp.�r1/
;

where l D 4, �1;2 D �1˙p
1�4�l

�2� , r1 D 1Cp
1C4�2�2
2�

, and s1 D 1�p
1C4�2�2
2�

. The

problem domain is Œ�1; 0	�Œ�0:5; 0:5	 and ˇ D
�
1

0

�

. Convergence plots presented

in Fig. 5 show robustness for � D 10�2; 10�4; 10�6; 10�8 for linear, quadratic, and
quartic polynomial trial functions. Flux boundary conditions were applied based on
the exact solution at x D �1 and t D 0 while trace boundary conditions were set at
y D �0:5, y D 0:5, and x D 0. An adaptive solve was undertaken using a greedy
refinement strategy in which any elements with at least 20 % of the energy error
of highest energy error element were refined at each step. See [15] for details on
adaptivity within the DPG context.
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Fig. 6 u at t D 0:2 for � D 10�2 and p D 2 after four adaptive refinements. (a) Robust norm. (b)
Coupled robust norm

In the plot legends, L2 indicates
�

ku � uexactk2L C k� � � exactkL2
� 1
2

while V�

indicates the energy error reported by the method. Despite a lack of guaranteed
control � by norms (10) and (11), k� � � exactkL2 is included in the L2 error
computation and does appear to be under control in the problems considered here.
When plotted in isolation, the L2 error in � was usually orders of magnitude smaller
than ku � uexactkL2 .

We provide surface plots of temporal slices of the solution at t D 0:2 for
the two norms with � D 10�2, and p D 2 after four adaptive refinements. The
results conform to our previous experience with steady convection-diffusion where
the coupled robust norm tends to produce smoother results in regions with sharp
gradients (Fig. 6).

5 Conclusions

As expected, convergence of the energy error appears to be a reliable predictor of
convergence of the L2 error. This relation is especially tight for moderate values of
�. We’ve developed two robust test norms for transient convection-diffusion, though
neither one guarantees robust control over � as we had with their steady analogs.
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A Review of Hybrid High-Order Methods:
Formulations, Computational Aspects,
Comparison with Other Methods

Daniele A. Di Pietro, Alexandre Ern, and Simon Lemaire

Abstract Hybrid High-Order (HHO) methods are formulated in terms of discrete
unknowns attached to mesh faces and cells (hence, the term hybrid), and these
unknowns are polynomials of arbitrary order k 
 0 (hence, the term high-
order). HHO methods are devised from local reconstruction operators and a local
stabilization term. The discrete problem is assembled cellwise, and cell-based
unknowns can be eliminated locally by static condensation. HHO methods support
general meshes, are locally conservative, and allow for a robust treatment of physical
parameters in various situations, e.g., heterogeneous/anisotropic diffusion, quasi-
incompressible linear elasticity, and advection-dominated transport. This paper
reviews HHO methods for a variable-diffusion model problem with nonhomoge-
neous, mixed Dirichlet–Neumann boundary conditions, including both primal and
mixed formulations. Links with other discretization methods from the literature are
discussed.

1 Introduction

Over the last few years, a significant effort has been devoted to devising and
analyzing discretization methods for elliptic PDEs on general meshes including
nonmatching interfaces and polytopal (polygonal/polyhedral) cells. Such meshes
are encountered, e.g., in the context of subsurface flow simulations in saline aquifers
and petroleum basins, where polytopal elements and nonmatching interfaces appear
to account for eroded layers and fractures. In petroleum reservoir modeling,
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polytopal elements can also appear in the near-wellbore regions, where radial
meshes are usually employed to account for the (qualitative) features of the solution.
A more recent and original application of meshes composed of polytopal elements
is adaptive mesh coarsening [2, 7], where a coarse mesh is obtained by element
agglomeration from a fine mesh accounting for the geometric details of the domain.

Polytopal discretization methods were first investigated in the framework of
lowest-order schemes. In the context of Finite Volume methods, several families of
polytopal methods have resulted from the effort to circumvent the superadmissible
mesh condition required for the consistency of the classical two-point scheme; cf.,
in particular, [38, Definition 9.1]. Interestingly, most of these methods possess local
conservation properties on the primal mesh and exhibit numerical fluxes without
resorting to local reconstructions. We can mention here, e.g., the Mixed and Hybrid
Finite Volume (MHFV) schemes of [34, 39] and the Discrete Duality Finite Volume
(DDFV) method of [33].

Other families of lowest-order polytopal discretization methods have been
obtained by reproducing at the discrete level salient features of the continuous
problem. Mimetic Finite Difference (MFD) methods were originally derived by
mimicking the Stokes theorem in a discrete setting to formulate discrete coun-
terparts of the usual first-order differential operators combined with constitutive
relations and of L2-products; cf. [16, 17] and also [9] for an overview. Another
viewpoint starts from the seminal ideas of Tonti [44] and Bossavit [13] hinging on
differential geometry and algebraic topology. Related schemes include the so-called
Discrete Geometric Approach (DGA) [22], and more generally, the Compatible
Discrete Operator (CDO) framework of [10, 11], cf. also [12], where the building
blocks are metric-free discrete differential operators combined with a discrete
Hodge operator approximating constitutive relations. Another approach consists
in reproducing classical properties of nonconforming and penalized methods on
general meshes, as in the Cell-Centered Galerkin (CCG) method [23] and the
generalized Crouzeix–Raviart method [31]. The idea is to formulate the method
in terms of (possibly incomplete) polynomial spaces so as to re-deploy classical
(nonconforming) Finite Element analysis tools.

Recent works have led to unifying frameworks that capture the links among
(some of) the above methods. The close relation between MHFV and MFD
methods has been investigated in [35], where equivalence at the algebraic level is
demonstrated. A unifying viewpoint that encompasses the above and other classical
methods has been proposed under the name of Gradient Schemes [36]. Another
unifying viewpoint (closely related to Gradient Schemes) is provided by the CDO
framework which encompasses vertex-based schemes (such as first-order Lagrange
finite elements and nodal MFD) and cell-based schemes (such as MHFV and MFD).

In parallel, high-order polytopal discretization methods have received significant
attention over the last few years. Increasing the approximation order can signifi-
cantly speed up convergence when the solution exhibits sufficient (local) regularity.
When this is not the case, the better convergence properties of high-order methods
can be recovered using mesh adaption (by local refinement or coarsening). High-
order polytopal discretization methods can be obtained by fully nonconforming
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approaches such as the Discontinuous Galerkin (DG) method; cf. [4] and also [5, 15]
for a unified presentation for the Poisson problem, [37] for Friedrichs’ systems, [18]
for an hp-version, and [25] for a comprehensive introduction. An interesting class of
DG methods is that of Hybridizable Discontinuous Galerkin (HDG) methods [21]
(cf. also [19]). Such methods were originally devised as discrete versions of a
characterization of the exact solution in terms of solutions of local problems
globally matched through transmission conditions. A similar approach can be found
in [45, 46].

Very recent works have developed other viewpoints to achieve high-order
polytopal discretizations. A salient example is the Virtual Element (VE) method
introduced in [8, 14]. The H1-conforming VE method takes the steps from the
nodal MFD method recast in a Finite Element framework, and can be viewed
as a generalization of conforming (Lagrange, Hermite) Finite Element methods.
The main idea is to define a local space of basis functions for which only the
values of degrees of freedom are known (i.e., no analytical expression is available).
Starting from these degrees of freedom, one devises a computable projection onto a
polynomial space so as to formulate the local contributions to the discrete problem.

Our focus is here on the Hybrid High-Order (HHO) method introduced in [28,
32]. The term hybrid refers to the fact that the method is originally formulated
using discrete unknowns attached to mesh faces and cells. These discrete unknowns
are polynomial functions, and the cell-based ones can be eliminated locally by
static condensation. The term high-order refers to the fact that the order of the
polynomial functions can be an arbitrary integer k 
 0. The main idea of
HHO methods consists in locally reconstructing high-order differential operators
acting on the face- and cell-based unknowns. The guideline underpinning such
reconstructions is an integration by parts formula. These reconstructions are then
used to formulate the elementwise contributions to the discrete problem including
a high-order stabilization term exhibiting a rich structure coupling locally the
face- and cell-based unknowns. Local contributions are conceived so that the only
globally coupled unknowns after static condensation are discontinuous polynomials
on the mesh skeleton. This is a distinctive feature with respect to the VE method,
where H1-conforming reconstructions are present in the background. A study of the
relations between HHO and HDG methods can be found in [20], which also fits
into the HHO framework (up to equivalent stabilization) the recent high-order MFD
method of [6, 43] (also referred to as nonconforming VE method in subsequent
publications). We also mention that HHO methods for polynomial order k D 0

are closely related to MHFV (and so to lowest-order MFD); cf., in particular, [32,
Sect. 2.5] and [30, Sect. 5.4].

HHO methods offer several assets. Besides supporting general meshes, their
construction is dimension-independent, and they are locally conservative [27].
Moreover, they allow for a natural treatment of physical parameters [29], and lead
to discretizations that are robust over the entire range of variation of physical
parameters in various situations, e.g., heterogeneous/anisotropic diffusion [29],
quasi-incompressible linear elasticity [28] and advection-dominated transport [30].
When compared to interior penalty DG methods, HHO methods are also appealing
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in terms of computational cost. To achieve an order of convergence of .kC 1/ in the
energy norm for a pure diffusion problem in three space dimensions, the globally
coupled degrees of freedom for DG grow as 1

6
.k C 2/.k C 3/.k C 4/NE with NE the

number of mesh elements, whereas for HHO they only grow as 1
2
.k C 1/.k C 2/NF

with NF the number of mesh faces (only leading-order terms are considered in the
above computations).

The goal of this paper is to provide an up-to-date review of HHO methods,
with a particular focus on the various possible formulations and computational
aspects. For the sake of simplicity, we focus on a model elliptic problem with
possibly heterogeneous/anisotropic diffusion tensor. Most of the results contained
herein can be derived from relatively straightforward adaptations of the proofs
contained in previous works [1, 20, 26–30, 32]; for the sake of conciseness, we
provide bibliographic references for the most technical proofs, while some details
are included for those proofs that allow us to highlight the more practical aspects
of the method. One novel aspect is that we treat nonhomogeneous mixed Dirichlet–
Neumann boundary conditions, while previous work has focused on homogeneous,
pure Dirichlet boundary conditions. Another novelty is that we detail the main
implementation aspects under the viewpoint of an offline/online decomposition.

The material is organized as follows. Section 2 describes the continuous and
discrete settings, including the model problem, the notion of admissible mesh
sequence, and the assumptions on the data. Section 3 is devoted to the presentation
and analysis of the HHO method in primal form, while Sect. 4 is concerned with the
mixed form of the HHO method. Finally, the links between both forms are studied
in Sect. 5, while Sect. 6 contains some concluding remarks and perspectives.

2 Continuous and Discrete Settings

This section presents the model problem, the key definitions and notation concern-
ing the mesh, and the assumptions on the data of the model problem.

2.1 Model Problem

Let ˝ � R
d, d 
 2, be an open, connected, bounded polytopal domain, with

boundary � and unit outward normal n. We assume that there exists a partition of
� such that � WD �d [ �n, with �d \ �n D ¿, and such that the measure of �d

is nonzero. For any connected subset X � ˝ with nonzero Lebesgue measure, the
inner product and norm of the Lebesgue space L2.X/ are denoted by .�; �/X and k�kX ,
respectively, with the convention that the index is omitted if X D ˝ .

We consider a variable-diffusion model problem with tensor-valued diffusivity
M. Throughout the paper, M is assumed to be symmetric, piecewise Lipschitz on a
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polytopal partition P˝ of˝ , and uniformly elliptic, in the sense that, for a.e. x 2 ˝ ,

0 < �[ � M.x/
�
 � �] < C1; 8
 2 R
d such that j
j D 1:

The model problem reads: Find u W ˝ ! R such that

�div.Mru/ D f in ˝;

u D  @ on �d;

Mru�n D @ on �n;

(1)

where f 2 L2.˝/,  @ D .u@/j�d with u@ 2 H1.˝/, and @ 2 L2.�n/ (whenever
the measure of �n is nonzero). Henceforth, u is termed the potential. Owing to
the nonzero assumption on the measure of �d, we do not consider pure Neumann
boundary conditions; the results presented in what follows can be adapted to this
case, up to minor modifications. The pure Dirichlet case, corresponding to a .d�1/-
dimensional zero-measure set �n, is included in the present setting.

2.2 Admissible Mesh Sequences

Denoting by H � R
C� a countable set of meshsizes having 0 as its unique accumu-

lation point, we consider mesh sequences .Th/h2H where, for all h 2 H, Th D fTg
is a finite collection of nonempty disjoint open polytopes (polygons/polyhedra) T,
called elements or cells, such that ˝ D S

T2Th
T and h D maxT2Th hT (where hT

stands for the diameter of the element T). Recall that polytopes in R
d have flat sides.

A hyperplanar closed connected subset F of ˝ is called a face (for d > 3,
these geometric objects are also called facets) if it has positive .d�1/-dimensional
Lebesgue measure and if either (1) there exist T1;T2 2 Th such that F D @T1 \ @T2
or F � @T1 \ @T2 and F is a side of both T1 and T2 (and F is termed interface), or
(2) there exists T 2 Th such that F D @T \ @˝ or F � @T \ @˝ and F is a side of
T (and F is termed boundary face). Interfaces are collected in the set F i

h, boundary
faces in Fb

h , and we let Fh WD F i
h [ Fb

h . The diameter of a face F 2 Fh is denoted
hF. For all T 2 Th, FT WD fF 2 Fh j F � @Tg denotes the set of faces lying on
the boundary of T and, symmetrically, for all F 2 Fh, TF WD fT 2 Th j F � @Tg
denotes the set gathering the one (if F is a boundary face) or two (if F is an interface)
element(s) sharing F. For all F 2 FT , we let nT;F be the unit normal vector to F
pointing out of T. Finally, for every interface F 2 F i

h, an orientation is fixed once
and for all by means of a unit normal vector nF .

We adopt the following notion of admissible mesh sequence, cf. [25, Sect. 1.4].

Definition 2.1 (Admissible Mesh Sequence) The mesh sequence .Th/h2H is
admissible if, for all h 2 H, Th admits a matching simplicial submesh Th such that
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there exists a real number � > 0, called mesh regularity parameter, independent of
h and such that, for all h 2 H,

(i) for any simplex S 2 Th of diameter hS and inradius rS, �hS � rS;
(ii) for all T 2 Th, and all S 2 TT WD fS 2 Th j S 	 Tg, �hT � hS.

Consequences of Definition 2.1 are that (1) the quantity maxT2Th card.FT/ is
uniformly bounded with respect to the meshsize, and that (2) mesh faces have
a comparable diameter to that of the cells they belong to; cf. [25, Lemmas 1.41
and 1.42]. We add the following notion of compatibility, in order to deal with the
partitions associated with the diffusion tensor and with the boundary conditions.

Definition 2.2 (Compatible Mesh Sequence) The mesh sequence .Th/h2H is
compatible if, for all h 2 H,

(i) Th fits the (polytopal) partition P˝ associated with the diffusion tensor M,
meaning that, for all T 2 Th, there is a unique˝i in P˝ containing T;

(ii) Th fits the partition � D �d [ �n of the boundary, in the sense that we can
define two sets, Fd

h WD fF 2 Fb
h j F 	 �dg and Fn

h WD fF 2 Fb
h j F 	 �ng,

such that Fd
h [ Fn

h D Fb
h .

2.3 Broken Polynomial Spaces

For integers k 
 0, 1 � l � d, we denote by P
k
l the vector space spanned by l-variate

polynomial functions of total degree � k of dimension

Nk;l WD
�
k C l
k

�

: (2)

For all T 2 Th, Pk
d.T/ denotes the restriction to T of functions in P

k
d. We also

introduce the broken polynomial space

P
k
d.Th/ WD fv 2 L2.˝/ j vjT 2 P

k
d.T/ for all T 2 Thg:

Broken polynomial spaces are special instances of broken Sobolev spaces, for an
integer m 
 1:

Hm.Th/ WD fv 2 L2.˝/ j vjT 2 Hm.T/ for all T 2 Thg:

We use the notation r h to denote the broken gradient operator acting elementwise
on functions from broken Sobolev spaces.

We denote by �k
h the L2-orthogonal projector onto P

k
d.Th/ such that, for all v 2

L2.˝/ and all T 2 Th, .�k
hv/jT WD �k

TvjT , where �k
T is the L2-orthogonal projector

onto P
k
d.T/. Additionally, for all F 2 Fh and all v 2 L2.F/, we denote by �k

Fv the
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L2-orthogonal projection of v onto P
k
d�1.F/, where Pk

d�1.F/ is the restriction to F of
P
k
d�1 ı��1, with � an affine bijective mapping from R

d�1 to the affine hyperplane
supporting F.

2.4 Diffusion Tensor

We assume, for the sake of simplicity, that M is piecewise constant on P˝ , and
thus, by Definition 2.2, on Th for every h 2 H. For T 2 Th, we let MT WD MjT
(owing to the above assumption, MT is a constant matrix), and we denote by �[;T
and �];T , respectively, the lowest and largest eigenvalues of MT . We also introduce
the local anisotropy ratio �T WD �];T=�[;T 
 1; the global ratio is defined as � WD
maxT2Th �T . Finally, for all T 2 Th and F 2 FT , we set �T;F WD MTnF �nF > 0.

In what follows, we often abbreviate as a . b the inequality a � Cb, with C > 0
independent of the meshsize h and of the diffusion tensor M, but possibly depending
on the mesh regularity parameter � and on the polynomial degree k.

3 The HHO Method in Primal Form

Let U WD H1.˝/ and U0 WD fv 2 U j vj�d D 0g. The starting point of the HHO
method in primal form is the following weak formulation of problem (1): Find u0 2
U0 such that

.Mru0;rv/ D .f ; v/ � .Mru@;rv/C .@; v/�n
8v 2 U0: (3)

The solution u 2 U is then computed as u D u0 C u@ with u@ defined in Sect. 2.1.

3.1 Discrete Setting

Let an integer k 
 0 be fixed, and let us consider an admissible and compatible
mesh sequence .Th/h2H in the sense of Definitions 2.1 and 2.2. We further suppose
that the assumptions of Sect. 2.4 concerning the diffusion tensor hold.

3.1.1 Discrete Unknowns

We adopt the convention that underlined quantities in roman font (sets, elements
from these sets) are hybrid quantities, i.e., quantities featuring both a cell-based
and a face-based contribution. We introduce, first locally, then globally, the discrete
unknowns associated with the potential.
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Fig. 1 Degrees of freedom
associated with hybrid (cell-
and face-based) potential
discrete unknowns, d D 2,
k 2 f0; 1; 2g •
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Local Definition For T 2 Th, letting

Uk
T WD P

k
d.T/; Uk

F WD P
k
d�1.F/ for all F 2 FT ; (4)

we define the local set of hybrid potential unknowns, cf. Fig. 1, as

Uk
T WD Uk

T � Uk
@T ; Uk

@T WD �
F2FT

Uk
F:

In the sequel, any element vT 2 Uk
T is decomposed as vT WD .vT 2 Uk

T ; v@T 2 Uk
@T/,

with v@T WD .vF 2 Uk
F/F2FT

. We also introduce the local reduction operator IkT W
H1.T/ ! Uk

T such that, for all v 2 H1.T/, IkTv WD
�

�k
Tv; .�

k
Fv/F2FT

�

.

Remark 3.1 (Variant on Cell-Based Unknowns) A variant in the definition of cell-
based unknowns is studied in [20], where these unknowns belong to the polynomial
space P

l
d.T/ with l 2 fk � 1; k; k C 1g (up to some minor adaptations if k D 0

and l D �1). The choice l D k � 1 allows one to establish a link (up to equivalent
stabilizations) with the high-order MFD method of [6, 43] (in the case k D 0, l D
�1, one can recover the classical Crouzeix–Raviart element on simplices), while the
choice l D k C 1 is related to a variant of the HDG method introduced in [42].

Global Definition We define the global set of hybrid potential unknowns as

Uk
h WD Uk

h � Uk
h; (5)

with

Uk
h WD �

T2Th

Uk
T ; Uk

h WD �
F2Fh

Uk
F:

Observe that Uk
h D P

k
d.Th/ and that potential unknowns attached to interfaces are

single-valued. Given an element vh 2 Uk
h, we denote vh and vh its restrictions to Uk

h
and Uk

h, respectively, while, for any T 2 Th, we denote by vT D .vT ; v@T / 2 Uk
T

its restriction to the element T. To account for (homogeneous) Dirichlet boundary
conditions in a strong manner, we introduce the following subspace of Uk

h:

Uk
h;0 WD Uk

h � Uk
h;0; with Uk

h;0 WD ˚

vh 2 Uk
h j vF � 0;8F 2 Fd

h



:
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Finally, we introduce the global reduction operator Ikh W U ! Uk
h such that, for all

v 2 U, and for all T 2 Th, .Ikhv/jT WD IkTvjT . Single-valuedness at interfaces is
ensured by the regularity of functions in U.

3.1.2 Potential Reconstruction Operator

Let T 2 Th. The local potential reconstruction operator pkC1T W Uk
T ! P

kC1
d .T/ is

defined, for all vT D .vT ; v@T/ 2 Uk
T , as the solution of the well-posed Neumann

problem (the usual compatibility condition on the right-hand side is verified)

.MTrpkC1T vT ;rw/T D �.vT ; div.MTrw//T C
X

F2FT

.vF;MTrw�nT;F/F 8w 2 P
kC1
d .T/;

(6)

which further satisfies
R

T p
kC1
T vT D R

T vT . Computing the operator pkC1T requires
to invert a symmetric positive-definite matrix of size NkC1;d, cf. (2), which can be
performed effectively via a Cholesky factorization (the cost of such a factorization is
roughlyN3kC1;d=6 flops). The following result shows that pkC1T IkT is the MT -weighted
elliptic projector onto P

kC1
d .T/.

Lemma 3.1 (Characterization of pkC1T IkT and Polynomial Consistency) The fol-
lowing holds for all v 2 H1.T/:

.MTr.v � pkC1T IkTv/;rw/T D 0 8w 2 P
kC1
d .T/: (7)

Consequently, for all v 2 P
kC1
d .T/, we have

pkC1T IkTv D v: (8)

Proof For v 2 H1.T/, let us plug vT WD IkTv D
�

�k
Tv; .�

k
Fv/F2FT

�

into (6). Since

MT is a constant tensor and since w 2 P
kC1
d .T/, we infer that div.MTrw/ 2

P
k�1
d .T/ � P

k
d.T/ and that MTrwjF �nT;F 2 P

k
d�1.F/, which means that, for all

w 2 P
kC1
d .T/,

.MTrpkC1T IkTv;rw/T D �.v; div.MTrw//T C
X

F2FT

.v;MTrw�nT;F/F

D .MTrv;rw/T ;

hence concluding the proof of (7). For v 2 P
kC1
d .T/, we deduce from (7) that

.v � pkC1T IkTv/ 2 P
0
d.T/, and we conclude by invoking the relation

R

T p
kC1
T IkTv D

R

T �
k
Tv D R

T v.

The next result can be found in [29, Lemma 2.1].



214 D.A. Di Pietro et al.

Lemma 3.2 (Approximation) For all v 2 HkC2.T/, the following holds:

kv � pkC1T IkTvkT C h
1=2
T kv � pkC1T IkTvk@T C hTkr .v � pkC1T IkTv/kT

C h
3=2
T kr .v � pkC1T IkTv/k@T . �

1=2
T hkC2T kvkHkC2.T/: (9)

In the more general case of a piecewise Lipschitz diffusivity, only approximate
polynomial consistency holds, while a factor �T instead of �

1=2
T appears in the

estimate (9) (cf. [29]).
For further use, we define the global potential reconstruction operator

pkC1h W Uk
h ! P

kC1
d .Th/

such that, for all vh 2 Uk
h, and for all T 2 Th, . pkC1h vh/jT WD pkC1T vT .

3.1.3 Stabilization

For all T 2 Th, we define the stabilization bilinear form jT W Uk
T � Uk

T ! R such that

jT.uT ; vT/ WD
X

F2FT

�T;F

hF
.�k

F.q
kC1
T uT � uF/; �

k
F.q

kC1
T vT � vF//F; (10)

with qkC1T W Uk
T ! P

kC1
d .T/ such that, for all wT 2 Uk

T ,

qkC1T wT WD wT C . pkC1T wT � �k
Tp

kC1
T wT/:

Notice that jT is symmetric, positive semi-definite, and polynomially consistent [as
a consequence of (8)] in the sense that, for all v 2 P

kC1
d .T/,

jT.IkTv;wT/ D 0 8wT 2 Uk
T : (11)

Another important property of jT is the following approximation property: For all
v 2 HkC2.T/, the following bound holds:

jT.IkTv; I
k
Tv/

1=2 . �
1=2

];T�
1=2
T hkC1T kvkHkC2.T/; (12)

showing that jT matches the approximation properties of the gradient of pkC1T ; cf.
Lemma 3.2.
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3.2 Discrete Problem: Formulation and Key Properties

3.2.1 Formulation

For all T 2 Th, we define the following local bilinear form:

aT W Uk
T � Uk

T ! RI .uT ; vT/ 7! .MTrpkC1T uT ;rpkC1T vT/T C jT.uT ; vT/;

(13)

with potential reconstruction operator pkC1T defined by (6) and stabilization bilinear
form jT defined by (10). Introduce now the following global bilinear form obtained
by a standard element-by-element assembly procedure:

ah W Uk
h � Uk

h ! RI .uh; vh/ 7!
X

T2Th

aT.uT ; vT/:

Then, the (primal) HHO discretization of problem (3) reads: Find uh;0 2 Uk
h;0 such

that

ah.uh;0; vh/ D .f ; vh/� ah.uh;@; vh/C
X

F2Fn
h

.@; vF/F 8vh 2 Uk
h;0; (14)

where uh;@ WD Ikhu@ 2 Uk
h is the reduction of the continuous lifting u@ of  @. The

discrete solution uh 2 Uk
h is finally computed as

uh D uh;0 C uh;@: (15)

Remark 3.2 (Discrete Dirichlet Datum) In practical implementation, the continu-
ous lifting u@ of the Dirichlet datum is not needed, and one can simply select uh;@
such that

uT;@ � 0 8T 2 Th; uF;@ D �k
F @ 8F 2 Fd

h ; uF;@ � 0 8F 2 Fh n Fd
h :

3.2.2 Stability

Let us introduce, for all T 2 Th, the following diffusion-dependent seminorm on Uk
T :

kvTk2U;T WD ��1
T

0

@kM1=2
T rvTk2T C

X

F2FT

�T;F

hF
kvT � vFk2F

1

A : (16)

It can be proved that the map

kvhk2U;h WD
X

T2Th

kvTk2U;T ;
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defines a norm on Uk
h;0. Stability for problem (14) is expressed by the following

result (cf. [29, Lemma 3.1]).

Lemma 3.3 (Stability) For all T 2 Th and all vT 2 Uk
T , the following holds:

kvTkU;T . aT.vT ; vT/
1=2 . �TkvTkU;T : (17)

As a consequence, we infer that

kvhk2U;h . ah.vh; vh/ 8vh 2 Uk
h; (18)

implying that problem (14) is well-posed.

3.2.3 Error Estimates

Let u 2 U be such that u D u0 C u@, where u0 2 U0 is the (unique) solution to (3),
and u@ 2 U is defined in Sect. 2.1. Let uh 2 Uk

h be such that uh D uh;0 C uh;@,
where uh;0 2 Uk

h;0 is the (unique) solution to (14), and uh;@ 2 Uk
h is defined in

Sect. 3.2.1. Finally, let us introduce the notation k�kh WD ah.�; �/1=2. Then, we can
state the following result, which slightly improves on [29, Theorem 4.1] [where the
norm k�kh is to be used under the supremum in Eq. (12)]. Note that the constants in
the error bounds can depend on the polynomial degree following the use of discrete
trace and inverse inequalities.

Theorem 3.1 (Energy-Norm Error Estimate) Assume that u further belongs to
HkC2.P˝/ (so that, by Definition 2.2, u 2 HkC2.Th/). Then, the following holds:

kIkhu � uhkU;h . kIkhu � uhkh .

8

<

:

X

T2Th

�];T�Th
2.kC1/
T kuk2HkC2.T/

9

=

;

1=2

; (19)

which implies, by an additional use of Lemma 3.2, that

kM1=2.ru � r hp
kC1
h uh/k .

8

<

:

X

T2Th

�];T�Th
2.kC1/
T kuk2HkC2.T/

9

=

;

1=2

: (20)

In the more general case of a piecewise (non-constant) polynomial diffusivity,
estimates (19) and (20) still hold with a factor �2T instead of �T (cf. [29]).

Whenever elliptic regularity holds, a L2-norm error estimate of order hkC2 can be
established, which slightly improves on [29, Theorem 4.2] (where the assumption
of piecewise constant diffusivity is to be added).
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Theorem 3.2 (L2-Norm Error Estimate) Assume elliptic regularity for prob-
lem (3) under the form kzkH2.P˝/ . ��1

[ kgk for all g 2 L2.˝/ and z 2 U0
solving (3) with data g and homogeneous (mixed Dirichlet-Neumann) boundary
conditions. Assume f 2 HkCı.˝/; @ 2 WkCı;1.�n/, with ı D 0 for k 
 1 and
ı D 1 for k D 0. Then, under the same assumption on u as in Theorem 3.1, the
following holds:

�[kIkhu � uhk . �
1=2

] �
1=2h

8

<

:

X

T2Th

�];T�Th
2.kC1/
T kuk2HkC2.T/

9

=

;

1=2

C hkC2
˚k f kHkCı.˝/ C k@kWkCı;1.�n/



: (21)

3.2.4 Local Conservativity

For all T 2 Th, let us first introduce the local bilinear form OaT W Uk
T � Uk

T ! R such
that, for all wT ; vT 2 Uk

T ,

OaT.wT ; vT/ WD .MTrpkC1T wT ;rpkC1T vT/T C
X

F2FT

�T;F

hF
.wT � wF; vT � vF/F:

(22)

Then, we use (22) to define the local isomorphism ckT W Uk
T ! Uk

T such that, for all
wT 2 Uk

T , ckTwT is uniquely defined from the following local problem:

OaT.ckTwT ; vT/ D aT.wT ; vT/C
X

F2FT

�T;F

hF
.wT � wF; vT � vF/F 8 vT 2 Uk

T ;

and
R

T c
k
TwT D R

T wT . Finally, we define the local gradient reconstruction operator
GkC1

T W Uk
T ! rP

kC1
d .T/ such that

GkC1
T WD r. pkC1T ı ckT/:

Adapting the arguments of [27, Lemmata 2 and 3], one can show the following
result.

Lemma 3.4 (Local Conservativity) Let uh 2 Uk
h be defined as in (15) from the

solution of problem (14). Then, for all T 2 Th, the following local equilibrium
relation holds:

.MTGkC1
T uT ;rvT /T �

X

F2FT

.˚T;F.uT/; vT/F D . f ; vT /T 8 vT 2 P
k
d.T/; (23)
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where the numerical flux operator ˚T;F W Uk
T ! P

k
d�1.F/ is such that, for all

vT 2 Uk
T ,

˚T;F.vT/ WD MTGkC1
T vT �nT;F � �T;F

hF

�

.ckTvT � vT/ � .ckFvT � vF/
�

: (24)

In addition, the numerical fluxes are equilibrated in the following sense: For all
F 2 F i

h such that F 	 @T1 \ @T2,

˚T1;F.uT/C ˚T2;F.uT/ D 0; (25)

and ˚T;F.uT/ D �k
F@ for all F 2 Fn

h such that F 	 @T \ @˝ .

Numerical fluxes can thus be computed by local element-by-element post-
processing.

3.3 Computational Aspects

This section discusses various relevant computational aspects: the elimination of
cell-based unknowns by static condensation, the offline/online decomposition of the
computations, and the choice of polynomial bases.

3.3.1 Static Condensation

Following [20, Sect. 2.5], we show how cell-based unknowns can be locally
eliminated from problem (14), thereby leading to a global system in terms of face-
based unknowns only.

Introducing the notation fT WD fjT for all T 2 Th, we begin by observing that
problem (14) can be equivalently rewritten using (15) as follows:

aT..uT ; 0/; .vT ; 0// D . fT ; vT/T � aT..0; u@T/; .vT ; 0// 8vT 2 Uk
T ; 8T 2 Th;

(26a)

ah.uh; .0; vh// D
X

F2Fn
h

.@; vF/F 8vh 2 Uk
h;0; (26b)

that is to say, problem (14) can be split into card.Th/ local problems (26a) that
allow one to express, for all T 2 Th, uT in terms of u@T and fT , and one global
problem (26b) written in terms of face-based unknowns only.
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We now introduce two local cell-based potential lifting operators:

• a trace-based lifting tkT W Uk
@T ! Uk

T such that, for all w@T 2 Uk
@T , tkTw@T 2 Uk

T
solves

aT..t
k
Tw@T ; 0/; .vT ; 0// D �aT..0;w@T/; .vT ; 0// 8vT 2 Uk

T I (27)

• a datum-based lifting dkT W L2.T/ ! Uk
T such that, for all 'T 2 L2.T/, dkT'T 2 Uk

T
solves

aT..d
k
T'T ; 0/; .vT ; 0// D .'T ; vT/T 8vT 2 Uk

T : (28)

Problems (27) and (28) are well-posed owing to the first inequality in (17) and the
fact that k�kU;T is a norm on the zero-trace subspace of Uk

T , cf. (16). Problem (27)
can be rewritten as

aT..t
k
Tw@T ;w@T/; .vT ; 0// D 0 8vT 2 Uk

T : (29)

Using (26a), (29), and (28), we infer that

uT D .tkTu@T C dkTfT ; u@T/: (30)

Introducing the global operators tkh W Uk
h ! Uk

h and dkh W L2.˝/ ! Uk
h such that,

for all wh 2 Uk
h, all ' 2 L2.˝/, and all T 2 Th, .tkhwh/jT WD tkTw@T and .dkh'/jT WD

dkT'jT , we can rewrite (30) globally as follows:

uh D .tkhuh C dkhf ; uh/: (31)

Finally, we reformulate the global problem (26b) under an equivalent form. We
remark, using (31), that

ah.uh; .0; vh// D ah.uh; .t
k
hvh; vh// � ah.uh; .t

k
hvh; 0//

D ah..t
k
huh; uh/; .t

k
hvh; vh//C ah..d

k
hf ; 0/; .t

k
hvh; vh//

� ah..t
k
huh; uh/; .t

k
hvh; 0//� ah..d

k
hf ; 0/; .t

k
hvh; 0//

WD T1 C T2 � T3 � T4;

where T2 D T3 D 0 owing to (29) and to the symmetry of ah, while T4 D .f ; tkhvh/
owing to (28). Introducing for all wh 2 Uk

h the notation tkhwh WD .tkhwh;wh/ and the
decomposition uh D uh;0 C uh;@ for the face-based unknowns, the previous relation
enables us to rewrite the global problem (26b) as follows: Find uh;0 2 Uk

h;0 such that

ah.tkhuh;0; t
k
hvh/ D .f ; tkhvh/� ah.tkhuh;@; t

k
hvh/C

X

F2Fn
h

.@; vF/F 8vh 2 Uk
h;0:

(32)
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Problem (32) is well-posed owing to (18) and to the fact that k�kU;h defines a norm
on Uk

h;0. The following proposition summarizes the above considerations.

Proposition 3.1 (Characterization of the Approximate Solution) The solution
Uk

h 3 uh D uh;0 C uh;@ with uh;0 2 Uk
h;0 solving (14) can be expressed as (31), where

the operator tkh and the vector of cell-based unknowns dkhf are defined cell-wise as
the solutions of the local problems (27) and (28), respectively, and where uh 2 Uk

h
is such that uh D uh;0 C uh;@ with uh;0 2 Uk

h;0 the unique solution of the global
problem (32).

3.3.2 Offline/Online Solution Strategy

Static condensation naturally points to an offline/online decomposition of the
computations.

In the offline step, we begin by solving, for all T 2 Th, the local problems (6),
in order to compute the operator pkC1h . This first substep essentially requires to
invert card.Th/ symmetric positive-definite matrices of size NkC1;d. This can be done
effectively using Cholesky factorization. Then, for all T 2 Th, we solve the local
problems (27) and (28). As both problems involve the same matrix, this second
substep essentially requires the inversion of card.Th/ symmetric positive-definite
matrices of size Nk;d. Note that both substeps are fully parallelizable. At the end
of the offline step, one has computed the trace-based lifting tkh, and the restriction
of the datum-based lifting dkh to Uk

h D P
k
d.Th/. This fully determines dkh since the

right-hand side of (28) only requires the projection of the datum onto Uk
h.

In the online step, given a right-hand side f 2 L2.˝/, we compute its L2-
orthogonal projection onto Uk

h, and we solve the global problem (32); the size of
this problem is approximately equal to card.Fh/�Nk;d�1. The approximate solution
is finally computed applying (31). A modification of the right-hand side (or of the
boundary conditions) only requires to perform again the online step.

The offline/online solution strategy is particularly attractive in a multi-query
context where one wants to compute the solution of problem (14) for a large number
of right-hand sides f 2 L2.˝/.

3.3.3 Implementation

An important step in the implementation consists in selecting bases for the
polynomial spaces on elements and faces that appear in the construction
[cf. (6), (27), (28), (32)]. For T 2 Th, we denote by xT a point in T (typically
the barycenter of T). One possibility leading to a hierarchical basis for P

l
d.T/,

l 2 fk; k C 1g, is to choose the following family of monomial functions:

(
dY

iD1
�
˛i
T;i j �T;i WD xi � xT;i

hT
8 1 � i � d; ˛ D .˛i/1�i�d 2 N

d; k˛kl1 � l

)

:
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Similarly, for all F 2 Fh, we can define a basis for Pk
d�1.F/ spanned by monomials

with respect to a local frame scaled using the face diameter and, say, the barycenter
of F.

3.3.4 Cost Assessment

Another important question linked to implementation is the scaling of the time
devoted to the assembly (computation of the local contributions, static condensation,
and matrix/right-hand side assembly) with respect to the time devoted to the solution
(solving of the global problem), and how this scaling depends on the meshsize and
on the order of approximation. Let us assume a naive implementation that does
not exploit parallelism, and let us focus on problem (14) for a given right-hand
side in two space dimensions. On Fig. 2, we plot, for polynomial degrees up to
5, the assembly/solution time ratio as a function of the number of mesh faces for
two families of meshes corresponding, respectively, to the triangular (first) mesh
family of the FVCA5 benchmark [41] and to the (predominantly) hexagonal mesh
family introduced in [31, Sect. 4.2.3]. The global system is solved using the sparse
direct solver of Eigen v3. This way, both the assembly and solution times are only
marginally influenced by the problem data (right-hand side, boundary conditions).
As illustrated in Fig. 2, the overall cost of the assembly time becomes quickly
negligible in comparison with the solution time with mesh refinement (except for
k D 0). This can be dramatically improved, e.g., using thread-based parallelism to
solve the (independent) local problems for both the computation of the potential
reconstructions and the static condensation inside each element.
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Fig. 2 Assembly time divided by the solution time as a function of card.Fh/ for a triangular mesh
family (a, left panel) and a (predominantly) hexagonal mesh family (b, right panel); the symbols
indicate in both panels the polynomial degree that is being used
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4 The HHO Method in Mixed Form

In this section, we study the HHO method in mixed formulation. The starting point is
the following mixed form of the model problem (1): Find s W ˝ ! R

d, u W ˝ ! R,
such that

s D Mru in ˝;

�divs D f in ˝;

u D  @ on �d;

s�n D @ on �n:

(33)

To write this problem in weak form, we introduce the functional spaces

S WD H.div;˝/; S0 WD ˚

t 2 S j t�nj�n D 0


; V WD L2.˝/;

so that the weak problem reads: Find .s0; u/ 2 S0 � V such that

.M�1s0; t/C .u; div t/ D ht�n; .u@/j� i� � .M�1s@; t/ 8t 2 S0;

�.divs0; v/ D . f ; v/C .divs@; v/ 8v 2 V;
(34)

where s@ 2 S is a lifting of the Neumann datum such that .s@�n/j�n D @ (which
can be taken to be s@ D r� where � 2 H1.˝/ solves � � �� D 0 in ˝ with
r� �n D � on � where � is the zero-extension of @ to � ), and h�; �i� denotes
the duality pairing between H�1=2.� / and H1=2.� / (note that, owing to the fact that
t 2 S0, ht�n; .u@/j� i� does not depend on the choice of the lifting u@ of  @). The
solution .s; u/ 2 S � V is then computed as .s; u/ D .s0 C s@; u/.

4.1 Discrete Setting

Let us fix an integer k 
 0 and consider an admissible and compatible mesh
sequence .Th/h2H in the sense of Definitions 2.1 and 2.2. We suppose that the
assumptions of Sect. 2.4 concerning the diffusivity hold.

4.1.1 Discrete Unknowns

We adopt the same notation as in Sect. 3.1.1, to which we add the use of boldface
to denote vector-valued quantities. We introduce, first locally then globally, the
discrete unknowns associated with the flux and with the potential. For the flux,
we consider hybrid unknowns, in the sense that they consist of both cell- and
face-based contributions. The cell-based flux unknowns are vector-valued while the



A Review of Hybrid High-Order Methods: Formulations, Computational. . . 223

Fig. 3 Degrees of freedom associated with hybrid flux discrete unknowns, d D 2, k 2 f0; 1; 2g

face-based ones are scalar-valued. For the potential, we consider scalar-valued cell-
based unknowns.

Local Definition Let T 2 Th. Setting

SkT WD MTrP
k
d.T/; Sk

F WD P
k
d�1.F/ for all F 2 FT ;

we define the local set of hybrid flux unknowns, cf. Fig. 3, as

Sk
T WD SkT � Sk

@T ; where Sk
@T WD �

F2FT

Sk
F:

In the lowest-order case k D 0, cell-based flux unknowns are unnecessary
and SkT has dimension zero. Any element tT 2 Sk

T can be decomposed as
tT WD .tT 2 SkT ; t@T 2 Sk

@T/, with t@T WD .tF 2 Sk
F/F2FT

. Letting, for q > 2,

SC.T/ WD ft 2 Lq.T/ j div t 2 L2.T/g;

and recalling that the normal component of functions in this space can act against
polynomial functions on all faces of T, we introduce the local reduction operator
IkT W SC.T/ ! Sk

T such that, for all t 2 SC.T/,

IkT t WD 	

MTry; .�k
F.t�nF//F2FT




;

where y 2 P
k
d.T/ is a solution (defined up to an additive constant) of the Neumann

problem

.MTry;rw/T D .t;rw/T 8w 2 P
k
d.T/; (35)

observing that the required compatibility condition on the right-hand side is verified.
As far as the potential is concerned, we let Uk

T , introduced in (4), be the associated
local set of (cell-based) discrete unknowns.
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Global Definition We define the global set of hybrid flux unknowns as

Sk
h WD Skh �

(

�
F2Fh

Sk
F

)

;

where Skh WD�T2Th
SkT . Observe that the flux unknowns attached to interfaces are

single-valued. Given an element th 2 Sk
h, for any T 2 Th, we denote by tT D

.tT ; t@T/ 2 Sk
T its restriction to the element T. We introduce the following subspace

of Sk
h, that allows one to account for (homogeneous) Neumann boundary conditions

in a strong manner:

Sk
h;0 WD ˚

th 2 Sk
h j tF � 0;8F 2 Fn

h



:

We also define the global reduction operator Ikh W S\ SC.Th/ ! Sk
h such that, for all

t 2 S \ SC.Th/, and for all T 2 Th, .Ikht/jT WD IkT tjT . Single-valuedness at interfaces

is ensured by the regularity of functions in S \ SC.Th/.
We finally define Uk

h, cf. (5), as the global set of discrete (cell-based) potential
unknowns, and we denote by vT 2 Uk

T the restriction of any vh 2 Uk
h to the element

T 2 Th.

4.1.2 Divergence Reconstruction Operator

Let T 2 Th. We define the local divergence reconstruction operator Dk
T W Sk

T ! Uk
T

as the operator such that, for all tT D .tT ; t@T/ 2 Sk
T ,

.Dk
T tT ; vT/T D �.tT ;rvT/T C

X

F2FT

.tF"T;F; vT/F 8vT 2 Uk
T ; (36)

where "T;F WD nF �nT;F for all T 2 Th and F 2 FT . This definition reproduces
at the discrete level an integration by parts formula, that brings into action the local
hybrid flux unknowns. The following property is crucial for inf-sup stability, cf. [26,
Lemmas 2 and 5].

Lemma 4.1 (Commuting Property) The following holds for all t 2 SC.T/:

Dk
TIkT t D �k

T .div t/: (37)

Proof For t 2 SC.T/, let us plug the quantity tT WD IkT t D
�

MTry; .�k
F.t�nF//F2FT

�

into (36), where y 2 P
k
d.T/ is a solution to (35). Let vT 2 Uk

T , and observe that
vT 2 P

k
d.T/ and vTjF 2 P

k
d�1.F/. Hence,

.Dk
TIkT t; vT/T D �.t;rvT/T C

X

F2FT

.t�nT;F; vT/F D .div t; vT/T ;

which concludes the proof.
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For further use, we introduce the global divergence reconstruction operator Dk
h W

Sk
h ! Uk

h such that, for all th 2 Sk
h, and all T 2 Th, .Dk

hth/jT WD Dk
T tT .

4.1.3 Flux Reconstruction Operator

Let T 2 Th. The local flux reconstruction operator FkC1
T W Sk

T ! SkC1T is defined,
for all tT D .tT ; t@T/ 2 Sk

T , as FkC1
T tT WD MTrz, where z 2 P

kC1
d .T/ is a solution

(defined up to an additive constant) of the Neumann problem

.MTrz;rw/T D .tT ;r�k
Tw/T C

X

F2FT

.tF"T;F; �
k
Fw � �k

Tw/F 8w 2 P
kC1
d .T/;

(38)

observing that the required compatibility condition on the right-hand side is verified.
The definition of FkC1

T tT is motivated by the following link between FkC1
T tT and the

divergence reconstruction operator defined in (36): For all tT D .tT ; t@T/ 2 Sk
T ,

.FkC1
T tT ;rw/T D �.Dk

T tT ;w/T C
X

F2FT

.tF"T;F;w/F 8w 2 P
kC1
d .T/: (39)

As in Sect. 3.1.2, computing the operator FkC1
T using (38) or (39) requires to invert

a symmetric positive-definite matrix of size NkC1;d, cf. (2), which can be performed
effectively via Cholesky factorization. The following result can be found in [26,
Lemma 3] (and requires, as its primal counterpart (8), that the diffusion tensor be
piecewise constant).

Lemma 4.2 (Polynomial Consistency) The following holds for all t 2 SkC1
T :

FkC1
T IkT t D t: (40)

Proof Let t 2 SkC1T and plug tT WD IkT t into (39). Using the commuting property (37)
leads to Dk

TIkT t D �k
T .div t/ D div t since t 2 SkC1T � P

k
d.T/ (MT is a constant

tensor), which combined with the fact that �k
F.t�nF/ D t�nF (since faces are planar),

allows us to infer that, for all w 2 P
kC1
d .T/,

.FkC1
T IkT t;rw/T D �.div t;w/T C

X

F2FT

.t�nT;F;w/F D .t;rw/T :

This last relation proves (40) since .FkC1
T IkT t � t/ 2 SkC1T D MTrP

kC1
d .T/.

The next result is adapted from [26, Lemma 9], and is related, in the light of
Lemma 5.1 below, to Lemma 3.2.
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Lemma 4.3 (Approximation) For all v 2 HkC2.T/, letting t WD MTrv, the
following holds for all F 2 FT:

kM�1=2
T .t � FkC1

T IkT t/kT C h
1=2
F �

�1=2
T;F k.t � FkC1

T IkT t/�nFkF . �
1=2
T �

1=2

];Th
kC1
T kvkHkC2.T/:

(41)

For further use, we define the global flux reconstruction operator FkC1
h W Sk

h !
SkC1h such that, for all th 2 Sk

h, and all T 2 Th, .FkC1
h th/jT WD FkC1

T tT .

4.1.4 Stabilization

For all T 2 Th, we define the stabilization bilinear form JT W Sk
T � Sk

T ! R such that

JT.sT ; tT/ WD
X

F2FT

hF
�T;F

..FkC1
T sT/�nF � sF; .FkC1

T tT/�nF � tF/F:

Notice that JT is symmetric, positive semi-definite, and polynomially consistent (as
a consequence of Lemma 4.2) in the sense that, for all t 2 SkC1T ,

JT.IkT t; rT/ D 0 8rT 2 Sk
T : (42)

This result can be found in [26, Eq. (18)]. Another important property of JT is the
following approximation property (see [26, Lemma 9] and Lemma 4.3 above): For
all v 2 HkC2.T/, the following holds with t WD MTrv:

JT.IkT t; I
k
T t/

1=2 . �
1=2
T �

1=2

];Th
kC1
T kvkHkC2.T/: (43)

4.2 Discrete Problem: Formulation and Key Properties

4.2.1 Formulation

For all T 2 Th, we define the following local bilinear form:

HT W Sk
T � Sk

T ! RI .sT ; tT/ 7! .M�1
T FkC1

T sT ;F
kC1
T tT/T C JT.sT ; tT/; (44)

where the notation HT is reminiscent of the similarity with the discrete Hodge
operator considered in the CDO framework in the lowest-order case [10]. Introduce
now the following global bilinear form:

Hh W Sk
h � Sk

h ! RI .sh; th/ 7!
X

T2Th

HT.sT ; tT/: (45)
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The mixed form of the HHO method for problem (34) reads: Find .sh;0; uh/ 2 Sk
h;0�

Uk
h such that

Hh.sh;0; th/C .uh;D
k
hth/ D

X

F2Fd
h

.tF;  @/F � Hh.sh;@; th/ 8th 2 Sk
h;0;

�.Dk
hsh;0; vh/ D . f ; vh/C .Dk

hsh;@; vh/ 8vh 2 Uk
h;

(46)

where sh;@ WD Ikhs@ 2 Sk
h is the reduction of the lifting s@ of the Neumann datum @.

The discrete solution .sh; uh/ 2 Sk
h � Uk

h is finally computed as

.sh; uh/ D .sh;0 C sh;@; uh/: (47)

Remark 4.1 (Discrete Neumann Datum) Similarly to Remark 3.2, the discrete
lifting sh;@ of the Neumann datum can be obtained without explicitly knowing s@
by setting

sT;@ � 0 8T 2 Th; sF;@ D �k
F@ 8F 2 Fn

h ; sF;@ � 0 8F 2 Fh n Fn
h :

4.2.2 Stability

Let us introduce, for all T 2 Th, the following norm on Sk
T :

ktTk2S;T WD ��1
];T

0

@ktTk2T C
X

F2FT

hFktFk2F
1

A : (48)

Setting kthk2S;h WD P

T2Th
ktTk2S;T for all th 2 Sk

h, it follows that k�kS;h defines a

norm on Sk
h. The coercivity of Hh can be expressed in terms of this norm, cf. [26,

Lemma 4].

Lemma 4.4 (Stability for Hh) For all T 2 Th, and for all tT 2 Sk
T , the following

holds:

ktTkS;T . HT.tT ; tT/
1=2 . �

1=2
T ktTkS;T : (49)

Consequently, we infer that

kthk2S;h . Hh.th; th/ 8th 2 Sk
h: (50)

We can then state the following result, whose proof hinges on Lemma 4.1, and which
is a slightly modified version of [26, Lemma 5].
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Lemma 4.5 (Well-Posedness of (46)) For all vh 2 Uk
h, the following holds:

�
1=2

[ kvhk . sup
th2Skh;0;kthkS;hD1

.Dk
hth; vh/: (51)

Combining (51) with Lemma 4.4, we infer that problem (46) is well-posed.

4.2.3 Error Estimates

Let .s; u/ 2 S � V be such that .s; u/ D .s0 C s@; u/, where .s0; u/ 2 S0 � V is
the (unique) solution to (34), and s@ 2 S is defined above. We further assume that
s 2 S fulfills the additional regularity s 2 SC.Th/. Similarly, let .sh; uh/ 2 Sk

h � Uk
h

be such that .sh; uh/ D .sh;0 C sh;@; uh/, where .sh;0; uh/ 2 Sk
h;0 � Uk

h is the (unique)
solution to (46), and sh;@ 2 Sk

h is defined in Sect. 4.2.1. Finally, let us introduce the

notation k�kh WD Hh.�; �/1=2. Then, we can state the following result, whose proof
can be easily adapted from the one of [26, Theorem 6]. Note that, here again, the
constants in the error bounds can depend on the polynomial degree following the
use of discrete trace and inverse inequalities.

Theorem 4.1 (Error Estimate for the Flux) Assume the additional regularity u 2
HkC2.P˝/ (so that, by Definition 2.2, u 2 HkC2.Th/). Then, the following holds:

kIkhs � shkS;h . kIkhs � shkh .

8

<

:

X

T2Th

�];T�Th
2.kC1/
T kuk2HkC2.T/

9

=

;

1=2

; (52)

which implies, by an additional use of Lemma 4.3,

kM�1=2.s � FkC1
h sh/k .

8

<

:

X

T2Th

�];T�Th
2.kC1/
T kuk2HkC2.T/

9

=

;

1=2

: (53)

Whenever elliptic regularity holds, a supercloseness result for the potential can
be established, as an adaptation of [26, Theorem 7].

Theorem 4.2 (Supercloseness of the Potential) Assume elliptic regularity for
problem (3) under the form kzkH2.P˝/ . ��1

[ kgk for all g 2 L2.˝/ and z 2 U0
solving (3) with data g and homogeneous (mixed Dirichlet-Neumann) boundary
conditions. Assume f 2 HkCı.˝/; @ 2 WkCı;1.�n/, with ı D 0 for k 
 1 and
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ı D 1 for k D 0. Then, under the same assumption on u as in Theorem 4.1, the
following holds:

�[kIkhu � uhk . �
1=2

] �
1=2h

8

<

:

X

T2Th

�];T�Th
2.kC1/
T kuk2HkC2.T/

9

=

;

1=2

C hkC2
˚k f kHkCı.˝/ C k@kWkCı;1.�n/



: (54)

4.3 Static Condensation

There are two ways of reducing the size of the discrete problem (46).
First, as exposed in [26, Sect. 3.4], it is possible to eliminate locally the cell-

based flux unknowns and the potential unknowns, up to one constant value per
element. Thus, the global system to solve only writes in terms of the face-based flux
unknowns and of the mean value of the potential in each element. For all T 2 Th,
let Uk;0

T be the space of d-variate polynomials of degree at most k having zero mean
value in T, so that Uk

T D U0
T ˚ Uk;0

T . Hence, any function vT 2 Uk
T can be written

vT D v0T C OvT with v0T 2 U0
T and OvT 2 Uk;0

T . Then, we infer from (46) that, for all
T 2 Th, .sT ; OuT/ 2 SkT � Uk;0

T can be eliminated locally by solving the following
saddle point problem with right-hand side depending on s@T 2 Sk

@T and fT WD fjT :

OHT.sT ; tT/� .tT ;r OuT/T D �HT..0; s@T/; .tT ; 0// 8 tT 2 SkT ;

.sT ;r OvT/T D . fT ; OvT/T C
X

F2FT

.sF"T;F; OvT/F 8 OvT 2 Uk;0
T ;

(55)

where OHT.sT ; tT/ WD HT..sT ; 0/; .tT ; 0//. Problem (55) is the counterpart in a
mixed context of problem (26a) obtained in the primal context; the further splitting
of (55) leading to datum- and trace-based lifting operators is omitted for brevity.
Problem (55) is well-posed, since, according to (49) and (48), OHT.tT ; tT/ is
uniformly equivalent to ktTk2T and the inf-sup condition holds. The global (saddle
point) problem resulting from the local elimination (55) has the same size and
structure as that obtained with the Multiscale Hybrid-Mixed (MHM) method derived
in [3, 40] on simplicial meshes.

The second static condensation approach is based on a reformulation of the
mixed problem (46) into a primal problem. Following [1, Sect. 3.3], the reformula-
tion is based on the introduction of Lagrange multipliers that enforce the continuity
of interface-based flux unknowns and that can be interpreted as potential traces on
mesh faces. One can eliminate the cell- and face-based flux unknowns, and, once
the reformulation has been performed, one can adapt the arguments of Sect. 3.3.1
to further eliminate locally the cell-based potential unknowns, ending up with a
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global system only depending on the Lagrange multipliers (face-based potential
unknowns). This static condensation approach has the double advantage that it
requires to solve local coercive problems (as opposed to local saddle point problems)
and that it yields a coercive global problem. For this reason, we discuss it in more
detail in Sect. 5.

5 Bridging the Primal and Mixed Forms of the HHO Method

The goal of this section is to bridge the primal and mixed forms of the HHO method
studied in Sects. 3 and 4, respectively. As discussed in the previous section, this can
be exploited in practice to implement the mixed form of the HHO method in terms
of a coercive problem posed on the Lagrange multipliers only.

