
LTL Parameter Synthesis of Parametric
Timed Automata

Peter Bezděk(B), Nikola Beneš, Jǐŕı Barnat, and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
bezdek@mail.muni.cz, {xbenes3,barnat,cerna}@fi.muni.cz

Abstract. The parameter synthesis problem for parametric timed
automata is undecidable in general even for very simple reachability
properties. In this paper we introduce restrictions on parameter valua-
tions under which the parameter synthesis problem is decidable for LTL
properties. The investigated bounded integer parameter synthesis prob-
lem could be solved using an explicit enumeration of all possible parame-
ter valuations. We propose an alternative symbolic zone-based method
for this problem which results in a faster computation. Our technique
extends the ideas of the automata-based approach to LTL model check-
ing of timed automata. To justify the usefulness of our approach, we
provide experimental evaluation and compare our method with explicit
enumeration technique.

1 Introduction

Model checking [1] is a formal verification technique applied to check for logical
correctness of discrete distributed systems. While it is often used to prove the
unreachability of a bad state (such as an assertion violation in a piece of code),
with a proper specification formalism, such as the Linear Temporal Logic (LTL),
it can also check for many interesting liveness properties of systems, such as
repeated guaranteed response, eventual stability, live-lock, etc.

Timed automata have been introduced in [2] and have emerged as a use-
ful formalism for modelling time-critical systems as found in many embedded
and cyber-physical systems. The formalism is built on top of the standard finite
automata enriched with a set of real-time clocks and allowing the system actions
to be guarded with respect to the clock valuations. In the general case, such
a timed system exhibits infinite-state semantics (the clock domains are continu-
ous). Nevertheless, when the guards are limited to comparing clock values with
integers only, there exists a bisimilar finite state representation of the original
infinite-state real-time system referred to as the region abstraction. A practically
efficient abstraction of the infinite-state space came with the so called zones [3].
The zone-based abstraction is much coarser and the number of zones reachable

N. Beneš—The author has been supported by the Czech Science Foundation grant
no. GA15-11089S.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 172–187, 2016.
DOI: 10.1007/978-3-319-41591-8 12

LTL Parameter Synthesis of Parametric Timed Automata 173

from the initial state is significantly smaller. This in turns allows for an efficient
implementation of verification tools for timed automata, see e.g. UPPAAL [4].

Very often the correctness of a time-critical system relates to a proper timing,
i.e. it does not only depend on the logical result of the computation, but also on
the time at which the results are produced. To that end the designers are not only
in the need of tools to verify correctness once the system is fully designed, but
also in the need of tools that would help them derive proper time parameters
of individual system actions that would make the system as a whole satisfy
the required specification. After all this problem of parameter synthesis is more
urgent in practice than the verification as such.

Related Work. The problem of the existence of a parameter valuation for
a reachability property of a parametric timed automaton in continuous time has
been shown to be undecidable in [5,6] for a parametric timed automaton with
as few as 3 clocks. This problem remains undecidable even for integer-valued
parameters [7]. A solution for the parameter synthesis problem and reachability
properties is presented in [8] where the authors provide a semi-decision algorithm
which is not guaranteed to terminate in all cases. Authors also introduce a sub-
class of parametric timed automata, called L/U automata for which the empti-
ness problem is decidable. Decidability results for the class of L/U automata are
further extended in [9]. In particular, the authors show that emptiness, finiteness
and universalitity problems of the set of parameter valuations for which there is
an infinite accepting run are decidable.

To obtain a decidable version of parameter synthesis problem for paramet-
ric timed automata we need to restrict parameter valuations to bounded inte-
gers. When modelling a real-time system, designers can usually provide practical
bounds on time parameters of individual system actions. Therefore, introducing
a parameter synthesis method with such a restriction is still reasonable. In [10]
the authors show that the problem of existence of bounded integer parameter
value such that a given property is satisfied is PSPACE-complete for a significant
number of properties, which include Timed Computational Tree Logic. They give
symbolic algorithms only for reachability and unavoidability properties.

