
Correlating Structured Inputs and Outputs
in Functional Specifications

Oana Fabiana Andreescu1,2(B), Thomas Jensen1,2, and Stéphane Lescuyer1

1 Prove & Run, 75017 Paris, France
{oana.andreescu,thomas.jensen,stephane.lescuyer}@provenrun.com

2 INRIA Rennes – Bretagne Atlantique, Rennes, France

Abstract. We present a static correlation analysis that computes a safe
approximation of what part of an input state of a function is copied to
the output state. This information is to be used by an interactive theo-
rem prover to automate the discharging of proof obligations concerning
unmodified parts of the state. The analysis is defined for a strongly-
typed, functional language that handles structures, variants and arrays.
It uses partial equivalence relations as approximations of fine-grained
correlations between inputs and outputs. The analysis is interproce-
dural and summarizes not only what is modified but also how and to
what extent. We have applied it to a functional specification of a micro-
kernel, and obtained results that demonstrate both its precision and its
scalability.

1 Introduction

Any complete formal software verification endeavour focuses on two fundamen-
tal, mutually dependent questions: what are the effects of program operations on
their environment, i.e. what do program operations do, and what do they leave
unmodified, i.e. what are they not doing. The latter concern inevitably leads to
some manifestation of the frame problem [8], imposing superfluous manual verifi-
cation effort and having notoriously tedious consequences. These are particularly
visible in the context of complex transitions systems, which consist of complex
states and transitions between them, i.e. state changes. States are defined using
associative arrays and algebraic data types (structures and variants). Transi-
tions map an input state to an output state. In reality, the transitions’ effects
are often restricted to a small subset of the state, thus impacting only a limited
number of invariants simultaneously. However, a considerable amount of time is
spent on proof obligations concerning unmodified parts. Though intuitively easy,
these are in practice a lengthy and repetitive task. Specifying and proving the
preservation of logical properties for the unmodified part thus becomes a nat-
ural target for automation [9]. We propose to tackle the inference of preserved
invariants for the unmodified parts by answering the following two questions, by
means of static analysis:

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 85–103, 2016.
DOI: 10.1007/978-3-319-41591-8 7

86 O.F. Andreescu et al.

(1) What is the input subset on which a logical property depends?
(2) How does the output relate to the input of an operation?

In [1], we have presented a static dependency analysis that addresses the first
question and automatically determines the input subsets on which a property
depends. This paper deals with the second question. More specifically, given
an operation that manipulates a structured input, we strive to determine the
subset that remains unchanged and is propagated into the output. Our goal is
thus to summarize the behaviour of an operation by computing relations between
parts of the input and parts of the output. To this end, we present a correlation
analysis, meant to be used in an interactive verification context, that tracks the
origin of subparts of the output and relates it to subparts of the input. The
analysis produces expressive results without sacrificing scalability. By unifying
these correlation and dependency results and thus by knowing the effects of an
operation, after having detected that a property only depends on unmodified
parts, the preservation of some invariants can be inferred.

1.1 Motivating Example

The motivation and ideas behind the correlation analysis presented in this paper
stemmed from the formal verification of ProvenCore [7], a full-featured industrial
isolation micro-kernel. To exemplify the addressed problem and the fine-grained
correlation results that we are targeting, we consider an abstract process manager
and the data structures for its fundamental components: process and thread,
shown in Fig. 1-a. A process is an executing instance of an application that
can consist of multiple threads that share the same address space. A thread is
a path of execution within a process and it is modeled as a structure having
fields such as the thread’s identifier and the memory region for its stack. The
current state of a thread is defined as a variant having three alternatives: READY,
BLOCKED, RUNNING. Similarly, a process is a structure including an identifier for
the currently running thread and an array of possibly inactive threads associated
with it. Whether a thread in the thread array is active or has terminated is
indicated by a variant of type option thread = | Some(thread t) | None.

Fig. 1. Example – data structures and functions of an abstract process manager

Correlating Structured Inputs and Outputs in Functional Specifications 87

The signature of a function stop, written in a modeling language that we
present in Sect. 2, is shown in Fig. 1-b. It has two possible execution scenarios:
true, when the given index i corresponds to an active thread, and inval other-
wise. In the former case, stop copies the i-th element of the threads array to a
local variable th, sets its state to BLOCKED and leaves everything else unmodified.
The new state o of the process is then returned, with its i-th element set to th

and everything else copied from in. The body of stop is detailed in Fig. 2.
Our analysis should infer that between the input process in and the out-

put o, the values of the fields pid, current thread and address space are equal.
Furthermore, it should detect that all elements of the array threads are equal,
except the value of the i-th element, for which only the current state differs.

By tracking only equalities between pairs of variables of the same type, we
can detect the equality of the values of the pid, current thread and address space

fields between the input and the output. However, if we ignore the flow of an
input’s subelement value to a variable (or conversely, the flow of a variable’s value
to an output’s subelement) valuable information is lost. We are not only losing
information between inputs and outputs of different types, but by accumulating
imprecisions, we also lose information concerning inputs and outputs of the same
type. This is exactly what can happen in our example. The equality between the
values extracted from the input in and copied into th as well as the relation
between the value of th and o.threads[i] are ignored because th is not of the
same type as in and o. As a consequence, we lose the information concerning the
relation between in’s and o’s threads value altogether. It is therefore imperative
to track (cor)relations between variables of different types as well.

The contributions of this paper include an interprocedural domain and a
static analysis that allow us to compute expressive correlations between parts of
the inputs and parts of the outputs in a flexible manner. An in-depth presentation
of these is given in Sect. 3. Results obtained on a functional specification of an
operating system are discussed in Sect. 4.