5.1 Unpatching Interface-Based Flux Unknowns

We introduce a global set of hybrid flux unknowns where interface-based unknowns
are two-valued; we refer to these unknowns as unpatched. The unpatched global set
of hybrid flux unknowns is defined as

LSk

h WD �
T2Th

Sk
T ;

with subset

LSk

h;0 WD
n

Lth 2 LSk

h j LtF � 0;8F 2 Fn
h

o

: (56)

Given an element Lth 2 LSk

h, for any T 2 Th, we denote by LtT WD .LtT ; .LtT;F/F2FT
/ 2 Sk

T

its restriction to the element T. For boundary faces F 2 Fb
h , the subscript T in LtT;F

can be omitted, and we simply write LtF, as we already did in (56).

Let us introduce the following subspace of LSk

h (respectively, LSk

h;0):

LZk

h.;0/ WD
8

<

:

Lth 2 LSk

h.;0/ j
X

T2TF

LtT;F D 0;8F 2 F i
h

9

=

;
:

It can be easily seen that there exists a natural isomorphism Jk
h from LZk

h onto the

space Sk
h. Note that the restriction of Jkh to LZk

h;0 defines an isomorphism onto Sk
h;0.
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5.2 Unpatched Mixed Formulation

We begin by extending to LSk

h the definitions, respectively built from (36) and (38),
of the divergence reconstruction operator Dk

h and of the flux reconstruction operator
FkC1
h , for which we keep the same notation (locally, the definitions are unchanged

up to the replacement of tF"T;F by LtT;F in face terms). We can then naturally extend

the bilinear formHh, defined in (45) and built from (44), to the product space LSk

h� LSk

h.
We next introduce, for all T 2 Th, the additional bilinear form

BT W Sk
T � Uk

T ! RI .LtT ; vT/ 7! .vT ;D
k
T
LtT/T �

X

F2FT\F i
h

.vF; LtT;F/F; (57)

whose global version is as usual obtained by element-by-element assembly:

Bh W LSk

h � Uk
h ! RI .Lth; vh/ 7!

X

T2Th

BT.LtT ; vT/:

This bilinear form includes interface terms that enforce the single-valuedness con-
straints for interface-based flux unknowns. In that vision, the face-based potential
unknowns can be seen as Lagrange multipliers.

The unpatched (mixed) HHO discretization of problem (34) then reads: Find

.Lsh;0; Luh;0/ 2 LSk

h;0 � Uk
h;0 such that, for all .Lth; vh/ 2 LSk

h;0 � Uk
h;0,

Hh.Lsh;0; Lth/C Bh.Lth; Luh;0/ D
X

F2Fd
h

.LtF;  @/F � Hh.Lsh;@; Lth/ � Bh.Lth; uh;@/; (58a)

�Bh.Lsh;0; vh/ D . f ; vh/C Bh.Lsh;@; vh/; (58b)

where Lsh;@ WD .Jkh/
�1.sh;@/ 2 LZk

h is such that, for all T 2 Th, LsT;@ D
.sT;@; .sF;@"T;F/F2FT

/, with sh;@ 2 Sk
h defined in Sect. 4.2.1, and where uh;@ is defined

in Sect. 3.2.1. Finally, we define

.Lsh; Luh/ WD .Lsh;0 C Lsh;@; Luh;0 C uh;@/ 2 LSk

h � Uk
h: (59)

5.3 Equivalence Between Primal and Mixed Formulations

The bridge between primal- and mixed-form HHO methods is built in two steps:
first, we prove the equivalence between the mixed and unpatched mixed formula-
tions; then, we prove that the unpatched mixed formulation can be recast into a
primal formulation.

The following result is an adaptation of [1, Lemma 3.3].
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Theorem 5.1 (Equivalence (46)–(58)) Denote by .sh;0; uh/ 2 Sk
h;0 � Uk

h and

.Lsh;0; Luh;0/ 2 LSk

h;0�Uk
h;0 the solutions to (46) and (58), respectively. Then, Lsh;0 2 LZk

h;0

and sh;0 D Jkh.Lsh;0/, so that sh D Jkh.Lsh/ (sh and Lsh are defined in (47) and (59),
respectively); furthermore, uh D Luh [recall that Luh denotes the cell-based part of Luh,
defined in (59)].

Following [1, Sect. 3.3], let us now introduce, for all T 2 Th, the local potential-
to-flux mapping operator L&k

T
W Uk

T ! Sk
T such that, for all vT 2 Uk

T ,

HT. L&k
T
vT ;

LtT/ D �BT.LtT ; vT/C
X

F2FT\Fb
h

.LtF; vF/F 8 LtT 2 Sk
T : (60)

This yields a well-posed problem owing to the first inequality in (49). Defining next

another local flux reconstruction operator LFkC1
T W Uk

T ! SkC1T such that

LFkC1
T WD FkC1

T ı L&k
T
; (61)

one can prove the following result.

Lemma 5.1 (Link Between FkC1
T and pkC1T ) For all vT 2 Uk

T , the following holds:

LFkC1
T vT D MTrpkC1T vT : (62)

Proof Let vT 2 Uk
T , and let us plug, for w 2 P

kC1
d .T/, LtT WD IkT.MTrw/ into (60).

Using (57), (36), the polynomial consistency property of Lemma 4.2 coupled
to (61), and the one of (42), we get

. LFkC1
T vT ;rw/T D .rvT ;MTrw/T C

X

F2FT

.vF � vT ;MTrw�nT;F/F; (63)

where we have used that .LtT ;rvT/T D .MTrw;rvT/T and LtT;F D MTrw�nT;F ,
owing to (35) and to the fact that w 2 P

kC1
d .T/. Finally, performing a last integration

by parts in (63), and comparing to the definition (6) of pkC1T , we prove (62).

Now, defining L&k
h

W Uk
h ! LSk

h such that, for all vh 2 Uk
h, and for all T 2 Th,

. L&k
h
vh/jT WD L&k

T
vT , we infer from (60) that

Hh. L&k
h
Luh;

Lth/ D �Bh.Lth; Luh/C
X

F2Fd
h

.LtF;  @/F 8 Lth 2 LSk

h;0; (64)

where we have used the fact that LtF � 0 for all F 2 Fn
h and that LuF D �k

F @ for all
F 2 Fd

h . Comparing (64) with (58a), it is readily inferred that Lsh D L&k
h
Luh. Plugging
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this relation into (58b), we get that

� Bh. L&k
h
Luh; vh/ D .f ; vh/ 8vh 2 Uk

h;0: (65)

Using again (60), we additionally prove that

Hh. L&k
h
vh; L&k

h
Luh/ D �Bh. L&k

h
Luh; vh/C

X

F2Fn
h

.LsF; vF/F 8 vh 2 Uk
h;0; (66)

where we have used the fact that vF � 0 for all F 2 Fd
h . Plugging (66) into (65),

using the symmetry of Hh, the decomposition Luh D Luh;0 C uh;@, and the fact that
LsF D �k

F@ for all F 2 Fn
h , we obtain

Hh. L&k
h
Luh;0; L&k

h
vh/ D . f ; vh/� Hh. L&k

h
uh;@; L&k

h
vh/C

X

F2Fn
h

.@; vF/F 8 vh 2 Uk
h;0:

(67)

Finally, introducing the global bilinear form Ah W Uk
h � Uk

h ! R such that
Ah.uh; vh/ WD Hh. L&k

h
uh; L&k

h
vh/, problem (67) can be rewritten under the form

Ah.Luh;0; vh/ D . f ; vh/� Ah.uh;@; vh/C
X

F2Fn
h

.@; vF/F 8 vh 2 Uk
h;0: (68)

Using (45), (44), (61), and (62), we also infer that

Ah.uh; vh/ D
X

T2Th

.MTrpkC1T uT ;rpkC1T vT/T C
X

T2Th

JT. L&k
T
uT ; L&k

T
vT/: (69)

Finally, owing to (69), the comparison of problem (68) to problem (14) allows to
infer the following result, cf. [1, Sect. 3.3.4].

Theorem 5.2 (Equivalence (14)–(58)) Let us denote by uh;0 2 Uk
h;0 and

.Lsh;0; Luh;0/ 2 LSk

h;0 � Uk
h;0 the solutions to (14) and (58), respectively. Then, up to a

choice of stabilization jT.�; �/ WD JT. L&k
T
�; L&k

T
�/ in (13) for problem (14), uh;0 D Luh;0,

so that uh D Luh (uh and Luh are defined in (15) and (59), respectively).

The combination of Theorems 5.1 and 5.2 states the equivalence between primal-
and mixed-form HHO methods, up to an appropriate choice of stabilization.

From a practical point of view, to compute the solution .sh;0; uh/ of the mixed
problem (46), it suffices to solve the coercive global problem (68) (once the operator
L&k
h

has been computed solving (60) locally in each element) and to use the relation

.sh;0 C sh;@; uh/ D .Jk
h. L&k

h
Luh/; Luh/ combined with Luh D Luh;0 C uh;@. Adapting the

arguments of Sect. 3.3.1, static condensation can be performed on problem (68),
hence leading to a global problem expressed in terms of Lagrange multipliers (face-
based potential unknowns) only.
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6 Conclusion and Perspectives

HHO methods are very recent polytopal discretization methods which, by now,
rest on a firm theoretical basis for elliptic PDEs in primal and mixed forms.
Advantages offered by HHO methods are a dimension-independent construction,
local conservativity, the possibility to consider an arbitrary polynomial order, a
natural treatment of variable diffusion coefficients, and tight computational costs
in particular owing to static condensation and an offline/online decomposition of
the solution procedure. The price to pay is, on the one hand, the need to solve
local problems in the assembly phase (numerical experiments indicate, however,
that the relative cost with respect to solving the global problem swiftly decreases
as mesh resolution increases). On the other hand, HHO methods are essentially
nonconforming (as DG methods) so that some post-processing of the discrete
solution may be useful when visualizing the solution on coarse meshes (on fine
meshes, the jumps swiftly converge to zero). Note, however, that contrary to
interior penalty DG methods, the stabilization does not require user-dependent
parameters that must be large enough. Expanding the HHO methodology to systems
of quasi-linear or even nonlinear PDEs poses new challenges. Encouraging results
(in the linear case) include the robustness with respect to Péclet number in case
of advection-diffusion and with respect to incompressibility in linear elasticity,
while a nonlinear Leray–Lions problem is addressed in [24]. Another attractive
potential application of HHO methods is in the context of multiscale problems,
where adequate local problems that take into account the small scales of the problem
can be coupled through a global problem posed on a coarse mesh.
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A Survey of Trefftz Methods for the Helmholtz
Equation

Ralf Hiptmair, Andrea Moiola, and Ilaria Perugia

Abstract Trefftz methods are finite element-type schemes whose test and trial
functions are (locally) solutions of the targeted differential equation. They are
particularly popular for time-harmonic wave problems, as their trial spaces contain
oscillating basis functions and may achieve better approximation properties than
classical piecewise-polynomial spaces.

We review the construction and properties of several Trefftz variational formula-
tions developed for the Helmholtz equation, including least squares, discontinuous
Galerkin, ultra weak variational formulation, variational theory of complex rays
and wave based methods. The most common discrete Trefftz spaces used for
this equation employ generalised harmonic polynomials (circular and spherical
waves), plane and evanescent waves, fundamental solutions and multipoles as
basis functions; we describe theoretical and computational aspects of these spaces,
focusing in particular on their approximation properties.

One of the most promising, but not yet well developed, features of Trefftz
methods is the use of adaptivity in the choice of the propagation directions for
the basis functions. The main difficulties encountered in the implementation are
the assembly and the ill-conditioning of linear systems, we briefly survey some
strategies that have been proposed to cope with these problems.
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1 Introduction

Given a linear PDE, a Trefftz method is a volume-oriented discretisation scheme, for
which all trial and test functions, when restricted to any element of a given mesh,
are solutions of the PDE under consideration. The name comes from the work
[112] of Trefftz, dating back to 1926, where this idea was applied to the Laplace
equation. Since then, several versions of Trefftz methods have been proposed and
applied to a range of PDEs by different groups of mathematicians, engineers and
computational scientists, often unaware of each other. Typical PDEs addressed are
linear, with piecewise-constant coefficients and homogeneous, i.e. with vanishing
volume source term.

Trefftz methods are related to both finite element (FEM) and boundary element
methods (BEM). With the former they have in common that they provide a dis-
cretisation in the volume. With the latter they share some characteristics such as the
need of integration on lower-dimensional manifolds only. Compared to conventional
FEMs, Trefftz methods have attracted attention mainly for two reasons: (i) they may
need much fewer degrees of freedom than standard schemes to achieve the same
accuracy, and (ii) they incorporate some properties of the problem’s solution (such
as oscillatory character, wavelength, maximum principle, boundary layers) in the
trial spaces, and thus also in the discrete solution. In addition, compared to BEMs,
an advantage of Trefftz schemes is that they do not require the evaluation of singular
integrals.

Comparing with finite and boundary elements, in 1997 Zienkiewicz [121] stated:
“. . . it seems without doubt that in the future Trefftz type elements will frequently
be encountered in general finite element codes.. . . It is the author’s belief that the
simple Trefftz approach will in the future displace much of the boundary type
analysis with singular kernels.” While this prediction has not yet come true, in the
last years more and more work has been devoted to the formulation, the analysis and
the validation of these methods and substantial progress has been accomplished.

In this chapter we survey Trefftz finite element methods for the homogeneous
Helmholtz equation (��u � k2u D 0), which models acoustic wave propagation in
time-harmonic regime. For medium and high frequencies, i.e. for values of kL in a
range of 102 to 104, where k > 0 is the wavenumber, and L a characteristic length of
the region of interest, the numerical solution of the Helmholtz equation in 2D and
3D is particularly challenging. A main reason is that Helmholtz solutions oscillate
with a wavelength proportional to the inverse of k. Hence, piecewise polynomials do
not provide efficient approximation. Trefftz schemes are thus particularly relevant
as they can improve on the point where (polynomial) FEMs fail: the approximation
properties of the basis functions. Moreover, some Trefftz methods can remedy other
shortcomings that often haunt discretisations of time-harmonic problems, such as
the lack of coercivity and the presence of minimal resolution conditions to guarantee
unique solvability. Theorem 2 in this chapter is an example. Earlier overviews of
Trefftz schemes for the Helmholtz equation, together with numerous references,
can be found in [98], [85, Chap. 1] and [76, Chap. 3]. Surveys of Trefftz schemes
for other equations are in [67, 75, 99, 121].
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For most of the Trefftz spaces used, continuity across interfaces separating mesh
elements cannot be enforced strongly, as Trefftz functions are not as “flexible”
as piecewise polynomials. As a consequence, the standard Helmholtz variational
formulation posed in subspaces of the Sobolev space H1 is not applicable and
discretisations must be used that can accommodate discontinuous trial functions. A
wide array of different variational formulations has been proposed and in Sect. 2 we
attempt a classification and a comparison of the best known. We identify three main
classes of formulations: (i) least squares (LS, Sect. 2.1), where squares of suitable
norms of residuals are minimised; (ii) discontinuous Galerkin (DG, Sect. 2.2),
whose formulations arise from local integration by parts and which may or may
not use Lagrange multipliers on mesh interfaces; (iii) weighted residual (Sect. 2.3),
which are defined by testing residuals against suitable traces of test functions.
The methods discussed include: the Trefftz-discontinuous Galerkin (TDG), the
ultra weak variational formulation (UWVF), the discontinuous enrichment method
(DEM), the variational theory of complex rays (VTCR) and the wave based method
(WBM). Moreover, in the spirit of the symposium that led up to the present volume,
to “build bridges” with a wider portion of the literature and of the computational
PDE community, in Sect. 2.4 we describe some older Trefftz schemes defined on a
single element and in Sect. 2.5 we consider some methods that are not Trefftz but
use oscillating basis functions that are “approximately Trefftz”, such as the partition
of unity method (PUM). To easily compare them, we write all formulations for the
same Robin–Dirichlet model boundary value problem (see Sect. 1.1).

In Sect. 2 we completely gloss over the choice of basis functions and discrete
spaces employed, whose description is postponed to Sect. 3. This is because, apart
from few exceptions such as unbounded elements, any Trefftz discrete space can
be employed in any Trefftz variational formulation. We believe that separating the
discussion of the two main components in the definition of a Trefftz method, i.e.
variational formulations and discrete spaces, will make the presentation clearer. The
most common basis functions for Trefftz methods are plane waves (x 7! eikd�x for
a fixed unit vector d) and generalised harmonic polynomials (i.e. circular/spherical
waves, products of circular/spherical harmonics and Bessel functions), for which
quite a complete approximation theory exists, see Sects. 3.1 and 3.2. Other basis
functions include fundamental solutions, multipoles, evanescent waves and corner
waves. We note that, since the Helmholtz operator is the sum of a second- and a zero-
order term, no non-vanishing piecewise-polynomial Trefftz function is possible.

In this chapter we state a few theorems, none of them is entirely new. Lemma 1
exemplifies the technique of [88] to control the L2 norm of Trefftz functions with
mesh-dependent norms containing interface jumps. If a Trefftz method is well-posed
in a suitable skeleton norm, this allows to control the error in the volume; we do
this for the LS method in Theorem 1 and for the TDG method (well-posed by
Theorem 2) in Corollary 1. This can be combined with the approximation results
for circular/spherical and plane waves in Sects. 3.1 and 3.2. In brief: we provide the
tools to derive stability and orders of L2-convergence in the volume for all Trefftz
methods that are well-posed in suitable skeleton norms.
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Trefftz methods suffer from two main problems: ill-conditioning due to the poor
linear independence of the basis functions, and the need for numerical quadrature
for oscillating integrands. On the other hand, since the PDE is solved exactly in each
element, only low-dimensional integrals on the mesh skeleton need to be evaluated,
leading to massively reduced computational cost for the assembly of the linear
systems. Moreover, if plane wave bases are used, on any polygonal/polyhedral mesh
the integrals can be computed analytically in a cheap way. In Sect. 4 we briefly
review strategies developed to deal with the computation of matrix entries and to
cope with ill-conditioning.

Some Trefftz methods also provide an attractive framework for implementing
non-standard adaptive policies, like directional adaptivity following dominant wave
directions. This is made possible, because plane wave-type Trefftz functions
naturally encode a direction of propagation. More details are given in Sect. 4.2.

As mentioned, in this chapter we only discuss the Helmholtz equation, i.e.
acoustic problems, and constant material parameters. The discrete Trefftz spaces
used for the Helmholtz equation with variable coefficients are briefly addressed in
Sect. 3.4. Other time-harmonic wave problems that have been tackled with Trefftz
methods include electromagnetism (Maxwell equations) [18, 85], linearised Euler
equation and general hyperbolic systems [37], linear elasticity (Navier equation)
[76], (fourth order) Kirchhoff–Love plates [27, 71, 76, 102], Koiter’s linear shell
theory [102], poro-elasticity [27, Sect. 5.4], coupled vibro-acoustic problems [27].
A list of applications and references can be found in [25, Sect. 5.1] (with a focus
in vibrational mechanics) and in [76, 85]. A related application is tackled by the
method of particular solutions (MPS) of [15, 36], which uses Helmholtz solutions to
approximate Laplace eigenvalue problems; in this setting the wavenumber is part of
the unknowns. For recent work on space–time Trefftz methods for wave propagation
in time-domain see [69] and references therein.

Several comparisons of the numerical performances of different Trefftz schemes
for simple model problems have been published, e.g. [7] (PUM, DEM, generalised
FEM), [40] (LS, UWVF), [61] (PUM, UWVF), [39] (DG, UWVF, LS), [115]
(DEM, UWVF, PUM), [59] (LS, UWVF, VTCR), where we have included the PUM
even if strictly speaking it is not a Trefftz method. However, from these results it is
difficult to conclude that any formulation is clearly preferable from a computational
point of view. A general conclusion might be that, in order to achieve the best
accuracy and conditioning, the choice of the approximation space matters more than
that of the variational formulation. We reiterate that these two choices are mutually
independent: any Trefftz discrete space might be used in any Trefftz variational
formulation. We make some further concluding remarks in Sect. 5.

1.1 Model Boundary Value Problem

We rely on a simple model boundary value problem (BVP) for the Helmholtz
equation that will be used to describe and compare the different Trefftz methods. Let
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˝ � R
n, n D 2; 3, be a bounded, Lipschitz, connected domain, with @˝ D �D[�R,

where �D and �R are disjoint components of @˝; �R ¤ ; while �D might be empty.
Denote by n the outward-pointing unit normal vector field on @˝ . We consider the
homogeneous Robin–Dirichlet BVP

��u � k2u D 0 in ˝;

u D gD on �D;

@u

@n
C ik#u D gR on �R:

(1)

Here gD and gR are the boundary data, i is the imaginary unit, k 2 R (the
wavenumber) and # (the impedance parameter) are positive constants. We assume
that˝ , gD and gR are such that u 2 H3=2Cs.˝/, for some s > 0. In typical sound-soft
acoustic scattering problems, �D represents the boundary of the scatterer, and �R

stands for an artificial truncation of the unbounded region where waves propagate;
see e.g. [55, Sect. 2].

Simple generalisations of the BVP (1) that can be tackled by Trefftz methods
are:

• Neumann boundary conditions @u=@n D gN on �D;
• discontinuous and piecewise-constant wavenumber k;
• piecewise constant and discontinuous tensor coefficient A in the more general

Helmholtz equation �r � .Aru/ � k2u D 0, e.g. [60] and [18, Chap. I.5];
• spatially varying impedance 0 < # 2 L1.�R/;
• absorbing media k 2 C;
• inhomogeneous Helmholtz equation ��u � k2u D f , where the source term f

might be either localised [37, Sect. 5], [25, 57, 58], or not [1, Sect. 2.2];
• scattering in unbounded domains;
• scattering by periodic diffraction gratings in [20, 119];
• scattering by screens (i.e. manifolds with boundary, leading to non-Lipschitz

computational domains) in [120].

The presence of smoothly varying coefficients is more challenging for Trefftz
methods, as in general no Trefftz functions in analytical form are available; this
extension is briefly addressed in Sect. 3.4.

1.2 Notation

We introduce a finite element partition Th D fKg of˝ , not necessarily conforming.
We write nK for the outward-pointing unit normal vector on @K, and h for the
mesh width of Th, i.e. h WD maxK2Th hK , with hK WD diamK. We denote by
Fh WD S

K2Th
@K and F I

h WD Fh n @˝ the skeleton of the mesh and its inner part.
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We also introduce some standard DG notation. Given two elements K1;K2 2 Th,
a piecewise-smooth function v and vector field 	 on Th, we define on @K1 \ @K2

the averages: ffvgg WD 1
2
.vjK1 C vjK2 /; ff	gg WD 1

2
.	jK1 C 	jK2 /;

the normal jumps: ŒŒv		N WD vjK1nK1 C vjK2nK2 ; ŒŒ			N WD 	jK1 � nK1 C 	jK2 � nK2 :

We denote by rh the element-wise application of the gradient r, and write @n D
n � rh on @˝ and @nK D nK � rh on @K for the normal derivatives.

For s > 0, define the broken Sobolev space Hs.Th/ and the Trefftz space T.Th/:

Hs.Th/ WD ˚

v 2 L2.˝/ W vjK 2 Hs.K/ 8K 2 Th


;

T.Th/ WD ˚

v 2 H1.Th/ W ��v � k2v D 0 in K and @nKv 2 L2.@K/ 8K 2 Th


:

The discrete Trefftz space Vp.Th/ is a finite-dimensional subspace of T.Th/ and
can be represented as Vp.Th/ D L

K2Th
VpK .K/, where VpK .K/ is a pK-dimensional

subspace of T.Th/ of functions supported in K. We use the terms h-convergence to
mean the convergence of a sequence of numerical solutions to u when the mesh Th
is refined, i.e. h ! 0, p-convergence to designate the convergence when the local
spaces are enriched, i.e. p WD minK2Th pK ! 1, and hp-convergence to mean the
convergence for a suitable combination of the two refinement strategies. We remark
that when non-polynomial spaces are used, as it is the case for Trefftz methods in
frequency domain, it is not obvious how to define the “degree” of a space, thus pK
denotes the local number of degrees of freedom. Finally, we denote by Re f�g, Im f�g
and � the real part, the imaginary part and the conjugate of a complex value.

We note that some of the methods in Sect. 2, such as the TDG, the UWVF and the
VTCR, involve sesquilinear forms (i.e. test functions are conjugated) while others,
such as the DEM and the WBM, involve bilinear forms (test functions are not
conjugated). Any method (if no unbounded elements are used) can be modified to
either form, even though sesquilinear forms are more amenable to stability and error
analysis; for each method we follow the conventions of the references we cite.

1.3 Estimation of the L2.˝/ Norm of (Piecewise) Trefftz
Functions

Given two uniformly positive functions � 2 L1.F I
h [ �D/ and � 2 L1.F I

h [ �R/,
we introduce the following skeleton seminorm (defined e.g. on H3=2C".Th/, " > 0):

jjjvjjj2�;� WD k�ŒŒrhv		Nk2L2.F I
h/

C k�ŒŒv		Nk2L2.F I
h/

(2)

C k�.@nv C ik#v/k2L2.�R/ C k�vk2L2.�D/ :
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A special property of the Trefftz space T.Th/ is that this seminorm is actually a
norm for it, and that it controls the L2.˝/ norm, as it was first proved by P. Monk
and D.Q. Wang using a special duality technique in [88, Theorem 3.1].

Lemma 1 jjj � jjj�;� is a norm in T.Th/. Moreover, all Trefftz functions v 2 T.Th/\
H3=2C".Th/, " > 0, satisfy the estimate

kvkL2.˝/ � C�jjjvjjj�;� ;

with a constant C� > 0 depending only on k; �; �; #;˝ and Th. Setting

�K WD ess infx2@Kn�D �.x/; �K WD ess infx2@Kn�R �.x/ 8K 2 TK ;

we can express the dependence of C� on the relevant parameters in the following
situations:

(i) If @˝ D �R and ˝ is either convex or smooth and star-shaped with respect to
a ball, then

kvkL2.˝/ � C1 diam˝ max
K2Th

�� 1

�2Kk
C k

�2K

��

1C 1

khK

��1=2

jjjvjjj�;� ;

where C1 > 0 depends on # , the shape-regularity of the mesh and the shape
of˝ .

(ii) If k > 1,˝ � R
2 has diameter diam˝ D 1 and satisfies

x � n 
 � > 0 a.e. on �R and x � n � 0 a.e. on �D; (3)

and each element K is star-shaped with respect to a ball of radius �KhK, we
have

kvkL2.˝/ � C2 max
K2Th

�� 1

�2Kk
C k

�2K

��

.khK/
2t C 1

khK

��1=2

jjjvjjj�;� ;

where 0 < t < s˝ � 1=2, s˝ being the “elliptic regularity parameter” of
[55, Eq. (6)], and C2 > 0 depends only on˝ , # , t, and on the shape-regularity
infK2Th �K of the mesh.

The bound in part (i) of Lemma 1 can be verified following the proof of [85,
Lemma 4.3.7], while that in part (ii) requires also the stability and trace estimates
of [56, Eq. (7), (20)] (see also [56, Lemma 4.5] and a weaker but more general
bound in [55, Lemma 4.4]). Conditions (3) on the shape of ˝ are satisfied if �R

is boundary of a domain star-shaped with respect to a ball centred at 0 and �D

is boundary of a smaller domain (a scatterer, or a “hole” in ˝) star-shaped with
respect to 0, see [55, Sect. 2, Fig. 2]. The value of the bounding constants arise
only from (a) trace estimates for mesh elements, and (b) stability bounds for an
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inhomogeneous Helmholtz BVP on˝ , thus more general shapes of˝ give different
dependencies on k (using e.g. the k-explicit H1.˝/ bounds in [30, Theorem 2.4],
[105, Theorem 1.6], and bounds in higher-order norms as in [41, Lemma 2.12]).
This result is relevant because, for Trefftz methods that allow a priori stability or
error estimates, these are typically in a skeleton norm similar to jjj � jjj�;� . Thus
Lemma 1 can lead to error estimates in the mesh- and parameter-independentL2.˝/
norm; we pursue this in Sects. 2.1 and 2.2.1.

2 Trefftz Variational Formulations

2.1 Least Squares (LS) Methods

Least squares methods are perhaps the simplest kind of Trefftz formulations. They
allow simple error and stability analysis, are easy to implement, lead to sign-
definite Hermitian (or symmetric) linear systems, at the price of a possibly worse
conditioning. A description of Trefftz LS schemes for the Helmholtz equation
with numerous references is given by Stojek in [107]. The same method is named
frameless Trefftz elements in [99, Sect. 3.6] and weighted variational formulation
(WVF) in [59]. In [88], Monk and Wang proposed the following Trefftz LS method
for the BVP (1):

find uLS D arg min
vhp2Vp.Th/

J.vhpI gR; gD/; where

J.vI gR; gD/ W D
Z

F I
h

�

�2
ˇ
ˇŒŒv		N

ˇ
ˇ
2 C �2

ˇ
ˇŒŒrhv		

ˇ
ˇ
2
�

dS (4)

C
Z

�R

�2
ˇ
ˇ@nv C ik#v � gR

ˇ
ˇ
2

dS C
Z

�D

�2
ˇ
ˇv � gD

ˇ
ˇ
2

dS;

where ŒŒrv		 WD rhvjK1 � rhvjK2 on @K1 \ @K2 is the jump of the complete gradient
(whose “sign” depends on a choice of the ordering of the elements in Fh). The LS
methods in [107, Eq. (7)] and [75, Chap. 10] differ from (4) (apart from the use of
different boundary conditions) in that only the normal component of the jump of the
gradient ŒŒrhv		N is penalised on F I

h, as opposed to the entire jump ŒŒrhv		. Obviously,
every Galerkin discretisation of the variational problem arising from (4) will give
rise to a Hermitian linear system, which is a clear advantage of LS methods.

The choice of the relative weights 0 < �; � 2 L1.Fh/ between the terms in (4)
is a crucial point for the conditioning and the accuracy of LS methods. Different
choices have been proposed (for 2D problems): � D 1 and � D k or �je D 1=he
in [88, Sect. 2]; � D 1 and �je D he=. pK1 C pK2 / in [107, Sect. 3.2]; � D 1

and �je D O.maxfpK1 ; pK2g�1=2/ in [75, Theorem 10.3.4]. Here, e D @K1 \ @K2
denotes a mesh interface, he its length, pK1 and pK2 the dimensions of the local
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Trefftz spaces VpK1
.K1/ and VpK2

.K2/ on the adjacent elements K1 and K2. In 2D
and 3D, [59] suggests to choose � D 1 and � D k and, for BVPs with singular
solutions, �j�R D k1=2.

The LS method computes the element uLS in Vp.Th/ that minimises the error
u � uLS measured in the skeleton norm kvk2LS WD J.vI 0; 0/, thus orders of converge
in this norm follow immediately from approximation bounds for the specific discrete
Trefftz space Vp.Th/ chosen, see e.g. Sect. 3 below or [88]. Since jjjvjjj�;� � kvkLS

(with equality if J in (4) is defined with ŒŒrhv		N instead of ŒŒrhv		), Lemma 1,
following [88, Theorem 3.1], guarantees that the L2.˝/ norm of the error of the LS
solution is controlled by the value of the LS functional, thus convergence follows
also in ˝ . This is summarised in Theorem 1, see Sect. 1.3 for the extension to
different domains.

Theorem 1 Let u be the solution of (1) and uLS 2 Vp.Th/ the discrete LS solution
of (4). Then, for C� > 0 depending only on k; �; �; #;˝ and Th,

ku � uLSkLS D inf
vhp2Vp.Th/

�
�u � vhp

�
�

LS
;

ku � uLSkL2.˝/ � C� inf
vhp2Vp.Th/

�
�u � vhp

�
�

LS
:

If � D k, � D 1, @˝ D �R and˝ is either convex or smooth and star-shaped, then

ku � uLSkL2.˝/ � C0 diam˝ k�1=2
�

1C 	

k min
K2Th

hK

�1=2�

inf
vhp2Vp.Th/

�
�u � vhp

�
�

LS
;

where C0 > 0 depends only on # , the shape of˝ and the shape-regularity of Th.

The hp-convergence theory of [56] easily extends to the LS method. In 2D, if the
LS parameters are defined as �2je D kh=minfhK1 ; hK2g for e D @K1 \ @K2, �2je D
kh=hK for e � @K \ �D, and �2 D 1=k, under the assumptions on ˝ and on the
discretisation stipulated in [56], then the k�kLS norm of the LS error is estimated as in
[56, Eq. (48)] and the L2.˝/ norm of the same error converges to zero exponentially
in the square root of the total number of degrees of freedom used.

In [75, Chap. 10], the Trefftz LS scheme is analysed for pure Dirichlet boundary
conditions (�R D ;); the crucial parameter in the analysis is the relative distance
between k2 and the closest Dirichlet eigenvalue of ��. Error bounds in the broken
Sobolev norm H1.Th/ are derived.

In the numerical tests in [39, 40], the LS method appears to be slightly less
accurate than the UWVF (see Sect. 2.2.2 below) and a DG method, all employed
with the same discrete space. On the other hand, in the examples in [59], the
performance of the LS method is comparable to that of the UWVF and considerably
better than that of the VTCR.
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2.1.1 The Method of Fundamental Solutions (MFS)

A popular class of LS Trefftz methods is the method of fundamental solutions.
A lucid introduction to the MFS for Helmholtz problems, together with numerous
references, is in [31]. The MFS is considered a special case of source simulation
technique in [92]. The characteristic features of the most common form of the
MFS are: (i) the domain is not meshed; (ii) the N basis functions are fundamental
solutions (H.1/

0 .kjx � y`j/ in 2D, ` D 1; : : : ;N, where H.1/
0 is a Hankel function of

the first kind and order zero and y` 2 R
2 n˝ , see Sect. 3.3); (iii) the minimisation

of the L2.@˝/ norm of the error is substituted by the minimisation of the squared
error over M 
 N points xj 2 @˝ , j D 1; : : : ;M. If M D N, the MFS is not an LS
method but it simply interpolates the boundary conditions with Trefftz functions.

The same method with plane wave bases is compared to the MFS in [1]. A variant
that is popular in acoustics is the Helmholtz equation least-squares (HELS) method,
which uses spherical-wave and multipole basis functions, see the recent book [117]
and references therein. LS variants of MFS relying on higher order multipoles in
addition to simple Hankel functions have a long history in wave simulations [90,
Sect. 2].

The locations y` of the basis singularities are either obtained numerically together
with the coefficients multiplying the basis functions using non-linear LS solvers [31,
Eq. (7)] (leading to a highly adaptive method), or can be fixed a priori on a smooth
boundary in R

n n˝, e.g. using complex analysis techniques (in 2D) as in [9], or are
determined based on heuristic criteria [90, Sect. 3].

The MFS with fixed nodes can be interpreted as a discretisation of a compact
transfer operator related to a single layer potential representation. For this reason
it yields ill-conditioned linear systems; however this does not rule out efficient
computations as demonstrated and analysed in [9] and in [10, Sect. 7]. According
to [31, p. 766], the larger the distance between the nodes and ˝ , the more ill-
conditioned the linear system and the more accurate the solution (though this might
seem counter-intuitive).

A strength of the MFS is its simplicity of implementation, as no mesh is needed
and all geometric information is contained in only two point sets fy`gN`D1 � R

n n
˝, fxjgMjD1 � @˝ . Since fundamental solutions satisfy the Sommerfeld radiation
conditions, the MFS is often used for scattering problems in unbounded domains.

In [9], the convergence of the MFS for Dirichlet problems on a circular domain is
analysed in great detail, and a special design of the curve supporting the fundamental
solutions is proposed for general domains with analytic boundaries. With this
choice, extremely accurate and cheap computations are possible.

In [10], Barnett and Betcke present a finite element scheme that couples the
LS formulation of [107] with the MFS in 2D. They consider the scattering
by sound-soft (non-convex) polygons; the total field is approximated inside an
artificial boundary and the scattered field outside of it. Singular Fourier–Bessel
basis functions depending on the scatterer’s corners (see Sect. 3.4) are used on all
elements adjacent to the scatterer, strongly enforcing the (homogeneous) Dirichlet
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boundary conditions; due to this, no terms on @˝ appear in the method formulation.
Exponential orders of convergence are proved. The strong enforcement of boundary
conditions may be substituted by an LS approach to deal with more general linear
boundary conditions, curved boundaries and transmission problems.

2.2 Discontinuous Galerkin (DG) Methods

The discontinuous Galerkin (DG) methods constitute a wide class of numerical
schemes for the approximation of PDEs, employing discontinuous test and trial
functions [6]. A great number of tools for their design, implementation and error
analysis have been devised, so they are a natural setting for Trefftz methods. In
[54] we showed that when the interior penalty (IP) method, one of most common
DG schemes, is applied to the Laplace equation, the use of Trefftz spaces (made
of harmonic polynomials) offers better accuracy than standard spaces also in an hp-
context. Similar considerations were made in [74] for the h-convergence of the local
DG (LDG) method. To our knowledge, no standard DG variational formulation (e.g.
any of those in [6]) has been proposed in the literature to discretise time-harmonic
problems with Trefftz basis functions. Possible reasons for this are that the error
analysis of standard DG schemes requires inverse estimates, which are well-known
for polynomial spaces but harder in the Trefftz case (however, see [46, Sect. 3.2]
for h-explicit inverse estimates for plane waves in 2D), and that the application of
formulations designed for the Laplace equation to the Helmholtz case requires some
problematic minimal resolution condition to ensure unique solvability [83].

In the next sections we outline some DG formulations that have been designed
specifically for Trefftz discretisations; some of these have later been employed also
with polynomial approximating spaces, e.g. [83, 89].

A note on terminology: all Trefftz methods presented in this survey involve
the discretisation of variational formulations based on discontinuous functions,
however with “DG” we denote only those methods that arrive at local variational
formulations by applying integration by parts to the PDE to be approximated. On
the contrary, least squares and weighted residual methods simply enforce (weakly)
continuity and boundary conditions, irrespectively of the considered PDE.

2.2.1 The Trefftz-DG (TDG) Method

Originally, Trefftz-discontinuous Galerkin (TDG) methods (or plane wave DG,
PWDG, when used in combination with plane wave basis functions) were intro-
duced as a way of recasting the ultra weak variational formulation (UWVF)
of [18, 19] (see Sect. 2.2.2 below) in a framework that would facilitate its theoretical
analysis [17, 46]. A similar, but more general, Trefftz-DG framework was proposed
in [37, 39], arising from methods for hyperbolic equations; see Remark 1 below.
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We first derive the TDG formulation as in [55]. We multiply the Helmholtz
equation (1) by a test function v and integrate by parts twice on each K 2 Th:

0 D
Z

K
.��u � k2u/v dV D

Z

K
.ru � rv � k2uv/ dV �

Z

@K
ru � nK v dS

D
Z

K
u .��v � k2v/ dV C

Z

@K
u @nKv dS �

Z

@K
@nK u v dS:

We then replace u and v by discrete functions uhp; vhp 2 Vp.Th/, the trace of u on
@K by the numerical flux Ouhp, and the trace of ru by the numerical flux ikb� hp (both
defined below), obtaining the elemental TDG formulation:

Z

@K
Ouhp @nKvhp dS �

Z

@K
ikb� hp � nK vhp dS D 0; (5)

where the volume integral vanishes as the test function vhp 2 VP.Th/ � T.Th/
is a Trefftz function. Variants of DG methods are distinguished by the underlying
numerical fluxes. Here we opt for the primal fluxes:

ikb� hp D

8

ˆ̂
<

ˆ̂
:

ffrhuhpgg � ˛ ik ŒŒuhp		N on faces in F I
h;

rhuhp � .1 � ı/ 	rhuhp C ik#uhpn � gRn



on faces in �R;

rhuhp � ˛ ik .uhp � gD/n on faces in �D;

(6)

Ouhp D

8

ˆ̂
<

ˆ̂
:

ffuhpgg � ˇ .ik/�1ŒŒrhuhp		N on faces in F I
h;

uhp � ı
	

.ik#/�1rhuhp � n C uhp � .ik#/�1gR



on faces in �R;

gD on faces in �D;

(7)

where the flux parameters ˛ > 0, ˇ > 0, 0 < ı � 1=2, are bounded functions
defined on suitable unions of edges/faces (see also Table 1). Adding over all
elements, we obtain the following formulation of the TDG method:

find uTDG 2 Vp.Th/ s.t. ATDG.uTDG ; vhp/ D `TDG.vhp/ 8vhp 2 Vp.Th/; where

ATDG.u; v/ WD (8)
Z

F I
h

�

ffuggŒŒrhv		N � ffrhugg � ŒŒv		N C ˛ikŒŒu		N � ŒŒv		N � ˇ.ik/�1ŒŒrhu		N ŒŒrhv		N

�

dS

C
Z

�R

�

.1 � ı/ik#uv C .1 � ı/u@nv � ı@nu v � ı.ik#/�1@nu@nv
�

dS

C
Z

�D

�

� @nu v C ˛ ik u v
�

dS;

`TDG.v/ WD
Z

�R

gR
�

.1 � ı/v � ı.ik#/�1@nv
�

dS C
Z

�D

gD
�

˛ikv � @nv
�

dS:
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Table 1 Different TDG flux parameters in (6) and (7) that have been considered

˛ ˇ ı

Quasi-uniform meshes,
h-convergence

Gittelson et al. [46] a=khK bkhK dkhK

Quasi-uniform meshes,
p-convergence

Hiptmair et al. [53] a b d

UWVF (see Sect. 2.2.2) Cessenat and Després [19] 1=2 1=2 1=2

Locally refined meshes,
hp-convergence

Hiptmair et al. [55] ah=hK bh=hK dh=hK

Geometrically graded meshes,
exponential hp-convergence

Hiptmair et al. [56] ah=hK b d

Polynomial (non Trefftz) basis,
hp-convergence

Melenk et al. [83] aq2K=khK bkhK=qK dkhK=qK

Here a;b;d are positive functions independent of the other parameters; k is the wavenumber; hK is
the local meshwidth; h D maxK2Th hK is the global meshwidth; qK is the local polynomial degree
(for the non-Trefftz version)

The TDG method was introduced in the primal form described here in [44, 46] and in
mixed form in [52], under the name of plane wave DG (PWDG) method, following
the derivation of [6] of general DG schemes for elliptic equations. In [46], first-
order convergence in the meshwidth was established, using Schatz’ argument, for
2D Robin problems with source term f 2 L2.˝/, plane wave discrete spaces and
quasi-uniform families of meshes. This was extended to higher orders in h in [84],
p-convergence in [53], three dimensions in [85], locally-refined meshes in [55], and
finally the exponential convergence in the number of degrees of freedom of its hp-
version was proved in [56]. Its dispersion analysis was performed in [44, 45].

For polynomial discrete spaces, the advantages of using the formulation under-
lying the TDG method, compared to standard DG schemes, were analysed in [83].
In [14], the TDG formulation was utilised with (non-Trefftz) bases defined from
oscillating functions from high-frequency asymptotics modulated with polynomials;
problems with varying coefficients were also considered.

The TDG formulation (8) can be seen as a modification of either the interior
penalty method, or of the local DG (LDG) method (see e.g. [6]): with respect to
the interior penalty method, the stabilisation term multiplied by ˇ is added in the
TDG fluxes (7), while with respect to the LDG method, in the TDG fluxes (6), the
consistency term is written in terms of the primal variable (ffrhuhpgg) instead of in
terms of the auxiliary variable (ffik� hpgg) and the additional stabilisation of the jumps
of � hp is removed. In [106], the TDG and the UWVF are seen as special instances
of a family of methods arising from integration by parts.
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The a priori error analysis of the TDG relies on Theorem 2 below (e.g. [55,
Sect. 4]), which makes use of the following mesh- and flux-dependent seminorms:

jjjvjjj2TDG WD k�1
�
�
�ˇ

1
2 ŒŒrhv		N

�
�
�

2

L2.F I
h/

C k
�
�
�˛

1
2 ŒŒv		N

�
�
�

2

L2.F I
h/

C k�1
�
�
�ı

1
2 #�

1
2 @nv

�
�
�

2

L2.�R/
C k

�
�
�.1 � ı/ 12 # 1

2 v
�
�
�

2

L2.�R/
C k

�
�
�˛

1
2 v
�
�
�

2

L2.�D/
I

jjjvjjj2
TDGC

WD jjjvjjj2TDG C k
�
�
�ˇ

�
1
2 ffvgg

�
�
�

2

L2.F I
h/

C k�1
�
�
�˛

�
1
2 ffrhvgg

�
�
�

2

L2.F I
h/

C k
�
�
�ı

�
1
2 #

1
2 v
�
�
�

2

L2.�R/
C k�1

�
�
�˛

�
1
2 @nv

�
�
�

2

L2.�D/
:

Theorem 2 The seminorms jjj � jjjTDG and jjj � jjjTDGC are norms in the Trefftz space
T.Th/. The TDG sesquilinear form is continuous and coercive:

jATDG.v;w/j � 2jjjvjjjTDGC jjjwjjjTDG; Im
˚

ATDG.v; v/
 D jjjvjjj2TDG

for all v;w 2 T.Th/, thus there exists a unique solution uTDG 2 Vp.Th/ to the TDG
formulation (8) and the quasi-optimality bound holds:

jjju � uTDG jjjTDG � 3 inf
vhp2Vp.Th/

jjju � vhpjjjTDGC :

Choosing �2 D ˛k on F I
h [ �D, �2 D ˇ=k on F I

h and �2 D minfı; 1 � ıg=2k#
on �R, the norm (2) is controlled as jjjvjjj�;� � jjjvjjjTDG for all v 2 T.Th/. Thus,
by Lemma 1, the L2.˝/ norm of the TDG error can be controlled by its jjj � jjjTDG

norm, and so by the discrete space approximation properties. This result has been
stated in several slightly different forms, depending on the regularity of the solution
u, the type of mesh used, the choice of the numerical flux parameters ˛; ˇ; ı; see
[85, Lemma 4.3.7], [55, Lemma 4.4] and [56, Lemma 4.5]. To strike a balance
between the size of the constants arising from the duality argument of Lemma 1
and approximation errors, different flux parameters have been chosen on different
meshes and aiming at different types of convergence estimates, see Table 1. For
illustration, we state the result in the case of constant flux parameters, quasi-uniform
meshes, and domains that guarantee sufficiently smooth solutions for the dual
problems; this follows from Lemma 1 and Theorem 2 (cf. [85, Corollary 4.3.8]).

Corollary 1 Let u be the solution of (1), where ˝ is either convex or smooth and
star-shaped, and let uTDG 2 Vp.Th/ be the solution of the TDG method with flux
parameters chosen as in the second row of Table 1. Then

ku � uTDGkL2.˝/ � C0 diam˝
�

1C 	

k min
K2Th

hK

�1=2�

inf
vhp2Vp.Th/

jjju � vhpjjjTDGC ;

where C0 > 0 depends only on # , the shape of ˝ and the shape-regularity of the
mesh, but is independent of k and Vp.Th/.
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The combination of the abstract error analysis outlined above and approximation
estimates for plane, circular and spherical waves (see Sect. 3) leads to a priori h-, p-
and hp-convergence estimates in jjj�jjjTDG and L2 norms, see [46, 53, 55, 56, 85]. The
dependence of the error bounds on the wavenumber k is explicit, as in Corollary 1.

Remark 1 The Helmholtz equation may be written as the first order hyperbolic
system �iku C Pn

jD1 @xj.A. j/u/ D 0, where u WD .uI ru=.ik// and A.j/ are
the .1 C n/ � .1 C n/ symmetric matrices whose only non-zero elements are
A.j/1;jC1 D A.j/jC1;1 D 1, for 1 � j � n. Then, similarly to [37, Eq. (22)] or [39, Eq. (5)],
a general Trefftz-DG method can be written as:

seek u 2 Vp.Th/ WD ˚

.u; � / W u 2 Vp.Th/; � D ru=.ik/


s.t. 8v 2 Vp.Th/
X

K1;K22Th;
K1¤K2

Z

@K1\@K2

	

Fin
jK1

ujK1 � Fin
jK2

ujK2


 � 	vjK1 � vjK2




dS C
Z

@˝

.Finu � g/ � v dS D 0

where the flux-splitting matrices Fin;Fout are defined on
Q

K2Th
@K and satisfy Fin �

0, Fout 
 0 (i.e. are negative and positive semi-definite, respectively), Fin C Fout D
. 0 n>

K
nK 0

/ on @K, and Fin
K1

D �Fout
K2

on @K1 \ @K2. The boundary data are represented

by a suitable vector field g D �Foutu. The TDG in (8) (up to a factor �ik) is obtained
by choosing:

Fin
K D Fout

K D
8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

 

�˛ 1
2
n>
K

1
2
nK �ˇn ˝ n>

!

 

�.1 � ı/# ın>
K

.1 � ı/n � ı
#

n ˝ n>

!

 

�˛ n>
K

0 0

!

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

 

˛ 1
2
n>
K

1
2
nK ˇn ˝ n>

!

on @K \ F I
h;

 

.1 � ı/# .1 � ı/n>
K

ın ı
#

n ˝ n>

!

on @K \ �R;

 

˛ 0>

nK 0

!

on @K \ �D:

The right-hand side is represented by the vector g D � 1
ik .

1�ı
ı#�1nK

/gR on �R and
g D �. ˛nK /gD on �D.

2.2.2 The Ultra Weak Variational Formulation (UWVF)

The ultra weak variational formulation (UWVF) has been introduced in the 1990s by
Cessenat and Després in [18, 19]. Since then it has received a great deal of attention
and has been applied to numerous PDEs and BVPs; we refer to [60] for a description
of its computational aspects and to [76, Sect. 3.5.2] for an extensive bibliography.
Different derivations can be found e.g. in [17, 19, 37, 39, 46]; in particular [17, 46]
obtain the UWVF in the setting of DG schemes for elliptic problems of [6], while
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[37, 39] derive it for general first-order hyperbolic systems using a flux-splitting
approach as we did for the TDG in Remark 1. Note that different papers use different
sign conventions. The extension of the UWVF to problems with smooth coefficients
has been tackled in [65].

To write its formulation for the BVP (1) in the Robin case, i.e. �D D ;, we
first define the trace space X WD Q

K2Th
L2.@K/, and the operators FK W L2.@K/ !

L2.@K/, mapping the boundary datum yK of a local adjoint-impedance Helmholtz
BVP into the impedance trace of the BVP solution eK itself:

FK. yK/ WD .@nK C ik/eK ; where

(

��eK � k2eK D 0 in K;

.�@nK C ik/eK D yK on @K:

The Helmholtz BVP is written as a transmission problem across the mesh interfaces,
i.e., for all K;K0 2 Th,

��u � k2u D 0 in K;

@nK u C iku D �@nK0
u C iku on @K \ @K0;

@nK u C ik#u D gR on @K \ �R:

Then, after multiplying the first equation by ejK , e 2 T.Th/, integrating by parts
twice, taking into account transmission and boundary conditions, and introducing
x; y 2 X defined as xj@K D �@nK u C iku and yj@K D �@nK e C ike, the UWVF of
problem (1) [19, (1.4)] reads: find x 2 X such that, for every y 2 X,

X

K2Th

Z

@K
xj@K yj@K dS �

X

K;K02Th

Z

@K\@K0

xj@K0 FK. yj@K/ dS (9)

�
X

K2Th

Z

@K\�R
1 � #
1C #

xj@K FK. yj@K/ dS D
X

K2Th

Z

@K\�R
2

1C #
gR FK. yj@K/ dS:

(Note that for # D 1 the term on @K\�R at left-hand side vanishes and 2=.1C#/ D
1.) The expression (9) is a variational formulation for the skeleton unknown x; after
the equation is solved for x, the Helmholtz solution ujK can be recovered in the
interior of each element by solving a local (in K) adjoint-impedance Helmholtz
BVP with datum .�@nK C ik/ujK D xj@K . If the formulation is discretised choosing
a finite dimensional subspace Xh of X corresponding to the impedance traces of a
Trefftz space, namely

Xh WD ˚

xh 2 X W xhj@K D .�@nK C ik/vjK 8K 2 Th; v 2 Vp.Th/


;

then the action of FK and the reconstruction of uK in K are immediately computed.
Theorem 2.1 of [19] states that the discrete problem obtained by substituting Xh

to X in (9) is solvable, independently of the meshsize h; Corollary 3.8 shows that,
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for plane wave discrete spaces, the Dirichlet and Robin traces of the UWVF solution
converge to the corresponding traces of u with algebraic orders of convergence
in L2.�R/. In [17, Sect. 4], these results have been used together with the duality
technique of [88] to prove orders of convergence for the L2.˝/ norm of the error.

The UWVF has been recast as a DG method with Trefftz basis functions in
several different ways in [17, 37, 39, 46]. In particular, [46, Remark 2.1] shows
that the UWVF is a special case of the TDG formulation (8) for flux parameters
˛ D ˇ D ı D 1=2. As a consequence, the orders of convergence in h and p proved
for the TDG on quasi-uniform meshes in [46, 53] carry over to the UWVF (with
suboptimal orders in h); on the other hand, the hp-type results of [55, 56] require
variable numerical flux parameters to cope with elements of different sizes (see
Table 1), so they do not apply to the UWVF. Thus, the TDG can be understood
as the extension of the UWVF to non quasi-uniform meshes. Alternatively, in
[89, Sect. 4.3, 5.2], the UWVF is employed on meshes refined towards solution
singularities by choosing Trefftz spaces on large elements and polynomial spaces
on small ones. No applications of the TDG combining mesh-dependent parameters
and polynomial spaces in small elements have been documented.

2.2.3 DG Schemes with Lagrange Multipliers

The DG schemes described so far enforce weak continuity between elements using
numerical fluxes, in the spirit of [6]. A different approach is to enforce continuity
using Lagrange multipliers. This was probably first proposed for Trefftz methods in
[63, Sect. 2.3], for the 1D Helmholtz equation.

This strategy has been followed in the discontinuous enrichment method (DEM),
introduced by Farhat et al. in [32], combining a space of piecewise-constant
Lagrange multipliers on mesh interfaces with a discrete space composed by sums
of continuous piecewise polynomials and discontinuous plane waves. Subsequently,
in [33], the polynomial part of the trial space was dropped, leaving a plane wave
trial space and thus reducing to a Trefftz method; in this version, the DEM was
renamed discontinuous Galerkin method (DGM) and the Lagrange multipliers
were approximated by oscillatory functions. This formulation performed very well
for test cases and was later extended to “higher order elements” (i.e. elements
containing more plane waves) and other PDEs. We refer again to [76, Sect. 3.5.3]
for a comprehensive bibliography.

Here we briefly describe the formulation of the DGM following [33, Sect. 2]:

find .u; �/ 2 H1.Th/ � W.Th/ s.t.
8

ˆ̂
<

ˆ̂
:

ADGM.u; v/C BDGM.�; v/ D
Z

�R

gR v dS 8v 2 H1.Th/;

BDGM.�; u/ D
Z

�D

� gD dS 8� 2 W.Th/;
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where

ADGM.w; v/ W D
X

K2Th

Z

K
.rw � rv � k2u v/ dV C

Z

�R

ik# w v dS;

BDGM.�;w/ W D
X

K;K02Th

Z

@K\@K0

�.wjK0 � wjK/ dS C
Z

�D

�w dS;

W.Th/ W D
�

Y

K;K02Th

QH�1=2.@K \ @K0/
�

� H�1=2.�D/:

It is immediate to verify that the solution u to BVP (1) satisfies this formulation,
and that the multiplier � represents the normal derivative of u on the mesh interfaces
and on �D. This formulation is then discretised by restricting it to finite dimensional
spaces Vp.Th/ � H1.Th/ and Wp.Th/ � W.Th/. In the DEM of [32], Vp.Th/ is the
direct sum of a continuous polynomial and a plane wave space, in the DGM of [33]
and subsequent papers only the plane wave part is retained, so Vp.Th/ � T.Th/. The
volume degrees of freedom, i.e. those corresponding to Vp.Th/, are then eliminated
by static condensation in order to reduce the computational cost of the scheme.

A stability and convergence analysis of the simplest version of the DGM (four
plane waves per element and piecewise-constant multipliers) is attempted in [2]:
for a Robin–Neumann BVP on a domain decomposed in rectangles, under a mesh
resolution condition, the scheme is shown to be well-posed, and a priori orders of
convergence are proved (in H1.Th/ norm for the primal variable and in L2.Fh/ for
the multipliers), along with residual-type a posteriori error bounds.

We are not aware of any error analysis for the DGM method holding in more
general situations (e.g. more than four plane waves per elements, propagation
directions not aligned to the mesh, non-rectangular mesh elements).

A similar formulation, named hybrid-Trefftz finite element method, is described
in [99, Sect. 3.5] (deriving the functional in Eq. (65) therein): the same form ADGM

above is used, while BDGM is substituted by BHT.�;w/ WD � RF I
h
� ŒŒrhw		N dS �

R

�N
�@nw dS, where now the multiplier � approximates the Dirichlet trace of u, the

right-hand sides and the space W.Th/ are changed accordingly. A further variant of
hybrid-Trefftz methods is presented in [109] and related papers.

