
Towards a Proof Framework for Information
Systems with Weak Consistency

Peter Zeller(B) and Arnd Poetzsch-Heffter

University of Kaiserslautern, Kaiserslautern, Germany
{p zeller,poetzsch}@cs.uni-kl.de

Abstract. Weakly consistent data stores are more scalable and can pro-
vide a higher availability than classical, strongly consistent data stores.
However, it is much harder to reason about and to implement applica-
tions, when the underlying infrastructure provides only few guarantees.
In this paper, we report on work in progress on a proof framework, which
can be used to formally reason about the correctness of such applications.
The framework supports the verification of functional properties, which
go beyond the guarantees given by the data store and can cover rela-
tions between multiple interactions with clients and invariants between
several objects. Additionally, we modeled and support modern database
features, like causal consistency, snapshot-transactions, and conflict-free
replicated data types (CRDTs). The framework and the proofs are devel-
oped within the interactive theorem prover Isabelle/HOL.

1 Introduction

Today, many information systems are built without a strongly consistent data
store. There is a variety of reasons for this trend: For services which are offered
world-wide, the concept of Geo-Replication allows for low latency in all regions,
by replicating data at servers, which are geographically close to the users. How-
ever, Geo-Replication does not work well with the concepts of strong consis-
tency. In particular, distributed transactions are incompatible with low latency
and high availability [6]. Mobile applications have problems comparable to Geo-
Replicated systems. Since the network connection is sometimes slow or unavail-
able, it is not feasible to use strong consistency to synchronize data between
mobile devices and cloud services.

Programming applications using weak consistency is inherently complex.
Most importantly, convergence must be ensured, meaning that all replicas repre-
sent the same abstract state when they have observed the same set of operations,
without losing writes. To help programmers handle this problem, conflict-free
replicated data types (CRDTs) [14] have been developed. A CRDT is a reusable
data type, which embodies a certain strategy to handle concurrent updates.
Examples are counters, sets, and maps. When an application is written using
CRDTs, the convergence property comes for free and thus the development effort
is reduced.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 277–283, 2016.
DOI: 10.1007/978-3-319-41591-8 19



278 P. Zeller and A. Poetzsch-Heffter

However, convergence is not the only desirable property of an application.
It is also important that concurrent updates are handled in a way that makes
sense for the application (see Sect. 2). These correctness properties are often
overlooked by developers. One reason for this is that there is no systematic
method to reason about the correctness of an implementation. While there are
multiple program logics for working with sequential and concurrent programs,
there are no frameworks yet, which support reasoning about eventual consistency
and CRDTs on a higher level. Thus, it is not feasible to use existing frameworks
to reason about nontrivial correctness properties of these kinds of applications.

To make the verification practical, our work aims to considerably reduce the
required proof work. We are developing a proof framework in Isabelle/HOL [13],
which captures commonalities of applications, which are built on top of weakly
consistent data stores with replicated data types. With the common verification
tasks lifted to the framework level, the verification of a concrete application can
be done on a higher level and focus on the application specific properties and
invariants. We discuss our approach to verification in Sect. 3.

2 Developing Applications with Weak Consistency

To show the need to reason about causal consistency and the choice of data
types, we consider a small application to manage user accounts. This application
provides the following API to clients:

Fig. 1. System architecture Fig. 2. Problematic execution

The function registerUser(name, email) creates a new user account with
the given data and returns the unique identifier of the newly created user. To
update the mail address of a user with a given identifier, there is a function
updateMail(id, newMail). To remove a user from the system, removeUser(id) can
be called. The data of a user can be retrieved via getUser(id), which returns a
record with the name and the mail address of a given user, or not found when
the user does not exist.

We assume an architecture similar to the one shown in Fig. 1 on which we
want to implement our application. At the bottom there are several (full) repli-
cas of the database, which asynchronously synchronize their states. At the top



Towards a Proof Framework for Information Systems with Weak Consistency 279

Fig. 3. Pseudocode implementation of example application to manage user accounts.

there is a set of clients, for which we do not have any additional assumptions. In
particular clients might be stateful and communicate with each other. The appli-
cation layer itself is stateless, all data is assumed to be stored in the database
or by clients.

In this scenario, an application consists of a set of methods, which can be
called by clients. The application can then interact with the database by querying
the data and by issuing updates to the database. Queries and updates can be
enclosed in a transaction, which works on a causally consistent snapshot and
guarantees atomicity of the enclosed operations, but transactions do not provide
serializability. In particular, it is possible to read from stale states and there
can be concurrent updates on the same object. The data store is parametrized
by a data type specification, which defines how concurrent updates are merged.
Often, the top-level data type is a map which results in a key-value data store.
Furthermore we assume, that the database provides session guarantees as in [4].