2 Language

We briefly present the unified programming and specification language targeted
by our analysis. This is an idealized version of a language developed at Prove
& Run1, designed with a focus on subsequent proof facilitation. It is a first-
order, purely functional and strongly-typed language with algebraic data types
and arrays. The basic building blocks of programs written in our language are
predicates, the equivalent of functions in common programming languages.

2.1 Types and Statements

We let T be the universe of type identifiers and T0 ⊂ T the set of base type
identifiers. The sets of structure field identifiers and variant constructors are
denoted by F and C , respectively.
1 http://www.provenrun.com/.

http://www.provenrun.com/

88 O.F. Andreescu et al.

A structure represents the Cartesian product of the different types of its
elements, called fields. A variant is the disjoint union of different types. It rep-
resents data that may take on multiple forms, where each form is marked by a
specific tag called the constructor. Arrays group elements of data of the same
type (given in angle brackets) into a single entity; elements are selected by an
index whose type is included (as denoted by the superscript) in the array’s def-
inition.

τ ∈ T, τ := | τ0 ∈ T0 base types

| struct{f1 : τ, . . . , fn : τ} fi ∈ F , 0 ≤ n structures

| variant[C1 : τ | . . . | Cm : τ] Ci ∈ C , 1 ≤ m variants

| arrτ 〈τ〉 arrays

Variants and structures can be used together to model traditional algebraic
variants with zero or several parameters. For instance, the option thread type
given in Sect. 1.1 is actually modeled as:

variant [Some : struct{t : thread} | None : struct{}].

A program in our language is a collection of predicates. A predicate has input
and output parameters and a body of statements of the form shown in Table 1.
The first statement represents a generic predicate call and is described later. All
other statements can be seen as special cases of it, representing calls to built-in
predicates. They all have a functional nature and handle immutable data. Thus,
setting the value of a structure’s field, shown in (4), returns a new structure
where all fields have the same value as in r, except fi which is set to e. Similarly,
updating the i-th cell of an array, shown in (8), returns a new array where all
cells have the same value as in a, except the i-th cell which is set to e.

2.2 Exit Labels

In addition to input and output parameters, the declaration of a predicate also
includes a non-empty set of exit labels, which behave like exit codes. When called,
a predicate exits with one of the specified exit labels, thus summarizing and
returning to its callers further information regarding its execution.

Table 1. Subset of supported statements

Correlating Structured Inputs and Outputs in Functional Specifications 89

Table 2. Statements and their exit labels

Exit labels play an important role for control flow management, which is
expressed and directed by catching and transforming labels. Furthermore, they
condition the existence of output parameters, as these are associated to the exit
labels of a predicate. Whenever a predicate exits with an exit label λ, all the
outputs associated to it are effectively produced, whereas all other outputs are
discarded. If no output is associated to an exit label, it means that no output
is generated when the predicate exits with this particular label. We can now
explain the generic predicate call statement (1) from Table 1: the predicate p is
called with inputs e1, . . . , en and yields one of the declared exit labels λ1, . . . , λm,
each having its own set of associated output variables ō1, . . . , ōm, respectively.

Fig. 2. Body of the stop predicate

As shown in Table 2, statement
(6) has a label corresponding to
each constructor of the input vari-
ant. Statements (7) and (8) are bi-
labeled, using false as an “out of
bounds” exception and generating
an output only for the label true.

Figure 2 details the body of our
example predicate from Sect. 1.1,
where arrows show the control-
flow between the various state-
ments of the predicate.

3 Correlation Analysis

We present a flow-sensitive, conservative static analysis inferring what is modi-
fied by an operation and to what extent. It approximates the flow of input values
into output values, by uncovering equalities and computing correlations as pairs
between input parts and the output parts into which these are injected.

Outputs are often complex compounds of different subparts of different input
variables: a subset of the input is modified, while the rest is injected as is. We
track the origin of subparts of the output and relate it to subparts of the input. As
previously explained in Sect. 1.1, we prevent avoidable over-approximations by
considering pairs of different types and granularities. As a consequence, in order

90 O.F. Andreescu et al.

to avoid dealing with data in a monolithic manner, we are forced to introduce an
extra level of granularity below variables. At the intraprocedural level, illustrated
in Fig. 3(a), we define the correlation domain as mappings between pairs of inputs
and outputs to which we associate mappings between pairs of valid inner paths
and the relations binding them. Correlations for arrays and variants are shown
in Fig. 3(b, c).

Fig. 3. Intraprocedural domain - general representation and examples

3.1 Partial Equivalence Relations

The first step towards automatically reasoning about the propagation of input
subelements into output subelements is the definition of an abstract partial equiv-
alence type R that mimics the structure of algebraic data types and arrays. A
partial equivalence R ∈ R is defined inductively from the two atomic elements,
Equal and Any, and mirrors the structure of the concrete types:

R := | Equal | Any atomic cases
| {f1 �→ R1 ; . . . ; fn �→ Rn} f1 , . . . , fn fields (i)

| [C1 �→ R1 ; . . . ;Cn �→ Rn] C1, . . . , Cn constructors (ii)

| 〈Rdef 〉 array (iii)

| 〈Rdef � i : Rexc〉 i array index (iv)

Such relations represent fine-grained partial equivalences between pairs of
values of the same type. Equal and Any represent respectively equal and unrelated
values. Partial equivalence relations for structures (given by (i)) and for variants
(given by (ii)), are expressed in terms of the partial equivalences of their subparts,
by mapping each field or constructor to the corresponding relations. For arrays,
we distinguish between two cases, namely arrays with a general relation applying
to all of the cells (as given by (iii)) or to all but one exceptional cell (as given
by (iv)), for which a specific relation is known.