Another DG method with Trefftz basis, called modified DG method (mDGM),
has been proposed in [48]. The Lagrange multipliers are double-valued on the inter-
faces (differently from the DEM/DGM of [32, 33]) and belong to

Q

K2Th
L2.@K n

�R/. A two-step procedure is adopted. First, for each basis element � 2 L2.@K n�R/

of the discrete Lagrange multiplier space, a well-posed Helmholtz BVP on K
with impedance datum � is solved in the local Trefftz space VpK .K/ using the
classical H1.K/-conforming variational formulation. Second, these local solutions
are combined in a global LS formulation leading to a positive semi-definite system
whose unknowns are the Lagrange multipliers themselves. The mDGM was further
improved in [3] leading to the stable DG method (SDGM), which differs from
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the mDGM in that the local impedance problems are solved with a least squares
formulation posed on @K, which gives local Hermitian matrices.

Lagrange multipliers are also used to tackle problems with discontinuous
coefficients by means of the partition of unity method, see [73] and Sect. 2.5 below.

2.3 Weighted Residual Methods

Trefftz discretisations lend themselves well to weighted residual formulations: the
discrete solution is automatically a local solution of the PDE, only the residual on
interfaces (the jumps) and on the boundary (the mismatch with boundary conditions)
need to be enforced by multiplying them to suitable traces of test functions. The
choice of these traces leads to different variational formulations, the most developed
of which are the VTCR and the WBM described in the following. While it is simple
to design weighted residual methods, their error analysis is by no means easy, as
they arise neither from integration by parts, nor from a minimisation principle.

An earlier weighted-residual Trefftz formulation is the weak element method of
[47], where the integral averages of Dirichlet and Neumann jumps on mesh faces
are set to zero (equivalently, test functions are constant on each mesh face).

We note that some of the earliest Trefftz schemes, e.g. the indirect approximation
of [22, Eq. (35)], are of weighted-residual type, even though testing was confined to
the boundary of the domain only, see Sect. 2.4 below.

2.3.1 The Variational Theory of Complex Rays (VTCR)

The VTCR is a weighted residual Trefftz method introduced in the 1990s by
P. Ladevéze and coworkers for problems arising in computational mechanics and
later extended to the Helmholtz case in [100]. Recent surveys are [70, 71, 102].

Several VTCR formulations, slightly different from each other, have been
presented. A general VTCR formulation for the BVP (1) can be written as:

find uVTCR 2Vp.Th/ s.t. AVTCR .uVTCR ; vhp/ D `VTCR.vhp/ 8vhp 2 Vp.Th/; where

AVTCR .u; v/ WD Im
� Z

F I
h

�

ŒŒu		N � ffrhvgg � ŒŒrhu		Nffvgg
�

dS (10)

C
Z

�D

u @nv dS C
Z

�R

� C1
ik#

.@nu C ik#u/@nv C C2.@nu C ik#u/v
�

dS
�

;

`VTCR .v/ WD Im
� Z

�D

gD@nv dS C
Z

�R

� C1
ik#

gR @nv C C2 gR v
�

dS
�

;

where we have reported the formulation with only the imaginary part of the left- and
right-hand side, following the VTCR convention; however dropping “Im” does not
modify the method.
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The formulations in [102, Eq. (21)] and in [70, Eq. (5)] correspond to the choice
of coupling parameters C1 D 1=2 and C2 D �1=2 (up to an overall factor k and
using Re f�izg D Im fzg); that in [101, Eq. (6)] to C1 D 1=2 and C2 D 1=2; that in
[68, Eq. (4)] to C1 D 1 and C2 D 0. The choice of the coupling parameters does not
affect the consistency of the method as all terms in (10) are products of residuals
(internal jumps and boundary conditions) and traces of test functions. In some of
the papers cited, using Im fabg D �Im fabg 8a; b 2 C, the conjugation is written
on the trial, rather than test, functions in some of the terms, without affecting the
formulation.

The VTCR (and similarly the WBM) does not correspond to any of the classical
DG schemes listed in [6]. Indeed, to derive it from the elemental DG equation (5),
one would need to choose numerical fluxes that, in the terminology of [6], are
neither consistent (they do not equal the fields ru and u when applied to the exact
solution u itself) nor conservative (they are not single-valued on the interfaces).

Following [68, Sect. 2.2], it is possible to show that if absorption is present then
the VTCR is well-posed. More precisely, provided that C1 D 1, C2 D 0, Re k > 0

and Im fk2g > 0, the VTCR bilinear form satisfies

AVTCR .v; v/ D �Im fk2g kvk2L2.˝/ � Re k

jkj2
�
�#�1=2@nv

�
�
2

L2.�R/
8v 2 T.Th/;

thus the VTCR solution is unique in the Trefftz space and coercivity in L2.˝/ norm
holds (the analogous result for C1 D �C2 D 1=2 is proved in [70, Proposition 2]).
However, this does not extend to the setting we considered so far, i.e. propagating
waves with k 2 R: in this case it can easily be shown that AVTCR.v; v/ D 0 for
all v 2 T.Th/ such that v D 0 on all elements adjacent to the Robin boundary �R

and for any choice C1;C2 2 C, thus well-posedness can not be ensured using a
coercivity argument. Following [70, Proposition 2], for C1 D 1=2;C2 D �1=2; k 2
R, we have:

AVTCR.v; v/ D �1
2

�1

k

�
�#�1=2@nu

�
�
2

L2.�R/
C k

�
�#1=2u

�
�
2

L2.�R/

�

8v 2 T.Th/;

thus (using Holmgren’s theorem [21, Theorem 2.4]) uniqueness of the solution
of (10) is proved if all mesh elements are adjacent to �R. For more general cases,
coercivity appears to be too strong an argument. We conjecture that discrete inf-sup
conditions might be a more viable way for proving well-posedness of the VTCR.

Sect. 3 of [70] considers the application of the VTCR formulation, corrected with
suitable volume terms, with non-Trefftz (piecewise-polynomial) discrete spaces.
This variation is termed weak Trefftz and analysed therein.
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2.3.2 The Wave Based Method (WBM)

The WBM is a weighted residual Trefftz method, analogous to the VTCR, first
introduced in the dissertation of Desmet [26] and later extended to a wide variety
of engineering applications, mainly in the realm of vibro-acoustics. Recent reviews
of the state of the art of the research on the WBM can be found in [25, 27]. The
discrete space typically used together with the WBM is composed of propagating
and evanescent plane waves, as outlined in Sect. 3.2.

The basic variational formulation of the WBM applied to BVP (1), translating
Sect. 4.1.4 of [27] to our notation and multiplying all terms by .�ik/, reads

find uWBM 2 Vp.Th/ s.t. AWBM.uWBM; vhp/ D `WBM.vhp/ 8vhp 2 Vp.Th/, where

AWBM.u; v/ WD
Z

F I
h

�

2ŒŒrhu		Nffvgg C ik

Zint
ŒŒu		N � ŒŒv		N

�

dS

C
Z

�R

	

@nu C ik#u



v dS �
Z

�D

u @nv dS

`WBM.v/ WD
Z

�R

gR v dS �
Z

�D

gD @nv dS;

where Zint is an interior coupling factor. In some works, a slightly different
formulation is used, e.g. in [98, Eq. (81)] different terms are used on the internal
interfaces. We are not aware of any rigorous stability or error analysis of the WBM
formulation.

2.4 Single-Element Direct and Indirect Trefftz Methods

Most schemes described so far were introduced not earlier than mid 1990s, but
a lot of research on Trefftz methods has been carried out since the late 1970s
by I. Herrera, J. Jirousek, A.P. Zieliński, O.C. Zienkiewicz and numerous co-
workers, mainly for static elasticity problems. General reviews of these works are
in [67, 121]; the Helmholtz case is described in detail in [22]. A major difference
between these methods and those we described in the previous sections is that in
many instances of the former ones no mesh is introduced on the domain ˝ , so that
the unknowns are defined on @˝ only. For this reason, these Trefftz methods more
closely resemble standard boundary element methods rather than finite element
schemes.

There are two main classes of these Trefftz methods: direct and indirect. (We
use the terms “direct” and “indirect” as in [22, 67] and [98, Sect. 5.1].) We describe
them for a modification of BVP (1) where we drop the Robin boundary �R and
we consider instead a Neumann boundary portion �N with boundary condition
@n u D gN .
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The indirect method is the simplest kind of weighted residual scheme:

Z

�D

u @nv dS �
Z

�N

@nu v dS D
Z

�D

gD @nv dS �
Z

�N

gNv dS; (11)

(see [22, Eq. (35)] for sound-hard scattering problems in unbounded domains, [98,
Eq. (47)], [121, Eq. (16)], [67, Eq. (16), (26)]). For Dirichlet exterior problems this is
also the method of [8, Sect. 3]. In most references the test function is not conjugated.
We note that the indirect method is nothing else than the WBM of Sect. 2.3.2 posed
on a single element, i.e. Th D f˝g and F I

h D ;. In the indirect method, the trial
functions approximating u are global solutions of the Helmholtz equation on the
whole of ˝; on the other hand the test function v only needs to be defined on @˝ .
If the Trefftz test and trial spaces coincide, then the obtained stiffness matrix is
symmetric (by Green’s second identity). If the signs of the terms on �N are changed,
as in [67, Eq. (22)], a non-symmetric formulation is obtained.

Subtracting from (11) the second Green’s identity
R

@˝.u @nv � @nu v/ dS D 0,
which holds for all Helmholtz solutions u and v in ˝ , we derive the direct method:

Z

�D

@nu v dS �
Z

�N

u @nv dS D
Z

�D

gD @nv dS �
Z

�N

gN v dS; (12)

(see [22, Eq. (42)], [98, Eq. (50)]). The direct method for the Dirichlet problem may
be viewed as the TDG of Sect. 2.2.1 with ˛ D 0 posed on a single element K D ˝ .
Conversely to the indirect method, consistency of (12) is guaranteed only if the test
functions are Helmholtz solutions in ˝ , while the trial functions might be defined
(and often are) on @˝ only, for better computational efficiency; the solution is then
evaluated in˝ with a representation formula in a post-processing step as for BEMs.
The stiffness matrix arising from the direct formulation (12) is the transpose to that
of the indirect method (11). Theorem 6.44 in [106] gives sufficient conditions for
the well-posedness of the direct method. Theorem 7.19 in [20] proves that, for well-
posed Dirichlet problems with H1.@˝/ data, if the Neumann traces of the trial space
coincide with the Dirichlet traces of the test space, then the direct method is well-
posed and computes the best approximation of the exact solution in L2.@˝/ norm.
If ˝ is unbounded, the direct and the indirect methods can still be used choosing
discrete functions that satisfy Sommerfeld radiation condition; however in (12) the
conjugation on the test function must be dropped to preserve consistency. In this
case, if a multipole basis is used, Waterman’s null-field method is obtained, see
[78, Chap. 7], which is a special instance of the T-matrix method [78, Sect. 7.9].
(Note that [92] uses the name null-field method for the indirect method with non-
conjugated test functions, and Cremer equations for the same with conjugated test
functions.)

For a special choice of Trefftz test functions v indexed by a complex parameter
(see the last paragraph of Sect. 3.2), method (12) is called “global relation” and
is the variational formulation at the heart of the Fokas transform method, see [23,
Eq. (2)], [106, Eq. (6.142–143)] or [20, Eq. (7.156)]. In this context, this formulation
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is typically discretised using piecewise-polynomial (on @˝) trial functions, even
though Trefftz functions may be used as well.

2.5 Non-Trefftz Methods with Oscillatory Basis Functions

The main reason for the success of Trefftz methods in the context of time-harmonic
wave problems is that the oscillatory basis functions may offer much better
approximation properties than piecewise polynomials used in standard FEMs. On
the other hand, similar approximation can also be achieved if the discrete functions
are not exact local solution of the PDE to be discretised, but are only “approximate
solutions”. If basis functions of this kind are used, the Trefftz formulations described
in the previous sections cannot be employed as they stand, because the residual in
the elements will not vanish any more and consistency will fail.

Approximate Trefftz functions are especially attractive for problems with
smoothly varying material parameters, where no analytic Trefftz function might
be known. Trefftz formulations, possibly with additional volume terms, can be used
with basis functions that are solutions of the equation only up to a certain order; see
[14, 65, 111], where this idea is pursued for DG, UWVF and DEM formulations.

In the following we briefly discuss a few methods that have been proposed
employing oscillatory and k-dependent basis functions that are not Trefftz.

A very well-known scheme of this kind is the partition of unity method (PUM
or PUFEM), introduced by I. Babuška and J.M. Melenk in the mid 1990s, see
e.g. [81]. The PUM combines the approximation properties of Trefftz functions
with the standard variational formulation of the problem, e.g. for the BVP (1) with
�D D ;
Z

˝

	rhu � rhv � k2u v



dV C
Z

�R

ik#u v dS D
Z

�R

gR v dS 8v 2 H1.˝/: (13)

This requires the use of H1.˝/-conforming trial and test functions, thus continuity
on interfaces needs to be enforced strongly, which is not viable in Trefftz spaces.
The PUM uses as basis a set of Trefftz functions multiplied to a partition of unity
defined on a FEM mesh, e.g. piecewise linear/multilinear polynomial FEMs on
simplicial/tensor elements. Theorem 2.1 in [81] ensures that the trial space obtained
enjoys the same approximation properties of the Trefftz space employed. If a p-
dimensional local Trefftz space is used in each element, together with a piecewise
linear/multilinear partition of unity, the total number of degrees of freedom used
equals p times the number of mesh vertices, while for a similar Trefftz method on
the same mesh (providing comparable accuracy) it would equal p times the number
of mesh elements; this means that on tensor meshes almost the same number of
DOFs would be employed by the two methods, while on triangles and tetrahedra
a saving of a factor up to two or six, respectively, can be achieved by the PUM.
A shortcoming of the PUM is that the formulation (13) is not sign-definite and
its well-posedness requires a scale resolution condition, while this is not needed
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for some Trefftz schemes such as the TDG/UWVF presented in Sects. 2.2.1 and
2.2.2. Differently from Trefftz schemes, the implementation of the PUM requires
the computation of volume integrals; moreover, the numerical integration of the
PUM basis functions may be more expensive than that of genuine Trefftz functions,
see Sect. 4.1.

The PUM for the Helmholtz and other frequency-domain equations was further
developed by R.J. Astley, P. Bettes, A. El Kacimi, O. Laghrouche, M.S. Mohamed,
E. Perrey-Debain, J. Trevelyan and collaborators, see e.g. [72, 96]. When a PUM
and a standard FEM discrete spaces are combined, e.g. using formulation (13), the
method obtained is termed generalised finite element method (GFEM); e.g. [108]
employs high-order tensor-product polynomials summed to products of plane waves
and bilinear functions. In problems with discontinuous wavenumber k, the PUM can
be applied by coupling the homogeneous regions by means of Lagrange multipliers
as in [73]; this is not necessary as formulation (13) holds on the whole domain, but
enhance the accuracy as in each subdomain only basis functions oscillating with
the correct local wavelength are used. In [51] and related papers, the trigonometric
finite wave elements (TFWE) is described: the PUM is used with special basis
functions adapted to waveguides, lasers and geometries with a single dominant
wave propagation direction. The finite ray element method of [79] consists in the
use of a PUM basis in a first order system of least squares (FOSLS) formulation; as
the unknown is constituted by both u and its gradient, more unknowns are needed
but the system matrix is Hermitian. Finally, in the hybrid numerical asymptotic
method of [42], the PUM space is constructed by multiplying nodal finite elements
to oscillating functions whose phases are derived from geometrical optics (GO) or
geometrical theory of diffraction (GTD), e.g. by solving the eikonal equation, cf.
Sect. 4.2.

Plane wave bases have been combined in [97] with the virtual element method
(VEM) framework [11], in order to design a high-order, conforming method for the
Helmholtz problem, in the spirit of the PUM, but allowing for general polytopic
meshes. The main ingredients of the resulting PW-VEM are (i) a low frequency
space made of low order VEM functions, which do not need to be explicitly
computed in the element interiors, (ii) a proper local projection operator onto a
high-frequency space made of plane waves, and (iii) an approximate stabilisation
term. The implementation of the PW-VEM does not require computation of volume
integrals, and no quadrature formulas are required for the assembly of the stiffness
matrix, for meshes with flat interelement boundaries.

The hybridizable DG method of [91] employs two discontinuous discrete spaces
(one scalar and one vector) and a space of Lagrange multipliers on the mesh
interfaces. Though Trefftz spaces might be used with this formulation, the authors
consider basis functions constructed as products of polynomials and geometrical
optics-based oscillating functions, similar to those in [42] but discontinuous.

A Trefftz approach has been proposed in the context of finite difference schemes
in the flexible local approximation method (FLAME) by I. Tsukerman, see e.g. the
comprehensive review [113]. In the FLAME, the Taylor expansion of the solution
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to be approximated used to define classical finite difference schemes is substituted
by an expansion in a series of Trefftz basis functions, leading to better accuracy.

Oscillatory basis functions have been successfully used in boundary element
methods, in particular for scattering problems, see the review on the hybrid
numerical-asymptotic BEM (HNA-BEM) [21], the plane-wave basis boundary
elements [96, Sect. 3] and the extended isogeometric boundary element method
(XIBEM) [93].

3 Trefftz Discrete Spaces and Approximation

Given a Trefftz variational formulation of a BVP, as those in Sect. 2, the definition
of a Trefftz finite element method is completed by the choice of a discrete space

Vp.Th/ D ˚

v 2 T.Th/ W vjK 2 VpK .K/
 � T.Th/;

where VpK .K/ is a pK-dimensional space of functions v on K such that �v C
k2v D 0. We describe next the main features of the most common local Trefftz
spaces VpK .K/; we do not consider Lagrange multiplier spaces on mesh faces for
the methods in Sect. 2.2.3. The discussion of the conditioning properties of the
basis functions described and of the techniques for their numerical integration is
postponed to Sect. 4.

3.1 Generalised Harmonic Polynomials (GHPs)

Generalised harmonic polynomials are smooth Helmholtz solutions that are separa-
ble in polar and spherical coordinates in 2D and 3D, respectively, i.e. circular and
spherical waves (also called Fourier–Bessel functions or Fourier basis). The local
spaces VpK .K/ are defined as follows:

2D: VpK .K/ D
n

v W v.x/ D
qKX

`D�qK

˛` J`.k jx � xK j/ ei`� ; ˛` 2 C

o

;

3D: VpK .K/ D
n

v W v.x/ D
qKX

`D0

X̀

mD�`

˛`;m j`.k jx � xK j/Ym
`

� x � xK
jx � xK j

�

; ˛`;m 2 C

o

;

where xK 2 K (e.g. is the mass centre of K), � is the angle of x in the local polar
coordinate system centred at xK , J` is the Bessel function of the first kind and order
`, fYm

` g`mD�` is a basis of spherical harmonics of order ` (see e.g. [85, Eq. (B.30)]),

and j` is the spherical Bessel function defined by j`.z/ D
q

�
2z J`C 1

2
.z/. The space

dimension pK is given by pK D 2qK C1 in 2D and by pK D .qK C1/2 in 3D. We call
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qK , the maximal index of the (spherical) Bessel functions used, the “degree” of the
GHP space, as it plays the same role of the polynomial degree in the approximation
theory. A particular feature of GHP spaces is that they are hierarchical.

The name “generalised harmonic polynomials” was coined in [80] and comes
from the fact that they are images of harmonic polynomials under the operator that
maps harmonic functions into Helmholtz solutions, in the framework of Vekua–
Bergman’s theory [12, 114] (see also [50, 87]). The same theory allows to transfer
approximation results for harmonic functions by spaces of harmonic polynomials
into results on the approximation of Helmholtz solutions by GHPs. The density of
GHPs in a space of Helmholtz solutions was proved in [50, Theorem 4.8] and [114,
Sect. 22.8]. Approximation estimates in two dimensions were first proved in [28,
Theorem 6.2] (in L1 norm) and in [80] (in Sobolev norms), and later sharpened
and extended to three dimensions in [86]. We summarise here the estimates of [86,
Theorem 3.2].

Let D 2 R
n, n D 2; 3, be a bounded, open set with Lipschitz boundary and

diameter hD, containing B�hD.xD/ (the ball centred at some xD 2 D and with radius
�hD), and star-shaped with respect to B�0hD.xD/, where 0 < �0 � � � 1=2.
Assume that u 2 HsC1.D/, s 2 N, satisfies �u C k2u D 0 in D and define the
k-weighted Sobolev norm kukj;k;D WD .

Pj
mD0 k2.j�m/ juj2m;D/1=2, j 2 N, where j�jm;D

is the Sobolev seminorm of order m on D.

(i) If n D 2 and D satisfies the exterior cone condition with angle �D� [86,
Definition 3.1] (�D D 1 if D is convex), then for every L 
 s there exists a
GHP QL of degree at most L such that, for every j � s C 1, it holds

ku � QLkj;k;D � C
	

1C .hDk/
jC6



e
3
4 .1��/hDk

�� log.L C 2/

L C 2

��D
hD

�sC1�j

kuksC1;k;D ;

where the constant C > 0 depends only on the shape of D, j and s, but is
independent of hD, k, L and u.

(ii) If n D 3, there exists a constant �D > 0 depending only on the shape of D,
such that for every L 
 maxfs; 21=�Dg there exists a GHP QL of degree at most
L such that, for every j � s C 1, it holds

ku � QLkj;k;D � C
	

1C .hDk/
jC6
e 3

4 .1��/hDkL��D.sC1�j/hsC1�j
D kuksC1;k;D ;

where the constant C > 0 depends only on the shape of D, j and s, but is
independent of hD, k, L and u.

The main difference between the two results is that the positive shape-dependent
parameter �D entering the exponent of L (thus the p-convergence order) is explicitly
known in 2D (it depends on the largest non-convex corner of D) but not in 3D.

Exponential convergence of the GHP approximation of Helmholtz solutions that
possess analytic extension outside D were proved in [85, Proposition 3.3.3] and
improved in 2D in [56], based upon the corresponding result for harmonic functions
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of [54]. Roughly speaking, the error is bounded by a negative exponential of the
form C exp.�bL/ � C exp.�bp1=.n�1/

D /, while classical bounds for polynomials

achieve at most C exp.�bp1=nD /, since the dimension pD of the GHP space of order
L is O.Ln�1/, while the dimension pD of the polynomial space of degree L is
O.Ln/. Thus, Trefftz methods based on GHPs (and similarly on PWs) can achieve
better asymptotic order than standard schemes; however the value of the positive
coefficients b;C and their dependence on the BVP and discretisation are not entirely
clear.

Approximation estimates in the (discontinuous) spaces Vp.Th/ immediately
follow from the local approximation estimates with D D K, for all K 2 Th. In case
of (H1-conforming) partition of unity spaces enriched with GHPs, global estimates
follow from combining the local estimates with [81, Theorem 2.1].

GHPs have been proposed in numerous Trefftz formulations: LS [88, 107],
UWVF [77], VTCR [68], hybrid-Trefftz [99, Eq. (62)], direct and indirect single-
element schemes [22, 121], HELS [117], MPS [15, 36].

3.2 Plane Waves (PWs)

Plane waves probably constitute the most common choice of Trefftz basis functions.
In this case, the local space VpK .K/ is defined by

VpK .K/ D
n

v W v.x/ D
pKX

`D1
˛` eikd`�.x�xK /; ˛` 2 C

o

; (14)

where fd`gpK`D1 � R
n, jd`j D 1, are distinct propagation directions. To obtain

isotropic approximations, in 2D, uniformly-spaced directions on the unit circle can
be chosen (i.e. d` D .cos.2�`=pK/; sin.2�`=pK//); in 3D, [103] and [94] provide
directions that are “almost equally spaced” (see [1, Sect. 3.4] for a simpler version).
In these cases, the PW spaces are not hierarchical. However, one of the potential
benefits of PW approximations is the possibility to depart from the isotropic case
and to adapt the basis propagation directions to the specific BVP at hand and to
different elements, either a priori or a posteriori, see Sect. 4.2.

The linear independence of arbitrary sets of plane waves (and of their traces)
is proved in [1, 20]. PW bases whose linear independence does not degenerate for
small values of khK were introduced in [46, Sect. 3.1] in 2D and in [86, Sect. 4.1]
in 3D (see also [85, Sect. 3.4.1]) for analysis purposes. These stable PW bases
converge to GHP bases in the low-frequency limit [86, p. 815]. The existence
of these stable bases, which is instrumental to the derivation of approximation
estimates for Helmholtz solutions in PW spaces in [86], is guaranteed, provided
that the set of directions fd`gpK`D1 constitutes a fundamental system for certain
harmonic polynomials. In 2D, any choice of pK D 2qK C 1 distinct directions,
qK being the maximal degree of the considered harmonic polynomials, guarantees
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this property. In 3D, sufficient conditions on pK D .qK C 1/2 directions are stated in
[86, Lemma 4.2].

Approximation estimates in PW spaces can be derived from similar bounds for
GHPs such as those in Sect. 3.1. In [80, Chap. 8], GHPs were approximated by PWs
by approximating their smooth Herglotz kernel with delta functions, leading to p-
estimates in 2D, while in [86] the Jacobi–Anger expansion was used to link PWs and
GHPs in 2D and 3D. Theorems 5.2 and 5.3 of [86] (see also [85, Sect. 3.5]) show that
Helmholtz solutions of given Sobolev regularity can be approximated in PW spaces
with hp-estimates similar to those shown in Sect. 3.1 for GHPs. For PWs, these
estimates hold with L D qK , so that qK plays the role of a “degree” for the considered
PW space. As mentioned, for these bounds to hold in 3D, the PW directions have to
satisfy some further conditions. A different derivation of h-approximation estimates
based on a Taylor argument can be found in [19, Theorem 3.7]. In [95], the PW
approximation of Helmholtz solutions on the unit disc is analysed in detail, together
with the conditioning of different linear systems used for its computation (least
squares and collocation for a Dirichlet problem on the disc) and the implications on
the accuracy of the approximation computed in finite-precision arithmetic. We refer
again to [56, Sect. 5.2] for the exponential convergence in 2D of PW approximations
of analytic Helmholtz solutions (see also [85, Remark 3.5.8] which holds in 2D
and 3D).

Similar to PWs are the evanescent waves: the basis elements have the same
expression v.x/ D eikd�x but with a more general d 2 C

n, d � d D 1. If d D dR C idI ,
with dR;dI 2 R

n, then v oscillates in the direction dR (with wavenumber kjdRj 
 k)
and decays exponentially in the orthogonal direction dI (i.e. jv.x/j D e�kdI �x).
Evanescent waves are used in combination with plane waves to approximate
interface problems in the DEM [110] and the UWVF [77], and to represent outgoing
waves in a 2D unbounded half-strip of the form fa < x < b; y > cg in [20, 119].

A special combination of propagative and evanescent waves is typically used
in the WBM. We describe a 2D version of this space as in [25, Eqs. (14)–(21)]
(see [27, Sect. 4.1] for 3D). This space is not invariant under rotation but depends
on the choice of the Cartesian axes. For a mesh element K, we fix a truncation
parameter N > 0 (typically 1 � N � 6) and define Lx WD sup.x1;y1/;.x2;y2/2K jx1 � x2j
and Ly WD sup.x1;y1/;.x2;y2/2K jy1 � y2j as the edge lengths of the smallest rectangle
containingK and aligned to the Cartesian axes. Two sets of basis functions are used:

cos.kxjx/ e˙i
q

k2�k2xj y; kxj WD j�

LKx
; j D 0; : : : ; bNkLKx =�c;

e˙i
q

k2�k2yj x cos.kyjy/; kyj WD j�

LKy
; j D 0; : : : ; bNkLKy =�c;

for a total dimension pK D 4 C 2.bNkLx=�c C bNkLy=�c/. Each basis function
is half the sum of two plane (or evanescent) waves, symmetric to one another with

respect to the x or y axis: e.g. cos.kxjx/ exp.i
q

k2 � k2xjy/ D 1
2
.eikdC

xj �x C eikd�

xj �x/,
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with dẋj WD .˙kxj=k;
p

1 � .kxj=k/2/. A maximum of 4 C 2.bkLx=�c C bkLy=�c/
basis functions are propagative PWs, this number designed to keep the conditioning
under control. IfN > 1, then roughly a fraction .N�1/=N of the total basis functions
are evanescent waves decaying in a direction parallel to one of the Cartesian axes.
Refinement is obtained by increasing N: for N � 1 only propagative waves are
present, for higher values evanescent waves are introduced.

In 2D, both evanescent and plane waves may be written as expf k
2
.i.�C 1=�/xC

.� � 1=�/yg D expfik.x sin � C y cos �g, parametrised by � 2 C or � 2 C with
� D ei� ; these waves constitute the test space (but usually not the trial) for the
Fokas method in [23, 106] and [20, Sect. 7.3.4] (see also Sect. 2.4).

3.3 Fundamental Solutions and Multipoles

Fundamental solutions and multipoles are Helmholtz solution in the complement of
a point and satisfy Sommerfeld radiation condition (limr!1 r

n�1
2 . @u

@r � iku/ D 0,
where r D jxj). They are particularly useful to define Trefftz spaces on unbounded
elements, e.g. for scattering problems.

If the local spaces are spanned by fundamental solutions, simple sources are
located at distinct poles x` in the complement of K:

2D W VpK .K/ D
n

v W v.x/ D
pKX

`D1
˛`H

.1/
0 .k jx � x`j/; ˛` 2 C

o

;

3D W VpK .K/ D
n

v W v.x/ D
pKX

`D1
˛`

e�ikjx�x`j

jx � x`j ; ˛` 2 C

o

;

where H.1/
0 is the Hankel function of the first kind and of order 0. Different a priori

or a posteriori strategies are used to fix the location of the poles, see Sect. 2.1.1
and the references cited therein. As the distance of the points x` from K increases,
these basis functions approach plane waves, so they permit flexibility not only in the
choice of the propagation directions but also in the wavefront curvature.

Apart from the MFS and its modifications (see Sect. 2.1.1 and [1, 9, 10, 31, 92,
120]), spaces of fundamental solutions have been used in connection to the UWVF
(see [57], where ray-tracing is used to determine the poles, and [58]).

Theorem 6 of [104] ensures that Helmholtz solutions in K can be approximated
in Hölder norms by fundamental solutions centred at any “embracing boundary” in
2D and 3D, under weak assumptions on the regularity of @K. We are not aware of
any result providing orders of convergence.

An alternative approach consists in choosing local spaces generated by multipole
expansions, where multiple sources with increasing order are located at a single pole
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x0 (or only at few poles):

2D W VpK .K/ D
n

v W v.x/ D
qKX

`D�qK

˛`H
.1/

` .k jx � x0j/ ei`� ; ˛` 2 C

o

;

3D W VpK .K/ D
n

v W v.x/ D
qKX

`D0

X̀

mD�`

˛`;m h.1/
`
.k jx � x0j/Ym

`

� x � x0
jx � x0j

�

; ˛`m 2 C

o

;

where H.1/

` (h.1/` ) are Hankel functions (spherical Hankel functions, respectively) of
the first kind and order `. As for the GHPs in Sect. 3.1, � is the angle of x in the local
coordinate system centred at x0, which is located in the complement of K, and the
space dimension is pK D 2qKC1 in 2D and pK D .qKC1/2 in 3D. According to [10,
Remark 2.2], fundamental solutions lead to more stable methods than multipoles.

Multipole spaces have been used in connection to LS schemes [90, 107], WBM
[25, Eq. (23)], [27, Sect. 4.1.2], hybrid-Trefftz [99, Eq. (63)], HELS [117], source
simulation techniques [92], null-field [78] and single-element schemes [8, 22, 121].
In [49] and related papers, some 2D multipoles with suitably chosen index ` (not
necessarily integer) are used on infinite sectors, in such a way to ensure continuity
of discrete functions across rays; this might be more efficient than full multipole
spaces for solutions with a preferred propagation direction.

3.4 Other Basis Functions

Other discrete Trefftz spaces have been proposed in literature for use with the
various approaches covered in Sect. 2.

In 2D, corner waves such as J`=˛.kjxj/ sin.`�=˛/, with ` 2 N and 0 < ˛ < 2,
capture the behaviour of Helmholtz solutions near a domain corner of angle �˛.
They have been used e.g. in the WBM [24], in LS methods [10, 107, 119] and
in the MPS [15, 36]. In [120], they are used with ˛ D 2 on tips of 1D screens
to represent the strong singularities of the solution in a non-Lipschitz domain.
Theorem 6.3 of [28] uses Vekua–Bergman theory to give orders of convergence for
the approximation of singular functions by spaces of corner waves and GHPs (see
also [10, Sect. 5] and references therein). We are not aware of any use of similar
functions in 3D.

The wave band functions, introduced in the VTCR context [100], are Herglotz
functions with piecewise-constant kernel, e.g.

R b
a eik.x cos �Cy sin �/ d� in 2D.

In the presence of a circular hole, suitable combinations of Hankel and Bessel
functions a priori fulfil homogeneous boundary conditions [107, Eq. (13)].

If the wavenumber varies inside an element, the basis functions described so
far do not lead to Trefftz methods. In case of linearly variable wavenumber, Airy
functions can be used to construct Trefftz spaces [111]. In [64, 65] generalised plane
waves in the form eP.x/, for suitable polynomials P, are introduced and analysed in
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a UWVF setting: they solve a perturbed Helmholtz problem and converge with high
orders in hK . Similar “almost-Trefftz” waves are used in [43] and named oscillated
polynomials. Modulated plane waves, i.e. products of PWs and polynomials, are
the basis functions of the DG method of [13, 14]; as they are only “approximately
Trefftz”, volume terms appear in the formulation.

Products of (continuous) low-order polynomials and PWs or GHPs constitute the
basis of the PUM [51, 73, 81, 96, 108], while products of polynomials and oscillating
functions derived from high-frequency asymptotics are basis elements in [42, 91].

4 Further Topics

4.1 Assembly of Linear Systems

All the Trefftz finite element methods for (1) discussed in Sect. 2 give rise to dense
or sparse linear systems of equations. Entries of coefficient matrices are obtained
by integrating products of (derivatives of) trial and test functions over bounded d-
dimensional sub-manifolds of ˝ , d < n. The stable and accurate (approximate)
evaluation of these integrals is a key implementation issue.

Among all Trefftz approximation spaces and associated bases presented in
Sect. 3, plane waves (PWs) eikd�x (either propagative with d 2 R

n or evanescent
with d 2 C

n) are exceptional, because they allow a closed-form evaluation of
their integrals over any flat sub-manifold with piecewise flat/straight boundary. For
instance, in all variants of PW-based Trefftz methods on polyhedral meshes in 3D,
expressing mesh faces by 2D parametrisations, we eventually encounter integrals of
the form

Z

F
exp.w � x/ dV; F � R

2 a bounded polygon, w 2 C
2 constant. (15)

Then we can take the cue from [38, Sect. 2.1] or [29, Sect. 4] and apply integration
by parts in order to reduce (15) to integrals over the straight edges e1; e2; : : : eq,
q 2 N of F:

Z

F
exp.w � x/ dV D 1

w � w

Z

F
w � r exp.w � x/ dV D

q
X

`D1

w � n`
w � w

Z

e`

exp.w � x/ ds;

where n` is the exterior normal at e`. Then, as in [44, Chap. 2], if e` D Œa;b	,
a;b 2 R

2, we find,
R

e`
exp.w � x/ ds D exp.w � a/jb � aj .w � .b � a//, where

 .z/ WD .exp.z/ � 1/=z. Of course, a numerically stable implementation of this
function for small arguments is essential.1 This approach can be generalised to yield

1A stable algorithm for point evaluations of  even for arguments close to 0 is provided by the
MATLAB function expm1.
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analytic formulas for computing integrals of products of PWs times polynomials,
see [29, 38], with increased computational effort, however.

Approximate evaluation of the integrals becomes inevitable for all choices of
Trefftz basis functions other than PWs, and even for a PW basis on meshes with
curved elements. Then Gauss–Legendre numerical quadrature seems to be the most
widely used option. However, the integrands may be oscillatory, which delays the
onset of (exponential) convergence of the quadrature error until the number of
quadrature points surpasses a threshold roughly proportional to the ratio of the local
mesh size and the wavelength. This leads to higher computational cost per degree of
freedom for larger values of khK . One may think of using special quadrature rules
for oscillatory integrals, as derived, for instance, in [62]. Those avoid an increase in
the number of quadrature points for growing spatial frequency of the oscillations,
but unfortunately require precise knowledge of the oscillatory term in the integrand.

4.2 Adaptive Trefftz Methods

Besides classical h-, p- or hp-adaptivity, Trefftz methods offer scope for more
sophisticated adaptive strategies consisting in the choice of specific basis functions
for different BVPs and in different mesh elements, either a priori or a posteriori.

The main strand of a priori adaptive Trefftz methods falls into the category of
hybrid numerical-asymptotic methods. High-frequency limit models, such as ray
optics or geometric theory of diffraction (GTD), guide the selection of local Trefftz
spaces in the individual cells of a mesh. In a non-Trefftz PUM framework this
idea was pursued in [42], and within the hybridizable DG method in [91], in both
cases for 2D acoustic scattering at a smooth sound-soft object. In these works, local
phase factors x 7! exp.ikS.x// derived from reflected and diffracted waves multiply
standard continuous nodal basis functions, in [42], or local polynomials, in [91],
thus generating a basis for (local) trial spaces.

The policy of incorporating local directions of rays is particularly attractive for
PW-based methods, because PW basis functions naturally encode a direction of
propagation. For problems where excitation is due to an incident PW and material
properties are piecewise constant, ray tracing and related techniques [91, Sect. 3.2]
based on geometric optics (specular reflection and Snell’s law of refraction at
material interfaces) can provide information about the local orientation of wave
fronts for k ! 1. PWs matching the found ray directions are then used to
build local bases, either exclusively or augmented by a reduced set of generalised
harmonic polynomials (GHPs) or “equi-spaced” PWs.

This idea for TDG was first outlined and tested in [13] and further elaborated
and extended in [57, Chap. 5] (for UWVF). In the latter work, in an attempt to
resolve curved wave fronts and take into account diffracted waves from corners,
also Hankel functions x 7! H.1/

0 .kjx � y�j/ with y� outside a mesh cell have been
proposed as local basis functions. Approximation of curved wave fronts deduced
from GTD corrections is also attempted in [14]. There the authors move beyond
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Trefftz methods and use DG with trial spaces of polynomially modulated PWs,
which are more suitable for approximating propagating circular waves.

In simple 2D situations with convex smooth or polygonal scatterers and incident
plane wave, overall accuracy seems to benefit substantially from a priori directional
adaptivity. However, if there are more than only a few dominant wave directions
as in the case of more complicated geometries, trapping of waves, dark zones and
shadow boundaries, current directional adaptivity soon meets its limitations. On the
other hand, this strategy appears as the most promising way to achieve k-uniform
accuracy with numbers of degrees of freedom that remain k-uniformly bounded
or display only moderate growth as k ! 1. The potential of this idea has been
strikingly demonstrated in the case of BEM for 2D scattering problems [21].

A Posteriori Directional Adaptivity seeks to extract information about dominant
wave directions from intermediate approximations of u. A refine-and-coarsen
strategy is embraced in [13]. In each step of the adaptive cycle it first computes
a PWDG solution u of the scattering problem based on a relatively large number of
local Trefftz basis functions (GHPs and PWs). Subsequently, by solving local non-
linear L2-least squares problems, the directions of fewer PWs are determined so that
u can still be well approximated locally.

A p-hierarchical error indicator is studied in [44]. In a step of the adaptive
scheme starting from the approximate solution u a presumably improved solution Ou
is computed using double the number of local PWs. Then a single local plane wave
direction dK on a mesh element K is extracted from the error e.x/ WD Ou.x/ � u.x/
through the projection formula

edK WD Re
Z

K

re.x/
ike.x/

dV; dK WD
edK

jedK j :

Detailed numerical experiments are reported in [44, Chap. 6]. In the pre-asymptot-
ic regime, when the resolution of the trial spaces is still rather low, one observes
a pronounced gain in accuracy in the case of the adaptive approach compared to
approximation with the same total number of equi-spaced PWs.

Directional adaptivity for Trefftz methods has also been tried in other flavours.
In the context of least squares methods as discussed in Sect. 2.1 an offset angle for
the sets of local equi-spaced PWs is introduced as another degree of freedom in [4],
aiming to align them with a local dominant wave direction. For the VTCR method
presented in Sect. 2.3.1, an error indicator based on local wave energy is used in
[101] to steer angular refinement of local Trefftz spaces.

A Posteriori Mesh Adaptivity is considered in [66], where classical “elliptic”
error estimation and mesh refinement strategies are adapted for the h-version of
TDG. In a low-frequency setting, the method inherits the good performance of the
underlying adaptive mesh refinement algorithms for polynomial DG for the Poisson
equation. However, there is little hope that this carries over to larger wavenumbers k.
A similar error estimator, aimed at adaptive mesh refinement, has been described in
[2, Sect. 3.2] for the DEM/DGM presented in Sect. 2.2.3.
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4.3 Ill-Conditioning and Solvers

The linear systems of equations spawned by PW-based finite element methods are
highly prone to ill-conditioning, when high resolution trial spaces are used, see
e.g. [60, Sect. 5], [37, 40, Sect. 4.3], and [72] for a PUM setting. This is largely
caused by an inherent instability of the PW basis on cells, whose size is relatively
small compared to the wavelength. Intuitively, for jxj  k�1, the functions x 7!
eikd`�x from (14) are almost constant, hence, nearly linearly dependent, cf. [72,
Sect. 4.2]. The same heuristics applies, when their density increases; even for cell
sizes comparable to the wavelength, PWs are hardly distinct when their directions
are close, cf. [72, Sect. 4.3].

Empirically, for the local PW Galerkin matrix MK associated with the L2 inner
product on a single mesh cell K, we find that its spectral condition number grows
like � h�q

K for cell size hK ! 0, where q > 0 is proportional to the number pK
of (approximately uniformly spaced) PWs in 2D, and to the square root of pK in
3D. Essentially, q is related to the “degree” of the considered set of pK PWs; see
Sect. 3.2. Even worse, the condition number soars exponentially in q: cond2.MK/ �
e˛q for q ! 1 and ˛ > 0; see Appendix. A similar explosion of condition numbers
is observed for the full systems matrices as meshes are refined or more PW basis
functions per element are used.

There is circumstantial evidence that direct sparse elimination can cope fairly
well with the ill-conditioned linear systems arising from UWVF or PUM, see [40,
Sect. 5.3.3], [77]. Yet, eventually the instability of the basis will impact the quality
of the solution [108, Sect. 5.4]. A remedy proposed in [60] for the UWVF is to
limit pK based on monitoring condition numbers of element matrices. Apparently,
this also curbs the condition number of the global system matrix. Alternatively,
there exist different heuristic recipes for choosing a priori the number of PWs per
element to balance accuracy and conditioning: in 2D, the widely cited [61, Eq. (14)]
suggests pK D round.khK C C.khK/1=3/ with 3 � C � 14 for the UWVF, while
[70, Sect. 5.1.1] proposes pK D b2khKc for the VTCR. For the WBM, [25, Sect. 3.2]
proposes a rule to balance propagative and evanescent basis functions, see Sect. 3.2.

The most straightforward cure for instability would trade the PW basis of VpK .K/
from (14) for a more stable basis, found by local orthonormalisation as in the case
of polynomial FEM, cf. the approach from [91, Sect. 3.1]. However, instability may
sneak in through the back door and manifest itself in severe impact of round-off
errors during orthonormalisation and recombination of element matrices. The use
of high-precision arithmetic may be advisable, but has never been documented.

For the sake of stability, PWs may be replaced by the generalised harmonics
polynomials introduced in Sect. 3.1. In 2D, a scaling of the GHPs has been devised
in [77], in order to lower the condition number of the resulting UWVF:

J`.k jx � xK j/ ei`�

k
q
ˇ
ˇJ 0̀ .khK/

ˇ
ˇ
2 C jJ`.khK/j2

:
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In [77], it is also shown that the conditioning of GHP-based UWVF schemes is
better than for methods based on PWs, and that it improves on regular meshes. This
might be related to the orthogonality of GHPs on balls.

The numerical experiments in [57, Sect. 3.7] suggest that the use of fundamental
solutions as basis functions may considerably reduce the conditioning of UWVF
matrices, at the expense of accuracy. Both accuracy and conditioning increase the
further the centres of the fundamental solutions are from the element.

The use of iterative solvers for linear systems generated by Trefftz methods
entails preconditioning. For PW basis functions, the first proposal in [19, Sect. 2.4]
for the UWVF was a local preconditioner, equivalent to an orthonormalisation
of the PW basis with respect to an L2 inner product on the boundary of mesh
cells. An interesting connection of the local preconditioner with non-overlapping
optimised Schwarz domain decomposition methods was discovered in [16]. The
local preconditioner was used in conjunction with a BiCGStab Krylov subspace
solver in [60] and augmented by a coarse-grid correction in the spirit of non-
overlapping domain decomposition in [59, 118]. The coarse space is again spanned
by PWs. This is also true for the two-level sub-structuring preconditioner proposed
for DEM/DGM (see Sect. 2.2.3) in [34]. Two-level, non-overlapping Schwarz
domain decomposition preconditioners for PWDG (essentially UWVF) have been
tested in [5]; these preconditioners seem to be robust with respect to the wavenumber
k and the local number of PW directions, although they do not seem to be perfectly
scalable with respect to the number of subdomains.

5 Assessment and Conclusion

Faced with a flurry of different Trefftz methods and a wealth of numerical
data, we feel at a loss about making unequivocal statements about the merits of
Trefftz methods, let alone ranking them according to some undisputed criteria.
Rigorous theory is available for LS methods (Sect. 2.1), TDG (Sect. 2.2.1), and
PUM (Sect. 2.5). Combined with approximation results for suitable Trefftz bases,
this leads to better asymptotic estimates in terms of orders of convergence in
the number of degrees of freedom to what is available for polynomial FEM (e.g.
[53, 56]). The dependence of crucial constants on the wavenumber k is explicit in
several cases, but the orders in k are usually not better than for polynomial methods.
Thus theory fails to provide information about the key issue of “k-robust” accuracy
with “k-independent” cost. Moreover, numerical dispersion will also haunt local
Trefftz methods in the case of h-refinement; thus they provide no escape from the
pollution error.

We also advise caution when reading numerical experiments, because they may
be tarnished by selection bias, making authors subliminally pick test cases matching
the intended message of an article. Disregarding this, even “objective” comparisons
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are inevitably confined to a few simple model problems. This is problematic,
because different model problems sometimes seem to support opposite conclusions.

From our experience, the power of Trefftz methods can best harnessed by p-
refinement using approximation by Trefftz functions in regions as large as possible.
In the presence of singularities we recommend either the use of corner basis
functions (Sect. 3.4) in 2D, or hp-refinement, maybe using standard polynomial
approximation on small elements as in [89]. There is a solid theoretical foundation,
when this is done in the LS, TDG, or PUM framework. The resulting methods
should be able to compete successfully with polynomial FEM even in their more
sophisticated versions tailored to wave propagation problems [30, 35, 82].

The discussion of adaptive approaches in Sect. 4.2 hints that some Trefftz trial
spaces have approximation capabilities well beyond the reach of polynomials.
Directional adaptivity seems to be very promising, but much research will still be
required to convert it into a reliable practical algorithm. The same applies to iterative
solvers and preconditioners for Trefftz schemes, see Sect. 4.3, which might also
benefit considerably from the extra information contained in Trefftz trial spaces.
Hence, we believe that many exciting possibilities offered by the idea of Trefftz
approximation still await discovery and that the full potential of Trefftz methods is
only gradually being realised.

Appendix: Condition Numbers of Plane Wave Mass Matrices

Given a wave number k > 0 and p 2 N distinct unit vectors d` 2 R
n, ` D 1; : : : ; p,

and a domain K � R
n with barycentre xK , the symmetric positive definite plane

wave element mass matrix MK on K is defined as

MK WD
�Z

K
eikd` �.x�xK / � e�ikdm�.x�xK / dV

�p

`;mD1
:

For n D 2 we computed spectral condition numbers of MK for equi-spaced
directions d` D .cos.2�`=p/; sin.2�`=p//, ` D 0; : : : ; p � 1. For n D 3 we choose
the directions d` as the “minimum norm points” according to Sloan and Womersley
[103, 116]. These points are indexed by a level q 2 N and p D .q C 1/2. The
spectral condition numbers are plotted in Fig. 1 for n D 2, K D .�1; 1/2, and Fig. 2
for n D 3, K D .�1; 1/3. They have been computed with MATLAB using the high-
precision arithmetic (200 decimal digits) provided by the Advanpix Multi-Precision
Toolbox.2

2http://www.advanpix.com/.

http://www.advanpix.com/
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Abstract The numerical approximation of partial differential equations (PDEs)
posed on complicated geometries, which include a large number of small geomet-
rical features or microstructures, represents a challenging computational problem.
Indeed, the use of standard mesh generators, employing simplices or tensor product
elements, for example, naturally leads to very fine finite element meshes, and
hence the computational effort required to numerically approximate the underlying
PDE problem may be prohibitively expensive. As an alternative approach, in this
article we present a review of composite/agglomerated discontinuous Galerkin finite
element methods (DGFEMs) which employ general polytopic elements. Here, the
elements are typically constructed as the union of standard element shapes; in this
way, the minimal dimension of the underlying composite finite element space is
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independent of the number of geometrical features. In particular, we provide an
overview of hp-version inverse estimates and approximation results for general
polytopic elements, which are sharp with respect to element facet degeneration. On
the basis of these results, a priori error bounds for the hp-DGFEM approximation of
both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally,
we present numerical experiments which highlight the practical application of
DGFEMs on meshes consisting of general polytopic elements.

1 Introduction

In many application areas arising in engineering and biological sciences, for
example, one is often required to numerically approximate partial differential
equations (PDEs) posed on complicated domains which contain small (relative to
the size of the overall domain) geometrical features, or so-called microstructures.
The key underlying issue for all classes of finite element/finite volume methods
is the design of a suitable computational mesh upon which the underlying PDE
problem will be discretized. On the one hand, the mesh should provide an accurate
description of the given geometry with a granularity sufficient to compute numerical
approximations to within desired engineering accuracy constraints. On the other
hand, the mesh should not be so fine that the computational time required to compute
the desired solution is too high for practical turn-around times. These issues are
particularly pertinent when high-order methods are employed, since in this setting it
is desirable to employ relatively coarse meshes, so that the polynomial degree may
be suitably enriched.

Standard mesh generators typically generate grids consisting of triangular/quad-
rilateral elements in two-dimensions and tetrahedral/hexahedral/prismatic/pyramidal
elements in three-dimensions. On the basis of the mesh, in the traditional
finite element setting, the underlying finite element space, consisting of
(continuous/discontinuous) piecewise polynomials, is then constructed based on
mapping polynomial bases defined on a canonical/reference element to the physical
domain. In the presence of boundary layers, anisotropic meshing may be exploited;
however, in areas of high curvature the use of such highly-stretched elements may
lead to element self-intersection, unless the curvature of the geometry is carefully
‘propagated’ into the interior of the mesh through the use of isoparametric element
mappings. The use of what we shall refer to as standard element shapes necessitates
the exploitation of very fine computational meshes when the geometry possesses
small details or microstructures. Indeed, in such situations, an extremely large
number of elements may be required for a given mesh generator to produce even
a ‘coarse’ mesh which adequately describes the underlying geometry. Thereby, the
solution of the resulting system of equations emanating, for example, from a finite
element discretization of the underlying PDE on the resulting coarse mesh, may be
impractical due to the large numbers of degrees of freedom involved. Moreover,
since this initial coarse mesh already contains such a large number of elements,
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Fig. 1 Example of a porous scaffold used for in vitro bone tissue growth, cf. [4, 5]

the use of efficient multilevel solvers may be difficult, as an adequate sequence of
coarser grids which represent the geometry is unavailable. As an example arising in
biological applications, in Fig. 1, we show a finite element mesh of a porous scaffold
employed for in vitro bone tissue growth, cf. [4, 5]. Here, the mesh, consisting of
3.2 million elements, has been generated based on �CT image data represented in
the form of voxels.

From the above discussion, we naturally conclude that, when standard element
shapes are employed, the dimension of the underlying finite element space is
proportional to the complexity of the given computational geometry. A natural
alternative is to consider the exploitation of computational meshes consisting of
general polytopic elements, i.e., polygons in two-dimensions and polyhedra in
three-dimensions. In the context of discretizing PDEs in complicated geometries,
Composite Finite Elements (CFEs) have been developed in the articles [32, 33] and
[1, 31] for both conforming finite element and discontinuous Galerkin (DGFEM)
methods, respectively, which exploit general meshes consisting of agglomerated
elements, where each element is generated from a collection of neighbouring ele-
ments present within a standard finite element method. A closely related technique
based on employing the so-called agglomerated DGFEM has also been considered
in [7–9]. We point out that the DGFEM CFE approach developed in [1, 31] is
essentially identical to the agglomerated DGFEM considered in [7–9]; however, the
CFE methodology is more general in the sense that, depending on the selection
of the underlying prolongation operator employed to construct the coarse finite
element space, cf. Remark 2 below, the resulting elemental basis functions may
only be locally piecewise smooth on each polytopic element, cf. [32, 33]. From
a meshing point of view, the exploitation of general polytopic elements provides
enormous flexibility. Indeed, in addition to meshing complicated geometries using
a minimal number of elements, they are naturally suited to applications in com-
plicated/moving domains, such as in solid mechanics, fluid structure interaction,
geophysical problems, including earthquake engineering and flows in fractured
porous media, and mathematical biology, for example. Indeed, general element
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shapes are often exploited as transitional elements in finite element meshes, for
example, when fictitious domain methods, unfitted methods or overlapping meshes
are employed, cf. [16–18, 36, 39], for example. The use of similar techniques
in the context of characteristic-based/Lagrange–Galerkin methods is also highly
relevant. The practical relevance and potential impact of employing such general
computational meshes is an extremely exciting topic which has witnessed a vast
amount of intensive research in recent years by a number of leading research groups.
In the conforming setting, we mention the CFE method [32, 33], the Polygonal
Finite Element Method [45], and the Extended Finite Element Method [27]. These
latter two approaches achieve conformity by enriching/modifying the standard
polynomial finite element spaces, in the spirit of the Generalized Finite Element
framework of Babuška and Osborn in [6]. Typically, the handling of non-standard
shape functions carries an increase in computational effort. The recently proposed
Virtual Element Method [12], overcomes this difficulty, achieving the extension of
conforming finite element methods to polytopic elements while maintaining the ease
of implementation of these schemes; see also the closely related Mimetic Finite
Difference method, cf. [11, 14, 19], for example.

In this article we present an overview of CFEs, and in particular consider their
construction and analysis within the hp-version DGFEM setting. With this in mind,
we follow the work presented in [1, 32, 33]; the inclusion of general polytopic
meshes which admit arbitrarily small/degenerate .d�k/-dimensional element facets,
k D 1; : : : ; d � 1, where d denotes the spatial dimension, will also be discussed,
following [21, 22]. The structure of this article is as follows. In Sect. 2, we introduce
composite/agglomerated DGFEMs for the numerical approximation of second-
order elliptic PDEs. Section 3 is devoted to the stability and a priori analysis of
the proposed method; in particular, we derive hp-version inverse estimates and
approximation results which are sharp with respect to element facet degeneration.
In Sect. 4 we analyze the hp-version DGFEM discretization of first-order hyperbolic
PDEs on polytopic meshes. The practical performance of the proposed DGFEMs for
application to incompressible fluid flow problems is studied in Sect. 5. Finally, in
Sect. 6 we summarize the work presented in this article and draw some conclusions.

2 Construction of Composite Finite Element Methods

The original idea behind the construction of CFEs, as presented in [32, 33] for
conforming finite element methods, is to exploit general shaped element domains
upon which elemental basis functions may only be locally piecewise smooth.
In particular, an element domain within a CFE may consist of a collection of
neighbouring elements present within a standard finite element method, with the
basis function of the CFE being constructed as a linear combination of those
defined on the standard finite element subdomains. The extension of this general
approach to the DGFEM setting has been considered in the series of articles
[1, 30, 31]; see also [2, 29] for their application within Schwarz-type domain
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decomposition preconditioners. For related work on the application of DGFEMs on
meshes consisting of agglomerated elements, we refer to the articles [7–9]. We note
that in the context of DGFEMs, the elemental finite element bases simply consist of
polynomial functions, since inter-element conformity is not required.

For generality, we introduce CFE methods based on the construction proposed
in [33] and [1]. Here, the philosophy underlying CFE methods is to construct
finite element spaces based on first generating a hierarchy of meshes, such that
the finest mesh does indeed provide an accurate representation of the underlying
computational domain, followed by the introduction of appropriate prolongation
operators which determine how the finite element basis functions on the coarse mesh
are defined in terms of those on the fine grid. In this manner, CFEs naturally lend
themselves to adaptive enrichment of the finite element space by locally varying the
hierarchical level from which an element belongs, cf. [8, 31].

