
Chapter 5
Selected Models for Dynamics of Research
Organizations and Research Production

Dedicated to the memory of Anatoly Yablonsky. His studies on mathematical
models of science contributed much to my interest in mathematical

modeling of social and economic systems.

Abstract The understanding of dynamics of research organizations and research
production is very important for their successful management. In the text below,
selected deterministic and probability models of research dynamics are discussed.
The idea of the selection is to cover mainly the areas of publications dynamics,
citations dynamics, and aging of scientific information. From the class of deter-
ministic models we discuss models connected to research publications (SI-model,
Goffmann–Newill model, model of Price for growth of knowledge), deterministic
model connected to dynamics of citations (nucleation model of growth dynamics of
citations), deterministic models connected to research dynamics (logistic curvemod-
els, model of competition between systems of ideas, reproduction–transport equation
model of evolution of scientific subfields), and a model of science as a component of
the economic growth of a country. From the class of probability models we discuss
a probability model connected to research publications (based on the Yule process),
probability models connected to dynamics of citations (Poisson and mixed Poisson
models, models of aging of scientific information (death stochastic process model
and birth stochastic process model connected toWaring distribution)). The truncated
Waring distribution and the multivariate Waring distribution are described, and a
variational approach to scientific production is discussed. Several probability mod-
els of production/citation process (Paretian and Poisson distribution models of the
h-index) aswell as GIGPmodel distribution of bibliometric data are presented. A sto-
chastic model of scientific productivity based on a master equation is described, and
a probability model for the importance of the human factor in science is discussed.
The chapter ends by providing information about some models and distributions
connected to informetrics: limited dependent variable models for data analysis and
the generalized Zipf distribution and its connection to the Waring distribution and
Yule distribution.
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5.1 Introductory Remarks

The interest in models of research dynamics and research production has increased
greatly since the publication of the book Little Science, Big Science [1] by Derek
de Solla Price in 1963, in which the first systematic approach to the structure
of modern science was presented. One began to construct models for the growth
of the scientific literature, and this growth was assumed to be exponential (for
all of science) but could be also logistic or even linear for some scientific dis-
ciplines. In addition, models of aging and obsolescence of scientific information
appeared [2–4]. At approximately the same time as Price, Goffman and Newill [5]
developed an intellectual epidemics model of scientific communication. From the
point of view of this model, the diffusion of ideas in a population of scientists could
be compared to the spreading of a virus in some population, causing an epidemic. The
model of Goffman and Newill was followed by other models that connected science
dynamics to dynamics of populations. Several such models will be discussed below.

The number ofmodels in the area of research dynamics grows continuously. There
are many mathematical models connected to the dynamics of research organizations
that may supply useful information for support of assessment of research production.
The focus of this book is mainly on science dynamics and on results obtained by
research on publications and citations. This focus limits the set of models for discus-
sion and determines the selection of the models presented below. In principle, two
kinds ofmodelsmay be developed: deterministicmodels and probabilitymodels. The
discussion below begins with models for dynamics of research publications. First of
all, several forms of growth function are described. Then two deterministic models
of a kind epidemic (SI model and the Goffman–Newill model) are presented. As an
example of a deterministic nonepidemiological model, the Price model of knowl-
edge growth is discussed. The nucleation model of Sangwal for citations dynamics
follows, and this is the only deterministic model connected to citation dynamics. The
reason for this limited coverage is as follows. A citation may be considered a unit of
importance of scientific information. But this unit is small, and in addition, citations
may arise more frequently than the larger units of scientific information (research
publications). Finally, citations may arise quite irregularly. Thus more attention to
citation dynamics is given from the point of view of probability models. The presen-
tation of deterministic models continues with a model of competition of ideas, which
is important for the evolution of research structures and systems. Further, the repro-
duction transport equation model of dynamics of scientific fields is discussed. The
part devoted to deterministic models ends with a model of science as a component
of the economic growth of a country.

The greater part of the chapter is devoted to probability models. This part begins
with several general remarks on Poisson processes and their connection to the distri-
butions of Yule and Waring and to the GIGP distribution. Then a probability model
of research publications based on the Yule stochastic process is described. After that,
attention is focused on models connected to citations of research publications. These
models are for citation dynamics of a set of simultaneously appearing research pub-
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lications and citation behavior of sets containing subsets of publications published
at the same time. The discussion is based on the Poisson distribution and on the
mixed Poisson distribution, which will be related to the Yule distribution. Models
for aging of scientific information follow (the aging of information is an important
topic connected to the dynamics of citations of research publications). Two proba-
bility models of the aging of scientific information are considered: a model based
on a death stochastic process and a model based on a nonstationary birth process.
The last model leads to the Waring distribution and to the negative binomial distri-
bution. The Waring distribution is discussed in greater detail: the truncated Waring
distribution and multivariate Waring distribution are described. On the basis of the
truncatedWaring distribution, a model of brain drain in the case ofmassivemigration
through migration channels is mentioned. A description of a variational approach to
research production and two models of a production–citation process follows. The
GIGPmodel distribution for bibliometric data is discussed. Amaster equation model
of scientific productivity follows. The chapter ends with a probability model for the
importance of the human factor in science.

5.2 Deterministic Models Connected to Research
Publications

5.2.1 Simple Models. Logistic Curve and Other Models
of Growth

One may consider simple exponential or logistic models of the growth of a number
of items. For the case of the exponential model, the assumption is that the growth is
proportional to the number of existing items,

dN

dt
= kN, (5.1)

where k is a parameter. The solution of (5.1) is N(t) = N0 exp(kt), where N0 is the
number of available items at t = 0. It is of interest to know in many cases when the
initial number of items N0 will double. This time is t∗ = ln(2)/k for the case of the
exponentialmodel. The exponentialmodel, e.g.,maybe considered an approximation
of the initial increase in the number of research publications in a newly established
research field (more details follow below).

If we consider a longer time interval, then the initial exponential increase of the
number of itemsmay cease. In this case, onemay consider anothermodel, the logistic
model of growth:

dN

dt
= kN(a − N), (5.2)
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where k and a are (positive) parameters. The solution of the logistic equation (5.2) is

N = a

1 +
(

a
N0

− 1
)
exp(−kat)

. (5.3)

This solutions has regions of almost exponential growth (when N � a, a region of
almost linear growth around N = a/2, and a region of saturation (almost negative
exponential growth) around N ≈ a.

Logistic curves are frequently applied formodeling a variety of processes, e.g., the
growth of scientific publications [6–10]. In order to describe trajectories of growth or
decline in socio-technical systems, one generally uses the following three-parameter
logistic curve [11]:

x(t) = K

1 + exp[−αt − β] , (5.4)

where the quantities are as follows:

• x(t): number of units in the species or growing variable to study,
• K : the asymptotic limit of growth,
• α: growth rate, which specifies the “width” of the curve for x(t),
• β: specifies the time tmwhen the curve reaches themidpoint of the growth trajectory
such that x(tm) = 0.5 K .

The parameters K , α, and β are usually obtained after fitting the available data. It
is well known that many cases of epidemic growth can be described by parts of an
appropriate logistic curve. But not every interaction scheme leads to logistic growth
[12]. The evolution of systems in such regimes may be described by more com-
plex curves such as a combination of two or more simple three-parameter functions
[11, 13].

Let us consider in more detail the logistic growth of knowledge and aging of sci-
entific information. The appearance of the logistic curve in this case is a consequence
of two processes: an increase in the amount of scientific information and the aging
of scientific information. If only increasing of scientific information exists, then the
increase may be proportional to the amount of the available information,

dx

dt
= αx → x = x0 exp(αt), (5.5)

where α is a coefficient (the assumption is that each element produces a new element
with a constant intensity α). This leads to exponential growth of scientific infor-
mation. Such a situation can be observed for new areas of research in which the
information is relatively new (and not aged). For more mature research areas, the
coefficient α depends on the amount of information x : α = f (x) and decreases with
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the aging of the scientific information. A simple assumption is that the decrease in
α is proportional to x. Then

dx

dt
= (a − bx)x. (5.6)

Equation (5.6) is the logistic equation. Its solution is

x(t) = a

b[1 + σ exp(−at)] , (5.7)

where σ is a coefficient that can be determined from the initial conditions. From
(5.7), it follows that the speed of the increase of scientific information is

Eff = dx

dt
= σa2

b

exp(−at)

{1 + exp[σ exp(−at)]} . (5.8)

The quantity Eff can be considered a measure of the effectiveness of the scientific
field. This effectiveness (i) increases when the scientific field is new; (ii) passes
through a maximum at t = ln(σ/a) (the maximum “expectation” of the scientific
field; (iii) tends to 0 as t → ∞ (the scientific field is exhausted).

In general, the growth can be described by the relationship

dx

dt
= α(x)x. (5.9)

If we are interested in the growth around some value x = x0, then we can represent
α(x) by a Taylor series,

α(x) = α(x0) + 1

1!
dα

dx
|x=x0 (x − x0) + 1

2!
d2α

dx2
|x=x0 (x − x0)

2 +
1

3!
d3α

dx3
|x=x0 (x − x0)

3 . . . . (5.10)

If we use only the first term from (5.10), then the local growth around x = x0 is
exponential. If we have to use the first two terms in (5.10), then the local growth can
be logistic. If we have to use the first three or more terms from (5.10), then the local
growth is more complicated.

Logistic growth is not the only possible growth connected to the evolution of
scientific information. The study of Menard [14] revealed three types of research
fields with respect to the type of growth of the total number of publications in a given
research field: stable fields (linear or exponential growth at small rates); exponentially
growing fields (rapidly growing fields); cyclic fields: cyclic change of periods of
stable and fast growth [15, 16]. Let us note the mathematical relationships for several
kinds of growth functions that may be of interest to readers who encounter growth
phenomena in their research:
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1. Gompertz growth function [10]

x(t) = DABt
, (5.11)

where D > 0 and log(A) log(B) > 0.
2. Ware growth function [17]

x(t) = δ(1 − ϕ−t), (5.12)

where δ > 0 and the constant ϕ is greater than 1.
3. Power law growth function [16]

x(t) = a + btγ , (5.13)

where a > 0 and b > 0. For 0 < γ < 1, the growth is concave and without an
upper limit; for γ = 1, the growth is linear: for γ > 1, the growth is convex.

5.2.2 Epidemic Models

Below, we discuss two epidemic models of diffusion of knowledge by research
publications. Epidemic models were used originally in population dynamics [18–
24]. And for many years, most models of population dynamics were of interest only
to biologists [25–30]. Today, these models are applied in many more areas of science
[26–40]. For the area of research on scientific systems, the epidemic models are of
great interest, too. This is so because some stages of processes by which ideas spread
within a population, e.g., of scientists, has features that are like those of the spread
of epidemics [41–43].

Epidemic models are a subclass of the more general class of Lotka–Volterra mod-
els [44–49] that are used in research on systems in the fields of biological population
dynamics, social dynamics, economics, as well as for modeling processes connected
to the spread of knowledge, ideas, and innovations [50–53].

The central concept of the epidemic models is the concept that scientific results
spread to scientific communities by an epidemic diffusion process whereby
more and more members of the scientific community are “infected” by the
new scientific ideas and results. An important channel for spreading of this
“infection” is research publications.
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5.2.3 Change in the Number of Publications in a Research
Field. SI (Susceptibles–Infectives) Model of Change
in The Number of Researchers Working in a Field

Three basic classes of populations are important in epidemic research: [54]:

• The susceptibles S, who can become infectives on coming in contact with infec-
tious material (the infectious material in our case is the scientific ideas).

• The infectives I who host the infectious material.
• The recovered R who are removed from the epidemic.

Because of this, the name of a class of epidemic models is the SIR-model
(susceptibles–infectives–recovered (removed)). Nowakowska [55] discussed several
discrete epidemic models for predicting changes in the number of publications in
a given scientific field. The main assumption of the models is that the number of
publications in the next period of time (say one year) will depend on the number of
publications that have recently appeared and on the degree to which the subject has
been exhausted. The behavior of the number of publications is considered to be as
follows. The numbers of publications appearing in successive periods of time should
first increase, then reach a maximum, and as the problem becomes more and more
exhausted, the number of publications should decrease. A mathematical relationship
that reflects such behavior was proposed by Daley [56]:

pt+1 = ctpt

(
N −

t∑
i=1

pi

)
, (5.14)

where

• pt : number of publications written in the period t;
• N : number of publications that have to appear in order to exhaust the problems in
the research field.

• ct : coefficient that can be connected to the number of researchers xt working in
the field: ct = 1 − (1 − d)xt , where d is a parameter.

The epidemic part of the model is connected to the researchers who produce
publications in the corresponding research field. There are researchers who produce
publications in the field, and the number of these researchers may change. Some
factors contribute to a decrease in the number of researchers (they retire or are no
longer interested in the corresponding research problems). And there is a factor that
contributes to an increase in the number of authors in the research field: new authors
may begin to write publications (young researchers that begin their research career or
researchers who became interested in the problems from the corresponding research
field). We shall treat the last increase in the number of authors as infection and the
entire process as an epidemic.
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Let us assume that at a certain moment t, the epidemic’s state is (xt, yt), where

• xt is the number of infectives: authors who write publications in the corresponding
scientific field;

• yt is the number of susceptibles.

Then:

1. for a sufficiently short time interval Δt, one may expect that the number of infec-
tives xt+Δt will be equal to xt − axtΔt + bxtytΔt,

2. while the number of susceptibles yt+Δt will be equal to yt − bxtytΔt (a and b are
suitable constants).

Let the expected number of individualswho either “die” or “recover” during the inter-
val (t, t + Δt), be axtΔt, and let bxtytΔt be the expected number of new infections.
The equations of this model are

xt+Δt = xt − axtΔt + bxtytΔt,

yt+Δt = yt − bxtytΔt. (5.15)

The coefficients a and b may depend on the attractiveness of research field, on its
being exhausted, etc. After setting appropriate relationships for a and b, one may
investigate numerically the dynamics of the infectives x and susceptibles y, i.e., the
dynamics of researchers producing publications in the corresponding research field.

5.2.4 Goffman–Newill Continuous Model for the Dynamics
of Populations of Scientists and Publications

The model discussed above is an example of a discrete model. Now let us con-
sider a continuous epidemic model connected with the dynamics of researchers and
publications. Such a model is the Goffman–Newill model.

The Goffman–Newill model of intellectual epidemics is based on the Reed–Frost
epidemic model [57–59], which was developed during the 1930s by Lowell Reed
and Wade Frost, of the Johns Hopkins University. In the Reed–Frost model, one
assumes a fixed population of sizeN . At each time, there is a certain number of cases
of disease, C, and a certain number of susceptibles, S. One assumes that each case is
infectious for a fixed length of time, and ignores the latent period: when individuals
recover, one assumes that they are immune to further infection. During the infectious
period of each case, one assumes that susceptibles may be infected and the disease
may propagate further. The Goffman–Newill model [5, 60, 61] exploits the idea that
the spreading of scientific ideas within a population of scientists can be studied on
the basis of the publications of the members of that population. The main process in
the model is the transfer of infectious materials (ideas) between humans by means
of an intermediate host (a written article).
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Let a scientific field be F and SF a subfield of F. We shall use the following
notation: N0, the number of scientists writing papers in the field F at t0; I0, the
number of scientists writing papers in SF at t0 (the number of infectives). Thus
S0 = N0 − I0 is the number of susceptibles; there is no removal (i.e., no scientists
move out of the corresponding population) at t0, but there is removal R(t) at later
times t. In addition, N ′

0 is the number of papers produced on F at t0, and I ′0 is the
number of papers produced in SF at this time.

