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    Chapter 4   
 Nutritional and Lifestyle Impact 
on Epigenetics and Cancer                     

     Eswar     Shankar      and     Sanjay     Gupta     

    Abstract     Nutrition and lifestyle factors play an important role in human health as 
dietary imbalances are major determinants of several diseases including cancer. 
Emerging studies suggest that diet and nutrition can impact gene expression through 
epigenetic mechanisms. Epigenetic modifi cations are heritable and cause poten-
tially reversible changes in gene expression that do not require alteration in DNA 
sequence. Epigenetic marks include changes in DNA methylation, histone modifi -
cations, and small noncoding miRNA. Aberrant epigenetic modifi cations probably 
occur at an early stage in neoplastic development and are widely described as essen-
tial players in cancer progression. Epigenetic modifi cations also mediate environ-
mental signals and provide links between susceptibility genes and environmental 
factors in the etiology of cancer. The present chapter initially highlights the role of 
various epigenetic mechanisms in the regulation and maintenance of mammalian 
genome. Focusing on the effect of various endogenous factors that include environ-
mental, lifestyle, nutritional, and social-economic/racial aspects; this chapter dis-
cusses their impact on the process of carcinogenesis through various epigenetic 
modifi cations. Elucidating the impact of nutrition and lifestyle factors on epigenetic 
mechanisms may serve as a personalized prediction tool assessing cancer suscepti-
bility and in providing recommendation and guide for prevention and therapeutic 
options against cancer.  
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  Abbreviations 

   AA    African American   
  BPDE    Benzo(a)pyrene diol epoxide   
  CA    Caucasian American   
  DNA    Deoxyribonucleic acid   
  DNMT    DNA methyltransferases   
  EGCG    Epigallocatechin-3-gallate   
  ER    Estrogen receptor   
  EZH2    Enhancer of zeste homolog 2   
  GSTP1    Glutathione S-transferase pi   
  GTP    Green tea polyphenols   
  HAT    Histone acetyltransferase   
  HDAC    Histone deacetylases   
  HDM    Histone demethylases   
  hMLH1    Human mutL homolog 1   
  HMT    Histone methyltransferases   
  HPV    Human papillomavirus   
  IGF    Insulin-like growth factor   
  LINE    Long interspersed nuclear element   
  lncRNA    Long noncoding RNA   
  LSD1    Lysine specifi c demethylase 1   
  MBD    Methyl-binding domain proteins   
  MGMT     O (6)-methylguanine methyltransferase   
  miRNA    MicroRNA   
  ncRNA    Noncoding RNA   
  PAH    Polycyclic aromatic hydrocarbons   
  PcG    Polycomb-group proteins   
  piRNA    Piwi-interacting RNA   
  RARbeta    Retinoic acid receptor beta   
  RepA    Short repeat RNA   
  SAH     S -adenosyl- L -homocysteine   
  SAM     S -adenosyl methionine   
  SFN    Sulforaphane   
  siRNA    Small interfering RNA   
  TIMP-3    Tissue inhibitor of metalloproteinases-3   

        Introduction 

 Cancer is widely recognized as a heterogeneous disease resulting from genetic and 
epigenetic alterations inherited by a series of transformations in clonally selected 
cells exhibiting selective growth advantage, sustaining proliferative signaling, 
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 evading growth suppressors, resisting cell death, enabling replicative immortality, 
inducing angiogenesis, and activating invasion and metastasis. Although genetic 
lesions drive tumor progression, however it is becoming clear that epigenetic per-
turbations are equally important in cancer development. Epigenetics is referred to 
as the study of stable inheritance of gene expression that occurs without changes in 
the DNA sequence. A majority of cancers result from changes that accumulate 
throughout the lifespan as a result of exposure to various endogenous factors that 
include environmental, lifestyle, nutritional, and social-economic/racial aspects. 
Epigenetic disruption of gene expression by these endogenous factors plays a criti-
cal role in cancer progression. A number of epigenetic mechanisms have now been 
identifi ed in mammals. There are three major epigenetic mechanisms which are 
known to regulate gene expression. These include DNA methylation, modulation of 
chromatin structure by posttranslational modifi cation of histone or nonhistone pro-
teins, and small noncoding microRNAs (miRNAs) that alter gene expression by 
either inhibiting translation or causing targeted degradation of specifi c mRNAs. 
These mechanisms are critical components in the normal development and growth 
of cells and their modifi cations contribute to neoplastic phenotype.  

    Mechanisms Underlying Epigenetics 

    DNA Methylation 

 Methylation of cytosine residues within the dinucleotide sequence-CpG is one of 
the most widely studied epigenetic modifi cations in mammals [ 1 ]. Forming an 
essential component of the cellular epigenetic machinery, DNA methylation in col-
laboration with histone modifi cation regulates gene expression by modulating DNA 
packaging and chromatin architecture [ 2 ]. DNA methylation is a chemical modifi -
cation that involves transfer of a methyl (CH 3 ) moiety from the donor  S -adenosyl 
methionine (SAM) to the 5′ position of cytosine residue that precedes guanine in the 
CpG dinucleotide sequence, forming 5-methyl cytosine and  S -adenosyl- L - 
homocysteine (SAH) [ 1 ,  3 – 6 ]. The mammalian genome has been reported to harbor 
3 × 10 7  methylated cytosine residues mostly within CpG dinucleotide sequences [ 4 ]. 
Although CpG sequences are unevenly distributed throughout the human genome, 
they are frequently enriched in gene promoters (often referred as CpG islands) and 
large repetitive sequences such as Long interspersed nuclear element (LINE) and 
ALU retrotransposon elements [ 7 ]. DNA methylation is catalyzed by a group of 
enzymes known as DNA methyltransferases (DNMTs) [ 1 ,  4 ]. There are three major 
DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) identifi ed in mammals. 
Evidence from phenotypic analyses of mice with mutant DNMT genes have pro-
vided useful mechanistic insights into the role and establishment of DNA methyla-
tion patterns during development [ 4 ,  8 ]. Dnmt1 enzyme has been demonstrated to 
have a 5–30-fold more preference for hemimethylated substrates and therefore 
popularly designated as maintenance methyltransferase. It preserves the existing 
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methylation patterns in the daughter DNA strands by adding methyl groups to 
hemimethylated CpG sequences following replication. However Dnmt1 has also 
been demonstrated to be involved in de novo methylation activity in embryo lysates 
and its sequence specifi city was shown to be confi ned to 5′-CpG-3′ dinucleotide 
sequence with little dependence on sequence context or density [ 9 ]. Dnmt3a and 
Dnmt3b enzymes are essential for global de novo methylation as they preferentially 
target unmethylated CpG sequences [ 10 ]. They have been shown to be highly 
expressed in developing mouse embryos and establish methylation patterns postim-
plantation [ 10 ]. Although Dnmt3L, the fourth family member, lacks intrinsic 
DNMT activity by itself, it colocalizes with Dnmt3a and Dnmt3b to establish 
genomic imprints in maternal germ line [ 11 ] and facilitate methylation of retropo-
sons. Dnmt2, another member of DNMT family, was found to lack biochemical 
detectable DNMT activity and its deletion in mice had no obvious phenotypic 
effects on genomic methylation pattern or methylation of retroviral DNA [ 10 ]. 

