
Chapter 1

A General Mathematical Model to Retrieve Displacement Information
from Fringe Patterns

C.A. Sciammarella and L. Lamberti

Abstract The extraction of the displacement field and its derivatives from fringe patterns entails the following steps:

(1) information inscription; (2) data recovery; (3) data processing; (4) data analysis. Phase information is a powerful

representation of the information contained in a signal. In a previous work, the above mentioned steps were formulated and

discussed for a 1D signal, indicating that the extension to 2-D was a non trivial process. Proceeding along the same line of

thought when one moves from the one dimension to two dimensions it is necessary to consider a 3D abstract space to

generate the additional dimension that can handle the analysis of 2D signals and simultaneously extend the Hilbert transform

to 2D. In this study the basic theory developed in the preceding reference is further elaborated to produce a version of the

monogenic function yielding the necessary answers to the previously described processes. The monogenic signal, a 3D

vector in a Cartesian complex space, is graphically represented by a Poincare sphere which provides a generalization of the

Hilbert transform to a 2D version of what is called the generalized Hilbert transform or Riesz transform. These theoretical

derivations are supported by the actual application of the theory and corresponding algorithms to 2D fringe patterns and by

comparing the obtained results with known results.

Keywords 2D signals • Displacement and strain determination • Generalized Hilbert (Riesz) transform • Poincare sphere

1.1 Introduction

In [1], the present authors developed a one dimensional mathematical model of fringe patterns analysis based on the general

Theory of Signal Analysis. This paper now deals with a generalization of the one dimension model derivations to 2-D. The

extension to a higher dimension requires the review of some basic concepts of image signal analysis. To simplify the

derivations we will consider the signal analysis on plane surfaces. The extension to general surfaces in the space requires

further developments that cannot be covered on a single paper.

The information to be decoded is recorded as level of gray in a 2D sensor through a device composed of optical and

electronic circuits commanded by software, a measure of the light intensity of the imaged field. At this point the details of the

process of data generation will set aside and the paper will concentrate in the process of information extraction. The recorded

levels of gray must be converted into data that provide displacement fields and the displacement derivatives in the case of

deformed bodies or geometrical parameters and their derivatives. In [1], it is shown that data conversion in one dimension

requires the description of gray levels in terms of 2D complex functions (analytical functions) that lead to the introduction of

the concept of phasor:

Isp
)

xð Þ ¼ Isp xð Þe2πjϕ xð Þ ð1:1Þ

The symbol) indicates a vector in the complex plane. A phasor in the complex plane is characterized by two separate pieces

of information: amplitude related to the light intensity at the considered point and a phase representing the optical path

followed by the recorded wave front from a selected reference point where the phase is assumed to be zero. The classical

definition of phase in optics is,
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ϕ xð Þ ¼ 2πδ xð Þ
p

ð1:2Þ

where δ(x) is the optical path and p is pitch of the sinusoidal function, unit of measure utilized to evaluate a path length and

convert distances into an angle.

The optical path length of the light arriving at an image is given by,

δ xð Þ ¼
ðS0
0

n xð Þdx ð1:3Þ

where n(x) is the index of refraction of the medium along the path followed by the light from a certain reference point to

another point following a trajectory.

A question than can arise is: Why to begin with the review of the phase concept? The answer to this question is found in

[2]: the phase concept is a fundamental tool to develop a consistent theory of image analysis. There is another important

aspect to the concept of phase, the definition of local phase implicit in Eq. (1.1) and the more general concept of global phase

expressed by Eq. (1.3). The phase concept is associated with the notion of vector. When one introduces the definition of local

phase or phase at a point for a 1D signal, one introduces an additional dimension to the mathematical model required to

associate one dimensional functions with the phase concept. This additional dimension corresponds not to the actual space

but to the complex plane. It is a fundamental concept in the Gabor’s analytic signal theory [3], basic starting point of many

developments in Signal Analysis and in Optics. A complementary development to the analytic signal theory in one

dimension is the Hilbert transform [4] that converts cosines into sines and is a unitary transform that changes the phase of

the signal of π/2, leaving the signal amplitude unchanged. The Hilbert transform takes the original signal, a level of gray or

intensity in some scale, and associates the gray level with an analytical function:

Isp xð Þ ¼ Ip xð Þ þ Iq xð Þj ð1:4Þ

where the symbol j is the imaginary versor, Ip(x) is the recorded signal (in-phase signal) and Iq(x) is the in-quadrature signal

that provides the phase,

ϕ xð Þ ¼ arctg
Iq xð Þ
Ip xð Þ ð1:5Þ

and

Isp
)

xð Þ
����

���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2p þ I2q

q
ð1:6Þ

where the double bar symbol indicates the modulus of the vector in the complex plane.

A fundamental property of the Hilbert transform is to provide a definition of local phase concept that is ancillary to the

definition provided by Eq. (1.3) but applies to a single point of the gray level continuum of a one-dimensional signal

provided that the gray levels are smooth functions with smooth derivatives in R2 that symbolizes the 2D continuum. The

preceding conditions are ideal conditions that are not satisfied by actual signals. Recorded signals are inherently stochastic,

hence in actual applications it is necessary to apply to the recorded gray levels smoothing procedures to approximate with

certain error the theoretical ideal continuum signal. One should keep in mind these two separated aspects of the local phase

definition, the theory behind this definition that is a consequence of the continuum theory and the procedures needed to

implement applications of the mathematical model to actual experimental signals. In the literature of analysis of actual

optical signals there is a very extensive treatment of the subject of separating stochastic and deterministic information. In this

section and following sections the emphasis is on the continuum model, the stochastic aspect will be introduced later on in

the paper. This is a very important simplification for the subject matter of the paper, fringe pattern information retrieval.

Later on we will indicate the impact of the assumption of continuity in the handling of actual stochastic signals.

The aim of the current paper is to extend the derivations presented in the framework of a one dimensional model

continuum model, [1], to a two dimensional continuum case.
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1.2 Two Dimensional Sinusoidal Functions

The next step in this process is to define the properties of two dimensional sinusoidal functions, a generalization of one

dimensional sinusoidal functions utilized in the one dimensional continuum [1]. Figure 1.1a shows a two dimensional

sinusoidal signal, it has an amplitude and a period p as is the case in one dimension but has an additional degree of freedom,

the local orientation. Figure 1.1b illustrates the 2D sinusoid as a signal in 2-D. The yellow line shows a line of equal intensity

(phase); the normal n provides the orientation of the signal, angle θ, and the vector r identifies a point of phase ϕ in the

uniform field of the 2D sinusoidal signal. As shown by Eq. (1.2), the phase is computed with respect to a selected point O

(center of coordinates) and is evaluated—Eq. (1.3)—as an angle that provides the number of cycles of the unit of measure p,

a rational number n. The red line corresponds to points of equal number of cycles, since as the orientation of the vector

r changes, it also changes the projected pitch p that is the unit measure to convert distances into angles. Comparing a 2D

signal with a 1D sinusoidal signal, as mentioned before, there is an additional degree of freedom, the angle θ (see Fig. 1.1b).
The considerations that follow are very important because the information that we want to retrieve is connected with a

model, the continuum mechanics of solids that has its basis on the differential geometry approach to the continuum

deformation with specific requirements for the signal and its successive derivatives. What this last sentence means is:

specific requirements are imposed on the signal and its derivatives.