The process of intellectual infection takes place as follows:

1. A member of F is infected by a paper from I ′;
2. After some latency period, this infected member produces “infected” papers in

N ′, i.e., the infected member produces a paper in the subfield SF citing a paper
from I ′;

3. These’“infected” papers may infect other scientists from F and its subfields, such
that the intellectual infection spreads from SF to the other subfields of F.

Let β be the rate at which the susceptibles from class S become “intellectually
infected” from class I and let β ′ be the rate at which the papers in SF are cited by
members of F who are producing papers in SF. As the infection process develops,
some susceptibles and infectives are removed, i.e., some scientists are no longer
active, and some papers are no longer cited. In addition, let γ and γ ′ be the rates of
removal of infectives from the populations I and I ′ respectively, and let δ and δ′ be the
rates of removal from the populations of susceptibles S and S′. Moreover, there can
be a supply of infectives and susceptibles in F and SF. Let the rates of introduction
of new susceptibles be μ and μ′ (these are the rates at which new authors and new
papers are introduced in F) and let the rates of introduction of new infectives be υ

and υ ′ (these are the rates at which new authors and new papers are introduced in
SF). In addition, within a short interval of time, a susceptible can remain susceptible
or can become an infective or be removed; the infective can remain an infective or
can be removed; the removed remains removed; the immunes remain immune and
do not return to the population of susceptibles.

Let us impose also the condition that the populations are homogeneously mixed.
Then the system of model equations is

dS

dt
= −βSI ′ − δS + μ; dI

dt
= βSI ′ − γ I + υ (5.16)

dR

dt
= γ I + δS; dS′

dt
= −β ′S′I − δS′ + μ′ (5.17)

dI ′

dt
= β ′S′I − γ ′I ′ + υ ′; dR′

dt
= γ ′I ′ + δ′S′. (5.18)

The conditions for development of an epidemic are as follows:

1. If as an initial condition at t0, a single infective is introduced into the populations
N0 andN ′

0, then for an epidemic to develop, the change in the number of infectives
must be positive in both populations.
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2. Thus for ρ = γ−υ

β
and ρ ′ = γ ′−υ ′

β ′ , the threshold for the epidemic arises from the
conditions βSI ′ > γ I − υ and β ′S′I ′ > γ ′I ′ − υ ′, so that the threshold is

S0S
′
0 > ρρ ′. (5.19)

3. The development of an epidemic is given by the equation for dI
dt .

4. The peaks of the epidemics occur at time points where d2I
dt2 = 0, while the epi-

demic’s size is given by I(t → ∞).

The Goffman–Newill model stimulated much research in the area of modeling of
processes in science by models from population dynamics and epidemiology. Let
us mention here just the models of the growth of mathematics specialties [62] and
of the growth of papers in a specialty [63–67]. One can add additional categories
of researchers to the SIR type of models. One example of this is the adding of the
class of researchers exposed to the corresponding scientific ideas. In such a way, one
obtains a class of epidemic SEIR models of research production [68, 69].

5.2.5 Price Model of Knowledge Growth. Cycles of Growth
of Knowledge

An example of nonepidemic model of knowledge growth is the model of Price [70,
71]. The model is based on the following assumptions:

1. The growth is measured by the number of important publications appearing at a
given time.

2. The growth has a continuous character, and a finite time period T = const is
needed to build up a result of fundamental character.

3. The interactions between various scientific fields are neglected.

Let in addition the number of scientists publishing results in this field be constant.
Then the rate of scientific growth (of the publications x) is proportional to the number
of important publications at time t minus the time period T required to build up a
fundamental result. The model equation is

dx

dt
= αx(t − T), (5.20)

where α is a constant, and the initial condition x(t) = φ(t) is defined on the interval
[−T , 0].

Often, the population of researchers is varying. Then for consideration of the
evolution of the average number of papers per researcher instead of the linear right-
hand side (5.20), the following nonlinear model is used:

dx

dt
= f (x(t − T), x(t)), (5.21)
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where f is a homogeneous function of degree one. The simplest form of such a
function is a linear function. Let us assume that the population of researchers L
grows at the constant rate n = 1

L
dL
dt and let z = x/L be the mean number of papers

written by a researcher. Then the evolution of the number of papers written by a
researcher has the form

dz

dt
= αz(t − T) − nz(t). (5.22)

We note the following:

1. If n = 0 and T = 0, the Price model of exponential growth is recovered.
2. Equation (5.22) is linear, but cyclic behavior may appear because of the feedback

between the delayed and nondelayed terms.

The Price model was criticized along the following points: the quality of research
is omitted, and many scientific products that seem to be new are not really new;
creativity and innovation are confused, and creative papers with new ideas and results
have the same importance as trivial duplications. Price answered by formulating the
hypothesis that one may study only the growth of important discoveries, inventions,
and scientific laws, rather than all important and trivial things. Then every growth
will follow the same pattern as that mentioned above, but the growth will be much
slower.

5.3 A Deterministic Model Connected to Dynamics
of Citations

Sangwal [72–75] proposed a model of the growth of citations of a scientist based on
the progressive nucleation mechanism known from chemistry [76]. In chemistry, this
mechanism describes simultaneous nucleation and growth of a nucleus to crystallites
of visible size. If the initial volume of the crystallizing phase is V and the crystallized
volume is V (t), then one has the following relationship for the ratio Vc/V :

α(T) = Vc(t)

V
=

{
1 − exp

[
−

(
t

Θ

)q]}
, (5.23)

where the relationships for the time constant Θ and for the exponent q are

q = 1 + νd; Θ =
(

q

kGq−1Js

)1/q

,

and the parameters are as follows:

• ν > 0: a constant;
• d: dimension of the growing nucleus (can be 1, 2, 3);
• k: shape factor of the nucleus (k = 4π/3 for a spherical nucleus);
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• G = r1/ν

t ;
• r: radius of the growing nucleus;
• Js: rate of stationary nucleation.

When kJs = G, then Θ = q1/q

kJs
, which will be the case of interest for us. In this case,

the nuclear radius grows in time as r(t) ∝ tν .
The process of nucleation can also be used to describe the growth of citations of

a paper written by scientist. In this case,

α(t) = α(t) = C(t)

Cmax
=

{
1 − exp

[
−

(
t

Θ

)q]}
, (5.24)

whereC is the maximum number of citations that a paper can receive, andC(t) is the
cumulative number of citations of the paper in the time t. The other parameters are
defined as above (we recall that (Θ = q1/q

kJs
). The nucleation model can be transferred

to a description of the accumulation of citations of a paper if several conditions are
met:

• Citations received by a paper and the paper earning these citations compose a
closed system in which the process of occurrence of citations is stationary.

• Occurrence of citations of a paper continues in time and finally approaches a
constant value Cmax, which is the maximum number of citations received by the
paper at time T .

• The dependence of the cumulative number of citations C(t) of the paper at time t
is determined by the maximum number of citations Cmax, a time constant Θ , and
an exponent q. The citation pattern of different papers of an author is characterized
by different values of C(t), Θ , and q for each paper.

If a researcher has authored n papers, then the cumulative fraction αs(t) of the
citations of these papers is

αs(t) =
n∑

i=0

αi(t). (5.25)

If we assume that the researcher publishes papers at equal time intervals ΔT , then

αs(t) =
n∑

i=0

αi[t − (i − 1)ΔT ] =
n∑

i=1

{
1 − exp

[
−

(
t − (i − 1)ΔT

Θi

)]}
. (5.26)

One can fit the model parameters for the data of the researcher whose production is
evaluated. In most cases, the fit describes very well the process of accumulation of
citations [75].
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5.4 Deterministic Models Connected to Research Dynamics

5.4.1 Continuous Model of Competition Between Systems
of Ideas

Ideas can diffuse not only among scientists in one organization but also in space (e.g.,
from scientists from one country to scientists from other countries). Thus one may
include spatial variables in the models describing the diffusion of ideas. Such models
can be of great interest during periods of globalization of economies, knowledge, and
technology [77–82]. Below,we describe amodel closely connected to the space–time
models of migration of populations [83, 84].

The diffusion of ideas is often accompanied by competition between systems of
ideas. Let a population ofN individuals occupy a two-dimensional plane.We assume
that:

• there exists a set of ideas P = {P0,P1, . . . ,Pn};
• Ni members of the population are followers of the set Pi of ideas;
• members N0 of the class P0 are not supporters of any set of ideas.

In such a way, the population is divided into n + 1 subpopulations of followers of
different sets of ideas, andN = N0 + N1 + · · · + Nn. Let a small regionΔS = ΔxΔy
be selected in the plane. In this region, there are ΔNi individuals holding the ith set
of ideas, i = 0, 1, . . . , n. If ΔS is sufficiently small, the density of the ith population
can be defined as ρi(x, y, t) = ΔNi

ΔS . Further, we assume that members of the ith
population are capable of moving through the borders of the area ΔS. Let ji(x, y, t)
be the current of this movement. The total change in the number of members of the
ith population is

∂ρi

∂t
+ divji = Ci, (5.27)

where the changes are summarized by the function Ci(x, y, t).
The first term in (5.27) describes the net rate of increase of the density of the ith

population. The second term describes the net rate of immigration into the area. The
right-hand side of (5.27) describes the net rate of increase exclusive of immigration.
The quantities ji andCi are as follows: ji is assumed to have two parts, a nondiffusion
part j(1)i and a diffusion part j(2)i that is assumed to have the general form of a linear
multicomponent diffusion [77] (Dik is the coefficient of diffusion):

ji = j(1)i + j(2)2 = j(1)i −
n∑

k=0

Dik(ρi, ρk, x, y, t)∇ρk . (5.28)

A further assumption is that some of the followers of the set of ideas Pi are capable of
changing to another set of ideas, e.g., they can changePi forPj. It can be assumed that
the following processes can occur with respect to themembers of the subpopulations:
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• Deaths: described by a term riρi. We assume that the number of deaths in the
ith population is proportional to its population density. In general, ri = ri(ρν, x, y,
t; pμ), where ρν stands for (ρ0, ρ1, . . . , ρN ) and pμ stands for (p1, . . . , pM), con-
taining parameters of the environment.

• Noncontact conversion: in this class are included kinds of changes between Pi

and Pj exclusive of changes after interpersonal contact between the members of
populations. A reason for noncontact conversion can be the existence of different
kinds of mass communication media (scientific books, influence of mass media,
etc.). For the ith population, the change in the number of members by this kind of
conversion is

∑n
j=0 fijρj, fii = 0. In general, fij = fij(ρν, x, y, t; pμ).

• Contact conversion: this happens by interpersonal contacts among themembers of
the population. Such contacts can happen betweenmembers in groups consisting of
two members (binary contacts), three members (ternary contacts), four members,
etc. As a result of the contacts, members of each population can change their sets
of ideas. For binary contacts, let it be assumed that the probability of change for a
member of the jth population is proportional to the probability of, for instance, the
number of contacts, i.e., proportional to the density of the ith population. Then the
total number of “conversions” from Pj to Pi is aijρiρj, where aij is a parameter.
Next, a change in the set of ideas can take place by ternary contact. For this,
one must have a group of three members. We assume that such a group exists
with a probability proportional to the corresponding densities of the concerned
populations. In a ternary contact between members of the ith, jth, and kth pop-
ulations, members of the jth and kth populations can change their sets of ideas
to Pi = bijkρiρjρk , where bijk is a parameter. In general, aij = aij(ρν, x, y, t; pμ);
bijk = bijk(ρν, x, y, t; pμ); etc.

On the basis of all of the above the Ci term can be written as

Ci = riρi +
n∑

j=0

fijρj +
n∑

j=0

aijρiρj +
n∑

j,k=0

bijkρiρjρk + . . . . (5.29)

Hence the model system of equations is

∂ρi

∂t
+ divj(1)i −

n∑
j=0

div(Dij∇ρj) = riρi +
n∑

j=0

fijρj +
n∑

j=0

aijρiρj +
n∑

j,k=0

bijkρiρjρk + . . . . (5.30)

The density of the entire population is ρ = ∑n
i=0 ρi. This density can change over

time. One possible assumption is that ρ changes over time according to the Verhulst
law

∂ρ

∂t
= rρ

(
1 − ρ

C

)
, (5.31)
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where C(ρν, x, y, t; pμ) is the carrying capacity of the environment and
r(ρν, x, y, t; pμ) is a positive or negative growth rate.

Now let us consider the case in which the current j(1)i is negligible, i.e., j(1)i ≈ 0.
In addition, we consider only the case in which all parameters are constants. The
model system of equations becomes

∂ρi

∂t
− Dij

n∑
j=0

Δρj = riρi +
n∑

j=0

fijρj +
n∑

j=0

aijρiρj +
n∑

j,k=0

bijkρiρjρk + . . . , (5.32)

where

Δ = ∂2

∂x2
+ ∂2

∂y2
, i = 0, 1, 2, . . . , n. (5.33)

Next we shall separate the dynamics of averaged quantities from the dynamics of
fluctuations. If q(x, y, t) is a quantity defined in an area S, then the corresponding
plane averaged quantity is

q = 1

S

∫ ∫

S
dxdy q(x, y, t). (5.34)

The fluctuations are denoted by Q(x, y, t):

q(x, y, t) = q(t) + Q(x, y, t). (5.35)

We assume that territory S is large enough; every plane averaged combination of
fluctuations vanishes;

∫ ∫
S dxdyΔQk is finite. Then ΔQk = 1

S

∫ ∫
S dxdyΔQk → 0.

On the basis of these assumptions, the dynamics of the averaged quantities are sep-
arated from the dynamics of fluctuations by means of a plane averaging of (5.32).
The result is

ρ0 = ρ −
n∑

i=1

ρ i; dρ

dt
= rρ

(
1 − ρ

C

)
(5.36)

dρ i

dt
= riρ i +

n∑
j=0

fijρ j +
n∑

j=0

aijρ iρ j +
n∑

j,k=0

bijkρ iρ jρk + . . . . (5.37)

Instead of (5.36), we can write an equation for ρ0 of the type of (5.37). Then the total
population density ρ will not follow the Verhulst law.



210 5 Selected Models for Dynamics of Research Organizations and Research Production

Equations (5.36) and (5.37) represent the model of competition among sets of
ideas proposed in [85]. There also exists a discrete version of this model [86], and
it can be applied to competition between different sets of ideas (scientific, political,
religious, technological, etc.).

5.4.2 Reproduction–Transport Equation Model
of the Evolution of Scientific Subfields

By means of migration, people can move from one territory to another. The change
of the field of research by a scientist may also be considered a migration process [82,
87]. In order to study this, let us map research problems by sequences of signal words
or macro-terms Pi = (m1

i ,m
2
i , . . . ,m

k
i , . . . ,m

n
i ), which are registered according to

the frequency of their occurrence in the texts. Then:

• Each point of the problem space, described by a vector q, corresponds to a research
problem, with the problem space containing all scientific problems (no matter
whether they are under investigation or not).

• The scientists distribute themselves over the space of scientific problems with
density x(q, t). Thus there is a number x(q, t)dq of scientists working at time t in
the element dq.

• The field mobility processes correspond to a density change of scientists in the
problem space, i.e., instead of working on problem q, a scientist may begin to
work on problem q′.

• As a result, x(q, t) decreases and x(q′, t) increases.

