
Refinement-Based Verification
of Communicating Unstructured Code

Nils Jähnig1(B), Thomas Göthel2, and Sabine Glesner1

1 Technische Universität Berlin, Berlin, Germany
nils.jaehnig@tu-berlin.de

2 Universität Potsdam, Potsdam, Germany

Abstract. Formal model refinement aims at preserving safety and live-
ness properties of models. However, there is usually a verification gap
between model and executed code, especially if concurrent processes are
involved. The reason for this is that a manual implementation and further
code optimizations can introduce implementation errors. In this paper,
we present a framework that allows for formally proving a failures refine-
ment between a CSP specification and its low-level implementation. The
implementation is given in a generic unstructured language with gotos

and an abstract communication instruction. We provide a failures-based
denotational semantics of it with an appropriate Hoare calculus. Since
failures-based refinement is compositional w.r.t. parallel composition of
concurrent components and preserves safety and liveness properties, this
contributes to reducing the verification gap between high-level specifica-
tions and their low-level implementations.

Keywords: gotos · Unstructured code · Formal semantics · Hoare
calculus · CSP · Failures refinement

1 Introduction

Verification is usually performed on abstract models, as usually proofs are more
manageable than corresponding proofs on an implementation model. However,
when the model is transformed to executable (low-level) code, bugs can be intro-
duced. This is especially the case for manual transformations, which are often
necessary as an abstract model is strictly more abstract than the implementa-
tion model, and as such is missing implementation details. Furthermore, if done
automatically, optimizations and their implementations are usually not verified
as this is hard to do at a general level.

Still, the verified properties of the abstract model need to be carried over
to the implementation. To preserve safety and liveness properties when refining
the model, the notion of stable failures refinement of Communicating Sequential
Processes (CSP) is suitable. Additionally, CSP is specifically designed for veri-
fication of communicating and non-terminating systems. It allows a refinement
from abstract models to concrete models, but only within CSP, not to relate
CSP with other executable code.
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 61–75, 2016.
DOI: 10.1007/978-3-319-41591-8 5



62 N. Jähnig et al.

To overcome the problem described above, we present a framework that
allows for formally proving stable failures refinement between CSP specifica-
tions and Communicating Unstructured Code (CUC) implementations, which
preserves safety and liveness properties. CUC is a generic low-level language with
gotos and an abstract communication instruction. Our contribution includes a
stable failure semantics for CUC and a corresponding Hoare calculus. The stable
failures refinement implies that all liveness and safety properties of the specifi-
cation also hold for the implementation.

The rest of this paper is structured as follows. We provide necessary back-
ground information about CSP in the next section. In Sect. 3, we present our
framework for relating CSP specifications with CUC implementations. In Sect. 4,
we define the stable failures semantics for CUC and in Sect. 5 the corresponding
Hoare calculus. We illustrate the applicability of our framework in Sect. 6. In
Sect. 7, we discuss related work. We give a conclusion and pointers to future
work in Sect. 8.

2 Communicating Sequential Processes (Background)

Communicating Sequential Processes (CSP) is a process algebra, originally intro-
duced in [Hoa78]. It is designed specifically to model concurrent processes that
communicate via events. Communication is synchronous and can thus be used
to synchronize processes or exchange data.

Processes can be constructed from the basic processes STOP and SKIP and
using operators such as event prefixing, external and internal choice, interrupts,
and sequential and parallel composition. In CSP, the channels are introduced
as syntactic sugar on events. The event c.v is said to communicate the value v
over channel c. To describe an input in CSP, c?x : T is used, which denotes an
external choice over all events of the form c.x with x ∈ T . An output is denoted
as c!v and means simply c.v. Note, that there is no actual native concept of
sending and receiving in CSP, only synchronization. Therefore CUC needs only
a single communication instruction.

There are two important semantic models for CSP with raising complexity
and expressiveness: (1) The trace semantics T , which describes the communica-
tion histories of processes and preserves safety properties. (2) The stable failures
semantics SF , which additionally captures the events a process can refuse after
a trace, and thereby preserves safety and liveness properties. In this paper, we
focus on the stable failures semantics.

