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Abstract Humans tend to represent and to understand the world in terms of stories,
while computer reasoning tends to require formal, mathematical representations.
This paper describes a research prototype that enables computers to parse human
stories and use collections of those stories to inform causal modeling of political,
military, economic, social, infrastructure, and information (PMESII) systems. We
introduce the need for causal modeling, the approach we have taken in imple-
menting an initial proof-of-concept and the results from pilot testing of the software
that illustrates functional capabilities and opportunities for deepening story-based
computer interpretation of stories.

Keywords PMESII modeling � Computational narrative � Human-systems
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1 Introduction

A gap, sometimes a gulf, typically exists between human understanding and
computer understanding of a current situation, a past event, or a simulation. The gap
leads to misunderstandings, mistakes, and missed opportunities. We contend that
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this gap derives from differences in representation. Humans tend to represent and
understand their world in terms of stories [1, 2], while computer reasoning tends to
require formal, mathematical representations.

We are exploring ways in which computers can parse human stories and use
collections of stories as a form of causal modeling. The approach, story-based
causal inference (SBCI) includes both causal inference and analogy to comparable
stories. The goal of SCBI is to enable computers to reason about and extend human
stories. We hypothesize that bridging this representational gap will allow computers
to help humans in new ways. For example, they can assess humans’ plans and raise
alerts about potential problems, identify potential problems or issues gleaned from
reviewing stories about past events, and can support human-computer teaming
without introducing technical burden on the human users.

This paper describes an initial proof-of-concept implementation of SBCI. We
focus on the domain of military task force planning that requires consideration of
political, military, economic, social, infrastructure and information (PMESII) sys-
tems. PMESII domains are especially apt for the challenge of story-based reasoning
because complex causal interactions within and between these systems are difficult
for even experts to understand and predict. In a planning context, where the
planners may not have deep expertise in either PMESII systems or direct knowl-
edge and experience in the area of deployment, computer-based support to identify
potential interactions and implications may provide immediate impact in helping
form better plans and more robustly identify points of potential failure and con-
tingencies. In this PMESII context, we introduce the SBCI prototype, illustrate with
some specific examples of the capability it provides, and summarize an initial
software test of the prototype.

2 Illustrative Challenge: PMESII Modeling for Planning

Military organizations have invested significant research and resources in the
development of processes to make the planning process more routine and less
fragile to the limited expertise of individuals within a (multi-echelon) planning
team. However, missions and requirements grow more complex and analytical
methods are sometimes insufficient for today’s complex missions. This is even
more evident when a deployment must be planned in a short amount of time, which
both limits what options can be considered and the feasibility of bringing in (many)
experts to help widen and deepen planners’ understanding of the mission in the
context of its particular plans.

Short-term planning horizons, limited intelligence, and limited expertise com-
pound the dangers of necessary assumptions in the planning process.
Unacknowledged and incorrect assumptions lead to surprises, missed opportunities,
and failures to consider second- and third-order effects of plans. Further, one of the
most difficult tasks in the planning process is to generate and assess future states, to
make meaningful forecasts, even when one’s assumptions are inexact and partially
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informed. Even experts with years of experience often are no better than novices in
their ability to assess potential future states [3]. Thus, a core technical challenge of
computer-supported planning is to enhance a planner’s ability to surface and test
assumptions, to help identify important and/or likely possible futures, and to
understand how one’s assumptions interacts with those possible futures.

Consider, as a specific example, mission planning in a Joint Task Force (JTF).
Such task forces are typically faced with complex, novel, and urgent missions. This
combination of factors makes planning more difficult and does not provide time for
in-depth study and analysis of all factors that may impact the mission.

To illustrate, a JTF might be formed for the purpose of providing disaster relief
immediately after a foreign natural disaster such as a typhoon striking a large island
city in the Pacific. Such a problem requires the planning team consider many
different factors such as the political, economic, military, social, infrastructure, and
informational (PMESII) [4] systems within the society. Although good models of
these factors may be present prior to the crisis, they most likely will not have been
updated to reflect the impact of the crisis on these PMESII factors (washed out
roads, disjointed political coordination due to downed communications, etc.).
Additionally the presence of an outside military force, even in a humanitarian
deployment, can drastically impact any prior models and expectations.