Even if the syntactic partial equivalences are untyped, their interpretation is
made in the context of a type τ ∈ T. The semantics of a partial equivalence R
for a type τ is a partial equivalence relation over values of type τ . Cases other
than Equal and Any only have non-empty interpretations for types τ which are
compatible with their shape. For instance, the structured relation {f �→ R} only
really makes sense for structured types with a single field f , whose type itself is

Correlating Structured Inputs and Outputs in Functional Specifications 91

compatible with R, and shall not be used in connection with variant or array
types for example.

To describe the semantics of elements in R, we define for each type τ the set
Dτ of semantic values of that type. For each primitive type t ∈ T0, we suppose
a given Dt. Other semantic values are defined inductively as follows:

Dstruct{f1:τ1,...,fn:τn} = {{f1 = v1, . . . fn = vn} | ∀i, vi ∈ Dτi
}

Dvariant[C1:τ1 | ... | Cn:τn] =
⊎

1≤i≤n{Ci[vi] | vi ∈ Dτi
}

Darrτi 〈τ〉 = {(P, (vk)k∈P) | P ⊆ Dτi
,∀k, vk ∈ Dτ}.

Given a valuation E from variables to semantic values, the interpretation
of a relation R ∈ R with respect to some type τ is a binary relation over Dτ

defined as shown in Table 3.

Table 3. Partial equivalence relations – semantics

The preorder relation of the partial equivalence lattice is denoted by �R. It
is defined in Table 4.

�R ⊆ R × R ∨R: R × R → R ∧R: R × R → R.

The defined join and meet operations, denoted by ∨R and ∧R, are com-
mutative operations, applied pointwise on each subelement. Join has Equal as
its identity element and Any as its absorbing element. Meet has Equal as its
absorbing element and Any as its identity element.

Additionally, the following extraction functions are defined:

extrf : R � R extraction of a field’s relation

extrC : R � R extraction of a constructor’s relation

extr 〈i〉 : R � R extraction of a cell’s relation.

These are partial functions and can only be applied on relations of the corre-
sponding types. For example, the field extraction extrf only makes sense for

92 O.F. Andreescu et al.

Table 4. �R – Comparison of two domains

atomic or structured relations having a field named f , which should be the case
if the relation connects two values of a structured type with a field f . For any
of the two atomic relations Ra, applying any of these extractions yields Ra.

3.2 Paths and Correlations

Partial equivalence relations are enough to represent fine-grained information
for values of the same structured type. For the example introduced in Sect. 1.1
and detailed in Fig. 2 these would suffice to express the equality of the pid,
current thread and address space fields between the input process in and the
output process o, by simply mapping this pair to {threads �→ Any; pid �→
Equal; current thread �→ Equal; address space �→ Equal}. However, the partial
equivalence relations cannot, for example, be used to convey the equality at line
1 in Fig. 2 between the value of the threads field of in and the local ta variable.
In order to express this information, we first need to be able to refer to the
substructure in.threads and relate its value to the one of ta.

Rather than handling only partial equivalences between pairs of variables of
the same type and approximating the rest to Any – the element that conveys no
information – we introduce an intermediate level, allowing us to store relations
between subparts of values. To this end, we begin by introducing paths.

A path is rooted at one of the program’s variables and represents a unique
sequence of internal accesses inside some value’s structure, i.e. it is a traversal
from one value to one of its subparts. Each path is a unique chain of accesses
leading to a nested element. We define a recursive type Π encompassing this:

Correlating Structured Inputs and Outputs in Functional Specifications 93

π ∈ Π, π := | ε empty − root
| .fπ f ∈ F
| @Cπ C ∈ C
| 〈i〉π i index, program variable.

The empty path, denoted by ε, is the special case denoting an access to an
entire element, i.e. the root. The action of appending a non-empty path π′ to
another path π is denoted by π ::π′.

Meaningful information is conveyed by associating paths and partial equiva-
lence relations. For example, the equality between in.threads and ta at line 1 in
Fig. 2 can be expressed by associating Equal to the pair of subelements identified
by the .threads path in in and by ε in ta. Thus, we introduce correlation maps
ĉ ∈ Ĉ, which are finite mappings from pairs of paths to relations R ∈ R:

Ĉ : Π × Π → R

Generally, for two given variables e and o, a correlation (π, ρ) �→ R specifies
that e and o have nested subelements, respectively identified by the inner paths
π and ρ, whose values are related by the relation R.

There is no clear canonical form for correlations. For instance, it is equiva-
lent to write (ε, ε) �→ {f �→ R} and (.f, .f) �→ R. Operations can create and
manipulate them in different manners, that are hard to predict. New correlations
can also be introduced while considering def-use chains in the transfer function
presented later in Sect. 3.3. This trait renders the definition of a partial order
between correlation maps difficult. In order to compare two correlation maps ĉ1
and ĉ2, we cannot simply verify if the path pairs are identical and compare their
associated relations. A correlation of the second map could be linked, in different
manners, to multiple mappings of the first. For example, between a process p of
the type defined in Sect. 1.1 and an array ta of the same type as the field threads

of the process, we might have the following correlation maps:

ĉ1 :

(.threads, ε) �→ 〈Equal � i : Any〉

(.threads〈i〉@Some.t, 〈i〉@Some.t) �→
⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

ĉ2 : (.threads, ε) �→
〈
⎡

⎢
⎢
⎣

None �→ Any

Some �→
⎧
⎨

⎩
t �→

⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎫
⎬

⎭

⎤

⎥
⎥
⎦

〉

.