A failure is a pair of a trace and a refusal set (tr,X). A process is stable, if no
internal progress can be made. Thus the process is either waiting to communicate
or has stopped (i.e., behaves like STOP). We call the former communication
failures and the latter terminal failures. A stable failure (tr,X) is a failure where,
after engaging in the events in tr, the process is stable and refuses to engage in
events from X. When sequentially combining processes P and Q, terminal stable
failures of P can become unstable as the combined process might not longer stop
after those traces.



Refinement-Based Verification of Communicating Unstructured Code 63

The semantic models of CSP allow for modeling various layers of abstrac-
tion as described in [Sch99]: Specification, design and implementation, where
specification is most abstract, and implementation is closer to an actual imple-
mentation. CSP processes can be put into relation across all abstraction levels
via refinements. Informally, stable failures refinement (P �SF Q) describes the
reduction of (internal) non-determinism.

An important property of all the semantical models of CSP is their com-
positionality. From the refinements P � P ′ and Q � Q′ it follows that in any
arbitrary composition ⊗ also P ⊗ Q � P ′ ⊗ Q′ holds, i.e., refinement can be
shown component-wise. This enables modular verification in CSP.

The automatic refinement checker FDR3 [GABR14] supports refinement
checks for both mentioned semantics.

3 Framework for Formally Relating CSP Specifications
and CUC Implementations

In this section, we give an overview of our framework for establishing the relation
between a CSP specification and a low-level implementation. We assume that
a CSP specification Spec is given, as well as an implementation Impl thereof in
CUC. To preserve liveness and safety properties from Spec to Impl , we aim at
showing that Spec �SF Impl holds in the stable failures model. Our proposed
workflow is depicted in Fig. 1a and consists of three steps:

Fig. 1. Overview of the workflow

(1) Manually constructing a connecting property Conn from Spec,
(2) showing that Conn is sufficient for Spec, and
(3) showing that Conn holds for Impl .



64 N. Jähnig et al.

The property Conn that is constructed from Spec in step (1) is a predicate on
CSP failures and needs to be stronger than Spec. Thus, a connecting property
Conn has to be sufficiently strong in the sense that it contains the semantics
of a concrete CUC program Impl while being contained in the semantics of the
original CSP specification Spec. The inclusion relation is visualized in Fig. 1b.
It also shows that the weaker Conn is, the more implementations can be shown
to be a refinement. The ideal property Conn is describing exactly the possible
failures of Spec. This is similar to finding an invariant, and as such, there is
no automatic way of finding it in general. For our framework, we just require a
proof showing that the failures captured by Conn are failures of Spec.

It is hard to establish a refinement between Spec and Impl directly, as they
are structurally very different: CSP is structured and unstructured languages
(such as CUC) are not. In structured languages the control flow is visible in the
structure. This is not the case for languages with unrestricted jumps.

In step (3), it needs to be shown that the property Conn holds for the CUC
program Impl with the Hoare logic presented in Sect. 5. In such a proof it has to
be shown that starting with a precondition Pre, describing the initial states, the
program fulfills the postcondition Post, which doubles as an invariant for traces
due to the way the semantics is defined (this will be explained in Sects. 4.2 and 5).
In Sect. 6, we will conduct such a proof for an example consisting of a parallel
combination of two simple buffers. This is formally captured by (tr, s,X) ∈
�Impl� =⇒ Conn(tr,X), i.e., ignoring the state, the failures of Impl fulfill Conn.
Here, (tr, s,X) is a tuple of trace, state, and refusal set, and �Impl� denotes the
stable failures semantics of Impl .

After completing all three steps, we get by transitivity that (tr, s,X) ∈
�Impl� =⇒ (tr,X) ∈ SF(Spec) holds, which is equivalent to our goal Spec �SF
Impl. In the next section we introduce CUC and its stable failure semantics,
which we need for step (3).

4 Communicating Unstructured Code and Its Semantics

We published the language CUC and its operational semantics in [JGG15]. In
this section, we give a brief overview of CUC and then proceed to one of the con-
tributions of this paper, the stable failures semantics. We discuss its properties
and finally define the parallel composition.