For concreteness, throughout this section, we concentrate on the numerical
approximation of the Poisson equation. However, we stress that this class of methods
naturally extends to a wide range of PDEs; indeed, it is the treatment of the
underlying second-order PDE operator which gives rise to a number of theoretical
and practical difficulties which we will address Sect. 3. With this in mind, given
that ˝ is a bounded, connected Lipschitz domain in R

d, d > 1, with boundary @˝ ,
consider the following PDE problem: find u such that

��u D f in ˝; (1)

u D g on @˝; (2)

where f 2 L2.˝/ and g is a sufficiently regular boundary datum. In particular, it is
assumed that˝ is a ‘complicated’ domain, in the sense that it contains small details
or microstructures.

2.1 Composite/Agglomerated Meshes

The approach developed in [33], cf. also [1], is to construct the underlying physi-
cal/agglomerated meshes by first introducing a hierarchy of overlapping reference
and logical meshes, from which a very fine geometry-conforming mesh, consisting
of standard-shaped elements, may be defined, based on possibly moving nodes in the
finest logical mesh onto the boundary @˝ of the computational domain. The coarse
mesh, consisting of polytopic elements, is then constructed based on agglomerating
elements which share the same parent within the underlying refinement tree.

More precisely, given an open bounded Lipschitz domain ˝ , which potentially
contains small features/microstructures, we first define the coarsest reference mesh
RH � Rh1 to be an overlapping grid in the sense that it does not resolve the
boundary @˝ of the domain ˝ . In particular, we let RH D fO�g be a coarse
conforming shape-regular mesh consisting of (closed) standard element domains
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O�, cf. above, whose open intersection is empty such that

˝ � ˝H D
0

@
[

O�2RH

O�
1

A

ı

and O�ı \˝ ¤ ; 8O� 2 RH ;

where, for a closed set D � R
d, Dı denotes the interior of D.

On the basis of the coarse mesh RH , a hierarchy of reference meshes Rhi , i D
2; 3; : : : ; `, are now constructed based on adaptively refining the coarse mesh RH

with a view to improving the approximation of the boundary of ˝ . With this in
mind, given an input tolerance TOL, we proceed as follows:

1. Set Rh1 D RH , the mesh counter i D 1, and store the elements O� 2 Rh1 as the
root nodes of the refinement tree OT; we assign these elements with a level number
L D 1.

2. Writing children. O�/ to denote the number of children that element O� possesses,
construct the refinement set R:

R D
n

O� 2 OT W children. O�/ D 0 ^ O�ı \ @˝ ¤ ; ^ hO� > TOL
o

; (3)

where hO� D diam. O�/.
3. If R D ;, then STOP. Otherwise, for each O� 2 R, refine the element

O� D Sn
O�

iD1 O�i. Here, we store the child elements O�i, i D 1; : : : ; nO� , within the
tree OT, where O� is their parent, level. O�i/ D level. O�/ C 1, i D 1; : : : ; nO� , and
level. O�/ denotes the level of the element O� in OT. We point out that nO� will
depend on both the type of element to be refined, and the type of refinement,
i.e., isotropic/anisotropic. For isotropic refinement of a quadrilateral element O�
in two-dimensions, we have that nO� D 4.

4. Perform any additional refinements to undertake necessary mesh smoothing, for
example, to ensure that the resulting mesh is 1-irregular, cf. [1].

5. Update mesh counter i D i C 1 and construct the reference mesh Rhi from the
tree structure OT in the following manner:

Rhi D
n

O� 2 OT W level. O�/ D i _ .level. O�/ � i ^ children. O�/ D 0/
o

:

6. Return to step 2 and continue to iterate until either the condition in 3 is satisfied,
or a maximum number of allowable refinements have been undertaken.

Remark 1 We point out that the above procedure provides a generic refinement
algorithm which may be employed to generate the sequence of reference meshes
fRhig`iD1, though alternative sequences of hierarchical meshes may be exploited
within the CFE framework.

On the basis of the reference meshes fRhig`iD1, we now define the corresponding
sequences of logical and physical meshes fLhig`iD1 and fMhig`iD1, respectively. To
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this end, we first consider the finest reference mesh Rh` : given that the stopping
criterion in step 2 above, cf. (3), is satisfied, then vertex nodes Oxv 2 O�, O� 2 Rh` ,
which are close to the boundary @˝ in the sense that

dist.Oxv; @˝/  hO�;

are moved onto the boundary of the computational domain. As a result of this node
movement procedure, some of the elements stored in the tree OT may end up lying
outside of ˝; these are subsequently removed from OT to yield the cropped tree T.
On the basis of the cropped tree data structure T, the logical meshes are constructed
based on agglomerating elements which share a common parent within a given
level of the mesh tree hierarchy T. More precisely, following [30], we introduce
the following notation: for Q�C 2 T, with level. Q�C/ D j, we write F

j
i. Q�C/, j 
 i, to

denote the unique element Q�P 2 T with level. Q�P/ D i who is directly related to Q�C
in the sense that Q�C � Q�P ; i.e., Q�C has resulted from subsequent refinement of Q�P .
In the trivial case when j D i, Fj

i. Q�C/ D Q�C . Thereby, the logical meshes fLhig`iD1
may be constructed from T as follows:

Lhi D fQ� W . Q� 2 T ^ level. Q�/ � i ^ children. Q�/ D 0/

_. Q� D [Q�02T Q�0 W children. Q�0/ D 0 ^ F
j
i. Q�0/ D P; j D level. Q�0/

^P is identical for all members of this set/g :

We point out that in the absence of any node movement the finest reference and
logical meshes Rh` and Lh` , respectively, are identical.

Finally, the set of physical meshes fMhig`iD1 are defined based on moving the
nodes in the respective logical meshes fLhig`iD1. More precisely, writing ON` to
denote the set of nodal points which define the finest logical mesh Lh` , the process
of node movement naturally defines a bijective mapping

˚ W ON` ! N`;

where N` denotes the set of mapped vertex nodes. The mapping ˚ can then be
employed to map an element Q� 2 Lh` to the physical element �. For simplicity, we
denote this mapping by ˚ also; hence, we write

˚. Q�/ D �:

With this notation, the physical meshes fMhig`iD1 may be defined as follows:

Mhi D f� W � D ˚. Q�/ for some Q� 2 Lhig;

i D 1; : : : ; `. We point out that both the logical and physical meshes fLhig`iD1
and fMhig`iD1, respectively, may consist of general polygonal/polyhedral element
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Fig. 2 Hierarchy of meshes: (a)–(c) Reference meshes; (d)–(f) Logical meshes; (g)–(i) Corre-
sponding physical meshes. (a) RH D Rh1 . (b) Rh2 . (c) Rh3 . (d) LH D Lh1 . (e) Lh2 . (f) Lh3 . (g)
MCFE 	 Mh1 . (h) Mh2 . (i) Mh3

domains. We refer to the coarsest physical mesh Mh1 as the CFE mesh, and
accordingly write MCFE � Mh1 . As a simple example, in Fig. 2, we consider
the case when ˝ is the unit square, which has had both the rectangular region
.1=4; 3=4/ � .1=8; 3=8/ and the circular region enclosed by r < 3=8, where r2 D
.x � 1/2 C .y � 1/2, removed. Here, we show the reference, logical, and physical
meshes fRhig`iD1, fLhig`iD1, and fMhig`iD1, respectively, when ` D 3.
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2.2 Finite Element Spaces

Given the set of physical (polytopic) meshes fMhig`iD1, constructed in the previous
section, we introduce the corresponding sequence of DGFEM finite element spaces
V.Mhi ;pi/, i D 1; : : : ; `, respectively, consisting of piecewise discontinuous
polynomials. To this end, for each element � 2 MCFE.� Mh1 /, we associate a
positive integer p� , henceforth referred to as the polynomial degree of the element
� 2 MCFE, and collect the p� in the vector p1 D . p� W � 2 MCFE/. The
polynomial degree vectors pi, i D 2; : : : ; `, associated with the respective meshes
Mhi , i D 2; : : : ; `, are then defined in such a manner that the polynomial degree of
the child element contained within the refinement tree T is directly inherited from
its parent element. More precisely,

pi D .p�; � 2 Mhi W p� D p�0 ; where �0 D F
j
1.�/ ^ level.�/ D j; �0 2 MCFE/:

With this in mind, we write

V.Mhi ;pi/ D fu 2 L2.˝/ W uj� 2 Pp� .�/ 8� 2 Mhig;

i D 1; : : : ; `, where Pp.�/ denotes the set of polynomials of degree at most p 
 1

defined over the general polytope �.
With this construction, noting that the meshes fMhig`iD1 are nested, we deduce

that

V.Mh1 ;p1/ � V.Mh2 ;p2/ � : : : � V.Mh` ;p`/:

We now introduce the classical prolongation (injection) operator from V.Mhi ; p/ to
V.MhiC1

; p/, 1 � i � ` � 1, given by

PiC1
i W V.Mhi ;pi/ ! V.MhiC1

;piC1/; i D 1; : : : ; ` � 1:

Hence, the prolongation operator from V.Mhi ;pi/ to V.Mh` ;p`/, 1 � i � `� 1, is
defined by

Pi D P``�1P`�1`�2 : : :PiC1
i :

With this notation, we may write V.Mhi ;pi/, 1 � i � ` � 1, in the following
alternative manner

V.Mhi ;pi/ D fu 2 L2.˝/ W u D P>
i ;  2 V.Mh` ;p`/g; (4)

where the restriction operator P>
i is defined as the transpose of Pi, with respect to

the standard L2.˝/-inner product.
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Remark 2 The exploitation of the prolongation operator Pi within the definition
of the finite element spaces V.Mhi ;pi/, i D 1; : : : ; `, stated in (4) allows for
the introduction of different spaces, depending on the specific choice of Pi. Here,
cf. also [1], the finite element spaces are constructed so that on each (composite)
element � 2 Mhi , i D 1; : : : ; `, the restriction of a function v 2 V.Mhi ;pi/

to � is a polynomial of degree p� . In the case when the finite element spaces
consist of continuous piecewise polynomials, cf. [33], for example, alternative
prolongation operators are employed which leads to basis functions which are
piecewise polynomials on each composite/polytopic element domain.

The space V.Mh1 ;p1/ � V.MCFE; p/ is referred to as the composite finite
element space. We stress that the dimension of V.MCFE; p/ is independent of the
underlying domain ˝ in the sense that it does not directly depend on the number
of microstructures contained in ˝ . Indeed, the dimension of V.MCFE; p/ can be
chosen by the user; of course, if V.MCFE; p/ is not sufficiently rich, then the
accuracy of any computed finite element approximation uh 2 V.MCFE; p/ may be
low. However, given the construction of the composite finite element mesh MCFE,
the underlying numerical scheme naturally lends itself to adaptive enrichment of the
finite element space V.MCFE; p/, cf. [30, 31].

Remark 3 As a final remark, we note that an alternative approach for the con-
struction of the composite finite element mesh MCFE is to simply employ a
standard mesh generator to produce a fine mesh Mfine which accurately describes
the domain ˝ . Then coarse agglomerated meshes may be constructed based
on employing graph partitioning algorithms. One of the most popular software
packages employed for this purpose is METIS [37], cf. [21, 29]. From a theoretical
point of view, this setting is more difficult to analyse; we shall return to this issue in
Sect. 3.

To define the forthcoming DGFEM, cf. Sect. 2.3, we define the broken Sobolev
space Hs.˝;MCFE/ with respect to the subdivision MCFE up to composite order s
in the standard fashion:

Hs.˝;MCFE/ D fu 2 L2.˝/ W uj� 2 Hs� .�/ 8� 2 MCFEg:

Moreover, for u 2 H1.˝;MCFE/, we define the broken gradient rhu by .rhu/j� D
r.uj�/; � 2 MCFE.

2.3 Discontinuous Galerkin Methods on Polytopic Meshes

In this section, we consider the DGFEM discretization of the second-order elliptic
PDE model problem (1)–(2). For concreteness, we focus our attention on the hp-
version of the (symmetric) interior penalty DGFEM.
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For the proceeding analysis, we introduce the concept of mesh interfaces and
faces, cf. [22]. In order to admit hanging nodes/edges, which are permitted in MCFE,
the interfaces of MCFE are defined to be the intersection of the .d � 1/-dimensional
facets of neighbouring elements; on the boundary an interface is simply a .d � 1/-
dimensional facet of � 2 MCFE. In the two-dimensional setting, i.e., d D 2, the
interfaces of a given element � 2 MCFE simply consists of line segments (.d � 1/-
dimensional simplices). For d D 3, we assume that each interface of an element � 2
MCFE may be subdivided into a set of co-planar triangles; we use the terminology
‘face’ to refer to a .d � 1/-dimensional simplex (line segment or triangle for d D
2 or 3, respectively), which forms part of the boundary (interface) of an element
� 2 MCFE. For d D 2, the face and interface of an element � 2 MCFE coincide.

Following [21, 22], we assume that a sub-triangulation into faces of each mesh
interface is given if d D 3, and denote by FCFE the union of all open mesh interfaces
if d D 2 and the union of all open triangles belonging to the sub-triangulation
of all mesh interfaces if d D 3. In this way, FCFE is always defined as a set of
.d � 1/-dimensional simplices. Further, we write FCFE D FICFE [ FBCFE , where
FICFE denotes the union of all open .d � 1/-dimensional element faces F � FCFE

that are contained in ˝ , and FBCFE is the union of element boundary faces, i.e.,
F � @˝ for F 2 FBCFE . The boundary @� of an element � and the sets @� n @˝ and
@� \ @˝ will be identified in a natural way with the corresponding subsets of FCFE.

Given � 2 MCFE, the trace of a function v 2 H1.˝;MCFE/ on @�, relative
to �, is denoted by vC

� . Then for almost every x 2 @�n@˝ , there exists a unique
�0 2 MCFE such that x 2 @�0; with this notation, the outer/exterior trace v�

� of v
on @�n@˝ , relative to �, is defined as the inner trace vC

�0 relative to the element(s)
�0 such that the intersection of @�0 with @�n@˝ has positive .d � 1/-dimensional
measure.

Next, we introduce some additional trace operators. Let �i and �j be two adjacent
elements ofMCFE and let x be an arbitrary point on the interior face F 2 FICFE given
by F D @�i \ @�j. We write n�i and n�j to denote the outward unit normal vectors
on F, relative to @�i and @�j, respectively. Furthermore, let v and q be scalar- and
vector-valued functions, which are smooth inside each element �i and �j. Using the
above notation, we write .vC

�i
;qC

�i
/ and .vC

�j
;qC

�j
/, we denote the traces of .v;q/ on

F taken from within the interior of �i and �j, respectively. The averages of v and q
at x 2 F 2 FICFE are given by

ffvgg D 1

2
.vC
�i

C vC
�j
/; ffqgg D 1

2
.qC
�i

C qC
�j
/;

respectively. Similarly, the jumps of v and q at x 2 F 2 FICFE are given by

ŒŒv		 D vC
�i

n�i C vC
�j

n�j ; ŒŒq		 D qC
�i

� n�i C qC
�j

� n�j ;

respectively. On a boundary face F 2 FBCFE , such that F � @�i, �i 2 MCFE, we set

ffvgg D vC
�i
; ffqgg D qC

�i
; ŒŒv		 D vC

�i
n�i ŒŒq		 D qC

�i
� n�i ;
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with n�i denoting the unit outward normal vector on the boundary @˝ . Since below
it will always be clear from the context to which element � in the subdivision MCFE

the quantities v�̇ , and so on, correspond to, for the sake of notational simplicity we
shall suppress the letter � in the subscript and write, respectively, v˙ instead.

With this notation, the symmetric interior penalty DGFEM for the numerical
approximation of (1)–(2) is given by: find uh 2 V.MCFE; p/ such that

BDiff.uh; vh/ D FDiff.vh/ (5)

for all vh 2 V.MCFE; p/, where

BDiff.w; v/ D
X

�2MCFE

Z

�

rw � rv dx �
X

F2FCFE

Z

F

	ffrhvgg � ŒŒw		 C ffrhwgg � ŒŒv		
 ds

C
X

F2FCFE

Z

F
� ŒŒw		 � ŒŒv		 ds;

FDiff.v/ D
Z

˝

fv dx �
X

F2FBCFE

Z

F
g.rhv � n � �v/ ds:

Here, the non-negative function � 2 L1.FCFE/ is the discontinuity stabilization
function; the precise definition of � is given in Lemma 4 below.

3 Stability and Approximation Results

In this section we consider the stability and error analysis of the hp-version DGFEM
defined in (5). We point out that the original a priori error analysis of the DGFEM (5)
on CFE meshes was first undertaken in the article [1], based on exploiting the
work developed in both the CFE and DGFEM settings in the articles [33] and [35],
respectively. Indeed, the analysis presented in [1] was based on bounding the error
in terms of Sobolev norms of an extension, cf. Theorem 1 below, of the analytical
solution u from an element belonging to the logical mesh to its respective element in
the reference mesh, assuming the mapping ˚ is sufficiently regular. This approach
is advantageous since the (coarsest) reference mesh Rh1 consists of non-overlapping
standard-shaped elements. In order to treat general polytopes, where an underlying
reference and logical mesh may not be available, for example, on meshes generated
from graph partitioning software, cf. Remark 3, we proceed based on employing the
recent analysis developed in [22].

In contrast to the case when standard element domains are employed, the
exploitation of general polytopic elements presents a number of key challenges
for the construction and analysis of stable numerical schemes. In particular, shape-
regular polytopes may admit arbitrarily small/degenerate .d � k/-dimensional
element facets, k D 1; : : : ; d � 1, under mesh refinement, where d denotes the
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spatial dimension. Thereby, standard inverse and approximation results must be
carefully extended to the polytopic setting in such a manner that the resulting bounds
are indeed sharp with respect to facet degeneration. With this in mind, we now
summarise a number of key results derived in [22].

Firstly, we outline the key assumptions on the underlying CFE mesh MCFE.

Assumption 3.1 There exists a positive constant CF, independent of the mesh
parameters, such that

max
�2MCFE

.card fF 2 FCFE W F � @�g/ � CF:

In order to deal with the case of general polytopic meshes, i.e., when refer-
ence/logical meshes are not available, we need to assume the existence of the
following coverings of the mesh.

Definition 1 A covering T] D fKg related to the polytopic mesh MCFE is a set of
shape-regular d-simplices K, such that for each � 2 MCFE, there exists a K 2 T]
such that � � K. Given T], we denote by ˝] the covering domain given by ˝] D
	[K2T] NK
ı.

Assumption 3.2 There exists a covering T] of MCFE and a positive constant O˝ ,
independent of the mesh parameters, such that

max
�2MCFE

O� � O˝;

where, for each � 2 MCFE,

O� D card
˚

�0 2 MCFE W �0 \ K ¤ ;; K 2 T] such that � � K


:

Thereby,

diam.K/ � Cdiamh�;

for each pair � 2 MCFE, K 2 T], with � � K, for a constant Cdiam > 0, uniformly
with respect to the mesh size.

Remark 4 We note that for the classes of meshes constructed in Sect. 2.1, the
coarsest reference mesh, subject to the (potential) application of the mapping ˚ ,
may serve as the covering mesh T]; in this setting Assumption 3.2 is trivially
satisfied.

The proceeding hp-approximation results and inverse estimates for polytopic
elements are based on considering d-dimensional simplices, where standard results
can be applied. With this in mind, we introduce the following element submesh.

Definition 2 For each element � in the computational mesh MCFE, we define the
family F�

[ of all possible d-dimensional simplices contained in � and having at least
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one face in common with �. The notation �F[ will be used to indicate a simplex
belonging to F�

[ and sharing with � 2 MCFE a given face F.

Equipped with these results, we first consider the derivation of hp-version inverse
estimates on general polytopes.

3.1 Inverse Estimates

Inverse estimates, which bound a norm of a polynomial on an element face by a
norm on the element itself, are fundamental for the study of the stability and error
analysis of DGFEMs. In order to derive bounds which are sharp with respect to
small/degenerate .d � k/-dimensional element facets, k D 1; : : : ; d � 1, we first
introduce the following definition.

Definition 3 Let QMCFE denote the subset of elements �, � 2 MCFE, such that
each � 2 QMCFE can be covered by at most mMCFE shape-regular simplices Ki,
i D 1; : : : ;mMCFE , such that

dist.�; @Ki/ < Cas diam.Ki/=p
2
�;

and

jKij 
 casj�j

for all i D 1; : : : ;mMCFE , for some mMCFE 2 N and Cas; cas > 0, independent of �
and MCFE.

We now state the main result of this section; see [21, 22] for details of the proof.

Lemma 1 Let � 2 MCFE, F � @� denote one of its faces, and QMCFE be defined as
in Definition 3. Then, for each v 2 Pp.�/, we have the inverse estimate

kvk2L2.F/ � CINV.p; �;F/
p2jFj
j�j kvk2L2.�/; (6)

with

CINV.p; �;F/ WD Cinv

8

ˆ̂

<̂

ˆ̂

:̂

min

(

j�j
sup�F[ �� j�F[ j ; p

2.d�1/
)

; if � 2 QMCFE;

j�j
sup�F[ �� j�F[ j ; if � 2 MCFEn QMCFE;
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and �F[ 2 F�
[ as in Definition 2. Furthermore, Cinv is a positive constant, which if

� 2 QMCFE depends on the shape regularity of the covering of � given in Definition 3,
but is always independent of j�j= sup�F[ �� j�F[ j (and, therefore, of jFj), p, and v.
Remark 5 Loosely speaking, the proof of Lemma 1 is based on exploiting standard
inverse inequalities, cf. [43], for example, together with Definition 3. Indeed, for
� 2 QMCFE, the essential idea is to derive two bounds, one based on extending results
from [28], and one based on employing an L1.�/ bound. Taking the minimum of
these two bounds gives rise to an inverse inequality which is both sharp with respect
to the polynomial degree p, and moreover is sensitive with respect to the measure of
the face F relative to that of the element �.

We finish this section by recalling the inverse estimate for the H1-(semi)norm
derived in [21], cf. also [3]. In this setting, the shape regularity assumption on the
covering T], cf. Definition 1, must be strengthened as follows.

Assumption 3.3 The subdivision MCFE is shape regular in the sense of [24], i.e.,
there exists a positive constant Cshape, independent of the mesh parameters, such
that:

8� 2 MCFE;
h�
��

� Cshape;

with �� denoting the diameter of the largest ball contained in �.

Following, [21], we also require the following assumption.

Assumption 3.4 Every polytopic element � 2 MCFEn QMCFE, admits a sub-triang-
ulation into at most nMCFE shape-regular simplices si, i D 1; 2; : : : ; nMCFE , such
that N� D [nMCFE

iD1 Nsi and

jsij 
 Ocj�j

for all i D 1; : : : ; nMCFE , for some nMCFE 2 N and Oc > 0, independent of � and
MCFE.

Lemma 2 Given Assumptions 3.3 and 3.4 are satisfied, for each v 2 Pp.�/, the
following inverse inequality holds

krvk2L2.�/ � QCinv
p4

h2�
kvk2L2.�/; (7)

where QCinv is a positive constant, independent of the element diameter h� , the
polynomial order p� , and the function v, but dependent on the shape regularity of
the covering of �, if � 2 QMCFE, or the sub-triangulation of �, if � 2 MCFEn QMCFE.
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3.2 Approximation Results

Functions defined on ˝ can be extended to the covering domain ˝] based on
employing the following extension operator, cf. [44].

Theorem 1 Let˝ be a domain with a Lipschitz boundary. Then there exists a linear
extension operator E W Hs.˝/ ! Hs.Rd/, s 2 N0, such that Evj˝ D v and

kEvkHs.Rd/ � CkvkHs.˝/;

where C is a positive constant depending only on s and˝ .

We point out that the assumptions stated in Theorem 1 on the domain˝ may be
weakened. Indeed, [44] only requires that ˝ is a domain with a minimally smooth
boundary; the extension to domains which are simply connected, but may contain
microscales, is treated in [42].

With the above notation, we now quote Lemma 4.2 from [22].

Lemma 3 Let � 2 MCFE, F � @� denote one of its faces, and K 2 T] denote the
corresponding simplex such that � � K, cf. Definition 1. Suppose that v 2 L2.˝/ is
such that EvjK 2 Hl� .K/, for some l� 
 0. Then, given Assumption 3.2 is satisfied,
there exists Q̆ v, such that Q̆ vj� 2 Pp� .�/, and the following bounds hold

kv � Q̆ vkHq.�/ � C
hs��q
�

pl��q
�

kEvkHl� .K/; l� 
 0;

for 0 � q � l� , and

kv � Q̆ vkL2.F/ � CjFj1=2 h
s��d=2
�

pl��1=2
�

Cm.p�; �;F/
1=2kEvkHl� .K/; l� > d=2;

where

Cm.p�; �;F/ D min

(

hd�
sup�F[ �� j�F[ j ;

1

p1�d
�

)

:

Here, s� D minfp� C 1; l�g and C is a positive constant, which depends on the
shape-regularity of K, but is independent of v, h� , and p� .

3.3 Error Analysis of the DGFEM

On the basis of the results stated in Sects. 3.1 and 3.2, we now proceed with the
stability and error analysis of the DGFEM defined in (5). To this end, following the
work presented in [40], we begin by defining the following extensions of the forms
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BDiff.�; �/ and FDiff.�/:

QBDiff.w; v/ D
X

�2MCFE

Z

�

rw � rv dx C
X

F2FCFE

Z

F
� ŒŒw		 � ŒŒv		 ds

�
X

F2FCFE

Z

F

	ff˘ 2.rhv/gg � ŒŒw		 C ff˘ 2.rhw/gg � ŒŒv		
 ds;

QFDiff.v/ D
Z

˝

fv dx �
X

F2FBCFE

Z

F
g.˘ 2.rhv/ � n � �v/ ds;

respectively. Here, ˘ 2 W ŒL2.˝/	d ! ŒV.MCFE; p/	d denotes the orthogonal L2-
projection onto the finite element space ŒV.MCFE; p/	d. Thereby, face integrals
involving the terms ff˘ 2.rhw/gg, ff˘ 2.rhv/gg and ˘ 2.rhv/ are well defined for
all v;w 2 S D H1.˝/CV.MCFE; p/, as these terms are now traces of elementwise
polynomial functions. Moreover, it is clear that

QBDiff.w; v/ D BDiff.w; v/ for all w; v 2 V.MCFE; p/;

and

QFDiff.v/ D FDiff.v/ for all v 2 V.MCFE; p/:

Hence, we may rewrite the discrete problem (5) in the following equivalent manner:
find uh 2 V.MCFE; p/ such that

QBDiff.uh; vh/ D QFDiff.vh/ 8vh 2 V.MCFE; p/: (8)

Given the discrete nature of the L2-projection operator ˘ 2, the DGFEM formula-
tion (8) is no longer consistent.

For the proceeding error analysis, we introduce the DG-norm jk�jkDiff by

jkwjkDiff D
� X

�2MCFE

Z

�

jrwj2 dx C
X

F2FCFE

Z

F
� jŒŒw		j2 ds

�1=2

;

for w 2 S and � > 0.
With this notation, we recall the following coercivity and continuity properties

of the bilinear form QBDiff.�; �/ derived in [22].

Lemma 4 Let � W FCFE ! RC be defined facewise by

�.x/ D

8

ˆ̂
<

ˆ̂
:

C� max
�2f�C;��g

n

CINV.p�; �;F/
p2� jFj
j�j

o

; x 2 F 2 FICFE ; F D @�C \ @��;

C�CINV.p�; �;F/
p2�jFj
j�j ; x 2 F 2 FBCFE ; F D @� \ @˝;

(9)
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with C� > 0 large enough, depending on CF, and independent of p, jFj, and j�j;
here CINV is defined as in Lemma 1. Then, given Assumption 3.1 holds, we have that

QBDiff.v; v/ 
 Ccoerjkvjk2Diff for all v 2 S;

and

QBDiff.w; v/ � CcontjkwjkDiff jkvjkDiff for all w; v 2 S;

where Ccoer and Ccont are positive constants, independent of the discretization
parameters.

Remark 6 We point out that Lemma 4 assumes that the number of element faces
remains bounded under mesh refinement, cf. Assumption 3.1. However, based on the
computations undertaken in [3], in practice we observe that Ccoer remains uniformly
bounded on sequences of agglomerated polygons which violate this condition.
Indeed, for C� D 10 numerical experiments suggest that Ccoer 
 0:8.

Given the definition of the discontinuity stabilization function � stated in
Lemma 4, we now state the following a priori error bound.

Theorem 2 Let ˝ � R
d, d D 2; 3, be a bounded polyhedral domain, and let

MCFE D f�g be a subdivision of ˝ consisting of general polytopic elements
satisfying Assumption 3.1. Further, T] D fKg denotes the associated covering of
˝ consisting of shape-regular d-simplices as in Definition 1, satisfying Assump-
tion 3.2. Let uh 2 V.MCFE; p/ be the DGFEM approximation to u 2 H1.˝/ defined
by (5) with the discontinuity stabilization parameter given by (9), and suppose that
uj� 2 Hl� .�/, l� > 1 C d=2, for each � 2 MCFE, such that EujK 2 Hl� .K/, where
K 2 T] with � � K. Then, the following bound holds:

jku � uhjk2Diff � C
X

�2MCFE

h2.s��1/
�

p2.l��1/
�

.1C G�.F;CINV;Cm; p�// kEuk2Hl� .K/;

where

G�.F;CINV;Cm; p�/ D p�h
�d
�

X

F2FCFE

Cm.p�; �;F/�
�1jFj

C p2� j�j�1
X

F2FCFE

CINV.p�; �;F/�
�1jFj C h�dC2

� p�1
�

X

F2FCFE

Cm.p�; �;F/� jFj;

with s� D minfp� C 1; l�g and p� 
 1, where C is a positive constant which is
independent of the discretization parameters. Here, we recall that CINV and Cm are
defined as in Lemmas 1 and 3, respectively.

Proof See [22] for details.
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Remark 7 For uniform orders p� D p 
 1, h D max�2MCFE h� , s� D s, s D
minfp C 1; lg, l > 1 C d=2, under the assumption that the diameter of the faces of
each element � 2 MCFE is of comparable size to the diameter of the corresponding
element, the a priori error bound stated in Theorem 2 coincides with the bounds
derived in [35, 41], for example, for DGFEMs defined on standard element domains.
In particular, this bound is optimal in h and suboptimal in p by p1=2.

4 Hyperbolic PDEs

In this section we consider the generalization of CFE/DGFEMs posed on general
polytopic meshes for the numerical approximation of first-order hyperbolic PDEs.
To this end, we consider the following model problem: find u such that

r � .bu/C cu D f in ˝; (10)

u D g on @�˝; (11)

where c 2 L1.˝/, f 2 L2.˝/, and b D .b1; b2; : : : ; bd/> 2 ŒW11.˝/	d. Here, the
inflow and outflow portions of the boundary @˝ are defined, respectively, by

@�˝ D
n

x 2 @˝ W b.x/ � n.x/ < 0
o

; @C˝ D
n

x 2 @˝ W b.x/ � n.x/ 
 0
o

;

where n denotes the unit outward normal vector to the boundary @˝ . Throughout
this section, we assume that the following (standard) positivity condition holds:
there exists a positive constant �0 such that

c0.x/
2 D c.x/C 1

2
r � b.x/ 
 �0 a.e. x 2 ˝: (12)

The DGFEM approximation to (10)–(11) is then given by: find uh 2 V.MCFE; p/
such that

X

�2MCFE

�Z

�

�

� uhb � rvh C cuhvh
�

dx

C
Z

@�

H.uC
h ; u

�
h ;n�/v

C
h ds

�

D
Z

˝

fvh dx (13)

for all vh 2 V.MCFE; p/. Here, H.wC
h ;w

�
h ;n�/j@� , which depends on both the inner-

and outer-trace of wh on @�, � 2 MCFE, and the unit outward normal vector n� to
@�, is a numerical flux function; this serves as an approximation to the normal flux
.bu/ � n� on the boundary of each element � 2 MCFE. The numerical flux function
H.�; �; �/ may be chosen to be any two-point monotone Lipschitz function which is
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both consistent and conservative; see [38, 46], for example. In the current setting,
the most natural choice of numerical flux is the standard upwind flux given by

H.uC
h ; u

�
h ;n�/jF D

�
b � n� lims!0C uh.x � sb/ F � @�n@�˝ , � 2 MCFE,
b � n� g F � @� \ @�˝ , � 2 MCFE,

for all F 2 FCFE, cf. [26].
Using the above definition of the numerical flux function H.�; �; �/, the

DGFEM (13) can be rewritten in the following equivalent form: find uh 2
V.MCFE; p/ such that

BHyp.uh; vh/ D FHyp.vh/

for all vh 2 V.MCFE; p/, where

BHyp.w; v/ D
X

�2MCFE

Z

�

�

� wb � rv C cwv
�

dx

C
X

�2MCFE

(
Z

@C�

b � n� wCvC ds C
Z

@��n@�˝

b � n� w�vC ds

)

;

FHyp.vh/ D
Z

˝

fvh dx �
X

�2MCFE

Z

@��\@�˝

b � n� gvC ds:

Remark 8 We note that, upon application of integration by parts elementwise, the
bilinear form BHyp.�; �/ may be written in the familiar form:

BHyp.w; v/ D
X

�2MCFE

Z

�

�

r � .bw/ v C cwv
�

dx

�
X

�2MCFE

�Z

@��n@�˝

b � n� .wC � w�/vC ds C
Z

@��\@�˝

b � n� wCvC ds

�

;

cf. [21, 35], for example.

4.1 Error Analysis

The analysis of the DGFEM (13) in the hp-version setting may be tackled by
a number of different approaches. In the articles [13, 34], additional streamline-
diffusion terms are included within the underlying discretization method; in this
setting, optimal hp-error bounds may then be derived in a straightforward manner.
However, as noted in [34], the streamline-diffusion stabilization offers very little,
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if any, practical advantage over the standard DGFEM (with no stabilization), and
is mainly employed for analysis purposes. In the absence of streamline-diffusion
stabilization, under the assumption that

b � rh� 2 V.MCFE; p/ 8� 2 V.MCFE; p/; (14)

holds, together hp-optimal approximation results for the local L2-projector, optimal
hp-bounds for (13) have been derived in the article [35] for meshes consisting of
shape-regular d-parallelepipeds. For hp-optimal approximation results of the L2-
projector on d-simplices, we refer to [23].

Following [21], for the case when general polytopic elements are admitted, in the
absence of optimal hp-approximation results for the local L2-projection operator,
we prove an inf-sup condition for the bilinear form BHyp.�; �/, with respect to the
following streamline DGFEM-norm:

jkvjk2SD D jkvjk2Hyp C
X

�2MCFE

��kb � rvk2L2.�/; (15)

where

jkvjk2Hyp D
X

�2MCFE

�

kc0vk2L2.�/ C 1

2
kvCk2@�\@˝ C 1

2
kvC � v�k2@��n@˝

�

:

Here, c0 is defined as in (12) and k � k� , � � @�, denotes the (semi)norm associated
with the (semi)inner product .v;w/� D R

�
jb � njvw ds. Finally, the streamline-

diffusion parameter �� , � 2 MCFE, is given by

�� D 1

kbkL1.�/

1

p2�
min
F�@�

sup�F[ �� j�F[ j
jFj d 8� 2 MCFE; (16)

for d D 2; 3 and p� 
 1, and �F[ is as defined in Definition 2. In the case when
p� D 0, �� is formally defined to be zero.

Under the assumption that (14) holds, the following inf-sup condition for the
bilinear form BHyp.�; �/, with respect to the streamline DGFEM-norm (15), may be
established, cf. [21]; this represents a generalization of the results in [15, 20].

Theorem 3 Given Assumptions 3.1, 3.3, and 3.4 hold, there exists a positive
constant�s, independent of the mesh size h and the polynomial degree p, such that:

inf
�2V.MCFE;p/nf0g

sup
�2V.MCFE;p/nf0g

BHyp.�; �/

jk�jkSDjk�jkSD

 �s: (17)

On the basis of the inf-sup condition stated in Theorem 3, together with the
approximation results given in Lemma 3, we deduce the following a priori error
bound for the DGFEM (13).
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Theorem 4 Let ˝ � R
d, d D 2; 3, be a bounded polyhedral domain, and

MCFE D f�g be a subdivision of ˝ consisting of general polytopic elements
satisfying Assumptions 3.1, 3.3, and 3.4. Further, let T] D fKg denote the associated
covering of ˝ consisting of shape-regular d-simplices as in Definition 1, which
satisfies Assumption 3.2. Let uh 2 V.MCFE; p/ be the DGFEM approximation to
u 2 H1.˝/ defined by (13) and suppose that uj� 2 Hl� .�/, l� > 1 C d=2, for
each � 2 MCFE, such that EujK 2 Hl� .K/, where K 2 T] with � � K. Then, the
following error bound holds:

jku � uhjk2SD � C
X

�2MCFE

h2s��
p2l��

G�.F;Cm; p�; ��/kEuk2Hl� .K/; (18)

where

G�.F;Cm; p�; ��/ D kc0k2L1.�/ C �2� C ��1
� C ��ˇ

2
�p
2
�h

�2
�

Cˇ�p�h�d
�

X

F�@�
Cm.p�; �;F/jFj; (19)

s� D minfp�C1; l�g and p� 
 1. Here, �� D kc1kL1.�/, with c1.x/ D c.x/=c0.x/, c0
as in (12), ˇ� D kbkL1.�/, and Cm is defined as in Lemma 3. The positive constant
C is independent of the discretization parameters.

Remark 9 For uniform orders p� D p 
 1, h D max�2MCFE h� , s� D s, s D
minfp C 1; lg, l > 1 C d=2, under the assumption that the diameter of the faces of
each element � 2 MCFE is of comparable size to the diameter of the corresponding
element, the error bound stated in Theorem 4 reduces to

jku � uhjkHyp � jku � uhjkSD � C
hs� 1

2

pl�1
kukHl.˝/I

which is optimal in h and suboptimal in p by p1=2. This generalizes the error estimate
derived in [35] to general polytopic meshes under the same assumption (14).

Remark 10 On the basis of the error analysis undertaken in both the current section
and Sect. 3, a priori error bounds for the DGFEM discretization of second-order
PDEs with non-negative characteristic form on general polytopic meshes may be
established; for details, we refer to our recent article [21].

5 Numerical Experiments

In this section we present a series of computational examples to illustrate the perfor-
mance of the DGFEM on general classes of polytopic meshes. The computational
validation of the error bounds derived in Theorems 2 and 4 have been presented in
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[22] and [21], respectively; cf., also, [1]. Thereby, for the purposes of this section
we consider the numerical approximation of incompressible flows in complicated
geometries, cf. [30]. Throughout this section, we select C� D 10, cf. Lemma 4.

5.1 Example 1: Flow Through a Complicated T-pipe Domain

In this first example we consider the application of goal-oriented dual-weighted-
residual mesh adaptation for the DGFEM discretization of the incompressible
Navier–Stokes equations, cf. [10]. To this end, the computational domain ˝ is
defined to be an upside-down T-shaped pipe, which has had a series of randomly
located, randomly sized, holes removed from both the vertical and horizontal
sections. Figure 3a depicts the initial composite mesh, constructed based on
employing the algorithm outlined in Sect. 2, which consists of only 128 polygonal
elements. Here, the inflow boundary is specified at the top of the vertical section of
the pipe, i.e., along y D 6, 4 � x � 8, where Poiseuille flow enters ˝; the left-
hand and right-hand side boundaries of the horizontal portion of the pipe, located at
x D 0, 0 � y � 3 and x D 12, 0 � y � 3, respectively, are defined to be outflow
Neumann boundaries. No slip boundary conditions are imposed on the remaining
walls of the T-pipe geometry, together with the boundaries of the circular holes;
finally, we set Re D 100. This test case represents a modification of the test problem
considered in [30].

Here we consider goal-oriented control of the error in the target functional J,
defined by J.u; p/ D p.10; 1:5/ � 3.49924E-3, where u and p denote the velocity
and pressure of the underlying flow, respectively. More precisely, following the
notation in [30], we may establish an (approximate) error representation formula
of the form

J.u; p/� J.uh; ph/ �
X

�2MCFE

��;

where uh and ph denote the DGFEM approximation to u and p, respectively, and �� ,
� 2 MCFE, denote the corresponding (weighted) error indicators, which depend on
both uh and ph, as well as the approximate solution of a corresponding dual problem;
for full details, see [30].

In Table 1, we demonstrate the performance of exploiting an adaptive mesh
refinement strategy based on marking elements for refinement according to the
size of the local error indicators j�� j. Here, we set the polynomial degrees for the
approximation of the velocity field equal to 2, and employ piecewise discontinuous
linear polynomials for the approximation of the pressure. In Table 1 we show
the number of elements in the composite mesh MCFE, the number of degrees of
freedom in the underlying finite element space, the true error in the functional
J.u; p/� J.uh; ph/, the computed error representation formula

P

�2MCFE
�� , and the

effectivity index � D P

�2MCFE
��=.J.u; p/� J.uh; ph//. Here, we see that, even on
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Fig. 3 Example 1. (a) Initial composite finite element mesh consisting of 128 polygonal elements;
(b) Composite mesh after nine adaptive refinements with 13,356 elements

such coarse finite element meshes, the quality of the computed error representation
formula is relatively good, in the sense that the effectivity indices are not too far
away from unity. Indeed, as the mesh is refined, we observe that � improves and
approaches one. We note that practical/engineering accuracy can be attained using
a very small number of degrees of freedom; indeed, fewer degrees of freedom are
necessary than what would be required to accurately mesh the domain ˝ using
standard element shapes. The results presented in Table 1 are plotted in Fig. 4;
here, we also compare the performance of the adaptive mesh refinement strategy
with uniform mesh refinement. We observe that initially both strategies lead to
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Table 1 Example 1: Adaptive algorithm

No of Eles No of Dofs J.u; p/� J.uh ; ph/
P

�2MCFE
�� �

128 1920 �2:207E-2 �1:583E-2 0:72

206 3090 �4:720E-3 �2:478E-3 0:52

356 5340 �3:720E-3 �1:909E-3 0:51

618 9270 �1:620E-3 �8:014E-4 0:49

1079 16; 185 �8:216E-4 �4:427E-4 0:54

1749 26; 235 �3:929E-4 �1:965E-4 0:50

2996 44; 940 �1:707E-4 �7:457E-5 0:44

4861 72; 915 �8:728E-5 �7:197E-5 0:82

8000 120; 000 �2:164E-5 �2:324E-5 1:07

13; 356 200; 340 �5:073E-6 �5:073E-5 1:00

We present the number of elements in the composite mesh MCFE and the corresponding number of
degrees of freedom in V.MCFE; p/ (first two columns), the computed error in the target functional
(third column), the sum of the (weighted) error indicators (fourth column), and the effectivity index
(last column) at each step of the adaptive algorithm

Degrees of Freedom
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|J
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,p
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u h,p

h)|
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10-5

10-4

10-3

10-2

10-1

Adaptive Refinement
Uniform Refinement

Fig. 4 Example 1: Comparison between uniform and adaptive mesh refinement

a comparable error in the computed target functional of interest J, for a given
number of degrees of freedom; however, as both refinement procedures continue,
the adaptive algorithm leads to over an order of magnitude improvement in the error
in J for a comparable number of degrees of freedom.

5.2 Example 2: Flow Past a 3D Scaffold Geometry

In this final example, we consider incompressible flow past the three-dimensional
scaffold geometry shown in Fig. 1. More precisely, the domain˝ is defined to be the
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elliptical cylinder f.x; y/ W .x� x0/=a2 C .y� y0/2=b2 < 1g � .0:015; 1:14/, with the
scaffold removed; here .x0; y0/ D .4:1325; 4:1625/, a D 4:1175, and b D 4:1475.
Based on the work undertaken in the article [25], we model a Newtonian fluid with
density � D 1000 kg/m3 and viscosity � D 8:1 � 10�4 Pa � s. Prescribing a flow
rate of 53�ms�1 yields a Reynolds number, Re D 2 � 10�3. The fine mesh which
accurately describes ˝ is generated based on image data supplied by Prof. El Haj
and Dr. Kuiper. Here, only a coarse model has been employed; a more detailed
description of the scaffold geometry is presented in the articles [4, 5]. However,
even for this ‘coarse’ model, the underlying fine finite element mesh consists of 15.8
million elements. To demonstrate the exploitation of general polytopic elements
generated by agglomeration, we employ METIS [37] to generate a very coarse
mesh consisting of only 32,000 elements. We prescribe an inlet Poiseuille flow
on the top of the geometry, where z D 1:14, together with no-slip wall boundary
conditions on both the outer vertical walls of the elliptical cylinder, as well as
on the scaffold itself. The bottom portion of the geometry located at z D 0:015

is identified as an outflow Neumann boundary. In Fig. 5 we plot the iso-surface
of the magnitude of the velocity field; for the purposes of visualization, it was
necessary to split the upper and lower regions of the computational domain. Clearly,
by employing such a coarse agglomeration, we cannot expect that the computed
DGFEM solution is sufficiently accurate, even within engineering constraints.
However, this example clearly highlights a key issue we mentioned in Sect. 1: by
employing polytopic elements, the dimension of the underlying finite element space
is no longer proportional to the complexity of the geometry. Indeed, by exploiting
a posteriori error estimation, cf. Example 1 above, then agglomerated elements
may be marked for refinement; these can then be refined by again employing
graph partitioning algorithms to the set of fine elements which form each marked
(agglomerated) element. In this way, adaptive refinement of agglomerated elements,
without the need to store mesh refinement trees, may be undertaken in a relatively
simple manner, in order to automatically design polytopic meshes to yield reliable
error control in quantities of interest. This will be investigated as part of our future
programme of research.

6 Concluding Remarks

In this article, we have studied the application of DGFEMs on general finite element
meshes consisting of polytopic elements. This class of methods is particularly
attractive for a number of important reasons: (1) In the context of PDEs posed
on complex domains ˝ , the dimension of the underlying finite element space is
independent of the number of small scale features/microstructures present in ˝; (2)
Adaptivity can easily be employed to enhance the error in the computed numerical
solution by only refining regions of the domain which directly contribute to the
error in given quantities of interest; (3) High-order/hp-finite elements are naturally
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Fig. 5 Example 2. Plot of the norm of the velocity field: (a) upper section; (b) lower section

admitted; (4) The construction of coarse grid solvers for multilevel iterative solvers
can easily be handled, cf. [2, 29]. In our present work, see, in particular, our recent
articles [21, 22], great care has been taken to derive both inverse estimates and
approximation results which are sharp with respect to element facet degeneration.
This is particularly important for the definition of the interior penalty stabilization
arising in the discretization of second-order elliptic PDEs. We believe this class
of methods has huge potential for a wide variety of application areas, and in
particular for problems arising in geophysics and biology. Indeed, as we have
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shown in Sect. 5, very complicated geometries can be treated, and with the use of
general agglomerated refinement strategies, efficient and reliable computations may
be undertaken. However, work on developing efficient quadrature and evaluation of
appropriate stable polynomial bases on general polytopes still needs further work.
Other future areas of research also include exploiting mesh partitioning algorithms
for mesh refinement purposes, as well as the design and analysis of multilevel
iterative solvers on polytopic meshes, for a wider range of application areas.
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Discretization of Mixed Formulations of Elliptic
Problems on Polyhedral Meshes

Konstantin Lipnikov and Gianmarco Manzini

Abstract We review basic design principles underpinning the construction of the
mimetic finite difference and a few finite volume and finite element schemes
for mixed formulations of elliptic problems. For a class of low-order mixed-
hybrid schemes, we show connections between these principles and prove that the
consistency and stability conditions must lead to a member of the mimetic family
of schemes regardless of the selected discretization framework. Finally, we give
two examples of using flexibility of the mimetic framework: derivation of arbitrary-
order schemes and inexpensive convergent schemes for nonlinear problems with
small diffusion coefficients.

1 Introduction

The mixed formulation allows us to calculate simultaneously the primary solution of
a PDE and its flux. For this reason, mixed formulations are very useful for numerical
solution of multiphysics systems. The focus of this work is on a single diffusive
process that is a part of almost any complex multiphysics system.

In this paper, we present design principles used in the derivation of mimetic
finite difference (MFD) schemes on polygonal and polyhedral meshes and establish
bridges to design principles used by a few other discretization frameworks (finite
volumes and finite elements). The focus on the design principle allows us to avoid
technical details and provide a more clear connection between different frameworks
in comparison with the work performed in [32]. We also illustrate the flexibility
of the mimetic framework with two challenging examples: derivation of arbitrary-
order accurate schemes for linear problems and convergent schemes for nonlinear
problems with degenerate diffusion coefficients.

K. Lipnikov (�) • G. Manzini
Applied Mathematics and Plasma Physics Group, Theoretical Division, Los Alamos National
Laboratory, Los Alamos, NM, USA
e-mail: lipnikov@lanl.gov; manzini@lanl.gov

© Springer International Publishing Switzerland 2016
G.R. Barrenechea et al. (eds.), Building Bridges: Connections and Challenges
in Modern Approaches to Numerical Partial Differential Equations,
Lecture Notes in Computational Science and Engineering 114,
DOI 10.1007/978-3-319-41640-3_10

311

mailto:lipnikov@lanl.gov
mailto:manzini@lanl.gov


312 K. Lipnikov and G. Manzini

Many ideas underpinning the MFD method were originally formulated in the
sixties for orthogonal meshes using the finite difference framework from which
the name of the method was derived. Over the years, the MFD method has
been extensively developed for the solution of a wide range of scientific and
engineering problems in continuum mechanics [47], electromagnetics [39, 43],
fluid flows [13, 21–23, 41], elasticity [19, 20], obstacle and control problems [1–
3], diffusion [40], discretization of differential forms [5, 10, 49], and eigenvalue
analysis [14]. An extensive list of people who contributed to the development of
the MFD method can be found in the recent book [24] and review paper [44]. The
paper summarizes almost all known results on Cartesian and curvilinear meshes
for various PDEs including the Lagrangian hydrodynamics. The book complements
the paper by providing numerous examples and describing basic tools used in the
convergence analysis of mimetic schemes for elliptic PDEs.

The MFD method preserves or mimics essential mathematical and physical
properties of underlying partial differential equations (PDEs) on general polygonal
and polyhedral meshes. For the elliptic equation, these properties include the local
flux balance and the duality between gradient and divergence operators. The latter
implies symmetry and positive definiteness of the resulting matrix operator and is
desirable for robustness and reliability of numerical simulations. The duality of
the primary and derived mimetic operators is one of the major design principles.
The definition of the primary mimetic operators is coordinate invariant, which is
another design principle that allows us to build discrete schemes for non-Cartesian
coordinate systems. The discrete operators are also built to satisfy exact identities,
the property that is critical for avoiding spurious numerical solutions, providing
accurate modeling of conservation laws, and making the convergence analysis
possible.

The mimetic literature mentions a variety of schemes for elliptic equations
including the nodal (e.g., [9]), mixed (e.g., [5, 8, 40]) and mixed-hybrid (e.g.,
[42]) schemes. It is pertinent to note that these schemes have roots in only two
mixed formulations for two different pairs of gradient and divergence operators.
This connection was mentioned in the original work on the nodal mimetic schemes;
however, it deserves a more detailed investigation in the future.

The related discretization frameworks considered in this paper include the finite
volume methods [30, 36], the mixed finite element (MFE) method [50], and the
virtual element method (VEM) [11]. Other finite volume frameworks exist that are
based on mimetic principles such as the discrete duality finite volume methods
(DDFV), see, e.g., [18, 28], but these methods do not fit in the MFD framework
and will not be considered here.

The FV methods, originally introduced in [34, 35] for the heat equation and
dubbed as the integrated finite difference method, form, perhaps, the largest class of
schemes that can handle unstructured polygonal and polyhedral meshes, non-linear
problems, and problems with anisotropic coefficients. An introduction to the finite
volume methodology can be found in the recent review [29]. Almost all FV methods
starts with a discrete representation of the flux balance equation. This representation
is exact and this property is so important that all the methods that we consider in this
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paper use the same discrete form of the balance equation and the difference between
them is only in the discretization of the constitutive equation.

The classical cell-centered FV scheme uses a two-point flux formula that is
second-order accurate for special meshes such as the Voronoi tessellations. To
overcome this limitation, a class of FV methods, consistent by design, is proposed
by introducing additional unknowns on mesh faces. Examples of such methods are
the hybrid finite volume method [36], and the mixed finite volume method [30].
These FV methods start with different definitions of the cell-based discrete gradient
that are exact for linear solutions. The formula for the numerical flux based on
this gradient needs a stabilization term. Construction of the stabilized flux uses two
principles. First, the stabilization term should be zero on linear solutions. Second,
the stabilized flux is defined as the solution of a certain equation with a symmetric
and positive definite bilinear form. We will show that these design principles imply
the duality principle in the mimetic framework.

The VEM was originally introduced as an evolution of the MFD method. In the
classical finite element spirit, the duality principle is incorporated directly in the
weak formulation. The exact identities are replaced by the exact sequence of virtual
finite element spaces. A new design principle is the unisolvency property where the
space of degrees of freedom is isomorphic to a space of finite element functions
and includes polynomial as well as non-polynomial functions. The bilinear forms
are split explicitly into consistency and stability forms using L2 and H1 projectors.
The VEM literature distinguish two different methods, the nodal and mixed VEMs.
The former is applied directly to the primary formulation of the elliptic problem.
In contrast to the MFD method, a connection of the nodal VEM with an alternative
mixed formulation has never been studied. Later, we discuss how the new design
principles of the mixed VEM are connected to the stability and consistency
conditions in the mimetic framework.

The recent developments of the MFD framework exploit its flexibility for
selecting non-standard degrees of freedom, optimization of inner products, and non-
standard approximations of primary operators to build schemes with higher order of
accuracy and convergence schemes for nonlinear PDEs with degenerate coefficients
(see also Sect. 4.2).

Extension to higher-order mixed scheme is almost straightforward in the mimetic
framework. The key step is the proper selection of degrees of freedom that (a)
simplify the discretization of the primary divergence operator and (b) allows us to
formulate a computable consistency condition. A new design principle is introduced
in this case, which states that a commuting relation exists between the interpolation
operators defining the degrees of freedom of scalar and vector fields, and the
divergence operators in the discrete and continuum settings.

All of the aforementioned methods discretize effectively the divergence operator
div .� /. To solve nonlinear parabolic equations, we employ new MFD schemes
where the primary operator discretizes the combined operator div .k � /, where k is
the non-constant scalar diffusion coefficient. The resulting scheme uses both cell-
centered and face-centered values of the diffusion coefficient. The face-centered
values help to develop efficient schemes for nonlinear heat diffusion [16] and
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moisture transport in porous media [51]. The duality property mentioned above
guarantees that the schemes can be formulated as algebraic problems with sym-
metric and positive definite matrices. Matrices with these properties lead to better
performance of scalable iterative solvers, such as algebraic multigrid solvers and
Krylov solvers such as the preconditioned conjugate gradient. A related strategy for
solving nonlinear elliptic equations with degenerate coefficients is described in [4].
It uses only cell-centered values of the diffusion coefficient. We also mention the
convergence analysis of gradient schemes for nonlinear parabolic problems in [31].

Finally, we mention other discretization methods that work on general meshes.
Our necessarily incomplete list include the polygonal/polyhedral finite element
method (PFEM) [46, 53, 54], hybrid high-order method [26], the discontinuous
Galerkin (DG) method [15, 25], the hybridized discontinuous Galerkin (HDG)
method [17], compatible discrete operators [6, 7], and the weak Galerkin (wG)
method [55].

The outline of the paper is as follows. In Sect. 2, we review the basic dis-
cretization principles of the mimetic framework. In Sect. 3, we derive the mimetic
finite difference method for elliptic problems through the consistency and stability
conditions. We also prove that any mixed-hybrid method that uses the same degrees
of freedom leads to a member of the mimetic family of schemes. In Sect. 4, we
review the recent progress in the development of mimetic methods for mixed
formulations of elliptic problems. Our final remarks and conclusions are given in
Sect. 5.

2 Principles of the Mimetic Discretization Framework

The MFD method mimics important mathematical and physical properties of
underlying PDEs. We start with some notation followed by the introduction of dual
mimetic operators and two examples showing importance of having discrete duality
and discrete exact identities in physics simulations. This section is based on the
material presented in [39, 44].

Consider a polygonal or polyhedral mesh ˝h. We denote the sets of mesh
nodes, edges, faces, and cells by symbols N , E , F and C, respectively, the set of
vectors collecting the degrees of freedom associated with those mesh objects by
the corresponding symbol with the subscript “h”, and the restriction to cell “c” by
the subscript “h; c”. Each set of vectors of degrees of freedom with the (obvious)
definitions of addition and multiplication by a scalar number is a linear space. For
example, Fh is the linear space of vectors formed by the degrees of freedom located
on the mesh faces, and Fh;c is its restriction to cell c. Its precise definition depends
on the scheme. An illustration of particular discrete spaces restricted to a single cell
is shown in Fig. 1.

