
Automatic Derivation of Platform
Noninterference Properties

Oliver Schwarz1,2(B) and Mads Dam2

1 SICS Swedish ICT, Kista, Sweden
oschwarz@kth.se

2 KTH Royal Institute of Technology, Stockholm, Sweden
mfd@kth.se

Abstract. For the verification of system software, information flow
properties of the instruction set architecture (ISA) are essential. They
show how information propagates through the processor, including some-
times opaque control registers. Thus, they can be used to guarantee that
user processes cannot infer the state of privileged system components,
such as secure partitions. Formal ISA models - for example for the HOL4
theorem prover - have been available for a number of years. However, lit-
tle work has been published on the formal analysis of these models. In
this paper, we present a general framework for proving information flow
properties of a number of ISAs automatically, for example for ARM. The
analysis is represented in HOL4 using a direct semantical embedding of
noninterference, and does not use an explicit type system, in order to
(i) minimize the trusted computing base, and to (ii) support a large
degree of context-sensitivity, which is needed for the analysis. The frame-
work determines automatically which system components are accessible
at a given privilege level, guaranteeing both soundness and accuracy.

Keywords: Instruction set architectures · ARM · MIPS ·
Noninterference · Information flow · Theorem proving · HOL4

1 Introduction

From a security perspective, isolation of processes on lower privilege levels is one
of the main tasks of system software. More and more vulnerabilities discovered in
operating systems and hypervisors demonstrate that assurance of this isolation
is far from given. That is why an increasing effort has been made to formally
verify system software, with noticeable progress in recent years [1,6,10,14,16].
However, system software depends on hardware support to guarantee isolation.
Usually, this involves at least the ability to execute code on different privilege
levels and with basic memory protection. Kernels need to control access to their
own code and data and to critical software, both in memory and as content of
registers or other components. Moreover, they need to control the management of
the access control itself. For the correct configuration of hardware, it is essential
to understand how and under which circumstances information flows through
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 27–44, 2016.
DOI: 10.1007/978-3-319-41591-8 3



28 O. Schwarz and M. Dam

the system. Hardware must comply to a contract that kernels can rely on. In
practice, however, information flows can be indirect and hidden. For example,
some processors automatically set control flags on context switches that can
later be used by unprivileged code to see if neighbouring processes have been
running or to establish a covert channel [19]. Such attacks can be addressed by
the kernel, but to that end, kernel developers need machinery to identify the
exact components available to unprivileged code, and specifications often fail to
provide this information in a concise form. When analysing information flow, it
is insufficient to focus on direct register and memory access. Confidentiality, in
particular, can be broken in more subtle ways. Even if direct reads from a control
flag are prevented by hardware, the flag can be set as an unintended side effect
of an action by one process and later influence the behaviour of another process,
allowing the latter to learn something about the control flow of the former.

In this paper we present a framework to automate information flow analysis
of instruction set architectures (ISAs) and their operational semantics inside the
interactive theorem prover HOL4 [11]. We employ the framework on ISA models
developed by Fox et al. [7] and verify noninterference, that is, that secret (high)
components can not influence public (low) components. Besides an ISA model,
the input consists of desired conditions (such as a specific privilege mode) and
a candidate labelling, specifying which system components are already to be
considered as low (such as the program counter) and, implicitly, which compo-
nents might possibly be high. The approach then iteratively refines the candi-
date labelling by downgrading new components from high to low until a proper
noninterference labelling is obtained, reminiscent of [12]. The iteration may fail
for decidability reasons. However, on successful termination, both soundness
and accuracy are guaranteed unless a warning is given indicating that only an
approximate, sound, but not necessarily accurate solution has been found.

What makes accurate ISA information flow analysis challenging is not only
the size and complexity of modern instruction sets, but also particularities in
semantics and representation of their models. For example, arithmetic operations
(e.g., with bitmasks) can cancel out some information flows and data struc-
tures can contain a mix of high and low information. Modification of the models
to suit the analysis is error prone and requires manual effort. Automatic, and
provably correct, preprocessing of the specifications could overcome some, but
not all, of those difficulties, but then the added value of standard approaches
such as type systems over a direct implementation becomes questionable. By
directly embedding noninterference into HOL4, we can make use of machinery
to address the discussed difficulties and at the same time we are able to min-
imize the trusted computing base (TCB), since the models, the preprocessing
and the actual reasoning are all implemented/represented in HOL4. Previous
work on HOL4 noninterference proofs for ISA models [13] had to rely on some
manual proofs, since its compositional approach suffered from the lack of suf-
ficient context in some cases (e.g., the secrecy level of a register access in one
step can depend on location lookups in earlier steps). In contrast, the approach
suggested in the present paper analyses ISAs one instruction at a time, allowing



Automatic Derivation of Platform Noninterference Properties 29

for accuracy and automation at the same time. However, since many instruc-
tions involve a number of subroutines, this instruction-wide context introduces
complexity challenges. We address those by unfolding definitions of transitions
in such a way that their effects can be extracted in an efficient manner.

Our analysis is divided into three steps: (i) rewriting to unfold and sim-
plify instruction definitions, (ii) the actual proof attempt, and (iii) automated
counterexample-guided refinement of the labelling in cases where the proof fails.
The framework can with minor adaptations be applied to arbitrary HOL4 ISA
models. We present benchmarks for ARMv7 and MIPS. With a suitable labelling
identified, the median verification time for one ARMv7 instruction is about 40
seconds. For MIPS, the complete analysis took slightly more than one hour and
made configuration dependencies explicit that we had not been aware of before.
We report on the following contributions: (i) a backward proof tactic to auto-
matically verify noninterference of HOL4 state transition functions, as used in
operational ISA semantics; (ii) the automated identification of sound and accu-
rate labellings; (iii) benchmarks for the ISAs of ARMv7-A and MIPS, based on
an SML-implementation of the approach.