This movement of scientists can be described by means of a reproduction–transport
equation:

∂x(q, t)

∂t
= x(q, t) w(q | t) + ∂

∂q

(
f (q, x) + D(q)

∂q
∂x

)
. (5.38)

In (5.38), self-reproduction and decline are represented by the term w(q | x) x(q, t);
for the reproduction rate function w(q | x), one can write the relationship

w(q | x) = a(q) +
∫

dq′b(q,q′x(q, t). (5.39)

The local value of a(q) is an expression of the rate at which the number of scientists
in field q is growing through self-reproduction and decline. The function b(q,q′)
describes the influence exerted on the field q by the neighboring field q′. The field
mobility is modeled by means of the term ∂

∂q

(
f (q, x) + D(q) ∂

∂qx(q, t)
)
.

In order to use this equation, we need initial conditions and determination of the
coefficients on the basis of statistical data for the distribution of the scientists with
respect to the research problems.
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5.4.3 Deterministic Model of Science as a Component
of the Economic Growth of a Country

Belowwe discuss a component of themodel of evolution of the GDP (gross domestic
product) of a country. This component is connected to the role of technology for
increasing GDP [88–90].

The GDP of a country may grow extensively by inflow of workforce or capital to
the national economic structures and systems [91]. But the GDP of a country may
grow also intensively by advancement in science and technology. Let us discuss a
simple model in which the GDP Y has the form

Y(t) = Y(L(t),C(t),T(t)). (5.40)

The quantities in (5.40) are as follows:

• L(t): labor (human resources);
• C(t): production resources;
• T(t): technology level.

Note that the above quantities are not chosen arbitrarily. They represents important
factors that may influence the GDP of a country.

The change in the GDP over time is given by

dY

dt
= ∂Y

∂L

dL

dt
+ ∂Y

∂C

dC

dt
+ ∂Y

∂T
.
dT

dt
. (5.41)

The term (∂Y/∂T)(dT/dt) describes the change in the GDP because of the evolution
of technology. This component of the change of the GDP will be of interest for us
below. Let us note that if technology advances, ((dT/dt) > 0), this is a contribution
to the growth of the GDP. If technology for some reason deteriorates, ((dT/dt) < 0),
then it can contribute to a decrease in the GDP.

The change in the GDP due to technology may be assumed to be [92]

∂Y

∂T
= Y

T
. (5.42)

Equation (5.42)means that the increase in the technology level leads to a proportional
increase of the GDP. Then the studied term from (5.41) becomes

∂Y

∂T

dT

dt
= Y

(
1

T

dT

dt

)
. (5.43)

Next we shall discuss how the term (1/T)(dT/dt) depends on ST : the growth in
knowledge about technology. Then the growth in knowledge about technology will
be connected to the growth in scientific knowledge, which will be denoted by S.
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We adopt the following notation:

• IT : the investment directed to applications of the results of new technologies
(machines, processes, etc.);

• I0: the investments in older technologies;
• γ : coefficient of proportionality between the growth of knowledge about technol-
ogy ST and growth of scientific knowledge S.

Then the relationship between T and S is

1

T

dT

dt
= γ

IT
IO

1

S

dS

dt
. (5.44)

Equation (5.44) leads to the following conclusions:

1. Importance of the fundamental research: Research and especially fundamental
research lead to an increase in scientific knowledge. If there is no growth in
scientific knowledge, ((dS/dt) = 0), then there is no technological evolution,
((1/T)(dT/dt) = 0), and an important factor for the growth of the national GDP
is lost.

2. Importance of the transfer of scientific knowledge to knowledge about tech-
nology: If γ = 0, i.e., there is no transfer, then ((1/T)(dT/dt) = 0) (no tech-
nology evolution) even if scientific knowledge grows. Thus what is important
for a country is to increase γ (by strengthening engineering sciences by creating
new engineering institutes, for example). The value of γ for developed countries
is about 0.5 (1% growth in scientific knowledge results in 0.5% growth in the
number of patents).

3. Importance of investment in new technologies: If there is no such investment
(IT = 0), then there is no evolution of technology, ((1/T)(dT/dt) = 0), even if
there is growth of scientific knowledge and an intensive transfer of knowledge
about technology.

The rate of growth of scientific knowledge (1/S)(dS/dt) is assumed to depend on
two main factors: the funding of (investment in) science I and the labor L (“human
resources” or the number of qualified scientists). Let us set

1

S

dS

dT
= φ(I,L). (5.45)

Let us assume that φ(I,L) is a homogeneous function of degree α with respect to
the funding I and a homogeneous function of the factor β with respect to the human
resources L. Then we can obtain the relationship

φ = aIαLβ = 1

S

dS

dt
, (5.46)

where a is a coefficient of integration. Hence a power-law relationship may exist
between the rate of growth of scientific knowledge and investment and the number
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of qualified scientists.We stress thewords power law, since such laws arise frequently
in studies of research systems (for examples, see Chap.5).

Equation (5.46) leads to interesting conclusions.

1. Exponential growth of knowledge in an established research area. Let us
consider an established research area with constant investment in science: I =
const and a constant number of qualified scientists L = const. From (5.46), we
obtain the relationship

S = S0 exp[aIαLβ t] (5.47)

(S0 is a constant of integration), which means that the scientific knowledge in this
area is growing exponentially.

2. Double-exponential growth of scientific knowledge in a new research area.
Let us now consider a new research area in which the number of scientists grows
exponentially over time, L = exp(μt), and the funding is constant: I = const and
large enough. Then the growth of scientific knowledge in this area is double-
exponential,

S = S0 exp

[
aIα

μβ
exp(μβt)

]
. (5.48)

The substitution of (5.44)–(5.46) in (5.43) leads to the following relationship for the
influence of science on the change of GDP of a country:

∂Y

∂T

dT

dt
= γ a

IT
IO

IαLβY . (5.49)

Equation (5.49) shows that countries that have a large GDP possess advantages
(since ∂Y

∂T
dT
dt ∝ Y ), and in addition, the human factor and investment in science are

very important. Thus every nation should try to build a community of qualified
researchers and should invest sufficiently in the national research system. If this is
not the case, then the process of global competition among the nations will lead
inevitably to a brain drain.

The model above represents a global point of view of the importance of science
as a component of economic growth of a country. There exists also a local point of
view regarding this importance. A local point of view means that one considers the
growth of the output of a worker with advancing technology. A mathematical model
of this relationship may be based on the Cobb–Douglass production function and on
the Solow model. The form of the Cobb–Douglass production function is [93, 94]

Y = AKαL1−α, (5.50)

where

• Y : output per worker;
• K : physical capital per worker;
• L: human capital per worker (labor);
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• A: productivity;
• α: output elasticity of the physical capital;
• β = 1 − α: output elasticity of the human capital.

Looking at (5.50), we can conclude that technological advance allows (by increas-
ing productivity) given quantities of physical and human capital to be combined to
produce more output than was possible when older technology was used. Hence
changes in technology directly affect economic growth. In addition, human capital
L per worker cannot grow infinitely. Then in order to increase the output Y , one has
to increase the physical capital K per worker (there are also limits to this increase),
or one can increase productivity A by advancing technology. Thus even when K and
L have reached their maximum values, as long as A (productivity) continues to grow
as a consequence of technological advance, income per capita will continue to grow
too.

The result of the mathematical theory is that the rate of growth of the total output
Y∗ = (1/Y)(dY/dt) per worker (in the steady state of the production system) is con-
nected to the growth of productivity A (which means that there is a strong connection
between the growth of the total output and technological progress). Namely, if the
rate of advance of technology is A∗ = (1/A)(dA/dt), then

Y∗ = A∗
(

1

1 − α

)
. (5.51)

Equation (5.51) tells us that technological advance (by research and development)
is extremely important for economic growth.

5.5 Several General Remarks About Probability Models
and Corresponding Processes

In many cases, in the mathematical models of mechanisms of production of scien-
tific information, one uses the concept of population of “sources” producing “items”
observed over time [95]. The observation of the items produced by a source is equiv-
alent to the observation of a stochastic point process: a sequence of events occurring
randomly in time. The modeling of the corresponding process requires specification
of the probabilistic mechanism producing the observed events.

The simplest available point process is the Poisson process, which corresponds
to the situation that events occur completely at random over time with the
overall average rate of occurrence remaining constant, so that the expected
number of events occurring increases linearly with time.
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In order to model more realistic situations, the rate of the Poisson process may:

1. vary in time deterministically [96]. In this case, the number of occurring events
may have nonlinear variation in time, and the process is called an inhomogeneous
Poisson process;

2. vary in time stochastically [97, 98]. Such a process is called a doubly stochastic
Poisson process or Cox process.

Each of the three Poisson processes described above has independent increments.
The Poisson process and the doubly stochastic Poisson process have stationary incre-
ments. Thus they are able to model situations in which the probability distribution
of the number of events in a period of time depends only on the length of the period
and not on the time at which it begins.

When the entire population of sources is studied, it may happen that some variabil-
ity in the rate of production between different items exists. The observed process is
then a mixture of the individual processes, and it can be modeled mathematically by
mixing the parameters determining the rates of production of the individual sources.
The resulting mixed process may still have stationary increments, but because of the
mixing, the increments are no longer independent.

We are going to describe briefly three kinds of Poisson processes that will
arise in the models discussed below: the Greenwood–Yule process (gamma–Poisson
process), GIGP (generalized inverse Gaussian–Poisson process), andWaring process
(a negative binomial process) [95]. Let us consider a source that produces Xt (t ≥ 0)
items in the interval [0, t]. The process of production of items (the point process)
is specified by a parameter θ , and we know the form of the process {Xt | θ} for a
given value of θ . For given θ , the increments of the process are stationary but not
independent, and

p(Xt = r) = EθP(Xt = r | θ) =
∫

dxfθ (x)p(Xt = r | θ = x). (5.52)

The above-mentioned three processes will be obtained by specifying the probabil-
ity distribution function fθ (x) and the form of the conditional process {Xt | θ}. For
example, in order to obtain theGreenwood–Yule process (called alsogamma–Poisson
process), we have to assume that each source produces items as a Poisson process
and the probability distribution function is for the gamma distribution. In detail,

p(Xt = r | λ) = exp(−λt)
(λt)r

r! ; r = 0, 1, . . . , (5.53)

where λ is the rate of the Poisson process; λ has a gamma distribution with scale
parameter β and index ν:

fλ(x) = β−νxν−1

Γ (ν)
exp(− x

β
); x > 0. (5.54)
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As a result of substituting (5.53) and (5.54) in (5.52), one obtains the negative bino-
mial distribution of index ν and parameter pt = 1/(1 + βt):

p(Xt = r) =
(
r + ν − 1

r

)(
1

1 + βt

)ν(
βt

1 + βt

)r

; r = 0, 1, . . . . (5.55)

The GIGP (generalized inverse Gaussian–Poisson process) is obtained when the
probability distribution function for the rate λ of the Poisson process (5.53) is

fλ(x) = c(α, γ, θ)xγ−1 exp

[
−x

(
1

θ
− 1

)
− α2θ

4x

]
, (5.56)

where x > 0; −∞ < γ < ∞; α ≥ 0, and the constant ensuring the normalization is

c(α, γ, θ) = (1 − θ)γ/2

2(αθ/2)γ
Kγ {α(1 − θ)1/2}, (5.57)

where Kγ {α(1 − θ)1/2} is the modified Bessel function of the second kind of order
γ . The substitution of the density (5.56) in (5.52) leads to the distribution

p(Xt = r) = (1 − θt)
γ/2

Kγ {α(1 − θ)1/2}
(αtθt/2)r

r! Kr+γ (αt); r = 0, 1, . . . , (5.58)

where θt = (tθ)/[1 + θ(t − 1)] and αt = α[1 + (t − 1)θ ]1/2. This distribution is
reduced to the GIGP distribution when t = 1 (then θt = θ and αt = α). Because
of this, the process Xt described by (5.58) will be called a GIGP process and
may be denoted by GIGP(αt, θt, γ ). Sichel [99, 100] used γ = −1/2, i.e., the
GIGP(αt, θt,−1/2) distribution

p(Xt = r) =
(
2αt

π

)1/2

exp[α(1 − θ)1/2] (αtθt/2)r

r! Kr−1/2(αt); r = 0, 1, . . . ,

(5.59)
in many practical applications.

Finally, we consider the Waring process (which will be much discussed below in
the text). For this process, each source produces items as a negative binomial process
of parameter q and index ψ :

p(Xt = r | q) =
(
r + ψ t − 1

r

)
qψ t(1 − q)r; r = 0, 1, . . . , (5.60)

and the parameter q has a beta distribution with parameters a and b:

fp(x) = 1

B(a, b)

ψaxb−1

(x + ψ)a+b
. (5.61)
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The substitution of (5.60) and (5.61) in (5.52) leads to

p(Xt = r) = Γ (ψ t + a)

B(a, b)Γ (ψ t)

Γ (r + ψ t)Γ (r + b)

r!Γ (r + ψ t + a + b)
. (5.62)

Equation (5.62) describes the generalized Waring distribution [101–103]; Γ is the
gamma function, and B is the beta function.

Some remarks about the moments of the obtained distributions follow. Moments
of all orders exist for the gamma–Poisson distribution and for the GIGP distribution.
For the existence of moments of the generalized Waring distribution, one has to
impose some requirements on the parameters of the distribution. For the gamma–
Poisson distribution, the mean E[Xt] and the variance V [Xt] are

E[Xt] = νβt, (5.63)

V [Xt] = νβt(1 + βt). (5.64)

For the GIGP distribution with γ = −1/2,

E[Xt] = αθ t

2(1 − θ)1/2
, (5.65)

V (Xt) = αθ t

4(1 − θ)3/2
[2(1 − θ) + tθ ]. (5.66)

For the generalized Waring distribution,

E[Xt] = ψbt

a − 1
; a > 1, (5.67)

V (Xt) = ψb(a + b − 1)

(a − 1)2(a − 2)
(a − 1 + ψ t); a > 2. (5.68)

5.6 Probability Model for Research Publications.
Yule Process

Probabilitymodels are very interesting and powerful tools for the study of the dynam-
ics of research systems and characteristics of research production. Let us demonstrate
this with a discussion of a probability model of dynamics of research publications
[104] that will lead us to the famous statistical distribution of Yule.

Let us now consider scientific publications from the following point of view. A
researcher has x publications. Then he/she writes one more publication, and we shall
consider this as a transition to another state characterized by x + 1 publications. The



218 5 Selected Models for Dynamics of Research Organizations and Research Production

occurrence of a new publication is a rare event, and because of this, we shall consider
the process of the occurrence of a new publication to be a Poisson pure multiplicative
random process where the probability of transition to a new state in the time interval
(t, t + Δt) depends on the state of the system at time t.

5.6.1 Definition, Initial Conditions, and Differential
Equations for the Process

Webegin our study at the point in timewhere a studied researcher has one publication.
Let px(t) be the probability that a researcher has x publications at time t. Then the
initial condition is px(0) = 1 if x = 1 and px(0) = 0 if x �= 1. The process evolves
according to the following two rules:

1. The probability of a transition from state x to state x + 1 in the interval (t, t + Δt)
is proportional to the interval Δt. We denote this probability by λ(x)Δt.

2. The probability of two or more transitions for the interval Δt is negligibly small.

Because of the above rules, the probability of a lack of transition between the states
x and x + 1 in the time interval (t, t + Δt) is 1 − λ(x)Δt.

