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Preface

This volume includes chapters by several distinguished colleagues addressing
different financial management and valuation problems arising in modern financial
markets. When this volume was first conceived, it was motivated by an increasing
heterogeneity of mathematical and methodological approaches applied to often
rather similar financial optimization problems. In proposing this project to Springer,
we aimed at facilitating, when appropriate, a theoretical and computational inte-
gration of those methods. To provide a relatively focused book content, the areas
of strategic asset allocation, asset-liability management, and asset pricing were
considered as reference topic areas. At the time we are writing this Preface, a com-
panion special issue (SI) of OR Spectrum has been published (July 2015: Financial
optimization: Optimization paradigms and financial planning under uncertainty, OR
SPECTRUM, 37 (3), Springer) whose table of contents is the following:

J. Dupacova and V. Kozmik: Structure of risk-averse multistage stochastic
programs
A.K. Konicz, D. Pisinger, K. Rasmussen, and M. Steffensen: A combined
stochastic programming and optimal control approach to personal finance and
pensions
S. Pagliarani and T. Vargiolu: Portfolio optimization in a defaultable Lévy-driven
market model
M.H.A. Davis and S. Lleo: Jump-diffusion asset–liability management via risk-
sensitive control
S. Desmettre, R. Korn, P. Ruckdeschel, and F.T. Seifrid: Robust worst-case
optimal investment
M. Kopa and T. Post: A general test for SSD portfolio efficiency
R. Bruni, F. Cesarone, A. Scozzari, and F. Tardella: A linear risk–return model
for enhanced indexation in portfolio optimization
A. Thiele and E. Cetinkaya: Data-driven portfolio management with quantile
constraints
T. Driouchi, L. Trigeorgis, and Y.L. Gao: Choquet-based European option
pricing with stochastic (and fixed) strikes

vii
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R. Cerqueti , P. Falbo, G. Guastaroba, and C. Pellizzari: Approximating multi-
variate Markov chains for bootstrapping through contiguous partitions

Jointly, this book and the SI [8] offer an extensive overview of different modeling
frameworks and mathematical approaches currently adopted over a relatively wide
range of financial domains. In the concluding chapter, we provide a comprehensive
review of the main evidences emerging from the work carried out and, relying on the
extended set of articles and chapters, assess the state of the art and suggest possible
future directions of research.

Ex post we can say that the initial purpose of the volume has been achieved and
the collected contributions provide a rather unique set of articles specifically in the
domains of portfolio theory and asset-liability management. A general interest to
long-term management problems has emerged with an explicit effort by several
authors to overcome long-established modeling assumptions, whose consistency
with real-world dynamics has been increasingly questioned in recent years. All
chapters have gone through a rigorous refereeing process.

A rather short but effective set of characterizing elements of the included chapters
may help understanding the volume’s profile:

• A sort of looking forward yet back-to-basics motivation underlies several
contributions: the relationship between financial risk and investment returns is
considered in a very constructive and effective way also removing quite many
unrealistic assumptions that in the past have led to substantial model risk and
nonoptimal decision-making processes. Not only in the area of portfolio opti-
mization, whose modern era starts with the well-known Markowitz contribution
(1952), but to a certain extent also within the chapters devoted to financial
engineering and life insurance models, an effort to recast the model formulation
and the overall mathematical treatment emerges within more accessible and
realistic frameworks, avoiding all those assumptions that in the past have
certainly facilitated the mathematical development of the discipline but also
to a certain extent jeopardized its practical adoption. Good examples of such
generalized effort are provided in this volume by Calafiore [3, 4], Aro and
Pennanen [1], Dempster et al. [10], Györfi et al. [16], and Gilli and Schumann
[15] and in the SI by Dupačová and Kozmík [13], Thiele and Cetinkaya [6],
Driouchi et al. [12], and Kopa and Post [19].

• As a consequence, both in this volume and in the special issue of OR Spectrum,
data-driven approaches appear at the core of the analysis: this is explicit in
Calafiore [4], Pachamanova et al. [22], and Gilli and Schuman [15] and from
a different perspective in Györfi et al. [16] and within the SI in Thiele and
Cetinkaya [6] and Falbo et al. [5]. Either through a nonparametric approach or by
introducing alternative stochastic assumptions on market dynamics, a growing
evidence of the removal of once well-established market models is confirmed.
The second chapter by MacLean and Zhao [20] presents two increasingly popular
financial model extensions that add to the contributions by Davis and Lleo [9] and
Pagliarini and Vargiolu [23] in the special issue.
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• After such an extended and stressful phase of financial instability that for the first
time has affected also sovereign borrowers in developed countries, the need to
extend decision horizons and address financial management problems primarily
formulated as multi-period and dynamic financial planning problems is evident.
This is indeed the element we have primarily considered when deciding to put
the survey on multi-period risk measures by Chen et al. [7] as first chapter of
the volume. Pachamanova et al. [22], Aro and Pennanen [1], Dempster et al.
[10], and Mulvey et al. [21] here as well as Dupačová and Kozmík [13], Konicz
et al. [18], Pagliarini and Vargiolu [23], and Davis and Lleo [9] and Desmettre
et al. [11] in the special issue rely on such model formulation. In some problem
types, primarily those devoted to pension funds’ ALM—dynamic long-term
formulations also imply a rather central role of longevity risk, one of the relevant
risk sources driving nowadays market and agents’ behaviors.

• As a final emerging and underlying evidence: bonds and equity are no longer
sufficient, and risk management is complex. A prolonged period of high volatility
and regime switching and historically low interest rates and vanishing safe
market sectors have had profound effects on agents’ risk preferences and
institutional investors, strategies. As mentioned above, longevity risk is affecting
pension funds, management options and their liabilities, but increasingly the
source of financial risk is linked to prolonged negative economic cycles. The
contributions by Pachamanova et al. [22], Mulvey et al. [21], Aro and Pennanen
[1], and Giandomenico and Pinar [14] in this volume as well as those of Driouchi
et al. [12] and Konicz et al. [18] in the SI are motivated by the evidence of
a growing role in investors’ portfolios of assets other than equity and bonds:
specifically alternative investments, inflation-linked securities, and life insurance
products, with relevant implications on financial institutions hedging strategies
and the overall market liquidity.

The chapters are included in the volume following a sequence, which aims at
conveying a research and thematic path that we wish to clarify.

The chapter by Chen et al. [7] provides a thorough methodological survey
of risk measures theory within dynamic investment theory, setting the stage for
the following specifications and extensions. The derivation of a unified set of
necessary and sufficient conditions to have multi-period, time-consistent, coherent
risk measures represents a central, key contribution of the chapter. The concept
of time-consistent investment policies is attracting increasing interest within the
formulation and solution of complex optimal portfolio management problems: in
recent years, however, different formulations have been attached to the concept.
This starting chapter and the first article in the SI, by Dupačová and Kozmík [13],
clarify the modeling and methodological implications of such consistency, adopting
a discrete time formulation as reference model framework. The chapter immediately
following, by MacLean and Zhao [20], has a different aim, but addresses directly the
issue of how risk has to be modeled at least in liquid equity markets. MacLean and
Zhao [20], in a chapter with strong statistical emphasis, summarize the results of a
long-dated research effort, clarifying the implications of regime switching models
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leading to mixtures of probability distributions, whose statistical characterization
is addressed in a rigorous way, against discontinuous return models also leading
typically to probability mixtures. The effort to read the data and characterize the
markets’ stochastic dynamics is associated with what we can refer to as a first step
to a model-based optimization approach in which model risk is still an issue. The
third chapter by Calafiore [4] moves from such evidence to propose an approach to
portfolio allocation which is model-free and relies on data analysis and a clever
probabilistic characterization of market returns to present a sequence of results
on optimal open- and closed-loop policies in dynamic markets. The last part of
Calafiore’s chapter is devoted to yet data-driven robust portfolio allocation models
and the so-called scenario approach to portfolio optimization. The message is that
quite a lot can be done and may lead to superior results, without the need to introduce
in the investment problem a stochastic return model. The adoption of portfolio
policies will return later in the volume as central element of Mulvey et al. [21].

Robust optimization is the approach now for some years adopted by
Pachamanova et al. [22] to address portfolio optimization problems, extended
here, however, to a dynamic ALM model specifically for a pension fund. Here, we
have an interesting chapter combining a characterization of the underlying market
uncertainty based either on historical data or a factor model, an enterprise-wide
asset-liability management problem by a pension fund, and a computational study
comparing robust and stochastic optimization approaches. The numerical evidence
is extended, and this chapter responds to the benchmarking philosophy put forward
in the original volume proposal to the publisher. Here, we have a company-wide
asset-liability management, and the complex risk sources faced by the decision
maker, an institutional investor, are captured in one instance through a factor model.
Aro and Pennanen [1], in the following chapter, formulate and solve also an ALM
problem, in this case focusing directly on the pension fund liability and the need
for the pension fund manager to hedge such liability in an optimal way. Here,
the hedging strategy is in discrete time while the return process has continuous
state space. The optimization problem aims at determining the minimum required
initial wealth needed to hedge the pension liabilities in a market in which perfect
hedging and portfolio replication is typically not possible. This chapter addresses
thus a fundamental pricing issue for life insurance contracts by postulating an
incomplete market and focusing on the extended set of risk sources faced by the
pension manager. Aro and Pennanen [1] show, as an aside, that with no need of
specific heroic assumptions on the underlying probability space, the associated
(imperfect) hedging problem can be formulated and solved relying on convex
analysis. Longevity risk is at the center of the analysis.

Asset pricing motivates the contribution by Giandomenico and Pinar [14], where
the authors rely on a discrete approach, based on a non-recombining tree, to
formulate and analyze the valuation problem for an American option carrying
multiple exercise dates: it is an extension of the classical pricing problem with
only one possible stopping time, in which the authors generalize the seminal paper
by King [17] on contingent claim analysis. As in Aro and Pennanen [1], we
have also here a pricing problem formulated as minimal cost problem to hedge a
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given liability: not only the optimization problem is interesting on its own but also
such formulation emphasizes the importance of the hedging problem faced by the
derivative writer; this is to be regarded as a necessary condition for the market to
develop. Aro and Pennanen [1] in this respect clarify that indeed in modern markets,
which are sometimes characterized by poor liquidity, perfect hedging tends to be
a pure theoretical construction: partial hedging becomes then the reference market
condition and market incompleteness the associated stochastic concept, if one wants
to link the analysis to typical mathematical finance concepts. Incompleteness refers
to the lack of sufficient financial contracts to hedge every risk source embedded in
the contract. It is also true that often life insurers are either unwilling to undertake
complex hedging strategies (and rely on high management and underwriting
fees) or adopt indirect hedging positions based on correlation analysis. From a
methodological viewpoint, a distinctive positive element of Giandomenico and
Pinar’s [14] article (in addition to the proposed methodology which motivates the
contribution) is represented by the initial rigorous description of the probability
space and the definition of a scenario tree process for the underlying uncertainty.
It is the same underlying statistical formulation typically underlying multistage
stochastic programs as those considered by Chen et al. [7], Mulvey et al. [21], and
Dempster et al. [10], who, respectively, the latter two, in their chapters address first
the implications of optimal portfolio policies in illiquid markets and the second
a fundamental methodological implication when dealing with scenario trees with
limited branching and the market is incomplete. Among all chapters included in
this volume, the one by Mulvey et al. [21], even if with rather complex underlying
methodological implications, is the contribution where an advanced knowledge
of financial economics and now a days financial markets and agents’ policies is
mostly needed. Interestingly, the authors present evidence coming from university
endowments to clarify a widespread evidence, which is the growing role in modern
portfolios of illiquid positions and their implications. The key, innovative motivation
of the contribution lies in the construction of a replicating market index able to
generate a benchmark for hedging problems as well as portfolio selection problems
overcoming at the same time the illiquidity issue arising in markets such as private
equity, commodity, and, we add, real estate markets. Mulvey et al. [21] provide
a convincing motivation and an effective overview of current challenges faced by
institutional investors, after constructing an index with given desirable risk-reward
properties that link their study to multistage stochastic programming to suggest a
possible approach to formulate and solve a strategic asset allocation problem in the
presence of this new asset class of illiquid instruments.

When it comes to formulate a dynamic stochastic programming problem, related
to the issue of market incompleteness, Dempster et al. [10] address a key method-
ological issue in financial optimization when, to ease and allow the solution of
large-scale problems, an approximation of typically continuous probability measure
by means of discretely sampled scenario trees is needed. The approximation will
both lead in general to an approximation bias and result into relatively unstable
first-stage decisions. The analysis on implementable decisions is limited to first-
stage, root-node decisions and the authors here introduce a method to limit and
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generate consistent and stable first-stage decisions in the presence of small and
coarse scenario trees, as often the case, resulting anyway on large-scale and
computationally very challenging programs. Interestingly, Dempster et al. [10]
tackle the small sample approximation problem from the viewpoint of a robust
optimization approach where the sample is reinterpreted as a problem of incomplete
data. This contribution adds to previous studies in which rather than considering
the decision space, focus on criteria to best approximate the probability space by
introducing appropriate metrics and information measures and devising appropriate
scenario reduction and generation methods (see Bertocchi et al. [2] in the same
collection).

The following two chapters by Györfi et al. [16] and Gilli and Schumann [15]
provide good examples of what we have initially referred to as a valuable effort
to move forward in finance theory by recalling some fundamental rules and results
that cannot be ignored when addressing maybe theoretical issues but strictly related
to applied finance. The chapter by Györfi et al. [16] focuses on a well-known
portfolio optimization approach, the growth optimal strategy, based on assumption
of log-optimal portfolios to present in a very effective and readable way the set of
results that can be called upon to motivate over long-term horizons such decision
paradigm and under which market conditions such strategy does indeed satisfies
also risk constraints, from which the title given by the authors, the growth optimal
investment strategy, is secure too. The chapter presents an extended and useful
set of probabilistic and statistical results to show that, applying and deriving a
set of inequalities from large deviation theory, it is possible to study the rate of
convergence of a log-optimal portfolio return to a target return and that the time in
which such target can be achieved under the worst possible market circumstances
is still bounded. Before our concluding chapter, the chapter by Gilli and Schumann
[15] also motivates the need to address portfolio, only asset, investment problems
by considering jointly the issue of model accuracy and realism and the one on the
problem solvability. The latter in particular is obviously needed to facilitate the
practical adoption of a methodology, but it is also meant not to induce to achieve
the problem solution a modification of otherwise realistic model assumptions.
Remaining in the area of one-period optimization problems, the authors analyze
in a very accessible way the key elements of heuristic solution techniques that can
be fruitfully adopted to yield optimal portfolios when other solution approaches
are not viable, and the need not to modify the original model assumptions is
taken into consideration. The chapter provides an excellent wrap-up of the many
issues addressed in the volume, from the formulation of a mathematical description
of a portfolio selection problem, consistent with agents’ behavioral properties, to
the treatment of the stochastic model elements and finally its solution. A case
study with an interesting application of a heuristic is presented, relying on the
so-called threshold accepting approach, and the authors provide extended evidence
of the potential of heuristic methods under several portfolio optimization problem
specifications. As other chapters in the volume, independently from the specific
application [15], rightly we would add, emphasize the need not to terminate a
portfolio selection problem with its solution but to back-test and validate its solution
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with an appropriate statistical and scenario analysis: only such analysis can validate
the theoretical framework and lead to a method practical application.

The concluding chapter aims at consolidating the state of the art through a unified
model formulation clarifying the key elements of the chapters included here below
and in the special issue and the associated theoretical and applied contributions. An
overall assessment of the state of the art on the different financial topics is provided.

A sincere thanks goes to the authors, the publisher, and the colleagues at
Springer, as well as to Prof. Camille Price, scientifically responsible of this Springer
series devoted to Operations Research and Management Science, who followed and
stimulated this work.

Bergamo, Italy Giorgio Consigli
Lausanne, Switzerland Daniel Kuhn
Torino, Italy Paolo Brandimarte
September 2016
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Chapter 1
Multi-Period Risk Measures and Optimal
Investment Policies

Zhiping Chen, Giorgio Consigli, Jia Liu, Gang Li, Tianwen Fu,
and Qianhui Hu

Abstract This chapter provides an in-depth overview of an extended set of
multi-period risk measures, their mathematical and economic properties, primarily
from the perspective of dynamic risk control and portfolio optimization. The
analysis is structured in four parts: the first part reviews characterizing proper-
ties of multi-period risk measures, it examines their financial foundations, and
clarifies cross-relationships. The second part is devoted to three classes of multi-
period risk measures, namely: terminal, additive and recursive. Their financial
and mathematical properties are considered, leading to the proposal of a unifying
representation. Key to the discussion is the treatment of dynamic risk measures
taking their relationship with evolving information flows and time evolution into
account: after convexity and coherence, time consistency emerges as a key property
required by risk measures to effectively control risk exposure within dynamic
programs. In the third part, we consider the application of multi-period measures
to optimal investment policy selection, clarifying how portfolio selection models
adapt to different risk measurement paradigms. In the fourth part we summarize
and point out desirable developments and future research directions. Throughout
the chapter, attention is paid to the state-of-the-art and methodological and modeling
implications.
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2 Z. Chen et al.

1.1 Introduction

Medium to long-term investment management problems are often formulated as
dynamic portfolio selection problems, in which investment decisions are allowed
to change over time. Such choice becomes standard in presence of time- and state-
dependent constraints. Due to market frictions such as trading costs and regulatory
as well as tax constraints, furthermore, dynamic decision problems are increasingly
formulated as discrete, multi-stage, rather than continuous time, control problems.
Key to the achievement of an effective risk control are the properties of the adopted
risk measure over multiple periods. Compared to a static situation, as we see in what
follows, it is not a trivial task to establish suitable multi-period risk measures which
satisfy reasonable and practically relevant properties.

This chapter reviews the state of the art on multi-period risk measures and
their inclusion in optimal portfolio selection problems. We see that, due to their
complexity, dynamic risk measures have been considered only occasionally in
multi-stage problems to date. A relevant stream of research has gone indeed into
the construction and theoretical properties of multi-period risk measures. Therefore,
we will devote the first part of this chapter to analyze alternative formulations and
mathematical properties of a qualified set of existing risk measures. Basic properties
are considered first in Sect. 1.2. While in Sect. 1.3 current multi-period risk functions
are derived, introducing the canonical distinction between terminal wealth, additive
and recursive risk measures. In what follows, we will only consider dynamic risk
measures in discrete time. For the sake of convenience, however, we will use
the terms multi-period and dynamic (risk measure) interchangeably to highlight
that despite the discrete-time approximation, underlying time is actually evolving
continuously. The application of multi-period risk measures to multi-stage portfolio
selection models is discussed in Sect. 1.4. Finally, we provide a brief summary and
point out open research problems in Sect. 1.5.

1.2 Dynamic Risk Control

A dynamic risk measure can be studied with reference to events defined in a
canonical probability space ! 2 .�;F ;P/, where � is a sample space, F is a
�-algebra, and P assigns to any event B in F a probability measure P.B/. The
investment horizon is T WD f0; 1; 2; � � � ;Tg with T consecutive periods. For each
t 2 T the �-algebra Ft � F denotes the set of all events ! 2 � corresponding to
information available at time t. F0 D f;; �g and F0 � F1 � � � �FT . In a dynamic
setting we require any time-t (random) loss Xt 2 Lt to be adapted to Ft, i.e. be
Ft-measurable, where Lt D Lp.�;Ft;P/, p 2 Œ1;C1� denotes the class of p-th
integrable random functions on �.

From the notion of random loss Xt we move to the definition of a loss process
over the periods from t to T by introducing Xt;T D .Xt; � � � ;XT/ 2 Lt;T , where
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Lt;T D Lt � � � ��LT is a corresponding product space. Following [68] a conditional
risk function can be defined in period t as �t;T .�/ W Lt;T ! Lt, thus providing a risk
estimate at time t of a loss process with realizations in t; tC1; : : :;T. As time evolves
from current time t D 0 to T the risk function f�t;T gT

tD0 will provide an estimate
of the risk associated with the residual time to horizon: this is a multi-period risk
measure. As a special case, �t.�/ W LtC1 ! Lt represents the corresponding single-
period risk mapping.

In the existing literature, multi-period risk measures have been discussed with
respect to cash-flow, or return or wealth processes, where losses can be identified in
monetary or percentage terms, see for example [2, 38, 60, 64, 68]. Without any loss
of generality we will only refer to loss processes in what follows.

Relying on the definition of �t;T we can introduce a corresponding multi-period
risk control problem. Consider in particular an investment problem defined over
a discrete planning horizon T on which we define a stochastic state process
f�t.!/gT

tD0, a control process futgT
tD0 and a random loss process fXtg whose evolution

will depend on futg and f�tg. In dynamic models we typically consider for each
t 2 T a sequence of controls and random events, the former always facing an
uncertain outcome and the latter always determining a new risk exposure. The
control problem from a financial viewpoints aims for given sequence of actions and
random events to minimize the cost associated with the loss process. In the general
case at any point in time the dependence of Xt on Xt�1; ut�1 and �t may not be linear
and it will depend on a functional gt W Lt�1 � Ut�1 � Lt ! Lt. We require gt to be
convex for each t. Then a generic formulation of an optimal risk control problem
[34, 60, 73] is:

min
ut
�0;T .X0;T/ (1.1)

s:t: Xt D gt.Xt�1; ut�1; �t/; t D 1; � � � ;T; (1.2)

ut 2 Ut; t D 0; � � � ;T � 1; (1.3)

ut � Ft; t D 0; � � � ;T � 1: (1.4)

Here, the objective function �0;T in (1.1) describes the overall multi-period
risk exposure, for t D 0; 1; : : :;T induced by a sequence of loss evaluations and
controls (and subsequent resolution of uncertainty as described in (1.3)). The state
equation provides the core set of dynamic relationships captured by this formulation.
Different specifications of this feed-back equation will be considered depending
on the problem at hands: the dynamic wealth equation in [53], the cash balance
condition in [76] or the linear recourse constraint in [34]. The control space Ut may
vary with time and it will depend on lower and upper bounds as well as turnover
constraints which will determine the problem feasibility region. As mentioned
we generally require this space to be convex and smooth. The non-anticipativity
condition is described in (1.5) by ut�Ft: this condition is equivalent to the condition
of Ft-measurability of ut for each t 2 T . In multi-stage stochastic programs this
condition makes sure that the dynamic decision process relies only on information
available at that time, excluding partial or total foresight.
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Leaving aside the constraints (1.3)–(1.5) widely adopted in dynamic programs
(as multi-stage stochastic programs), the model instance (1.1)–(1.5) will change
for different selections of the dynamic risk measure and its properties. It is
useful to distinguish between properties, such as the measure’s coherence, which
reflect axioms regarded as necessary conditions for an appropriate risk assessment
methodology and those, like time consistency who are relevant specifically in
relationship with the optimal control problem. Among the former, the axiomatic
theory of risk measures has been developed extensively with respect to static risk
measures and we provide a set of definitions and results aimed at the measures’
extension into a dynamic framework. Among the latter we consider in particular
the issues of convex and time consistent risk measures and/or associated optimal
policies. Here next we analyze a set of properties and their impact on the optimal
control problem (1.1) formulation, by following a building-up approach to clarify a
set of mathematical and financial implications.

1.2.1 Key Properties of Dynamic Measures

A rich stream of research was motivated in recent years by the effort to extend
into a dynamic framework, results previously established for static risk measures.
We present first a possible refinement of risk measures’ properties lading to their
adoption within dynamic models. Of specific interest the conditions leading to the
measures’ dynamic coherence.

1.2.1.1 Extension of Risk Measures’ Axioms

The following definition allows an extension of otherwise well established prop-
erties into a dynamic context. A dynamic risk measure f�t;T gT

tD0 is dynamically
coherent if for each t D 0; 1; � � � ;T the following properties hold:

• Monotonicity: given two loss processes Xt;T and Yt;T : Xt;T � Yt;T ) �t;T .Xt;T/ �
�t;T .Yt;T /.

• Translation invariance: if, for any Xt;T and mt 2 Lt, �t;T .Xt C mt;XtC1; � � � ;XT/ D
mt C �t;T .Xt;XtC1; � � � ;XT/.

• Sub-additivity: if, for any Xt;T ;Yt;T , we have �t;T .Xt;T C Yt;T / � �t;T .Xt;T/ C
�t;T .Yt;T /; t D 0; 1; � � � ;T.

• Positive homogeneity: if, for any Xt;T and � > 0, �t;T.�Xt;T/ D ��t;T .Xt;T/, t D
0; 1; � � � ;T.

As in the static case sub-additivity and positive homogeneity imply the measure’s
convexity but all four properties are needed for coherence. The latter implies the
former but not the opposite. Already in a static, one-period model the variance,
lacking such condition, is known to be convex but not coherent. Here above we
define monotonicity with respect to a loss process, which is weaker than that
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defined on terminal wealth or related to cumulated losses (like that in [68]). Indeed
monotonicity with respect to the cumulated sum of period-wise losses implies the
monotonicity with respect to the loss process. However the converse is in general
not true [40].

The translation invariance property implies that adding a certain amount to
the current loss will increase the risk by the same amount. There are several
weaker versions of translation invariance [21, 40, 49, 68, 80]. For instance f�t;TgT

tD0
is said to satisfy the translation invariance property if �t;T .Xt;XtC1; � � � ;XT/ D
Xt C �t;T .0;XtC1; � � � ;XT/ for all Xt;T 2 Lt;T , which is used to derive a time
consistent dynamic risk measure in [68]. A particularly weak condition posed to
satisfy translation invariance is given in [49]: �t;T.Xt; 0; � � � ; 0/ D Xt holds for all
Xt 2 Lt, t D 0; 1; � � � ;T. It reflects a simple intuition: with no future losses, the
resulting dynamic risk is equal to the current loss.

The concept of translation invariance allows us to interpret the risk measure
as a capital requirement to make a position acceptable: by adding (respectively,
subtracting) a deterministic loss to (from) an initial position and interpreting such
loss as a liability (asset) to be invested in the reference instrument will simply
increase (decrease) the investment risk by that deterministic amount. Strictly related
from a mathematical viewpoint to the monotonicity and translation-invariance of a
dynamic risk measure is the so-called local property condition:

Local property: A dynamic risk measure f�t;TgT
tD0 is said to satisfy the local

property if 1A�t;T .Xt;T/ D 1A�t;T .1AXt;T/ for any random loss process Xt;T 2 Lt;T

and A 2 Ft.

For any t and any given subset A of the current �-algebra Ft, this property states
that it is sufficient to evaluate the risk measure within such set rather than filtering
the events first and derive their risk estimates afterwards. In a dynamic setting,
since t varies, this condition also implies that under the local property condition,
it is sufficient to work with an Ft-adapted risk measure since that risk exposure
should only depend on future information. As a basic property of dynamic risk
measures, the local property was discussed in [19, 46]. In [48], the local property
was introduced under the name of regularity, and in [70, 72], it was introduced as
time consistency, which is nevertheless different from the usual definition of time
consistency adopted in the literature on dynamic risk measures.

As it is well-known, sub-additivity describes a basic rule of investment theory,
according to which portfolio diversification may only have a positive impact on the
risk exposure. In a dynamic setting sub-additivity implies that if two loss processes
are pooled together, the resulting risk exposure should not increase. For any t D
0; 1; � � � ;T:

�t;T .Xt;T/ � �t;T .Xt; 0; � � � ; 0/C �t;T .0;XtC1; 0; � � � ; 0/C � � � C �t;T .0; � � � ; 0;XT/:

In a dynamic model sub-additivity implies that period-wise investment diversifica-
tion across stages won’t increase the risk exposure.
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Under the assumption of sufficient liquidity, we can assume that risk increases
in proportion to the increase of the investment. Positive homogeneity describes this
property. Under the framework of acceptable risk measures (such as coherent risk
measures or convex risk measures), a risk measure is positive homogeneous if and
only if its corresponding acceptance set is a cone [1].

We can extend the concept of risk measure convexity and portfolio diversification
to a dynamic setting. By induction, we expect diversification to lead to a dynamic
risk reduction [32, 37, 60, 69].

Convexity: A dynamic risk measure f�t;TgT
tD0 is convex if, for any Xt;T , Yt;T ,

�t;T .�Xt;T C .1 � �/Yt;T/ � ��t;T.Xt;T/ C .1 � �/�t;T .Yt;T/; � 2 Œ0; 1�; t D
0; 1; � � � ;T.

The convexity of a risk measure implies that its minimization over a convex
set is a convex programming problem. For a dynamic risk measure, convexity
further ensures that the period-wise diversification of investments among stages
can reduce or at least not increase the risk exposure. Convexity can be deduced
from sub-additivity and positive homogeneity. Under the framework of acceptable
risk measures, a risk measure satisfies convexity if and only if its corresponding
acceptance set is convex [1].

1.2.1.2 Dynamic Risk and Information Processes

When studying the evolution of the risk exposure of a given financial portfo-
lio in multi-stage models, it may be appropriate to analyze risk measures by
explicitly introducing their dependence on evolving information processes. These
as mentioned above in our framework are captured by filtrations, i.e. increasing
sequences of �-algebra. Consider two information processes, e.g. two filtrations:
fF0;F1; � � � ;FTg and fF 0

0;F 0
1; � � � ;F 0

Tg. Let us denote by �t;T.Xt;T jFt; � � � ;FT /

the conditional risk measure under the first information process at time t, and by
�t;T.Xt;T jFt

0; � � �FT
0/, the same measure under the second information process at

time t. The concept of information monotonicity [60] can be described as follows:

Information monotonicity: If, for any two filtrations fF0;F1; � � � ;FTg and
fF 0

0;F 0
1; � � � ;F 0

Tg satisfying Fs � F 0
s; s D t; � � � ;T, we have

�t;T .Xt;T

ˇ
ˇFt

0; � � �FT
0 / � �t;T .Xt;T jFt; � � � ;FT /; t D 0; 1; � � � ;T:

Then f�t;T gT
tD0 is called information monotone.

Information monotonicity is used to distinguish risk measures under different
filtrations. This property expresses the idea that for a given portfolio, increasing
available information will never lead to increasing risk exposures but typically to
more effective risk control . Unlike in the canonical monotonicity axiom presented
in previous section, here the loss process is the same but we assume that the
associated filtrations may differ. The two axioms hold jointly if the filtrations are
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assumed to be those generated by the processes and one loss process dominates the
other and/or one filtration is richer than the other even if the two loss processes are
equivalent.

Focusing on conditional distributions, the distinction between distribution- and
law-invariant risk measures is also relevant. The former was introduced in [80] with
respect to terminal payments. The latter in [51], where the risk estimate must depend
only on the unconditional law at initial time.

Distribution- versus law-invariant risk measures: A dynamic risk measure
f�t;T gT

tD0 is:

• distribution-invariant: if, for any XT ;YT 2 LT with the same conditional law
at any time t, 0 � t � T,

�t;T .XT/ � 0 , �t;T .YT/ � 0; t D 0; 1; � � � ;T: (1.5)

• law-invariant: if, for any XT ;YT 2 LT ,

�t;T .XT/ D �t;T .YT/ ; 0 � t � T (1.6)

Unlike the distribution-invariance property which focuses on the two positions’
conditional laws, law-invariance considers the exact risk estimates and it is regarded
as a stronger condition. According to [80], any distribution-invariant dynamic risk
measure can be represented by a sequence of static risk measures. Since it states
that the value of a dynamic risk measure should only depend on the conditional
distribution of the random variable, law invariance is useful for the computation of
dynamic risk measures based on historical data.

1.2.2 Time Consistency

The research on time consistency of dynamic risk measures has attracted much
attention in recent years (e.g., [2, 21, 41, 65, 68, 77, 80]). Generally, time consistency
can be examined from two perspectives: in relation to multi-period risk measures
or in relation to optimal investment policies. The first notion originates directly
from the evolving relationship, as time goes by, between the risk generated by a
random process and it’s filtration. The second concept, instead, is motivated by the
inherent relationship between an optimal control and the resolution of uncertainty:
when solving a finite-horizon stochastic control problem we seek the definition
of an optimal policy over a given time horizon. As time goes by such strategy
will be revised according to the collected new information and so on until the
beginning of the last period. The concept of time consistency in both cases has to
do with the consistency over time of the first risk evaluation and/or the first optimal
control solution (the one taken under full uncertainty). Subsequent knowledge on
the evolution of an underlying stochastic process is not expected to affect neither
the risk assessment nor the optimal control.
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More rigorously, dynamic time consistency guarantees that investors’ prefer-
ences implied by a dynamic risk measure remain consistent over time. Some
researchers (see [2, 66]) discussed dynamic time consistency in the framework
of multi-period coherent risk measures, while the same problem for multi-period
convex risk measures is examined in [32, 37]. Similar definitions have also been
proposed by Wang [78], Epstein and Zin [35], and Kovacevic and Pflug [49].

Characterizing the relationship of risks across time periods becomes thus an
important step when modeling dynamic investment problems. Several notions of
time consistency have been proposed in the literature. We review the main results in
the following two sub-sections. For given, desirable, risk measures’ statistical and
mathematical properties the focus is now on the interaction between risk measure
evolution in time and portfolio revisions as induced by a given control strategy.

1.2.2.1 Time Consistency of Multi-Period Risk Measures

The concept of dynamic time consistency, as originally investigated by Wang [77],
was based on a rather simple insight: given two investment positions A and B, if A
is riskier than B under a specific risk measure at some future time, then A is riskier
than B under the same measure from today’s perspective. Such simple idea calls
however for the introduction of the notion of risk assessment forward in time under
a given probability setting, conditionally on the information available at that time.
From an economic viewpoint, the concept intends to rule out the possibility that as
we assess a risky event, the risk assessment may change as we move from the future
backwards in time. Mathematically:

Dynamic time consistency with respect to terminal payoffs: If, for any 0 � 	 <


 � T and XT , YT 2 LT , the condition on the forward risk measures �
;T .XT/ �
�
;T .YT/ implies that �	;T.XT/ � �	;T.YT/, then the multi-period risk measure
f�t;T gT

tD0 is dynamically time consistent.

In case of equality [39] the resulting definition means that, if two payoffs carry
the same riskiness in every state of nature tomorrow, then the same conclusion
can be drawn about their riskiness today. These two definitions are equivalent
if a dynamic risk measure satisfies monotonicity and translation invariance [39].
The more general form of time consistency of a risk measure and its dynamic
behavior has to do however with the risk evaluation of an underlying random process
whose dynamic, as captured by an evolving filtration, is expected not to affect
previous estimates. By considering a loss process over an entire investment horizon,
Ruszczyński [68] proposed a more general notion of dynamic consistency: if X
;T
will be at least as good as Y
;T from the perspective of some future time 
 , and X0;

and Y0;
 are identical between today and 
 (0 < 
), then X0;T should not be worse
than Y0;T from today’s perspective. Extending such concept to any 0 � 	 < 
 , in
our notation, we have:
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Dynamic time consistent risk measures: Let 0 � 	 < 
 � T and X	;T ;Y	;T 2 L	;T
for all 	 . If for any 	 the conditions

Xk D Yk; k D 	; � � � ; 
 � 1;
�
;T .X
;T/ � �
;T .Y
;T /

imply

�	;T.X	;T/ � �	;T.Y	;T/;

then f�t;TgT
tD0 is called dynamic time consistent.

Actually, it is proved in [68] that, if a dynamic risk measure satisfies dynamic
time consistency, monotonicity and translation invariance, then with respect to either
the terminal wealth or the loss process, the resulting multi-period risk measure can
be equivalently expressed in the following recursive form:

�	;T.X	;T jF	 / D �	;t ŒX	;t�1; �t;T .Xt;T jFt/jF	 �

for 0 � 	 < t � T � 1; �T;T .XT/ D XT :

In some papers, the above recursive relationship is also used to define time
consistency; see, for example, [21, 46].

The research on the time consistency of an optimal strategy can be introduced by
focusing on the role played by information processes: for dynamic risk measures the
flow of information is captured by the process filtration. In a dynamic risk-control
problem such as problem (1.1) a (minimal) information process, whose evolution
can not be neglected, is associated with the state variable �t. In general, as shown
here below, the dynamic programming recursion provides a link between the two
concepts of time consistency. From a financial viewpoint the first type of time
consistency appears relevant in risk management applications where the evolution
over time of a market or credit risk exposure is key to the decision maker. The
second type is instead concerned with the effectiveness of a risk hedging strategy
aimed at controlling dynamically the evolution of such exposure.

1.2.2.2 Time Consistency of Optimal Investment Policies

In a multi-period problem, an investor will determine his investment strategy, or
the pre-committed optimal policy [3] over the entire investment horizon, so to
optimize a given financial objective. Such policy may be in the form of an optimal
decision rule or scenario-tree based optimal contingent plan or in other forms.
After solving the first problem at t0 D 0, resulting into an optimal strategy over
T WD ft0; t1; : : :; tng, when standing at t1, such pre-commitment may no longer be
optimal with respect to the corresponding sub-problem. The time consistency of
the optimal policy as determined in t0 would imply its optimality at later stages
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Œt1; tn�. Adopting the notation of problem (1.1), such condition would imply an Ft-
measurable ut 2 Ut leading to a minimum �0;T .X0;T/ for t D 0; � � � ;T � 1 that
would preserve optimality when evaluated at t D 1 over the remaining stages:
notice that Bellman’s optimality principle would lead to such result and indeed this
is the approach suggested by several authors [5, 26, 79] to enforce the dynamic
consistency of the optimal strategies. In practice, the optimal policy of a multi-
period portfolio selection problem may fail to satisfy time consistency. For example,
Cuoco et al. [28] proved that an optimal investment policy with multi-period VaR
in the objective function is not time consistent. From a methodological viewpoint,
as suggested by Boda and Filar [9], an optimal investment policy time consistency
needs to be evaluated backwards in time, as from Bellman’s principle, and forward
in time focusing on the subproblems solutions consistency as information reveals.
Under the coherent risk measure framework, it is proved in [2] that, if a multi-period
risk measure is time consistent, the resulting optimal investment policy must satisfy
the Bellman’s optimality principle.

The discussion on risk measures’ and optimal control’ time consistency may
be specialized to discrete probability spaces, as in the case of a random tree
process, canonical in multi-stage stochastic optimization problems. In [70], the
time consistency of an optimal policy is defined with respect to scenarios: at every
state, optimality of our decisions should not depend on scenarios which we already
know cannot happen in the future. In a probability space generated by a tree data
process, the time consistency of a contingency plan must thus be associated with
the conditional behavior of the optimal strategy. Focusing on the first stage only
for instance: for a given optimal decision tree, as determined at the root node at
t D t0 and conditionally on one of the children nodes actually realizing at t D t1, the
resulting sub-tree strategy, as anticipated at t D t0 should preserve its optimality.

1.2.3 Discussion

The relationship between the two concepts of time consistency, of multi-period risk
measures and of optimal risk-control, or investment policies, deserves a comment.
In most cases, the time consistency of optimal controls ut 2 Ut relies on the
time consistency of the multi-period risk measure �t;T .Xt;T/: as such they jointly
lead to a dynamically consistent optimization problem. In the axiomatic theory
of dynamic measures, much emphasis is put on the measures dynamic coherence
outside an optimal stochastic control framework. Lack of dynamic coherence due
to non-convexity, as in the case of Value-at-Risk, is relevant since it will lead as in
the static case, to a non convex dynamic program. A dynamically consistent risk
ranking, furthermore is key to the control problem and can be associated with a
risk measures dynamic monotonicity. Chen et al. [15] show that, to ensure that an
optimal sub-policy derived from the dynamic programming principle is also optimal
over the entire investment horizon, the corresponding conditional risk mapping
should satisfy the monotonicity property. Furthermore, Xin et al. [82] examined the
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relationship between time consistency of robust multi-period risk measures and that
of optimal investment policies: if there is at least one optimal policy satisfying the
Bellman’s principle, the problem is called weakly time consistent; if every optimal
policy is time consistent, the problem is called strongly time consistent.

We have considered above the basic properties of dynamic risk measures as
resulting from an extended literature survey. Among those properties, time consis-
tency is the most frequently mentioned in recent years. Its relevance is evident from
the perspective of filtration-adapted measures. By introducing different acceptance
sets, time consistency can be analyzed under increasing restriction rules. Some
of the analyzed properties are dynamic extensions of corresponding static mea-
sures’ properties: monotonicity, convexity, translation invariance, sub-additivity,
and positive homogeneity. While inheriting the meaning of the corresponding static
properties, dynamic extensions contain new implications with respect to information
processes over the decision horizon. The local and the law-invariance properties
as well as information monotonicity are defined in relationship with filtrations
evolution, a core concept in (dynamic) information theory. In the following sections,
relying on the above theoretical setting, we consider alternative risk measures and
specifications of the optimal control problem (1.1) presented in the literature and
propose a comprehensive approach to optimal risk control.

1.3 Multi-Period Risk Measures

Existing multi-period risk measures can be classified in three groups: terminal
wealth, additive and recursive risk measures. A terminal wealth risk measure
can be viewed as a conditional risk mapping with respect to a terminal wealth
or equivalently to a total loss cumulated over a finite time horizon. Additive risk
measures arise when measuring the risk of losses separately in different periods and
then aggregate them. Finally recursive formulations originate from an assessment of
the dynamic risk exposure over time and over a given horizon based on a sequence
of recursive risk estimates. We see that indeed, the following dynamic measures
generic specifications are possible and will ease the analysis that follows:

Terminal �t;T .Xt;T/ D �t
�

dt.Xt;T/jFt
�

(1.7)

Additive �t;T.Xt;T / D PT
sDt ˇ

t;s
�

�s.ds.Xs;T/jFt/
�

(1.8)

Recursive �t;T .Xt;T/ D �t.Xt; �tC1;T .XtC1;T// t D 0; � � � ;T � 1; (1.9)

In (1.7) and (1.8), dt W Lt;T ! LT is a monotonic function called a cash -
flow aggregator while �t W LT ! Lt in (1.7) is a risk mapping assumed to
satisfy monotonicity and translation invariance and in (1.8) is a conditional risk
mapping satisfying the same properties. Cash-flow aggregators are in general simple
functions common in financial mathematics to evaluate a stream of cash flows at a
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given (future) point in time. We may assume that they provide a point estimate of
time-varying losses at T. The risk measure �t will then generate the risk estimate as
from today. A terminal wealth risk measure can be viewed as a direct extension of
the static risk measure to the multi-period case. It is easy to understand for investors
but can hardly capture dynamic variations of investment risk. The formulation (1.8)
requires the additivity of �t but allows a more flexible risk estimation process as
s varies: to derive a risk estimate, say at time t, all period-wise losses prior and
including t are added together and then discounted through the factors ˇt;s for
s D t; tC1; � � � ;T. The additive formulation may accommodate the previous one, as
final term in the summation, but it is more general. The key difference between the
two relates to the fact that in the case of terminal risk measures we first aggregate
period losses forward in time and then apply the risk measure while under the
mapping additivity property we aggregate the risks directly. Most of terminal wealth
risk measures are not dynamic time consistent [9, 20, 26, 41].

A direct way to construct additive multi-period risk measures is therefore to add
all stage-wise risk measures together, say

�t;T .Xt;T/ D
TX

sDt

ˇt;s�.XsjFt/;

where � W R ! R can be chosen as any terminal wealth risk measure, ˇt;s is a
discount factor.

The reason for calling additive this class of measures comes from the
linear additivity of terminal measures when �.�/ is the expectation operator:

E

�
PT

sDt ˇ
t;sXs

ˇ
ˇ
ˇ
ˇ
Ft

�

D PT
sDt ˇ

t;sE.XsjFt/: Notice that in most risk control

problems we require sub-additivity of the multi-period measure to represent
investors’ risk aversion. In which case we have the interesting relationship

�

�
PT

sDt ˇ
t;sXs

ˇ
ˇ
ˇ
ˇ
Ft

�

� PT
sDt ˇ

t;s�.XsjFt/:

The stage-wise separability of additive risk measures make them suitable for
dynamic programming formulations as in [12]. From (1.9), with terminal condition
�T;T .XT;T / D XT as t varies, a backward recursion step is defining the risk
assessment procedure. Recursive measures are more general than additive ones
in the sense that they include most of additive risk measures as special cases.
Meanwhile, most of the additive measures in the literature can be reformulated in a
recursive form, but not the converse.

Compared to additive risk measures, recursive risk measures are more general.
Several types of risk mappings � indeed allow a recursive separable formulation:

�t;T .Xt;T/ D
TX

sDtC1
E
�

�s.XsjFs�1/jFt
�

: (1.10)
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When given this form, we can link easily the risk control problem to Bellman’s
optimality principle, confident of it’s time consistency as further investigated below.
Consider in particular

• For�s.Xs; �sC1;T.XsC1;T// D �s.XsjFt/Cˇs;sC1�sC1;T.XsC1;T/; s D t; � � � ;T�1;
where again ˇs;sC1 is a discount factor, then the recursive risk measure becomes
the classical separable functional �t;T.Xt;T/ D PT

sDt .ˇ
t;s�s.XsjFt//, proposed in

[60];
• For �t.Xt; �tC1;T .XtC1;T// D EŒ�tC1;T .XtC1;T/jFt�,�s.Xs; �sC1;T.XsC1;T// D
�s.XsjFs�1/ C EŒ�sC1;T.XsC1;T/jFs�;, s D t C 1; � � � ;T � 1, �T.XT/ D
�T .XT jFT�1/, then the recursive risk measure falls in the class of separable
functions (1.10);

• For given specification of a Kreps-Porteus style risk measure �t.x; y/ D �t.x/Cy,
we have:

�t;T .Xt;T/ D �t
�

Xt;E
�

�tC1;T.XtC1;T/jFt
��

;

then it also reduces to a separable expected conditional function of the
type (1.10).

We will not examine rigorously the mathematical properties of the above three
classes of multi-period risk measures, but just analyze a qualified set of them from
the perspective of associated risk control problems. Interested readers can refer to
papers like [2, 31] and [37].

1.3.1 Statistical Estimates of Dynamic Risk Measures

We summarize next how canonical statistical measures, such as variance, value-at-
risk (VaR) and conditional VaR (CVaR), or entropic measures fall in the outlined
framework. They may be accommodated within the above three classes and we are
interested to their resulting properties can be inferred, mostly in terms of coherence
and time consistency.

1.3.1.1 Variance

The terminal variance var.ZT jFt/, ZT WD PT
tD1 Xt is defined as

var.ZT jFt/ D E
�

.ZT � E.ZT jFt//
2
ˇ
ˇFt
� D EŒZ2T jFt� �

�

EŒZT jFt�
�2
:
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From the properties of the static variance operator, we know that the terminal
variance does not satisfy translation invariance, positive homogeneity, monotonicity,
and hence convexity, but it is sub-additive. It is not additive The terminal variance
time inconsistency is directly derived from the conditional variance property [29]:

var.ZT jFt/ D EŒvarŒZT jF	 �jFt�C varŒEŒZT jF	 �jFt�:

The conditional variance in period t is given by the conditional expectation of
the conditional variance in period 	 and an adjustment term. As the adjustment
term depends on the strategy via its behavior not only on .t; 	 �, but also on
.	;T�, which restrict the dynamic risk measure to give the same risk preference
at both period t and period 	 . This leads to the time inconsistency of the terminal
variance. Nevertheless the adoption of financial returns’ variance as risk measure
both in static and dynamic mean-variance (MV) trade-off models is widespread and
indeed also within dynamic programming formulations. This is primarily due to
the attractiveness of the variance as statistical measure to capture financial risk and
the natural formulation of the MV dynamic problem as a quadratic programming
problem.

1.3.1.2 Value-at-Risk

The terminal VaR can also be defined with respect to the cumulative loss:
VaR˛.ZT jFt/

VaR˛.ZT jFt/ D inf
z2Lt

n

z
ˇ
ˇ
ˇP.ZT � zjFt/ � ˛

o

;

where ˛ is the confidence level and ZT is the sum of losses from t to T. From the
properties of static VaR, as already mentioned, it can be deduced that the terminal
VaR satisfies monotonicity, positive homogeneity, and translation invariance. After
being introduced as risk management standard for tail risk estimation in several
regulatory frameworks (Basel I, II, III for banking intermediaries as well as
Solvency I and II for insurance companies) this risk measure has become the
core estimation task within the financial industry. Its adoption in risk control
applications however has been jeopardized by the violation of the sub-additivity
property and, under sufficiently general market assumptions, its’ counter-intuitive
lack of diversification incentive. It is not a time consistent risk measure either.
The introduction of the Conditional VaR, however, has led to a relevant stream of
research and applications after the seminal contribution of Rackafellar and Uryasev
[64] since unlike VaR, this risk measure is coherent and its control implies the
control of the Value at Risk as well. It is defined as the average loss beyond the
VaR with a given confidence interval.
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1.3.1.3 Conditional Value-at-Risk

The terminal CVaR can also be defined with respect to cumulative losses at
the horizon: CVaR˛.ZT jFt/. CVaR is equal to the optimum value of a linear
programming problem:

CVaR˛.Z/ D inf
z2R

fz C 1

1 � ˛
E.Z � z/Cg

Due to its good mathematical properties, the extension of CVaR to a multi-period
setting has received increasing interest in recent years [14, 36, 76]. CVaR is widely
adopted for tail risk minimization and it’s dynamic properties are determined by the
assumptions on the time behavior of the confidence interval: when pre-determined
at fixed levels (say 99 %) VaR dynamic inconsistency propagates to CVaR. When
instead a random evolution is assumed for ˛ and for all t, ˛t �Ft then the CVaR can
be decomposed [59] leading to a time consistent formulation:

CVaR˛t.ZT jFt/ D ess infW	 EŒW	 � CVaR˛t�W	 .ZT jF	 /jFt�;

where the infimum is among all densities W	 � F	 with 0 � W	 ; ˛t � W	 � 1 and
E.W	 jFt/ D 1.

The CVaR measure can be given an additive formulation:

�t;T .Xt;T/ D
TX

sDt

ˇt;sCVaR˛.XsjFt/:

Accordingly, the assessment of the tail risk generated by the process Xt;T can be
attained by summing together the sequence of Ft-measurable conditional VaR’s as
t varies.

A related but different additive representation of dynamic CVaR focuses on its
average behaviour over the risk measurement horizon:

�t;T .Xt;T/ D E

"
TX

sDtC1
CVaR˛s.XsjFs�1/

ˇ
ˇ
ˇFt

#

: (1.11)

After Pflug [60], this type of additive risk measures is called the separable multi-
period acceptability functional. It is proved in [49] that under this formulation the
dynamic CVaR is time consistent and law invariant, and can thus be used to make
time consistent investment decisions. We can exploit this separability to yield a
CVaR recursive formulation, consistent with the generic form in (1.9). We have:

�t;T .Xt;T/ DCVaR˛t fXtC1 C � � �
C CVaR˛T�2 ŒXT�1 C CVaR˛T�1 .XT jFT�1/jFT�2� � � � jFtg: (1.12)
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Notice that the nested structure here above is consistent with a recursive risk
evaluation and associated controls. Two interesting bounds on dynamic CVaR have
been proposed separately by Pflug and Römisch [60] and Xin and Shapiro [83]. In
the first case, still working backwards and exploiting CVaR sequential additivity we
have:

CVaR˛ .XtC1 C � � � CVaR˛ .XT�1 C CVaR˛ .XT jFT�1/jFT�2/ � � � jFt/

� ˛�.T�t�1/E
"

TX

sDtC1
CVaR˛.XsjFs�1/

ˇ
ˇ
ˇFt

#

:

The bound is relatively strict over a limited set of time-periods. Yet in a recursive
framework Chen and Liu [14] generalize the recursive CVaR measure to allow
conditionality with respect to financial markets regimes under a regime switching
framework:

�t�1;T .ZT/ D EMt�1

�

CVaR˛t;Mt .�t;T .ZT//
�

;

where Mt denotes a market regime in period t, EMt�1 is expectation conditional
on being in regime Mt�1 at t � 1 and CVaR˛t;Mt is a one-period conditional
CVaR function under regime Mt with confidence level ˛t. This formulation agrees
with (1.12) when conditionality is ruled by transitions across regimes. In case of a
single regime in the market we go back to the original formulation.

1.3.2 Coherent and Time Consistent Risk Measures

When a time-inconsistent risk measure is adopted in a multi-stage portfolio selection
problem, this will lead in practice to a time-inconsistent strategy. That would imply
that for given stochastic assumptions and risk process evolution, a strategy defined
as optimal today may no longer be optimal when standing at some time point in the
future. Several papers [4, 6, 20, 28, 47, 52, 79] focus on time consistent alternatives
or modifications of the terminal variance, VaR and CVaR. More results on this
issue are discussed in Sect. 1.4.1, with applications to multi-stage portfolio selection
problems.

Several approaches have been studied to derive conditions for dynamic time
consistency. Of particular interest are the approaches introducing explicitly some
restrictions on the risk measure’ probability space, those associated with distortion
measures and those exploiting the risk measures’ conditional separability.

In the first group [63] derives a terminal wealth risk measure by introducing a
sup-criterion within a set of probability measures:

�t;T .Xt;T/ D maxP2PEP

� TX

sDt

ˇt;sXsjFt

	

:
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Here ˇt;s is a discount factor from s to t, t � s � T. If the set of probability
measures P is closed, convex, and consistent, then the terminal wealth risk measure
�t;T.�/ can be shown to be coherent and dynamically time consistent, and vice versa.
A set of probability measures P is consistent if the set is closed under arbitrary
pasting of conditional probabilities and marginal distributions from this set. The
consistency property for a set of probability measures is also called stability under
pasting by Artzner et al. [2]. Delbaen [30, 31] characterizes the consistency in terms
of martingale theory.

Distortion measures defined in [16] are generated by mappings � W Lt ! Lt

which combined with � W LT ! LT and the expectation E will determine a risk
measure with the required properties: �t;T .ZT/ D � ŒE .�.ZT/ jFt�, where ZT D
PT

sDt Xs.
An example of terminal distortion measure �t;T .ZT/ D � ŒE .�.ZT//� where � W

LT ! LT and � W LT ! Lt are monotonic functions, is represented by the terminal
entropic risk measure. In [18, 21], the following risk measure based on the entropic
function is proposed:

�t;T .ZT/ D 1


log E

�

eZT jFt
�

;

where  > 0 is a constant, typically individual-specific risk aversion coefficient.
The entropic risk measure �t;T .�/ is time consistent. Interest in this type of risk
measure comes from the possibility to link through the exponential utility the
characterization of an individual risk aversion to the definition of the risk measure
itself. The entropic measure is convex but not coherent. In this case we have then
a dynamically time consistent convex risk measure. By selecting the distortion
functions � and � as convex functions, we can obtain different forms of terminal
distortion risk measures which are convex and law invariant. In fact, as proved in
[51], the only dynamic risk measure which is convex, law invariant, time consistent
and relevant is the entropic risk measure.

Similar to the above terminal distortion risk measures, Chen et al. [16] define an
additive distortion risk measure as follows:

�t;T.Xt;T/ D
TX

sDt

ˇt;s�
�

E.�.Xs/jFt/
�

: (1.13)

Where � and � are mappings satisfying sub-additivity. The additive distortion
risk measure provides an upper bound to the corresponding terminal distortion risk

measure: �
n

E
h

�


PT

sDt ˇ
t;sXs

� ˇ
ˇ
ˇFt

io

� PT
sDt ˇ

t;s�
�

E.�.Xs/jFt/
�

:

Risk measures additivity may lead to the definition of recursive risk measures
suitable for dynamic programming formulations of the associated stochastic control
problem, significantly increasing the likelihood of time consistent decision policies.
As discussed above, the CVaR is conditionally separable. Another separable
expected conditional (sec) function which is additive, was proposed in [60]:
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�t;T .Xt;T/ D
TX

sDtC1
E
�

�s .XsjFs�1/ jFt
�

:

Here �s, t C 1 � s � T, is a single-period acceptability function, sometimes also
referred to as conditional risk mapping from s to s � 1.

Recursive risk measures have recently attracted a lot of attentions due to their
time consistency [68] and intuitive economic interpretation [67]. Their complex
structure has to a certain extent limited their adoption in real-world market contexts:
curse of dimensionality has also limited the possibility to achieve a realistic
cardinality of the investment universe. Even if, due to recent market troubles and
industry requirements, relative to one-period static ones, the adoption of dynamic
optimization approaches is growing, by now there are only few cases which actually
apply recursive risk measures to large-scale multi-stage portfolio selection problems
[14, 41, 50, 56].

Risk measures’ single and multi-period separability as well as conditional
separability lead to dynamic programming formulations of the associated risk
control problems [33, 75] which implies the time consistency of the resulting
optimal strategy. We present next an example of combined recursive risk measure
formulation and associated optimization problems.

Example: Carpentier et al. [12] considered costs of both intermediate periods and
the final period, and employed the following dynamic investment policy selection
problem:

min
ut2Ut

E

"
T�1X

tD0
ft.Xt; ut;WtC1/C fT.XT/

#

;

s:t: Xt D gt.Xt�1; ut�1; �t/; t D 1; � � � ;T;

where the cost ft at stage t is a function of the control variable (portfolio) ut 2 Ut,
the state variable Xt and the exogenous noise variable �tC1, the cost at the final
stage fT is a function of the final stage XT , and the dynamic relationship between
states of two adjacent stages is described by the function gt. Using the dynamic
programming technique, the optimal cost Vt at stage t under the state Xt D x
can be found backwardly under the Markovian setting. Concretely, the dynamic
equations are as follows:

VT.x/ D fT .x/;

Vt.x/ D min
ut2Ut

E
�

ft.x; ut; �tC1/C VtC1.ft.x; ut; �tC1//
�

; t D 0; 1; � � � ;T � 1:

Such a recursive form corresponds to the time consistency of an optimal
investment policy [2].
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In the final section we analyze several optimization models and summarize, in
view of the above discussion, their characterizing elements. Up to this point we have
been mainly interested in studying risk measures’ theoretical and applied properties
and their suitability for the formulation of risk control problems. In Sect. 1.4, we
consider instead established stochastic optimization problem formulations and link
them to risk measures’ properties.

1.4 Dynamic Risk Control and Risk Measures Selection

We consider next the pro’s and con’s of commonly adopted optimization approaches
from the perspective of the measures’ coherence and time consistency, thus
mainly formulated as stochastic dynamic programming models such as from
Eqs. (1.1)–(1.4).

From a financial viewpoint, the two concepts of time consistency are related the
first to the very characterization of a random loss process within a given probability
space and the second to the properties of the resulting optimal strategy. These are
indeed associated with two distinctive areas of financial management: the first with
risk management applications—whose relevance over the years has increased due
to revisions of regulatory frameworks (e.g Basel I, II, III, Solvency I and II and
similar)—and the second with optimal risk control or risk minimisation approaches.
In the problem specification (1.1)–(1.4), we have provided a general mathematical
framework capturing both areas of interest. The definition of �0;T .X0;T/ is next
adapted to different risk-reward optimization paradigms as emerging from an
extended literature survey. Accordingly the definition of the process X0;T will vary.
The measurability condition ut � Ft for t D 0; 1; � � � ;T � 1 and the decision space
characterizations ut 2 Ut still hold and qualify the type of control problem. Notice
that contrary to canonical dynamic stochastic programming formulations, whose
outcome is an optimal control in the form of a contingency plan [7] or optimal
decision tree, when adopting a recursive dynamic programming formulation ut takes
the form of an optimal policy rule or stochastic control.

We will first review some classic dynamic models, such as mean-variance
models, mean-terminal CVaR and mean-additive CVaR models. Due to their time
inconsistency, their solution will generate time inconsistent optimal policies, which
lead to sub-optimality in intermediate periods. In order to overcome the time incon-
sistency problem, we introduce two revision methods: one based on the definition
of a weak form of time consistency and revising directly the (time inconsistent)
investment policy; the other based on new time consistent risk measures to guarantee
the time consistency of the optimal investment policy selection model. A set of
investment models based on time consistent, and furthermore coherent multi-period
risk measures is then introduced. Finally, we discuss some practical issues about
problem solutions.
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1.4.1 Mean-Variance Models

The seminal work of Markowitz [55] on the single period MV model is the
foundation of modern portfolio theory. Merton [57], Perold [58] and Yoshimoto
[84] further considered the dynamic MV model and its efficient solution with or
without short-selling constraints. In a dynamic setting, the terminal variance has
been frequently adopted as risk measure in the associated risk control problem.
The decision maker seeks a minimization of the portfolio dispersion around the
mean at a given time horizon through a dynamic revision of his investment
policy. The resulting optimization problem takes the form of a stochastic quadratic
programming problem, whose solution within a dynamic programming formulation,
dates back, to the relatively recent contribution by Li and Ng [53]. Including a self-
financing constraint, Li and Ng [53] considered the following multi-period problem:

max
ut

EŒWT � � �VarŒWT �

s:t: WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1:

Here the state equation (1.2) is specified as a self-financing constraint with
respect to the wealth process fWtg, the interest rate process fr0t g for the risk-
less asset, the excess return process fRtg of the risky assets, and the portfolio
process futg. The objective function includes two criteria with a trade-off parameter
� 2 Œ0;C1/ between the mean and the variance of the terminal wealth WT .

In presence of a self-financing constraint, cash inflows and outflows are ruled out
over the given horizon and the model is suitable to solve asset pricing and associated
hedging problems. In this context it is of interest that the above multi-period MV
problem can be embedded into a separable parametric auxiliary problem:

max
ut

EŒ�!W2
T C �WT � (1.14)

s:t: WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1; (1.15)

here � is the trade-off parameter introduced above and ! is an auxiliary parameter
typically needed to rescale the value of the squared wealth process.

Since the expectation operator is separable, the auxiliary problem can be solved
by the dynamic programming technique. It is proved in [53] that given the solution
u� of the auxiliary problem, a necessary condition for u� to be optimal with respect
to the original problem is � D 1C2!EŒWT �ju� . Therefore, we can obtain the optimal
policy of the original problem by utilizing u�: in a MV setting such policy will do the
job of controlling the quadratic error and typically carry a sufficient diversification
and dynamic efficiency, in the sense of not being dominated according to portfolio
theory, but it will not be time consistent due to the time-inconsistency of the
variance.

Recently, adding the no-shorting constraint, thus in more practical terms, the
multi-period MV problem has been considered in [27]. Zhu et al. [85] proposed
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a discrete-time MV model with bankruptcy constraints and derived analytically an
optimal investment policy. Besides the dynamic programming technique, the multi-
stage stochastic programming method has also been used to solve multi-period
allocation problems under the MV framework [24, 43, 62], mostly using stochastic
quadratic programming algorithms.

From the perspective of dynamic portfolio theory [25], a key difference in the
problem formulation refers to the assumptions on the return generating process.
Serially and mutually independent return processes are in general consistent with
optimal myopic policies. Financial returns’ serial independence is sometimes
assumed in multi-period portfolio selection problems and leads to a dynamic
programming formulation. In general however, the serial dependence and a mul-
tivariate model of financial returns are required in operational context leading to
the adoption of multi-period models in general and multi-period MV in particular,
when assuming a continuous Gaussian noise process. The recursive dynamic
programming formulation requires the underlying return process to be Markovian.

Consider in particular from [10] a dynamic optimization problem where I denotes
the set of the states of the market. It is assumed that the market state forms a Markov
chain and for each state i 2 I, the return of a risk-less asset is denoted by r0.i/,
while Rt.i/ D .R1t .i/; � � � ;Rn

t .i//
0 represents a random excess return vector of n

risky assets, and ut.i/ D .u1t .i/; � � � ; un
t .i//

0 denotes the portfolio vector. With these
notations, the multi-period MV problem with the dynamics of the market state is
formulated as follows.

max
ut.i/

EŒWT ji0 D i0;W0 D w0� � �VarŒWT ji0 D i0;W0 D w0�

s:t: WtC1.i/ D r0.i/Wt C Rt.i/
0

ut.i/; t D 0; 1; � � � ;T � 1:

Here i0 and z0 are the initial state and the initial wealth, respectively. By using a
similar approach as that for the multi-period MV problem in [53], an explicit optimal
investment policy of the multi-period MV problem is derived in [13]. Wei and
Ye [81] further considered a multi-period MV problem in a Markovian market by
incorporating a bankruptcy constraint, and obtained the optimal investment policy
by using the similar method as above.

Among Markovian decision models, in this context, it is worth recalling the
analysis based on market regimes: these models, in [11] for instance, provide
relevant generalizations of the above classical MV framework recently formulated
and solved as stochastic dynamic programs. Except for considering the Markovian
stochastic market, the multi-period optimal investment policy selection models are
also examined with the robust counterpart, for example, the multi-period MV model
is extended in [42] to the worst-case analysis with multiple return and risk scenarios,
which can generate a robust strategy to avoid excessive losses.

Despite the inclusion of no-shorting constraints, bankruptcy constraints, as well
as more accurate market models have been considered in a multi-period MV set-up,
even in the case of robust representations, these models still suffer from the time-
inconsistency of the terminal variance. Moreover, under the normality assumption,



22 Z. Chen et al.

even if the risk control is generalized to account for bankruptcy events, the resulting
optimal control will still be Gaussian and control of tail risk is attained within the
limits of such assumption. From a financial standpoint, the explicit introduction of
a tail risk measure such as the conditional value-at-risk overcomes that drawback.

1.4.2 Time Inconsistent Mean-CVaR Models

Due to its tractability, several papers discuss multi-stage portfolio selection prob-
lems under the terminal CVaR measure. A generic problem formulation, still
following the reward-risk trade-off approach, can be described as follows:

max
ut2Ut

EŒWT � � �CVaR˛.WT/

s:t: WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1:

By linearizing the CVaR, this model can be transformed into:

max
ut2Ut;z2R

EŒWT � � �
�

z C 1
1�˛E.WT � z/C

�

s:t: WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1:

In practice, Ut is a decision space accommodating several types of constraints
such as lower and upper bounds on specific asset classes, turnover constraints
and others. We assume that the resulting decision space is convex. The stream
of contributions employing terminal CVaR as risk measure within dynamic opti-
mization problems is extended since the original contribution by Rockafellar and
Uryasev [64]. We consider here only the subset resulting into recursive dynamic
programming formulations. In a stochastic programming framework, Topaloglou
et al. [76] considered a two-stage international portfolio management model by
minimizing the terminal CVaR. When extending to a multi-stage model, the
resulting stochastic programming formulation suffers the curse of dimensionality
for increasing stages and scenario paths. To overcome such drawback, a different
CVaR model is proposed in [67], where the investment risks of two adjacent periods
are defined dynamically, hence, the corresponding multi-stage control problem
could be solved relying on a dynamic programming recursion.

Because of its good properties, there are many papers discussing multi-period
portfolio selection problems under different variants of the additive CVaR measure.
When adopted to control multi-period investment risk, the corresponding optimal
investment problem can be formulated as:

max
ut2Ut

EŒWT � �PT
tD1 �tCVaR˛.Wt/

s:t: WtC1 D r0t Wt C R
0

t ut; t D 0; 1; � � � ;T � 1;

here CVaR˛.Wt/, 1 � t � T, in the objective function can also be linearized [34, 64].
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As for the solution method, Fábián [36] designed a decomposition algorithm
based on the penalty function to solve a multi-stage portfolio selection problem
with additive CVaR measure. By using the dual representation of the additive CVaR
measure, the stochastic dual dynamic programming (SDDP) solution method in
[61] can be applied to solve the problem. Although the dual form of the additive
CVaR measure is more tractable, for large and realistic problems the efficiency of
the solution method must still be assessed. Besides, current numerical results on
multi-period risk control problems under additive risk measures [45, 61, 76] are still
limited to problems of unrealistic dimension. Efficient decomposition algorithms
are still needed in this context.

Additive risk measures can control period-wise risks over the investment horizon.
However, additive risk measures are simple extensions of terminal risk measures.
The resulting optimal investment policy still suffers the time inconsistency problem.
Since all the models in the two sub-sections leads to a time inconsistent policy, it
becomes interesting to investigate the impact of time consistency and consider how
to ensure it.

1.4.3 Time Inconsistency and Time Consistent Revisions

When a time inconsistent risk measure is adopted in a dynamic problem, this
will lead in practice to a time inconsistent strategy: the focus is on the rela-
tionship between future decisions regarded as optimal today and decisions that
will be derived as optimal when formulating and solving the problem in the
future. Maintaining the same probabilistic assumptions on the underlying stochastic
processes.

In principle when time goes by it is by no mean sure that, say 1 month from
now, the risk manager will face the same market conditions as those expected
today at the end of the month. But assuming that this will actually be the case and
indeed relying on the market condition that will materialize in 1 month time, then
the pre-committed strategy optimality should still hold. From this perspective, ex-
post, it is possible to evaluate the cost of inconsistency by analyzing the period-wise
divergence between the value functions and the optimal policies as determined ex-
ante along specific market scenarios and ex-post once those scenarios have realized.
In either cases the problems are solved under uncertainty on the future market
evolution [41, 67].

In detail, Rudloff et al. [67] quantified the impact of time inconsistency by
computing a related sub-optimality gap defined by the difference in the objective
function value as evaluated using planned (thus ex-ante) and implemented (ex-post)
policies, respectively. By adopting a CVaR model, they perform sensitivity analysis
on the sub-optimality gap for different planning horizon and risk-aversion levels:
they conclude that the cost of inconsistency depends on the assumed market scenario
with increasing marginal costs as we move from extreme to average scenarios.
Several papers [15, 17, 50], furthermore, suggest a comparison between the market
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performances of a time inconsistent against a time consistent policy, reporting that,
ceteris paribus, consistently over time the latter tends to overperform the former
under the same probabilistic assumptions.