The mimetic finite difference method operates with discrete analogs of the first-
order operators. These operators are designed to satisfy exact identities and duality
principles.
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Fig. 1 Illustration of the degrees of freedom in low-order mimetic schemes. The local spaces
associated with cell c from left to right are Ch;c, Eh;c, Fh;c, and Nh;c. The degrees of freedom are
marked with dots and arrows and shown only on the visible objects

2.1 Global Mimetic Operators

In the mimetic framework, we usually discretize pairs of adjoint operators, such as
the primary divergence DIV WFh ! Ch and the derived gradient BGRADW Ch ! Fh.
Hereafter, we will distinguish the derived operators from the primary operators by
using a tilde on the operator’s symbol. It is convenient to think about these operators
as matrices acting between finite dimensional linear spaces. To discretize a large
class of PDEs, we need three pairs of primary and derived operators, which are
discrete analogs of gradient, curl and divergence operators. Each pair of operators
satisfies a discrete integration by parts formula, e.g.

�

DIV uh; qh
�

Ch
D ��uh; BGRAD qh

�

Fh
8uh 2 Fh; 8qh 2 Ch: (1)

This formula represents one of the mimetic discretization principles as it mimics the
continuum Green formula

Z

˝

.div u/ q dx D �
Z

˝

u � rq dx 8u 2 H.div; ˝/; 8q 2 H1
0.˝/: (2)
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The brackets Œ�; �	Ch and Œ�; �	Fh in (1) stand for an approximation of the integrals
in (2) and will be referred to as the mimetic inner products (or, simply inner
products). The inner products are typically constructed from local (e.g. cell-based
or node-based) inner products, which simplifies their derivation. For example, the
two inner products in (1) can be reformulated as

�

uh; vh
�

Fh
D
X

c2˝h

�

uc; vc
�

Fh;c
;

�

ph; qh
�

Ch
D
X

c2˝h

�

pc; qc
�

Ch;c
(3)

where vc, uc, qc and pc denote the restriction to mesh cell c of the corresponding
global vectors and Œ �; � 	Fh;c and Œ �; � 	Ch;c are the local contribution from c to the
global inner products Œ �; � 	Fh and Œ �; � 	Ch , respectively.

Let MC and MF be the symmetric positive definite matrices induced by the inner
products Œ�; �	Ch and Œ�; �	Fh , respectively. Then, the explicit formula for the derived
gradient operator is

BGRAD D �M�1
F DIVT MC :

This formula shows that this operator has a nonlocal stencil when matrix MF is
irreducible as is typical for unstructured meshes. Note that the same property holds
true for many other discretization frameworks.

Formula (1) implies that in general the discrete operators cannot be discretized
independently. If we discretize one of the operators, e.g., the divergence, and
select the inner products, the other operator, the gradient, must be derived from
formula (1). The existing freedom is in the selection of the inner products.

The selection of the discrete spaces is often in tune with the discretization of the
primary mimetic operator. For instance, for the pair of discrete spaces, Nh and Eh,
it is more natural to discretize the gradient operator as the primary operator. In such
a case, the gradient operator GRADWNh ! Eh is the primary mimetic operator and
the discrete divergence operatorADIVW Eh ! Nh is the derived operator. This pair
of operators satisfies another discrete integration by parts formula that mimics (2):

�
ADIV vh; ph

�

Nh
D ��vh; GRAD ph

�

Eh
8ph 2 Nh; 8vh 2 Eh: (4)

The explicit formula for the derived divergence operator is

ADIV D �M�1
N GRADT ME ;

where ME and MN are symmetric positive definite matrices induced by the inner
products. Note that in some low-order mimetic schemes, matrix MN is diagonal, so
that the derived operator has a local stencil.

Remark 1 Both pairs DIV , BGRAD andADIV , GRAD could be used to discretize
an elliptic equation. A different representation of two similar pairs of dual operators
based on the discrete Hodge operator can be found in [6, 7]. For instance, [6] gives
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an interesting viewpoint on the second pair of operators by linking them with a dual
mesh.

The third pair of discrete operators approximates the continuum operators “curl”.
Let CURLW Eh ! Fh andBCURLWFh ! Eh satisfy the discrete integration by parts
formula

�

CURL vh; uh
�

Fh
D �

vh;BCURLuh
�

Eh
8vh 2 Eh; 8uh 2 Fh;

which mimics the continuum formula
Z

˝

.curl v/ � u dx D
Z

˝

v � .curl u/ dx 8u 2 H0.curl; ˝/; 8v 2 H.curl; ˝/:

The explicit formula for the derived curl operator is

BCURL D M�1
E CURLT MF ;

so that this derived operator has typically a non-local stencil.
The spaces of discrete functions that we have introduced so far satisfy homo-

geneous boundary conditions. In [38], these spaces were enriched conveniently to
approximate the boundary integrals that appear in general Green formulas. The
resulting derived mimetic operators include an approximation of the boundary
conditions. We will not follow this approach here, since the focus of this paper is
on mixed-hybrid formulations, which provide another way to incorporate boundary
conditions in a numerical scheme.

The duality of the discrete operators helps us to build numerical schemes that
satisfy discrete conservation laws. For example, consider the Euler equations in the
Lagrangian form:

1

�

d�

dt
D �div u; �

du
dt

D �rp; �
de

dt
D �p div u; (5)

where p is the pressure, � is the density, u is the velocity, and e is the internal energy.
The system is closed by an equation of state. A mimetic discretization of (5) is given
by

1

�h

d�h
dt

D �DIV uh; �h
duh

dt
D �BGRADph; �h

deh
dt

D �ph DIV uh;

(6)

where ph, �h, uh and eh are the discrete analogs of the corresponding continuum
quantities that appear in (5) and DIV and BGRAD are the mimetic operators acting,
respectively, as divergence and gradient. Let us assume that no external work is
done on the system, e.g., p D 0 of @˝ . The integration by parts and the continuity
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equation from (5) lead to the conservation of the total energy E:

dE

dt
D
Z

˝.t/
�
�du
dt

� u C de

dt

�

dx D �
Z

˝.t/

	

u � rp C p div u/ dx D 0: (7)

To mimic this property, we need the discrete gradient and divergence operators
BGRAD and DIV to satisfy a discrete integration by parts formula like (1). Using
the same argument that leads to (7), we obtain the conservation of the total discrete
energy Eh:

dEh

dt
D ��uh; BGRAD ph

�

Fh
� �

ph; DIVuh
�

Ch
D 0:

We emphasize that numerical methods that conserve energy usually have other
important properties such as the correct prediction of a shock position.

Another discretization principle is to derive primary operators that mimic exact
identities. This is typically achieved by using the first principles (the divergence and
Stokes theorems) to define the primary operators, e.g. (17). As the result, we have

DIV CURL vh D 0; CURLGRAD ph D 0 8vh 2 Eh; 8ph 2 Nh:

Another consequence of the duality principle is that similar identities hold for the
derived mimetic operators. Using the aforementioned explicit formulas for these
operators, we immediately obtain that

ADIVBCURLuh D 0; BCURLBGRAD qh D 0 8uh 2 Fh; 8qh 2 Ch:

These exact identities allows us to design numerical schemes without non-
physical spurious modes. For instance, in the numerical solution of Maxwell’s
equations, such operators guarantee that the magnetic field Bh remains divergence-
free for all times. Applying the primary divergence operator to a semi-discrete form
of Faraday’s law of induction, i.e., @Bh=@t D �CURLEh, we obtain

@

@t

	

DIV Bh

 D DIV @Bh

@t
D �DIV CURLEh D 0:

Therefore, if Bh is such that DIV Bh D 0 at time t D 0, this relation will be satisfied
at any time t > 0.

2.2 Local Mimetic Operators

From this section, we limit our discussion to diffusion problem (11) and one pair
of the primary and derived operators. For the practical implementation of mimetic
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schemes, it is convenient to write a local integration by parts formula that implies the
global one. To do it, we need an additional space �h of pressure unknowns defined
typically on mesh faces. Its restriction to cell c is denoted by �h;c and consists of
the vectors �c. We recall that the subscript “c” is added to denote the local mimetic
operators and the local discrete spaces corresponding to cell c. Also note that the
introduction of �c is inspired by the classical hybridization technique in the mixed
FE method.

Let DIV cWFh;c ! Ch;c be the primary divergence operator. The derived gradient
operator BGRADcW Ch;c � �h;c ! Fh;c satisfies the discrete integration by parts
formula

�

DIV c uc; qc
�

Ch;c
� Œuc; �c	�h;c D ��uc; BGRADc

�
qc
�c

�
�

Fh;c

8uc 2 Fh;c; 8qc 2 Ch;c; 8�c 2 �h;c;

(8)

which mimics the continuum Green formula for cell c:
Z

c
.div u/ q dx �

Z

@c
.u � n/ q dx D �

Z

c
u � rq dx 8u 2 H.div; c/; 8q 2 H1.c/:

In order to recover formula (1) for the global discrete gradient operator, we impose
the continuity of �c and uc on the mesh faces, define the local divergence operator
as the restriction of the global one, define the local spaces as restrictions of global
ones, require that the interface terms cancel each other,

X

c2˝h

Œuc; �c	�h;c D 0; (9)

and that the local inner products are summed up into global inner products as in (3).
In most mimetic schemes, continuity of uc and �c implies (9).

The derivation of a mimetic scheme follows three generic steps. First, we select
the degrees of freedom such that the local primary operator, e.g.,DIVc, has a simple
form. Second, we define the inner products in the discrete spaces that satisfy the
consistency and stability conditions. Third, we postulate the discrete integration by
parts formula and obtain the derived operator, e.g., BGRADc, from it. Note that the
local derived operator is defined uniquely.

These three steps are discussed in Sect. 3 for the mixed formulation of the
diffusion problem. The flexibility of the mimetic framework is exploited in Sect. 4.2,
where we derive another pair of primary divergence and derived gradient operators
for a nonlinear parabolic problem. More examples of mimetic schemes can be found
in [24].
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2.3 Material Properties

The material properties are often included in the derived mimetic operator. Indeed,
the Green formula (2) can be rewritten as follows:

Z

˝

.div u/ q dx D �
Z

˝

K
�1u � .Kr/q dx 8u 2 H.div; ˝/; 8q 2 H1

0.˝/:

(10)

According to (10), we can define BGRAD as an approximation of the combined
operator Kr.�/ and the inner product Œuh; vh	Fh as an approximation of the right-

hand side integral
Z

˝

K
�1u �v dx, provided that uh and vh are the degrees of freedom

of u and v.
For a perfectly conducting medium, we have the following duality relationship

for the first-order curl operators:

Z

˝

curl E � ��1B dx D
Z

˝

"E � 	"�1curl��1B



dx:

In this case the inner products in spaces Eh and Fh are the weighted inner
products. The weights are the magnetic permeability ��1 and electric permittivity
". The derived curl operator BCURL is an approximation of the combined operator
"�1curl .��1�/.

3 Mixed Formulation of Diffusion Problem

Let ˝ 2 <d be a polygonal (d D 2) or polyhedral (d D 3) domain with Lipschitz
continuous boundary. Consider the mixed formulation of the diffusion problem:

u D �Krp in ˝;

div u D b in ˝;
(11)

subject to the homogeneous Dirichlet boundary conditions on @˝ . As usual, we will
refer to the scalar unknown as the pressure and to the vector unknown as the flux. We
assume that the diffusion tensor is piecewise constant on mesh ˝h and we denote
its restriction to cell c by Kc. If Kc is not constant on c, we can take its values at the
centroids of the mesh cells without losing the approximation order.

In this section, we consider one local mimetic formulation, two FV schemes
and two mixed-hybrid FE schemes with the same set of degrees of freedom. These
schemes use the same discrete divergence operator and can be formally written as:

uc D Lc. pc;�c/; DIVcuc D bIc; (12)
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where Lc is a linear operator and bIc is defined later. Formulas (12) subject to
continuity of �c and uc across mesh faces and boundary conditions define a mixed-
hybrid scheme. A mixed-hybrid scheme is called linearity preserving when (12) is
exact for any linear pressure p which implies constant flux u and zero source b.

This section is based on the material presented in [8, 24] for the MFD method, in
[30, 32, 36] for the FV methods, and in [11] for the VEM.

3.1 Regular Polygonal and Polyhedral Meshes

The analysis of discretization schemes is typically conducted on a sequence of
conformal meshes ˝h where h is the diameter of the largest cell in ˝h and h ! 0.
A mesh is called conformal if the intersection of any two distinct cells c1 and c2 is
either empty, or a few mesh points, or a few mesh edges, or a few mesh faces. Cell
c is defined as a closed domain in <3 (or <2/ with flat faces and straight edges.

Following [24], we make a few assumptions on the regularity of 3D meshes.
Similar assumptions can be derived for 2D meshes by reducing the dimension. Let
n?, �? and �? denote various mesh independent constants explained below.

(M1) Every polyhedral cell c has at most n? faces and each face f has at most n?
edges.

(M2) For every cell c with faces f and edges e, we have

�?
	

diam.c/

3 � jcj; �?

	

diam.c/

2 � j f j; �? diam.c/ � jej; (13)

where j � j denotes the Euclidean measure of a mesh object.
(M3) For each cell c, there exists a point xc such that c is star-shaped with respect

to every point in the sphere of radius �? diam.c/ centered at xc. For each face f ,
there exists a point xf 2 f such that f is star-shaped with respect to every point in
the disk of radius �? diam.c/ centered at xf as shown in Fig. 2.

.
x

x

Fig. 2 Shape-regular mesh objects
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(M4) For every cell c, and for every f 2 @c, there exists a pyramid contained in c
such that its base equals f , its height equals �? diam.c/ and the projection of its
vertex onto f is xf .

The conditions (M1)–(M4) are sufficient to develop an a priori error analysis of
various discretization schemes. We recall only two results underpinning this error
analysis. The first one is the Agmon inequality that uses (M4) and allows us to
bound traces of functions:

X

f2@c
kqk2L2. f / � C

�	

diam.c/

�1kqk2L2.c/ C diam.c/ jqj2H1.c/

�

8q 2 H1.c/:

(14)

The second one is the following approximation result: For any function q 2 H2.c/
there exists a polynomial q1 2 P1.c/ such that

kq � q1kL2.c/ C diam.c/ jq � q1jH1.c/ � C
	

diam.c/

2jqjH2.c/: (15)

Hereafter, we will use symbols C, C1, C2 to denote generic constants independent
of h.

Remark 2 The mesh regularity assumptions (M1)–(M4) are not optimal. They
could be generalized to non-star shaped cells [24] by splitting each polygonal or
polyhedral cell into finite number of shape regular simplexes. Note that an analysis
of mimetic schemes for elliptic equations can be also done via the framework of
gradient schemes [33] that allows us to use weaker mesh regularity assumptions
in some cases. In particular, small mesh faces are allowed by this framework and
optimal convergence rate was observed in many numerical experiments.

3.2 Mimetic Discretization Framework

As pointed out at the end of Sect. 2.2, the first step of the construction of a mimetic
scheme consists in the selection of the degrees of freedom. The degrees of freedom
are such that the primary divergence operator has a simple form.

The discrete space Ch consists of one degree of freedom per cell; its dimension
equals the number of mesh cells; and for each vector ph 2 Ch we shall denote the
value of ph associated with cell c by pc 2 Ch;c Furthermore, we denote the vector
of degrees of freedom of a smooth function p by pIh 2 Ch. In the MFD method
pIc is typically the cell average of p over cell c and this definition is used in the
superconvergence analysis [8].

The discrete space �h consists of one degree of freedom per mesh face, e.g., �f ;
its dimension equals the number of mesh faces; and for each vector �h 2 �h we
shall denote its restriction to cell c by �c 2 �h;c. The continuity of local vectors �c
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across mesh cells is satisfied automatically. The value �f can be associated with the
value of a smooth function p at the face centroid.

The discrete space Fh consists of one degree of freedom per boundary face and
two degrees of freedom per interior face. For vector uh 2 Fh, we denote by uc its
restriction to cell c, and by ucf its component associated with face f of cell c. For a
smooth function u, we denote by uI

h 2 Fh the vector of degrees of freedom. The
value .ucf /

I is defined as the integral average of flux u � nf through face f , where nf

is the face normal fixed once and for all. Hereafter, we consider a subspace of Fh

whose members satisfy the flux continuity constraint

uc1f D uc2f (16)

on each interior face f shared by cells c1 and c2. With a slight abuse of notation, we
shall refer to Fh as the space that satisfies condition (16).

The local primary divergence operator is defined using a straightforward dis-
cretization of the divergence theorem:

.DIVuh/jc � DIV cuc D 1

jcj
X

f2@c
j f j �c;f ucf ; (17)

where �c;f is either 1 or �1 depending on the mutual orientation of the fixed normal
nf and the exterior normal nc;f to @c. Observe that this definition remains the same
in all coordinate systems.

The second step of the construction of a mimetic scheme is to define accurate
inner products in Ch;c and Fh;c that satisfy the consistency and stability conditions.
The inner product for space Ch;c is simple:

�

pc; qc
�

Ch;c
D jcj pc qc: (18)

Let SCc be the space of constant functions. For consistency with the subsequent
presentation, we use notation SCc instead of P0.c/. Then, the above inner product
implies the obvious result:

�

pIc; q
I
c

�

Ch;c
D
Z

c
p q dx 8p 2 P0.c/; 8q 2 SCc:

Despite its simplicity, we can use this relation to formulate the general principle
that we apply to the derivation of other inner products. We define the consistency
condition as the following exactness property: the L2 inner product of two smooth
functions is equal to the mimetic inner product of their interpolants when one of
the functions (p in this case) is a polynomial of a given degree and the other one
belongs to a sufficiently rich space (possibly infinite dimensional) that must include
polynomial functions.
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The exactness property implies that L2 inner products of a large class of functions
can be calculated exactly using the degrees of freedom. In particular, we write the
consistency condition for the inner product on space Fh;c as the exactness property:

�

uI
c; vI

c

�

Fh;c
D
Z

c
K

�1
c u � v dx 8u 2 .P0.c//d; 8v 2 SF c; (19)

where SF c is a specially designed space containing the constant vector-functions:

SF c D ˚

vW div v 2 P0.c/; v � nf 2 P0. f / 8f 2 @c :

Let us show that the right-hand side of (19) can be calculated using the degrees of
freedom. Let q1 be a linear function such that Kc rq1 D u. Inserting u in (19),
integrating by parts, and using the properties of SF c, we obtain

Z

c
rq1 � v dx D �

Z

c
.div v/q1 dx C

Z

@c
.v � n/ q1 dx

D
X

f2@c
v � nc;f

�Z

f
q1 dx � j f j

jcj
Z

c
q1 dx

�

:

Let MF ;c be the inner product matrix and rc.q1/ 2 Fh;c be the vector with

components �c;f

�Z

f
q1 dx � j f j

jcj
Z

c
q1 dx

�

. Then, combining the last formulas, we

have

�

.Kc rq1/Ic; vIc
�

Fh;c
D 	

.Kc rq1/Ic

T

MF ;c vIc D
X

f2@c

v � nf�cf

�Z

f
q1 dx � j f j

jcj
Z

c
q1 dx

�

D 	

rc.q1/

T

vIc:

Since v is any function in SF c, we can show that its interpolant vI
c is any vector in

Fh;c. Indeed, it is sufficient to define a few functions v as the gradients of solutions
of cell-based Poisson problems with various Neumann boundary conditions. Hence,
the consistency condition gives us the following matrix equations

MF ;c .Kc rq1/Ic D rc.q1/ 8q1 2 P1.c/: (20)

Due to the linearity of these equations, it is sufficient to consider only three (two in
two dimensions) linearly independent linear functions: q1x D x, q1y D y, and q1z D z.
Let

Nc D Œ.Kc rx/Ic .Kc ry/Ic .Kc rz/Ic	; Rc D Œrc.x/ rc.y/ rc.z/	 (21)
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be two rectangular nc � 3 matrices where nc is the number of faces in cell c. The
Eqs. (20) are now equivalent to the matrix equation:

MF ;cNc D Rc: (22)

Note that a symmetric positive definite solution MF ;c (if it exists) is not unique even
for a tetrahedral cell c. The existence of solutions is based on the following result
proved in [24].

Lemma 1 Let matrices Nc and Rc be defined as in (21). Then, RT
cNc D jcjKc:

This lemma allows us to write the explicit formula for matrix MF ;c:

MF ;c D Rc.RT
cNc/

�1RT
c C �cPc; Pc D I � Nc.NT

cNc/
�1NT

c

with a positive factor �c in front of the projection matrix Pc. A recommended choice
for �c is the mean trace of the first term. A family of mimetic schemes is obtained if
we replace �c by an arbitrarily symmetric positive definite matrix Gc:

MF ;c D Rc.RT
cNc/

�1RT
c C Pc Gc Pc: (23)

The stability of the resulting mimetic method depends on the spectral bounds of
matrix Gc which should be uniformly bounded by �c. Algebraically, it means that
there exists two generic constants C1 and C2 such that

C1jcj
X

f2@c
jvcf j2 � vT

c MF ;c vT
c � C2jcj

X

f2@c
jvcf j2 (24)

holds for every vc D fvcf gf2@c. This formula is called the stability condition in the
mimetic discretization framework. The existence of the mesh independent constants
C1 and C2 can be shown using assumptions (M1)–(M4).

The third step of the construction of a mimetic scheme is to postulate either the
local or global integration by parts formula and derive the gradient operator from it.
For instance, given the global discrete operators DIV WFh ! Ch and BGRADW Ch !
Fh, we can write the mimetic scheme as follows: Find uh 2 Fh and ph 2 Ch such
that

uh D �BGRAD ph; DIV uh D bI;

where bI 2 Ch.
The local mimetic formulation requires us to define Œuc; �c	�h;c which satisfies

condition (9). Let

Œuc; �c	�h;c D
X

f2@c
�c;f j f j�f ucf : (25)
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Then, the local formulation is to find uc 2 Fh;c, pc 2 Ch;c and �c 2 �h;c in all mesh
cells such that

uc D �BGRADc

�
pc
�c

�

; DIVc uc D bIc

subject to the flux continuity conditions (16) and the homogeneous Dirichlet
boundary conditions �f D 0 for f 2 @˝ . The local derived operator has the explicit
form:

BGRADc

�

pc
�c

�

D �M�1
F ;c

0

B
@

�c;f1 j f1j . pc � �f1 /
:::

�c;fnc j fnc j . pc � �fnc /

1

C
A : (26)

Lemma 2 Under assumption (3) the local and global mimetic formulations are
equivalent.

Proof Let vh be an arbitrary vector in Fh and vc be its restriction to cell c. To show
that the solution to the local mimetic formulation is the solution to the global one,
we first multiply both sides of the local constitutive equations by vc, then sum up the
results over the mesh cells, cancel all internal face terms containing �f , and finally

use the local duality relation (8) between DIV c and BGRADc to obtain:

X

c

�

uc; vc
�

Fh;c
D �

X

c

�
BGRADc

�

pc
�c

�

; vc
�

Fh;c
D
X

c

�

DIVc vc; pc
�

Ch;c
:

From the additivity of the inner products and (1) we obtain that

�

uh; vh
�

Fh
D �

DIV vh; ph
�

Ch
D ��BGRAD ph; vh

�

Fh
8vh 2 Fh;

which implies that uh D �BGRAD ph.
To show the opposite statement, we repeat the above argument in the reverse

order. This proves the assertion of the lemma. ut
Let us consider the matrix equation Nc D WF ;c Rc [compare with (22)]. To

implement the mimetic scheme in a computer program, we need to know only
matrix WF ;c. The general solution to the matrix equation is

WF ;c D Nc .NT
cRc/

�1 NT
c C eGc .I � Rc .RT

cRc/
�1RT

c /;

where eGc is an arbitrary nc �nc matrix, possibly non-symmetric. This formula leads
to a large family of stable and unstable schemes that we refer to as the extended
mixed-hybrid family of schemes. Note that non-symmetric schemes are natural for
some plasma physics applications where the diffusion tensor is not symmetric.



Discretization of Mixed Formulations of Elliptic Problems on Polyhedral Meshes 327

Positive definiteness of WF ;c is necessary for proving the scheme’s convergence
following the path described in [42].

If in additionWF ;c is symmetric, then it is one of the matrices M�1
F ;c. The classical

two-point flux FV scheme is obtained when all matrices WF ;c are positive definite
and diagonal.

3.2.1 Error Estimates

Let ˝ have a Lipschitz continuous boundary. Furthermore, let every cell c be shape
regular as explained in Sect. 3.1. We assume that xc is the centroid of cell c. We
use the triple-bar notation, e.g., jjj � jjj, for the norms induced by the mimetic inner
products. Then, the interpolants of the exact solution, pI 2 Ch and uI 2 Fh, satisfy
[8]

jjjpI � phjjjCh C jjjuI � uhjjjFh � C h;

where ph and uh are solutions of the global mimetic formulation. If in addition˝ is
convex and C1 in (24) is sufficiently large, then

jjjpI � phjjjCh � C h2:

3.3 Finite Volume Discretization Framework

Two examples of FV schemes that fit within the mimetic framework are the mixed
finite volume (MFV) method [30] and the hybrid finite volume (HFV) method [36].
Both methods give a family of schemes because a stabilization term, which can
be suitably parameterized, appears in their formulation. Their design principles are
based on conditions that imply the mimetic duality principle.

Both methods use the same degrees of freedom for pressure and flux as the local
mimetic formulation and the same discrete flux balance equation, i.e., DIV c uc D
bIc. Recall that uc collects the flux unknowns associated with cell c. The local
pressure unknowns are the cell pressures pc associated with cells c and the interface
pressures �f associated with faces f . In the formulation of these FV methods, pc can
be associated with the pressure value at any point inside the cell. As in the previous
subsection, �c D f�f gf2@c is the vector whose size is equal to the number of faces
in cell c.

In the HFV method, a discrete gradient in cell c is defined by applying the mid-
point quadrature rule to the divergence theorem:

rc

�
pc
�c

�

D 1

jcj
X

f2@c
j f j�f nc;f D 1

jcj
X

f2@c
j f j.�f � pc/nc;f : (27)
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This formula provides the exact value of the gradient whenever p is a linear function
since for any constant vector a and any position vector xc, we have the geometric
identity

jcj a D
X

f2@c
j f j a � .xf � xc/ nc;f ;

where xf is the face centroid.
Formula (27) is used to define the numerical scheme after an additional stabiliza-

tion term sc;f ; is included in the definition of the numerical flux ucf :

ucf D �nf � Kcrc

�
pc
�c

�

C sc;f : (28)

Like in the mimetic framework, the stabilization term is designed very carefully to
preserve the consistency of the scheme. Let Fc be the diagonal matrix with entries
j f j on the main diagonal, f 2 @c. Similarly, let ˙c be the diagonal matrix with
entries �c;f . Furthermore, let 1 D .1; 1; : : : ; 1/T , and

Sc;f . pc; �c/ D �f � pc � rc

�
pc
�c

�

� .xf � xc/:

Note that the last expression is zero on linear pressure functions. The vector of
numerical fluxes uc is defined implicitly as the solution of

.Qpc1 � Q�c/
T ˙c Fc uc D jcjKcrc

 

pc
�c

!

� rc

 

Qpc
Q�c

!

C
X

f2@c

˛c;f
j f j
dc;f

Sc;f . pc;�c/ Sc;f .Qpc; Q�c/

(29)

for any Qpc and Q�c. Here ˛c;f is a positive parameter and dc;f is the distance between
xc and the plane containing face f . After a few algebraic manipulations, we obtain:

sc;f D �c;f
X

f 02@c
˛cf 0

j f 0j
dcf 0

Scf 0. pc;�c/

�

�ıf ;f 0

j f j C 1

jcjnc;f � .xf 0 � xc/

�

where ıf ;f 0 is the Kronecker symbol. It is obvious that the stabilization term is zero
when it is calculated using the degrees of freedom of a linear function.

The right-hand side of (29) is a symmetric bilinear form with respect to the
pressure unknowns. It is positive definite when ˛c;f > 0 and �f D 0 on f 2 @˝ .
It is uniformly bounded from below when ˛c;f are sufficiently large and the mesh
satisfies the regularity conditions described in Sect. 3.1.

Remark 3 Equation (29) is the key design principle. When pc is associated with
the cell centroid, the left-hand side of this equation coincides with the left-hand side



Discretization of Mixed Formulations of Elliptic Problems on Polyhedral Meshes 329

of (8) where the divergence is given by (17) and the interface term is defined by (25).
So, Eq. (29) is also a representation of the duality principle.

Formula (27) can be rewritten using the mimetic matrix Nc as follows:

rHFV
c

�
pc
�c

�

D K
�1
c

jcj NT
c ˙c Fc �c:

This formula should be compared with the formula for the discrete gradient in the
MFV method. This gradient is reconstructed from face fluxes:

G.uc/ D �K
�1
c

jcj RT
c ˙c uc:

This formula is exact for a linear pressure function and constant flux, but it also has
to be stabilized. The vector of numerical fluxes uc is defined as the solution of

.vc/
TGcuc D . pc1 � �c/

T ˙c Fc vc 8vc 2 Fh;c (30)

where Gc is a symmetric positive definite matrix. This design principle shows even
clear connection with the mimetic duality principle (8). Since Gc is invertible,
we have that uc is a linear combination of pc and �c, i.e. condition (12). We can
summarize the above discussions in the following lemma.

Lemma 3 Any linearity preserving mixed-hybrid scheme of type (12) with the
degrees of freedom given by Ch, �h, and Fh is a member of the extended mixed-
hybrid family of schemes. In addition, let uc D Lc. pc;�c/ and assume that the
bilinear form

B
	

.Qpc; Q�c/; . pc;�c/

 WD .Qpc1 � Q�c/

T ˙c Fc L. pc;�c/ (31)

is symmetric, uniformly coercive and uniformly bounded (with respect to some norm
that may depend on the problem). Then, the resulting scheme belongs to the mimetic
family of schemes.

Proof The most general form of the constitutive equation in (12) is given by the
linear relationship

uc D Lc. pc;�c/ D �eWF ;c

�
�c

pc

�

with a rectangular nc � .nc C 1/ matrix eWF ;c D ŒeW.1/
F ;c;

eW.2/
F ;c	. Since the scheme is

exact for constant pressure functions, we have

0 D �eWF ;c

�
1

1

�

:
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Multiplying the last equation by pc and subtracting from the previous one, we obtain

uc D eW.1/
F ;c. pc1 � �c/:

By our assumption, this formula is exact for all linear pressure functions and the
corresponding constant flux functions. Let us take linearly independent pressure
functions x, y, z and use the matrix notations introduced above to derive the
following consequence of the linearity preservation property:

Nc D eW.1/
F ;c˙c F�1

c Rc:

Hence, eW.1/
F ;c D WF ;c Fc˙c and the resulting scheme belongs to the extended

mixed-hybrid family of schemes. Now

.Qpc1 � Q�c/
T ˙c Fc uc D .Qpc1 � Q�c/

T ˙c Fc WF ;c Fc˙c. pc1 � �c/:

Our symmetry and coercivity assumptions imply that WF ;c is symmetric and
positive definite; hence, it is invertible and W�1

F ;c coincides with one of the mimetic

inner product matrices MF ;c. Let Quc D W.1/
F ;c.Qpc1 � Q�c/. Then,

.Qpc1 � Q�c/
T ˙c Fc uc D QuT

c W
�1
F ;c uc:

The uniform coercivity and boundness conditions imply that matrix W�1
F ;c satisfies

the mimetic stability condition. This proves the assertion of the lemma. ut
A detailed comparison of MFD, HFV and MFV methods is performed in [32].

In particular, the authors have shown that all schemes can be generalized to provide
the identical families of numerical schemes.

3.4 Finite Element Discretization Framework

3.4.1 Raviart-Thomas FE Method on Simplexes

Let us consider the family of mimetic schemes, where the mass matrix is given in the
form of Eq. (23). When the mesh is formed by simplexes, e.g., triangles in 2D and
tetrahedra in 3D, there is a choice of the stabilization matrix Pc Gc Pc that provides
the mass matrix from the lowest order Raviart-Thomas space [12]. For a simplex,
the stabilization matrix is a rank-one matrix, Pc Gc Pc D pT

c

�

gc
�

pc, where

gc D 1

d2.d C 1/

X

f2@c
.xf � xc/

T
K

�1
c .xf � xc/

and pT
c D 	j f1j; j f2j; : : : ; j fdC1j




, fi 2 @c.
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3.4.2 Virtual Element Method

The VEM was originally introduced as an evolution of the MFD method. In the
classical finite element spirit, the duality principle is now incorporated in the weak
formulation: Find uh 2 eSF h and ph 2eCh such that

ah.uh; vh/ � .divh vh; ph/L2.˝/ D 0 8vh 2 eSFh; (32a)

.divh uh; qh/L2.˝/ D .b; qh/L2.˝/ 8qh 2eCh; (32b)

where eCh is the space of piecewise constant functions isometric to Ch, eSF h is a
virtual space built from the local virtual spaceseSF c,

ah.uh; vh/ D
X

c2˝h

ah;c.uh; vh/; ah;c.uh; vh/ D a.1/h;c.uh; vh/C a.2/h;c.uh; vh/;

a.1/h;c and a.2/h;c are the consistency and stability terms (to be defined later in the
section), and operator divh is defined cell-by-cell as the local L2-orthogonal
projection of the continuum divergence operator onto eCh. The virtual space eSF c

includes polynomial as well as non-polynomial functions.
A new design principle is given by the unisolvency property. The virtual space

eSF c is build to be isomorphic to the mimetic space Fh;c, i.e., the space of degrees
of freedom. The virtual space is defined as the subspace of SF c:

eSF c D ˚

vW div v 2 P0.c/; v � nf 2 P0. f / 8f 2 @c; curl v D 0


:

In order to describe the splitting of the bilinear form ah;c.uh; vh/ we need to

introduce the problem-dependent L2 projector˘cWeSF c ! 	

P0.c/

d

:

a.v �˘c.v/; v0/ D 0 8v0 2 	P0.c/

d
;

where a.v;u/ D .K�1
c v;u/L2.c/. The projector is computable using only the degrees

of freedom [11]. We define the consistency term as

a.1/h;c.uh; vh/ D a.˘c.uh/; ˘c.vh// D
Z

c
K

�1
c ˘c.uh/ �˘c.vh/ dx;

and the stability term as

a.2/h;c.uh; vh/ D .uh �˘c.uh/; vh �˘c.vh//L2.c/:

To generate a family of schemes, we can replace the L2 inner product with any other
spectrally equivalent bilinear form. Like in the mimetic framework, the consistency
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term is the exactness property that holds when the first argument in the bilinear form
is the constant function:

a.1/h;c.uh; vh/ D
Z

c
K

�1
c ˘c.uh/ �˘c.vh/ dx D

Z

c
K

�1
c ˘c.uh/ � vh dx 8vh 2 eSF h:

Hence, the contribution of this term to the local mass matrix is like in the mimetic
scheme, Rc .RT

c Nc/
�1RT

c .
The conventional FE hybridization procedure works for the VEM as well. The

first equation in the variational formulation is replaced by a set of cell-based
equations:

ah;c.uh;c; vh;c/� .divh;cvh;c; ph/L2.c/ C hvh;c � n;�hi@c D 0; (33)

where uh;c; vh;c 2 eSF c, divc is the restriction of divh to cell c, and �h is the Lagrange
multiplier. It also holds that divh;c vh;c D DIVc vc and

hvh;c � n;�hi@c D
X

f2@c
�c;f j f j vcf �f ;

where �f is the constant value of the Lagrange multiplier on face f [compare
with (25)]. The continuity equation is algebraically equivalent to (16). Introducing
vector �c D f�f gf2@c and recalling that ph has the constant value pc over cell c, the
hybridized equation can be rewritten as follows:

. pc1 � �c/
T ˙c Fc vc D ah;c.uh;c; vh;c/;

which also provides the relation uc D L. pc;�c/. The VEM is a linearity-preserving
method. According to Lemma 3, the lowest-order mixed-hybrid virtual element
scheme is a member of the mimetic family of schemes.

4 Recent Developments of the Mimetic Framework

We highlight the new developments that extend the value of the mimetic framework
for various physical applications. This section is based on the material presented in
[37, 45] where we considered arbitrary-order mimetic schemes for linear diffusion
and mimetic schemes for nonlinear elliptic equations, respectively. A different
family of arbitrary-order mimetic schemes has been developed in [27]. Note that
the mimetic schemes presented in Sect. 4.2 differ from the gradient schemes in [31].
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4.1 High-Order Schemes

The development of a high-order mimetic scheme follows the same three steps
described above for the low-order mimetic schemes. In the first step, we select the
degrees of freedom that are convenient for the definition of the primary divergence
operator, still denoted by DIV . With a slight abuse of notation we still use
the symbols Ch and Fh for the discrete spaces of pressure and flux unknowns,
respectively.

The discrete space Ch contains multiple pressure unknowns that can be associated
with the solution moments up to order r. The discrete space Fh contains multiple
flux unknowns both associated with the mesh cells and the mesh faces. The cell-
based degrees of freedom represent moments of the flux up to order r except for the
zeroth order moment. The face-based degrees of freedom represent flux moments
up to order r C 1, see Fig. 3.

Remark 4 There exists another family of arbitrary-order mimetic schemes that
coincides with the mimetic scheme described earlier when r D 0.

The discrete divergence operator DIV WFh ! Ch is defined cell-wise from the
commutation property:

	

DIV uI



c
D DIV c uI

c D 	

div u

I

c
;

which is also a useful property for the error analysis. This is the new design
principle that can be generalized to other mimetic operators. The right-hand side is
computable using only the degrees of freedom of uI . Let 2 P r.c/ be a polynomial
of order at most r. Then, the definition of the moment and integration by parts give

	

div u

I

c
D 1

jcj
Z

c
.div u/  dx D �

Z

c
u � r dx C

X

f2@c

Z

f
.u � nc;f /  dx:

Fig. 3 Degrees of freedom for 0 � r � 3 on a polygonal cell; for each polynomial degree r we
show the flux degrees of freedom on the left and the scalar degrees of freedom on the right. The
edge/face moments of the normal component of the flux are denoted by a vertical line; the cell
moments are denoted by a bullet
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In the second step, we define the mimetic inner products in spaces Ch and Fh

as accurate approximations of the L2 inner products of pressure and flux functions.
The derivation is based on two high-order consistency conditions. Since the local
space Ch;c is isomorphic to P r.c/, the first consistency condition is the obvious
generalization of (18):

�

pIc; q
I
c

�

Ch;c
D
Z

c
p q dx 8p 2 P r.c/; 8q 2 P r.c/:

The consistency condition in space Fh;c is defined as the following exactness
property:

�

uI
c; vI

c

�

Fh;c
D
Z

c
K

�1
c u � v dx 8u 2 Kc rP rC2.c/; 8v 2 SF c;

where SF c is a specially designed space containing the vector functions .P rC1.c//d:

SF c D ˚

vW div v 2 P r.c/; v � nf 2 P rC1. f / 8f 2 @c :

It is easy to show that the right-hand side of the consistency condition is
computable using the degrees of freedom introduced above. Let q 2 P rC2.c/ be
such that u D Kc rq. Then,

Z

c
K

�1
c u � v dx D �

Z

c
.divv/ q dx C

X

f2@c

Z

f
.v � nc;f / q dx:

As v is in SF c, the arguments of all the integrals in the right-hand side above are
polynomials. Using the degrees of freedom of v it is possible to reconstruct div v
inside c and v � nf on each f 2 @c, see [37], and all these integrals are computable.
Combining the last formulas, we obtain the algebraic form of the consistency
condition:

�

.Kcrq/I; vI
c

�

Fh;c
D 	

.Kcrq/I

T

MF ;c vI
c D 	

rc.q/

T

vI
c:

To find a symmetric positive definite matrix MF ;c, we need the analog of Lemma 1,
which obviously holds since the function Kcr Qq is in the space SF c for any
polynomial Qq 2 P rC2.c/.
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In the third step, we formulate the duality formula for the derived gradient
operator and use it in the global mimetic formulation. The following error estimates
have been shown in [37]:

jjjpI � phjjjCh C jjjuI � uhjjjFh � C hrC2:

Remark 5 In the case when the diffusion tensor K is no longer constant, the
consistency condition has to be modified. Let˘ r

c denote the local L2 projector on the
space of polynomial functions of order r. Then, the modified consistency condition
reads:

�	

˘ rC1
c .Krq/


I
; vI

c

�

Fh;c
D
Z

c
rq � v dx 8q 2 P rC2.c/; 8v 2 SF c:

After this, the inner product matrix MF ;c is derived following the same steps.

4.2 Nonlinear Parabolic Problems

The consistency term in the formula for matrix MF ;c [see (19)] contains the
inverse of the diffusion tensor. Therefore, numerical difficulties may arise in solving
nonlinear parabolic problems of type

@p

@t
� div.k. p/rp/ D b;

where function k. p/ cannot be uniformly bounded from below. For instance, on a
uniform one dimensional mesh, the numerical flux at mesh point xi is proportional
to the difference of the neighboring pressures and the transmissibility coefficient Ti:

ui D �Ti
piC1=2 � pi�1=2

h
; Ti D 2 ki�1=2 kiC1=2

ki�1=2 C kiC1=2
:

If ki�1=2  kiC1=2, the numerical flux goes to zero as ki�1=2 ! 0 and may lead
to a nonphysical solution as shown by the numerical experiment considered in
Sect. 4.2.2 (see also [48]). To obtain an accurate solution, we have to replace the
harmonic average with the arithmetic average in the definition of the transmissibility
coefficient. A possible strategy in the mixed finite element framework (see, e.g. [4])
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consists in using two velocity variables, v D �rp and u D k. p/v. However,
the corresponding weak formulation cannot have face-based equations of type
vfc D kf ufc (without breaking symmetry of the final discrete system) which are
natural from a physical viewpoint. For instance, usage of face-based diffusion
coefficients kf is the well established numerical practice in modeling subsurface
flows. We describe a new mimetic scheme that allows us to use different values kf
on different mesh faces. The mimetic framework always guarantees the symmetry
of the resulting algebraic problem.

4.2.1 A New Pair of Primary and Derived Mimetic Operators

To generalized the mimetic schemes proposed in [45], we consider a more general
form of the diffusion coefficient, K k. p/, where K is a discontinuous tensor
independent of p and k. p/ is a discontinuous scalar function of p. The underlying
mixed formulation is

u D �.Kr/p;
@p

@t
C div .k u/ D b:

(34)

The combined operators div.k�/ and Kr.�/ are dual to each other with respect to
the weighted L2 inner products (kK�1 is the weight):

Z

˝

.div ku/ q dx D �
Z

˝

kK�1u � .Kr/ q dx 8u 2 H.div; ˝/; 8q 2 H1
0.˝/:

(35)

Consider again the three-step construction of a mimetic scheme. In the first step
we need to specify the degrees of freedom. For the pressure variable, we consider
the discrete space Ch of grid functions that consist of one value per cell and the
discrete space �h of grid functions that consist of one value per face. The discrete
space Fh has the same dimension as in the linear case, but the discrete fluxes in Fh

obey a different continuity condition:

kc1f uc1f D kc2f uc2f (36)

on each interior face f shared by cells c1 and c2. Here, kc1f and kc2f are accurate one-
side approximations of the diffusion coefficient k. For example, in regions where
function k is continuous, we can take kc1f D kc2f D kf as a weighted average
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of the cell-centered values k. pc1/ and k. pc2/ calculated using the most recent
approximation to solution p in the cells c1 and c2, respectively. The weights are
the distances between the cell centers and face f .

The primary mimetic operator approximates the combined operator div.k�/. It
is defined locally on each mesh cell using a straightforward discretization of the
divergence theorem [compare with formula (17)]:

.DIV k uh/
ˇ
ˇ
c � DIV k

c uc D 1

jcj
X

f2@c
�c;f j f j kcf ucf : (37)

Since uh is an algebraic vector, it is convenient to think about the discrete
divergence operator DIVkWFh ! Ch as a matrix acting between two spaces. This
matrix has full rank when kcf > 0. The proof is based on Lemma 2.5 in [24].

Let us introduce a cell-based diagonal matrix Kc formed by coefficients kcf ,
f 2 @c. Then, the primary mimetic operators in (17) and (37) can be connected
as follows:

DIV k
c uc D .DIVc Kc/uc:

The second step is to define the inner products in spaces Ch and Fh that are
accurate approximations of the integrals in (35). Such inner products can be defined
again cell-by-cell. Moreover, the inner product in space Ch can be defined as in
Sect. 3.2 by the relation

�

pc; qc
�

Ch;c
D jcj pc qc.

The weight in the other L2 inner product is given by kK�1. By our assumption,
K is a piecewise constant tensor on mesh˝h. Instead, the scalar coefficient k can be
a quite general non-negative function. An acceptable first-order error is committed
when we replace k by the piecewise constant function with value kc D k. pc/ in
cell c.

The consistency condition is expressed through the exactness property:

�

uI
c; vI

c

�

Fh;c
D
Z

c
k. pc/K

�1
c u � v dx 8u 2 .P0.c//d; 8v 2 SF c:

Since kc K�1
c is a constant tensor in cell c, the derivation of the inner product matrix

(still denoted by MF ;c) proceeds as in Sect. 3.2.
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The third step is to obtain the formula for the derived operator, which, in this
case, is an approximation of the combined operator Kr.�/. The continuum Green
formula for cell c is given by

Z

c
div.ku/q dx �

Z

@c
.ku � n/ q dx D �

Z

c
kK�1.Krq/ � u dx: (38)

Now, the derived operator BGRADcW Ch;c � �h;c ! Fh;c satisfies the discrete
integration by parts formula

�

DIVk
c uc; qc

�

Ch;c
�
X

f2@c
�c;f j f j kcf ucf�f D �

h

uc; BGRADc

�qc
�c

�i

Fh;c

for all uc 2 Fh;c, qc 2 Ch;c, and �c 2 �h;c. This local mimetic formulation gives the
following formula for the physical fluxes:

Kc

0

B
@

ucf1
:::

ucfnc

1

C
A D �Kc BGRADc

� pc
�c

�

D KcM�1
F ;cKc

0

B
@

�c;f1 j f1j. pc � �f1 /
:::

�c;fnc j fnc j. pc � �fnc /

1

C
A :

(39)
Note that this formula uses the symmetric matrix KcM�1

F ;cKc. Our numerical
experiments in [45] show that the resulting scheme is second-order accurate.

4.2.2 Marshak Heat Equation

Let us consider the modified Marshak heat equation [48, 52] in the rectangular
domain .0; 3/ � .0; 1/ with zero source term, K D I, and k. p/ D p3. The initial
value is p.x; 0/ D 10�3. We set the time-dependent Dirichlet boundary condition
p D p0.0; t/ D 0:78 t1=3 on the left side of ˝ , the constant boundary condition
p D 10�3 on the right side, and the homogeneous Neumann boundary conditions
on the remaining sides.

We solve the parabolic equation on a randomly perturbed quadrilateral mesh
that have three times more cells in the x-direction than in the y-direction. We use
the backward Euler time integration scheme and the weighted arithmetic average
definition of the face-based diffusion coefficients kf described above. To reduce the
impact of the time integration error, we use small time steps. Comparison of pictures
in Fig. 4 show that the new scheme fixes the deficiencies of the old MFD scheme
and leads to the correct speed of propagation of the non-linear wave. Significant
mesh refinement is needed to get a reasonable solution with the old MFD scheme.
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Fig. 4 Solution snapshots at time t D 5:0 for the standard (top) and new (bottom) MFD schemes.
The solution in the bottom panel shows the correct and accurate position of the wave front at the
chosen time

5 Conclusions

We described a few design principles used in the derivation of mimetic schemes
for the numerical solution of PDEs. For diffusion equations, we established the
bridges with a few FV and FE methods by showing that three popular discretization
frameworks (MFD, FV and FE) use the equivalent design principles which leads to
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algebraically equivalent schemes. We illustrated the flexibility of the mimetic dis-
cretization framework to tackle challenging numerical issues in computer modeling
of engineering problems with two examples: derivation of arbitrary-order schemes
and convergent schemes for nonlinear problems with small diffusion coefficients.
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Variational Multiscale Stabilization and the
Exponential Decay of Fine-Scale Correctors

Daniel Peterseim

Abstract This paper reviews the variational multiscale stabilization of standard
finite element methods for linear partial differential equations that exhibit multiscale
features. The stabilization is of Petrov-Galerkin type with a standard finite element
trial space and a problem-dependent test space based on pre-computed fine-scale
correctors. The exponential decay of these correctors and their localisation to local
cell problems is rigorously justified. The stabilization eliminates scale-dependent
pre-asymptotic effects as they appear for standard finite element discretizations of
highly oscillatory problems, e.g., the poor L2 approximation in homogenization
problems or the pollution effect in high-frequency acoustic scattering.

1 Introduction

In the past decades, the numerical analysis of partial differential equations (PDEs)
was merely focused on the numerical approximation of sufficiently smooth solutions
in the asymptotic regime of convergence. In the context of multiscale problems (and
beyond), such results have only limited impact because the numerical approximation
will hardly ever reach the asymptotic idealised regime under realistic conditions.
Although a method performs well for sufficiently fine meshes it may fail completely
on coarser (and feasible) scales of discretization. This happens for instance if the
PDE exhibits rough and highly oscillatory solutions. Among the prominent applica-
tions are the numerical homogenization of elliptic boundary value problems with
highly varying non-smooth diffusion coefficient, high-frequency time-harmonic
acoustic wave propagation, and singularly perturbed problems such as convection-
dominated flow.

The numerical approximation of such problems by finite element methods
(FEMs) or related schemes is by no means straight-forward. The pure approximation
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Fig. 1 Failure of FEM in homogenization problems: Consider the periodic problem
� d

dx A".x/
d
dx u".x/ D 1 in the unit interval with homogeneous Dirichlet boundary condition, where

A".x/ WD .2 C cos.2�x="//�1 for some small parameter " > 0. The solution u" D 4.x � x2/ �
4"
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is depicted in blue for " D 2�5. The
P1-FE approximation (red colored open circle) on a uniform mesh of width h interpolates the
curve x 7! 2

p
3.x � x2/ whenever h is some multiple of the characteristic length scale " and,

hence, fails to approximate u" in any reasonable norm in the regime h 
 "

1

0

0

1

Fig. 2 Numerical dispersion in Helmholtz problems: Consider � d2

dx2 u".x/ � �2u.x/ D 0 in the
unit interval with u.0/ D 1 and d

dx u.1/ D �i�u.1/ for some large parameter � > 0. The solution
u� D exp.�i�x/ is depicted in blue for � D 27. The P1-FE approximation (red colored open
circle) on a uniform mesh of width h D 2�7 > 6 � .wave length/ fails to approximate u� due to the
accumulation of phase errors

(e.g. interpolation) of the unknown solutions by finite elements already requires high
spatial resolution to capture fast oscillations and heterogeneities on microscopic
scales. When the function is described only implicitly as the solution of some
partial differential equation, its approximation faces further scale-dependent pre-
asymptotic effects caused by the under-resolution of relevant microscopic data.
Examples are the poor L2 approximation in homogenization problems (see Fig. 1)
and the pollution effect [7] for Helmholtz problems with large wave numbers (see
Fig. 2). We shall emphasise that, in the latter case, the existence and uniqueness of
numerical approximations may not even be guaranteed in pre-asymptotic regimes.

Such situations require the stabilization of standard methods so that eventually a
meaningful approximation on reasonably coarse scales of discretization becomes
feasible. This paper aims to present a general framework for the stabilization
of FEMs for multiscale problems with the aim to significantly reduce or even
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eliminate pre-asymptotic effects due to under-resolution. Our starting point will
be the Variational Multiscale Method (VMS) originally introduced in [41, 43].
The method provides an abstract framework how to incorporate missing fine-scale
effects into numerical problems governing coarse-scale behaviour [42]. One may
interpret the VMS as a Petrov-Galerkin method using standard FE trial spaces and
an operator-dependent test space that needs to be precomputed in general.

The construction of this operator-dependent test space is based on some stable
projection onto the standard FE trial space and a corresponding scale decomposition
of a function into its FE part given by the projection (the macroscopic/coarse-
scale part) and a remainder that lies in the kernel of the projection operator
(the microscopic/fine-scale part). The test functions are computed via a problem-
dependent projection of the trial space into the space of fine-scale functions. This
requires the solution of variational problems in the kernel of the projection—
the fine-scale corrector problems. It has been observed empirically in certain
applications that the Green’s function associated with these fine-scale corrector
problems—the so-called fine-scale Green’s function [43]—may exhibit favourable
exponential decay properties [43, 47] even though the decay of the classical full
scale Green’s function is only algebraic. It is this exponential decay property that
allows one to turn the VMS into a feasible numerical method [44, 47].

Very recently, the exponential decay was rigorously proved for the first time
in [50] in the context of multi-dimensional numerical homogenization. A key
ingredient of the proof is the use of a (local) quasi-interpolation operator for
the scale decomposition. Although the method presented in [50] still fits into the
general framework of the VMS, it uses a different point of view on the method
based on the orthogonalisation of coarse and fine scales with respect to the inner
product associated with a symmetric and coercive model problem. This is why
the method is now referred to as the Localized Orthogonal Decomposition (LOD)
method. Subsequent work showed that these ideas can be generalised to other
discretization techniques such as discontinuous Galerkin [21–23], Petrov-Galerkin
formulations [25], mixed methods [33] and mesh-free methods [38]. Moreover, the
method can also be reinterpreted in terms of the multiscale finite element method
with special oversampling [35]. The class of problems that have been analysed
by now includes semi-linear problems [36], high-contrast problems [9, 60], rough
boundary conditions [34], problems on complicated geometries [24], linear and non-
linear eigenvalue problems [37, 51, 52], parabolic problems [49], wave propagation
[3, 10, 29, 59] and parametric problems [2].

This survey aims to reinterpret all those results in the abstract stabilization
framework of the original VMS (Sect. 2) and aims to illustrate how the exponential
decay of the fine-scale Green’s function can be quantified (Sect. 3). We will show
how these abstract results lead to super-localised numerical homogenization [35, 50]
(Sect. 4) and pollution-free time-harmonic acoustic scattering (Sect. 5) [29, 59].
Section 6 contains some final remarks and also identifies methodological similarities
and differences with some other numerical approaches that receive great attention
these days, e.g., discontinuous Petrov-Galerkin methods (dPG) [18], Trefftz-type
methods [31] and Isogeometric Analysis (IGA) [16].
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2 Abstract Variational Multiscale Stabilization

This section is concerned with an abstract variational problem in a complex Hilbert
space V as it appears for the weak formulation of second order PDEs. In this context,
V is typically some closed subspace of the Sobolev space W1;2.˝ICm/ for some
bounded Lipschitz domain ˝ � R

d. Let a denote a bounded sesquilinear form on
V � V and let F 2 V 0 denote a bounded linear functional on V . We wish to find
u 2 V satisfying the linear variational problem

8v 2 V W a.u; v/ D F.v/: (1)

We assume that the sesquilinear form a satisfies the inf-sup condition

˛ WD inf
0¤v2V

sup
0¤w2V

a.v;w/

kvkVkwkV D inf
0¤w2V

sup
0¤v2V

a.v;w/

kvkVkwkV > 0: (2)

Under this condition, the abstract problem (1) is well-posed, i.e., for all F 2 V 0 there
exists a unique solution u 2 V and the a priori bound

kukV � ˛�1kFkV0

holds true; see, e.g., [4].
We wish to approximate the unknown solution u of (1) by some computable

function. The standard procedure for approximation is the Galerkin method which
simply chooses a finite-dimensional subspace VH � V (that contains simple
functions such as piecewise polynomials) and restricts the variational problem (1)
to this subspace. Usually, VH belongs to some family of spaces parametrised by
some abstract discretization parameterH, for instance the mesh size. This parameter
(or set of parameters) provides some control on the approximation properties of
VH as H ! 0 at the price of an increasing computational cost in the sense of
dimVH ! 1: The Galerkin method seeks a function GHu 2 VH satisfying

8vH 2 VH W a.GHu; vH/ D F.vH/
	 D a.u; vH/




: (3)

Recall that the well-posedness of the original problem (1) does not imply the well-
posedness of the discrete variational problem (3) but needs to be checked for the
particular application via discrete versions of the inf-sup condition (2). In many
cases, such condition is only satisfied for H sufficiently small. This means that
there is some threshold complexity for computing any Galerkin approximation and
this threshold can be out of reach. Even if a Galerkin solution GHu exists and is
computable, it might not provide the desired accuracy or does not reflect the relevant
characteristic features of the solution, as we have seen in the introduction.

Therefore, we are interested in computing projections onto the discrete space VH

other than the Galerkin projection. Let IH W V ! VH denote such a linear surjective
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projection operator and let us assume that it is bounded in the sense of the space
L.V/ of linear operators from V to V with finite operator norm

kIHkL.V/ WD sup
0¤v2V

kIHvkV
kvkV < 1:

Implicitly, we also assume that this operator norm does not depend on the discretiza-
tion parameter H in a critical way. Possible choices of IH include the orthogonal
projection onto VH with respect to the inner product of V or any Hilbert space
L � V containing V and mainly (local) quasi-interpolation operators of Clément
or Scott-Zhang type as they are well-established in the finite element community in
the context of a posteriori error estimation [11, 12, 14, 62].

