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Abstract. Interactive systems may appear to work correctly and safely
when analysed in isolation from the human environment in which they
are supposed to work. In fact, the same cognitive skills that enable
humans to perform complex tasks may also become the source of critical
errors in the interaction with systems and devices designed as supports
for such tasks. It is thus essential to verify the desired properties of an
interactive system using a model that not only includes a user-centered
description of the task, but also incorporates a representation of human
cognitive processes within the task execution.

In this paper we consider automatic and deliberate cognitive processes
in combination with the use of the Short Term Memory (STM), and pro-
vide a formal notation to model the set of basic tasks that a human com-
ponent (user or operator) has to carry out to accomplish a goal by inter-
acting with an interface. The semantics of the notation is given in terms
of a cognitive framework that makes use of rules driven by the basic tasks
to rewrite both the system state and the STM until all necessary tasks
have been completed. Potential human errors are then detected using
model checking. Our notation, which is implemented using the MAUDE
rewrite system, and our formal verification methodology are finally illus-
trated by two case studies: a user of an Automatic Teller Machine (ATM)
and an operator of an Air Traffic Control (ATC) system.

Keywords: Formal modelling and verification - Rewriting logic - Inter-
active systems + Model checking - MAUDE

1 Introduction

Interactive systems are characterised by a cooperative work between a human
component and the interface of a system, which can be a computer system,
a device, a control system, a transportation system, etc. The purpose of the
cooperation is the accomplishment of a goal, which may be a specific objective
to achieve, such as purchasing a product from a vending machine, or a correct
state of the system to be preserved. In the former situation the human component
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is the user of the system underlying the interface, in the latter the operator,
through the interface, of a plant control (e.g. a nuclear plant) or a control service
(e.g. traffic control).

The systematic analysis of human errors in interactive systems has its roots
in Human Reliability Assessment (HRA) techniques [12], which mostly emerged
in the 1980’s. However, these first attempts in the safety assessment of interactive
systems were typically based on ad hoc techniques [13], with no efforts to incor-
porate a representation of human cognitive processes within the model of the
interaction. Although Mach already stated at the beginning of last century that
“knowledge and error flow from the same mental sources, only success can tell
the one from the other” [15], we had to wait until the 1990’s to clearly understand
that “correct performance and systematic errors are two sides of the same coin”
[21]. At that time the increasing use of formal methods yielded more objective
analysis techniques [9] that resulted, on the one hand, in the notion of cogni-
tively plausible user behaviour, based on formal assumptions to bound the way
users act driven by cognitive processes [1] and, on the other hand, in the formal
description of expected effective operator behaviour [20] and the formal analysis
of errors performed by the operator as reported by accident analysis [11]. Thus,
research in the formal analysis of interactive systems branched into two sepa-
rate directions: the analysis of cognitive errors of users involved in everyday-life
[2] and work-related [18,22] interactive tasks, and the analysis of skilled opera-
tors behaviour in traditionally critical domains, such as transportation, chemical
and nuclear plants, health and defence [3,4,7,17,23]. The different interaction
contexts of a user, who applies attention very selectively and acts mainly under
automatic control [2,19], and an operator, who deals with high cognitive load and
whose attentional mechanisms risk to be overloaded due to coping with Stimulus
Rich Reactive Interfaces (SRRIs) [23], have led to the development of distinct
approaches, keeping separate these two research directions. However, users have
sometimes to deal with decision points or unexpected situations, which require
a “reactivation” of their attentional mechanisms, and operators must sometime
resort to automatisms to reduce attentional and cognitive loads.

In this paper, we try to unify these two research directions by providing a
general framework to reconcile automatic control with attentional and cognitive
loads. Section 2 adopts the information processing approach in explaining human
behaviour and defines a framework, together with a formal notation, to describe
the cognitive processes underlying human behaviour and the way they exploit
human memory. Section 3 provides the semantics of our notation in terms of a
rewriting system model (Sect.3.1) and briefly presents its implementation and
use (Sect. 3.2). Section 4 illustrates the generality of our cognitive framework on
two case studies: a user of an Automatic Teller Machine (ATM), and an operator
of an Air Traffic Control (ATC) system. Both case studies had been previously
modelled [2—4] using the CSP (Communicating Sequential Processes) process
algebra [10]. While in such previous work two distinct ad hoc frameworks had
been developed to model a user [2] and an operator [3,4], in this paper we unify
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the two contexts within the same formal framework, which is based on rewriting
logic [16] and is implemented within the MAUDE rewrite system [5].