To overcome the time inconsistency problem, several authors [4, 6, 20, 28, 47,
52, 79] focus on time consistent alternatives or modifications of the above models.
Generally speaking two perspectives can be adopted: either considering directly
the optimal policies and enforcing conditions for time-consistency or introducing
modifications of the risk measures and then deriving time-consistent policies.
Time consistent revisions of optimal investment policies will be discussed in what
follows. Dynamic control models based on time consistent risk measures will be
discussed in the next subsection.

In presence of a time inconsistent risk measure such as the variance, a rel-
atively acceptable and commonly used approach to enforce a time consistency
principle amounts to relaxing the conditions for (strong) time consistency. Weaker
formulations are thus introduced. Cui et al. [26], for instance, propose a weak
time consistency based on Bellman’s optimality principle where the trade-off
parameter between risk and return can change over time still within a mean-variance
framework. They show that a pre-committed optimal policy satisfies the introduced
weak time consistency in any intermediate period as long as the investor’s wealth
path falls in a compact state space. If, instead, there is a positive probability that the
wealth will exceed a threshold, the weak time consistency will no longer hold and
the consistency may be recovered by allowing withdrawal of monetary surpluses
from the wealth. Such revision on optimal policy is rather intuitive: when the
time consistency holds, we directly use the pre-committed optimal policy; when
it doesn’t, we revise the pre-committed optimal policy by withdrawing the money
from the market.

Another interesting way to derive, from an otherwise inconsistent measure, a
time consistent optimal policy is to allow the risk measures’ parameters to change
dynamically over time. For instance, the nested decomposition method for terminal
CVaR recently proposed by Pflug and Pichler [59] considers a time-varying random
of confidence level. Such nested decomposition method can help the investor to
adopt time-consistent strategies under the terminal CVaR criterion. Meanwhile, it
may bring mathematical tractability for complex multi-stage risk-averse problems.

1.4.4 Time Consistent Models

The time inconsistency issue can be better dealt with by modifying directly the risk
measure or, even better, adopting new time-consistent and coherent dynamic risk
measures. Based on the concept of separable expected conditional mapping, a time
consistent multi-period MV model was introduced in [15]:
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min
ut2Ut

PT
tD1 EŒ�MV

t�1.Wt/�

s:t: WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1:

where �MV
t�1.Wt/ D Var.WtjFt�1/ � �tEŒWtjFt�1�, and �t is a period-wise risk-

averse parameter which can reflect an investor’s changing risk attitude. An optimal
solution to the above problem can be found by adopting the dynamic programming
technique. Numerical experiments in [15] support the intuition that an optimal
policy obtained under the above time consistent MV model is superior to the one
presented by Li and Ng [53] when neglecting the time-consistency issue. Out-
of-sample results are collected analyzing average returns, returns variance and
mean/variance ratios generated by the resulting optimal policies and the evidence
is consistent. Although the time consistency is satisfied under such a time-varying
combination of mean and variance, the coherence is still missing due to the variance
lack of sub-additivity.

To yield an optimal control of extreme losses, it is worthwhile to consider
the case of CVaR- or other downside risk measures-based approaches. Limited
by their formulations, additive risk measures could not fully reflect the dynamic
dependence of random information across periods, so a recursive risk measure
appears necessary.

Using CVaR as reference risk measure, Kozmík and Morton [50] consider a risk-
averse multi-period investment problem with the following nested formulation:

min
u1

c>
1 u1 C �CVaR

2

�

min
u2

c>
2 u2 C � � � C �CVaR

T

h

min
uT

c>
T uT

i	

;

where the first and the t-th period .2 � t � T/ minimizations are constrained by
A1u1 D b1; u1 � 0 and Atut D bt � Btut�1; ut � 0, t D 2; � � � ;T, respectively.
Here, �t is a weighted sum of the conditional expectation and CVaR associated with
a random loss Z:

�CVaR
t .Z/ D .1 � �t/EŒZjFt�1�C �tCVaR˛t ŒZjFt�1�; 2 � t � T;

with a weighting factor �t (2 � t � T). Under the assumption that the underlying
random process is serially independent, the SDDP algorithm is used in [50] to solve
the problem.

Under very risky market conditions �t D 1;8t, the resulting optimal control will
minimize jointly the CVaR and the VaR under rather general assumptions on the
underlying market dynamics. Alternatively for �t ! 0, more risky strategies will
be attained. In either cases, the resulting strategy will be time consistent and as time
progresses, will persist along an optimal path as determined at the initial time.

As a further example of risk control under complex market dynamics, we
consider the recursive CVaR minimization model presented in [14] where a
regime switching technique, a time series model and a multi-factor model are
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simultaneously utilized to capture asymmetric and leptokurtic market movements
observed in the market. The resulting multi-period portfolio selection problem can
be described as follows:

max
ut2Ut

E.WT/

s:t: EM0 ŒCVaR˛1;M1 .� � � EMT�1 ŒCVaR˛T ;MT .WT/� � � � /� � ı;

WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1;

here Mt denotes the market regime in period t, which follows a Markovian
process, ut is an Mt-adapted portfolio and CVaR˛t;Mt is the one-period conditional
CVaR function under regime Mt with the confidence level being ˛t. Under the
proposed two-level information structure, the above multi-stage portfolio selection
problem can be formulated as a second order cone programming problem, which
can be efficiently solved in polynomial time. Numerical experiments show the
proposed multi-period risk function is good at balancing risks among stages and
the performance of the optimal investment policy is stable as the regime switches.

From the above nested CVaR examples, we can find that the recursive form of
a dynamic risk measure and the coherence of the adopted static measure guarantee
the time consistency of the resulting dynamic risk measure. Inspired by this, we
can deduce a generic form of an optimal control model based on a recursive risk
measure as follows:

min
ut2Ut

˚

�1Œ� � ��T�1Œ�T ŒWT jFt�1�jFt�2� � � � �
�

(1.16)

s:t: WtC1 D r0t Wt C R
0

tut; t D 0; 1; � � � ;T � 1: (1.17)

In (1.16) a nested sequence of conditional risk measures �1˝�2˝ : : ::˝�T ensures
the suitability of a recursive approach. A sequence of coherent �t (1 � t � T�1) will
lead to a recursive dynamic programming formulation and hence to a time consistent
risk control policy. Matmoura and Penev [56], for instance, considered such a model
by using a higher moment coherent risk measure to control tail losses:

�t.XjFt�1/ D inf
Y2Lt�1



Y C 1

˛
E
�

.�X � Y/pC jFt�1
�1=p

�

; 1 � t � T � 1;

where ˛ 2 .0; 1/ and p � 1. The authors introduced a recursive algorithm to solve
the above nested optimization problem, and provide an optimal investment policy
which is more risk-averse under increasing ps than that obtained with CVaR.

Thanks to its dynamic time consistency, a multi-period optimal investment
policy determined under a recursive risk measure usually has superior and robust
performance, as available empirical results in [14, 56, 56] show. However, the
implementability and computational performance of this class of problems varies
greatly depending on the adopted information structure, the assumptions on the
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underlying wealth/loss process, and the suitability of the associated risk measure.
From both an implementation and methodological viewpoint, the adoption of
simulation and bootstrapping methods to validate risk measurement approaches and
refine a stochastic program in the generic form (1.1)–(1.4) is increasing [14, 34].
Indeed as time progresses t D 0; 1; � � � ;T yet assuming onlyFt-measurable controls
ut and for given state-space characterization and optimal control ut, (1.1)–(1.4)
describes a stochastic system that can be fully simulated and the resulting properties
of the optimal risk measure trajectory and control considered from the perspective
of their time consistency to facilitate their practical adoption.

1.4.5 Practical Solution Methods for Optimal Dynamic Risk
Control

We see from the above review that the dynamic programming technique provides
a suitable approach to solve financial planning problems carrying a recursive
risk structure and typically with a feasible region generated by a Markovian
market process and a not too extended decision universe. Dynamic programming
is used for instance, combined with an embedding technique, to solve a multi-
period MV problem first in [53] and then in [4, 10, 26, 27]. Besides the MV
problem, an optimal investment policy model with bankruptcy constraints was
solved analytically through the dynamic programming technique in [54, 85] by
applying Chebyshev inequality. Extremely large even if sparse and linear constraint
operators may easily jeopardize the use of dynamic programming. In such cases,
dynamic stochastic programming appears the only viable alternative.

Other than stochastic dynamic programming backward recursion, there are
mainly two solution methods for multi-period risk control problems under more
complex risk measures: the SDDP algorithm and those algorithms based on the
scenario tree technique.

The adoption of the SDDP method requires in general that the underlying
statistical processes are stage-wise independent and can only solve multi-period
problems under additive or recursive risk measures with specific structures. By using
the dual representation of the additive CVaR, for instance, SDDP is applied in [61] to
solve a multi-period portfolio selection problem under the additive CVaR measure.

By assuming that the underlying random process is stage-wise independent, the
SDDP algorithm is also used in [50] to solve a multi-period stochastic program
with risk control under the recursive CVaR measure. The theoretical foundation
for the application of SDDP algorithm is the time consistency of the dynamic
risk measure, which guarantees the satisfaction of Bellman’s optimality principle.
However, Philpott and de Matos showed in [61] that the Bellman equations for
the multi-period portfolio selection problem under the additive CVaR measure
can not be solved explicitly, but could be solved through linear programming.
Correspondingly, for multi-period problems under other coherent risk measures, the
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Bellman equations are associated with convex programming problems. Hence, when
dealing with decomposable recursive formulations of an optimal control problem
such as (1.16), in presence of coherent risk measures, an approximation by cutting
planes can be performed and it is expected to lead to convergence but sometimes
at a relevant computational cost to compute the value function bounds. Several
researchers have investigated the application of the SDDP algorithm in multi-period
stochastic programs [45, 50, 61].

In the meanwhile, solution approaches based on discrete scenario tree representa-
tions have also been widely used to solve multi-period problems based on dynamic
risk measures [7, 22, 24, 43, 62, 76]. The stream of contributions in this area is
wide. We are here interested only on the subset of optimization approaches applied
to multi-period problems with coherent or time consistent risk measures.

For example, Topaloglou et al. [76] considered a two-stage international portfolio
management model by minimizing the terminal CVaR. Due to the coherency
and piece-wise linearity of CVaR, the model can be reformulated as a linear
programming problem relying on a discrete scenario tree process and hence can
be efficiently solved in polynomial time. However, due to the time inconsistency of
terminal CVaR, the time consistency of the optimal strategy can not be guaranteed
here. If time consistent risk measures, the recursive CVaR in [14] for example, are
adopted, the resulting portfolio selection problems relying on the discrete scenario
tree would preserve the time-consistency of the optimal strategy. When CVaR is
replaced by other nonlinear coherent risk measures, the portfolio selection problems
relying on the scenario tree can be formulated as large-scale convex programming
problems. To solve these programming problems, we can utilize the Markovian
block-diagonal structure of the scenario tree based model and adopt some scenario
decomposition methods like those in [23, 44].

There is still work to do with the scenario tree technique when applied to risk-
averse portfolio selection problems. The search for coherence and time-consistency
should not jeopardize a computationally efficient solution of the problem, partic-
ularly in consideration of the required approximation steps induced to facilitate
numerical tractability. Additional evidence is in this respect needed, also taking
into account solution approaches based on decision rules o approximate dynamic
programming. The use of robust optimization techniques as in Shen and Zhang
[74] has also been shown to provide a good approach to cope with scenario tree
instability and possible inconsistency of the underlying risk measure. Furthermore,
the robust optimization technique can be adopted to describe the ambiguity of the
distribution, which leads to the distributionally robust optimization. In this respect,
an adjustable robust approach is proposed in [8] to solve the optimal investment
policy selection model under a recursive risk measure, which allows one to solve
the multi-period robust problem in a computationally efficient way by adapting the
dynamic programming technique [71]. See on this issue the Editors’ survey chapter
in this volume.

In a word, the dynamic programming technique is helpful for finding the
analytical optimal solution of a multi-period risk control problem. However, it
relies on rather strict conditions to satisfy the principle of optimality. In contrary,
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the scenario tree technique can be flexibly adopted to solve complex multi-period
investment policy selection problems. However, the computation complexity caused
by the curse of dimensionality is a main obstacle to apply the scenario tree technique
to an investment problem with many assets and/or many periods. SDDP, a newly
proposed algorithm as a compromise between the dynamic programming technique
and the scenario tree technique, shows its efficiency in solving many multi-period
stochastic optimization problems. However, the research on SDDP is still far from
complete.

1.5 Conclusions and Future Research

Due to its theoretical and practical importance, the construction of a multi-period
risk measure and its application to multi-stage portfolio selection problems have
attracted much attention in the last decade, and has become a hot topic in operations
research and financial management. Similar to traditional utility functions, a multi-
period risk measure describes the influence of an uncertain loss process on investors’
risk attitudes. The construction of multi-period risk measures is however rather
demanding from both theoretical and practical viewpoints. In this chapter we have
conducted a methodological survey of the state-of-the-art on dynamic risk control
optimization problems, by focusing on a qualified, maybe not exhaustive, set of
multi-period risk functions, whose theoretical and applied properties have been
considered. The concept of risk measures and optimal control time-consistency
has emerged in recent studies as the characterizing feature to be considered within
dynamic risk control problems as those studied here. We have started in Sect, 1.2,
linking the analysis to the axiomatic theory of static risk measures and their
extension into a dynamic framework.

In Sect. 1.3 existing multi-period risk measures have been classified into three
categories: terminal wealth risk measures, additive risk measures, and recursive
risk measures. Among them, the terminal wealth risk measure is the closest to the
traditional static risk measure and it has been investigated and applied extensively
in risk control and more general financial management problems. However, the
optimal strategy obtained by controlling the terminal wealth risk has been shown
not to be time consistent in general. Such evidence has led to increasing research
efforts focusing on additive and recursive risk measures and their adoption within
dynamic risk control problems. We have seen that additive risk measures, once the
risk function additivity is satisfied, are typically easy to compute and handle in
risk control problems by using the dynamic programming technique. Nevertheless,
additivity restricts possible formulations of a multi-period risk measure by fixing
the relationship between risk functions of adjacent periods and in doing so may
not be suitable to reflect evolving risk attitudes in full generality. Recursive risk
measures have thus been considered specifically as a natural way to handle time
consistent measures in sufficiently general risk control problems. Unfortunately,
the calculation and application of recursive measures within dynamic optimization
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problems has been shown also to lead to complex numerical issues. To the best of
our knowledge the introduction of coherent and time-consistent risk measures in
dynamic control problems represents a current area of research with open issues, as
it is the production of a sufficiently robust numerical evidence in support of such
theoretical developments.

The following open issues are worth remarking:

• As we know, time consistency is an important property for multi-period risk
measures. Nevertheless, some authors [65, 80] argued that dynamic time consis-
tency is a very strong assumption. Then, how to introduce a proper form of weak
time consistency so that it can not only characterize suitably the relationship of
risks across periods, but ensure a resulting optimal investment policy satisfying
the basic consistency requirement? Also, given a maybe weak form of time
consistent measure in the problem, what are the implications of adopting a
discrete rather than a continuous probability space characterization?

• Under a coherent risk measure framework, strong time consistency of a multi-
period risk measure leads to the time consistency of the optimal investment
strategy. However, more generally, is weak-time consistency sufficient to such
purpose? Theoretical and computational validation on dynamic control problems
is needed maybe with a focus on the cost of time-inconsistency relying on
associated statistical measures.

• When dealing with dynamic risk measures, the strong operational link between
risk measurement and risk management applications cannot be overlooked: this is
key to the practical adoption of time-consistent risk measures (instead of maybe
time-inconsistent measures currently adopted as the Value-at-Risk). The effec-
tiveness of both the risk assessment step, relevant also for regulatory purposes,
and the risk hedging step, relevant for the internal risk manager, must still be
established and appears necessary in financial applications. From a methodolog-
ical viewpoint this is expected to facilitate simulation- and optimization-based
joint methods.

• The impact of discrete representations and approximation of dynamic risk mea-
sures whose properties have been established assuming continuous probability
spaces as the interplay between solutions of stochastic dynamic programming
problems in recursive form and associated tree representations o robust represen-
tations are also open issues.

More generally the establishment of specific properties of dynamic risk mea-
sures, maybe resulting in the proposal of new risk measures, along with their
introduction in multistage stochastic control problems appears strongly motivated in
practice by continuously evolving regulatory frameworks and persistent instability
conditions in financial markets.
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69. A. Ruszczyński, A. Shapiro, Conditional risk mappings. Math. Oper. Res. 31, 544–561 (2006)
70. A. Shapiro, On a time consistency concept in risk averse multistage stochastic programming.

Oper. Res. Lett. 37, 143–147 (2009)
71. A. Shapiro, A dynamic programming approach to adjustable robust optimization. Oper. Res.

Lett. 39, 83–87 (2011)
72. A. Shapiro, Minimax and risk averse multistage stochastic programming. Eur. J. Oper. Res.

219, 719–726 (2012)
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Chapter 2
Asset Price Dynamics: Shocks and Regimes

Leonard MacLean and Yonggan Zhao

Abstract Security prices changes are known to have a non-normal distribution,
with heavy tails. There are modifications to the standard geometric Brownian
motion model which accomodate heavy tails, most notably (1) adding point
processes to the Brownian motion or (2) classifying time into regimes. With regimes
the prices follow Brownian motion dynamics within regime, but the parameters
vary by regime. The unconditional distribution of returns is a mixture of normals,
with the mixing coefficients being Markov transition probabilities. The contrasting
approaches have a common link—risk factors. In the case of the point processes, the
intensity of “shocks” depends on a set of factors, eg. bond-stock yield differential,
credit spread, implied volatility, exchange rates. The factors drive shocks, which are
a component of the returns. With regimes, the economic state is hidden (latent) and
is determined by the period by period observations on factors. The characterization
of regimes follows from description in terms of the set of risk factors. In this paper
the link between the shocks and regimes is explored. The shocks times defined by
risk factors are an alternative method of determining regimes and the classifications
by shocks and by the Expectation-Maximization algorithm are examined. The
connections factors ! regimes ! shocks further justifies a classifiaction of
financial markets into homogeneous epochs. The regime structure leads to improved
estimates for distribution parameters. The methods are applied to the prediction
of returns on Sector Exchange Traded Funds (ETFs).The allocation of investment
capital to funds based on predicted returns generates favorable wealth accumulation
over a planning horizon.
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2.1 Introduction

There are many factors affecting the trading decisions of investors and correspond-
ingly the trading prices of assets in financial markets. In reaching a decision the
investor formulates an expectation for the change in asset prices: will they increase
or decrease and by how much? It is intuitive that the factors defining the state of
the economy provide important information about investment opportunities and
future price movements. In this paper, macro and micro economic indicators are
considered in relation to the changes in the trading prices of securities. Large
deviations in the indicators from normal levels are a force for a reversal in price
movements, with investors more likely to respond to unstable market conditions.
One approach to incorporating the economic factors is through nonhomogeneous
point processes [7, 19]. The motivation for the point process is the perspective of
investor behavior, and the setting of a likelihood or probability of price reversion.
The price reversion is viewed as a risk, with the likelihood and size (consequence)
of the reversion being economy dependent. Risk is typically defined as the product
of the likelihood and consequence of a hazard, so the point process has a natural risk
setting. The point process component is in addition to a diffusive component. The
idea is that the diffusion reflects the long term market dynamics and large deviations
from stable levels can trigger the point processes.

There are alternative modelling approaches to incorporating economic conditions
into asset price dynamics. Factor models have been used in a wide variety of
situations, but they have certain limitations since all the key parameters, including
the interest rate and the stock appreciation/volatility rates, are assumed to be
insensitive to the (very likely) drastic changes in the market. The underlying market
may have many “modes” or “regimes” that switch among themselves from time
to time. The market mode could reflect the state of the underlying economy, the
general mood of investors in the market, and so on. For example, the market can
be roughly divided as “bullish” and “bearish”, while the market parameters can be
quite different in the two modes. One could certainly introduce more intermediate
states between the two extremes. A system, commonly referred to as the regime
switching model, can be formulated as a set of stochastic differential equations
whose coefficients are modulated by a continuous-time Markov chain.

Active research focuses on the relationship between asset returns and common
risk factors. The literature has considered some common factors such as lagged
returns [9, 22], the dividend-to-price ratio [4, 10, 14], the earnings-to-price ratio [5],
the book-to-market ratio [18], the dividend payout ratio [16], the share of equity in
new finance [2, 21], yield and credit spreads [3, 11, 15], recent changes in short-term
interest rates [3, 14], and the level of consumption relative to income and wealth
[17]. Many of these variables are related directly or indirectly to various stages
of the business cycle and are used to predict a counter-cyclical variation in stock
returns [11, 17].

The presence of stages or regimes in the financial market suggests a regime
switching structure. The Markov regime-switching model has been applied to
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economic and financial modeling for decades. Hamilton [12, 13] applied a Markov
switching model for the US GDP data and identified the various regimes in the US
economy based on the observed data. Schwert [23] considered that asset returns may
be associated with market volatility which switches over time. Ang and Bekaert [1]
studied an international asset allocation model with regime shifts. This modeling
approach is very flexible in addressing a variety of interesting questions about
capital markets. For example: (1) What are plausible market regimes? (2) How
frequently do these regimes switch? (3) When do these regimes change and what
drives them to change over time?

In this paper, alternative models of market returns are defined: (1) a model with
a diffusion augmented by non-homogeneous point processes depending on market
factors; (2) a model with hidden regimes characterized by the market factors. The
models have the same structure, with the point process approach being directly
linked to the market factors and providing a mechanism for understanding when
these regimes change and what drives them to change over time. The approach
is applied to the prediction of returns on Sector Exchange traded Funds and the
accumulation of capital through investment decisions based on improved estimates
of returns.

2.2 Risk Factors in Financial Markets

We assume the economic situation is driven by a set of risk factors which include
both micro and macro market indicators, such as realized stock and bond market
returns, Currency strength, market volatility indicators, corporate dividend yield,
interest rate policies, yield spread, and credit spread. Let Ft be the vector of these
indicators at time t.

Micro Economic Factors

• F1 D Current stock market return (SRt ): Log return from time t-1 to t.
• F2 DCurrent bond market return (BRt): Log return from time t-1 to t.
• F3 DCurrent currency return (CRt): Log return from time t-1 to t.
• F4 DCurrent level of the implied volatility (IVt): VIX index divided by 100.

Macro Economic Factors

• F5 DDividend yield (DYt): Aggregate Dividend Yield at time t.
• F6 DInterest rate (RFt): U.S. Interbank offer rate at time t.
• F7 DYield spread (YSt): 10 year U.S. treasury bond—3 month t-Bill at time t.
• F8 DCredit spread (CSt): U.S. Corporate BAA—U.S. Corporate AAA at time t.

Weekly values of the macro and micro economic factors from January 4, 1999 to
November 7, 2009 are shown in Figs. 2.1 and 2.2.

The dynamics of the factors characterize the dynamics of the financial market.
It is assumed that the market is composed of epochs. Furthermore, the market
states over time fS.t/; t > 0g follow a discrete state continuous time Markov
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Fig. 2.1 Factors—micro

Fig. 2.2 Factors—macro
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process. The state space is finite S D fS1; : : :; Smg ; and states will be referred
to as regimes: fi D 1; : : :;mg : The dynamics of the Markov process are driven
by the intensity gij; which is the rate of transitioning from regime i to regime j:
The rate of switching from regime i at time t to another regime j at time t C h
is PŒS.t C h/ D jjS.t/ D i� D gij � h C o.h/; where o.h/

h ! 0 as h ! 0:

If the process is in regime i it transitions out of i to another regime with rate
gi D P

j¤i gij; and PŒS.t C h/ D ijS.t/ D i� D .1 � qi/h C o.h/: Then
pij D gij

gi
is the probability that the process moves to regime j from regime i: For

regimes i; j the transition probability function Pij.t/ D Pr ŒS.t/ D jjX.0/ D i� is a
continuous function of t: The function satisfies the Chapman-Kolmogorov equations
Pij.t C s/ D P

k2S Pik.t/Pkj.s/: This relation allows us to consider transitions at
discrete time points: t1 D 0; t2 D d; t3 D 2d; : : :; tn D .n � 1/d: For the transition
probability function Pij.d/ the interval time d is fixed, so we will drop the time d
and simply refer to the fixed matrix P D .Pij/: If the distribution over regimes at
time t is �.t/ D .�1.t/; : : :; �m.t//; then �.t/ D �.t � 1/P:

Given the Markov process for regimes, we assume that the factors Ft follow a
regime-switching vector autoregressive VAR(1) model.

Ft D ˛St C Ft�1ˇSt C �St ; (2.1)

where ˛St and ˇSt are regime-dependent coefficients and �St is an iid process with
standard multivariate normal distribution having covariance ˙St . Within a regime,
ie a type of market, the factors are a stochastic dynamic process,where dynamics of
the factors are defined by a first order autoregressive model. The regimes follow a
Markov process with the dynamics defined by the transition matrix P: The following
assumptions are made for the dynamics between time points:

1. There is at most one regime transition in the time interval .t; t C d/ : Given
regime i at time t; then 	i D the time to switch from regime i to another regime
is Exponential with parameter qi; and Pr Œ	i � d� D 1 � e�qid 	 qid; which is
small for a short time interval. For two transitions Pr

�

	i C 	j � d
� 	 qiqjd2; a

negligible quantity.
2. If there is a transition it occurs at the start of the interval .t; t C d/. The

probability that there is one transition in the interval and it is from i to j is
Pij.d/ D Pr ŒS.t C d/ D jjS.t/ D i� D Pr ŒS.d/ D jjS.0/ D i� 	 qid � pij: Then
the chance of remaining in regime i is Pii.d/ 	 1 � qid:

3. The probability of remaining in a regime is high, with the chance of moving
to a neighboring regime decreasing as the neighboring regime is further away.
Although the state is hidden, it is reflected in the market factors. It is assumed
there are expected or stable levels on the factors and as the actual level deviates
form the expected there is market instability and the probability of a regime
switch increases. So a regime is characterized by ranges/boundaries on the
factors, with the switching probability high near a boundary.

It is interesting to identify how these common risk factors are related. As evi-
denced in Figs. 2.1 and 2.2, the correlations within subsets factors .F1;F4;F6;F7/ ;
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E1

Regime 1

Regime 2

Regime 3

Regime 4

E2

Fig. 2.3 Regimes

.F2;F3;F5;F8/ are high and between subsets the cross-correlations are low. This
indicates that these subsets of factors represent different forces in the financial
market.

From the market factors the set of independent indices are defined for the factors

Eit D
X

aijFjt; i D 1; 2: (2.2)

The coefficients may be determined from an orthogonal factor analysis. The
dynamics on the factors define the dynamics on the indices. Deviation in factors
generates extreme values on the indices, which in turn determine regimes. A
simplified representation of boundaries on indices and regimes is depicted in
Fig. 2.3.

The use of indices composed from factors which characterize economic regimes
has been employed by Vliet and Blitz [24]. In that work a single index is used to
determine regimes.

2.2.1 Regimes from Factor Thresholds

One of the issues with regimes is the drivers of regime switching. With the
autoregressive model it is assumed that the probability of switching regimes is a
function of the deviation of the factors from stable levels. A direct approach to
regime estimation based on observations for the factors would provide valuable
insight to the triggers for switching. Furthermore, the stochastic dynamic model for
factors is a mechanism for anticipating regime changes and that is a foundation for
decisions on investment in assets driven by the market factors. Vliet and Blitz [24]
used the prediction of regimes from a single index to derive a successful dynamic
asset allocation strategy.
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Based on the joint distribution for factor indices we can define upper and lower
thresholds (contours) so that values above/below the thresholds are in a space for
a different regime—anologous to clusters. In this section a search method in the
space of (lower, upper) thresholds is proposed. A grid is formed and the optimal
thresholds over the grid are identified. The thresholds are determined from factor
index deviations. The criterion for optimality of thresholds is the fitting error for
observed factor values. That is, the fitted vector OFt.k/ is calculated for the estimated
parameters with regimes defined by threshold (grid) index k D .k1; k2/ , and the
mean fitting error MFE.k/ D 1

T

PT
tD1.Ft � OFt.k//0.Ft � OFt.k// is minimized.

For each factor index consider the index deviations
n O jt D ejt � Nej

o

, with mean

Nej, covariance O�j. The threshold grid points . �
j1;  

�
j2/ for low and high deviations are

determined as the number of deviations from the mean. With extreme values for the
differentials below and above the mean, respectively, the times with

n O j1;t <  
�
j1

o

and/or
n O j2;t >  

�
j2

o

identify different regimes in the market.

The method proceeds as follows:

1. Specify a grid size ! O� > 0 , and for each factor index, j D 1; 2; the minimum
thresholds

�

wj1;wj2
�

. Set kj1 D kj2 D 0.
2. With integer grid point pair k D fk1; k2g D f.k11; k21/; .k12; k22/g and extreme

values  �
j1 D wj1 C kj1! O�j;  

�
j2 D wj2 � kj2! O�j, identify times/indices

T1k D
n

t j Œ O 12;t >  �
12� \ Œ O 22;t >  �

22�
o

T2k D
n

t j O 1t C O 1t > 0; Œ O 12;t <  �
12� [ Œ O 22;t <  �

22�
o

T3k D
n

t j O 1t C O 1t < 0; Œ O 11;t >  �
j11� [ Œ O 21;t >  �

21�
o

T4k D
n

t j Œ O 11;t <  �
11� \ Œ O 21;t <  �

21�
o

3. Assume there are distinct regimes at time sets fT1k;T1k;T1k;T1kg : For this
sequence of regime times, calculate the conditional maximum likelihood esti-
mates for VAR.1/ model parameters.

4. For the regime times and estimated parameter values, compute the fitted factor
values and the mean fitting error MFE.k/ D 1

T

PT
tD1.Ft � OFt.k//0.Ft � OFt.k//:

5. Select another grid point pair k and return to [2].
6. After evaluating all grid point pairs, select the thresholds and shock times which

have the smallest MFE.k/; that is determine k� D argminkMFE.k/:

The threshold method identifies the regime at each time point: fSt; t D 1; : : :;Tg ;
where St D i if t 2 Tik� : Adjacent time points identify transitions, with tij D number
of transitions from regime i to regime j. Then Opij D tij

t ; and OP D �Opij
�

:

The methods in this section provide estimates for the parameters in the VAR(1)

model:
n

ǪSt ;
Ǒ
St ;

ȮSt

o

and the transition matrix OP for factor dynamics.
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2.2.2 Regimes from Hidden States

The threshold approach determines regimes directly from the values on the factors.
It is usually considered that the actual regimes are hidden and the observable factors
are a reflection of the unobservable regimes. The unobservable regimes can be
defined as parameters which need to be estimated in addition to the coefficients
in the VAR(1) model. The standard estimation method is an adaptation of the EM
algorithm [8], which consists of two steps, the E-Step (estimation of the unknown
states/regimes) and the M-Step (maximization of the likelihood conditional on the
estimated regimes). Given an initial condition, the two steps alternate in updating
parameters. The algorithm is modified to accommodate the structure implied by the
regime-switching model.

To describe the algorithm used to estimate a regime-switching model, we provide
a generic version of the expectation-maximization algorithm. Let ‚ be the set
of parameters f˛St ; ˇSt ; ˙St ;Pg for the model, X the sequence of observations of
the factors fFtg over time, and Y the sequence of unobservable regimes fStg over
time. Denote Y the space of all possible regime sequences for the time period. The
marginal maximum log-likelihood is expressed as:

max‚

(

ln
X

Y2Y
P.X;YI‚/

)

;

where P.X;YI‚/ is the joint probability distribution function of X and Y.
An iterative algorithm can be designed as follows:

1. Set the number of regimes at m: This determines the number of parameters in the
regime switching VAR(1) model.

2. E-step: Set an initial value ‚0 for the true parameter set ‚, calculate the
conditional distribution function, Q.Y/ D P.YjXI‚0/, and determine the
expected log-likelihood, EQ ŒlnP.X;YI‚/�.

3. M-step: Maximize the expected log-likelihood with respect to the conditional
distribution of the hidden variable to obtain an improved estimate of ‚. The
improved estimate is:

‚1 D argmax‚
˚

EQ ŒlnP.X;YI‚/�� :

4. With ‚1 as the new initial value for‚, return to the E-Step.

In the E-step, given the observed data and current estimate of the parameter set,
the hidden data are estimated using the conditional expectation. After estimating
the parameters, a dynamic programming algorithm is applied to characterize the
prevailing regime in each period by maximizing the joint probability of regimes
given the observed data.

If it is assumed that the probability of regime switching is monotone increasing
in the deviations from mean factor levels, then there is a sequence of thresholds on
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factor indices which maximizes the joint probability of regimes. So depending on
the granulatity of the grid in the thresholds approach, the parameter estimates from
the alternative approaches will align. The direct approach with factor thresholds
provides the signaling information on regime changes which would be valuable in
investment decisions.

2.2.3 Regime Fitting

The suitability of the regime switching VAR(1) model will be illustrated with
data on the factors .F1; : : :;F8/ for weeks from January 4, 1999 to November 7,
2009. The data were analyzed to obtain estimates for the parameters in the regime
switching factor model, with results provided in the tables below. The number of
regimes was set to 4, consistent with the thresholds on factor indices.

The following factor dynamics by regime are observed.

• In regime 1 (Bear Market), future stock return is positively related to realized
stock return, bond return, strength of the currency, and implied volatility, while it
is negatively related to the observed interest rate, yield spread, and credit spread
(Table 2.1).

• In regime 4 (Bull Market), future stock return is negatively related to the realized
stock return, interest rate, yield spread, and credit spread, while it is positively
related to the realized bond return, strength of the currency, implied volatility,
and dividend yield.

• In regimes 2 & 3 (Transit markets), future stock return is negatively related to
the realized stock return and bond returns, while it is positively related to interest
rate and yield spread (Tables 2.2 and 2.3).

• Strength of the currency, dividend yield, and credit spread, are negatively
(positively) related to future stock returns, in Transit markets (Table 2.4).

The estimated transition matrix based on the prevailing regime in each periods
provided in Table 2.5. For the weeks from January 4, 1999 to November 7, 2009,
the time spent in each regime were: Regime 1 (7 %); Regime 2 (22 %); Regime 3
(35 %); Regime 4 (36 %).

Table 2.1 Factors: regime 1

Factor Cons F1 F2 F3 F4 F5 F6 F7 F8
F1 0:09 0:41 0:29 0:63 0:40 0:00 �0:02 �0:03 �0:06
F2 �0:06 0:24 �0:01 0:00 0:13 0:02 0:00 �0:00 �0:02
F3 �0:04 �0:23 �0:26 �0:13 �0:06 0:00 0:01 0:00 0:01

F4 �0:09 �0:64 0:09 0:02 0:19 0:01 0:03 0:04 0:11

F5 0:04 �2:05 �1:31 1:48 0:04 0:93 0:02 0:01 0:06

F6 �0:43 �5:30 1:71 �3:36 �3:45 0:66 1:02 0:08 �0:06
F7 0:89 �6:22 2:93 �3:98 �2:75 �0:15 �0:01 0:89 0:40

F8 �0:45 0:63 1:19 2:06 0:38 0:21 0:03 0:11 0:78
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Table 2.2 Factors: regime 2

Factor Cons F1 F2 F3 F4 F5 F6 F7 F8
F1 �0:07 �0:20 �0:13 �0:56 0:19 �0:01 0:01 0:01 �0:00
F2 �0:05 �0:02 �0:10 �0:78 0:05 0:01 0:00 0:01 �0:00
F3 0:05 �0:01 �0:02 0:02 �0:02 �0:01 �0:00 �0:00 �0:01
F4 0:14 0:31 0:19 0:20 0:71 �0:01 �0:01 �0:02 �0:01
F5 0:08 �1:23 0:62 0:39 �0:25 0:99 �0:00 �0:01 0:02

F6 0:67 �0:36 �0:63 0:86 �0:69 �0:17 0:94 �0:07 0:04

F7 0:40 �0:19 0:31 3:35 0:32 0:04 �0:06 0:92 �0:13
F8 �0:01 �0:27 0:29 �0:17 �0:01 0:04 0:00 �0:01 0:96

Table 2.3 Factors: regime 3

Factor Constant F1 F2 F3 F4 F5 F6 F7 F8
F1 �0:01 �0:09 �0:05 0:06 �0:10 0:01 0:00 0:00 0:00

F2 �0:04 �0:06 0:08 0:27 0:02 0:01 0:00 0:01 �0:01
F3 �0:04 �0:02 0:05 �0:01 0:01 0:01 0:00 0:00 0:01

F4 0:02 0:06 0:04 �0:19 1:03 �0:01 �0:00 �0:00 0:00

F5 0:09 �1:17 0:03 �0:06 �0:02 0:97 �0:01 �0:01 0:00

F6 �0:04 �0:19 �0:23 �0:23 �0:12 0:06 1:00 0:01 �0:04
F7 0:43 0:18 �0:19 �1:46 �0:14 �0:16 �0:04 0:94 0:07

F8 �0:05 �0:04 �0:01 0:33 0:11 0:03 0:00 0:00 0:98

Table 2.4 Factors: regime 4

Factor Constant F1 F2 F3 F4 F5 F6 F7 F8
F1 �0:02 �0:18 0:09 0:01 0:02 0:02 �0:00 �0:00 �0:01
F2 �0:07 0:07 0:13 0:12 0:03 0:02 0:01�001 �0:01
F3 0:02 �0:00 0:02 �0:04 0:01 �0:00 �0:00 �0:00 �0:00
F4 0:04 0:36 �0:11 �0:10 0:92 �0:02 �0:00 �0:00 0:02

F5 0:08 �1:18 �0:05 0:31 0:00 0:98 �0:01 �0:01 �0:00
F6 0:01 �0:02 �0:04 �0:08 �0:01 �0:00 1:00 �0:00 �0:00
F7 0:64 �0:35 �1:07 �0:72 �0:24 �0:16 �0:08 0:89 0:11

F8 0:17 �0:53 �0:05 �0:53 0:04 �0:02 �0:01 �0:02 0:91

Table 2.5 Transition matrix S1 S2 S3 S4
S1 0:46 0:46 0:08 0:00

S2 0:11 0:64 0:14 0:11

S3 0:01 0:07 0:82 0:10

S4 0:03 0:06 0:08 0:83



2 Asset Price Dynamics: Shocks and Regimes 45

Fig. 2.4 Fitted factors

Using the estimated model, the predicted factor scores OFt D Ǫ OSt
C OFt�1 ǑOSt

for the
weeks in the time window were calculated. A comparison of the predicted (blue)
and the observed (green) factor scores are shown on Fig. 2.4.

Clearly in this time window the model is an accurate depiction of the factor
dynamics.

2.3 Discrete Time Asset Pricing Model

Consider a competitive financial market with n assets whose prices are stochastic
dynamic processes. Let the vector of prices at time t be

Pt D .P0t;P1t; : : :;Pnt/
0; (2.3)

where P0t is the price of the risk free asset, with rate of return rt at time t. Let
Yit D `nPit; i D 0; : : :; n be the log-prices.
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2.3.1 Model with Jumps

Consider that asset prices are identified at equally spaced points in time, t D
1; : : : ;T: Assume that the dynamics of price movements between times are defined
by a geometric random walk with drift plus point processes. The idea with the
point processes is to include the effect of market factors in the price dynamics.
Following the discussion of factor thresholds and regimes, when the factors deviate
substantially from benchmark values the asset prices react. The conditional price
dynamics, given parameter values and initial values Yi0; are defined by the equations
for i D 1; : : :; n and t D 1; : : :;T

Yit D Yi0 C Ri1 C : : :C Rit; (2.4)

where for s D 1; : : :; t

Ris D
2

4˛i C
nX

jD1
ıijZjs

3

5C
2

4

2X

jD1
#ijs�Nj.�js/

3

5 : (2.5)

In these equations, Zs D

0

B
@

Z1s
:::

Zns

1

C
A ; s D 1; : : :; t are independent multivariate

normal variables and Nj.�/ are counting processes with intensities �j; j D 1; 2: The
intensities/chance of a jump depend on the independent factor indices E D fE1;E2g :
If the marginal distributions for the indices at time s are fG1s;G2sg ; then the
intensities are �1s D g1s.�/

1�G1s.�/ ; �2s D g2s.�/
1�G2s.�/ , respectively. As the deviations increase

the chance of a jump driven by the factor indices increases, with a high probability
of a jump in the regimes with extreme (beyond the thresholds) scores.

The parameters #ij; j D 1; 2 are independent random variables capturing the size
of the jumps to asset prices, and it is assumed they also depend on the deviation in
factors. To have the jump size reflecting extreme returns, it is assumed that size at
time t depends linearly on the factor deviation j.s/: If there is a shock at time s, the
size is assumed to be

#ijs D 'ij C 
ij js C �iWis; j D 1; 2; (2.6)

where Wi; i D 1; 2; are independent, standard Gaussian variables. The sign of  js

determines the direction of the jump (UP or DOWN).
In Eq. (2.5) the counting processes augment the random walk, generating more

extreme price movements. If the intensities are such that jumps occur in clusters of
the same type (UP or DOWN), then the trajectory of cumulative price movements
drifts away from the random walk. If the deviations are in opposite directions
then the jumps could cancel, and then dynamics would be closer to the random
walk. It is instructive, therefore, to consider the effect of the point processes in the
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regions/regimes defined by the factors. In doing so, let �Nj.�js/ D 0 below the
thresholds and �Nj.�js/ D 1 above the thresholds. Then in Regime 1, for example,

Ris D
2

4˛i C
nX

jD1
ıijZjs

3

5C
2

4

2X

jD1
#ijs�Nj.�js/

3

5 D

2

4˛i C
nX

jD1
ıijZjs

3

5C
2

4

2X

jD1
#ijs

3

5 D

2

4˛i C
nX

jD1
ıijZjs

3

5C
2X

jD1

�

'ij C 
ij js C �iWis
�

:

If the deviation in factor indices is written in terms of the factors, the return model
has the matrix form

Rs D A1 C FsB1 C �1�s:

In the same way for each regime with S.t/ D j; j D 1; : : :; 4; the model for
returns is

Rs D Aj C FsBj C �j�s: (2.7)

Although the components are combined in (2.7) the separation into a random
walk and non-homogenous point process is important to understanding market
forces. Furthermore it is possible to separate the components in the estimation.

It is important to note that the predicted prices in the next period are the basis of
investment decisions for that period. The regime switching VAR(1)model is used to
forecast OFs; one period ahead factors, from observations on Fs�1: Then the predicted
returns in (2.7) are linear functions of OFs:

2.3.2 Model with Regimes

The consolidation of the pricing model with random walk and jump components
into a linear factor model establishes the setup for a regime based model. Having
presented a regime-switching model for risk factors, it is assumed that returns of
all primary investment assets follow a linear model with regime-dependent risk
sensitivity. Our interest is in developing a predictive model for asset returns based
on the forecast of the risk factors. Explicitly, the following structure is specified:

Rt D ASt C OFtBSt C �St�t;
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where OFt D Ǫ OSt
C Ft�1 ǑOSt

is the predicted value of risk factors from the risk factor
model, .ASt;BSt ; �St / are regime-dependent coefficients and �t is an iid process with
standard multivariate normal distribution.

Thus, the dynamics of asset returns are linearly related to the prediction of risk
factors. Given the predicted factor and the state at time t, the one-period return
vector is conditionally multivariate normal with conditional mean return vector and
covariance matrix as

�St D AStC OFtBSt

˙St D �St�
>

St
:

Unlike conventional Brownian models, this model provides time-varying and
state-dependent returns driven by risk factors.

2.4 Application: Exchange Traded Funds

The regime dependent VAR(1) model provided accurate predictions of risk factor
dynamics. A linear factor model is now estimated for the returns on Sector Exchange
Traded Funds.

2.4.1 Predicting Asset Returns

The regime dependent linear factor model will be estimated for the returns on
exchange traded funds—the Standard & Poor’s Depositary Receipts, SPDRs. The
Sector Select ETFs are chosen because they represent major sectors of the Standard
& Poor’s entire US stock market and they have a slightly longer trading history
(started December 23, 1998) than other sector ETFs. Out of the ten sectors, the
telecommunication sector ETF is not included because this sector consists of only
nine companies in the Standard & Poor’s 500 stocks. The remaining nine sectors are
represented by the following sector ETFs:

1. Consumer Discretionary
2. Consumer Staples
3. Energy
4. Financials
5. Health
6. Industrials
7. Materials
8. Technology
9. Utilities.

Weekly returns on the SPDRs from January 4, 1999 to November 7, 2009 provide
the data. The regimes are those determined from the previously described factors.
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Fig. 2.5 Predicted returns

The maximum likelihood estimates for the factor model parameters can be deter-
mined from standard multivariate regression of the ETF returns on the predicted
factor values. The predicted weekly returns from the fitted model are ORt;and the
prediction error is Rt � ORt: The prediction errors are compared to the error from the

standard mean predictor. The percent error is PE D .Rt�ORt/
0

.Rt�ORt/

.Rt�NR/0

.Rt�NR/ �100: In Fig. 2.5

the fits and actuals for the 9 SPDRs are displayed. The accuracy of predictions .PE/
is included with the display.

The movements in prices are picked up by regime switching and the model is
a good basis for anticipating price changes and for making investment decisions.
(See MacLean et al. [20].) The improved prediction of returns should translate into
successful portfolio strategies since there is evidence of the significant impact of
estimation errors on portfolio returns [6].

2.4.2 Portfolio Performance

To illustrate the advantage of accurate predictions of price movements, investments
in the SPDRS will be considered for the time January 4, 1999 to November 17,
2009. Let xt be the vector of portfolio weights in the SPDRs at the beginning of
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time period t: The return on the portfolio in period t given the regime j is Rtj.xt/ D
rt C .Rtj � rt/

0xt:The expected return on the portfolio in period t given the regime j
is Etj.xt/ D rft C .�tj � rft/

0xt; where �tj is the mean return vector in regime j at time
t: The variance of the portfolio is Vtj.x/ D x0

t˙tjxt: It is assumed that returns within
a regime are normal.

Consider that the current regime (at the end of period t�1/ is known (or implied)
and the transition probability to regime j in period t is �t: The investment strategy
in period t is determined by the objective

maxxt

8

<

:

X

j

�j




Etj.xt/ � �.Et
�

bt � Rtj.xt/
�C�

9

=

;
:

The parameter bt is a benchmark return level against which the portfolio return
is compared. If the return falls below the benchmark (shortfall) there is a penalty.
The risk parameter � is chosen to reflect the aversion to shortfalls, so the expected
shortfall is penalized. The shortfall rate is controlled by the constraint

Pr Œ.bt � Rt.xt// � �t� � ˛t:

The probability is over the distribution of returns on SPDRs and within regime
transition probabilities to the various regimes. If the conditional distribution of
returns Rtj; given the regime, are normal, then the unconditional return Rt is a
mixture of normals. In addition to the shortfall constraint limits are placed on the
investment fractions

lt � xt � ut:

This investment model is analogous to a mean-variance setup, with the modifica-
tion that the downside (falling below the benchmark) is controlled. The problem has
a complex formulation, but the assumption of normality within regimes enables the
objective and constraint functions to be expressed as deterministic equivalents. The
equivalent deterministic problem is non-convex and is solved using a Monte Carlo
approach.

In the implementation of the investment model, starting wealth is set at w0 D
$1000; the Penalty size is � D 5 , the benchmark is 99 % of the current wealth
level bt D 0:99wt�1;and the maximum shortfall is �t D 0:03: The shortfall rate is
˛t D 0:05: As well maximum short sales lt D �0:05 and maximum investment
percentage ut D 0:15 are applied. Portfolio rebalance frequency is weekly.

The optimal one period strategy is almost a fixed fraction. That is the fraction
of invested capital in the individual SPDRs is very stable. Figure 2.6 displays the
fraction in the last 20 weeks of the study period. For the SPDRs which have positive
returns the fractions are basically at the upper limit.

The allocation of capital to investment does vary depending on the state of the
financial market as shown in Fig. 2.7.
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Fig. 2.6 Investment weights: July 7, 2009 to November 17, 2009
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Fig. 2.7 Capital allocation: Jan 4, 1999 to Nov 17, 2009
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Fig. 2.8 Wealth trajectory

The performance of the optimal strategy is shown in Fig. 2.7. The S&P 500 is
shown as the market return and the capital allocation moves with the market.

The optimal portfolio far outperforms the market index. The key for this
performance is the success in predicting returns on the sector ETFs (Fig. 2.8).

2.5 Conclusion

Accurate prediction of the returns on risky assets is the basis of a successful
investment strategy. In this paper the financial market is segmented into economic
regimes based on a set of risk factors. The asset returns are linked to the risk factors
with a regime dependent linear model. The predicted returns from the regime model
are used in a dynamic asset allocation model which controls for downside risk. The
following conclusion can be reached:

1. A regime switching factor model is appropriate for characterizing market
regimes.

2. A regime dependent regression model is successful in linking asset returns to risk
factors.

3. Based on a model test with data on Sector Exchange Traded Funds, the estimation
methods provide a solid basis for sound investment strategies.
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Chapter 3
Scenario Optimization Methods in Portfolio
Analysis and Design

Giuseppe Carlo Calafiore

Abstract This chapter discusses techniques for analysis and optimization of
portfolio statistics, based on direct use of samples of random data. For a given and
fixed portfolio of financial assets, a classical approach for evaluating, say, the value-
at-risk (V@R) of the portfolio is a model-based one, whereby one first assumes
some stochastic model for the component returns (e.g., Normal), then estimates the
parameters of this model from data, and finally computes the portfolio V@R. Such a
process hinges upon critical assumptions (e.g., the elicited return distribution), and
leaves unclear the effects of model estimation errors on the computed quantity of
interest. Here, we propose an alternative direct route that bypasses the assumption
and estimation of a model for the returns, and provides the estimated quantity of
interest (together with its out-of-sample reliability tag) directly from data generated
by a scenario generation oracle. This idea is then extended to the situation where
one simultaneously optimizes over the portfolio composition, in order to achieve an
optimal portfolio with a guaranteed level of expected shortfall probability. Such a
scenario-based portfolio design approach is here developed for both single-period
and multi-period allocation problems. The methodology underpinning the proposed
computational method is that of random convex programming (RCP). Besides the
described data-driven problems, we show in this chapter that the RCP paradigm can
also be employed alongside more standard mean-variance portfolio optimization
settings, in the presence of ambiguity in the statistical model of the returns,
providing a viable technique to address robust portfolio optimization problems.
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Fig. 3.1 Model based approach (top) vs. data-driven approach (bottom)

3.1 Introduction

In this chapter we present numerical methods for analysis and design of investment
portfolios by means of data-driven techniques based on the scenario optimization
technology [6, 8]. The idea behind data-driven approaches to asset allocation is to
use directly return data to numerically compute the optimal portfolios. Mainstream
model-based approaches, derived from the classical Markowitz setup [18], focus
on parameters of the return distribution (such as expected returns and covariance)
that need be somehow estimated, and then derive the optimal portfolios on the
basis of these parameters. Data-driven methods focus instead on data, and aim
at determining the optimal allocations using the data directly, as illustrated in
Fig. 3.1. Data-driven approaches, hence, do not necessarily or explicitly require the
intermediate step of estimating a statistical model of the returns, although some
model of the returns may still be necessary for generating scenarios beyond the
cardinality available from historical data.

In both the model-based and the data driven approaches, a key issue relates to
assessing the reliability of the resulting portfolio allocation. It is for instance well
known (see, e.g., [1, 11]) that the allocation resulting from “classical” approaches
is quite sensitive to the estimated model parameters (e.g., expected returns and
covariances, or other parameters of the elicited return distribution). As a conse-
quence, due to model estimation errors, a portfolio x� designed to have, say, a certain
value  at risk level �, may well fail to provide the expected performance “out of
sample,” that is on new, future, scenarios that have not been accounted for at the
model estimation stage. Similarly, most literature on data-driven methods (see, e.g.,
[12, 14, 16, 17, 19]) focuses on computational issues in the data-driven optimization
problem, but still lacks a rigorous analysis of the out-of-sample reliability of the
optimal data-driven portfolios.

The objective of this chapter is to describe classes of portfolio allocation
problems that can be cast and solved in a data-driven framework, and to provide
for these problems a rigorous analysis of their out-of-sample reliability, based on
recent advances in the theory of random convex programming [6]. This chapter is
organized as follows: in Sect. 3.2 we study an analysis problem on a given portfolio
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over a single period. As a data-driven risk measure we consider the empirical value
at risk of the portfolio, that is the empirical quantile of a stream of random portfolio
returns of cardinality N. The main results in Sect. 3.2.2 show that the empirical
quantile is, with arbitrarily large probability, a reliable approximator of the real
quantile, provided that N satisfies an explicit lower cardinality bound (see, e.g.,
Eq. (3.13)). In Sect. 3.3 we extend this idea to the single-period design problem, that
is we compute optimal data-driven portfolios by optimizing an empirical quantile,
and we provide in Sect. 3.3.3 an assessment of their out-of-sample reliability
as a function of the scenarios cardinality N. Section 3.3 is based on original
results appeared in [7]; a similar approach has also been recently proposed in
[20]. In Sect. 3.4 we further extend the proposed data-driven approach to multi-
period problems. The idea is to exploit linear reaction policies, as proposed in [4];
however, the approach in [4] was a model-based one, whereas we here propose
an original route, based on oracle-generated return paths. In Sect. 3.5 we show
instead how scenario optimization techniques can also be employed in the context
of model-based approaches, in the presence of uncertainty in the statistical model
description of the returns (ambiguous models). Finally, Sect. 3.6 illustrates the
concept presented in Sect. 3.3 via a numerical example concerning allocation over
seven investment sectors.

3.1.1 Definitions and Preliminaries

We denote with a1; : : : ; an, a collection of assets, and with pi.k/ the market price
of ai at time k�, where k is an integer, and � is a fixed period of time. The rate of
return (or, return, for brevity) of an investment in asset i over the k-th period from
.k � 1/� to k� is

ri.k/
:D pi.k/� pi.k � 1/

pi.k � 1/ ; i D 1; : : : ; nI k D 1; 2; : : : ;

and the corresponding gain (or total return) is defined as

gi.k/
:D 1C ri.k/; i D 1; : : : ; nI k D 1; 2; : : : :

We denote with r.k/
:D Œr1.k/ � � � rn.k/�

> the vector of assets’ returns over the k-th
period, and with g.k/ the corresponding vector of gains.

The return and gain vectors are assumed to be random quantities, and we
denote with P1;2;::: the probability distribution of fr.1/; r.2/; : : :g, given the past
f: : : ; r.�1/; r.0/g, where k D 0 denotes the current time, at which the portfolio
decision is to be taken. In this chapter we shall consider both single-period and
multi-period allocation problems. If T � 1 denotes the number of forward periods
over which the allocation decisions need be taken, then we let P simply denote
the joint marginal probability distribution of fr.1/; : : : r.T/g given the past. We do
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not assume that P is known. We only assume that there is available a scenario-
generating oracle which is capable of generating independent and identically
distributed (iid) samples of the forward returns fr.1/; : : : r.T/g, according to P.

A portfolio of assets a1; : : : ; an is defined by a vector x.k/ 2 R
n whose entry

xi.k/, i D 1; : : : ; n, describes the (signed) amount of an investor’s wealth invested
in asset ai at time k D 0; : : : ;T � 1, where xi.k/ � 0 denotes a “long” position,
and xi.k/ < 0 denotes a “short” position. In portfolio design, the portfolio vector
x.k/ is typically subject to various constraints, reflecting the investor’s a-priori
policies and bindings. For example, short-selling might be forbidden, in which
case the components of x.k/ must be nonnegative (which we write as x.k/ � 0,
with element-wise inequality), or the portfolio should be self financing (the sum
of portfolio entries must be equal to a constant), or yet constraints may include
minimum and maximum exposure in an individual asset, or limits in the exposure
over classes of assets, etc. In this paper, we shall treat the problem in reasonable
generality by assuming that the portfolio vector is constrained in a polytope
(a bounded polyhedron) X .k/. In single-period allocation problems, where the
portfolio composition is only set at time k D 0, we denote the portfolio simply with
x
:D x.0/, and the composition constraints simply with X :D X .0/. The classical

Markowitz case is given by the conditions 1>x D 1, x � 0 (no short-selling), in
which case X is the standard simplex.

3.2 Single-Period Analysis of Portfolio Shortfall Probability

In this section we consider the portfolio x 2 X to be fixed and held for one single
period forward. We let

z
:D %.x/ D r>x;

represent the random return of the given portfolio at the end of the period, where r 2
R

n is the vector of random returns of the component assets over the forward period.
We denote with P the probability distribution of r, and with Pz the distribution of z,
having support Z 2 R. We assume that the scenario generating oracle provides N iid
random observations fr.1/; : : : ; r.N/g of r and, correspondingly, N iid observations
z D fz1; : : : ; zNg of the portfolio return %.x/. We next study the probabilistic
properties of the k-th smallest return in this sequence of N returns.

3.2.1 The Shortfall Probability of the k-th Order Sample

Let z D fz1; : : : ; zNg be a sequence of N independent and identically distributed
(iid) samples extracted according to Pz. We denote with zŒ1� � zŒ2� � � � � � zŒN� the
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observations in z arranged in nondecreasing order, i.e., the order statistics: zŒ1� D
minfzg, zŒ2� D minfz n zŒ1�g, zŒ3� D minfz n zŒ1�; zŒ2�g, etc.

Note that events related to z are measured by the product probability P
N
z D Pz �

Pz �� � ��Pz (N times) on ZN , and that zŒk� is a function of z, hence also events related
to zŒk� are measured by P

N
z . For � 2 R, let

F.�/
:D Pzfz 2 Z W z � �g

denote the cumulative probability distribution function of z. F.�/ is nondecreasing
and right continuous, that is F.�/ D lim�!�

C

F.�/. Let further

V.�/
:D lim
�!�

�

F.�/ D Pzfz 2 Z W z < �g:

Obviously, V.x/ is nondecreasing and left continuous. Moreover, F.x/ � V.x/ D
Pzfz D xg, and this latter quantity is zero if F.x/ is continuous. We define the �-
quantile of z as follows:

q�
:D supf� W V.�/ � �g 
 inff� W F.�/ � �g:

It is then a standard fact that

V.�/ � � , � � q�; (3.1)

and that

F.q�/ � �; (F.q�/ D �, if F.x/ is continuous). (3.2)

We now evaluate V.�/ at zŒk�: since this point is random, V.zŒk�/ is itself a random
variable taking values in Œ0; 1�. We call this random quantity the shortfall probability
of the k-th smallest observation, since it represents the probability with which the
random return z may fall below the value zŒk�. We are thus interested in determining
the cumulative probability distribution

P
N
z fz 2 ZN W V.zŒk�/ � �g; � 2 Œ0; 1�:

The following key result holds.

Theorem 1. For k D 1; : : : ;N, it holds that

P
N
z fz 2 ZN W V.zŒk�/ � �g D P

N
z fz 2 ZN W zŒk� � q�g � ˚N;k.�/; (3.3)
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where

˚N;k.�/
:D

NX

jDk

�
N
j

�

�j.1 � �/N�j:

Moreover, equality holds in (3.3), if F.x/ is continuous.

Proof. First note that from (3.1) with � D zŒk� it follows that

P
N
z fz 2 ZN W V.zŒk�/ � �g D P

N
z fz 2 ZN W zŒk� � q�g:

We thus concentrate on this latter probability:

P
N
z fz 2 ZN W zŒk� � q�g D P

N
z fz 2 ZN W at least k of the zi’s are � q�g

D
NX

jDk

P
N
z fz 2 ZN W exactly j of the zi’s are � q�g

D
NX

jDk

�
N
j

�

.F.q�//
j.1 � F.q�//

N�j

:D ˚N;k.F.q�//;

where the last passage follows from the fact that the zi’s are independent, and
the probability that zi � q� is, by definition, F.q�/. Note that ˚N;k.�/ represents
the probability of having k or more “successes” in N Bernoulli trials, each trial
having success probability �, and that this expression is obviously increasing in
� (increasing the success probability � in a single trial increases the probability
of having at least k successes in N trials). Therefore, it follows from (3.2) that
˚N;k.F.q�// � ˚N;k.�/, with equality holding whenever F is continuous, which
permits to conclude (3.3). ut
Remark 1. Notice that, for continuous F, the distribution of V.zŒk�/ is precisely the
upper tail of a cumulative Binomial distribution, and that this distribution holds
irrespective of the distribution F originally assumed on the z samples. Considering
the complementary event in (3.3) we obtain that

P
N
z fz 2 ZN W V.zŒk�/ > �g � 1 �˚N;k.�/

:D N̊N;k.�/ D
k�1X

jD0

�
N
j

�

�j.1 � �/N�j;

with equality holding for continuous distributions. We shall show in Corollary 1 that,
by appropriate selection of N and k, the above residual probability can be rendered
arbitrarily small. ♦
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A result analogous to Theorem 1 holds for the k-th largest sample zŒN�kC1�, as
formalized in the next theorem. Let

QV.�/ :D Pzfz 2 Z W z > �g D 1 � F.�/

QV�.�/
:D lim
�!�

�

QV.�/ D Pzfz 2 Z W z � �g

and let Qq� D inffx W QV.x/ � �g.

Theorem 2. For k D 1; : : : ;N, it holds that

P
N
z fz 2 ZN W QV.zŒN�kC1�/ � �g D P

N
z fz 2 ZN W zŒN�kC1� � Qq�g � ˚N;k.�/: (3.4)

Moreover, equality holds in (3.4), if F.x/ is continuous.

Proof. Note that QV is right continuous, hence it holds that QV.x/ � � , x � Qq�, and

QV�.Qq�/ � �; with equality holding if F is continuous: (3.5)

Therefore, PN
z f QV.zŒN�kC1�/ � �g D P

N
z fzŒN�kC1� � Qq�g. For this latter probability,

we have that

P
N
z fz 2 ZN W zŒN�kC1� � Qq�g D P

N
z fz 2 ZN W at least k of the zi’s are � Qq�g

D
NX

jDk

P
N
z fz 2 ZN W exactly j of the zi’s are � Qq�g

D
NX

jDk

�
N
j

�

. QV�.Qq�//j.1 � QV�.Qq�//N�j

:D ˚N;k. QV�.Qq�//;

where the last passage follows from the fact that the zi’s are independent, and the
probability that zi � Qq� is precisely QV�.Qq�/. Note that ˚N;k.�/ is increasing in �,
therefore it follows from (3.5) that ˚N;k.V�.Qq�// � ˚N;k.�/, with equality holding
whenever F is continuous, which permits to conclude the proof. ut
Corollary 1. Let ˇ 2 .0; 1/ and k 2 f1; : : : ;Ng. If N is an integer such that

N � 1

�

�

k C lnˇ�1 C
q

ln2 ˇ�1 C 2k lnˇ�1
�

; (3.6)

then

P
N
z fz 2 ZN W V.zŒk�/ > �g � ˇ: (3.7)
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Moreover, in the special case when k D 1, (3.7) holds if and only if

N � lnˇ�1

ln.1� �/�1
: (3.8)

Proof. First consider the case when k D 1. In such a case, we simply have
N̊N;1.�/ D .1� �/N , hence N̊N;1.�/ � ˇ holds if and only if N ln.1� �/�1 � lnˇ�1,

form which (3.8) follows (notice that the bound is tight in this case).
For the general case k > 1, the classical Chernoff’s inequality [10] for the lower

Binomial tail yields the bound

N̊N;k.�/ � exp

�

� .N� � k C 1/2

2N�

�

; for N� � k � 1:

Therefore, for k > 1 and ˇ 2 .0; 1/, the following implications hold:

N̊N;k.�/ � exp

�

� .N� � k C 1/2

2N�

�

� ˇ

m

� .N� � k C 1/2

2N�
� lnˇ

m
N2�2 � 2N�.k � 1C lnˇ�1/C .k � 1/2 � 0

m
1

�

�

k � 1C lnˇ�1 C
q

ln2 ˇ�1 C 2.k � 1/ lnˇ�1;
�

� N

which concludes the proof. ut
Remark 2 (Working Under “Near Certainty” Conditions). When the probability
in (3.7) is bounded from above by a very small ˇ, say ˇ D 10�6 or smaller, to
most practical purposes we may assume that the event V.zŒk�/ > � is negligible.
Equivalently, we shall say that V.zŒk�/ � � holds with near certainty. Setting for
instance ˇ D 8:3153�10�7 (this was chosen just in order to make lnˇ�1 an integer
number), bound (3.6) reads

N � 14C k � 1C p
196C 28k

�
:

This formula gives a readily computable lower bound on N such that (3.7) holds.
However, the exact value of N can be obtained numerically, by computing the least
integer N such that
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k�1X

jD0

�
N
j

�

�j.1 � �/N�j � ˇ:

Some tabulated values obtained by numerical inversion of the above formula are
reported in Tables 3.1 and 3.2. ♦

Table 3.1 Minimum number N of extractions guaranteeing (3.7), with ˇ D
8:3153 � 10�7

� D 0:4 � D 0:3 � D 0:2 � D 0:15 � D 0:1

k D 1 28 40 63 87 133

k D 1C d0:02Ne 34 56 88 135 246

k D 1C d0:05Ne 44 69 144 251 719

k D 1C d0:1Ne 58 108 336 1096 –

k D 1C d0:15Ne 85 199 1417 – –

Table 3.2 Minimum number N of extractions guaranteeing (3.7), with ˇ D
10�5

� D 0:4 � D 0:3 � D 0:2 � D 0:15 � D 0:1

k D 1 23 33 52 71 110

k D 1C d0:02Ne 29 41 76 117 217

k D 1C d0:05Ne 34 54 113 208 592

k D 1C d0:1Ne 47 88 268 885 –

k D 1C d0:15Ne 71 160 1125 – –

3.2.2 The k-th Order Sample as an Approximator of the
�-Quantile

In this section we show that, with an appropriate choice of N and k, the k-th order
sample zŒk� can approximate arbitrarily well the � quantile q� of the random return z.
We preliminarily state the following corollary.

Corollary 2. Given N, k � N, let ��; �C 2 .0; 1/ be such that �C > ��, and let the
probability distribution on z be continuous. Then,

P
N
z fz 2 ZN W q�

�

< zŒk� � q�
C

g D ˚N;k.�C/� ˚N;k.��/: (3.9)
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Moreover, given ˇ 2 .0; 1/, if

N�� C
r

N

2
ln.2=ˇ/ � k � N�C C 1 �

r

N

2
ln.2=ˇ/ (3.10)

then it holds that

P
N
z fz 2 ZN W q�

�

< zŒk� � q�
C

g � 1� ˇ:

Proof. Inspecting the proof of Theorem 1 we see that, if the distribution on z is
continuous, then

P
N
z fz 2 ZN W zŒk� � q�g D ˚N;k.�/;

from which (3.9) immediately follows. Define next A
:D fz 2 ZN W q�

�

< zŒk� �
q�

C

g, and let NA denote the complementary event. We next establish a lower bound
on the probability of A. From (3.9), we have that

P
N
z f NAg D 1 � P

N
z fAg D N̊N;k.�C/C ˚N;k.��/; (3.11)

where we recall that

N̊N;k.�C/ D
k�1X

jD0

�
N
j

�

�
j
C.1 � �C/N�j;

˚N;k.��/ D
NX

jDk

�

N
j

�

�j�.1 � ��/N�j:

Using the Chernoff bound for, respectively, the lower and the upper Binomial tails,
we obtain that, for 0 < k � N

N̊N;k.�C/ � exp
��2.N�C C 1 � k/2=N

�

; k � N�C C 1;

˚N;k.��/ � exp
��2.k � N��/2=N

�

; k � N��:

Let now ˇ 2 .0; 1/ be given. Then, it can be readily verified that

exp
��2.N�C C 1 � k/2=N

� � ˇ=2

exp
��2.k � N��/2=N

� � ˇ=2

hold if

N�� C
r

N

2
ln.2=ˇ/ � k � N�C C 1 �

r

N

2
ln.2=ˇ/: (3.12)
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Therefore, (3.12) implies that N̊N;k.�C/ C ˚N;k.��/ � ˇ, hence, from (3.11),
P

N
z fAg � 1 � ˇ, which concludes the proof. ut

Finally, we observe that, for the k-th order sample zŒk�, the empirical probability
on the observed extraction z0

is being no larger than zŒk� is precisely k=N, hence zŒk� can
be viewed as an “empirical �-quantile” of the underlying distribution, for � D k=N.
We can then specialize the previous corollary to assess precisely how close this
empirical quantile is to the actual �-quantile. This is established in the next corollary,
which also provides an explicit, non-asymptotic condition on N guaranteeing a
desired approximation of the quantile to arbitrary confidence.