 Hypermethylation of CpG islands is usually associated with gene silencing. 
There are multiple routes through which DNA methylation can suppress transcrip-
tion. A general mechanism is to exclude binding of proteins that modulate tran-
scription through their DNA binding domains [ 12 ]. For example, binding of 
chromatin boundary element binding protein CTCF to DNA is blocked by CpG 
methylation, which allows the enhancer to activate transcription [ 13 ,  14 ]. This 
mechanism has been demonstrated to be essential for imprinting of  Igf2  gene [ 15 ]. 
Beside this, CpG methylation has been shown to block the binding of several other 
transcription factors; however, their biological consequences remain unknown [ 16 ]. 
Another mechanism for DNA methylation mediated gene repression involves bind-
ing of specialized DNA binding proteins to the methylated CpG stretches, which 
form repressor complexes with histone deacetylases (HDACs) and cause chromatin 
compaction [ 17 – 19 ]. In mammals six methyl-CpG-binding proteins have been 
characterized to date, which include MeCp2, MBD1-4, and Kaiso. Studies demon-
strate that all (except mammalian MBD3) possess a domain that specifi cally targets 
them to methylated CpG regions in vitro and in vivo [ 20 ,  21 ].  

    Histone Modifi cations 

 In addition to DNA methylation, posttranslational modifi cation of N-terminal his-
tone tails play a signifi cant role in epigenetic regulation of gene expression [ 22 ,  23 ]. 
A typical nucleosome unit consists of ~146 bp of DNA wrapped around an octamer 
of histones (H2A, H2B, H3, and H4) representing the fundamental building unit of 
eukaryotic chromatin. A diverse array of covalent chemical modifi cation of less 
structured, protruding N-terminal tails of core histones by methylation, acetylation, 
ubiquitination, phosphorylation, sumoylation, and ADP-ribosylation dictate the 
dynamics of chromatin state [ 24 ]. Euchromatin is lightly packed form of chromatin 
where DNA is accessible for transcription, whereas heterochromatin represents 
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tightly packed chromatin state inaccessible to cellular transcriptional machinery. 
Most of the chemical modifi cations occur at Lysine (K), Arginine (R), and Serine 
(S) residues within the histone tails. These distinct histone modifi cations on one or 
more histone tails (often referred to as ‘Histone code’) which may act sequentially 
or in combination are recognized by other proteins that signal further downstream 
events. A number of enzymes have been implicated in catalyzing (addition or 
removal) various histone modifi cations. Examples include histone acetyltransfer-
ases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), 
histone demethylases (HDMs), histone kinases, etc. In brief, HATs catalyze the 
addition of acetyl group on the ε-amino group of lysine residues in the N-terminal 
tail of histones, which neutralize the positive charge, relax the chromatin and facili-
tate the binding of transcriptional machinery to the DNA [ 25 ]. Till date 25 HATs 
have been characterized which are divided into four families. Examples include 
GNAT ( hGCN5 ,  PCAF ), MYST ( MYST ,  Tip60 ), p300/CBP ( p300 / CBP , SRC ( SRC - 
 1 ), and TAFII250 families (TAFII250) [ 3 ,  6 ,  26 ]. In contrast, HDACs catalyze the 
removal of acetyl groups from lysine residues resulting in the compaction of chro-
matin confi guration which repress transcription [ 27 ]. HDACs are classifi ed into four 
groups. HDAC-1, -2, -3, and -8 are members of Class I HDAC family while HDAC- 
4, -5, -6, -7, -9, and -10 belong to class II HDAC family. HDAC-11 belongs to Class 
IV HDAC group. Sirtuins, which require NAD +  as cofactor for their activity, are 
structurally unrelated to other HDAC classes, constitute Class III HDAC family [ 28 , 
 29 ]. HMTs catalyze the addition of methyl groups to lysine or arginine residues 
while HDMs act to remove them [ 30 – 32 ]. Examples of histone lysine methyltrans-
ferase include EZH2 (Enhancer of zeste homolog 2) and that of histone lysine 
demethylase include LSD1 (Lysine specifi c demethylase 1) [ 33 ,  34 ]. Depending on 
the site of lysine methylation (K4, K9, K27, etc. in Histone H3) and methylation 
status (mono, di, or tri methylation), histone methylation may have activating or 
repressive effect on gene expression [ 26 ,  34 ]. H3K4, H3K36, and H3K79 methyla-
tion have activating effects on gene transcription, whereas methylation of H3K9, 
H3K27, and H4K20 is generally associated with gene silencing or transcriptional 
repression [ 26 ,  32 ,  35 ]. A plethora of literature is available on each group of histone 
modifying enzymes, their mechanism of action and various histone modifi cations, 
which is beyond the scope of this chapter.  