2 Modelling Cognitive Processes

Following the information processing approach normally used in cognitive psy-
chology, we model human cognitive processes as processing activities that make
use of input-output channels, to interact with the external environment, and
three main kinds of memory, to store information: sensory memory, where infor-
mation perceived through the senses persists for a very short time; short-term
memory (STM), which has a limited capacity and where the information that is
needed for processing activities is temporary stored with rapid access and rapid
decay; long-term memory (LTM), which has a virtually unlimited capacity and
where information is organised in structured ways, with slow access but little or
no decay [8].

2.1 Input as Perceptions and Output as Actions

Input and output occur in humans through senses. In our work we give a general
representation of input channels in term of perceptions, with little or no details
about the specific senses involved in the perception, but with a strong emphasis
on the semantics of the perception in terms of its potential cognitive effects. For
instance, if the user of a vending machine perceives that the requested product
has been delivered, the emphasis is on the fact that the user will be induced to
collect the product and not on whether the user has seen or rather heard the
product coming out of the machine.

We represent output channels in term of actions. Actions are performed in
response to perceptions. We are interested in the urgency to react created by
the perception: for example, if we are withdrawing cash, we need to collect the
delivered cash before the machine takes it back. Analogously, if an operator
perceives an anomalous system behaviour, in general we are not interested in
whether such perception occurs through sight, hearing, or even by touching a hot
component or through a burning smell; instead, we are interested in the action
that the operator has to carry out to solve the problem and in the urgency of
such an action.

2.2 Attention and Processing Control

Perceptions are briefly stored in the sensory memory and only relevant percep-
tions are transfered to the STM using attention, a selective processing activ-
ity that aims to focus on one aspect of the environment while ignoring others.
Inspired by Norman and Shallice [19], we consider two levels of cognitive control:

automatic control fast processing activity that does not require attention to
occur and is carried out outside awareness with no conscious effort;
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deliberate control processing activity triggered and focussed by attention and
carried out under the intentional control of the individual, who is aware and
conscious of the required effort.

For example, automatic control is essential in driving a car and, in such a context,
it develops throughout a learning process based on deliberate control: during the
learning process the driver has to make a conscious effort to use gear, indicators,
etc. in the right way (deliberate control) and would not be able to do this while
talking or listening to the radio. Once automaticity in driving is acquired, the
driver is aware of the high-level tasks that are carried out, such as driving to
office, turning to the right and waiting at a traffic light, but is not aware of
low-level details such as changing gear, using the indicator and the colour of the
light, amber or red, while stopping at a traffic light (automatic control).

2.3 Tasks and Short-Term Memory (STM)

The purpose of an interaction between a human and an interface is to allow
the human to accomplish a goal. In Sect. 2.2 we have referred to high-level and
low-level tasks. The goal is associated with the top-level task. For both users
and operators the top-level task can be decomposed in a hierarchy of tasks until
reaching basic tasks, which cannot be further decomposed. A difference between
the user and operator cases is that the user’s goal is normally associated with
the basic task that accomplishes it, whereas there is no such basic task in the
operator case.
We model a basic task as a quadruple

info; T percp, = actp, | info,

where perception percy, triggers the retrieval of information info; from the STM,
the execution of action act), and the storage of information info; in the STM.

Information is kept promptly available, while it is needed to perform the
current top-level task, by storing it in the STM. Several kinds of information
may be stored in the STM: the goal of the interaction (which we identify with the
top-level task), a partial result of a calculation, a piece of information retrieved
from the LTM, a perception transferred from the sensory memory through the
attention mechanism, a reference to a future action to be performed, the current
state of the ongoing reasoning process or plan currently carried out. For the
purpose of our work we consider only three kinds of information that can be
stored in the STM:

task goal represented as the action that leads to the direct achievement of the
goal (user), or as the action that contributes to preserve the correct system
state or a placeholder if such an action cannot be identified (operator);

action reference which refers to a future action to be performed;

cognitive state that is the state of the plan developed by the user/operator.
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A task goal is formally modelled as
goal(act, type)

where act is the action that either leads to the direct achievement of the goal,
if type = achieve, or contributes to preserve the correct system state, if type =
preserve (in this case the action may be left unspecified).