Corollary 3. Given N, k � N, ˛ > 0, let the probability distribution on z be
continuous. Then,

P
N
z fz 2 ZN W qk=N�˛=2 < zŒk� � qk=NC˛=2g D ˚N;k.k=N C ˛=2/�˚N;k.k=N � ˛=2/:

Moreover, given ˇ 2 .0; 1/, if

N � 2

˛2
ln.2=ˇ/ (3.13)

then it holds that

P
N
z fz 2 ZN W qk=N�˛=2 < zŒk� � qk=NC˛=2gg � 1 � ˇ:

Proof. Let ��
:D � � ˛=2, �C

:D � C ˛=2, with � D k=N, and use (3.10): the k
variable gets eliminated, and we obtain

N
˛

2
C 1 �

r

N

2
ln.2=ˇ/

N
˛

2
�
r

N

2
ln.2=ˇ/:

From the second of these conditions (which implies the first), we readily have that
N � 2

˛2
ln.2=ˇ/, which concludes the proof. ut

Remark 3 (Practical Use of the Bounds). In practice, one may typically wish to use
the k-th order sample to approximate the �-quantile of the return distribution, for
given �. In this case, � is given, and so are the accuracy ˛ > 0 and confidence ˇ:
integer k is then fixed as k D d�Ne, hence the problem amounts to determining a
suitable N such that

P
N
z fz 2 ZN W q��˛=2 < zŒd�Ne� � q�C˛=2g � 1 � ˇ: (3.14)

Using Corollary 2, and recalling that N� � d�Ne � N�C1, one can easily check that
conditions (3.10) simply boil down to N � 2

˛2
ln.2=ˇ/, i.e., to the same condition
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as (3.13). Note however that (3.13) is a conservative bound on the required N: in
some applications it is important to actually determine the smallest possible sample
size N such that (3.14) is satisfied. This can be done by direct numerical evaluation
of the exact expression from (3.9)

P
N
z fz 2 ZN W q��˛=2 < zŒd�Ne� � q�C˛=2gg D ˚N;k.� C ˛=2/� ˚N;k.� � ˛=2/;

as a function of N, for k D d�Ne. ♦

3.3 Single-Period Scenario Design

In Sect. 3.2 we discussed how to reliably estimate the �-quantile of the return
distribution of a fixed portfolio, by direct analysis of a stream of N portfolio returns
generated by a scenario-generation oracle. In this section, we make a key leap
forward, moving into the area of data-driven portfolio design; the results in this
section have been originally exposed in [7]. The portfolio composition x in now
unknown, and our objective is to determine x so that the random portfolio return
has some desired properties, such as a guaranteed level of expected shortfall. To this
end, we shall consider a stream of N oracle-generated iid random returns, collected
by rows in a matrix RN :

R>
N D �

r.1/ r.2/ � � � r.N/
� 2 R

n;N :

Notice that RN is a random matrix, with each row independently distributed
according to the (possibly unknown) distribution P; events related to RN are
measured by the product probability measure P

N , having support �N . If x 2 X
is a portfolio vector, then the product

�N.x/ D RNx D Œ%1.x/ %2.x/ � � � %N.x/�
> 2 R

N

is a vector of iid portfolio returns, where

%i.x/
:D r>.i/x; i D 1; : : : ;N:

Our approach is to select x so to maximize a return level  that is exceeded by at
least N � q of the returns, where q � N � n � 1 is a given nonnegative integer.
In other words, we select x so that  is the empirical q=N-quantile of the portfolio
distribution. This selection procedure is described next.
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3.3.1 The Return Selection Rule

Let q � N�n�1 be a given nonnegative integer. We introduce a rule Sq for selecting
a subset of cardinality N � q of the returns in RN . Rule Sq takes as input the matrix
RN and returns a partition Iq, IN�q of the set of indices I D f1; : : : ;Ng, such that,
with probability one, the following properties are satisfied:

(a) jIqj D q, jIN�qj D N � q, and Iq [ IN�q D I, Iq \ IN�q D ;;
(b) let �, x� denote the optimal solutions of the following optimization problem:

max
x2X ;  subject to: %i.x/ � ; i 2 IN�q: (3.15)

Then, it must be %i.x�/ < �, for all i 2 Iq.

In words, the rule selects q returns in the sequence f%i.x/g such that � is the largest
lower bound over a (suitably selected, see Remark 4) subset of N � q returns, while
q of the returns fall below �.

As it will be made rigorously clear in the next section, we are in the presence
of a fundamental tradeoff here: while level � increases by increasing q, intuitively
this level also becomes less and less reliable that is, informally, the probability of
the actual portfolio return %.x�/ being larger than � decreases. This fact should
not come too much as a surprise, since level � can be interpreted as the empirical
.q=N/-quantile of the return sequence f%i.x�/giD1;:::;N .

Remark 4 (On the Implementation of the Selection Rule). All results in this section
hold for any selection rule that fulfills the requirements (a), (b) above. There are
indeed several ways to define a suitable selection rule; some of these possibilities
are briefly described next.

(i) Optimal selection rule. One possibility is to remove those q returns that
provide the best possible improvement of the � level in problem (3.15).
We call this rule the optimal selection rule. From a computational point of
view, implementing the optimal selection rule may be hard numerically, since
it corresponds in principle to a combinatorial problem: among all subsets of
f1; : : : ;Ng of cardinality q, select the one subset that provides the largest value
in �. Finding the optimal portfolio x� and the corresponding level � under the
optimal selection rule may be cast in the form of a mixed-integer linear program
as follows:

max
x2X ;;si2f0;1g

 (3.16)

subject to: Msi C %i.x/ � ; i D 1; : : : ;N
PN

iD1 si D q;
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where M is some “large” positive number (e.g., one may take M D 1, if all %i.x/
are known to be all smaller than one), and si, i D 1; : : : ;N, are additional 0/1
variables. Such problems can usually be solved quite effectively, for moderate
sizes, using numerical packages for mixed-integer linear optimization, such as
IBM CPLEX.

(ii) m-at-a-time rule. An alternative, suboptimal, rule for return removal can be
implemented as described next. The idea is that although problem (3.16) is
theoretically hard, it turns out in practice that it can be solved quite rapidly, if the
number of suppressed constraints is small. Therefore, while it can be prohibitive
to remove all q constraints at once (as it is prescribed by the optimal rule), it
is usually doable to remove m � q of them iteratively. The “m-at-a-time rule”
rule thus simply prescribes to suppress iteratively 1 � m � q returns at a time,
by solving repeatedly a problem of the form (3.16) with m instead of q, until all
q constraints have been removed. In principle, this approach is suboptimal, and
may not yield the same result as the optimal rule. However, it usually gives good
results in practice.

(iii) Lagrange multiplier-based rule. Another possibility (useful if one does not
have a mixed-integer solver available) is to prune the returns sequentially (one
by one, or m � 1 at a time) according to their impact on objective sensitivity.
With this approach, one first solves the LP with all returns in place, then removes
the 1 � m � min.n; q/ returns that yield the best local improvement in the
objective, then solves again the LP, and so on, until all q returns are removed.
Suitable implementation of such a technique provides a valid selection rule.
At each iteration, the returns to be removed can be determined by looking
at the values �i of the Lagrange multipliers (dual variables) associated with
the surviving constraints %i.x/ �  . It is indeed well known (see, e.g., [3])
that a positive Lagrange multiplier �i represents the sensitivity of the optimal
objective value to variations in the i-th inequality constraint, hence the locally-
best choice is to remove the m constraints corresponding to the m largest �i,
since this would induce (to first order approximation) the largest improvement in
objective value. A distinctive advantage of this selection rule is that the optimal
portfolio allocation problem in (3.15) is solved efficiently by solving a sequence
of standard linear programming problems.

Other constraint removal heuristics may be devised, besides the described ones.
It is important, however, to stress again the fact that the theory that is presented in
this paper does not depend on the specific selection rule and, in particular, it does
not need implementation of the optimal rule (which may be hard to compute). The
results in this paper hold for any selection rule that satisfies the requirements (a), (b)
specified at the beginning of Sect. 3.3.1. ♦
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3.3.2 The Shortfall Probability

Given a selection rule Sq, the optimal portfolio allocation strategy x� that we
propose is a solution of the following LP

� D max
x2X ;  (3.17)

subject to: r.i/>x � ; i 2 IN�q;

where, by the definition of the selection rule, it holds that %i.x�/ D r.i/>x� < �, for
all i 2 Iq. It is important to underline that we here take an a-priori point of view that
is, a priori, the return vectors r.i/, i D 1; : : : ;N, are random variables, hence also
the optimal solutions �, x� of (3.17) are random variables, which are functions of
the random data of the problem (i.e., of r.i/, i D 1; : : : ;N, which are collected in
the random matrix RN). Events involving �, x� are thus measured by the product
probability P

N . The problem under study belongs to the class of so-called random
convex programs (RCP), or scenario-based optimization, see [6, 8, 9]. In particular,
we here build upon the technique of random programs with violated constraints
described in [6] in order to derive the desired probabilistic bounds.

If we observe an actual realization of the returns (for example, by looking a
posteriori at the stream of N returns generated by the oracle), then the observed
return sequence becomes deterministic, and (3.17) would return a deterministic
vector x� and a deterministic level �. However, before we look at the actual
realization, these two variables remain uncertain and random. We are interested in
providing an a-priori probabilistic characterization on the optimal solution of (3.17).
To this end, we introduce a further assumption and a definition.

Assumption 1 (Uniqueness). X is a nonempty polytope and, with probability one,
the optimal solution x�, � of (3.17) is unique. ?

Remark 5. The assumption that X is a nonempty polytope guarantees that the set X
is compact and nonempty, which implies that problem (3.17) is feasible and it attains
an optimal solution; this assumption is generally fulfilled in portfolio optimization
problems, hence it is not restrictive in practice. Assumption 1 further postulates
that the optimal solution is uniquely identified, i.e., that the optimum of the LP is
attained at a vertex. This is usually the case for LP constrains in “general position”
(e.g., excluding cases of two or more identical returns, which happen with zero
probability under continuous distributions). Moreover, an infinitesimal perturbation
of the constraints, or introduction of a strictly convex regularization term in the
objective would always make the optimal solution unique. Assumption 1 is thus
made for technical reasons, and it is not restrictive from a practical point of view, in
the present context. ♦
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For a fixed portfolio x 2 X and return level  2 R, we define the shortfall
probability as

V.x; / D Pfr W r>x < g:

Such a probability is a number in Œ0; 1�. However, if we now ask about the shortfall
probability relative to the optimal solution of (3.17), we have

V� :D V.x�; �/ D Pfr W r>x� < �g; (3.18)

and this is, a priori, a random variable, since x�; � are so. Indeed, for each different
realization of the random returns RN we will get different x�; �, hence a different
V�. Therefore, V� is a random variable with support Œ0; 1�, and events related to
V� are measured by the product probability P

N . It is then natural to consider as a
measure of “riskiness” of the optimal portfolio the expected value (with respect to
P

N) of the shortfall probability V�. This leads to the following definition.

Definition 1 (Expected Shortfall Probability). The expected shortfall probability
of the optimal portfolio resulting from (3.17) is defined as

EPN fV�g D EPN fPfr W r>x� < �gg:

Our key result concerns a quantification of an upper bound on the expected shortfall
probability of the optimal portfolio. This is developed in the next section.

3.3.3 Shortfall Probability of the Optimal Data-Driven
Portfolio

The first result we report concerns an upper bound on the upper tail of the
distribution of V�. This results follows directly from Theorem 4.1 and Corollary 4.2
in [6], considering that the problem (3.17) we are dealing with is precisely a random
convex program with Helly’s dimension upper bounded by n C 1, which is the
number of decision variables in problem (3.17); see [6] for further details and
definitions.

Lemma 1 (Upper-Tail Bound on V�). Let Assumption 1 hold, and let x�; � be
the optimal solution of problem (3.17), under any given selection rule satisfying
properties (a)–(c) specified in Sect. 3.3.1. Let V� be defined as in (3.18). Then it
holds that

P
NfV� > zg �

�
q C n

q

�

N̊ .zI q C n;N/; (3.19)

where
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N̊N;qCnC1.z/
:D

qCn
X

jD0

�
N
j

�

zj.1 � z/N�j; (3.20)

and

�
q C n

q

�

D .q C n/Š

qŠnŠ
D

q
Y

iD1

n C i

i
:

?

Note that N̊ in (3.20) can be expressed in terms of the regularized incomplete beta
function I.zI a; b/ as follows

N̊b;aC1.z/ D I.1 � zI b � a; a C 1/

D 1 � I.zI a C 1; b � a/:

An important consequence of Lemma 1 is that, for given level z and a suitable choice
of the time window N and of the removal cardinality q, we can make the upper tail
bound (3.19) as small as desired, so that with practical certainty the optimization
will provide a V� such that V� � z.

We next state a result which provides an explicit and efficient upper bound on the
expected shortfall probability.

Lemma 2 (Upper Bound on the Expected Shortfall Probability). Let Assump-
tion 1 hold, and let x�; � be the optimal solution of problem (3.17), under any given
selection rule satisfying properties (a)–(c) specified in Sect. 3.3.1. Let V� be defined
as in (3.18). Then it holds that

EPN fV�g � q

N
C
�

n

N
C !.n; q/

2
p

N

�

; (3.21)

where !.n; q/ D O.
p

2n ln.q C n// and, more precisely,

!.n; q/ D 2n.1C ln.q C n/� ln n/� 2 ln 2C 1
p

2n.1C ln.q C n/ � ln n/� 2 ln 2
:

?

A proof for Lemma 2 is given in Appendix 1 of [7].

Remark 6. Equation (3.21) has the following interpretation: �
:D q=N is the

empirical shortfall probability, i.e., the shortfall probability of the optimal data-
driven portfolio on the data RN that are used for the optimization. In other words, �
is the in-sample shortfall empirical probability. The extra term in (3.21)
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�.N; q; n/ D n

N
C !.n; q/

2
p

N

represents the excess shortfall probability due to the fact that the data upon which
the optimal portfolio is built (the RN) are themselves random. ♦

Lemma 2 provides us with an explicit upper bound on the expected shortfall
probability, for given data length N and removal cardinality q. The formula in (3.21),
as well as the formula in (3.19), can be “inverted,” at least numerically, in order to
find suitable N and q, given assigned levels of tolerable shortfall probability or of
expected shortfall probability. These fundamental tradeoffs are highlighted in the
following corollary, whose proof is reported in Appendix 3 of [7].

Corollary 4 (Explicit Conditions on N and q). Let ˇ 2 .0; 1/ be a very small
probability level chosen by the user (e.g., set ˇ D 10�6, or lower, for “practical
certainty”). Let ztol 2 .0; 1/ be a desired tolerable shortfall probability level, let
zexp 2 .0; 1/ be a desired expected shortfall probability level, and let q � N � n � 1.
Then, the following statements are true:

(1) If

N � 2

ztol
lnˇ�1 C 4

ztol
.q C n/; (3.22)

then fV� � ztolg holds with probability larger than 1 � ˇ (i.e., with practical
certainty).

(2) If

N � 4
q C n

zexp
C .c C 1=c/2

4zexp
2

; (3.23)

with c
:D
q

2n C 2n ln nCq
q � 2 ln 2, then it holds that EPN fV�g � zexp. For

“large” q, bound (3.23) simplifies approximately to

N � 4
q C n

zexp
C
2n C 2n ln nCq

q � 2 ln 2

4zexp
2

:

?

Remark 7. Equations (3.22), (3.23) provide a rigorous quantification of the tradeoff
between acceptable risk and the cardinality of scenarios used for optimization.
The practical use of these equations is illustrated next; to fix ideas we concentrate
on design based on the expected shortfall probability (Eq. (3.23)), the discussion
on (3.22) being analogous. We make three observations.
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(i) For fixed N and for a given desired level of expected shortfall probability
zexp, it is the investor’s interest to make � as large as possible. On a given
realization of the returns, level � increases if we increase the number q of
suppressed returns, hence we want to make q as large as possible. However,
if one increases q too much, then the resulting portfolio will fail to satisfy
the expected shortfall probability requirement. The right-hand-side of (3.23)
is increasing in q, hence this term tells us precisely how large q can be made,
while satisfying the requirement EPN fV�g � zexp: we choose q such that the
right-hand-side of (3.23) is the largest integer that does not exceed N.

(ii) If N is not fixed (e.g., we are free to decide what the scenario cardinality to be
used for optimization should be), then Eq. (3.23) can be used to plot a tradeoff
set on an .N; q/ plane, for the given desired level zexp. Any pair N; q in the
admissible set is a valid pair guaranteeing that the result of the optimization
will satisfy EPN fV�g � zexp.

(iii) An interesting feature that is captured by the present theory is that, all the other
parameters being the same, the expected shortfall probability bound increases
as n (the number of securities in the portfolio) increases. The reason for this lies
at the fundamental tradeoff between the complexity of the random optimization
model (here, the number of variables, n C 1) and the out-of-sample reliability
of the model: the more complex the model is (i.e., the larger n is), the more
training data we need for achieving a given reliability level (i.e., the larger
N needs to be). A financial interpretation of this phenomenon is that high
diversification of a portfolio (large n) needs a large number N of data in order
to provide meaningful portfolios.

♦

3.4 Multi-Period Scenario Design

In this section, we outline a multi-period extension of the idea developed in the
previous section. We consider a decision problem over T periods (or stages), where
at each period we have the opportunity of rebalancing our portfolio allocation,
with the objective of obtaining a maximal level of return at the final stage, while
guaranteeing a desired level of expected shortfall.

We start in Sect. 3.4.1 by considering, for simplicity of exposition, an “open-
loop” strategy with no recourse. This model can be extended to include conditional
decisions with affine recourse policies, along the path described in [4, 5]; such
extension is outlined in Sect. 3.4.2.
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3.4.1 Open-Loop Strategy

Consider a decision horizon of T periods, where the k-th period starts at time k � 1

and ends at time k, see Fig. 3.2.
We denote with xi.k/ the Euro value of the portion of the investor’s total wealth

invested in security ai at time k. The portfolio at time k is the vector

x.k/
:D �

x1.k/ � � � xn.k/
�>
:

The investor’s total wealth at time k is

w.k/
:D

nX

iD1
x.k/ D 1>x.k/;

where 1 denotes a vector of ones. Let x.0/ be the given initial portfolio composition
at time k D 0. For instance, we may assume that x.0/ is all zeros, except for one
entry representing the initial available amount of cash. At k D 0, we have the
opportunity of conducting transactions on the market and therefore adjusting the
portfolio by increasing or decreasing the amount invested in each asset. Just after
transactions, the adjusted portfolio is

xC.0/ D x.0/C u.0/;

where ui.0/ > 0 if we increase the position on the i-th asset, ui.0/ < 0 if we decrease
it, and ui.0/ D 0 if we leave it unchanged. Suppose now that the portfolio is held
unchanged for the first period of time �. At the end of this first period, the portfolio
composition is

x.1/ D G.1/xC.0/ D G.1/x.0/C G.1/u.0/;

where G.1/ D diag.g1.1/; : : : ; gn.1// is a diagonal matrix of the asset gains over
the period from time 0 to time 1. At time k D 1, we perform again an adjustment of
the portfolio: xC.1/ D x.1/C u.1/, and then hold the updated portfolio for another
period of duration�. At time k D 2 the portfolio composition is hence

Fig. 3.2 Portfolio dynamics and periods
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x.2/ D G.2/xC.1/ D G.2/x.1/C G.2/u.1/:

Proceeding in this way for k D 0; 1; 2; : : :, we determine the iterative dynamic
equations of the portfolio composition at the end of period .k C 1/:

x.k C 1/ D G.k C 1/x.k/C G.k C 1/u.k/; k D 0; : : : ;T � 1 (3.24)

as well as the equations for portfolio composition just after the .kC1/-th transaction
(see Fig. 3.2)

xC.k/ D x.k/C u.k/:

From (3.24) it results that the (random) portfolio composition at time k D 1; : : : ;T
is

x.k/ D ˚.1; k/x.0/C �

˚.1; k/ ˚.2; k/ � � � ˚.k � 1; k/ ˚.k; k/ �

2

6
6
6
6
6
4

u.0/
u.1/
:::

u.k � 2/

u.k � 1/

3

7
7
7
7
7
5

D ˚.1; k/x.0/C�ku;

where we defined ˚.�; k/, � � k, as the compounded gain matrix from the
beginning of period � to the end of period k:

˚.�; k/
:D G.k/G.k � 1/ � � � G.�/; ˚.k; k/

:D G.k/;

and

u D �

u.0/> � � � u.T � 2/> u.T � 1/>
�>
;

�k D �

˚.1; k/ � � � ˚.k � 1; k/ ˚.k; k/ 0 � � � 0 � :

We thus have for the total wealth

w.k/ D 1>x.k/ D �.1; k/>x.0/C !>
k u;

where

�.�; k/> :D 1>˚.�; k/;

!>
k
:D 1>�k D Œ�.1; k/> � � � �.k � 1; k/> �.k; k/> j 0 � � � 0�:

We consider the portfolio to be self-financing, that is
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nX

iD1
ui.k/ D 0; k D 0; : : : ;T � 1;

and we include generic linear constraints in the model by imposing that the updated
portfolios xC.k/ lie within a given polytope X .k/. The purpose of our decision
model is to determine, at time 0, the adjustments u.0/; : : : ; u.T � 1/ so to maximize
a level  of final return under an assigned empirical shortfall constraint.

The cumulative gross return of the investment over the whole horizon is

%.u/
:D w.T/

w.0/
D 1>x.T/

1>x.0/
D �.1;T/>x.0/

1>x.0/
C 1

1>x.0/
!>

T u:

We see that %.u/ is an affine function of the decision variables u, with a random
vector !T of coefficients that depends on the random gains over the T periods.

Suppose now that N iid samples (scenarios) of the period gains fG.k/; k D
1; : : : ;Tg are available from a scenario generating oracle. These sample produce in
turn N scenarios for each of the�k matrices, k D 1; : : : ;T, and hence of the !k and
�.1; k/ vectors. We denote such scenarios with �.i/

k , !.i/k , �.i/.1; k/, i D 1; : : : ;N,
and with x.i/.k/, w.i/.k/, %.i/.u/, respectively, the portfolio composition at time k,
the total wealth at time k, and the cumulative final return, under the i-th scenario.
Consider next a selection rule Sq, analogous to the one introduced in Sect. 3.3.1, that
selects N � q of the generated scenarios, such that

.u�; �/ D arg max
u;

 (3.25)

s.t.: %.i/.u/ �  i 2 IN�q

x.i/.k/ 2 X .k/; k D 1; : : : ;TI i 2 IN�q

1>u.k/ D 0; k D 0; : : : ;T � 1;

and

%.i/.u�/ < �; for i 2 Iq:

The selection rule can be implemented in one of the ways described in Remark 4.
With the implementation in point (iii), finding the optimal portfolio adjustments
u� amounts to solving a sequence of linear programming problems. However,
regardless of the chosen selection rule, and under the usual assumptions of existence
and uniqueness of the optimal solution, we can apply the result in Lemma 2 to
quantify an a-priori guarantee on the expected shortfall probability of the final
return. To this end, we define

V� D Pf%.i/.u�/ < �g;
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and then apply Eq. (3.21) substituting n with the actual number of decision variables
nT (i.e., the dimension of vector u), thus obtaining

EPN fV�g � q

N
C
�

nT

N
C !.nT; q/

2
p

N

�

:

Here, probability P refers to the probability measure on the gain sequences
fG.k/; k D 1; : : : ;Tg, and P

N to the corresponding N-fold product measure.

3.4.2 Closed-Loop Strategy with Affine Policies

As it is well known, the open-loop strategy discussed in the previous section
may be suboptimal in an actual implementation, since all adjustment decisions
u.0/; : : : ; u.T � 1/ are computed at time k D 0. While the first decision u.0/ must
be immediately implemented (here-and-now variable), the future decisions may
actually wait-and-see the actual outcomes of the returns in the forward periods, and
hence benefit from the uncertainty reduction that comes from these observations.
For example, at time k � 1, when we need to implement u.k/, we have observed a
realization of the asset returns over the periods from 1 to k. Hence, we would like
to exploit this information, by considering conditional allocation decisions u.k/,
that may react to the returns observed over the previous periods. This means that,
instead of focusing on fixed decisions u.k/, we wish to determine suitable policies
that prescribe what the actual decision should be, in dependence of the observed
returns from 1 up to k. In determining the structure of the decision policy one
should evaluate a tradeoff between generality and numerical viability of the ensuing
optimization problems. In some recent papers, see, e.g., [2, 4, 5] it has been observed
that linear or affine policies do provide an interesting tradeoff by allowing reactive
policies to be efficiently computed via convex optimization techniques. In this paper,
we follow this route, and consider decisions prescribed by affine policies of the
following form

u.k/ D Nu.k/C�.k/ .g.k/ � Ng.k// ; k D 1; : : : ;T � 1; (3.26)

and u.0/ D Nu.0/, where Nu.k/ 2 R
n, k D 0; : : : ;T � 1 are “nominal” allocation

decision variables, g.k/ is the vector of gains over the k-th period, Ng.k/ is a given
estimate of the expected value of g.k/, and �.k/ 2 R

n;n, k D 1; : : : ;T � 1, are
the policy “reaction matrices,” whose role is to adjust the nominal allocation with
a term proportional to the deviation of the gain g.k/ from its expected value. Since
the budget conservation constraint 1>u.k/ D 0 must hold for any realization of the
gains, we shall impose the restrictions

1> Nu.k/ D 0; 1>�.k/ D 0; k D 0; 1; : : : ;T � 1:
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Applying the adjustment policy (3.26) to the portfolio dynamics Eqs. (3.24), (3.4.1),
we have

xC.k/ D x.k/C Nu.k/C�.k/ .g.k/ � Ng.k// (3.27)

x.k C 1/ D G.k C 1/xC.k/; k D 0; 1 : : : ;T � 1; (3.28)

with�.0/
:D 0. From repeated application of (3.27), (3.28) we obtain the expression

for the portfolio composition at a generic instant k D 1; : : : ;T:

x.k/ D ˚.1; k/x.0/C�k Nu C
kX

tD1
˚.t; k/�.t � 1/Qg.t � 1/;

where�.0/ D 0, and

Nu :D � Nu.0/> � � � Nu.T � 2/> Nu.T � 1/>
�>
;

Qg.k/ :D g.k/� Ng.k/; k D 1; : : : ;T:

A key observation is that x.k/ is an affine function of the decision variables Nu.k/
and�.k/, k D 1; : : : ;T � 1. The cumulative gross return of the investment over the
whole horizon is then

%. Nu;�/ D w.T/

w.0/
D 1>x.T/

1>x.0/

D 1

1>x.0/

 

�.1;T/>x.0/C !>
T Nu C

TX

tD1
˚.t;T/�.t � 1/Qg.t � 1/

!

;

which is again affine in the variables Nu and �
:D Œ�.1/ � � � �.T � 1/�. Given N

iid samples (scenarios) of the period gains fG.k/; k D 1; : : : ;Tg, generated by
a scenario generating oracle, and a selection rule Sq, we can determine optimal
policies by solving a problem similar to (3.25), that is

. Nu�;��; �/ D arg maxNu;� ;


s.t.: %.i/. Nu;�/ �  i 2 IN�q

x.i/.k/ 2 X .k/; k D 1; : : : ;TI i 2 IN�q

1>u.k/ D 0; k D 0; : : : ;T � 1;
1>�.k/ D 0; k D 1; : : : ;T � 1;

and
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%.i/. Nu�;��/ < �; for i 2 Iq:

These optimal allocations may be determined in a numerically efficient way by
solving, for instance, a sequence of linear programming problems. The results of
Lemma 2 apply also to this problem for quantifying an a-priori guarantee on the
expected shortfall probability of the final return, considering that the number of
optimization variables is now nT C n2.T � 1/.

3.4.3 Sliding-Horizon Implementation

We remark that, in practice, both the open-loop and the closed-loop investment
models will typically be applied using a sliding horizon strategy, whereby only the
first adjustment u.0/ (or u.0/, in the closed-loop approach) is executed at the current
time k D 0. Then, the investor waits one period and, at time k D 1, solves the whole
problem again over a forward-shifted horizon and executes only the first adjustment
of the computed sequence, and so on. This approach permits to effectively take full
advantage of the information that becomes progressively available as the time moves
forward (e.g., at time k D 0 the gain G.1/ is uncertain and random, while at time
k D 1 we can see a realization of G.1/, and hence profit from this information when
computing the adjustment u.1/, etc.).

3.5 Scenario Methods for Single-Period Robust Portfolio
Design

In this section we outline how random convex programming (RCP) or scenario-
based optimization methods can be effectively used also in the context of model-
based robust portfolio design. We focus on a single-period mean-variance frame-
work, and consider only one prototype problem of robust variance minimization
under a minimal return constraint. Different from the previous sections, we shall
assume henceforth that an ambiguous model for the asset returns has been obtained,
for instance, by historical data analysis, possibly in conjunction with expert
knowledge, as detailed next.

3.5.1 Robust Portfolio Allocation Models

We assume that the return vector is a random variable with expected value Or 2
R

n and covariance matrix ˙ 2 R
n;n (symmetric and positive semidefinite). We

assume, however, that these two moments are not known exactly, i.e., that the
return distribution is ambiguous, that is, there exist uncertainty in the value of
these parameters. We model this uncertainty by assuming that .Or; ˙/ belongs to
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some given bounded uncertainty set U , over which we also specify a probability
distribution, modeling our prior knowledge on the likelihood of the outcomes of
these parameters. For a given portfolio x, the worst-case portfolio variance is given
by

�wc
2 D sup

.Or;˙/2U
x>˙x:

A minimum worst-case variance portfolio design problem would then be

min
x

sup.Or;˙/2U x>˙x

s.t.: inf.Or;˙/2U Or>x � min

x 2 X ;

where min is a given lower bound on the portfolio expected return. The problem
can be stated equivalently as follows:

min
x;t

t (3.29)

s.t.: x>˙x � t 8 .Or; ˙/ 2 U

Or>x � min 8 .Or; ˙/ 2 U ;

x 2 X :

This problem can be solved efficiently and exactly only in some special cases, where
the uncertainty set U is “simple.” For instance, if U D f.Or; ˙/ W Or 2 Ur; ˙ 2 U˙g,
where Ur, U˙ are interval sets

Ur D fOr W rmin � Or � rmaxg;
U˙ D f˙ W ˙min � ˙ � ˙max; ˙ � 0g;

then, under the further assumptions that x � 0 and ˙max � 0, problem (3.29) is
equivalent to (see Tütüncü and Koenig [21])

min
x;t

x>˙maxx

s.t.: rmin
>x � min

x 2 X :

Another uncertainty model, proposed by Goldfarb and Iyengar [15], assumes that
the return vector is described by a factor model

r D Or C V>f C ";
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where V 2 R
m;n is the matrix of factor loadings, f 2 R

m is the vector of returns of
the factors that drive the market, and " is a vector of residual terms. In the model
of [15], it is assumed that f has zero mean and covariance F, and " has zero mean
and covariance D D diag.d1; : : : ; dn/; F is assumed to be known exactly, while
interval uncertainty is assumed on D (i.e., di 2 Œdi;

Ndi�, i D 1; : : : ; n) and on Or (i.e.,
Ori D Nri C �i, j�ij � �i, i D 1; : : : ; n), and column-wise uncertainty is assumed on the
factor loading matrix, i.e.,

V D V0 C W; where w>
i Gwi � �2i ; i D 1; : : : ; n;

where wi denotes the i-th column of matrix W, and G  0 is a given matrix. Under
such hypotheses, problem (3.29) can be reformulated into an equivalent second
order cone program (SOCP), and hence solved efficiently.

However, for more generic uncertainty sets, not satisfying the hypotheses of
the two particular cases mentioned above, the robust minimum worst-case variance
problem (3.29) remains computationally intractable, in general. The same claim can
be made for related robust portfolio design problems, such as the robust maximum
return problem (in which one maximizes the minimum expected return, under an
upper bound on the worst-case portfolio variance), the robust maximum Sharpe ratio
problem (in which one maximizes the worst-case ratio of the expected excess return
on the portfolio to the standard deviation of the return), or the robust value-at-risk
problem [13].

3.5.2 The Scenario Approach

In the scenario approach to robust optimization (also known as the random convex
programming (RCP) paradigm), we tackle “hard” robustness problems that cannot
be solved efficiently via exact approaches, by relaxing the deterministic worst-case
paradigm via a probabilistic one, and by resorting to uncertainty randomization.
This approach has two aspects, one computational and the other theoretical. From
the computational side, the scenario approach is very simple: collect N independent
samples—the scenarios—.Or.i/,˙.i//, i D 1; : : : ;N, of the uncertain parameters from
the set U according to their probability distribution Pu, and then solve the standard
convex optimization problem

min
x;t

t (3.30)

s.t.: x>˙.i/x � t i D 1; : : : ;N;

Or.i/>x � min i D 1; : : : ;N;

x 2 X :
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From the theoretical side, the RCP theory provides us a guarantee on the level of
“probabilistic robustness” of the optimal solution of problem (3.30). Indeed, observe
that, a priori, the optimal solution of (3.30), .x�; t�/, is a random variable that
depends on the scenario multi-extraction .Or.i/, ˙.i//, i D 1; : : : ;N, hence events
related to .x�; t�/ are measured by the product probability P

N
u . The probabilistic

robustness R of a given portfolio x and level t is defined as

R.x; t/ D Puf.Or; ˙/ W x>˙x � t; Or>x � ming:

For instance, if .x; t/ is the solution of a deterministically robust design, one would
have R.x; t/ D 1, since this solution guarantees satisfaction of the constraints, for all
possible outcomes of the “uncertainty” .Or; ˙/ 2 U . We are interested in quantifying
the probabilistic robustness of the optimal solution of the scenario problem (3.30),
that is in

R� :D R.x�; t�/:

However, since .x�; t�/ is random, R.x�; t�/ is also a random variable, with support
in the interval Œ0; 1�. The best we could hope for is thus to determine the probability
distribution of R.x�; t�/, or at least a lower bound on it. Clearly, the more R� is
concentrated towards high values (i.e., close to one), the more “robust” the solution
is. Under the assumption that problem (3.30) is feasible with probability one and
that the optimal solution is unique, we can apply the result in Corollary 3.4 of [6].
Since the number of variables of problem (3.30) is nC1 and the problem is assumed
to be feasible almost surely, the Helly’s dimension of the problem is � D n C 1, and
we obtain from Corollary 3.4 of [6] that, for � 2 .0; 1/

P
N
u fR� < 1 � �g � N̊N;nC1.�/;

where N̊N;nC1 is defined in (3.20), namely

N̊N;nC1.�/ D
nX

jD0

�
N
j

�

�j.1 � �/N�j;

In practice, one selects a very small value ˇ 2 .0; 1/, say ˇ D 10�7, and a desired
level of probabilistic robustness 1� � for the portfolio, and determines numerically
a value for integer N such that N̊N;nC1.�/ � ˇ. Solving the scenario problem (3.30)
with this value of N will guarantee a priori that the resulting portfolio will satisfy
R� � 1 � �, with overwhelming probability 1 � ˇ. Since ˇ is chosen so small that
the event R� < 1� � is unlikely to occur to all practical purposes, we have a tool for
obtaining portfolio designs that are probabilistically robust to level �. The advantage
of this approach is that it works for any generic structure of the uncertainty, and it
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does not require lifting the class of optimization problems one needs to solve, i.e.,
the “robustified” problem (3.30) remains a convex quadratic optimization problem.

3.6 A Practical Asset Allocation Example

We present a numerical example illustrating the technique described in Sect. 3.3
on a problem of asset allocation, with a comparison with results obtained via a
traditional value-at-risk (V@R) minimization approach. We considered n D 7 asset
classes, corresponding to the following sectors:

1. US Industrial sector equities, represented by proxy SPDR Dow Jones Industrial
ETF, ticker DIA;

2. US Transportation sector equities, represented by proxy iShares Dow Jones
Transportation ETF, ticker IYT;

3. US Utilities sector equities, represented by proxy iShares Dow Jones Utilities
ETF, ticker IDU;

4. US Technology sector equities, represented by proxy First Trust Nasdaq-100 Ex-
Tech EFT, ticker QQXT;

5. Euro Large Cap equities, represented by proxy SPDR Euro Stoxx 50 ETF, ticker
FEZ;

6. Long-term Treasury bonds, represented by proxy iShares Barclays 20+ Year
Treas. Bond ETF, ticker TLT;

7. Corporate bonds, represented by proxy iShares iBoxx USD High Yid Corp Bond
ETF, ticker HYG.

Our simulation horizon considers daily price data of the component assets from
2-Jan-2011 to 13-Dec-2011 (240 trading days), as shown in Fig. 3.3.

Starting from the initial date of the considered period, we proceed as follows:

• We collect return data for the 7 considered assets, over a look-back period of 100
trading days preceding the current date;

• We use these data to estimate expected returns and the covariance matrix of the
assets (to be used for the V@R-optimal portfolio design), and we re-sample the
data so to obtain a larger sample of size N D 500 to be used for the scenario-
optimization method;

• We set expected shortfall level zexp D 0:1, and determine a value for q such that
Eq. (3.21) holds, with n D 7, N D 500;

• We solve the scenario optimization problem (3.17) using an m-at-a-time return
removal rule (with m D 3), and determine the corresponding optimal portfolio
allocation xes. We applied a threshold rule on portfolio update: if the maximum
portfolio variation is above 5 % w.r.t. the previously computed portfolio, then we
apply the variation to the updated portfolio, otherwise, we keep the previously
computed portfolio for the next period;
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Fig. 3.3 Daily price data (in USD) of the considered assets over the period from 2-Jan-2011 to
13-Dec-2011

• We hold the portfolios fixed for 20 trading days, and simulate the corresponding
performance on the actual forward data;

• We update the current date to the end of the simulation period of 20 days;
• We iterate the whole process, until the final date is reached.
• For comparison purposes, we also solve at each step a standard V@R opti-

mization problem with shortfall level zexp and determine the corresponding
optimal portfolio allocation xvar. Also, we use for comparison a randomly chosen
portfolio, as well as a one-over-n fixed portfolio allocation (every asset fixed to
1=n proportion in the portfolio).

Figure 3.4 shows the time evolution of a unit initial investment in portfolios
managed according to the empirical shortfall approach (bold line). The V@R
optimal portfolios, along with random portfolios and one-over-n portfolios are
also reported for comparison. In this test, the empirical-shortfall strategy yielded
a slightly superior return at the end of the simulation interval, compared to the
V@R strategy (16.62 % gross return against 13.95 % of the V@R strategy). The
0:1-empirical, out of sample, quantile of the return streams generated by the two
strategies resulted to be almost identical, being �0:44% for the empirical-shortfall
strategy and �0:42% for the V@R strategy. The random and one-over-n portfolio
strategies have larger 0:1-empirical quantiles, resulting respectively in �1:24%
and �1:39%. The composition of the empirical shortfall portfolios over the 12
considered holding periods is shown in Fig. 3.5.

An analogous simulation, over the period from 14-Dec-2011 to 28-Nov-2012,
yielded similar results, showing that the empirical-shortfall portfolios yield a path
similar to the one of the V@R portfolios (the out-of-sample 0:1-empirical quantiles
were �0:33% for the empirical-shortfall strategy, �0:34% for the V@R strategy,
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Fig. 3.4 Evolution of the investment according to the empirical shortfall optimization strategy
(bold black line) and to the V@R optimization strategy (light black line), over the period from
2-Jan-2011 to 13-Dec-2011. The green line reports the evolution of a random portfolio allocation
strategy, and the red line the one of a one-over-n fixed portfolio strategy

�0:68% for the random portfolios, and �0:73% for the one-over-n fixed portfolio),
as shown in Fig. 3.6.

3.7 Conclusions

The mainstream approach to single-period portfolio analysis and design problems
(such as mean-variance design, or value-at-risk design) is usually a model-based
one, i.e., it strongly relies on an elicited statistical model for the returns. In this
chapter, we proposed in Sect. 3.2 an alternative, data-driven, approach for analyzing
the shortfall probability of a given portfolio, and we extended this idea in Sect. 3.3
to a design technique that uses samples of the returns directly in the optimization
phase for finding an optimal allocation. From the computational side, this approach
typically requires the solution of a sequence of linear optimization problems, which
can be efficiently performed on modern computing platforms. From the theoretical
side, it provides rigorous guarantees relating the finite number of scenarios used in
the optimization phase to the out-of-sample reliability of the obtained design.

The data-driven idea can also be employed in multi-stage allocation problems
(discussed in Sect. 3.4), especially in conjunction with specific affine reaction
policies, where it might be competitive with the more standard sampling approaches
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Fig. 3.5 Composition of the empirical shortfall portfolios over the 12 holding periods of 20 days
each, from 2-Jan-2011 to 13-Dec-2011

20 40 60 80 100 120 140 160 180 200 220 240

1

1.02

1.04

1.06

1.08

1.1

Time (days)

Fig. 3.6 Evolution of the investment according to the empirical shortfall optimization strategy
(bold black line) and to the V@R optimization strategy (light black line), over the period from 14-
Dec-2011 to 28-Nov-2012. The green line reports the evolution of a random portfolio allocation
strategy, and the red line the one of a one-over-n fixed portfolio strategy
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based on scenario trees, who usually have the drawback of rapid combinatorial
explosion. In-depth numerical experimentation and comparison of these two types
of approaches to multi-period decision problems is still needed, and it should make
the object of further research.
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Chapter 4
Robust Approaches to Pension Fund Asset
Liability Management Under Uncertainty

Dessislava Pachamanova, Nalan Gülpınar, and Ethem Çanakoğlu

Abstract This entry considers the problem of a typical pension fund that collects
premiums from sponsors or employees and is liable for fixed payments to its
customers after retirement. The fund manager’s goal is to determine an investment
strategy so that the fund can cover its liabilities while minimizing contributions from
its sponsors and maximizing the value of its assets. We develop robust optimization
and scenario-based stochastic programming approaches for optimal asset-liability
management, taking into consideration the uncertainty in asset returns and future
liabilities. Our focus is on computational tractability and ease of implementation
under conditions typically encountered in practice, such as asymmetries in the
distributions of asset returns. Computational results from tests with real and
generated data are presented to illustrate the performance of these models.

Keywords Asset-liability management • Uncertainty • Stochastic program-
ming • Robust optimization • Asymmetry

4.1 Introduction

Asset-liability management (ALM) is one of the classical problems in financial
risk management. Typically, ALM involves the management of assets in such a
way as to earn adequate return while maintaining a comfortable surplus of assets
over existing and future liabilities. This type of problem is faced by a number of
financial services companies, such as pension funds and insurance companies. As
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we will explain in more detail later, the problem of finding optimal ALM policies
is computationally challenging, and many of the approaches for implementation
described in the literature can be too intensive computationally to implement in
practice.

There is an extensive literature on modeling and optimization of allocation
strategies for ALM based on stochastic programming techniques; see, for example,
Ziemba and Mulvey [33]. These approaches usually focus on finding optimal
investment rules over a set of scenarios for the future returns on the assets and the
liabilities of the company. Such methods have been successfully applied in some
instances (see, for example, [29], [15], [16], and [21]); however, they are still not
widely used in the financial industry for several reasons. First, ALM is inherently
a multiperiod problem, and the number of scenarios needed to represent reality
satisfactorily increases exponentially with the number of time periods under consid-
eration. Thus, the dimension of the optimization problem, and correspondingly its
computational difficulty, increases. Second, the scenario generation itself requires
sophisticated statistical techniques, which is a deterrent to practitioners who need
to make decisions in a short amount of time. Finally, often little is known about the
specific distributions of future uncertainties in the ALM problem, and little data are
available for estimating the probability distributions of these uncertainties. In many
cases, it may be preferable to provide general information about the uncertainties,
such as means, ranges, and directional deviations, rather than generating specific
scenarios.

In this entry, we are concerned with ALM models for pension funds. Different
ALM models for pension funds have been developed in the literature. For example,
Dert [17] analyzes a dynamic model for asset-liability management for defined
benefit pension funds. Bogentoft et al. [11] and Hilli et al. [28] consider optimal
decision approaches for multiperiod asset-liability management model for a pension
fund using Conditional Value-at-Risk (CVaR). Boender [10] introduces a decision
support model to sustain management of pension funds in the strategic planning
of the available asset and liability policy instruments. He models risk drivers by
scenarios rather than by probability distributions, and describes how the process
of managerial learning can be improved by a hybrid simulation and optimization
method to determine the asset allocations which determine efficient frontiers of
contribution rates and downside insolvency risks. Gülpınar and Pachamanova [25]
develop a robust ALM model for a pension fund, mapping a time series model for
asset returns to the underlying uncertain parameter structure.

We develop stochastic programming and robust optimization-based approaches
for handling the classical ALM formulation. As we will discuss in more detail
later, robust optimization—a technique for optimization under uncertainty that is
concerned with finding the optimal solution when uncertain parameters in the
problem take their worst-case values in pre-specified uncertainty sets—is a natural
choice for ALM-type problems. In developing these models, we have several
priorities in mind. First, we focus on computational tractability and practical
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implementation. Second, we consider models that can represent features of the
investment reality, such as the ability to incorporate observed asymmetries in asset
returns in the model.

The rest of this entry is organized as follows. In Sect. 4.2, we present an ALM
problem statement for pension funds. Section 4.3 introduces a scenario-based
stochastic programming formulation of the pension fund ALM problem. Section 4.4
provides a brief introduction to robust optimization. Robust formulations of ALM
models using symmetric and asymmetric uncertainty sets are developed in Sect. 4.5.
Computational experiments are presented in Sect. 4.6. Section 4.7 summarizes our
findings.

Notation. We use tilde ( Q�) to denote randomness; e.g., Qz denotes random variable
z. Vectors are in boldface and matrices are denoted by boldface capital letters. For
example, a is a vector and A is a matrix. The expected value of random variable Qz,
EŒQz�, is denoted by Oz. Apostrophe (0) denotes matrix transpose.

4.2 ALM Model for Pension Funds: Problem Statement

A pension fund receives premiums from sponsors or current employees and supplies
fixed payments after their retirement. The fund constructs a portfolio by investing
the available funds in the market, and manages the assets so that at each time period
the portfolio holdings can cover the fund’s liabilities. The fund manager also aims to
maximize investment returns while minimizing the contribution rate by the sponsor
and active employees of the fund [11]. Therefore, the ALM problem for a pension
fund is to determine an optimal contribution rate and an optimal investment strategy
during an investment horizon.

We consider a portfolio constructed from M risky assets and a risk-free asset.
Securities are denoted by m D 1; 2; � � � ;M, and m D 0 identifies the risk-free asset.
There are T C 1 time periods, t D 0; � � � ;T, where t D 0 represents today. After
the initial investment at t D 0, the portfolio may be restructured at discrete times
t D 1; � � � ;T �1 in terms of both return and liability, and redeemed at the end of the
investment horizon, t D T.

Decision variables hm
t , sm

t and bm
t denote the amount of asset m to be held, sold

and bought at time t, respectively. Asset returns and future liabilities are uncertain
due to exogenous and endogenous factors. Asset returns Qrm

t for m D 1; : : : ;M,
as well as the risk-free returns Qr0t , are represented by random variables. While the
liabilities to be paid out at each stage lt are known at time 0, the total present value
at time t of all future liabilities, QLt, is unknown because changes in the discount rates
over time affect the present value of the cash flows. A full description of the notation
is provided in Table 4.1.

The multiperiod ALM optimization model constraints are defined as follows.
A balance constraint describes the wealth accumulated in each asset m at time

t, hm
t . The holdings in asset m at time t are updated based on the holdings at the
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Table 4.1 Description of notation

Notation Description

Parameters

T Investment horizon

M Number of investment assets

 Target funding (asset/liability) ratio

cb; cs Transaction costs for buying and selling, respectively

lt Amount (liabilities) paid out at time t

Wt Amount of wages at time t

� Penalty for wage contributions

Decision variables

hm
t Holding in asset m at time t

sm
t Amount sold of asset m at time t

bm
t Amount bought of asset m at time t

t Contribution as percentage of wages at time t

Random variables

Qrm
t Return on asset m between time t and t C 1

QLt Present value of the total amount of future outstanding liabilities at time t

previous time period t � 1, hm
t�1, the return on the asset from t � 1 to t, Qrm

t�1, as well
as trading activity (purchases bm

t and sales sm
t ) at time t.

hm
t D .1C Qrm

t�1/ � hm
t�1 � sm

t C bm
t ; t D 1; : : : ;T; m D 1; : : : ;M (4.1)

The amount of cash at time t, h0t , is updated based on the return, Qr0t�1, on the
amount of cash h0t�1 from the previous time period t � 1, the cash received from
position changes (positive inflow from sales and negative inflow from purchases,
adjusted for the appropriate transaction costs), the deposit payment t QWt at time t,
as well as the cash outflow to cover the liabilities lt at time t.

h0t D .1C Qr0t�1/ � h0t�1 C
MX

mD1
.1 � cs/s

m
t �

MX

mD1
.1C cb/b

m
t C t QWt � lt; t D 1; � � � ;T

(4.2)

At each point in time, the ratio of assets to liabilities (the so-called funding
ratio) needs to be maintained above a certain level determined by the fund. Values
for typically used in industry are in the range (0.9–1.1), and values of of greater
than 1 are used to inject an extra safety margin for meeting outstanding liabilities.
The funding ratio constraints at each time period t can be represented in linear form
as Assetst �  � Liabilitiest, or



4 Robust Approaches to Pension Fund ALM Under Uncertainty 93

MX

mD1
hm

t C h0t �  QLt; t D 1; : : : ;T � 1: (4.3)

QLt is the total value at time t of the outstanding future liabilities between t and T,
and can be expressed as

MX

mD1
hm

t C h0t �  

TX

	DtC1

l	
.1C Qr0t / : : : .1C Qr0	�1/

; t D 1; : : : ;T � 1

The holdings of asset m at time t are restricted to be nonnegative; that is,
borrowing and short sales are not allowed:

hm
t � 0; t D 1; : : : ;T; m D 0; : : : ;M: (4.4)

Finally, the decision variables for the amount of asset m to be bought or sold at
time t cannot be negative:

sm
t � 0; bm

t � 0; t D 1; : : : ;T � 1; m D 1; : : : ;M: (4.5)

The pension fund manager’s goal is to maximize the expected portfolio wealth at
time T while minimizing the future value of the total contributions from the fund’s
customers. The objective function describes the wealth at time T and can be stated
as

OF D
MX

mD0
hm

T � �

T�1X

tD0
tWt � .1C Qr0t /.1C Qr0tC1/ � � � .1C Qr0T�1/ (4.6)

where � is a fixed parameter.
The ALM problem statement for a pension fund can be summarized as follows:
.P r

PF/ max OF (4.6)
s.t. Constraints (4.1), (4.2), (4.3), (4.4), and (4.5)

4.3 Scenario-Based ALM Model for Pension Funds

This section describes a possible stochastic programming representation of the
ALM model for a pension fund. We walk the reader through the steps in the
multiperiod formulation: the specification of a scenario tree and the description of
the optimization model.

Constructing a scenario tree. The uncertain returns on the assets and the risk-
free rate are random variables. We discretize these random variables and consider
a framework in which each random variable can take finitely many values. Given
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the event history up to a particular time, the uncertainty in the next time period
is characterized by finitely many possible outcomes for the next observation. This
branching process is represented through a scenario tree. Thus, the possible events
are approximated by a discrete set of scenarios, for instance, see [26].

The root node in the scenario tree represents “today” and is immediately
observable from available information. The nodes further down the tree stand for
events that are conditional on outcomes at prior stages. The arcs linking the nodes
represent various realizations of the uncertain variables. Ideally, the generated set
of realizations constitutes the whole universe of possible outcomes of the random
variable. Realizations should include both optimistic and pessimistic projections.
The reader is referred to Gulpinar et al. [27] for more details on scenario tree
generation techniques.

A scenario is a possible realization of the stochastic variables f�1; : : : ;�Tg, and
can be imagined as a path in the tree. Hence, the set of scenarios corresponds to the
set of leaves of the scenario tree, NT , and nodes of the tree at level t � 1 (the set Nt)
correspond to possible realizations of �t. Given the event history up to time t, �t, the
uncertainty in the next period is characterised by finitely many possible outcomes
for the next observation �tC1.

A node of the tree (or an event) is denoted by e D .s; t/, where s is a scenario
(path from root to leaf), and time period t specifies a particular node on that path.
The root of the tree is 0 D .s; 0/, where s can be any scenario because the root node
is common to all scenarios. The ancestor (or parent) of event e D .s; t/ is denoted
by a.e/ D .s; t � 1/, and the branching probability pe is the conditional probability
of event e given its parent event a.e/. The path to event e is a partial scenario with
probability Pe D Q

pe along that path; since probabilities pe must sum to one at
each individual branching, probabilities Pe will sum up to one across each layer of
tree-nodes NtI t D 0; 1; : : : ;T.

Scenario-based optimization model. Let hm
e , sm

e and bm
e denote the amount of

asset m to be held, sold and bought in event e 2 Nt at time t, respectively. Asset
returns Qrm

e for m D 1; : : : ;M and the risk-free return Qr0e in event e 2 Nt at time
t D 0; 1; : : : ;T are realizations of random variables. Recall that we assume that
current liabilities, lt and the amount of wages Wt at time t are certain and remain
the same under each realization of the uncertainty. Future liabilities QLe are random
variables but they do not need to be represented separately in the tree because
they are determined by future values of the risk-free rate. Further, e denotes the
contribution as a percentage of wages in scenario e 2 Nt at time t. The optimization
model constraints are defined as follows.

Balance constraints determine trading at each node e 2 Nt on each asset m:

hm
e D .1C rm

a.e// � hm
a.e/ � sm

e C bm
e ; e 2 Nt; t D 1; : : : ;T; m D 1; : : : ;M:(4.7)
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The amount of cash for any scenario e D .s; t/ 2 Nt at t is expressed as

h0e D .1C r0a.e// � h0a.e/ C
MX

mD1
.1 � cs/s

m
e �

MX

mD1
.1C cb/b

m
e C tWt � lt;

e 2 Nt; t D 1; : : : ;T: (4.8)

Asset-liability (funding ratio) constraints are formulated as

MX

mD1
hm

e C h0e �  Le; e 2 Nt; t D 1; : : : ;T � 1 (4.9)

where Le for e 2 Nt is the realization of random variable QLt at time t of the liabilities
between t and T. This constraint can be equivalently expressed as

MX

mD1
hm

e C h0e �  

TX

	DtC1

l	
.1C r0e02Nt

/ : : : .1C r0e02N	�1
/
; e 2 Nt; t D 1; : : : ;T � 1

(4.10)

Short sales are not allowed. Nonnegativity constraints are imposed on the
holdings of asset m at time t

hm
e � 0; e 2 Nt; t D 1; : : : ;T; m D 0; : : : ;M: (4.11)

There are also nonnegativity constraints on the amount of asset m to be bought
or sold at time t:

sm
e � 0; bm

e � 0; e 2 Nt; t D 1; : : : ;T � 1; m D 1; : : : ;M: (4.12)

The objective function (OF) describes the expected terminal wealth and can be
stated as follows.

OF D
X

e2NT

Pe

 
MX

mD0
hm

e � �
T�1X

tD0
tWt � .1C r0e /.1C r0e02NtC1

/ : : : .1C r0e02NT�1
/

!

(4.13)

where e0 2 NtC1 represents the realizations of the risk-free rate starting at node
e 2 Nt at time t of the scenario tree.

The ALM problem statement for a pension fund is to maximize the net expected
profit at the end of investment horizon subject to balance, cash, funding ratio, no
short-sale and nonnegativity constraints, and can be summarized as follows:
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.Sr
PF/ max OF (4.13)

s.t. Constraints (4.7), (4.8), (4.10), (4.11), (4.12)

4.4 Robust Investment Decisions

This section is a basic introduction to robust optimization - the technique we will use
in Sect. 4.5 to derive robust formulations for the ALM pension fund problem given
descriptive statistics for the uncertain inputs of the optimization problem. Robust
optimization was independently developed by Ben-Tal and Nemirovski [2] and El
Ghaoui and Lebret [19], and has experienced tremendous growth in the last decade.

The robust optimization approach provides robust solutions that are “adequate”
even if there is error in the estimates of the input parameters, in the following sense.
It solves an optimization problem assuming that the uncertain input data belong
to an uncertainty set, and looks for an optimal solution that remains feasible if
the uncertainties take any values within that uncertainty set. This reformulation of
the problem is referred to as the “robust counterpart” of the original optimization
problem. In some special cases, the robust counterpart of the original problem
involves the worst-case outcome of the stochastic data within the uncertainty set,
and is a tractable optimization problem with no random parameters.

The selection of the uncertainty set is often based on statistical estimates and
probabilistic guarantees for the solution. Ellipsoidal, box and polyhedral (e.g., D-
norm) are the most commonly used uncertainty sets, but more recently, asymmetric
uncertainty sets have been used as well in order to capture the probability dis-
tribution characteristics of the uncertainties better (see, for example, Natarajan
et al. (2008) for an application in estimating the value-at-risk of a portfolio). Thus
far, in industry robust optimization has been used only in asset management, and
primarily to incorporate the uncertainty introduced by estimation errors into the
mean-variance portfolio allocation framework. Goldfarb and Iyengar [23] consider
robust mean-variance portfolio allocation strategies under various ellipsoidal and
interval uncertainty sets for the input parameters (means and covariance matrices)
derived from regression analysis. Ceria and Stubbs [13] introduce the zero-net
alpha-adjustment robust framework to reduce the conservativeness of robust mean-
variance strategies under ellipsoidal uncertainty sets for the input parameters.
Robust investment strategies in a multiperiod setting have been studied by Ben-Tal
et al. [5], Bertsimas and Pachamanova [7], and Gulpinar and Rustem [26].

A brief introduction to the main ideas of robust linear optimization (the type
of problem with which we are dealing in this paper) is provided next; for further
information, the reader is referred to Ben-Tal and Nemirovski [1–4] as well as Ben-
Tal et al. [6].

Consider a linear program

max
˚

c0xjf .x; Qz/ � 0; x 2 V
�

(4.14)
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where c 2 Rn�1 and V consists of all constraints whose parameters are certain. The
vector x 2 Rn�1 represents decision variables and Qz 2 RJ�1 is a vector of uncertain
parameters. The relevant constraint function f .x; Qz/ in our context is bilinear in x
and Qz and can be written as

f .x; Qz/ D f0.x/C
JX

jD1
fj.x/Qzj; (4.15)

where functions fj.x/ for j D 1; : : : ; J are linear in x. We will also assume without
loss of generality that the uncertain factors Qz satisfy the normalized distributional
conditions E.Qz/ D 0 and E.Qz � Qz/ D I. This can be achieved by a suitable linear
transformation [see Natarajan et al. (2008)]. For instance, uncertain problem input
parameters such as portfolio returns QR 2 RN with known means vector OR 2 RN and
invertible covariance matrix † 2 RN�N can be expressed as QR D OR C †1=2 Qz for
some uncertain factors Qz 2 RN satisfying the normalized distributional conditions.
Hence, Qz D †�1=2. QR � OR/:

Robust optimization transfers the original constraint with random parameters into
its robust counterpart, defined as

f .x; z/ � 0; 8 z 2 U.Qz/

where U.Qz/ is an uncertainty set specified by the modeler.
The size of the uncertainty set is often related to guarantees on the probability

that the constraint with uncertain coefficients will not be violated. There is a
tradeoff between optimality and the amount of protection against uncertainty that
is desired—the smaller the probability that the constraint will be violated, the lower
the value of the objective function of the robust counterpart. (We should clarify,
however, that this does not mean that the realized objective function value will be
always lower on average for the robust counterpart with a large uncertainty set than
for the robust counterpart with a smaller uncertainty set.)

The shape of the uncertainty set defines a risk measure on the constraints with
uncertain coefficients (Natarajan et al. 2009). In practice, the shape is selected
to reflect the modeler’s knowledge of the probability distributions of the uncer-
tain parameters, while at the same time making the robust counterpart problem
efficiently solvable. The ellipsoidal uncertainty set, for example, defines a standard-
deviation-like risk measure on the constraint with uncertain parameters, and in the
case of linear optimization, results in a robust counterpart to the original problem
that is a second order cone problem—a tractable optimization problem. Specifically,
the ellipsoidal set on the risk factors can be expressed as

U˝.Qz/ D fz W kzk2 � ˝g ; (4.16)
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where the constant ˝ is specified by the modeler, and determines the size of the
uncertainty set. It is sometimes referred to as the “robustness budget” or the “price
of robustness.”

For Qz in uncertainty set (4.16), the robust counterpart of a constraint of the form

f .x; Qz/ � 0

can be derived using convex duality, and is

f0.x/�˝ � �.f .x; Qz// � 0;

where f0.x/ is the expected value and �.f .x; Qz// is the standard deviation of f .x; Qz/
for any given x. We will discuss the ellipsoidal set in more detail in the next section.

The parameter ˝ can be selected in such a way that the probability that the
constraint is satisfied is at least 1 � � for some small � 2 .0; 1/. Specifically, this
is true if ˝ � p�2 ln � [6]. This imposes a value-at-risk-type risk measure on
the constraint containing uncertain coefficients [20] (Natarajan et al. 2008). Further
results on probability bounds related to the size and the shape of uncertainty sets
can be found, for example, in Ben-Tal and Nemirovski [4], Bertsimas and Sim [8],
Bertsimas et al. [9], and Chen et al. [14].

Symmetric uncertainty sets such as the ellipsoidal uncertainty set for the
parameters in optimization problem may be overly conservative when the under-
lying probability distributions are asymmetric, as is often the case with asset
return distributions. In other words, the probability distributions of the underlying
uncertainties may not be represented sufficiently well. Using additional information
about the asymmetries in the underlying probability distributions in defining the
uncertainty set helps overcome this issue. Chen et al. [14] introduce the “forward”
and “backward” deviations of a random variable, and develop a convex asymmetric
uncertainty set based on these variability measures. In the case of a normal
distribution, the forward and the backward deviations both equal the standard
deviation. In the case of asymmetric probability distributions, one of them is greater
than the other depending on the skew of the distribution.

To obtain the uncertainty set introduced by Chen et al. [14], decompose the vector
of random variables Qz into two vectors of random variables Qv and Qw such that Qz D
Qv � Qw where Qv D max fQz; 0g and Qw D max f�Qz; 0g. Both v and w are positive
and at least one of them is zero. Let pj > 0 and qj > 0, j D 1; : : : ; J, represent
the forward and backward deviations of random variable Qzj, respectively. Define
diagonal matrices P D diag.p1; : : : ; pJ/ and Q D diag.q1; : : : ; qJ/. The asymmetric
uncertainty set is

U.Qz/ D ˚

z W 9v;w 2 RJC; z D v � w; jjP�1v C Q�1wjj � ˝; �z � z � z
�

where˝ is the desired degree of robustness. In the case of a symmetric distribution,
the uncertainty set above is ellipsoidal, i.e., this asymmetric uncertainty set includes
the ellipsoidal uncertainty set as a special case. If the factors Qz are independent and
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˝ is selected so that ˝ � p�2 ln �, then, similarly to the case of the ellipsoidal
uncertainty set, the constraint will be satisfied with probability of at least 1 � �

(Natarajan et al. 2008).
The robust counterpart of the constraint f .x; Qz/ � 0 in (4.14) under finite

distribution support Œ�z; z� is equivalent to the following set of inequalities:

ff0.x/ � ˝jjujj2 C r0z C s0z; uj � �pj
�

fj.x/C rj � sj
�

;

uj � qj
�

fj.x/C rj � sj
�

; j D 1; : : : ; J; r; s � 0g (4.17)

for some u; r; s 2 RJ .
Given the fact that ALM is concerned with ensuring a level of minimum

guaranteed performance to meet future liabilities, robust-optimization-based strate-
gies that place special emphasis on the worst-case realizations of uncertainties
are particularly appealing in the ALM context. In the next section we introduce
a tractable robust approach to ALM for pension funds and derive the robust
counterparts of the ALM problem with two kinds of uncertainty sets: symmetric
(ellipsoidal) and asymmetric [the uncertainty set suggested by Chen et al. [14]; see
also Natarajan et al. (2008)]. The results of computational experiments designed
to judge the performance of the robust formulations derived here are presented in
Sect. 4.6.

4.5 Robust ALM Models for Pension Funds

This section introduces the robust counterparts of the ALM model when asset
returns are assumed to vary in symmetric and asymmetric uncertainty sets. It also
includes a discussion of how such sets may be constructed from data.

When formulating the robust counterparts of the ALM problems, it will be
preferable to have a particular uncertain parameter in only one constraint (as
opposed to multiple constraints). This avoids the problem of dealing with cross-
constraint correlations of uncertain parameters, and reduces the conservativeness
of the solution. For example, the uncertain returns currently appear in all balance
constraints. We can reduce the number of constraints in which the uncertain returns
appear by using a transformation suggested in Ben-Tal et al. [5].

In order to formulate the ALM model in terms of cumulative returns, let us define
cumulative gross returns, QRm

t for each asset m D 1; : : : ;M at t D 0 and t D 1; : : : ;T,
respectively, as

Rm
0 D 1; and

QRm
t D .1C Qrm

0 /.1C Qrm
1 / : : : .1C Qrm

t�1/; t D 1; : : : ;T: (4.18)

Introducing new decision variables for assets m D 1; : : : ;M and time t D 1; : : : ;T
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�m
t D hm

t

QRm
t

; �m
t D sm

t

QRm
t

; �m
t D bm

t

QRm
t

;

and a free variable � for the OF, we can rewrite problem .P r/ as follows:
.PR/

max �

s.t. � �
MX

mD0
QRm

T �
m
T � �

T�1X

tD0
tWt �

QR0T
QR0t

�m
t D �m

t�1 � �m
t C �m

t , t D 1; : : : ;T , m D 1; : : : ;M

�0t D�0t�1C
MX

mD1
.1� cs/

QRm
t

QR0t
�m

t �
MX

mD1
.1C cb/

QRm
t

QR0t
�m

t C tWt

QR0t
� lt

QR0t
, t D 1; : : : ;T

MX

mD0
�m

t
QRm

t �  

TX

	DtC1
l	 �

QR0t
QR0	

, t D 1; : : : ; T � 1

�m
t � 0, t D 1; : : : ; T ; m D 1; : : : ;M
�m

t � 0, �m
t � 0, t D 1; : : : ;T � 1, m D 1; : : : ;M

Note that after the transformation of the decision variables, the uncertain
(cumulative) returns appear only in the cash constraints, as opposed to all balance
constraints. They also appear in the objective function and the funding ratio
constraint, as they did before the transformation.

The two sets of uncertain parameters in the ALM formulation are the asset returns
QRt (including the return on the riskless asset QR0t ) and the value of the future liabilities
QLt at each point in time t. The latter depends on the realized changes in interest rates
between time 0 and time t. In order to simplify notation, let us use the following
notation for the vectors Q̨ , Q�t and Q�t in the objective function, balance constraints
for t D 1; � � � ;T and funding ratio constraints for t D 1; � � � ;T � 1, respectively:

Q̨ D
 

QR0T ; � � � ; QRM
T ;��W1

QR0T
QR01
; � � � ;��WT�1

QR0T
QR0T�1

!

;

Q�t D
 

.1 � cs/ �
QR1t
QR0t
; � � � ; .1�cs/ �

QRM
t

QR0t
;�.1Ccb/ �

QR1t
QR0t
; � � � ;�.1Ccb/ �

QRM
t

QR0t
;Wt

�1
QR0t
;�lt � 1QR0t

!

;

Q�t D
 

QR0t ; � � � ; QRM
t ;� ltC1

QR0t
QR0tC1

; � � � ;� lT
QR0t
QR0T

!

:

Let vectors Ǫ ; O�t, and O�t denote the expected values of the random vectors Q̨ ; Q�t,
and Q�t, respectively. For instance,

Ǫ D
 

E
� QR0T

�

; � � � ;E � QRM
T

�

;��1W1E

" QR0T
QR01

#

; � � � ;��T�1WT�1E
" QR0T

QR0T�1

#!

:
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Similarly, let us define vectors

� D �

�0T ; � � � ; �M
T ; 1; � � � ; T�1

�0
;

� t D �

�1t ; � � � ; �M
t ; �

1
t ; � � � ; �M

t ; t; 1
�0
; and

� t D �

�0t ; � � � ; �M
t ; 1; � � � ; 1

�0
:

4.5.1 Robust ALM Model Formulation with Symmetric
Uncertainty Sets

We consider ellipsoidal uncertainty sets involving the uncertain future asset returns
QRm

t , m D 1; : : : ;M, and riskless returns QR0t at each point in time t, t D 1; : : : ;T. The
uncertainty sets are determined as follows:

SU o D
n

Q̨ j
�
�
�.„

˛/
� 1
2 . Q̨ � Ǫ /

�
�
�
2

� 
o
o

;

SU h
t D

n

Q�t j
�
�
�

�

„
�
t

�� 1
2 . Q�t � O�t/

�
�
�
2

� 
h
t

o

; t D 1; : : : ;T and

SU f
t D

n

Q�t j
�
�
�

�

„
�
t

�� 1
2 . Q�t � O�t/

�
�
�
2

� 

f
t

o

; t D 1; : : : ;T � 1:

where „˛, „
�
t and „

�
t are the covariance matrices of the random vectors Q̨ ; Q�t,

and Q�t, respectively. (We will provide intuition on how such uncertainty sets can be
determined in Sect. 4.5.3.)