    Noncoding RNAs 

 Recent evidence indicates that noncoding RNA (ncRNA) transcripts play a funda-
mental role in epigenetic regulation of gene expression and have been implicated in 
various epigenetic mechanisms such as transposon silencing, X-chromosome inac-
tivation, DNA imprinting, and paramutation [ 36 – 38 ]. In humans, ncRNAs 
include microRNA (miRNA), small interfering RNA (siRNA), and piwi-inter-
acting RNA (piRNA) which account for majority of transcripts, representing 
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approximately 98 % of all human transcriptional output [ 39 ,  40 ]. Based on the size, 
ncRNA can be classifi ed into small ncRNA which are generally less than 200 
nucleotides in length and long ncRNA (lncRNA) transcripts that are more than 
200 nucleotides in length. They can be divided into further subtypes based on their 
genomic origin and biogenic processes [ 37 ]. Both types of ncRNAs have been 
shown to be essential ‘ epigenetic modifi ers ’ constituting a hidden layer of complex 
internal signals controlling multiple levels of gene expression associated with 
development and physiology of an organism [ 38 ,  41 – 43 ]. lncRNAs have been 
demonstrated to be involved in gene silencing via mechanisms involving both 
histone modifi cations and DNA methylation. For example, the antisense lncRNA 
located in the  p14 / p15 / INK4  locus,  ANRIL , was reported to cause gene silencing 
via recruitment of polycomb proteins (PcG) [ 44 ,  45 ]. Another well studied exam-
ple includes the involvement of a 17 kb lncRNA,  XIST , in X-chromosome inactiva-
tion which ensures X-linked gene dosage compensation in mammalian females 
[ 46 – 49 ]. This process involves the recruitment of mammalian PRC2 complex con-
taining the histone methyltransferase EZH2 to the locus by a short repeat RNA 
(RepA) within XIST and deposition and spreading of repressive H3K27me3 marks 
throughout the X-chromosome. In addition to histone modifi cations, lncRNAs 
were also reported to mediate gene silencing through DNA methylation. One such 
example includes  Kcnq1ot1 , which in addition to interacting with PRC2 complex 
and G9a, has been implicated in the recruitment of Dnmt1 through a critical 890 bp 
region to the CpG island of the imprinted genes [ 50 ]. 

 Small ncRNAs particularly miRNAs regulate key epigenetic mechanisms. Short 
RNAs (50–200 nucleotides) were reported to be transcribed from H3K27me3- 
enriched PRC2 target genes and cause cell-type specifi c gene silencing in  cis  by 
stabilizing the PRC2 complex near the transcription site through interactions via 
formation of stem-loop structures [ 51 ]. MiRNAs are known to regulate various 
components of cellular epigenetic machinery particularly polycomb complexes and 
thus affect multiple downstream effects [ 33 ,  52 – 54 ]. One such example include 
miR-214 which downregulates Ezh2 expression by targeting its 3′-UTR region and 
accelerates skeletal muscle differentiation and transcription of developmental regu-
lators in embryonic stem cells [ 55 ]. There are other miRNAs which have been 
implicated in the repression of Bmi1, a component of PRC1 complex [ 56 – 58 ]. DNA 
methylation has also shown to be modulated by miRNAs. Dnmt1 and 3 have been 
reported to be targeted by the miR-29 family in lung cancer and leukemia cells 
[ 59 ,  60 ]. In addition to the role of small ncRNAs as regulators of various epigenetic 
mechanisms, in many instances they are themselves targets of the same epigenetic 
processes which may lead to further downstream alterations. For example, in human 
breast tumorigenesis and metastasis decreased expression of a set of miRNAs was 
attributed to gene hypermethylation [ 61 – 63 ]. In summary, recent evidences suggest 
that ncRNAs have emerged has key regulators of epigenetic mechanisms and also, 
that the modulation of these RNA transcripts by the same epigenetic processes may 
lead to major consequences.   

E. Shankar and S. Gupta



81

    Factors Affecting the Epigenome 

    Effect of Environmental Factors on the Epigenome 

 Environmental factors including chemical carcinogens, environmental pollutants, 
dietary contaminants, and physical carcinogens play important role in the etiology 
of human cancer. In general, the degree to which environmental factors infl uence 
carcinogenesis depends on the presence of specifi c hazardous entity and duration of 
exposure. However, the degree to which hazardous exposures affect cancer largely 
refl ects variation in susceptibility to a given environmental exposure. Generally 
environmental factors that are capable of initiating tumor development by altering 
the epigenome include agents which are capable of inducing changes either directly 
or indirectly in the genomic DNA, and agents that affect critical cellular regulatory 
processes of gene transcription such as DNA damage and repair, cell cycle control, 
and cell death process. 

 Studies demonstrate that the mismatch repair gene  MHL1  is frequently hyper-
methylated in sporadic tumors exhibiting microsatellite instability [ 64 ]. Similarly, 
silencing of  MGMT , the DNA repair gene encoding the protein responsible for the 
removal of carcinogen-induced O 6 -methylguanine adducts from DNA (which if left 
unrepaired results in G to A transition mutation), appears to increase the mutation 
rate in critical cellular regulators, including tumor suppressors and oncogenes [ 65 ]. 
These studies provide cues that environmental exposures alter either the expression 
or the activity of enzymes involved in de novo DNA methylation (Dnmt3A and 
Dnmt3B) and/or the maintenance of DNA methylation (Dnmt1) may predispose to 
mutational events [ 64 ,  65 ]. Additionally, different agents in the environment may 
also induce mutational events through preferential binding to hypermethylated 
DNA. Studies on benzo(a)pyrene diol epoxide (BPDE), a carcinogen from tobacco 
smoke that exhibits preference for methylated CpG sites, resulting in formation of 
DNA adducts and G to T transfersions, often found in cancers of the aero-digestive 
tract in tobacco smokers. It has been shown that certain infectious agents such as 
human papillomavirus (HPV) induce gene silencing via DNA hypermethylation of 
the promoters of host genes including  CDH1 ,  RB1 ,  INK4a / p16 ,  CDNK2A ,  MTHFR , 
 PEG3,  and others listed in Table  4.1 .