We formally denote by none when an entity (information, perception, action)
of a task or the action of a task goal is absent or left unspecified (none is a
placeholder in the latter case). When none is used as information it denotes the
absence of action reference.

We model the two levels of control considered in Sect. 2.2 as three categories
of basic tasks:

automatic task triggered by a perception, or an information in the STM,;
cognitive task triggered by a cognitive state;
decision task triggered by a task goal in the STM.

An automatic tasks must include an action, but may not include a perception or
may not use the STM (thus it may have one or both information fields empty).
A cognitive task must always have the two information fields to contain the
current cognitive state to retrieve from STM and the next cognitive state to
store in the STM, but it has neither perception nor action. A decision task
must include a perception and store in the STM a reference to an action that
is related to the task goal contained in the retrieval information field, with the
perception triggering the retrieval of the task goal; for instance, if the first part
of the driving route to our workplace is in common with the driving route to
our favourite supermarket and our goal is driving to work, the perception of
approaching the branching point will trigger the storage of a reference to the
action related to the goal (i.e. taking the road to drive to work) in the STM.

Automatic tasks are performed under automatic control, whereas cognitive
and decision tasks are performed under deliberate control. Normally, a user works
mainly under automatic control [19], with most of the performed tasks being
automatic tasks, whereas an operator works mainly under deliberate control
[21], with most of the performed tasks being cognitive tasks.

2.4 Interface

In our context a user perception refers to a stimulus produced by an action of
the interface with which the human is interacting. Hence we identify an inter-
face state created by an interface action with the perception such an action
produces in humans. For example, the interface state created by the action of
giving change, performed by the interface of a vending machine, is identified with
the perception (sound of falling coins or sight of the coins) produced. Thus, in
our notation, interface state and corresponding human perception are denoted
by the same formal entity (which, assuming the user’s perspective, we call “per-
ception”).
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In Sect.2.1 we anticipated that perceptions may induce different degrees
of urgency in reacting. Since we identify a perception with the interface state
caused by the interface action that produced that perception, the urgency of a
perception can be modelled by associating a timeout with such an interface state
(hence with the perception itself). For example the urgency of the user of a cash
machine in collecting the delivered cash is associated with the machine timeout
for taking back the cash. In order to use perceptions as interface states, possibly
with timeouts, to define interface transitions, we decorate a perception perc as
follows.

percl0 state that produces a perception inducing no urgency in reacting and is
not associated with a timeout;

perc!l state that produces a perception inducing urgency and is associated with
a timeout that is not expired;

percl2 state that produces a perception inducing urgency and is associated with
a timeout that has already expired.

By interpreting perceptions in terms of the interface states that caused them,
we model an interface transition as a triple

' actp, |
PETChHM —— PETCE:MN

where interface state percy, with possible timeout characterised by m, triggers
the execution of action act, with a transition of the interface to state percg,
whose possible timeout is characterised by n. An action act # none is, therefore,
performed through a cooperation between human and interface and thus belongs
to both a task and an interface transition and represents the basic form of
interaction. An action act = none is denoted by an unlabelled arrow. The initial
state of the interface is normally an idling state (the interface is available for
an interaction), thus it is not associated with a timeout (percl0). In our formal
representation we keep track of the action act that produced the state perc by
defining an interface state as a pair act > perclm. The initial state becomes
then none > percl0. We will exploit this redundant notation in Sect. 3.1.