Theorem 1. Given uncertainty sets SU o, SU h
t and SU f

t for the uncertain parame-
ters, the robust counterpart of the ALM problem .PR/ is

.PR
sym/ W max �

s:t: � � Ǫ 0
� � 
o

p
�0„˛� � �WTT

�m
t D �m

t�1 � �m
t C �m

t ; t D 1; : : : ;T;m D 1; : : : ;M

�0t � �0t�1 C O�t
0
� t � 
h

t

q

� t
0„�

t � t; t D 1; : : : ;T

0 � O�t
0
�t � 


f
t

q

�t
0„�

t � t; t D 1; : : : ;T � 1

�m
t � 0; t D 1; : : : ;T; m D 1; : : : ;M
�m

t � 0; �m
t � 0; t D 1; : : : ;T � 1; m D 1; : : : ;M

A formal proof of this result is shown in the appendix, but let us provide intuition
about how the robust counterpart of each constraint is obtained. We separate
the expressions in the constraints into expressions with uncertain coefficients and
expressions with certain coefficients. We then solve inner optimization problems
that find the worst-case values of the terms involving uncertain coefficients when
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these uncertain coefficients vary in the given uncertainty sets. When the uncertainty
sets are ellipsoidal and are defined in terms of the means and the covariance matrices
of the uncertain coefficients, the robust counterparts of the constraints include the
expected values of the expressions with uncertain coefficients, as well as penalty-
like terms that are related to their standard deviations.

4.5.2 Robust ALM Model Formulation with Asymmetric
Uncertainty Sets

Symmetric uncertainty sets can represent uncertainties well when these uncertain-
ties follow symmetric probability distributions such as the normal distribution.
Theoretically, the assumption that asset returns follow normal distributions is not
unreasonable because the Central Limit Theorem implies that over the long horizon,
returns should be approximately Gaussian as long as short-horizon returns are
sufficiently independent (see, for example [12]). Empirically, however, there is
evidence that both short- and long-horizon stock returns can be skewed and highly
leptokurtic (see, for example [18, 22]).

Let us consider the vectors of uncertain coefficients Q̨ , Q�t, and Q�t as defined
at the beginning of Sect. 4.5. In order to use the result from Chen et al. [14], we
need to write the constraints containing uncertain coefficients in the form (4.15).
Let Qz˛ 2 RG˛ , Qz�t 2 RG

�
t and Qz�t 2 RG

�
t be sets of independent factors, and let

	˛ 2 R.MCT/�G˛ , 	
�
t 2 R.2MC2/�G

�
t , and 	

�
t 2 R.MCT�t/�G

�
t be matrices such

that

Q̨ D Ǫ C 	˛ � Qz˛;
Q�t D O�t C 	

�
t � Qz�t ;

Q�t D O�t C 	
�
t � Qz�t :

Let Po, Ph
t , and Pf

t be the diagonal matrices with backward deviations and Qo, Qh
t ;

and Qf
t be the diagonal matrices with forward deviations for factors Qz˛, Qz�t and Qz�t ,

respectively. Consider the following asymmetric uncertainty sets for the uncertain
factors Qz˛, Qz�t and Qz�t :

AU o D
n

z˛ W 9vo;wo 2 RG˛C ; z˛ D vo � wo;

jj.Po/
�1vo C .Qo/

�1wojj � ˝o; z˛ � Qz˛ � z˛
o

;

AU h
t D

n

z�t W 9vh
t ;w

h
t 2 RG

�
tC ; z�t D vh

t � wh
t ;



4 Robust Approaches to Pension Fund ALM Under Uncertainty 103

jj.Ph
t /

�1
vh

t C .Qf
t/

�1
wh

Tjj � ˝h
t ; z

�
t � Qz� � z�t

o

; t D 1; : : : ;T; and

AU f
t D

n

z�t W 9vf
t;w

f
t 2 RG

�
tC ; z�t D vf

t � wf
t;

jj.Pf
t/

�1
vf

t C .Qf
t/

�1
wf

tjj � ˝
f
t ; z

�
t � Qz˛ � z�t

o

; t D 1; : : : ;T � 1:

Theorem 2. Given uncertainty sets AUo, AUh
t and AU f

t for the uncertain param-
eters, the robust counterpart of the ALM problem .PR/ can be written as follows:

.PR
asym/ W max �

s:t: Ǫ 0� � �WTt � � � ˝ojju˛ jj C .r˛/0 z˛ C .s˛/0 z˛

u˛j � �p˛j




e0
j .	

˛/0 � C r˛j � s˛j

�

; j D 1; : : : ;M C T

u˛j � q˛j




e0
j .	

˛/0 � C r˛j � s˛j

�

; j D 1; : : : ;M C T

r˛; s˛ � 0

�m
t D �m

t�1 � �m
t C �m

t ; t D 1; : : : ;T ;m D 1; : : : ;M

�0t � �0t�1 C O�0
t�t �˝h

t jjuh
t jj � �

r�t
�0

z�t � �

s�t
�0

z�t ; t D 1; : : : ;T

u�t;j � �p�t
j




e0
j

�

	
�
t
�0

�t C r�t
t;j � s�t;j

�

; t D 1; : : : ; T ; j D 1; : : : ; 2M C 2

u�t;j � qj




e0
j

�

	
�
t
�0

�t C r�t;j � s�t;j

�

; t D 1; : : : ; T ; j D 1; : : : ; 2M C 2

r�t ; s
�
t � 0; t D 1; : : : ;T

0 � O�t
0�t �˝

f
t jju�t jj � �

r�t
�0

z�t � �

s�t
�0

z�t ; t D 1; : : : ;T � 1

u�t;j � �p�t
j




e0
j

�

	
�
t
�0

�t C r�t;j � s�t;j

�

; t D 1; : : : ; T ; j D 1; : : : ;M C T �t

u�t;j � q�t
j




e0
j

�

	
�
t
�0

�t C r�t;j � s�t;j

�

; t D 1; : : : ; T ; j D 1; : : : ;M C T �t

r�t ; s
�
t � 0; t D 1; : : : ; T

�m
t � 0; t D 1; : : : ;T ; m D 1; : : : ;M
�m

t � 0; �m
t � 0; t D 1; : : : ; T � 1; m D 1; : : : ;M

The proof of the theorem is provided in Appendix.

4.5.3 Selecting Inputs to the Robust Optimization Models

A very important piece of implementing the robust ALM models is determining
uncertainty sets and inputs that make sense given available data. As a general
approach, the required inputs—vectors of expected values, covariance matrices, and
factor deviations—can be estimated if we have data on possible scenarios for the
risk-free rate and for vectors of asset returns. Those scenarios can also be used to
generate scenarios for the vectors Q̨ , Q�t and Q�t, so that estimates of the expected
values and covariance matrices of these vectors (which are inputs to the robust
optimization formulations) can be calculated.

Even though we propose using scenarios for optimization model parameter esti-
mation, note that there is a philosophical difference between how we use scenarios
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in the stochastic programming setting (Sect. 4.3) and in the robust optimization
setting (this section). In the robust optimization setting, we would like to use data to
generate estimates of summary probability distribution measures that we then use as
inputs to the robust optimization models. In the stochastic programming approach,
we use scenarios for the inputs directly in the formulation. This difference between
approaches has a couple of different implications.

First, the representation of the uncertainties is done differently. In the stochastic
programming approach, we come up with an exact strategy to be followed for each
scenario. We expect that if nature behaves very similarly to the scenarios we have on
hand, the optimal strategy would perform well on average. The robust optimization
approach attempts to find a more general strategy (one not tied to specific scenarios)
that works well in terms of worst-case performance.

Second, the size of the resulting optimization problems can be very different.
Generally, robust optimization formulations based on summary measures of the
probability distributions of the uncertainties have a much smaller size than stochas-
tic programming formulations.

Symmetric Uncertainty: In the case of symmetric uncertainty set (Sect. 4.5.1),
we need the expected values and the covariance matrices of the vectors Q̨ , Q�t,
and Q�t. Suppose we have scenarios for the vectors of cumulative returns Rt at
each time period t, as well as the cumulative risk-free rate R0t for t D 1; : : : ;T .
Those can be used to create scenarios for the uncertain vectors in each constraint
of the optimization problem, Q̨ , Q�t and Q�t. The scenarios for Q̨ , Q�t and Q�t in turn
can be used to estimate the expected value vectors Ǫ , O�t and O�t, as well as the
covariance matrices „˛ , „

�
t and „

�
t . Finally, the input parameters are plugged into

the optimization problem .PR
sym/, which is solved to determine the optimal strategy.

Asymmetric Uncertainty: In the case of asymmetric uncertainty set, we can use
the following transformations. Let „˛ , „

�
t , and „

�
t be the covariance matrices for

the vectors Q̨ , Q�t, and Q�t, respectively, as defined in Sect. 4.5.1. Sets of uncorrelated
factors Qz˛, Qz�t and Qz�t with zero means can be constructed such that

Qz˛ D .„˛/
� 1
2 � . Q̨ � Ǫ / ; (4.19)

Qz�t D �

„
�
t

�� 1
2 � . Q�t � O�t/ ; (4.20)

Qz�t D �

„
�
t

�� 1
2 � . Q�t � O�t/ : (4.21)

Then,

Q̨ D Ǫ C .„˛/
1
2 � Qz˛;

Q�t D O�t C �

„
�
t

� 1
2 � Qz�t ;

Q�t D O�t C �

„
�
t

� 1
2 � Qz�t :
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The diagonal matrices Po, Ph
t , and Pf

t with backward deviations and the diagonal
matrices Qo, Qh

t ; and Qf
t with forward deviations for the factors Qz˛, Qz�t and

Qz�t , respectively, can be calculated from data, using the following procedure. As
explained in the case of symmetric uncertainty, suppose we have a set of scenarios
for the vectors of cumulative returns Rt at each time period t, as well as the
cumulative risk-free rate R0t for t D 1; : : : ;T . Those can be used to create scenarios
for the uncertain vectors in each constraint of the optimization problem, Q̨ , Q�t and
Q�t. These scenarios in turn can be used to estimate the expected value vectors Ǫ , O�t

and O�t, as well as the covariance matrices „˛ , „
�
t and „

�
t .

Scenarios for uncorrelated factors for each constraint in the optimization prob-
lems can then be calculated. For example, to calculate scenarios for uncorrelated
factors Qz˛, one uses (4.19). Finally, the scenarios that are generated for the
uncorrelated factors can be used to calculate estimates of the factors’ backward and
forward deviations, which are then plugged into the robust counterpart formulation
.PR

asym/. For example, backward and forward deviations for the ith factor can be
computed by solving the optimization problems

pi.z/ D sup
'>0

(s

2
ln.E.exp.':z////

'2

)

and

qi.z/ D sup
'>0

(s

2
ln.E.exp.�':z///

'2

)

A proof of this relationship is given in Natarajan et al. (2008). Note that if
the forward and backward deviation matrices are equal (i.e. P D Q), then
the asymmetric uncertainty set produces the same portfolio composition as the
ellipsoidal uncertainty set does.

Given uncertainty sets AUo, AU h
t and AU f

t for the uncertain parameters,
one then solves the following robust counterpart of the ALM problem .PR/:

.PR
asym/ W max �

s.t. Ǫ 0

� � �WTt � � � ˝ojju˛ jj C .r˛/0 z˛ C .s˛/0 z˛

u˛j � �p˛j

�

e0

j




.„˛/
1
2

�
0

� C r˛j � s˛j

�

; j D 1; : : : ;M C T

u˛j � q˛j

�

e0

j




.„˛/
1
2

�
0

� C r˛j � s˛j

�

; j D 1; : : : ;M C T

r˛; s˛ � 0

�m
t D �m

t�1 � �m
t C �m

t , t D 1; : : : ; T , m D 1; : : : ;M

�0t � �0t�1 C O�0

t � t �˝h
t jjuh

t jj � �

r�t
�
0

z�t � �

s�t
�
0

z�t , t D 1; : : : ;T

u
�
t;j � �p

�t
j

�

e0

j

�
�

„
�
t

� 1
2

�
0

� t C r
�
t;j � s

�
t;j

�

, t D 1; : : : ;T; j D 1; : : : ; 2M C 2

u
�
t;j � q

�t
j

�

e0

j

�
�

„
�
t

� 1
2

�
0

� t C r
�
t;j � s

�
t;j

�

, t D 1; : : : ;T; j D 1; : : : ; 2M C 2

r�t ; s
�
t � 0; t D 1; : : : ;T
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0 � O�t
0

�t �˝
f
t jju�t jj � �

r�t
�
0

z�t � �

s�t
�
0

z�t , t D 1; : : : ; T � 1

u�t;j � �p�t
j

�

e0

j

�
�

„
�
t

� 1
2

�
0

� t C r�t;j � s�t;j

�

, t D 1; : : : ; T; j D 1; : : : ;M C T � t

u�t;j � q�t
j

�

e0

j

�
�

„
�
t

� 1
2

�
0

� t C r�t;j � s�t;j

�

, t D 1; : : : ; T; j D 1; : : : ;M C T � t

r�t ; s
�
t � 0 t D 1; : : : ;T

�m
t � 0, t D 1; : : : ; T; m D 1; : : : ;M
�m

t � 0, �m
t � 0, t D 1; : : : ; T � 1, m D 1; : : : ;M

Generating Scenarios: How could the scenarios for Rt at each time period t,
as well as the cumulative risk-free rate R0t for t D 1; : : : ;T be generated? One
possibility is to use historical data, and consider sets of returns for each length of
period 1; 2; : : : ;T. Another is to assume an underlying model that drives returns.

Consider, for example, the factor model for returns used in Ben-Tal et al. [5]:

ln.1C rm
t / D ˇ0

m Œ� � e C � � vt� ; t D 0; 1; : : : ;N � 1;m D 1; : : : ;M (4.22)

ln.1C r0t / D �; t D 0; 1; : : : ;N � 1

where fv0; v1; : : : ; vN�1g are independent K-dimensional normal random vectors
with zero mean and unit covariance matrix; e 2 RK D .1; : : : ; 1/0; ˇm 2 RKC
are fixed vectors; and �; � > 0 are fixed reals. (Single-period returns are therefore
lognormal.)

These assumptions allow for computing scenarios for the vectors of uncertain
coefficients in each constraint. Note that under these assumptions, the expected

values ORm
t and the covariances E

h

. QRm
t � ORm

t /.
QRl

t � ORl
t/
i

D f†tgm;l of the cumulative

returns at time t can even be calculated in closed form:

ORm
t D e�t�ˇ0

meC �2 t
2 ˇ0

mˇm

f†tgm;l D e�t�.ˇmCˇl/
0eC �2 t

2 .ˇ
0

mˇmCˇ0

l ˇl/:

4.6 Computational Experiments

This section contains a computational study of the behavior of stochastic and robust
strategies for ALM with generated data and real market data. The experiments we
designed attempt to answer the following questions:

• How do the robust asset and liability management models perform when the
underlying uncertainty is represented by symmetric and asymmetric uncertainty
sets?

• How do the size and shape of the symmetric and asymmetric uncertainty sets
affect the investment strategy?
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• How does the performance of the stochastic programming strategy compare
with the performance of the robust optimization strategy, specifically in terms
of metrics such as expected value, variance, minimum, maximum and tail risk
measures for final wealth?

4.6.1 Design of Experiments and Data

Our first data set is generated using the factor model from Ben-tal et al. [5] described
in Sect. 4.5.3. We generate eight risky assets and one risk-free asset. All simulation
parameters are selected as in Ben-Tal et al. [5].

We also report results from experiments with real market data from Goyal and
Welch (2008). There are two assets available for investment: a risky asset (the
market), and a riskless asset. A sample period of 24 years of quarterly data (between
1987 and 2010) for S&P 500 index returns and Treasury bill rates is used.

We consider four decision stages: t D 0; 1; 2; 3. Final fund holdings are recorded
at T D 4 to keep track of performance. The only reason for selecting a small
number of assets for investment and a small number of time periods is the stochastic
programming formulation. It takes a very long time (h) to obtain an optimal solution
to stochastic programming formulations with even a small number of scenarios. The
robust optimization formulation, on the other hand, is capable of handling a large
number of assets and time periods in a short period of time (s).

The real world data with quarterly prices over 24 years is divided into four time
periods. The mean returns of each asset at each time period are estimated using the
corresponding data set. The estimated expected values of the returns and the factors,
as well as other descriptive statistics, such as standard deviations and backward and
forward deviations, are presented in Table 4.2.

The descriptive statistics of the factors Qz˛ , Qz�t and Qz�t derived from the real world
data are summarized in Table 4.3.

The input parameters for the ALM models are selected as follows. The initial
portfolio holdings (the amount with which the fund begins) is the same for all
experiments, and equals $1000. The wages Wt are $2050, $2100 and $2150 for
t D 1; 2 and 3, respectively. The liabilities lt start at $150, and increase at each
time period: $150; $155; $160; $165. Transactions costs for buying (cb) and selling
(cs) are both fixed as 2 %. The funding ratio is set at 0.9 for the computational
results we present. Tests with different funding ratios ( D 1 and  D 1:1) lead
to similar conclusions, and we do not show the results here in the interest of space.
The experiments are run for a range of different degrees of robustness (robustness
budgets), 0.001–1.

In all experiments, we follow a rolling horizon optimization procedure. A set of
1000 scenarios is simulated for each length of time period, and the input parameters
for the multiperiod optimization problems are estimated. The optimization problems
are solved, and the first step recommended by the optimal strategy is taken. Actual
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realizations of the returns are simulated again so that the realized performance of
the strategy can be recorded:

• In Experiment 1, we use the originally estimated mean .�/ and variance .�/ for
generating scenarios for evaluating performance.

• In Experiment 2, the scenarios for evaluating performance are generated with
a mean value of � � 1

2
� and the same variance � as in Experiment 1. This

represents a market regime in which the investor invests optimally given a
particular expected return, but in actuality asset returns follow a distribution that
is worse than expected on average.

• Experiment 3 is similar to Experiment 2, but the scenarios for evaluating
performance deviate substantially from expectations—the mean value is � � �

and the variance is � . This represents a market regime with the worst realized
asset returns.

After updating the realized holdings for the first time period, scenarios for future
returns are simulated again with the estimated mean .�/, and the multiperiod opti-
mization problems with reduced time horizon are solved again. The recommended
first step is taken, and scenarios for strategy evaluation are generated again as
explained above to estimate the performance of the different strategies over the
following time period and update the holdings. This is repeated until the last time
period.

To estimate the input parameters for the robust ALM models with asymmetric
uncertainty sets for returns, we follow the procedure described in Sect. 4.5.3.
Uncorrelated factors of accumulated returns of each asset are estimated, and the
backward and forward deviations for the ith factor are computed by using the
procedure described in Natarajan et al. (2008). For both of our data sets, P ¤ Q.

Table 4.2 Statistical summary of the historical data
(returns for each period)

t = 0 t = 1 t = 2 t = 3

Mean return

Risky asset 0:029 0:051 �0:003 0:005

Risk-free asset 0:014 0:012 0:007 0:005

Standard deviation

Risky asset 0:054 0:069 0:082 0:095

Risk-free asset 0:005 0:001 0:004 0:005

p: Forward deviation

Risky asset 0:054 0:070 0:082 0:095

Risk-free asset 0:005 0:001 0:005 0:005

q: Backward deviation

Risky asset 0:070 0:069 0:085 0:101

Risk-free asset 0:005 0:002 0:004 0:005
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Table 4.3 Descriptive statistics for the entries of the vectors of
factors Qz˛ , Qz�t and Qz�t extracted from real data

1 2 3 4 5

Qz’

Std dev 0:999 0:975 0:848 0:826 0:976

p: Forward dev 1:026 0:995 0:865 0:844 0:996

q: Backward dev 0:999 0:975 0:848 0:826 0:976

Qz¡
t

t = 1 Std dev 0:712 0:702 0:986 0:166

p: Forward dev 0:712 0:703 0:986 0:166

q: Backward dev 0:713 0:702 0:986 0:166

t = 2 Std dev 0:665 0:748 0:981 0:172

p: Forward dev 0:665 0:748 0:981 0:172

q: Backward dev 0:665 0:748 0:981 0:172

t = 3 Std dev 0:646 0:765 0:980 0:163

p: Forward dev 0:646 0:765 0:980 0:163

q: Backward dev 0:646 0:766 0:980 0:163

t = 4 Std dev 0:696 0:719 0:987 0:110

p: Forward dev 0:701 0:719 0:987 0:110

q: Backward dev 0:696 0:723 0:987 0:110

Qz

t

t = 1 Std dev 0:999 0:969 0:749 0:958 0:994

p: Forward dev 0:999 0:969 0:751 0:960 0:996

q: Backward dev 1:000 0:969 0:749 0:958 0:994

t = 2 Std dev 0:999 0:986 0:952 0:983

p: Forward dev 0:999 0:987 0:953 0:985

q: Backward dev 0:999 0:986 0:952 0:983

t = 3 Std dev 0:999 0:980 0:983

p: Forward dev 0:999 0:981 0:984

q: Backward dev 1:012 0:993 0:996

Most of the observed factors (and, respectively, the cumulative returns) follow
asymmetric distributions.

We present results on the performance of three strategies—nominal, robust, and
traditional stochastic programming—for different values of the input parameters �
(the penalty multiplier for the amount of contributions) and the robustness budgets
˝ associated with the constraints containing uncertain coefficients. As explained
earlier, we also verified that the conclusions remain the same for different values of
the funding ratio  in the range 0.9–1.1.

• The robust optimization strategy, abbreviated as R, is implemented for different
values of the price of robustness (PoR), which is in fact the robustness budget
parameter˝ in the formulations in Sects. 4.5.1 and 4.5.2.
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• The nominal strategy, abbreviated as N, calculates the optimal investment
strategy assuming that all uncertain coefficients are at their expected values.
The optimization problem formulation is a deterministic problem solved by a
risk-neutral investor, and is only used as a benchmark. Note that N is equivalent
to the robust strategy when the price of robustness is fixed at zero.

• The stochastic programming strategy, abbreviated as SP, maximizes the expected
value of the objective function over the generated scenarios. The formulation is
described in Sect. 4.3.

All models are implemented in Matlab and solved with YALMIP [32]. The
computational experiments are run on a laptop with Windows XP operating system
with CPU 2.26 GHz Intel Core2Duo and 2 Gb of RAM.

4.6.2 Computational Results

As we mentioned in the description of the experiment design, we generate scenarios
to evaluate the performance of the various strategies. In this section, we present
statistical analysis of the simulated values for final wealth in terms of average,
variance, minimum, and maximum out of the 1000 simulations. We also compute
tail risk measures reminiscent of Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR). The VaR at 5 % is found by taking the 50th smallest realized portfolio value
whereas the CVaR is calculated as the average of the 50 smallest portfolio values all
simulations. The performance of the nominal, robust and stochastic ALM models
for pension funds for simulated and real data is presented in Tables 4.4, 4.5 and 4.6,
4.7, respectively.

Some interesting observations can be made from the results in Tables 4.4, 4.5
and 4.6, 4.7:

• If the future asset returns follow the same distribution as the input distribution,
then the expected terminal wealth as well as the variance of terminal wealth
obtained by all robust ALM models decrease when the robustness budget
increases (see the results of Experiment 1). In other words, as we expected based
on our discussion on robust optimization, there is a tradeoff between the average
performance and the amount of protection desired. The nominal and stochastic
investment strategies provide higher average wealth than the robust strategy at
any price of robustness.

• This pattern, however, completely reverses when future realized asset returns
are worse than expected as in Experiments 2 and 3. In such cases, the expected
terminal wealth obtained by all robust ALM models increases when the robust-
ness budget increases, whereas the variance decreases. Both the nominal and
stochastic investment strategies result in lower wealth than the robust strategy
for symmetric and asymmetric uncertainty sets at any value for the price of
robustness.
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• The robust ALM formulation with symmetric uncertainty set results in lower
expected wealth (as well as higher variance and worse tail performance) than the
wealth obtained with the asymmetric uncertainty set formulation for any degree
of robustness. This is notable, given that both the simulated and the real data used
in our experiments were asymmetric.

• Robust optimization strategies appear to perform better than stochastic program-
ming formulations in catastrophic situations like Experiments 2 and 3 when the
realized returns are worse than expected. The robust strategy realizes higher
expected profit and better tail risk (as reflected in the 5 % VaR and CVaR—like
measures) than the expected value strategy obtained from the stochastic program
for pension funds.

4.7 Concluding Remarks

This entry outlined a robust optimization approach to ALM for pension funds, and
suggested formulations that can incorporate possible asymmetries in the uncertain-
ties in the problem. We considered data-driven methods for generating inputs to the
optimization problems, and evaluated the performance of the robust formulations
in computational experiments with simulated and real market data. Robust ALM
strategies are faster to implement and appear to have better performance, both in
terms of average realized wealth and in terms of tail performance, when the uncer-
tain parameters follow probability distributions with different means than expected.
This is an important practical advantage because the probability distributions of
asset returns are very difficult to estimate. When the uncertain parameters follow
probability distributions with known parameters, the value of the price of robustness
parameter plays an important role in determining the performance of robust ALM
strategies, and should be calibrated to data.

Appendix

Proof of Theorem 1. Let us derive the robust counterpart of the first constraint in the
optimization problem formulation .PR

sym/. The derivation of the robust counterparts
of the remaining constraints is similar. The first constraint can be rewritten as

� � Q̨ 0� C �TWT � 0:

The robust counterpart of the original constraint can be written as

� � Min Q̨2SUo
˚ Q̨ 0�

�C �TWT � 0

Intuitively, we would like the constraint to be satisfied even if the uncertain
coefficients take their worst-case values within the uncertainty set. In this case, the
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worst-case value of the uncertain expression is obtained when Q̨ 0� is at its minimum
value for values of Q̨ within the uncertainty set. (If it was at its maximum value, it
would be easier, not harder, for the inequality to be satisfied because of the negative
sign in front of the vector product.) We solve the inner minimization problem first.
The inner problem is in the explicit form

Min Q̨ Q̨ 0�
s.t.

�
�
�.„

o/�
1
2 . Q̨ � EŒ Q̨ �/

�
�
�
2

� ˝o

Let � � 0 be a Lagrangian multiplier for the constraint in the optimization
problem above. The Lagrangian function is

L. Q̨ ; �/ D Q̨ 0� C �

�
�
�.„o/�

1
2 . Q̨ � EŒ Q̨ �/

�
�
�
2

�˝o
�

:

The first-order optimality condition is

@L
@ Q̨ D � C �

�
�
�.„

o/�
1
2 . Q̨ � EŒ Q̨ �/

�
�
�
2

.„o/�1 . Q̨ � EŒ Q̨ �/ D 0 (4.23)

and the complementarity condition is

�

�
�
�.„

o/�
1
2 . Q̨ � EŒ Q̨ �/

�
�
�
2

�˝o
�

D 0 (4.24)

Using the optimality conditions stated in (4.23) and (4.24), we can find the optimal
value of the random parameter within the uncertainty set. Note that in (4.24),� ¤ 0.
In addition,

�
�
�.„

o/�
1
2 . Q̨ � EŒ Q̨ �/

�
�
�
2

D ˝o (4.25)

From (4.23) and (4.25), we obtain

.„o/�1 . Q̨ � EŒ Q̨ �/ D �˝
o

�
� ) Q̨ � EŒ Q̨ � D

�

�˝
o

�

�

„o�: (4.26)

In addition, it can be easily shown that

�
�
�.„

o/�
1
2 . Q̨ � EŒ Q̨ �/

�
�
�
2

D
q

. Q̨ � EŒ Q̨ �/ .„o/�1 . Q̨ � EŒ Q̨ �/

D
s
�

�˝
o

�
„o�

�0
.„o/�1

�

�˝
o

�
„o�

�

D ˝o

�

p
�0„o�: (4.27)
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Using (4.27) and (4.25), the Lagrangian multiplier is found as � D p
�0„o�.

Substituting this in (4.23) confirms that the optimal solution of the inner problem is

Q̨ 0� D EŒ Q̨ �0� �˝o
p

�0„o�:

The robust counterparts of the other constraints that contain uncertain coefficients,
namely the liability and the cash balance constraints, can be derived in a similar
manner. As a result, the robust model for .PR/ can be obtained as stated in
Theorem 1.

Proof of Theorem 2. The theorem follows from (4.17) and the fact that, given the
representation of the uncertain coefficients as linear combinations of factors, the
constraints can be written in the form (4.15). To see how the constraint Q̨ 0� �
�WTT � � � 0, for example, can be written in the form (4.15), note that it can
be written in terms of the uncertain factors Qz˛ as

Q̨ 0� � �WTT � � D Ǫ 0
� � �WTT � �

„ ƒ‚ …

f0.�;T /

C
MCTX

jD1
e0

j .	
˛/

0
�

„ ƒ‚ …

fj.�/

�Qz˛j (4.28)

Given (4.17), the robust counterpart of the constraint

Q̨ 0� � �WTt � � � 0

when the uncertain factors Qz˛ vary in uncertainty set AU o is

Ǫ 0
� � �WTt � � � ˝ojju˛jj C .r˛/0 .z˛/C .s˛/0 .z˛/

u˛j � �pj
�

e0
j .	

˛/
0
� C r˛j � s˛j

�

; j D 1; : : :;M C T

u˛j � qj
�

e0
j .	

˛/
0
� C r˛j � s˛j

�

; j D 1; : : :;M C T

r˛; s˛ � 0

The robust counterparts of the remaining constraints can be derived in a similar
manner.
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Chapter 5
Liability-Driven Investment in Longevity Risk
Management

Helena Aro and Teemu Pennanen

Abstract This paper studies optimal investment from the point of view of an
investor with longevity-linked liabilities. The relevant optimization problems rarely
are analytically tractable, but we are able to show numerically that liability driven
investment can significantly outperform common strategies that do not take the
liabilities into account. In problems without liabilities the advantage disappears,
which suggests that the superiority of the proposed strategies is indeed based on
connections between liabilities and asset returns.

Keywords Longevity risk • Mortality risk • Stochastic mortality • Stochastic
optimization • Hedging

5.1 Introduction

Longevity risk, the uncertainty in future mortality developments, affects pension
providers, life insurers, and governments. The population structure of developed
countries is increasingly leaning towards the old, and the effects of medical
advances and lifestyle choices on mortality remain unpredictable, which creates an
increasingly acute need for life insurance and pension plans to hedge themselves
against longevity risk.

Various longevity-linked instruments have been proposed for the management of
longevity risk; see e.g. [6, 7, 11, 21, 27]. It has been shown how such instruments,
once in existence, can be used to hedge mortality risk exposures in pensions or
life insurance liabilities [7, 12, 13, 15, 18, 26]. Indeed, demand for longevity-linked
instruments appears to exist, and some longevity transactions have already taken
place. However, a major challenge facing the development of longevity markets
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is the hedging of the risk that stems from issuing longevity-linked securities. The
supply for mortality-linked instruments might increase if their cash-flows could
be (partially) hedged by appropriately trading in assets for which liquid markets
already exist. Such a development has been seen e.g. in options markets, which
flourished after the publication of the seminal Black–Scholes–Merton model. Even
though the cash flows of mortality-linked instruments cannot be perfectly replicated,
it may be possible to diminish the residual risk by an appropriate choice of an
investment strategy.

This paper addresses the above issues by studying optimal investment from the
point of view of an insurer with longevity-linked liabilities. As such problems
are rarely analytically tractable, we employ a numerical procedure that adjusts the
investment strategy according to the statistical properties of assets and liability as
well as a given risk measure. The approach can be applied in pricing and hedging of
longevity-linked instruments, as well as in asset-liability management of pension
plans and life insurers. Rather than aiming at general investment principles, we
illustrate the technique in the specific example of hedging a survivor bond whose
payments are tied to a given cohort over a fixed time interval.

The most straightforward approach to hedging of longevity-linked instruments
is natural hedging, where an insurer hedges longevity risk by taking positions
with opposite exposures to longevity developments [17, 29]. Such an approach
is obviously limited by the demand on the relevant insurance products. Another
popular approach builds on risk neutral valuation which is based on the no-
arbitrage principle from financial economics; see e.g. [3, 12, 16, 20] and Sect. 10
of [30]. In analogy with the Black–Scholes–Merton theory, it has been suggested
that longevity-linked instruments could then be hedged using delta hedging by
determining price sensitivities with respect to traded securities. This approach is,
however, invalidated by the fact that the payouts of longevity-linked instruments
cannot be replicated by liquidly traded assets as assumed by the risk neutral
valuation theory; see the discussion in [4, 5, 30].

This paper employs a computational technique that constructs diversified strate-
gies from a family of simpler basis strategies. We find that the risk associated
with the diversified strategy diminishes significantly when one includes basis
strategies suggested by the statistical connections between mortality and financial
markets observed in [2]. To assess to which extent the reduction of risk is due to
the asset-liability connections, we performed the same computations also without
liabilities. In this case, the inclusion of the liability-driven investment strategies
had negligible effect on risk, which suggests that the reduction of risk in the asset-
liability management problem was indeed due to the connections between assets
and liabilities.

The rest of this paper is organized as follows. Section 5.2 formulates the
asset-liability management problem of a longevity-linked cash flow. Section 5.3
introduces investment strategies that serve as basis strategies for the computational
procedure described in Sect. 5.4. Section 5.5 presents results from a simulation
study, and Sect. 5.6 concludes.



5 Liability-Driven Investment in Longevity Risk Management 123

5.2 The Asset-Liability Management Problem

Consider an insurer with given initial capital w0 and longevity-linked liabilities with
claims ct over time t D 1; 2; : : : ;T. After paying out ct at time t, the insurer invests
the remaining wealth in financial markets. We look for investment strategies whose
proceeds fit the liabilities as well as possible in the sense of a given risk measure �
on the residual wealth at time T.

We assume that a finite set J of liquid assets (bonds, equities, . . . ) can be traded
at t D 0; : : : ;T. The total return on asset j over period Œt � 1; t� will be denoted Rt;j.
The amount of cash invested in asset j over period .t; t C 1� will be denoted by ht;j.
The asset-liability management problem of the insurer can then be written as

minimize �.
X

j2J

hT;j/ over h 2 N

subject to
X

j2J

h0;j � w0

X

j2J

ht;j �
X

j2J

Rt;jht�1;j � ct t D 1; : : : ;T

ht 2 Dt; t D 1; : : : ;T

(ALM)

The liabilities .ct/
T
tD0 and the investment returns .Rt;j/

T
tD0 will be modeled as

stochastic processes on a filtered probability space .˝;F ; .F/TtD1;P/. The set N
denotes the RJ-valued .Ft/

T
tD1-adapted investment strategies .ht/

T
tD0. Being adapted

means that the portfolio ht chosen at time t may only depend on information
observed by time t. The last constraint describes portfolio constraints. The set Dt

of feasible strategies is allowed to be random but known at time t.1 Short-selling
constraints, for instance, correspond to the deterministic constraint Dt.!/ D R

JC.
Describing limitations on investment strategies in case of negative wealth require a
random Dt.

The risk measure � is a convex function on the space of real-valued random
variables. It describes the insurer’s preferences over random terminal wealth
distributions. We refer the reader to [22, Chap. 4] for a general treatment of
risk measures. In addition to the terminal wealth, one may also wish to take
into consideration the overall trajectory of wealth either in the objective or the
constraints. For simplicity, we will concentrate on the above formulation, which is
more in line with established models of mathematical finance; see e.g. [22, Chap. 8]
or [19, Chap. 3].

Liability-driven investment refers to the general principle that optimal invest-
ment strategies depend on the liabilities. The same idea is behind the famous

1More precisely, Dt is assumed Ft-measurable, i.e. f! 2 ˝ j Dt.!/ \ U ¤ ;g 2 Ft for every
open U.
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Black–Scholes–Merton option pricing model where the price of an option is defined
as the least amount of initial capital that allows for the implementation of an
investment strategy whose proceeds match the option payout exactly. In the case
of longevity-linked liabilities, exact replication is not possible so one has to evoke
the risk preferences as is done in problem (ALM) in terms of the risk measure �.

Problems of the form (ALM) arise naturally in reserving for existing insurance
liabilities as well as in underwriting new insurance contracts. Optimal risk adjusted
reserves are obtained as the least initial wealth w0 that allow for acceptable levels
of risk in (ALM). In underwriting, one looks for a premium that would allow the
insurer to take on the additional liabilities without worsening the optimal value
of (ALM); see [28] for a general study of risk management-based valuation of
uncertain cash-flows.

5.3 Investment Strategies

In this section we present investment strategies that are used in subsequent
numerical illustrations. We recall some well-known trading strategies recommended
for long-term investment, and also introduce new strategies that try to employ the
connections between the longevity-linked liabilities and asset returns.

We will describe the proportions of wealth invested in each asset j 2 J at time t
by vector �t D Œ�1t ; �

2
t ; : : : ; �

J
t � whose components sum up to one. The amount of

wealth invested in each asset can be expressed as ht D �twt, where for t D 1; : : : ;T

wt D
X

j2J

Rt;jht�1;j � ct

is the net wealth of the investor at time t.

5.3.1 Non-liability-Driven Investment Strategies

In buy and hold (B and H) strategies the initial asset allocation �0 is held over
the subsequent time periods. To cover a nonzero claim process ct, each asset is
liquidated in proportion to the initial investment. In other words, one invests

ht;j D
(

�
j
0w0 t D 0;

Rt;jht�1;j � �
j
0ct t D 1; : : : ;T;

units of cash in asset j 2 J at the beginning of the holding period starting at time t.
Fixed proportions (FP) is a strategy where the allocation is rebalanced at the

beginning of each holding period into fixed proportions given by a constant vector
� 2 R

J as
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ht D �wt:

A target date fund (TDF) is a well-known strategy in the pension industry [14].
In a TDF, the proportion invested in risky assets diminishes as a pre-determined
target date approaches. We implement TDFs by adjusting the allocation between two
complementary subsets Jr and Js of the set of all assets J. Here Js consists of “safe”
assets and Jr consists of the remaining “risky” assets. In the simulations presented in
Sect. 5.5 safe assets consist of government bonds, and risky assets comprise equities
and corporate bonds. The proportional exposure to Jr at time t is given by

et D a � bt:

The parameter a determines the initial proportion invested in Jr and b defines how
fast the proportion decreases in time. Choices of such a and b that

a � 0 and a � bT � 0:

guarantees that the exposure et in the risky assets remains nonnegative. A TDF can
be written as

ht D �twt

where the vector �t is adjusted to give the specified proportional exposure:

X

j2Jr

�
j
t D et:

Within Jr and Js the wealth is allocated using FP rules.

5.3.2 Liability-Driven Investment Strategies

This subsection presents strategies in which the proportions invested in different
assets are connected to the development of the longevity-linked liabilities. Some
of the strategies utilize the connections between mortality and financial markets
observed in [2], while others employ, directly or indirectly, the current and forecast
future cash flows of longevity-linked liabilities to determine the asset allocation.

A well-known liability-driven strategy is the constant proportion portfolio
insurance (CPPI) strategy; see e.g. [8–10]. The proportion of wealth invested in
risky assets is given by

et D m

wt
maxfwt � Ft; 0g

D m maxf1� Ft

wt
; 0g;
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where the floor Ft represents the value of outstanding claims at time t and the
parameter m � 0 determines the fraction of the cushion (wealth over the floor)
invested in risky assets. Risky and safe assets are here the same as in TDF strategies.
Within Jr and Js the wealth is allocated using FP rules. We define the floor through

FT D 0;

Ft D .1C r/Ft�1 � Nct t D 0; : : : ;T;

where r is a deterministic discount factor and Nct is the median of claim amount at
time t. In this type of strategies, the liabilities are taken into account not only in the
projected claim amounts Nct but also in the remaining wealth wt, which for a given
w0 depends on the realized values of the claims ct.

The idea behind spread strategies is to capture the connections between mortality
and asset returns described in [2]. Statistical analysis suggests that long-term
increases in GDP have a positive effect on old-age mortality. The rationale behind
this is that increases in the national income are reflected in the wellbeing of the old.
On the other hand, high levels of GDP growth are connected to high term spreads.
The interpretation of this connection is that interest rates reflect the future changes
in the level of economic activity.

Further, when term spread is high, the yields of long-term treasury bonds are
then relatively high, compared to short-term treasury bonds. Hence, relatively high
yields on long-term bonds are connected with high survival probabilities of the old.
Term spread strategies aim to utilize this notion. The proportion of wealth invested
in long-term treasury bonds is determined as a function of the term spread sT

t by

�L
t D �a;b.sT

t /;

where

�a;b.s/ D 1

1C e�b.sCa/
;

and b > 0 and a 2 R are user-defined parameters. The remaining wealth is invested
in short-term government bonds. LISAA linkkien selitykset, ks. morfin.

Correspondingly, the analysis in [2] corroborate that high levels of GDP are
connected to low credit spreads, which suggests that the low credit spreads are
connected to high survival probabilities of over 50-year-olds. Simultaneously, the
returns on riskier corporate bonds are relatively low compared to less risky bonds.
Hence, in the case of credit spread strategies the proportional exposure to riskier
corporate bonds is

�C
t D �.sC

t /;

The remaining wealth is invested in less risky bonds.
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In survival index strategies the wealth allocated amongst assets depends on the
survival index S of a given population. The value of the survival index St time t is
defined as the fraction of the population that survives until time t. The value of St

gives indication on future liabilities: the smaller the remaining number of survivors,
the smaller the future cash flows are likely to be. Hence, the proportional exposure
in asset j at time t is given by

�
j
t D ga.St/;

where

ga.s/ D minfas; 1g;

and a 2 R. The rest is invested in other assets using fixed-mix strategies.
In wealth strategies the proportion invested in asset j depends on the proportion

of initial wealth wt=w0 remaining at time t. The proportional exposure at time t is
given by

�
j
t D ga.wt=w0/;

where a 2 R. The rest is invested in other assets. Wealth-dependent strategies
resemble CPPI strategies in the sense that both define the proportions of wealth
invested in various assets in terms of the present wealth. However, the wealth
strategies do not depend on median liabilities like CPPI, but the liabilities are
reflected only in the present level of wealth.

5.4 Diversification Procedure

We now briefly recall the numerical procedure presented in [23, 25]. It is a
computational method for diversifying the initial wealth w0 amongst a set of simple
parametric strategies called basis strategies. The convex combination of feasible
basis strategies is always feasible, since the optimization problem is convex. The
investment strategies presented in the previous section serve as basis strategies in
the numerical illustrations in Sect. 5.5.

Consider a finite set fhi j i 2 Ig of basis strategies that invest the amount hi
t;j in

asset j at time t. The problem of finding an optimal diversification amongst the basis
strategies can be written as

minimize
˛2X

�

 
X

i2I

˛iwi
T

!

;
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where wi
T D P

j2J hi
T;j is the terminal wealth obtained by following strategy hi when

starting with initial capital w0, and

X D f˛ 2 R
IC j

X

i2I

˛i D 1g:

are the weights in the convex combination. In this work we employ the entropic risk
measure

�.X/ D 1


log EŒe�X �;

in which case the minimization problem becomes

minimize
˛2X

1


log EŒe�.Pi2I ˛

iwi
T/�:

It is to be noted that our choice of the entropic risk measure is rather arbitrary and
it was mainly chosen for computational convenience. Other possibilities include the
Conditional Value at Risk, which is employed in an analogous setting in [23].

Because of the convexity of Dt,
P

i2I ˛
ihi

t 2 Dt for t D 0; : : : ;T. In addition, the
budget constraint of the aggregate strategy

P

j2J ht;j � P

j2J Rt;jht�1;j � ct holds, if
it holds for individual strategies. This is a finite-dimensional convex optimization
problem, but the objective involves high-dimensional integration.

In order to solve (5.4), we form the following quadrature approximation of
the objective. A finite number N of return and claim scenarios .Rk; ck/, k D
1; : : : ;N is generated over time t D 0; : : : ;T. Here Rk denotes a realization of
the jJj-dimensional process .Rt/

T
tD1 where Rt D .Rt;j/j2J . The expectation is then

approximated by

1

N

NX

kD1
e�



P

i2I ˛
iwi;k

T

�

;

where wi;k
T is the terminal wealth in scenario k, obtained by following strategy hi.

For a more detailed description of the method, see e.g. [23, 25]. Given a realization
.Rk; ck/ and a strategy hi, the corresponding wealth process wi;k D .wi;k

t /
T
tD0 is given

recursively by

wi;k
t D

(

w0 for t D 0;
P

j2J Rk
t;jh

i;k
t�1;j � ck

t for t > 0:

The resulting minimization problem is of a form that is, in principle, straightforward
to solve using numerical optimization algorithms. In the numerical study below, we
employ the standard SQP solver of Matlab.
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5.5 Numerical Results

In the following numerical illustrations, the termination date was set to T D 30,
and the cash flows ct were defined as the survival index St of a cohort of US
females aged 65 at time t D 0. The structure of this instrument is the same as in
the first longevity bond issued in 2004 by the European Investment Bank (for a
more detailed description see e.g. [6]). The asset returns Rt and liabilities ct were
modelled as a multivariate stochastic process as described in Appendix A. Using
Latin hypercube sampling, we constructed N D 106 scenarios for the numerical
procedure described above. Each problem instance was generated and solved in no
more than five minutes using Matlab’s parallel computing on an Intel Xeon X5650
@ 2.67 GHz processor.

Our aim was to investigate if liability-driven investment strategies can lead to
reductions in the risk associated with a cash flow of longevity-linked liabilities. To
this end, we used two sets of basis strategies. The first set consisted of non-liability-
driven basis strategies, namely 30 FP strategies, 24 TDF strategies, and four buy
and hold strategies. The second set encompassed both the above non-liability-driven
and additional liability-driven basis strategies, including 15 term spread strategies,
15 credit spread strategies, 50 survival index strategies and 50 wealth strategies.
We computed the optimal aggregate investment strategy and the corresponding
value of the risk measure function � for each set, using the numerical procedure
of the previous section. We then proceeded to compare the optimal values of the
objective � associated with each set. In order to discern to which extent a possible
reduction in risk can be attributed to considering the liabilities, as opposed to merely
having a larger number of strategies, we also considered a portfolio optimization
problem without liabilities for both sets of basis strategies. The optimal allocations
were computed for different values of risk aversion parameters  . The larger the
parameter, the more risk averse the investor.

Table 5.1 summarizes the resulting values of the objective function. We observe
that as the risk aversion grows, so does the reduction in risk of the ALM problem
with liabilities as the liability-driven strategies are included. This is plausible since
the higher the risk aversion, the more the risk measure places importance to the fact
that the asset returns conform to the liabilities. As for the optimization problem with
zero liabilities, the effect of adding the liability-driven strategies was negligible and
independent of the level of risk aversion.

Table 5.1 Values of objective function �

 D 0:05  D 0:1  D 0:3  D 0:5

ct D St ct D 0 ct D St ct D 0 ct D St ct D 0 ct D St ct D 0

Basis strategies

Non-LDI �27:46 �75:14 �18:64 �60:82 �11:16 �46:73 �9:17 �41:81
All �27:90 �75:14 �19:84 �60:84 �12:40 �46:87 �10:16 �42:14
Reduction (%) 1:6 0:006 6:47 0:04 11:14 0:3 10:71 0:8
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Tables 5.2 and 5.3 show the optimal allocations to each set of the basic investment
strategies and both problems for risk aversion parameter  D 0:3. Asset indexes
are as indicated in Appendix A. After the liability-driven strategies were included
in the optimization procedure, none of the non-liability driven strategies were
included in the optimal allocation of the problem with ct D St, whereas in the
optimal allocation of the portfolio optimization problem a non-liability driven fixed
proportions strategy still had the highest weight.

Table 5.2 Diversified
strategy, non-liability-driven
strategies, w0 D 15,  D 0:3

ct D St Weight (%) Type �

97.7 FP
�2 D 1� 0:25

�4 D 0:25

2.3 FP
�2 D 1� 0:35

�4 D 0:35

ct D 0 Weight Type �

59.8 FP
�2 D 1� 0:25

�4 D 0:25

40.2 FP
�2 D 1� �0:15
�4 D 0:15

Table 5.3 Diversified strategy, all strategies, w0 D 15,  D 0:3

ct D St Weight (%) Type �

52.7 Survival index
�2 D ga.St/ a D 1
�4 D 1� ga.St/

19.0 Wealth
�2 D ga.wt=w0/ a D 0:5
�4 D 1� ga.wt=w0/

13.8 Survival index
�2 D ga.St/ a D 0:75
�4 D 1� ga.St/

7.4 Wealth
�2 D ga.wt=w0/ a D 0:75

�4 D 1� ga.wt=w0/

7.1 Term spread
�1 D 1� �.sT

t /
a;b a D �0:5; b D 5

�2 D �.sT
t /

a;b

ct D 0 Weight Type �

44.3 FP
�2 D 1� 0:35 –

�4 D 0:35

37.6 Term spread
�1 D 1� �.sT

t /
a;b a D �0:5; b D 5

�2 D �.sT
t /

a;b

9.6 Survival index
�2 D ga.St/; a D 1

�4 D 1� ga.St/;

8.4 Wealth
�2 D ga.wt=w0/ a D 0:5

�4 D 1� ga.wt=w0/



5 Liability-Driven Investment in Longevity Risk Management 131

Table 5.4 Five best basis strategies, with liabilities, w0 D 15,  D 0:3

Type Parameters � �

Survival index a D 0:75
�2 D ga.St/ �11:80
�4 D 1� ga.St/

Survival index a D 1
�2 D ga.St/ �11:23
�4 D 1� ga.St/

Wealth a D 1
�2 D ga.wt=w0/ �11:22
�4 D 1� ga.wt=w0/

FP –
�2 D 1� 0:25 �11:13
�4 D 0:25

CPPI m D 0:2; r D 0:04
�2 D 1� et �10:89
�4 D et

Table 5.5 Five best basis
strategies, without liabilities,
w0 D 15,  D 0:3

Type Parameters � �

CPPI/FP m D 0:2; r D 0:03
�2 D 1� et �46:62
�4 D et

FP
– �2 D 1� 0:25 �46:46

�4 D 0:25

FP
– �2 D 1� 0:15 �46:13

�4 D 0:15

TDF a D 0:2; b D 0:003
�2 D 1� et �45:98
�4 D et

TDF a D 0:25; b D 0:005
�2 D 1� et �45:08
�4 D et

Tables 5.4 and 5.5 show the best five individual strategies with the smallest
risks for both problems. While all the best strategies of the problem with liabilities
were liability-driven, all the best ones for the problem without liabilities were
non-liability driven strategies. Note that when ct D 0, CPPI reduces to a fixed
proportions strategy.

Figure 5.1 illustrates the effect of the liability link by plotting the proportions �2

of wealth invested in 5-year government bonds as a function of remaining wealth wt

at t D 15 in different scenarios. In the case of the ALM problem of the longevity-
linked cash flow, �2 is higher when wt is higher. For the portfolio optimization
problem, however, the connection is much less clear.

5.6 Conclusions

This paper presented several liability-driven investment strategies for longevity-
linked liabilities. We were able to show numerically that liability-driven investment
can significantly outperform common strategies that do not take into account the
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Fig. 5.1 Proportion of wealth invested at time t D 15 in 5-year bonds as a function of W15. All
strategies. (a)  D 0:3, no liabilities. (b)  D 0:3, with liabilities

liabilities. These strategies may help pension insurers and issuers of longevity-
linked instruments in asset-liability management, reserving, and in underwriting
new insurance contracts.

While encouraging, the results still leave substantial room for improvement. The
basis strategies employed in the simulations are only an example of liability-driven
strategies. Discovering and utilizing new connections between longevity-linked cash
flows and asset returns would further improve the overall hedging strategy.

5.7 Assets and Liabilities

We consider a set J of assets consisting of

1. US Treasury bills (1-year rate)
2. US Treasury bonds (5-year rate)
3. US Corporate bonds
4. US equity (S and P total return index).

These are the asset classes between which the investment strategies distribute the
existing wealth, and the above numbers are the indices with which the strategies are
referred to. Returns on government bonds are given by the formula

Ri
t D exp.Yi

t�1�t � D�Yi
t /;

where Yi
t is the yield to maturity of each bond i 2 f1; 2g at time t, and D is the

duration. Following [24], corporate bond returns are computed by
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R3t D exp.c C .Y3t � ˛SC
t /�t � D�Y3t /;

where Y3t is the yield to maturity of the bond, SC
t is here the credit spread between

the yields of corporate bonds and longer-term government bonds Y2t , and D is again
the duration. Setting c D 1 and ˛ D 1 yields

R3t D exp.Y2t �t � D�Y3t /:

The total return of the equity is calculated in terms of its total return index SE
t ,

R4t D SE
t

SE
t�1
:

The value of the liabilities depends on the survival index of cohort of US females
aged 65 at the beginning of the observation period. The population dynamics are
governed by three mortality risk factors of the mortality model presented in [1].

We briefly recall the stochastic model proposed in [1]. Let Ex;t be the number of
individuals aged Œx; x C 1/ years at the beginning of year t in a given population.
The number of survivors ExC1;tC1 among the Ex;t individuals during year Œt; t C 1/

can be described by the binomial distribution:

ExC1;tC1 � Bin.Ex;t; px;t/; (5.1)

where px;t is the probability that an x year-old individual randomly selected at the
beginning of year t survives until t C 1.

The future values of EtC1 are obtained by sampling from Bin.Et; px;t/. However,
as the population grows, the fraction EtC1=ŒEtpxCt;t� converges in distribution to
constant 1. For large populations, the population dynamics are well described by
E.x C 1; t C 1/ D Ex;tpx;t, when the main uncertainty comes from unpredictable
variations in the future values of px;t. In this work, we employ the latter approach.

As in [1], we model the survival probabilities px;t with the formula

px;t D exp
�Pn

iD1 vi
t�

i.x/
�

1C exp.
Pn

iD1 vi
t�

i.x//
; (5.2)

where � i are user-defined basis functions and vi
t are stochastic risk factors that may

vary over time.
As in [1], we will use the three piecewise linear basis functions given by

�1.x/ D
(

1 � x�18
32

for x � 50

0 for x � 50;
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�2.x/ D
(

1
32
.x � 18/ for x � 50

2 � x
50

for x � 50;

�3.x/ D
(

0 forx � 50
x
50

� 1 for x � 50:

The linear combination
P3

iD1 vi
t�

i.x/ will then be piecewise linear and continuous
as a function of the age x. The risk factors vi

t now represent points on logistic survival
probability curve:

v1t D logit p18;t; v
2
t D logit p50;t; v

3
t D logit p100;t:

Once the basis functions � i are fixed, the realized values of the corresponding
risk factors vi

t can be easily calculated from historical data using standard max-
likelihood estimation.

As in [2], we model the future development of and connections between mortality
risk factors and spreads with the following system of equations

�v1t D a11v1t�1 C b1 C "1t

�v2t D b2 C "2t

�v3t D a33v3t�1 C a34gt�1 C b3 C "3t

�gt D a45sT
t�1 C a46sC

t�1 C b4 C "4t

�sT
t D a55sT

t�1 C b5 C "5t

�sC
t D a66sC

t�1 C b6 C "6t

�y1t D a77y1t�1 C b7 C "7t

�sE
t D b8 C "8t :

where vi
t are mortality risk factors, gt is the natural logarithm of per capita real GDP,

sT
t is the term spread between the logarithms of yields to maturity for 5-year and 1-

year government bonds, and sC
t is the logarithm of the credit spread between the

logarithmic yields to maturity of BAA and AAA rated corporate bonds. In addition
to the risk factors included in the original model, the 1-year government bond yield
y1t D log.Y1t / was added to enable computation of bond returns, as well as the S
and P total return index st D log.SE

t / as pension plans typically invest in the stock
market. The terms "i

t are random variables describing the unexpected development
in the risk factors.

Once the 1-year government bond yield is known, the 5-year government bond
yield can be computed by means of the term spread. Due to lack of data, we
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approximate the credit spread between government bonds and corporate bonds with
the spread sC

t between corporate bonds of varying riskiness, obtaining the corporate
bond yield.

Final year of available mortality data was 2007. Parameters of the time series
model were estimated as in [2], with the exception that the mean reversion yields
of 1-year and 5-year government bonds and corporate bonds were set to 2.5, 3.5,
and 4.5 %, respectively, and expected return on equity was set to 8 %. Durations D
for the 1-year and 5-year Treasury bonds were 1 and 5 years, respectively, and 5
years for the corporate bonds. In the case of negative wealth, required funds were
borrowed from the money market at the 1-year rate adjusted by a loan margin of
1 %.
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Chapter 6
Pricing Multiple Exercise American Options
by Linear Programming

Monia Giandomenico and Mustafa Ç. Pınar

Abstract We consider the problem of computing the lower hedging price of
American options of the call and put type written on a non-dividend paying stock
in a non-recombinant tree model with multiple exercise rights. We prove using
a simple argument that an optimal exercise policy for an option with h exercise
rights is to delay exercise until the last h periods. The result implies that the mixed-
integer programming model for computing the lower hedging price and the optimal
exercise and hedging policy has a linear programming relaxation that is exact, i.e.,
the relaxation admits an optimal solution where all variables required to be integral
have integer values.

Keywords American options • Swing options • Multiple exercise rights • Linear
programming • Mixed-integer programming • Lower hedging price

6.1 Introduction

Pricing and hedging American options has been an important subject of mathe-
matical finance. Starting with the work of Harrison and Kreps [22], Bensoussan
[6] and Karatzas [25], finding a no-arbitrage price for American options has been
studied in various settings ranging from discrete-time, discrete probability space to
continuous time infinite state space settings in complete and incomplete markets;
see e.g., [8, 9, 13, 15, 26, 29, 32, 38]. For a text-book treatment of American options
in discrete time the book by Föllmer and Schied [20] is an authoritative source while
the monograph by Detemple [16] concentrates on models in continuous time.

For options with early exercise possibility (thus, of American type) but with
multiple exercise rights such as the swing options of energy markets [24], one can
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consult the following literature [1–5, 11, 12, 18, 21, 23, 27, 31, 36, 37, 39, 40].
Thompson [37] uses lattice based claim evaluation techniques for commodity
options with multiple exercise rights. Keppo [27] gives an elementary introduction
to electricity swing options. Bardou et al. [1, 2] and Barrera-Esteve et al. [3]
consider swing options in complete markets within a stochastic control framework.
In particular, in [2] the bang-bang nature of the optimal exercise policy is studied.
In [12], Carmona and Touzi study American options with multiple exercise rights
in a Black-Scholes [7] framework, whereas in [11] a more general case using
linear diffusion models is treated. Bender [5] studies multiple exercise options in
continuous time with a finite maturity and proves the existence of the Snell envelope,
a reduction principle as nested single stopping problems, and a Doob-Meyer
type decomposition for the Snell envelope. He also derives a dual representation
that generalizes that of Schoenmakers [36] and gives a primal-dual Monte-Carlo
algorithm. In [31] a dual representation in discrete time is given, and its extension
to volume constraints is studied in [4]. Haarbrücker and Kuhn [21] use multi-stage
stochastic programming to price electricity swing options while Winter and Wilhelm
[40] use the finite element method to evaluate swing options. Vayanos et al. [39]
consider electricity swing options in incomplete markets as in the present paper
using forward contracts for hedging, and compute buyer and seller prices using
robust control and constraint sampling techniques. Longstaff and Schwartz [29],
Ibáñez [23] and Figueroa [18] use Monte-Carlo simulation techniques to price single
and multiple exercise claims. Chalasani and Jha [13], and Pınar and Camcı [34]
study American options in the discrete time finite state probability setting as in the
present paper, but allow for proportional transaction costs. Camcı and Pınar [10]
and Flåm [19] and Pennanen and King [33] treat similar problems from a finite-
dimensional optimization point of view.

In the present paper, we concentrate on the problem of finding an optimal exercise
and hedging policy, and hence a fair buyer’s price for an American option with
multiple exercise rights, written on a stock evolving in a non-recombinant tree in the
presence of a risk free asset paying no interest, a problem on which little (if anything
at all) has been written. We formulate the problem as a mixed-integer programming
problem. It is well-known that in discrete-time complete (and arbitrage free) markets
the price of a single exercise American call option on a non-dividend paying asset
behaves as a sub-martingale, and hence, it is optimal to delay exercise until maturity;
see e.g., [20]. The assertion remains true also for an American single exercise put
option on a non-dividend paying asset in a zero-interest rate environment [20].
Our main result provides an extension of this well-known fact (delaying exercise
until maturity is optimal) for American options with multiple exercise rights. The
result not only shows the optimal exercise policy, but also proves the exact nature of
the LP relaxation of the mixed-integer model. Therefore, one can obtain the lower
hedging price by solving a linear programming problem, a problem that can be
solved in polynomial time. To the best of our knowledge, this simple result was not
previously available in the mathematical finance literature. We also obtain a min–
max expression for the price of an American claim with multiple (two) exercise
rights as follows:
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max
	2T 2.T/

min
Q2 QQ

E
QŒF	 � D min

Q2 QQ
max

	2T 2.T/
E

QŒF	 �

where T is the maturity date of the claim, T 2.T/ is the collection of all vectors
of stopping times 	 D .	1; 	2/ 2 Œ0; 1; : : : ;T� [ fC1g satisfying some conditions
(c.f., end of Sect. 6.4) and QQ represents (the closure of) all equivalent martingale
measures. This is reminiscent of the representation

max
	2T min

Q2 QQ
E

QŒF	 � D min
Q2 QQ

max
	2T E

qŒF	 �

for American claims with T denoting the set of all stopping times. The above
representation can easily be generalized to h exercise rights.

A word of caution is in order here. One should bear in mind that for the swing
options traded in energy markets, the underlying (e.g., electricity) is not traded in
the spot market whereas our analysis in the present paper is based on the assumption
that the underlying can be traded.

The rest of the paper is organized as follows. In Sect. 6.2 we review the basics
of the stochastic scenario tree and American claims. In Sect. 6.3 we present an
optimization model to compute a fair price for an American claim with multiple
exercise rights. We prove the main result in Sect. 6.4. We conclude in Sect. 6.5.

6.2 The Stochastic Scenario Tree and American
Contingent Claims

An American contingent claim (abbreviated ACC) F is a financial instrument
generating a real-valued stochastic (cash-flow) process .Ft/tD0;:::;T with h � 1

exercise rights to the holder. At any stage t D 0; : : : ;T, the holder of a single-
exercise ACC may decide to take Ft in cash and terminate the process. In the case
of h > 1 exercise rights, the holder may decide to make up to and including h
exercises (at h different time points). The process terminates when the h-th exercise
is performed. Of course, the holder may choose to exercise less than h times during
the lifetime of the claim. An American call option on a stock S with strike price K
has a payoff equal to F D S � K. American put is obtained by reversing the sign of
F. In our finite probability space setting an American option F with h exercise rights
generates payoff opportunities Fn (Fn D maxfS1n � K; 0g or Fn D maxfK � S1n; 0g
for some strike price K), .n � 0/ and h exercise possibilities to its holder depending
on the states n of the market that we define below.

To lay down a pricing framework based on no-arbitrage arguments for contingent
claims, we assume that security prices and other payments are discrete random
variables supported on a finite probability space .�;F ;P/ whose atoms are
sequences of real-valued vectors (asset values) over discrete time periods t D
0; 1; : : : ;T. We further assume the market evolves as a discrete, non-recombinant
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scenario tree. A non-recombinant tree structure is suitable for incomplete markets
as discussed in [17] since it allows to work with path-dependent portfolio strategies
whereas in recombinant trees one optimizes over path-independent strategies which
may be suboptimal. In the scenario tree, the partition of probability atoms ! 2 �

generated by matching path histories up to time t corresponds one-to-one with nodes
n 2 Nt at level t in the tree. The set N0 consists of the root node n D 0, and
the leaf nodes n 2 NT correspond one-to-one with the probability atoms ! 2 �.
The �-algebras are such that, F0 D f;; �g; Ft � FtC1 for all 0 � t � T � 1

and FT D F . A stochastic process is said to be .Ft/
T
tD0-adapted if for each

t D 0; : : : ;T, the outcome of the process only depends on the element of Ft that has
been realized at stage t. Similarly, a decision process is said to be .Ft/

T
tD0-adapted

if for each t D 0; : : : ;T, the decision depends on the element of Ft that has been
realized at stage t. In the scenario tree, every node n 2 Nt for t D 1; : : : ;T has a
unique parent denoted �.n/ 2 Nt�1, and every node n 2 Nt, t D 0; 1; : : : ;T � 1

has a non-empty set of child nodes C .n/ � NtC1. We denote the set of all nodes in
the tree by N . For a given node n, the inverse mapping t.n/ gives the time period to
which the node n belongs to. The set A .n/ denotes the collection of ascendant nodes
or path history of node n including itself. The probability distribution P is obtained
by attaching positive weights pn to each leaf node n 2 NT so that

P

n2NT
pn D 1.

For each non-leaf (intermediate level) node in the tree we have, recursively,

pn D
X

m2C .n/
pm; 8 n 2 Nt; t D T � 1; : : : ; 0:

Hence, each non-leaf node has a probability mass equal to the combined mass of its
child nodes.

A random variable X is a real valued function defined on �. It can be lifted to
the nodes of a partition Nt of � if each level set fX�1.a/ W a 2 Rg is either the
empty set or is a finite union of elements of the partition. In other words, X can be
lifted to Nt if it can be assigned a value on each node of Nt that is consistent with
its definition on � [28]. This kind of random variable is said to be measurable with
respect to the information contained in the nodes of Nt. A stochastic process fXtg is
a time-indexed collection of random variables such that each Xt is measurable with
respect Nt. The expected value of Xt is uniquely defined by the sum

E
PŒXt� WD

X

n2Nt

pnXn:

The conditional expectation of XtC1 on Nt is given by the expression

E
PŒXtC1jNt� WD

X

m2C .n/

pm

pn
Xm:

The market consists of two traded securities with prices at node n given by
the vector Sn D .S0n; S

1
n/. We assume that the security indexed by 0 has strictly

positive prices at each node of the scenario tree. Our blanket assumption throughout
the paper is that S0n D 1 for all n i.e., a zero interest rate for the risk-free asset.
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This assumption is crucial e.g., for the put option case where non-zero interest rate
may lead to strict optimality of exercise earlier than the last h periods. We give a
counterexample supporting this claim after the proof of Proposition 1.

The number of shares of security j held by the investor in state (node) n 2 Nt

is denoted 
 j
n. Therefore, to each state n 2 Nt is associated a vector 
n 2 R

2. The
value of the portfolio at state n is

Sn � 
n D
1X

jD0
Sj

n

j
n:

We need the following definition.

Definition 1. If there exists a probability measure Q D fqngn2NT such that

St D E
QŒStC1jNt� .t � T � 1/

then the vector process fStg is called a vector-valued martingale under Q, and Q is
called a martingale probability measure for the process.

It is well-known that a market is free of arbitrage opportunities if and only if the
price process S is a martingale; see [28] for a discussion of arbitrage and martingales
in finite-state markets. We shall assume this situation to be the case throughout the
present paper.

6.3 The Formulation

The buyer’s problem can be formulated as the following problem that we will refer
to as AP1:

max V
s.t. S0 � 
0 D F0e0 � V

Sn � .
n � 
�.n// D Fnen; 8 n 2 N n N0

Sn � 
n � 0; 8 n 2 NTX

m2A .n/

em � h; 8 n 2 NT

en 2 f0; 1g ; 8 n 2 N

where h � 2 is a fixed integer. In mathematical finance, the theory of incomplete
markets involves the price of the seller and the price of the buyer for a contingent
claim. These two values can be quite different, leading to an interval in which no
arbitrage opportunities for the buyer and seller exist [28, 33]. The fact that these
two prices may differ is a matter of active research and discussion in the financial
mathematics community (see e.g. [28]) since it brings about the following question:
if the maximum the buyer can pay is strictly less than the minimum a seller can
settle for, then how are the claims traded in markets? It appears that the present
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theory—at least in its present form—is not fully capable to explain the prices of
contingent claims actually traded in the market. King [28] addresses this problem
using existing liabilities of buyers and sellers.

Setting this question aside, for the seller the problem is to form the least costly
initial portfolio of traded assets that will cover the potential payments to the holder
of the claim (if and when exercised) such that no losses are incurred at the end.
By contrast, from the buyer’s perspective the problem is to build the most valuable
portfolio that can be formed against the ownership rights of the claim. In other
words, the buyer initiates a portfolio process (by shorting some instrument(s)), and
closes the short positions later by self-financing transactions and the proceeds from
the claim in such a way that no losses are incurred at the end of the horizon.

In model AP1, the optimal value of V represents the largest amount that a
potential buyer is willing to disburse for acquiring a given American contingent
claim F with h exercise rights. The computation of this quantity via the above integer
programming problem is performed by construction of the most valuable (today)
adapted portfolio process using the proceeds from the exercise of the contingent
claim and self-financing transactions using the market-traded securities to avoid
any terminal losses. More precisely, the proceeds obtained from the exercise of the
claim are used to finance (cover short positions) portfolio transactions initiated by
the buyer at time t D 0 to acquire the claim. This is expressed in the first and second
sets of constraints above in AP1. They represent the requirement that the proceeds
from the claim, if exercised, are used in revising the portfolio positions without
injection or withdrawal of funds. If there is no exercise at a node, the equation
represents self-financing portfolio rebalancing. The third set of constraints makes
sure that all terminal portfolio values are non-negative. The integer variables and
related constraints represent the h-times exercise of the American contingent claim.
The linear programming relaxation of AP1 is the following problem AP2:

max V
s.t. S0 � 
0 D F0e0 � V

Sn � .
n � 
�.n// D Fnen; 8 n 2 N n N0

Sn � 
n � 0; 8 n 2 NTX

m2A .n/

em � h; 8 n 2 NT

en � 1; 8 n 2 N

en � 0; 8 n 2 N :

6.4 The Main Result

The main result of this paper is the following.