The information that we want to obtain is a tensorial field that requires in the case of orthogonal Cartesian Coordinates a

family of two orthogonal carrier fringes illustrated in Fig. 1.2. The vertical fringes and the horizontal fringes are represented

in the frequency plane of the Fourier Transform (FT) by power spectrum dots whose coordinates are for example of the form

(fx, fy) ¼ (10, 0) for the x-axis, and the coordinates of the point in the negative frequencies are (fx, fy) ¼ (�10, 0), that is a

reflectionwith respect to the vertical axis. In analogous fashion, for the horizontal fringes we have (fx, fy) ¼ (0, 10) and for the

negative frequency (fx, fy) ¼ (0, �10). In Fig. 1.2, the system of coordinates is selected as a left-handed system according

with the usual practice in image analysis literature as opposed to Fig. 1.1 where a right-handed reference system is used.

Fig. 1.1 (a) 2D sinusoidal signal; (b) additional parameter θ to define a two dimensional signal

Fig. 1.2 Representation of a 2D cosinusoidal even signal when θ ¼ 0 and θ ¼ π/2 and the corresponding representation in the frequency plane

represented by a sensor with square pixels
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If we return to the concept of phase defined in Eq. (1.3) and compute the phase of a point defined by the vector r ¼ xiþ yj
in the direction of the normal n (Fig. 1.1b) it follows

ϕ r; θð Þ ¼ 2π rk k
p

ð1:7Þ

where the double bar indicate the modulus of the vector in agreement with Eq. (1.3).

To understand the developments that follow, it is necessary to come back to the concept of local phase that can be

introduced [1] via the Hilbert transform. The concept of local phase is a fundamental step in the whole process described in

this paper and will be dealt with later on in the paper since it involves the transition between the ideal continuum and the

actual recorded stochastic signals.

The extension of local phase to 2D sinusoidal signals includes an additional degree of freedom, the angle θ indicated in

Fig. 1.1b. The concept of phase requires a 2D vectorial field since it is associated with a vectorial function. The information

captured by a sensor is given by levels of gray, a scalar quantity. This scalar function in the case of a 1D signal is connected

to a 2D scalar potential in the complex plane that will be calledV
•
; the symbol • indicates that the scalar potential is associated

with a given point of coordinate x in the one dimensional continuum ℒ1, that has a certain reference zero point from where

the coordinate x is computed. In Eq. (1.4), the complex notation of [4] is utilized to represent an analytical function, for a

more general approach in view to the extension to 3-D. A complex plane defined by the versors i
)

and j
)

is introduced, thus

avoiding the utilization of quaternions that are the extension of the complex notation beyond 2-D.

Returning to the complex plane required to introduce the concept of local phase, the gradient of the scalar potential is

given by

grad V
• ¼ G2 ¼ ∂V

•

∂xc
i
) þ ∂V

•

∂yc
j
) ð1:8Þ

where: i
)
and j

)
are the versors in the complex plane (introducing different symbols from i and j that represent the versors in

the physical space); xc and yc are the coordinates in the complex plane; the subscript “2” indicates 2D gradient vector in the

complex space. The sinusoidal signal is represented by gray levels defined by a function of the form,

Ve
•

¼ Ip cos
2π
p
xþ ϕ0

� �
ð1:9Þ

The upper script “e” expresses the fact that the selected function is a cosine, an even function. It is possible to see that the

local phase depends on the selection of the phase at the reference point.

Computing the dot product of the ∇ operator with the vector G2, the divergence of the field is obtained as:

∇ •G2 ¼ ∂2
V
•

∂xc2
þ ∂2

V
•

∂yc2
ð1:10Þ

Calling V
•

xc ¼ ∂V
•

∂xc
and Vyc

• ¼ ∂V
•

∂yc
, and computing the vector product “�” of the ∇ operator with the G2 vector, it follows:

∇�G2 ¼ ∂V
•

yc

∂xc
� ∂V

•

xc

∂yc

 !
k
) ð1:11Þ

Since the field is a scalar field, the divergence of the field is zero and the rotor is also zero. Two equations can be derived:

∂2
V
•

∂xc2
þ ∂2

V
•

∂yc2
¼ 0 ð1:12Þ
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∂V
•

yc

∂xc
� ∂V

•

xc

∂yc
¼ 0 ð1:13Þ

These equations mean that the potential function in the complex plane must satisfy the Cauchy-Riemann equations,

∂V
•

xc

∂xc
¼ �∂V

•

yc

∂yc
ð1:14Þ

∂V
•

xc

∂yc
¼ ∂V

•
yc

∂xc
ð1:15Þ

Equation (1.12) implies that the gray level potential V
•
to define a local phase must be a solution of Laplace’s equation in the

complex plane. The solutions of the Laplace’s equation are part of the theory of potentials; these solutions are known to be

harmonic functions. The field is conservative and the vectorial field is the gradient of a potential scalar field.

The meaning of Eqs. (1.14) and (1.15) is that, in order to define a local phase, successive derivatives of gray levels must

satisfy the above conditions. Furthermore, considering the full complex field, these equations are the conditions for

V
•
ρcð Þ � dρc, where ρc ¼ xc i

) þyc j
)

is a given direction in the complex plane, to be an exact differential or, in other

words, that is a potential such that the integral of the field is independent of the pathway followed. This conclusion leads to

the complex function,

z xð Þ ¼ Ve
•

xð Þ þ j
)
Vo
•

xð Þ ð1:16Þ

where Vo
•

xð Þ represents the odd component of the signal.

Through Eq. (1.16) one gets the connection between the Hilbert transform, holomorphic functions and the levels of gray

as a potential function leading to the definition of a local phase. For example, ifVe
•

is of the form given by Eq. (1.8), through

the Hilbert transform we will obtain,

Vo
•

xð Þ ¼ Iq sin
2π
p
xþ ϕ0

� �
ð1:17Þ

Each one of these derivatives can be computed from the information recorded in the image sensor. For each point of the ℒ1

domain, one can plot the gray levels as V
•

xð Þ. From Eq. (1.8)
∂V

•

∂xc
�∂V xð Þ

•

∂x
and

∂V xcð Þ
•

∂yc
�∂V xð Þ

•

∂y
can be obtained and, finally,

complementary derivatives are obtained from Eqs. (1.13) and (1.14). In summary, to represent the deformation of a

continuous field the derivatives must satisfy the above relationships for a one dimensional signal. However, recorded

signals will be contaminated by different signals that we designate as noise. Whatever processes that are applied to the signal

to remove noise they must get successive derivatives satisfying the above conditions.