2.1 Petrov-Galerkin Characterisation of Finite Element
Projections

The Galerkin projection GH is designed in such a way that its computation requires
only the known data F associated with the unknown solution u. This section
characterises the projection IH 2 L.V/ as a Petrov-Galerkin discretization of (1)
using VH as the trial space and a non-standard test space WH � V that depends on
the problem and the projection. The definition of WH rests on the trivial observation
that, for any v 2 V ,

a.IHu; v/ D F.v/� a.u � IHu; v/: (4)

The choice of a test function v in the subspace

WH WD fw 2 V j 8z 2 Ker IH W a.z;w/ D 0g (5)

annihilates the second term on the right-hand side of (4) and, hence,

a.IHu;wH/ D F.wH/

holds for all wH 2 WH . This shows that IHu is a solution of the Petrov-Galerkin
method: Find uH 2 VH such that

8wH 2 WH W a.uH;wH/ D F.wH/: (6)

This characterisation of IH is well known from the variational multiscale method as
it is presented in [42].

The question whether or not (6) has a unique solution can not be answered under
the general assumptions made so far. We need to assume the missing uniqueness to
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be able to proceed and one way of doing this is to assume that the dimensions of
trial and test space are equal,

dimWH D dimVH : (7)

In the present setting with a bounded operator IH , this condition is equivalent to
the well-posedness of the discrete variational problem (6), i.e., it admits a unique
solution uH D IHu 2 VH and

kuHkV � kIHkL.V/kukV � kIHkL.V/
˛

kFkV0 :

The a priori estimate in turn implies a lower bound of the discrete inf-sup constant
of the Petrov-Galerkin method by the quotient of the continuous inf-sup constant ˛
and the continuity constant of IH,

inf
0¤vH2VH

sup
0¤wH2WH

a.vH;wH/

kvHkVkwHkV 
 ˛

kIHkL.V/ � inf
0¤wH2WH

sup
0¤vH2VH

a.vH;wH/

kvHkVkwHkV :

The test space WH is the ideal test space for our purposes in the following sense.
Assuming that we have access to it, the method (6) would enable us to compute IHu
without the explicit knowledge of u. Although this will rarely be the case, we will
see later that WH can be approximated very efficiently in relevant cases. The discrete
inf-sup conditions then indicate that the sufficiently accurate approximation of WH

will not harm the method, its stability properties or its subsequent error minimisation
properties.

The continuity of the projection operator IH readily implies the quasi-optimality
of the Petrov-Galerkin method (6),

ku � uHkV D k.1 � IH/ukV � kIHkL.V/ min
vH2VH

ku � vHkV : (8)

Here, we have used that kIHkL.V/ D k1 � IHkL.V/; see e.g. [63]. More importantly,
the same arguments show that the Petrov-Galerkin method is quasi-optimal with
respect to any other Hilbert space L � V with norm k � kL whenever IH 2 L.L/,

ku � uHkL � kIHkL.L/ min
vH2VH

ku � vHkL:

This quasi-optimality makes the ansatz very appealing and motivates its further
investigation. Hence, in the remaining part of the paper, it is our aim to turn the
method into a feasible numerical scheme while preserving these properties to a
large extent. Although the discrete stability of the method depends on the stability
properties of the original problem and, hence, on parameters such as the frequency
in scattering problems, the quasi-optimality depends only on IH and not necessarily
on the problem.
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2.2 Characterisation of the Ideal Test Space

A practical realisation of the Petrov-Galerkin method (6) requires a choice of bases
in the discrete trial VH and test space WH . These choices will have big impact on the
computational complexity. The underlying principle of finite elements is the locality
of the bases which yields sparse linear systems and offers the possibility of linear
computational complexity with respect to the number of degrees of freedom. Let
f�j j j D 1; 2; : : : ;NH D dimVHg be such a local basis of VH.

We shall derive a basis of the test space WH defined in (5) by mapping the trial
basis onto a test basis via some bijective operatorT , a so-called trial-to-test operator.
Due to Assumption (7) such an operator exists, but there are many choices and we
have to make a design decision. Our choice is that

IH ı T D id (9)

which is consistent with almost all existing practical realisations of the method but
one might as well consider distance minimisation

k.1 � T /vHkV D min
wH2WH

kvH � wHkV :

The condition (9) fixes the (macroscopic) finite element part IHT vH D vH of
T vH while the fine scale remainder .1 � IH/T vH is determined by the variational
condition in the definition of WH . Given vH 2 VH, .1 � IH/T vH 2 Ker IH satisfies

8z 2 Ker IH W a.z; .1 � IH/T vH/ D �a.z; vH/: (10)

This problem is referred to as the fine scale corrector problem for vH 2 VH . Note
that vH can be replaced with any v 2 V so that .1 � IH/T can be understood as an
operator fromV into Ker IH . We usually denote this operator the fine scale correction
operator and write C WD .1 � IH/T . This operator is the Galerkin projection from
VH (or V) into Ker IH related to the adjoint of the sesquilinear form a. It depends on
the underlying variational problem and equips test functions with problem related
features that are not present in VH . In the context of elliptic PDEs, C is called the
finescale Green’s operator [41, 42].

For this construction to work we need to assume the well-posedness of the
corrector problem (10), i.e., there is some constant ˇ > 0 such that

inf
0¤v2Ker IH

sup
0¤w2Ker IH

a.v;w/

kvkVkwkV 
 ˇ � inf
0¤w2Ker IH

sup
0¤v2Ker IH

a.v;w/

kvkVkwkV : (11)

As for the Galerkin projection GH onto VH, these inf-sup conditions do not follow
from their continuous counterparts (2) (unless a is coercive) and they might hold
for sufficiently small H only. However, we were able to show in the context of the
Helmholtz model problem of Sect. 5 that (11) holds in a much larger regime of the
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discretization parameter H than the corresponding conditions for the standard FEM
do. In any case, condition (11) implies that the trial-to-test operator T D 1C C is a
bounded linear projection operator from V to WH with operator norm

kT kL.V/ D k1 � T kL.V/ D kCkL.V/ � Ca

ˇ
;

where Ca denotes the continuity constant of the sesquilinear form a. Moreover,
T jVH W VH ! WH is invertible with .T jVH/

�1 D IH and fT �j j j D 1; 2; : : : ;NHg
defines a basis of WH with

1

kIHkL.V/ k�jkV � kT �jkV � Ca
ˇ

k�jkV ; 1 � j � NH :

In general, it cannot be expected (apart from one-dimensional exceptions where
Ker IH is a broken Sobolev space [42]) that the T �j have local support. On the
contrary, their support will usually be global. However, we will show in the next
section that they decay very fast in relevant applications; for illustrations see Sect. 4.

An important special case of the model problem (1) is the hermitian case. Note
that hermiticity is preserved by the Petrov-Galerkin method in the following sense.
For any uH; vH 2 VH, it holds that

a.uH; T vH/ D a.T uH ; T vH/ D a.T vH ; T uH/ D a.vH; T uH/:

However, this hermiticity is typically lost once T is replaced with some approxima-
tion T`. In order to avoid a lack of hermiticity, previous papers such as [50] mainly
used a variant of the method with WH as the test and trial space. If hermiticity
is important, one should follow this line. In this paper, we trade hermiticity for
a cheaper method that avoids any costly communication between the fine-scale
correctors that would be necessary in the hermitian version.

If the problem is non-hermitian, one might still consider a modified trial space
based on the adjoint of T to improve approximation properties; see [45, 48, 59] for
details. In a setting with a modified trial space, further generalisations are possible.
Since VH does not appear any more in the method, its conformity can be relaxed as it
was recently proposed in [57] in the context of a multilevel solver for Poisson-type
problems with L1 coefficients. This approach enables one to compute very general
quantities of the solution such as piecewise mean values.

3 Exponential Decay of Fine-Scale Correctors

In many cases, the fine-scale correctors [i.e. the solutions of the fine-scale corrector
problems (10)] have decay properties better than those of the Green’s function
associated with the underlying full-scale partial differential operator. To elaborate
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on this, we shall now assume that the space V is a closed subspace of W1;2.˝/

with a local norm (the notation k � kV;! means that the V-norm is restricted to some
subdomain ! � ˝). Moreover, the sesquilinear form a is assumed to be local. This
is the natural setting for scalar second order PDEs. The subsequent arguments can
be easily generalised to vector-valued problems.

To be more precise regarding the locality of the basis mentioned above, we shall
associate the basis functions of VH with a set of geometric entities NH called nodes
(e.g. the vertices of a triangulation) and assume that these nodes are well distributed
in the domain ˝ in the sense of local quasi-uniformity. In this context, H refers to
the maximal distance between nearest neighbours (the mesh size). Given some node
z 2 NH and the corresponding basis function �z 2 VH, set the corrector z D C�z
and recall from (10) that

a.w; z/ D �a.w; �z/

for all w 2 Ker IH.
We aim to show that there are constants c > 0 and C > 0 independent of H and

R such that

kC�zkV;˝nBR.z/ D kzkV;˝nBR.z/ � C exp

�

�c
R

H

�

kC�zkV ; (12)

where BR.z/ denotes the ball of radius R > 0 centred at z.
We shall show how this result can be established and what kind of assumptions

have to be made. Let R > 2H and r WD R � H > H and let � 2 W1;1.˝I Œ0; 1	/ be
some cut-off function with � D 0 in ˝ n BR.z/, � D 1 in Br.z/, and

kr�kL1.˝/ � C�H
�1 (13)

for some generic constant C�. In general, the fine-scale space Ker IH is not
closed under multiplication by a cut-off function and we will need to project the
truncated function �z back into Ker IH by the operator 1 � IH . We assume that the
concatenation of multiplication by � and .1 � IH/ is stable and quasi-local in the
sense that

8w 2 Ker IH W k.1 � IH/.�w/kV;BR.z/nBr.z/ � C�;IH kwkV;BR0 .z/nBr0.z/
(14)

holds with r0 WD r � mH and R0 WD R C mH and generic constants C�;IH > 0

and m 2 N0 independent of H and z. Although the multiplication by � is not a
stable operation in the full space V (think of a constant function), this result is
possible in the space of fine scales for example if IH enjoys quasi-local stability
and approximation properties; see Sect. 4 below for an example. The quasi-locality
of IH is also used in the next argument.
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Assuming that the inf-sup condition (11) holds, the corrector z satisfies

kzkV;˝nBR.z/ D k.1 � IH/zkV;˝nBR.z/

� k.1 � IH/..1 � �/z/kV
� ˇ�1a.w; .1 � IH/..1 � �/z//

D ˇ�1 .a.w; z/� a.w; .1 � IH/.�z///

for some w 2 Ker IH with kwkV D 1. Since supp ..1 � IH/..1 � �/z// � ˝ nBr.z/
there is a good chance to actually find a function w with

suppw � supp ..1 � IH/..1 � �/z// � ˝ n Br.z/:

Of course, this is an assumption that needs to be verified in the particular application.
Under this condition, the term a.w; z/ D a.w; �z/ vanishes because the supports of
w and �z have no overlap. This and (14) imply

kzkV;˝nBR.z/ � ˇ�1CaC�;IH kzkV;BR0 .z/nBr0 .z/

D ˇ�1CaC�;IH
�

kzk2V;˝nBr0 .z/
� kzk2V;˝nBR0 .z/

�1=2

;

where Ca denotes the continuity constant of the sesquilinear form a. Hence, the
contraction

kzk2V;˝nBR0 .z/ � C0

1C C0 kzk2V;˝nBR0
�.2mC1/H.z/

holds with C0 WD .ˇ�1CaC�;IH /
2. The iterative application of this estimate with

R0 7! R0 � .2m C 1/H plus relabelling R0 7! R leads to the conjectured decay

result (12) with constants C WD . C0

1CC0
/
� 1
2.2mC1/ and c WD

ˇ
ˇ
ˇlog. C0

1CC0
/
ˇ
ˇ
ˇ

.1/

2.2mC1/ > 0.

The exponential decay motivates and justifies the localisation of the fine-scale
corrector problems to local subdomains of diameter `H where ` 2 N is a
new discretization parameter, the so-called oversampling parameter. It controls
the perturbation with respect to the ideal global correctors. We will explain this
localisation procedure on the basis of an example in Sect. 4 below. As a rule of
thumb, the localisation to subdomains of diameter `H will introduce an error of
order O.exp.�`//. As long as this error is small when compared with the inf-sup
constant ˛kIHk�1

L.V/ of the ideal method, the stability and approximation properties
of the method will be largely preserved.
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4 Application to Numerical Homogenization of Elliptic PDEs

The first prototypical model problem concerns the diffusion problem � divAru D f
in some bounded domain˝ � R

d with homogeneous Dirichlet boundary condition.
The difficulty is the strongly heterogeneous and highly varying (non-periodic)
diffusion coefficient A. The heterogeneities and oscillations of the coefficient may
appear on several non-separable scales. We assume that the diffusion matrix A 2
L1

�

˝;Rd�d
sym

�

is symmetric and uniformly elliptic with

0 < ˛ D ess inf
x2˝ inf

v2Rdnf0g
.A.x/v/ � v
v � v :

Given f 2 L2.˝/, we wish to find the unique weak solution u 2 V WD H1
0.˝/ such

that

a .u; v/ WD
Z

˝

.Aru/ � rv D
Z

˝

fv DW F.v/ for all v 2 V: (15)

It is well known that classical polynomial based FEMs can perform arbitrarily badly
for such problems, see e.g. [6]. This is due to the fact that finite elements tend to
average unresolved scales of the coefficient and the theory of homogenization shows
that this way of averaging does not lead to meaningful macroscopic approximations.
This is illustrated in the introduction. In the simple periodic example of Fig. 1, the
averaging of the inverse of the diffusion coefficient A (harmonic averaging) would
have lead to the correct macroscopic representation.

In computational homogenization, the impact of unresolved microstructures
encoded in the rough coefficient A on the overall process is taken into account
by the solution of local microscopic cell problems. While many approaches are
empirically successful and robust for certain multiscale problems, the question
whether such methods are stable and accurate beyond the strong assumptions of
analytical homogenization regarding scale separation or even periodicity remained
open for a long time. Only recently, the existence of an optimal approximation of the
low-regularity solution space by some arbitrarily coarse generalised finite element
space (that represents the homogenised problem) was shown in [5, 32]. However,
the constructions therein include prohibitively expensive global solutions of the
full fine scale problem or the solution of more involved eigenvalue problems. The
first efficient and feasible construction, solely based on the solution of localised
microscopic cell problems, was given and rigorously justified in [50] and later
optimised and generalised in [35, 38]. A different approach with presumably similar
properties was later suggested by Owhadi et al. [58] along with the notion of sparse
super-localisation that reflects the locality of the discrete homogenised operator
(similar to the sparsity of standard finite element matrices).

We shall now explain how the abstract theory of the previous sections is related
to the LOD method [50] and its variants. Let GH denote some regular (in the sense of
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Ciarlet) finite element mesh into closed simplices and let VH WD P1.GH/\V denote
the space of continuous functions that are affine when restricted to any element
T 2 GH . Let IH W V ! VH be a quasi-interpolation operator that acts as a stable
quasi-local projection in the sense that IH ı IH D IH and that for any T 2 GH and all
v 2 V there holds

H�1kv � IHvkL2.T/ C kIHvkV;T � CIH krvkV;˝T ; (16)

where ˝T refers to some neighbourhood of T (typically the union of T and the
adjacent elements) and k � kV WD kr � kL2.˝/. One possible choice (among many
others) is to define IH WD EH ı ˘H , where ˘H is the piecewise L2 projection onto
P1.GH/ and EH is the averaging operator that maps P1.GH/ to VH by assigning to
each interior vertex the arithmetic mean of the corresponding function values of the
adjacent elements, that is, for any v 2 P1.GH/ and any free vertex z 2 NH ,

.EH.v//.z/ D 1

cardfK 2 GH W z 2 Kg
X

T2GH Wz2T
vjT.z/:

For this choice, the proof of (16) follows from combining the well-established
approximation and stability properties of ˘H and EH , see for example [20]. The
choice of IH in [35, 50] was slightly different. Therein, the L2.˝/-orthogonal
projection onto VH played the role of IH. Since this a non-local operator, the analysis
was based on the fact that the local quasi-interpolation operator in [12, Sect. 6] has
the same kernel and, hence, induces the same method.

Following the recipe of Sect. 2.1 and taking into account the present setting with
an inner product a, the ideal test space WH WD .Ker IH/?a is simply the orthogonal
complement (w.r.t. a) of the fine scale functions Ker IH .

Given the nodal basis of VH, a basis of WH is computed by means of the trial-to-
test operator T D 1C C, where

8w 2 Ker IH W a.C�z;w/ D �a.�z;w/: (17)

It is easily checked that the assumptions made in Sect. 3 are satisfied in the present
setting. In particular, formula (14) holds with C�;IH D CIH .CIHC� C 1/ and m D 2.
This follows from the product rule, (13), and the local approximation and stability
properties (16) of IH. This implies the exponential decay as it is stated in (12)
with constants C and c independent of variations of the diffusion coefficient A. An
example of a corrector and a test basis function are depicted in Fig. 3 to demonstrate
the exponential decay.

We truncate the computational domain of the corrector problems to local
subdomains of diameter `H roughly. We have not yet described how to do this
in practice. The obvious way would be to simply replace ˝ in (17) with suitable
neighbourhoods of the nodes z. This procedure was used in [50]. However, it
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Fig. 3 Standard nodal basis function �z with respect to the coarse mesh GH (top left), correspond-
ing ideal corrector z D C�z (top right), and corresponding test basis function T �z D .1 C C/�z
(bottom left). The bottom right figure shows a top view on the modulus of test basis function
T �z D .1 C C/�z with logarithmic color scale to illustrate the exponential decay property. The
underlying rough diffusion coefficient A is depicted in Fig. 6

turned out that it is advantageous to consider the following slightly more involved
technique based on element correctors [35, 38].

We assign to any T 2 GH its `th order element patch ˝T;` for a positive integer
`; see Fig. 4 for an illustration. Moreover, we define for all v;w 2 V and ! � ˝ the
localised bilinear forms

a!.v;w/ WD
Z

!

.Arv/ � rw:
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Fig. 4 Element patches ˝T;` for ` D 1; 2; 3 (from left to right) as they are used in the localised
corrector problem (18)

Given any nodal basis function �z 2 VH , let z;`;T 2 Ker IH \ W1;2
0 .˝T;`/ solve

the subscale corrector problem

a˝T;` .z;`;T ;w/ D �aT.�z;w/ for all w 2 Ker IH \ W1;2
0 .˝T;`/: (18)

Let z;` WD P

T2GH Wz2T z;`;T and define the test function

�z;` WD �z C z;`:

The localised test basis function�z;` and the underlying correctors z;`;T can be
seen in Fig. 5. Note that we impose homogeneous Dirichlet boundary condition on
the artificial boundary of the patch which is well justified by the fast decay.

More generally, we may define the localised correction operator C` by

C`vH WD
X

z2NH

vH.z/z;`

as well as the localised trial-to-test operator

T`vH WD 1C C`vH D
X

z2NH

vH.z/�z;`:

The space of test functions then reads

W`
H WD T`VH D spanf�z;` W z 2 NHg

and the (localised) multiscale Petrov-Galerkin FEM seeks uH;` 2 VH such that

a.uH;`;wH;`/ D . f ;wH;`/L2.˝/ for all wH;` 2 WH;`: (19)
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Fig. 5 Localised element correctors z;`;T for ` D 2 and all four elements T adjacent to the
vertex z D Œ0:5; 0:5	 (top), localised nodal corrector z;` D C`�z D P

T3z z;`;T (bottom left) and
corresponding test basis function �z;` D T`�z D .1C C`/�z (bottom right). The underlying rough
diffusion coefficient is depicted in Fig. 6. The computations have been performed by standard linear
finite elements on local fine meshes of with h D 2�8. See Fig. 3 for a comparison with the ideal
global corrector and basis

In previous papers [35, 38, 50] we have considered the symmetric version with
WH;` as trial and test space and also the reverse version with WH;` as the trial space
and VH as test space [25]. All these methods are essentially equal in the ideal case
and there are no major changes in the output after localisation (when only the VH

part of the discrete solution is considered). When it comes to implementation and
computational complexity, the present Petrov-Galerkin version has the advantage
that there is no communication between the correctors. This means that the fine-
scale solutions of the corrector problems need not to be stored but only their
interaction with the O.`d/ standard nodal basis functions in their patches; see also
[25] for further discussions regarding those technical details.

The error analysis of the localised method follows similar arguments. Let uH 2
VH be the ideal Petrov-Galerkin approximation and let eH WD uH � uH;` 2 VH

denote the error with respect to the ideal method. Then there exists some zH 2 WH

with kzHkV D 1 such that

˛

kIHkL.V/ keHkV � a.eH; zH/ D a.uH;` � u; zH � zH;`/;
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where zH;` 2 WH;`. The exponential decay property allows one to choose zH;` in
such a way that kzH � zH;`kV � QC exp.�c`/; see for instance [35, 38]. This shows
that

ku � uH;`kV � ku � uHkV C kuH � uH;`kV
� ku � uHkV C kIHkL.V/Ca

˛
QC exp.�c`/ku � uH;`kV :

We shall emphasise that, in the present context, the constants QC and c are
independent of variations of the rough diffusion tensor but they may depend on the
contrast (the ratio between the global upper and lower bound of A). Using (8), this
shows that the moderate choice ` 
 j log.˛=.2kIHkL.V/Ca QC//j=c D O.1/ implies
the quasi-optimality (and also the well-posedness) of the Petrov-Galerkin method
with respect to the V-norm

ku � uH;`kV � 2kIHkL.V/ min
vH2VH

ku � vHkV :

With regard to the fact that the V-best approximation may be poor and standard
Galerkin would have provided us with an even better estimate at lower cost, this
result is maybe not very impressive. Let us see if we can do something similar for the
L2-norm which appears to be the relevant measure in the context of homogenization
problems. A standard duality argument shows that

keHk2L2.˝/ D a.eH; zH/ D a.u � uH;`; zH � zH;`/

for some zH 2 WH with kzHkV � C3˛�1kIHkL.V/keHkL2.˝/ and zH;` WD T`IHzH 2
WH;`. Similar arguments as before yield

ku � uH;`kL2.˝/ � C1 min
vH2VH

ku � vHkL2.˝/ C C2 exp.�c`/ min
vH2VH

ku � vHkV ;

where C1 WD kIHkL.L2.˝// and C2 WD Ca QCC3˛�1kIHkL.V/. This shows that the
method is accurate also in the L2-norm regardless of the regularity of u. If the
oversampling parameter is chosen such that ` & logH, then the method is O.H/
accurate in L2.˝/ with no pre-asymptotic phenomena. This is the best worst-case
rate one can expect for general f 2 V 0 and A 2 L1.

Note that the previous results hold true for general L1-coefficients and all
constants are independent of the variations of the diffusion tensor as far as the
contrast remains moderately bounded. In particular, the approach is by no means
restricted to periodic coefficients or scale separation. For a more detailed discussion
of high-contrast problems in this context we refer to [60].

The final step towards a fully practical method is the discretization of the fine-
scale corrector problems. With regard to the possible low regularity of the solution,
P1 finite elements on a refined mesh Gh appears reasonable, but any other type of
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Fig. 6 Diffusion coefficient in the numerical experiment of Sect. 4 and coarsest mesh

discretisation is possible. Obviously, the fine-scale discretization parameter h has to
be chosen fine enough to resolve all relevant features of the diffusion coefficient.
The previous theory can be transferred to this case in a straight-forward way and we
refer to [34, 35, 50] for the technical details.

To illustrate the previous estimates, we close this section with a numerical
experiment. Let ˝ be the unit square and the outer force f � 1 in ˝ . Consider
the coefficient A that is piecewise constant with respect to a uniform Cartesian grid
of width 2�6. Its values are randomly chosen between 1 and 10; see Fig. 6. Consider
uniform coarse meshes GH of size H D 2�1; 2�2; : : : ; 2�5 of ˝ that certainly do
not resolve the rough coefficient A appropriately. The reference mesh Gh has width
h D 2�9. Since no analytical solutions are available, the standard finite element
approximation uh 2 Vh on the reference mesh Gh serves as the reference solution.
Doing this, we assume that uh is sufficiently accurate and, necessarily, that Gh

resolves the discontinuities of A. The corrector problems are also are also solved
on this scale of numerical resolution.

The numerical results, i.e. errors with respect to the reference solution uh are
depicted in Fig. 7. The results are in agreement with the theoretical results. They
are even better in the sense that ` D 1 seems to be sufficient for quasi-optimality
(with respect to uh) in the present setup and parameter regime. We expect that the
true errors with respect to u would behave similar in the beginning but level off at
some point when the reference error starts to dominate the upscaling error. Still,
the experiment clearly indicates that numerical homogenization is possible for very
general L1-coefficients.

We refer to [3, 9, 23, 25, 34–38, 50, 51] for many more numerical experiments for
several model problems including nonlinear stationary and non-stationary problems
as well as eigenvalue problems.
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Fig. 7 Numerical experiment of Sect. 4. Relative L2-errors of multiscale Petrov-Galerkin
FEM (19) versus the number of degrees of freedom NH � H�2, where H D 2�1; : : : ; 2�5 is
the uniform coarse mesh size. The localisation parameter varies between ` D 1; : : : ; 3. The P1-FE
solution and the best-approximation in the P1-FE space on the same coarse meshes are depicted
for comparison

5 Application to High-Frequency Acoustic Scattering

This section will show that the abstract framework of Sects. 2–3 is indeed applicable
beyond the coercive and symmetric model problem of the previous section. We
consider the scattering of acoustic waves at a sound-soft scatterer modelled by the
Helmholtz equation over a bounded Lipschitz domain˝ � R

d (d D 1; 2; 3),

��u � �2u D f in ˝; (20a)

along with mixed boundary conditions of Dirichlet and Robin type

u D 0 on �D; (20b)

ru � � � i�u D 0 on �R: (20c)

Here, the wave number � � 1 is real and positive, i denotes the imaginary unit and
f 2 L2.˝;C/. We assume that the boundary � WD @˝ consists of two components

@˝ D �D [ �R; � D \ � R D ;
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where �D encloses the scatterer and �R is an artificial truncation of the whole
unbounded space. The vector � denotes the unit normal vector that is outgoing
from˝ .

Given f 2 L2.˝;C/, we wish to find u 2 V WD fv 2 W1;2.˝;C/ j v D 0 on �Dg
such that, for all v 2 V ,

a.u; v/ WD
Z

˝

ru � r Nv � �2
Z

˝

u Nv � i�
Z

�R

u Nv D
Z

˝

f Nv DW F.w/: (21)

The space V is equipped with the usual �-weighted norm kvk2V WD �2kvk2
L2.˝/

C
krvk2

L2.˝/
. The presence of the Robin boundary condition (20c) ensures that this

variational problem is well-posed in the sense of (2) with ˛ D 1=Cst.�/ for
some �-dependent stability constant Cst.�/; see e.g. [26]. The dependence on the
wave number � is not known in general. An exponential growth with respect
to the wave number is possible [8] in non-generic domains. In most cases, the
growth seems to be only polynomially, although this is an empirical rather than
a theoretical statement, and sufficient geometric conditions for this to hold are rare
[17, 26, 46, 53]. For the above scattering problem, we know that Cst.�/ � O.�/ if
˝ is convex and if the scatterer is star-shaped [39].

It is this �-dependence in the stability of the problem that makes the numerical
approximation by FEM or related schemes extremely difficult in the regime of
large wave numbers. Any perturbation of the problem, e.g. by some discretization,
can be amplified by Cst.�/. We have seen in the introduction that this is indeed
observed in practice and causes a pre-asymptotic effect known as the pollution
effect or numerical dispersion [7]. This effect puts very restrictive assumptions
on the smallness of the underlying mesh that is much stronger than the minimal
requirement for a meaningful representation of highly oscillatory functions from
approximation theory, that is, to have at least 5–10 degrees of freedom per wave
length and coordinate direction.

It is the aim of many newly developed methods to overcome or at least to reduce
the pollution effect; see [19, 27, 28, 40, 64, 66] among many others. However,
the only theoretical results regard high-order FEMs with the polynomial degree
p coupled to the wave number � via the relation p � log � [26, 54–56]. Under
this moderate assumption, those methods are stable and quasi-optimal in the regime
H�=p . 1 for certain model Helmholtz problems.

The multiscale method in [59] then showed that pollution in the numerical
approximation of the Helmholtz problem can also be cured for a fairly large class
of Helmholtz problems, including the acoustic scattering from convex non-smooth
objects, by stabilization in the present framework. If the data of the problem
(domain, boundary condition, force term) allows for polynomial-in-� bounds of
Cst.�/ and if the resolution condition H� . 1 and the oversampling condition
log.�/=` . 1 are satisfied, then the method is stable and quasi-optimal in the V-
norm.
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The recent paper [29] interprets the method of [59] in the present framework and
we recall it here very briefly. Given the same discrete setup as in the previous section
with some simplicial mesh GH , corresponding P1 FE space VH WD P1.GH/\ V , and
quasi-interpolation operator IH W V ! VH, the multiscale Petrov-Galerkin method
is formally defined in the same way. We simply replace the inner product of Sect. 4
with the sesquilinear form a of this section.

Given any nodal basis function �z 2 VH, we construct a corresponding test basis
function �z;` by the same procedure as in the previous section, �z;` WD �z C z;`,
where z;` WD P

T2GH Wz2T z;T and z;T solves the cell problem

a˝T;` .w; z;T/ D �aT.w; �z/ for all w 2 Ker IH with suppw � N̋ T :

Here,

a!.u; v/ WD
Z

˝\!
ru � r Nv � �2

Z

˝\!
u Nv � i�

Z

�R\@!
u Nv

for ! 2 f˝T;`;Tg. Note that the corrector problem inherits the boundary condition
from the original problem is the patch boundary coincides with the boundary of
˝ . On the part of the patch boundary that falls in the interior of ˝ , we simply
put the homogeneous Dirichlet condition. A major observation is that this corrector
problem is well-posed and, in particular, coercive with ˇ D 1=3 under the condition
H� � cres for some given constant 0 < cres D O.1/ that only depends on the
constant in (16) but not on H or �. This is because a satisfies a Gårding inequality
and fine-scale functions satisfy kwkL2.˝/ � CIHHkrwkL2.˝/. This coercivity also
implies the desired exponential decay of the ideal correctors so that the choice˝T;`

is well justified. This can also be observed in Fig. 8.
The space of localised test functions then reads WH;` WD spanf�z;` W z 2 NHg

and the multiscale Petrov-Galerkin FEM seeks uH;` 2 VH such that

a.uH;`;wH;`/ D F.wH;`/ for all wH;` 2 WH;`: (22)

The quasi-optimality result of the previous section is easily transferred to the
present setting. The resolution condition H� � cres and the oversampling condition

` 
 j log.˛=.2kIHkL.V/Ca QC//j=c D O.logCst.�//

imply the quasi-optimality (and stability) of the multiscale Petrov-Galerkin method
with respect to the V-norm

ku � uH;`kV � 2kIHkL.V/ min
vH2VH

ku � vHkV :

Here, the constants c and QC are related to the exponential decay of the test basis
[cf. (12)] and they are independent of � under the resolution condition. We shall
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Fig. 8 Real and imaginary part of the ideal corrector C�z (top left and middle). The top right
figure shows a top view on the modulus of test basis function T �z D .1 C C/�z with logarithmic
color scale to illustrate the exponential decay property. The underlying computational domain is
the unit square with a Robin boundary condition everywhere. The wave number � D 24 is chosen
such that the resolution condition on the coarse mesh is just satisfied. The localised nodal corrector
z;` D C`�z (bottom left) and corresponding test basis function �z;` D T �z (bottom right) are
real-valued because the patch boundary doesn’t touch the domain boundary. The local fine meshes
used in the computation have width h D 2�8

emphasise that such a best-approximation property does not hold for standard FEMs
which require e.g. �2H . 1 for quasi-optimality [53] in the case of pure Robin
boundary conditions on a convex planar domain. The FEM approximation is not
even known to exist unless �3=2H . 1 in the simplest model problem without a
scatterer [65].

For the multiscale Petrov-Galerkin method, the result means that pollution effects
do not occur. Note that the resolution condition H� � cres is somewhat minimal,
because any meaningful approximation of the highly oscillatory solution of (20)
requires at least 5–10 degrees of freedom per wave length and coordinate direction.
Saying this, we assume that the fine scale corrector problems are solved sufficiently
accurate; see [29, 59] for details.
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We shall present a numerical experiment taken from [59] where this version of
the method was already considered experimentally. Consider the scattering from
sound-soft scatterer occupying the triangle˝D. The Sommerfeld radiation condition
of the scattered wave is approximated by the Robin boundary condition on the
boundary �R WD @˝R of the unit square so that ˝ WD .0; 1/2 n ˝D is the
computational domain; see Fig. 9. Given the wave number � D 27, the incident
wave uinc.x/ WD exp.i� x � Œcos.0:5/; sin.0:5/	T/ is prescribed via an inhomogeneous
Dirichlet boundary condition on �D WD @˝D and the scattered wave satisfies (20a)
with f � 0 and the boundary conditions

u D �uinc on �D;

ru � � � i�u D 0 on �R:

The error analysis extends to this setting in a straight-forward way.
We choose uniform coarse meshes of widths H D 2�3; : : : ; 2�7 as depicted

in Fig. 9. The reference mesh Gh is derived by uniform mesh refinement of the
coarse meshes and has mesh width h D 2�9. The corresponding P1 conforming
finite element approximation on the reference mesh Gh is denoted by Vh. As in the
previous section, we compare the coarse scale approximations uH;`;h 2 VH with
some reference solution uh 2 Vh.

Figure 10 depicts the results for the multiscale Petrov-Galerkin method and
shows that the pollution effect that is present in the P1 FEM is eliminated when
` is moderately increased. For the present wave number ` D 2 is sufficient.

Further numerical experiments are reported in [29, 59]. It is worth noting that the
latter work also exploits the homogeneous structure of the PDE coefficients in the
sense that only very few of the fine-scale corrector problems are actually solved due
to translation invariance and symmetry. This makes the approach competitive.

A very natural and straight forward generalisation of the method would be the
case of heterogeneous media. The previous section plus the analysis of this section
strongly indicate the potential of the method to treat high oscillations or jumps in
the PDE coefficients and the pollution effect in one stroke [10].

Fig. 9 Computational domain of the model problem of Sect. 5 and coarsest mesh
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Fig. 10 Numerical experiment of Sect. 5: Relative V-norm errors of multiscale Petrov-Galerkin
method (22) with wave number � D 27 depending on the number of degrees of freedom NH �
H�2, where H D 2�5; : : : ; 2�7 is the uniform coarse mesh size. The reference mesh size h D 2�9

remains fixed. The oversampling parameter ` varies between 1 and 3. The P1-FE solution and the
best-approximation in the P1-FE space on the same coarse meshes are depicted for comparison

6 Final Remarks

We have presented an abstract framework for the stabilization of numerical methods
for multiscale partial differential equations with some focus on highly oscillatory
problems. The methodology is based on the variational multiscale method and the
more recent development of localised orthogonal decompositions. We have provided
an abstract numerical analysis of the method which is applied to two representative
model problems, a homogenization problem and a scattering problem. We have
shown that the methodology can indeed eliminate critical scale-dependent pre-
asymptotic effects in these cases. While the framework has already been applied
successfully to other problem classes such as linear and non-linear eigenvalue
problems, we expect that the framework will also be useful for convection-
dominated flow, the problem that the variational method was initially designed for.

The multiscale method presented in this paper is shown to be stable and accurate
under moderate assumptions on the discretization parameters relative to character-
istic parameters and length scales of the problem. These valuable properties require
the pre-computation of the test basis on subgrids. These pre-computations are both
local and independent, but the worst-case (serial) complexity of the method can
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exceed the cost of a direct numerical simulation on a global sufficiently fine mesh.
If the inherent parallelism of the local cell problems cannot be exploited during
the computation, we still expect a significant gain with respect to computational
complexity if the pre-computation can be reused several times in the context of
parameter studies, coupled problems, optimal control problems or inverse problems.
In many cases, there is also a lot of redundancy in the local problems which allows
one to reduce the number of local problems drastically as it is shown in [29] in the
context of acoustic scattering. We expect that this technique can be generalised to far
more general situations using modern techniques of model order reduction [1, 61].

We may close the discussion with some rather philosophical remark regarding
the stabilization of FEMs and their inter-element continuity properties. Presently, it
is believed, e.g. in the context of time-harmonic wave propagation, that stability can
be increased by relaxing inter-element continuity within a discontinuous Galerkin
(DG) framework. The large number of variants includes the ultra weak variational
formulation [13], Trefftz methods [40], dPG [19, 66], or the continuous interior
penalty method [65]. There may be some truth in this but the general impression
that relaxing continuity is the only way is certainly false as one can observe from
the method presented in this paper. The multiscale Petrov-Galerkin does quite the
opposite. The regularity of the test functions is increased compared to standard
continuous finite elements, because they are solutions of second-order elliptic
problems (at least in the ideal case). In general, test functions wH 2 WH have the
property that divArwH 2 L2.˝/. In the context of the Helmholtz model problem
of Sect. 5 where A D 1 this means that �WH � L2.˝/. If ˝ is convex and
boundary conditions are appropriate, then WH � W2;2.˝/ (this can be observed
for one basis function in Fig. 8). In this respect, our methodology clearly indicates
that increased differentiability might as well lead to increased stability and accuracy.
Similar effects have been observed for eigenvalue computations in IGA [15, 30] and
also LOD [51]. This shows that breaking the inter-element continuity is not at all
necessary for stability.
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Discontinuous Galerkin Methods
for Time-Dependent Convection Dominated
Problems: Basics, Recent Developments
and Comparison with Other Methods

Chi-Wang Shu

Abstract In this survey article, we will give a short summary of the basic algorithm
issues of discontinuous Galerkin methods for time-dependent convection dominated
problems. We will then give a few representative examples of recent developments
of discontinuous Galerkin methods for such problems, and provide comparisons
with several other types of numerical methods commonly used for similar or related
problems. For the comparison, we concentrate mainly on the methods presented
in the London Mathematical Society EPSRC Durham Symposium on Building
Bridges: Connections and Challenges in Modern Approaches to Numerical Partial
Differential Equations.

1 Introduction

This survey article is based on and expanded from the lectures given by the author
in the London Mathematical Society EPSRC Durham Symposium on Building
Bridges: Connections and Challenges in Modern Approaches to Numerical Partial
Differential Equations, which was held on July 8–16, 2014 at the University of
Durham. The central topic of these lectures given by the author is the discontinuous
Galerkin (DG) method for time-dependent convection dominated problems.

We will start with a concise summary of the basic algorithm issues of discon-
tinuous Galerkin methods for time-dependent convection dominated problems in
Sect. 2. In Sect. 3, we will give a few representative examples of recent develop-
ments of discontinuous Galerkin methods for such problems. Since the main theme
of the Durham Symposium was on “building bridges” between different numerical
methods, we will attempt to give comparison remarks between the discontinuous
Galerkin method and several other numerical methods commonly used to solve
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similar or related problems. For the purpose of comparison, we will concentrate
mainly on the methods presented in the Durham Symposium.

2 Discontinuous Galerkin Methods for Time-Dependent
Convection Dominated Problems

We are concerned with time-dependent convection dominated partial differential
equations (PDEs). These include hyperbolic conservation laws, convection domi-
nated convection-diffusion equations, convection dominated convection-dispersion
equations, etc. For such problems, generic solutions contain shocks or rapid
changing regions in the solutions of the PDEs, calling for special care in the design
of numerical methods in order to achieve stability and accuracy. Our discussions
will mainly concentrate on the spatial discretization. The time variable is either left
undiscretized (method of lines) or discretized by standard explicit Runge-Kutta or
multi-step methods, for example the total-variation-diminishing (TVD) or strong-
stability-preserving (SSP) time discretizations [41, 94]. This is adequate as long as
the problem remains truly convection dominated, hence the time step restriction for
explicit time discretization will not be too severe.

Discontinuous Galerkin methods are a class of finite element methods using
discontinuous basis functions, which are usually chosen as piecewise polynomials,
but could also be chosen as other types of functions to suit specific needs (e.g. in
[119, 133]). The DG methods are especially suitable for time-dependent convection
dominated PDEs with explicit time discretizations. Since the basis functions are
completely discontinuous, the DG methods have the flexibility which is not shared
by typical continuous finite element methods, such as the allowance of arbitrary
triangulation with hanging nodes, complete freedom in changing the polynomial
degrees or even the type of basis functions in each element independent of that
in the neighbors (p adaptivity), and extremely local data structure (elements only
communicate with immediate neighbors regardless of the order of accuracy of the
scheme) and the resulting embarrassingly high parallel efficiency (usually more than
99% for a fixed mesh, and more than 80% for a dynamic load balancing with
adaptive meshes which change often during time evolution), see, e.g. [7, 86, 95].
The DG method is also very friendly to the GPU environment [58].

The first discontinuous Galerkin method was introduced in 1973 by Reed and
Hill [85], in the framework of neutron transport, i.e. a time independent linear
hyperbolic equation. A major development of the DG method is carried out by
Cockburn et al. in a series of papers [20, 21, 23, 27, 28], in which they have
established a framework to easily solve nonlinear time-dependent problems, such
as the Euler equations of gas dynamics, using explicit, nonlinearly stable high order
Runge-Kutta time discretizations [94] and DG discretization in space with exact or
approximate Riemann solvers as interface fluxes and total variation bounded (TVB)
nonlinear limiters [92] to achieve non-oscillatory properties for strong shocks.
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The DG method has found rapid applications in diverse areas. For more details,
we refer to the survey paper [29], and other papers in that Springer volume,
which contains the conference proceedings of the First International Symposium
on Discontinuous Galerkin Methods held at Newport, Rhode Island in 1999. The
lecture notes [18] is a good reference for many details, as well as the extensive
review paper [24]. The review paper [113] covers the local DG method for partial
differential equations (PDEs) containing higher order spatial derivatives, such as
Navier-Stokes equations. There are three special issues devoted to the discontinuous
Galerkin methods [25, 26, 32], which contain many interesting papers in the
development of the method in all aspects including algorithm design, analysis,
implementation and applications. There are also a few recent books and lecture notes
[35, 46, 57, 65, 88, 93] on DG methods.

2.1 Discontinuous Galerkin Method for Conservation Laws

The discontinuous Galerkin method was first designed as an effective numerical
method for solving hyperbolic conservation laws, which may have discontinuous
solutions. It remains to be the focal application area of DG methods and the area
where the advantage of DG method is most clearly demonstrated.

We start our discussion with the one dimensional conservation law

ut C f .u/x D 0: (1)

We assume the following mesh to cover the computational domain Œ0; 1	, consisting
of cells Ii D Œxi� 1

2
; xiC 1

2
	, for 1 � i � N, where

0 D x 1
2
< x 3

2
< � � � < xNC 1

2
D 1:

We denote

�xi D xiC 1
2

� xi� 1
2
; 1 � i � NI h D max

1�i�N
�xi:

We define a finite element space consisting of piecewise polynomials

Vk
h D ˚

v W vjIi 2 Pk.Ii/I 1 � i � N


; (2)

where Pk.Ii/ denotes the set of polynomials of degree up to k defined on the cell Ii.
The semi-discrete DG method for solving (1) is defined as follows: find the unique
function uh D uh.t/ 2 Vk

h such that, for all test functions vh 2 Vk
h and all 1 � i � N,

we have
Z

Ii

.uh/t.vh/dx �
Z

Ii

f .uh/.vh/xdx C OfiC 1
2
vh.x

�
iC 1

2

/� Ofi� 1
2
vh.x

C
i� 1

2

/ D 0: (3)
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Here, OfiC 1
2

is the numerical flux, which is a single valued function defined at the cell
interface xiC 1

2
and in general depends on the values of the numerical solution uh

from both sides of the interface

OfiC 1
2

D Of .uh.x�
iC 1

2

; t/; uh.x
C
iC 1

2

; t//:

For scalar equations, we use the so-called monotone fluxes from finite difference
and finite volume methodology for solving conservation laws. We refer to, e.g., [63]
for more details and examples of monotone fluxes.

There are several key issues of DG methods for solving conservation laws (1)
which are worth mentioning:

Cell Entropy Inequality and Energy Stability It is well known that weak
solutions of (1) may not be unique and the unique, physically relevant weak solution
(the so-called entropy solution) satisfies the following entropy inequality

U.u/t C F.u/x � 0 (4)

in distribution sense, for any convex entropy U.u/ satisfying U00.u/ 
 0 and the
corresponding entropy flux F.u/ D R u U0.u/f 0.u/du. It is usually quite difficult to
prove a discrete entropy inequality for finite difference or finite volume schemes,
especially for high order schemes and when the flux function f .u/ in (1) is not
convex or concave, see, e.g. [66, 77]. However, it turns out that it is easy to prove
that the DG scheme (3) satisfies a cell entropy inequality [54].

Proposition 2.1 ([54]) The solution uh to the semi-discrete DG scheme (3) satisfies
the following cell entropy inequality

d

dt

Z

Ii

U.uh/ dx C OFiC 1
2

� OFi� 1
2

� 0 (5)

for the square entropy U.u/ D u2

2
, for a consistent entropy flux

OFiC 1
2

D OF.uh.x�
iC 1

2

; t/; uh.x
C
iC 1

2

; t//

satisfying OF.u; u/ D F.u/.

We remark that the result holds for the piecewise polynomial space (2) with
any degree k. Also, the same result holds for the multi-dimensional DG scheme
on any triangulation [54], for symmetric hyperbolic systems [47], as well as for
the fully discrete Runge-Kutta DG scheme for linear equations [126]. Such cell
entropy inequalities (which is essentially a local stability result), which hold even
when the exact solution of the conservation law (1) is discontinuous, and the trivial
consequence of global L2 stability of the numerical solution stated below, are
the main strong points of discontinuous Galerkin methods for solving convection
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dominated problems. A major line of research for DG methods is to prove such
stability results for various DG methods designed for different nonlinear convection
dominated PDEs. The stability result is more important than error estimates. This
is because stability holds for general solutions, including discontinuous solutions,
while most error estimates only hold for smooth solutions.

Proposition 2.2 ([54]) For periodic or compactly supported boundary conditions,
the solution uh to the semi-discrete DG scheme (3) satisfies the following L2 stability

d

dt

Z 1

0

.uh/
2dx � 0; (6)

or

kuh.�; t/k � kuh.�; 0/k: (7)

Here and below, an unmarked norm is the usual L2 norm.

Limiters and Total Variation Stability For discontinuous solutions, the cell
entropy inequality (5) and the L2 stability (6), although helpful, are not enough to
control spurious numerical oscillations near discontinuities. In practice, especially
for problems containing strong discontinuities, we often need to apply nonlinear
limiters to control these oscillations and to obtain provable total variation stability.
Most of the limiters studied in the literature come from the methodologies of finite
volume and finite difference high resolution schemes.

A limiter can be considered as a post-processor for the DG solution. If a cell is
suspected to contain a possible discontinuity (the so-called troubled cells), the DG
polynomial in this cell is replaced by a new polynomial, of the same degree and
with the same cell average (for conservation), which is hopefully less oscillatory
than the old one. The difficulty is that one would hope also that, if the solution in
this troubled cells happens to be smooth, then the new polynomial should still be
as high order accurate as the old one. Some limiters are applied to all cells, while
they should take effect (actually change the polynomial) only in the cells near the
discontinuities. The total variation diminishing (TVD) limiters [44] belong to this
class. Unfortunately, such limiters tend to take effect also in some cells in which the
solution is smooth, for example in cells near smooth extrema of the exact solution.
Accuracy is therefore lost in such cells. The total variation bounded (TVB) limiters
[92], applied to Runge-Kutta DG (RKDG) schemes in [20, 23, 27, 28], attempt
to remove this difficulty and to ensure that the limiter takes effect only in cells
near the discontinuities. The TVB limiters are widely used in applications, because
of their simplicity in implementation. However, they involve a parameter, related
to the value of the second derivative of the exact solution near smooth extrema,
which must be chosen by the user. The moment-based limiter [7] and the improved
moment limiter [9] also belong to this class, and they are specifically designed for
DG methods and limit the moments of the polynomial sequentially, from the highest
order moment downwards. Unfortunately, the moment-based limiters may also take
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effect in certain smooth cells, thereby destroying accuracy in these cells. There are
other types of limiters discussed in the literature which we will not review in this
paper. We will however discuss some recent developments on the design of limiters
in Sect. 3.

Error Estimates for Smooth Solutions If we assume the exact solution of (1) is
smooth, we can obtain optimal L2 error estimates. That is, for piecewise polynomial
of degree k, we can obtain (k C 1)-th order L2 error estimates for the DG
solution. Such error estimates can be obtained for the general nonlinear conservation
law (1) and for fully discretized RKDG methods, for both scalar problems and
for symmetrizable hyperbolic systems, as long as the purely upwind numerical
fluxes are used and tensor product meshes and polynomial spaces are used, see,
e.g. [10, 72, 121, 122, 126]. Optimal error estimates can also be obtained for DG
methods on certain special types of triangulations for non-tensor product cases with
purely upwind fluxes, e.g. in [30, 87]. For other cases, namely fluxes which are not
purely upwind, or general unstructured meshes, sub-optimal L2 error estimates of
order (k C 1=2) can be proved, e.g. [56]. More recently, optimal (k C 1)-th order
L2 error estimates are obtained for certain upwind-biased but non-purely upwind
fluxes in [74]. We will discuss some recent developments on the error estimates of
DG methods for non-smooth solutions in Sect. 3.

2.2 Discontinuous Galerkin Method for Convection Diffusion
Equations

The DG method can be extended to solve time dependent convection diffusion
equations

ut C
dX

iD1
fi.u/xi �

dX

iD1

dX

jD1
.aij.u/uxj/xi D 0; (8)

where .aij.u// is a symmetric, semi-positive definite matrix. We still assume the
PDE (8) is convection dominated, namely .aij.u// is small (e.g. has a small
coefficient in front) or could even vanish (degenerate) in certain parts of the
computational domain.

For equations containing higher order spatial derivatives, such as the convection
diffusion equation (8), care must be taken when designing discontinuous Galerkin
methods. A naive and careless application of the discontinuous Galerkin method
directly to the heat equation containing second derivatives could yield a method
which behaves nicely in the computation but is “inconsistent” with the original
equation and has O.1/ errors to the exact solution [24, 120].

There are however several different ways to correctly generalize DG schemes to
solve the convection diffusion equations (8).
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Local Discontinuous Galerkin Method The idea of the local discontinuous
Galerkin (LDG) method for time-dependent partial differential equations with
higher derivatives, such as the convection diffusion equation (8), is to rewrite the
equation into a first order system, then apply the discontinuous Galerkin method on
the system. A key ingredient for the success of such methods is the correct design
of interface numerical fluxes. These fluxes must be designed to guarantee stability
and local solvability of all the auxiliary variables introduced to approximate the
derivatives of the solution. The local solvability of all the auxiliary variables is why
the method is called a “local” discontinuous Galerkin method in [22].

The first local discontinuous Galerkin method was developed by Cockburn and
Shu [22], for the convection diffusion equation (8) containing second derivatives.
Their work was motivated by the successful numerical experiments of Bassi and
Rebay [4] for the compressible Navier-Stokes equations.

We consider the one dimensional convection diffusion equation

ut C f .u/x D .a.u/ux/x (9)

with a.u/ 
 0, as an example. We rewrite this equation as the following system

ut C f .u/x D .b.u/q/x; q � B.u/x D 0; (10)

where

b.u/ D p

a.u/; B.u/ D
Z u

b.u/du: (11)

The finite element space is still given by (2). The semi-discrete LDG scheme is
defined as follows. Find uh; qh 2 Vk

h such that, for all test functions vh; ph 2 Vk
h and

all 1 � i � N, we have

R

Ii
.uh/t.vh/dx � R

Ii
. f .uh/ � b.uh/qh/.vh/xdx

C. Of � ObOq/iC 1
2
.vh/

�
iC 1

2

� . Of � ObOq/i� 1
2
.vh/

C
i� 1

2

D 0; (12)

R

Ii
qhphdx C R

Ii
B.uh/. ph/xdx � OBiC 1

2
. ph/�iC 1

2

C OBi� 1
2
. ph/

C
i� 1

2

D 0:

Here, all the “hat” terms are the numerical fluxes, namely single valued functions
defined at the cell interface xiC 1

2
which typically depend on the discontinuous

numerical solution from both sides of the interface. We already know from Sect. 2.1
that the convection flux Of should be chosen as a monotone flux. However, the
upwinding principle is no longer a valid guiding principle for the design of the
diffusion fluxes Ob, Oq and OB. In [22], sufficient conditions for the choices of these
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diffusion fluxes to guarantee the stability of the scheme (12) are given. Here, we
will discuss a particularly attractive choice, called “alternating fluxes”, defined as

Ob D B.uC
h / � B.u�

h /

uC
h � u�

h

; Oq D qC
h ;

OB D B.u�
h /: (13)

The important point is that Oq and OB should be chosen from different directions. Thus,
the choice

Ob D B.uC
h / � B.u�

h /

uC
h � u�

h

; Oq D q�
h ;

OB D B.uC
h /

is also fine.
Notice that, from the second equation in the scheme (12), we can solve qh

explicitly and locally (in cell Ii) in terms of uh, by inverting the small mass matrix
inside the cell Ii. This is why the method is referred to as the “local” discontinuous
Galerkin method.

Similar to the case for hyperbolic conservation laws, we also have the following
“cell entropy inequality” for the LDG method (12).

Proposition 2.3 ([22]) The solution uh, qh to the semi-discrete LDG scheme (12)
satisfies the following “cell entropy inequality”

1

2

d

dt

Z

Ii

.uh/
2 dx C

Z

Ii

.qh/
2dx C OFiC 1

2
� OFi� 1

2
� 0 (14)

for some consistent entropy flux
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D OF.uh.x�
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2

; t/; qh.x
�
iC 1

2

; t/I uh.xC
iC 1

2

; t/; qh.x
C
iC 1

2

//

satisfying OF.u; u/ D F.u/� ub.u/q where, as before, F.u/ D R u uf 0.u/du.

The proof does not depend on the accuracy of the scheme, namely it holds for
the piecewise polynomial space (2) with any degree k. Also, the same proof can be
given for multi-dimensional LDG schemes on any triangulation. As before, the cell
entropy inequality trivially implies an L2 stability of the numerical solution.

Proposition 2.4 For periodic or compactly supported boundary conditions, the
solution uh, qh to the semi-discrete LDG scheme (12) satisfies the following L2

stability

d

dt

Z 1

0

.uh/
2dx C 2

Z 1

0

.qh/
2dx � 0; (15)

or

kuh.�; t/k C 2

Z t

0

kqh.�; �/kd� � kuh.�; 0/k: (16)
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Both the cell entropy inequality (14) and the L2 stability (15) are valid regardless
of whether the convection diffusion equation (9) is convection dominated or diffu-
sion dominated and regardless of whether the exact solution is smooth or not. The
diffusion coefficient a.u/ can be degenerate (equal to zero) in any part of the domain.
The stability analysis is also valid for multi-dimensional cases (8) on arbitrary
triangulations. The LDG method is particularly attractive for convection dominated
convection diffusion equations, when traditional continuous finite element methods
are less stable.

If we assume the exact solution of (9) is smooth, we can obtain optimal O.hkC1/
L2 error estimates. Such error estimates can be obtained for the general nonlinear
convection diffusion equation (9), see, e.g. [110]. For multi-dimensional problems,
the optimal O.hkC1/ error estimates can be obtained on tensor product meshes and
polynomial spaces. For general triangulations and piecewise polynomials of degree
k, a sub-optimal error estimate of O.hk/ can be obtained, see [22, 110].