2.5 Closure and Post-completion Error

An important phenomenon that occurs in automatic behaviour is closure [8].
When the goal of a task has been achieved there is a tendency to flush out the
STM to be ready to start a new task. This may cause the removal from the STM
of some important subtasks that are still not completed and result in some form
of failure of the main task, called post-completion error. Undesired closure most
commonly occurs when the main goal of the task is achieved before completing
some subsidiary tasks, due to the task sequentialisation forced by the interface.
A classical example is provided by an ATM that delivers cash before returning
the card. Since the user’s main goal is to get cash, once the cash is collected,
the STM is flushed out and the user may terminate the task, thus forgetting the
card in the ATM. That is why modern ATMs return the card before delivering
cash. Closure has been formally modelled in previous works using Higher Order
Logic (HOL) [6] and the CSP process algebras [2].
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2.6 Long-Term Memory (LTM) and Supevisory Attentional System

LTM is used for long-term storage of “factual information, experiential knowl-
edge, procedural rules of behaviour — in fact, everything that we know” [8].
Information may be transferred from the STM to the LTM through rehearsal, the
well-known recycling mechanism functionally equivalent to the idea of repeating
things to yourself.

In our cognitive framework, we do not consider transfer of information from
STM to LTM. In fact, we assume that the LTM already contains procedural
rules of behaviour, such as the basic tasks (automatic, cognitive and decision
tasks) introduced in Sect. 2.3. Moreover, during automatic control, experiential
knowledge already stored in the LTM may be used to solve situations in which
automatic tasks result inappropriate. Norman and Shallice [19] propose the exis-
tence of a Supervisory Attentional System (SAS), sometimes also called Super-
visory Activating System, which becomes active whenever none of the automatic
tasks are appropriate. The activation of the SAS is triggered by perceptions that
are assessed as danger, novelty, requiring decision or the source of strong feelings
such as temptation and anger.

We formalise such an assessment as a function assess(act, perc), where perc
is the perception that triggered the SAS activation and act is the last interac-
tion before that perception. The function returns one of the following values:
danger, decision, novelty, anger and auto. For example, if we start overtak-
ing a car (act) and we hear honking from behind (perc) the assessment will be
assess(act, perc) = danger. Normally the automatic response to a danger is to
abandon the ongoing task without accomplishing the goal, in our example the
overtaking task/goal. Responses to novelties (novelty) and feelings (e.g. anger)
vary from individual to individual and cannot be captured by our framework.
Response to requiring decision (decision) are driven by a specific basic task of
the model. Value auto denotes that the SAS is not activated.

Therefore, the assessment function is a way of formalising experiential knowl-
edge that has been stored in the LTM, in our example the experience that honk-
ing is a warning of danger.

3 Rewriting System Model and Analysis

3.1 Rewrite Rules

Let IT be a set of perceptions, X be a set of actions, I" be a set of action
references and A a set of cognitive states, with ' N A = (). We model our
cognitive framework on I, X, I' and A as a rewrite system consisting of four
sets of objects

T a set of basic tasks;

7 a set of interface transitions;

C a singleton containing the current interface state and its causal action;
M the set of entities in the STM,;
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and a set R of rewriting rules

TICM™STICOM
that are defined as follows:

interacting: if info; T perc, = acty, | info; € T, with actj, # none

and C = {act > percp!m} and percp!m acty percy'n € I, with m < 2,
and nfo; € M and there exists a goal in M
then C’ = {acty, > perci!In}
and M’ = M~ {info;} U {info;}
closure: if info; | perc, = acty, | info; € T, with acty, # none

and C = {act > percp!m} and percp!m acty percg!n € T and m < 2
and goal(acty, achieve), info, € M
then C' = {acty, > percg!n}
and M’ = {info;}
danger: if info; T percy, = acty, | info; € T, with acty, # none

and C = {act > percp!m} and percy!m acty percg!n € T and m < 2
and info, € M

and assess(act, percy) = danger

then C' = {acty, > percilexpired(n)} where

2ifn=1

expired(n) = { n otherwise

and M’ = {info;}
timeout: if C = {act > percy!m} and percy!m — percg!n € T and m > 1
then C' = {none > percy!n}
and M' =M
cognitive: if info; T percy, = none | info; € T
and info, € MNA and info; € A
then C' =C
and M" = M — {infoy} U {info}
decision: if info, | perc, = none | info; € T
and nfo; € M is a goal
and assess(none, percy,) = decision
then C' =C
and M’ = MU {info}