All previous developments correspond to gray levels in one dimension. To introduce the definition of local phase for the

2D sinusoidal signal shown in Fig. 1.1 it is necessary to resort to a 3D complex space. Figure 1.1 showed a 2D cosinusoidal

function which has the same parameters as a 1D signal but also additional parameter, the orientation θ. The normal n to the

fringe trajectory shown in Fig. 1.1 provides the orientation of the signal at a given point of the physical space and the angle θ
defines the orientation of the segment of curve with respect to a selected reference system. Some notations that will be useful

in the developments that follow are now introduced. The unit normal to fringes in a point of a sinusoidal signal (Fig. 1.1b) is,

n ¼ x cos θiþ y sin θj ð1:18Þ

The above relationship is converted into cycles per unit length by multiplying Eq. (1.18) by 2π/p. Introducing the concept of
wave vector for the sinusoidal signal, it can be written:

k ¼ 2π
p

cos θiþ 2π
p

sin θj ¼ kxiþ kyj ð1:19Þ

The wave vector is an alternative way to define the orientation of a segment of a sinusoidal signal in 2-D and relates it to the

projections of the trajectory into the reference axis x–y. From Eq. (1.19), the local value of θ is given by
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θ kð Þ ¼ arctg
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q ð1:20Þ

At every given point of a cosinusoidal fringe field defined by the position vector r ¼ xiþ yj there is a phasor represented by
Eq. (1.1) and the local orientation of the signal defined by the angle θ.

The addition of one more parameter, the angle θ requires to extend the definition of the gray levels as a potential scalar

functionVr
•

in a 2D space, where r ¼ xiþ yj is an upper script that indicates that the potential corresponds to a point inℛ2,

the 2D continuum.

Following the same steps applied in two dimensions and recalling that levels of gray are scalar quantities,

gradVr
•

¼ G3 rð Þ ¼ ∂Vr
•

∂xc
i
) þ∂Vr

•

∂yc
j
) þ∂Vr

•

∂zc
k
) ð1:21Þ

where the versors i
)
, j
)
and k

)
indicate a Cartesian coordinates system in a 3D complex space, the subscript “3” indicates that

one is dealing with a 3D vector in the complex space.

The divergence of the field is determined as:

∇ •G3 rð Þ ¼ ∂2
Vr
•

∂xc2
þ ∂2

Vr
•

∂yc2
þ ∂2

Vr
•

∂zc2
ð1:22Þ

Calling V r
xc

•

¼ ∂Vr
•

∂xc
, V r

yc

•

¼ ∂Vr
•

∂yc
, V r

zc

•

¼ ∂Vr
•

∂zc
, and computing the vectorial product of the ∇ operator with the vector G3(r), it

follows:

∇�G3 rð Þ ¼ ∂V r
zc

•

∂yc
� ∂V r

yc

•

∂zc

0
@

1
A i

) þ ∂V r
xc

•

∂zc
� ∂V r

zc

•

∂xc

0
@

1
A j

) þ ∂V r
yc

•

∂xc
� ∂V r

xc

•

yc

0
@

1
A k

) ð1:23Þ

Since we are dealing with a scalar potential, the divergence is zero. Hence, it can be written:

∂2
Vr
•

∂xc2
þ ∂2

Vr
•

∂yc2
þ ∂2

Vr
•

∂zc2
¼ 0 ð1:24Þ

Equation (1.24) indicates that the potentialVr
•

satisfies the Laplace’s equation in the complex 3D space. The meaning of this

equation is the same as for two dimensions. The fact that the rotor is zero implies,

∂V r
xc

•

∂yc
¼ ∂V r

yc

•

∂zc
¼ ∂2

Vr
•

∂yc∂zc
ð1:25Þ

∂V r
xc

•

∂zc
¼ ∂V r

zc

•

∂xc
¼ ∂2

V
•

∂xc∂zc
ð1:26Þ

∂V r
yc

•

∂xc
¼ ∂V r

xc

•

∂yc
¼ ∂2

Vr
•

∂xc∂yc
ð1:27Þ

Equations (1.26)–(1.28) are the conditions for the existence of a scalar potential in the 3D complex space and are equivalent

to the Cauchy-Riemann conditions in the two dimensional case.

The above derivations indicate that the information contained in a 2D cosinusoidal fringe pattern is described mathemati-

cally by a conservative 3D vectorial field in the complex space. Similarly with the one dimensional case the derivatives that

appear in the preceding developments can be computed in the 2D real space as recorded in the sensor. The difference with the

one dimensional case is now that the information is in the form of a Monge’s type surface where the gray level is of the form,

6 C.A. Sciammarella and L. Lamberti



Vr
• �

zc
� ¼ F xc; ycð Þ ð1:28Þ

where F(xc, yc) indicates a 2D function.

From Eq. (1.28), it is possible to get all the derivatives that appear in the preceding developments of the 3D complex field

proceeding in a similar way to that utilized in the one dimensional case.

Since we are dealing with Continuum Mechanics problems operating on tensorial entities, a family of orthogonal

cosinusoidal signals must be defined in Cartesian coordinates as shown in Fig. 1.2. The orthogonal modulated fringe

patterns project the displacement vectors in two orthogonal directions. These projections are not independent from each

other since they are tied together by the compatibility conditions of the continuum and involve also the Eqs. (1.25)–(1.27)

that both systems of fringes must satisfy at the same points of the image.

Conclusions similar to the one dimensional case can be obtained: the successive derivatives of the gray levels must satisfy

the above conditions to define a scalar potential. Hence, the passage from the actual signals to the continuum signals requires

operations that must enforce the above conditions as close as it may be feasible. This conclusion is very important because

the change of the orientation of the fringes is related to the curvature of the fringes, the larger is the local change of

orientation the more important is the effect of the orientation on the derivatives of the gray levels function.

1.3 The Monogenic 2D Signal

The extension of the one dimension approach of signal analysis to multiple dimensions has been the object of a large number

of papers (see, for example, [5–8] and the references cited therein). This study will apply the complex Riesz transform

presented in the preceding publications. In these four publications are introduced the required arguments to create a

transform equivalent of the Hilbert transform in a multidimensional space. To achieve this purpose, the concept of

monogenic function is introduced. The original derivation of the monogenic signal concept has its foundations on the

algebra of quaternions that is connected to Lie algebra isomorphisms. In this paper, a variation of the original arguments is

introduced. The derivations fit the mappings originally developed by Poincare and that for the particular field considered in

this study, a 2D flat field, are graphically represented by a Poincare sphere [8] that it is utilized in the field of birefringent

optics and in photoelasticity to define the different forms of polarization.

The relationship of Poincare sphere and the concept of phase of the components of polarized light has been the object of

several publications (see, for example, [9–11]). The connection between the preceding applications of the Poincare sphere

and the phase concept and the current version introduced in this paper is a subject of a great deal of interest but is beyond the

purpose of this paper. The motivation in the current version follows from the isomorphism pointed out in [12]. It has been

shown that in order to introduce the concept of phase in one dimensional signals, it is necessary to resort to a 2D vectorial

field, similarly for 2D signals it is necessary to introduce a vector field in the 3D complex space. The 3D phasor representing

the gray levels in 2D has an amplitude that corresponds to the intensity of the signal, a phase that corresponds to the optical

path information, and introduces a new variable that corresponds to the orientation of the 2D sinusoid in the physical plane

defined by the normal n Eq. (1.18), a function of the angle θ defined in Fig. 1.1.