2 Processor Models

2.1 ISA Models

In the recent years, Fox et al. have created ISA models for x86-64, MIPS, several
versions of ARM and other architectures [7,8]. The instruction sets are modelled
based on official documentations and on the abstraction level of the program-
mer’s view, thus being agnostic to internals like pipelines. The newest models
are produced in the domain-specific language L3 [7] and can be exported to the
interactive theorem prover HOL4. Our analysis targets those purely-functional
HOL4 models for single-core systems. An ISA is formalized as a state transition
system, with the machine state represented as record structure (on memory, reg-
isters, operational modes, control flags, etc.) and the operational semantics as
functions (or transitions) on such states. The top-level transition NEXT processes
the CPU by one instruction. While L3 also supports export to HOL4 definitions
in monadic style, we focus our work on the standard functional representation
based on let-expressions. States resulting from an unpredictable (i.e., underspeci-
fied) operation are tagged with an exception marker (see Sect. 7 for a discussion).

2.2 Notation

A state s = {C1 := c1, C2 := c2, . . .} is a record, where the fields C1, C2, . . .
depend on the concrete ISA. As a naming convention, we use Ri for fields that
are records themselves (such as control registers) and Fi for fields of a func-
tion/mapping type (such as general purpose register sets). The components of
a state are all its fields and subfields (in arbitrary depth), as well as the single
entries of the state’s mappings. The value of field C in s is derived by s.C. An
update of field C in s with value c is represented as s[C := c]. Similarly, function



30 O. Schwarz and M. Dam

updates of F in location l by value v are written as F [l := v]. Conditionals and
other case distinctions are written as C(b, a1, a2, . . . , ak), with b being the selector
and a1, a2, . . . , ak the alternatives. A transition Φ transforms a pre-state s into
a return-value v and a post-state s′, formally Φs = (v, s′). Usually, a transition
contains subtransitions Φ1, Φ2, . . . , Φn, composed of some structure φ of abstrac-
tions, function applications, case distinctions, sequential compositions and other
semantic operators, so that Φs = φ(Φ1, Φ2, . . . , Φn)s. Transition definitions
can be recursively unfolded: φ(Φ1, . . . , Φn)s = φ(φ1(Φ1,1, . . . , Φ1,m), . . . , Φn)s =
. . . = �φs, where �φ is the completely unfolded transition, called the evaluated
form. For the transitions of the considered instruction sets, unfolding always
terminates. Note that ‘=’ is used here for the equivalence of states, transitions
or values, not for the syntactical equivalence of terms. Below we give the defini-
tion of the ARMv7-NOOP-instruction and its evaluated (and simplified) form:

dfn′NoOperation s
= BranchTo(s.REG RName PC + C(FST (ThisInstrLength () s) = 16, 2, 4)) s
= ((), s[REG := s.REG[RName PC := s.REG RName PC + C(s.Encoding = Thumb, 2, 4)]])

NOOP branches to the current program counter (s.REG RName PC) plus some
offset. The offset depends on the current instruction length, which in turn
depends on the current encoding. Here, FST selects the actual return value of
the ThisInstrLength transition, ignoring its unchanged post-state.

2.3 Memory Management

For simplicity, our analysis focuses on core-internal flows (e.g., between reg-
isters) and abstracts away from the concrete behaviour of the memory sub-
system (including address translation, memory protection, caching, peripherals,
buses, etc.). Throughout the course of the - otherwise core internal - analysis,
a contract on the memory subsystem is assumed that then allows the reasoning
on global properties. The core can communicate with the memory subsystem
through an interface, but never directly accesses its internal state. The inter-
face expects inputs like the type of access (read, fetch, write, . . . ), the virtual
address, the privilege state of the processor, and other parameters. It updates
the state of the memory subsystem and returns a success or error message along
with possibly read data. While being agnostic about the concrete behaviour
of the memory subsystems, we assume that there is a secure memory configu-
ration Pm, restricting unprivileged accesses, e.g., through page table settings.
Furthermore, we assume the existence of a low-equivalence relation Rm on pairs
of memory subsystems. Typically, two memories in Rm would agree on mem-
ory content accessible in an unprivileged processor mode. When in unprivileged
processor mode and starting from secure memory configurations, transitions on
memory subsystems are assumed to maintain both the memory relation and
secure configurations. Consider an update of state s assigning the sum of the
values of register y and the memory at location a to register x, slightly sim-
plified: s[x := s.y + read(a, s.mem)]. Since read - as a function of the memory
interface - satisfies the constraints above, for two pre-states s1 and s2 satisfying



Automatic Derivation of Platform Noninterference Properties 31

Pms1.mem ∧ Pms2.mem ∧ Rm(s1.mem, s2.mem), we can infer that read will return
the same value or error. Overall, with preconditions met, two states that agree
on x, y, and the low parts of the memory before the computation, will also agree
after the computation. That is, as long as read fulfils the contract, the analysis
of the core (and in the end the global analysis) does not need to be concerned
with details of the memory subsystem.

3 ISA Information Flow Analysis

3.1 Objectives

Consider an ISA model with an initial specification determining some precondi-
tions (e.g., on the privilege mode) and some system components, typically only
the program counter, that are to be regarded as observable (or low) by some
given actor. If there is information flow from some other component (say, a con-
trol register) to some of these initially-low components, this other component
must be regarded as observable too for noninterference to hold. The objective of
the analysis is to identify all these other components that are observable due to
their direct or indirect influence on the given low components.