The prototype we describe is exploring how we can capture and use stories about
an immediate disaster-relief situation and stories of similar past situations could let
a human describe the disaster and their plan for relief, while a computer reasons
about the human’s stories and responds to them in order to enhance the human’s
understanding and plans. A desired outcome of this interaction is that the computer
system would identify potential gaps, misconceptions, or unstated assumptions in
the user’s story. By acting on recognized gaps, the system could then assess the
humans’ understanding and plans, alerting them to important assumptions or
opportunities overlooked in the time-stressed planning process.

3 Story Graphs

Human understanding of the world is not simply symbolic but is also grounded in
stories. Human experience is subjectively narrative with its cognitive basis in the
episodic memory that links memories of events in the context of a linear timeline
[5]. Humans understand which plan actions and outcomes are plausible using this
narrative experience. As above, we hypothesize that stories can provide a bridge
between computers and a human planner.

Computer representations of stories exist [6, 7] and we are drawing on such prior
work to inform our representation of stories. At a high-level, a story in our con-
ception (Fig. 1) is a sequence of statements about world states and state-changing
events, which are represented in a story graph. The story graph allows unification of
the representation of knowledge and data from a multitude of sources such as past
experience, real-time mission data, computer simulations, and expert knowledge.
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Nodes in the story graph describe events in the sequence. Links express the
concept that a preceding event can cause (or contribute to the cause of) the sub-
sequent event. At this point in our research, we are imposing minimal requirements
on the semantics of nodes and links to provide greater flexibility in exploring how
to use these stories for computer-based inference. For example, we expect to adopt
in the future a richer vocabulary of linkages, so that graphs can express AND,
exclusive OR, relative contributions, and so forth. Other researchers have described
formal definitions of the kinds of causal links that can appear in stories [8].
However, there is no agreed standard so we took a least-commitment approach in
defining causal linkages in this initial research.

Conceptually, stories are recursive so that a high-level node (“I ordered food”)
could be composed into a more detailed representation of the event (“I asked about
the specials”, “The server said…”). Eventually, nodes (and thus stories) are
grounded in semantic knowledge of the world that makes each described event and
state have meaning in the whole [9]. These story graphs can relate what could
plausibly happen next, as opposed to what must deterministically happen. The
graph structure allows for branching and merging, representing alternative linear
paths, of which more than one may be true.

4 Story-Based Causal Induction

Figure 2 illustrates, at an architecture level, how the prototype system we have
developed uses story graphs to generate suggestions for consideration during
planning. Although our research program encompasses methods for extracting
computer-based stories from other sources, such as natural language (stories from a

Fig. 1 Examples of simple stories
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newspaper), sensors, non-text sources (e.g., maps) and from users directly, detailed
functional representations of these systems are elided in this view (orange boxes).

The primary focus in this paper is to describe how we can use past stories to
inform or enrich a developing plan (where a partial plan is an “in progress” user
story). We term this process story-based causal inference (SBCI), which is repre-
sented in the figure with the blue boxes. Story-based causal inference allows the
computer to reason about, connect, and integrate story graphs. By finding relevant
knowledge in a story graph knowledge base and combining them with the story of
the current situation, the computer system can help human users surface unstated
assumptions and identify unexpected outcomes, improving their foresight and
mission effectiveness.

SCBI employs a common story graph representation, whether individual stories
derive from users or background stories. They can be elaborated with semantic
knowledge from an ontology. User stories are matched to other stories via a partial
matching process. The SCBI prototype uses partial matching for two comple-
mentary reasoning methods, analogical matching and causal inference, which we
describe further below. Resulting partial matches are then scored and the highest
scoring matches are translated from story graphs to a more human-understandable
text representation for presentation to users.

4.1 Analogical Matching

Analogy [10, 11] is apt for finding possibly relevant information and incorporating
it into a story graph to elaborate or extend user stories. Analogy is also familiar to
military decision makers who are expected to create mission analyses that draw on
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Fig. 2 Conceptual view of
analogical story matching
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knowledge from past events with similar characteristics or in the same geographical
region. We drew on cognitively inspired planning algorithms that carry out
goal-based graph search. They incorporate various heuristics designed to overcome
worst-case computational complexity of graph matching by leveraging domain
knowledge and machine learning [12]. We drew on elements of this prior work to
create a prototype that could draw analogical connections between different but
similar story graphs.