The probability that our system (the researcher) is in the state x (has x publications)
for the interval (t, t + Δt) is the sum of the probability that the system jumped there
from the state x − 1 within the time interval and the probability that the system has
not jumped to the next state x + 1 within the time interval. In symbols, this reads

px(t + Δt) = [1 − λ(x)Δt]px(t) + λ(x − 1)px−1(t)Δt. (5.69)

This can be written as the following system of differential equations for the proba-
bility:

dp0(t)

dt
= −λ0p0(t),

dpx(t)

dt
= −λ(x)px(t) + λ(x − 1)px−1(t). (5.70)

5.6.2 How a Yule Process Occurs

In order to continue analysis of (5.70), we have to determine λ(x). We shall use the
linear hypothesis for the parameter λ(x):
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The probability of a transition increases proportionally to the number of pub-
lications:

λ(x) = λx, (5.71)

where λ is a constant.

In other words, there is a linear hypothesis of the following kind: If an author
has many publications, he/she doesn’t need much time to produce another one. In
this way, our stochastic process becomes a linear pure multiplicative process (Yule
process) [105–109].

Using (5.71), one obtains the following solution of the system of equations (5.70):
px(t) = 0 when x = 0 and

px(t) = [1 − exp(−λt)]x−1 exp(−λt). (5.72)

Let us recall that in the case under discussion, the distribution (5.72) gives the prob-
ability that a researcher will have x publications at time t if at time t = 0, he had one
publication.

5.6.3 Properties of Research Production According
to the Model

1. Expected value.
The expected value is the mean number of publications that are expected to be
written for time t. Then

E[x(t)] = exp(λt), (5.73)

which is often observed in practice and is called the law of exponential growth
of science.

2. λ: a measure of the publication activity of the researchers.
After a “differentiation” of (5.73), one obtains

λ = dxt/dt

xt
, (5.74)

which means that λ is the rate of growth of the number of publications, i.e., a
measure of the intensity of publication (and partially of the scientific) activity of
a researcher.

3. Research work in a research area for some finite time.
Usually, a researcherworks for some (finite) time on problems from some research
area and then changes the research area of work (or retires). This time depends
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on the potential of the research area, on the talent of the researcher, on the age of
the researcher, on the work conditions, etc. The finite time of work is different for
different researchers and is a random variable whose distribution can be obtained
from queuing theory. The distribution is

p(t) = ν exp(−νt), (5.75)

where ν = 1/t∗ and t∗ is the average value of t. This random distribution of
the time of activity in a research area can be incorporated in the Yule distribu-
tion as px(t) = p(x/t). Then in order to obtain the probability distribution of the
publications that are observed in a database, we have to calculate the following
integral:

p(x) =
∞∫

0

dt p(x/t)p(t) =

∞∫

0

dt [1 − exp(−λt)]x−1 exp(−λt)ν exp(−νt). (5.76)

The integration of (5.76) leads to the Yule distribution

p(x) = αB(x, α + 1), (5.77)

where:

• B(x, α + 1) = Γ (x)Γ (α+1)
Γ (x+α+1) is the beta function;

• Γ (x) = (x − 1)! is the gamma function;
• α = ν/λ.

TheYule distribution obtained above leads to several interesting conclusions about
research production.

1. Asymptotic behavior: For large x, one obtains Γ (x)
Γ (x+α+1) ≈ 1

xα+1 (the Stirling
approximation was used). Let us in addition assume that α has small values.
Then Γ (α + 1) ≈ 1, and the Yule distribution is reduced to

p(x) ≈ αΓ (α + 1)
1

xα+1
≈ α

xα+1
, (5.78)

which is the law of Pareto for x0 = 1 and small values of α. Thus on the basis
of the hypothesis that the scientific activity is a random branching multiplicative
process with linear increase of effectiveness of the researchers (Yule process), we
have obtained one of the basic laws of research production.
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2. Evaluation of the parameter α: This can be done on the basis of the Yule
distribution for researchers who have just one publication. For these researchers,

p(1) = αΓ (1)Γ (α + 1)

Γ (α + 2)
= α

α + 1
(5.79)

(we have used Γ (1) = 1 and Γ (α + 1) = αΓ (α)). Then taking into account
that p(1) = N1/N is the proportion of the number N1 of researchers with one
publication in a group of N researchers, we obtain

α = p1
1 − p1

= N1

N − N1
. (5.80)

Thus we can evaluate α by taking N and N1 from a large enough database.

5.7 Probability Models Connected to Dynamics of Citations

5.7.1 Poisson Model of Citations Dynamics of a Set
of Articles Published at the Same Time

Citation analysis is one of the frequently used methods of assessment of research
impact [110–114]. An important topic in the research on citations is the investigation
of citation distributions. This research may follow two paths [115]:

1. Path 1: Take a particular source—book, article, journal issue, journal volume,
etc.—and study the age distribution of the cited articles in the studied source
[116].

2. Path 2: Take a collection of sources (articles published in a journal, or articles
from some scientific field) at a given time and then follow up and note the times
at which each source from the collection is cited [117, 118].

Below, we present a probability model obtained by following Path 2 and assuming
continuous time aswell as the presence of agingof publishedmaterial (in the course of
time, the material becomes obsolescent (and less frequently cited)) and the existence
of publications that are never cited. The model is as follows [115]. Let us consider
a population of sources that produces items over time. The population (for the case
of citation analysis) consists of a collection of articles published at the same time
t = 0. The items produced by the papers are their citations. The assumption is that
citations are received randomly over time. Since different articles are in different
scientific areas (with different popularity) and have different relevance, etc., their
citation rates are also different. We assume that these rates of a randomly chosen
source are characterized by a random variable Λ that has probability distribution FΛ

over the population of sources. LetXt be the number of citations to a randomly chosen
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source (article) in the interval [0, t]. The probability that this number of citations will
be equal to r is

p(Xt = r) =
∞∫

0

dFΛ(λ∗) P(Xt = r | Λ = λ∗). (5.81)

We can recognize the process {Xt, t ≥ 0} as a counting process, and the model (5.81)
is a mixture of counting processes with mixing distributionFΛ andmixing parameter
λ. Next, one has to assume the nature of the process connected to the conditional
term P(Xt = r | Λ = λ∗). The initial assumption can be that this process is a Poisson
process [119–122] with stationary and independent increments. This will lead us to
the distribution

P(Xt = r | Λ = λ∗) = exp(−λ∗t)
(λ∗t)r

r! ; r = 0, 1, 2, . . . . (5.82)

In (5.82), λ∗ = const, and the mean of the Poisson distribution is λ∗t. We note here
that numerous models of citation distribution have been proposed based on different
probability distribution functions f (λ∗), (dFΛ(λ∗) = f (λ∗)dλ∗) [123].

Let us now consider the case in which λ∗ depends on time. Since λ∗ can be
associated with the citation rate of a given paper, it can vary with the time t. If
λ∗ = λ∗(t), then (5.82) has to be substituted by the more complicated equation [124]

P(Xt = r | Λ = λ∗) = exp[−M(λ∗, t)]M(λ∗, t)r

r! ; r = 0, 1, 2, . . . , (5.83)

where

M(λ∗, t) =
t∫

0

dsλ∗(s).

In the case of citations of articles, an almost universal citation pattern in time c(t)
can be observed. Then we can assume that the citation rate λ∗(t) of a paper has the
particular form

λ∗(t) = λc(t), (5.84)

where λ = const. Then

M(λ∗, t) =
t∫

0

ds λc(s) = λC(t); C(t) =
t∫

0

ds c(s) (5.85)
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and

P(Xt = r | Λ = λ∗) = exp[−λC(t)] [(λC(t)]r
r! ; r = 0, 1, 2, . . . . (5.86)

The mean of the Poisson process is λC(t); c(t) is called the obsolescence density
function; andC(t) is called the obsolescence distribution function (t > 0).We assume
that lim

t→∞C(t) < ∞.

The substitution of (5.86) in (5.81) leads to the final relationship for the citation
production distribution:

p(Xt = r) =
∞∫

0

dFΛ(λ)[λC(t)]r
[
exp[−λC(t)]

r!
]

, r = 0, 1, 2, . . . . (5.87)

This can also be written as the expected value

p(Xt = r) = EΛ[P(Xt = r | Λ)]. (5.88)

From (5.87), one can obtain the first citation distribution. Let T be the time after
publication of the first citation of a randomly chosen source (article).We can consider
T a random variable. For times t < T , the number of citations of a paper is 0.
Then let FT (t) be the cumulative distribution function of the first citation time:
FT (t) = p(T ≤ t). Since p(T ≤ t) = 1 − p(T > t) and p(T > t) is the same as the
probability p(Xt = 0), we have

FT (t) = 1 − p(Xt = 0) = 1 −
∞∫

0

dFΛ exp[−λC(t)]. (5.89)

An interesting consequence obtained on the basis of the first citation distribution
(5.89) is as follows.

There will be publications that will be never cited.
This feature follows from the relationship lim

t→∞FT (t) < 1. Indeed, we can see

that ∞∫

0

dFΛ exp[−λC(t)] = LΛ[C(t)]

is the Laplace transformation of Λ, which has the property LΛ(1) > 0. Then

lim
t→∞FT (t) = 1 − lim

t→∞ p(Xt = 0) = 1 − lim
t→∞ LΛ(C(t)) = 1 − LΛ(1) < 1.
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The model developed above can be used for obtaining the nth citation distribution
[125]. The result for the nth citation distribution is

Fn(t) = p(Tn < t) =
C(t)∫

0

ds
sn−1

(n − 1)!EΛ[Λn exp(−Λs)]; t < ∞, (5.90)

p(Tn = ∞) =
∞∫

1

ds
sn−1

(n − 1)!EΛ[Λn exp(−Λs)]. (5.91)

5.7.2 Mixed Poisson Model of Papers Published in a Journal
Volume

The accumulation of citations has varying dynamic behavior over the lifetime of
a paper, and among other things, this behavior is also influenced by the reputation
of the journal in which the paper was published. In most cases, immediately after
publication, the number of citations grows slowly, usually because it may take some
time for citing papers to appear in print and to be entered in the citations databases.
After this initial period, citations increase faster as citations lead to new readers who
may also cite the publication. Finally, the material of the paper becomes outdated
and/or obsolete. Then the number of citations per year decreases. This is the typi-
cal behavior, but there exist other patterns of behavior such as “sleeping beauties,”
“shooting stars,” etc. [126, 127].

The investigation of citation behavior in journal volumes can be based on the
mixed Poisson distribution [128–131] model of Burrell [115, 125]. A journal vol-
ume can be treated as a collections of paper, usually from the same years and with
common characteristics. The main assumption is that each paper generates citations
at a constant (latent) rate (λ) following the Poisson distribution but that these rates
vary across the collection as a random variable Λ. Then the probability that a paper
will generate r citations at time t is

p(Zt = r | Λ = λ) = exp(−λt)
(λt)r

r! . (5.92)

The population distribution of randomly chosen papers of unknown λ will be a
mixture of the Poisson distributions of the kind (5.92),

p(Xt = r | Λ) =
∞∫

0

dF(λ) exp(−λt)
(λt)r

r! , (5.93)
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where FΛ(λ) is the cumulative distribution of λ (of the latent rate), also called the
mixing distribution.

There are different possibilities for the form of mixing distribution [132–134],
but the most widely used distribution is the gamma distribution of shape parameter
ν and size α:

d

dλ
FΛ(λ) = exp(−αλ).

ανλν−1

Γ (ν)
(5.94)

The appearance of the gamma distribution above is not a coincidence. The gamma
mixture of Poisson distributions follows a negative binomial distribution [135–137]
(a fact proved by Greenwood and Yule [138]). Yule is the same scientist who first
described the preferential attachment process (Yule process). This negative binomial
distribution is

P(Xt = r) =
(
r + ν − 1

ν − 1

)(
α

α + t

)ν (
1 − α

α + t

)r

, r = 0, 1, 2, . . . . (5.95)

In most cases, citations of a paper do not occur at constant intervals (evenly) in
time. Thus in most cases, λ is not a constant. The rate λ(t) will be different for
different papers. It can be assumed [115] that λ(t) may be written in the form

λ(t) = λc(t), (5.96)

where c(t) describes some pattern of citation behavior that is the same for all articles
from the discussed collection of articles (i.e., c(t) describes a sort of obsolescence).
The function c(t) is the probability density function of obsolescence, and C(t) is the
cumulative distribution function of obsolescence.

With the obsolescence distribution, the model discussed above leads to the fol-
lowing negative binomial distribution for the probability that a paper in a collection
of papers will have r citations [139]:

p(Xr = r) =
(
r + ν − 1

ν − 1

) (
α

α + C(t)

)ν (
1 − α

α + C(t)

)r

, r = 0, 1, 2, . . . .

(5.97)
Many assumptions can be made about the form of C(t). Two possibilities are as
follows:

• Logistic function: C(t) = 1/(1 + a exp(−bt));
• Weibull distribution: C(t) = 1 − exp[−(t/b)2].
The values of C(t) can be determined by fitting citation data. Additional information
about the investigation of citations in several research disciplines can be found in
[140], where a Poisson distribution and an exponential distribution are used for
describing such data.
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5.8 Aging of Scientific Information

As a consequence of the continuous research efforts of scientists, a continuous flow
of new scientific information exists, and existing scientific information ages. As
a consequence of these two processes, there is a continuous reorganization of the
structure of scientific information. For example, suppose a scientist publishes an
article. At first, interest in the article may be significant (a large number of citations,
for example). Then interest decreases as the information in the article ages and the
scientific potential of the obtained results decreases. If one studies closely the number
of citations of a publication, three periods can usually be distinguished:

1. First two years after publication: with rare exceptions, articles are not cited
much in this period (they are not very well known to the corresponding scientific
community). The exceptions are extremely important, however: if an article is
very much cited within this initial period, it is highly probable that it will become
a very influential publication that may contribute much to the development of the
corresponding scientific field.

2. Next five years: here the publication achieves most of its citations as it becomes
well known. If there are no citations, the publication has been judged by the
corresponding scientific community to be of little use. This judgment is valid
in the general case, but there can be rare exceptions: “sleeping beauties” that
suddenly become current many years after publication [141].

3. More than seven years after publication: the number of citations usually begins
to decrease, and the publication slowly moves toward the scientific archives.

The above considerations show that by their continuous work in obtaining new
knowledge, researchers continuously renew the structure of scientific informa-
tion by opening a place for the new information and compressing the aged
information (this information, compressed to citations, arises in some of the
new publications). In this process, researchers mainly use the achievements of
the previous generation of researchers.

5.8.1 Death Stochastic Process Model of Aging of Scientific
Information

The main assumptions of the model are as follows [142]:

1. At the initial moment of the study, there is some portion of the scientific publica-
tions that are cited. The number of citations of these publications x(t) decreases
with advancing time. The number of citations at t = 0 is x0.
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2. The probability that in the interval (t, t + Δt) there will be x − 1 citations if in
the previous interval the number of citations was x is μxΔt. Thus the probability
that the number of citations will not decrease is 1 − μxΔt.

Then the probability that at themoment t + Δt therewill be x citations of the scientific
publications is

px(t + Δt) = (1 − μxΔt)px(t) + μx+1px+1(t)Δt. (5.98)

On the basis of the assumption that the intensity with which citations are decreasing
is proportional to the number of citations, μx = μx, and imposing the initial condi-
tion px(0) = 1 for x = x0 ≥ 1 and px(0) = 0 for x �= x0, one obtains the following
solution of (5.98):

px(t) = x0!
x!(x0 − x)! exp(−μx0t)[exp(μt) − 1]x−x0 (5.99)

for 0 ≤ x ≤ x0. From (5.99), the average number of citations with advancing time is

xt = x0 exp(−μt), (5.100)

which means that

there occurs an aging of scientific information according to an exponen-
tial law. This is a rapid pace of aging, and significant scientific efforts are
needed in order to compensate it by production of new scientific informa-
tion.