Proposition 1. Assuming that the underlying is a traded instrument, in a financial
market described as a non-recombinant tree with two traded instruments (one risky
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Table 6.1 Cash flows of the two strategies 1 and 2 for a call option

Strategy ti tj T � 1 T

Strategy 1 Sti � K Stj � K 0 0

Strategy 2 Sti � K Stj � K K � ST�1 C .ST�1 � K/
C

K � ST C .ST � K/
C

Table 6.2 Cash flows of the two strategies 1 and 2 for a put option

Strategy ti tj T � 1 T

Strategy 1 K � Sti K � Stj 0 0

Strategy 2 K � Sti K � Stj ST�1 � K C .K � ST�1/C ST � K C .K � ST /C

asset which is the underlying, and one riskless asset), T time periods to maturity,
and zero interest rate, the following holds for an American contingent claim with
h � 2 exercise rights :

1. It is optimal to delay exercise until the periods T � h C 1;T � h C 2; : : : ;T � 1

and T,
2. AP2 has an optimal solution with all e variables binary.

Proof. 1 For the sake of simplicity we shall give the proof of part 1 for the case of
h D 2. The proof is based on a simple argument of no-arbitrage adapted from the
book by Cox and Rubinstein [14], pp. 139–140 for the case h D 1.

Assume an exercise strategy that exercises the two rights of a call at times ti; tj
with ti < tj � T, Sti � K, Stj � K. Now, we can see that exercising at times T�1 and
T does no worse, in a path-wise sense, than exercising at times ti and tj. To see this,
compare the cash flows generated by the exercise strategy of times ti; tj (referred to
as strategy 1), and strategy that exercises the option at times T � 1 and T, together
with shorting a unit of the stock and lending K dollars at times ti and tj while closing
the positions at times T � 1 and T (referred to as strategy 2) for a call option. In the
case of a put, simply reverse strategy 2 in the following sense: borrow K dollars and
go long one unit of stock to close positions at times T � 1 and T. The following two
tables show the cash flows of the two respective strategies in the case of call and put
options (Tables 6.1 and 6.2).

It is immediate to see from the cash flows of the two strategies that either strategy
2 has a cash flow identical to strategy 1 or it dominates strategy 1. To see this, note
that if K � ST�1 < 0 then .ST�1 � K/C D �.K � ST�1/. On the other hand if
K � ST�1 > 0 then .ST�1 � K/C D 0 < .K � ST�1/. A similar observation holds for
period T. Therefore, using strategy 2, the holder has a non-negative surplus which
is immediately translated into a portfolio process with an objective function value
at least as large as that of strategy 1. The reason is that the potential surplus at the

1An earlier version of the paper had quite a long proof for the case h D 2 and restricted to binomial
and trinomial trees. It was based on an elaborate primal-dual construction. The present proof was
offered by an anonymous reviewer of the earlier version, to whom we are thankful.
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last two periods can be placed in the riskless asset, which (carried backward at no
interest) corresponds to a larger initial short position (borrowing) in one of the two
assets at period 0, thus a larger value for V . Hence, exercising at the last two periods
is at least as good a strategy as any other exercise strategy.

Based on part 1, we can fix the binary variables e to one in the nodes of the last
two periods where the payoff is positive, and solve the resulting linear program.
The result is an optimal hedging strategy. Therefore, AP1 is equivalent to a linear
programming problem.

For the general case of h > 2 it suffices to extend the above construction using h
exercise rights. ut
Note that the above result would be valid also in recombining trees. However, we
stated the result for the more general non-recombinant tree structure where one can
optimize over path-dependent policies.

A result similar in spirit to Proposition 1 is given in Bardou et al. [2] where the
bang-bang nature of the optimal exercise quantities for swing options is proved in
complete markets using a stochastic control framework. The bang-bang property
corresponds in our case to the fact that the LP relaxation allows an optimal solution
with 0–1 valued exercise variables, i.e., either no exercise or full exercise at each
time point.

We proved that it is always optimal to use the exercise rights at the final h periods.
This statement does not mean that earlier exercise is sub-optimal, though. There
exist examples where exercise at node 0may also be part of another optimal exercise
policy as the following example demonstrates.

Example (Put Option in a Four-Period Market). Consider a financial market
with four trading points, i.e., T D 3 evolving as a trinomial tree up to t D 2,
and from each node of the tree at t D 2 two nodes emerge, i.e., the tree behaves
binomially at the last period. Hence, the tree has 31 nodes. The risky asset price
evolves as follows: at time t D 0, we have S0 D 8. At time t D 1 the price evolves
to either S1 D 20, or S2 D 15 or S3 D 7:5 with equal probability. At time t D 2, if
the price were equal to 20 at t D 1, it becomes either S4 D 22 or S5 D 21 or S6 D 19

with equal probability. If the price were equal to 15 at t D 1, it becomes either S7 D
17 or S8 D 14 or S9 D 13 with equal probability. Finally, given that the price were
equal to 15 at t D 1, it evolves into either S10 D 9 or S11 D 8 or S12 D 7 with equal
probability. The remaining nodes, numbered 13–30, have the following price values
respectively, .24; 20; 23; 18; 21; 16; 19; 16:5; 17; 12; 15; 11; 10; 8; 9:5; 7:5; 8:5; 6/. A
partial representation of the tree is given in Fig. 6.1 for the convenience of the
reader. The number next to each node is the stock price at that node. An option
of the put type with two exercise rights and strike K D 15 is introduced into
this financial market. Solving the optimization problem (AP1) we observe that it
is equally optimal to use one exercise right at the node 3 or suppressing exercise at
node 3 and delay exercise to periods t D 2 and t D 3. Both strategies lead to equal
objective function value, hence there exist two different optimal hedging strategies
resulting in identical price for the option.
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Fig. 6.1 The
non-recombinant tree of
example for put option in four
periods with 31 nodes
(partially depicted)
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6.4.1 The Case of Non-zero Interest Rate

Corollary 1. The statement of Proposition 1 is valid for a call option in a market
where the risk-less asset has positive per period growth equal to R > 1.

Proof. The proof is similar to the proof of Proposition 1 with a slight modification.
For the sake of simplicity, let us consider again the case h D 2. Due to non-zero
interest rate, the cash flows at the last two periods change as shown in the table
below (Table 6.3). It is immediate to see that the cash flows of strategy 2 are at least
as good as those of strategy 1. ut

However, a similar statement cannot be made in the case of an American put
in the presence of a non-zero interest rate even in complete markets and single
exercise. According to Luenberger [30] which has an elementary discussion and
numerical example for American (single exercise) put options in complete markets,
“intuitively, early exercise of a put may be optimal because the upside profit is
bounded (unlike the case of call options). Clearly, for example, if the stock price

Table 6.3 Cash flows of the two strategies 1 and 2 for a call option under non-zero interest rate

Strategy ti tj T � 1 T

Strategy 1 Sti � K Stj � K 0 0

Strategy 2 Sti � K Stj � K KRT�1�ti � ST�1 C .ST�1 � K/
C

KRT�tj � ST C .ST � K/
C
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tails to zero, one should exercise there, since no greater profit can be achieved.”
(The reader is referred to pp. 334–335 of [30].) The following example shows that
the removal of zero-interest rate assumption may lead to a change in the optimal
exercise policy in the case of multiple exercise and incomplete markets as well.

Example (Put Option with Non-zero Interest Rate). Consider a trinomial incom-
plete financial market with three trading points, i.e., T D 2. The risky asset price
evolves as follows: at time t D 0, we have S0 D 8. At time t D 1 the price evolves
to either S1 D 20, or S2 D 15 or S3 D 7:5 with equal probability while 1 unit of
risk-less asset at time t D 0 has a value of 1:01 at time t D 1. At time t D 2,
if the price were equal to 20 at t D 1, it becomes either S4 D 22 or S5 D 21 or
S6 D 19 with equal probability. If the price were equal to 15 at t D 1, it becomes
either S7 D 17 or S8 D 14 or S9 D 13 with equal probability. Finally, given that the
price were equal to 15 at t D 1, it evolves into either S10 D 9 or S11 D 8 or S12 D 7

with equal probability. The risk-less account again appreciates by a factor of 1:01,
i.e., it has a value equal to 1:0201 at time t D 2. An option of the put type with two
exercise rights and strike K D 15 is introduced into this financial market. Solving
the optimization problem (AP1) we observe that it is strictly optimal to use one
exercise right at the root node, node 0, i.e., suppressing exercise at node 0 leads to a
strictly smaller objective function value, hence a sub-optimal price for the option.

In our computational experience the exactness property of the LP relaxation
appears to continue to hold also in that case.

Conjecture 1. The LP relaxation AP2 is tight in the case of a put option with h
exercise rights in a market where the risk-less asset has positive per period growth
equal to R > 1.

If the conjecture is true, then one can obtain the buyer’s price for an American put
with multiple exercise rights in a non-zero interest rate market by solving a linear
programming problem.

6.4.2 A Min–Max Representation

The usual method to describe exercise strategies of American contingent claims
involves stopping times. These are functions 	 W � ! f0; : : : ;Tg [ fC1g such
that f! 2 � j 	.!/ D tg 2 Ft, for each t D 0; : : : ;T. The relation et D 1 , 	 D t
defines a one-to-one correspondence between stopping times and decision processes
e 2 E where

E D fe j e is .Ft/
T
tD0-adapted,

TX

tD0
et � 1 and et 2 f0; 1g P-a.s.g:
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The set of stopping times will be denoted by T . Let QQ denote the closure of the set
of all martingale measures equivalent to P, i.e., the set

QQ D fq j q0 D 1, qnSn D
X

m2C .n/
qmSm, 8n 2 N nNT ; 0 � qn, 8n 2 NTg:

The following expression for American contingent claims is well-known:

max
	2T min

Q2 QQ
E

QŒF	 � D min
Q2 QQ

max
	2T E

qŒF	 �:

In the case of multiple rights we can also obtain a similar expression as a result of
Proposition 1. For h D 2 we shall denote by T 2.T/ the collection of all vectors of
stopping times 	 D .	1; 	2/ such that

	1 � T and 	2 � 	1 � 1 on f	2 � Tg a.s.;

where we implicitly assumed that the minimum allowed elapsed time (a.k.a. latency)
between two consecutive exercise dates is smaller than (or equal to) the discrete time
step used in constructing the scenario tree (e.g., using an appropriate discretization
of a continuous stochastic process). If this is not the case, then the constraint 	2 �
	1 � 1 should be modified accordingly.

Define the sets

E2 D fe j e is .Ft/
T
tD0-adapted,

TX

tD0
et � 2 and et 2 f0; 1g P-a.s.g;

QE2 D fe j e is .Ft/
T
tD0-adapted,

TX

tD0
et � 2 and 0 � et � 1 P-a.s.g:

The following result follows the ideas of Theorem 4 in [33].

Proposition 2. If there is no arbitrage in a financial market represented by a
non-recombinant tree with two traded instruments (one risky asset which is the
underlying, and one riskless asset), T time periods to maturity, the buyer’s price
for American contingent claim F (call option under zero or positive interest rate,
put option with zero interest rate) with two exercise rights can be expressed as

max
	2T 2.T/

min
Q2 QQ

E
QŒF	 � D min

Q2 QQ
max

	2T 2.T/
E

qŒF	 �: (6.1)

Proof. If we set e fixed in AP1 and maximize with respect to 
 , we have a contingent
claim with payoffs Ftet for t D 0; 1; : : : ;T. Then, for the buyer’s price of this claim,
we have
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min
Q2 QQ

E
QŒ

TX

tD0
Ftet�:

Then, maximizing with respect to e, for the buyer’s price of the American claim
with two exercise rights we have

max
e2E2

min
Q2 QQ

E
QŒ

TX

tD0
Ftet�:

The correspondence between multiple stopping times in T 2.T/ and the vectors e 2
E2 implies that the buyer’s price for the American claim with two exercise rights
can be expressed as the left hand side of Eq. (6.1) since maximization over T 2.T/
is equivalent to maximization over E2 after making the appropriate change in the
objective function. By Proposition 1, instead of the last expression we can use

max
e2QE2

min
Q2 QQ

E
QŒ

TX

tD0
Ftet�: (6.2)

Since QE2 and QQ are bounded convex sets, by Corollary 37.6.1 of [35] we can change
the order of max and min without changing the value. Then, for each fixed Q 2 QQ,
the objective in (6.2) is linear in e. So the maximum over QE2 is attained at an extreme
point of QE2. We know that the extreme points of QE2 are the elements of the set E2
since QE2 is an integral polytope. Thus, we reach the expression on the right hand
side in Eq. (6.1). ut

6.5 Conclusions

In this paper we have dealt with the pricing of American options with multiple
exercise rights in a financial market composed of a risky stock following a non-
recombinant tree process and a risk free asset. We established that it is optimal to
delay exercise until the last h periods. The result also implies that the LP relaxation
of the associated mixed-integer programming formulation to find a no-arbitrage
price and hedging policy has an integral solution. Hence, the lower hedging price
can be obtained by solving a linear programming problem.

An open problem remains to confirm or refute the claim (made after numerical
experimentation) that the LP relaxation continues to be exact in the case of a put
option in the presence of a non-zero interest rate.
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Chapter 7
Optimizing a Portfolio of Liquid
and Illiquid Assets

John M. Mulvey, Woo Chang Kim, and Changle Lin

Abstract Current market conditions pose new challenges for institutional investors.
Traditional asset and liability models are struggling to meet investors’ needs due to
poor performance of equity and bond markets. The move of portfolio allocation
to alternative assets is evident. As a result, illiquidity issues and rebalancing
difficulty arise. We propose some new tactics of commodity futures to enhance the
performance of portfolio return as well as solving illiquidity issues. Hidden Markov
Model and multistage stochastic optimization are used to systematically optimize
portfolio over a set of assets.

Keywords Asset liability model • Illiquidity • Commodity futures • Hidden
Markov Model • Multi-stage optimization

7.1 Introduction

During the good times from 1982 to 1999, institutional investors could solely rely
on the two traditional investment pillars—equities and fixed income instruments—
to construct portfolios that meet their goals. During that period, stocks outperform
bonds in the long run. And there existed a relative stable relationship between asset
return and volatility. Bonds provided a cushion against stock retrenchment. As a
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result, one can construct a well-diversified and stable portfolio using stocks and
bonds. Asset liability models worked well for institution investors. Pension plans
in general had positive funding ratios due to the high returns. The typical 60/40,
50/50, 70/30 stock/bond allocations1 were widely employed and served as ideal
performance benchmarks.

Since the advent of twenty-first century, the market conditions pose big chal-
lenges for institutional investors of traditional asset allocation styles. During the first
decade of twenty-first century, we observed equity markets with nearly zero return,
and bond return is even below. The investment environment is even worse than
in 1930s. Until recently, global equities had lower return than global bonds since
1990. Pension surpluses in 1999 were replaced by substantial deficits as a result.
The situation is even worse in Japan, because the country has been experiencing
20 years’ decline. European insurance companies have been suffering as well. Due
to the poor performance in both bond and equity market, the performance of their
investment methodology has been struggling to catch up with their financial goals.

Moreover, the aging population in a number of countries poses a bigger challenge
for pensions and insurance companies, like Japan and several European countries.
Projected deficit will be deeper than before due to longevity risk. And since expected
economic growth declines in these countries, the longevity risk will be even harder
to mitigate by investing solely in equity and fixed income markets. In addition,
correlations between equity markets in different regions are much higher than before
due to globalization (Fig. 7.1. Data is collected through Bloomberg terminal of
Princeton Firestone Library: S&P 500 index for U.S. stocks, MSCI EAFE index for
equity market performance of developed markets outside of the U.S. and Canada,
MSCI EM index for equity market performance across 23 emerging markets). It is
increasingly harder to diversify a portfolio using traditional assets. Bonds are not a
safe haven either due to the current ultra low rates. Bonds can experience as great
drawdown as stocks when interest rate rises.

To meet the investment objectives in such a dire environment, institution
investors are adopting different approaches. Some investors aim to immunize their
liabilities by investing in bonds to hedge duration, convexity exposures to interest
rate. Others lean their allocation to alternatives with high returns to catch up with
their investment goals. Another important factor for institution investors is liquidity.
The recent 2008 financial crisis made a lot of institutions suffer from liquidity crisis.
Investors need better and more systematic system of liquidity management.

In this paper, we show how to construct a quantitative index strategy to meet
the goals of investors: good return, low correlation with traditional assets and
high liquidity. Then we show how to use Hidden Markov Model and stochastic
programming techniques to integrate this quantitative index in investor’s portfolio
in an optimal fashion. The quantitative index, combined with Hidden Markov Model
and stochastic programming, will greatly enhance the performance of investor’s
portfolio.

1The “golden rule” of 60/40 stock bond mix is explained in [1] by Malkiel.
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Fig. 7.1 Increasing correlation between the U.S. and international stocks

The following sections are organized as below: In Sect. 7.2, we will discuss in
detail the current approaches used by investors: All Bonds v.s. All Alternatives and
illustrate the issues of these approaches. In Sect. 7.3, we will show a quantitative
index strategy to address with good features to solve these issues. In Sect. 7.4, we
will show how to use this index strategy in a portfolio of tactics for performance
enhancement. We will show the steps to optimize the index strategy with Hidden
Markov Model and stochastic programming techniques. In Sect. 7.5, we will
summarize our findings and list the future directions of potential research.

7.2 All Bonds Strategy vs. All Alternative Strategy

To address the aforementioned recent challenges, an enormous range of solutions
have been experimented by institutional investors. Some investors adopt the Lia-
bility Driven Investment (LDI) or All Bonds (AB) methodology. These investors,
including German life insurers and Japanese pension plans, allocate most of their
assets into fixed income instruments. The philosophy behind this investment style
can be seen in its name—liability driven. These investors try to immunize their
liabilities using fixed income instruments. This is a very conservative approach
with low expected return. For example, many German life insurers have 80 % C of
their assets in fixed income, less than 10 % in real estate and equity and only few
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alternatives.2 Japanese pension plans have 70–90 % in fixed income, 10–30 % in
equities, and a dose of alternatives.3 For an All -Bonds portfolio, the expected
return is low so that high contribution (e.g. contribution to a pension plan from
the pension sponsor) is expected. This is not a desirable situation for the sponsor.
Under current market conditions, there are several issues with all-bonds approach.
First of all, current interest rates are ultra low. Quantitative easing measures in
many countries have been pushing down the interests rates. The interest rates can
hardly go anywhere but up. As soon as the interest rates bounce back, the bond
markets will drop a lot. This situation poses serious risks for the all-bonds investors.
Also, since pension plans and insurance companies normally have long durations in
their liabilities, they tend to buy large amount of long-duration bonds. For example,
defined-benefit pensions have around $30 trillion or 33 %4 of assets in bonds. This
increased demand in long-duration bonds push up the prices of these bonds and
results in even lower returns from fixed income. Moreover, if most of the asset
is invested in fixed income, less asset there are left to invest in long-term growth
areas, like venture capital, private equity, etc. This will have macro impacts on
the economy and will cause long-term decrease in economic growth. This chain
effect will make the future investment environment worse off. Plus, the unforeseen
risks like longevity risks make the situation more complex. With longevity risks, the
liabilities are harder to immunize. And if the institutional investors try to mitigate
this risk by increasing the duration of portfolios, the demand in long-duration bonds
will be increased further and returns on these bonds even lower. Ang et al. (2013)
built a framework for liability driven investment with downside risk. Amenc et al.
(2010) showed how to construct optimal liability-hedging portfolios. These papers
built new strategies of constructing liability driven portfolios. However, like Ang
et al. (2013) states, the asset classes should be extended to broader classes instead
of limiting to cash, equity and fixed income that they are currently using in the
models.

Contrary to the All-Bonds approach, another common approach adopted by
institutional investors follows a totally different philosophy. All-alternatives or
AA approach is adopted by the institutional investors seeking for higher returns
by allocating more assets to hedge funds, private equity, real assets, etc. These
alternatives have higher expected return due to illiquidity premium. Also, since there
are more opportunities for mispricing, sophisticated investors can take advantage
of the mispricing opportunities to generate excess return. Numerous institutional
investors are gradually adopting this approach. For example, alternatives have grown
from 5 % in 1995 to 19 % in 2012 in pension plans’ asset allocation. In 2012, 19 %
of $30 trillion in 13 largest countries’ pension plans are alternatives. CalSTRS
is the California State Teachers’ Retirement System, and is the largest teachers’
retirement fund in the United States. According to its official website, the current

2Please refer to [2].
3Please refer to [3].
4Please refer to [4].
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Fig. 7.2 Simulated funding ratio path of different portfolio returns

asset allocation of CalSTRS consists of 12.9 % in real estates and 12.7 % in private
equity. The motivation of this All-Alternatives approach is that small increase in
return can make significant difference in a long run. See Fig. 7.2 of different funded
ratio path with different expected return of portfolio.

This approach do not have the issues associated with All-Bonds approach.
Good examples of this approach include leading university endowments like Yale
University endowment led by David Swensen. Almost 80 % of Princeton University
endowment is in alternatives too. However, it also has its own disadvantages. This
approach requires great expertise of the investors. And the illiquidity of alternatives
poses a lot of challenges. See Fig. 7.3 the asset allocation table of Princeton
University Endowment.5

The policy target and actual allocation in the private equity class are very
different. Due to the illiquidity issue, it can be hard to maintain portfolio at policy
targets for illiquid alternatives. As a result, the portfolio can’t be rebalanced as
much as wanted. The capital gains from rebalancing are low. Rebalancing gains are
additional gains from rebalancing portfolio from time to time. Luenberger gives a
good mathematical derivation to illustrate rebalancing gains in his book: Investment
Science (Chapter 15, Example 15.2 Volatility Pumping). Preliminary study indicates
that the loss is 150–200 basis points gain per year in geometric returns.

Plus, the illiquidity issue makes it difficult to develop a dynamic asset allocation
policy. Illiquid portfolios are extremely hard to cash out under turbulent market

5The figure is from course lecture notes of Golden [5].
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Fig. 7.3 Princeton University Endowment Asset Allocation

conditions. And there is hardly any way to place an opposite direction bet. For
example, many investors failed to protect capital from large drawdown in 2008 and
their asset levels are still below previous high water mark, even after exceptional
performance over past years. Also, for pension plans and related investors with
contribution requirements, surplus protection is easier with liquid assets. In addition,
with illiquid assets, it is harder to make opportunistic deals following Warren
Buffet’s philosophy.6

Cash requirement is another issue. For example, paying for operating expenses
is vital to keeping a university running. During crash periods, cash requirement has
to be met. Illiquid assets cannot readily be sold during fire sale. And borrowing
may be very expensive. For example, Harvard University Endowment tried to sell
off a $1.5 billion chunk of its private equity portfolio in the fall of 2008. But no
one was willing to pay near the asking price for those assets. Desperate for cash,
the university sold $2.5 billion worth of bonds, increasing its total debt to over $6
billion. Servicing that debt alone will cost Harvard an average of $517 million a
year through 2038, according to Standard & Poor’s news.

The traditional asset liability model, All-Bonds and All-Alternatives approaches
are all struggling to meet investors’ goals. Long-term investors need new per-
spectives. Long-term investors can take advantage of having a long horizon. They
can endure short-term market choppiness. And institutions have access to more
advanced technologies. However, significant drawdown should be avoided as much
as possible. Capitals need to be carefully protected and contributions should
be minimized while meeting cash requirements. Risk management of long-term
investors needs new approaches. Risk management via hedging, namely paying
premium should not be the first option. Paying premium is not desirable under
already dire market conditions. An old but correct trick should be used. That is

6Please refer to [6] by Buffet for detailed discussion of the legendary investor’s investment
philosophy.
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diversification among assets or strategies with positive expected returns and low
correlations between them, especially during contagion periods. Diversification in
fact enhances the expected return under the multi-period setting for rebalancing
gains or volatility pumping. Thus, in order to rebalance the portfolio, liquidity
matters a lot. Also, liquidity requirements are necessary for various reasons we
discussed above. So our goal is clear, to obtain a set of independent assets or
strategies with positive expected returns with liquidity. Because of the increased
correlation among traditional asset classes, we look aside to alternatives. In the
following sections, we will propose a new strategy that is independent of traditional
asset classes and highly liquid. This new strategy will generate high return for
investors and meet the liquidity requirements, and thence will be very desirable
for institutional investors.

7.3 Tracking Indexes for Alternative Asset Categories

There are increasing needs of institutional investors for constructing fundamental
tracking indexes of alternative classes. Take the example of Princeton University
Endowment: the university endowment had unacceptably high proportions in high
tech venture capital during high tech bubble at the beginning of twenty-first century.
However, they could not cut the venture capital position due to its illiquidity. So they
shorted the Nasdaq 100 index instead. This move turned out to be a wise rebalancing
decision as the high tech bubble exploded and venture capitals lost a lot of value.
If there had not been an index like Nasdaq 100 well correlated with its venture
capital asset, Princeton University Endowment would have suffered great losses
after bubble explosion. Thus, fundamental tracking indexes for alternative classes
are important. To construct a tracking index for an illiquid alternative is to “match”
the performance of it with a liquid security. We want to distinguish “fundamental”
tracking from purely “statistical replication” tactics. Statistical replication is to
track the target performance by pure technical measures. For example, one can use
PCA, bootstrapping, all the econometric models GARCH, factor models, etc. to
get a fantastic quantitative model of the target without any understanding about the
underlying dynamics of the target. However, there is no guarantee that the statistical
model will always track the underlying performance well. Fundamental tracking, on
the other hand, relies on understandings of fundamental dynamics of the target. We
believe this approach to be robust. Our goal is to develop strategies that “mimic”
as close as possible. One may ask whether fundamental tracking can be achieved.
Below are some examples of fundamental tracking indexes.

Mulvey and Kim (2007) showed that the performance of top equity managers can
be replicated by long-only industry-level momentum strategy, especially after 1992.
See Fig. 7.4. The recipe for the industry-level momentum strategy is described as
follows:
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Fig. 7.4 Top equity managers performance can be replicated by long-only industry-level momen-
tum strategy. Left table shows significant correlation between top equity managers performance and
industry-level momentum strategy. Right graph shows the paths of equity managers’ performance
and momentum strategy

1. Choose winner industries with equal weights based on their past 3-, 6-, 9- and
12-month return to get up to 16 industries.

2. If an industry is seen more than once, put more weight on it accordingly.
3. Hold the chosen industries for predetermined holding period.
4. To reduce the timing bias, form the portfolio using overlapping time windows.
5. Holding periods are 3, 6, 9, 12 months.

Mulvey and Ling (2010) showed that the performance of private equity can be
replicated by investing to designated domains via ETFs with moderate leverage.

Jurek and Stafford (2013) showed that the risks and pre-fee returns of broad
hedge fund indices can be accurately matched with simple equity index put writing
strategies. See Fig. 7.5 for the total return and risks tracking.

The examples above showed fundamental tracking for various underlying pro-
cesses. We will propose a fundamental tracking tactic for CTAs’ performance.
CTA stands for Commodity Trading Advisor. They are registered managers who
exercise or advise to exercise trades of futures contracts, options on futures, retail
off-exchange forward contracts or swaps. The tracking index will provide an access
to investors seeking for a transparent, efficient means to gain long-short exposure to
commodity markets. Our goal is to obtain a set of independent assets or strategies
with positive expected returns with liquidity. And the tactics in commodity markets
to mimic CTA funds should be constructed to achieve this goal. Why should we turn
our look to commodities? We have covered basically the reasons for us to find new
tactics in alternatives. We will now discuss them in detail.

As we discussed before, the impact of quantitative easing on financial markets is
huge. The purchase of debt securities by the Fed and other Central Banks has driven
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. St is the prevailing level of the S&P 500 index and ¢tC1 is the 1-month
stock index implied volatility, observed at time t. Basically, if one specifies Z, one specifies K, the
strike price level

global government bond yields to record-low levels. Rates of The U.S. bonds have
been hit particularly hard. For example, the U.S. 10-year yield is traded as low as
1.45 % in June 2012.

We can see that bonds are no longer a safe heaven. The existing potential
inflationary pressures are severely bearish for bonds prices. Interest rates cannot stay
at the current level forever and the only direction to go is up. With yields so low, an
inflationary shock of any sort would be devastating, as rates would spike in response.
If yields on the U.S. Treasury bonds rose 2 percentage points to levels that prevailed
as recently as 2007, the resulting bond price decline would be approximately 20 %
for the 10-year Treasury bonds and a 30 % drop for the 30-year Treasury bonds.

The equity markets are shaky. Increased nervousness is observed in equity
markets. A small shock could affect equity markets significantly. See Fig. 7.6 of
S&P 500 index in May 2013. On May 22, 2013, the U.S. equity markets reacted
drastically to the release of Fed minutes and the index plunged rapidly.

Inflation is another issue. The Feds is trying to generate inflation since it is afraid
of deflation. Many economists and Central Banks maintain that “money printing”
creates significant inflation. Given the unprecedented measures, investors should
be prepared for inflation, especially because the inflation has been benign so far.
The gap between yields on 10-year Treasuries and same-maturity inflation-protected
notes is a gauge of consumer-price expectations. And the gap jumped following
the Feds’ announcement of QE3 in September 2012. This means expected inflation
shock can be sudden.

Due to the issues mentioned above, commodities as an asset class have unparallel
long-term advantages. It has low correlation with the traditional asset classes of
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Fig. 7.6 Shaky markets: a small shock could affect equity markets significantly
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Fig. 7.7 Correlation matrix of S&P GSCI TR Index, FTSE All World Index and J.P. Morgan
Global Aggregate Bond Index

equity and bond. It can be used to hedge inflation. Figure 7.7 shows the correlation
matrix of monthly returns between S&P GSCI TR Index, FTSE All World Index and
J.P. Morgan Global Aggregate Bond Index. S&P GSCI Index serves as a benchmark
for investment in the commodity markets and a measure of commodity performance
over time. FTSE All World Index is the Large/Mid Cap aggregate of 2800 stocks
from the FTSE Global Equity Index Series. It covers 90–95 % of the investable
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market capitalization. J.P. Morgan Global Aggregate Bond Index is a measure of
global bonds performance. It is shown that the correlation of commodity markets
and traditional markets is low.

Constructing an index strategy in commodities is a promising approach. Though,
to construct a good-performing index is not so simple and takes an understanding
of the performance of CTA funds. We will show that the simple approaches do not
work.

Although the commodities as an asset class on average have low correlation with
stock markets, the increasing correlation between them during contagion leads to
large drawdown during equity market crash. As a result, the simple long strategy is
not a good one (Fig. 7.8).

The shape of futures curve is another issue against long-only approach. The
futures curve can be in backwardation, wherein the price of futures contract is
trading below the expected spot price at contract maturity; or contango, wherein the
price of futures contract is trading above the expected spot price at contract maturity.
Backwardation happens when the predominant hedgers are producers and contango
happens when the predominant hedgers are consumers. Backwardation is no longer
the predominant futures curve shape. See Fig. 7.9. So when an investor rolls the
contract, there is a rolling loss due to contango futures curve shape. Performance
differential between GSCI Spot price and GSCI Excess (the investible version)
reflects the losses due to rolling of futures in contango markets. In a contango
market, the roll yield is negative. In a contango market, the price of futures contract
is trading above the expected spot price at contract maturity. So the price will roll
down to the spot price. Thus, investor will lose money in rolling the contract.

The downsides common to long-only approaches include large and protracted
drawdown, exposure to price bubbles, losses resulting from contango futures
curve shape, over-concentration in particular commodity types (e.g. energy, which
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Fig. 7.9 Performance differential between GSCI Spot and GSCI Excess reflects the losses due to
rolling of futures in contango markets

accounts for a big proportion in commodity indices), and high degree of volatility.
To avoid these disadvantages, we need to do some thinking and construct the Target
commodity index wisely. CTA-type funds have a lot of benefits we can borrow.
Managed futures funds, in particular, give us inspiration. They have low correlation
with other types of fund strategies, even in contagion periods. And it can even
generate positive returns in contagion periods.

Based on the underlying performance of CTA funds, like managed futures, we go
on to describe the construction of the Target Commodity Index.7 The components of
the index involve two long-only strategies and two long-short dynamic tilting tactics.
The long-only strategies are momentum strategy and futures curve strategy. The
dynamic tilting strategies are breakout strategy and trend following strategy. Mulvey
[7] proposes two different levels of exposure: 100 % Exposure Commodity Index
and 80 % Exposure Commodity Index. These indexes are now under the names:
FTSE Target 100 % Exposure Commodity Index and FTSE Target 80 % Exposure
Commodity Index respectively. See Table 7.1 for their compositions.

The long-only strategies include momentum strategy and futures curve strategy.
The momentum strategy assigns long or flat positions to constituents according to
their recent performance relative to other commodities in the index. Basically, it
selects top performing commodities in the commodity pool based on their returns of

7DPT Management constructed this index for FTSE, called the FTSE Target Commodity Family.
All rights reserved. See Mulvey [7] for details.
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Table 7.1 Compositions of target 80 % and target 100 % Exposure Commodity Index

Trend

Index Momentum (%)
Futures
curve (%) Following (%) Breakout (%) Buffer (%)

FTSE target 80 %
Exposure Commodity
Index

20 20 20 20 20

FTSE target 100%
Exposure Commodity
Index

25 25 25 25 0

In FTSE Target 80 % Exposure index, 20 % of the portfolio is allocated to Momentum strategy,
20 % to Futures curve strategy, 20 % to Trend following strategy, 20 % to breakout strategy and
20 % are used as buffer; In FTSE Target 100 % Exposure index, 25 % of the portfolio is allocated
to each of the four strategies

Fig. 7.10 Target 100 index
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a certain past period. The strategy capitalizes on an empirically observed tendency
for rising commodity prices to rise even further, and for falling prices to keep falling.
The futures curve strategy assigns long or flat positions to constituents according to
the relative degree of contango or backwardation in their futures curve. By primarily
being long commodities in backwardation, this strategy potentially reduces the
rolling losses that affect long-only passive indices.

The dynamic tilting strategies include trend following strategy and breakout
strategy. Trend following strategy assigns long or short positions based on mid-term
price performance. If the current price is above long-term mean, we will assign
long position to it. Otherwise, we will assign short position to it. Breakout strategy
assigns long or short positions to constituents that are trading above or below a set
price range. If one constituent is trading above a set price, a long position will be set
to it. Otherwise, a short position will be set to it.

The Target Commodity Index is an equal mix of above four tactics (25 % each
for 100 % exposure and 20 % each for 80 % exposure), with monthly rebalancing.
Below is the graph of the net exposure (long minus short) of Target 100 Index
(Fig. 7.10).

Next, we examine the performance characteristics of this commodity index.
The index series aims to track the performance of a typical commodity CTA. The
local patterns on a short-term scale of the Target 100 index are very similar to
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Fig. 7.11 Performance of
Target 100 index in
comparison to DJUBS index
and NewEdge CTA index
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Fig. 7.12 Characteristics of correlation between Target 80 index and 60/40 stock–bond mix
benchmark

that of NewEdge CTA index (The NewEdge CTA index provides a reliable daily
performance benchmark of major CTAs). Moreover, the index series also has the
potential to outperform the benchmark. One can see Fig. 7.11 and compare their
performances.

If we compare the performance of the Target Index and the traditional 60 %
stock, 40 % bond mix, we can see that the Target Index tends to move up when
the 60–40 % mix moves up. However, the Target Index tends to stay flat when the
60–40 % mix goes down. This pattern of the Target Index provides important
portfolio diversification. It is good evidence that our Target Index is a good
diversifier to traditional portfolios. Figure 7.12 shows this pattern.

Another desirable feature of the Target Index is its low correlations with other
asset classes, which is one of the properties we aim for. See Table 7.2 for the
correlations between our index and other benchmarks.
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Now that we have described the Target Index, we can use it in portfolio
construction. The good features of it—low correlation with other asset classes,
liquidity, and good returns are exactly what we aimed for in the first place.

7.4 A Portfolio of Tactics

We will show how the FTSE Target Commodity Index can be used in various
ways in portfolio construction. First of all, it serves as a performance benchmarks
for investing in CTA funds. The commodity investors can compare their portfolio
performance with the index performance. Moreover, since the commodity markets
are highly liquid, the index can be used to rebalance portfolio, for example, to
achieve rebalancing gains. Investors in CTA funds cannot rebalance their portfolios
easily for lock-up policies. But investors can short or long this index to rebalance
their portfolios. It can be used as a performance enhancer as well. Since it is highly
liquid, it is very easy to take opportunistic investments by investing in it. During
crash periods, it can be used to protect capital by either longing or shorting it.
During crash periods, it may be difficult to withdraw funds from CTA funds due to
lock-up policies. And also, investors may have concerns as to keeping relationship
with top CTA managers. Good fund managers will generally recover quickly from
a crash period. But if one withdraw funds from the managers during crash period
due to cash flow constraints, it will probably jeopardize the relationship with the top
managers and hard to put money back in their good performing funds after crash
period. However, it is very easy to balance their portfolio by longing or shorting the
Target Index. We will discuss various uses of the index in details.

7.4.1 Overlay Approach

Long-term investors can improve their investment performance by incorporating
specialized “overlay” strategies. Overlay strategies are investing in futures market
using core assets to fulfill margin requirements. The overlays require no dedicated
capital beyond the core portfolio. Traditional assets in the core portfolio are
employed as margin capital for targeted positions in the futures markets. Mulvey
et al. [8, 9] show the benefits of general overlay strategies within asset allocation
and asset and liability models. These strategies seek to widen diversification of
the portfolio, while generating higher growth rates. Trading volumes in the futures
market is large enough so that investors can quickly rebalance the portfolio mix as
conditions warrant. Mulvey and Kim [10] show how to enhance portfolio duration
and generate higher growth rates for pension plans. The added duration reduces
contribution risks while increasing expected portfolio performance.

The overlays can provide higher risk-adjusted portfolio returns than approaches
based on traditional leverage. One can see that from Fig. 7.13.
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Fig. 7.13 Efficient frontier with different overlay bound

Table 7.3 Performance characteristics of overlay approach

50 % SP500C50 % JPM Agg. Bond Index Add 50 % target 100

Start Date 1/31/92 1/31/92
End Date 12/31/12 12/31/12
Geo. Return 7.75 % 11.49 %
Volatility 8.26 % 10.78 %
Sharpe ratio 0.57 0.79
Max-Drawdown 28.04 % 29.51 %
Ret/Drawdown 0.28 0.39
Ulcer Index 5.77 % 6.55 %
Return/Ulcer 0.82 1.30
Corr w/SP500 0.938 0.786

Table 7.3 gives another example of overlay strategies using the target 100 Index.
The left column is a combination of 50 % S&P 500 index and 50 % J.P. Morgan
Aggregate Bond index. The right column is 50 % S&P 500 index, 50 % J.P. Morgan
Aggregate Bond index and 50 % overlay of the Target 100 index. Geo.Return is
geometric average return. Max-drawdown is maximal drawdown during the period.
Ret/Drawdown is average return per maximal drawdown. Ulcer index is a risk
measure to compute the drawdown variance. Return/Ulcer is ratio of average return
over Ulcer index. The Sharpe ratio is higher with negligible increase in Max-
Drawdown. The return to Ulcer index is higher and correlation with S&P 500
index is lower. One can see from this numerical example that the index enhance
to portfolio performance a lot.
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7.4.2 Constructing Optimal Portfolios via Multi-Stage
Stochastic Programming

We can use multi-stage stochastic programming techniques to construct optimal
portfolios with the Target Index. This will allow us to maximize various objectives
of the investor by optimally allocate assets and adding tracking index as an overlay.
The challenge part is modeling return distribution of tracking indices.

There are two alternative solutions to this challenge: pure statistical approach
and fundamental approach. Pure statistical approach is easier to do, but harder to
understand. Fundamental approach is harder to do, but more comprehensible. The
bottom line is statistical tools may yield good model fitness in-sample, but not so
good out of sample. For example, one can use various econometric models to get a
good model of good in-sample fitness without any understanding of the fundamental
dynamics. But this approach is not robust. For the fundamental approach, we need
to understand the underlying dynamics and economics of the asset and take rigorous
steps to model it quantitatively. We believe this approach to be robust.

One way to identify probabilistic laws is through scenario generation. The basic
idea for this approach is as follows: The behaviors of constituent assets are better
understood than the whole index. So firstly, we employ widely accepted models for
constituents. Then, we identify probabilistic laws of tracking indexes conditioned
on specific constituents. Mulvey et al. [11] built an asset and liability management
system for Towers Perrins-Tillinghast. They develop a cascade scenario generation
structure called CAP:Link, where variables at the top of the structure influence those
below, but not vice-versa. This approach eases the task of calibrating parameters.
The ordering does not reflect causality between economic variables, but rather
captures significant co-movements. Mulvey et al. [8, 12, 13] show several examples
of using multi-stage stochastic programming to construct optimal portfolios.

To construct the scenario generation framework, we need to delve into the factors
affecting commodity prices. First of all, global demand pattern is one factor. For
example, strong growth in emerging markets will push commodity prices up. Supply
disruption is another one. The Iran oil embargo makes oil prices go up every time.
Moreover, movements in value of dollar clearly have an effect on commodities. The
more valuable dollar is, the lower prices of commodities will be. Interest rates are
yet one more important factor.

There are numerous models in this field explaining how different factors affect
commodity prices. Frankel and Andrew [14] identifies the channel of effect of
interest rate on commodity prices. If interest rate lowers, inventory costs will be
lower. And inventory demand will be higher. Thus, commodities prices will be
higher. Gruber and Vigfusson [15] identify the effect of interest rate on commodities
correlations. If interest rate lowers, inventory will be higher. And individual shock
tolerance will be higher. Thus, macro effect is relatively higher, resulting in
high correlations among commodities. Tang and Xiong [16] show the effect of
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commodity index investment on commodities correlations. When commodity index
investment goes up, volatility from other markets will spill over. And then, co-
movement among commodities will go up, as do correlations between commodities.
Futures prices of non-energy commodities became increasingly correlated with oil
after 2004. This trend was significantly more pronounced for indexed commodities
than for off-index commodities. And this trend intensified after the financial crisis
of 2008, which is a well-noted fact. There is also evidence of an increasing return
correlation between commodities and the MSCI Emerging Markets Index in recent
years. Index investors typically focus on strategic portfolio allocation between the
commodity class and other asset classes, such as stocks and bonds, and hence tend
to trade in and out of all commodities in a given index at the same time. Thus, their
portfolio rebalancing can spill price volatility from outside markets on and across
commodity markets.

From knowledge and evidence in various factors affecting commodities, one
can then construct scenario generator using CAP:Link cascade structure. Based on
the structure of scenarios, one can then apply multi-stage stochastic programming
techniques to it.

Another way to build the probabilistic laws is using Hidden Markov Models
(HMM). The Hidden Markov Model is a popular method for regime identification,
which has been widely used in engineering and science. Hamilton [17] uses HMM to
predict business cycles of the U.S. economy by analyzing the U.S. Gross National
Product (GNP). Turner et al. [18], Hansen [19], Hamilton and Susmel [20], and
Garcia [21] have further discussion of HMM in finance. These researches commonly
describe the regimes of equity markets in terms of return and volatility. Guidolin and
Timmerman identify four regimes in the joint return series of stock and bond market
with HMM. Bae et al. [22] show how to employ Hidden Markov Model to identify
states in varied financial markets and construct a stochastic program to optimize
portfolios under the regime switching framework.

First we use Hidden Markov Model to estimate the joint probabilistic laws of
the index and other asset classes in the portfolio. Then we can create optimal
portfolios via multi-stage stochastic programming. The index is an overlay strategy
added to the whole portfolio to enhance its performance. One can again refer to
Bae et al. [22] for detailed procedures. The formulation of stochastic programming
requires seven steps. (1) Decide the number of children for the current node of the
scenario tree. (2) Assign child node based on filtered probabilities. (3) For each
assigned child node, apply estimated distribution from Hidden Markov Model. (4)
Generate sample returns. (5) Calculate filtered probability by forward algorithm. (6)
Repeat for each child node and update time. (7) Repeat till the time hits final time.
After formulation of multi-stage structure, one can optimize the objective function
incorporating regulation and other constraints.

Following Bae et al. [22], we will give a formulation of combining Hidden
Markov Model and stochastic programming to optimize the portfolio performance
with the index strategy as overlay. Fraser [23] documents the basic framework of
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Hidden Markov Model. First we show the framework of Hidden Markov Model
estimation (following [23]):

– S(t): A random variable of (unobservable) state at time t
– Y(t): A random variable of observation (in this case, three-dimensional daily

return series) of different asset classes (like stock, bond, etc.) and tactics (like
our commodity index)

– St1;t2 : A sequence of random variables of states from time t1 to time t2
– Yt1;t2 : A sequence of random variables of states from time t1 to time t2
– s(t): A realized(unobservable) state at time t
– y(t): A realized observation at time t
– st1;t2 : A sequence of realized states from time t1 to time t2
– yt1;t2 : A sequence of realized observations from time t1 to time t2
– � : A set of variables of HMM parameters to be estimated
– ™: A set of estimated HMM parameters
– N: The dimension of observations (depends on the number of asset classes or

tactics in the portfolio)

t 2 f1; : : : ;Tg ; 8 s .t/ 2 S D f1; : : : ;Kg

We assume the daily return series has normal distribution under each state, or
regime:

Y .t/ jS .t/ D y .t/j s .t/ � N
�

�s.t/; †s.t/
�

�s(t) is the mean of the daily return series, and †s(t) is the covariance matrix
under state s(t). Baum-Welch algorithm can be used to estimate the parameters
�s, †s under each state or regime, and the initial probability, the transition
matrix of the states. We denote the initial probability of different states by   D
. 1;  2; : : : ;  K/ and transition matrix between different states by A D �

Aij
��Aij D

P



s .t C 1/ D j
ˇ
ˇ
ˇs .t/ D i

�

.

Baum-Welch algorithm is essentially a two-step EM algorithm. Denote all
parameters in Hidden Markov Model �s, †s,  , as ™. Denote all observations
fy(1), y(2), : : : , y(T)g by Y and all state throughout time by Bishop [24] has detailed
derivation of the algorithm. Baum-Welch algorithm can be simply described as
repeating the following steps until convergence:

1. Compute Q .™; ™m/ D
X

s– S

log ŒP .Y; sI ™/�P



s
ˇ
ˇ
ˇYI ™m

�

.

2. Set ™mC1 D argmax™ Q .™; ™m/.

The algorithm always converges with the initial setting of ™0. The parameters
can be solved analytically in each step. The number of states can be determined by
Bayesian information criterion (BIC). This criterion is introduced by Schwarz and
Prajogo (2011) suggests using it for determination of number of states. BIC adjusts
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value of likelihood by penalizing the number of parameters scaled by a function of
number of observations:

BIC D �2lnQ C k lnT;

Q: likelihood calculated from Baum-Welch algorithm
k: the number of parameters
T: the number of observations.
The criterion optimizes likelihood while penalizing the number of parameters

used in the model. In the Hidden Markov Model case, k D K � N C K � N2 C K2 � K
is the number of states. N is the dimension of observations.

After learning the model in some training period, we can identify characteristics
of the states and joint distributions for asset classes and tactics. Then we can use the
forward-backwards algorithm to assign filtered probability.

Following Bae et al. [22], we can begin the forward algorithm by assigning:

’ .s; 1/ D P
S.1/

ˇ
ˇ
ˇY.1/




s
ˇ
ˇ
ˇy.1/

�

D
PS.1/ .s/ P

Y.t/

ˇ
ˇ
ˇS.t/




y.1/
ˇ
ˇ
ˇs
�

X

Qs2S
PS.1/ .Qs/ P

Y.t/

ˇ
ˇ
ˇS.t/




y.1/
ˇ
ˇ
ˇQs
� ; 8s 2 S

where S is the set of all states and ’(s, 1) is the filtered probability at time t D 1.
From this starting point, we can smooth the distribution of states by computing:

P
S.t/

ˇ
ˇ
ˇY1;t�1
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1;t�1
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D
X

Qs2S

P
S.t/

ˇ
ˇ
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s
ˇ
ˇ
ˇQs
�

� ’ .Qs; t � 1/ :

And we can also compute the joint probability of the state and current observa-
tion:

P
S.t/;Y1;t

ˇ
ˇ
ˇY1;t�1
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ˇ
ˇ
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Next, we compute:
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and finally, we can update the distribution of states:
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Fig. 7.14 Creating optimal portfolios via multi-stage stochastic programming

With filtered probability throughout time, we can back test our Hidden Markov
Model to check whether it can forecast market conditions.

After back testing our trained Hidden Markov Model, we can formulate the
stochastic programming framework:

We construct a scenario tree like Fig. 7.14 to map random elements to a set
of numbers. Denote the daily growth for each asset or tactic as " .i; t; !/ � i is the
index for each asset or tactic, ! is the random element. Random elements can be
represented by a finite number of branches and each path of the tree becomes a
single possible scenario bt at time t. bt 2 f0; 1; : : : ;Mg. M is some predetermined
number to represent number of nodes. t 2 f0; 1; : : : ;Tg. T is the number of
periods. Control variables are the allocations to each asset or tactic in each period,
which can be represented by x(i, t, [b1, b2, : : : , bT]). By the same means, "(i, t,!)
can be represented by "(i, t, [b1, b2, : : : , bT ]). Finally, we can represent the objective
function Z by Z(b1, b2, : : : , bT).

We follow the procedures below to formulate the stochastic programming
framework:

1. Decide the number of children for the current node of the scenario tree. We
denote B .b; t/ D Œb1; b2; : : : ; bT � ; where bt 2 f0; 1; : : : ;Mg and btC1 to bT D 0.
Zero represents values “Not Assigned”.
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2. For each filtered probability Pr(s, t, B(b, t)), where s 2 f1; : : : ;Ng. Assign b ’th

node to s if
s�1X

iD0
Pr .i; t;B .b; t// < b0

M �
s�1X

iD0
Pr .i; t;B .b; t//. Then, B .b; t C 1/ D

Œb1; b2; : : : ; bt; btC1 D b0; 0; ::; 0�
3. For each child node, if state s is assigned to it, apply the mean vector �s and

covariance matrix †s from the estimated parameter set 
 .
4. Generate the sample return r .s; t C 1;B .b; t C 1// � MVN .�s; †s/. So

" .i; t C 1;B .b; t C 1// D 1C r .s; t C 1;B .b; t C 1//

5. Calculate the filtered probability Pr .s0; t C 1;B .b; t C 1// by using the forward
algorithm given r .s; t C 1;B .b; t C 1// and 
 .

6. Repeat steps for each node until t D T.

After setting up the tree, we can optimize the objective function using the
formulation below:

Objective function:

Maximize
MX

b1D1
: : :

MX

bT D1

1

MT
Z .b1; b2; : : : ; bT/

Constraints:
Initial wealth:

X

i

x .i; 0; Œ0; 0; : : : ; 0�/ D W0

Constraints for each period t D 1; : : : ;T:

X

i

� " .i; t; Œb1; b2; : : : ; bt; 0; : : : ; 0�/ x .i; t

�1; Œb1; b2; : : : ; bt�1; 0; : : : ; 0�/
C x .i; t; Œb1; b2; : : : ; bt; 0; : : : ; 0�/ D 0; for t
D 1 : : : T � 1

Final wealth:
X

i

� " .i;T; Œb1; b2; : : : ; bT �/ x .i;T � 1; Œb1; b2; : : : ; bT�1; 0�/ C
W .b1; b2; : : : ; bT/ D 0

7.5 Conclusions

We show the current portfolio and ALM issues for institutional investors, and the
limitations of asset allocation with traditional asset categories. We advocate that
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investors seek wider diversification in alternative categories. We illustrate the need
for dynamic asset allocation and rebalancing portfolios between allocation reviews.
Thus, a liquid index with good performance and low correlation with traditional
assets is needed. We described a tracking index for CTA funds and showed its
performance characteristics. It has good growth rate, is highly liquid and has low
correlation with traditional assets, especially during contagion periods. Then, we
show how to use the index in portfolio performance enhancing. The index can be
used as an overlay strategy for core portfolio. Also, more sophisticated techniques
can be used to construct the probabilistic laws of the index. Fundamentally
understanding the constituents in the index, we can build scenario generator and
Hidden Markov Model to construct the probabilistic laws. Then based on the
probabilistic laws, multi-stage stochastic programming can be applied to construct
optimal portfolios for various objectives.

The research points to some promising future directions. More research on
“fundamental” tracking indexes may be done on other asset classes or tactics.
Tracking index on REITS for real estate investments can be useful as a way to
rebalance illiquid asset of real estate. For example, a tracking index for exchange
fund engaging in carry trade and related tactics is DBV. In addition, a tracking
portfolio for pension surplus may be very useful for pension plans in terms of
duration enhancing.

Aside from tracking indexes, asset allocation model of illiquid and liquid assets
also needs further discussion. In this paper, we show the approach of constructing
and applying tracking indexes. Another approach is to optimize multi-period asset
allocation of illiquid and liquid assets directly. Dynamics for illiquid asset retruns
and illiquidity constraints must be modeled. Also, transaction or illiquidity costs
need to be incorporated. In this paper, we described an index in the commodity
futures market. Other tracking portfolios of illiquid assets can also be constructed
and be implemented via overlays. Overlays require no dedicated capital beyond
the core portfolio, providing higher risk-adjusted returns than approaches based on
traditional leverage.
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Chapter 8
Stabilizing Implementable Decisions in Dynamic
Stochastic Programming

Michael A.H. Dempster, Elena A. Medova, and Yee Sook Yong

Abstract We present a novel approach to address sampling error when discretely
approximating a dynamic stochastic programme with a limited finite number of
scenarios to represent the underlying path probability distribution. This represents a
tentative solution to the problems first identified in our companion paper (Dempster
et al., A comparative study of sampling methods for stochastic programming,
forthcoming). Conventional approaches to such problems have been to find the best
discretization of the statistical properties of the simulated processes in terms of the
objective of the problem based on probability metrics. Here we consider the stability
of the implementable decisions of a stochastic programme, which is key to financial
investment and asset liability management (ALM) problems, while simultaneously
reducing the discretization bias resulting from small-sample scenario discretization.
We tackle discretization error by reducing the degrees of freedom of the decision
space in a financially meaningful way by constraining the decisions to lie within
a carefully chosen subspace. This avoids overfitting the optimized decisions to the
simulated in-sample scenarios which often do not generalize to unseen scenarios
drawn from the same probability distribution of paths. We illustrate the application
of versions of the proposed technique using a practical four-stage ALM problem
previously studied in Dempster et al. (J Portf Manag 32(2):51–61, 2006. Empirical
results show their effectiveness in reducing the discretization bias and improving the
stability of the implementable decisions without adding much to the computational
complexity of the original problem.
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8.1 Introduction and Background

A dynamic (multi-stage) stochastic program can be written as

min
x2X

Z

�

f .x; !/dP.!/; (8.1)

where f .x; !/ is the objective function defined in terms of both the uncertain paths
! and the decision space X of first stage decisions which imply feasibility in
subsequent stages. Modelling of the complex practical features of such problems
requires numerical computation of optimal solutions which in turn requires a
discrete sampling scenario tree approximation of the continuous path probability
distribution P. A vast literature has been devoted to finding the best approximation
of the continuous distribution in a variety of stochastic programming problems.
For example, there are efforts concentrating on having the scenario sample and
underlying moments matched [3, 7, 8] or on minimizing the Monge-Kantorovich-
Wasserstein and other probability metrics [4–6, 10, 11]. All these efforts aim to find
an approximation that best matches certain statistical properties of the discretized
sample distribution to the underlying theoretical one. However, practically more
important criteria are to evaluate the impact of these methods on the stability of the
optimal objective function value and to test against possible sampling bias [9]. A
comparative study of the effectiveness of some of these methods can be found in
our previous paper [2].

In this paper, we emphasize an additional criterion in evaluating scenario
sampling methods, namely, the stability of the root-node recommended decisions.
In financial portfolio allocation problems, this criterion is crucial to the practical
implementation of the recommended decisions which are hedged against the
sampled future scenarios and must hold until the next rebalance date. At this
future date the parameters of the underlying theoretical path distributions will
be recalibrated to market data which includes its update since the implemented
portfolio. In practical dynamic problems, since statistical models of asset returns are
well known to be prone to significant misspecification, root-node decision instability
can lead to increased actual transactions costs. Even if these costs are penalized in
the problem formulation, as here, instabilities of root-node decisions at recalibration
of the model used can lead to excessive transaction cost accumulation from chasing
after spurious profits.

This new criterion does not appear in the literature, presumably based on the
argument that two different decisions that yield similar objective function values
should not be penalized as being unstable. This situation will occur if the surface of
the objective function is a flat plateau or has multiple optima of similar values.1

1However these cases are precluded for a dynamic (multi-stage) linear stochastic programme.
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This argument in general relies heavily on the assumption that the surface of
the objective function of a scenario-based stochastic programming problem is accu-
rately represented. Sampling error usually causes this surface to vary across different
simulations of scenario trees even for two stage problems. So, similarity in objective
function values does not truly measure the stability of the stochastic programming
problem’s solution. Two distinct implementable decisions with similar objective
function values might lead to very different values of the “true” objective function
surface. This implies that in-sample stability should be measured with respect to
both criteria, i.e. stability of both objectives and implementable decisions.

There are different ways of defining stability of the implementable decision
vector. For example, we could take the standard deviation of the Euclidean norm,
or compute the standard deviation of each initial decision component and find
the maximum. However, for a financial asset liability management problem the
implementable decisions are an optimal asset mix which can be characterized in
terms of expected portfolio return and volatility. This provides a more convenient
and familiar way of measuring stability of the implementable decisions in financial
problems. For example, when we have asset classes that are highly correlated or
have nearly the same risk and return characteristics, different asset mixes may yield
similar portfolio characteristics as a whole and are therefore appropriately viewed
as similar optimal solutions in terms of decision stability.

As noted above, stability of implementable decisions is important since these
are the actions to be implemented in the real world. The empirical results from
the in- and out-of-sample tests in [2] clearly highlight the problems of insufficient
scenario branching. A low branching factor in the scenario tree does not truly
represent the assumed underlying probability distribution, causing the exploitation
of these unrepresentative scenarios by the optimization process to yield a solution
which is over-fitted to the simulated data presented to it. In this paper, we aim
to have the initial decision obtained from the optimizer generalize to unseen
scenarios generated from the same underlying path probability distribution. Thus,
we approach the problem from the viewpoint of having robust optimization with
respect to sampling error interpreted as a problem of incomplete data.

The problem of small sample over-fitting can be tackled by reducing the degrees
of freedom of the implementable decision space. First, let us write the scenario
tree root node decision x1t at time t as a linear combination of some basis factors
ai;t; i D 1; : : : ; r;

x1t D ct C
rX

iD1
�i;t ai;t; (8.2)

where �i;t is the weight at time t for the ith basis factor, denoted by ai;t, ct is an
offsetting constant vector and r denotes the total number of factors used in the
optimization process. The restriction in the degrees of freedom of the implementable
decisions may be achieved via:

1. reducing the dimension of the basis factors by setting r < d, where d is the total
dimension of the decision variables in the original optimization problem, or
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2. limiting the values which the weights�i;t for the original decisions, i D 1; : : : ; d,
can take.

For the first case, we constrain the decision to be a linear combination of a specially
chosen set of factors instead of allowing the decision process to be fully flexible.
For the second method, we only allow the original decisions to be within specially
chosen limits. Note that when lower and upper limits on some of the weights are
set to zero, the second case collapses to the first. The resulting reduced flexibility
prohibits the optimizer from finding a solution which is fine-tuned to the small-
sample scenarios. Two issues need to be addressed when using this proposed
formulation. Namely: How are the basis factors to be chosen? Given that we know
ways to find the factors, how many should we retain?

To demonstrate how stabilization of implementable decisions can be effectively
adopted we use the Pioneer guaranteed return fund problem [1] as an illustrative
example. The next section reviews the salient features of the dynamic stochastic
optimization model employed for this problem and highlights some of the issues
with small-sample approximation described in [2]. Sections 8.2 and 8.3 of the paper
consider respectively the evaluation of under-estimation of portfolio risk in this
problem and its possible solution. Section 8.4 treats the empirical evaluation of
the proposed techniques and Sect. 8.5 concludes and suggests some directions for
further research.

8.2 Review of Pioneer Guaranteed Return Funds

Pioneer Investments, the asset management division of UniCredit bank, offered to
investors in the EU from the early mid-2000s a range of unit-linked guaranteed
products, technically guaranteed minimum investment benefit (GMIB) variable
annuities. Pre-crisis, the funds backing these products totalled about 14 billion
euros. In this paper we will study the proof of concept model used to develop
the models actually used by Pioneer to manage these funds, see [1] and [2] for
respectively EUR and USD implementations of this initial model. The Pioneer
guaranteed return fund model considers the portfolio optimization of a closed-end
fund with a nominal guarantee of G per annum for all investors. The models actually
implemented by Pioneer involved investor contributions to open-end funds and a
variety of guarantee benchmarks including equity indices. The present model aims
to maximize the performance of the fund taking into account the risk associated with
falling short of the level of the guarantee. The model objective is thus a trade-off
between risk control and maximizing portfolio wealth controlled by a non-negative
parameter ˇ (see the Appendix for details). A low value of ˇ corresponds to very
tight risk control. As ˇ is increased, assets with higher return performance are
chosen at the expense of greater risk.

When a small-sample scenario tree is used, for problems with wealth maximiza-
tion as the objective (high ˇ), simple (algebraic) two moment matching is able to
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yield results which are close to the true solution as long as the expected returns
of each asset are captured correctly in the scenario tree. However, when a small
sample scenario tree is used with tight risk control, two moment matching fails to
alleviate a more prominent issue associated with insufficient scenario branching—
underestimation of portfolio risk. The lack of a large enough number of sample
scenarios causes an under-estimation of in-sample portfolio risk to result in an
unjustified risk-taking investment recommendation impairing the fund’s realized
performance. This is the issue addressed in this paper.

8.3 Evaluating Under-estimation of Portfolio Risk

We have noted above that insufficient scenario branching causes an under-estimation
of in-sample maximum shortfall, to result in an overly aggressive investment
strategy. Here, we perform a theoretical calculation of the one period expected
maximum shortfall of the Pioneer model to gain an insight into the possible degree
of under-estimation in such a scenario tree. Let Wt and Bt denote the wealth and
barrier level at time t respectively.2 The minimum portfolio return required to stay
above the barrier at the next time period, in other words, the immediate target return
�, is given by

� WD BtC1
Wt

� 1: (8.3)

Due to the stochastic nature of the barrier, the target is also stochastic. If
BtC1 < Wt, then the current wealth level is already above the barrier of the
next period, and any investment strategy that maintains the current wealth level
(i.e. with non-negative returns) will suffice to meet the negative target. On the
other hand, if BtC1 > Wt then we have a positive target. Given an allocation
strategy, the immediate portfolio return is normally distributed, since we model
the asset returns as correlated Gaussian processes. This means that conditional
on the current wealth level, the wealth distribution for the next period is normal.
Note however, that this does not imply that terminal wealth is normally distributed,
as the portfolio undergoes yearly re-balancing and the effects of compounding.
Nevertheless, the immediate conditional portfolio return characteristics allow us to
derive the immediate maximum shortfall as a non-negative quantity, which serves
as a lower bound to the maximum shortfall over the planning horizon.

Given an allocation strategy, let the expected portfolio return and volatility be
denoted by �p and �p. Therefore, conditional on the current wealth, the next period
wealth is normally distributed as

2Here we use boldface to denote (conditionally) stochastic entities, and inequalities and equations
between such entities are assumed to hold almost surely.
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WtC1jt � N
�

Wt.1C �p/; .Wt�p/
2
�

: (8.4)

Note that with a Gaussian returns model we might end up with negative wealth, but
this is not possible in the real world since the maximum loss that we might incur
is the total amount of the initial investment. However, since this relates to the tail
of the normal distribution, which in this context occurs with low probability, we
can ignore this inconsistency in the following calculation. The next period expected
maximum shortfall (EMStC1) is given by

EMStC1 D 1p
2�Wt�p

Z BtC1

�1
.WtC1 � BtC1/e

� .WtC1�Wt .1Crp//
2

2.Wt�p /2 dWtC1: (8.5)

Changing variables by letting r WD WtC1

Wt
� 1, we have

EMStC1 WD EMStC1
Wt

D 1p
2��p

Z 	

�1
.r � 	/e� .r��p/

2

2�2p dr (8.6)

D 1
q

2��2p

Z 	

�1
.r � �p/e

� .r��p/2

2�2p dr

C �p � 	
q

2��2p

Z 	

�1
e

� .r��p/2

2�2p dr

D � �pp
2�

e
� .	��p/2

2�2p C .�p � 	/Prob

�

z <
	 � �p

�p

�

(8.7)

D � �pp
2�

e
� .	��p/2

2�2p C �p � 	

2

 

1C erf

 

.	 � �p/p
2�p

!!

:

This theoretical EMS calculation is a non-linear function of the decision variables
and thus is difficult to implement as a constraint in the Pioneer model. Nonethe-
less, (8.7) can give us an indication of the range of values of portfolio returns and
volatilities for a given EMS and a target value. Figure 8.1 plots the contour of the
normalized (by wealth) EMS, denoted by EMS, for different portfolio returns and
volatilities, from which we see that the mean-variance efficient portfolio yields the
least expected maximum shortfall for a specified return.

Given a limit c on EMS and a target 	 , define A to be the set of assets/portfolios
with risk/return characteristics yielding immediate (one-period) normalized EMS
less than the limit, i.e.

A.c; 	/ D f.�; �/ W EMS.�; �; 	/ � cg; (8.8)



8 Stabilizing Implementable Decisions in Dynamic Stochastic Programming 183

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

Portfolio Volatility

Contour of expected maximum shortfall (in %) with varying portfolio return and volatility

P
or

tfo
lio

 re
tu

rn

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 8.1 Contour of normalized expected maximum shortfall

and let �max be the maximum volatility of the assets from this set, i.e.

�max.c; 	/ WD arg max
�

f.�; �/ W EMS.�; �; 	/ � cg: (8.9)

Due to the concave nature of the normalized EMS contour, �max may be found by the
intersection of the corresponding contour with the mean-variance efficient frontier.
In the next section, we will see how we can incorporate the information obtained
from Eqs. (8.8) and (8.9) into the appropriate choice of the basis factors defined
in (8.2).

8.3.1 Position Limits Based on a Volatility Constraint

Let the reference to the initial model period t be implicit in the sequel and let 1j be
a d � 1 column vector with all elements set to zero except the jth element, which is
set to one. From Fig. 8.1, we can see that if the volatility of an asset is greater than
�max then irrespective of its expected return, a 100 % investment in this asset will
result in an immediate EMS that violates the given limit. An easy way to address this
problem is to remove altogether such risky assets from the set of investable assets.

This removal may be formulated in terms of (8.2) for suitable r by setting �j to
zero and aj to 1j for all j such that f�j > �maxg. The allocation vector (in dollar
amounts) can thus be written as
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x D
rX

jD1
�j1j: (8.10)

If we let P to be a diagonal matrix formed with current asset prices on its diagonal,
the quantity allocation vector can be written as

q D P�1
rX

jD1
�j1j: (8.11)

However, it might not be sensible to remove these risky assets altogether, since
this would eliminate their upside potential. Another approach is to limit the total
investment in these risky assets. How should such a limit be chosen?

Before proceeding further, let us review how individual assets contribute to
portfolio volatility. Let d be the number of investable assets, C the covariance matrix
of their returns and ˛ a vector of asset weights. Then the portfolio volatility �p may
be written as

�p D
v
u
u
t

dX

jD1
˛2j Cjj C

dX

jD1

dX

iD1
˛i˛jCij (8.12)

with ˛i � 0; i D 1; : : : ; d, when no short-selling is allowed. The diversification
process is clearly illustrated by (8.12); a reduction in the portfolio volatility is
achieved when the second term is negative and the portfolio volatility is bounded
from above by the maximum volatility �max of the assets under consideration.
However, due to the interaction/diversification among the assets, it is difficult to
ascertain limits on each asset which yield portfolio volatility in the appropriate
range. Therefore we let the maximum proportion invested in asset i be heuristically
determined by

˛hi
i WD �maxp

Cii
; (8.13)

as holdings above this limit (irrespective of holdings in the other assets) may result
in a portfolio volatility that is too aggressive. Therefore, setting ˛lo

i D 0and ˛hi
i D

�maxp
Cii

, we add the following constraints to the initial model optimization problem at
each rebalance period

x D
dX

jD1
�j 1j; (8.14)

where
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W˛lo
i � �i � W˛hi

i (8.15)

and W is the current wealth level. The position limits (8.15) based on (8.13) can
be used by risk managers and regulators to avoid fund managers putting too much
money into speculative investments, thereby exposing their fund to excessive risk.
With these position limits, we can reduce the initial decision space to a region of
suitable risk, avoiding the optimization process overfitting the small scenario tree
sample used in the problem.

However, the heuristic we have used to bound the position limits in (8.13)
ignores the diversification benefits that the assets bring to the portfolio as a whole.
An asset, though risky, might be negatively correlated with other assets which,
when combined, yield lower portfolio risk. Therefore we next investigate how the
return covariance matrix diagonalization procedure transforms the asset returns into
uncorrelated space, which allows a more straightforward determination of position
limits. Assuming that the assets are uncorrelated, the portfolio volatility collapses to

�2p D
dX

iD1
˛2i Cii D ˛2k Ckk C

X

i¤k

˛2i Cii: (8.16)

Suppose we have a constraint �p � �max. Then, combining this with (8.16) gives

˛2k � �2max

Ckk
�
P

i¤k ˛
2
i C2

ii

Ckk
� �2max

Ckk
: (8.17)

Because the second term is difficult to determine, we shall use

˛k � �maxp
Ckk

(8.18)

as the appropriate bound. Note the similarity of (8.18) to the heuristic we used
in (8.13). However, the position limit in (8.18) is in the uncorrelated return space.