To compare two correlation maps ĉ1 and ĉ2, we need to collect for each
pair (π, ρ) mapped to R in ĉ2 all the information contained by ĉ1 that refers
to the elements identified by (π, ρ) and verify if this covers at least the same
information as the relation R. This information could be scattered across
multiple mappings of the correlation map ĉ1. For example, in the given map
ĉ1, in addition to the relation associated to (.threads, ε), the relation associated

94 O.F. Andreescu et al.

to (.threads〈i〉@Some.t, 〈i〉@Some.t) expresses information about the values of
the process’ threads field and ta as well. These are nested in the i-th element
of each, as identified by 〈i〉@Some.t. To compare these two correlation maps, we
have to first determine the relationships between the pair of paths (.threads, ε)
from ĉ2 and each pair of paths of ĉ1. The first pair of paths in ĉ1 is identical,
whereas the second pair refers to elements that are further away from the root.
Based on these relationships, we have to extract all the information relevant to
(.threads, ε) from ĉ1. This amounts to:

(.threads, ε) �→
〈

Equal � i :

⎡

⎢
⎢
⎣

None �→ Any

Some �→
⎧
⎨

⎩
t �→

⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎫
⎬

⎭

⎤

⎥
⎥
⎦

〉

.

which is more precise than the relation associated to (.threads, ε) in ĉ2. We call
this process alignment. It is necessary in the absence of a canonical form, a trait
of our approach that is both a weakness and a strength: it leads to complex
computations but gives considerable flexibility.

For aligning, we first determine the relationships between paths by deter-
mining the relationship between the sequences of internal accesses that they
represent. These can be identical, representing the same traversal to the same
subelement of a value or they can be completely unrelated, such as .f and .g for
example, representing accesses to two different fields of a structure. They can
also represent sequences of accesses of different depths, one being the prefix of
the other, i.e. being closer to the root. For example, the path .f is a prefix of
the path .f〈i〉; the first represents the access to the field f , whereas the second
one represents an access to the i-th element of the array nested in the field f .

To distinguish between these cases, we have defined a link type, μ ∈ M :

μ := | Identical | Left π | Right π | Incompatible

and a matching operator �:

� : Π × Π → M � (π, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

Identical, π = ρ
Left π′, π ::π′ = ρ
Right ρ′, ρ :: ρ′ = π
Incompatible, otherwise

that retrieves the link between two paths. Aligning a correlation (π, ρ) �→ R to
another pair of paths (π′, ρ′), is denoted by ‖.

‖ : Ĉ × (Π × Π) → R [(π, ρ) �→ R] ‖ (π′, ρ′) = R(π,ρ)
‖(π′,ρ′).

From R we obtain the information referring to the elements identified by (π′, ρ′)
and denote it by R(π,ρ)

‖(π′,ρ′). This is done by matching on π and π′ on the one
hand and on ρ and ρ′ on the other and by distinguishing between the differ-
ent cases. When the paths are identical, we can simply return the relation R.

Correlating Structured Inputs and Outputs in Functional Specifications 95

When the links between the paths differ or when the paths are incompatible, we
have to approximate to the least precise relation, thus returning Any. When π
and ρ are more shallow paths, i.e. closer to the root, we need to make a projection,
denoted by �. For example, aligning (.f, ε) �→ {a �→ Ra; b �→ Rb; c �→ Rc} to
(.f.b, .b) consists in projecting .b on the relation {a �→ Ra; b �→ Rb; c �→ Rc} and
thus obtaining Rb. On the contrary, if π′ and ρ′ are closer to the root, we need
to perform an injection, denoted by �. For example, aligning (.f.b, .b) �→ Rb to
(.f, ε) consists in creating a relation {a �→ Any; b �→ Rb; c �→ Any}.

R(π,ρ)
‖(π′,ρ′) =

⎧
⎪⎨

⎪⎩

R when � (π, π′) = �(ρ, ρ′) = Identical
�(σ, R) when � (π, π′) = �(ρ, ρ′) = Left σ
�(R, σ) when � (π, π′) = �(ρ, ρ′) = Right σ
Any otherwise

where : � : Π × R � R � : R × Π � R

�(π,R) =

⎧
⎪⎨

⎪⎩

R when π = ε
�(π′, extrf (R)), when π = .fπ′

�(π′, extrC(R)), when π = @Cπ′

�(π′, extr 〈i〉(R)), when π = 〈i〉π′

�(R, π) =

{R whenπ = ε
{f1 	→ Any; . . . ; fi 	→ �(R, π′); . . . ; fn 	→ Any}, whenπ = .fπ′, f = fi

[C1 	→ Any; . . . ;Ci 	→ �(R, π′); . . . ;Cn 	→ Any], whenπ = @Cπ′, C = Ci〈
Any � i : �(R, π′)

〉
, whenπ = 〈i〉π′

Aligning a correlation map ĉ ∈ Ĉ to (π′, ρ′), amounts to performing this
operation for each element (π, ρ) �→ R of ĉ and intersecting the results with the
∧R operator:

ĉ ‖ (π′, ρ′) =
∧

R
(π,ρ) 	→R∈ĉ

R(π,ρ)
‖(π′,ρ′).