5.8.2 Inhomogeneous Birth Process Model of Aging
of Scientific Information. Waring Distribution

Another approach to the aging of scientific information was proposed by Schubert
and Glänzel [143] and discussed by Schubert, Glänzel, and Schoepflin [4, 144]. As
we shall see below, the model of Schubert and Glänzel is quite interesting, because it
is a deterministic one, yet it is connected to the (not much known but very interesting)
Waring distribution. We shall see in addition that this model (that can be connected
to an inhomogeneous birth process) leads to the same results as the model discussed
above that is based on a death process. And the Waring distribution will be of great
interest to us, since it is a generalization of several important statistical distributions
appearing in the area of research on science dynamics and research production.
Below, we describe a simple model that leads to the Waring distribution. Then we
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consider a particular case of a stochastic process connected to repetitive events,
and finally, we shall consider a particular class of the process with repetitive events
(such as publishing papers and obtaining citations), andwe shall consider the aging of
scientific information (scientific articles) from the point of view of obtained citations.

5.8.2.1 Waring Distribution

The Waring distribution is a distribution with a very long tail. Because of this prop-
erty, the Waring distribution is quite suitable for describing characteristics of many
systems from the areas connected to research on biology and society. We shall see
below that the Waring distribution is connected to other interesting distributions that
are presented in this book: the Yule and Zipf distributions.

TheWaring distribution may be connected to publication activity, and publication
activity may be considered a measure of research productivity. Within the context of
the epidemic model of Goffman and Newill (discussed above), the susceptible and
infected persons have to be continuously replaced by persons entering the system,
i.e., the population of researchers should be considered an open population. As we
shall see below, the model by Schubert and Glänzel [143] describes similar processes
connected to publication activity. The model assumes three groups in the population:
a group that is entering the system, a group that is in the system, and a group that
is leaving the system. In more detail, we consider an infinite array of cells (boxes)
indexed in succession by nonnegative integers. The amount x of some substance can
move between the cells. Let xi be the amount of the substance in the ith cell. Then

x =
∞∑
i=0

xi. (5.101)

The fractions yi = xi/x can be considered probability values of a distribution of a
discrete random variable ζ :

yi = p(ζ = i), i = 0, 1, . . . . (5.102)

We assume that the expected value of the random variable ζ is finite and that the
content xi of any cell can change under any of the following three processes:

1. Some amount s of the substance x may enter the system of cells from the external
environment through the 0th cell.

2. The rate fi of the substance x can be transferred from the ith cell into the (i + 1)th
cell;

3. The rate gi from the substance x may leak out of the ith cell into the external
environment.

The stochastic process connected to the movement of the substance between the
cells is formed by a change in the content of the cells, e.g., by a change of papers
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published by authors who have entered the system. In this case, x(t) is the (random)
number of published papers, and p(x(t) = i) = yi the probability that an author in
the system has published i papers in the period t. The stochastic model is obtained
if x(t) is considered the publication activity process of an arbitrary author, and
p(x(t) = i) = yi is the probability that this author has published i papers in the time
interval between 0 and t.

The three processes mentioned above can bemodeledmathematically by a system
of ordinary differential equations:

dx0
dt

= s − f0 − g0;
dxi
dt

= fi−1 − fi − gi. (5.103)

The following forms of the relationships for the amount of the moving substances
are assumed in [143] (α, β, γ, σ are constants):

s = σx; σ > 0 → self-reproducing property,

fi = (α + βi)xi; α > 0, β ≥ 0 → cumulative advantage of higher cells,

gi = γ xi; γ ≥ 0 → uniform leakage over the cells. (5.104)

Substitution of (5.104) in (5.103) leads to the relationships

dx0
dt

= σx − αx0 − γ x0;
dxi
dt

= [α + β(i − 1)]xi−1 − (α + βi + γ )xi. (5.105)

Let us sum the equations from (5.105). The result of the summation is

dx

dt
= (σ − γ )x, (5.106)

and the solution for x is
x = x(0) exp[(σ − γ )t], (5.107)

where x(0) is the amount of x at t = 0. Three regimes of change of x(t) follow from
(5.107):

1. Regime of exponential growth (σ > γ ).
2. Stationary regime (σ = γ ).
3. Regime of exponential decay (σ < γ ).

The distribution of yi will lead us to the Waring distribution. From (5.105) and
with the help of (5.107) and the relationship dyi

dt = 1
x2

[
x dxi

dt − xi
dx
dt

]
, one obtains
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dy0
dt

= σ − (α + σ)y0;
dyi
dt

= [α + β(i − 1)]yi−1 − (α + βi + σ)yi. (5.108)

The solution of (5.108) is

yi = y∗
i +

i∑
j=0

bij exp[−(α + βj + σ)t], (5.109)

where y∗
i is the stationary solution of (5.109) given by the relationships

y∗
0 = σ

σ + a
,

y∗
i = α + β(i − 1)

α + βi + σ
y∗
i−1, i = 1, 2, . . . . (5.110)

The coefficients bij are determined by the initial conditions. In the exponential func-
tion there are no negative coefficients, and because of this, when t → ∞, the sum in
(5.109) vanishes and the system comes to the stationary distribution from (5.110).
Thus the distribution of yi tends to be stationary despite the fact that the system is in
a stationary state only when σ = γ .

Thus starting from any initial distribution, after some time, the system reaches
the steady state, where the content of each cell decays exponentially with (the same)
characteristic time 1

σ−γ
and the distribution of the substance among the cells is given

by (5.110).

This distribution is called the Waring distribution.
The form of the Waring distribution is

P(ζ = i) = ak[i]

(a + k)[i+1] ; k[i] = (k + i)!
k! , (5.111)

with parameters k = α/β and a = σ/β.

We note that the words “after some time” above mean that theWaring distribution
can be considered a good approximation of the considered process for large enough
finite times when the stationary state of distribution of substance among the cells has
almost been reached.
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5.8.2.2 Parameters and Particular Cases of the Waring Distribution

The Waring distribution is quite interesting, since it contains as particular cases the
distributions of Yule and Zipf.

Let a > 2. The expected value of the Waring distribution is

E[ζ ] = k

a − 1
; a > 1. (5.112)

We note that a > 1 is a condition for a finite expected value (such a finite value was
assumed above). Then from the definition of a, it follows that σ > β.

The variance of the Waring distribution is

D2[ζ ] = ka(k + a − 1)

(a − 1)2(a − 2)
; a > 2. (5.113)

Several special cases of the Waring distribution are

1. β = 0 (geometric distribution).
In this case (called also the model of Frank and Coleman [145, 146] or case with
absence of cumulative advantage because of fi = αxi),

P(ζ = i) = q(1 − q)i; q = σ

σ + a
. (5.114)

2. k = 0, α = 0, β �= 0 (Yule distribution).
Let then k → 0. The Waring distribution reduces to the Yule distribution [147],

P(ζ = i | ζ > 0) = aB(a + 1, i), (5.115)

whereB is the beta function. Let us note that in this case, fi = βixi, which is known
also as Gibrath law, much used in economics for describing size distributions of
business systems [148] or size distributions of cities [149].

3. i → ∞ (Zipf distribution).
As i → ∞, the Waring distribution becomes

P(ζ = i) → c

i(1+a)
, (5.116)

which is the frequency form of the Zipf distribution (c is an appropriate constant
depending on the parameters of the distribution).
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5.8.2.3 Truncated Waring Distribution

For some applications, one may need a model with a finite number of cells. In
this case, we consider an array of N + 1 cells (boxes) indexed in succession by
nonnegative integers, i.e., the first cell has index 0, and the last cell has index N . We
assume that there exists an amount x of some substance that is distributed among the
cells. Let xi be the amount of the substance in the ith cell. Then

x =
N∑
i=0

xi. (5.117)

The fractions yi = xi/x can be considered probability values of the distribution of a
discrete random variable ζ ,

yi = p(ζ = i), i = 0, 1, . . . ,N . (5.118)

The process of transfer of substance between the cells can bemodeledmathematically
by a system of ordinary differential equations:

dx0
dt

= s − f0 − g0;
dxi
dt

= fi−1 − fi − gi, i = 1, 2, . . . ,N − 1;
dxN
dt

= fN−1 − gN . (5.119)

The forms of the amounts of the moving substances are the same as in (5.104). The
substitution of (5.104) in (5.119) leads to the relationships

dx0
dt

= σx − αx0 − γ x0;
dxi
dt

= [α + β(i − 1)]xi−1 − (α + βi + γ )xi, i = 1, 2, . . . ,N − 1,

dxN
dt

= [α + β(N − 1)]xN−1 − γ xN . (5.120)

Let us now derive the distribution of yi. From (5.120), we obtain

dy0
dt

= σ − (α + σ)y0;
dyi
dt

= [α + β(i − 1)]yi−1 − (α + βi + σ)yi, i = 1, 2, . . . ,N − 1;
dyN
dt

= [α + β(N − 1)]yN−1 − σyN . (5.121)
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We search for a solution of (5.121) in the form

yi = y∗
i + Fi(t), (5.122)

where y∗
i is the stationary solution of (5.122) given by the relationships

y∗
0 = σ

σ + α
;

y∗
i = α + β(i − 1)

α + βi + σ
y∗
i−1, i = 1, 2, . . . ,N − 1;

y∗
N = α + β(N − 1)

σ
y∗
N−1. (5.123)

For the functions Fi, we obtain the system of equations

dF0

dt
= −(α + σ)F0;

dFi

dt
= [α + β(i − 1)]Fi−1 − (α + βi + σ)Fi, i = 1, 2, . . . ,N − 1,

dFN

dt
= [α + β(N − 1)]FN−1 − σFN . (5.124)

The solutions of these equations are

F0(t) = b00 exp[−(α + σ)t], (5.125)

F1(t) = b10 exp[−(α + σ)t] + b11 exp[−(α + β + σ)t], (5.126)

. . .

Fi(t) =
i∑

j=0

bij exp[−(α + βj + σ)t]; i = 1, 2, . . . ,N − 1, (5.127)

FN (t) =
N∑
j=0

bNj exp[−(α + βj + σ)t], (5.128)

where

bij = α + β(i − 1)

β(i − j)
bi−1,j; i = 1, . . . ,N − 1; j = 0, . . . , i − 1;

bNj = −α + β(N − 1)

α + jβ
bN−1,j, j = 0, . . . ,N − 1;

bNN = 0. (5.129)
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The bij that are not determined by (5.129) may be determined by the initial con-
ditions. In the exponential function in Fi(t) there are no negative coefficients, and
because of this, as t → ∞, we haveFi(t) → 0, and the system comes to the stationary
distribution from (5.123). The form of this stationary distribution is

P(ζ = i) = a

a + k

(k − 1)[i]

(a + k)[i]
; k[i] = (k + i)!

k! ; i = 0, . . . ,N − 1,

P(ζ = N) = 1

a + k

(k − 1)[N]

(a + k)[N−1] , (5.130)

with parameters k = α/β and a = σ/β.
The obtained distribution is called the truncatedWaring distribution. The distribu-

tion (5.130) has a concentration of substance in the last cell (i.e., in the N th cell). For
the case of the nontruncated Waring distribution, the same substance is distributed
in the cells N , N + 1, . . . .

5.8.2.4 A Nonstationary Birth Process. Negative Binomial Distribution,
Papers, and Citations

Let us consider the nontruncated version of the Waring distribution. In addition,
let us assume that the system is completely isolated from external influences. This
means that no substance enters or leaves the system. Thus the amounts of the moving
substances are

σ = 0; gi = 0; fi = (α + βi)xi; α(t)

β(t)
= N > 0. (5.131)

The last of the above relationships shows that the process is nonstationary (since the
substance flow can depend on time). The governing equations become

dy0
dt

= −β(t)Ny0;
dyi
dt

= β(t)[(N + i − 1)yi−1 − (N + 1)yi]; (5.132)

with initial conditions yi(0) = 1 if i = 0 and yi(0) = 0 otherwise. What one needs
is to obtain the distribution yi = p(x(t) = i) connected to the process. We recall that
p(x(t) = i) is the probability that an author in a system has published i papers in the
period t. This distribution can be obtained from (5.132), and its form is very similar
to the form of the distribution obtained on the basis of the model of death process
above [4]:

p(x(t) = k) =
(
N + k − 1

k

)
exp[−Nρ(t)]{1 − exp[−ρ(t)]}k, (5.133)
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where ρ(t) =
t∫
0
dτ β(τ). Equation (5.133) is the relationship for the negative bino-

mial distribution. In addition to the probability p(x(t)), one can define also transition
probabilities pi,k(s, t) for the probability that at time t, the substance is in the kth unit
if at time s < t it was in the ith unit. From the point of view of the case with scientists
and articles, pik(s, t) is the probability that an author will own k articles at time t
if at time s he/she owns i ≤ k articles. In this case, the evolution of the transition
probability [144] is given by

∂pi,k(s, t)

∂t
= β(t)[(N + k − 1)pi,k−1(s, t) − (N + k)pi,k(s, t)], (5.134)

with initial conditions pi,k(s, s) = 1 if k = i and pi,k(s, s) = 1 otherwise.
Citations are repetitive events exactly like papers. Thus all discussions about the

nonstationary birth process connected to papers are the same for the nonstationary
birth process connected to citations. In the first case,we have a scientistwhopublishes
papers. In the second case, we have a paper that receives citations. Then (5.133) gives
the probability that a paper will have received k citations at time t, and (5.134) gives
the transitional probability that a paper will have received k citation at time t if it
has i citations at the time s. The distribution connected to the transitional probability
pi,k is also a negative binomial distribution. In more detail, the number of received
citations for the time t − s when the number of received citations at until time s was
i, pi,j(s, t) = p[x(t) − x(s) = j | x(s) = i], is

pi,j(s, t) =
(
N + i + j − 1

j

)
exp{−[ρ(t) − ρ(s)](N + i)}(1 − exp{−[ρ(t) − ρ(s)]})j,

(5.135)

i.e., the substance flow during the time period t − s has a negative binomial distrib-
ution with parameters exp[−r(t) + r(s)] and N + j, where j is the index of the unit
that was reached by the substance at time s [143, 144, 150].