   The agents in the second group may alter the pattern of chromatin modifi cations 
(histone code) in a transient manner and are likely to induce changes in key cellular 
processes including gene transcription, DNA damage response, and DNA repair. 
Primary epigenetic targets for environmental factors in this group may be the pro-
teins and protein complexes responsible for histone modifi cations such as HATs and 
HDACs, whose activities are often found deregulated in cancer. Recent studies 
showed that HATs are involved in the process of DNA repair, suggesting that even 
moderate and transient inhibition of HAT activity induced by environmental expo-
sures may compromise DNA repair, leading to mutation fi xation and genomic insta-
bility [ 110 ]. Similarly, HDAC was shown to be required for effi cient DNA repair, 
suggesting that the removal of histone acetylation is required for restoration of 
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 normal (default) chromatin structure following the completion of DNA repair. 
A tight regulation of HAT and HDAC activity is thus essential for proper regulation 
of gene transcription and DNA repair. Reduced levels of histone acetylation or 
enhanced histone deacetylation may result in the compaction of chromatin, block-
ing access of transcription factors to DNA and/or impeded progression of RNA 
polymerase. Therefore, different environmental factors may transiently alter 
chromatin- modifying/remodeling activities and alter patterns of histone modifi ca-
tions impeding DNA repair and other chromatin-based processes. 

 Another possible epigenetic ‘target’ of adverse environmental exposure may be 
general methyl-C-binding proteins, a group of proteins (including MBD1, MBD2, 
MBD3, MeCP2, and KAISO) that bind to methylated CpG sites [ 111 ]. Some mem-
bers of this family, exemplifi ed by MeCP2, were found to bind and recruit HDAC 
to chromatin. Changes in MeCP2 protein stability and function elicited by the haz-
ardous agents in diet and environment may thus affect normal gene transcription, 
leading to aberrant cell proliferation and cancer [ 112 ]. Given that histone modifi ca-
tions and DNA methylation appear to work together to establish a permissive or 
repressive chromatin state, agents in the environment and diet that affect one of 
these intimately linked and self-reinforcing mechanisms would inevitably affect the 
other. Although poorly understood, the molecular mechanisms by which epigenetic 
carcinogens in environment and diet may exhibit adverse effects on histone modifi -
cations are beginning to emerge. Several recent studies have examined the effect of 
specifi c environmental carcinogens on histone modifi cations and suggest that these 
agents may affect the pattern of histone modifi cations through different mecha-
nisms (Table  4.1 ). 

 Another prospective mechanism by which environmental exposure including 
ingestion affect the epigenome involve transposable elements. Transposons when 
activated may cause genetic mutations and transcriptional noise [ 112 ]. For example, 
the Alu family alone consists of several hundred thousand elements and is shown to 
be heavily methylated and transcriptionally silent in somatic cells. It is well docu-
mented that the activation of transposable element-derived promoters may be a con-
sequence of perturbed DNA methylation, transposable elements were shown to be 
activated by various kinds of cellular stress. Therefore, stress induced by environ-
mental agents may activate transposable elements, leading to altered establishment 
and maintenance of epigenetic states.  

    Epigenetic Modifi cations by Nutritional Factors 

 Studies have demonstrated that maternal nutrition imbalance and metabolic distur-
bances during embryonic development have a persistent effect on the health of the 
offspring and may be passed down to the next generation [ 113 ]. The potential effect 
of nutritional factors on phenotype has best demonstrated by studies on the risk 
of cancer for pregnant women and fetuses. When mother is exposed to adverse 
conditions, the fetal nutrition may cause alterations in structure, physiology, and 
metabolism that predispose individuals to several diseases including cancer. 
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Selected dietary components consumed during early pregnancy may infl uence post-
natal risk of cancer development, although all dietary components are not harmful. 
In those cases where adverse effects on fetal development were observed, a pro-
posed mechanism includes methylation of genes due to dietary food components in 
the mother’s diet. Both hypermethylation and hypomethylation of selected genes 
were observed. Genes that were overexpressed included  Klf6 ,  Klf9 ,  Nid2 ,  Ntn4 , 
 Per1 , and  Txnip , and genes that were repressed included  Bcar3 ,  Cldn12 ,  Csf1 ,  Jag1 , 
 Lgals3 ,  Lypd3 ,  Nme1 ,  Ptges2 ,  Ptgs1 , and  Smarcb1  [ 113 ,  114 ]. In animal models, 
defi ciencies of macronutrients during placental growth have been shown to affect 
fetal growth. Most of the genes that contribute to reduced fetal growth are regulated 
by imprinting, and the maternal allele is affected in these cases. Functionally, the 
nutrient transport from mother to fetus via the placenta is affected dramatically by 
the hypomethylation of genes in the embryonic trophectoderm [ 115 ]. 

 Direct effects of nutritional factors on epigenetic changes are most studied and 
among the best understood is the relationship between dietary methionine and DNA 
methylation [ 115 ]. Methionine, an essential amino acid, plays a central role in 
the epigenetic regulation by serving as methyl donor for methylation reactions. 
In the process of cytosine methylation, DNMT enzyme converts SAM to 
 S - adenosylhomocysteine (SAH); therefore, an optimal supply of SAM or removal of 
SAH is essential for the normal establishment of genome-wide DNA methylation 
patterns [ 116 ]. CpG methylation patterns are largely erased in the early embryos and 
then re-established in a tissue-specifi c manner. Therefore, early embryonic develop-
ment may represent a sensitive stage, and dietary and environmental factors that 
affect DNA methylation reaction and the activity of DNMTs may result in permanent 
fi xation of aberrant methylation patterns [ 110 ,  116 ]. In postnatal development and 
adulthood, established patterns of DNA methylation and histone modifi cations must 
be maintained through multiple mitotic divisions; therefore, inappropriate quantities 
of methionine, other food components, and environmental agents may affect normal 
patterns of DNA methylation and histone modifi cations. In this respect, it is interest-
ing to note that in adult men with hyperhomocysteinemia, a disorder occurring in 
several genetically determined and acquired diseases with uremia, treatment with 
high doses of folate increases methylation levels at specifi c genes and restores 
normal expression [ 110 ]. In addition to methylation of DNA, methylation of 
histones, a distinct epigenetic mechanism dependent on 1- carbon groups, may be 
affected by consuming excessive levels of specifi c nutritional factors. Therefore, 
nutrition factors are likely to directly or indirectly (through changes in DNA meth-
ylation) affect histone modifi cations such as histone methylation.  