Finally, we can define the preorder for correlation maps:

ĉ1 �̂ ĉ2 ⇐⇒ ∀ [(π, ρ) �→ R] ∈ ĉ2, ĉ1 ‖ (π, ρ) �R R.

Any correlation map ĉ ∈ Ĉ is smaller than ∅, the empty correlation map.
The defined join operation between two correlation maps is denoted by

∨̂
:

ĉ1
∨̂

ĉ2 = ĉ3 ⇐⇒ ∀ [(π, ρ) �→ R] ∈ ĉ1, ĉ3(π, ρ) = R ∨R (ĉ2 ‖ (π, ρ)) .

The meet operation between two correlation maps is denoted by
∧̂

:
ĉ1

∧̂
ĉ2 = ĉ3 ⇐⇒ ĉ3(π, ρ) = ĉ1(π, ρ) ∧R ĉ2(π, ρ), ∀(π, ρ).

3.3 Intraprocedural Analysis and Correlation Summaries

We work with a control flow graph (CFG) representation of the predicates’
bodies. Nodes represent program states and edges are defined by statements
with a particular exit label λ. In our case, all the outgoing edges of a node n

96 O.F. Andreescu et al.

bear the different cases of the same statement s found at the program point n.
For each statement s there is an edge labeled s, λk for each of its possible exit
labels λk. However, the analysis does not depend on this specificity.

Correlation information has to be kept at each point of the CFG, for each
input and output pair of the node. An intraprocedural correlation summary:

Δ ∈ D , Δ : V × V → Ĉ.

is thus a mapping from pairs of variables v ∈ V to correlation maps.
For each node of a given control flow graph, Δ(e, o) retrieves the correlation

map between the local variable e and the output variable o. If a mapping for e
and o does not currently exist, Δ(e, o) retrieves the correlation (ε, ε) �→ Equal
when e = o or the empty correlation map ∅, otherwise. Establishing the partial
order � and the join operation

∨
: D × D → D is straightforward: �̂ and

∨̂

are extended pointwise to an intraprocedural summary, for each ordered input-
output pair and its associated correlation map.

� ⊆ D × D Δ1 � Δ2 ⇐⇒ ∀e, o ∈ V, Δ1(e, o) �̂ Δ2(e, o)

Δ1

∨
Δ2 = Δ3 ⇐⇒ ∀(e, o), Δ3(e, o) = Δ1(e, o)

∨̂
Δ2(e, o)

Our correlation analysis is a backward data-flow analysis, computing an
intraprocedural summary at each point of the control flow graph. This repre-
sents the correlations at the node’s entry point. For each exit label, it traverses
the control flow graph starting with its corresponding exit node. The intraproce-
dural summary for the currently analyzed label is initialized with pairs between
the local value of each associated output variable of the label and the final value
of the same output variable, mapped to (ε, ε) �→ Equal. The analysis traverses the
control flow graph and gradually refines the correlations, using Kildall’s worklist
algorithm [5], until a fixed point is reached. Table 5 summarizes the representa-
tion and general equation of the statements. For each statement, the presented
data-flow equation operates on the intraprocedural summaries of the statement’s
successor nodes. The intraprocedural summary at the entry point of the node is
obtained by joining the contributions of each outgoing edge. The contribution
of an edge (n, ni) labeled with s and λi is given by C

s
λi

(Δni
) ∈ C where C

s
λi

(.)
is the transfer function of the edge labeled s, λi.

The transfer function C
s
λ(.) formalizes the correlations created by the state-

ment s on the label λ between its local input variables and its local output
variables, denoted by δs

λ, as well as the set killλ of variables whose values have
been redefined by the statement s on the label λ. These are shown in Table 5.
There is one crucial difference between transfer functions C

s
λ(.) and intraproce-

dural summaries Δ. An intraprocedural summary Δ implicitly maps any pair
(v, v) for v ∈ V to (ε, ε) �→ Equal. On the contrary, in δs

λ, when the variable v is
used as both input and output by the statement s, the pair (v, v) is mapped to
the correlation known between the input’s v old value and the output’s v fresh
value. Otherwise, when v is an output, i.e. v ∈ killλ, but not an input of s, (v, v)
is mapped to ∅.

Correlating Structured Inputs and Outputs in Functional Specifications 97

Table 5. Statements – representations and data-flow equations

In order to obtain the contribution C
s
λi

(Δni
) of an edge labeled with s and

λi, we need to connect the information given by the δs
λi

to the information con-
tained in the intraprocedural summary Δni

. For example, at the entry of node 3
in Fig. 2, when considering the scenario in which the predicate exits with true,
the intraprocedural summary contains the mapping:

(th, o) �→
⎡

⎣(@Some.t, .threads〈i〉@Some.t) �→
⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎤

⎦ .

On the true edge statement 2 creates the mapping: (ta, th) �→ [(〈i〉, ε) �→ Equal] .

Intuitively, since we are traversing the graph backwards and mapping ordered
(local) input-output pairs, (ta, th) and (th, o) can be seen as a def-use pair: the
correlation associated to (ta, th) expresses the relation between the defined value
of th and the input ta used for creating it, while the correlation associated to
(th, o) shows a subsequent use of that value of th for creating o. The contribution
of statement 2 on the true edge should capture this flow of ta’s value to o’s value,
through the variable th. Thus, it should contain a mapping for the pair (ta, o).
In the general case we need to detect any variable r such that [(p, r) �→ ĉ] ∈ δs

λi
,

[(r, q) �→ ĉ′] ∈ Δni
and compute the mapping for (p, q) in C

s
λi

(Δni
).