The computational problem is represented conceptually in Fig. 3. A user story
(orange) and a prior story (yellow) have similar structure. Representational ele-
ments within a node are mapped to a common ontology (hexagons) as instances.
For example, in the prior story illustrated in Fig. 4, the first node would be mapped
to the political entity Haiti in the ontology and the natural disaster Earthquake.
These mappings to the ontology then enable additional connections via ontological
relationships. The ontological representation of Haiti might link further to its
political and military organization, its economic structures, and so on.

Matching of nodes in stories can be exact or partial. Exact matches correspond to
finding a previous occurrence of the same conditions in a past story. For example, a
common node appearing in many disaster relief stories might be lack of potable
water. If the same node appears in the user story, the system could immediately
match it to many past stories. In Fig. 3, the second node in both the user story and

Fig. 3 Conceptual view of
analogical story matching

Fig. 4 An example historical story used in analogical mapping
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the past story are mapped to the same node in the ontology, representing an exact
match.

Most graph matches are not exact. Partial graph matching uses the ontology to
help the analogical matching process identify possibly relevant or interesting
matches. With these augmentations, the prototype can carry out different types of
analogy:

1. Generalization makes use of the ontology links to attempt matches between
nodes that talk about different objects, but the objects share a common ancestor
in the ontology (consider the third nodes in the user and past story). For
example, a generalization of the current situation, which contains a story node
medical service degraded, might infer that the node should match to a past story
with the node police service degraded because both objects are subclasses of
services.

2. Transformational analogy [13] refers to possible analogies between relations
that the system can hypothesize might exist and uses graph structure rather than
a match on node contents. For example, if a node contains the relation is-
present-in(disease, region) then the system might recognize a structural align-
ment with another node that contains occurred-in(disaster, region). Structural
similarity can be enhanced if additional nodes and edges match across the two
graphs.

Completing the analogy requires inference from a matched past story to the
current situation. In the prototype, we remap objects within nodes from the current
situation story to the matched graph. For example, if the current situation contains
disease is present in Affected Region and the analogy is to disease in a region
degrades medical services, then the remapped inference produces this medical
service in Affected Region will be degraded. This subgraph appears as a new node
dependent on the original node with a linking edge. In the prototype, all inferences
led to adding nodes in a story. The new node also becomes available for iterative
application of the matching algorithm to find more suggestions that follow from an
inference.

4.2 Causal Inference

In some cases, users of a system such we are developing may want to simply assert
that some causal relationship exists, rather than needing to derive or discover one
thru analogy. The example in Fig. 5 presents an inference rule that says that disease
conditions are more likely to increase in effect in a region when the medical service
in that area has been degraded. The nodes preceded by “=” serve as variables, so
that the rule is applied to a particular medical service, region, and disease. Such a
rule could be used, for example, to anticipate specific disease outbreaks following
degradation of medical services in an area after a typhoon.
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From an information content perspective, these rules capture and express causal
properties that may not be evident in individual stories. They can fill in gaps and
help the system be more efficient in finding relationships and connections.
Computationally, they are expressed in the prototype in the same story graph
representation that is used to capture user stories and past histories. The ontological
mapping process outlined earlier allows the variables defined in the rule to be bound
to specific elements from user stories.

This design choice has one immediate benefit and one potential long-term
benefit. The immediate benefit is that the prototype can use the analogical mapping
process presented earlier to apply these causal rules. The same underlying com-
putational process is used for both analogy and causal inference. The long-term
benefit of this uniformity in representation is that it can support the gradual
transformation of analogical connections between stories to causal rules, enabling a
kind of causal learning. For example, after the observation of many typhoons,
hurricanes, earthquakes and other natural disasters and the outbreak of different
diseases following these disasters, the type of system we are developing could
likely learn the kind of rule represented in Fig. 5.