For completeness we describe the standard algebraic procedure for transforming
the asset returns from the original space to the uncorrelated space. Let r be the vector
of normally distributed returns of the d assets with r � N.�;C/. We will assume C
to be a full covariance matrix since assets are usually not perfectly correlated with
one another. Performing the eigenvalue decomposition of C, we obtain

C D BDB�1; (8.19)

where B is the matrix formed by the eigenvectors bi as its columns and D is a
diagonal matrix of the eigenvalues. Instead of the standard L2 normalization of the
eigenvectors, we will use the normalization which requires the elements of each the
eigenvectors to sum to unity. Note that the orthogonal property of the eigenvectors
gives
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bT
i bj D


fii i D j
0 i ¤ j:

(8.20)

These equations may also be represented in matrix form as BTB D F, where F
is a diagonal matrix. This diagonalization process transforms the returns in the
original space to a space in which they are uncorrelated. It may be performed by
multiplying the original return vector r with the matrix BT . Then the return vector
in the transformed space becomes r� D BTr and the resulting diagonal covariance
matrix of the transformed asset returns is given by

Cov



r�r�T
�

D BT
E
�

.r � �/.r � �/T�B

D BT
�

BDB�1�B D FD: (8.21)

From the point of view of asset management, the transformation B�1 bundles
the original assets into uncorrelated portfolios with the weights of each portfolio
given by certain coefficients. We henceforth refer to these uncorrelated portfolios as
the original portfolio basis factors, with weights for each factor in which negative
weights correspond to short-selling the corresponding portfolio. The resulting
variance of each portfolio basis factor is given by the corresponding eigenvalue Dii

multiplied by the normalizing constant fii as shown in (8.21). Each of these portfolio
basis factors is uncorrelated with the others. Thus we may constrain each of them
independently.

Next, let us see how an allocation to the portfolio basis factors relates to the
assets in the original space. Let i be the index of the assets in the original space
and j be the index of portfolio basis factors. Assume that a single dollar portfolio
investment is decomposed into an ˛j proportion assigned to the jth portfolio basis
factor, j D 1; : : : ; d, with

Pd
jD1 ˛j D 1. The quantity of asset i held in the original

portfolio, denoted by qi, is given by

qi D
dX

jD1
˛jq

.j/
i ; (8.22)

where q.j/i is the quantity invested in asset i in the portfolio basis j. Recalling that for

B D .bij/ of (8.19), the proportion of the dollar unit q.j/i invested in portfolio basis j

can be found to be bij

Pi
and given that we invest W dollars of financial wealth in the

original portfolio, the quantity qi of asset i held in this is given by

qi D W

Pi

dX

jD1
˛jbij: (8.23)
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We have thus derived the relationship between portfolio decisions in the uncor-
related space and the original space. This transformation does not alter the opti-
mization problem, so the allocation may be performed equivalently in either the
transformed or the original space.

However, as noted above, once we have this transformation into the uncorrelated
space, constraining the decisions by choosing only the ones with appropriate
risk/return characteristics becomes much more straightforward, since we can con-
sider each of the uncorrelated basis portfolios independently. Removal of risky
assets in the uncorrelated return space is performed by setting

˛j D 0 forj suchthat
p

Djjfjj > �max (8.24)

which leads to

qi D W

Pi

rX

jD1
˛j bij; i D 1; : : : ; d; (8.25)

for suitable r in the form of (8.2). Given the weights ˛j set equal to zero in the
uncorrelated return space (and assuming for simplicity that the indices are relabelled
so that these are j D r C 1; : : : ; d/, the constraints (8.24) can be formulated
equivalently, using the orthogonal properties of the basis factors, as

bT
k qoriginal D diag

�
W

P

�

bT
k

0

@

dX

jD1
˛jbj

1

A D 0 8k > r; (8.26)

where bk denotes the kth eigenvector and qoriginal is the initial quantity vector in the
original space, since

bT
k

0

@

rX

jD1
˛jbj

1

A D


0 if j ¤ k
˛kfkk if j D k:

(8.27)

From the implementation point of view, the constraints (8.26) offer an advantage
in that they do not involve introducing a new set of initial decision variables ˛ into
the optimization problem. The added constraints can thus be viewed as either: (1)
limiting the initial decision space to the subspace formed by linear combinations of
the appropriately chosen basis factors, or (2) restricting the optimization process to
only finding decisions that satisfy the orthogonal properties of the remaining basis
factors.

We could also set the position limits on the uncorrelated portfolios to preserve the
upside of the risky assets similarly to (8.15) by replacing

p

Cjj with the volatilities
p

Djjfjj of the portfolio basis factors. Short selling is possible in the uncorrelated
space, but not in the original space. Therefore, we obtain
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� �max
p

fjjDjj
� ˛j � �max

p
fjjDjj

: (8.28)

8.3.2 Position Limits Based on Asset Returns and Volatility
Proportional Constraints

The previous section derived position limits by implicitly assuming that the indi-
vidual investable assets are near the mean-variance efficient frontier. This allowed
the use of volatilities only in our considerations. When an asset is not close to the
efficient frontier, the maximum proportion in the asset allowable before breaching
the EMS limit is an overestimate. Such mean-variance inefficient assets may
nevertheless contribute to optimal portfolios in the presence of additional portfolio
constraints, for example, limiting overall portfolio drawdown in each period of the
model. This section therefore looks at an approach to relaxing the (approximate)
mean-variance efficient assumption on asset returns.

With this approach the maximum proportion ˛hi
i for a particular asset is

determined as a proportional investment in that asset beyond which the required
EMS target will not be satisfied even if the remaining capital is entirely invested in
the zero-coupon bond (ZCB) forming the guarantee barrier (see the Appendix for
details). Here we treat the ZCB as completely riskless, i.e. using its characteristic at
the problem planning horizon. Therefore, the upper limit of the proportion for asset
j is given by

˛hi
j D arg maxf0 � ˛j � 1 W EMS

�

.1 � ˛j/rzcb C ˛j�j; ˛j�j; 	
�

; (8.29)

where rzcb is the annualized return of the zero coupon bond. The risk/return profile
of an investment in asset i and the ZCB forms a straight line passing through
(rzcb; 0) and (�j; �j) and ˛i is the proportion at which this straight line intersects
the corresponding EMS contour. Similar to the other approaches described above,
for each asset we here neglect the contribution of the other assets towards portfolio
risk and return.

8.3.3 Summary

In this section we have introduced three alternative methods for mitigating the
under-estimation of portfolio risk from small sample scenario trees in the context
of the Pioneer guaranteed return fund DSP problem with diffusion return processes
calibrated to monthly USD data. We measure initial portfolio risk in terms of one-
period conditional expected shortfall relative to the current cost of ensuring the
guarantee at maturity and its conditional small sample stability in terms of the usual
portfolio volatility risk and expected return. The fundamental idea is to restrict the
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dimension of the initial portfolio to a subspace spanned by a limited number of
factors, here by placing restrictions on portfolio weights to exclude excessively risky
assets using approximate risk bounds, but more familiar financial risk factors could
in principle also be employed.

Position limits based on asset returns and volatility proportional constraints
are specific to the guaranteed fund problem case study of Sect. 8.4 and we shall
see (Fig. 8.2) that it is important in the asset restriction process that bounds take
account of asset return covariance. We therefore summarize here the steps of that
approach which is based upon rotating the Gaussian asset return space to consist of
uncorrelated portfolios composed from the original assets in which short selling is
allowed:

Step 1. Perform the eigenvalue decomposition of the return vector conditional
covariance matrix (3.17).

Step 2. Apply the asset risk bounds (3.22) to remove risky assets in the uncorre-
lated portfolio return space and transform to quantities in the original asset space
using (3.23).

Step 3. Alternatively, express the original asset restriction constraints in terms of
linear constraints which involve the conditional covariance matrix eigenvectors
given by (3.24) with dimension the number of risky assets excluded in the
uncorrelated portfolio return space.

Although the case study of the next section involves Gaussian conditional
asset returns, this standard linear algebra based procedure is applicable to general
conditional asset return distributions with two moments finite, provided that small
sample initial portfolio stability is measured by initial conditional portfolio risk
and return. The effectiveness of this procedure in more general settings, with other
asset return distributions and portfolio risk measures different from the guaranteed
expected maximum shortfall used for the Pioneer problem in the sequel, is an
empirical matter for future research.

8.4 Empirical Results

We now investigate the effectiveness of the �max and proportional constraints
described in the previous section in stabilizing and reducing discretization error in
the implementable decisions of the 4-stage Pioneer guaranteed return fund model.
Only the root node implementable decisions are so constrained. We perform in and
out-of-sample tests using the same tree structures employed in [2], i.e. 7-7-7-7, 7-7-
7, 7-7 and 7 at each roll forward period, so that a comparison with our earlier results
can be made to ascertain the effectiveness of our methods.

Table 8.1 shows the in-sample terminal wealth, expected maximum shortfall
and hitting probability for the different stabilization methods employed. The
uncorrelated space �max position limits and the proportional limits yield lower in-
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Fig. 8.2 In- and out-of-sample results for the original guaranteed fund 4-stage Pioneer problem [2]
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Table 8.1 In-sample stability results with stabilization of root node decisions

Terminal Expected Hitting

ˇ Method wealth maximum shortfall probability

0.0075 �max (original) 129.33 (1.60) 0.03 (0.01) 0.03 (0.01)

�max (uncorrelated) 127.45 (1.31) 0.02 (0.01) 0.02 (0.01)

Proportional 127.58 (1.35) 0.02 (0.01) 0.02 (0.01)

Mean C cov 137.33 (5.80) 0.06 (0.03) 0.05 (0.02)

0.6 �max (original) 165.44 (0.04) 3.12 (0.53) 0.33 (0.07)

�max (uncorrelated) 165.44 (0.04) 3.12 (0.53) 0.33 (0.07)

Proportional 165.44 (0.04) 3.12 (0.53) 0.33 (0.07)

Mean C cov 165.44 (0.04) 3.12 (0.53) 0.33 (0.07)

Table 8.2 In-sample portfolio allocation stability results for 4-stage barrier problem with stabi-
lization of root node decision

Total equities Total bonds Portfolio return Portfolio volatility
ˇ Method Avg Stdev Avg Stdev Avg Stdev Avg Stdev

0.0075 �max (original) 10.2 (2.1) 89.8 (2.1) 3.80 (0.15) 3.59 (0.39)

�max (uncorrelated) 8.1 (0.5) 91.9 (0.5) 3.73 (0.07) 3.38 (0.20)

Proportion 8.6 (1.3) 91.4 (1.3) 3.67 (0.09) 3.39 (0.16)

Mean + cov 34.8 (22.5) 65.2 (22.5) 6.37 (2.26) 6.27 (2.74)

0.6 �max (original space) 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

�max (uncorrelated) 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

Proportion 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

Mean + cov 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

sample terminal wealth than the other two position limits in the tight risk control
region.

Table 8.2 shows the return and volatility of the recommended portfolios at the
root node. A more detailed breakdown of the allocations is tabulated in Tables 8.3
and 8.4. Table 8.3 shows the effects of limits imposed on the assets in the original
space for different values of ˇ. With very tight risk control, only B1 of Table 8.3
and the ZCB are allowable assets in which to invest. The recommended portfolio
at ˇ D 0:0075 invests heavily (about 90 %) in bonds. As ˇ increases, a higher
proportion is invested in the more risky assets.

Comparing the portfolio recommendations with and without stabilization to
mean and covariance matching only (mean+cov), shows the success of all stabi-
lization schemes in reducing the in-sample over-fitting with a limited number of
scenarios by employing a much more conservative portfolio and increasing the
stability of the implementable decisions. The stabilization constraint does not affect
optimization at high ˇ due to the dominating wealth maximization term.

We now investigate the effect of the stabilization constraints on crucial out-of-
sample performance. Figure 8.3 plots the realized efficient frontier, in which all
stabilization methods under consideration successfully trace out the curve derived
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Table 8.3 Asset position
limits

ˇ D 0:001 ˇ D 0:075 ˇ D 0:60

S&P 0.58 3.75 79.24

EAFE 0.65 4.15 87.63

R2K 0.47 3.01 63.65

REIT 0.74 4.74 100.00

B1 100.00 100.00 100.00

B2 10.26 65.90 100.00

B3 5.06 32.46 100.00

B4 3.54 22.75 100.00

B5 2.83 18.14 100.00

B10 1.61 10.35 100.00

B30 1.03 6.59 100.00

from a 10,000 scenario problem in the low risk region. Comparing this to the
results obtained using standard moment matching shown in Fig. 8.23 indicates that
these methods lead to higher realized terminal wealth at lower risk. Comparing the
different stabilization methods employed, we see that position limits derived in the
uncorrelated return space and with the proportional approach yield better out-of-
sample performance. The improved performance is due to the implicit portfolio
volatility constraints that induce more conservative portfolios in the tight risk control
region. These portfolios reduce the occurrence of out-of-sample portfolio losses
resulting from exploitation of the spurious profit opportunities present in small-
sample scenario trees.

The more conservative portfolios induced also result in a lower ZCB barrier
hitting probability as shown in Table 8.5. Comparing the barrier hitting probability
at ˇ D 0:0075 for methods with and without stabilization constraints shows that
this hitting probability is reduced from 33 % to about 13.4 %. Note however that
the in-sample risk is still under-estimated (by about an order of magnitude) due to
the low scenario branching factor remaining still somewhat prone to over-fitting.
However, comparing this degree of under-estimation with that resulting from only
second order matching, we have nevertheless successfully decreased this under-
estimation by about a factor of 4 through reduction in the degrees of freedom of
the initial decisions. The in-sample estimate of EMS for ˇ D 0:0075 when using
only covariance matching with random scenario sampling is 2.47, whereas the EMS
realized with stabilized decisions in the correlated return space value is 0.06. By
contrast, the in-sample estimate of EMS for position limits in the uncorrelated space
is 0.02 and its out-of-sample value is 0.11 (see Tables 8.1 and 8.5). The out-of-
sample efficient frontier in Fig. 8.3 is much closer to that of the large sample scenario
tree than is that of the original problem presented in [2].

3See [2] for an explanation of the alternative methods reported in the figure including simple Monte
Carlo (MC) and MC with first and second moment matching (MC+mean, MC+mean+cov).
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Table 8.4 In-sample portfolio allocation stability results with stabilization of decisions

ˇ Asset Position limits Position limits (uncorrelated) Proportion limits

0.0075 S&P 3.4 (0.7) 0.2 (0.4) 2.4 (0.3)

EAFE 0.7 (1.2) 0.1 (0.2) 0.6 (0.8)

R2K 1.4 (1.2) 0.0 (0.0) 1.1 (0.7)

REIT 4.7 (0.1) 7.8 (0.9) 4.5 (0.1)

B1 0.0 (0.0) 0.0 (0.0) 0.0 (0.1)

B2 0.8 (3.2) 0.0 (0.3) 1.2 (3.4)

B3 17.2 (13.9) 3.0 (7.4) 7.2 (4.6)

B4 21.9 (2.8) 5.9 (7.2) 8.3 (0.0)

B5 14.5 (5.9) 3.6 (4.9) 6.9 (0.1)

B10 5.9 (4.5) 0.4 (1.2) 3.6 (1.2)

B30 4.2 (2.8) 2.3 (2.4) 2.0 (1.0)

ZCB 25.2 (14.2) 76.7 (7.5) 62.0 (6.1)

Total equities 10.2 (2.1) 8.1 (0.5) 8.6 (1.3)

Total bonds 89.8 (2.1) 91.9 (0.5) 91.4 (1.3)

Portfolio returns 3.8 (0.2) 3.7 (0.1) 3.7 (0.1)

Portfolio volatility 3.6 (0.4) 3.4 (0.2) 3.4 (0.2)

0.6 S&P 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

EAFE 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

R2K 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

REIT 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

B1 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

B2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

B3 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

B4 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

B5 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

B10 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

B30 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

ZCB 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Total equities 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Total bonds 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Portfolio returns 13.7 (0.0) 13.7 (0.0) 13.7 (0.0)

Portfolio volatility 14.8 (0.0) 14.8 (0.0) 14.8 (0.0)

Among the stabilization approaches implemented, the general method given by
position limits in the uncorrelated return space yields the best results although the
volatility proportional constraints give very similar results. Adding these constraints
does not add much complexity to the model and they are therefore an effective
method to reduce bias in root node implementable decisions. The much lower
computational costs of employing these stabilization schemes with small-sample
scenario trees makes them effective practical methods to suppress sampling error.
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Fig. 8.3 In- and out-sample results for 4-stage Pioneer guaranteed fund problem with stabilization
of decisions
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Table 8.5 Out-of-sample results for the stabilization method

Terminal Expected Hitting
ˇ Method wealth maximum shortfall probability

0.0075 �max (original space) 118.63 (6.06) 0.47 (1.15) 0.24

�max (uncorrelated space) 116.23 (3.03) 0.11 (0.43) 0.1340

Proportion limit 116.62 (3.70) 0.20 (0.65) 0.1700

Mean+cov 146.69 (36.75) 2.57 (4.93) 0.39

0.6 �max (original space) 166.75 (45.95) 3.22 (6.85) 0.3140

�max (uncorrelated space) 166.75 (45.95) 3.22 (6.85) 0.3140

Proportion limit 166.75 (45.95) 3.22 (6.85) 0.3140

Mean+cov 166.75 (45.95) 3.22 (6.85) 0.31

8.5 Conclusions and Future Directions

We have examined alternative methods to address the under-estimation of portfolio
risk in small scenario sample dynamic stochastic programming financial models. We
investigated methods to suppress discretization error and implementable decision
sampling variability by reducing the degrees of freedom of the initial decision space.
This may be carried out by limiting the implementable decisions to be a linear
combination of a properly chosen basis, thus forcing the decisions to lie within an
appropriate subspace. We explore how these bases may be optimally chosen in the
context of under-estimation of maximum shortfall in the Pioneer guaranteed return
fund model. An approximation to a theoretical calculation of one-period maximum
shortfall is used to add an indirect constraint on the portfolio volatility through the
use of position limits. Different schemes to determine the appropriate limits have
been investigated, and it was found using limits in the uncorrelated return space
yields the best out-of-sample performance. Discretization error is reduced and the
stability of the root node decision is improved, especially for tight risk control.

The area of stabilization of implementable decisions is a new area in dynamic
stochastic programming, where to our knowledge limited research has so far
been carried out. Though the stability of objective function values is important,
for financial applications of dynamic stochastic programming the stability of the
implementable decisions is essential to the successful application of these models
in the real world, since these are the recommendations actually carried out.
Discretization bias in the implementable decisions may thus erode the full potential
of incorporating stochasticity into dynamic decision modelling in the face of risk.

The results from our first investigation of limiting the degrees of freedom of
the implementable decisions space in an effort to reduce discretization error and
stabilize these decisions are promising. They indicate that this is a fruitful area
for further research. An obvious extension is to limit the degrees of freedom
using the methods described in this paper for all prospective forward decisions in
financial applications of dynamic stochastic programming models. More extensive
investigation should also be carried out to evaluate the effectiveness of these
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methods in improving in-sample risk estimation with more general asset return
distributions, especially for risk measures which are highly dependent on the lower
tail of portfolio return distributions such as Value at Risk and Expected Shortfall.

Acknowledgements We would like to thank an anonymous referee and the Editor whose
comments materially improved the paper.

Appendix: Pioneer Guaranteed Return Fund Model
Formulation [2]

The Pioneer guaranteed return fund model [1] is a portfolio optimization of a closed-
end fund with a nominal return guarantee of G per annum. At each period the model
aims to maximize the performance of the fund taking into account the risk associated
with falling short of the guaranteed value level. The formulation presented here
follows closely [1] except that we only impose transactions costs on the change in
portfolio holdings. Selling the off-the-run bonds and replacing them with on-the-
run bonds are assumed not to incur any transactions cost. The model parameter and
variable definitions are given in Table 8.6.

Objective

max
X

w2�
p.!/

0

@ˇ
X

t2Td

OWt.!/ � .1 � ˇ/H.!/

1

A (8.30)
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Table 8.6 Model parameters and variables

Sets definition

Td D f1; : : : ; T C 1g Set of decision/simulation times

A Set of all assets

� Set of scenarios

Parameter definitions

ˇ Risk aversion attitude (ˇ D 1 corresponding

to risk loving)

Qa Initial asset holdings (in units) of asset a 2 A

c1 Initial cash amount

Stochastic parameter definitions

P.buy/
t;a .w/=P.sell/

t;a Buy/sell price of asset a 2 A

at time t in scenario w

Dt;a.w/ Annual coupon of bond a 2 A paid (in arrears)

at time t in scenario w

Zt.w/ Zero coupon bond price at time t in scenario w

Lt.w/ D W1.1C G/T Zt.w/ Barrier level at time t of guarantee G per annum

in scenario w

p.w/ Probability of scenario w

Decision variable definitions

qt;a.w/ Quantity held in asset a 2 A over period Œt; t C 1/

in scenario w

qC

t;a.w/=q�

t;a.w/ Quantity bought/sold in asset a 2 A

at time t in scenario w

sC

t;a.w/=s�

t;a.w/ Increment/decrement (in units) of asset a 2 A

at time t in scenario w

Wt.w/ Financial wealth before portfolio rebalancing

at time t in scenario w
OWt.w/ Financial wealth after portfolio rebalancing

at time t in scenario w

ht.w/ D max.0; OWt.w/� Lt.w// Shortfall at time t in scenario w

H.w/ Maximum shortfall in scenario w

• Initial cash balance constraints

X

a2A

P.buy/
1;a .w/q1;a.w/C

X
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�

D c1 C
X
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�

(8.32)

Quantity Balance Constraints

• Running quantity balance constraints
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qt;a.w/ D qt�1;a.w/C qC
t;a.w/ � q�

t;a.w/ (8.33)

8t 2 Tdnf1g 8a 2 A 8w 2 �

• Initial quantity balance constraint

q1;a.w/ D Qa C qC
1;a.w/ � q�

1;a.w/ 8a 2 A 8w 2 � (8.34)

Annual Bond Roll-Over Constraints The off-the-run bonds are sold and the new
on-the-run bonds are bought. Note that we do not incur transaction costs on buying
and selling resulting from annual rolling. Transaction costs are only incurred on
changes in asset holdings.

q�
t;a.w/ D qt�1;a.w/ 8t 2 Tdnf1g 8a 2 A 8w 2 � (8.35)

q�
1;a.w/ D Qa 8a 2 A 8w 2 �

This constraint implies that

qt;a.w/ D qC
t;a.w/ 8t 2 Td 8a 2 A 8w 2 � (8.36)

Liquidation Constraints The financial portfolio is liquidated in cash at the final
horizon for at least the guarantees to be paid to the clients.

qT;a.w/ D 0 8a 2 A 8w 2 � (8.37)

This equation implies that

sC
T;a.w/ D 0 8a 2 A 8w 2 �

s�
T;a.w/ D qT�1;a.w/ 8a 2 A 8w 2 � (8.38)

Wealth Accounting Constraints

• Wealth before rebalancing

Wt.w/ D
X
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• Wealth after rebalancing

OWt.w/ D
X

A

Pbuy
t;a .w/qt;a.w/ 8t 2 TdnfT C 1g 8w 2 � (8.41)

OWT.w/ D
X

A




P.sell/
T;a .w/.qT�1;a.w/� 	as�

T;a.w//C DT;a.w/qT�1;a.w/
�

8w 2 � (8.42)

Portfolio Change Constraints We calculate the portfolio change (in units) through
the following constraints:

• Decrement in asset position

qC
t;a.w/ � q�

t;a.w/C s�
t;a.w/ � 0 8t 2 Td 8a 2 A 8w 2 � (8.43)

• Increment in asset position

q�
t;a.w/ � qC

t;a.w/C sC
t;a.w/ � 0 8t 2 Td 8a 2 A 8w 2 � (8.44)

Barrier Constraints We use the wealth after rebalance to evaluate whether it is
above the barrier. The wealth after rebalancing is used because in the real world
where the product is sold to the client, the fund manager will need to liquidate the
financial portfolio in cash to pay the clients at least the amount they are guaranteed.
Taking transaction costs into consideration, this will drive the portfolio strategies to
be more conservative.

• Shortfall constraint

ht.w/C OWt.w/ � Lt.w/ 8t 2 Td 8w 2 � (8.45)

• Maximum shortfall constraint

H.w/ � ht.w/ 8t 2 Td 8w 2 � (8.46)

Non-anticipativity Constraints The non-anticipativity of the decision variables is
implicit once we represent the stochastic processes using the scenario tree format.
Therefore, no additional constraints are required.
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Chapter 9
The Growth Optimal Investment Strategy Is
Secure, Too

László Györfi, György Ottucsák, and Harro Walk

Abstract This paper is a revisit of discrete time, multi period and sequential
investment strategies for financial markets showing that the log-optimal strategies
are secure, too. Using exponential inequality of large deviation type, the rate of
convergence of the average growth rate is bounded both for memoryless and for
Markov market processes. A kind of security indicator of an investment strategy
can be the market time achieving a target wealth. It is shown that the log-optimal
principle is optimal in this respect.

Keywords Portfolio selection • Growth rate • Log-optimality • Sequential
investment strategies

9.1 Introduction

This paper gives some additional features of the investment strategies in financial
stock markets inspired by the results of information theory, non-parametric statistics
and machine learning. Investment strategies are allowed to use information collected
from the past of the market and determine, at the beginning of a trading period, a
portfolio, that is, a way to distribute their current capital among the available assets.
The goal of the investor is to maximize his wealth in the long run without knowing
the underlying distribution generating the stock prices. Under this assumption the
asymptotic rate of growth has a well-defined maximum which can be achieved in
full knowledge of the underlying distribution generated by the stock prices.
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In Sect. 9.2, under memoryless assumption on the underlying process generating
the asset prices, the log-optimal portfolio achieves the maximal asymptotic average
growth rate, that is, the expected value of the logarithm of the return for the best
fix portfolio vector. Using exponential inequality of large deviation type, the rate
of convergence of the average growth rate to the optimum growth rate is bounded.
Consider a security indicator of an investment strategy, which is the market time
achieving a target wealth. The log-optimal principle is optimal in this respect, too.

In Sect. 9.3, for generalized dynamic portfolio selection, when asset prices are
generated by a stationary and ergodic process, there are universally consistent
(empirical) methods that achieve the maximal possible growth rate. If the market
process is a first order Markov process, then the rate of convergence of the average
growth rate is obtained more generally.

Consider a market consisting of d assets. The evolution of the market in time is
represented by a sequence of price vectors S1;S2; : : : 2 R

dC, where

Sn D .S.1/n ; : : : ; S.d/n /

such that the jth component S.j/n of Sn denotes the price of the jth asset on the nth
trading period.

Let us transform the sequence of price vectors fSng into the sequence of return
(relative price) vectors fXng as follows:

Xn D .X.1/n ; : : : ;X.d/n /

such that

X.j/n D S.j/n

S.j/n�1
:

Thus, the jth component X.j/n of the return vector Xn denotes the amount obtained
after investing a unit capital in the jth asset on the nth trading period.

9.2 Constantly Rebalanced Portfolio Selection

The dynamic portfolio selection is a multi-period investment strategy, where at
the beginning of each trading period the investor rearranges the wealth among the
assets. A representative example of the dynamic portfolio selection is the constantly
rebalanced portfolio (CRP). The investor is allowed to diversify his capital at the
beginning of each trading period according to a portfolio vector b D .b.1/; : : : b.d//.
The jth component b.j/ of b denotes the proportion of the investor’s capital invested
in asset j. Throughout the paper it is assumed that the portfolio vector b has
nonnegative components with

Pd
jD1 b.j/ D 1. The fact that

Pd
jD1 b.j/ D 1means that



9 The Growth Optimal Investment Strategy Is secure, Too 203

the investment strategy is self financing and consumption of capital is excluded. The
non-negativity of the components of b means that short selling and buying stocks
on margin are not permitted. The simplex of possible portfolio vectors is denoted
by �d.

Let S0 denote the investor’s initial capital. Then at the beginning of the first
trading period S0b.j/ is invested into asset j, and it results in return S0b.j/x

.j/
1 , therefore

at the end of the first trading period the investor’s wealth becomes

S1 D S0

dX

jD1
b.j/X.j/1 D S0 hb ; X1i ;

where h� ; �i denotes inner product. For the second trading period, S1 is the new
initial capital

S2 D S1 � hb ; X2i D S0 � hb ; X1i � hb ; X2i :

By induction, for the trading period n the initial capital is Sn�1, therefore

Sn D Sn�1 hb ; Xni D S0

nY

iD1
hb ; Xii :

The asymptotic average growth rate of this portfolio selection is

lim
n!1

1

n
ln Sn D lim

n!1

 

1

n
ln S0 C 1

n

nX

iD1
ln hb ; Xii

!

D lim
n!1

1

n

nX

iD1
ln hb ; Xii ;

therefore without loss of generality one can assume in the sequel that the initial
capital S0 D 1.

If the market process fXig is memoryless, i.e., it is a sequence of independent
and identically distributed (i.i.d.) random return vectors then we show that the best
constantly rebalanced portfolio (BCRP) is the log-optimal portfolio:

b� WD arg max
b2�d

Efln hb ; X1ig:

This optimality was formulated as follows:

Proposition 1 (Kelly [30], Latané [32], Breiman [11], Finkelstein and Whitley
[19], Barron and Cover [8]). If S�

n D Sn.b�/ denotes the capital after day n
achieved by a log-optimal portfolio strategy b�, then for any portfolio strategy b
with finite Efln hb ; X1ig and with capital Sn D Sn.b/ and for any memoryless
market process fXng1�1,
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lim
n!1

1

n
ln Sn � lim

n!1
1

n
ln S�

n almost surely (a.s.) (9.1)

and maximal asymptotic average growth rate is

lim
n!1

1

n
ln S�

n D W� WD Efln hb� ; X1ig a.s.

Proof. This optimality is a simple consequence of the strong law of large numbers.
Introduce the notation

W.b/ D Efln hb ; X1ig:

Then

1

n
ln Sn D 1

n

nX

iD1
ln hb ; Xii

D 1

n

nX

iD1
Efln hb ; Xiig C 1

n

nX

iD1
.ln hb ; Xii � Efln hb ; Xiig/

D W.b/C 1

n

nX

iD1
.ln hb ; Xii � Efln hb ; Xiig/ :

Kolmogorov’s strong law of large numbers implies that

1

n

nX

iD1
.ln hb ; Xii � Efln hb ; Xiig/ ! 0 a.s.,

therefore

lim
n!1

1

n
ln Sn D W.b/ D Efln hb ; X1ig a.s.

Similarly,

lim
n!1

1

n
ln S�

n D W� WD W.b�/ D max
b

W.b/ a.s.

�
In [31] the log-optimal portfolio selection was studied for a continuous time

model, where the main question of interest is the choice of sampling frequency
such that the rebalancing is done at sampling time instances. They assumed that
the assets’ prices are cross-correlated geometric motions and therefore the return
vectors of sampled price processes are memoryless. For high sampling frequency,
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the log-optimal strategy is a special case of mean-variance rule, called semi-log-
optimal strategy (cf. [23, 36, 37]).

There is an obvious question here: how secure a growth optimal portfolio strategy
is? The strong law of large numbers has another interpretation. Put

Rn WD inf
n�m

1

m
ln S�

m;

then enRn is a lower exponential envelope for S�
n , i.e.,

enRn � S�
n :

Moreover,

Rn " W� a.s.,

which means that for an arbitrary R < W�, we have that

enR � S�
n

for all n after a random time N large enough.
In the sequel we bound N, i.e., derive a rate of convergence of the strong law of

large numbers. Assume that there exist 0 < a1 < 1 < a2 < 1 such that

a1 � X.j/ � a2 (9.2)

for all j D 1; : : : ; d. For the New York Stock Exchange (NYSE) daily data, this
condition is satisfied with a1 D 0:7 and with a2 D 1:2. a1 D 0:7 means that the
worst that happened in a single day was 30% drop, while a2 D 1:2 corresponds to
20% increase within a day. (cf. [18, 28].) Figure 9.1 shows the histogram of Coca
Cola’s daily logarithmic relative prices such that most of the days the relative prices
are in the interval Œ0:95; 1:05� from 1962 to 2006. Here are some statistical data:

minimum D �0:2836
1st qu. D �0:0074

median D 0:0000

mean D 0:00053

3rd qu. D 0:0083

maximum D 0:1796:

Theorem 1. If the market process fXig is memoryless and the condition (9.2) is
satisfied, then for an arbitrary R < W�, we have that
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Fig. 9.1 The histogram of log-returns for Coca Cola

P
˚

enR > S�
n

� � e
�2n .W�

�R/2

.ln a2�ln a1/2 :

Proof. We have that

P
˚

enR > S�
n

� D P



R >
1

n
ln S�

n

�

D P

(

R � W� >
1

n

nX

iD1

�

ln hb� ; Xii � Efln hb� ; Xiig
�

)

:

Apply the Hoeffding [27] inequality: Let X1; : : : ;Xn be independent random
variables with Xi 2 Œc; c C K� with probability one. Then, for all � > 0,

P

(

1

n

nX

iD1
.Xi � EfXig/ < ��

)

� e�2n �2

K2 :

Because of the condition,

ln a1 � ln hb� ; Xii � ln a2;

therefore the theorem follows from the Hoeffding inequality for the correspondences

� D W� � R
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and

Xi D ln hb� ; Xii

and

K D ln a2 � ln a1:

�
Using Theorem 1, we can bound the probability that after n there is a time instant

m such that emR > S�
m:

Corollary 1. If the market process fXig is memoryless and the condition (9.2) is
satisfied, then for an arbitrary R < W�, we have that

P
˚[1

mDnfemR > S�
mg� � e�2n .W

�

�R/2

K2
e2

.W�

�R/2

K2

e2
.W�

�R/2

K2 � 1
: (9.3)

Proof. From Theorem 1 we get that

P
˚[1

mDnfemR > S�
mg� �

1X

mDn

P
˚

emR > S�
m

�

�
1X

mDn

e
�2m .W�

�R/2

.ln a2�ln a1/2

D e
�2n .W�

�R/2

.ln a2�ln a1/2
1

1 � e
�2 .W�

�R/2

.ln a2�ln a1/2

:

�
Theorem 1 and Corollary 1 are about the probability of underperformance

depending on a1 and a2. Using central limit theorem (CLT), one can derive
modifications of Theorem 1 and Corollary 1. The advantage of the CLT is that the
resulted formula does not depend on a1 and a2, it depends only of the variance of
the log-returns. However, in contrast to large deviation bounds, the CLT is only an
approximation.

An additional hard open problem is how to construct empirical strategies taking
into account proportional transaction cost (see, for example, [20, 21]).

When it comes to security, the small-sample behavior should be more interesting.
Consider the relative amount of times j between 1 and n, for which S�

j is below
ejR for R < W� near to W�, say R D Rn D W� � mp

n
� for fixed m > 0 with

�2 D Var.ln hb� ; X1i/ assumed to be positive and finite. For 0 � x � 1 we have
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P

8

<

:

1

n

nX

jD1
IfS�

j <ejRg � x

9

=

;

D P

8

<

:

1

n

nX

jD1
If 1j

Pj
iD1.lnhb� ;Xii�Eflnhb� ;Xiig/<R�W�g � x

9

=

;

D P

8

<

:

1

n

nX

jD1
If 1

p

n�

Pj
iD1.lnhb� ;Xii�Eflnhb� ;Xiig/Cm j

n<0g � x

9

=

;

! P

Z 1

0

IfW.u/Cmu�0gdu � x

�

with standard Brownian motion W, by Donsker’s functional central limit theorem
(see [9]) for the functional f ! R 1

0
Iff .u/Cmu�0gdu.

By the generalized arc-sine law of Takács [41] the right hand side equals

Fm.x/

WD 2

Z x

0

"

'.m
p
1 � u/p
1 � u

C mˆ.m
p
1 � u/

#"

'
��m

p
u
�

p
u

� mˆ
��m

p
u
�

#

du

for 0 � x � 1, where Fm.1/ D 1, and ' and ˆ are the standard normal density
and distribution functions, respectively. We have a non-degenerate limit distribution.
Here for m ! 1 and also for the case R D R0

n with .W� � R/
p

n ! 1, especially
a constant R0

n < W�, we have degeneration to the Dirac distribution concentrated
at 0. The proof of these assertions can be as follows: For each 0 < � < 1=2, on
Œ�; 1 � �� the uniformly bounded integrand uniformly converges to 0 for m ! 1,
thus Fm.1 � �/ � F.�/ ! 0. Further Fm.0/ D 0 and Fm.1/ D 1 for each m, and
Fm.x/ is non-decreasing for each 0 � x � 1. Thus, Fm.x/ ! 1 for each 0 < x � 1.
Finally one notices that m <

p
n.W� � R0

n/ ! 1 (n ! 1) implies

lim inf
n

P

8

<

:

1

n

nX

jD1
If 1

p

n�

Pj
iD1.lnhb� ;Xii�Eflnhb� ;Xiig/Cp

n.W��R0

n/
j
n<0g � x

9

=

;

� lim
n

P

8

<

:

1

n

nX

jD1
If 1

p

n�

Pj
iD1.lnhb� ;Xii�Eflnhb� ;Xiig/Cm j

n<0g � x

9

=

;
;

for each m. It should be mentioned that under the assumption (9.2) the latter of the
assertions is also a consequence of Theorem 1 for R D R0

n.
In the literature there is a discussion on good and bad properties of log-optimal

investment (see [34], Sects. 30 and 39, with references). Beside
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lim sup
1

n
log.Sn=S�

n / � 0

almost surely (see (9.1) and (9.4) below, good long-run performance) one has

EfSn=S�
n g � 1

for all n (good short-term performance). Both properties were established by Algoet
and Cover [3] in the much more general context of a stationary and ergodic process
of daily returns Xn and conditionally log-optimal investment (here regarding past
returns, but nothing more: myopic policy). Leaving the concept of a logarithmic
utility function induced by the multiplicative structure of investment, Samuelson
[38] in his critics pointed out that maximizing the expected return Efhb ; Xiig
instead of expected logarithmic return, with in this sense optimal portfolio choice
b�� and corresponding wealth S��

n , leads to EfS��
n g=EfS�

n g ! 1, see also the
comments of Markowitz [35]. But under the risk aspect of the deviation of a
random variable from its expectation, use of logarithm is more advantageous. The
log transform is a special case of the Box–Cox [10] transforms introduced in view
of stabilization and widely used in science, e.g., in medical science. Nevertheless
there is the question whether the risk aversion of log utility is big enough to save
an investor with very high probability from large terminal losses for medium time
horizon. Simulation studies discussed by MacLean, Thorp, Zhao and Ziemba in
MacLean et al. [34], Sect. 38, show that in a minority of scenarios such events
occur. These effects depend on time horizon and distribution of the daily return,
which allows a “proper use in the short and medium run” provided one has a good
knowledge of the distribution. Corollary 1 allows for small � > 0 to obtain a lower
bound N for the time horizon having a probability � 1 � � that after this time the
investor’s wealth is for ever at least the unit starting capital: on the right-hand side
of (9.3) set R D 0 and then choose N as the lowest integer n such that the right-hand
side is at most �. Here as in the following, W� > 0 is assumed.

The good long-run and short-run performance of the various strategies are
discussed in the literature, but usually the corresponding results concern only the
expectation. Both in financial theory and practice, people care about the distribution
as well. For the log-optimal strategy, there are almost sure statements, too (cf.
Proposition 1).

Besides the growth rate of an investment strategy, one may consider the market
time achieving a target wealth. We consider only strategies b with Efln hb ; X1ig >
0. Again, S�

n D Sn.b�/ denotes the capital after day n applying log-optimum
portfolio strategy b�, and Sn D Sn.b/ the capital using the portfolio strategy b.
For a target wealth Ns, introduce the market times

	.Ns/ WD minfmI Sm � Nsg

and similarly

	�.Ns/ WD minfmI S�
m � Nsg:
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There are some studies how to minimize the expected market time Ef	.Ns/g for
large Ns [5, 6, 11, 26, 29], where Ethier [16] established an asymptotic median log-
optimality of the (mean) log-optimal investment strategy. Breiman [11] conjectured
that, for large Ns, the asymptotically best strategy is the growth optimal one such that
we apply the growth optimal strategy until we reach a neighborhood of Ns.

Using the representation

fSm � Nsg D
(

mX

iD1
ln hb ; Xii � ln Ns

)

the renewal theory for extended renewal processes, i.e., random walks with drift
(see, for instance, [12, 17]), yields

Proposition 2 (Breiman [11]). One has that

	.Ns/
ln Ns ! 1

Efln hb ; X1ig
a.s.,

Ef	.Ns/g
ln Ns ! 1

Efln hb ; X1ig ;

especially

	�.Ns/
ln Ns ! 1

W�

a.s.,

Ef	�.Ns/g
ln Ns ! 1

W�

(Ns ! 1).

In this sense the growth optimal strategy has another optimality property. This
result has been refined by Breiman [11] and can be extended to

ln Ns
Efln hb� ; X1ig � ln Ns

Efln hb ; X1ig C Ef..ln hb� ; X1i/C/2g
.Efln hb� ; X1ig/2

� Ef	�.Ns/g � Ef	.Ns/g

� ln Ns
Efln hb� ; X1ig � ln Ns

Efln hb ; X1ig � Ef..ln hb ; X1i/C/2g
.Efln hb ; X1ig/2

by Lorden’s [33] upper bound for excess result.
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Next we bound the tail distribution of 	�.Ns/ in case of large Ns D enR, where
R < W�. We get that

Pf	�.enR/ > ng D P
˚\n

mD1fS�
m < enRg� � P

˚

S�
n < enR

�

;

therefore Theorem 1 implies that

Pf	�.enR/ > ng � e
�2n .W�

�R/2

.ln a2�ln a1/2 :

9.3 Time Varying Portfolio Selection

For a general dynamic portfolio selection, the portfolio vector may depend on the
past data. As before, Xi D .X.1/i ; : : :X.d/i / denotes the return vector on trading period
i. Moreover, denote the segment X1; : : : ;Xi by Xi

1. Let b D b1 be the portfolio
vector for the first trading period. For initial capital S0, we get that

S1 D S0 � hb1 ; X1i :

For the second trading period, S1 is new initial capital, the portfolio vector is b2 D
b.X1/, and

S2 D S0 � hb1 ; X1i � hb.X1/ ; X2i :

For the nth trading period, a portfolio vector is bn D b.X1; : : : ;Xn�1/ D b.Xn�1
1 /

and

Sn D S0

nY

iD1

˝

b.Xi�1
1 / ; Xi

˛ D S0e
nWn.B/

with the average growth rate

Wn.B/ D 1

n

nX

iD1
ln
˝

b.Xi�1
1 / ; Xi

˛

:

The fundamental limits, determined in [3], and in [1, 2], reveal that the so-called
log-optimum portfolio B� D fb�.�/g is the best possible choice.

Proposition 3 (Algoet and Cover [3]). On trading period n let b�.�/ be such that

E
˚

ln
˝

b�.Xn�1
1 / ; Xn

˛ˇ
ˇXn�1

1

� D max
b.�/ E

˚

ln
˝

b.Xn�1
1 / ; Xn

˛ˇ
ˇXn�1

1

�

:
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If S�
n D Sn.B�/ denotes the capital achieved by a log-optimum portfolio strategy

B�, after n trading periods, then for any other investment strategy B with capital
Sn D Sn.B/ and with

sup
n

E
˚

.ln
˝

bn.Xn�1
1 / ; Xn

˛

/2
�

< 1;

and for any stationary and ergodic process fXng1�1,

lim sup
n!1

1

n
ln

Sn

S�
n

� 0 a.s. (9.4)

and

lim
n!1

1

n
ln S�

n D W� a.s., (9.5)

where

W� WD E



max
b.�/ E

˚

ln
˝

b.X�1�1/ ; X0

˛ˇ
ˇX�1�1

�
�

is the maximal possible growth rate of any investment strategy.

Note that for memoryless markets W� D maxb E fln hb ; X0ig which shows that in
this case the log-optimal portfolio is a constantly rebalanced portfolio.

Proof. For martingale difference sequences, there is a strong law of large numbers:
If fZng is a martingale difference sequence with respect to fXng and

1X

nD1

EfZ2ng
n2

< 1

then

lim
n!1

1

n

nX

iD1
Zi D 0 a.s.

(cf. [13], see also [40, Theorem 3.3.1]). Introduce the decomposition

1

n
ln Sn D 1

n

nX

iD1
ln
˝

b.Xi�1
1 / ; Xi

˛

D 1

n

nX

iD1
Efln

˝

b.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

C 1

n

nX

iD1

�

ln
˝

b.Xi�1
1 / ; Xi

˛ � Efln
˝

b.Xi�1
1 / ; Xi

˛ j Xi�1
1 g� :
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The last average is an average of martingale differences, so it tends to zero a.s.
Similarly,

1

n
ln S�

n D 1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

C 1

n

nX

iD1

�

ln
˝

b�.Xi�1
1 / ; Xi

˛ � Efln
˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g� :

Because of the definition of the log-optimal portfolio we have that

Efln
˝

b.Xi�1
1 / ; Xi

˛ j Xi�1
1 g � Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g;

and the proof of (9.4) is finished. In order to prove (9.5) we have to show that

1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g ! W�

a.s. Introduce the notations

b��k.X
n�1
n�k/ D arg max

b.�/
E
˚

ln
˝

b.Xn�1
n�k/ ; Xn

˛ j Xn�1
n�k

�

(1 � k < n) and

b��1.Xn�1�1/ D arg max
b.�/

E
˚

ln
˝

b.Xn�1�1/ ; Xn
˛ j Xn�1�1

�

:

Obviously,

Efln
˝

b��k.X
i�1
i�k/ ; Xi

˛ j Xi�1
i�kg � Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

(i > k) and

Efln
˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g � Efln

˝

b��1.Xi�1�1/ ; Xi
˛ j Xi�1�1g:

Thus, the ergodic theorem implies that

W��k WD E



max
b.�/

E
˚

ln
˝

b.X�1�k/ ; X0

˛ˇ
ˇX�1�k

�
�

D lim
n

1

n

nX

iD1
Efln

˝

b��k.X
i�1
i�k/ ; Xi

˛ j Xi�1
i�kg

� lim inf
n

1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g
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a.s. and

lim sup
n

1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

� lim
n

1

n

nX

iD1
Efln

˝

b��1.Xi�1�1/ ; Xi
˛ j Xi�1�1g D W�:

a.s. Using martingale argument one can check that

W��k " W�;

and so (9.5) is proved. �
Put

� D W� � R

2
: (9.6)

Concerning the rate of convergence we have that

Theorem 2. If the market process fXig is stationary, ergodic and the condi-
tion (9.2) is satisfied, then for an arbitrary R < W�, we have that

P
˚

enR > S�
n

� � e
�n .W�

�R/2

2.ln a2�ln a1/2 C P

n

R C � >
1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

o

:

Proof. Apply the previous decomposition:

P
˚

enR > S�
n

�

D P



R >
1

n
ln S�

n

�

D P

n

R C � � � > 1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

C1

n

nX

iD1

�

ln
˝

b�.Xi�1
1 / ; Xi

˛ � Efln
˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g�

o

� P

n

R C � >
1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

o

CP

n

� � > 1

n

nX

iD1

�

ln
˝

b�.Xi�1
1 / ; Xi

˛ � Efln
˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g�

o
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For the second term of the right hand side, we apply the Hoeffding [27], Azuma
[7] inequality: Let X1;X2; : : : be a sequence of random variables, and assume that
V1;V2; : : : is a martingale difference sequence with respect to X1;X2; : : :. Assume,
furthermore, that there exist random variables Z1;Z2; : : : and nonnegative constants
c1; c2; : : : such that for every i > 0, Zi is a function of X1; : : : ;Xi�1, and

Zi � Vi � Zi C ci a.s.

Then, for any � > 0 and n,

P

(
nX

iD1
Vi � �

)

� e�2�2=Pn
iD1 c2i

and

P

(
nX

iD1
Vi � ��

)

� e�2�2=Pn
iD1 c2i :

Thus

P

n

� � > 1

n

nX

iD1

�

ln
˝

b�.Xi�1
1 / ; Xi

˛ � Efln
˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g�

o

� e
�2n �2

.ln a2�ln a1/2

D e
�n .W�

�R/2

2.ln a2�ln a1/2 :

�
If the market process is just stationary and ergodic, then it is impossible to get

rate of convergence of the term

P

n

R C � >
1

n

nX

iD1
Efln

˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

o

:

In order to find conditions, for which a rate can be derived, one possibility is that
for i > k

Efln
˝

b�.Xi�1
1 / ; Xi

˛ j Xi�1
1 g D max

b.�/ Efln
˝

b.Xi�1
1 / ; Xi

˛ j Xi�1
1 g

D max
b

Efln hb ; Xii j Xi�1
1 g

� max
b

Efln hb ; Xii j Xi�1
i�kg;
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and so we may increase the above probability. We expected that the density of

max
b

Efln hb ; XkC1i j Xk
1g

has a small support, which moves to the right, when k increases.
We made an experiment verifying this conjecture empirically. At the web

page http://www.szit.bme.hu/~oti/portfolio there are two benchmark data sets from
NYSE:

• The first data set consists of daily data of 36 stocks with length 22 years (5651
trading days ending in 1985). More precisely, the data set contains the daily
price relatives, that was calculated from the nominal values of the closing prices
corrected by the dividends and the splits for all trading day. This data set has been
used for testing portfolio selection in [15, 22–25, 39].

• The second data set is an extended version of the first one. It was augmented
by 22 years and covers 44 years period from 1962 to 2006 containing 11,178
trading days. As opposed to the first data set it contains only 19 stocks out of the
36 stocks due to the fact that 4 illiquid and 13 bankrupted stocks were left out.
In the analysis of financial time series there often happens a censoring, which
means that the time series is terminated (bankrupt, merging, withdraw from the
stock market, etc.). If one takes into account only the non-censored time series,
then the survivals cause a bias in the statistical inference, called survival bias.
Thus, the leaving out the bankrupted stocks adds survival bias to the simulation.
However in case of actively managed portfolio strategies as re-balancing or
online portfolio selection the effect of the survival bias is less important than the
liquidity of the traded stocks. For example, if IROQU and KINAR (a bankrupted
and a small capitalization stock) were not left out then the achieved wealth would
be unrealistically high (cf. [22]). Based on the above argument the following 4
illiquid stocks were excluded from the data set: SHERW, KODAK, COMME and
KINAR. Further benchmark data sources are available at http://www.cais.ntu.
edu.sg/~chhoi/olps/datasets.html. Clearly, the distributions of the market process
were not the same over the past 44 years. The empirical strategies applied are not
sensitive with respect to the changes of the distributions.

As in [25], we considered the kernel based portfolio strategies B.k/ D fb.k/.�/g,
where the window size k D 1; : : : ; 5 and the corresponding radius is

r2k D 0:00035 � d � k:

According to the kernel based rule, the portfolio vector for day n is selected such that
one searches for similar patterns to the near past segment Xn�1

n�k and design a portfolio
to the subsequence of return vectors followed the similarities. For n > k C 1, define
the random variable Zn;k by

Zn;k D
maxb2�d

P

fk<i<nWkXi�1
i�k�Xn�1

n�kk�rkg ln hb ; Xii
ˇ
ˇ
˚

k < i < n W kXi�1
i�k � Xn�1

n�kk � rk
�ˇ
ˇ

;

http://www.szit.bme.hu/~oti/portfolio
http://www.cais.ntu.edu.sg/~chhoi/olps/datasets.html
http://www.cais.ntu.edu.sg/~chhoi/olps/datasets.html
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Fig. 9.2 The histogram of the maximum of the conditional expectations for k D 1

if the sum is non-void. Then the histogram of fZn;k; n D k C 1; : : :Ng can be an
approximation of the density of maxb Efln hb ; XkC1i j Xk

1g.
For k D 1; : : : ; 5, we generated the five histograms of the maximum of these

empirical conditional expectations. The main observation was that these histograms
do not depend on k, therefore one can assume that the market process is a first order
Markov process. Figure 9.2 shows a histogram out of the five, which corresponds to
k D 1. Surprisingly, this histogram has a small support. Here are some data:

minimum D �0:008
1st qu. D 0:00061

median D 0:0010

mean D 0:0019

3rd qu. D 0:0018

maximum D 0:1092:

An important feature of this histogram is that it has a positive skewness, which
means that the right hand side tail is larger than the left hand side one. The reason
of this property is that maxb Efln hb ; XkC1i j Xk

1g is the maximum of (dependent)
random variables.

For the kernel based portfolio we generated the histogram of the log-return, too.
The elementary portfolio is defined by

b.k/.xn�1
1 / D arg max

b2�d

X

fk<i<nWkxi�1
i�k�xn�1

n�k k�rkg
ln hb ; xii ;
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Fig. 9.3 The histogram of the log-returns for an empirical portfolio strategy

if the sum is non-void, and b0 D .1=d; : : : ; 1=d/ otherwise. Define the random
variable Z0

n;k by

Z0
n;k D ln

˝

b.k/.Xn�1
1 / ; Xn

˛

;

which is the daily log-return for day n. For k D 1, we generated the histogram of
fZ0

n;k; n D k C 1; : : :Ng. Figure 9.3 shows the histogram of the log-return for the
empirical portfolio strategy B.1/. Here are the corresponding data:

minimum D �0:1535
1st qu. D �0:0077

median D 0:0003

mean D 0:00118

3rd qu. D 0:0093

maximum D 0:1522:

Comparing the Figs. 9.1 and 9.3, one can observe that the shape and the quantiles of
the histograms are almost the same. The main difference is in the mean. Since these
data sets contains the relative prices for trading days only, and 1 year consists of 250
trading days, therefore in terms of average annual yields (AAY) the meanD 0:00118

in Fig. 9.3 corresponds to AAY 34%, while the meanD 0:00118 for the Coca Cola
corresponds to AAY 14%.
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Based on these empirical observations, in the following we assume that the
market process fXig is a first-order stationary Markov process. In this case the log-
optimum portfolio choice has the form b�.Xn�1/ (instead of b�.Xn�1

1 /) maximizing
Efln hb ; Xni j Xn�1g such that

Efln hb�.Xn�1/ ; Xnig D W�:

We assume that Xi has a denumerable state space S � Œa1; a2�d, which is realistic
because the values of the components of Xi are quotients of integer valued prices.
Further we assume that the Markov process is irreducible and aperiodic. Finally,
suppose that the Markov kernel �.H j x/ defined by

�.H j x/ WD PfX2 2 H j X1 D xg

(x 2 S, H � S) is continuous in total variation, i.e.,

V.x; x0/ WD sup
H�S

j�.H j x/� �.H j x0/j ! 0 (9.7)

if x0 ! x. Notice that by Scheffé’s theorem

V.x; x0/ WD 1

2

X

x�2S

j�.fx�g j x/� �.fx�g j x0/j:

The following theorem with R < W� gives exponential bounds for the probability
that enR > S�

n and for the probability that after n there is a time instant m such that
emR > S�

m.

Theorem 3. Let the market process fXig be a first-order stationary denumerable
Markov chain, which is irreducible and aperiodic, satisfies (9.2) and (9.7). Then
for arbitrary R < W�, there exist c;C; c�;C� 2 .0;1/ depending on W� � R,
ln a2 � ln a1 and the ergodic behavior of fXig such that for all n

P
˚

enR > S�
n

� � e
�n .W�

�R/2

2.ln a2�ln a1/2 C Ce�cn; (9.8)

and

P
˚[1

mDnfemR > S�
mg� � C�e�c�n: (9.9)

Proof. With the notation (9.6), Theorem 2 implies that

P
˚

enR > S�
n

� � e
�n .W�

�R/2

2.ln a2�ln a1/2 C P

n

R C � >
1

n

nX

iD1
Efln hb�.Xi�1/ ; Xii j Xi�1g

o

:
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By stationarity, the distribution � of Xi does not depend on i and satisfies

Z

�.� j x/�.dx/ D �;

i.e.,

X

x2S

�.fx�g j x/�.fxg/ D �.fx�g/: (9.10)

It is well known from the theory of denumerable Markov chains (see, e.g., [17]),
that (9.10) together with irreducibility and aperiodicity of fXig implies that fXig is
positive recurrent with mean recurrence time 1=�.fxg/ < 1 and weak convergence
of PXnjX1Dx to �. Thus, by Scheffé and Riesz-Vitali theorems, even

sup
H�S

jPfXn 2 H j X1 D xg � �.H/j

D 1

2

X

x�2S

jPfXn D x� j X1 D xg � �.fx�g/j

! 0

(n ! 1) for each x 2 S. Further for each integer n

sup
H�S

jPfXn 2 H j X1 D xg � PfXn 2 H j X1 D x0gj

D 1

2

X

x�2S

jPfXn D x� j X1 D xg � PfXn D x� j X1 D x0gj

D 1

2

X

x�2S

j
X

y2S

PfXn D x� j X2 D yg.PfX2 D y j X1 D xg � PfX2 D y j X1 D x0g/j

� 1

2

X

x�2S

X

y2S

PfXn D x� j X2 D ygjPfX2 D y j X1 D xg � PfX2 D y j X1 D x0gj

D 1

2

X

y2S

jPfX2 D y j X1 D xg � PfX2 D y j X1 D x0gj

D sup
H�S

jPfX2 2 H j X1 D xg � PfX2 2 H j X1 D x0gj

! 0

(x0 ! x) by (9.7). Therefore even

sup
H�S;x2S

jPfXn 2 H j X1 D xg � �.H/j ! 0:



9 The Growth Optimal Investment Strategy Is secure, Too 221

Thus, the process fXig is '-mixing. Also the sequence

fEfln hb�.Xi�1/ ; Xii j Xi�1gg

is '-mixing with mixing coefficients 'm ! 0. Now we can apply Collomb’s
exponential inequality (p. 449 in [14]) with d D ı D p

D D 1
n .ln a2 � ln a1/.

For m 2 f1; : : : ; ng we obtain

P

n

R C � >
1

n

nX

iD1
Efln hb�.Xi�1/ ; Xii j Xi�1g

o

� exp


n

m

�

3
p

e'm C 3

8

1C 4
Pm

iD1 'i

m
� �

4.ln a2 � ln a1/

��

:

Suitable choice of m D M.�/ with n � N.�/ leads to the second term on the right
hand side of (9.8) as a bound for all n. Finally, from (9.8) we obtain (9.9) as in the
proof of Corollary 1. �
Remark. Theorem 3 can be extended to the case of a Harris-recurrent, strongly
aperiodic Markov chain, not necessarily being stationary or having denumerable
state space; compare in a somewhat other context Theorem 2 in [20], where
Theorem 4.1 (i) of [4] and Collomb’s inequality are used.
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Chapter 10
Heuristics for Portfolio Selection

Manfred Gilli and Enrico Schumann

Thus computing is, or at least should be, intimately bound up
with both the source of the problem and the use that is going to
be made of the answers—it is not a step to be taken in isolation
from reality.
Richard W. Hamming, An Essay on Numerical Methods

Abstract Portfolio selection is about combining assets such that investors’ finan-
cial goals and needs are best satisfied. When operators and academics translate this
actual problem into optimisation models, they face two restrictions: the models need
to be empirically meaningful, and the models need to be soluble. This chapter will
focus on the second restriction. Many optimisation models are difficult to solve
because they have multiple local optima or are ‘badly-behaved’ in other ways. But
on modern computers such models can still be handled, through so-called heuristics.
To motivate the use of heuristic techniques in finance, we present examples from
portfolio selection in which standard optimisation methods fail. We then outline the
principles by which heuristics work. To make that discussion more concrete, we
describe a simple but effective optimisation technique called Threshold Accepting
and how it can be used for constructing portfolios. We also summarise the results of
an empirical study on hedge-fund replication.
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10.1 Introduction

Before Markowitz, there was nothing.
Such a statement may exaggerate, but not much. Before Markowitz [41],

investments were good or bad solely according to how much profit they promised.
Though investors and academic writers had an intuition that investing in several
assets was better than putting ‘all eggs in the one basket’, the overall goal was to
select assets with high returns. Assets were not added to portfolios for risk reasons
alone.

Portfolio theory changed that. Markowitz showed that adding ever more assets to
a portfolio can typically not completely remove return-variation, but that a careful
choice of assets can reduce risk. Thus, managing risk became an explicit part of
investment management.

Markowitz’s model is quite simple: assets are held for a fixed period of time;
which assets are chosen depends on two properties of the resulting portfolio, reward
and risk. Markowitz equated reward with expected return and risk with return
variance. In this chapter, we will look at such Markowitz-type models. There exist
more complex models for sure (e.g., spanning several time periods), but the one-
period setting still provides enough empirical and computational difficulties that it
warrants discussion. Thus, we shall stay in the one-period setting; we will, however,
deviate from Markowitz’s model in our definition of risk and reward.

In fact, already back in the 1950s Markowitz thought that there might be
better specifications for risk. Downside semi-variance seemed more appealing than
variance [42] because it does not penalise upside return-variation. Eventually,
Markowitz rejected the idea because at that time it was too difficult to compute
optimal portfolios. But with heuristics—the methods that we explain in this
chapter—we can solve models without restrictions on the functional form of the
selection criterion or the constraints; thus, downside-risk specifications can easily
be handled.

However, we will not only discuss computation. After all, this chapter’s topic is
the selection of financial portfolios, and so we need to explain how this application
is special, and how a prescription to optimise portfolios differs from a general
discussion of numerical optimisation. We shall argue that the challenges to the
practitioner of portfolio construction—we call him ‘the analyst’—can be grouped
into three topics :

1. The modelling. The analyst needs to decide what financial goals and necessities
exist and should be put into the model. And, of course, he cannot speak of
abstract quantities such as ‘risk’—everything has to be made precise.

2. The forecasting. Portfolio selection is about choosing assets today in the hope
they do well tomorrow. Thus, the analyst can only use quantities in his models
that he can forecast sufficiently well.

3. The computation. Given the model and forecasts, the analyst needs to solve the
model. A ‘good’ model cannot be good if we cannot compute its solution. (The
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proof is simple: if we never could solve it, we could never test it. So how could
we tell it was good in the first place? )

In fact, computational restrictions are much less of an obstacle to working with
portfolio models than is sometimes thought. The computational power that the
analyst has at his disposal today—literally in his hands, given the developments
in tablets and other handheld computers—is such that many models that appear
difficult in theory turn out to be very tractable practically.

But with power comes responsibility. In the past, a financial economist could well
concentrate on theory, only to leave the lowly computational work to the specialist
who, in turn, understood nothing of finance and economics. Today these roles have
merged.1 To be sure, such a separation was always bad, but at least it could serve as
an excuse for ignoring certain aspects of the portfolio selection process. Today, the
excuse has disappeared. It is the analyst’s job to understand and manage the process
of portfolio selection at all stages—modelling, forecasting, computation.

Two principles will guide us throughout this chapter (borrowed from Gilli et al.
[27]):

(i) the application matters, and
(ii) go experiment.

Principle (i) means that what matters is to select well-performing portfolios. Any
computational technique that helps us to reach that goal is fine; likewise, any
apparent computational difficulty needs to be judged by how much it impedes us
reaching our goal.

Principle (ii) is particularly relevant to computation. During the process of
portfolio selection, many situations arise in which we are faced with choices: many
small decisions that have to be taken while writing down a model, preparing data
or setting up an algorithm. We can rarely give general advice on such decisions, but
that is not a problem: just go experiment and find out for yourself.

These two principles may also be read as kind of a warning: we will focus on the
practical application of portfolio optimisation. We care little whether what we say
fits into theoretical paradigms. Neither do we care about the kind of ‘practical use’
to which many results in academic finance and operations research are put—to end
up in financial institutions’ marketing departments, or those of software vendors.
We describe optimisation methods that allow the analyst to specify models as he
likes, but only to test those models and to discard those that do not work—which
is, unfortunately, most of them. We will offer our judgement on what we deem
important, and what is not. In our opinion; you are welcome to disagree.

The chapter is structured as follows. In the next section, we shall discuss
problems and models (throughout this chapter, you will find us strictly distinguish-
ing between those terms). Then, in Sect. 10.3, we will describe the principles of
heuristics. As we said, these methods allow the analyst to handle models without

1Such a merging of roles did not only happen in computational finance; it also took place in
publishing and data analysis in general.
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restrictions on the functional form of the objective function and the constraints.
Of course, a price must be paid for that, and so heuristics come with their own
difficulties. In particular, almost all heuristics are stochastic algorithms, and hence
solutions need to be evaluated with some care. We shall address these difficulties and
suggest ways to handle them practically. Two example sections follow: in Sect. 10.4,
we detail one heuristic, Threshold Accepting, and how it can be applied to portfolio
selection. Then, in Sect. 10.5, we present a summary of an empirical study that used
Threshold Accepting. Section 10.6 concludes.

10.2 Of Problems, Models and Methods

We start with a brief discussion of a one-period optimisation model. These
descriptions should be familiar to most readers. We will step back then and reflect
on this model; we shall zoom in again and discuss how to solve the model only in
the next section.

10.2.1 A One-Period Investment Model

We want to invest a budget v0 into assets from a universe of nA assets. These assets
are then held for a period of length T. Let p0 be a vector of current (known) prices,
then the budget constraint can be written as

p0
0x � v0 ; (10.1)

in which x is a vector of numbers of contracts we hold. At time T, prices will have
evolved to pT and the portfolio value will be

vT D p0
Tx : (10.2)

To rank different choices for x, we need an objective function � that maps vT

into a real number. In fact, the function may also look at the path fvgT
0 that the

portfolio value takes between portfolio inception and T. We remain in the one-period
framework, since we do not trade between time 0 and T. Thus, the goal becomes

minimise
x

�
�fvgT

0

�

(10.3)

subject, at least, to the budget constraint. (In order to maximise, we minimise
��.) Possible specifications for � could be moments (also partial or conditional
moments), quantiles, or in essence any function that can be evaluated for fvgT

0 . See
Gilli et al. [27, Chap. 13] for examples and a detailed discussion.
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In many cases, we add further constraints. We may have legal or regulatory
restrictions on how to invest. For instance, many institutional investors cannot
legally hold more than a specific amount of assets from one counter party.
Conceptually-simple restrictions can be difficult for standard optimisation methods;
see for instance Scozzari et al. [50].

Empirically, restrictions can provide safeguards against over-fitting. There is
much evidence that limiting position sizes improves performance. The classic
reference is Frost and Savarino [15]; see also Jagannathan and Ma [32].

Constraints can also help to make estimated parameters interpretable. Variances
cannot be negative and probabilities must lie between zero and one. But with
unconstrained numerical procedures, there is no guarantee that such restrictions
hold, and we may need to impose them to get meaningful results.

10.2.2 Reality to Model, and Back

What we described in the last section is a model, not the actual problem. The
problem is finding assets that give, loosely speaking, much reward with little risk.
The model we described assumed a simple investment process (buy-and-hold) and
fixed the notions of reward and risk through our choice of �.

10.2.2.1 Sources of Error

Modelling is the process of putting the actual problem into a form that can be
understood by a computer. We have to make vague notions precise, and we often
need to simplify and approximate. This, in turn, will introduce errors. The word
error must not be understood in the sense that something did not work as expected.
Approximation errors originate from the very practice of modelling.

Following a classic discussion in von Neumann and Goldstine [55]—expanded
in Morgenstern [43]—we group these errors into two categories: empirical errors
(a.k.a. model errors) and numerical errors. The analyst’s job is not only to acknowl-
edge such errors, but to actually evaluate them. In this respect, we are fortunate in
finance since we can often measure the magnitude of errors in meaningful units,
namely euros (or dollars, francs or whatever your favourite currency). Some errors
are simply bigger than others and, thus, matter more. True, such interpretation is
often difficult and imprecise, but a carefully exploring, quantifying and discussing
the effects of model choices etc. is always preferred to dismissing such a discussion
as ‘out-of-scope’.

Let us start with model errors. A portfolio in Markowitz’ model is, in essence,
a return distribution, which looks good or bad according to the objective function.
How we define this objective function has considerable impact on what portfolio
we choose. The word risk for instance is often used almost synonymously with
return variance. But there are other ways to define risk. A typical objection against
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variance is that it penalises upside as well as downside. And indeed, already more
than half a century ago, Markowitz thought about using downside semi-variance
instead, which corresponds much better to the financial practitioner’s notion of risk
[42]. To quantify how relevant these differences in model specification are, we need
to empirically compare2 different models with respect to how they help to solve our
actual problem.

There are other factors than the objective function that affect the quality of a
model. Transactions costs for instance can be relevant for specific asset classes, and
hence a model that includes them may be better than a model that does not. That does
not mean that the analyst should try to put every possible detail into the model. Every
Unix user knows that less is more powerful than more, and the same often holds
in modelling. In some cases, simple back-of-the-envelope calculations make clear
that certain aspects cannot matter. But more often, whether a certain aspect should
be modelled or not, is not clear from the start. Principle (ii) tells us what to do in
such cases: we run experiments. We should stress that if we decide to ignore certain
aspects in the model, it will be because we consider them unimportant, perhaps
even harmful, in an economic or empirical sense, or because we cannot reliably
implement them (think of mean return forecasts). But it will not be because we
could not handle them computationally.