Figure 1.3 illustrates the Poincare sphere notation. The vector amplitude is defined by the following components: (a) the

components of the gray levels Ix, Iy associated with the versors i
)
and j

)
, respectively; (b) to these two components it is added

a third component Iq, corresponding to the versor k
)
.

The complex amplitude vector in the complex space is given by,

Isp ¼ Ix i
) þIy j

) þIq k
) ð1:29Þ

and corresponds to the radius of a Poincare sphere shown in Fig. 1.3a. This sphere represents the local phase and amplitude at

a point in the 2D continuum of gray levels. In the coordinate plane i
)
, j
)
, sphere equator, Eq. (1.29) becomes:

Ip ¼ Ix i
) þIy j

) ð1:30Þ

From Fig. 1.3, it follows:

Ix ¼ Ip
�� �� cos θ ð1:31Þ
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Iy ¼ Ip
�� �� sin θ ð1:32Þ

Figure 1.3b shows that the following relationship applies:

tanϕ ¼ Iq

Ip
ð1:33Þ

There are two in-quadrature quantities Ip and Iq and a phase ϕ that defines a local phase for a signal of orientation θ in the 2D
space. The above derived equations lead to the following relationships between the intensities, defining Isp as the modulus of

the vector Isp.

Ix ¼ Isp cosϕ cos θ ð1:34Þ

Iy ¼ Isp cosϕ sin θ ð1:35Þ

Iq ¼ Isp sinϕ ð1:36Þ

Finally, the monogenic signal can be represented by,

M r
s ¼ Isp cos ϕ cos θ i

) þ cos ϕ sin θ j
) þ sin ϕ k

)
� 	

ð1:37Þ

The upper script indicates that it corresponds to a point r of the 2D continuum.

The angle θ defines the longitude of the point under consideration referred to the i
) � k

)
plane in the complex space. The

angle ϕ is the latitude of the point with respect to the equatorial plane and provides the local phase associated with the actual

signal.

The above derived relationships from local gray levels at a given point of a 2D image provide local orientation and the

local phase. If a sinusoidal signal is such that the normal n�i, then θ ¼ 0 and the corresponding representation in the

Poincare sphere is shown in Fig. 1.3b. It can be seen from Fig. 1.2, for the vertical fringes that measure horizontal

displacements the angle of the normal is θ ¼ 0. This case is depicted by the Poincare sphere of Fig. 1.3b.

An alternative space can be considered replacing the light intensities by the frequencies. Defining the energy of the vector

Isp in the frequency space as

I2sp ¼ I2x þ I2y þ I2q ð1:38Þ

Fig. 1.3 (a) Poincare sphere of the levels of gray representing light intensities; (b) Poincare sphere of the levels of gray for θ ¼ 0
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and taking into consideration the FT energy theorem, the following equation holds true in the frequency space:

f sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y þ f 2q

q
ð1:39Þ

The Poincare sphere in the intensity space depicted in Fig. 1.3a can be transformed into the Poincare sphere of the frequency

space by replacing intensities by the corresponding frequencies. All the derivations made for the 3D complex space that are

related to the intensities are valid also for the frequencies.

1.4 The Riesz Transform

All the quantities that define the Poincare sphere can be obtained directly by applying the generalized Hilbert transform or

Riesz transform defined in [5–7]. The Riesz transform can be computed in the physical space or in the frequency space

defined by the analytic function theory [4].

Equation (1.37) provides the monogenic vector corresponding to a given point of the ℛ2 gray levels continuum

represented graphically by a Poincare sphere in a 3D complex space. The monogenic function vector Isp has three

components Ix, Iy and Iq, and its position in space is defined by two angles, θ and ϕ, a total of five unknown quantities.

These quantities are related by Eqs. (1.34)–(1.36). Since of these three equations only two are independent, only three

quantities (i.e. Ix, Iy and Iq) must be determined while Ip is the level of gray captured by the sensor.

The Riesz transform of gray levels of an image in the spatial domain associates with each point of the continuum two

orthogonal convolution kernels (Chap. 4 of [7]):

hx rð Þ ¼ x

2π x2 þ y2ð Þ32
ð1:40Þ

hy rð Þ ¼ y

2π x2 þ y2ð Þ32
ð1:41Þ

where r ¼ xiþ yj. These kernels yield:

Ix rð Þ ¼ x

2π x2 þ y2ð Þ32
∗∗Ip rð Þ ð1:42Þ

Iy rð Þ ¼ y

2π x2 þ y2ð Þ32
∗∗Ip rð Þ ð1:43Þ

In the above equations, Ip(r) is the gray level at rwhile the ** symbol [13] denotes a 2D convolution in physical space. These

kernels satisfy the following relationships with the corresponding quantities in the frequency space:

hx rð Þ ! Hfx frð Þ ¼ f xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q ð1:44Þ

hy rð Þ ! Hfy frð Þ ¼ f yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q ð1:45Þ

where the symbols Hf x and Hf y indicate Hilbert transform in 2-D as it is called in [7]. The generic denomination

multidimensional Hilbert transform is used in place of the Riesz transform and the frequency space corresponds to the

analytic frequency space [4].

It should be noted that the operatorsHf x andHfy of Eqs. (1.44) and (1.45) define the cos θ and sin θ terms in the frequency

plane, consistently with Eqs. (1.34) and (1.35). Then
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θ rð Þ ¼ arctg
Iy rð Þ
Ix rð Þ ð1:46Þ

The orientation of the signal is known through the angle θ.
Rotating the coordinate axis by the amount θ and calling the rotated coordinate x0,

Iq x
0


 �
¼ 1

π
PV

ð1
�1

Ip ηð Þ
x0 � η

dη ¼ 1

π
Ip x

0

 �

∗
1

x0

� �
ð1:47Þ

where PV indicates the principal value and η is the dummy variable of integration.

Equations (1.44)–(1.47) allow obtaining the monogenic function vector Eq. (1.37). All the above introduced

computations are performed in the physical space. These computations can also be performed in the analytical functions

frequency space [4].

1.5 Retrieval of the Monogenic Vector

First we will recall some properties of the FT that are of interest in the current analysis and shed light on the relationship

between the FT and the Riesz transform. Both of these two transforms provide signals in-quadrature by utilizing different

algorithms that however are closely related to each other since theoretically the outputs must be the same. In practice, due to

the numerical processes involved obtained results may differ.

The windowed FT provides the signals in-quadrature in 2-D. Let us recall some basic steps of the process of computing

in-quadrature signals. The FT has symmetry properties,

F
�

f x; f y


 �
¼ F*

�
�f x, � f y


 �
ð1:48Þ

F
� �f x, f y


 �
¼ F*

�
f x, � f y


 �
ð1:49Þ

Furthermore it also satisfies the condition of separable functions,

F
�

f x; f y


 �
¼ F1

�
f xð ÞF2

�
f y


 �
ð1:50Þ

In Fig. 1.4, a fringe pattern is plotted and its corresponding FT in the frequency space. It is possible see that the fringe pattern

in the third quadrant of angle θ0 ¼ 180 + θ corresponds the same components (�5,�6) as to a fringe pattern of angle θ(5, 6)
but with signs changed. It satisfies Eq. (1.48), the components in the third quadrant are complex conjugates of the

Fig. 1.4 Symmetry

conditions of the FT in the

frequency space (a) for a 2D
pattern (b)
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components in the first quadrant. Similar conclusion can be reached if we have a system of fringes in the second quadrant,

that is the dashed red line represents the normal to the pattern with components (�6, 5) and the corresponding system of

fringes in the fourth quadrant (6, �5) satisfying Eq. (1.49).