Implementation: Figure 3 shows a pseudocode implementation of the user man-
agement example. The variable users refers to a map data type in the database
and maps user identifiers to another map containing the user data. The inner
map contains entries for id, name, and mail which all are last-writer-wins reg-
isters [14]. The registers provide write and read methods. The maps allow to
look up a key (squared brackets syntax) and they allow to delete entries and to
check whether an entry exists. We use an add-wins map, which means that a
delete-operation will win over concurrent update operations.

One difficulty in implementing this example on a weakly consistent data store
is to make removeUser work correctly. As an example we consider the following
property, which links the invocation of the removeUser-method with the expected
effect and therefore is more than just an integrity constraint: “A user that is
removed should eventually be removed on all replicas, and not reappear because
of other operations being called afterwards or concurrently”.



280 P. Zeller and A. Poetzsch-Heffter

When using CRDTs, eventual consistency and high availability come for free.
However, a developer still has to reason about the behavior of the application. For
example, consider the scenario in Fig. 2. In this scenario, an update operation on
user u is first executed in session 2. Concurrently, user u is removed in session 1.
Later, the update from session 2 is received in session 1 and the CRDT handles
the concurrent updates by letting the update-operation win over the remove-
operation of the user. Thus the getUser-operation in session 1 will return a
user-record, although the user has been removed. Even worse, the user record
would be inconsistent, since the name was removed, but the mail exists because
of the write-operation from the concurrent update.

Choosing a last-writer-wins semantics for the map would lead to similar
problems, as the previously explained add-wins semantics. With a remove-wins
semantics for the map, the application would work as intended, as we demon-
strate in the next section. But there are more pitfalls, into which a developer can
run. Even with the remove-wins semantics at the database level, if the update
method would not check, whether the user is deleted and just did a blind update,
then a user could reappear after being removed. A user could also reappear, if
the users identifier was not generated in a way which guarantees uniqueness.

The chosen example of object-deletion often comes up in practice. Riak,
a distributed key-value store, uses tombstones for deletion, which means that
remove operations win over concurrent updates. However, in the default settings
tombstones are purged after 3 s1, which can lead to objects which reappear after
they have been deleted.

3 Specification and Verification

Having seen some possible pitfalls of the example, the question arises, how we can
assure ourself, that the given implementation is indeed correct, when a remove-
wins map is used. We want to describe application properties from the clients
perspective. The clients can only observe the procedure calls sent to the sys-
tem and the responses of the system, which we model as a trace of request
and response-events. However, it is hard to specify the system just in terms of
this trace, because of the inherent nondeterminism of the system. The response
depends on the internal delivery of messages at the database level.

Specification: To handle the problem of nondeterminism, we adapt a technique
used for specifying replicated data types [5,15], where the outcome of operations
is expressed using the happens-before relation on update-operations in the his-
tory of operations. We lift the happens before relation from the database level
to the level of client-calls, by defining that a call c1 happens before a call c2 (we
write c1 ≺ c2), when all database calls in c1 happen before every database call
in c2. Using the happens before relation and the set of all client-calls, we can
specify invariants about the communication history between the application and
1 See “Configuring Object Deletion” at http://docs.basho.com/riak/latest/

ops/advanced/deletion/. The behavior in Cassandra is similar.

http://docs.basho.com/riak/latest/ops/advanced/deletion/
http://docs.basho.com/riak/latest/ops/advanced/deletion/


Towards a Proof Framework for Information Systems with Weak Consistency 281

its clients. For example, we can formalize the property from Sect. 2, which states
that a removed user should not reappear:

∀c1, c2 ∈ clientCalls. ∀u. args(c1) = removeUser(u) ∧ c1 ≺ c2

∧ args(c2) = getUser(u) −→ res(c2) = not found

Verification: For verification we have to express additional invariants about the
internals of the application. In particular, we have to relate the client-calls with
the corresponding database operations and we have to reason about the internal,
local steps done by the application. We explain how our framework supports the
verification of the different kind of invariants using a proof sketch for the example
property.

Property 1: When removeUser(id) has been called, then there must be a corre-
sponding database operation users[id].delete(). To support properties like this,
our framework provides a mapping function, which maps each database opera-
tion to the corresponding client-call. This function can be used in invariants and
is automatically updated by the framework in each step.

Property 2: There are no map update operations on a removed user, which
happen causally after the remove (except for other removes).

The operations in the registerUser procedure cannot come afterwards,
because newUID never returns an identifier known to clients. Therefore
removeUser(id) must happen at a point in time after registerUser and no
happens-before relation can exist which points into the past.

The operations in updateMail cannot happen after a remove, because the
procedure checks whether the user exists before doing any updates. Because the
code is packed in an atomic unit, the check and the map updates see the same
set of operations. So if the update operations were executed after a remove, the
existence check would have returned false.