Internal Penalty Discontinuous Galerkin Methods Another important class
of DG methods for solving diffusion equations is the class of internal penalty
discontinuous Galerkin methods. We will use the simple heat equation

ut D uxx (17)

to demonstrate the idea. If we multiply both sides of (17) by a test function v and
integrate over the cell Ii, and integrate by parts for the right-hand-side, we obtain the
equality

Z

Ii

utvdx D �
Z

Ii

uxvxdx C .ux/iC 1
2
v�
iC 1

2

� .ux/i� 1
2
vC
i� 1

2

(18)

where we have used superscripts ˙ on v at cell boundaries to prepare for numerical
schemes involving functions which are discontinuous at those cell boundaries.
Summing over i, we obtain, with periodic boundary conditions for simplicity, the
following equality

Z b

a
utvdx D �

NX

iD1

Z

Ii

uxvxdx �
NX

iD1
.ux/iC 1

2
Œv	iC 1

2
(19)

where Œw	 � wC � w� denotes the jump of w at the cell interface. If we attempt to
convert the equality (19) into a numerical scheme, we could try the following. Find
uh 2 Vk

h such that, for all test functions vh 2 Vk
h , we have

Z b

a
.uh/t.vh/dx D �

NX

iD1

Z

Ii

.uh/x.vh/xdx �
NX

iD1
f.uh/xgiC 1

2
Œvh	iC 1

2
(20)
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where fwg � 1
2
.wC C w�/ denotes the average of w at the cell interface. This

scheme is actually the “bad” scheme considered in [24, 120], which is shown to be
unstable. Notice that the right-hand-side of (20) is not symmetric with respect to uh
and vh. We can therefore add another term to symmetrize it, obtaining the following
scheme. Find uh 2 Vk

h such that, for all test functions vh 2 Vk
h , we have

Z b

a
.uh/t.vh/dx D �

NX

iD1

Z

Ii

.uh/x.vh/xdx

�
NX

iD1
f.uh/xgiC 1

2
Œvh	iC 1

2
�

NX

iD1
f.vh/xgiC 1

2
Œuh	iC 1

2
: (21)

Notice that, since the exact solution is continuous, the additional term
�PN

iD1f.vh/xgiC 1
2
Œuh	iC 1

2
is zero if the numerical solution uh is replaced by the

exact solution u, hence the scheme is consistent. Scheme (21) is symmetric,
unfortunately it is still unconditionally unstable. In order to stabilize the scheme, a
further penalty term must be added, resulting in the following symmetric internal
penalty discontinuous Galerkin (SIPG) method [2, 101]

Z b

a
.uh/t.vh/dx D �

NX

iD1

Z

Ii

.uh/x.vh/xdx �
NX

iD1
f.uh/xgiC 1

2
Œvh	iC 1

2

�
NX

iD1
f.vh/xgiC 1

2
Œuh	iC 1

2
�

NX

iD1

˛

h
Œuh	iC 1

2
Œvh	iC 1

2
: (22)

Clearly, the scheme (22) is still symmetric, and it can be proved [2, 101] that, for
sufficiently large ˛, it is stable and has optimal O.hkC1/ order convergence in L2.
The disadvantage of this scheme is that it involves a parameter ˛ which has to
be chosen adequately to ensure stability. Another possible way to obtain a stable
scheme is to change the sign of the last term in the unstable scheme (21), resulting
in the following non-symmetric internal penalty discontinuous Galerkin (NIPG)
method [5, 76] of Baumann and Oden

Z b

a
.uh/t.vh/dx D �

NX

iD1

Z

Ii

.uh/x.vh/xdx

�
NX

iD1
f.uh/xgiC 1

2
Œvh	iC 1

2
C

NX

iD1
f.vh/xgiC 1

2
Œuh	iC 1

2
: (23)

This scheme is not symmetric, however it is L2 stable and convergent, although it
has a sub-optimal O.hk/ order of L2 errors for even k [5, 76, 120].
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There are other types of DG methods involving the internal penalty methodology,
for example the direct discontinuous Galerkin (DDG) methods [68, 69]. We refer to
[3] for a comprehensive review of DG methods for elliptic problems, most of which
also apply to the second derivative part of time-dependent convection diffusion
equations as well.

Ultra Weak Discontinuous Galerkin Methods Ultra weak discontinuous
Galerkin methods are designed in [14]. Let us again use the simple heat
equation (17) to demonstrate the idea. If we multiply both sides of (17) by a
test function v and integrate over the cell Ii, and integrate by parts twice for the
right-hand-side, we obtain the equality

Z

Ii

utvdx D
Z

Ii

uvxxdx C .ux/iC 1
2
viC 1

2
� .ux/i� 1

2
vi� 1

2
(24)

�uiC 1
2
.vx/iC 1

2
C ui� 1

2
.vx/i� 1

2
:

We can then follow the general principle of designing DG schemes, namely
converting the solution u and its derivatives at the cell boundary into numerical
fluxes, and taking values of the test function v and its derivatives at the cell boundary
by values inside the cell Ii, to obtain the following scheme. Find uh 2 Vk

h such that,
for all test functions vh 2 Vk

h and all 1 � i � N, we have

Z

Ii

.uh/t vhdx D
Z

Ii

uh .vh/xxdx C buxiC 1
2
.vh/

�
iC 1

2

� buxi� 1
2
.vh/

C
i� 1

2

�OuiC 1
2
..vh/x/

�
iC 1

2

C Oui� 1
2
..vh/x/

C
i� 1

2

: (25)

The crucial ingredient for the stability of the scheme (25) is still the choice of
numerical fluxes. It is proved in [14] that the following choice of numerical fluxes

OuiC 1
2

D .uh/
�
iC 1

2

; buxiC 1
2

D ..uh/x/
C
iC 1

2

C ˛

h
Œuh	iC 1

2
(26)

would yield a stable DG scheme if the constant ˛ > 0 is sufficiently large. Notice
that the choice in (26) is a combination of alternating fluxes and internal penalty.
The following choice of alternating fluxes would also work

OuiC 1
2

D .uh/
C
iC 1

2

; buxiC 1
2

D ..uh/x/
�
iC 1

2

C ˛

h
Œuh	iC 1

2
:

Sub-optimal L2 error estimates are given in [14] for the scheme (25) with the
fluxes (26) for k 
 1. In numerical experiments, optimal L2 convergence rate
of O.hkC1/ is observed for all k 
 1. The scheme can be easily generalized
to the general nonlinear convection-diffusion equation (9) with the same stability
property [14].
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2.3 Discontinuous Galerkin Method for PDEs Containing
Higher Order Spatial Derivatives

We now consider the DG methods for solving PDEs containing higher order spatial
derivatives. We consider two types of PDEs: dispersive wave equations and diffusion
equations.

Dispersive Wave Equations We start with the following general KdV type
equations

ut C
dX

iD1
fi.u/xi C

dX

iD1

0

@r0
i.u/

dX

jD1
gij.ri.u/xi/xj

1

A

xi

D 0; (27)

where fi.u/, ri.u/ and gij.q/ are arbitrary (smooth) nonlinear functions. The one-
dimensional KdV equation

ut C .˛u C ˇu2/x C �uxxx D 0; (28)

where ˛, ˇ and � are constants, is a special case of the general class (27).
Stable LDG schemes for solving (27) are first designed in [115]. We will

concentrate our discussion for the one-dimensional case. For the one-dimensional
generalized KdV type equations

ut C f .u/x C .r0.u/g.r.u/x/x/x D 0; (29)

where f .u/, r.u/ and g.q/ are arbitrary (smooth) nonlinear functions, the LDG
method is based on rewriting it as the following system

ut C . f .u/C r0.u/p/x D 0; p � g.q/x D 0; q � r.u/x D 0: (30)

The finite element space is still given by (2). The semi-discrete LDG scheme is
defined as follows. Find uh; ph; qh 2 Vk

h such that, for all test functions vh;wh; zh 2
Vk
h and all 1 � i � N, we have

R

Ii
.uh/t.vh/dx � R

Ii
. f .uh/C r0.uh/ph/.vh/xdx

C. Of Cbr0 Op/iC 1
2
.vh/

�
iC 1

2

� . Of Cbr0 Op/i� 1
2
.vh/

C
i� 1

2

D 0; (31)

R

Ii
phwhdx C R

Ii
g.qh/.wh/xdx � OgiC 1

2
.wh/

�
iC 1

2

C Ogi� 1
2
.wh/

C
i� 1

2

D 0;

R

Ii
qhzhdx C R

Ii
r.uh/.zh/xdx � OriC 1

2
.zh/�iC 1

2

C Ori� 1
2
.zh/

C
i� 1

2

D 0:

Here again, all the “hat” terms are the numerical fluxes, namely single valued
functions defined at the cell interfaces which typically depend on the discontinuous
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numerical solution from both sides of the interface. We already know from Sect. 2.1
that the convection flux Of should be chosen as a monotone flux. It is important
to design the other fluxes suitably in order to guarantee stability of the resulting
LDG scheme. In fact, the upwinding principle is still a valid guiding principle here,
since the KdV type equation (29) is a dispersive wave equation for which waves are
propagating with a direction. For example, the simple linear equation

ut C uxxx D 0;

which corresponds to (29) with f .u/ D 0, r.u/ D u and g.q/ D q, admits the
following simple wave solution

u.x; t/ D sin.x C t/;

that is, information propagates from right to left. This motivates the following choice
of numerical fluxes, discovered in [115]:

br0 D r.uC
h /� r.u�

h /

uC
h � u�

h

; Op D pC
h ; Og D Og.q�

h ; q
C
h /; Or D r.u�

h /: (32)

Here, �Og.q�
h ; q

C
h / is a monotone flux for �g.q/, namely Og is a non-increasing

function in the first argument and a non-decreasing function in the second argument.
The important point is again the “alternating fluxes”, namely Op and Or should come
from opposite sides. Thus

br0 D r.uC
h /� r.u�

h /

uC
h � u�

h

; Op D p�
h ; Og D Og.q�

h ; q
C
h /; Or D r.uC

h /

would also work.
It is quite interesting to observe that monotone fluxes, which are originally

designed for hyperbolic conservation laws, can be used also for nonlinear dispersive
equations to obtain stability. Also notice that, from the third equation in the
scheme (31), we can solve qh explicitly and locally (in cell Ii) in terms of uh, by
inverting the small mass matrix inside the cell Ii. Then, from the second equation
in the scheme (31), we can solve ph explicitly and locally (in cell Ii) in terms of qh.
Thus only uh is the global unknown and the auxiliary variables qh and ph can be
solved in terms of uh locally. This is why the method is referred to as the “local”
discontinuous Galerkin method.

Similar to the case for hyperbolic conservation laws and convection diffusion
equations, we have the following “cell entropy inequality” for the LDG method (31)
with the flux choice (32).
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Proposition 2.5 ([115]) The solution uh to the semi-discrete LDG scheme (31) with
the fluxes (32) satisfies the following “cell entropy inequality”

1

2

d

dt

Z

Ii

.uh/
2 dx C OFiC 1

2
� OFi� 1

2
� 0 (33)

for some consistent entropy flux

OFiC 1
2

D OF.uh.x�
iC 1

2

; t/; ph.x
�
iC 1

2

; t/; qh.x
�
iC 1

2

; t/I uh.xC
iC 1

2

; t/; ph.x
C
iC 1

2

; t/; qh.x
C
iC 1

2

//

satisfying OF.u; u/ D F.u/C ur0.u/p�G.q/ where F.u/ D R u uf 0.u/du and G.q/ D
R q qg.q/dq.

The proof of this proposition does not depend on the accuracy of the scheme,
namely it holds for the piecewise polynomial space (2) with any degree k. Also, the
same proof can be given for the multi-dimensional LDG scheme solving (27) on
any triangulation.

As before, the cell entropy inequality trivially implies an L2 stability of the
numerical solution.

Proposition 2.6 ([115]) For periodic or compactly supported boundary conditions,
the solution uh to the semi-discrete LDG scheme (31) with the fluxes (32) satisfies
the following L2 stability

d

dt

Z 1

0

.uh/
2dx � 0; (34)

or

kuh.�; t/k � kuh.�; 0/k: (35)

Again, both the cell entropy inequality (33) and the L2 stability (34) are valid
regardless of whether the KdV type equation (29) is convection dominated or
dispersion dominated and regardless of whether the exact solution is smooth or
not. The dispersion flux r0.u/g.r.u/x/x can be degenerate (equal to zero) in any
part of the domain. The LDG method is particularly attractive for convection
dominated convection dispersion equations, when traditional continuous finite
element methods may be less stable. In [115], this LDG method is used to study the
dispersion limit of the Burgers equation, for which the third derivative dispersion
term in (29) has a small coefficient which tends to zero.

Sub-optimal L2 error estimates for this scheme, for both linear and nonlinear
problems, are obtained in [110, 115]. In [114], Xu and Shu proved optimal L2 error
estimate of order O.hkC1/ for this scheme, when applied to linear PDEs. This proof
involves new techniques, because of the wave nature of the third order dispersive
wave equation and hence a lack of control of the derivatives. The approach in [114]
is to establish stability not only for uh as in (33), but also for qh and ph approximating
ux and uxx.
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Ultra weak discontinuous Galerkin methods for such dispersive wave equations
can also be designed, see [14]. The choice of the numerical fluxes is the same as that
for the LDG scheme, see (32).

Both the LDG method and the ultra weak DG method can be designed for other
dispersive wave equations containing higher order (usually odd order) derivatives.
Examples include equations with fifth order spatial derivatives [116], the so-called
K.m; n/ equation [64], the fifth-order fully nonlinear K.n; n; n/ equations [106],
the nonlinear Schrödinger (NLS) equation [107], the two dimensional Kadomtsev-
Petviashvili (KP) equations [108], and the Camassa-Holm (CH) equation [111].

Dissipative Equations DG methods have also been designed for other dissipative
equations containing higher even order derivatives. The list includes the time
dependent convection bi-harmonic equation [116], where the numerical fluxes for
the LDG scheme are chosen following the same “alternating fluxes” principle
similar to the second order convection-diffusion equation (8), namely the flux pairs
corresponding to u and uxxx, and the flux pairs corresponding to ux and uxx, should
be chosen in an alternating fashion within each pair. A cell entropy inequality and
the L2 stability of the LDG scheme for the nonlinear bi-harmonic equation can be
proved [116], which do not depend on the smoothness of the solution, the order
of accuracy of the scheme, or the triangulation. Optimal L2 error estimates can
be proved for the linear biharmonic equation, for both structured and unstructured
meshes, see [36]. The list of equations for which LDG (and for some cases also ultra
weak DG) methods have been designed also includes the Kuramoto-Sivashinsky
type equations [109], the Cahn-Hilliard equation and the Cahn-Hilliard system
[102, 103], and the surface diffusion equation and the Willmore flow equation
[52, 53, 112].

3 A Few Recent Developments

In this section we give a few examples of recent developments on DG methods for
convection dominated PDEs.

3.1 Nonlinear Limiters

As we mentioned in the previous section, even though the DG method is usually
energy stable, this stability is not strong enough to prevent spurious oscillations or
even blow-ups of the numerical solution in the presence of strong discontinuities.
Therefore, nonlinear limiters are often needed to control such spurious oscillations.
Another situation that nonlinear limiters are needed is to enforce physical bounds
(e.g. maximum principle, positivity-preserving, etc.) while maintaining high order
accuracy.
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WENO Limiters The limiters based on the weighted essentially non-oscillatory
(WENO) methodology are designed with the objective of maintaining the original
high order accuracy even if the limiters take effect in smooth cells. These limiters are
based on the WENO methodology for finite volume schemes [55, 70], and involve
nonlinear reconstructions of the polynomials in troubled cells using the information
of neighboring cells. The WENO reconstructed polynomials have the same high
order of accuracy as the original polynomials when the solution is smooth, and they
are (essentially) non-oscillatory near discontinuities. Qiu and Shu [83] and Zhu et
al. [135] designed WENO limiters using the usual WENO reconstruction based on
cell averages of neighboring cells as in [48, 55, 91], to reconstruct the values of the
solutions at certain Gaussian quadrature points in the target cells, and then rebuild
the solution polynomials from the original cell average and the reconstructed values
at the Gaussian quadrature points through a numerical integration for the moments.
This limiter needs to use the information from not only the immediate neighboring
cells but also neighbors’ neighbors, making it complicated to implement in multi-
dimensions, especially for unstructured meshes [48, 123, 135]. It also destroys the
local data structure of the base DG scheme (which needs only to communicate with
immediate neighbors). The effort in [80, 82] attempts to construct Hermite type
WENO approximations, which use the information of not only the cell averages but
also the lower order moments such as slopes, to reduce the spread of reconstruction
stencils. However for higher order methods the information of neighbors’ neighbors
is still needed.

More recently, Zhong and Shu [134] developed a new WENO limiting procedure
for RKDG methods on structured meshes. The idea is to reconstruct the entire
polynomial, instead of reconstructing point values or moments in the classical
WENO reconstructions. That is, the entire reconstruction polynomial on the target
cell is a convex combination of polynomials on this cell and its immediate
neighboring cells, with suitable adjustments for conservation and with the nonlinear
weights of the convex combination following the classical WENO procedure. The
main advantage of this limiter is its simplicity in implementation, as it uses only the
information from immediate neighbors and the linear weights are always positive.
This simplicity is more prominent for multi-dimensional unstructured meshes,
which is studied in [136] for two-dimensional unstructured triangular meshes.
Further improvements of this limiter are carried out in [137]. In the next section,
we will discuss the adaptation of this WENO limiter to another class of numerical
methods, the so-called CPR schemes.

The WENO limiters are typically applied only in designated “troubled cells”,
in order to save computational cost and to minimize the influence to accuracy in
smooth regions. Therefore, a troubled cell indicator is needed, to correctly identify
cells near discontinuities in which the limiters should be applied. Qiu and Shu in
[81] have compared several troubled cell indicators. In practice, the TVB indicator
[92] and the KXRCF indicator [62] are often the best choices.

Bound-Preserving Limiters In many convection dominated problems, the physi-
cal quantities have desired bounds which are satisfied by the exact solutions of the
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PDEs. For example, for two-dimensional incompressible Euler or Navier-Stokes
equations written in a vorticity-streamfunction formulation, the vorticity satisfies
a maximum principle. For Euler equations of compressible gas dynamics, density
and pressure remain positive (non-negative) when their initial values are positive.
It would certainly be desirable if numerical solutions obey the same bounds. If the
numerical solution goes out of the bounds because of spurious oscillations, it would
either be non-physical (e.g. negative density, negative internal energy, a percentage
of a component which goes below zero or above one), or worse still, it could lead
to nonlinear instability and blowups of the code because the PDE becomes ill-
posed (e.g. the Euler equations of compressible gas dynamics become ill-posed for
negative density or pressure).

Not all limiters designed for controlling spurious oscillations can enforce the
bound-preserving property. When they do, they often degenerate the order of
accuracy of the original scheme in smooth regions.

Recently, a general framework is established to preserve strict bounds (maximum
principle for scalar problems and positivity of relevant quantities for scalar problems
or systems) for DG and finite volume schemes, while maintaining provable high
order accuracy of the original schemes. These techniques apply to multi-dimensions
in general unstructured triangulations as well. See [124, 125, 131].

We will not repeat here the details of this general framework and refer the readers
to the references. We will summarize here the main steps in this framework:

1. We first find a first order base DG scheme, using piecewise polynomials of degree
zero (piecewise constants), which can be proved to be bound-preserving under
certain CFL conditions for Euler forward time discretization. Notice that a first
order DG scheme is the same as a first order finite volume scheme.
For scalar hyperbolic conservation laws (1), the first order DG scheme using
any monotone numerical flux would satisfy a maximum principle. For Euler
equations of compressible gas dynamics, several first order schemes, including
the Godunov scheme [39], the Lax-Friedrichs scheme [79, 125], the Harten-Lax-
van Leer (HLLE) scheme [45], and the Boltzmann type kinetic scheme [78],
among others, are positivity-preserving for density and pressure.

2. We then apply a simple scaling limiter to the high order DG solution at time level
n. If the DG solution at time level n in cell Ii is a polynomial pi.x/, we replace it
by the limited polynomial Qpi.x/ defined by

Qpi.x/ D �i. pi.x/� Nuni /C Nuni
where Nuni is the cell average of pi.x/, and

�i D min

�ˇ
ˇ
ˇ
ˇ

M � Nuni
Mi � Nuni

ˇ
ˇ
ˇ
ˇ
;

ˇ
ˇ
ˇ
ˇ

m � Nuni
mi � Nuni

ˇ
ˇ
ˇ
ˇ
; 1

�

;
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with

Mi D max
x2Si

pi.x/; mi D min
x2Si

pi.x/

here M and m are the desired global upper and lower bounds to be preserved, and
Si is the set of certain Legendre Gauss-Lobatto quadrature points of the cell Ii.
Clearly, this limiter is just a simple scaling of the original polynomial around its
average.

3. We then evolve the solution by Euler forward time discretization, or by TVD or
SSP Runge-Kutta time discretization [41, 94].

We can see that this procedure is very simple and inexpensive to implement. The
scaling limiter is completely local inside the cell Ii and involves only evaluation
of the DG polynomial at pre-determined quadrature points. The procedure can
be applied in arbitrary triangular meshes. Amazingly, this simple process leads to
mathematically provable bound-preserving property without degenerating the high
order accuracy of the base DG scheme.

For scalar nonlinear conservation laws, passive convection in a divergence-free
velocity field, and 2D incompressible Euler equations in the vorticity-
streamfunction formulation, high order DG schemes maintaining maximum
principle have been designed in Zhang and Shu [124] and in Zhang et al. [131].

For scalar nonlinear convection diffusion equations, second order DG schemes
on unstructured triangulations maintaining maximum principle have been designed
in Zhang et al. [132].

For Euler equations of gas dynamics, high order DG schemes maintaining
positivity of density and pressure (or internal energy) have been designed in Zhang
and Shu [125, 127–129] and in Zhang et al. [131].

For shallow water equations, high order DG schemes maintaining non-negativity
of water height have been designed in Xing et al. [104].

Positivity-preserving semi-Lagrangian DG schemes have been designed in Qiu
and Shu [84] and in Rossmanith and Seal [90].

3.2 DG Method for Hyperbolic Equations Involving
ı-Functions

In a hyperbolic conservation law

ut C f .u/x D g.x; t/; .x; t/ 2 R � .0;T	;
u.x; 0/ D u0.x/; x 2 R;

(36)

the initial condition u0, or the source term g.x; t/, or the solution u.x; t/may contain
ı-singularities. Such singularities are more difficult to handle than discontinuities
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in the solutions. Many high order schemes would easily blow up in the presence of
ı-function singularities, because of the severe oscillations leading to non-physical
regimes (e.g. negative density). On the other hand, if one applies traditional limiters
such as various slope limiters to enforce stability, the resolution of the ı-function
singularities could be seriously deteriorated. Resolution is also seriously affected by
other commonly used strategies such as modifications by an approximate Gaussian
to smear out the ı-function.

Since DG methods are based on weak formulations, they can be designed directly
to handle ı-function singularities. Recently, we have designed and analyzed DG
schemes for solving linear and nonlinear PDE models with ı-function singularities
[117, 118]. For linear problems, we prove stability and high order error estimates
in negative norms when the DG method is applied, and propose post-processing
techniques to recover high order accuracy in strong norms away from these ı-
function singularities. For nonlinear problems, such as Krause’s consensus models
[11] and pressureless Euler equations [13], an adequate design of bound preserving
limiter, within the framework described in Sect. 3.1, to enforce the physical bounds
without compromising resolution of ı-function singularities is shown to be crucial.
With such limiters, high resolution and highly stable results can be obtained for such
difficult nonlinear models.

On a related issue, a difficult but important problem is to prove error estimates
for DG methods applied to hyperbolic equations with discontinuous solutions. In
[130], optimal error estimate for the explicit Runge-Kutta discontinuous Galerkin
method to solve a linear hyperbolic equation in one dimension with discontinuous
but piecewise smooth initial data is provided, for arbitrary polynomial degree k 
 1,
and the third order explicit TVD Runge-Kutta time discretization under the standard
CFL condition. The error estimate is obtained for a L2-norm excluding a pollution
region of the size O.

p
Th1=2 log.1=h//, where T is the final time and h is the

maximum cell length. Numerical experiments confirm the sharpness of the size of
the pollution region. For earlier work in this direction, we refer to [19].

3.3 DG Method for Second Order Wave Equations

Second order wave equations arise frequently in applications. The simplest exam-
ple is

utt D uxx; (37)

with suitable initial and boundary conditions. One way to solve such equations
is to rewrite them into first order hyperbolic systems, for example, (37) can be
rewritten as

ut C vx D 0; vt C ux D 0; (38)
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with suitable initial and boundary conditions, by introducing the new variable v
which satisfies vx D �ut. Therefore, standard DG method with upwind fluxes can
be used to solve the hyperbolic system (38), with stability proofs and optimal error
estimates. The DG schemes with upwind fluxes for solving (38) is dissipative, that
is, energy is not conserved but is dissipated during time evolution. This is not a
concern, in fact it is even desirable, when the solution of the PDE is discontinuous,
especially for nonlinear wave systems. However, when the solution of the PDE is
smooth and one would like to solve the wave equations over long time, there is
an advantage in using an energy-conserving scheme. A DG scheme for solving
the first order system (38) can be made energy-conserving by using the central
fluxes, however this would reduce the order of accuracy of the scheme for odd
degree polynomials. In [105], an LDG method directly approximating the second
order wave equation (37), using alternating fluxes, is studied. It is proved that this
LDG scheme is energy conserving and is optimally convergent in L2. Numerical
examples indicate that such a method has an advantage for long time simulation.
Generalizations to multiple dimensions and to waves in heterogeneous (including
discontinuous) media are carried out in [15]. For studies of DG methods for second
order wave equations, we refer also to [1, 16, 17, 40, 42, 89].

4 Comparison with Other Methods

In this section we provide comparisons with several other types of numerical meth-
ods which are often used for similar or related problems. For the comparison, we
concentrate mainly on the methods presented in the London Mathematical Society
EPSRC Durham Symposium on Building Bridges: Connections and Challenges in
Modern Approaches to Numerical Partial Differential Equations.

4.1 The Correction Procedure via Reconstruction (CPR)
Schemes

Recently, a new correction procedure via reconstruction (CPR) scheme framework
[43, 50, 51, 97] was developed to solve hyperbolic conservation laws. This method
was originally developed in [50] to solve conservation laws on structured meshes,
under the name of flux reconstruction. In [97], the CPR framework was extended to
2D triangular and mixed grids under lifting collocation penalty. In [43], CPR was
further extended to 3D hybrid meshes. The idea of CPR is to choose the degrees
of freedom as approximations to point values of the solution at certain “solution
points” in the cell, and compute the residue as the derivatives of a certain flux
approximation polynomial evaluated at those solution points. As such, the method
resembles a finite difference scheme, yet by special choice of the solution points and
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the flux approximation polynomial, the method can be made conservative, accurate
and stable. For linear equations, by choosing suitable correction functions which
are used in building the flux approximation polynomial, the CPR framework can
unify several well-known methods such as the DG, staggered-grid (SG) multi-
domain spectral method [59–61], the spectral volume (SV) [96, 98–100] and
spectral difference (SD) methods [71, 73]. The CPR framework is based on a
nodal differential form, with an element-wise discontinuous piecewise polynomial
solution space, thus it can be considered as the DG method with a suitable numerical
quadrature for the integration of the nonlinear terms. The advantage is that it
solves the conservation laws in a differential form, similar to a finite difference
scheme. In the SG or SD method, two groups of grid points are needed, i.e., the
solution points and the flux points. However, the CPR framework involves only one
group of grid points, namely, the solution points. Hence, the CPR framework is
easier to understand and more efficient to implement. Because of the relationships
to DG methods, many strategies designed for DG schemes, for example the
compact WENO limiters and bound-preserving limiters reviewed in Sect. 3.1, can
be generalized to CPR schemes, see [37, 38].

4.2 The HDG Methods

Hybrid DG (HDG) methods, as surveyed by Cockburn in this Durham Symposium,
form a special class of DG methods, particularly suitable for solving steady state
problems and implicit time discretized versions of time-dependent problems. The
idea of HDG methods is to introduce the fluxes (traces) at element interfaces as
independent solution variables, rather than computing them from the two limits of
the solution polynomials from the two adjacent cells. It would appear that such
a strategy would increase the memory and computational cost for the degrees of
freedoms, however it turns out that the solution polynomials inside cells can be
obtained from the interface variables via solving local problems, hence the global
system to be solved involves only the degrees of freedom from element interfaces,
thus reducing the size of the system and its computational cost. Stability properties
and error estimates are also usually stronger for HDG than for regular DG. While
HDG methods have advantages over other DG methods for many steady state
problems or implicitly discretized time dependent problems, for time dependent
problems with explicit time marching, the original DG method still has its advantage
because of the local nature of the time evolution. We refer to, e.g. [12, 31, 75]
and the lectures of Cockburn in this Durham Symposium for more details of HDG
methods.
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4.3 The Isogeometric Methods

The isogeometric methods, as surveyed by Hughes et al. in this Durham Sym-
posium, form a class of finite element methods with a very nice integration
between geometry and discretization. The approximation spaces are usually based
on specially defined spline functions, with good regularity and excellent represen-
tation of geometry. Since the finite element discretization is based on the same
approximation spaces, the solution of complicated PDEs on complicated surfaces
becomes an integrated process, saving a lot of computational resources and forming
nice theoretical properties of accuracy and stability. Comparing with DG methods,
which are based on discontinuous approximation spaces, the isogeometric methods
are based on much smoother approximation spaces with C1 or smoother splines.
Such smoother function spaces certainly allow for a much smaller set of degrees
of freedom to reach the same order of accuracy, and they also allow for a better
representation of the geometry. On the other hand, the DG method has more
flexibility in approximating rapidly changing and discontinuous problems, which
would be difficult for globally defined methods. Perhaps the DG methodology
can be combined with the isogeometric methodology to deal with problems of
isolated singularities, such as sharp edges in the geometry. We refer to, e.g. [49]
and the lectures of Hughes et al. in this Durham Symposium for more details of the
isogeometric methods.

4.4 The DPG Method

The discontinuous Petrov Galerkin (DPG) method, as surveyed by Demkowicz
in this Durham Symposium, is similar to DG in the solution space consisting
of discontinuous, piecewise polynomials. However, unlike the DG method which
uses the same function space for the test functions, the DPG method uses another
function space of the same dimension. This extra freedom is used to choose the test
function space in order to minimize the error in a specific norm. For certain simple
linear problems, this task can be accomplished exactly, while for other problems
the test functions themselves must be constructed numerically, from solving local
problems using polynomials of higher degree. With such special construction, the
DPG method can usually achieve much smaller error using the same number of
degrees of freedom, comparing with regular DG methods. It would be interesting to
generalize such methods to solve nonlinear time dependent problems with shocked
solutions, and compare them with regular DG methods. We refer to, e.g. [33, 34]
and the lectures of Demkowicz in this Durham Symposium for more details of the
DPG methods.
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4.5 The Virtual Element Methods

The virtual element methods, as surveyed by Beirão da Veiga et al. in this Durham
Symposium, form a new class of continuous finite element methods which are
particularly suitable for solving problems on arbitrary polygon meshes. Traditional
polynomial based continuous finite element methods are difficult to design on such
meshes. If non-polynomial basis functions are used, their efficient computational
implementation is a major issue. The virtual element methods rely on a very
clever idea in using such non-polynomial basis functions in a “virtual” fashion,
namely one would not need to know their formulas or even use them explicitly
in the implementation. Only the existence of these basis functions and their certain
properties are used in the design and analysis of the virtual element methods, while
their implementation is similar to that of the regular polynomial based continuous
finite elements. It is well known that one advantage of DG versus continuous finite
elements is that DG is very flexible to be used on meshes of any polygon shape.
The disadvantage of continuous finite elements over DG on this aspect is largely
overcome by the new virtual element methods. We refer to, e.g. [6] and the lectures
of Beirão da Veiga et al. in this Durham Symposium for more details of the virtual
element methods.

4.6 The Mimetic Finite Difference Methods

The mimetic finite difference methods, as surveyed by Lipnikov in this Durham
Symposium, form a class of finite difference methods which share many good prop-
erties of finite element methods in stability and accuracy, on arbitrary unstructured
meshes. These nice properties are achieved through introducing discrete operators
which satisfy fundamental identities of vector and tensor calculus. There is some
similarity with the CPR schemes surveyed in Sect. 4.1, in that a finite difference
method is designed on arbitrary meshes with good physical property such as
conservation, stability and accuracy, although the approaches in the design of the
two algorithms are apparently different. The mimetic finite difference methods have
relationships to the virtual element methods discussed in the previous subsection
and can be considered as one of the predecessors of the virtual element methods.
We refer to, e.g. [8, 67] and the lectures of Lipnikov in this Durham Symposium for
more details of the mimetic finite difference methods.

Acknowledgements The research of the author is supported partially by NSF grant DMS-
1418750 and DOE grant DE-FG02-08ER25863.



394 C.-W. Shu

References

1. S. Adjerid, H. Temimi, A discontinuous Galerkin method for the wave equation. Comput.
Methods Appl. Mech. Eng. 200, 837–849 (2011)

2. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM
J. Numer. Anal. 19, 742–760 (1982)

3. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

4. F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–
279 (1997)

5. C.E. Baumann, J.T. Oden, A discontinuous hp finite element method for convection-diffusion
problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

6. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic
principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

7. R. Biswas, K.D. Devine, J. Flaherty, Parallel, adaptive finite element methods for conservation
laws. Appl. Numer. Math. 14, 255–283 (1994)

8. F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference methods on
polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15, 1533–1551 (2005)

9. A. Burbeau, P. Sagaut, Ch.H. Bruneau, A problem-independent limiter for high-order Runge-
Kutta discontinuous Galerkin methods. J. Comput. Phys. 169, 111–150 (2001)

10. E. Burman, A. Ern, M.A. Fernández, Explicit Runge-Kutta schemes and finite elements with
symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48, 2019–
2042 (2010)

11. C. Canuto, F. Fagnani, P. Tilli, An Eulerian approach to the analysis of Krause’s consensus
models. SIAM J. Control Optim. 50, 243–265 (2012)

12. F. Celiker, B. Cockburn, K. Shi, A projection-based error analysis of HDG methods for
Timoshenko beams. Math. Comput. 81, 131–151 (2012)

13. G.-Q. Chen, H. Liu, Formation of ı-shocks and vacuum states in the vanishing pressure limit
of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34, 925–938
(2003)

14. Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for time dependent
partial differential equations with higher order derivatives. Math. Comput. 77, 699–730
(2008)

15. C.-S. Chou, C.-W. Shu, Y. Xing, Optimal energy conserving local discontinuous Galerkin
methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–
107 (2014)

16. E.T. Chung, B. Engquist, Optimal discontinuous Galerkin methods for wave propagation.
SIAM J. Numer. Anal. 44, 2131–2158 (2006)

17. E.T. Chung, B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave
equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

18. B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, in High-
Order Methods for Computational Physics, ed. by T.J. Barth, H. Deconinck. Lecture Notes in
Computational Science and Engineering, vol. 9 (Springer, Berlin, 1999), pp. 69–224

19. B. Cockburn, J. Guzmán, Error estimates for the Runge-Kutta discontinuous Galerkin method
for the transport equation with discontinuous initial data. SIAM J. Numer. Anal. 46, 1364–
1398 (2008)

20. B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws II: general framework. Math. Comput. 52, 411–435
(1989)

21. B. Cockburn, C.-W. Shu, The Runge-Kutta local projection P1-discontinuous-Galerkin finite
element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)



Discontinuous Galerkin Methods for Time-Dependent Convection Dominated Problems 395

22. B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

23. B. Cockburn, C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation
laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

24. B. Cockburn, C.-W. Shu, Runge-Kutta Discontinuous Galerkin methods for convection-
dominated problems. J. Sci. Comput. 16, 173–261 (2001)

25. B. Cockburn, C.-W. Shu, Foreword for the special issue on discontinuous Galerkin method.
J. Sci. Comput. 22–23, 1–3 (2005)

26. B. Cockburn, C.-W. Shu, Foreword for the special issue on discontinuous Galerkin method.
J. Sci. Comput. 40, 1–3 (2009)

27. B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: one dimensional systems. J. Com-
put. Phys. 84, 90–113 (1989)

28. B. Cockburn, S. Hou, C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws IV: the multidimensional case. Math. Comput.
54, 545–581 (1990)

29. B. Cockburn, G. Karniadakis, C.-W. Shu, The development of discontinuous Galerkin
methods, in Discontinuous Galerkin Methods: Theory, Computation and Applications, ed.
by B. Cockburn, G. Karniadakis, C.-W. Shu. Lecture Notes in Computational Science and
Engineering, Part I: Overview, vol. 11 (Springer, Berlin, 2000), pp. 3–50

30. B. Cockburn, B. Dong, J. Guzmán, Optimal convergence of the original DG method for the
transport-reaction equation on special meshes. SIAM J. Sci. Comput. 46, 1250–1265 (2008)

31. B. Cockburn, B. Dong, J. Guzmán, M. Restelli, R. Sacco, A hybridizable discontinuous
Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci.
Comput. 31, 3827–3846 (2009)

32. C. Dawson, Foreword for the special issue on discontinuous Galerkin method. Comput.
Methods Appl. Mech. Eng. 195, 3183 (2006)

33. L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part I:
the transport equation. Comput. Methods Appl. Mech. Eng. 199, 1558–1572 (2010)

34. L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II.
Optimal test functions. Numer. Methods Partial Differ. Equ. 27, 70–105 (2011)

35. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods (Springer,
Berlin, Heidelberg, 2012)

36. B. Dong, C.-W. Shu, Analysis of a local discontinuous Galerkin method for linear time-
dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

37. J. Du, C.-W. Shu, M. Zhang, A simple weighted essentially non-oscillatory limiter for the
correction procedure via reconstruction (CPR) framework. Appl. Numer. Math. 95, 173–198
(2015)

38. J. Du, C.-W. Shu, M. Zhang, A simple weighted essentially non-oscillatory limiter for the
correction procedure via reconstruction (CPR) framework on unstructured meshes. Appl.
Numer. Math. 90, 146–167 (2015)

39. B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjögreen, On Godunov-Type methods near low densities.
J. Comput. Phys. 92, 273–295 (1991)

40. L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, Convergence and stability of a discontinuous
Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured
meshes. Math. Model. Numer. Anal. 39, 1149–1176 (2005)

41. S. Gottlieb, D. Ketcheson, C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep
Time Discretizations (World Scientific, Singapore, 2011)

42. M.J. Grote, A. Schneebeli, D. Schötzau, Discontinuous Galerkin finite element method for
the wave equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006)

43. T. Haga, H. Gao, Z.J. Wang, A high-order unifying discontinuous formulation for the Navier-
Stokes equations on 3D mixed grids. Math. Model. Nat. Phenom. 6, 28–56 (2011)

44. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49,
357–393 (1983)



396 C.-W. Shu

45. A. Harten, P.D. Lax, B. van Leer, On upstream differencing and Godunov type schemes for
hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

46. J. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods (Springer, New York,
2008)

47. S. Hou, X.-D. Liu, Solutions of multi-dimensional hyperbolic systems of conservation laws
by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31,
127–151 (2007)

48. C. Hu, C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes.
J. Comput. Phys. 150, 97–127 (1999)

49. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194,
4135–4195 (2005)

50. H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous
Galerkin methods. AIAA Paper 2007–4079 (2007)

51. H.T. Huynh, A reconstruction approach to high-order schemes including discontinuous
Galerkin for diffusion. AIAA Paper 2009–403 (2009)

52. L. Ji, Y. Xu, Optimal error estimates of the local discontinuous Galerkin method for Willmore
flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8, 252–283 (2011)

53. L. Ji, Y. Xu, Optimal error estimates of the local discontinuous Galerkin method for surface
diffusion of graphs on Cartesian meshes. J. Sci. Comput. 51, 1–27 (2012)

54. G.-S. Jiang, C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods. Math.
Comput. 62, 531–538 (1994)

55. G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys.
126, 202–228 (1996)

56. C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar
hyperbolic equation. Math. Comput. 46, 1–26 (1986)

57. G. Kanschat, Discontinuous Galerkin Methods for Viscous Flow (Deutscher Universitäts
Verlag, Wiesbaden, 2007)

58. A. Klockner, T. Warburton, J. Bridge, J. Hesthaven, Nodal discontinuous Galerkin methods
on graphics processors. J. Comput. Phys. 228, 7863–7882 (2010)

59. D.A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compress-
ible flows. II: a semi-structured method. J. Comput. Phys. 128, 475–488 (1996)

60. D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier
Stokes equations. J. Comput. Phys. 143, 125–158 (1998)

61. D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain method for
compressible flows. J. Comput. Phys. 125, 244–261 (1996)

62. L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock detection and
limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer.
Math. 48, 323–338 (2004)

63. R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhauser, Basel, 1990)
64. D. Levy, C.-W. Shu, J. Yan, Local discontinuous Galerkin methods for nonlinear dispersive

equations. J. Comput. Phys. 196, 751–772 (2004)
65. B. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer (Birkhauser,

Basel, 2006)
66. P.-L. Lions, P.E. Souganidis, Convergence of MUSCL and filtered schemes for scalar

conservation law and Hamilton-Jacobi equations. Numer. Math. 69, 441–470 (1995)
67. K. Lipnikov, G. Manzini, M. Shashkov, Mimetic finite difference method. J. Comput. Phys.

257, 1163–1227 (2014)
68. H. Liu, J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems.

SIAM J. Numer. Anal. 47, 675–698 (2009)
69. H. Liu, J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion with interface

corrections. Commun. Comput. Phys. 8, 541–564 (2010)
70. X. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys.

115, 200–212 (1994)



Discontinuous Galerkin Methods for Time-Dependent Convection Dominated Problems 397

71. Y. Liu, M. Vinokur, Z.J. Wang, Spectral difference method for unstructured grids I: basic
formulation. J. Comput. Phys. 216, 780–801 (2006)

72. J. Luo, C.-W. Shu, Q. Zhang, A priori error estimates to smooth solutions of the third order
Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation
laws. ESAIM: Math. Model. Numer. Anal. 49, 991–1018 (2015)

73. G. May, A. Jameson, A spectral difference method for the Euler and Navier-Stokes equations
on unstructured meshes. AIAA Paper 2006–304 (2006)

74. X. Meng, C.-W. Shu, B. Wu, Optimal error estimates for discontinuous Galerkin methods
based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85, 1225–
1261 (2016). doi:http://dx.doi.org/10.1090/mcom/3022

75. N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous
Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228, 8841–
8855 (2009)

76. J.T. Oden, I. Babuvska, C.E. Baumann, A discontinuous hp finite element method for
diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

77. S. Osher, E. Tadmor, On the convergence of the difference approximations to scalar
conservation laws. Math. Comput. 50, 19–51 (1988)

78. B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and
two space dimensions. SIAM J. Numer. Anal. 29, 1–19 (1992)

79. B. Perthame, C.-W. Shu, On positivity preserving finite volume schemes for Euler equations.
Numer. Math. 73, 119–130 (1996)

80. J.-X. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-
Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135
(2003)

81. J.-X. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge-Kutta discontinuous
Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput.
27, 995–1013 (2005)

82. J.-X. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-
Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluids 34, 642–663
(2005)

83. J.-X. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters.
SIAM J. Sci. Comput. 26, 907–929 (2005)

84. J.-M. Qiu, C.-W. Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin formu-
lation: theoretical analysis and application to the Vlasov-Poisson system. J. Comput. Phys.
230, 8386–8409 (2011)

85. W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical
Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

86. J.-F. Remacle, J. Flaherty, M. Shephard, An adaptive discontinuous Galerkin technique with
an orthogonal basis applied to Rayleigh-Taylor flow instabilities. SIAM Rev. 45, 53–72 (2003)

87. G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method. Math.
Comput. 50, 75–88 (1988)

88. B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations.
Theory and Implementation (SIAM, Philadelphia, 2008)

89. B. Rivière, M.F. Wheeler, Discontinuous finite element methods for acoustic and elastic wave
problems. Contemp. Math. 329, 271–282 (2003)

90. J.A. Rossmanith, D.C. Seal, A positivity-preserving high-order semi-Lagrangian discontin-
uous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230, 6203–6232
(2011)

91. J. Shi, C. Hu, C.-W. Shu, A technique of treating negative weights in WENO schemes.
J. Comput. Phys. 175, 108–127 (2002)

92. C.-W. Shu, TVB uniformly high-order schemes for conservation laws. Math. Comput. 49,
105–121 (1987)

93. C.-W. Shu, Discontinuous Galerkin methods: general approach and stability, in Numerical
Solutions of Partial Differential Equations, ed. by S. Bertoluzza, S. Falletta, G. Russo,

http://dx.doi.org/10.1090/mcom/3022


398 C.-W. Shu

C.-W. Shu. Advanced Courses in Mathematics CRM Barcelona (Birkhäuser, Basel, 2009),
pp.149–201

94. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77, 439–471 (1988)

95. A. Stock, J. Neudorfer, M. Riedlinger, G. Pirrung, G. Gassner, R. Schneider, S. Roller, C.-
D. Munz, Three-dimensional numerical simulation of a 30-GHz gyrotron resonator with
an explicit high-order discontinuous-Galerkin-based parallel particle-in-cell method. IEEE
Trans. Plasma Sci. 40, 1860–1870 (2012)

96. Z.J. Wang, Spectral (finite) volume method for conservation laws on unstructured grids: basic
formulation. J. Comput. Phys. 178, 210–251 (2002)

97. Z.J. Wang, H. Gao, A unifying lifting collocation penalty formulation including the discon-
tinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids.
J. Comput. Phys. 228, 8161–8186 (2009)

98. Z.J. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids
II: extension to two-dimensional scalar equation. J. Comput. Phys. 179, 665–697 (2002)

99. Z.J. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured
grids III: one-dimensional systems and partition optimization. J. Sci. Comput. 20, 137–157
(2004)

100. Z.J. Wang, L. Zhang, Y. Liu, Spectral (finite) volume method for conservation laws on
unstructured grids IV: extension to two-dimensional Euler equations. J. Comput. Phys. 194,
716–741 (2004)

101. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J.
Numer. Anal. 15, 152–161 (1978)

102. Y. Xia, Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type
equations. J. Comput. Phys. 227, 472–491 (2007)

103. Y. Xia, Y. Xu, C.-W. Shu, Application of the local discontinuous Galerkin method for the
Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)

104. Y. Xing, X. Zhang, C.-W. Shu, Positivity preserving high order well balanced discontinuous
Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

105. Y. Xing, C.-S. Chou, C.-W. Shu, Energy conserving local discontinuous Galerkin methods for
wave propagation problems. Inverse Problems Imaging 7, 967–986 (2013)

106. Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for three classes of nonlinear wave
equations. J. Comput. Math. 22, 250–274 (2004)

107. Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equa-
tions. J. Comput. Phys. 205, 72–97 (2005)

108. Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for two classes of two dimensional
nonlinear wave equations. Physica D 208, 21–58 (2005)

109. Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky
equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195,
3430–3447 (2006)

110. Y. Xu, C.-W. Shu, Error estimates of the semi-discrete local discontinuous Galerkin method
for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng.
196, 3805–3822 (2007)

111. Y. Xu, C.-W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation.
SIAM J. Numer. Anal. 46, 1998–2021 (2008)

112. Y. Xu, C.-W. Shu, Local discontinuous Galerkin method for surface diffusion and Willmore
flow of graphs. J. Sci. Comput. 40, 375–390 (2009)

113. Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent
partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

114. Y. Xu, C.-W. Shu, Optimal error estimates of the semi-discrete local discontinuous Galerkin
methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)

115. J. Yan, C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J.
Numer. Anal. 40, 769–791 (2002)



Discontinuous Galerkin Methods for Time-Dependent Convection Dominated Problems 399

116. J. Yan, C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations
with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

117. Y. Yang, C.-W. Shu, Discontinuous Galerkin method for hyperbolic equations involving ı-
singularities: negative-order norm error estimates and applications. Numer. Math. 124, 753–
781 (2013)

118. Y. Yang, D. Wei, C.-W. Shu, Discontinuous Galerkin method for Krause’s consensus models
and pressureless Euler equations. J. Comput. Phys. 252, 109–127 (2013)

119. L. Yuan, C.-W. Shu, Discontinuous Galerkin method based on non-polynomial approximation
spaces. J. Comput. Phys. 218, 295–323 (2006)

120. M. Zhang, C.-W. Shu, An analysis of three different formulations of the discontinuous
Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413
(2003)

121. Q. Zhang, C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous
Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

122. Q. Zhang, C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous
Galerkin method for symmetrizable systems of conservation laws. SIAM J. Numer. Anal.
44, 1703–1720 (2006)

123. Y.-T. Zhang, C.-W. Shu, Third order WENO scheme on three dimensional tetrahedral meshes.
Commun. Comput. Phys. 5, 836–848 (2009)

124. X. Zhang, C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar
conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

125. X. Zhang, C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes
for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934
(2010)

126. Q. Zhang, C.-W. Shu, Stability analysis and a priori error estimates to the third order explicit
Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer.
Anal. 48, 1038–1063 (2010)

127. X. Zhang, C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high order
schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–
2776 (2011)

128. X. Zhang, C.-W. Shu, Positivity-preserving high order discontinuous Galerkin schemes for
compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

129. X. Zhang, C.-W. Shu, A minimum entropy principle of high order schemes for gas dynamics
equations. Numer. Math. 121, 545–563 (2012)

130. Q. Zhang, C.-W. Shu, Error estimates for the third order explicit Runge-Kutta discontinuous
Galerkin method for linear hyperbolic equation in one-dimension with discontinuous initial
data. Numer. Math. 126, 703–740 (2014)

131. X. Zhang, Y. Xia, C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high
order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci.
Comput. 50, 29–62 (2012)

132. Y. Zhang, X. Zhang, C.-W. Shu, Maximum-principle-satisfying second order discontinuous
Galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys.
234, 295–316 (2013)

133. Y. Zhang, W. Wang, J. Guzmán, C.-W. Shu, Multi-scale discontinuous Galerkin method for
solving elliptic problems with curvilinear unidirectional rough coefficients. J. Sci. Comput.
61, 42–60 (2014)

134. X. Zhong, C.-W. Shu, A simple weighted essentially nonoscillatory limiter for Runge-Kutta
discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2012)

135. J. Zhu, J.-X. Qiu, C.-W. Shu, M. Dumbser, Runge-Kutta discontinuous Galerkin method using
WENO limiters II: unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

136. J. Zhu, X. Zhong, C.-W. Shu, J.-X. Qiu, Runge-Kutta discontinuous Galerkin method using a
new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)

137. J. Zhu, X. Zhong, C.-W. Shu, J.-X. Qiu, Runge-Kutta discontinuous Galerkin method with a
simple and compact Hermite WENO limiter. Commun. Comput. Phys. 19, 944–969 (2016)



Foundations of the MHM Method

Christopher Harder and Frédéric Valentin

Abstract An abstract setting for the construction and analysis of the Multiscale
Hybrid-Mixed (MHM for short) method is proposed. We review some of the
most recent developments from this standpoint, and establish relationships with
the classical lowest-order Raviart-Thomas element and the primal hybrid method,
as well as with some recent multiscale methods. We demonstrate the reach of the
approach by revisiting the wellposedness and error analysis of the MHM method
applied to the Laplace problem. In the process, we devise new theoretical results for
this model.

1 Introduction

In the last decade, there has been an extensive development of massive parallel
computer architectures. With single processors limited by technical issues such as
heating, computers have instead been built to leverage a large number of processors
(grouped in cores) of mild speed and storage capacities. This new paradigm has led
to a revision of what is expected from simulators from the viewpoint of numerical
algorithms. Although precision and robustness remain fundamental properties
of numerical methods for extreme-scale computational science, the underlying
algorithms must be naturally shaped to take advantage of the new massively parallel
architectures and built-in fault tolerance (see [40] for an interesting overview). In
fact, failure is a certainty in long-time simulations on such new generation parallel
architectures since at least one processor is certain to break down in such a scenario
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[14]. Consequently, numerical methods for extreme-scale computing should induce
asynchronous and communication-avoiding algorithms to prevent loss of long-term
simulations entirely.

Numerical methods built upon the “divide-and-conquer” philosophy satisfy
the architectural imperatives of high-performance computers better than classical
methods operating only on the finest scale of the discretization. Indeed, splitting
the computation of extreme simulations into a set of independent problems of
smaller size turns out to be a way to circumvent faults and to allow spatial and
time data locality while taking full advantage (in terms of performance) of the
granularity of the new generation of computer architectures. There is a panoply of
possibilities in the literature, starting in the eighties with the domain decomposition
technique [24] (see [42] for a survey). Also, the residual-free bubbles (RFB) [8, 11–
13], the variational multiscale method [29, 30], and the enriched finite element
methods [1, 2, 9, 17, 23] may be seen from this perspective, although they were
not originally presented this way; being devised for precision on coarse meshes at
the price of solving element-wise independent problems, these methods carry in
their construction the desired approach. Hybridization has been also used recently
in the context of Discontinuous Galerkin method in [15, 37] leading to methods that
share this philosophy.

In this context, multiscale numerical methods appeared as an attractive “divide-
and-conquer” option to handle heterogeneous problems (see [20, 43, 44], just to cite
a few). The approach started with the pioneering work by Babuška and Osborn [7]
and was further extended to higher dimensions by Hou and Wu [28]. The latter has
been proved to be closely related to the RFB method proposed in [41]. Overall,
the idea relies on basis functions specially designed to upscale submesh scales to
an overlying coarse mesh. As a result, such numerical methods become precise on
coarse meshes. Particularly interesting is the fact that the multiscale basis functions
can be locally computed through completely independent problems.

Recently, a new family of multiscale finite element methods, named Multiscale
Hybrid-Mixed (MHM) method, was introduced in [26] and further analyzed in
[3]. The MHM method is devised from the primal hybridization of the original
formulation as proposed in [39] and allowed to localize computations. This is made
possible by the characterization of the exact solution in terms of the solution of
a global formulation posed on the skeleton of a (coarse) partition of the domain,
and the solution of independent local problems. The Lagrange multipliers play the
role of Neumann boundary conditions for the local problems. Such a decomposition
drives discretization, decouples the global and local problems and gives rise to the
following staggered algorithm: given a coarse partition of the domain, compute

• the multiscale basis functions from independent element-wise problems, and
• the degrees of freedom on faces from the global face-based formulation.

The MHM method has a notably general formulation that recovers some well-
established finite element methods, such as the ones proposed in [16, 38, 39], under
appropriate hypotheses. It also shares the same goals of the multiscale mortar mixed
finite element method [6] and the spectral multiscale hybridizable discontinuous
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Galerkin method [21], and the multiscale method in [32] with a different viewpoint
which induces a different algorithm. The method requires neither scale separa-
tion nor periodicity of the media when used for highly heterogenous coefficient
problems. Moreover, it produces precise numerical primal and dual variables, with
respect to the characteristic size of the mesh (c.f. [3]) and is shown to be robust with
respect to small physical coefficients (c.f. [35]).

To be more precise, let us illustrate the idea of the MHM formulation for the
Laplace problem. Let ˝ � R

d, d 2 f2; 3g, with a polygonal boundary @˝ . The
standard weak formulation consists of finding u 2 H1

0.˝/ such that

Z

˝

� ru� rv dx D
Z

˝

f v dx for all v 2 H1
0.˝/ ; (1)

where � is a positive definite second-order tensor which is assumed to be uniformly
bounded and f 2 L2.˝/. In this setting, Raviart and Thomas [39] considered (taking
� equal to the identity tensor) the primal hybrid version of (1) on a family of regular
partitions fTHgH>0 of˝ composed of elements K with boundary @K. With the space
of Lagrange multipliersM given by (the spaces having their usual meaning, see [33])

M WD ˚

� � nK j@K 2 H�1=2.@K/; 8K 2 TH W � 2 H.divI˝/ ;

where nK stands for the unit outward normal vector on @K, the primal hybrid
formulation of the problem is to find u 2 H1.TH/ and � 2 M such that

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

X

K2TH

�Z

K
� ru� rv dx C .�; v/@K

�

D
X

K2TH

Z

K
f v dx for all v 2 H1.TH/ ;

X

K2TH

.� ; u/@K D 0 for all � 2 M :

(2)

Here H1.TH/ stands for the functions in L2.˝/ such that their restriction to element
K 2 TH belongs to H1.K/ and .�; �/@K is the H�1=2.@K/�H1=2.@K/ duality product.
It has been proved (see [39] for instance) that Problem (2) has a unique solution.
Moreover, u 2 H1

0.˝/ is the solution to problem (1) and � D �� ru� nK on @K for
each K 2 TH .

In [3] it is shown that problem (2) can be stated in an equivalent global-local
formulation. In a broad sense, we observe that H1.TH/ decomposes into the space
of piecewise constants V0 and its orthogonal complement, i.e.,

H1.TH/ D V0 ˚ V?
0 ;

where V?
0 WD H1.TH/ \ L20.TH/ (L20.TH/ stands for the functions in L2.˝/ with

mean value equal to zero in each K 2 TH). Testing the first equation of (2) against
V?
0 shows that u?

0 , which is the part of the solution u belonging to V?
0 , may be
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characterized as

u?
0 D T �C OT f :

Here, the bounded linear operators T; OT with image in V?
0 are defined via local

problems. Specifically, given � 2 M and q 2 L2.˝/, for each K 2 TH , T � jK and
OT q jK satisfy,

Z

K
� r T � r wdx D �.�;w/@K for all w 2 H1.K/ \ L20.K/ ; (3)

Z

K
� r OT q r wdx D

Z

K
q w dx for all w 2 H1.K/\ L20.K/ : (4)

Hence, the exact solution u of (2) may be decomposed as follows

u D u0 C T �C OT f ;

where u0 2 V0. Now, testing (2) against M�V0 shows that .�; u0/ 2 M�V0 satisfy,

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

X

K2TH

.�; v0/@K D
X

K2TH

Z

K
f v0 dx for all v0 2 V0 ;

X

K2TH

Œ.�;T �/@K C .�; u0/@K 	 D �
X

K2TH

.�; OT f /@K for all � 2 M ;

(5)

which is the global part of the formulation.
The MHM method stems from the coupled problems (3)–(5). Selecting a finite

dimensional subspace MH � M allows for finding solutions to (3) in terms of basis
functions and gives rise to a one-level MHM method in the form of (5). In such a
case, one assumes that the corresponding local problems are computed exactly, i.e,
a closed formula for the multiscale basis functions is available. The wellposedness
and a priori and a posteriori error estimates of the one-level MHM method were
addressed in [3, 35].