With respect to the aging of scientific information, it is important to study the
mean value function Mi(s, t). It will show us that a paper that has received some
number of citations during the time s after its publication is expected to receive
(during an arbitrary time period t − s after the moment s) a linear expression in what
it had received previously:

Mi(s, t) = E[x(t) − x(s) | x(s) = i] = (N + i){exp[ρ(t) − ρ(s)] − 1} = cs(t)i + ds(t).
(5.136)

We note that ds(t)
cs(t)

= N = const is independent of time, and cs(t) is a charac-
teristic of the aging process. Large cs(t) characterizes slowly aging literature.
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Let us define

M(s, t) = E[x(t) − x(s)] = N exp[ρ(t) − ρ(s)] (5.137)

and

q(s, t) = E[x(s) + N]
E[x(t) + N] . (5.138)

Then (5.135) can be written as

pi,j(s, t) =
(
N + i + j − 1

j

)
q(s, t)N+i[1 − q(s, t)]j, (5.139)

and the expected citation rate during the time period t − s under the condition that
the corresponding paper has received i citations during the time span s is

Mi(s, t) = (N + i)
E[x(t) − x(s)]
E[x(s)] + N

. (5.140)

Finally, from (5.139), one obtains that the probability that an article that has received
i ≥ 0 citations will no longer be cited is

pi,0(s, t) = p[x(t) − x(s) = 0 | x(s) = i] = q(s, t)N+i. (5.141)

The lifetime distribution of a process {X(t)} is defined by

F(t) = M(0, t)

M(0,∞)
, t ≥ 0. (5.142)

Let us choose the following particular form of fi [151]:

fi = (N + i)α∗β∗ exp(−α∗t)xi = β∗N(1 + i/N)α∗ exp(−α∗t), N > 0, α∗ > 0, β∗ > 0.
(5.143)

The time-invariant part of fi is proportional to 1 = i/N , and because of this, increases
by transfer from the ith cell to the (i + 1)th cell (which can be considered a local form
reflection of the cumulative advantage principle). The time-dependent component of
fi reflects the local exponential aging of the process (aging of the content relative to
an individual unit). Then

M(s, t) = N{exp[β∗(1 − exp(−α∗t)) − exp[β∗(1 − exp(α∗s))]]} (5.144)

and

F(t) = exp[β∗(1 − exp[−α∗t])] − 1

exp(β∗) − 1
. (5.145)
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Finally, let us discuss the particular cases in which the model describes articles
that obtain citations. One can define the obsolescence function H(s): the probability
that a paper will not be cited beyond a given time s. The definition is

H(s) = p(x(∞) − x(s) = 0). (5.146)

The obsolescence function for our particular case is

H(s) = {1 + exp(β∗) − exp[β∗(1 − exp(−α∗s))]}−N . (5.147)

We note that H(∞) = 1, i.e., at infinity, every publication is obsolete. We have
H(0) = exp(−β∗N), i.e., the probability that a paper is already obsolete at the
moment it is published equals the probability that it will never be cited.

5.8.2.5 A Case of Brain Drain: Migration Channel for Research
Personnel

Let us now discuss one application of the truncatedWaring distribution. We consider
a sequence of N + 1 countries that form a channel. As a result of a large migration
movement, a flow of researchers moves through this channel from the country of
entrance to the final destination country that is attractive to them in terms of good
conditions for life and work. We may assume a situation of war in some region and
motion of a large group of researchers from that region to another (more attractive
region). The motion starts from an entry country, and the researchers have to move
through a sequence of countries in order to reach a (very attractive from the point of
view of the researchers) final destination country. We may think about the sequence
of countries as a sequence of boxes (cells). The entry country will be the box with
label 0, and the final destination country will be the box with labelN . Let us consider
a number x of researchers that have entered the channel and are distributed among
the countries. Let xi be the number of researchers in the ith country. This number can
change on the basis of the following three processes: (a) A number s of researchers
enter the channel from the external environment through the country of entrance
(0th cell); (b) A number fi of researchers move from the ith country to the (i + 1)th
country; (c) A number gi of the researchers change their status (e.g., they do not move
farther in the direction of the final destination country and they are no longer active
in the field of research). Fot the case of a large number of migrating researchers, the
values of xi can be determined by (5.103). The relationships (5.104) mean that (a)
the number of researchers s that enter the channel is proportional to the number of
researchers in all countries that form the channel; (b) there may be a preference for
some countries, e.g., migrants may prefer the countries that are around the end of the
migration channel (and the final destination country may be the most preferred one);
(c) it is assumed that the conditions along the channel are the same with respect to
“leakage” of researchers, e.g., the same proportion γ of researchers move out of the
area of research work in every country of the channel.
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As can be seen from (5.107), the change in the number of researchers depends on
the values of σ and γ . If σ > γ , the number of researchers in the channel increases
exponentially. If σ < γ , the number of researchers in the channel decreases exponen-
tially. The dynamics of the distribution of the researchers in the channel is modeled
by (5.108).When the time since the beginning of the operation of the channel become
large enough, the distribution of the researchers in the countries that form the migra-
tion channel becomes close to the stationary distribution described by (5.110). Let
us stress that the stationary distribution described by (5.110) is very similar to the
Waring distribution, but there is a significant difference between the two distributions
due to the finite length of themigration channel: theremay be a large concentration of
researchers in the final destination country especially, if this country is very attractive
for researchers.

The parameters that govern the distribution of researchers in the countries that
form the channels are σ , α, β, and γ . The parameter σ is the “gate” parameter, since
it regulates the number of researchers that enter the channel. If σ is large, then the
number of researchers in the channel may increase very rapidly, and this can lead to
problems in the corresponding countries. We note that σ participates in each term
of the truncated Waring distribution. This means that the situation at the entrance of
the migration channel influences significantly the distribution of researchers in the
countries of the channel.

The parameter γ regulates the “absorption” of the channel, since it regulates
the change of the status of some researchers. They may settle in the corresponding
country and may accept a job that is out of the area connected to their research. A
large value of γ may compensate for the value of σ and may even lead to a decrease
in the number of researchers in the channel. The parameter α regulates the motion of
the researchers from one country to the next country of the channel. A small value of
α means that the researchers tend to concentrate in the entry country (and eventually
in the second country of the channel). An increase in α leads to an increase in the
proportion of researchers that reach the second half of the migration channel and
especially the final destination country.

The parameter β regulates the attractiveness of the countries along the chan-
nel. Large values of β mean that the final destination country is very attractive
to researchers (e.g., has excellent conditions for work and the salaries are large).
This increases the attractiveness of the countries in the second half of the channel
(researchers are more desirous of reaching these countries because the distance to
the final destination country is thereby decreased). If for some reason β is kept at a
high value, then almost all the researchers may settle in the final destination country.

5.8.2.6 Multivariate Waring Distribution

One can define the multivariate Waring distribution as follows [152]. Let a and b

be positive real numbers. Let a(k) = Γ (a+b)
Γ (a) , where Γ (x) =

∞∫
0
dt exp(−t)tx−1 is the
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gamma function [153]. Let p(x1 = k1, . . . , xn = kn; a, b1, . . . , bn) be the probability
that x1 = k1, . . . , xn = kn with parameters a, b1, . . . , bn. The multivariate Waring
distribution is given by the relationship

p(x1 = k1, . . . , xn = kn; a, b1, . . . , bn) =

a

Γ

(
n∑

i=1
ki − n + 1

)
Γ

(
n∑

i=1
bi + a

)

Γ

(
n∑

i=1
ki +

n∑
i=1

bi − n + a + 1

)
n∏

i=1

Γ (ki + bi − 1)

Γ (ki)Γ (bi)
, (5.148)

where ki = 1, 2, . . . and i = 1, . . . , n, a and bi are positive real numbers. For n = 1,
the multivariate Waring distribution is reduced to the univariate Waring distribution

p(x = k; a, b) = a
Γ (b + k + 1)Γ (a + b)

Γ (b)Γ (a + b + k)
. (5.149)

Let a(b) = Γ (a+b)
Γ (a) . Then the univariate form of theWaring distribution can be written

as

p(x = k; a, b) = a
b(k−1)

(a + b)(k)
. (5.150)

Two interesting properties of the multivariate Waring distribution are as follows:

1. Let the multivariate random variable (x1, . . . , xn) follow the multivariate Waring
distribution (5.148). Then the corresponding expected value is

E(x1, . . . , xn) = a

1∫

0

dx (1 − x)a−n−1
n∏

i=1

(1 − x + bix). (5.151)

2. Every marginal distribution of the multivariate Waring distribution is also a War-
ing distribution

∞∑
ks=1

· · ·
∞∑

kn=1

p(x1 = k1, . . . , xs = ks, xs+1 = ks+1, . . . , xn = kn; a, b1, . . . , bn) =

p(x1 = k1, . . . , xs = ks; a, b1, . . . , bn).
(5.152)

The simplest case of the multivariate Waring distribution is the bivariate Waring
distribution

p(x = k, y = j; a, b, c) = a
(k + j − 2)!b(k−1)c(j−1)

(a + b + c)(k+j−1)(k−1)!(j−1)! , (5.153)
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with expected value

E(x, y) = 1 + b + c

a − 1
+ 2bc

(a − 1)(a − 2)
(5.154)

and covariance

Cov(x, y) = 1 + b + c

a − 1
+ 2bc

(a − 1)(a − 2)
−

(
1 + b

a − 1

) (
1 + c

a − 1

)
.

(5.155)

If (x, y) follows the bivariate Waring distribution, then the conditional probability
p(x = k | y = m) is

p(x = k | y = m) = 1

(k + 1)!
(a + c)(b)

(a + c + m)(b)

b(k−1)m(k−1)

(a + b + c + m)(k−1)
, (5.156)

and the conditional expectation E(x | y = m) is

E(x | y = m) = 1 + b

a + c − 1
m. (5.157)

The multivariate Waring distribution was applied to the study of scientific produc-
tivity among authors in six main Chinese journals of information science during the
three-year periods 1987–1989 and 1990–1992 [152].

5.8.3 Quantities Connected to the Age of Citations

After publication of an article, some tame elapses before the article is cited. Let T be
the time between publication of the article and the publication of the citing source.
In general, T is a random variable, and one can study distributions of the time to the
first citation [115], or to the nth citation [125]. Here we mention several quantities
connected to the time of first citation (these quantities can be applied also to the time
of second citation, etc.) [154]. Let us assume that T is a continuous quantity, and let
f (t) be the probability density function of the distribution of T . Then one can define
the age-specific citation rate

r(t) = − d

dt
[lnR(t)], (5.158)

where

f (t) = dR

dt
,
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and R(t) = RT (t) = p(T > t) is called the reliability function of T (here p(T > t)
means the probability that T > t). From (5.158), it follows that

R(t) = exp

⎛
⎝−

t∫

0

dsr(s)

⎞
⎠ . (5.159)

Assuming different kinds of distributions for f (t), we can obtain the corresponding
relationship for the age-specific citation rate. Since citations (in most cases) can be
considered rare events, we can use distributions connected to the theory of extreme
events, such as the following:

• The exponential distribution f (t) = λ exp(−λt). In this case,R(t) = exp(−λt) and

r(t) = λ. (5.160)

Thus a constant age-specific citation rate implies an exponential distribution of
the citation age.

• The Weibull distribution of citation age T with shape parameter β > 0 and scale
parameter α > 0. Here the reliability function is R(t) = exp[−(t/α)β], and the
age-specific citation rate is

r(t) = βtβ−1

αβ
. (5.161)

5.9 Probability Models Connected to Research Dynamics

5.9.1 Variation Approach to Scientific Production

The occurrence of laws in the form of hyperbolic relationships (such as the laws
of Zipf and Pareto, for example) and the persistence of such laws may lead to the
following assumption:

A research organization is in an equilibrium state with respect to scientific
production if the statistical laws for the characteristic quantities of this pro-
ductivity are given by hyperbolic relationships.

We can even extend the above assumption by the additional assumption that the
parameters of the statistical laws have selected values (for example, α = 1) when
the research organization is in an equilibrium state. And if the distributions of the
quantities are not described by the appropriate hyperbolic relationships, then the
research organization (and its structure and system of functioning) may not be in an
equilibrium state.
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Equilibrium states of various systems may be studied by variational methods
[155]. A hint at the possible applicability of a variational approach in the social
sciences is connected to George Zipf, who explained what is now known as Zipf’s
law in the field of linguistics [156] by means of the principle of least effort:

Human communication is based on two opposite tendencies: the one who
speaks tries to use the minimum number of words, and this one who hears tries
to understand the speaker by investing minimal effort.

Let the effort E(x) of a researcher to produce x publications be proportional to
the time he or she invests for research: E(x) ∝ t. There is a law for an exponentially
growing science that states that scientific production growths exponentially with
invested time: x(t) = exp(λt), where λ is a parameter. From here, t = 1

λ
ln(x) and

E(x) ∝ 1

λ
ln(x) = ρ ln(x). (5.162)

This relationship will be introduced in the relationships for the variational principle
of Boltzmann below [104, 157].

The principle of maximum entropy (variational principle of Boltzmann) is for
systems whose states x are distributed with probability p(x) (

∫
dx p(x) = 1).

Then at an equilibrium state with energy

E =
∫

dx p(x)E(x), (5.163)

the entropy

H = −
∫

dx p(x) ln[p(x)] (5.164)

has a maximum value.

The function p(x) above is the probability that a researcher has produced x publica-
tions, and we shall treat E(x) below as a measure of the mean effort (mean “energy”)
spent in the course of the scientific work. The solution of the above variational prob-
lem is

p(x) = (1/Z) exp[−λ∗E(x)] = (1/Z)(1/xρλ∗
), (5.165)

where Z is the statistical sum and λ∗ is a parameter that can be determined from the
normalization condition and the boundary condition.
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Here we shall discuss as the least-value state the state x0 = 1 (researchers must
have at least one publication). Then

E =
∞∫

1

dx p(x)E(x) (5.166)

and
p(x) = (ρ/E)1/(x1+ρ/E) = α/(x1+α); α = (ρ/E). (5.167)

This is the law of Pareto (called also the Zipf–Pareto law).
The entropy of a system that obeys the law (5.167) is

H = −
∞∫

1

dx p(x) ln[p(x)] = 1 + 1

α
− ln(α); (5.168)

“Temperature”: The analogy with the thermodynamics may be continued: one may
introduce a quantity called “temperature.” This quantity is a measure of the external
influence on the scientific system.

“Temperature” can be introduced by comparing the results for Lagrange multipli-
ers in statistical mechanics (where λ∗ ∝ 1/T ) with the case of scientific production
(where λ∗ = (1 + α)/ρ). Thus the “temperature” is

T ∝ ρ

1 + α
. (5.169)

Using (5.169), we can write the Zipf–Pareto law (5.167) as

p(x) = α

xkρ/T
, (5.170)

where k is a coefficient of proportionality. From (5.169), α = 1 − kρ
T , and the final

form of the Zipf–Pareto law (5.170) is

p(x) = 1 − kρ
T

xkρ/T
. (5.171)

There are two parameters in (5.171):

• k: characteristic of the efforts of the researcher in the publication process. These
efforts can depend on the talent of the researcher but also on the conditions of
work, salary, etc. Increasing research efforts lead to a decreasing value of k.

• T : characteristic of external influence on research organization. The parameter T
can be connected to different flows toward the scientific structures (e.g., to money
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flows). Then if the money flow increases, the system is “heated,” and if the money
flow decreases, the system is “frozen.”

Let us analyze (5.171). We shall see the role of better work conditions and increased
funding in increasing research production.

1. Let us fix the number of publications x. Thus we can study the influence of ρ and
T . Let us fix also T (for example, a fixed quantity of money flows to the scientific
organization, and other external conditions are fixed). Then a decrease in ρ will
increase the numerator of (5.171) and will decrease its denominator. Hence p
will increase. This means that initiatives to decrease the necessary expenditures
of effort by researchers in the publication production process (for example, an
initiative for better work conditions or better social networking in the research
organization) may increase the probability that researcher will have a larger
number of publications.

2. Let us now fix x and ρ and increase T (for example, by increasing the money
flow toward the research organization). The numerator of (5.171) increases, and
the denominator decreases. Thus p increases, which means that one can expect
that research production will increase with increased funding.

Finally, let us note that thermodynamic models are also used in other areas of
science such as technological forecasting and the theory of manpower systems [158,
159].