A labelling L assigns to each atomic component (component without subcom-
ponents) a label, high or low.1 It is sound if it does not mark any component as
high that can influence, and hence pass information to, a component marked as
low. In the refinement order the labelling L′ refines L (L � L′), if low compo-
nents in L are low also in L′. The labelling L is accurate, if L is minimal in the
refinement order such that L is sound and refines the initial labelling.

Determining whether a labelling is accurate is generally undecidable. Suppose
C(P (x), s.C, 0) is assigned to a low component. Deciding whether C needs to be
deemed low requires deciding whether there is some valid instantiation of x,
such that P (x) holds, which might not be decidable. However, it appears that
in many cases, including those considered here, accurate labellings are feasible.
In our approach we check the necessity of a label refinement by identifying an
actual flow from the witness component to some low component. We cannot
guarantee that this check always succeeds, for undecidability reasons. If it does
not, the tool still tries to refine the low equivalence and a warning that the final
relation may no longer be accurate is generated. For the considered case studies
the tool always finds an accurate labelling, which is then by construction unique.

Labellings correspond to low-equivalence relations on pairs of states, relations
that agree on all low components including the memory relation Rm and leave
all other components unrestricted. Noninterference holds if the only components
affecting the state or any return value are themselves low. Formally, assume the
two pre-states s1 and s2 agree on the low-labelled components, expressed by a
low-equivalence relation R on those states. Then, for a given transition Φ and
preconditions P, noninterference N (R,P, Φ) holds if after Φ the post-states are
again in R and the resulting return values are equal:

1 We have not found a use for ISA security lattices of finer granularity.



32 O. Schwarz and M. Dam

N (R,P, Φ) := ∀s1, s2, v1, v2, t1, t2 :
((v1, t1) = Φs1) ∧ ((v2, t2) = Φs2) ∧ R(s1, s2) ∧ Ps1 ∧ Ps2
⇒ R(t1, t2) ∧ (v1 = v2)

Preconditions on the starting states can include architecture properties (ver-
sion number, present extensions, etc.), a secure memory configuration and a
specification of the privilege level. In our framework the user defines relevant
preconditions and an initial low-equivalence relation R0 for an input ISA. The
goal of the analysis is to statically and automatically find an accurate refine-
ment of R0 so that noninterference holds for Φ = NEXT. The analysis yields the
final low-equivalence relation, the corresponding HOL4 noninterference theorem
demonstrating the soundness of the relation, and a notification of whether the
analysis succeeded to establish a guarantee on the relation’s accuracy. The proof
search is not guaranteed to terminate successfully, but we have found it robust
enough to reliably produce accurate output on ISA models of considerable com-
plexity (see Sect. 5). We do not treat timing and probabilistic channels and leave
safety-properties about unmodified components for future work.

3.2 Challenges

Our goal is to perform the analysis from an initial, user-supplied labelling on a
standard ISA with minimal user interaction. In particular, we wish to avoid user
supplied label annotations and error-prone manual rewrites of the ISA specifi-
cation, that a type-based approach might depend on to eliminate some of the
complications specific to ISA models. Instead, we address those challenges with
symbolic evaluation and the application of simplification theorems. Since both
are available in HOL4, and so are the models, we verify noninterference in HOL4
directly. This also frees us from external preprocessing and soundness proofs,
thus minimizing the TCB. Below, we give examples for common challenges.

Representation. The functional models that we use represent register sets as
mappings. Static type systems for (purely) functional languages [9,17] need to
assign secrecy levels uniformly to all image values, even if a mapping has both
public and secret entries. Adaptations of representation and type system might
allow to type more accurately for lookups on constant locations. But common
lookup patterns on locations represented by variables or complex terms would
require a preprocessing that propagates constraints throughout large expressions.

Semantics. Unprivileged ARMv7 processes can access the current state of the
control register CPSR. The ISA specifies to (i) map all subcomponents of the
control register to a 32-bit word and (ii) apply the resulting word to a bitmask.
As a result, the returned value does actually not depend on all subcomponents
of the CPSR, even though all of them were referred to in the first step. For
accuracy, an actual understanding of the arithmetics is required.



Automatic Derivation of Platform Noninterference Properties 33

Context-Sensitivity. Earlier work on ISA information flow [13] deals with ARM’s
complex operational semantics in a stepwise analysis, focusing on one subpro-
cedure at a time. This allows for a systematic solution, but comes with the
risk of insufficient context. For example, when reading from a register, usually
two steps are involved: first, the concrete register identifier with respect to the
current processor mode is looked up; second, the actual reading is performed.
Analysing the reading operation in isolation is not accurate, since the lack of
constraints on the register identifier would require to deem all registers low. In
order to include restrictions from the context, [13] required a number of manual
proofs. To avoid this, we analyse entire instructions at a time, using HOL4’s
machinery to propagate constraints.

4 Approach

We are not the first to study (semi-)automated hardware verification using the-
orem proving. As [5] points out for hardware refinement proofs, a large share of
the proof obligations can be discharged by repeated unfolding (rewriting) of def-
initions, case splits and basic simplification. While easy to automate, these steps
lead easily to an increase in complexity. The challenge, thus, is to find efficient
and effective ways of rewriting and to minimize case splits throughout the proof.
Our framework traverses the instruction set instruction by instruction, managing
a task queue. For each instruction, three steps are performed: (i) rewriting/un-
folding to obtain evaluated forms, (ii) attempting to prove noninterference for
the instruction, (iii) on failure, using the identified counterexample to refine the
low-equivalence relation. This section details those steps. After each refinement,
the instructions verified so far are re-enqueued. The steps are repeated until
the queue is empty and each instruction has successfully been verified with the
most recent low-equivalence relation. Finally, noninterference is shown for NEXT,
employing all instruction lemmas, as well as rewrite theorems for the fetch and
decode transitions. Soundness is inherited from HOL4’s machinery. Accuracy is
tracked by the counterexample verification in step (iii).