The FT components are complex numbers (aij + jbij) that can be arranged in a square matrix where “i” indicates the rows

and “j” the columns. The carrier orientation is given by the angle θ of the normal to the carrier direction. In the case of a

vertical carrier, it holds θ ¼ 0; in the case of a horizontal carrier, it holds θ ¼ π/2. In general, θ goes from 0 to θ ) �π.
Because the signal satisfies Eq. (1.50) the computation can be carried separately along rows and columns.

Because of the symmetry conditions there are only N2/2 independent components to obtain the FT. There are additional

components that are real, the term aoo that corresponds to fo ¼ 0 (the background term is a constant), and the terms

corresponding to the Nyquist frequency f ¼ N/2. Then, the number of independent coefficients to compute is N2/2 and two

real coefficients aoo and the Nyquist frequency fN/2.

The Riesz transform is an alternative to the FT computational method to obtain the in-quadrature signals and, as pointed

out before theoretically, the final output must be the same independently of the computation path followed. First it must be

realized that the background term is eliminated from the computation in the Hilbert transform since it is a singularity at the

origin of coordinates of the frequency space.

Figure 1.5 represents the actual physical space and the corresponding analytical function frequency space (notice the

difference between the frequency space of the FT and the frequency space of the analytic functions). Physical space

quadrants 1 and 3 are represented in the frequency analytical space by the lower half space fx, fy > 0, while quadrants 2 and

4 are represented by the fx > 0, fy < 0 upper half space. The corresponding coefficients of the Riesz transform are complex

quantities Z(fx, fy) ¼ (aij + jbij); their magnitude is twice in magnitude of the coefficients in the FT transform because of the

single side transform as illustrated in Fig. 1.5. The total number of independent coefficients is then N2/2, because of the

Nyquist transform symmetry that is the coefficients of the upper half space are the complex conjugated of the lower half

space. Similarly to the FT property of separability stated by Eq. (1.50), coefficients can be computed by rows and columns.

The angle θ goes from 0 to θ ) �π and can be computed by means of Eqs. (1.44) and (1.45). The monogenic signal as

defined in this paper allows us to compute all the parameters that define a 2D sinusoidal signal.

Figure 1.6 shows all the coefficients that it is necessary to compute in the frequency space to obtain the phase ϕ of a

sinusoidal signal in the frequency space utilizing the monogenic signal concept. The above presented derivations emphasize

the fact that the same objective can be reached by utilizing the FT.

There are many theoretical reasons for introducing the concept of analytic signals, or in other words, for eliminating the

negative frequencies of the real and imaginary components of the spectrum of real signals. From the practical point of view,

it has been pointed out that the negative spectrum has in essence the same information than the positive parts due to the

conjugate symmetry previously mentioned. The elimination of the negative frequencies has also an impact in the efficiency

signal processing by reducing the required bandwidth.

Fig. 1.5 (a) Frequency space

for the analytical function; (b)
physical space
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1.6 Generalized Hilbert Transform for Signal Phase Retrieval

The phase shifter or Hilbert filter is an ideal symbolic operator capable of leaving signal amplitudes unchanged and

introducing phase shifts of π/2. The ideal operator can be approximated in different ways. In the preceding section, it is

outlined an approach in the frequency space of analytic signals with one sided spectrum. The operations can be carried out in

the physical space or in the frequency space. In both cases, the Hilbert transformers are special class of filters. The difference

between alternative filters can be quantified by the operational efficiency minimizing the number of operations required and

minimizing phase and amplitude errors resulting from numerical operations. There are two basic types of filters: (a) infinite

impulse response filters (IIR filters) whose response does not become zero, pass a certain point but continues indefinitely;

(b) finite impulse filters whose response becomes zero at certain point. FIR filters are preferred filters for Hilbert transform

operations, for a comprehensive discussion in this topic see [14, 15].

For reasons that will be explained further on in the manuscript we are interested in a shifted frequency modulated function

that is in a function whose spectrum is shifted of a certain amount in the frequency space. We have a real function of the form

(Fig. 1.1),

I xð Þ ¼ Ip cos ϕ xð Þ ¼ Ip
2

ejϕ xð Þ þ e�jϕ xð Þ
h i

ð1:51Þ

The corresponding in-quadrature signal is

Î xð Þ ¼ Iq sinϕ xð Þ ¼ Iq

2j
ejϕ xð Þ � e�jϕ xð Þ
h i

ð1:52Þ

The shifted modulated analytic function is defined as [4]:

zm xð Þ ¼ Ip

2
ejϕ xð Þ þ e�jϕ xð Þ
h i

e�j2πf 0x þ j
Iq

2
ejϕ xð Þ � e�jϕ xð Þ
h i

e�j2πf 0x ð1:53Þ
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Fig. 1.6 Table of coefficients in the half space assuming that the image has 1024 � 1024 pixels. The columns outlined in red will correspond to

the coefficients of the zero order that are not present in the Riesz transform

12 C.A. Sciammarella and L. Lamberti



This expression yields,

zm xð Þ ¼ Ip

2
cos ϕ xð Þ � 2πf 0x½ � þ j

Iq

2
sin ϕ xð Þ þ 2πf 0x½ � ð1:54Þ

Calling

P xð Þ ¼ Ip
2
cos ϕ xð Þ � 2πf 0x½ � ð1:55Þ

Q xð Þ ¼ Iq
2
sin ϕ xð Þ þ 2πf 0x½ � ð1:56Þ

The function P(x) is the in-phase component while the Q(x) function is the in-quadrature component of the frequency

modulated function zm(x).

zm xð Þ ¼ P xð Þ þ jQ xð Þ ð1:57Þ

The net effect is to displace the frequency spectrum of the frequency fo in the positive sense. Each component of the input

experiences a shift that is proportional to its frequency and the overall final effect is to produce a translation of the FT of the

original signal frequency spectrum by the frequency fo. In order to implement the single band frequency modulation

previously described and illustrated in the flow chart of Fig. 1.7, it is necessary to compute the Hilbert transform of I(x)
(Eq. (1.51)). Afterwards, both I(x) and Î(x) must be modulated to obtain P(x) and Q(X), that is the signals in-quadrature but

shifted to the frequency fo. Algorithms that approximate the Hilbert Transformer, such as the Parks-McClellan FIR filter

design technique, have been developed and can be found in MATLAB Signal Processing Toolbox™.

1.7 Transition from the Continuum to Actual Signals

To this point the continuum aspect of fringe pattern analysis has been dealt with in some detail. It has been pointed out the

importance of phase in image analysis and certainly the fundamental role that it plays on fringe pattern studies. The two

different concepts of phase, global and local have been introduced. The next step is to deal with the local phase and add to the

continuum approach the statistical tools that are required to bridge the gap between the continuum model and the actual

signals that are captured. The impact of local phase analysis in fringe pattern is in itself a huge topic. It is a well known fact

that the FT is a powerful tool in global phase analysis but does not provide details of the local phase structure. A similar

conclusion can be arrived for the analytical frequency space.