    Lifestyle Factors Affecting the Epigenome 

 Lifestyle factors including exercise and diet plays an important role in regulating 
the epigenome and altering gene expression. Exercise can modify the epigenome in 
order to preserve and prolong life. Exercise has been shown to induce positive 
changes in DNA methylation within adipose tissue and regulate metabolism in both 
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healthy and diseased individuals [ 117 ]. Increased DNA methylation of genes  Hdac4  
and  Ncor2  has also shown to increase lipogenesis following exercise [ 117 ]. Exercise 
also leads to benefi cial changes in DNA methylation patterns in skeletal muscle 
[ 118 ]. Not only is obesity an indicator for diseases such as type 2 diabetes and 
cardiovascular disease, but also puts additional stress on the system which can itself 
negatively impact health [ 119 ]. Acute exercise is associated with DNA hypometh-
ylation of the entire genome in skeletal muscle cells of sedentary individuals and 
high intensity exercise tends to cause reduction in promoter methylation of certain 
genes [ 120 ]. Exercise is also known to positively infl uence the expression patterns 
of miRNAs in leukocyte cells [ 121 ]. The health benefi ts of physical exercise, espe-
cially on a long-term and strenuous basis, have a positive effect on epigenetic mech-
anisms and ultimately may reduce incidence and severity of cancer [ 122 ]. 

 Studies in genomic imprinting have revealed how DNA methylation patterns are 
infl uenced by diet, and how epigenomic sensitivity to specifi c diet infl uences cancer 
susceptibility. Dietary fat comprises a large part of the Westernized diet, which 
results in increased adipose tissue via adipocyte hypertrophy and hyperplasia [ 123 ]. 
Dietary fat infl uences adipokine release through their infl uence on the epigenome 
affecting DNA methylation and posttranslation modifi cation of the histone proteins. 
This represents one of the methods by which dietary fat may infl uence cancer pro-
gression. Overconsumption of well-done meats or saturated fats causes increase in 
somatic  GSTP1  inactivation by CpG island methylation in the promoter region 
increasing susceptibility to prostate cancer [ 124 ]. 

 Several studies have provided evidence that alcohol consumption is associated 
with different epigenetic changes in human cancer [ 125 ]. In a large epidemiological 
study (the Netherlands Cohort Study on diet and cancer), analysis of DNA methyla-
tion showed that the prevalence of promoter hypermethylation of several genes 
including  APC - 1A ,  CDKN2D ,  CDKN2A ,  hMLH1 ,  MGMT,  and  RASSF1A  was 
higher in colorectal cancer patients with high alcohol (and low folate) intake than 
among colorectal cancer patients with high folate/low alcohol intake. In addition, 
the study of human head and neck squamous cell carcinoma showed that the pro-
moter hypermethylation of  MGMT  gene and the genes known to regulate the WNT 
pathway occurs more frequently in both heavy and light drinkers compared to non-
drinkers. The mechanism underlying the epigenetic changes caused by alcohol 
abuse may also involve SAM. This small metabolite is regenerated from demethyl-
ated SAM via the methionine cycle, which involves folate. Therefore, imbalance of 
this cycle through alcohol consumption may result in depletion of SAM and aber-
rant epigenetic patterns. In addition, it was shown that the human class I alcohol 
dehydrogenase (ADH) genes may be regulated by epigenetic mechanism. The class 
I ADH genes were found to be repressed in human hepatoma through epigenetic 
modifi cation suggests that changes associated with alcohol-metabolizing genes may 
also enhance other toxic effects of alcohol on different organs, most notably the 
liver, including hepatic tumorigenesis [ 110 ]. 

 Tobacco smoke is a complex aerosol that contains polycyclic aromatic hydrocar-
bons (PAHs), mostly benzo[a]pyrene, which is considered the most carcinogenic. 
Epigenetic targets of the PAHs from tobacco smoke induce DNA damage through 
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preferential binding to methylated CpG sites, a phenomenon already demonstrated 
for BPDE, a carcinogen found in tobacco smoke. Several studies have demon-
strated hypermethylation and silencing of several genes in lung cancer associated 
with smoking [ 126 ]. The genes frequently altered by promoter hypermethylation in 
lung cancers of smokers are  p53 ,  p16  and  MGMT . In addition, different components 
in tobacco smoke induce histone changes and alter histone code. Some potentially 
novel histone marks, including acetylation, monomethylation, and dimethylation, in 
specifi c lysine and arginine residues of histones H3 and H4 in mouse lungs. 