4.1 Rewriting Towards an Evaluated Form

The evaluated form of instructions is obtained through symbolic evaluation.
Starting from the definition of a given transition, (i) let-expressions are elimi-
nated, (ii) parameters of subtransitions are evaluated (in a call-by-value man-
ner), (iii) the subtransitions are recursively unfolded by replacing them with
their respective evaluated forms, (iv) the result is normalized, and (v) in a
few cases substituted with an abstraction. Normalization and abstraction are
described below. For the first three steps we reuse evaluation machinery from [7]
and extend it, mainly to add support for automated subtransition identification
and recursion. Preconditions, for example on the privilege level, allow to reduce
rewriting time and the size of the result. Since they can become invalid during
instruction execution, they have to be re-evaluated for each recursive invocation.



34 O. Schwarz and M. Dam

Throughout the whole rewriting process, various simplifications are applied, for
example on nested conditional expressions, case distinctions, words, and pairs,
as well as conditional lifting, which we motivate below. For soundness, all steps
produce equivalence theorems.

Step Library. The ISA models are provided together with so-called step
libraries, specific to every architecture [7]. They include a database of pre-
computed rewrite theorems, connecting transitions to their evaluated forms.
Those theorems are computed in an automated manner, but are guided man-
ually. Our tool is able to employ them as hints, as long as their preconditions
are not too restrictive for the general security analysis. Otherwise, we compute
the evaluated forms autonomously. Besides instruction specific theorems, we use
some datatype specific theorems and general machinery from [7].

Conditional Lifting. Throughout the rewriting process, the evaluated forms of
two sequential subtransitions might be composed by passing the result of the first
transition into the formal parameters of the second. This often leads to terms
like γ(s) := C(b, s[C1 := c1], s[C2 := c2]).C3. However, in order to derive equality
properties in the noninterference proof (e.g., [s1.C3 = s2.C3] � γ(s1) = γ(s2)) or
to check validity of premises (e.g., γ(s) = 0), conditional lifting is applied:

γ(s) = C(b, s[C1 := c1], s[C2 := c2]).C3 lifting
= C(b, (s[C1 := c1]).C3, (s[C2 := c2]).C3) simplifying
= C(b, s.C3, s.C3) merging
= s.C3

To mitigate exponential blow-up, conditional lifting should only be applied where
needed. For record field accesses we do this in a top-down manner, ignoring fields
outside the current focus. For example, in γ(s) there is no need to process c1 at
all, even in cases where c1 itself is a conditional expression.

Normalization. With record field accesses being so critical for performance,
both rewriting and proof benefit from (intermediate) evaluated forms being nor-
malized. A state term is normalized if it only consists of record field updates to
a state variable s, that is, it has the form

s[C1 := c1, . . . , Cn := cn, R1 := s.R1[C1,1 := c1,1, . . . , C1,k := c1,k], . . .].

For a state term τ updating state variable s in the fields C1, . . . , Cn with the val-
ues c1, . . . , cn, we verify the normalized form in a forward construction (omitting
subcomponents here and below for readability; they are treated analogously):

τ = τ [C1 := τ.C1, . . . , Cn := τ.Cn] (1)
= s[C1 := τ.C1, . . . , Cn := τ.Cn] (2)
= s[C1 := c1, . . . , Cn := cn] (3)



Automatic Derivation of Platform Noninterference Properties 35

We significantly improve proof performance with the abstraction of complex
expressions by showing (1) independently of the concrete τ and (2) independently
of the values of the updates, both those inside τ and those applied to τ . We obtain
c1, . . . , cn by similar means to those shown in the lifting example of γ above.

In [7], both conditional lifting and normalization are based on the precom-
putation of datatype specific lifting and unlifting lemmas for updates. Our pro-
cedures are largely independent of record types and update patterns. However,
because of the performance benefits of [7], we plan to generalize/automate their
normalization machinery or combine both approaches in future work.

Abstracted Transitions. Even with normalization, the specification of a tran-
sition grows quickly when unfolding complex subtransitions, especially for loops.
We therefore choose to abstract selected subtransitions. To this end, we substi-
tute their evaluated forms with terms that make potential flows explicit, but
abstract away from concrete specifications. Let the normalized form of transi-
tion Φ be �φs = (β(s), s[C1 := γ1(s), . . . , Cn := γn(s)]). The values of all primitive
state updates γ1(s), . . . , γn(s) on s and the return value β(s) of Φ are substituted
with new function constants f0, f1, . . . , fn applied to relevant state components
actually accessed instead of to the entire state:

Φs = �φs = (f0(s.C0,1, . . . , s.C0,k0),
s[C1 := f1(s.C1,1, . . . , s.C1,k1), . . . , Cn := fn(s.Cn,1, . . . , s.Cn,kn

)])

Except for situations that suggest the need for a refinement of the low-
equivalence relation, f0, . . . , fn do not need to be unfolded in the further process-
ing of Φ. Low-equivalence of the post-states can be inferred trivially:

[(s1.C1,1 = s2.C1,1) ∧ . . .] � f1(s1.C1,1, s1.C1,2, . . .) = f1(s2.C1,1, s2.C1,2, . . .))

To avoid accuracy losses in cases where �φ mentions components that neither
return value nor low components actually depend on, we unfold abstractions as
last resort before declaring a noninterference proof as failed.

4.2 Backward Proof Strategy

Having computed the evaluated form for an instruction Φ, we proceed with
the verification attempt of N (R,P, Φ) through a backward proof, for the user-
provided preconditions P and the current low-equivalence relation R. The sound
backward proof employs a combination of the following steps:

– Conditional Lifting: Especially in order to resolve record field accesses
on complex state expressions, we apply conditional lifting in various scopes
(record accesses, operators, operands) and degrees of aggressiveness.