4.1 Communicating Unstructured Code

We start with a rationale and continue with some type definitions and a descrip-
tion of the instructions.

We aim at being as close to low-level code as possible to reduce the gap
between executed code and verified code. CUC focuses on abstract communi-
cation and not its detailed implementation. The detailed implementation of the
communication can be verified separately, which is not the focus of this paper.
Therefore, we decided to study a generic, unstructured language with a higher



Refinement-Based Verification of Communicating Unstructured Code 65

level construct for communication. CUC is generic and simple, which allows for
manageable semantics design and proofs without compromising expressiveness.

A state s consists of a program counter spc and a register store srs ∈ RS.
CUC uses events to model communication. As in CSP, let Σ denote the set
of all events ev. In the stable failures semantics, we consider traces tr that are
sequences of events, and refusal sets X ⊆ Σ.

Being a low-level language, instructions are labeled. We choose set of labels
to be N. A simple form of a program is a set of labeled instructions. To facilitate
compositional reasoning about programs, we use a tree structure [SU05,JGG15]
in the denotational semantics instead. In either case it is important, that labels
are unique. The program counter points to the label of the current instruction.

Fig. 2. Syntax of CUC programs

The tree structure of CUC and its instructions are depicted in Fig. 2. The three
basic instructions are explained below. We consider as (part of) a program a
tree of labeled instructions. ⊕ connects two program parts. All potential jumps
between them are considered. When using a Hoare calculus a suitable tree struc-
ture can be used to reason compositionally. For more details, we refer to [SU05].

do f – The command do is a generalized assignment. f is a function
f : RS → P(RS) and is applied to the current state. The register store of the
resulting state is one element of the set returned by f. The instruction can thus
be thought of as a nondeterministic multiple assignment, i.e., multiple variables
can be manipulated in one step. The program counter is increased by one.

cbr b m n – The instruction cbr is a usual conditional branch. If the function
b : RS → {True,False} evaluates to True then the program counter is set to
m else to n.

comm ef f – The command comm is the communication primitive. It com-
municates an event from the result of ef : RS → P(Σ) and then changes the
state according to f : RS × Σ → RS. Observe that here f is deterministic to
ease reasoning. The comm instruction needs to modify the register store to record
input data. We reserve nondeterminism of the successor state to the instruction
do f . The program counter is increased by one.

4.2 Stable Failures Semantics

In [JGG15] we presented a trace semantics for CUC. We enhance this semantics
to carry refusal information, i.e., the information on which communications are
not possible after performing a particular trace. As a result, we get a stable



66 N. Jähnig et al.

failures semantics for CUC that is designed to capture stable failures similarly
to CSP.

In CSP, there are two kinds of stable processes (i.e., where no internal tran-
sitions are possible): Processes ready to communicate and STOP. Let us call
failures resulting from the former communication failures and from the latter
terminal failures. When a process is combined with another, a terminal failure
might no longer be terminal and thus become unstable. The unstable failures
are removed in the sequential composition (see Sect. 2).

To be able to differentiate between terminal failures and communication fail-
ures in CUC, we introduce two kinds of states: normal states and communication
states. In the former, the next instruction can be executed. In the latter, the exe-
cution is in the middle of a comm instruction and ready to communicate. Formally,
we define a sum type over the state defined in Sect. 4.1:

NCstate := normal state | communication state

We introduce a predicate N(·) to test if a state is normal, and a function ·C
which converts a normal state to a communication state. We define a failure in
CUC to be a triple (tr, s,X), where tr is a trace, s a normal-/communication-
state, and X a refusal set. Let SF be the type of all failures. It will be clear from
the context, whether we talk about CSP or CUC failures. We can now express
terminal failures in CUC: A failure with normal state whose program counter
is not among the labels of the considered program part is a terminal failure. As
we remove (former) terminal failures with specific program counters frequently,
we introduce an operator, which removes all failures with a normal state and a
program counter from a given set.

S\pcs := S\
{
(tr, s,X)

∣
∣ spc ∈ pcs ∧ N(s)

}

Lastly, let labels(code) be the set of all labels in code and let pc ∈� code denote
whether pc points to a label within code, i.e., pc ∈ labels(code).