Once a model is established, it needs to be connected to reality. We need to input
forecasts and expectations. We can, for instance, only minimise variance if we have
a variance–covariance matrix. Again, such inputs may be good or bad, and we have
another source of error. The difficulties in forecasting the required variables are
well-established, see Brandt [5] for an overview. And it is not only the forecasting
problem: results are often extremely sensitive to seemingly minor setup variations,
for instance, the chosen time horizon [1, 21, 36]. That makes it difficult to reject bad
models.

The focus of this chapter is not the empirics of portfolio selection models, but
their numerical solution. Nevertheless, we chose to review these problems to put
this part of the portfolio selection process into perspective. From now on, we will
assume that the model and its input have been fixed, so our task remains to solve
the model, for which we use a computer. There are two sources of error. Round-
off error, because we cannot represent every real number within finite memory; and
truncation error, because all computations that ‘go to the limit’ (be it zero or infinity)
must stop before the limit is reached.

Round-off error should rarely be a concern in financial optimisation (see also
Trefethen [52]). It can cause trouble, for sure, but its impact, when compared with
model error, is many orders of magnitude smaller.

Truncation error is more relevant for our discussion. In principle, we could
solve any optimisation model through random-sampling. If we sampled more and
more candidate solutions, we should—in principle—come arbitrarily close to the

2In an empirically sound way, which essentially means careful data analysis and replication. See,
for example, Cohen [7].
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Fig. 10.1 Objective function values for a portfolio selection model with three assets. x- and y-axis
show weights for two assets; the third weight is fixed through the budget constraint. Left panel:
objective function is variance. Right panel: objective function is Value-at-Risk

model’s solution. But clearly, in most cases that would be an extremely inefficient
way to handle a model.

With heuristics, we face a variant of this truncation error. We have not actually
detailed so far what heuristics actually are, but it should suffice to say here that they
are iterative methods. The truncation error comes in here because heuristics only
provide a stochastic approximation to the optimal solution. In other words, if we
run a heuristic once, the result can be considered the realisation of random variable.
The distribution of this random variable is a function of the computational effort we
make. More precisely, more effort (e.g., more iterations), better solutions.

Of course, only obtaining a stochastic approximation of a solution is not really
satisfactory from the standpoint of optimisation theory. After all, a model’s solution
is the optimum; theoretically, there are no better or worse solutions, only the solution
and everything else.

But such approximate solutions are still useful, simply because better models
can be used, models that would be too difficult to solve with a classical method.
And it turns out that in portfolio selection most models are difficult to solve. As
an example, Fig. 10.1 shows, in its left panel, the variance of a portfolio consisting
of three assets. (Actually the squareroot of the variance. The third asset’s weight is
fixed through the budget constraint.) This is Markowitz’s objective function. In the
right panel we use the same dataset, but this time the objective function is Value-
at-Risk, a quantile of the return distribution. The function for Value-at-Risk is not
smooth, and a classic method that uses the gradient may become stuck in a local
minimum (if the gradient provides useful guidance at all). Heuristics were specially
designed to overcome such local minima, as we will discuss in the next section.

But let us summarise the discussion first. Selecting financial portfolios is much
more than running an optimisation algorithm. The modelling process goes from
actual problem to a model to the model’s solution. (And, finally, we may want to
implement the model-solution.)



232 M. Gilli and E. Schumann

To see whether we have solved the actual problem—in our case, selecting ‘good’
portfolios—or at least improved the current status, we follow the chain, but in
reverse order. We first check whether our numerical techniques for solving the
model work sufficiently well. Then we check if there is a relation between the
quality of an in-sample solution and the quality of the out-of-sample solution; see
Gilli and Schumann [22]. This is a very important test of the quality of a model,
since it is unreasonable to assume that ‘only the minimum’ will work well; a small
perturbation of the optimal solution should not qualitatively change the results.
For example, if we generated a large number of random solutions (see Burns [6],
for a discussion) and sorted these random solutions by in-sample quality, then we
would like to see a positive relation between in-sample and out-of-sample quality. In
fact, such tests can also help to evaluate the required precision for an optimisation
algorithm. If we cannot empirically establish this relation, there is little point in
optimising. Finally, we can compare different models with one another [23].

10.3 Heuristics

10.3.1 What Are Heuristics?

Different people mean different things when they speak of ‘heuristics’. Very loosely,
a heuristic is a decision rule (or modus operandi) that (1) typically helps to solve
a problem or to a make good decision, and that (2) is simple. This is roughly the
definition of Pearl [45], and it coincides with a definition that many computer
scientists and programmers employ: heuristics as simple rules that provide good
answers to problems in typical cases.

In mathematics, a heuristic is a line of reasoning that cannot be formally proved
but leads to correct conclusions nonetheless [46]. This idea deserves repetition,
because it is relevant for practical optimisation, too: we may not be able to prove
that something works, but we can have empirical evidence that it does. Or in other
words: not being able to prove that something works does not imply that it does not
work.

In psychology a heuristic is a rule-of-thumb, a simple prescription, for decision
making. While D. Kahneman and A. Tversky’s heuristics-and-biases programme
gave the term a rather bad reputation [53], a more favourable re-interpretation
of their results has gained influence more recently; see for example Gigerenzer
[17, 18].

In fact, there is something fascinating about simplicity when it comes to
predicting and operating under uncertainty. Studies in fields such as econometrics,
psychology, marketing research, machine learning or forecasting in general docu-
ment that while simple methods lose out against more sophisticated ones in stylised
settings, they yield excellent results in realistic situations [3, 8, 9, 29, 37–39]. More
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specifically, simple methods work well in the presence of noise and uncertainty—
which is exactly what we have in finance.

But within their respective disciplines, those studies represent no more than
niches. The basic idea—providing evidence that simple is sufficiently good—can
also be found in the literature on portfolio optimisation in the 1970s; see for instance
Elton and Gruber [13] or Elton et al. [14]. The common thread throughout these
papers was the justification of simplified financial models. The problem back then
was to reduce computational cost, and the authors tried to empirically justify simpler
techniques. Today, complicated models are feasible, but they are still not necessarily
better. (Again, Principle (i): the application matters.)

We will define heuristics in a narrower, more-precise sense: as a class of
numerical methods for solving optimisation models. The typical model is

minimise
x

�.x; data/

in which � is a scalar-valued function and x is a vector of decision variables. (As
we already said, by putting a minus in front of � we can make it a maximisation
model.) In many cases, we will add constraints to the model.

We find it helpful to not think in terms of a mathematical description, but rather
to replace � by something like

solutionQuality D function.x;data/ :

That is, we need to be able to program a mapping from a solution to its quality,
given the data. There is no need for a closed-form mathematical description of the
function.3 Indeed, in many applied disciplines there are no closed-form objective
functions. The function � could include an experimental setup, with x the chosen
treatment and �.x/ the desirability of its outcome. Or evaluating � might require a
complicated stochastic simulation, such as an agent-based model.

A number of requirements describe an optimisation heuristic further ([4, 57, 58]
list similar criteria):

• The method should give a ‘good’ stochastic approximation of the true optimum,
with ‘goodness’ measured in computing time or solution quality.

• The method should be robust when we change the model—for instance, when we
modify the objective function or add a constraint—and also when we increase the
problem size. Results should not vary too much for different parameter settings
for the heuristic.

• The technique should be easy to implement.

3Mathematically a function is nothing but a mapping, so there is no contradiction here. But when
people see �.x/ they intuitively often think of something like �.x/ D p

x C x2 . We would prefer
they thought of a programme, not a formula.
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• Implementation and application of the technique should not require subjective
elements.

Such a definition is not unambiguous, but it is a start. Actually, we think that users
can only gain intuition about heuristics through studying examples—which we will
do in the next section. But for now, we shall go on dwelling on principles.

In a broad sense, we can differentiate between two classes of heuristics, construc-
tive methods and iterative-search methods. In this chapter, we shall concentrate on
the latter type, so let us give a quick example for constructive methods and then not
mention them any further. For a constructive method, an algorithm starts with an
empty solution and adds components step-by-step; the procedure terminates when it
has completed one solution. An example: a reasonable low-variance equity portfolio
of cardinality N can be constructed by (1) obtaining forecasts for the marginal
variances of all eligible assets, (2) sort the assets by forecast variance and (3) keep
the N assets with the lowest forecast variance in the portfolio (equally-weighted);
see Schumann [49].

For iterative search methods the algorithm moves from solution to solution, that
is, a complete existing solution is modified to obtain a new solution. Such a new
solution may be quite different from previous ones, as some methods, such as
Genetic Algorithms, create new solutions in a rather discontinuous ways. But still, a
new solution will share characteristics with its predecessor (if that was not the case,
we would be doing random-sampling).

10.3.2 Principles

The following pseudocode should make the idea of an iterative method more precise.
1: generate initial solution xc

2: while stopping condition not met do
3: create new solution xn D N.xc/

4: if A.�; xn; xc; : : :/ then xc D xn

5: end while
6: return xc

In words: we start with a solution xc, typically randomly chosen. Then, in each
iteration, the function N (‘neighbour’) makes a copy of xc and modifies this copy;
thus, we get a new candidate solution xn. The function A (‘accept’) decides whether
xn replaces xc, typically by comparing the objective function values of the solutions.
The process is repeated until a stopping condition is satisfied; finally, xc is returned.

To implement such a method, we need to specify

• how we represent a solution x,
• how we evaluate a solution (the function �),
• how we change a solution (the function N),
• how to decide whether to accept a solution (the function A),
• when to stop.
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These building blocks would still apply to a classical method. For example, for a
gradient-based method x would be a numeric vector; N would evaluate the gradient
at xc and then move minus the gradient with a specified stepsize; A would evaluate xc

and xn, and replace xc only if xn is better; if not, the search is stopped.
Heuristics use other, often simpler, mechanisms. In fact, two characteristics will

show up in almost all methods. (1) Heuristics will not insist on the best possible
moves. A heuristic may accept a new solution xn even if it is worse than the current
solution. (2) Heuristics typically have random elements. For instance, a heuristic
may change xc randomly (instead of locally-optimally as in a gradient search). These
characteristics make heuristics inefficient for well-behaved models. But for difficult
models (for instance, such with many local optima as in Fig. 10.1), they enable
heuristics to move away from local optima.4

Let us give a concrete example, namely the problem we already used earlier: we
want to select N assets, equally-weighted, out of a large number of assets, such that
the resulting portfolio has a small variance. We assume that we have a forecast for
the variance–covariance matrix available. Then a simple method for getting a very
good solution to this model is a local search. For a local search,

• the solution x is a list of the included assets;
• the objective function � is a function that computes the variance forecast for a

portfolio x;
• the function N picks one neighbour by randomly removing one asset from the

portfolio and adding another one;
• the function A compares �.xc/ and �.xn/, and if xn is not worse, accepts it;
• the stopping rule is to quit after a fixed number of iterations.

Note that local search is still greedy in a sense, since it will not accept a new solution
that is worse than the previous one. Thus, if the search arrives at a solution that is
better than all its neighbours, it can never move away from it—even if this solution
is only a local optimum. Heuristic methods that build on local search thus employ
additional strategies for escaping such local optima.

And indeed, with a small—but important—variation we arrive at Simulated
Annealing [35]. We use a different acceptance rule A: If the new solution is better,
accept it. If it is worse, do still accept it, but only with a specific probability.
This probability in turn depends on the new solution’s quality: the worse it is,
the less likely it is the solution is accepted. Also, the probability of acceptance is
typically lower in later iterations (that is, the algorithm becomes pickier). In many
implementations, the probability at later stages is essentially zero; thus, Simulated
Annealing turns into a local search.

4In principle, because of such mechanisms a heuristic could drift farther and farther off a good
solution. But practically, that is very unlikely because every heuristic has a bias towards good
solutions. In Threshold Accepting, the method that we describe in Sect. 10.4, that bias comes into
effect because a better solution is always accepted, a worse one only if it is not too bad. Since we
repeat this creating of new candidate solutions thousands of times, we can be very certain that the
scenario of drifting-off a good solution does practically not occur.
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10.3.3 Constraints

Nothing in the pseudocode that we showed above ensures that a constraint on a
solution x is observed. But it is often constraints that make models realistic and
difficult. Several strategies exist for including restrictions into heuristics.

10.3.3.1 Throw Away

If our model has only few constraints that are not often hit, the simplest approach
is to ‘throw away’ infeasible new solutions. That is, if a neighbour solution violates
a constraint, we just select another neighbour. Note that this means that we include
the constraints in the acceptance function A.

10.3.3.2 Include Constraint in N

We can directly use the constraint to create new, feasible solutions. In portfolio
selection models we usually have a budget constraint; that is, we require that all
asset weights sum to one. This constraint can be enforced when we compute new
solutions by increasing some weights and decreasing others such that the sum of all
weight changes is zero.

10.3.3.3 Transform x

An older but still used idea is to transform variables. This approach sometimes
works for constraints that require that the elements of x lie in certain ranges; see
the discussion in Powell [47]. For instance, sin.x/ will map any real x to the range
Œ�1; 1�; ˛ .sin.x//2 will give a mapping to Œ0; ˛�. But such transformations come
with their own problems; see Gill et al. [24, Sect. 7.4]; in particular, it may become
difficult to change a problem later on or to handle multiple constraints.

10.3.3.4 Repair x

We can introduce mechanisms to correct solutions that violate constraints. For
example, if a solution x holds the portfolio weights, then dividing every element
in x by the sum of the elements of x ensures that all weights sum to unity.

10.3.3.5 Penalise x

Finally, we can penalise infeasible solutions. Whenever a constraint is violated,
we add a penalty term to the objective function and so downgrade the quality
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of the solution. In essence, we change the problem to an unconstrained one for
which we can use the heuristic. The penalty is often made an increasing function
of the magnitude of violation. Thus, the algorithm may move through infeasible
areas of the search space, but will have guidance to return to feasible areas. The
penalty approach is the most generic strategy to include constraints; it is convenient
since the computational architecture needs hardly be changed. Penalties create
soft constraints since the algorithm could in principle always override a penalty;
practically, we can set the penalty so high that we have hard constraints.

10.3.4 Random Solutions

The most common objection against using heuristics is the fact that, since heuristics
explicitly rely on random mechanisms, their solutions are also random. This
randomness, it is argued, makes it difficult to evaluate the quality of solutions
computed by such algorithms. (The discussion in this section builds on Gilli et al.
[27].)

10.3.4.1 Randomness

A naïve approach to solving an optimisation model could be this: randomly generate
a large number of candidate solutions, evaluate all solutions and pick the best one.
This best solution is our overall solution.

If we repeated the whole procedure a second time, our overall solution would
probably be a different one. Thus, the solution x we obtain through our sampling
strategy is stochastic. The difference between our solution and the actual optimum
would be a kind of truncation error, since if we sampled more and more, we should
in theory come arbitrarily close to the optimum. Importantly, the variability of the
solution stems from our numerical technique; it has nothing to do with the error
terms that we may have in models to account for uncertainty. Stochastic solutions
may even occur with non-stochastic methods: think of search spaces like those we
showed in Fig. 10.1. Even if we used a deterministic method like a gradient search,
the many local minima would make sure that repeated runs from different starting
points result in different solutions.

We can treat the result of a stochastic algorithm as a random variable with some
distribution D. What exactly the ‘result’ of a restart is depends on our setting. We
will want to look at the objective function value (i.e., the solution quality), but we
may also look at the decision variables given by a solution, that is, the portfolio
weights. In any case, we collect all the quantities of interest in a vector %. The
result %j of a restart j is a random draw from D.

The trouble is that we do not know what D looks like. But fortunately, there is
a simple way to find out for a given model. We run a reasonably large number of
restarts, each time store %j, and finally compute the empirical distribution function
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of the %j, j D 1; : : : ; number � of � restarts as an estimate for D. For a given model
or model class, the shape of the distribution D will depend on the chosen method.
Some techniques will be more appropriate than others and give less variable and
on average better results. And D will often depend on the particular settings of the
method, in particular the number of iterations—the search time—that we allow for.

Unlike classical optimization techniques, heuristics can walk away from local
minima; they will not necessarily get trapped. So if we let the algorithm search
for longer, we can hope to find better solutions. For minimization problems, when
we increase the number of iterations, the mass of D will move to the left and the
distribution will become less variable. Ideally, when we let the computing time grow
ever longer, D should degenerate into a single point, the global minimum. There
exist proofs of this convergence to the global minimum for many heuristic methods
(see Gelfand and Mitter [16], for Simulated Annealing; Rudolph [48], for Genetic
Algorithms; Gutjahr [31], Stützle and Dorigo [51], for Ant Colony Optimisation;
Bergh and Engelbrecht [54], for Particle Swarm Optimisation).

Unfortunately, these proofs are not much help for practical applications. They
often rely on asymptotic arguments; and many such proofs are nonconstructive
(e.g., Althöfer and Koschnick [2], for Threshold Accepting): they demonstrate
that parameter settings exist that lead (asymptotically) to the global optimum. Yet,
practically, there is no way of telling whether the chosen parameter setting is correct
in this sense; we are never guaranteed that D really degenerates to the global
optimum as the number of iterations grows.

Fortunately, we do not need these proofs to make meaningful statements
about the performance of specific methods. For a given model class, we can run
experiments. Such experiments also help investigate the sensitivity of the solutions
with respect to different parameter settings for the heuristic. Experimental results are
of course no proof of the general appropriateness of a method, but they are evidence
of how a method performs for a given class of models; often this is all that is needed
for practical applications.

10.4 An Example: Threshold Accepting

In this section, we will discuss one heuristic, Threshold Accepting, in more detail.
The algorithm is a simplified variant of Simulated Annealing and was first proposed
by Dueck and Scheuer [11] and Moscato and Fontanari [44]. As far as we know,
it was also the first optimisation heuristic used for portfolio selection [12]. For an
overview of the application of other heuristics, such as Ant Systems or Simulated
Annealing, to portfolio selection models, we recommend [40].
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10.4.1 The Algorithm

Threshold Accepting (TA) builds on local search. A local search starts with a
random feasible solution xc (in our case, a random portfolio), which we call the
‘current solution’ since it represents the best we have so far. Then, a new solution xn

close to xc is randomly chosen. We will discuss ‘close to xc’ shortly. We call xn

a neighbour to the current solution, or simply a neighbour. If xn is better than xc,
then xn replaces xc (i.e., the neighbour becomes the current solution); if not, another
neighbour is selected. Algorithm 1 gives this procedure in pseudocode. The stopping
criterion here is a number of iterations nSteps , fixed in advance by the analyst.

Algorithm 1 Local Search
1: set nSteps

2: randomly generate current solution xc

3: for i D 1 W nSteps do
4: generate xn D N.xc/ and compute � D �.xn/� �.xc/

5: if � < 0 then xc D xn

6: end for
7: return xc

All that the method requires is that the objective function can be evaluated for
a given portfolio x ; there is no need for the objective function to be continuous or
differentiable. Of course, for problems with many local minima, a local search will
stop at the first local optimum it finds.

TA adds a simple escape strategy for local minima: it will not only accept new
solutions that are better, but also allow uphill moves, as long as the deterioration
of � does not exceed a fixed threshold (thus its name). Over time, that threshold
decreases to zero; so eventually TA turns into a local search. The whole procedure
is summarised in Algorithm 2.

Algorithm 2 Threshold Accepting
1: set nSteps and nRounds

2: compute threshold sequence 	
3: randomly generate current solution xc

4: for k D 1 W nRounds do
5: for i D 1 W nSteps do
6: generate xn D N.xc/ and compute � D �.xn/� �.xc/

7: if � < 	k then xc D xn

8: end for
9: end for

10: return xc

Compared with local search, the changes are actually small. We add an outer
loop that controls the thresholds 	 . In Statement 7, the acceptance criterion is
changed from ‘� < 0’ to ‘� < 	k’, i.e., from ‘if improvement’ to ‘if not worse
than 	k’. For an actual implementation, we need a way to represent a solution,
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an objective function �, the neighbourhood function N, the thresholds 	 and the
stopping criterion (see Sect. 10.3.2 above). The first and the last choice are quickly
made: a solution is a numeric vector of positions (or perhaps weights); the stopping
criterion is simply a fixed number of iterations.5

10.4.2 Implementation

10.4.2.1 The Objective Function

In Markowitz’s mean–variance model, we need forecasts of the means, variances
and correlations of the assets. With these inputs, we can easily compute forecasts of
mean and variance for any specific portfolio.

Unfortunately, this approach rarely generalises to other specifications of risk and
reward, or only in ways that are computationally very costly [34, Chap. 9]. For
instance, even if we had forecasts of the lower partial moments of all the assets
in the portfolio, we could not aggregate these to the lower partial moment of the
whole portfolio [30].

But we do actually not require such an aggregation. Instead, we will do scenario
optimisation [10]. The simplest case is to regard every historical return observation
as one scenario. However, using actual forecasts (e.g., creating ‘artificial’ scenarios
through resampling) can help to improve the out-of-sample performance of portfo-
lios [20, 28].

Suppose we have nA assets and nS return scenarios, all collected in a matrix R of
size nS � nA. We can equivalently work with price scenarios, computed as

P D .1C R/ � diag.p0/

in which 1 is a matrix of ones of size nS�nA, and ‘diag’ is an operator that transforms
a vector into a diagonal matrix. Note that the columns of P (or R) are not time
series. Every row of P holds the prices for one possible future scenario that might
occur, given initial prices p0. In fact, for many objective functions (such as partial
moments), it is not relevant whether the scenarios are sorted in time, since such
criteria only capture the cross-section of returns. The portfolio values v in these
scenarios are given by the product Px.

But there are selection criteria that need time series, for instance drawdown.
Resampling is still possible to create path scenarios: we may, for instance, use
models that capture serial dependencies and then resample from their residuals, or
use a block bootstrap method. Assume we have only a single scenario of paths of
the assets, and arrange the prices in a matrix Pts of size .T C 1/ � nA, where each
column holds the prices of one asset. The portfolio values over time are then given

5The number of iterations depends on the problem. Here, again, Principle (ii) tells us how to
proceed: small-scale experiments will quickly provide us with a reasonable idea of how many
iterations are needed. See Gilli et al. [27]; in particular Chaps. 11 and 12.
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by v D Ptsx. Note that Px gives a sample of portfolio values over the cross-section
of scenarios, while Ptsx gives one path of the portfolio value from time 0 to time T.
For both scenarios and paths, given a vector v it is easy to evaluate an objective
function.

Working with scenarios in this way is not restrictive: if we preferred a parametric
model, we could always calibrate it to the scenarios (e.g., compute a variance–
covariance matrix from the scenarios). The approach offers another advantage,
namely that we can make the time required to evaluate the objective function
independent of the number of assets. Assume we work with the matrix P of price
scenarios (the same holds for Pts). This matrix is often fairly large, with thousands of
scenarios for hundreds or thousands of assets. TA started with an initial portfolio xc

and now has to evaluate xn. Hence the product Pxc has already been computed. As
will be discussed below, a new portfolio will be created by a small perturbation of
the original portfolio, hence

xn D xc C x�

where x� is a vector with few nonzero elements (usually only two). Then

Pxn D P.xc C x�/ D Pxc

„ƒ‚…

known

CPx� :

Many elements of x� are zero, and hence only a few columns of P are necessary
for the matrix multiplication. So we create a matrix P� that only holds the columns
where x� is nonzero and a vector x�� that contains only the nonzero elements of x�;
then we replace Px� by P�x�� .

10.4.2.2 The Neighbourhood Function

To move from one solution to the next, we need to define a neighbourhood
function N that creates new candidate solutions. For portfolio selection problems,
we have a natural way to create neighbour solutions: pick one asset in the portfolio
randomly, ‘sell’ a small quantity of this asset, and ‘invest’ the amount obtained in
another asset. If short positions are allowed, the chosen asset to be sold does not
have to be in the portfolio. The ‘small quantity’ may either be a random number or a
small fixed fraction such as 0.1 %. Experiments suggest that, for practical purposes,
both methods give similar results; a fixed fraction may even be preferred.

10.4.2.3 The Threshold Sequence

The threshold sequence is an ordered vector of positive numbers that decrease
to zero or at least become very small. The neighbourhood definition and the
thresholds are tightly connected. Larger neighbourhoods, with larger changes from
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one candidate portfolio to the next, need generally be accompanied by larger initial
threshold values, et vice versa.

Winker and Fang [56]6 suggest a data-driven method to obtain the thresholds:
generate a large number of random solutions; select one neighbour of each solution
according to the given neighbourhood definition; compute the difference between
the objective function values for each pair. The thresholds are then a number of
decreasing quantiles of these differences; see Algorithm 3.

Algorithm 3 Computing the Threshold Sequence—Variant 1
1: set nRounds (# of thresholds), nDeltas (# of random solutions)
2: for i D 1 to nDeltas do
3: randomly generate current solution xc

4: generate xn D N.xc/

5: compute �i D j�.xn/� �.xc/j
6: end for
7: sort �1 � �2 � � � � � �nDeltas

8: set 	 D �nRounds ; : : : ; �1

The number of thresholds nRounds with this approach is typically large, hence few
steps nSteps per threshold suffice in the inner loop of Algorithm 2; often it is only one
step per threshold.

Gilli et al. [25] suggest to take a random walk through the data instead, recording
the changes in the objective function value at every iteration. The thresholds are
then a number of decreasing quantiles of these changes. See Algorithm 4.

Algorithm 4 Computing the Threshold Sequence—Variant 2
1: set nRounds (# of thresholds), nDeltas (# of random steps)
2: randomly generate current solution xc

3: for i D 1 W nDeltas do
4: generate xc D N.xc/ and compute �i D j�.xn/� �.xc/j
5: xc D xn

6: end for
7: compute empirical distribution (CDF) of �i; i D 1; : : : ; nDeltas

8: compute threshold sequence 	k D CDF�1

�
nRounds�k

nRounds

�

, k D 1; : : : ; nRounds

10.4.2.4 Constraints

Several generic approaches for handling constraints were discussed in Sect. 10.3.3
above; we will typically use a mixture of those. The budget constraint for example

6Similar techniques are used to obtain settings for Simulated Annealing; see for instance Johnson
et al. [33].
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is automatically enforced by the specification of the neighbourhood. Gilli et al. [27]
provide complete implementations for various other constraints.

10.5 An Example: Portfolio Selection with TA

To give an example7 about the modelling approach, guided by the two principles
mentioned in the introduction, i.e., (1) the application matters, and (2) go experi-
ment, we construct a portfolio with the objective to ‘at least’ replicate a given hedge
fund index. In the following we concentrate only on the modelling process.

10.5.1 Data, Backtesting Scheme and Reporting of Results

The index to replicate is the Credit Suisse/Tremont Hedge Fund Index (CST)
available at www.hedgeindex.com. According to the information onsite this index
is asset-weighted, includes more than 5000 funds with a minimum of US$ 50
million under management. The observations are monthly and cover the period from
January 1999 to October 2009.

The instruments used for the replication comprise equity, commodity and bond
indices. In the set of equity indices we have about 54 series including broad market,
blue chips, sector as well as size and style indices. There are 12 commodity indices
and 12 bond indices from government, corporate and emerging markets. The set of
data has been collected from Bloomberg.

To analyze the performance of the suggested portfolios we backtest the strategies
over 10 years with rebalancing where we account for 10 basis points of transaction
costs. The rolling window has a historical length of H and a holding period of F. In
this application H is 1 year and F is 3 months. This leads to trajectories of portfolios
values where the portfolios have been rebalanced forty times. The scheme below
summarises the technique.

To gain insight into the stochastics of the simulated portfolios we jackknife from
the historical observations so as to compute a set of results8 for which we then
consider empirical distributions for different features of the portfolio.

For each objective function we report the characteristics of the backtested
portfolio in three figures and one table, i.e.: (1) plot of median path of the portfolio
value,9 (2) plot of the kernel estimation of the density of the empirical distribution
of the mean yearly return, (3) plot of the empirical distribution of the correlation of

7The example builds on Gilli et al. [26].
8In this case we computed 100 trajectories for each specification of the objective function.
9The median path is defined with respect to the final wealth of the portfolios generated with the
jackknifing.

www.hedgeindex.com
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Period 1

t1 H t1 t1 +–

–

F

F

H

invest

Period 2

t2 H t2 t2 + F

rebalance

the portfolio with the market and (4) a table showing the tracking error TE defined
as the standard deviation of the excess return rE , the Sharpe ratio S, the annualised
return and volatility r, vol and the correlation �rP;rM with the market.

10.5.2 ‘Genesis’ of a Model

Instead of starting with a predefined idea about what the ‘best’ model should be we
chose to begin with the simplest ideas and subsequently add (or remove) elements
in the objective function � according to whether or not they have a desirable impact
on the results obtained by backtesting.

The general optimisation problem we have to solve for the different objective
functions � is then

min
x
�.x/ (10.4)

X

j2J
xj p0j D v0 (10.40)

xinf
j � xj � xsup

j j 2 J (10.400)

Kinf � #fJ g � Ksup (10.4000)

:::

where x is a vector with xj being the quantity of asset j in the portfolio. The optimisa-
tion is subject to a set of constraints with in particular the budget constraint (10.40)
with v0 the investable wealth and p0j the price of asset j at the beginning of the
investment period. Constraint (10.400) specifies minimum and maximum holding
size for the set of asset (J ) in the portfolio. Next we have the cardinality
constraint (10.4000) which allows for tractability of the resulting portfolios. Further
constraints might be included such as total transaction cost, sector constraints and
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other liquidity issues. For all our portfolios the minimum holding and maximum
holding for an asset is 1 % respectively 20 % and maximum cardinality is limited to
Ksup D 10. Solutions will be computed with the Threshold Accepting (TA) heuristic
described previously in Sect. 10.4.

10.5.3 Step 1: Optimisation of Tracking Error and Excess
Return

A first and straightforward idea is to construct a tracking portfolio, i.e., a portfolio
that minimises the distance between historical portfolio returns and the index
returns. We denote rP the historical return vector of the tracking portfolio, rI the
index returns and rE D rP � rI the excess return of the portfolio. In order not to
penalise upside deviations for a portfolio we also consider the mean excess return
rE D 1

n

P
.rP � rI/ leading to the following objective function

� krEk2 � .1 � �/ rE (10.5)

where � 2 Œ0; 1� defines a linear combination between tracking error and excess
return.10

We computed results for the objective (10.5) for varying values of the parameter
� controlling the weighting between tracking error and reward. Figure 10.2 shows
the median paths for 100 simulations for � D 1 (dark line) which corresponds to
minimizing only tracking error. We can trade tracking error against final wealth by
decreasing �. A good compromise is obtained for � D 0:75 yielding portfolios
close to the index whereas higher weights for the reward (lower values for �) result
in higher final wealth but also higher volatility.

Figure 10.3 illustrates another feature of the simulated portfolios. It shows the
plot of the kernel estimation of the density of the empirical distribution of the mean
yearly return of the tracking portfolio (left panel). The vertical line indicates the
mean yearly return of the index. The right panel in Fig. 10.3 shows the empirical
distribution of the correlation of the optimised portfolios with the market. The dotted
line corresponds to the correlation of the index with the market. For the tracking
portfolios we observe higher values. Table 10.1 summarises the performance for the
portfolios obtained with objective function (10.5).

The portfolio for � D 0:75 has an average return increased by 50 % compared
with � D 1 in exchange of insignificant loss in tracking performance and small
increase of volatility. Furthermore the correlation of the portfolio with the market
decreases.

10Such an approach has been explored in Gilli and Këllezi [19] using artificial data.
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Fig. 10.2 Median paths for portfolios minimizing objective function (10.5) for � D 0:75 and
� D 1. For reference the performance of the CS Tremont (CST) and the S&P500 is also shown.
Dotted vertical lines indicate rebalancing dates
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Fig. 10.3 Densities of mean yearly return r (left panel) and correlation �rP ;rM (right panel)

Table 10.1 Results for median path of sim-
ulated portfolios for objective function (10.5)
(Tracking error TE, Sharpe ratio S, annualised
return and volatility r, vol, correlation with mar-
ket �rP;rM )

TE S r vol �rP ;rM

� D 0:75 2 % 0.62 6 % 10 % 0.55

� D 1 2 % 0.45 4 % 9 % 0.62

CST – 1.04 7 % 7 % 0.54

10.5.4 Step 2: Optimisation of Tracking Error, Excess Return
and �rP;rM

The goal is to construct a portfolio following the index as close as possible but being
little sensitive to adverse market movements. This suggests to include the correlation
between tracking portfolio and market into the objective function

� krEk2 � .1 � �/ rE C �rP;rM (10.6)

where �rP;rM denotes this correlation computed from the historical data. Minimizing
the objective function minimises this correlation. The results for the portfolios
minimizing the objective function (10.6) are given in Fig. 10.4. For � D 1, where
no excess return enters the optimisation, we observe a particularly smooth median
path almost not affected by the drop in the S&P500 at the end of 2008 (Table 10.2).
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Fig. 10.4 Median paths for portfolios minimizing the objective function (10.6) controlling
correlation �rP ;rM with the market

Table 10.2 Results for the
median path of the simulated
portfolios for objective
function (10.6)

TE S r vol �rP ;rM

� D 0:70 3 % 0.63 7 % 10 % 0.09

� D 1 2 % 0.60 4 % 7 % 0.35

CST – 1.04 7 % 7 % 0.54
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Fig. 10.5 Density of mean yearly return r (left panel) and correlation �rP ;rM (right panel) for the
objective function (10.6) controlling correlation with the market

Results in the right panel of Fig. 10.5 are remarkable when compared with the
ones in Fig. 10.3 as the distributions indicate that, while maintaining the same level
of returns, correlation is now well controlled.

10.5.5 Step 3: Optimisation of Tracking Error, Excess Return,
�rP;rM and �rP;rI

Model (10.5) focusing on the tracking error, already leads to a portfolio highly
correlated with the index. Nevertheless one can think to control this correlation
more specifically by introducing it into the objective function. Denoting �rP;rI this
correlation between portfolio and the index, it can be maximised with the new
objective function

� krEk2 � .1 � �/ rE C �rP;rM � �rP;rI : (10.7)
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Fig. 10.6 Median paths for portfolios minimizing the objective function (10.7) controlling
correlation �rP ;rM with the market and �rP ;rI with the CST
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Fig. 10.7 Density of mean yearly return r (left panel) and correlation �rP ;rM (right panel) for the
objective function (10.7) controlling correlations with the market and the CST

Table 10.3 Results for the
median path of the simulated
portfolios for objective
function (10.7)

TE S r vol �rP ;rM

� D 0:60 3 % 0.88 10 % 11 % 0.09

� D 0:68 3 % 0.74 8 % 10 % 0.17

CST – 1.04 7 % 7 % 0.54

Notice that the effect of � is not comparable between the different objective
functions due to the impact of the additional terms. The results indicate no
significant change in overall performance, we rather observe a shift to improved
Sharpe ratios for all values of �. Again lower values for �, i.e., higher weighting for
excess return leads to portfolios with higher final wealth but of course at the cost of
increased volatility (Fig. 10.6).

As visible in Fig. 10.7, from the point of view of returns � D 0:6 produces
attractive portfolios which moreover show quite low correlation with the market
and high Sharpe ratios (Table 10.3).

10.5.6 Step 4: Optimisation of Tracking Error, Excess Return,
�rP;rM , �rP;rI and Dmax

A further desirable feature of a portfolio would be to have low drawdown. For a
series of portfolio values vt; t D 0; 1; 2 : : :T the drawdown is defined as
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Fig. 10.8 Median paths for portfolios minimizing the objective function (10.8) controlling
correlations �rP;rM , �rP ;rI and the maximum drawdown
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Fig. 10.9 Density of mean yearly return (left panel) and density of correlation with the market
(right panel) for the objective function (10.8) controlling correlations �rP ;rM , �rP ;rI and the
maximum drawdown

Dt D vmax
t � vt

where vmax
t is the running maximum, i.e., vmax

t D maxfvsjs 2 Œ0; t�g. Following this
definition D is a vector for which we can compute the mean, standard deviation
or the maximum element Dmax D max.D/ which is the one we use in our next
objective function. In other words Dmax measures the largest drop of the portfolio
value over the time horizon.

In a first step we consider only the minimisation of the maximum drawdown.
In a second step we combine maximum drawdown minimisation with the objective
function defined in (10.7) yielding

� krEk2 � .1 � �/ rE C �rP;rM � �rP;rI C Dmax : (10.8)

Figure 10.8 below reports results for pure maximum drawdown minimisation as
well as results for objective function (10.8) with different weighting of tracking error
and excess return. As previously, higher weights for excess return (low � values)
produce high final wealth portfolios.

Looking at the final wealth distribution given in Fig. 10.9 we see that for � D 0

we get an impressive shift to the right of the distribution (Table 10.4).
In the light of these results portfolios obtained from this last model offer

properties suitable to substitute the Credit Suisse/Tremont hedge fund index. In
particular for � D 0:7 we have comparable Sharpe ratio but higher average return
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Table 10.4 Results for the
median path of the simulated
portfolios for objective
function (10.8)

TE S r vol �rP ;rM

� D 0 4 % 0.94 16 % 17 % 0.23

� D 0:7 2 % 0.97 9 % 9 % 0.17

DDmax 2 % 1.01 9 % 9 % 0.37

CST – 1.04 7 % 7 % 0.54
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Fig. 10.10 Median portfolio composition in terms of asset classes (equities in light gray,
commodities in white and bonds in dark gray) for the objective function (10.8). From top to bottom
� D 0, � D 1 and Dmax

and lower correlation with the market. However the portfolio can be modulated
choosing different values for � in order to meet different preferences or risk aversion
of an investor.

It might be interesting to show how the different asset classes are represented in
the median portfolios. This is plotted in Fig. 10.10 and we notice how the model
reacts to market conditions. For instance, in periods of distress, the weight of fixed
income instruments gains importance at the expense of equities. Also, the portfolio
where excess return is favored (� D 0) has relatively higher weighted commodities
and equities.

10.6 Conclusion

John Tukey once said that an analyst of data needs both tools and understanding. In
this chapter, we have given a brief, selective introduction to heuristics in portfolio
selection. Heuristics are tools. Powerful tools; but even powerful tools cannot
replace understanding.
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As we said in the Introduction, the tasks that the analyst faces can be classified
into three broad topics: modelling, forecasting and optimisation. In our view,
optimisation is the least problematic of these tasks. Of course, that has not always
been the case, but on today’s computers with today’s software, we can handle
models and amounts of data that people could not imagine 20 years ago. (Actually,
the amounts of data are so large that even today it is difficult to imagine them.)

In our view, less progress has been made when it comes to modelling and
forecasting. Students are still taught financial theories ‘as is’, with often only
parenthetical reference to practical problems, most notably when it comes to
forecasting.

Useful research in portfolio selection should put more emphasis on data handling
and the empirical testing of models, thus better re-aligning financial theory with the
nature of financial data. That means, in particular, that less emphasis should be put
on obtaining numerically-precise solutions. As we said above, it is not reasonable
to think that ‘only the optimum’ will work well: slightly changing the solution
should not really change the results. (If it does, we should better not trust the results,
anyway.) This is in line with the empirical evidence (e.g., Gilli and Schumann [22]),
which suggests that ‘the optimum’ is not required: good solutions are enough. And
those are exactly the solutions that heuristics provide.
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Chapter 11
Optimal Financial Decision Making Under
Uncertainty

Giorgio Consigli, Daniel Kuhn, and Paolo Brandimarte

Abstract We use a fairly general framework to analyze a rich variety of financial
optimization models presented in the literature, with emphasis on contributions
included in this volume and a related special issue of OR Spectrum. We do
not aim at providing readers with an exhaustive survey, rather we focus on a
limited but significant set of modeling and methodological issues. The framework
is based on a benchmark discrete-time stochastic control optimization framework,
and a benchmark financial problem, asset-liability management, whose generality
is considered in this chapter. A wide set of financial problems, ranging from asset
allocation to financial engineering problems, is outlined, in terms of objectives, risk
models, solution methods, and model users. We pay special attention to the interplay
between alternative uncertainty representations and solution methods, which have
an impact on the kind of solution which is obtained. Finally, we outline relevant
directions for further research and optimization paradigms integration.
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11.1 The Domain of Financial Optimization

Since the seminal work of Markowitz [71], the literature on the application of
optimization models to financial decision problems has witnessed an astonishing
growth. The contributions presented in this volume and the companion special issue
(SI) of OR Spectrum [38] offer a broad picture illustrating a variety of problems
and solution approaches that have been the subject of recent research, from both a
theoretical and an applied perspective. The main purpose of this chapter is to review
the building blocks of recent research on optimization models in finance. We do not
aim at giving an exhaustive literature survey, though, and due emphasis is given to
contributions to this volume and the SI. The (less ambitious) aim is to reconsider the
contributions within a common framework in order to spot research directions and
integration opportunities. This should be especially valuable to practitioners and
newcomers, possibly Ph.D. students, who may find the heterogeneity of literature
somewhat confusing.

Papers dealing with optimization in finance may be characterized according to
different features:

• The kind of financial problem that is addressed, such as portfolio selection, asset
pricing, hedging, or asset-liability management. These are sometimes considered
as different problems but, actually, there is an interplay among them and we see
in what follows that indeed asset-liability management (ALM) models provide
a rather general modeling framework. The specific practical problem tackled
restricts the choice of decisions to be made, the constraints that decisions must
satisfy, and the criteria to evaluate solution quality. For a given financial problem,
alternative modeling and solution approaches may be available.

• We have to define a risk model, which consists of a set of relevant risk
factors and a representation of their uncertainty. Classical models rely on a
probabilistic characterization of uncertainty, but there is a growing stream of
contributions dealing with robustness and ambiguity, as well as model-free, data-
driven approaches. Some of these paradigms are indeed non-stochastic, and the
choice of a risk model must be compatible with the available information used
for estimation and fitting purposes.

• The approach taken to manage a risk-reward tradeoff. Modern Portfolio Theory
(MPT) relies on standard deviation of return as a risk measure, which is traded
off against expected return within a static model. This is an example of the mean-
risk approach, which may be generalized by using other risk measures. However,
alternative approaches may be taken, relying on classical utility functions, or on
stochastic dominance concepts. MPT revolves around a static portfolio choice,
and the extension of risk measures to multiple periods turns out to be rather
tricky. Mostly due to evolving regulatory frameworks and increasing tail risk,
the set of possible risk-reward trade-offs has increased dramatically over the last
two decades.

• All of the previous choices yield an optimization model formulation, which,
among other things, may be static or dynamic, discrete-time or continuous-time.
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Model selection and problem formulation, however, cannot be made without
paying due attention to computational viability. The essential trade-off is in
this context between finding the exact solution of a maybe wrong model, or an
approximate solution of the right model.

• The set of available solution approaches has widened considerably over the years,
due to increasing hardware power and the development of convex optimization
techniques. The Markowitz model for instance boils down to a simple and
deterministic convex optimization problem and, from a strictly algorithmic view-
point, is not quite challenging. Sophisticated methods for multistage stochastic
programming with recourse, dynamic programming, and robust optimization are
called for when tackling challenging problems, and they determine the exact
kind of solution that we find and the way in which it can be used.

• Last, but not least, the solution must somehow be validated, and the overall
modeling approach must be questioned and critically assessed.

By combining the above features, a wide variety of optimization models can
be developed, which should be viewed within a common framework, as a far
as possible. Finding a generic formulation that can be instantiated to yield any
conceivable model is a hopeless endeavour, but we believe that it is useful to set
a benchmark model as a reference, in order to compare different model instances
and methodological challenges. From a formal viewpoint, a discrete-time stochastic
control model is arguably a good reference framework, whereas, from a financial
viewpoint, an asset-liability management model is a suitably general problem.

No optimization model can clearly be considered without reference to a real-
world financial context that practitioners have to face in their day-by-day activity.
Hence, we start by summarizing a few relevant trends that affect financial decision
making in Sect. 11.2. Then, in Sect. 11.3 we describe a benchmark modeling
framework and the essential elements in building a financial decision model under
uncertainty. There, we emphasize the interplay between the model building and the
model solving approaches, which is particularly critical in the context of multistage
decision problems. Then, in Sect. 11.4 we take a financial view, and consider how
several classes of financial optimization problems may be considered as specific
ALM cases. We introduce a pension fund ALM problem as representative of a
variety of financial management problems. In Sect. 11.5 we follow up discussing
a limited set of solution approaches suitable for dynamic problems: stochastic pro-
gramming with recourse, distributionally robust optimization and learning decision
rules. Finally, we outline possible research directions in Sect. 11.6, and we draw
some conclusions in Sect. 11.7.

11.2 A Changing Financial Landscape

The contributions in this volume and the SI, to a certain extent stimulated by
ongoing and continuously refined risk management regulatory frameworks in
the banking and insurance industry, reflect a structural transformation of agents’
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management options and decision paradigms within a new financial environment
[38]. Such transition may be analyzed from different viewpoints: here we consider
primarily practitioners’ and modelers’ perspectives, the latter with associated
computational and numerical implications. When considered in terms of supply
and demand sides, as is common in financial economics, we see that market
evolution can be conveniently linked to agents’ decision processes: long positions
in the market are associated with the demand side and lead to an optimal asset
management problem, in which agents’ risk attitude need to be considered and
a given representation of risk is required. On the contrary short positions are
associated with the supply side and lead to an optimal liability management problem
and a related pricing issue. The two indeed embed two ALM problems, as we shall
see here below. A distinctive element of the financial markets’ growth is associated
with increasing product diversification, which calls for modeling approaches able
to accommodate non-trivial decision spaces, see [1, 46, 54, 66]. The dimension
of the investment universe in real applications has an impact on both the adopted
uncertainty model and the available optimization options, particularly in dynamic
problems [42, 78, 81].

The recent literature on financial decision making reflects the emergence of new
market features that call for a revision of traditional assumptions:

• The persistence of an unprecedented period of interest rate curves flattening
at almost zero level, which leads to a quest for increased sources of return,
and the consequent emergence of alternative investment opportunities, possibly
involving illiquid assets.

• A revision of the set of relevant risk factors (risk as exposure to uncertain
outcomes that can be assigned probabilities) like sovereign risk, even in OECD
countries, longevity risk, systemic risk, as well as model risk, and ambiguity
(interpreted as exposure to uncertain outcomes that admit no probabilistic
description) [25, 46].

• The heterogeneity of agents’ planning horizons, as different agents may be
concerned with long vs. short time horizons, and the need to balance long-term
objectives (as typical of pension funds), with short-term performance.

The above features have clear implications on the formulation of the associated
optimization problem:

• Financial markets need not be consistent with canonical information efficiency
assumptions and financial optimization approaches may very well adapt to
alternative assumptions. The evolution of risk premia in equity, bond and
alternative markets carrying different liquidity is complex to model and forecast
but can hardly be avoided [39, 70, 78, 93].

• Asset pricing models need not be based on the assumption of market complete-
ness [1, 46, 54].

• Decision horizons and rebalancing frequency matter: when moving from a
single-period, myopic setting to a dynamic one, the risk modelling effort
increases substantially and the issue of the optimal policies’ and risk measures’
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dynamic time consistency becomes central [34, 49]. Further the issue of an
increasing dependence of the optimal policy on functions of risk-adjusted
performance measures [21, 44, 78] becomes relevant over increasing planning
horizons. On the other hand extending the horizon requires short-term risk
management and profitability not to be jeopardized [1].

Modeling implications are relevant. Indeed, the contributions in this volume and
the SI [38] may be distinguished as carrying scenario-based [42] or parametric [21,
58] or set-based [81] representations of uncertainty; model-driven [39, 42, 58, 70,
93] or data-driven approaches [25, 32, 55, 81]; reflecting equilibrium conditions—
arbitrage free [1, 54, 70] or just based on statistical criteria [25, 31, 32].

From a computational viewpoint, the central approximation issue when dealing
with dynamics typically carrying a continuous probability space must be addressed.
A trade-off problem lies at the heart of such approximation effort, where an
increasingly accurate characterization of the uncertainty may not be consistent
with a realistic problem description, particularly in real-world applications [10].
A sufficient approximation, achieved through a computationally efficient approach,
is regarded as a necessary condition to determine accurate risk control strategies.
A substantial literature in stochastic programming addresses scenario generation
issues [37, 48, 82]. The following evidences emerge in this respect in this volume:

• robust approaches [25, 81] rely on an approximation scheme which reduces the
computational burden in terms of scenario management at the cost of increasing
computational cost in the optimization phase [81],

• stochastic programming approaches rely very much on scenario reduction
methods and the trade-off between approximation quality and stability of the
optimal solution drives the computational effort [42].

To a certain extent independently from the adopted problem formulation and specific
features, the definition of an effective decision process in contemporary markets
relies very much on a sequence of steps: from the analysis of the decision universe,
the definition of decision criteria driving the optimization process, the introduction
of a statistical model and the derivation of internal (to the agents’ economy) and
external constraints.

11.3 The Elements of a Decision Model

The original mean-variance model is static and aims at managing an asset portfolio.
As a result, decision variables are just portfolio weights and the distributional inputs
are (seemingly) modest: a vector of expected returns and a covariance matrix. As it
turns out, even this distributional information is not trivial to give in a robust way, but
the matter gets much more complicated in a more general dynamic framework. In
this section we describe a reference optimization model, namely, a generic discrete-
time stochastic control problem. This cannot be regarded as an abstract model from
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which any relevant financial optimization model can be instantiated, but it allows
us to spot the key elements of an optimization model, which have been specified
in a wide variety of ways in the literature. From an applied financial perspective, a
fairly general model framework can be identified in the asset-liability management
(ALM) domain.

11.3.1 Discrete-Time Stochastic Control

We consider the formulation of an optimal financial planning problem as the optimal
control of a dynamic stochastic system whose essential elements in discrete-time
are:

• A discrete and finite sequence of time instants, T WD f0; : : : ;Tg. The discretiza-
tion may arise from a suitable partition of a continuous time interval, or as a
consequence of a decision process where choices are only made at specific time
instants.

• A sequence of control/decision variables denoted by xt, t D 0; : : : ;T � 1. In
general no decision is allowed at the end of the time horizon T, where we only
check the last outcome.

• A sequence of state variables st, t D 0; : : : ;T; sT is the terminal state.
• A sequence of random variables � t.!/, t D 1; : : : ;T. This is the stochastic

process followed by risk factors, where ! 2 � corresponds to a sample path.
The stochastic process may be discrete-state, continuous-state, or a hybrid. In
most financial optimization problems it is assumed that uncertainty is purely
exogenous, i.e., risk factors are not influenced by control actions.

Controlling the system means making a decision, i.e., choosing a control xt at each
time t, t D 0; : : : ;T�1, after observing the state st. At t D 0 only s0 is known and the
first control x0 is taken under complete uncertainty. The next state stC1 may depend
in a possibly complex way on the state and control trajectory up to t, as well as on
the realization �tC1.!/ of the risk factors. A relatively simple case applies when
the Markov property holds, which implies that we may introduce a state transition
functionˆt, at time t, such that

stC1 D ˆt.st; xt; � tC1.!//: (11.1)

The last control action xT�1 will result in the last state sT . The first requirement of
a control action is feasibility, and we may denote the feasible set at time t as At.st/,
emphasizing dependence on the current state. Note that the feasible set is random,
as it depends on risk factors through the state variable. The sequence of controls
must be a good one, where quality may be measured by introducing a sequence of
functions ft.st; xt/, t D 1; : : : ;T � 1, and a function FT.sT / to evaluate the terminal
state. These functions may be maximized or minimized depending on their nature,
and we end up with a somewhat loose and abstract formulation:
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min
xt

E

"
T�1X

tD0
ft.st; xt/C FT.sT/

#

(11.2)

s.t. xt 2 At.st/ (11.3)

stC1 D ˆt.st; xt; �tC1.!//: (11.4)

This formulation is quite intuitive, but loose, as it does not clarify a few important
features (see also [34]).

• The nature of the solution. In a deterministic multiperiod problem, we fix the
whole set of control actions xt at time t D 0. Thus, decisions are a sequence
of vectors. On the contrary, in a stochastic multistage problem the sequence of
decisions is a random process, as it depends on the unfolding of uncertainty.
They may be thought of as a function of the current state, which gives a solution
in feedback form, or as a function of the underlying stochastic process. In the last
case, care must be taken to enforce a sensible non-anticipativity condition. We
further discuss the nature of the solution in Sect. 11.3.2.

• The objective function (11.2) is additive with respect to time, and might be
specified in a way in which only the terminal state matters, or the whole
trajectory. The involved functions could be used to capture the risk-reward
tradeoff, which may be expressed by risk measures or utility functions. However,
we cannot take for granted that a simple additive structure will be able to capture
complex trade-offs often driving decision processes.

• The satisfaction of constraints (11.3) must be further qualified. If the repre-
sentation of uncertainty relies on a discrete tree process constraints must be
always satisfied, but when dealing with continuous factors, almost sure (a.s.,
with probability 1) feasibility is required. This condition may be relaxed by
requiring that the constraint is satisfied with a suitable probability, leading to
chance-constrained problems.

• The state transition function (11.4) captures the uncertain evolution of the state
variable, but we leave the evolution of the risk factors implicit. A critical
modeling choice is the selection of a suitable set of driving risk factors that affect,
e.g., prices (interest rate and credit spreads affect bond prices). The underlying
stochastic process ranges from a simple sequence of i.i.d. variables to a complex
process exhibiting path dependencies, going through the intermediate case of a
Markov process. The expectation in the objective function is taken with respect
to a probability measure associated with this model. However, an increasingly
relevant amount of research questions our ability to pinpoint a probability
measure reliably. Distributional ambiguity and non-stochastic characterizations
of uncertainty have been proposed.

In the following we will delve more deeply into these issues, but before doing so, a
simple but relevant example is necessary.
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11.3.2 The Interplay Between Model Building and Solution
Method

When looking at the model formulation (11.2), it is not quite apparent which kind
of solution we may get and how it can be used. This depends on how uncertainty is
expressed and often approximated to make the problem computationally viable. The
dynamics of st and �.!/ will depend on such assumptions. Alternative approaches
to express uncertainty include:

• Scenario trees, which we may think as discrete characterization of a continuous-
time and/or continuous-state model as well as generated by discrete processes
[37];

• Model-free, data-driven approaches [25, 32, 46];
• Uncertainty sets maybe associated with probability distribution supports.

These alternatives, discussed below in more detail, may lead to different solution
strategies in the stochastic control problem:

• Multistage stochastic programming. Emphasis is given to the first stage or
implementable decision x0.

• Dynamic programming, where we typically, recover by backward recursion an
optimal policy, whose time and state evolution will in general depend on the
statistical assumptions of the underlying random process,

• Robust optimization has been extended recently to multistage problems [81],
called adjustable robust optimization. Robust approaches yield optimal strategies
with respect to uncertainty sets. Distributional robustness instead originate from
uncertainty over probability domains.

• The adoption of decision rules as shown below has received increasing interest
to address dynamic optimization problems [90].

It is useful to clarify first the key distinctive elements of those modeling and
solution options with respect to the adopted representation of uncertainty and the
assumptions on the underlying data process.

11.3.2.1 Scenario Tree, Non-anticipativity and Information

The discrete evolution of a dynamic stochastic system is often described by a tree
process, which captures the random dynamics of �t.!/. Scenario trees reflect the
dynamic interaction between control actions—the first taken under full uncertainty,
the others always under residual uncertainty—and revelation of uncertainty over
a maybe very long time horizon [1, 27, 42, 66, 81]. The tree clearly shows the
information to which the decision process xt.!/ must be adapted. A filtered
probability space is associated with the tree. Consider the simple example in
Fig. 11.1. At time t D 1 we essentially see a �-algebra generated by the sets
f!1; !2; !3; !4g and f!5; !6; !7; !8g, whereas at time t D 2 random variables
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Fig. 11.1 A typical scenario tree

must be measurable with respect to the �-algebra generated by f!1; !2g, f!3; !4g,
f!5; !6g, and f!7; !8g. As such, the sequence of �-algebras provides an information
model and for consistency, we require decisions to be adapted, measurable, with
respect to those information flows.

The decision process is non-anticipative, which means that a decision at any
node in the tree must be the same for any scenario that is indistinguishable up to
that time instant. As we shall see in Sect. 11.4.2, this requirement may be built in the
formulation of the model by an appropriate choice of variables, which are associated
with nodes. A noticeable feature of multistage stochastic programming is that the
solution is a stochastic decision process, namely a tree, where the decision at the
root node, the implementable decision, is what matters [10]. On the one hand, this
gives stochastic programming an operational flavor. On the other hand, this may also
be a disadvantage with respect to other approaches, due to decreasing computational
efficiency. The conditional behavior of a (non-recombining) scenario tree process is
reflected in a specific labeling convention which is useful to summarize. We adopt
a particularly simple convention and denote with N the set of nodes in the tree;
n0 is the root node. The (unique) predecessor of node n 2 N \fn0g is denoted by
a.n/, while the set of terminal nodes is denoted by S . Each node belongs to a
scenario, which is the sequence of event nodes along the unique paths leading from
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n0 to s 2 S , with probability �s. T D N \.fn0g [ S / is the set of intermediate
trading nodes. We refer to [54] for a more structured labeling scheme. The product
of conditional probabilities in Fig. 11.1 will determine the scenario probabilities.
In presence of vector tree processes, as common in financial applications, path
probabilities are assumed to be equal with conditional probabilities at each stage
equal to 1 over the number of branches departing from that node.

The above stochastic structure is common for multistage stochastic programs
[10] and provides an intuitive model to understand the interplay between underlying
random process evolution, the associated information process and the resulting
optimal decision process, defined by a root decision and a sequence of recourse
decisions. An extended set of financial models carrying specific properties has been
adopted over a wide range of financial applications [1, 38, 39, 42, 70]. Validation by
stability analysis is necessary and an additional complication in finance: scenarios
must be arbitrage-free.

Estimating a full-fledged uncertainty model is certainly not trivial, and one
should question its validity. One possible alternative, is to resort to a data-driven
approach. Then, a more natural stochastic dynamics can be built according to the
following model without any conditional structure, as such referred to as linear
scenarios or scenario fan.

This is the canonical output of risk measurement applications based on Monte
Carlo methods [18] in which, for given initial input portfolio, the evaluation of
relevant statistical percentiles may be performed. Here we are primarily interested
in this model representation in connection with the solution of a stochastic control
problem. In a dynamic setting, the model is indeed also associated with a stochastic
program where a condition of perfect foresight is assumed, corresponding to the
so-called wait-and-see problem [15]. The solution of problem (11.2) under the
wait-and-see assumption provides a lower bound to the stochastic solution: such
difference reflects the expected value of perfect information [15]. As the set of S
increases, the associated solution xn0 is expected to converge to a stable solution. In
financial optimization problems it is common to enforce a non-arbitrage condition
[42, 54] to require a branching degree at each stage bounded below by the cardinality
of the investment universe.

Alternatively assume a simple one-period tree following the dynamics in
Fig. 11.2. This would be a possible representation of a discrete probability space
with finite and countable support and typically a probability measure giving to
each path the same probability. Such model would be stage-wise consistent with
a (stochastic) dynamic programming solution approach [34] within a backward
recursion algorithm [18].

Robust models and distributionally robust models do not require a specification
of an underlying process’ sample paths and neither of them will depend on such
discrete approximation: instead they will focus either on an uncertainty domain
associated with ! or, more precisely �.!/, or on uncertainty affecting the probabil-
ity measure to be adopted to describe the problem stochasticity. When, still under the
(collapsed 1-period) process characterization in Fig. 11.2, a data-driven approach
is adopted then as common in risk management applications relying on historical
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simulation, past data realizations are used, typically within a bootstrapping approach
[18, 25, 32], to populate the sample space in the problem definition. The associated
probability distribution is in this case also referred to as the empirical distribution.
Empirical distributions are generated by mapping into future random events a given
data history, relying on a discrete probability distribution.

Summarizing, either probabilistic models are adopted in financial optimization
problems, but the model based on what we introduced as linear scenarios, may be
considered either in one period control problems or in dynamic problems but in
such case relying on backward recursion approaches. Accordingly, not to violate the
required non-anticipativity condition or measurability condition of the optimal strat-
egy (with respect to the current information structure), any decision must be taken
in face of residual uncertainty. Here next we consider how different assumptions
on the probability space translate into two very popular optimization paradigms,
eventually leading, jointly, to an increasingly popular problem formulation.

11.3.2.2 Stochastic, Robust and Distributionally Robust Optimization

A compact representation of problem (11.2)—where for sake of simplicity all
constraints are embedded in the decision space X definition, and a random process
�, defined in an appropriate probability space, is assumed to characterize the
problem’s overall uncertainty—is the following stochastic program:

min
x2X EP Œf .x; �/� : (11.5)
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Expectation is taken under the probability measure P and f is a functional, or risk
function, mapping the interaction between decisions and random events into a given
payoff or risk estimate, we wish to control. We refer to [34] in this volume for
a thorough analysis of dynamic risk measures. The formulation (11.5) is indeed
consistent with a dynamic stochastic program where the decision space is described
as a product space and non-anticipativity is enforced implicitly. The probability
space is endowed with a filtration, that we may assume generated by the process
�, and expectation is taken at the end of the planning horizon [49]. For a planning
horizon T D 1, the above problem formulation collapses to the one-period static
case [21, 25, 32, 55]. We consider here general properties of those formulations.

It is widely recognized that multistage stochastic programs have represented now
for quite sometime an effective mathematical framework for decision making under
uncertainty in several application domains with noticeable examples specifically in
finance and energy [10]. A distinctive element of this approach may be found in
its ability through a scenario tree representation to combine an optimal decision
tree process with specific assumptions on the underlying random process evolution.
A discrete framework allows an accurate and rich mathematical representation of
the decision problem with a sufficient description of the underlying sources of
uncertainty [37]. In presence of a risk exposure generated by continuously evolving
market conditions (e.g. commodity prices for energy problems, financial returns in
portfolio management and so forth), randomness evolves continuously in time and
an approximation issue arises, as well known. The adoption of sampling methods
and in general scenario reduction and generation methods aimed at minimizing
the cost associated with such discrete approximation has represented a relevant
research focus in this context [10]. The trade-off between computational viability
and scenario tree expansion is central to the modeling effort.

Statistical modeling, particularly in the case of financial applications, has been
typically welcome by practitioners as a longly established way to incorporate
economic and financial stylised evidences and solid quantitative analysis in day-
by-day decision making and within optimization models. Applied research in risk
management, based on advanced statistical models had been indeed extremely
successful to capture financial portfolios’ risk exposure for years [91] and it was
stimulated by regulatory institutions.

A fundamental challenge in stochastic programming formulations, however, is
that the distribution of � is in general not directly observable but must be estimated
from historical time series data. In fact, not even the simplest moments such as
the means and covariances can be estimated to within an acceptable precision
[69, 72]. Estimation errors are problematic because financial optimization problems
tend to be highly sensitive to the distributional input parameters. Consequently,
estimation errors in input parameters are amplified in the optimization (e.g., assets
with overestimated mean returns are given too much weight and assets with
underestimated means are given too little weight in the optimal portfolio), which
results in unstable portfolios that perform poorly in out-of-sample experiments
[20, 35, 73]. This phenomenon is akin to overfitting in statistics: a model that is
perfectly optimized for in-sample data has little explanatory power and displays
poor generalizability to out-of-sample data.
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A popular approach to combat estimation errors in input parameters of financial
optimization models is to adopt a robust approach. Here, the uncertain input
parameters are assumed to reside within an uncertainty set U that captures the
agent’s prior knowledge of the uncertainty. The objective of robust optimization
models is to identify decisions that are optimal under the worst possible parameter
realizations within the uncertainty set [9, 12]. This gives rise to worst-case optimiza-
tion problems of the form

min
x2X max

�2U f .x; �/: (11.6)

The resulting decisions display an attractive non-inferiority property, that is, their
out-of-sample performance is necessarily better (lower) than the optimal value of
the robust optimization problem provided that the uncertain parameters materialize
within the prescribed uncertainty set. The shape of the uncertainty set in problems
of the type (11.6) should be chosen judiciously as it can heavily impact the quality
of the resulting optimal decisions and the tractability of the robust optimization
problem. Popular uncertainty sets that have been studied in a financial context are
the box uncertainty set [92], the ellipsoidal uncertainty set [50, 52], the budget
uncertainty set [4, 5], the factor model uncertainty set [57] as well as a class of data-
driven uncertainty sets that are constructed using statistical hypothesis tests [14]. In
robust portfolio optimization, for instance, there is strong evidence that robust port-
folios are less susceptible to overfitting effects than classical Markowitz portfolios
and therefore display an improved out-of-sample performance [30]. Generalized
robust portfolio optimization models that include both stocks and European-style
options have been discussed in [98]. This model offers two layers of robustness
guarantees: a weak guarantee that holds whenever the asset returns materialize
within a prescribed confidence set reflecting normal market conditions and a strong
guarantee that becomes effective when the asset returns materialize outside of the
confidence set. The model is therefore akin to the comprehensive robust counterpart
model [8], which allows for a controlled deterioration in performance when the data
falls outside of the uncertainty set. Robust models with objective functions that are
linear in the decisions but convex nonlinear in the uncertain parameters have been
proposed in [62]. This versatile model can capture nonlinear dependencies between
prices and returns as they are common in classical stochastic stock price models.

Despite the ostensible simplicity of modeling uncertainty through sets, robust
optimization has been exceptionally successful in providing high-quality and
efficiently computable solutions for a broad spectrum of decision problems ranging
from engineering design, finance, and machine learning to policy making and
business analytics [9]. Nevertheless, it has been observed that robust optimization
models can lead to an under-specification of uncertainty as they fail to exploit prior
distributional information that may be available. In these situations, robust optimiza-
tion models may lead to over-conservative decisions. By also exploiting properties
of stochastic programming models, distributionally robust models address this issue.
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Since the pioneering work of Keynes [63] and Knight [65], it is common in deci-
sion theory to distinguish the concepts of risk and ambiguity. Classical stochastic
programming can only be used in a risky environment. Indeed, the objective of
stochastic programming is to minimize the expectation or some risk measure of
the cost f .x; �/, where the expectation is taken with respect to the distribution P

of �, which is assumed to be known. If we identify the uncertainty set U in the
robust optimization problem (11.6) with the support of the probability distribution
P, then it becomes apparent that stochastic programming and robust optimization
offer complementary models for the decision maker’s risk attitude: however, when
viewed through a decision theory lens, neither stochastic programming nor robust
optimization address ambiguity.

Distributionally robust optimization is a natural generalization of both stochastic
programming and robust optimization, which accounts both for the decision maker’s
attitude towards risk and ambiguity. In particular, a generic distributionally robust
optimization problem con be formulated as

min
x2X max

P2P EP Œf .x; �/� ; (11.7)

where the probability distribution P of � is only known to belong to a prescribed
ambiguity set P , that is, a family of (possibly infinitely many) probability
distributions consistent with the available raw data or prior structural information.
The distributionally robust optimization model can be interpreted as a game against
‘nature’. In this game, the agent first selects a decision with the goal to minimize
expected costs, in response to which ‘nature’ selects a distribution from within
the ambiguity set with the goal to inflict maximum harm to the agent. This setup
prompts the agent to select worst-case optimal decisions that offer performance
guarantees valid for all distributions in the ambiguity set.

Notice that the introduced min-max problem (11.7) belongs indeed also to
the tradition of stochastic programming problems from the seminal work in
[47]. Distributionally robust optimization leads to less conservative decisions than
classical robust optimization, and it enables modelers to incorporate information
about estimation errors into optimization problems. Therefore, it results in a more
realistic account of uncertainty. Moreover, maybe surprisingly, distributionally
robust optimization problems can often be solved exactly and in polynomial time—
very much like the simpler robust optimization models. For a general introduction
to distributionally robust optimization we refer to [40, 56, 95].

Many innovations in distributionally robust optimization have originated from
the study of financial decision problem. For instance, one of the earliest modern
distributionally robust optimization models in the literature studies the construction
of portfolios that are optimal in terms of worst-case Value-at-Risk, where the worst
case is taken over all asset return distributions with given means and covariances
[50]. Worst-case expected utility maximization models are addressed in [80], while
worst-case Value-at-Risk minimization models for nonlinear portfolios containing
stocks and options are described in [97]. Moreover, distributionally robust portfolio



11 Optimal Financial Decision Making Under Uncertainty 269

optimization models using an ambiguity set in which some marginal distributions
are known, while the global dependency structure or copula is uncertain, are
studied in [45]. While many papers focus on ambiguity sets described by first- and
second-order moment, possibly complemented by support information, asymmetric
distributional information in the form of forward- and backward-deviation measures
are described in [79]. Distributionally robust growth-optimal portfolios that offer
attractive performance guarantees across several investment periods are described
in [86], where the asset returns are assumed to follow a weak sense white noise
process, which means that the ambiguity set contains all distributions under which
the asset returns are serially uncorrelated and have period-wise identical first and
second-order moments. Besides moment-based ambiguity sets, which abound in
the current literature and offer attractive tractability properties, a different stream of
research has focused on the construction of ambiguity sets using probability metrics.
Here, the idea is to construct ambiguity sets that can be viewed as balls in the space
of probability distributions with respect to a probability distance function such as
the Prohorov metric [51], the Kullback-Leibler divergence [60], or the Wasserstein
metric [75, 83] etc. Such metric- based ambiguity sets contain all distributions
that are sufficiently close to a prescribed nominal distribution with respect to the
prescribed probability metric. This setup allows the modeler to control the degree
of conservatism of the underlying optimization problem by tuning the radius of the
ambiguity set. In particular, if the radius is set to zero, the ambiguity set collapses
to a singleton that contains only the nominal distribution. Then, the distributionally
robust optimization problem reduces to the classical stochastic program (11.5).