Automatic tasks enable the application of rules interacting, closure and dan-
ger, which involve an interaction between user and interface (act;, # none). Cog-
nitive and decision tasks enable the application of rules cognitive and decision,
respectively, which operate on the STM only, without involving any interaction
with the interface (act, = none) and with no change to the interface state
(C" = C). Rule timeout refers to an autonomous action of the interface, with
no involvement of the human component (there is no basic task involved).
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The interacting rule is applied if there is a perception percy, in the current
state C and/or information info; in the STM M that are associated in a task of
T with the execution of action acty, there is a goal in the STM M and there is
no expired timeout (m < 2) associated with the interface state percy!m that has
generated perception percy. The next state C’ of the interface is percy!n, which
results by executing action acty,, and the next STM M’ is obtained by removing
information info; and storing information nfo;.

The closure rule is very similar to the interacting rule, but now the goal
in the STM M must be of type achievement (goal(acty, achieve)) and the exe-
cution of action act, results in emptying the STM before storing information
info;.

The danger rule is applied if the current perception percy that follows the
execution of action act is assessed as a danger (assess(act,percy) = danger).
The user performs action acty,. Moreover, since, as we have seen in Sect. 2.6, the
user’s normal response to a danger is to abandon the task, if there is a timeout
associated with the current state (percg!1), then the next state is perc!2, which
is the current state now associated with an expired timeout (since expired(1) =
2), otherwise it is perci!n (since expired(n) = n for n # 1). The next STM
M’ is obtained by removing all information and storing information info;, as
it happens for the closure. The need for this rule to assess a perception with
respect to the action that has caused it explains why, in Sect. 2.4, we have kept
track, in the formal notation of an interface state, of the action that produced
that state.

The timeout rule is triggered by the expiration of the timeout (m > 1) and
leads through the autonomous action acty to the new interface state percg!n.

The cognitive rule refers to a cognitive process of the human, with cognitive
state info, retrieved from and cognitive state stored in the STM.

Finally, the decision rule differs from the cognitive rule because the retrieved
information is a goal, which is then stored again in the STM, and because of the
presence of the assessment as a precondition. It models the SAS-induced switch
from automatic control to deliberate control due to a required decision.

3.2 Implementation and Analysis with MAUDE

The MAUDE implementation, which can be downloaded at
http://sysma.imtlucca.it /cognitive-framework-sefm-2016/,

consists of the following generic modules

entities which defines the basic sorts that model perceptions, actions, and infor-
mation that can be stored in the STM;

cognitive architecture which defines the structures of tasks, STM, LTM, and
interfaces (including the current interface state) and the MAUDE rewrite
rules that work on such structures;

and the following modules that are specific to the case study under analysis
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tasks which defines the basic tasks and the goals of the case study;
interfaces which includes the different interfaces to be analysed;
LTM information such as the assessment function introduced in Sect. 2.6.

Simulation is performed by running the rewrite commands available in MAUDE.

Model-checking analysis requires the use of the model-checker predefined
MAUDE module and the definition of two further modules that are specific to
the case study:

preds which defines predicates on perceptions, actions and STM information;
check which includes properties to be verified and runs the model checker.

We define the truth value of predicates on an entity e as follows:

true if x = cogn and e € M
or x = act and there exist p, m such that e > plm € C
or x = perc and there exist a, m such that a > e!lm € C
false otherwise

P.e) =

The preds module implements predicates Peogn (€), Pact(€) and Pperc(e).

4 Case Studies

In this section our cognitive framework is illustrated through two case studies by
effectively using it in two distinct ways: to formally verify properties of interfaces
in the context of human usage and compare different interface designs (Sect. 4.1);
and to analyse the operator’s behaviour by formally checking whether a given
decomposition of the operator’s task failure is sound and complete (Sect.4.2).
These two case studies were presented in our previous work [2,3] using two
independent ad hoc approaches, both based on the CSP process algebra.