In order to compute the correlation map associated to (ta, o), we take into
account the fact that both the right path ε of δs

λ(ta, th) and the left path @Some.t

of Δn3(th, o) refer to the th variable. However, they do not represent traversals
of the same depth: ε refers to the entire value of th, while @Some.t refers to the
value below the constructor Some. Between ta and o we can conclude that the
values nested under the Some constructor of the i-th elements are related:

98 O.F. Andreescu et al.

(ta, o) �→
⎡

⎣〈i〉@Some.t, .threads〈i〉@Some.t) �→
⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎤

⎦ .

We call the process of obtaining the correlation map associated to (ta, o)
from the correlations associated to (ta, th) and (th, o) composition and denote
it by �. In the general case, we obtain the link between ρ and π′ by match-
ing with �. In the context of the example given above, ρ and π′ are the paths
referring to the th variable, i.e. ε and @Some.t, respectively. If these paths are
compatible, we compose the correlation elements (π, ρ) �→ R and (π′, ρ′) �→ R′,
obtaining a new correlation element, (π•, ρ•) �→ R��, computed as follows:

(π•, ρ•) = (π, ρ) • (π′, ρ′)
def
=

⎧
⎨

⎩

(π, ρ′) when � (ρ, π′) = Identical
(π ::σ, ρ′) when � (ρ, π′) = Left σ
(π, ρ′ ::σ) when � (ρ, π′) = Right σ

R�� = R �� R′ def
=

⎧
⎨

⎩

R ∨R R′ when � (ρ, π′) = Identical
�(σ,R) ∨R R′ when � (ρ, π′) = Left σ
R ∨R �(σ,R′) when � (ρ, π′) = Right σ

Note that given the special form of partial relations R ∈ R, the compose oper-
ation at this level is equivalent to ∨R. However, this would not be the case
anymore for a more complex partial relation type.

The composition of correlation maps is denoted by �. Computing ĉ1 � ĉ2
amounts to intersecting the composition of all correlation elements from ĉ1
and ĉ2:

(ĉ1 � ĉ2)(π•, ρ•) =
∧

R
(π,ρ) 	→R∈ĉ1

(π′,ρ′) 	→R′∈ĉ2
(π•,ρ•)=(π,ρ)•(π′,ρ′)

R �� R′.

Finally, the contribution C
s
λi

(Δni
) is obtained by:

� : C × D → D δs
λ � Δ = Δ′ where Δ′(p, q) =

∧̂

r
(δs

λ(p, r)� Δ(r, q)).

Interprocedural Level. Our analysis is performed label by label and interproce-
dural correlation domains associate an intraprocedural summary to each exit
label of the analyzed predicate. Therefore, interprocedural domains encapsulate
an intraprocedural summary for each possible execution scenario of a predicate.

An interprocedural domain of a predicate p is thus defined as follows:

Ξp : Λp → Δ where Λp is the set of output labels of predicate p.

The intraprocedural summary associated to each label is filtered so as to contain
only ordered pairs of variables where the left member is an input of the analyzed
predicate and the right member is an output associated to the analyzed label.
The correlation maps associated to such pairs are built so as to contain correla-
tions where only input variables may appear in array cell paths. Similarly, the

Correlating Structured Inputs and Outputs in Functional Specifications 99

exception index in partial equivalence relations of arrays must be an input vari-
able. Registering exceptions in array correlations only for input variables is not
a consequence of a language restriction on array operations, but simply a conse-
quence of the fact that at the interprocedural level, only correlation information
between inputs and outputs makes sense.

The interprocedural domain of a predicate is used for deducing the transfer
functions for a predicate call statement.

In the following we detail the equation corresponding to a call to a predicate:

p(e1, . . . , en)[λ1 : ō1 | . . . | λm : ōm]

having the following signature:

p(ε1, . . . , εn)[λ1 : ω̄1 | . . . | λm : ω̄m].

The general equation form applies:

Δn =
∨

n
s,λi−−→ni

C
p(e1,...,en) [λ1:ō1 |...| λm:ōm]
λi

(Δni
).

The transfer functions for the predicate call statement are deduced from the
predicate’s interprocedural domain in the following fashion:

C
s
λi

(Δni
) = δs

λi
� Δni

, killλi
= {ōi}

δs
λi

(ej , o
k
i) = ĉj,k

i ,∀j ∈ {1, . . . , n},∀k ∈ {1, . . . , h}

where

ĉj,k
i = Ξp(λi)(εj , ω

k
i) � (ε̄ �→ ē)

s = p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]; ōi = {o1i , . . . , o
h
i }.

Namely, the contribution of a predicate call to each (ej , o
k
i) input-output pair

stems from the contribution of the interprocedural domain for label λi and formal
input-output pair (εj , ω

k
i). In these, all the formal input parameters ε̄ in array

partial equivalences and in array cell paths are substituted by the corresponding
effective input parameters from ē or approximated away.

The substitution operation is denoted by � (σ) where σ is a substitution
from formal to effective parameters.

4 Preliminary Results and Experiments

Our analysis has currently been applied to a functional specification of Proven-
Core [7], a general-purpose microkernel inspired by Minix 3.1 that ensures isola-
tion. Its proof is based on multiple refinements between successive models, from
the most abstract, on which the isolation property is defined and proved, to the
most concrete, i.e. the actual model used for code generation.