Contribution. The main contribution of this paper is a symbolic method
that solves the parameter synthesis problem for specifications given in the Lin-
ear Time Logic (LTL) and parametric timed automata with bounded integer
parameters. To this end, we introduce a finite abstraction of parametric timed
automata with bounded integer parameters and provide an algorithm working
over this abstraction. To evaluate our technique we implemented both a sym-
bolic approach and explicit enumeration technique in a proof-of-concept tool and
compare the techniques on a case study. The finite abstraction does not provide
a unique representation of states and therefore we design an efficient state stor-
age mechanism that deals with this problem. The experiments demonstrate the
strength of the symbolic approach which may be faster by an order of magnitude.

174 P. Bezděk et al.

Outline. The rest of the paper is organised as follows. The problem definition
is given in Sect. 2 that also introduces the basic notions. We then define the sym-
bolic semantics of a parametric timed Büchi automaton and its finite abstraction
in Sect. 3. Section 4 describes the parameter synthesis algorithm itself. Section 5
describes the implementation and used heuristics. Then, in Sect. 6 we experimen-
tally evaluate the proposed algorithm and compare it with explicit enumeration.
Finally, Sect. 7 concludes the paper.

2 Preliminaries and Problem Statement

In order to state our main problem formally, we need to describe the notion of
a parametric timed automaton. We start by describing some basic notation.

Let P be a finite set of parameters. An affine expression is an expression of
the form z0 + z1p1 + . . .+ znpn, where p1, . . . , pn ∈ P and z0, . . . , zn ∈ Z. We use
E(P) to denote the set of all affine expressions over P . A parameter valuation
is a function v : P → Z which assigns an integer number to each parameter.
Let lb : P → Z be a lower bound function and ub : P → Z be an upper
bound function. For an affine expression e, we use e[v] to denote the integer
value obtained by replacing each p in e by v(p). We use maxlb,ub(e) to denote
the maximal value obtained by replacing each p with a positive coefficient in e
by ub(p) and replacing each p with a negative coefficient in e by lb(p). We say
that the parameter valuation v respects lb and ub if for each p ∈ P it holds that
lb(p) ≤ v(p) ≤ ub(p). We denote the set of all parameter valuations respecting lb
and ub by V allb,ub(P). In the following, we only consider parameter valuations
from V allb,ub(P).

Let X be a finite set of clocks. We assume the existence of a special zero clock,
denoted by x0, that has always the value 0. A guard is a finite conjunction of
expressions of the form xi −xj ∼ e where xi, xj ∈ X, e ∈ E(P) and ∼∈ {≤, <}.
We use G(X,P) to denote the set of all guards over a set of clocks X and a set of
parameters P . A simple guard is a guard containing only expressions of the form
xi −xj ∼ e where xi, xj ∈ X, e ∈ E(P), ∼∈ {≤, <}, and xi = x0 or xj = x0. We
also use G(X,P) to denote the set of all simple guards over a set of clocks X and
a set of parameters P . A clock valuation is a function η : X → R≥0 assigning non-
negative real numbers to each clock such that η(x0) = 0. We denote the set of
all clock valuations by V al(X). Let g ∈ G(X,P) and v be a parameter valuation
and η be a clock valuation. Then g[v, η] denotes a boolean value obtained from g
by replacing each parameter p with v(p) and each clock x with η(x). A pair
(v, η) satisfies a guard g, denoted by (v, η) |= g, if g[v, η] evaluates to true.
The semantics of a guard g, denoted by �g�, is a set of all valuation pairs (v, η)
such that (v, η) |= g. For a given parameter valuation v we write �g�v for the
set of clock valuations {η | (v, η) |= g}.

We define two operations on clock valuations. Let η be a clock valuation,
d a non-negative real number and R ⊆ X a set of clocks. We use η +d to denote
the clock valuation that adds the delay d to each clock, i.e. (η +d)(x) = η(x)+d
for all x ∈ X\{x0}. We further use η〈R〉 to denote the clock valuation that resets
clocks from the set R, i.e. η〈R〉(x) = 0 if x ∈ R, η〈R〉(x) = η(x) otherwise.

LTL Parameter Synthesis of Parametric Timed Automata 175

Definition 2.1 (PTA). A parametric timed automaton (PTA) is a tuple M =
(L, l0,X, P,Δ, Inv) where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X is a finite set of clocks,
– P is a finite set of parameters,
– Δ ⊆ L × G(X,P) × 2X × L is a finite transition relation, and
– Inv : L → G(X,P) is an invariant function.