In the final section the above general concepts are considered in the domain
of a financial application. We complete this short methodological summary by
considering data-driven approaches as in [25, 32, 81] and their compatibility with
robust and stochastic programming formulations.

11.3.2.3 Data-Driven Optimization

Most classical stochastic programs as well as the vast majority of robust and
distributionally robust optimization models are constructed with a parametric
uncertainty model in mind. Thus, the distribution of � is estimated statistically, or it
is constructed on the basis of expert information or known structural properties. The
estimated distribution OP may then be directly used in the stochastic program (11.5).
Alternatively, the support or an appropriate confidence set of OP can be viewed
as an uncertainty set U for the robust optimization problem (11.6). Yet another
possibility is to use OP to construct an ambiguity set P for the distributionally
robust optimization problem (11.7) (e.g., by defining a moment ambiguity set via
some standard or generalized moments of OP or by designating OP as the center of a
spherical ambiguity set with respect to a probability metric). In contrast, data-driven
optimization uses any available data directly in the optimization model—without the
detour of calibrating a statistical model.
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Assume, for instance, that we have access to a set of independent samples
�.1/; : : : ; �.N/ drawn uniformly from the (unknown) distribution P. We now outline
how one can use such a time series to construct data-driven variants of the
stochastic, robust, and distributionally robust optimization problems (11.5)–(11.7),
respectively. First, the celebrated sample average approximation [89, Chap. 5]

min
x2X

1

N

NX

iD1
f .x; �.i// (11.8)

provides a data-driven approximation of the stochastic program (11.5). Here, the
unknown true distribution P is effectively replaced by the uniform distribution
on the data points �.1/; : : : ; �.N/, which is the empirical distribution. The sample
average approximation has been used with great success in financial engineering,
risk management and economics [96]. For a modern textbook treatment of the
broader area of Monte Carlo simulation we refer to [18].

A data-driven counterpart of the robust optimization problem (11.6) is given by
the scenario program

min
x2X max

iD1;:::;N f .x; �.i//; (11.9)

which is in fact a variant of (11.6) where the uncertainty set U has been replaced by
the support of the empirical distribution. Even though it is conceptually simple, the
scenario program has many desirable theoretical properties. On the one hand, the
scenario program (11.9) is efficiently solvable even in situations where the robust
problem (11.6) with a polyhedral or ellipsoidal uncertainty set U is intractable.
Due to the inner approximation entailed by the sampling, the solution of (11.9)
underestimates the optimal value of (11.6), which typically involves an infinite
number of scenarios. However, it has been shown that the cost of any optimal
solution of (11.9) under a new data point �.NC1/ is bounded by the optimal value
of (11.9) with high probability provided the number of samples N is sufficiently
large [26, 28]. This result is remarkable as it holds independently of the distribution
P of the samples and therefore is applicable even in situations whereP is unknown—
as is typically the case in financial applications. Thus, we can interpret (11.9) as
an optimization problem that minimizes the cost threshold that can be exceeded
only with a certain prescribed probability, which implies that (11.9) is closely
related to a value-at-risk minimization problem. For a more detailed discussion
of this connection we refer to [24]; applications in portfolio analysis and design
are described in [25]. Another modern approach to data-driven robust optimization
seeks decisions that are robust with respect to the set of all parameters that pass a
prescribed statistical hypothesis test [14].

There are different approaches to deriving data-driven counterparts of the
distributionally robust optimization problem (11.7). In [40] it is shown how time
series data can be used to construct confidence sets for the first two moments of
�. The ambiguity set of all distributions whose first two moments reside within
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these confidence sets is guaranteed to contain the unknown true data-generating
distribution P at the prescribed confidence level. The time series data can also
be used in more direct ways to construct ambiguity sets. Specifically, several
authors have proposed to study the following data-driven distributionally robust
optimization problem

min
x2X max

P2Br. OP/
EP Œf .x; �/� ; (11.10)

where the ambiguity set Br. OP/ is defined as the ball of radius r around the empirical
distribution OP with respect to some probability metric. Note that problem (11.10)
reduces to the sample average approximation (11.8) when the radius r drops to zero.
In practice, the crux is to select the radius r judiciously such that the unknown data-
generating distribution P belongs to the ambiguity set Br. OP/ with high confidence.
The optimal solution of (11.10) thus displays attractive out-of-sample guarantees,
but it may be difficult to compute. In order to ease the computational burden, it
has been shown that a robust problem (11.6) whose uncertainty set U is a union of
norm balls centered at the N sample points may provide a close and computationally
tractable approximation for (11.10). In [75] it has been shown that the data-driven
distributionally robust optimization problem (11.10) is in fact tractable when the
Wasserstein metric is used in the definition of Br. OP/. In this case no approximation
is required.

The use of the Wasserstein metric is also attractive conceptually. Indeed,
if (11.10) is a distributionally robust portfolio selection problem where Br. OP/
represents the Wasserstein ball of radius r around some nominal distribution OP,
then the optimal solution of (11.10) converges to the equally-weighted portfolio
as r tends to infinity (i.e., in the case of extreme ambiguity) [84]. This result,
within a financial context, is appealing because it has been observed in empirical
studies that the equally-weighted portfolio consistently outperforms many classical
Markowitz-type portfolios in terms of Sharpe ratio, certainty-equivalent return
or turnover [41]. The fact that the equally-weighed portfolio is optimal under
extreme ambiguity therefore provides a solid theoretical justification for a surprising
empirical observation.

The above concepts are now considered in the specific domain of a simple,
though rather general specification of an asset-liability management problem.

11.4 Asset-Liability Management

In this section we describe a simple asset-liability management (ALM) problem, as
an example of a stochastic control problem. This class of models subsumes asset
management models where, for given market prices, we want to select the best
investment policy under budget, turnover, inventory balance constraints, according
to some utility function or a risk-reward tradeoff, over a given time horizon.
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As well as liability management problems or liability-driven investment models [1]
and genuine asset-liability models [10, 42, 81]. Asset management problems are
relevant in fund management applications, active and passive portfolio management
with or without index tracking [21, 58], allocation among liquid or illiquid asset
classes including [78], and so forth. In full generality and in consideration of the
contributions in this volume and the special issue, we formulate a generic pension
fund problem. Here the pension fund manager seeks an optimal portfolio allocation
in such a way as to meet a stream of (uncertain) liabilities. Alternatively for given
payoff promised upon retirement by a certain retirement product, she/he might just
search an optimal replication strategy [1, 54]. Such replication problem is equivalent
to a hedging problem in financial engineering, and its solution depends on the
assumptions made on market completeness. This class of problems can thus also
be formulated as ALM problems. We provide next a set of examples canonical in
finance to convey such generality.

11.4.1 An Overview of Financial Planning Problems

Different assumptions on the specification of problem (11.2) will result in dif-
ferent types of financial optimization problems and qualify most of the collected
contributions.

Example 1 (Portfolio Management). The definition of an optimal portfolio strategy
under a set of constraints and within different methodological assumptions is
considered by Calafiore [25], Gyorfi and Ottucsak [58], Gilli and Schumann [55],
Mulvey et al. [78] in this volume and by Pagliarani and Vargiolu [93], Desmettre
et al. [44], Kopa and Post [67], Bruni et al. [21] and Cetinkaya and Thiele [32] in
the special issue.

Here, as time t 2 T evolves, the state of the system st is captured by the dynamics of
portfolio losses or returns, the control xt reflects the dynamic portfolio rebalancing
decisions within the feasibility region determined by At.st/. Under parametric
assumptions on the sample space or model driven approaches, the characterization
of the probability measure P 2 P is given and no min-max approach is
needed. In the more general case of data-driven, model-free approaches or within
an uncertainty set characterization, typical of robust formulations, we allow the
minimum loss to be associated with a distributionally worst case characterization of
the underlying stochastics. The problem collapses to one-period static optimization
if T D 1: under which case, the optimality of a myopic policy will depend primarily
on the statistical properties of the underlying return process. It is sufficient to allow
for short cash positions or explicitly for borrowing choices that this turns into an
ALM problem. Increasingly in the fund management industry the cost function
includes an indexation scheme [21] resulting into an optimal tracking problem.
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Example 2 (Asset Pricing). We reconsider here pricing problems, in the sense of
asset pricing and derivative contracts valuation as well as the structuring of new
financial payoffs, specifically from the market makers, protection seller, viewpoints.
MacLean and Zhao [70], Aro and Pennanen [1], Giandomenico and Pinar [54],
Mulvey et al. [78] in this volume, Konicz et al. [66], Trigeorgis et al. [46] in the SI,
provide different approaches to address such issue. The fair valuation of a contract
can be conveniently regarded as the solution of an optimization problem leading
today to a minimal investment cost of a portfolio that at the maturity of the contract
will deliver the contract payoff, independently from the market condition at expiry.
A characterizing condition of this problem is that the portfolio strategy leading to
such payoff is actually self-financed.

For t 2 T , the state of the system st will in this case be represented by say the
derivatives’ moneyness, the control xt will determine the dynamic portfolio hedging
strategy with At.st/ to denote the self-financing condition and other technical
constraints. The state transition operator ˆt will reflect the contract complexity and
ft the portfolio replication cost function to be minimized. The time space of the
problem here may typically be described by a sufficiently thinned discretization. In
general such hedging problem admits a unique solution under Black and Scholes
assumptions, whereas in real markets and operational contexts hardly payoffs can
be perfectly replicated giving raise to what is referred to as the cost induced by
market incompleteness [1, 54]. As a by-product of such optimization approach, the
probability measure governing the stochastic dynamics of the problem needs not
be an input, rather an output of the dual problem solution. A rather interesting
application is considered in Aro and Pennanen [1] and Pachamanova et al. [81]
where retirement products are considered. Here assets are used to hedge a given
liability whose payoff needs to be replicated. The stochastic program solution leads
to both a minimal hedging cost trajectory and a fair value of the contract. The
characterization of the underlying stochasticity is typically attained through some
analytical description of the underlying risk process but ambiguity over models
selection is accommodated in Trigeorgis et al. [46]. In rather general terms the
numerical approximation of time and states needs to be carefully determined and
this is an issue.

Example 3 (Canonical Asset-Liability Management). A decision maker is here
confronted with an optimization problem involving both assets and liabilities: the
universe of possible decisions including their dynamics over time is of primary
concern to the decision maker. Historically ALM problems have gained popularity
as natural modeling frameworks for the description of enterprise-wide long-term
management problems, in which the dynamic interplay between asset returns and
liability costs plays a central role in the definition of a strategic policy. Increasingly
however and from what was said above, from a mathematical standpoint this
is possibly the most general modeling framework available today. Individuals’
consumption-investment problems [66] and pension fund ALM problems [1, 81]
provide different perspectives falling in this application domain. Contributions by
Pachamanova et al [81], Aro and Pennanen [1], Dempster et al. [42] in this volume,
Dupacova and Kozmik [49], Konicz et al. [66], Davis and Lleo [39] fall in this area.
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Here t 2 T , is typically discrete and the state of the system st will be represented
by an A-L ratio, such as a funding or solvency ratio for an insurance company, the
fund return for a Pension fund and alike, the control xt will include in the most
general case asset and liability decisions to be taken over time. At.st/ a maybe
extended set of conditions on the optimal policy, with regulatory constrains and
limitations on the investment and borrowing policies. The chapter by Pachamanova
et al. [81] as well as several contributions in [10] provide good examples of such
set-up. In [36] an ALM problem for a large property and casualty (P/C) division
is considered based on an extended set of both liquid as well as illiquid assets
and liability streams associated with the P/C activity. The model provides a good
example of the impact on classical ALM applications of the current integration of a
capital adequacy regulatory framework.

11.4.2 A Simple ALM Model

Examples 1–3 in Sect. 11.4.1 may be given, with possibly a few additional con-
straints, a mathematical formulation similar to the one proposed in (11.11)–(11.16)
and be interpreted as specific ALM instances. The area of pension fund management
provides an interesting case where most of the above theoretical and modeling issues
can be traced within a unified framework. Indeed, depending on the pension scheme,
we have here relevant regulatory constraints, long-term asset and liabilities, short-
term solvency and liquidity constraints, as well as financial engineering applications
due to the growing role of defined contribution (DC) and mixed DC-defined benefit
(DB) or hybrid schemes. From the perspective of the stochastic system evolution
in this segment we also see how indeed policy makers, individuals and pension
providers (public and private) interact to determine jointly the system dynamics and
influencing its evolution. Konicz et al. [66] consider the individual perspective, Aro
and Pennanen [1] as well as Pachamanova et al. [81] the Pension fund perspective.

The model is based on a scenario tree, the standard representation of uncertainty
used in stochastic programming, as illustrated in Fig. 11.1. This should be contrasted
against the linear scenario arrangement in Fig. 11.2. Consider the following vari-
ables specification under the introduced nodal labeling convention.

• Ln are pension payments in node n 2 N ,
• ƒn is the pension fund liability in node n 2 N : this is the discounted value of

all future pension payments,
• c is a (symmetric) percentage transaction cost,
• h

n0
i is the initial holding for asset i D 1; : : : ; I at the root node.

• rn
i is the (price) return of asset i in node n.

• zn
i is the amount of asset i purchased in n.

• yn
i is the amount of asset i sold in n.

• xn
i is the amount of asset i we hold at node n, after rebalancing. Accordingly

Xn D PI
iD1 xn

i
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• �n is the pension fund’s funding ratio in node n: �n D Xn

ƒn

• Ws is the pension fund terminal deficit Ws D ƒs � Xs s 2 S .
• �.w/ is a terminal functional on w. It is a risk measure that in (11.2) is considered

in additive form while here is just applied to the terminal funding gap.

The pension fund manager seeks the minimization of a function of the fund’s
deficit:

min
xn

i ;y
n
i ;z

n
i

X

s2S

�s�.Ws/ (11.11)

s.t. xn0
i D h

n0
i C zn0

i � yn0
i ; 8i (11.12)

xn
i D xa.n/

i .1C rn
i /C zn

i � yn
i ; 8i;8n 2 T (11.13)

.1 � c/
IX

iD1
yn

i � .1C c/
IX

iD1
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i D Ln; 8n 2 T (11.14)

Xn � �ƒn 8n 2 T (11.15)

Ws D
IX

iD1
xa.s/

i .1C rs
i / � Ls; 8s 2 S (11.16)

xn
i ; z

n
i ; y

n
i ;W

s � 0; ys
i D zs

i D 0 (11.17)

Equation (11.12) expresses the initial asset balance, taking the current holdings
into account; the asset balance at intermediate trading dates is taken into account
by Eq. (11.13). Equation (11.14) ensures that enough cash is generated by selling
assets in order to meet current liabilities. Reinvestment at each stage is allowed
until the start of the last stage. No buying or selling decisions are possible at
the horizon where the pension fund surplus is computed. Upon selling or buying
the pension fund manager faces transaction costs as indicated in the cash balance
constraint (11.14). Equation (11.16) is used to evaluate terminal surplus at leaf
nodes. Pension payments in this simple model are net of received contributions,
which for this reason do not appear in the problem formulation.

In this rather simple ALM problem formulation, no cash is actually generated by
current holdings and at each decision stage liabilities are funded through portfolio
re-balancing decisions. Nor is it possible to borrow. This is typically the case
when one faces an investment universe based on total return indices with no cash
flows over the planning horizon. A minimal funding ratio � is allowed over the
horizon. Such a constraint may reflect pending regulatory conditions in the market.
With no borrowing and no cash account it is possible to satisfy all liabilities
only by selling assets, and thus an issue of the fund’s solvency actually arises.
The problem resembles very much a fund manager’s problem when issuing an
annuity with given random cash flows (that may depend on exogenous elements) and
resulting in an optimal self-financing portfolio strategy over a given horizon. From
a financial standpoint this problem falls in the class of liability-driven investment
(LDI) problems [1].
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Formulation (11.11)–(11.16) is in general consistent with a random model for
asset returns and pension payments. Liabilities are stochastic, and they depend
on both future pension dynamics as well as on interest rate dynamics. Pension
payments on the other hand will typically depend on future inflation and employees’
careers. All these random elements must be considered when generating a scenario
tree instance, and they will determine the computational effort in the problem
solution [1, 42, 81]. The constraints are linear and assumed to be satisfied almost
surely, as is common in stochastic programming models.

From a modeling viewpoint, a key distinction is between a (DB) pension scheme
as the one above and a (DC) scheme: in the latter, pension payments and the
accumulation of pension rights by an active member of the fund will depend on the
fund’s return year-by-year. Under such assumption, payments Ln will depend on the
strategy to date inducing a non-linearity in the problem and a non-convex funding
ratio control problem, with both assets and liabilities which are now decision-
dependent. This is one of the challenges when modeling a pure DC pension problem.
Under such scheme, furthermore, the pension fund manager does not carry any
market risk unless a minimum guarantee is attached to the problem [81], in which
case the problem would be associated with a DC protected scheme.

A continuously evolving market of retirement products includes hybrid pension
schemes and life insurance contracts combining optionalities with classical annu-
ities. The problem instance (11.11)–(11.16) may be adapted to the associated ALM
problems. Let in particular �.Ws/ represent the payoff at the terminal horizon of
an annuity. Then the life insurer will seek the least expensive replicating portfolio
to attain such payoff. The present cost of such portfolio, under self-financing
conditions, will also provide the current fair value of the contract. As in [1, 54]
this is the case of a pricing problem in incomplete markets. Market incompleteness
implies the absence of a sufficient set of market instruments to perfectly replicate
the contract payoff. A financial cost will arise whose minimization may be included
in the objective function formulation.

We take the above pension fund management problem as sufficiently general
specification to focus on modeling and solution issues specifically associated with
the problem’s dynamic formulation. We are primarily interested in the way in which
the different concepts of risk are considered in this case, limiting ourselves to
how the PF ALM problem is handled from a computational viewpoint. It will also
provide a way to identify a set of open numerical and modeling issues. A discrete,
multi-stage problem is considered and as specified from the beginning, we maintain
a dynamic system risk control perspective. The following risk sources need to be
taken into account:

• On the asset side, market risk factors affecting the price evolution of assets’
total returns and their probability space characterization including the case of
associated distributional uncertainty. Here we go from factors such as interest
rates and credit spreads for fixed-income assets to risk premia for equity or auto-
regressive models for market indices or factor models in robust approaches and
so forth [37, 39, 81].
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• Liability risk also depends on factors such as interest rates and inflation, but more
specifically on the future behavior of pension members survival intensities and
resulting longevity risk [1] as well as on the contributors to pensioners ratios,
whose dynamics may be difficult to capture.

• Joint A-L risks focus on the correlation between the above risk factors: a sudden
divergence of asset values from liability values resulting into an unexpected fall
of the fund’s solvency ratio may compromise from 1 day to the next a market’s
systemic equilibrium and for such reason is constantly monitored by regulatory
institutions. It is very much in the actuarial tradition to focus on asset-liability
duration mismatching, and this is easily accommodated within a dynamic control
problem such as (11.11)–(11.16).

• Increasingly however all the above elements are captured within a critical
modeling approach in which model risk and thus ambiguity issues are properly
considered [46, 68]. Such effort has been motivated by both the serious deficien-
cies reported by canonical modeling approaches in the recent 2007–2010 global
financial crisis and by the emerging possibility to achieve a more effective overall
risk control with a far less expensive computational effort.

In Sect. 11.5 we relate the above points to those methodological approaches
currently attracting most interest also in the fund management industry and the
only ones able to handle effectively a dynamic management problem: dynamic
stochastic programming (DSP) and distributionally robust optimization (DRO)
based on decision rules. The reference ALM problem is the one introduced above
in this Sect. 11.4.2.

In the final Sect. 11.6 we summarize a set of open modeling issues as well
as desirable developments aimed at facilitating the practical adoption of dynamic
approaches now-a-days still limited to few, even if rather relevant industry cases.

11.5 Solution Methods and Decision Support

The ALM problem formulation (11.11)–(11.16) is preliminary to the adoption of
one or another solution approach. In an operational context, by solving the problem,
a pension fund manager aims at identifying an effective strategic asset allocation
able to preserve the fund’s solvency, payout all liabilities and hedge appropriately
all asset and liability risks. In a liability-driven approach she/he would be primarily
concerned with a cost-effective liability replication and the generation of an
excess return through active asset management. From a methodological viewpoint,
depending on the adopted optimization approach, Eqs. (11.11)–(11.16) will be
subject to further refinements. Increasingly in market practice the solution of such
an optimization problem is embedded in the definition of a decision support system
[36] whose key modules are represented by a user interface, a problem instance
generator, a solution algorithm and a set of output analyses aimed at supporting
the decision process. Hardly any such solution will translate straight-away into an
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actual decision: it will rather provide one of the few fundamental informations for
that. Here below, without going into the complexities associated with the definition
of a decision support tool, we focus specifically on key methodological issues. The
four basic building blocks of a quantitative ALM approach—problem formulation,
stochastics, solution and decisions—must be kept in mind [42].

A DSP approach preserves all four elements, puts a clear emphasis on each such
block and however, specifically with respect to stochastics remains subject to model
risk. Increasingly, validation through appropriate statistical measures and out-of-
sample backtesting of stochastic models and decisions is part of the process. A
robust approach, instead aims at avoiding model risk by incorporating the stochas-
tics within a reformulation of the original optimization problem. Either approach is
aimed at generating an effective decision process and, in a dynamic set-up key to
a consistent problem solution, it focuses on the interaction between decisions and
sequential revelation of uncertainty as expressed by the formulation (11.2)–(11.4).

11.5.1 Stochastic Programming

Consider the optimization problem introduced in Sect. 11.4.2. Let x 2 X be
the control vector or portfolio allocation process and Œ�T.:/j†� be a terminal
risk measure evaluated at the end of the planning horizon, conditional on the
information †. The focus of the pension fund manager is on the risk associated
with possibly deteriorating funding conditions as captured by the funding ratio Xn

ƒn
along the scenario tree. All random elements of the problem enter the definition
of the coefficient tree process �.!/ defined on a probability space .�;†;P/. The
specification of a dynamic risk measures � W X �� 7! R as well as the specification
of conditional expectations E Œ:j†t� for increasing t implies the nesting of the
associated functionals [34]. Any decision is taken relying on current information
and facing a residual uncertainty, as captured by the subtree originating from
that node. Under Markovian assumptions on the decision problem and convexity
of the risk measure � with respect to the decisions, it is possible to solve the
problem recursively relying on a sequence of nested dynamic programs or Benders
decomposition [42, 49]. In the tree representation there is always a one-to-one
relationship between each state of the process—a node in the tree—and its history:
the path from the root to the current node.

The decision space X may accommodate an extended set of asset and liability
classes, accordingly it will increase the dimension of �. The specification of
the dependence of � on !—the stochastics—depends on the adopted statistical
assumptions. Specifically in financial management and pricing applications, the tree
structure is constrained to carry a sufficient branching structure to accommodate
equilibrium conditions such as arbitrage-free conditions [54, 64] leading to the
well-known curse-of-dimensionality problem. An approximation issue arises also
considering the relationship between � and ! and their underlying, maybe, contin-
uous time companions.
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Under this framework the scenario tree structure [37, 54] will determine both the
stochastic input information for the optimization problem and the optimal decision
process or contingency plan output [42]. Along a given scenario, carrying a specific
probability of occurrence, the pension fund manager may collect a remarkable
amount of information, in terms of:

• asset and liability returns, pension payments and contribution flows, funding ratio
and funding gap dynamics,

• optimal investment portfolio rebalancing to replicate a given liability,
• liquidity shortages and need of extraordinary sponsors’ contributions,
• evolving risk exposure as determined by inflation or interest rates,
• sensitivity to exogenous market or liability shocks and so forth.

The optimal decision process will provide the best possible strategy in the face
of the uncertainty captured by the scenario tree process. The discrete framework
enables an extended and thorough analysis of all relationships within the given ALM
model specification and those relationships may be analyzed and validated from a
quantitative as well as qualitative viewpoint by the decision maker [36].

Once the model risks related to a maybe rough analytical specification of the
underlying risk process ! and derivation of �.!/ have been identified, several
solution algorithms may be adopted on decomposed problems or deterministic
equivalent instances:

• Under assumptions of stage-wise independence of the coefficient process, [49]
present an application of stochastic dual dynamic programming (SDDP) to solve
a set of sample average approximations of multiperiod risk measure minimization
problems such as a multiperiod CVaR model [34].

• Under sufficiently general assumptions on the underlying process and convex
constraints [36] employ CPLEX’s quadratically constrained quadratic program-
ming solver, on its own and combined with a conic solver, on the deterministic
equivalent of an insurance ALM problem.

• If the objective function is separable and displays a nested structure with a
Markovian constraint region, nested Benders decomposition may still provide
an efficient solution approach [43].

• Within a rather general modeling framework for a pension planning problem
with power utility, [66] propose a combined stochastic programming and optimal
control approach. As in [36] the authors rely here on GAMS and Matlab as
algebraic language and modeling tool and on MOSEK as conic solver to handle
the non-linearities.

Under different assumptions on the problem specification, the above may be
employed to generate an optimal decision tree process from a given input infor-
mation. The mixed approach proposed in [66] assumes a partition of the decision
horizon between a first horizon for the multistage stochastic program and a second
horizon for the optimal control: in this second period an optimal HJB approach is
adopted relying on a set of constraint relaxations.
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A deterministic equivalent instance of the PF ALM problem is commonly derived
for convex programming problems of large dimensions without sacrificing any
modeling detail but facing the complexities associated with effective sampling
methods [37, 42] and in any case the costs that may be induced by a statistical model
misspecification and high sensitivity of the optimal strategy to the input coefficient
tree process. Still for an ALM problem, departing from a MSP formulation and
related solution, [78] suggest a further direction to minimize the costs associated
with the tree approximation, through the introduction of policy rules: those are
specified in coherence with financial management practice and evaluated by
simulation over maybe complex investment universes. The adoption of Monte Carlo
simulation prior to optimization, for scenario construction, and after for policy rules
evaluation provides a way to control the approximation costs associated with a
scenario-based optimization.

The estimation of the in-sample and out-of-sample stability of a stochastic
program also goes in the same direction [42]. We have in-sample stability when
relying on a given sampling method we generate and solve an instance of the
optimization problem and then repeating such process several times, for different
scenario tree instances we report a relatively stable optimal value of the problem
maybe generated by different optimal implementable decisions. Lack of this type
of stability (which is easy to detect) would result for a given statistical model
and sampling method that different problem instances would result into different
objective optimal values and controls. Out-of-sample stability implies that for
different scenario trees and associated optimal decisions, given each such decision
we employ a procedure to evaluate what would be the solution of the optimization
problem when reducing asymptotically the sampling error (increasing the number of
scenarios): if different input solution vectors result into similar true objective values
we will have out-of-sample stability.

Overall the adoption of a combined set of optimization and simulation techniques
appears highly desirable in presence of financial planning problems, such as a
pension fund ALM problem, specified over long horizons (up to 30 years) and with
a long experience on simulation techniques for risk assessment but not yet fully
accustomed to dynamic optimization approaches.

11.5.2 Dynamic Optimization Via Decision Rules

The ALM model introduced in Sect. 11.4.2 can be viewed as a scenario-tree
approximation of a fundamental control model of the type (11.2)–(11.4). Instead of
using a scenario-tree approximation, however, such control models can be rendered
tractable by using a decision rule approximation. As decision rules are most
frequently used in robust optimization, we will explain the mechanics of the decision
rule approximation on the example of the worst-case optimization problem (11.6).

To capture the flow of information mathematically, we assume that the com-
ponents of the uncertain parameter vector � are revealed sequentially as time
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progresses. As in multistage stochastic programming, future decisions are then
modeled as functions of the observable data. For ease of exposition, assume that
all decisions must be chosen after a linear transformation P� of the uncertain
parameter � (e.g., a projection on some of the components of �) has been observed.
Mathematically, this means that the decision must be modeled as an element of the
function space L 0.P„IX /, which contains all measurable functions mapping P„
to X . In other words, the decision becomes a function that assigns to each possible
data observation P� 2 P„ a feasible action x.P�/ 2 X . In this situation, the robust
program (11.6) becomes an infinite-dimensional functional optimization problem of
the form

min
x2L 0.P„IX /

max
�2U f .x.P�/; �/: (11.18)

The dynamic versions of the stochastic program (11.5) and the distributionally
robust model (11.7) are constructed similarly in the obvious way. All of these
models easily extend to more general decision-making situations where different
transformations P1�; : : : ;PT� of the uncertain parameter � are observed at times
1; : : : ;T and where x admits a temporal decomposition of the form .x1; : : : ; xT/,
with xt capturing the subvector of the decisions that must be taken at time t,
respectively. This is exactly what happens in the ALM model of Sect. 11.4.2, where
Pt� coincides with the collection of all market and liability risk factors revealed
at time t. To keep the presentation simple, however, we will focus on the generic
model (11.6) in the remainder.

Dynamic models are often far beyond the reach of analytical methods or classical
numerical techniques plagued by the notorious curse of dimensionality. Rigorous
complexity results indicate that, for fundamental reasons, dynamic models need to
be approximated in order to become computationally tractable [90]. For instance,
one could approximate the adaptive model (11.18) by the corresponding static robust
optimization problem (11.6). This approximation is conservative—in the sense that
it artificially limits the decision maker’s flexibility and therefore leads to an upper
bound on the optimal value of (11.18). While this approximation may seem overly
crude, it has been shown to yield nearly optimal portfolios in various multi-period
asset allocation problems and has distinct computational advantages over scenario-
tree-based stochastic programming models [6]. Static robust formulations of the
multiperiod portfolio selection problem with transaction costs are also considered
in [11], where it is shown empirically that robust polyhedral optimization can
enhance the performance of single period and deterministic multiperiod portfolio
optimization methods.

Instead of naively approximating adaptive by static models, one can alternatively
impose a linear structure on the recourse decisions, that is, one may approximate
the measurable function x.P�/ by a linear function XP�, which is completely
determined by the matrix X. The sensitivity matrix X determines the rate of
change of each scalar decision with respect to changes in the uncertain parameters.
Under this linear decision rule approximation, the adaptive robust optimization
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problem (11.18) reduces to

min
X

max
�2U f .XP�; �/

s:t: XP� 2 X 8� 2 U :
(11.19)

Linear decision rules have attracted considerable interest in recent years because
they inherit the favorable scalability properties of static robust optimization models.
Indeed, (11.19) is formally equivalent to a static robust optimization problem where
the sensitivity matrix X represents the static (here-and-now) decision.

The linear decision rule approximation has been popularized with the seminal
paper [7]. Fuelled by their success in robust optimization, linear decision rules have
also gained renewed interest from the stochastic programming community; see, e.g.,
[90]. To improve the approximation quality, several authors have proposed more
flexible non-linear decision rules such as deflected and segregated decision rules,
which can be interpreted as linear decision rules on an augmented probability space
and therefore display favorable scalability properties [33, 56]. An efficient procedure
to quantify the degree of suboptimality of linear and non-linear decision rules has
been proposed in [68] and [53], respectively.

Linear decision rules have been used with great success in dynamic asset
allocation with transaction costs [22, 23]. They have also been used in the context
of portfolio execution, where they were shown to achieve near optimal perfor-
mance [74]. Both linear and non-linear decision rules lend themselves ideally to
integration with constraint sampling techniques from data-driven optimization [94].
Interestingly, there is ample evidence suggesting that simple decision rules with few
degrees of freedom may systematically outperform more versatile decision rules
which are prone to overfitting and error-maximization phenomena. For instance,
in [19] the portfolio weight of each stock is modeled as a function of the firm’s
market capitalization, book-to-market ratio, or lagged return. As in data-driven
optimization, the coefficients of this simple portfolio rule are found by maximizing
the average utility an investor would have obtained by implementing the policy over
a historical sample period. This approach is simple to implement and produces
outstanding results in and out-of-sample experiments. Similarly, attractive out-of-
sample results for an index tracking application were obtained with the robust
data-driven dynamic programming approach proposed in [59].

11.6 Open Issues

We have considered a rich set of modeling and theoretical issues from an extended
set of contributions to clarify key diverging points that may emerge when similar
financial optimisation problems are addressed relying on different methodological
assumptions. Without going into a rigorous treatment, the generality of ALM
approaches to accommodate a wide range of financial management problems, from
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portfolio selection to derivatives pricing in incomplete markets, has been empha-
sised. Specifically in relation with a pension fund ALM problem, we analysed the
decision processes as a sequence of steps, each one carrying its own modeling and
methodological complexity, but jointly leading to the definition of quantitatively-
based optimal decisions. Indeed we have also remarked that efficient decision
making does not necessarily require excessive modeling complexity and a friendly
approach to computational management, based on simple probabilistic assumptions,
may be sufficient. By proposing a unified modeling framework, our interest was
primarily on the potentials offered by the integration within a given method of
results and advances may be achieved under other modeling and optimization
paradigms [38].

Without ambition to be exhaustive in this respect, in what follows we would
like to indicate a set of relevant open issues which may emerge from the introduced
financial domains but also carrying implications to other application areas. We focus
on the two fundamental elements of decision making under uncertainty: stochastics
as featured by �.!/ and solutions x 2 X in (11.2)–(11.4).

11.6.1 Probability Distributions and Optimization

A compact formulation of a stochastic program under distributional uncertainty has
been introduced as

min
x2X max

P2P EPŒf .x; �/�: (11.20)

If the ambiguity set P is given by a singleton fPg, we remain within a canonical
stochastic programming framework: here under maybe an extremely challenging
computational environment, relying on the discrete scenario tree representation key
issues such as arbitrage free market conditions, market incompleteness, accurate
stress-testing and sensitivity analysis (along a set of scenarios), as well as a rich
sequence of I/O analyses can be conducted in a sufficiently straight-forward way.
The optimal risk control x takes the form of an optimal tree decision process and
contingency plan. This is done at an approximation cost and somehow aware of
the potential damages that might be induced by estimation errors in parametric
models or the adoption of generating processes for � that may be contradicted
by market dynamics. Such risks would persist under in-sample and out-of-sample
stable programs.

For general ambiguity sets that may contain more than one distribution, the
worst-case expectation with respect to P corresponds to a coherent risk measure,
that is, maxP2P EPŒf .x; �/� can be viewed as the risk of the random loss f .x; �/
under the coherent risk measure induced by P [2]. In a distributionally robust
setting, arbitrage-freeness of the market is usually no serious concern. In fact, the
existence of arbitrage portfolios is ruled out if the underlying financial market is
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arbitrage-free under at least one distribution P 2 P; and this is generically the
case if P is defined through moment constraints or as a ball in the space of
probability distributions. To our best knowledge, market incompleteness has not
yet been studied systematically in a distributionally robust framework. However,
problem (11.20) lends itself to various stress-tests and sensitivity experiments. For
example, it is well-known that the extremal distribution achieving the worst-case
expectation in (11.20) for a fixed decision x can be computed systematically and
efficiently for most commonly used ambiguity sets; see e.g. [86] for an explicit
example. This worst-case distribution can be used to conduct contamination or
stress-test experiments. Specifically, the performance of a fixed decision x can be
evaluated under a nominal distribution contaminated with an extremal distribution.
The sensitivity of the resulting out-of-sample performance with respect to the
contamination parameter provides valuable information about the robustness of the
decision x. Another striking benefit of the distributionally robust model (11.20) is
that it can sometimes be solved more efficiently than the corresponding stochastic
program with a nominal distribution [40].

In principle data-driven approaches may be used to construct P [14, 40]. It is
also possible to use the empirical distribution directly in the construction of the
ambiguity set; see e.g. [75]. Serial independence of the training data may be needed
in this case, however, to establish rigorous out-of-sample performance guarantees.
But such an assumption may not be justified in reality. An interesting avenue
for future research is to develop out-of-sample guarantees for serially dependent
training data; e.g., for data generated by a Markov or an autoregressive process.

11.6.2 Dynamic Time Consistency

The concept of time-consistent dynamic risk measures [34, 49] is key to the
definition of a dynamic risk control problem and may be analysed with respect
to the evolution of the process �.!/ as well as to the optimal control x [34]:
in this latter case loosely speaking time consistency implies that as time evolves
t D 0; 1; 2; : : : ;T by solving a sequence of stochastic control problems leading
to optimal controls fxgT

sDt optimality would be preserved throughout for each t. In
a discrete setting for scenario tree processes such condition should be considered
conditionally with respect to actual realizations. As for time-consistency of a risk
measure with respect to �.!/ this would imply the persistence as time evolves
of previously assessed risk rankings conditionally on the sequence of associated
�-fields. In this case we have a form of monotonicity since we require that as
information accumulates, successive evaluations of a random process by the risk
measure remain homogenous.

In either cases, the evolution of information plays a central role: this is captured
for risk measures by the evolution of the process filtration, while in optimal control
problems as in (11.2)–(11.4) the key information would be associated with the
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evolution of the state variable st. In [34] we discuss the conditions to connect the two
concepts within a recursive approach based on dynamic programming principles.
Recursivity of risk measures is not always attainable [34].

In [49] conditions for time-consistency of an optimization problem based on
nested CVaR measures is studied, leading to a solution approach based on SDDP.

In this context, the concept of cost of time-inconsistency appears key to the
discussion as introduced in [34] and may lead to an effective evaluation of its
implications on the optimization problem. In a discrete scenario tree setting the
discussion should be specialised with respect to conditional risk measures. In
this direction, across the different dynamic optimization paradigms, research is
continuing.

11.6.3 Practical Financial Optimization

The sheer amount of literature on financial optimization shows a huge academic
interest. From the practical point of view, there are in fact some interesting real-
life applications documented [3, 13, 29, 36, 77], but it may be argued that the full
potential has not been achieved, yet, at least as far as dynamic portfolio optimization
is concerned. What are the main issues potentially hindering the application of
financial optimization models in practice? Computational efficiency is certainly a
concern in multistage stochastic programming models, but it is arguably not the
main issue in other cases. One question we should ask is what would be the main
sources of concern for a practitioner considering the use of an optimization model
as a decision support tool:

• How will I be held accountable for the decision I am going to make?
• Are there any misalignments between the model’s objective and how my

performance is assessed?
• How can I trust the model and understand the reasons behind its recommenda-

tions?
• How can I compare the model output against alternatives?
• How can I test the robustness of the model’s recommendation?
• How can I incorporate my own views?

Some of these concerns, being actually related to a principal-agent type of
problem, may look nontechnical, but they should be addressed somehow in practical
optimization. There is little point in considering model objectives that not aligned
with the actual incentives of the decision maker. For instance, it is a nontrivial task to
align long-term objectives with potential short-term performance evaluation affect-
ing a portfolio manager. Furthermore, in statistical learning there is a well-known
trade-off between model’s sophistication, which may contribute to its predictive
power, and its interpretability [61]. Relying on the output of a sophisticated model
may be hard for a manager, if she gets a supposed optimal solution, but it is difficult
to understand why that is the optimal solution. Furthermore, sophisticated models
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may be fragile. They are subject to overfitting issues in statistical learning, and
regularized approaches (like lasso regression) may be helpful. We note that the
contribution of [42] has a similar flavor. By a similar token, as suggested in [16],
under significant uncertainty simpler rules may be preferable [17]. This does not
imply that sophisticated models must be given up, but assessing their performance
under stress is certainly no easy task. As suggested in [76], when model risk is an
issue, even stress-testing per se may be hard to grasp under certain asset pricing
models.

Recent trends in decision rules for dynamic optimization offer solutions that
may be easily tested under different scenarios, without requiring extensive rolling
horizon simulations, which are computationally demanding. Approximate dynamic
programming offers similar benefits for a skeptical manager. When choosing a
modeling framework, these considerations may be relevant, and in this way trust
may be built, possibly leading to an easier adoption and, maybe, the development of
more refined approaches over time.

Personal views are relevant to a portfolio manager, and the increasing role of
Bayesian-learning approaches in finance and risk management is well documented
[85]. The Black–Litterman model is a well-known approach that incorporates
Bayesian principles [87]. They are also relevant for risk management [88], as they
provide one possible answer to model risk issues. Model robustness and ambiguity
are the subject of active research, and an integration of available approaches
is called for from a practitioner’s point of view, with an emphasis of proof-
of-concept methods to evaluate actual out-of-sample performance under stressed
market conditions.

11.7 Conclusions

The variety of contributions in this volume and the companion SI shows that, after
several years, financial optimization is still a field in flux and a very active research
field. New challenges have emerged from the financial side, and new algorithmic
frameworks have been developed to address issues in previous models and solution
methods. Integration opportunities between solution methods, like stochastic and
robust optimization, or dynamic programming and stochastic programming with
recourse, are rather evident, as well as the interplay of different financial problems
like pricing, hedging, and asset management. We did not cover every possible
application of optimization modeling to finance; for instance, we did not consider
pricing model calibration and optimal order execution. These and other applications
testify the interest and the practical relevance of this research field.
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89. A. Shapiro, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming: Modeling
and Theory (SIAM, Philadelphia, 2009)

90. A. Shapiro, A. Nemirovski, On complexity of stochastic programming problems, in
Continuous Optimization: Current Trends and Applications, ed. by V. Jeyakumar, A.M.
Rubinov (Springer, Berlin, 2005), pp. 111–144

91. G. Szego (ed.), Risk Measures for the 21st Century (Wiley, New York, 2004)
92. R.H. Tütüncü, M. Koenig, Robust asset allocation. Ann. Oper. Res. 132(1–4), 157–187 (2004)
93. S. Pagliarani, T. Vargiolu, Portfolio optimization in a defaultable Lévy-driven market model.

OR Spectr. 37(3), 617–654 (2015)
94. P. Vayanos, D. Kuhn, B. Rustem, A constraint sampling approach for multi-stage robust

optimization. Automatica 48(3), 459–471 (2012)
95. W. Wiesemann, D. Kuhn, M. Sim, Distributionally robust convex optimization. Oper. Res.

62(6), 1358–1376 (2014)
96. H. Xu, D. Zhang, Monte Carlo methods for mean-risk optimization and portfolio selection.

Comput. Manag. Sci. 9(1), 3–29 (2012)
97. S. Zymler, D. Kuhn, B. Rustem, Worst-case value at risk of nonlinear portfolios. Manag. Sci.

59(1), 172–188 (2013)
98. S. Zymler, B. Rustem, D. Kuhn, Robust portfolio optimization with derivative insurance

guarantees. Eur. J. Oper. Res. 210(2), 410–424 (2011)



Index

A
Additive distortion risk, 17
Agent-based model, 233
All Bonds (AB) methodology, 153–157
ALM. See Asset-liability management (ALM)
American contingent claims (ACC), 139–141,

143
American options

ACC, 139–141, 143
AP1, 141–142, 144
bang-bang property, 144
cash flows, 143
electricity swing options, 138
four-period market, 144–145
min–max expression, 138–139, 146–148
mixed-integer programming, 138
multiple exercise rights, 138
non-recombinant tree, 142
non-zero interest rate, 145–146
primal-dual Monte-Carlo algorithm, 138
stochastic scenario tree, 139–141

Asset-liability management (ALM), 256
asset returns, 91
computational experiments

descriptive statistics, 107–109
nominal strategy, 110
real data, 110, 113, 114
risk-free asset, 107
risky assets, 107
robust optimization strategy, 109
rolling horizon optimization procedure,

107–108
simulated data, 110–112
stochastic programming strategy, 110

decision variables, 91
definition, 89
future liabilities, 91
longevity risk management, 123–124
M risky assets, 91
multiperiod ALM optimization model,

91–93
multiperiod problem, 90
notation, 91, 92
optimal contribution rate, 91
optimal financial decision making

asset balance, 275–277
asset pricing, 273
canonical asset-liability management,

273–274
genuine asset-liability models,

272
liability-driven investment models,

272
pension fund management, 274–275
portfolio management, 272
risk-reward tradeoff, 271
utility function, 271

optimal investment strategy, 91
risk-free asset, 91
robust ALM models

asymmetric uncertainty sets, 102–103
cumulative gross returns, 99
decision variables, 99, 100
free variable, 100
input selection, 103–106
symmetric uncertainty sets, 101–102
uncertain parameters, 100

robust investment decisions, 96–99

© Springer International Publishing Switzerland 2017
G. Consigli et al. (eds.), Optimal Financial Decision Making under Uncertainty,
International Series in Operations Research & Management Science 245,
DOI 10.1007/978-3-319-41613-7

291



292 Index

Asset-liability management (ALM) (cont.)
scenario-based ALM model

amount of cash, 95
balance constraints, 94
funding ratio, 95
objective function, 95
scenario tree construction, 93–94
short sales, 95

Asset liability models, 152
Asset price dynamics

discrete time asset pricing model, 45–48
factor models, 36
international asset allocation model, 37
jump components, 46–47
macro economic factors, 37, 38
market mode, 36
micro economic factors, 37, 38
regimes

Bear Market, 43
Bull Market, 43
Chapman-Kolmogorov equations, 39
dependent risk sensitivity, 47
factor thresholds, 40–41
fitted factors, 45
hidden states, 42–43
independent indices, 40
Markov regime-switching model,

36–37, 39
rate of switching, 39
transition probability function, 39
Transit markets, 43, 44

Sector Exchange Traded Funds
portfolio performance, 49–52
predicting asset returns, 48–49

Asset pricing, x
Asymptotic average growth rate, 203
Average annual yields (AAY), 218

B
Baum-Welch algorithm, 170
Bayesian information criterion (BIC), 170–171
Best constantly rebalanced portfolio (BCRP),

203
Black–Litterman model, 286
Black–Scholes–Merton model, 122, 124
Buy and hold (B and H) strategies, 124

C
California State Teachers’ Retirement System

(CalSTRS), 154–155
Canonical asset-liability management,

273–274
CAP:Link, 168, 169

Central limit theorem (CLT), 207
Chapman-Kolmogorov equations, 39
Chernoff’s inequality, 62
Closed-loop strategy, 77–79
Commodity index, 169
Commodity Trading Advisor (CTA) funds,

158, 161, 162, 166
Conditional Value-at-Risk (CVaR), 90
Constantly rebalanced portfolio (CRP)

selection
asymptotic average growth rate, 203
Breiman proposition, 210–211
CLT, 207
Dirac distribution, 208
diversify capital, 202
Donsker’s functional central limit theorem,

207–208
Hoeffding inequality, 206–207
investor’s wealth, 203
Kolmogorov’s strong law, 204
log-optimal investment, 208–209
log-optimal portfolio, 203
log-returns, Coca Cola, 205–206
market times, 209–210
optimality, 204
proportional transaction cost, 207
random walks, 210

Constant proportion portfolio insurance (CPPI)
strategy, 125–126

Constructive methods, 234
Crash periods, 166
Credit spread strategies, 126
Credit Suisse/Tremont Hedge Fund Index

(CST), 243
CRP selection. See Constantly rebalanced

portfolio (CRP) selection
CTA funds. See Commodity Trading Advisor

(CTA) funds

D
Decision model

ALM domain, 260
data-driven optimization, 269–271
discrete-time stochastic control, 260–261
model building and solution method

dynamic risk measures, 266
estimation errors, 266–267
full-fledged uncertainty model, 264
metric-based ambiguity sets, 269
Monte Carlo methods, 264
multistage stochastic programming,

263–264
perfect foresight, 264



Index 293

robust models, 264
robust optimization, 267–268
scenario trees, 262–263
simple one-period tree, 264–265
stochastic control problem, 262
uncertainty, 262
Value-at-Risk minimization models,

268–269
Defined-benefit pensions, 154
Discrete-time stochastic control model, 257
Distributionally robust optimization (DRO),

277
Distribution-vs. law-invariant risk measures, 7
Donsker’s functional central limit theorem,

207–208
Dynamic stochastic programming (DSP), xi,

277
objective function, 178, 179
Pioneer guaranteed return funds, 180–181,

189–195
portfolio risk under-estimation, 181–188
robust optimization, 179
sampling error, 179
standard linear algebra based procedure,

189

E
Ellipsoidal uncertainty set, 96–99
Empirical shortfall optimization strategy, 84,

85
Equities and fixed income instruments, 151
Ergodic theorem, 213–214
Estimation errors, 266–267
Expected maximum shortfall (EMStC1/; 182

Exposure Commodity Index, 162, 163

F
Financial asset liability management problem,

179
First-order optimality condition, 116
First-order stationary Markov process, 219
Fixed proportions (FP), 124–125
FTSE All World Index, 160, 161, 165

G
GAMS, 279
Genuine asset-liability models, 272
German life insurers, 153
Growth optimal investment strategy

CRP selection
asymptotic average growth rate, 203

Breiman proposition, 210–211
CLT, 207
Dirac distribution, 208
diversify capital, 202
Donsker’s functional central limit

theorem, 207–208
Hoeffding inequality, 206–207
investor’s wealth, 203
Kolmogorov’s strong law, 204
log-optimal investment, 208–209
log-optimal portfolio, 203
log-returns, Coca Cola, 205–206
market times, 209–210
optimality, 204
proportional transaction cost, 207
random walks, 210

time varying portfolio selection
AAY, 218
average growth rate, 211
conditional expectations, 217
elementary portfolio, 217–218
ergodic theorem, 213–214
first-order stationary Markov process,

219
kernel based portfolio strategies, 216
log-optimum portfolio, 211
market process, 215
martingale argument, 214
martingale difference sequence,

212–213
portfolio vector, 211
Scheffé and Riesz-Vitali theorems,

220–221
stationary and ergodic process, 212
survival bias, 216

Guaranteed minimum investment benefit
(GMIB) variable annuities, 180

H
Hedge fund index, 158–159
Heuristics

agent-based model, 233
closed-form objective functions, 233
constraints

include constraint N; 236
penalise x; 236–237
repair x; 236
‘throw away,’ 236
transform x; 236

constructive methods, 234
definition, 232
iterative search methods, 234
optimisation heuristic, 233



294 Index

Heuristics (cont.)
principles, 234–235
random solutions, 237–238
rule-of-thumb, 232
scalar-valued function, 233

Hidden Markov model (HMM), 169–170
Hoeffding inequality, 206–207

I
IBM CPLEX, 68
Industry-level momentum strategy, 157–158
Inner minimization problem, 116, 117
Iterative search methods, 234

J
Japanese pension plans, 154
J.P. Morgan Global Aggregate Bond Index,

160, 161, 167

K
Kernel based portfolio strategies, 216
Kolmogorov’s strong law, 204

L
Lagrange multiplier-based rule, 68
Lagrangian function, 116
Lattice based claim evaluation techniques, 138
Liability-driven investment (LDI) strategies

CPPI strategy, 125–126
credit spread strategies, 126
liquid and illiquid assets, 153–157
optimal financial decision making, 272
problems, 275
risky and safe assets, 126
survival index strategies, 127
term spread strategies, 126
wealth strategies, 127

Linear decision rules, 282
Liquid and illiquid assets

all alternative strategy, 153–157
LDI/AB methodology, 153–157
Target Commodity Index

breakout strategy, 163
long-only strategies, 162
long-short dynamic tilting tactics, 162
net exposure, 163
optimal portfolios construction,

168–173
overlay strategies, 166–167
performance characteristics, 163–165

stock–bond mix benchmark, 164
trend following strategy, 163

tracking indexes, alternative classes
CTA funds, 158, 161, 162, 166
Exposure Commodity Index, 162, 163
FTSE All World Index, 160, 161, 165
GSCI Spot price and GSCI Excess, 161,

162
hedge fund index, 158–159
industry-level momentum strategy,

157–158
inflation, 159
J.P. Morgan Global Aggregate Bond

Index, 160, 161
NewEdge CTA index, 164
S&P 500 index, 159–161
statistical replication, 157

Log-optimal portfolio, 203
Longevity risk, ix, x, 152
Longevity risk management

ALM, 123–124
assets and liabilities, 132–135
best basis strategies, with liabilities, 131
best basis strategies, without liabilities, 131
diversification procedure, 127–128
Latin hypercube sampling, 129
liability-driven investment strategies

CPPI strategy, 125–126
credit spread strategies, 126
risky and safe assets, 126
survival index strategies, 127
term spread strategies, 126
wealth strategies, 127

liability link effect, 129
longevity-linked instruments

delta hedging, 122
demand, 121
natural hedging, 122
risk neutral valuation, 122

mortality-linked instruments, 122
non-liability-driven investment strategies

B and H strategies, 124
diversified strategy, 130
FP strategy, 124–125
TDF, 125

objective function, 129
optimal aggregate investment strategy, 129

Long-term investors, 156

M
Markov regime-switching model, 36–37, 39
Markowitz contribution, viii
Markowitz’s mean-variance model, 240



Index 295

Markowitz’s model, 226
m-at-a-time rule, 68
Model errors, 229
Modern portfolio theory (MPT), 256
Monte Carlo methods, 264
Monte-Carlo simulation techniques, 138
MSCI EM index, 152, 153
Multiperiod ALM optimization model, 91–93
Multiperiod CVaR model, 279
Multi-period risk measures

additive risk measure, 11, 12
Bellman’s optimality principle, 13
cash-flow aggregators, 11–12
coherent and time consistent risk measures,

16–19
dynamic risk control

axiomatic theory, 10
canonical probability space, 2
conditional risk function, 3
conditional value-at-risk, 15–16
dynamic programming technique, 28
feed-back equation, 3
information monotonicity, 6–7
investment horizon, 2
mean-variance models, 20–22
non-anticipativity condition, generic

formulation, 3
optimal risk control problem, 3
optimal risk control/risk minimisation

approaches, 19
ranking, 10
risk management applications, 19
risk measures, 4–6
scenario tree technique, 28–29
SDDP method, 27–28
strongly time consistent, 11
time consistency, 7–10
time consistent multi-period MV model,

24–27
time inconsistency problem, 19, 23–24
time inconsistent mean-CVaR models,

22–23
time-t loss, 2
value-at-risk, 14
variance, 13–14
weakly time consistent, 11

recursive risk measure, 11
terminal wealth risk measure, 11, 12

Multi-period scenario design
closed-loop strategy, 77–79
open-loop strategy, 74–77
sliding-horizon implementation, 79

Multi-stage stochastic programming, xi, 138,
168–173

N
Nasdaq 100 index, 157
NewEdge CTA index, 164
New York Stock Exchange (NYSE), 205
Nonhomogeneous point processes, 36
Non-liability-driven investment strategies,

129–130
B and H strategies, 124
diversified strategy, 130
FP strategy, 124–125
TDF, 125

Numerical errors, 229

O
One-period investment model, 228–229
Open-loop strategy, 74–77
Optimal financial decision making

ALM
asset balance, 275–277
asset pricing, 273
canonical asset-liability management,

273–274
genuine asset-liability models, 272
liability-driven investment models, 272
pension fund management, 274–275
portfolio management, 272
risk-reward tradeoff, 271
utility function, 271

arbitrage free, 259
decision model (see Decision model)
discrete-time stochastic control model, 257
dynamic time consistency, 284–285
features, 256–257
new market features, 258–259
practical financial optimization, 285–286
probability distributions and optimization,

283–284
risk-adjusted performance, 259
solution methods and decision support

ALM problem formulation, 277–278
DSP approach, 278
dynamic optimization, 280–282
stochastic programming, 278–280

special issue (SI) of OR Spectrum, 256
Optimal selection rule, 67–68

P
Pension fund

ALM (see Asset-liability management
(ALM))

CVaR, 90
decision support model, 90



296 Index

Pension fund (cont.)
management, 274–275
pre-specified uncertainty sets, 90
robust optimization, 90

Pension plans, 152
Pioneer guaranteed return fund problem

annual bond roll-over constraints, 198
asset position limits, 191, 192
barrier constraints, 199
cash balance constraints, 196–197
closed-end funds, 180
GMIB variable annuities, 180
implicit portfolio volatility constraints,

192
in-and out-of-sample results, 189–191, 194
in-sample portfolio allocation stability

results, 191, 193
in-sample stability results, 189, 191
liquidation constraints, 198
model parameters and variables, 196, 197
non-anticipativity constraints, 199
open-end funds, 180
out-of-sample results, 192, 195
portfolio change constraints, 199
quantity balance constraints, 197–198
root node implementable decisions, 189
small-sample scenario tree, 180–181
wealth accounting constraints, 198–199

Portfolio risk under-estimation
EMStC1; 182

Gaussian returns model, 182
immediate portfolio return, 181
minimum portfolio return, 181
normalized expected maximum shortfall,

182, 183
portfolio return and volatility, 181
position limits

asset returns, 188
volatility constraint, 183–188
volatility proportional constraints,

188
target return, 181

Portfolio selection
‘the analyst,’ 226
downside semi-variance, 226
heuristics (see Heuristics)
Markowitz’s model, 226
one-period investment model, 228–229
principles, 227
sources of error

back-of-the-envelope calculations, 230

empirical errors, 229
in-sample and out-of-sample quality,

232
Markowitz’s objective function, 231
model errors, 229
numerical errors, 229
round-off error, 230
transactions costs, 230
truncation error, 230–231
value-at-risk, 231
variance-covariance matrix, 230

TA (see Threshold Accepting (TA))
Price reversion, 36
Primal-dual Monte-Carlo algorithm, 138
Princeton University Endowment Asset

Allocation, 155–157
Probabilistic laws of tracking indexes,

168

Q
Quantitative easing measures, 154

R
Random convex programs (RCP), 69, 81–83
Rebalancing gains, 155
Risk, 36
Risk hedging strategy, 9
Risk-reward tradeoff, 271
Robust ALM models

asymmetric uncertainty sets, 102–103
cumulative gross returns, 99
decision variables, 99, 100
free variable, 100
input selection, 103–106
symmetric uncertainty sets, 101–102
uncertain parameters, 100

Robust mean-variance portfolio allocation
strategies, 96

Robust optimization, x, xii, 267–268
Robust portfolio allocation models, 79–81
Round-off error, 230

S
Scenario-based ALM model

amount of cash, 95
balance constraints, 94
funding ratio, 95



Index 297

objective function, 95
scenario tree construction, 93–94
short sales, 95

Scenario-based optimization, 69, 81–83
Scenario-based portfolio design approach

asset allocation, 83–86
model based approach vs. data-driven

approach, 56
multi-period scenario design

closed-loop strategy, 77–79
open-loop strategy, 74–77
sliding-horizon implementation, 79

reliability, 56
scenario-generating oracle, 58
single-period scenario design

composition constraints, 58
data-driven portfolio design, 66
k-th order sample, 58–66
Lagrange multiplier-based rule, 68
m-at-a-time rule, 68
optimal selection rule, 67–68
random matrix, 66
RCP/scenario-based optimization, 69,

81–83
robust portfolio allocation models,

79–81
scenario-generation oracle, 66
shortfall probability, 69–73

Scheffé and Riesz-Vitali theorems, 220–221
SDDP method. See Stochastic dual dynamic

programming (SDDP) method
Sector Exchange Traded Funds

portfolio performance, 49–52
predicting asset returns, 48–49

Separable expected conditional function,
17–18

Sharpe ratio, 271
Single-period scenario design

composition constraints, 58
data-driven portfolio design, 66
k-th order sample

I quantile, 63–66
shortfall probability, 58–63

Lagrange multiplier-based rule, 68
m-at-a-time rule, 68
optimal selection rule, 67–68
random matrix, 66
RCP/scenario-based optimization, 69,

81–83
robust portfolio allocation models, 79–81
scenario-generation oracle, 66

shortfall probability
deterministic level, 69
deterministic vector, 69
expected shortfall probability, 70
optimal data-driven portfolio, 70–73
optimal portfolio allocation strategy, 69
uniqueness, 69–70

Snell envelope, 138
S&P 500 index, 159–161, 167
Standard algebraic procedure, 185
Statistical replication, 157
Stochastic dual dynamic programming

(SDDP) method, 27–28, 279
Stock/bond allocations, 152
Stock retrenchment, 151
Survival index strategies, 127

T
TA. See Threshold accepting (TA)
Target Commodity Index, 162–164

breakout strategy, 163
long-only strategies, 162
long-short dynamic tilting tactics, 162
net exposure, 163
optimal portfolios construction, 168–173
overlay strategies, 166–167
performance characteristics, 163–165
stock-bond mix benchmark, 164
trend following strategy, 163

Target date fund (TDF), 125
Term spread strategies, 126
Threshold accepting (TA), x, xii

algorithm, 239–240
data, backtesting scheme, 243–244
Dmax, 248–250
‘genesis’ of model, 244–245
implementation

constraints, 242
neighbourhood function, 241
objective function, 240–241
threshold sequence, 241–242

reporting of results, 243–244
tracking error and excess return, 245–250

Time-consistent dynamic risk, 284–285
Time-consistent investment policies, ix
Time varying portfolio selection

AAY, 218
average growth rate, 211
conditional expectations, 217
elementary portfolio, 217–218



298 Index

Time varying portfolio selection (cont.)
ergodic theorem, 213–214
first-order stationary Markov process, 219
kernel based portfolio strategies, 216
log-optimum portfolio, 211
market process, 215
martingale argument, 214
martingale difference sequence, 212–213
portfolio vector, 211
Scheffé and Riesz-Vitali theorems,

220–221
stationary and ergodic process, 212
survival bias, 216

Truncation error, 230–231

V
Value-at-risk (V@R) minimization approach,

83, 268–269

W
Wasserstein metric, 271
Wealth strategies, 127

Z
Zero-coupon bond (ZCB), 188
Zero-net alpha-adjustment robust framework,

96


	Preface
	References

	Contents
	1 Multi-Period Risk Measures and Optimal Investment Policies
	1.1 Introduction
	1.2 Dynamic Risk Control
	1.2.1 Key Properties of Dynamic Measures
	1.2.1.1 Extension of Risk Measures' Axioms
	1.2.1.2 Dynamic Risk and Information Processes

	1.2.2 Time Consistency
	1.2.2.1 Time Consistency of Multi-Period Risk Measures
	1.2.2.2 Time Consistency of Optimal Investment Policies

	1.2.3 Discussion

	1.3 Multi-Period Risk Measures
	1.3.1 Statistical Estimates of Dynamic Risk Measures
	1.3.1.1 Variance
	1.3.1.2 Value-at-Risk
	1.3.1.3 Conditional Value-at-Risk

	1.3.2 Coherent and Time Consistent Risk Measures

	1.4 Dynamic Risk Control and Risk Measures Selection
	1.4.1 Mean-Variance Models
	1.4.2 Time Inconsistent Mean-CVaR Models
	1.4.3 Time Inconsistency and Time Consistent Revisions
	1.4.4 Time Consistent Models
	1.4.5 Practical Solution Methods for Optimal Dynamic Risk Control

	1.5 Conclusions and Future Research
	References

	2 Asset Price Dynamics: Shocks and Regimes
	2.1 Introduction
	2.2 Risk Factors in Financial Markets
	2.2.1 Regimes from Factor Thresholds
	2.2.2 Regimes from Hidden States
	2.2.3 Regime Fitting

	2.3 Discrete Time Asset Pricing Model
	2.3.1 Model with Jumps
	2.3.2 Model with Regimes

	2.4 Application: Exchange Traded Funds
	2.4.1 Predicting Asset Returns
	2.4.2 Portfolio Performance

	2.5 Conclusion
	References

	3 Scenario Optimization Methods in Portfolio Analysis and Design
	3.1 Introduction
	3.1.1 Definitions and Preliminaries

	3.2 Single-Period Analysis of Portfolio Shortfall Probability
	3.2.1 The Shortfall Probability of the k-th Order Sample
	3.2.2 The k-th Order Sample as an Approximator of the ε-Quantile

	3.3 Single-Period Scenario Design
	3.3.1 The Return Selection Rule
	3.3.2 The Shortfall Probability
	3.3.3 Shortfall Probability of the Optimal Data-Driven Portfolio

	3.4 Multi-Period Scenario Design
	3.4.1 Open-Loop Strategy
	3.4.2 Closed-Loop Strategy with Affine Policies
	3.4.3 Sliding-Horizon Implementation

	3.5 Scenario Methods for Single-Period Robust Portfolio Design
	3.5.1 Robust Portfolio Allocation Models
	3.5.2 The Scenario Approach

	3.6 A Practical Asset Allocation Example
	3.7 Conclusions
	References

	4 Robust Approaches to Pension Fund Asset Liability Management Under Uncertainty
	4.1 Introduction
	4.2  ALM Model for Pension Funds: Problem Statement
	4.3 Scenario-Based ALM Model for Pension Funds
	4.4 Robust Investment Decisions
	4.5  Robust ALM Models for Pension Funds
	4.5.1 Robust ALM Model Formulation with Symmetric Uncertainty Sets
	4.5.2 Robust ALM Model Formulation with Asymmetric Uncertainty Sets
	4.5.3  Selecting Inputs to the Robust Optimization Models

	4.6 Computational Experiments
	4.6.1 Design of Experiments and Data
	4.6.2 Computational Results

	4.7 Concluding Remarks
	Appendix
	References

	5 Liability-Driven Investment in Longevity Risk Management
	5.1 Introduction
	5.2 The Asset-Liability Management Problem
	5.3 Investment Strategies
	5.3.1 Non-liability-Driven Investment Strategies
	5.3.2 Liability-Driven Investment Strategies

	5.4 Diversification Procedure
	5.5 Numerical Results
	5.6 Conclusions
	5.7 Assets and Liabilities
	References

	6 Pricing Multiple Exercise American Options by Linear Programming
	6.1 Introduction
	6.2 The Stochastic Scenario Tree and AmericanContingent Claims
	6.3 The Formulation
	6.4 The Main Result
	6.4.1 The Case of Non-zero Interest Rate
	6.4.2 A Min–Max Representation

	6.5 Conclusions
	References

	7 Optimizing a Portfolio of Liquid and Illiquid Assets
	7.1 Introduction
	7.2 All Bonds Strategy vs. All Alternative Strategy
	7.3 Tracking Indexes for Alternative Asset Categories
	7.4 A Portfolio of Tactics
	7.4.1 Overlay Approach
	7.4.2 Constructing Optimal Portfolios via Multi-Stage Stochastic Programming

	7.5 Conclusions
	References

	8 Stabilizing Implementable Decisions in Dynamic Stochastic Programming
	8.1 Introduction and Background
	8.2 Review of Pioneer Guaranteed Return Funds
	8.3 Evaluating Under-estimation of Portfolio Risk
	8.3.1 Position Limits Based on a Volatility Constraint
	8.3.2 Position Limits Based on Asset Returns and Volatility Proportional Constraints
	8.3.3 Summary

	8.4 Empirical Results
	8.5 Conclusions and Future Directions
	Appendix: Pioneer Guaranteed Return Fund Model Formulation Yong06
	Objective
	References

	9 The Growth Optimal Investment Strategy Is Secure, Too
	9.1 Introduction
	9.2 Constantly Rebalanced Portfolio Selection
	9.3 Time Varying Portfolio Selection
	References

	10 Heuristics for Portfolio Selection
	10.1 Introduction
	10.2 Of Problems, Models and Methods
	10.2.1 A One-Period Investment Model
	10.2.2 Reality to Model, and Back
	10.2.2.1 Sources of Error


	10.3 Heuristics
	10.3.1 What Are Heuristics?
	10.3.2 Principles
	10.3.3 Constraints
	10.3.3.1 Throw Away
	10.3.3.2 Include Constraint in N
	10.3.3.3 Transform x
	10.3.3.4 Repair x
	10.3.3.5 Penalise x

	10.3.4 Random Solutions
	10.3.4.1 Randomness


	10.4 An Example: Threshold Accepting
	10.4.1 The Algorithm
	10.4.2 Implementation
	10.4.2.1 The Objective Function
	10.4.2.2 The Neighbourhood Function
	10.4.2.3 The Threshold Sequence
	10.4.2.4 Constraints


	10.5 An Example: Portfolio Selection with ta
	10.5.1 Data, Backtesting Scheme and Reporting of Results
	10.5.2 `Genesis' of a Model
	10.5.3 Step 1: Optimisation of Tracking Error and Excess Return
	10.5.4 Step 2: Optimisation of Tracking Error, Excess Return and ρrP,rM
	10.5.5 Step 3: Optimisation of Tracking Error, Excess Return, ρrP,rM and ρrP,rI
	10.5.6 Step 4: Optimisation of Tracking Error, Excess Return, ρrP,rM, ρrP,rI and Dmax

	10.6 Conclusion
	References

	11 Optimal Financial Decision Making Under Uncertainty
	11.1 The Domain of Financial Optimization
	11.2 A Changing Financial Landscape
	11.3 The Elements of a Decision Model
	11.3.1 Discrete-Time Stochastic Control
	11.3.2 The Interplay Between Model Building and Solution Method
	11.3.2.1 Scenario Tree, Non-anticipativity and Information
	11.3.2.2 Stochastic, Robust and Distributionally Robust Optimization
	11.3.2.3 Data-Driven Optimization


	11.4 Asset-Liability Management
	11.4.1 An Overview of Financial Planning Problems
	11.4.2 A Simple ALM Model

	11.5 Solution Methods and Decision Support
	11.5.1 Stochastic Programming
	11.5.2 Dynamic Optimization Via Decision Rules

	11.6 Open Issues
	11.6.1 Probability Distributions and Optimization
	11.6.2 Dynamic Time Consistency
	11.6.3 Practical Financial Optimization

	11.7 Conclusions
	References

	Index