Our failures semantics is given in Fig. 3. We first explain the general structure
of the semantics and then the rules individually. The failures semantics is a
denotational semantics, which assigns every code tree a function (also called
denotation) �code� : P(SF) → P(SF). Allowing sets of failures as input eases the
sequential composition. We also allow bogus traces as input, thus the semantics is
only meaningful if used with sensible initial failures, which usually means triples
of: an empty trace, a normal state, and the maximal refusal set or a subset. All
failures from the initial input set that are still stable after the execution of the
code are carried over to the semantics of the code. This has two reasons. (1) To
be compatible with CSP, the semantics needs to be prefix closed w.r.t. traces.
(2) States that do not point into the code are not processed and remain as they
are.

We illustrate this with the first rule D-do: Consider the initial input set
{(〈〉, t,X), (〈〉, s, Y )}, where 〈〉 is the empty trace, X,Y are arbitrary refusal
sets, tpc = 5, spc = 1, both normal, and the instruction (1:: do λσ. {σ}), which
does nothing but increment the program counter. As the pc of t is not pointing



Refinement-Based Verification of Communicating Unstructured Code 67

Fig. 3. Stable failures semantics for CUC

to this instruction, the failure is still terminal. There is no successor failure of
(〈〉, t,X). Within the state s, the program counter spc points to the instruction,
so there is “a” successor failure {(〈〉, s′, Z) | s′ = s[pc ← 2]∧Z ⊆ Σ}. The initial
failure (〈〉, s,X) is not terminal anymore, thus no longer stable and needs to be
removed. Thus the resulting failures are

�1::do λσ. {σ}�({(〈〉, t,X), (〈〉, s, Y )}) ={(〈〉, t, )} ∪
{(〈〉, s′, Z) | s′ = s[pc ← 2] ∧ Z ⊆ Σ}

The rule D-cbr works in similar way, but alters the subsequent program counter
instead of the register store. The rule D-comm adds two kinds of failures: The
terminal failures after the execution of the instruction, in the same way as the
two previous rules. Furthermore, it adds the communication failures, when it is
ready to communicate.

The ruleD-seq is the most complex, and it is based onD-ext. The latter takes
a denotation d and extends it with the execution of code1 and code2, separately.



68 N. Jähnig et al.

More specifically, the input set S is first evaluated with the denotations for code1
and code2 and then passed to d, which corresponds to executing code1 or code2
first, and then executing d. In D-seq, we “loop” this construct now indefinitely,
and obtain as a result all possible interleavings of code1 and code2. To this end, we
use the least fixpoint over the complete partial order of functions P(SF) → P(SF),
with the pointwise subset inclusion a ordering

(
f ≤ g := ∀S. f(S) ⊆ g(S)

)
.1 As

in the other rules, we need to remove all former terminal failures.
We illustrate the rule D-seq with an example. Consider the initial failure

(〈〉, s,X) with spc = 1, X arbitrary, and the program

(1:: comm λσ. {a} λσ event. {σ}) ⊕ (2:: cbr λσ. True 1 1)

It is a non-terminating program communicating a repeatedly with its environ-
ment. According to D-seq, both instructions are evaluated separately, where
initially comm modifies the set accordingly (e.g., append a to the trace) and cbr
does nothing, as spc does not point to it. In the next iteration of the fixpoint
iteration, both instructions are again executed. This time comm does nothing
(new) but cbr will now generate failures whose program counter points to comm,
so in the next iteration the loop will be executed from the beginning. As a global
fixpoint we get the failure set

�(1::comm ...) ⊕ (2::cbr ...)�({(〈〉, s,X)}) = {(〈a〉∗, sC , Y ) | Y ⊆ Σ\{a}}

As this program does not terminate, there are no normal states in its semantics.

4.3 Compatibility to CSP

In this section, we show that our CUC semantics enjoys basic properties of the
CSP semantics. This allows us to show that CUC is compatible with CSP, which
finally allows us to prove failures refinement between a CUC implementation and
its CSP specification. As the refinement relation is basically just a subset relation,
its use is clear for safety properties, but for liveness properties the considered
failure sets need to fulfill some properties (simply speaking they may not be too
small). We introduce and explain adapted versions of the properties of the CSP
failures semantics (see e.g., in [Sch99]) and briefly discuss why they hold. We
omit the program and the initial failures set for brevity. For each of the following
properties, we require that it holds for the initial set of failures. Let SF be the
stable failures of the omitted program, and T the traces according to the trace
semantics given in [JGG15].