4.3 Match Scoring and User Feedback

Many possible matches could be generated by the partial mapping outlined above.
The prototype includes a scoring function that attempts to estimate the logical
sufficiency and logical necessity of individual graph components with the goal of
assessing the “aptness” of the potential inference. For example, if a subgraph of a
user story is also present in a past story, then the prototype estimates the logical
sufficiency (LS) of the nodes in the augmented subgraph. If a subgraph of the user
story is missing from a candidate past story, then the system estimates the logical
necessity (LN) of the missing nodes. In other words, each matching node improves
the match score and each missing node decreases the match score. The scoring

Fig. 5 An example
graph-based inference rule
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function was tuned manually for the software test event. Long-term, it would be
preferable for the system to learn the relative weights of necessity and sufficiency
matches.

Scoring of candidate matches are currently used to rank the candidates for
presentation to the end user. The same scores could be used to filter and prioritize
the alerts that result from story additions. However, the current scoring only takes
into account the “goodness” of the match. We expect that users will also be
interested in seeing story elaborations that are relevant or important for their plan.
This expectation was confirmed in the system test event: match scores by them-
selves did not contain all the information needed to determine which story additions
should result in alerts. There is also a need to estimate the likelihood and the impact
of each story addition in order to highlight alerts that make a difference and to
justify the suggestion to an end user. Story suggestions should be relevant to the
users plan. To-date, we have focused on two types of suggestions: surfacing an
unstated assumption and identifying an unexpected possible outcome of the
situation.

1. Surfacing an unstated assumption is represented by the insertion of a story
node that has a directed edge pointing into an existing node. For example, a user
might create a story graph about disaster relief that contains the two nodes lack
of potable water → water delivery. By analogy to previous stories, the system
might have access to multiple nodes that in the past have been linked to deliver
water (e.g., truck convoy, set up desalination). The system could then suggest
any of these as possible assumptions that might be underlying the user’s story. If
more information is available from the rest of the user story or from any mission
parameter inputs, the system could use the information to narrow the choices.
For example, a desalination plant resource might suggest that the unstated
assumption in water delivery was that the desalination plant is available.

2. Identifying unexpected outcomes is represented by the suggestion of a story
node that only has edges pointing into it from the established story. The new
node extends the story graph as a whole. Imagine that a past story contains
knowledge about the available desalination plant—its capacity is only designed
to support the personnel embarked on its own ship, so supporting more people
in the stricken population will lead to reduced water available to the rescuers.
(Such knowledge could come from a narrative when the desalination plant was
overburdened, or more simply from general expert knowledge about the tool.) If
the system suggests a new node with the content not enough capacity, the new
node is a result of the existing node set up desalination and is thus an unex-
pected outcome. The combination of the two nodes together, a surfaced
assumption and an unexpected outcome that invalidates the assumption, toge-
ther show how the prototype could raise a salient alert to the end user.
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5 Prototype Test and Results

We conducted a small-scale software test of story matching and inference. Five
testers (subject matter experts with experience in military planning) interacted with
the system individually over the course of two hours. In the first hour, they created
stories that reflected their analyses of a disaster relief scenario.

Operators from the research team translated these stories directly into story
graphs because our goal was to test the functionality of SBCI, rather than the
adequacy of user interfaces for capturing user stories. The stories the testers created
were then used to test SBCI in the second hour. We used a background corpus of
natural disaster events (e.g., Hurricane Katrina) and location-specific data (similar
to CIA World Factbook), encoded into story graphs (2,575 total story nodes con-
nected to an ontology of about 9,000 classes). We then applied SBCI to the
planner’s stories and this background knowledge to attempt to generate examples of
unsurfaced assumptions and unexpected outcomes in the testers original stories.

Results of the system test showed that the testers were able to create story graphs
describing their analysis. The captured graphs contained on average 105 nodes (67–
133). The system then offered an average of 16 story suggestions (11–36) for each
tester. The testers accepted on average 6 suggestions (2–11). Table 1 summarizes a
few examples of suggestions generated by the prototype that were accepted by the
testers and added to their stories.