We use q
g,R−−→Δ q′ to denote (q, g,R, q′) ∈ Δ. The semantics of a PTA is given

as a labelled transition system. A labelled transition system (LTS) over a set of
symbols Σ is a triple (S, s0,→), where S is a set of states, s0 ∈ S is an initial
state and → ⊆ S × Σ × S is a transition relation. We use s

a−→ s′ to denote
(s, a, s′) ∈ →.

Definition 2.2 (PTA semantics). Let M = (L, l0,X, P,Δ, Inv) be a PTA
and v be a parameter valuation. The semantics of M under v, denoted by �M�v,
is an LTS (SM , s0,→) over the set of symbols {act} ∪ R≥0, where

– SM = L × V al(X) is a set of all states,
– s0 = (l0,0), where 0 is a clock valuation with 0(x) = 0 for all x, and
– the transition relation → is specified for all (l, η), (l′, η′) ∈ SM as follows:

• (l, η) d−→ (l′, η′) if l = l′, d ∈ R≥0, η′ = η + d, and (v, η′) |= Inv(l′),

• (l, η) act−−→ (l′, η′) if ∃g,R : l
g,R−−→Δ l′, (v, η) |= g, η′ = η〈R〉,

and (v, η′) |= Inv(l′).
The transitions of the first kind are called delay transitions, the latter are
called action transitions.

We write s1
act−−→d s2 if there exists s′ ∈ SM and d ∈ R

≥0 such that s1
act−→

s′ d−→ s2. A proper run π of �M�v is an infinite alternating sequence of delay
and action transitions that begins with a delay transition π = (l0, η0)

d0−→ (l0, η0+
d0)

act−−→ (l1, η1)
d1−→ · · · . A proper run is called Zeno if the sum of all its delays

is finite.

Let M be a PTA, L : L → 2Ap be a labelling function that assigns a set
of atomic propositions to each location of M , v be a parameter valuation, and
ϕ be an LTL formula. We say that M under v with L satisfies ϕ, denoted by
(M,v,L) |= ϕ if for all proper runs π of �M�v, π satisfies ϕ where atomic
propositions are determined by L.

Given a parametric timed automaton M , a labelling function L, and an LTL
property ϕ, the parameter synthesis problem is to compute the set of all para-
meter valuations v such that (M,v,L) |= ϕ. Unfortunately, it is known that
the parameter synthesis problem for a PTA is undecidable even for very simple
(reachability) properties [5]. Instead of solving the general problem, we thus focus
on a more constrained version which is still reasonable for practical purposes.

176 P. Bezděk et al.

Problem Formulation. Given an LTL property ϕ, a parametric timed automa-
ton M = (L, l0,X, P,Δ, Inv), a labelling function L, a lower bound function lb
and an upper bound function ub, the bounded integer parameter synthesis prob-
lem is to compute the set of all parameter valuations v such that (M,v,L) |= ϕ
and lb(p) ≤ v(p) ≤ ub(p) for each p ∈ P .

This problem is trivially decidable using the standard zone-based abstrac-
tion and explicit enumeration of all parameter valuations. In order to avoid the
necessity of the explicit enumeration of all parameter valuations we use a combi-
nation of the zone-based abstraction and a symbolic representation of parameter
valuation sets. Our algorithmic framework which solves this problem consists of
three steps.

As the first step, we apply the standard automata-based LTL model checking
of timed automata [2] to parametric timed automata. We employ this approach
in the following way. From a PTA M and an LTL formula ϕ we produce a prod-
uct parametric timed Büchi automaton (PTBA) A. The accepting runs of the
automaton A correspond to the runs of M violating the formula ϕ.

As the second step, we employ a symbolic semantics of a PTBA A with
a suitable extrapolation. From the symbolic state space of a PTBA A we finally
produce a Büchi automaton B in which each state is associated symbolic infor-
mation about parameter valuations. This transformation is described in Sect. 3.

As the last step, we need to detect all parameter valuations for which there
exists an accepting run in Büchi automaton B. To that end, we employ a new
algorithm, which we call the Cumulative NDFS. The algorithm is described in
detail in Sect. 4.

We now proceed with the definitions of a Büchi automaton, a parametric
timed Büchi automaton and its semantics.