SF1: (tr, s,X) ∈ SF =⇒ (tr, s) ∈ T – All trace-state pairs are included
in the trace semantics. This property ensures that we still have all benefits of
the traces semantics (safety properties). The trace semantics for CUC and its
properties are published in [JGG15]. It holds as we extended the trace semantics
in a safe way.

1 For an introduction to denotational semantics and fixpoints see, e.g., [Rey98].



Refinement-Based Verification of Communicating Unstructured Code 69

SF2: (tr, s,X) ∈ SF ∧ X ′ ⊆ X =⇒ (tr, s,X ′) ∈ SF – Refusal sets are subset
closed. This holds by construction.

SF3: (tr, s,X) ∈ SF ∧∀ a ∈ X ′, t. (tr�〈a〉, t) �∈ T =⇒ (tr, s,X ∪X ′) ∈ SF –
The refusal set can be augmented with events not possible. This is the important
property ensuring that there are “enough” refusals to show liveness properties.
This also holds by construction.

SF4: (tr, s) ∈ T ∧ spc �∈� code =⇒ (tr, s,X) ∈ SF – Terminal failures are
stable. This also holds by construction.

Properties SF3 and SF4 ensure that all stable failures are included, and thus
guarantee that the stable failures refinement relation allows to carry over (safety
and) liveness properties.

4.4 Concurrent Semantics

Having defined the sequential semantics in Sect. 4.2, we now define the concur-
rent semantics. It is defined as close a possible to the concurrent CSP semantics.
The purpose is to inherit the compositionality of the parallel composition of
CSP and thus the compositionality of its refinement relation. This enables us to
refine each component separately. It is important to notice that we only define
top-level parallel composition, so components can be composed in parallel, but
may themselves not contain parallel components.

To define the concurrent semantics of CUC, we first define the notion of a con-
current state. As components communicate via events, the states of components do
not share variables. We define a concurrent state to be a normal-/communication-
state or pair of concurrent states:

concurrent state := NCstate | concurrent state ‖ concurrent state

The nesting structure of a concurrent state should match the nesting structure
of a parallel program. We choose alphabetized parallel as the most general par-
allel combination in CSP that can be used to represent the other two, namely
interface parallel and interleaving. We closely follow the CSP definition of alpha-
betized parallel and adjust it to CUC. As in CSP, the concurrent composition
of two components considers all interleavings of the traces of the components,
synchronizing on the given alphabets. As we only allow top-level composition,
we assume initial failures to have an empty trace and a normal state.

�code1 α‖β code2�(S) =
{
(tr, t1 ‖ t2,X)

∣
∣ ∃ X1,X2.

(〈〉, s1 ‖ s2, Y ) ∈ S ∧ N(s1) ∧ N(s2) ∧
X ∩ (α ∪ β) = (X1 ∩ α) ∪ (X2 ∩ β) ∧
(tr |̀ α, t1,X1) ∈ �code1�

({
(〈〉, s1, Y )

})
∧

(tr |̀ β, t2,X2) ∈ �code2�
({

(〈〉, s2, Y )
})

∧
set(tr) ⊆ (α ∪ β)

}



70 N. Jähnig et al.

We have created a semantics which fulfills our needs, and in particular, preserves
the properties from the previous section. We are now able to combine CUC pro-
grams in parallel. As we have defined parallel composition within CUC like in
CSP, we enjoy its compositionality. We thus need only to refine single compo-
nents and can combine the results, thanks to the compositionality of the stable
failures refinement w.r.t. parallel composition. This is the reason, why we do not
need a rule for parallel composition in our Hoare calculus, which we introduce
in the following section.