4.1 Automatic Teller Machine (ATM) User

Let be II = {cardR,pinR,cashO,cardO}, X = {cardl,pinl,cashC,cardC},
I' = {cardB} and A = (). A simple ATM task, in which the user has only the
goal to withdraw cash, is modelled by the following four basic tasks:

none T cardR — cardl | cardB
When the interface is perceived ready (cardR), the user inserts the card
(cardl) and remembers (in the STM) that the card has to be taken back
(cardB) at a later stage;

none T pinR = pinl | none
When the interface is perceived to request a pin (pinR), the user inputs the
pin (pinl);

none T cashO = cashC | none
When perceiving that the cash has been delivered (cashO), the user collects
the cash (cashC);
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cardB 1 cardO = cardC' | none
When perceiving that the card has been returned (cardO), the user collects
the card (cardC') and no longer needs to remember to collect it (cardB);

The goal (“to withdraw cash”) is identified with the act of collecting cash (action
cashC) and is formally modelled as goal(cashC, achieve).

We model an old interface that sequentially requests a card, requests a pin,
delivers the cash and returns the card, and a new interface that returns the card
before delivering the cash. The two interface models are as follows.

Old ATM: transitions New ATM: transitions
1. cardR!0 % pinR!1 1. cardR!0 <% pinR!1
2. pinR!1 Pl cashON 2. pinR!1 2L cardON

3. cashO!'l cashl cardO!1 3. cardO!1 cardC cashO'1l
4. cardO!1l cardg cardR!0 4. cashO!1 cash{ cardR!0
5. pinR!2 — cardO!1 5. pinR!2 — cardO!1

6. cashO!2 — cardO'l 6. cashO'!'2 — cardR!0
7. cardO!2 — cardR!0 7. cardO!2 — cardR!0

For both interfaces the initial state is none > cardR!0.

In both interfaces, transitions 1-4 model the normal sequences of interactions
for the specific design (old or new). The last three transitions model interface
autonomous actions. In both interfaces, if the timeout expires after requesting
a pin, then the card is returned (transitions 5). If the timeout expires after
delivering the cash (transitions 6), then in the old ATM the card is returned,
whereas in the new ATM the control goes back to the initial state, so inhibiting
a cash collection action and, as a result, implicitly modelling that the cash is
taken back by the ATM. Finally, in both interfaces, if the timeout expires after
returning the card, then the control goes back to the initial state, so inhibiting
a card collection action and, as a result, implicitly modelling that the card is
confiscated (transitions 7).

We model the user experience for the two ATM designs as follows.

Old ATM: user experience New ATM: user experience
1. assess(cardl,pinR) = auto 1. assess(cardl,pinR) = auto

2. assess(pinl,cashO) = auto 2. assess(pinl, cardO) = auto

3. assess(cashC,cardO) = auto 3. assess(cardC,cashO) = auto
4. assess(cardC,cardR) = auto 4. assess(cashC,cardR) = auto
5. assess(pinl, cardO) = danger 5. assess(cardC,cardR) = anger
6. assess(pinl,cardR) = anger 6. assess(act, perc) = novelty,

7. assess(act, perc) = novelty, otherwise

otherwise

In both experiences the value of the assessment is auto when the sequence of
action and perception is the same as in the experienced interface (assessments
1-4, corresponding to the tasks 1-4 above). A user who has experience with the
old ATM design could interpret: the perception that the card is returned after
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having input the pin as if the pin were incorrect and there were a danger for the
card to be confiscated at one of the next attempts (5. assess(pinl, cardO) =
danger); the perception that the ATM goes back to the initial card request with-
out returning the card after having input the pin as if the card were confiscated
(6. assess(pinl, cardR) = anger); and any other sequence of action and percep-
tion as a novelty. A user who has experience with the new ATM design could
interpret: the perception that the ATM goes back to the initial card request after
returning the card without delivering cash as a sign that cash cannot be with-
drawn, e.g. because the ATM is out of cash (5. assess(cardC, cardR) = anger);
and any other sequence of action and perception as a novelty.