The variational approach can also be applied to the case of discrete distrib-
utions (e.g., for studying the circulation of documents) [160]. Let us consider a
finite probability distribution P = {p1, . . . , pn}, where pi ≥ 0 for i = 1, . . . , n and∑
i

= 1npi = 1. The entropy attached to this probability distribution is

Hn(P) = −
n∑

i=1

pi ln(pi). (5.172)

The entropy is a measure of uncertainty. The uncertainty is maximal when the out-
comes are equally likely. Since the uniform distribution maximizes the entropy, it
contains the largest amount of uncertainty.

Let X = {1, . . . , n} be a random variable and pi the probability of the occurrence
of the value i. We have the constraint

n∑
i=1

pi = 1, (5.173)

andwe impose an additional constraint about the expected value of the distributionX:

E(X) =
n∑

i=1

ipi = μ. (5.174)
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According to the principle of maximum entropy, we have to find the distribution P
that maximizes the entropy (5.172) subject to the constraints (5.173) and (5.174).
Introducing two Lagrange multipliers α and β, we have to find a maximum for the
functional

L = Hn(P) − α

(
n∑

i=1

pi − 1

)
− β

(
n∑

i=1

ipi − E(X)

)
. (5.175)

The Euler equations for L from (5.175) are

∂L/∂pi = − ln(pi) − 1 − α − βi; i = 1, . . . , n,

∂L/∂α = 1 −
n∑

i=1

pi,

∂L/∂β = E(X) −
n∑

i=1

ipi. (5.176)

The solution of these equations is

pi = exp(−β0i)∑n
i=1 exp(−β0i)

, (5.177)

where β0 is the solution of the equation

n∑
i=1

[i − E(X)] exp[−(i − E(X))] = 0. (5.178)

A similar calculation can also be made for the case of more than two constraints.

5.9.2 Modeling Production/Citation Process

Joint modeling of production and citation processes in science attracted considerable
attention after the introduction of the h-index of Hirsch. Below, we shall consider
two models of the processes connected to the h-index.

5.9.2.1 Model of h-Index Based on Paretian Distributions

Discrete Paretian distributions and the Price distribution are distributions that are
widely used for modeling publication activity and citation processes [161]. The
properties of these distributions needed for investigation of the Hirsch index are
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represented bymeans ofGumbel’s characteristic extremevalues [162]. The reason for
this is that the Hirsch index can be defined on the basis of Gumbel’s rth characteristic
values.

Gumbel’s rth characteristic values are defined as follows. Let us consider a random
variable X that gives the citation rate of a paper. We define

• pk = P(X = k): probability distribution of X (k ≥ 0);
• F(k) = P(X < k): cumulative distribution function of X.

Gumbel’s rth characteristic extreme value is then defined as

ur = max{k : G(k) ≥ r/n}, (5.179)

where

• G(k) = Gk = 1 − F(k) = P(X ≥ k);
• n: given sample with distribution F.

The Hirsch index can be defined analogously to Gumbel’s rth characteristic
extreme value as follows:

h = uh. (5.180)

5.9.2.2 Case of Paretian Distribution of the Random Variable X

A distribution of a random variable (in our case, the distribution of citations
X) is a Paretian distribution if it obeys asymptotically Zipf’s law:

lim
k→∞

Gk

kα
≈ const. (5.181)

Below,we shall use a prominentmember of the class of Paretian distributions, namely
the Pareto distribution pk = P(X = k) ≈ d

(N+k)−(1+α) . This distribution is Paretian as
k → ∞. For the case k  N , we obtain

Gk = P(X ≥ k) ≈ d1
kα

, (5.182)

where d1 is a positive constant. Then

ur ≈ c1
(n
r

)1/α
, (5.183)
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where c1 is a positive constant. Equation (5.183) leads to the following equation for
the Hirsch index (in the presence of the assumption n  1):

h = uh ≈ c1 (n/h)1/α . (5.184)

From here, we obtain
h ≈ c2n

1/(1+α), (5.185)

where c2 = cα/(1+α)

1 .
We can draw the following conclusions from (5.185) (note that we work with the

assumption that the citation distribution is a discrete Paretian distribution (with finite
expectation)).

1. If the number of underlying papers is large enough, then the Hirsch index h
is proportional to the (1 + α)th root of the number of publications. Usually
α is close to 1. Then h is proportional to the square root of the number of
publications.

2. The number of citations of the papers from the Hirsch core (which contains
the h-papers: papers that received at least h citations each) is proportional
to h2 for α > 1 and a large value of k [161].

5.9.2.3 Case of Price Distribution of the Random Variable X

We recall that in our case, the random variable X is the citation rate of a paper. The
Price distribution is [163]

pk = P(X = k) = N

(
1

N + k
− 1

N + k + 1

)
= N

(N + k)(N + k + 1)
,

(5.186)
where k ≥ 0 and N is a positive parameter.

Note that N is a positive parameter. Thus N may be a noninteger. In addition, the
Price distribution contains the case k = 0 as well as the law of Lotka (for research
publications) when k  N . Moreover, no positive moments of the Price distribution
exist. The distribution (5.186) is called the Price distribution, since it contains as
a limiting case the square root law of Price (which states that half of the scientific
papers are contributed by the top square root of the total number of scientific authors)
[163]. Let us stress that the Price distribution is a particular case (when α = 1) of
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the Waring distribution [101, 164]

pk = P(X = k) = α

N + α

N

N + α + 1
. . . ,

N + k − 1

N + α + k
(5.187)

where k ≥ 0 and α and N are positive parameters.
For the case in which the distribution of the citation rate is described by the Price

distribution, one obtains

Gk = N

N + k
. (5.188)

Thus the distribution is Paretian (but note that the expected value of X for this distri-
bution is ∞, in contrast to the finite expectation connected to the Pareto distribution
discussed above).

The Gumbel rth extreme value is

ur =
[
N(n − r)

r

]
, r = 1, 2, . . . , n, (5.189)

where [. . . ] denotes the integer part of the corresponding argument.
The corresponding h index is a solution of the equation

h = uh ≈ N(n − r)

r
. (5.190)

The solution (for n  1) can be approximated as

h =
(
N2

4
+ nN

)1/2

− N

2
≈ (nN)1/2, (5.191)

which means the following:

The h-index is proportional of the square root of the number of publications (if
the citation rate is described by thePrice distribution and all other assumptions
are valid).

5.9.2.4 Model of h-Index Based on the Poisson Distribution

Another model of the h-index is based on the publication–citation model of Burrell
[165, 166]. This model is for the publishing record of a scientist who publishes
papers at certain times. These papers then attract citations, and both the publication
and citation accumulation processes are random. The assumption is that the scientist
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starts his/her publishing career at t = 0, and by the time T > 0, one observes the
following:

1. Poisson process of publishing
The author publishes papers according to a Poisson process at rate θ . The distri-
bution of the number of publications YT at time T is

P(YT = r) = exp(−θT)
(θT)r

r! , r = 1, 2, . . . , (5.192)

with expected value E[YT ] = θT .
2. Poisson process of citations receiving

Each of the publications receives citations according to a Poisson process of rate
Λ, which can vary from paper to paper.

3. Variation of the rate Λ

The citation rate Λ varies over the set of publications of the scientist according
to a gamma distribution of index ν > 1 and parameter α > 0:

fΛ(λ) = αν

Γ (ν)
λν−1 exp(−αλ), (5.193)

where 0 < λ < ∞.

The model leads to the following distribution of the citations of a randomly chosen
paper of the scientist [166]:

P(XT = r) = α

T(ν − 1)
B

(
T

α + T
; r + 1, ν − 1

)
, r = 0, 1, 2, . . . , (5.194)

where

B(x; a, b) = Γ (a + b)

Γ (a)Γ (b)

x∫

0

dy ya−1(1 − y)b−1

is the cumulative distribution of the beta distribution of the first kind, and a and b
are parameters.

What remains to be calculated isN(n;T): the expected number of papers receiving
at least n citations by the time T .

• Case of n = 0 citations
E[N(0;T)] = θT , (5.195)

i.e., the number of uncited papers of the scientist is expected to have linear increase
over time.
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• Case of n �= 0 citations In this case [166],

E[N(n;T)] = θT

[
1 − α

T(ν − 1)

n−1∑
r=0

B

(
T

α + T
; r + 1, ν − 1

)]
, n = 1, 2, . . . .

(5.196)

Equation (5.196) has interesting consequences:

1. Publish or perish!: The expected number of papers with n citations is proportional
of the publication rate θ .

2. A long career in science is a good thing!: The expected number of papers with n
citations is increasing in T for every n.

3. No one is a genius!: The expected number of papers with n citations is decreasing
in n for every T .

Finally, the h-index can be defined as

h(T) = max{n : n ≤ E[N(n,T)]}, (5.197)

and as we have seen just above, the h-index depends on the intensity of publication,
the length of the scientific career, and other parameters (such as the parameters α

and ν of the beta distribution, which can vary from scientist to scientist).

5.9.3 The GIGP (Generalized Inverse Gaussian–Poisson
Distribution): Model Distribution for Bibliometric
Data. Relation to Other Bibliometric Distributions

Up to now,wehave discussed several distributions thatmaybe used tomodel different
aspects of research dynamics and to fit bibliometric data. Sichel [167, 168] argues
that there exists a distribution that is very suitable for modeling bibliometric data: the
GIGP (generalized inverse Gaussian–Poisson) distribution. The GIGP distribution
seems to be complicated, but its goodness of the fit with respect to bibliometric
data is usually very good. The GIGP distribution may be obtained as follows. Let
us consider a researcher who has an average rate of publishing λi papers in unit
time. Then the expected number of papers published by this researcher for time
t will be λit. Let us assume that the statistical variability around the average λit
follows a Poisson distribution. If we have a group of researchers, then within this
group, the value of λi will vary, since some researchers are more productive than
others. Let us assume that the values of λi are distributed according to a generalized
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inverse Gaussian distribution law (called a GIG distribution).1 Then we arrive at the
compound Poisson distribution called GIGP [170]:

p(r, t) = (1 − θt)
γt/2

Kγt [αt
√
1 − θt]

(αtθt)
r

2rr! Kr+γt (αt), (5.198)

where r = 0, 1, 2, . . . ; 0 ≤ θt ≤ 1; −∞ < γt < ∞; αt ≥ 1;Kν(z) is the modified
Bessel function of the second kind of order ν; and t is the length of the considered
time period. The time-dependent parameters are as follows:

αt = α
√
1 + θ(t − 1); θt = θ t

1 + θ(t − 1)
; γt = γ. (5.199)

From (5.198), one can calculate the probabilities p(r) by means of a recurrence
relation as follows if one knows p(0) and p(1) for r = 0, 1, 2, . . . :

p(r) =
(
r + γ − 1

r

)
θtp(r − 1) + α2

t θ
2
t

4r(r − 1)
p(r − 2). (5.200)

The GIGP is also able do describe the domain r = 1, 2, , 3, . . . . For this purpose,
one has to perform zero truncation of the distribution from (5.198). The result is

p(r, t) = (αtθt)
rKγ+r(αt)

2rr!{(1 − θt)−γ /2Kγ [αt(1 − θt)1/2] − Kγ (αt)} . (5.201)

The GIGP distribution has been used to describe bibliometric data such as the
number of articles published in the area of operations research, the scattering of
literature in applied geophysics, the literature on mast cells, publications of a group
of chemists several years after receiving their doctoral degrees, in-house journal use
in libraries, etc. [167].

The GIGP distribution (5.198) has three parameters. If some of these parameters
are known a priori, then the GIGP distribution can be reduced to several different
distributions. Some examples of such reduction are as follows:

1. Negative binomial distribution: α = 0; γ > 0.
2. Zero-truncated negative binomial distribution: α = 0; −1 < γ < 1.
3. Fisher logarithmic series distribution: α =; γ = 0.
4. Inverse Gaussian–Poisson (IGP) distribution: γ = −1/2; r = 0, 1, 2, . . . .

1The form of this distribution may be written as

f (x) = (a/b)p/2

2Kp(
√
ab)

x(p−1) exp[−(ax + b/x)/2],

where x > 0, Kp is the modified Bessel function of the second kind, a > 0, b > 0, and p is a real
parameter [169].
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The upper tail (i.e., for large values of r) of the GIGP distribution is given by the
following relationship [168]:

p(r) ∼ cθ r

r1−γ
, (5.202)

where c is a normalizing constant, 0 < θ ≤ 1, and −∞ < γ < ∞. Taking the loga-
rithm of both sides of (5.202), one can write

Y = A − (1 − γ )X − B exp(X), (5.203)

where Y = ln p(r);X = ln r;A = lnC;B = − ln θ . Thus the tail of theGIGP distrib-
ution for γ < 1 is first linear, and then with increasing value of r, it becomes convex.
Let θ = 1. Then the tail of the GIGP distribution described by (5.203) becomes lin-
ear, and thus the GIGP distribution for this case corresponds to the distributions of
Lotka and Zipf discussed in a previous chapter of this book.

5.9.4 Master Equation Model of Scientific Productivity

We know already that productivity is an important element in the evolution of a
research community. It is possible to derive an equation that accounts for the sto-
chastic fluctuations in the productivity of the members of a scientific organization
[171]. In order to obtain this model equation, we assume that the main processes of
evolution of scientific community are these:

1. the self-reproduction of scientists,
2. aging and death of scientists,
3. departure of scientists from the scientific field due to mobility or abandoning

research activities.

Let a be the scientific age (number of years devoted to scientific research) of a
researcher, and let a scientific productivity index ξ be incorporated into the researcher
state space (ξ and a are assumed to be continuous variables with values in [0,∞]).
The dynamics of the research community are described by a number density function
n(a, ξ, t), which specifies the age and productivity structure of the scientific com-
munity at time t. For example, the number of researchers with age in [a1, a2] and
scientific productivity in [ξ1, ξ2] at time t is given by the integral

a2∫
a1

ξ2∫
ξ1

da dξ n(a, ξ, t).
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The following master equation for this function n(a, ξ, t) can be derived [171]:

(
∂

∂a
+ ∂

∂t

)
n(a, ξ, t) = −[J(a, ξ, t) + w(a, ξ, t)]n(a, ξ, t) +

ξ∫

−∞
dξ ′χ(a, ξ − ξ ′, ξ ′, t)n(a, ξ − ξ ′, t),

(5.204)

wherew(a, ξ, t)denotes the departure rate of communitymembers. If x(t) is a random
process describing the scientific productivity variation and pa(x, t | y, τ ) (τ < t) is
the transition probability density corresponding to such a process, then

χ(a, ξ, ξ ′, t) = lim
Δt→0

p(ξ + ξ ′, t + δt | ξ, t)

Δt
. (5.205)

The transition rate J(a, ξ, t) at time t from the productivity level ξ is by definition

J(a, ξ, t) =
∫ ∞

−ξ

dξ ′ χ(a, ξ, ξ ′, t).

The increment ξ ′ may be positive or negative. The equation for n(a, ξ, t) can be
obtained in the following way. First, for the increment we have

n(a + Δa, ξ, t + Δt) = n(a, ξ, t) − J(a, ξ, t)n(a, ξ, t)Δt +∫ ξ

−∞
χ(a, ξ − ξ ′, ξ ′, t)n(a, ξ − ξ ′, t)dξ ′Δt − w(a, ξ, t)n(a, ξ, t)Δt, (5.206)

where:

• the term on the right-hand side, [1 − J(a, ξ, t)Δt]n(a, ξ, t), describes the propor-
tion of individuals whose scientific productivity does not change in (t, t + Δt);

• the integral term describes the individuals whose scientific productivity becomes
equal to ξ because of increase or decrease in (t, t + Δt);

• the last term corresponds to the departure of individuals through stopping research
activities or death.