5 Hoare Calculus

Our assertions are predicates on single NCstates. We define a Hoare triple as
usual with one catch:

{P} code {Q} := ∀ s.
(
P (s) −→ ∀ t ∈ �code�({s}). Q(t)

)

Observe that our semantics yields a set that includes all intermediate stable
failures. Postconditions in our Hoare calculus are thus also invariants for com-
munication failures. We still can construct usual postconditions, e.g., by setting
Q(t) := tpc �∈ code −→ Q′(t).

We present our Hoare calculus for stable failures of CUC in Fig. 4. In H-
do, H-cbr and H-comm, it is described how pre- and postconditions can be
connected for the basic instructions. As all sequential compositions potentially
introduce loops in CUC, H-seq is based on an invariant I, which is tailored to
its placement in the rule: For codei, only the relevant parts of the invariant have
to hold as its precondition. In the postcondition of the combination, all parts
of the invariant that deal with now former terminal failures are ignored by the
conjunction with the requirement that all normal states do not point into the
code. H-cons is the usual rule of consequence.

All rules of the calculus are correct w.r.t. the definition at the start of this
section. This can be shown by structural induction over the structure of an
arbitrary CUC program. This corresponds to a partial correctness for normal
states where the program terminates (we do not show termination). However,
for communication failures the postcondition holds universally thus can be used
as invariant about trace-refusal pairs (CSP failures). This is important, as this
enables us to show properties for reactive systems, i.e., communicating, non-
terminating systems. Our Hoare calculus is not complete.

In this paper, we assume that sequential system components are refined only
separately. Due to the compositionality of failures refinement w.r.t. parallel com-
position, we do not need an additional rule for concurrent components. In sum-
mary, our overall framework allows for proving properties about sequential com-
ponents and their parallel combination in a compositional way. We demonstrate
its applicability with an example in the next section.



Refinement-Based Verification of Communicating Unstructured Code 71

Fig. 4. Hoare calculus for CUC

Fig. 5. CSP specification and CUC implementation of a one place buffer



72 N. Jähnig et al.

6 Example

We demonstrate the applicability of our formal framework as presented above
and show that a given CSP specification Spec for a one place buffer is refined
by a given CUC implementation Impl of a buffer. Both are shown in Fig. 5.
The elements that can be stored in the buffer are of type T . Spec waits for an
input on channel in, i.e., synchronizes on any event {in.x | x ∈ T}, outputs the
received value x on channel out, and then starts over. We define ⊕ to be right
associative. Next, we explain Impl line by line:

(1::do) – This is the initialization. The boolean free indicates that the buffer
is ready to store data.
(2::comm) – The comm-instruction both offers the events and changes the state
after the communication happened. The events offered by ef are all values of
type T on channel in if the buffer is free, else the output event with the value
stored in the buffer is offered. According to the event communicated, it either
stores the input value and sets the buffer to not free, or it just sets the buffer to
free.
(3::cbr) – The conditional branch is used in this case to model an unconditional
branch and always jumps back to the comm-instruction at label 2.

Step 1: Manual Extraction of Conn from Spec

First, we need to extract a connecting property Conn which is only true for the
failures of Spec. Let trace∗ mean trace zero or more times concatenated, where
the variable x ∈ T is fresh in every occurrence of trace. We define

Conn(F ) := F ∈ Feven ∨ F ∈ Fodd where

Feven :=
{(

(in.x�out.x)∗,X
) ∣

∣
∣ X ⊆ Σ\{in.y | y ∈ T}

}

Fodd :=
{(

(in.x�out.x)∗�in.y,X
) ∣

∣
∣ y ∈ T ∧ X ⊆ Σ\{out.y}

}

This means, we choose pairs of matching inputs and outputs and at most one
“free” input at the end. Initially and after an output only inputs are possible.
After an input only the matching output is possible.

Step 2: Relation Between Conn and Spec

We need to prove that this holds only for stable failures of Spec, i.e.,
Conn(F ) =⇒ F ∈ SF(Spec), but in this simple case it is easy to see, as Conn
describes exactly the failures of Spec.

Lemma 1. Conn(F ) =⇒ F ∈ SF(Spec).