Definition 2.3 (BA). A Büchi automaton (BA) is a tuple B =
(Q, q0, Σ,→, F), where Q is a finite set of states, q0 ∈ Q is an initial state, Σ is
a finite set of symbols, →⊆ Q×Σ ×Q is a set of transitions, and F ⊆ Q is a set
of accepting states (acceptance condition). An ω-word w = a0a1a2 . . . ∈ Σω is
accepting if there is an infinite sequence of states q0q1q2 . . . such that qi

ai−→ qi+1

for all i ∈ N, and there exist infinitely many i ∈ N such that qi ∈ F .

Definition 2.4 (PTBA). A parametric timed Büchi automaton (PTBA) is
a pair A = (M,F) where M = (L, l0,X, P,Δ, Inv) is a PTA, and F ⊆ L is a set
of accepting locations.

Zeno runs represent non-realistic behaviours and it is desirable to ignore
them in analysis. Therefore, we are interested only in non-Zeno accepting runs
of a PTBA. There is a syntactic transformation to the so-called strongly non-
Zeno form [11] of a PTBA, which guarantees that each accepting run is non-Zeno.
For the rest of the paper, we thus assume that there are no Zeno accepting runs
in the PTBA.

Definition 2.5 (PTBA semantics). Let A = (M,F) be a PTBA and v be
a parameter valuation. The semantics of A under v, denoted by �A�v, is defined
as �M�v = (SM , s0,→).

LTL Parameter Synthesis of Parametric Timed Automata 177

We say a state s = (l, η) ∈ SM is accepting if l ∈ F . A proper run π =
s0

d0−→ s′
0

act−→ s1
d1−→ s′

1
act−→ . . . of �A�v is accepting if there exists an infinite

set of indices i such that si is accepting.

3 Symbolic Semantics

In this section we show the construction of a finite system which represents the
semantics of a given PTBA. First, we describe a parametric extension of the zone
abstraction. This extension is based on constrained parametric difference bound
matrices, described in [8]. However, this abstraction itself does not guarantee
finiteness in our setting. To solve this problem we further introduce a finite
parametric extrapolation.

3.1 Constrained Parametric Difference Bound Matrix

A constraint is an inequality of the form e ∼ e′ where e, e′ ∈ E and ∼ ∈ {>,≥,
≤, <}. We define c[v] as the boolean value obtained by replacing each p in c by
v(p). A valuation v satisfies a constraint c, denoted v |= c, if c[v] evaluates to
true. The semantics of a constraint c, denoted �c�, is the set of all valuations
that satisfy c. A finite set of constraints C is called a constraint set. A valuation
satisfies a constraint set C if it satisfies each c ∈ C. The semantics of a constraint
set C is given by �C� =

⋂
c∈C�c�. A constraint set C is satisfiable if �C� �= ∅.

A constraint c covers a constraint set C, denoted C |= c, if �C� ⊆ �c�.
As in [8], we identify the relation symbol ≤ with the boolean value true and

< with the boolean value false. Then, we treat boolean connectives on relation
symbols ≤, < as operations with boolean values. For example, (≤ =⇒ <) = <.

We now define the parametric difference bound matrix, the constrained para-
metric difference bound matrix, several operations on them, and the symbolic
semantics of a PTBA.

Definition 3.1. A parametric difference bound matrix (PDBM) over P and X
is a set D which contains for all 0 ≤ i, j ≤ |X| a guard of the form xi−xj ≺ij eij

where xi, xj ∈ X and eij ∈ E(P) ∪ {∞} and i = j =⇒ eii = 0. We denote
by Dij a guard of the form xi − xj ≺ij eij contained in D. Given a parameter
valuation v, the semantics of D is given by �D�v = �

∧
i,j Dij�v. A PDBM D is

satisfiable with respect to v if �D�v is non-empty.

Definition 3.2. A constrained parametric difference bound matrix (CPDBM)
is a pair (C,D), where C is a constraint set and D is a PDBM and for each
0 ≤ i ≤ |X| it holds that C |= e0i ≥ 0. The semantics of (C,D) is given by
�C,D� = {(v, η) | v ∈ �C� ∧ η ∈ �D�v}. We call (C,D) satisfiable if �C,D� is
non-empty. A CPDBM (C,D) is said to be in the canonical form if and only if
for all i, j, k, C |= eij(≺ik ∧ ≺kj)eik + ekj.