The maintenance of property 2 has to be shown for the code of each method.
Our framework supports this by annotating the code with assertions, similar
to work by Ashcroft [1]. Some proof obligations can already be handled auto-
matically using general properties proven in the framework. In particular, the
framework restricts local assertions so that it is not necessary to consider the
effect of local steps on other, concurrent procedure invocations. We believe that
we can further reduce the effort by automatically generating verification condi-
tions from the code and a few invariants.

Property 3: When getUser is called after a remove, we get that there is a database
operation for deleting the user by property 1. By property 2 we know that no
database operation on the same user happened after the remove. There can be
concurrent updates, but since we used a remove-wins semantics for the map, we
always get the required result, that the user does not exist.



282 P. Zeller and A. Poetzsch-Heffter

For the reasoning about CRDT semantics, out framework supports high-level
specifications of CRDTs, as used in work on verification of CRDTs [3,5,7,15].
Users can write custom CRDT specifications for their applications or reuse and
compose the existing specifications of some commonly used CRDTs.

4 Related Work

Gotsman and others have worked on modeling and verifying replicated data
types [4,5,7]. This work is mostly focused on pen and paper proofs and therefore
requires too much effort for realistic applications. Still, the work on Composite
Replicated Data Types [7] is the work most similar to ours, since it also uses
transactions to build bigger applications from simpler data types.

CISE [8] is a framework which concentrates on the combination of weak
consistency with strong consistency and pessimistic concurrency control. The
work presents proof rules for this scenario and a tool based on an approximation
of these rules, which can automatically check whether enough locks are used to
ensure the maintenance of data integrity constraints. However, the tool mostly
concentrates on locks and cannot handle more complicated interactions with
replicated data types and properties which go beyond integrity constraints and
is therefore not applicable to our userbase example.

Chapar [12] is a proof framework for causally consistent databases, which
was developed using Coq. The work also includes a simple model checker for
applications, which can explore different schedules consistent with causal consis-
tency, but cannot be used to prove the correctness of complex applications. Also
the work only considers simple key-value stores without support for replicated
data types.

Finally there is a lot of work on general purpose tools like TLA+ [11] or Alloy
[9]. While these tools can be applied to check the applications we are interested
in, they require to model the complete system, including the database and the
data types. Hence the models can be quite big, and the automated checkers
become infeasible.

5 Conclusion and Future Work

We aim to reduce the amount of manual work required for performing proofs
in the future by capturing more general properties in proof rules and by using
more automation. In particular we believe that it will be possible to handle
atomic blocks as one single step and to generate verification conditions with
more automation, which would significantly reduce the manual effort. The for-
malization in Isabelle/HOL allows us to improve on this incrementally, since
manual proofs are always available, when no automation has been developed
yet.

The primitive proof rule we use currently, already helps with informal rea-
soning about program correctness. We hope that developing more specialized
proof rules will also lead to more insights for informal reasoning and thus help
developers in writing correct applications.



Towards a Proof Framework for Information Systems with Weak Consistency 283

Acknowledgement. This research is supported in part by European FP7 project 609
551 SyncFree https://syncfree.lip6.fr/ (2013–2016).

References

1. Ashcroft, E.A.: Proving assertions about parallel programs. J. Comput. Syst. Sci.
10(1), 110–135 (1975)

2. Bodik, R., Majumdar, R. (eds.): Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, 20–22 January 2016. ACM (2016)

3. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: Jagannathan and Sewell [10], pp. 285–296

4. Burckhardt, S., Gotsman, A., Yang, H.: Understanding eventual consistency. Tech-
nical report MSR-TR-2013-39, this document is work in progress. Feel free to cite,
but note that we will update the contents without warning (the first page contains
a timestamp), and that we are likely going to publish the content in some future
venue, at which point we will update this paragraph, March 2013

5. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: Jagannathan and Sewell [10], pp. 271–284

6. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

7. Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 585–609. Springer, Heidelberg (2015)

8. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ‘Cause I’m
strong enough: reasoning about consistency choices in distributed systems. In:
Bodik and Majumdar [2], pp. 371–384

9. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

10. Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2014, San Diego, CA,
USA, 20–21 January 2014. ACM (2014)

11. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

12. Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified causally consistent distributed
key-value stores. In: Bodik and Majumdar [2], pp. 357–370

13. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Rapport de recherche RR-7506,
INRIA, January 2011

15. Zeller, P., Bieniusa, A., Poetzsch-Heffter, A.: Formal specification and verification
of CRDTs. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461,
pp. 33–48. Springer, Heidelberg (2014)

https://syncfree.lip6.fr/

	Towards a Proof Framework for Information Systems with Weak Consistency
	1 Introduction
	2 Developing Applications with Weak Consistency
	3 Specification and Verification
	4 Related Work
	5 Conclusion and Future Work
	References