Step 3: Relation Between Conn and Impl

In the next step, we need to show that Conn holds for all failures of the pro-
gram Impl , or more exactly for all elements of the projection of the failures of



Refinement-Based Verification of Communicating Unstructured Code 73

Impl onto the traces-refusal pairs. To this end, we need an invariant Inv, which
implies Conn but is effectively stronger, as we need state information such as
the current program counter. We also need to specify the initial failures with a
precondition Pre. We omit Pre in the formulation of several lemmas for brevity.
In the following, we show {Pre} Impl {Inv}. First, we define Pre and Inv:

Pre(tr, s,X) :=spc = 1 ∧ tr = 〈〉
Inv :=Pre ∨ I2,3

I2,3(tr, s,X) := tpc ∈ {2, 3} ∧
((tr,X) ∈ Feven ∧ srs(free) = True ∨
(tr,X) ∈ Fodd ∧ srs(free) = False

∧ ∃ x. trs(buffer) = x ∧ last(tr) = in.x)

Lemma 2. (tr, s,X) ∈ �Impl� =⇒ Conn(tr,X).

Proof. We show (tr, s,X) ∈ �Impl�({(tr, t, Y ) | Pre(tr, t, Y )}) =⇒ Inv(tr, s,X)
with our Hoare calculus, i.e., {Pre} Impl {Inv} holds. For brevity we denote the
instruction by their label and instruction name, e.g., 1:: do. The idea of the Hoare
calculus proof is that starting in Pre, 1:: do leads to the loop (2:: comm ⊕ 3:: cbr)
and I2,3 holds. During execution of the loop, the invariant I2,3 is preserved, thus
overall the invariant Inv ≡ Pre ∨ I2,3 holds. As Inv(tr, s,X) =⇒ Conn(tr,X)
holds too, we conclude

(tr, s,X) ∈ �Impl�({(tr, t, Y ) | Pre(tr, t, Y )}) =⇒ Conn(tr,X)

��

From Lemmas 1 and 2 we conclude Theorem 1 that all trace-refusal pairs of Impl
are failures of Spec, i.e., Spec �SF Impl holds. �SF being CSP (stable) failures
refinement, Impl thus enjoys all liveness and safety properties of Spec.

Theorem 1. Spec �SF Impl.

6.1 Concurrency

Thanks to the compositionality of refinement and parallel composition of CSP,
we are able to model a two place buffer by letting two buffers communicate.
Still, all safety and liveness properties are preserved. Consider the following
CSP processes:

Spec1 = in?x : T → mid!x → Spec1
Spec2 = mid?x : T → out!x → Spec2
Spec‖ = Spec1 {mid}‖{mid} Spec2

We can show that two programs Impl1 and Impl2 (similar to the code in Fig. 5)
refine Spec1 and Spec2 respectively (see Theorem 1). Let

Impl‖ = Impl1 {mid}‖{mid} Impl2



74 N. Jähnig et al.

Due to the compositionality of CSP and the equal nature of the parallel com-
positions of CSP and CUC, we can immediately follow that Spec‖ �SF Impl‖,
which demonstrates the compositionality of our approach. Please observe that
it scales well with the number of components: a system with N components
requires only N separate refinement proofs. For homogeneous systems (as the in
the buffer example) we even can reuse the refinement proof.

7 Related Work

To the best of our knowledge there exists no other approach to define a stable
failures semantics for low-level code.

A denotational semantics and a proof calculus for a high-level language with
communication are defined by Zwiers [Zwi89]. The semantics deals with traces
and ready sets, which are similar in intention to refusals. As low-level code is not
considered, the semantics is not directly applicable.

There are some attempts to give unstructured code a semantics for later veri-
fication. Tews [Tew04] developed a compositional semantics for a C-like language
with goto, which is used to verify Duff’s device. However, this approach does not
model communication, and is thus not appropriate to describe non-terminating
systems. Saabas and Uustalu [SU05] present a compositional bigstep semantics
of an unstructured language. To this end, a generic structuring mechanism for
the code is presented, which makes the semantics compositional and also allows
for a compositional proof calculus. Although they formally relate a high-level
and a low-level language, they do not relate a process specification with the low-
level language. Communication is not considered. CUC uses their structuring
mechanism [JGG15].