100 O.F. Andreescu et al.

Some of the abstract layers of ProvenCore are the Refined Security Model
(RSM), the Functional Specification (FSP) and the Target of Evaluation Design
(TDS). RSM is an abstract layer located just below the top-most layer of the
refinement chain; the FSP is a model closely resembling the most concrete layer –
TDS – but using data structures and algorithms that facilitate reasoning. Each
layer is characterized by a global state with numerous fields, and different tran-
sitions, i.e. supported commands such as fork, exec, exit. Each of these receives
as an input the global state before executing the command and returns the state
of the system after execution. Most supported commands affect only a limited
subset of the input state. For example, in FSP there are 25 possible transitions.
Its state contains 15 fields; it is characterized by 70 invariants. In the TDS these
figures are doubled. Each invariant is concerned with a different subset of the
global’s state fields. Some of these invariants concern all the processes held in
the process store. Processes are complex structures in their own right, having
more than 20 fields themselves. However, most transitions affect only a few of
these fields.

We have applied our analysis on the RSM, FSP and TDS layers. These are
medium-sized experiments. An overview of their characteristics and the time
needed to obtain the correlation results are given in Table 6. The first column
shows the total number of predicates of the analysed layers. In parentheses,
we indicate the number of predicates that only read information, i.e. logical
properties, as well as the number of opaque predicates for which a pessimistic
assumption is made. The second column shows the total number of lines of
code (LoC) for each. The next two columns indicate the number of LoC cor-
responding to type definitions and comments, respectively. The average time
needed to compute the correlation and dependency results are shown in the last
two columns. Unlike the correlation analysis that only computes information for
predicates that actually modify data structures, the dependency analysis com-
putes information for code as well as specifications, i.e. logical properties, in a
unified manner. This explains the time difference between the two analyses.

Table 6. Abstract layers - evaluation data and analysis timing

Predicates Total LoC Types Comments Correlation Dependency

RSM/FSP 633 (235/65) 9853 596 855 0.90 s 1.84 s

TDS 418 (58/105) 6804 460 623 0.62 s 1.09 s

One of the analyzed predicates is do auth. It is a system call clearing or
granting an authorization to some process to read from or write to some mem-
ory range of the current process. It receives a global state in and an index i as
inputs and produces, on the true label, the new global state out, after modifying
the permission for the i-th process in the process store. The code of do auth per-
forms various system-wide checks before registering the permission change, and
is therefore not trivial, although its effect is quite limited. Indeed, the correlation

Correlating Structured Inputs and Outputs in Functional Specifications 101

results computed by our analysis for the true label of this predicate are shown
below. The analysis detects that out of the 15 fields of out, only the i-th element
of the procs field is changed. Furthermore, it detects that if this element is an
active process, only the mem auth field is modified out of the total of 26 fields.
Everything else is copied from the input state in.

true : (in, out) �→ [

(ε, ε) �→ { ... �→ Equal} 14 fields

procs �→ Any }
(.procs, .procs) �→ 〈 Equal � i : [None �→ Equal

Some �→ {v �→ { ... �→ Equal } 25 fields

mem auth �→ Any}}]〉]
Combined with dependency results for logical properties, these results would

allow us to infer the preservation of all invariants that are not concerned with the
memory permissions. All but one out of the 70 properties fall into this category.
This is the relevant memory permissions property, which states that a process
has permissions covering a valid range of memory addresses and referring only
to existing processes. It has to hold for every process in the process store. After
executing do auth, this property is threatened and needs to be verified only for
the i-th process of the store. It is preserved for all others.

Space constraints prevent us from discussing more examples here. However,
various other examples are provided and explained on the web page2 dedicated
to our analysis. Users can devise and test their own examples as well.

5 Related Work

In [3], Chang and Leino present the congruence-closure abstract domain,
designed for an object-oriented context and implemented in the Spec# pro-
gram verifier. They infer and express relations between fields of variables, a goal
similar to ours. The congruence-closure domain maintains equivalence graphs
mapping field accesses to symbolic locations. On its own, this domain allows
the inference and expression of relations for accessed fields. In order to take
into account updates as well, this needs to use the heap succession domain as
a base. Unlike us, they can express preorders between fields, depending on the
base domains used. However, our domain handles both accesses and updates to
structures, arrays and variants in a uniform manner, independent of additional
information.

Rakamarić and Hu report in [12] a method to infer frame axioms of pro-
cedures and loops based on static analysis. As a starting point, they use the
DSA shape analysis, presented by Lattner et al. [6]. DSA provides a summary of
points-to relations as a graph, that is used to compute a set of memory locations
that are modified by a procedure or its callers. By a pass through the graph,

2 http://ajl-demo.fr/2016.

http://ajl-demo.fr/2016

102 O.F. Andreescu et al.

for each node reachable from the globals or procedure parameters, they generate
expressions representing a path to that node. The generated frame axioms are
used internally by an extended static checker of C programs, i.e. in a purely
automatic setting. In contrast, our analysis is designed for an interactive veri-
fication context. Our technique focusing on a purely functional language is not
concerned by aliasing and does not depend on an external points-to framework.

In [15], Taghdiri et al. present a technique for extracting procedure summaries
for object-oriented procedures, used to prove verification conditions. Procedures
are executed symbolically and the environment of the post-state is computed so
as to express every variable and field in terms of the values of the variables and
fields of the pre-state. Their goal is broader than ours. However, unlike their
summaries, our correlation results encompass only information that is visible
from the outside (to the callers).

The literature on shape analysis [2,4,11,13] and side effects analyses [10,14]
is vast. The former is aimed at deep-heap mutations, while we are focusing on
deep-state modifications, in the context of complex transition systems. The latter
determine memory locations that may be modified by an operation. Reasoning
about heap locations is beyond our scope. We treat mappings between variables
and their values, analyze their evolution in a side-effect free environment and
detect not only what is modified, but also how and to what extent.