– Equality of Subexpressions: Let F be a functional component and n and
m be two variables ranging over {0, 1, 2}. The equality

C(n = 2, 0, s1.F (C(n, a, b, c))) + s1.F (C(m,a, b, a))
= C(n = 2, 0, s2.F (C(n, a, b, c))) + s2.F (C(m,a, b, a))



36 O. Schwarz and M. Dam

can be established from the premises s1.F (a) = s2.F (a) and s1.F (b) = s2.F (b)
by lifting the distinctions on n and m outwards or - alternatively - by case
splitting on n and m. Either way, equality should be established for each sum-
mand separately, in order to limit the number of considered cases to 3 + 3
instead of 3×3. Doing so in explicit subgoals also helps in discarding unreach-
able cases, such as the one where c would be chosen. We identify relevant
expressions via pre-defined and user-defined patterns.

– Memory Reasoning: Axioms and derived theorems on noninterference prop-
erties of the memory subsystem and maintained invariants are applied.

– Simplifications: Throughout the whole proof process, various simplifications
take effect, for example on record field updates.

– Case Splitting: Usually the mentioned steps are sufficient. For a few harder
instructions or if the low-equivalence relation requires refinement, we apply
case splits, following the branching structure closely.

– Evaluation: After the case splitting, a number of more aggressive simplifica-
tions, evaluations, and automatic proof tactics are used to unfold remaining
constants and to reason about words, bit operations, unusual forms of record
accesses, and other corner cases.

4.3 Relation Refinement

Throughout the analysis, refinement of the low-equivalence relation is required
whenever noninterference does not hold for the instruction currently consid-
ered. Counterexamples to noninterference enable the identification of new com-
ponents to be downgraded to low. When managed carefully, failed backward
proofs of noninterference allow to extract such counterexamples. However, back-
ward proofs are not complete. Unsatisfiable subgoals might be introduced despite
the goal being verifiable. For accuracy, we thus verify the necessity of downgrad-
ing a component C before the actual refinement of the relation. To that end, it
is sufficient to identify two witness states that fulfil the preconditions P, agree
on all components except C, and lead to a violation of noninterference in respect
to the analysed instruction Φ and the current (yet to be refined) relation R. We
refer to the existence of such witnesses as N :

N (R,P, Φ, C) := ∃s, x1, x2, v1, v2, t1, t2 :
((v1, t1) = Φ(s[C := x1])) ∧ ((v2, t2) = Φ(s[C := x2]))
∧P(s[C := x1]) ∧ P(s[C := x2]) ∧ (¬R(t1, t2) ∨ (v1 	= v2))

If such witnesses exist, any sound relation R′ refining R will have to contain
some restriction on C. With the chosen granularity, that translates to ∀s1, s2 :
R′(s1, s2) ⇒ (R(s1, s2) ∧ s1.C = s2.C). We proceed with the weakest such
relation, i.e., R′(s1, s2) := (R(s1, s2) ∧ s1.C = s2.C). As discussed in Sect. 3.1,
it can be undecidable whether the current relation needs refinement. However,
for the models that we analyzed, our framework was always able to verify the
existence of suitable witnesses. The identification and verification of new low
components consists of three steps:



Automatic Derivation of Platform Noninterference Properties 37

1. Identification of a new low component. We transform subgoal G on top
of the goal stack into a subgoal false with premises extended by ¬G. In this
updated list of premises for the pre-states s1 and s2, we identify a premise on
s1 which would solve the transformed subgoal by contradiction when assumed
for s2 as well. Intuitively, we suspect that noninterference is prevented by the
disagreement on components in the identified premise. We arbitrarily pick
one such component as candidate for downgrading.

2. Existential verification of the scenario. To ensure that the extended
premises alone are not already in contradiction, we prove the existence of a
scenario in which all of them hold. We furthermore introduce the additional
premise that the two pre-states disagree on the chosen candidate, but agree
on all other components. An instantiation satisfying this existential statement
is a promising suspect for the set of witnesses for N . The existential proof in
HOL4 refines existentially quantified variables with patterns, e.g., symbolic
states for state variables, bit vectors for words, and mappings with abstract
updates for function variables (allowing to reduce ∃f : P (f(n)) to ∃x : P (x)).
If possible, existential goals are split. Further simplifications include HOL4
tactics particular to existential reasoning, the application of type-specific exis-
tential inequality theorems, and simplifications on word and bit operations.
If after those steps and automatic reasoning existential subgoals remain, the
tool attempts to finish the proof with different combinations of standard val-
ues for the remaining existentially quantified variables.

3. Witness verification. We use the anonymous witnesses of the existential
statement in the previous step as witnesses for N . After initialisation, the core
parts of the proof strategy from the failed noninterference proof are repeated
until the violation of noninterference has been demonstrated.

In order to keep the analysis focused, it is important to handle case splits before
entering the refinement stage. At the same time, persistent case splits can be
expensive on a non-provable goal. Therefore, we implemented a depth first proof
tactical, which introduces hardly any performance overhead on successful proofs,
but fails early in cases where the proof strategy does not succeed. Furthermore,
whenever case splits become necessary in the proof attempt, the framework
strives to diverge early, prioritizing case splits on state components.

5 Evaluation

We applied our framework to analyse information flows on ARMv7-A and MIPS-
III (64-bit RS4000). For ARM, we focus on user mode execution without secu-
rity or virtualization extension. Since unprivileged ARM code is able to switch
between several instructions sets (ARM, Thumb, Thumb2, ThumbEE), the infor-
mation flow analysis has to be performed for all of them. For MIPS, we consider
all three privilege modes (user, kernel, and supervisor). The single-core model
does not include floating point operations or memory management instructions.