CUC, presented in [JGG15], is based on our previous work [BJ14] enhanced
with communication capabilities. The approach in [BJ14] focuses on a small-
step and a bigstep operational semantics based on which a compositional proof
calculus is built. We used similar semantics in [BG11] to show correspondence
between unstructured code and (Timed) CSP processes. We used events as obser-
vation points, but did not consider actual communication. Furthermore, the use
of a bisimulation to relate unstructured code and CSP processes allows only for
equivalence, which is inappropriate for an implementation process.

8 Conclusion

In this paper, we have defined a stable failures semantics and a Hoare calculus for
CUC. Both are used in our framework, which allows for formally proving stable
failures refinement between specifications in CSP and implementations in CUC.
Our framework thus contributes to reducing the verification gap between behav-
ioral abstract specification and executed low-level code. This relation preserves
all safety and liveness properties of the specification. Our approach is composi-
tional w.r.t. parallel system components, i.e., we only need to show refinements



Refinement-Based Verification of Communicating Unstructured Code 75

for the sequential components of the system, as the properties are preserved for
the entire system due to compositionality of stable failures refinement.

In future work, we aim at extending our existing Isabelle/HOL [NPW02] for-
malization of the trace semantics for CUC and the corresponding Hoare calculus
for stable failures. To enable a further refinement of the CUC implementation, we
plan to model the detailed implementation of the comm instruction in a low level
language with primitives to implement a channel, such as shared variables and
locks. We aim at investigating the applicability of our approach with more com-
plex systems. We are especially interested in the utility of the intra-component
compositionality of CUC. Finally, our framework could be combined with other
frameworks, e.g., the CSP++ framework [GGC15], where a C++ communication
backbone is generated from a CSP specification.

References

[BG11] Bartels, B., Glesner, S.: Verification of distributed embedded real-time sys-
tems and their low-level implementation using timed CSP. In: APSEC 2011,
pp. 195–202. IEEE Computer Society (2011)

[BJ14] Bartels, B., Jähnig, N.: Mechanized, compositional verification of low-level
code. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430,
pp. 98–112. Springer, Heidelberg (2014)

[GABR14] Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 —
a modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg
(2014)

[GGC15] Gardner, W.B., Gumtie, A., Carter, J.D.: Supporting selective formalism
in CSP++ with process-specific storage. In: ICESS 2015, pp. 1057–1065
(2015)

[Hoa78] Hoare, C.A.R.: Communicating sequential processes. Commun. ACM
21(8), 666–677 (1978)

[JGG15] Jähnig, N., Göthel, T., Glesner, S.: A denotational semantics for commu-
nicating unstructured code. In: FESCA 2015. EPTCS, vol. 178, pp. 9–21
(2015)

[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.: The basics. In: Nipkow, T., Paulson,
L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS, vol. 2283, p. 3. Springer,
Heidelberg (2002)

[Rey98] Reynolds, J.C.: Theories of Programming Languages. Cambridge Univer-
sity Press, Cambridge (1998)

[Sch99] Schneider, S.: Concurrent and Real Time Systems: The CSP Approach.
Wiley, New York (1999)

[SU05] Saabas, A., Uustalu, T.: A compositional natural semantics and hoare logic
for low-level languages. SOS 156(1), 151–168 (2005). Elsevier

[Tew04] Tews, H.: Verifying Duff’s device: a simple compositional denotational
semantics for goto and computed jumps. Technical report, Technische Uni-
versität Dresden (2004)

[Zwi89] Zwiers, J.: Compositionality, Concurrency, and Partial Correctness. LNCS,
vol. 321. Springer, Heidelberg (1989)


	Refinement-Based Verification of Communicating Unstructured Code
	1 Introduction
	2 Communicating Sequential Processes (Background)
	3 Framework for Formally Relating CSP Specifications and CUC Implementations
	4 Communicating Unstructured Code and Its Semantics
	4.1 Communicating Unstructured Code
	4.2 Stable Failures Semantics
	4.3 Compatibility to CSP
	4.4 Concurrent Semantics

	5 Hoare Calculus
	6 Example
	6.1 Concurrency

	7 Related Work
	8 Conclusion
	References