After expanding n(a + Δt, ξ, t + Δt) around a and t and retaining terms up to the
first order in Δt, one obtains the master equation (5.204).

The above master equation is difficult for analysis, and because of this, it is often
reduced to an approximation similar to the well-known Fokker–Planck equation. Let

μk(a, ξ, t) =
∫ ∞

−ξ

dξ ′(ξ ′)kχ(a, ξ, ξ ′, t) = lim
Δt→0

1

Δt
< (ξ ′)k >;

k = 1, 2, . . . , (5.207)
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where the brackets denote the average with respect to the conditional probability
density pa(ξ + ξ ′, t + Δt | ξ, t). In addition, we make the following assumptions:

• μ1, μ2 < ∞;
• μk = 0 for k > 3;
• n(a, ξ, t) and χ(a, ξ, ξ ′, t) are analytic in ξ for all a, t, and ξ ′.

The assumption μk = 0 for k > 3 demands that productivity be continuous, i.e.,
when Δt → 0, the probability of large fluctuations | ξ ′ | must decrease so quickly
that <| ξ ′ |3>→ 0 more quickly than Δt.

When the above assumptions hold, the function n satisfies the equation

(
∂

∂a
+ ∂

∂t

)
n = −∂(μ1n)

∂ξ
+ 1

2

∂2(μ2n)

∂ξ 2
− wn. (5.208)

The following notes are in order here.

1. If w = 0, (5.208) is reduced to the Fokker–Planck equation.
2. Equation (5.208) describes the evolution of the scientific community through

a drift along the age component and a drift and diffusion with respect to the
productivity component.

3. The diffusion term characterized by the diffusivity μ2 takes into account the
stochastic fluctuations of scientific productivity conditioned by internal factors
(such as individual abilities, labor motivations, etc.) and external factors (such as
labor organization, stimulation systems, etc.).

4. The initial and boundary conditions for (5.208) are:

• n(a, ξ, 0) = n0(a, ξ), where n0(a, ξ) is a known function defining the com-
munity age and productivity distribution at time t = 0;

• n(0, ξ, t) = ν(ξ, t), where the function ν(ξ, t) represents the intensity of input
flow of new members at age a = 0 and ν(ξ, 0) = n0(0, ξ).

5. In addition, n(a, ξ, t) → 0 as a → ∞.

The general solution of (5.208) with the above initial and boundary conditions is
still a difficult task. But for many practical applications, knowledge of the first and
second moments of the distribution function n(a, ξ, t) is sufficient. Equation (5.208)
can be solved numerically or can be reduced to a system of ordinary differential
equations [171].

In a similar way, a model of personal movement can be obtained [172]. Themodel
equation for this case is

(
∂

∂a
+ ∂

∂t

)
n(a, t) = −n(a, t)[w1(a, t) + w2(a, t)] + r(a, t)v(t), (5.209)

where a is the age variable, t is the time, n(a, t) is the density of researchers having
age a at time t, w is the age intensity of researchers’ departure, v(t) is the intensity
of the input flow of new researchers at the moment of time t, r(a, t) is the density
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of the input flow age distribution, w1(a, t) is the intensity of departure due to death,
retirement, etc., w2(a, t) is the intensity of the regulated departure of researchers
(w(a, t) = w1(a, t) + w2(a, t)). Also, a0 denotes the minimum age of researchers
and A denotes the maximum admissible age of researchers; a0 and A participate in
the initial condition

n(a, 0) = n0(a), a0 ≤ a ≤ A, (5.210)

and the boundary condition is

n(a0, t) = 0, t ≥ 0. (5.211)

5.10 Probability Model for Importance of the Human
Factor in Science

Below, we shall discuss a probability model connected to the importance of the
human factor in science. One often hears that technological evolution is closely con-
nected to the growth of science and that the growth of science depends heavily on
the human factor (number and quality of scientists). Such statements are no surprise,
since a connection has been observed between the values of scientometric indicators
of the research production of a country’s researchers and the corresponding GDP
[173–177]. A research organization may have a perfect structure with respect to
research positions and research equipment associated with those positions. The
research positions may be connected by a perfect system of relations, and the
processes in the organization may be carefully planned. But this is not enough. In
order to put all the above into effective action, one needs researchers. Researchers of
good quality have to fill the research positions. Researchers have to perform actions
that contribute to a smooth flow of the processes in a research organization. Only
then can the work of this organization be effective. In addition, a researcher does not
work alone [178–183]. Teamwork and collaboration among scientists and scientific
groups is becoming evermore for solving the scientific problems of today [184–189].

This shows that the human factor is of extreme importance for research organi-
zations. Because of this, we shall discuss below (with the help of mathematics) the
importance of the size of the research community.

5.10.1 The Effective Solutions of Research Problems Depend
on the Size of the Corresponding Research Community

It is intuitive that larger research communities can solve more complex problems
[92]. Let us consider some research problem and let β be the mean probability that
a qualified researcher will solve the problem. Then:
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• 1 − β is the probability that the researcher will not solve the problem.
• (1 − β)n is the probability that a group of n qualified researchers will not solve
the problem.

Thus the probability that the same group of n qualified researchers will solve the
complex problem (which is not likely to be solved by a single researcher, i.e.,
β � 1) is

pn = 1 − (1 − β)n = 1 − exp[n ln(1 − β)] ≈ 1 − exp(−nβ). (5.212)

If the research group is small, i.e., nβ � 1, then from (5.212), we obtain the linear
relationship

pn ≈ βn. (5.213)

Then an increase in the size of the group of qualified researchers increases the prob-
ability of solving the problem. When the group is small, the probability of solving
the problem is proportional of the group size. When the size of the group increases,
the nonlinear terms become significant, and the probability pn increases faster than
a linear function.

5.10.2 Increasing Complexity of Problems Requires Increase
of the Size of Group of Researchers that Has to Solve
Them

Scientific organizations evolve and usually become more complex [190, 191]. One
factor for such a development is the need to solve research problems of increasing
complexity. This increasing complexity leads to a decreasing probability β that a
single researcher can solve such a problem. In order to compensate this decrease,
one may increase the size of the research group that has to solve the problem.

Let us study the above situation with the help of mathematics. To compensate the
decrease of probability means that one has to keep (dpn/dt) ≥ 0. Then from (5.212),
one obtains

1

n

dn

dt
≥ − 1

β

dβ

dt
. (5.214)

Taking into account that (dβ/dt) < 0, the increase in the size of the research group
with increasing complexity of the solved problem has to be

dn

dt
≥ n

β

(
−dβ

dt

)
. (5.215)

The above simple model leads to the following conclusions. As the complexity of
scientific problems increases with time, one needs larger research collectives in
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order to support a large probability of solving the problems. Thus if a government
wants an effective solution of national scientific and technological problems, it has
to support a large enough national research community. A decrease in the number
of researchers diminishes the national scientific capacity: the probability of solving
problems important to the society decreases at least proportionally to the decrease
in the size of the corresponding research community.

Note that the value of the parameter β plays an important role in the above model.
This value must be kept as large as possible. In other words, an effective scientific
community consists of qualified scientists. In addition, let us note that research groups
in most cases consist not only of researchers. There are also supporting staff. In
connection with this, certain scaling properties may exist for research units [192].
For example, a power law relationship may exist between the number of supporting
staff Ns and the number of academic staff NA of a research institution: Ns = CNβ

A ,
where C is a constant and β is the exponent of the power law. For the case of the UK
National Health System, C ≈ 0.07 and β ≈ 1.3. The last relationship is an example
of a quantitative power law relationship connected to the parts of research (and other)
organizations. Such power laws have been discussed in Chap. 4.

5.11 Concluding Remarks

In this chapter, selected classes of deterministic and probability models connected
to science dynamics and research production have been discussed. The focus was on
the models connected to dynamics of research systems and especially on models for
deterministic and statistical properties of the process of publication and the process
of citation of research publications. Some of the models have been described very
briefly, while for some (probability) models, more discussion has been provided (for
the case in which one can obtain interesting conclusions without having to perform
longmathematical calculations). Thismanner of presentation permitted a description
of more that twenty models in relatively few pages. We hope that the selected set of
models has provided a good impression to the reader about the mathematical tools
and methods used for modeling of complex processes and the nonlinear dynamics
connected to research systems.

There exist also other deterministic and probability models. For example, there
exists a model of science as a part of a global model of a social system. In this model,
the scientific system can be treated as a system that has entrances and exits [92].
The input (different flows) comes from the other parts of the social system to the
entrances of the science subsystem. At the exit, there are scientific output flows to
other parts of the social system. The input flows can be flows of funding or human
resources, for example. The main output flow is scientific knowledge. Part of this
flow is the flow of publications.

Finally, let us make several remarks on the limited dependent variable models and
on the generalized Zipf distribution, since these topics are of significant interest for
research in the area of informetrics.

http://dx.doi.org/10.1007/978-3-319-41631-1_4
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Limited dependent variable models (e.g., binary, ordinal, and count data regres-
sion models) may be used for analysis of all kinds of categorical and count data in
bibliometrics and scientometrics (such as assessment scores, citation counts, career
transitions, editorial decisions, or funding decisions) [193]. The main advantage of
limited dependent variable models is that in using them, one may identify the main
explanatory variables in a multivariate framework, and in addition, one may estimate
the size of the (marginal) effects of these variables.

Let us consider the group of regression models. Limited dependent variable mod-
els are a subgroup of this group with a limited range of possible values of the variable
of interest. This variable may have a binary outcome (e.g., whether a journal article
was cited over a certain period). The variable may take multiple discrete values (e.g.,
for the case of assessment of research or for the case of peer reviews).

In the case of a binary regression model, we have a variable yi that can take only
the values 0 and 1. We may model the probability that this variable will take value 1
depending on the values of other variables x1i, . . . , xki as follows:

p(yi = 1 |, x1i, . . . , xki) = L(β0 + β1x1i + · · · + βkxki), (5.216)

where L(x) = exp(x)
1+exp(x) is the logistic function (whose range is between 0 and 1). The

model (5.216) is called the logit model. The coefficients βi of the logit model may be
estimated by maximizing the likelihood of the data with respect to the coefficients.

Thebinary logisticmodelmaybeused for analyzingor predicting (or for analyzing
and predicting) whether articles will be cited [194], for analysis of funding and
editorial decisions [195], for analysis of winning scientific awards [196], etc. [197,
198]. One illustration of the application of the model can be seen in [193], in which
the dependent variable measures whether an article was cited in another published
article during the calendar year following its publication.

For the case of the ordinal regressionmodel, the variable of interest yi is an ordinal
variable that can take only the values j = 1, 2, . . . , J . In this model, the cumulative
probability is the probability that an observation i is in the jth category or lower:
p(yi) ≤ j = δij can be modeled by the logit relationship

logit(δij) = αj − β1x1i − · · · − βkxki, (5.217)

where logit(p) = log( p
1−p ) = log(p) − log(1 − p). Ordinal regression models are

applied when we are interested in additional characteristics of the investigated vari-
ables with respect to a characteristic modeled by the binary regression model. For
example, in the case of binary regression analysis of citations, it was of interest to
know whether an article has been cited. If an article has been cited, it may not be
of interest how many citations of this article exist. If we are interested in the num-
ber of citations, we may use the ordinal regression model above. Such models are
used in peer assessment of research groups [199] and for predicting the impact of
international coauthorship on citation impact [200].

Finally, one may use count data models if the modeled variable represents the
frequency of an event. The count data models can be Poisson models, negative
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binomial models, etc. The Poisson model is for a count variable yi that can take
only nonnegative integer values: 0, 1, . . . . It is assumed that yi conditional on the
independent variables has a Poisson distribution (y = 1, 2, . . . )

p(yi = y | x1i, . . . , xki) = μ
y
i exp(−μi)

y! , (5.218)

where μi is the expected value of the distribution that is modeled by

μi = exp[β0 + β1x1i + · · · + βkxki]. (5.219)

A limitation of the Poisson regression model is that the Poisson distribution is com-
pletely determined by its mean and that the variance is assumed to equal the mean.
This restriction may be violated in many applications, since the variance is often
greater than the mean. Then there is overdispersion: the variance is greater than the
variance implied by assuming a Poisson distribution. One possibility for dealing with
overdispersion is to use a negative binomial regression model. This model allows
the conditional mean μi of yi to differ from its variance μi + aμ2

i by estimating an
additional dispersion parameter a.

A Poisson model may be used to identify the effects of coauthorship networks on
performance of scholars [201]. Negative binomial regression models can be applied
to study citation counts for the purpose of determining the relative importance of
authors and journals [202], for comparing sets of papers [203], and for modeling the
number of papers [204].

There is a generalization of the Zipf distribution (called the generalized Zipf
distribution) that contain as particular cases a family of skew distributions found to
describe awide range of phenomena bothwithin and outside the information sciences
and referred to as being of Zipf type. The generalized Zipf distribution is defined as
follows [205]. Let

d(k | f ) = log[ f (k + 1)] − log[ f (k)]
log(k + 1) − log(k)

, (5.220)

where f (k) > 0 and the integer k is greater than 1. Let N be the set of natural
numbers 1, 2, . . . and Z a random variable defined on N . Let P(k) = P(X = k) and
F(k) = P(X ≥ k) = ∑

i≥k
P(i) be the corresponding distributions connected to Z . A

distribution F defined on N is a generalized Zipf distribution with exponent α > 0
if and only if d(k | f ) → −α as k → ∞, i.e.,

lim
k→∞

d(k | f ) = log[F(k + 1)] − log[F(k)]
log(k + 1) − log(k)

. (5.221)

It is easily to check that the Waring distribution with

F(k) = β(k−1)

(α + β)(k−1)
, β(k) = β(β − 1) . . . (β + k − 1) (5.222)
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is a particular case (belongs to the class) of the generalized Zipf distribution. But the
geometric distribution (P(k) = θ(1 − θ)k−1 andF(k) = (1 − θ)k−1) does not belong
to the class of generalized Zipf distributions.

The class of generalizedZipf distributions has several properties. In order to define
the first property, we need to know when a function ϕ(k) varies gradually. Let ϕ(k)
be a positive function defined on N . Then ϕ(k) varies gradually if and only if

lim
k→∞

d(kϕ) = lim
k→∞

logϕ(k + 1) − logϕ(k)

log(k + 1) − log(k)
= 0; (5.223)

F(k) is a generalized Zipf distribution of exponent α > 0 if and only if [205]

F(k) = ϕ(k)

kα
, (5.224)

where ϕ(k) is a gradually varying function. An example of a distribution that belongs
to the class of generalized Zipf distributions is the Yule distribution, with

F(k) = (k − 1)!
(α + 1)(k−1)

. (5.225)

We can write this distribution in the form (5.224), where

ϕ(k) = (k − 1)!
(α + 1)(k−1)

kα. (5.226)

One can define the quantities proportional hazard rate

r(k) = kP(k)

F(k)
, (5.227)

and the conditional expectation

e(m) = E[X | X ≥ m] =
∑
k≥m

k
P(x = k)

P(X ≥ m)
. (5.228)

Then the following two statements can be proved [205]. First of all, F(k) is a gener-
alized Zipf distribution with exponent α > 0 if and only if

lim
k→∞

r(k) → α. (5.229)

Next, F(k) is a generalized Zipf distribution with exponent α > 1 if and only if

lim
k→∞

e(k)

k
= lim

k→∞
[e(k + 1) − e(k)] = α

α − 1
. (5.230)
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