 Nutrients extracted from the diet enter metabolic pathways and are transformed 
into useful molecules. These nutrients are known to have epigenetic targets in cells 
such that they can be used to modify the epigenome in order to correct abnormally 
activated or silenced genes and can be combined into an “epigenetic diet” useful as 
a therapeutic and/or chemopreventive measure. During this transitory phase methyl 
groups are formed from key nutrients including folic acid, B vitamins and s- adenosyl 
methionine (SAMe), and these methyl groups comprise important epigenetic marks 
for gene silencing. Diets high in such methyl rich nutrients may signifi cantly alter 
gene expression and offer protective health benefi ts [ 123 ]. Defi ciencies in folate and 
methionine, both of which are involved in cellular processes that supply methyl 
groups needed for DNA methylation, can change the expression (imprinting) of 
growth factor genes such as (IGF1) infl uencing cancer progression [ 127 ]. In addi-
tion, several natural nutrients products have interesting biological properties and 
structural diversity. These include polyphenols present in fruits, vegetables, and 
other dietary botanicals. Phenolic acids, fl avonoids, stilbenes, and lignans are the 
most abundantly occurring polyphenols that are also an integral part of everyday 
nutrition in populations worldwide. Certain food components epigenetically 
increase the levels of DNA repair enzymes such as MGMT and MLH1, others such 
as blueberry anthocyanins actively decrease DNA damage. Anthocyanin is an effec-
tive antioxidant for humans that is found in plants and are easily identifi ed by its 
potent red or purple pigment. It is found in plants such as eggplant, plums, pome-
granate, red onion, cranberries, blueberries, kidney beans, and cherries which all 
possess anthocyanins. This fl avonoid serves as a powerful antioxidant that contrib-
utes to scavenging of DNA-damaging free radicals. While the direct fate of antho-
cyanins in vivo following digestion may be less than 5 % (the majority being rapidly 
excreted), the potent residual antioxidant property remains in blood following con-
sumption of anthocyanin-rich foods due to metabolic breakdown of the fl avonoids 
and resultant increase in uric acid levels. Some of the common examples of the most 
studied and promising cancer preventive polyphenols include EGCG (from green 
tea), curcumin (from curry plant), genistein (from soy), resveratrol (from grapes and 
berries), and sulforaphane (from broccoli). A large number of dietary agents on 
DNA methylation, histone modifi cations, and regulation of expression of noncod-
ing miRNAs in various human cancers are shown in Tables  4.2  and  4.3 . Signifi cant 
gains have been made in understanding the molecular mechanisms underpinning 
the chemopreventive effects of polyphenols, and consequently, a wide range of 
mechanisms and gene targets have been identifi ed for individual compounds.
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    Several studies have demonstrated that green tea polyphenol (GTP) constituent, 
EGCG is a potent demethylating agent which inhibits enzymes involved in DNA 
methylation as well as an effective histone modifying agent [ 33 ,  173 ,  205 ,  206 ]. It 
is well known that CpG island hypermethylation at the promoter region leads to 
epigenetic repression of several critical tumor suppressor genes during tumorigen-
esis. A study suggests that EGCG acts as a competitive inhibitor of DNMT 
( Ki  = 6.89 μM), which binds to the catalytic pocket and inhibit DNMT activity in a 
dose-dependent manner [ 168 ]. Furthermore, EGCG treatment (5–50 μM for 
12–144 h) was found to effectively reactivate methylation-silenced genes— p16   INK4a  , 
retinoic acid receptor beta  RARbeta ,  O (6)-methylguanine methyltransferase  MGMT , 
and human mutL homolog 1,  hMLH1  in human esophageal cancer KYSE 510 cells. 
EGCG was also reported to inhibit HDACs and increase permissive or active his-
tone modifi cations such as histone acetylation at the target gene promoters. Studies 
from our laboratory showed that exposure of prostate cancer cells to GTP caused 
re-expression of epigenetically silenced glutathione S-transferase pi,  GSTP1  gene 
which correlated with the promoter demethylation due to DNMT1 inhibition and 
histone modifi cations at the promoter region [ 173 ]. However, GTP treatment did 
not show any global hypomethylation effect which could result in genomic instabil-
ity as the methylation status of LINE-1 promoter remained unaffected as demon-
strated by methylation-specifi c PCR. GTP treatment decreased mRNA and protein 
levels of MBD1, MBD4, MeCP2, and HDAC 1-3, whereas acetylated histone H3 
(LysH9/18) and H4 were found to be elevated. In another study, we demonstrated 
that GTP treatment caused cell cycle arrest and apoptosis by inducing proteasomal 
degradation of class I HDACs in human prostate cancer cells [ 207 ]. Studies by Li 
et al. [ 206 ] demonstrated that EGCG in combination with trichostatin A (TSA) 
could synergistically reactivate ERα expression in ERα negative MDA-MB-231 
breast cancer cells by modulating histone methylation and acetylation patter at the 
gene promoter. In addition, they also reported that treatment with EGCG and/or 
TSA contributes to transcriptional activation of estrogen receptor (ER)-α by causing 
a decreased binding of transcription repressor complex, Rb/p130-E2F4/5-HDAC1-
SUV39H1-DNMT1 to the regulatory region of the gene. 

 EGCG has been reported to modulate polycomb proteins such as Bmi-1 and 
EZH2 [ 33 ,  172 ,  208 ]. EGCG alone or in combination with DZNep was shown to 
decrease PcG proteins including EZH2, EED, SUZ12, MEL18, and BMI-1 via a 
mechanism involving proteasome-associated degradation. The reduction in PcG 
protein levels correlated with a decrease in repressive chromatin marks—H3K27me3 
and H2AK119ub and HDAC-1 levels, whereas accumulation of acetylated H3 lev-
els was found to be elevated. In a recent study, we reported that in breast cancer 
cells, EGCG or GTP treatment induced expression of epigenetically repressed 
 TIMP - 3  gene is mediated by modulating epigenetic mechanisms involving EZH2 
and class I HDACs independent of the promoter DNA methylation [ 33 ]. After 
EGCG or GTP treatment, the protein levels of class I HDACs and EZH2 were sig-
nifi cantly reduced. Interestingly, transcriptional activation of TIMP-3 was associ-
ated with decreased EZH2 localization and H3K27me3 at the promoter with a 
concomitant elevation in H3K9/18 acetylation levels. 
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 Numerous epidemiological and experimental studies have demonstrated the 
chemopreventive effects of genistein and other isofl avones on various cancer types 
[ 209 ]. The role of genistein and other soy isofl avones as epigenetic modulators 
regulating gene expression has been widely reported by several studies. Genistein 
has been shown to be more potent DNMT inhibitor as compared to biochanin A or 
daidzein. A study reported that genistein (2–20 μM/L) could reactivate methylation-
silenced genes such as  RARbeta ,  p16INK4a , and  MGMT  in esophageal squamous 
carcinoma cells KYSE 510 and prostate cancer LNCaP and PC3 cells [ 129 ,  136 ]. 
Another study demonstrated that genistein treatment in breast MCF10AT benign 
cells and MCF-7 cancer cells depletes telomerase (hTERT) activity through epigen-
etic modulation which involves genistein mediated decrease in Dnmt1, Dnmt3a, 
and Dnmt3b levels [ 130 ,  135 ]. Furthermore, genistein was shown to repress hTERT 
promoter by chromatin remodeling which involved increase in trimethyl-H3K9 
enrichment with a concomitant decrease in dimetyl-H3K4 chromatin marks. A 
study by King-Batoon et al. [ 187 ] showed that a low, nontoxic dose of genistein 
(3.125 μM, re-supplemented every 48 h for 1 week) could partially demethylate 
 GSTP1 , a tumor suppressor gene, in MCF-7, MDA-MB-468, and MCF10A breast 
cells. Similar in vitro studies in other cancer types provide evidence that genistein 
is a potent demethylating as well as histone modifying agent, which could reverse 
the silenced state of critical tumor suppressor genes [ 131 ,  132 ,  210 ,  211 ]. A study 
by Basak et al. [ 212 ] demonstrated that AR downregulation in prostate cancer cell 
line LNCaP by genistein was attributed to the inhibition of HDAC6-Hsp90 co-chap-
erone function, which is required for AR protein stabilization. Genistein and other 
soy isofl avones are known to modulate miRNAs as well [ 135 ,  197 ,  198 ,  213 ,  214 ]. 
Parker et al. [ 197 ,  198 ] performed miRNA profi ling of genistein treated and 
untreated UL-3A and UL-3B cell lines and found 53 miRNAs which were differen-
tially expressed. Upregulation of miR-200 and let-7 by isofl avones was shown to 
downregulate ZEB1, slug, and vimentin and therefore cause reversal of epithelial to 
mesenchymal transition (EMT) in gemcitabine resistant pancreatic cancer cells 
[ 135 ]. In human uveal melanoma cells, genistein treatment was demonstrated to 
cause signifi cant growth inhibition by targeting miR-27a and its target ZBTB10 
[ 214 ]. However, in vivo clinical studies were inconclusive and did not fall in line 
with the studies performed in cell line models. 