We want to verify, for each interface design, whether there are cognitive errors
that may prevent the user from collecting the card and from collecting the cash.
The properties that the user is always able to collect a returned card (property
AlwaysCardBack) and is always able to collect the delivered cash (property
AlwaysCashGot) are specified as follows:

AlwaysCardBack = O(Pperc(cardO) — (= Pperc(cardR) U Pyci(cardC)))
AlwaysCashGot = O(Pperc(cashO) — (= Pperc(cardR) U Pyei(cashC)))

The model checking analysis shows that AlwaysCardBack is true with the new
ATM and not with the old ATM, independently of the user experience, while
AlwaysCashGot is false only with the new ATM and a user experienced with the
old ATM. Property AlwaysCardBack detects possible post-completion errors in
using the old design of the ATM and shows that such errors cannot occur in
the new design of the ATM. Property AlwaysCashGot detects the possibility of
missing the collection of delivered cash. Although the new design of the ATM
works in an ideal world where all ATMs are designed according to the new
criterion, there are countries, in the developing world, where ATMs are still
designed according to the old criterion. Thus we can imagine that a user from
one of such countries, while visiting a country where all ATMs are designed
according to the new criterion, is likely to assess the early return of the card as
a danger and is prone to abandon the interaction forgetting to collect the cash
(falsifying AlwaysCashGot).

4.2 Air Traffic Control (ATC) Operator

The goal of an ATC task is to avoid that the distance between aircraft goes below
a minimum prescribed distance. If this happens, we say that the aircraft violate
separation. The ATC operator has to monitor the local air traffic situation and
execute communication actions to urge aircraft to change speed, altitude and/or
direction in order to avoid separation violation. Aircraft whose trajectories are
leading to separation violation are called “in conflict”.

We consider a purely cognitive task, which models the cognitive processes
of the operator after having perceived the state of the system, indepen-
dently of whether such a perception is correct or erroneous. Thus basic tasks
will have no perceptions. Let be II = 0 X = {act}, I' =  and A =
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{scan, part, con,non decide, reclassify, intend}. Following the Operator Choice
Model (OCM), defined by Lindsay and Connelly [14], we decompose the ATC
task into a number of basic tasks that the operator has to perform:

scan T none = none | part
The operator scans the interface (scan) until finding a part where there are
aircraft that may violate separation (part).

part T none = none | con
In the part of the interface under analysis (part) the operator identifies air-
craft that are in conflict (con).

part T none => none | non
In the part of the interface under analysis (part) the operator does not identify
aircraft that are in conflict (non).

con | none => none | scan
If the conflict (con) does not require urgent action, the operator goes back to
scan the interface (scan), looking for more urgent conflicts.

non | none = none | scan
If no conflict has been identified (non) in the part under analysis, the operator
goes back to scan the interface (scan).

con T none = none | decide
The operator develops a plan (decide) to solve the conflict under investigation
(con).

con | none = none | reclassify
The operator reclassifies (reclassify) a conflict (con) under investigation as a
non conflict.

reclassify T none = none | scan
After reclassifying (reclassify), the operator goes back to scan the interface
(scan).

decide T none = none | scan
After developing a plan to solve a conflict (decide), the operator goes back
to scan the interface (scan), looking for other conflicts.

decide T none = none | intend
After developing a plan to solve a conflict (decide), the operator intends to
carry out a specific action to solve the conflict (intend).

intend T none = act | scan
The operator implements the intention (intend) by performing an action (act)
and then goes back to scan the interface (scan).

The goal (“to prevent separation violation”) is expressed simply as the preserva-
tion of the state by performing actions (act models a generic action) and is formally
modelled as goal(act, preserve). Note that only the last basic task is an automatic
task; all other tasks are cognitive tasks. Once the intention is established, the cog-
nitive process terminates and the execution of the action is a purely automatic
activity triggered by the intention.