6 Conclusion and Future Work

Identifying precise information concerning the effects of program operations is
possible by means of static analysis without sacrificing scalability. We have pre-
sented a flow-sensitive, interprocedural correlation analysis that has been applied
to a functional specification of an operating system. The analysis tracks the origin
of subparts of the output and relates it to subparts of the inputs thus detecting
not only what is modified, but also how and to what extent. It is designed as a
companion tool to be used during interactive program verification.

We have plans for future work along two main directions. The first is to go
beyond the detection of equivalences and to handle preorders. This would allow
us to detect the evolution of constructors for variants. Tracking this would allow
the inference of properties that are not affected by a transition from a stronger
state to a weaker state. Also, experiments show that the simultaneous use of
dependency and correlation information can lead to a substantial reduction of
proof obligations. Our priority is to employ the two, to develop a proof tactic
for the inference of preserved invariants and to integrate it in our prover.

Acknowledgments. We would like to thank the anonymous referees for helpful com-
ments and suggestions. For their excellent comments and sharp observations, we are
particularly grateful to Olivier Delande and Georges Dupéron. Our article also bene-
fited from the remarks of B. Montagu and H. Chataing.

Correlating Structured Inputs and Outputs in Functional Specifications 103

References

1. Andreescu, O.F., Jensen, T., Lescuyer, S.: Dependency analysis of functional spec-
ifications with algebraic data structures. In: Formal Methods and Software Engi-
neering - 17th International Conference on Formal Engineering Methods, ICFEM
2015, Proceedings, pp. 116–133 (2015). doi:10.1007/978-3-319-25423-4 8

2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of Bi-abduction. In: Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, pp. 289–300
(2009). http://doi.acm.org/10.1145/1480881.1480917

3. Chang, B.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Verification, Model Checking, and Abstract Interpretation, 6th
International Conference, VMCAI 2005, Proceedings, pp. 147–163 (2005). http://
dx.doi.org/10.1007/978-3-540-30579-8 11

4. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of lisp-like structures.
In: Conference Record of the Sixth Annual ACM Symposium on Principles of
Programming Languages, 1979, pp. 244–256 (1979). http://doi.acm.org/10.1145/
567752.567776

5. Kildall, G.A.: A unified approach to global program optimization. In: Conference
Record of the ACM Symposium on Principles of Programming Languages, 1973,
pp. 194–206 (1973). http://doi.acm.org/10.1145/512927.512945

6. Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Implementation,
2007, pp. 278–289 (2007). http://doi.acm.org/10.1145/1250734.1250766

7. Lescuyer, S.: ProvenCore: towards a verified isolation micro-kernel (2015).
http://milsworkshop2015.euromils.eu/downloads/hipeac literature/04-mils15
submission 6.pdf

8. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence. Edinburgh University Press (1969)

9. Meyer, B.: Framing the frame problem. In: Dependable Software Systems Engi-
neering, pp. 193–203 (2015). http://dx.doi.org/10.3233/978-1-61499-495-4-193

10. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41. http://
doi.acm.org/10.1145/1044834.1044835 (2005)

11. Montenegro, M., Peña, R., Segura, C.: Shape analysis in a functional language by
using regular languages. Sci. Comput. Program. 111, 51–78 (2015). http://dx.doi.
org/10.1016/j.scico.2014.12.006

12. Rakamaric, Z., Hu, A.J.: Automatic inference of frame axioms using static analysis.
In: 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2008), pp. 89–98 (2008). http://dx.doi.org/10.1109/ASE.2008.19

13. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL 1999, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1999, pp. 105–118 (1999). http://doi.acm.
org/10.1145/292540.292552

14. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

15. Taghdiri, M., Seater, R., Jackson, D.: Lightweight extraction of syntactic specifi-
cations. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2006, pp. 276–286 (2006). http://doi.
acm.org/10.1145/1181775.1181809

http://dx.doi.org/10.1007/978-3-319-25423-4_8
http://doi.acm.org/10.1145/1480881.1480917
http://dx.doi.org/10.1007/978-3-540-30579-8_11
http://dx.doi.org/10.1007/978-3-540-30579-8_11
http://doi.acm.org/10.1145/567752.567776
http://doi.acm.org/10.1145/567752.567776
http://doi.acm.org/10.1145/512927.512945
http://doi.acm.org/10.1145/1250734.1250766
http://milsworkshop2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
http://milsworkshop2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
http://dx.doi.org/10.3233/978-1-61499-495-4-193
http://doi.acm.org/10.1145/1044834.1044835
http://doi.acm.org/10.1145/1044834.1044835
http://dx.doi.org/10.1016/j.scico.2014.12.006
http://dx.doi.org/10.1016/j.scico.2014.12.006
http://dx.doi.org/10.1109/ASE.2008.19
http://doi.acm.org/10.1145/292540.292552
http://doi.acm.org/10.1145/292540.292552
http://doi.acm.org/10.1145/1181775.1181809
http://doi.acm.org/10.1145/1181775.1181809

	Correlating Structured Inputs and Outputs in Functional Specifications
	1 Introduction
	1.1 Motivating Example

	2 Language
	2.1 Types and Statements
	2.2 Exit Labels

	3 Correlation Analysis
	3.1 Partial Equivalence Relations
	3.2 Paths and Correlations
	3.3 Intraprocedural Analysis and Correlation Summaries

	4 Preliminary Results and Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