 Curcumin has been shown to modulate multiple intracellular pathways associ-
ated with proliferation, survival, invasion, apoptosis, and infl ammation [ 215 ]. In the 
context of epigenetic pathways, several studies have reported curcumin to be a 
potent modulator of DNMTs, histone modifying enzymes such as HDACs and 
HATs as well as miRNAs [ 216 ]. In silico molecular docking studies of curcumin 
with Dnmt1 revealed that it can block or inhibit the catalytic thiol group of C1226 
binding site in the enzyme resulting in decreased DNMT activity [ 216 ,  217 ]. This 
study was further validated by in vitro experimental studies which showed cur-
cumin to be a potent DNA hypomethylating agent [ 165 ]. Curcumin was reported to 
be an effective HDAC inhibitor. Docking studies performed for curcumin binding 
to HDAC-8 revealed curcumin to be a more potent HDAC inhibitor than known 
pharmacological inhibitors such as sodium butyrate and valproic acid [ 164 ]. Another 
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study reported that curcumin treatment of B-NHL cell line, Raji cells could reduce 
HDAC-1,-3. and -8 protein levels in a dose-dependent manner and increase H4 
acetylation levels [ 162 ]. In agreement with earlier fi ndings, studies by Chen et al. 
[ 163 ] reported signifi cant reduction in p300/CREB binding protein (CBP), HDAC-
1, and HDAC-3 levels after exposure of Raji cells to curcumin. Studies revealed 
curcumin to be a specifi c inhibitor of p300/CBP HAT, which has emerged a novel 
target for cancer treatment [ 149 ,  154 ,  218 ]. Curcumin treatment caused proteasomal 
degradation of p300 and other closely related CBP proteins with no such effect on 
HATs such as GCN5 and PCAF [ 154 ]. Curcumin has also been closely linked to its 
ability to modulate miRNAs in cancer cells. A microarray based study of the effect 
of curcumin (10 μM) on the miRNA profi le in pancreatic cancer cells PxBC-3 
showed signifi cant changes in the expression of 29 miRNAs (11 upregulated and 18 
downregulated) after 72 h treatment [ 195 ]. Further studies confi rmed that MiRNA-
22, which has tumor suppressive function, was upregulated after exposure to cur-
cumin and its downstream target genes SP1 and ESR1 were suppressed in these 
pancreatic cells. Ali et al. [ 219 ] demonstrated that treatment of pancreatic cancer 
cells with curcumin and its analog CDF could induce gemcitabine sensitivity via 
induction of miR-200 and inactivation of miR-21 expression. 

 Epigenetic studies on resveratrol have been previously focused on SIRT1 and 
acetyl transferase p300 [ 138 ,  139 ,  177 ,  220 ]. Resveratrol was identifi ed as a potent 
dietary activator of SIRT1, which lowers the  K  m  (Michaelis constant) for both acety-
lated substrate and NAD + . It was reported to stimulate SIRT1-dependent p53 
deacetylation which ultimately contributes to increased cell survival [ 138 ]. In 
another study by Wood et al. [ 139 ], resveratrol was shown to activate sirtuins from 
metazoans— Caenorhabditis elegans  and  Drosophila melanogaster  and delay aging 
without any effect on fecundity. The antitumor effect of resveratrol was reported to 
be mediated partly by SIRT1 [ 221 ]. In addition, resveratrol was shown to have a 
negative effect on  Survivin  gene expression through histone deacetylation at the 
gene promoter and display a more profound inhibitory effect on BRCA-1 mutant 
cells both in vitro and in vivo [ 178 ]. In prostate cancer cells, resveratrol was reported 
to cause downregulation of MTA1 (metastasis associated protein) and destabilize 
the NuRD (Nucleosome remodeling deacetylase) complex thus allowing p53 acety-
lation. Furthermore, activation of p53 was shown to induce proapoptotic pathways 
causing apoptosis in prostate cancer cells [ 222 ]. 