Even when they did not accept a change, the testers sometimes did make other
changes that were related, so the suggestion may have served as a reminder. We
also observed that testers applied some interpretation to accepted suggestions. For
example, the elaboration in Table 1 about the potential for violence resulted in an

Table 1 Examples of story elaborations produced by SBCI in the software test event

Type Original plan Elaboration

Unstated
assumption

Restore unlading capability and
bring in supplies and building
materials thru the seaport

Storm effects, in addition to lading
deficits, may limit navigational aiding
and docking capacity

Unstated
assumption

NGO can facilitate delivery of
medical services in the
absence/degradation of local
medical services

NGO offers technical expertise and
capacity in other areas, including
water supply and communication
with population

Unstated
Assumption

Establish communications with
provincial government

Local government includes an
autonomous region with a distinct
governance structure

Unexpected
outcome

Establish food distribution points in
rural areas

Local government may actively
hinder food distribution to areas that
are “troublesome”

Unexpected
outcome

Establish food distribution points in
urban areas

Fighting and violence sometimes
occur at food distribution points in
urban areas following disasters
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elaboration of the planner’s story to assess security needs rather than to expect
violence.

One of the limitations of the test was the relatively small amount of time allowed
for a large planning problem. As a result, many suggestions may likely have been
evident to planners given more time. Although they were free to draw on their own
knowledge, the planners did have available (during both hours of the event) all the
source material that was encoded as background stories; that is, all the data that the
system used to make its suggestions was available to the testers. This represents the
practical constraint that sometimes available knowledge cannot be retrieved or
applied in time-constrained contexts, in both human and computational
systems [14].

The test event also highlighted several complementary use cases for story-based
causal inference. For example, in a JTF mission analysis and planning scenario such
as we tested, it might be necessary for users from multiple echelons (ranks, roles,
and expertise) to contribute to a single story. This use case highlights the need for a
hierarchical story graph, which would enable different users to review and fill in the
story with different levels of detail. As a second use case, which we did not focus on
in our prototype but test users expressed a desire for, it should be possible for the
story representation to identify a “hinge” (crucial decision point) or pattern in
mission data. For example the story should be able to identify that one possible
branch is likely to lead to the same completion under a number of initial conditions,
while another branch has good possible outcomes but also several negative out-
comes are possible.

6 Conclusions

Our long-term goal is to explore the impact of using stories to bridge the gap
between human and computer understanding. We hypothesize mutually shared
representations will improve human-computer teaming and mitigate the common
and sometimes disastrous mistakes that arise from misunderstanding or misappli-
cation of information by computers or humans by the other.

The story-based causal inference prototype offers positive but preliminary evi-
dence that a shared, story-based representation can be used constructively and
collaboratively by humans and computers. In the context of the military planning
example, it allowed unstated assumptions to be surfaced and unexpected outcomes
or implications to be identified during planning. It drew on data about local PMESII
systems and prior stories of natural disasters to help deepen and extend testers’
available knowledge of their plans, such as the need to consider two parallel
governmental authorities in one region, or the socio-economic factors influencing
food distribution in different areas. These suggestions would not transform a typical
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military planner into a PMESII expert, but they would aid planners unfamiliar with
the intricacies of PMESII systems to better factor PMESII considerations into plans.

Although promising, additional work is needed to make SBCI practical for the
military planning use cases described in the paper. We see three core areas of future
research and development:

1. Scalability: SBCI employs heuristics to limit the impact of the costs of general
graph matching, but its actual scalability to real-world problems is not yet
established. We expect gains in scalability will come from a richer vocabulary of
causal linkages. Different kinds of links and indices to them will help the partial
matching process target subgraphs within the large corpus of background stories
more efficiently. However, this direction is in tension with the relative simplicity
and understandability of the linkages to potential users. Thus, the goal is to find
a representation that remains readily understandable, while providing sufficient
discriminating power for matching.

2. Semantic Integration: The prototype used a standard ontology and some
general mapping rules to connect elements within story nodes to the ontology.
For the future, a more sophisticated mapping is needed, along with both larger
and more domain-specific ontologies. Better mappings will enable improved
partial matching and more targeted match scoring. For example, analogical
match could be made more precise if the matching process could traverse the
ontology along with the story in deciding a potential match. In the prototype, we
used only ISA mappings. For match scoring, a more domain-specific ontology
would facilitate scoring based on relevance in addition to semantic and struc-
tural similarity.

3. Learning and Generalization: The current prototype does not improve its
performance with experience. Several different kinds of learning would improve
overall performance. Most importantly, as discussed above, a process that
allows the system to learn new causal inference rules would both help improve
capability and scalability because causal rules rely more on exact match than
partial match.
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