Reasoning in the FT frequency space, consider a 2D signal with energy [4],

E ¼
ðð
1

f x; yð Þk k2dxdy ð1:58Þ

Fig. 1.7 Process to generate

the single side frequency

modulated bandpass signal

that provides shifted signals

in-quadrature
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Assume that the values of its Fourier Transform (FT) are limited to a region A on the FT plane and in the physical plane the

corresponding values of the function f(x, y) are limited to a region B. We further assume that the product A � B is also a

small quantity. It is possible to define the energy ratio,

α ¼
ðð
B

f x; yð Þk k2dxdy
E

ð1:59Þ

Under the above assumption, f(x, y) is a slowly varying function in B. Then, it can be written in the local coordinate system,

α ¼
ðð
B

f x; yð Þk k2dxdy
E

	 f 0; 0ð Þk k2B0

E
ð1:60Þ

where Bo is the considered local area. The optimum condition will be to maximize ||f(0, 0)/E||. This problem is related to the

classical problem in signal analysis of the localization of a signal in space and in frequency. There is a limit to the resolution

that can be achieved. The Heisenberg Uncertainty Principle of the FT puts a limit to the resolution in a rectangular local area,

ΔxΔf 
 1

4π
ð1:61Þ

whereΔx is the uncertainty in the spatial coordinates andΔf is the uncertainty in the frequency value of the signal. An answer

to the optimization of the approximated energy ratio defined in Eq. (1.60) [4] is to multiply f(x, y) by a window function. It is

well known that the lower limit of Eq. (1.61) is obtained when the window function is a Gaussian function.

In the present case, the sensor gives Ip(x, y) and it is necessary to locally smooth this function by introducing a band pass

filter that will render the approximated energy ratio defined in Eq. (1.60) optimum. Hence, in the previously derived

equations the recorded Ip(x, y) can be replaced by:

I bp x; yð Þ ¼ Ip∗∗g x; yð Þ ð1:62Þ

where the upper script b indicates a band pass filtered version of the recorded signal and g(x, y) is a selected band pass filter.

In [7], a Poisson’s and conjugate Poisson’s kernels filters are utilized. However, there are many other alternative filters that

can be utilized depending on the noise present in the analyzed signals. The derivation of the optimization of Eq. (1.60)

suggests a Gaussian smoothing filter to be used for Eq. (1.51): in [7], Gaussian filters are introduced.

At this point one must go back to the derivations made in Sect. 1.2. The concept of the gray levels as a scalar potential to

be valid requires that the Cauchy-Riemann conditions in 1-D and in 2-D must be satisfied at each point of the image. This

implies that the gray levels and their successive derivatives are required to satisfy the continuity conditions expressed by

Eqs. (1.14), (1.15), and (1.25)–(1.27), respectively. In [7], there are extensive statistical considerations to derive optimum

values of orientation, phase and amplitude of signals using the Poisson’s distribution that involve gray levels and successive

derivatives. In [8], there are similar derivations utilizing Gaussians filters. In the case of fringe patterns, the solution is

simpler at least for the small deformation theory of the continuum that requires continuous derivatives up to the third order.

Figure 1.8 represents a Gaussian filter in the physical space and in the frequency space.

Equation (1.38) relates both these filters.

I ax; ayð Þ $ 1

ak k
~I

f x
a
;
f y
a

� �
ð1:63Þ

Equation (1.63) gives the relationship between the components of the Gaussian filter in the physical space and the frequency

space; the scale factor “a” is multiplicative in the physical space and it divides in the frequency domain. This is an important

result because it indicates that in the process of filtering there is a scale effect that is a key in obtaining a satisfactory

smoothing of the recorded signals. The scale depends on the gradients of the displacement function; large gradients require

large scale factors in the physical space.
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The 2D Gaussian filter represented in Fig. 1.8 is given by,

g x; yð Þ ¼ 1

2πσ2
e
x2þy2

2σ2 ð1:64Þ

In this representation, it is assumed that the mean is (0, 0) while σ ¼ 1 is the standard deviation of the function. The Gaussian

filter acts a point spread distribution and the effect in the smoothed function is determined by the selected value for σ. If σ is

small, in the spatial domain a large number of frequencies will contribute to the filtered value of the signal and vice versa.

Figure 1.9 shows both the Gaussian function in the coordinate’s domain and in the frequency domain as well as the

corresponding derivatives. Gaussian derivatives in 2D are separable functions equivalent to a convolution in the x-direction

and in the y-direction.

∂g x; yð Þ
∂x

∗∗f x; yð Þ ¼ �xffiffiffiffiffi
2π

p
σ3

e�
x2

2σ2

� �
∗

1ffiffiffiffiffi
2π

p
σ
e�

y2

2σ2

� �
∗f x; yð Þ ð1:65Þ

Since we have discrete values of the function, it is necessary to produce discrete approximations to the Gaussian function.

The function approaches zero at about 3σ, hence the kernel size is limited to this size.

Fig. 1.8 Gaussian filters in the physical space and in the frequency space

Fig. 1.9 Gaussian filters and

corresponding derivatives in

the space domain and in the

frequency domain
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1.8 Process of Phase Recovery

The preceding section covered the analysis of fringe patterns as 2D signals. One of the important concepts in this analysis is

the definition of local phase. While the local phase concept is clear in the continuum theory, in the passage from the

continuum to the actual signals one should note that the concept of local phase depends of the selected widows to smooth real

signals.

In [1], it was concluded that in order to satisfy the quasi-harmonic condition that allows in 1D signals the utilization of

in-quadrature signals for the computation of local phase, it is required to encode the displacement signal into a high

frequency carrier. A similar argument must be introduced for 2D signals. In order to achieve this objective, we must consider

again the concept of local phase, that in the general theory of 1D signal analysis is known as the definition of the

instantaneous frequency, subject that has been the object of extensive studies [16, 17]. The phase computation is a point-

wise operation that provides the local phase through the computation of the arc tan function and can be derived by the

introduction of the concept of analytic functions [4]. Within the analytic function theory one has signals that are amplitude

modulated or frequency modulated. Fringe patterns are both amplitude and frequency modulated signals. This creates a very

difficult problem because amplitude and simultaneously phase modulated signals do not have a uniquely defined analytic

signal representation [16]. The amplitude and the phase have their own frequency spectra and these spectra can overlap. In

[1], it is observed that harmonics providing different optical information besides amplitude and phase can also overlap in the

frequency space with amplitude and phase information. As a consequence of these facts, phase and amplitude recovery

information is not possible unless steps are taken to minimize the effect of the mixing of different harmonics.