 Sulforaphane (SFN) at physiological concentrations has been shown to down-
regulate Dnmt1 gene expression in human colon Caco-2 cells [ 223 ]. Studies by 
Meeran et al. [ 224 ] demonstrated that in MCF-7 and MDA-MB-231 breast cancer 
cells, SFN treatment cause dose and time-dependent inhibition of hTERT (Human 
telomerase reverse transcriptase) via an epigenetic mechanism involving DNA 
methylation and histone modifi cations. SFN treatment was shown to cause down-
regulation of Dnmt1 and Dnmt3a, which induced site-specifi c demethylation at 
hTERT gene fi rst exon facilitating the binding of CTCF associated with hTERT 
repression. Furthermore, ChIP analysis of hTERT promoter revealed that active his-
tone chromatin marks such as acetyl-H3, acetyl-H3K9, and acetyl-H4 were 
increased, whereas repressive chromatin marks which include trimethyl-H3K9 and 
trimethyl-H3K27 were reduced after SFN treatment in a dose-dependent manner. 
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The SFN-induced hyperacetylation was reported to promote the binding of repressor 
proteins such as MAD1 and CTCF to the hTERT regulatory region. In another 
study, Myzak et al. [ 183 ] reported that SFN metabolites—SFN–cysteine and SFN-
N-acetylcysteine—were more potent HDAC inhibitors in vitro as compared to SFN 
or its glutathione conjugate. Furthermore, SFN treatment in HCT116 human 
colorectal cancer cells increased β-catenin-responsive reporter (TOPfl ash) activity 
in a dose-dependent manner and inhibited HDAC activity. Consequently, there was 
an induction in acetylated histone levels bound to p21 (Cip1/Waf1) promoter. In 
human prostate epithelial cells BPH-1, LNCaP, and PC3, SFN treatment was shown 
to inhibit HDAC activity, which was accompanied by an increase in acetylated his-
tone levels by 50–100 % and a corresponding induction of p21 and Bax expression 
which lead to downstream events such as cell cycle arrest and apoptosis [ 225 ]. SFN 
treatment was shown to inhibit HDAC activity in breast cancer cells, but no change 
in H3 or H4 acetylation was observed [ 226 ]. Studies by Myzak et al. [ 225 ] provided 
fi rst evidence for inhibition of in vivo HDAC activity and suppression of tumori-
genesis in APC-min mice. 

 The effect of apigenin on epigenetic related enzymes and their mechanisms was 
not recognized until recently. Apigenin treatment has been shown to cause a marked 
decrease in DNMT activity in vitro [ 137 ]. Studies from our laboratory demonstrated 
that apigenin mediated growth arrest and apoptosis in prostate cancer cells was due to 
the inhibition of class I HDACs [ 227 ]. In vivo studies using PC-3 xenografts in athy-
mic nude mice further confi rmed that oral intake of apigenin (20 and 50 μg/mouse/d 
over an 8-week period) reduces tumor burden, HDAC activity, and HDAC -1/-3 pro-
tein levels. HDAC-1 and HDAC-3 mRNA and protein levels were found to be signifi -
cantly decreased in apigenin treated (20–40 μM) PC-3 and 22Rv1 prostate cancer cell 
lines, which resulted in a global decline in histone H3 and H4 acetylation levels. A 
corresponding elevation in p21/waf1 and bax levels was observed in both in vitro and 
in vivo studies, which resulted in the induction of downstream events, that is, apopto-
sis and cell cycle arrest. In a recent study by Paredes-Gonzalez et al. [ 228 ], apigenin 
was shown to reactive Nrf2 gene which encodes a key transcription factor known for 
regulating antioxidative defense system and skin homeostasis, in mouse skin epider-
mal JB6 P+ cells via epigenetic mechanisms. Hypermethylation of 15 CpG sites in 
Nrf2 promoter was demonstrated to be reversed by apigenin treatment in a dose-
dependent manner. Furthermore, apigenin treatment resulted in decreased expression 
of Dnmt1, Dnmt3A, Dnmt3B, and HDAC (1–8) levels. However, the nuclear local-
ization of Nrf2 was shown to be enhanced and there was increased expression of Nrf2 
as well as its target gene NQO1 after apigenin treatment.  

    Social-Economic and Racial Factors Affecting the Epigenome 

 Few studies have reported signifi cant epigenetic differences in socio-economic/
racial status that account for the differences in cancer and their outcomes [ 229 ]. 
Certain populations are prone to specifi c types of cancer such as African Americans 
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(AA) who have 14 % higher incidence and 34 % higher death rates than Caucasian 
Americans (CA) men. Although access to quality healthcare, socioeconomic status, 
and genetic make-up is implicated in this disparity, the fundamental causes of such 
cancer disparity seem to be a complex phenomenon. Many investigators are trying 
to address various sociocultural determinants as a major cause of cancer disparity 
and in understanding and underpinning mechanisms for designing better commu-
nity specifi c interventions for different populations. For example, AA have been 
found to have statistically signifi cant lower plasma concentrations of certain anti-
oxidants such as vitamin E, alpha-carotene, beta-carotene, lutein, and zeaxanthin 
than CA [ 230 ]. This report indicates that low levels of antioxidants may affect the 
epigenome and gene expression leading to higher susceptibility and differential 
cancer outcomes. More research is needed to fully understand how these epigenetic 
modifi cations occur and subsequently affecting cancer outcome in diverse 
population.   

    Summary and Conclusions 

 From the studies described herein, it is clear that nutritional and lifestyle factors 
hold great promise in cancer prevention and in therapy by causing epigenetic modi-
fi cations. As the importance of epigenetic modifi cations in cancer is well recog-
nized, precise contribution of epigenetic mechanisms and cellular targets of 
epigenetic alterations by various endogenous factors in human cancer needs further 
investigation. Although recent advances in the fi eld of cancer epigenetics has 
enhanced our understanding of epigenetic changes in normal cellular processes and 
abnormal events leading to tumorigenesis, however deeper understanding of the 
global patterns of epigenetic modifi cations by dietary compounds and lifestyle fac-
tors in cancer will lead to the design of better strategies to prevent and cure cancer. 
Moreover, suffi cient preclinical and clinical data is required on the epigenetic 
changes induced by dietary phytochemicals which will lead to better understanding 
of the epigenetic targets and pathways altered by these agents to elicit their effi cacy 
in cancer. Additional preclinical and clinical studies are required to analyze the 
safety profi le of doses, route of administration, organ bioavailability alone, and in 
combination in order to obtain maximum benefi cial effects. At last, systematic well-
designed randomized placebo-controlled trials with adequate power and relevant 
clinical epigenetic endpoints are needed. Despite these challenges, research on diet 
and nutrition continues to emerge and will offer new epigenetic targets and promis-
ing agents with more opportunities for prevention, and perhaps therapy of cancer in 
the near future.     
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