In this case study we focus on the cognitive aspects of the ATC operator
rather than on the specific aspects of the interface that may induce the opera-
tor’s errors. Many cognitive errors may occur in the execution of the tasks above
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independently of the characteristics of the interface that presents the air traffic
situation to the operator. Our aim is the analysis of a set of task failures that
have been identified by psychologists through the observation of operators while
using an ATC simulator [3,4,14], in order to find out if such a set is a sound and
complete decomposition of the top-level ATC task failure, that is the occurrence
of separation violation. As in our previous work [3,4], we use temporal logic to
formalise the task failures and model checking to verify the soundness and com-
pleteness of the decomposition. However, in that previous work, the OCM and
a “toy environment” consisting of three aircrafts were formalised using the CSP
process algebra, and the results could not be generalised to any environment.
Here, instead, we use our cognitive framework to formalise the OCM as a list
of basic tasks, as shown above, and we model the environment as the following
trivial interface consisting of just one transition, which is independent of the
number of aircrafts involved and the number of conflicts between them.

act
1. none!0 — nonel0

The initial state is obviously none > nonel!0. In this case study there is no
information on previous experience. Hence, there is no need to introduce an
assessment function.

We can characterise a separation violation as an operator who persistently
misses the intention to carry out a specific action to solve the conflict [3,4].
Hence the top-level task failure is formalised as O—P.ogn (intend). We distinguish
between intention (intend) and action (act) to be able to model an unintended
action that does not match the intention [21]. Although this is not part of our
analysis, such a mismatch would be relevant in the analysis of errors induced by
a specific interface design, which could be carried out on this case study by intro-
ducing alternative interface designs and using our formal cognitive framework
as in the ATM case study.

The formalisation of the ATC task failure decomposition suggested by Lind-
say and Connelly [14] is

D = {FailureOfScanning, PerMisClass, PerMisPrior, Defer Action }

where

FailureOfScanning = O—"Pogy, (part)

PerMisClass = QPeogn(part) A O(Peogn (part) V Peogn (con) — OPeogn(non))
PerMisPrior = OPeogn (con) A O(Peogn(con) — OPeogn(scan))

DeferAction = QPeogn(decide)) A O(Peogn (decide) — OPeogn(scan))

Failure of scanning (FailureOfScanning) occurs when the operator fails to mon-
itor a specific part of the interface, thus missing possible conflicts. Persistent
mis-classification (PerMisClass) occurs when the operator persistently classi-
fies as a non conflict what is actually a conflict. Persistent mis-prioritisation
(PerMisPrior) occurs when the operator persistently gives a low priority to a
conflict, thus missing to solve it. Defer action for too long (DeferAction) occurs
when the operator persistently delays to implement an already developed plan
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to solve a conflict. Note that the “eventually” part in the last three formulae
guarantees that the task failures are not overlapping.
The soundness of the decomposition is expressed by model-checking formula

/\ (F — O=Pogn (intend))
FeD

The completeness of the decomposition is expressed by model-checking formula

(O-Peogn(intend)) — \/ F
FeD

Model checking analysis using MAUDE shows that decomposition D is sound
but not complete. However, if we redefine PersMisClass as

PersMisClass’ = OPeogn (part)) A O(Peogn (part) — OPeogn(non))
and we define

ConDecPro = OPeogn (reclassify) A
O(Peogn (con) = O(Peogn(scan) V Peogn (reclassify))

then model checking analysis using MAUDE shows that decomposition
D' = {FailureOfScanning, PerMisClass’, PerMisPrior, ConDecPro, Defer Action}

is sound and complete.

Contrary decision process (ConDecPro) new task failure occurs when a con-
flict is persistently reclassified as a non conflict. Details on the psychological
interpretation of all task failures can be found in our previous work [3].

5 Conclusion

We have presented a cognitive framework for the formal analysis of the interac-
tion between humans and interfaces both in the case of a user, who acts mainly
under automatic control using selective attention, and in the case of an operator,
who deals with high cognitive and attentional load. The ATC case study pre-
sented in Sect. 4.2 illustrates how cognitive processes carried out under deliberate
control result in automatic activities performed under automatic control.

This is a major generalisation with respect to our two previous CSP works. In
fact, in one work [2] the user model captured automatic control with attentional
mechanisms limited to automatic responses to unexpected events but not sensi-
tive to decisional clues that trigger responses carried out under deliberate control
(decisions); in the other work [3,4] the operator model expressed deliberate con-
trol with no capability to formalise perceptions, which are instead fundamental
in the SRRIs used in plant and traffic control, and was ad hoc for an ATC task
in a fixed “toy environment”.
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