Table 1 shows the initial and accurate final low-equivalence relations for the
two ISAs with different configurations. All relations refine the memory rela-
tion. The final relation column only lists components not already restricted by



38 O. Schwarz and M. Dam

Table 1. Identified flows (model components might deviate from physical systems)

ISA Mode Initial relation Final relation

ARMv7-A user mode program counter user registers; con-
trol register CPSR (all
flags); floating point
registers of FP.REG
and FP.FSPCR; TEEHBR

register (coprocessor
14); Encoding ghost
component; system
control register SCTLR

(coprocessor 15, flags:
EE, TE, V, A, U, DZ)

MIPS-III user or kernel or
supervisor mode

program counter;
BranchTo; BranchDelay;
CP0.Count; exception
marker; CP0.Status.KSU;
CP0.Status.EXL;
CP0.Status.ERL

all modelled system
components

MIPS-III restricted user mode general purpose reg-
ister set; LLbit; lo;
hi; CP0.Config.BE;
CP0.Status.RE;
CP0.Status.BEV;
exceptionSignalled

the corresponding initial relations. For simplicity, the initial relation for MIPS
restricts three components accessed on the highest level of NEXT. The corre-
sponding table cell also lists components already restricted by the preconditions.
Initially unaware of the privilege management in MIPS, we were surprised that
our tool first yielded the same results for all MIPS processor modes and that
even user processes can read the entire state of system coprocessor CP0, which
is responsible for privileged operations such as the management of interrupts,
exceptions, or contexts. To restrict user privileges, the CU0 status flag must be
cleared (see last line of the table). While ARMv7-processes in user mode can
not read from banked registers of privileged modes, they can infer the state
of various control registers. Alignment control register flags (CP15.SCTLR.A/U in
ARMv7) are a good example for implicit flows in CPUs. Depending on their val-
ues, an unaligned address will either be accessed as is, forcibly aligned, or cause
an alignment fault. Table 2 shows the time that rewriting, instruction proofs
(including relation refinement), and the composing proof for NEXT took on a sin-
gle Xeon� X3470 core. The first benchmark for MIPS refers to unrestricted user
mode (with similar times as for kernel and supervisor mode), the second one to
restricted user mode. Even though we borrowed a few data type theorems and
some basic machinery from the step library, we did not use instruction specific



Automatic Derivation of Platform Noninterference Properties 39

Table 2. Proof performance
(in seconds)

ISA Rewrite Instr NEXT Total

ARMv7 29,829 46,146 2,171 78,146 (21 h, 42min)

MIPS (1) 537 1,790 1,594 3,921 (1 h, 5min)

MIPS (2) 537 1,216 562 2,315 (38min)

Table 3. Performance
ARMv7 proof

Step Min Median Mean Max

rewrite 1 25 167 2,384

instr. (success) 1 15 96 3,605

instr. (fail) 3 26 72 1,544

refinement 7 50 89 1,326

theorems for the MIPS verification. Both ISAs have around 130 modelled instruc-
tions, but with 9238 lines of L3 compared to 2080 lines [7], the specifications of
the ARMv7 instructions are both larger and more complex. Consequently, we
observed a remarkable difference in performance. However, as Table 3 shows,
minimum, median, and mean processing times (given in seconds) for the ARM
instructions are actually moderate throughout all steps (rewriting, successful and
failed noninterference proofs, and relation refinement). Merely a few complex
outliers are responsible for the high verification time of the ARM ISA. While we
believe that optimizations and parallelization could significantly improve perfor-
mance, those outliers still demonstrate the limits of analyzing entire instructions
as a whole. Combining our approach with compositional solutions such as [13]
could overcome this remaining challenge. We leave this for future work.

6 Related Work

While most work on processor verification focuses on functional correctness [4,5,
21] and ignores information flow, we survey hardware noninterference, both for
special separation hardware and for general purpose hardware.

Noninterference Verification for Separation Hardware. Wilding et al. [24] verify
noninterference for the partitioning system of the AAMP7G microprocessor. The
processor can be seen as a separation kernel in hardware, but lacks for example
user-visible registers. Security is first shown for an abstract model, which is later
refined to a more concrete model of the system, comprising about 3000 lines of
ACL2. The proof appears to be performed semi-automatically.

SAFE is a computer system with hardware operating on tagged data [2].
Noninterference is first proven for a more abstract machine model and then
transferred to the concrete machine by refinement. The proof in Coq does not
seem to involve much automation.

Sinha et al. [20] verify confidentiality of x86 programs that use Intel’s
Software Guard Extensions (SGX) in order to execute critical code inside an
SGX enclave, a hardware-isolated execution environment. They formalize the
extended ISA axiomatically and model execution as interleaving between enclave
and environment actions. A type system then checks that the enclave does not
contain insecure code that leaks sensitive data to non-enclave memory. At the



40 O. Schwarz and M. Dam

same time, accompanying theorems guarantee some protection from the envi-
ronment, in particular that an adversary can not influence the enclave by any
instruction other than a write to input memory. However, [20] assumes that
SGX management data structures are not shared and that there are no register
contents that survive an enclave exit and are readable by the environment. Once
L3/HOL4 models of x86 with SGX are available, our machinery would allow to
validate those assumptions in an automated manner, even for a realistic x86 ISA
model. Such a verification would demonstrate that instructions executed by the
environment do not leak enclave data from shared resources (like non-mediated
registers) to components observable by the adversary.

Noninterference Verification for General Purpose Hardware. Information flow
analysis below ISA level is discussed in [15,18]. Procter et al. [18] present a
functional hardware description language suitable for formal verification, while
the language in [15] can be typed with information flow labels to allow for static
verification of noninterference. Described hardware can be compiled into VHDL
and Verilog, respectively. Both papers demonstrate how their approaches can be
used to verify information flow properties of hardware executing both trusted
and untrusted code. We are not aware of the application of either approach to
information flow analysis of complex commodity processors such as ARM.