Two important tools are utilized to get solution to these two problems of real signals. The Bedrosian-Nuttal’s theorems

[18–20] provide solutions to the overlapping problem. If the Bedrosian-Nuttal’s theorems are satisfied, the amplitude of the

general phasor A(x) and the phase ϕ(x) are separated in the frequency space. The analytical function theory can provide the
in-quadrature components that lead to a real signal with a well defined local frequency,

f xð Þ ¼ 1

2π
d

dx
arg z xð Þ ð1:66Þ

The possibility of satisfying the Bedrosian-Nuttal’s theorems is related to the bandwidth of the involved signals. To get an

intuitive picture of the problem of defining local phase at a given point of an image, let us return to the one dimensional

signal. The simple harmonic function has been traditionally utilized to define instantaneous phase. A periodic motion is

represented by a body that moves with constant speed along a circular path (see Fig. 1.10),

S xð Þ ¼ A0 cos ϕ xð Þ ð1:67Þ

where Ao is the radius of the circle, ϕ(x) ¼ ωx, ω is the constant angular frequency connected with the spatial frequency

fx ¼ ω/2π.
In [1], it is concluded that for patterns where the amplitude modulation frequencies are much smaller than the frequencies

of the phase modulation fa � fϕ, the in-quadrature signals provide accurate values of the phase. This conclusion is proven

by the analysis of 1D signals extracted from moiré patterns both computer generated with known frequencies and actual

optically produced moiré patterns. It is necessary to extend this conclusion to 2D signals,

Fig. 1.10 Simple harmonic

motion as a model to define

instantaneous frequency
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Smc x; ycð Þ ¼ I1 cos
2π
pc

xþ ϕ x; ycað Þ
� 	

ð1:68Þ

In Eq. (1.68), it is assumed that we are operating along rows of the signal matrix and a carrier is introduced in the x-direction

and has amplitude I1 and the pitch is pc. The yc indicates the corresponding constant values of the y-coordinate. Now, if we

consider a local region, the FT of the carrier is a pair of pulses at frequency fc ¼ 1/pc. The frequency fca is selected such that,

f ca � f s ð1:69Þ

where fs is the frequency of the signal ϕ(x, yc) in the local region. Equation (1.69) indicates that locally the signal frequency
is much smaller than the carrier frequency.

Figure 1.11 represents the spectrum of the signal plus carrier at a given location,Δf is the local change of frequency of the
signal postulated to be such that Δf � fca in order to have a narrow band signal. Through the Bedrosian-Nuttal’s theorems,

amplitude and phase of signals can be assumed to be independent if their respective spectra are separated in the frequency

space. Hence, the closer the signal is to a narrow band condition, the more likely is that the Hilbert-transform analytical

signal provides support to the validity of Eq. (1.67). This provides an accurate value for the local frequency. Looking from

the point of view of Fig. 1.10, A(X) becomes a constant and,

ϕ xð Þ ¼ ωx ð1:70Þ

where ω is a constant angular frequency.

1.9 Application Examples

In the preceding sections two alternative ways of fringe pattern analysis have been discussed and the theory behind these two

methods dealt with in some detail. There are many other approaches to fringe pattern processing, such as for example, the

Gabor transform and a generalization of the Gabor transform through the concept of wavelet transforms that introduce more

refined filters systems and that can be particularly useful for noisy signals. Actually recorded fringe patterns are processed

and the results obtained with the different methods compared.

A disk under diametrical compression, u–v displacement patterns and their derivatives are chosen as an example of

application of the FFT, the 2D Hilbert transform, the Gabor transform and the Morlet transform. Table 1.1 provides the

parameters defining the utilized specimen mechanical properties and the applied load.

The recorded patterns of Fig. 1.12 were obtained with double illumination speckle interferometry. A preliminary analysis

of the fringe patterns indicates that there are four orders in the u-pattern (Fig. 1.12a) and 17 orders in the v-pattern
(Fig. 1.12c). Therefore, the horizontal diameter of the disk will expand by about 5 μm under the action of the applied

load while the vertical diameter of the specimen will contract by about 21 μm. The computer generated patterns have been

obtained utilizing a solution taken from the theory of elasticity [21]. The difference between theory and experiment is due to

the modality of load application. The theoretical model assumes a point loading that generates a singular point in the theory

Ica

BW=2(Δf+fca)

Fig. 1.11 Local power

spectrum of the signal
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of elasticity solution while the actual loading is the result of the contact stresses between the loading application bar and the

specimen. The fringe pattern analysis was not done directly on the recorded u–v patterns but in patterns where carrier fringes
were introduced according to the theory presented in Sect. 1.6 (see Fig. 1.13).

There is an additional reason that is related to the adopted processing algorithms. In order to simplify the algorithm

design, processing algorithms are derived under the assumption that computations are performed in a domain that

asymptotically mimics an infinite domain. If an algorithm is developed for a finite region, this is a possible alternative,

one has to design algorithms capable of changing as a function of the distance of the considered point to the boundaries (this

distance depends on the domain geometry), which is not a simple task. An alternative choice is to keep the format of

corresponding to an infinite domain and utilizing extended fringes to cover the full image area so that when one reaches the

boundaries of the specimen either internal of external, the effect of the finite domain is removed [22]. The fringe extension is

numerically feasible and converges faster if a high frequency carrier is present. The boundary problem is also present in both

in the Gabor transform and in the wavelet transform. In the wavelet transform the edge problems present additional

complications due to the different scales involved in the computation.

Table 1.1 Details of tested specimen Material Aluminum

Diameter 60 mm

Thickness 6.35 mm

Young’s modulus 70 GPa

Poisson’s ratio ν ¼ 0.336

Pitch 1.222 μm
Applied load 3300 N

Fig. 1.12 (a) Recorded u-pattern; (b) computer generated u-pattern; (c) recorded v-pattern; (d) computer generated v-pattern

Fig. 1.13 u-extended (a) and v-extended (b) carrier fringes for the patterns of Fig. 1.12a, c
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The above outlined path helps recovering the frequency information since it reduces the frequency spectrum to a narrower

local band, resulting in a less populated energy matrix. This step is particularly useful for the Morlet wavelet transform since

it reduces the number of scales and voices, thus reducing the amount of information that it is necessary to process. In this way

the total amount of work required to compute frequencies is reduced and the accuracy of the results is enhanced.

In order to fully understand the comparison of different methods presented in this section, it is necessary to recall some

fundamental relationships that arise from considering fringe patterns that encode displacement information as frequency

modulated signals. The utilization of the energy representation of a signal in the coordinates-frequency space [23] provides

powerful procedures to retrieve derivatives of displacements directly from fringe patterns without resorting to the differen-

tiation of displacements. This alternative also simplifies the determination of displacements replacing complex unwrapping

procedures by integration of the derivatives [24], a robust operation in the presence of noise. In view of the arguments

presented in the preceding paragraphs, the comparison of results will be done between methods that provide displacements

and methods that provide directly derivatives.