Although particular cases exist where a closed formula for solutions to local
problems (3) and (4) are known (c.f. [26]), the solutions must generally be
approximated. This yields the two-level MHM method. The strategy is to select a
finite dimensional subspace Vh.K/ of H1.K/\ L20.K/ (which may be finite element
spaces which are different in each K) and then set up a numerical method Th and
OTh at the second level. These choices are general and “only” require approximation

properties for Th and OTh. The underlying MHM method reads: Find .�H ; u
H;h
0 / 2
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MH � V0 such that

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

X

K2TH

Z

@K
�H v0 D

X

K2TH

Z

K
f v0 for all v0 2 V0 ;

X

K2TH

�Z

@K
�H Th �H C

Z

@K
�H uH;h0

�

D �
X

K2TH

Z

@K
�H OTh f for all �H 2 MH :

(6)

Some comments are necessary at this point. First, observe that the first equation
in (6) assures the discrete local conservation with respect to external forces, and
the second equation is responsible, through the action of Th and OTh on the basis
functions of MH and f , for upscaling information “lost” by the mesh. High order of
convergence (as well as super-convergence) is achieved by increasing the quality
of approximation of the Lagrange �H on faces. Interestingly, this can be done
independently on each face which makes the MHM method particularly attractive
to be used within space adaptive algorithms (see [3, 27] for instance).

It is also worth pointing out how the MHM method matches the modern
massively parallel architectures. Observe that global formulation (6) is responsible
for coupling the degrees of freedoms, and as such, it could be the source of the
standard difficulties with respect to parallelization. But, the computational effort
in solving such a global problem is drastically decreased as it overlies on top of
a coarse mesh skeleton with only face-based degrees of freedom involved for �H
and a degree of freedom for each K 2 TH . Also, owing to this feature, the MHM
method (6) can undertake a second level of hybridization which leads to a positive
definite global problem to be solved in place of the mixed one in (6). In conclusion,
the computational cost involved in obtaining the degrees of freedom in (6) is
completely overshadowed by the local basis computations. The good news is that,
although there are many local problems, they are entirely local and independent
to one another, and thus, they match perfectly to the architecture provided by
the modern extreme-scale computers. Scalability of the MHM method is currently
under investigation.

Extensions to the linear elasticity and the advective-reactive dominated models
have been proposed in [25, 27], respectively. For the former, an analysis of the
two-level MHM method was also addressed. The analysis of the various operators,
although performed case-by-case, shares a number of common points. Thereby,
the primary goal of this work is to set up an abstract setting that accounts for
the analysis of the one- and two-level MHM methods in a broad sense. To this
end, we uncover the mathematical mechanism from which the MHM global-
local formulation derives from the classical primal hybrid formulation [39]. The
wellposedness of the MHM formulation is thus shown to be a consequence of the
wellposedness of the its classical primal hybrid counterpart. This interconnection is
paramount to establish existence and uniqueness of solutions as well as optimality
of the errors for the MHM method in the context of subspaces. On the other hand,
the classical discrete primal hybrid method in [39] may be recovered within the
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MHM formalism, yielding a new characterization of its numerical solution. Also,
the relationship of the MHM method with some classical (the Raviart-Thomas
element) and well-established recent methods (the MsFEM [16] and the subgrid
upscaling method, UpFEM, [4]) is highlighted, and some comments with respect
to the similarities/differences between the MHM method and the DPG [19] and the
HDG method [21] are given. Finally, a new analysis of an existing MHM method is
connected to the framework, with particular emphasis on the general properties of
the approximations generated by solving the local problems approximatively. The
interested reader can also find a related work on this direction in [31].

The rest of this work is outlined as follows. The abstract problem is posed and
analyzed in Sect. 2. Section 3 is dedicated to wellposedness and best approximation
properties within this general context. Previous sections are then connected to the
MHM method applied to the Laplace problem in Sect. 4. Particularly, this section
introduces the one-level and a new two-level analysis of the MHM method for
the Laplace problem in the context of subspaces. Sect. 5 is devoted to establishing
relationships with other approaches. Conclusions are stated in Sect. 6.

2 General Setting of the MHM Methods

Let W and X denote Hilbert spaces with associated inner products .:; :/W and .:; :/X ,
respectively, and � and M denote reflexive Banach spaces with norms k:k� and
k:kM . As usual, �0 and M0 mean the dual spaces of � and M, and h�; �i� and h�; �iM
their respective duality products. Furthermore, we suppose A W W ! X, B W � !
X, and C W M ! W are bounded linear operators.

Consider the problem, for f 2 X and g 2 M0: Find w 2 W and � 2 � such that,

(
.Aw; x/X C .B�; x/X D . f ; x/X for all x 2 X;

.C�;w/W D hg; �iM for all � 2 M:
(7)

We recognize the standard abstract form of mixed or hybrid formulations [10]. In
this work, it will be explored in the context of primal hybrid formulations, with the
Laplace model serving as an example in Sect. 4.

Since the primal hybrid formulation (2) fits (7), we look next for an equivalent
form of (7) that includes the MHM formulation. The nullspace N .A/ and the range
R .A/ of A play an integral part in the development of such an equivalence. Recall
the decompositions (see, e.g., [22]),

W D N .A/˚ R .AT / and X D N
	

AT

˚ R .A/ : (8)

As usual, AT denotes the adjoint operator of A, i.e., AT W X ! W given by

.w;ATx/W WD .Aw; x/X :
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The analysis will also make use of the adjoint operators BT W X ! �0 and CT W
W ! M0 given by

hBTx; �i� WD .B�; x/X ; and hCTw; �iM WD .C�;w/W :

Also central to the definition of the equivalent form of (7) is existence of the
generalized inverse of operator A, denoted by A$ W X ! W. In order to ensure
the generalized inverse is bounded, A in (7) is assumed to have closed range. In this
context, the definition of generalized inverse and some properties are recalled (see,
e.g., [34, Definition 1.1]).

Lemma 1 Suppose A W W ! X is a bounded operator with closed range. Then,
the generalized inverse operator A$ is uniquely defined by

A$ WD
( A�1

1 on R .A/ ;

0 on R .A/? ;
(9)

where A�1
1 W R .A/ ! R

	

AT



stands for the bounded inverse of A1 WD A jR.AT/.
Moreover, the following properties hold

AA$A D A; A$AA$ D A$; A$A D PR.AT/; AA$ D PR.A/; (10)

where PR.AT/ and PR.A/ are orthogonal projections onto R
	

AT



and R .A/ with
respect to the inner-products in W and X, respectively.

Proof See [34, page 317] and [36, Theorem 1].

Under the assumptions of Lemma 1, an abstract version of problem (7) emerges:
Find w0 2 N .A/ and � 2 � such that

( �.C�;A$B�/W C .C�;w0/W D hg; �iM � .C�;A$f /W for all � 2 M;

.B�; x0/X D . f ; x0/X for all x0 2 N
	

AT



:
(11)

This formulation is justified in Theorem 1 below. It will be shown in Sect. 4 that
the global formulation (5) (which induces the MHM method and uses operators
defined locally via (3) and (4)) fits (11). First, we establish the equivalence between
problems (7) and (11). The following technical result, which is a consequence of
Lemma 1 is needed.

Lemma 2 Under the conditions of Lemma 1, f 2 X, u 2 W, and � 2 � satisfy
Au C B� D f if and only if

(i) PR.AT/u D A$f � A$B� ;
(ii) PN.AT/. f � B�/ D 0 ;

where PN.AT/ WD I � PR.A/, and I is the identity operator.
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Proof Assume Au D f � B�. The first condition is a result of applying A$ on both
sides and using the properties of the generalized inverse in Lemma 1. Likewise, the
second condition follows upon applying PN.AT/ on both sides and observing that
PN.AT/Au D 0. Now, assume conditions .i/ and .ii/ hold. Using Lemma 1 and the
first condition,

Au D AA$Au D APR.AT/u

D AA$. f � B�/

D PR.A/. f � B�/:

This together with the second condition implies Au D f � B�.

Remark 1 In the case Au D f � B� is a problem statement for given f 2 X and
� 2 �, condition .i/ in Lemma 2 discusses solvability in the factor space W=N .A/
and condition .ii/ indicates a compatibility requirement on the data f and �. The
prototypical example for these two conditions is the Laplace problem posed with
Neumann boundary conditions.

Now, we consider the main result of this section establishing the equivalence
between (7) and (11).

Theorem 1 Consider f 2 X and g 2 M0. Under the conditions of Lemma 1, prob-
lem (7) admits a unique solution .w; �/ 2 W �� if and only if problem (11) admits
a unique solution .w0; �/ 2 N .A/ � �. Moreover, the following characterization
holds

w D w0 � A$B�C A$f : (12)

Proof Denote by w 2 W and � 2 � the unique solution to problem (7), which in
operator form is,

(
Aw C B� D f ;

CTw D g :
(13)

By condition .i/ in Lemma 2, observe w decomposes as,

w D w0 � A$B�C A$f ; (14)

where w0 WD .I � PR.AT//w WD PN.A/w. Substituting (14) into the second equation
of (13) and using condition .ii/ in Lemma 2 yields,

8

<

:

PN.AT/B� D PN.AT/f ;

�CTA$B�C CTw0 D g � CTA$f :
(15)

So (15), which is the operator form of (11), is satisfied by w0 and �.
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Now, suppose u0 2 N .A/ and � 2 � also satisfy (15) and define

u WD u0 � A$B� C A$f : (16)

It follows immediately from the second equation in (15) that

CTu D g:

Moreover, using properties (10) and the definition of u,

Au D �AA$B� C AA$f D PR.A/ .�B� C f / ;

from which the first equation in (15) implies,

Au D PR.A/ .�B� C f /C PN.AT/ .�B� C f / D �B� C f :

It follows that u and � satisfy (13). Therefore, u D w and � D � by the assumed
uniqueness of solution of (13), which yields w0 D u0. This establishes that (15) has
a unique solution if (13) has a unique solution.

Now, suppose (15) has a unique solution u0 2 N .A/ and � 2 �. By the
second paragraph above, u 2 W defined in (16) and � satisfy (13). If w and �
also satisfy (13), it follows from the first paragraph that w0 and � also satisfy (15).
By uniqueness of the solution of (15), w0 D u0 and � D � so that u D w.
Therefore, (13) has a unique solution if (15) has a unique solution.

2.1 The Subspace Case

Problems (7) and (11) are now reformulated in terms of closed subspaces Ms � M,
�s � �, Ws � W, and Xs � X. Suppose As W Ws ! Xs is a bounded linear map
with closed range, and denote its generalized inverse by A$

s W Xs ! Ws defined
through Lemma 1 (with As in place of A). Let Bs W �s ! Xs and Cs W Ms ! Ws be
the bounded linear maps induced by B and C, i.e.,

.Bs�s; xs/X D .B�s; xs/X and .Cs�s;ws/W D .C�s;ws/W : (17)

In this setting, problem (7) may be recast as: Given f 2 X and g 2 M0, find ws 2 Ws

and �s 2 �s such that

(

.As ws; xs/X C .Bs �s; xs/X D . f ; xs/X for all xs 2 Xs;

.Cs �s;ws/W D hg; �siM for all �s 2 Ms:
(18)
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This problem, as established in Corollary 1 below, is equivalent to: Find w0 2
N .As/ and �s 2 �s such that

8

<

:

�.Cs�s;A$
s Bs �s/W C .Cs �s;w0/W D hg; �siM � .Cs �s;A$

sPXs f /W for all �s 2 Ms ;

.Bs �s; x0/X D . f ; x0/X for all x0 2 N
	AT

s




;

(19)

where PXs is the X-orthogonal projection onto Xs.
It is important to establish connections between (18) and (19) in anticipation

of an error analysis in the next section.The following result is a straight-forward
application of Theorem 1.

Corollary 1 Let operator As W Ws ! Xs be bounded with closed range.
Problem (18) admits a unique solution .ws; �s/ 2 Ws��s if and only if problem (19)
admits a unique solution .w0; �s/ 2 N .As/ ��s. Furthermore, it holds

ws D w0 � A$
sBs �s C A$

sPXs f : (20)

Proof Problem (18) may be expressed in operator form as

(
Asws C Bs �s D PXs f ;

CT
s ws D gs ;

(21)

where gs stands for the functional g acting on the space Ms. The result follows
analogously the proof of Theorem 1, using the operators As, Bs, and Cs in place of
A, B, and C, respectively.

Remark 2 There exists the possibility to make use of subspaces �s and Ms but
insist that the entire spaces W and X, as well as operator A, are used in (11). Such
a statement is not merely academic, and it will be in the genesis of the one-level
MHM method. The related version of (11) reads: Find w0 2 N .A/ and �s 2 �s

such that

( �.C�s;A$B �s/W C .C �s;w0/W D hg; �siM � .C �s;A$f /W for all �s 2 Ms ;

.B �s; x0/X D . f ; x0/X for all x0 2 N
	

AT



:
(22)

Remark 3 Result (20) is remarkable since it indicates that the solution ws of (11)
may be formed by searching for an element of the subspace of Ws generated by the
image of operator A$

sBs restricted to �s, an element of the kernel of As, and the
image of f through operator A$

sPXs . This structure will be explored more deeply in
the construction of the MHM methods.

The next section provides the analysis of problem (19).
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3 Wellposedness and Best Approximation

In the last section, wellposedness of (18) (defined or not in terms of proper
subspaces) was shown, in the context of operator As which is bounded with closed
range, to be equivalent to the wellposedness of problem (19). In this section, best
approximation results are provided for problem (19). First, we recall the standard
necessary and sufficient conditions for the abstract problem (18) to be well-posed
(see, e.g., [10]). These induce the conditions of Corollary 1 for (19) to be well-posed.

It is well known that necessary and sufficient conditions for problem (18)
(and (7)) to be well-posed are the existence of positive constants ˛s;1, ˛s;2 and ˛s;3
such that

˛s;1kwkW 6 sup
x2N.BT

s /

.Asw; x/X
kxkX for all w 2 N

	

CT
s




;

fx 2 N
	

BT
s


 W .Asw; x/X D 0 for all w 2 N
	

CT
s


g D f0g ;

˛s;2k�k� 6 sup
x2Xs

.Bs�; x/X
kxkX for all � 2 �s ;

˛s;3k�kM 6 sup
w2Ws

.Cs�;w/W
kwkW for all � 2 Ms :

(23)

Above and hereafter we lighten notation and understand the supremum to be
taken over sets excluding the zero function, even though this is not specifically
indicated. The next result establishes similar necessary and sufficient conditions for
the wellposedness of problem (19), and is a direct consequence of Corollary 1. First,
consider the following inequalities, which are a direct consequence of the properties
of the generalized inverse operator presented in Lemma 1,

kA$
s xkW 6 kA$

skkxkX for all x 2 Xs ;

1

kA$
sk

kwkW 6 kAswkX for all w 2 R
	

AT
s




:
(24)

Lemma 3 Let N .Bs/ andN .Cs/ be the following null spaces

N .Bs/ WD ˚

�s 2 �s W .Bs �s; xs/X D 0 for all xs 2 N
	

AT
s




;

N .Cs/ WD f�s 2 Ms W .Cs �s;ws/W D 0 for all ws 2 N .As/g :
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Conditions (23) hold if and only if the following conditions are satisfied:

1. 9ˇs;1 > 0 such that,

i. ˇs;1k�k� 6 sup�2N .Cs/

.Cs�;A$
sBs �/W

k�kM for all � 2 N .Bs/ ;

ii. f� 2 N .Cs/ W .Cs�;A$
sBs �/W D 0 for all � 2 N .Bs/g D f0g :

2. 9ˇs;2 > 0 such that ˇs;2kx0kX 6 sup�2�s

.Bs�; x0/X

k�k� for all x0 2 N
	

AT
s




.

3. 9ˇs;3 > 0 such that ˇs;3kw0kW 6 sup�2Ms

.Cs�;w0/W

k�kM for all w0 2 N .As/ .

Moreover, problem (19) has an unique solution .�s;w0/ 2 �s � V0 if only if the
conditions above hold, and we get

k�sk� 6 1

ˇs;1
kgkM0 C

 

kA$
skkCsk
ˇs;1

�

1C kBsk
ˇs;2

�

C 1

ˇs;2

!

kfkX ;

kw0kW 6 1

ˇs;3

 

1C kA$
skkBskkCsk
ˇs;1

!

kgkM

C kA$
skkCsk
ˇs;3

 

1C kA$
skkBskkCsk
ˇs;1

�

1C kBsk
ˇs;2

�

C kBsk
ˇs;2

!

kfkX :

Proof The result follows from the standard condition for mixed/hybrid formulations
[10] and from Corollary 1.

With the above theoretical structure, approximation results may be presented.

Lemma 4 Let A W W ! X and As W Ws ! Xs be bounded operators with
closed range. Assume N .As/ � N .A/ and N

	

AT
s


 � N
	

AT



, and the conditions
of Lemma 3 hold for problems (11) and (19). If .�;w0/ 2 � � N .A/ and
.�s;ws

0/ 2 �s � N .As/ are the solutions of (11) and (19), respectively, then

k�� �sk� 6 inf
zs2�?s

��

1C kCskkBkkA$k
ˇs;1

�

k�� zsk� C kCsk
ˇs;1

k.A$ � A$
sPXs /. f � Bzs/kW

�

;

where �?
s WD ˚

�s 2 �s W .Bs�s; x0/X D . f ; x0/X for all x0 2 N
	

AT
s




and

kw0 � ws
0kW 6 kCskkA$kkBk

ˇs;3
k� � �sk� C kCsk

ˇs;3
k.A$ � A$

sPXs/ . f � B�s/kW

C
�

1C kCsk
ˇs;3

�

inf
y02N.As/

kw0 � y0kW :
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Moreover, for ws given in (20) and w given in (12), it holds

kw�wskW 6
�kCskkA$kkBk

ˇs;3
C kA$kkBk

�

k�� �sk� C
�

1C kCk
ˇs;3

�

inf
y02N.As/

kw0 � y0kW

C
�

1C kCsk
ˇs;3

�

k.A$ � A$
sPXs/. f � B�s/kW :

Proof Let zs 2 �?
s . As a result �s � zs 2 N .Bs/ and from item .i/ in Lemma 3,

problems (11) and (19), and observing that Bs D PXsB from (17), it holds

ˇs;1k�s � zsk� 6 sup
�s2N .Cs/

.Cs �s;A$
sBs.�s � zs//W
k�skM

D sup
�s2N .Cs/

.Cs �s;A$B�� A$
sBszs/W � .Cs �s;A$B� � A$

sBs�s/W

k�skM

D sup
�s2N .Cs/

.Cs �s;A$B�� A$
sBszs/W � .Cs �s; .A$ � A$

sPXs/f /W
k�skM

D sup
�s2N .Cs/

.Cs �s;A$B.�� zs//W � .Cs �s; .A$ � A$
sPXs/.Bzs � f /W

k�skM
6 kCskkBkkA$kk� � zsk� C kCskk.A$ � A$

sPXs/.Bzs � f /kW ;

where the continuity of As, Bs, and Cs are used. The first result follows from
the triangle inequality. Now, suppose y0 2 N .As/. From item .3/ in Lemma 3,
problems (11) and (19), and Bs D PXsB from (17), it holds

ˇs;3kws
0 � y0kW 6 sup

�s2Ms

.Cs�s;w
s
0 � y0/W

k�skW

D sup
�s2Ms

.Cs�s;w0 � y0/W C .Cs�s;w
s
0 � w0/W

k�skW

D sup
�s2Ms

.Cs�s;w0 � y0/W C .Cs�s;A$
sBs�s � A$B�C .A$ � A$

sPXs/f /W
k�skW

D sup
�s2Ms

.Cs�s;w0 � y0/W C .Cs�s;A$B.�s � �//W C .Cs�s; .A$ � A$
sPXs/. f � B�s//W

k�skW

6 kCskkw0 � y0kW C kCskkA$kkBkk� � �sk� C kCskk.A$ � A$
sPXs/. f � B�s/kW :

The second result follows by the triangle inequality.
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For the final result, decompositions (12) and (20) of w and ws and Bs D PXsB
from (17) are used to get

kw � wskW 6 kw0 � ws
0kW C kA$B�� A$

sBs�s C .A$ � A$
sPXs/fkW

6 kw0 � ws
0kW C kA$B.�� �s/kW C k.A$ � A$

sPXs/. f � B�s/kW
6 kw0 � ws

0kW C kA$kkBkk� � �sk� C k.A$ � A$
sPXs/. f � B�s/kW

and the result follows.

Remark 4 In the particular case formulation (22) is adopted, the estimates in
Lemma 4 simplify to

k� � �sk� 6 inf
z2�?s

�

1C kCkkA$kkBk
ˇs;1

�

k� � zk� ;

kw0 � ws
0kW 6 kCkkA$kkBk

ˇs;3
k� � �sk� :

It is common to define As (although other choices would be also possible)
through the action of A in the following standard way

.Asws; xs/X D .Aws; xs/X for all ws 2 Ws; xs 2 Xs : (25)

Due to the consistency that results from such a choice, an estimate for the terms
k.A$ �A$

sPXs/. f �B�s/kW in Lemma 4 may be given. Consider the improved best
approximation result of Xu and Zikatanov [45, Theorem 2] extended to the present
setting.

Lemma 5 Let operator A W W ! X be bounded with closed range and suppose
As W Ws ! Xs defined by (25) has closed range. If N .A/ D N .As/ � Ws and
N
	

AT

 D N

	

AT
s


 � Xs, then

kA$ x � A$
sPXs xkW 6 kA$

skkAk inf
�s2Ws

kA$x � �skW for all x 2 X :

Proof Define ˘s W W ! R
	

AT
s




(which is a projection according to (25)) by

.As˘s z; xs/X D .A z; xs/X for all xs 2 R .As/ and z 2 W : (26)

Given vs 2 R
	

AT
s




, Eqs. (24) and (25) imply .I �˘s/vs D 0. So, by [45, Lemma 5]

kz �˘s zkW D k.I �˘s/.z � vs/kW 6 k˘skkz � vskW for all z 2 W; (27)
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where k˘sk WD supz2W
k˘s zkW

kzkW . Since ˘s z 2 R
	

AT
s




and A$
s is bounded, Lemma 1

and (26) imply,

k˘s zkW D kA$
sAs˘s zkW

6 kA$
sk
.As˘s z;As˘s z/X

kAs˘s zkX
D kA$

sk
.Az;As˘s z/X

kAs˘s zkX
6 kA$

skkAkkzkW :

Therefore, using the inequality above in (27), we obtain

kz �˘s zkW 6 kA$
skkAk inf

vs2R.AT
s /

kz � vskW for all z 2 W: (28)

If z 2 R
	

AT



, this estimate may be improved. Choose arbitrary v0 2 N .As/ and
vs 2 R

	

AT
s




. Then, .z � vs; v0/W D 0 since N .A/ D N .As/ � Ws. Under these
assumptions,

kz � vsk2W 6 kz � vsk2W C kv0k2W D kz � .vs C v0/k2W :

Therefore, using (28) and the decomposition Ws D R
	

AT
s


˚ N .As/,

kz �˘s zkW 6 kA$
skkAk inf

vs2Ws
kz � vskW for all z 2 R

	

AT



:

For arbitrary x 2 X, define z D A$x and zs D A$
sPXsx. The proof is complete

if zs D ˘s z. From (26), the definitions of z and zs, Lemma 1, and the assumption
N
	

AT

 D N

	

AT
s


 � Xs, it holds

PXsAs˘sz D PXsAz

D PXsPR.A/x

D PXs.I � PN.AT//x

D PXs.I � PN.AT
s /
/x

D PXs.I � PN.AT
s /
/PXsx

D PXsPR.As/PXsx

D PXsAszs :

By (24), zs D ˘s z and the result follows.
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4 Application to the Laplace Problem

In this section, the abstract theory developed in Sect. 2 is leveraged to develop and
analyze MHM methods for the Laplace problem (1). The first step is to show that
the primal hybrid formulation (2) fits the form of problem (7).

Recall that fTHgH>0 is a family of regular partitions of ˝ composed of elements
K with boundary @K. A partition TH is parameterized by H D maxK2TH HK , where
HK D diam K. As presented in the introduction, the test and trial spaces involved in
the definition of problem (2) coincide and can be recognized as

X; W D H1.TH/ ; (29)

M; � D f� � nK j@K 2 H�1=2.@K/; 8K 2 TH W � 2 H.divI˝/g : (30)

Here, H1.TH/ is a Hilbert space equipped with the inner product, for u; v 2 H1.TH/,

.u; v/X D
X

K2TH

1

d2˝
.u; v/K C .r u;r v/K ; (31)

where .:; :/K is the standard L2.K/ inner product. The induced norm is denoted by

kvk2X WD
X

K2TH

�
1

d2˝
kvk20;K C krvk20;K

�

:

We shall use extensively the following notation, for u; v 2 X and � 2 M,

.u; v/TH WD
X

K2TH

.u; v/K and .�; v/@TH WD
X

K2TH

.u; v/@K ;

where that .�; v/@K represents the duality product H�1=2.@K/ and H1=2.@K/. Also,
the broken H1 semi-norm is denoted by

juj1;h WD
h X

K2TH

juj21;K
i1=2

:

Furthermore, the space of Lagrange multipliers M is normed by,

k�kM D sup
v2H1.TH/

.�; v/@TH

kvkX : (32)

Denoting the quotient norm on M by

jjj�jjjM WD inf
�2H.divI˝/

� �nKD� on @K;K2TH

k� kdiv; (33)
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where

k�k2div D
X

K2TH

	k�k20;K C d2˝k div �k20;K



;

the following equivalence holds (see [3])

p
2

2
jjj�jjjM 6 k�kM 6 jjj�jjjM : (34)

Consequently the space M (e.g. �) is also a reflexive Banach space with respect to
the norm jjj � jjjM.

In order to realize (2) in the form (7), operators A, B, and C must be defined.
First, the self-adjoint, bounded linear operator A W X ! X is defined by

.Av;w/X D .� r v; r w/TH for all v; w 2 X: (35)

According to the definition of A, the null space corresponds to piecewise constant
functions, i.e. N.A/ D V0, and then R .A/ is closed and coincides with X \ L20.TH/.
Next, let C D B D j1, where j1 W M ! X is a bounded linear operator defined by

. j1�; x/X D .�; x/@TH for all � 2 M; x 2 X : (36)

By the next lemma, j1 is an isometry onto the subspace H1
0.˝/

? � X, i.e., the spaces
H1
0.˝/

? and M are isomorphic so that R . j1/ is closed.

Lemma 6 Let L be a bounded linear functional acting on X. The following
conditions are equivalent:

1. L.x/ D 0 for all x 2 H1
0.˝/;

2. 9 Š � 2 M such that L.x/ D .�; x/@TH for all x 2 X;
3. 9 Š v 2 .H1

0.˝//
? such that L.x/ D .v; x/X for all x 2 X.

Moreover, kLkX0 D k�kM D kvkX.
Proof The equivalence of (1) and (2) is established in [39, Lemma 1] (modified to
the present context). Moreover, the equivalence of (1) and (3) stems from the Riesz
Representation Theorem. Finally, the equality of norms follows by standard results.

With these operators, problem (2) is recast as follows: Find u 2 X and � 2 M such
that

(

.Au; v/X C . j1 �; v/X D .j2 f ; v/X for all v 2 X;

. j1 �; u/X D 0 for all � 2 M ;
(37)
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where j2 W L2.˝/ ! X is defined by,

. j2q; �/X D .q; �/˝ for all q 2 L2.˝/ : (38)

Thereby, formulation (37) is equivalent to (2) and, then following closely [39],
conditions 1 and 2 of Lemma 6 establish that problem (2) is well-posed and forms
the solution to problem (1). This result is summarized in the next lemma [39,
Theorem 1].

Lemma 7 Problem (2) (e.g. (37)) has a unique solution .u; �/ 2 X �M. Moreover,
u 2 H1

0.˝/ is the solution to problem (1) and � D ��ru� nK j@K for each K 2 TH.

Since operator A defined in (35) is bounded with closed range, the following
problem is well-posed by Lemma 7 and Theorem 1: Find .�; u0/ 2 M � V0 such
that

( �. j1�;A$j1�/X C . j1�; u0/X D �. j1�;A$j2 f /X for all � 2 M ;

. j1�; v0/X D . j2f ; v0/X for all v0 2 V0 :
(39)

Note that j2f is the representative in X of f 2 L2.˝/, so that j2f here plays the role
of the corresponding right-hand side in the abstract setting.

The next result demonstrates that problem (5) is well-posed. Such a result was
originally shown in [3] by establishing conditions (1)–(3) in Lemma 3. Here, we
propose an alternative (and indirect) proof by showing that the generalized inverse
A$ in (39) may be characterized locally in terms of operators T and OT defined in (3)
and (4), respectively. As a result, the wellposedness of (5) follows from Lemma 7
and Theorem 1. This is the subject of the next lemma.

Theorem 2 There exists a unique solution .u0; �/ to problem (5). Moreover, the
solution u of (37) reads

u D u0 C T�C OTf : (40)

Proof First note that the generalized inverse A$ has the property that

A$j2 q D OTq for all q 2 L2.˝/ : (41)

Indeed, by the definition of A in (35), it follows that for all w 2 R .A/

.A OTq;w/X D .� r OTq;rw/TH D .q;w/TH D . j2 q;w/X D .AA$j2 q;w/X;

where AA$ D PR.A/ from Lemma 1. Therefore,

.A. OT � A$j2/ q;w/X D 0 for all w 2 R .A/ ;
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and then A. OT � A$j2/ q D 0. Since R .A/ is closed, this implies that

. OT � A$j2/ q 2 N .A/ \ R
	

AT



for all q 2 L2.˝/

and (41) follows. Next, the generalized inverse has also the property that

A$j1� D �T� for all � 2 M : (42)

This is achieved by employing the same argument used to show (41), i.e., from
Lemma 6 it holds that for all w 2 R .A/

.AT�;w/X D �.�;w/@TH D �. j1�;w/X D �.AA$j1 �;w/X ;

and then (42) follows. Problem (5) is well-posed from (39), Theorem 1 and using
the characterizations (41) and (42). Decomposition (14) follows from (12) in
Theorem 1, and (41) and (42) with B D j1.

Remark 5 An interesting characteristic of the formulation (39) (e.g. (5)) is that it
may be written in an alternative form involving divergence. Define for an arbitrary
� 2 M

�� WD �rA$j1� D ��rT� :

Now, since AT D A and A$T D A$, the definition of A and Lemma 1 imply

. j1�;A$j1�/X D . j1�;A$AA$j1�/X

D .AA$j1�;A$j1�/X

D .��; ��1��/TH :

Next, note from Lemma 1 that .AA$j1�; z0/X D 0 for each z0 2 V0. Let z 2
R .A/ be arbitrary. From the definition (10) of generalized inverse A$, it holds

.�; z/@TH D . j1�; z/X

D .AA$j1�; z/X

D �.r� ��; z/TH C
X

K2TH

.��� nK ; z/@K ;

and it follows that �� jK , for all K 2 TH , satisfies (in a weak sense)

�r� �� D x0 in K and �� � nK D � on @K ; (43)
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where x0 2 V0 is such that x0 D � 1
jKj
R

@K �. Observe that �� belongs to H.divI˝/
since �� � nK j@K 2 M for all K 2 TH . Therefore,

. j1�; z0/X D .�; z0/@TH D
X

K2TH

.�� � nK ; z0/@K D .r� ��; z0/TH :

So, problem (39) may be written in the form: Find .�; u0/ 2 M � V0 such that

(
.��; ��1��/TH C .r� ��; u0/TH D . j1�;A$j2 f /X for all � 2 M ;

.r� ��; v0/TH D . f ; v0/TH for all v0 2 V0 :
(44)

4.1 The Subspace Case

Let Xs � X and Ms � M be closed subspaces (possibly infinite-dimensional) with
M given in (30), and consider the primal hybrid problem: Find us 2 Xs and �s 2 Ms

such that
(

.�rus;rxs/TH C .�s; xs/@TH D . f ; xs/TH for all xs 2 Xs ;

.�s; us/@TH D 0 for all �s 2 Ms :
(45)

This problem may be expressed in the form (18) using As W Xs ! Xs defined by,

.Asws; xs/X D .Aws; xs/X D .�rws;rxs/TH for all ws; xs 2 Xs ; (46)

and setting Bs D Cs D PXs j1, i.e.,

.PXsj1�s;ws/X D . j1�s;ws/X D .�s;ws/@TH for all ws 2 Xs ; (47)

where (36) was used.
By the next result, (45) is well-posed under an equivalent condition on the

compatibility of spaces Xs and Ms and the assumption that Ms contains the piecewise
constant space on faces M0. Such a result is adapted from [39, Theorem 2] to the
present case.

Lemma 8 Assume M0 � Ms and Cs has closed range. Problem (45) is well-posed
if and only if

f�s 2 Ms W .Cs�s; xs/X D 0 for all xs 2 Xsg D f0g : (48)

Proof Following closely [39, Theorem 2], the condition M0 � Ms implies that

C kxsk2X 6 .As xs; xs/X for all xs 2 N
	

CT
s




; (49)
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where C is independent of H. The coercivity result (49) implies the first and second
conditions in (23). Also, condition (48), along the closure of R .Cs/, leads to the
surjectivity of CT

s . This is equivalent to the third (and fourth) condition in (23), and
then the result follows.

We are ready to establish the wellposedness of the following global-local
problem: Find .�s; u0/ 2 Ms � V0 such that

.�s; v0/@TH D . f ; v0/TH for all v0 2 V0 ;

.�s;Ts �s/@TH C .�s; u0/@TH D �.�s; OTs f /@TH for all �s 2 Ms ;
(50)

where operators Ts W Ms ! Xs\L20.TH/ and OTs W L2.˝/ ! Xs\L20.TH/ are defined
piecewise in K 2 TH by

�s 2 Ms; .� r Ts �s;r ws/K D �.�s;ws/@K for all ws 2 Xs \ L20.TH/ ;
(51)

q 2 L2.˝/; .� r OTs q;r ws/K D .q;ws/K for all ws 2 Xs \ L20.TH/ : (52)

Theorem 3 Assume that M0 � Ms and (48) hold. Then, problem (50) is well-posed.
Moreover, if .�; u0/ and .�s; us0/ are the solutions of (2) and (50), respectively, then
the following estimates hold

k�� �skM 6 inf
z2M?

s

��

1C kA$k
ˇs;1

�

k� � zkM C 1

ˇs;1
k
� OT � OTs

�

f C .T � Ts/ zkX
�

;

ku0 � us0kX 6 kA$
sk

ˇs;3
k� � �skM C 1

ˇs;3
k
� OT � OTs

�

f C .T � Ts/ �skX ;

where M?
s WD f�s 2 Ms W .�s; x0/@TH D . f ; x0/˝ for all x0 2 V0g.

Proof First note that, from (46) the finite dimensional null space N .As/ D V0 D
N .A/ and the image space R .As/ D Xs \L20.TH/ is closed. As a result, the operator

As has a generalized inverse A$
s from Lemma 1 and satisfies the properties (10).

Next, following closely the proof in Theorem 2, it follows

Ts D �A$
sPXs j1 and OTs D A$

sPXs j2 ;

and, thus, problem (50) can be rewritten in the form (19). Also, notice that operators
Cs and Bs have closed range from (47). The result follows using Corollary 1 and
Lemma 8. The estimates follow from Lemma 4, with kCsk D kBsk D kBk D
kCk D 1.

We next present best approximation results for the full solution us0 C Ts �s C OTsf in
the X and L2 norms. Unlike in classical results, the estimate in the L2 norm does not
require extra regularity.
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Lemma 9 Assume that M0 � Ms and (48) hold. If .us; �s/ and .us0; �s/ solve (45)
and (50), respectively, then

us D us0 C Ts �s C OTsf ;

and the following estimate holds

ku�uskX 6
 

kA$
sk

ˇs;3
C kA$k

!

k� � �skM C
�

1C 1

ˇs;3

�

k
� OT � OTs

�

f C .T � Ts/ �skX :

Furthermore, it holds

ku�usk0;˝ 6 CH ju � usj1;h :

Proof The first estimate follows from Lemma 4, observing that kCk D kCsk D
kBsk D 1. The second result follows closely the proof proposed first in [35]. We
revisit it here in a more general form. From the definition of u and us, we get

ku � usk0;˝ 6 kT �C OT f C u0 � Ts �s � OTs f � us0k0;˝
6 ku0 � us0k0;˝ C CH jT �C OT f � Ts �s � OTs f j1;h (53)

where we used the triangle inequality, the Poincaré inequality, and the assumption
on the regularity of the mesh. Next, we estimate ku0 � us0k0;˝ . Without losing
generality, we assume that u0 � us0 2 V0 does not vanish in K 2 TH . It is known
that there exists a vector-valued function � ? belonging to the lowest-order Raviart-
Thomas space such that r � � ? D u0 � us0 and k� ?k0;K 6 CHK kr � � ?k0;K in
each K 2 TH . We recall that � ? � nK j@K is piecewise constant for all K in TH . Now,
from (50), the fact that T� jK ; OT f jK and Ts�s; jK ; OTs f jK belong to L20.K/ for all
K 2 TH , the Cauchy-Schwarz inequality, and the regularity of the mesh, we get

ku0 � us0k20;˝ D .r � � ?; u0 � us0/TH

D
X

K2TH

.� ? � nK ; u0 � us0/@K

D �
X

K2TH

.� ? � nK ;T�� Ts�s C OT f � OTs f /@K

D �.� ?;r.T�� Ts�s C OT f � OTs f //TH C .r � � ?;T�� Ts�s C OT f � OTs f /TH

D �.� ?;r.T�� Ts�s C OT f � OTs f //TH

6
X

K2TH

k� ?k0;Kkr.T�� Ts�s C OT f � OTs f /k0;K
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6 C
X

K2TH

HK kr � � ?k0;Kkr.T�� Ts�s C OT f � OTs f /k0;K

6 CH ku0 � us0k0;˝ jT�� Ts�s C OT f � OTs f j1;h :

Collecting the previous results, we get from (53) the existence of C such that

ku � usk0;˝ 6 CH ju � usj1;h :

Remark 6 The result in Lemma 9 is the first to address the relationship between the
classical hybrid formulation and the global-local MHM formulation in the case of
subspaces. Also new are the error estimates in Theorem 3 and Lemma 9 measuring
the impact of replacing T and OT by Ts and OTs. This is important in preparation for
the next section in which particular choices are made for the approximation spaces.

5 Relationship with the MHM Method and Beyond

The abstract framework introduced in the last sections are now used to recover
some of the classical and recent numerical methods in the literature. As such, the
wellposedness and best approximation results for them follow naturally from the last
sections. Particular subspaces are chosen with respect to TH being a triangulation of
˝ � R

2 into simplex elements K 2 TH . In all cases we pick

Ms D Ml WD f� 2 M W �jF 2 Pl.F/; for all F � @K and K 2 THg ; (54)

wherePl.F/ stands for the space of polynomial functions with degree less or equal to
l > 0 on F. This space has a well-known interpolation result [39, Lemma 9], namely,
given a function  2 HmC1.TH/, with 1 6 m 6 l C 1, there is �l 2 Ml (taken as the
L2 projection of � onto space Pl.F/) and positive constants independent of H, such
that

k�lkM 6 C kkmC1;˝ ; and k � �lkM 6 CHmjjmC1;˝ ; (55)

where  2 M is such that  D r � nK when restricted to @K for all K 2 TH .

5.1 The One-Level MHM Method

The one-level MHM method is recovered by taking Xs WD H1.TH/ and letting T D
Ts and OT D OTs defined in (3) and (4), respectively. The resulting method corresponds
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to find .�l; uH0 / 2 Ml � V0 such that

(

.�l;T �l/@TH C .�l; u
H
0 /@TH D �.�l; OT f /@TH for all �l 2 Ml ;

.�l; v0/@TH D . f ; v0/TH for all v0 2 V0 :
(56)

Observe that problems (3) and (4) can be written in the following (equivalent) strong
form

� r � .�rT �/ D c�K in K; ��rT � � nK D � on F � @K ; (57)

and

� r �
�

�r OT q
�

D q � NqK in K; �r OT q � nK D 0 on F � @K ; (58)

where

NqK WD 1

jKj
Z

K
q dx and c�K WD 1

jKj
Z

@K
� ds : (59)

It is easy to see from (54) and the definition of the space Xs that the conditions
in Lemma 8 hold so that problem (56) is well-posed from Theorem 3. In addition,
using again Theorem 3, Lemma 9, and (55), we get the following error estimates

ku0 � uH0 kX C H k� � �lkM 6 CHmC1 kukmC1 ;

ku � uHk0;˝ C H ju � uHj1;h 6 CHmC1 kukmC1 ;

k� � �Hkdiv 6 CHm kukmC1 ;

(60)

where 1 6 m 6 l C 1, and � WD � r.T �C OT f /, and

uH D uH0 C T �l C OT f and �H WD � r.T �l C OT f / :

For the third error estimate in (60), we used �H 2 H.divI˝/ and r � .� � �H/ D 0

in each K 2 TH as a result of problem (56)–(58). The independence of the
constant in (60) with respect to H follows from the independence of the inf-sup
constant in (23) in the context of the discrete primal hybrid method for the Laplace
problem (see [39]). The convergence results (60) were first established in [3] proving
conditions in Lemma 3 directly.

Remark 7 The one-level MHM method has been analyzed (see [35] for details)
assuming highly oscillatory coefficient and periodicity. Convergence with respect
to the (small) characteristic length of oscillations " was then addressed under the
assumption "

H < C D O.1/ and without any oversampling technique. One of
the main result is that the numerical solution is resonance-free, and the following
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estimates

ju � uHj1;h 6 C .H C "1=2/kfk0;˝ and ku � uHk0;˝ 6 C .H2 C H "1=2/kfk0;˝ ;

hold under mild regularity assumptions.

It is instructive to describe the algorithm underlying the one-level MHM
method (56). Discretization decouples the local problems (3) and (4) from the global
one (56). Thereby, a staggered algorithm can be used to solve the system. To see this
more clearly, consider T �l in more detail. Suppose f igdimMl

iD1 is a basis for Ml, and
define the set f�igdimMl

iD1 � H1.TH/ \ L20.TH/ such that,

� r � .�r�i/ D c i
K in K; ��r�i � nK D  i on F � @K ; (61)

i.e., �i D T  i, where  i changes its sign in (61) according to the sign of n � nK jF .
Now, giving �l D PdimMl

iD1 ci  i in Ml, ci 2 R, the linearity of problem (57) implies
we may uniquely write

T �l D
dimMlX

iD1
ci T  i D

dimMlX

iD1
ci �i :

Therefore, the degrees of freedom ci’s of �l are “inherited” by T �l. It then follows
that

uH D uH0 C
dimMlX

iD1
ci �i C OT f : (62)

As a result, the global formulation (56) is responsible for computing the degrees
of freedom of uH0 (one per element) and the ci’s in (62), once the multiscale basis
functions �i’s and OTf are available from the local problems. Also, it is interesting
to note that heterogeneous and/or high-contrast aspects of the media automatically
impact the design of the basis functions �i’s as well as OT f as they are driven by (61)
and (4), respectively. In Fig. 1 we depict an example of such a basis function in the
case the coefficient � oscillates and Ms D M0.

Although the one-level MHM method is impractical (in general) since basis
f�igdimMl

iD1 and OT f are not readily available, an interesting case arises where a
closed formula is indeed available. From these, we recover the classical lowest-
order Raviart-Thomas finite element method. Also, we can recognize from this
perspective the well-known MsFEM [16] and the UpFEM [4]. These cases are the
subject of the next sections.
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Fig. 1 Illustration of a typical multiscale function �i on a triangle associated to a piecewise
constant interpolation function on faces

5.1.1 The Lowest-Order Raviart-Thomas Element

Assume that � D I (where I is the 2 � 2 identity tensor) and let Ms D M0. Next,
consider the following function defined on˝ with respect to face F of the partition
TH

�KF .x/ D
8

<

:

˙ HF

2 jKj
�x� x
2

� x� xF C C
�

x 2 K and F � @K; K 2 TH ;

0 otherwise:
(63)

Here, xF represents the vertex opposite to the face F, and for the two K 2 TH sharing
face F, one function is taken with the positive sign and the other with the negative
sign. Furthermore, constant C is chosen so that �KF 2 L20.K/, and jKj is the area of
K. It is easily verified that �KF D T �F where �F 2 M0.

Define the set f��F g, for all F � @K and K 2 TH , such that

��F jK D �rT �F jK D ˙ HF

2 jKj .x � xF/ :

It is clear upon taking f�Fg as a basis for M0 that the set f��F g is a basis for the
local lowest-order Raviart-Thomas finite element space. Moreover, in light of (44),
we recognize the mixed-method version of the MHM global method as a modified
version of the lowest-order Raviart-Thomas method for the mixed form of the
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Laplace problem, namely: Find �F 2 M0 and u0 2 V0 such that

(
.��F ; ��F /TH C .r� ��F ; u0/TH D �.�F; OT f /@TH for all �F 2 M0 ;

.r� ��F ; v0/TH D . f ; v0/TH for all v0 2 V0 :
(64)

As such, if f is piecewise constant on TH , so, from (58) we get that OTf D 0 and
then we recover the lowest-order Raviart-Thomas method for the mixed form of
the Laplace problem exactly. The well-known error estimates for the lowest-order
Raviart-Thomas method are then obtained from (60). In addition, we observe a
super-convergence of the error in the L2 norm for the “updated” uH. A similar result
was also proved in [4].

5.1.2 Multiscale Finite Element Methods

In the case the Laplace problem involves a more complex coefficient �, the one-
level MHM method (56) might been seen as a generalization of the multiscale finite
element method (MsFEM) by Chen and Hou [16]. Indeed, the case when � highly
oscillates inside K 2 TH has been handled in [16] using the solution of the local
problem (57) directly in formulation (64) (assuming M0 to discretize flux on faces).
However, the second local problem (58) has not been considered, meaning the
multiscale method in [16] does not include the term �.�F; OT f /@TH . As mentioned in
the previous section, if f is piecewise constant on TH, then OTf D 0 and we recover
exactly the MsFEM.

The subgrid upscaling method (UpFEM) was introduced in [4] and recovered
the method in [16] inside an enhanced space framework which includes the term
. f ; T �l/TH

on the right-hand side. After some algebraic manipulations, it may
be seen as the present method (in its lower order version) using the space M1 to
approach the flux across faces. In fact, observe that the term �.�l; OT f /@TH may
written equivalently as

�.�l; OT f /@TH D .� rT�l;r OT f /TH D .T�l; f /TH ;

where we used the definition of operators T and OT in (3) and (4), respectively.
Nevertheless, the way the UpFEM method is built is fundamentally different than
the present work. This prohibits establishing such a relationship for higher-order
interpolation spaces Ml, l > 2. Finally, and unlike the present approach, the cited
works start with the mixed Laplace problem. As a consequence, the local problems
are also of mixed form, and so, a two-level stable finite element pair of spaces is
necessarily adopted.
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5.2 The Two-Level MHM Method

As we mentioned, in the case the Laplace problem involves a more complex
coefficient �, either due to multiscale or high-contrast aspects for instance, or if one
adopts higher-order interpolation on faces, a two-level method must be employed to
find an approximate local solution of (51) and (52), respectively. This is the subject
in this section. First, we notice that the two-level MHM method is quite general and
can embed a large variety of two-level numerical methods. Here, the choice made
will allow us to establish a relationship between the two-level MHM method and the
discrete primal hybrid formulation proposed in [39]. To this end, we shall strongly
use the abstract results proved in the previous sections. Also, some remarks with
respect to the recent proposed Discontinuous Petrov-Galerkin (DPG) method [19]
and the Hybrid Discontinuous Galerkin (HDG) method [21] close this section.

5.2.1 The Primal Hybrid Numerical Method

Define Xs D Vh as follows

Vh WD ˚K2THPk.K/ � H1.TH/ ; (65)

where Pk.K/ is the space of polynomial functions of degree equal or less k on K.
The discrete version of the primal hybrid formulation in [39] reads: Find uh 2 Vh

and �l 2 Ml such that

(

.�ruh;rvh/TH C .�l; vh/@TH D . f ; vh/TH for all vh 2 Vh ;

.�l; uh/@TH D 0 for all �l 2 Ml :
(66)

We recall that the following result [39, Lemma 4 and Theorem 2] provides the
necessary and sufficient condition to (66) be well-posed.

Lemma 10 Let the spacesMl and Vh be defined in (54) and (65), respectively. Then,
the compatibility condition (48) holds if and only if

k >
(

l C 1 when l is even ,

l C 2 when l is odd .

Now, we choose to approximate local problems T �l jK and OT f jK in each K 2 TH
as follows

.�rTh �l;rvh/K D �.�l; vh/@K for all vh 2 Vh \ L20.K/ ;

.�r OTh �l;rvh/K D . f ; vh/K for all vh 2 Vh \ L20.K/ ;
(67)
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and we take Ts D Th and OTs D OTh in (50). Note that local problems are discretized
by the classical Galerkin method based on a single element, and require no further
discretization of each element. As such, it can be seen as a p-method at the second
level. The two-level MHM method reads: Find .�l; u

H;h
0 / 2 Ml � V0 such that

(

.�l;Th �l/@TH C .�l; u
H;h
0 /@TH D �.�l; OTh f /@TH for all �l 2 Ml ;

.�l; v0/@TH D . f ; v0/TH for all v0 2 V0 :
(68)

Next, we establish the wellposedness and the optimality of the method (68). It is
important to mention that the two-level method (68) and its analysis for the Laplace
problem are new. Such results are a consequence of Theorem 3, Lemma 9 and
Lemma 10, and the following standard interpolation result (see [22] for instance):

inf
vh2Pk.K/

kv�vhk1;K 6 CHm
K jvjmC1;K for all v 2 HmC1.K/; 1 6 m 6 k : (69)

Theorem 4 Assume the compatibility condition in Lemma 10 holds. Then, MHM
method (68) is well-posed and

uh D uH;h0 C Th �l C OTh f ; (70)

where .uh; �l/ solves (66) and .uH;h0 ; �l/ solves (68). Furthermore, if u 2 HmC1.˝/,
for 1 6 m 6 l C 1, then the following estimates hold

k� � �lkM C ku0 � uH;h0 kX 6 CHmjujmC1;˝ ;

ku � uhk0;˝ C H ju � uhj1;h 6 CHmC1 jujmC1;˝ :
(71)

Proof From Lemma 10, and since M0 � Ml from definition (54), Lemma 8 holds.
As such, method (68) is well-posed from Theorem 3. Characterization (70) is a
consequence of Lemma 9.

Now, from Theorem 3 we get

k� � �lkM 6 inf
z2M?

s

��

1C kA$k
ˇs;1

�

k� � zkM C 1

ˇs;1
k
� OT � OTh

�

f C .T � Th/ zkX
�

:

First, the estimate of the first term in the right hand side above results from (55)
used with the L2 projection of � 2 M onto the space Pl.F/, here denoted �l.
Observing that �l 2 M?

s (from the first equation in (5)), we get

inf
z2M?

s

k� � zkM 6 k� � �lkM 6 CHmjujmC1;˝ :
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The second term is dealt with using the standard interpolation estimate (69)
(together with k > l C 1 > m > 1) and Lemma 5 to get

inf
z2M?

s

k
� OT � OTh

�

f C .T � Th/ zkX 6 k
� OT � OTh

�

f C .T � Th/ �lkX 6 CHmjujmC1;˝ ;

and the first estimate in (71) follows from Theorem 3. The second estimate in (71)
is a straightforward consequence of the first estimate and Lemma 9. Note that since
the constants in (60) are independent of H, the constants ˇs;1 and ˇs;2 D ˇs;3 in
Lemma 3 are independent ofH. Therefore, the constantsC here are also independent
of H.

Remark 8 As mentioned, the second level discretization can be quite general, i.e.,
the MHM method could have worked with different interpolation spaces Vh and
discrete methods Th and OTh locally. The one adopted in this section is only an
example in order to establish a relationship with the classical primal hybrid method
[39]. Discontinuous Galerkin method, stabilized method or even mixed methods,
just to cite a few, may be adopted as a second-level solver, and induce a large
variety of MHM methods. It would be interesting, for instance, to establish some
relationship with some members of the family of DG and/or HDG methods, or with
some stabilized or enriched finite element methods within the current framework.

Remark 9 Recently the Discontinuous Petrov-Galerkin (DPG) method, first pro-
posed in [18] for the first-order system of the Poisson equation, has been revisited
and reformulated for the original second-order Poisson problem in [19]. The DPG
methodology starts at the continuous level, looking for the solution in the H1

0.˝/

space and relaxing the continuity of the test functions. Specifically, the idea is to
find .uDPG; �DPG/ 2 H1

0.˝/�˘K2THH
�1=2.@K/ such that

.ruDPG;rv/TH C .�DPG; v/@TH D . f ; v/TH ; for all v 2 H1.TH/ ; (72)

where �DPG is the numerical flux from the DPG terminology. Observe that, although
not directly stated in [19], Problem (72) is nothing but the primal hybrid formulation
of the Poisson problem, i.e., .uDPG; �DPG/ coincides with .u; �/ solution of (2) (with
� D I) as a result of Lemma 7. Therefore, the MHM and DPG methods share the
same starting point, but ultimately differ in the way the finite dimensional subspaces
are selected to approximate the exact solutions. For the latter, H1

0.˝/-conformity is
imposed for the discrete trial space, and local solvers are employed to approximate
optimal test functions driven by the choice of trial space. Such a strategy differs
from that of the MHM, thereby yielding distinct numerical methods.

Remark 10 The Hybridizable Discontinuous Galerkin (HDG) methods share simi-
larities with the current setting. In particular, the solutions may be eliminated with
respect to the Lagrange multiplier and the right-hand side f to yield a face-based
global method in a fewer number of degrees of freedom. A multiscale HDG method
was proposed recently [21] on top of a multiscale trace space for the Lagrange
multipliers, an idea also pursued in [5]. Nonetheless, differences appear as well.



Foundations of the MHM Method 431

Importantly, the form of the local and global problems are different. This owes to the
fact that the HDG methods take as their starting point the dual hybrid formulation
of the Laplace problem (i.e., the hybridization of the first-order mixed formulation)
which has already been discretized through a discontinuous Galerkin method. As
such, the formulations are modified so as to introduce numerical fluxes (which
are prescribed in advance) and are balanced by a stabilization parameter. Such a
definition of the numerical flux impacts the final form of the global problem. Also,
as a result of the hybridization strategy, the local problems are of mixed type with
prescribed Dirichlet boundary conditions. This last feature seems to make the HDG
method more sensitive to the choice of interpolations for the Lagrange multipliers
on the boundary elements than the MHM method. Such a flexibility in avoiding
more involved discrete spaces for the Lagrange multipliers is particularly attractive
in the case of highly heterogenous problems and/or singularly perturbed problems
with crossing face interfaces [27] (see also [35] for a view of the accuracy of the
MHM method using polynomial interpolations for a highly oscillatory case). These
characteristics make the MHM and the HDG methods intrinsically different.

6 Conclusion

The abstract framework built around the MHM method opened a new perspective for
their analysis and construction. Indeed, it led to an alternative proof of known results
as well as new error estimates for the two-level methods. In the process, discrete
solutions of the classical primal hybrid formulation in [38] were characterized using
fewer degrees of freedom. Also, the MHM methods are shown to be closely related
to the lowest-order Raviart-Thomas element, the MsFEM and the UpFEM under
appropriate conditions. Particularly, the latter can be recovered within the MHM
strategy depending on the choice of approximation spaces.

The Laplace model was used as a proof of concept of the proposed abstract
setting. It is worth mentioning that the present scope also includes the version of
the MHM method applied to the elasticity and to the reactive-advective-diffusive
equations presented in [25] and [27], respectively. Specifically, the essential results
of the error analysis in [25] can be entirely recovered within this new perspective.
Also, the wellposedness and the best approximation properties of the MHM method
for the reactive-advective dominant model in [27] fit the present framework.
However, the important study of the dependence of constants in the error estimates
with respect to the physical coefficients deserves further investigation. As such,
these new results will be addressed in forthcoming works.

This work investigated the mathematical structures and theoretical aspect of the
MHM methods. Interested readers can find a large set of numerical validations
for the MHM method in [3, 26, 35]. Algorithmic aspects of the MHM method
were left out of the scope on purpose. This is, indeed, a vast subject on its
own which must be deeply investigated. Although the MHM method is of the
“divide and conquer” form, the method deserves intensive validation in terms of
computational performance and memory allocation within new massively parallel
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architectures. Behind these aspects is the question of the capacity of the numerical
algorithm, which underlies the MHM method, to be optimized on such computers
in comparison with other domain decomposition methods. This work is currently in
progress on the new petaflop computer recently acquired at LNCC.
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