Tiwari et al. [23] augment gate level designs with information flow labels,
allowing simulators to statically verify information flow policies. Signals from
outside the TCB are modelled as unknown. Logical gates are automatically
replaced with label propagating gates that operate on both known and unknown
values. The authors employ the machinery to verify the security of a combination
of a processor, I/O, and a microkernel with a small TCB. It is unclear to us how
the approach would scale to commodity processors with a more complex TCB.
From our own experience on ISA-level, the bottleneck is mainly constituted by
the preprocessing to obtain the model’s evaluated form and by the identification
of a suitable labelling. The actual verification is comparatively fast.

In earlier work [13] we described a HOL4 proof for the noninterference (and
other isolation properties) of a monadic ARMv7-model. A compositional app-
roach based on proof rules was used to support a semi-automatic analysis. How-
ever, due to insufficient context, a number of transitions had to be verified man-
ually or with the support of context-enhancing proof rules. In the present work,
we overcome this issue by analysing entire instructions. Furthermore, our new
analysis exhibits the low-equivalence relation automatically, while [13] provides
it as fixed input. Finally, the framework described in the present paper is less
dependent of the analysed architecture.

Verification of Binaries. Fox’s ARM model is also used to automatically verify
security properties of binary code. Balliu et al. [3] does this for noninterference,
Tan et al. [22] for safety-properties. Despite the seeming similarities, ISA analy-
sis and binary code analysis differ in many respects. While binary verification
considers concrete assembly instructions for (partly) known parameters, ISA



Automatic Derivation of Platform Noninterference Properties 41

analysis has to consider all possible assembly instructions for all possible para-
meters. On the other hand, it is sufficient for an ISA analysis to do this for each
instruction in isolation, while binary verification usually reasons on a sequence
(or a tree of) instructions. In effect, that makes the verification of a binary pro-
gram an analysis on imperative code. In contrast, ISA analysis (in our setting)
is really concerned with functional code, namely the operational semantics that
describe the different steps of single instructions. In either case, to enable full
automation, both analyses have to include a broader context when the local con-
text is not sufficient to verify the desired property for a single step in isolation.
As discussed above, we choose an instruction-wide context from the beginning.
Both [3,22] employ a more local reasoning. In [22] a Hoare-style logic is used
and context is provided by selective synchronisation of pre- and postconditions
between neighbouring code blocks. In [3] a forward symbolic analysis carries
the context in a path condition when advancing from instruction to instruction.
SMT solvers then allow to discard symbolic states with non-satisfiable paths.

7 Discussion on Unpredictable Behaviour

ISA specifications usually target actors responsible for code production, like pro-
grammers or compiler developers. Consequently, they are often based on the
assumption that executed code will be composed from a set of well-defined
instructions and sound conditions, so that no one relies on combinations of
instructions, parameters and configurations not fully covered by the specifi-
cation. This allows to keep instructions partly underspecified and leave room
for optimizations on the manufacturer’s side. However, this practice comes at
the cost of actors who have to trust the execution of unknown and potentially
malicious third-party code. For example, an OS has an interest in maintaining
confidentiality between processes. To that end, it has different means such as
clearing visible registers on context switches. But if the specification is incom-
plete on which registers actually are visible to an instruction with uncommon
parameters, then there is no guarantee that malicious code can not use under-
specified instructions (i.e., instructions resulting in unpredictable states) to learn
about otherwise secret components. ARM attempts to address this by specify-
ing that “unpredictable behaviour must not perform any function that cannot
be performed at the current or lower level of privilege using instructions that
are not unpredictable”.2 While this might indeed remedy integrity concerns, it
is still problematic for noninterference. An underspecified instruction can be
implemented by two different “safe” behaviours, with the choice of the behav-
iour depending on an otherwise secret component. The models by Fox et al.
mark the post-states of underspecified operations as unpredictable by assigning
an exception marker to those states. In addition, newer versions still model a
reasonable behaviour for such cases, but there is no guarantee that the manu-
facturer chooses the same behaviour. A physical implementation might include
2 ARMv7-A architecture reference manual, issue C: http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0406c.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c


42 O. Schwarz and M. Dam

flows from more components than the model does, or vice versa. A more conser-
vative analysis like ours takes state changes after model exceptions into account,
but can still miss flows simply not specified. To the rescue might come state-
ments from processor designers like ARM that “unpredictable behaviour must
not represent security holes”.3 In one interpretation, flows not occurring else-
where can be excluded in underspecified instructions. The need to rely on this
interpretation can be reduced (but not entirely removed) when the exception
marker itself is considered low in the initial labelling. As an example, consider
an instruction that is well-defined when system component C1 is 0, but under-
specified when it is 1. The manufacturer might choose different behaviours for
both cases, thus possibly introducing a flow from C1 to low components. At the
same time, the creator of the formal model might implement both cases in the
same way, so that the analysis could miss the flow. But with a low exception
marker, C1 would also be labelled low, since it influences the marker. However,
an additional undocumented dependency on another component C2 that only
exists when C1 is 1 can still be missed.

8 Conclusions and Future Work

We presented a sound and accurate approach to automatically and statically
verify noninterference on instruction set architectures, including the automatic
identification of a least restrictive low-equivalence relation. Besides applying our
framework to more models such as the one of ARMv8, we intend to improve
robustness and performance, and to cover integrity properties as well.