Figure 1.14 compares the theoretical distributions of u–v displacements (Fig. 1.14a) with the experimental values

obtained from the FFT (Fig. 1.14b) and the experimental values obtained from the 2D Hilbert transform (Fig. 1.14c). The

plots of Fig. 1.14b have been obtained starting from the extended fringe patterns of Fig. 1.13, utilizing the windowed FFT;

the applied window is a Gaussian window like that displayed in Figs. 1.8 and 1.9. The plots of Fig. 1.14c have been obtained

utilizing the 2D Hilbert transform described in this study. In the case of 2D Hilbert transform, displacement maps are

presented in fashion of color contours; axes of symmetry of the disk are represented in order to highlight any asymmetry of

the u–v fields.
Because of the pointed difference between the theory of elasticity solution and the experimental realization of this model,

a FE solution was computed with the general purpose finite element software ANSYS. An elliptical distribution contact

stress was assumed, the load contact width was determined from the recorded fringe patterns. Because of symmetry, only

one half of the disk was modeled. Figure 1.15 shows the FE model and the u–v displacement maps computed by ANSYS;

color bars for each displacement component are included in the figure. In order to obtain a mesh independent solution,

convergence analysis was carried out and finally it was selected a mesh with 9242 elements (more specifically, in Fig. 1.15a,

there are 9170 four-node plane elements, 60 target elements on the disk surface that may come in contact with 12 contact

elements on the loading surface) connected by 9272 nodes. The FE model includes also auxiliary regions to apply the load to

the disk and to support the specimen in the loading frame.

It can be verified that all these results are in good agreement. For example, the maximum u-displacement along the

horizontal axis of the disk was determined as follows from experimental measurements and computations: 2.520 μm for the

windowed FFT, 2.543 μm for the Hilbert transform, and 2.573 μm for ANSYS (similar to theoretical solution), respectively. A

more detailed comparison is presented in Fig. 1.16 which shows the distribution of u-displacements measured or computed

along the horizontal diameter: experimental data matched well the numerical simulations over the whole region of interest.

As far as it concerns the total v-displacement undergone by the vertical diameter of the disk, it can be seen that ANSYS

predicted 20.7 μm (similar to theoretical solution) while the relative displacement extracted from the fringe pattern with

windowed FFT and 2D Hilbert transform are about 18 μm. Both algorithms captured the asymmetry of the v-displacement

pattern with respect to the horizontal diameter of the disk but could not reconstruct the whole pattern in the regions where the

specimen is loaded (top) and fixed (bottom) as concentration of fringes caused a loss of resolution.

Figure 1.17a–d display the maps of strains εx and εy obtained directly from the fringe patterns of Fig. 1.12 utilizing the

Gabor transform and the Morlet wavelet transform. It can be seen that the two patterns are very similar in their outlines.

Figure 1.18 shows the maps of εx and εy strains computed utilizing the patterns of Fig. 1.12 and the differentiation in the

frequency space [25]. That is, derivatives are obtained directly from fringe patterns without going through the displacements

similarly to what is done in the case of the Gabor and the Morlet wavelets. It is possible to see that distributions agree well in

their outlines.

For a more detailed analysis, the distributions of strain εx along the horizontal axis obtained with the Gabor transform, the

Morlet wavelet, the windowed FFT, the 2-D Hilbert transform and the finite element results are plotted in Fig. 1.19. Since

values of contour lines do not match, data at the same locations along the control path are extracted. The agreement between

the different methods is excellent (maximum strain is 190 με for Gabor/Morlet, 185 με for FFT, 193.5 με for Hilbert 2D and

201 με for finite elements) in spite of the fact that different numerical techniques and algorithms have been applied to obtain

the corresponding values.

There is an exception that can be observed in the values of εy of Fig. 1.18 near the point of application of the load. In this
region there is a large gradient of the displacements and this results in a concentration of fringes. If one processes the data

and utilizes a single scale upon FT, filtering the field of the displacements is distorted because of the lack of spatial resolution

in the region. Enlarging the scale of the contact region is possible to eliminate this error. The error is not present in the Gabor

transform and in the Morlet wavelet because of a more comprehensive filtering resulting from the utilization of multiple

scales.

1 A General Mathematical Model to Retrieve Displacement Information from Fringe Patterns 19



Fig. 1.14 (a) Theoretical u–v displacements (elasticity solutions from [21]); (b) experimental u–v displacements, windowed FFT [22]; (c, d)
experimental u–v displacements, 2D Hilbert transform (present study). All scales are expressed in microns
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a) b) c) 

u-scale [µm]

v-scale [µm]

u-displacement                                  v-displacement

-10.35       -8.3 -5.95 -3.6 -1.25 1.1 3.45 5.75       8.05 10.35

-3.63 -2.94 -2.25 -1.56 -0.873 0.184 0.505 1.19 1.88 2.57

Fig. 1.15 Finite element model (a) and u-v displacement fields (b-c) computed by ANSYS for the disk under diametrical compression

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

u-
di

sp
la

ce
m

en
t (
m
ic
ro
ns
)

Position along horizontal diameter (mm)

2D HILBERT

Windowed FFT

FEM

Fig. 1.16 Comparison of displacement fields obtained from fringe processing techniques and FE simulation for the horizontal diameter of the disk
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1.10 Summary and Conclusions

Fringe pattern analysis is a sub discipline that is contained in the more general discipline of signal analysis. Early

developments of signal analysis were done in applications to electrical engineering and communications engineering,

thus basically concentrated in one dimensional signals. Image analysis has brought the generalization of this body of

knowledge to two dimensions and more recently to 3-D. The fundamental idea of monogenic functions is to enclose all the

mathematical derivations that apply to signals in general in a comprehensive multiple dimensional approach. An example of

this comprehensive approach is found in [5, 8]. These references deal with a more general problem than the one dealt in the

present publication. They deal with processes of statistical optimization in the computation of components of signals such as

orientation θ, phase ϕ and signal amplitude A of the general monogenic signal defined by Eq. (1.37) and in many cases

solutions of problems encountered in one dimensional signals [16, 17].

Fig. 1.17 Strains of the disk under diametrical compression utilizing the Gabor transform and the Morlet wavelet transform. (a) εx Gabor.

(b) εy Gabor. (c) εx Morlet. (d) εy Morlet
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The current paper was devoted to put into the general theory of monogenic function, 2D fringe pattern analysis. This

effort has an interesting sequel, the Poincare sphere well known to photoelasticians appears again on a different topic, the

retrieval of displacement fields and their derivatives. This finding opens a new and interesting field of research in view of the

fact that the phase concept has been attached in the past to the Poincare sphere [9–11]. As part of these developments the

relationship between the FFT transform and the generalized Hilbert transform is analyzed. An important conclusion arrived

to in [1], the equivalence of the multi phase method and the in-quadrature method, is extended to two dimensional signals. A

more detailed analysis of these questions is presented in the discussion of the local phase concept closely related to the

narrow band condition that makes more likely that the generalized Hilbert-transform to be a valid representation of the

captured signals. Finally, the role of other transforms (Gabor transform and wavelet transform) in fringe pattern analysis is

considered. The analysis of an actual fringe pattern, the fringes corresponding to a disk under diametrical compression by all

the above described methods provides results that are numerically very close and also close to the finite element solution in

spite of the quite different algorithms utilized in each case. This is also a very valuable outcome that provides a comparison

of different approaches from the point of view of reliability and accuracy of the final results.

Fig. 1.18 Strains εx and εy of the disk under diametrical compression obtained from the FFT by differentiation in the frequency space [25]
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Fig. 1.19 Comparison of strains εx obtained by Gabor transform—Morlet wavelet and windowed FFT with finite element computation (control

path corresponds to the horizontal diameter of the disk)
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