Integrity Properties. We plan to enhance the framework by safety-properties
such as nonexfiltration [10,13] and mode switch properties [13]. Nonexfiltration
asserts that certain components do not change throughout (unprivileged) execu-
tion. Mode switch properties make guarantees on how components change when
transiting to higher privilege levels, for example that the program counter will
point to a well-defined entry point of the kernel code. We believe that both
properties can be derived relatively easily from the normalized forms of the
instructions.

Performance Optimization. While our benchmarks have demonstrated that ISA
information flow analysis on an instruction by instruction basis allows for a large
degree of automation, they also have shown that this approach introduces severe
performance penalties for more complex instructions. To increase scalability and
at the same time maintain automation, we plan to investigate how to combine
the compositional approach of [13] with the more global reasoning demonstrated
here. Furthermore, there is potential for improvements in the performance of
individual steps. E.g., our normalization could be combined with the one of [7].

3 ARMv7-A architecture reference manual, issue B.



Automatic Derivation of Platform Noninterference Properties 43

Acknowledgments. Work supported by the Swedish Foundation for Strategic
Research, by VINNOVA’s HASPOC-project, and by the Swedish Civil Contingencies
Agency project CERCES. Thanks to Anthony C. J. Fox, Roberto Guanciale, Nicolae
Paladi, and the anonymous reviewers for their helpful comments.

References

1. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a
small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

2. Azevedo de Amorim, A., Collins, N., DeHon, A., Demange, D., Hriţcu, C.,
Pichardie, D., Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow
architecture. In: Principles of Programming Languages, POPL, pp. 165–178 (2014)

3. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS, pp. 1080–1091 (2014)

4. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all
together - formal verification of the VAMP. Int. J. Softw. Tools Technol. Transf.
8(4), 411–430 (2006)

5. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.K.: Effective theorem proving for
hardware verification. In: Kumar, R., Kropf, T. (eds.) TPCD 1994. LNCS, vol.
901, pp. 203–222. Springer, Heidelberg (1995)

6. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Computer and Communications Security, CCS, pp. 223–234 (2013)

7. Fox, A.C.J.: Improved tool support for machine-code decompilation in HOL4. In:
Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, pp. 187–202. Springer, Heidelberg
(2015)

8. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

9. Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and
integrity. In: Principles of Programming Languages, POPL, pp. 365–377 (1998)

10. Heitmeyer, C., Archer, M., Leonard, E., McLean, J.: Applying formal methods to
a certifiably secure software system. IEEE Trans. Softw. Eng. 34(1), 82–98 (2008)

11. HOL4 project. http://hol.sourceforge.net/
12. Hunt, S., Sands, D.: On flow-sensitive security types. In: Principles of Programming

Languages, POPL, pp. 79–90 (2006)
13. Khakpour, N., Schwarz, O., Dam, M.: Machine assisted proof of ARMv7 instruction

level isolation properties. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS,
vol. 8307, pp. 276–291. Springer, Heidelberg (2013)

14. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: SOSP, pp. 207–220
(2009)

15. Li, X., Tiwari, M., Oberg, J.K., Kashyap, V., Chong, F.T., Sherwood, T.,
Hardekopf, B.: Caisson: A hardware description language for secure information
flow. In: Programming Language Design and Implementation, PLDI, pp. 109–120
(2011)

http://hol.sourceforge.net/


44 O. Schwarz and M. Dam

16. Murray, T.C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: seL4: From general purpose to a proof of information
flow enforcement. In: Security and Privacy, pp. 415–429 (2013)

17. Pottier, F., Simonet, V.: Information flow inference for ML. In: Principles of Pro-
gramming Languages, POPL, pp. 319–330 (2002)

18. A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein.: Semantics driven
hardware design, implementation, and verification with ReWire. In: Languages,
Compilers and Tools for Embedded Systems, LCTES, pp. 13:1–13:10 (2015)

19. Sibert, O., Porras, P.A., Lindell, R.: The Intel 80x86 processor architecture: Pitfalls
for secure systems. In: Security and Privacy, SP, pp. 211–222 (1995)

20. Sinha, R., Rajamani, S., Seshia, S., Vaswani, K.: Moat: verifying confidentiality
of enclave programs. In: Computer and Communication Security, pp. 1169–1184
(2015)

21. Srivas, M., Bickford, M.: Formal verification of a pipelined microprocessor. IEEE
Softw. 7(5), 52–64 (1990)

22. Tan, J., Tay, H.J., Gandhi, R., Narasimhan, P.: AUSPICE: automatic safety prop-
erty verification for unmodified executables. In: Gurfinkel, A., et al. (eds.) VSTTE
2015. LNCS, vol. 9593, pp. 202–222. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29613-5 12

23. Tiwari, M., Oberg, J.K., Li, X., Valamehr, J., Levin, T., Hardekopf, B., Kastner, R.,
Chong, F.T., Sherwood, T.: Crafting a usable microkernel, processor, and I/O sys-
tem with strict and provable information flow security. In: International Symposium
on Computer Architecture, ISCA, pp. 189–200 (2011)

24. Wilding, M.M., Greve, D.A., Richards, R.J., Hardin, D.S.: Formal verification of
partition management for the AAMP7G microprocessor. In: Hardin, D.S. (ed.)
Design and Verification of Microprocessor Systems for High-Assurance Applica-
tions, pp. 175–191. Springer, New York (2010)

http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12

	Automatic Derivation of Platform Noninterference Properties
	1 Introduction
	2 Processor Models
	2.1 ISA Models
	2.2 Notation
	2.3 Memory Management

	3 ISA Information Flow Analysis
	3.1 Objectives
	3.2 Challenges

	4 Approach
	4.1 Rewriting Towards an Evaluated Form
	4.2 Backward Proof Strategy
	4.3 Relation Refinement

	5 Evaluation
	6 Related Work
	7 Discussion on Unpredictable Behaviour
	8 Conclusions and Future Work
	References