178 P. Bezděk et al.

Resetting a Clock. Suppose (C,D) is a CPDBM in the canonical form. The
reset of the clock xr in (C,D), denoted by (C,D)〈xr〉, is given as (C,D〈xr〉)
where:

D〈xr〉ij =

⎧
⎪⎨

⎪⎩

D0j if i �= j and i = r,
Di0 if i �= j and j = r,
Dij else.

We can again generalise this definition to a set of clocks:
(C,D)〈xi0 , xi1 , . . . , xik〉 def⇔ (C,D)〈xi0〉〈xi1〉 . . . 〈xik〉.

Applying a Guard. Suppose g is a guard of the form xi − xj ≺ e, (C,D) is
a CPDBM in the canonical form and Dij = (eij ,≺ij). The application of the
guard g on (C,D) generally results in a set of CPDBMs and is defined as follows:

(C,D)[g] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(C,D[g])} if C |= ¬(eij(≺ij =⇒ ≺)e),
{(C,D)} if C |= eij(≺ij =⇒ ≺)e,
{(C ∪ {eij(≺ij =⇒ ≺)e},D), otherwise,
(C ∪ {¬eij(≺ij =⇒ ≺)e},D[g]), }

where D[g] is defined as follows:

D[g]kl =

{
(e,≺) if k = i and l = j,
Dkl else.

We can generalise this definition to conjunctions of guards as follows:
D[gi0 ∧ gi1 ∧ . . . ∧ gik]

def⇔ D[gi0][gi1] . . . [gik].

Time Successors. Suppose (C,D) is a CPDBM in the canonical form. The
time successor of (C,D), denoted by (C,D)↑, represents a CPDBM with all
upper bounds on clocks removed and is given as (C,D↑) where:

D↑
ij =

{
(∞, <) if i �= 0 and j = 0,
Dij else.

The reset and time successor operations preserve the canonical form of
a CPDBM. After the application of a guard the CPDBM may no longer be
in the canonical form and thus a transformation to the canonical form needs to
be performed. However, due to the presence of parameters the standard canon-
isation [12] process can be ambiguous. The canonisation procedure is therefore
extended to cope with this ambiguity. As a consequence, the result of the canon-
isation is not a single CPDBM, but may generally be a set containing potentially
more CPDBMs in the canonical form with mutually disjoint constraint sets.

To canonise the given CPDBM we need to derive the tightest constraint on
each clock difference. Deriving the tightest constraint on a clock difference can be

LTL Parameter Synthesis of Parametric Timed Automata 179

seen as finding the shortest path in the graph interpretation of the CPDBM. In [8]
the authors implement the canonisation using a nondeterministic extension of
the Floyd-Warshall algorithm where on each relaxation a split into two different
CPDBMs can occur.

Canonisation. First, we define a relation −→FW on constrained parametric
bound matrices as follows, for all 0 ≤ k, i, j ≤ |X|:
– (k, i, j, C1,D1) −→FW (k, i, j + 1, C2,D2)

if (C2,D2) ∈ (C1,D1)[xi − xj(≺ik ∧ ≺kj)eik + ekj]
– (k, i, |X| + 1, C1,D1) −→FW (k, i + 1, 0, C1,D1)
– (k, |X| + 1, 0, C1,D1) −→FW (k + 1, 0, 0, C1,D1)

The relation −→FW can be seen as a representation of the computation steps
of the extended Floyd-Warshall algorithm.

Suppose now (C,D) is a CPDBM. The canonical set of (C,D), denoted as
(C,D)c, represents a set of CPDBMs with the tightest constraint on each clock
difference in D and is defined as follows:

(C,D)c = {(C ′,D′) | (0, 0, 0, C,D) −→∗
FW (|X| + 1, 0, 0, C ′,D′)}

Example 3.3. Let x, y ∈ X and p, q ∈ P . For a CPDBM (C,D) = (∅, {x ≤ p, y ≤
q, y ≤ x, y ≤ x}) we obtain by canonisation (C,D)c = {({p ≤ q}, {x ≤ p, y ≤
p, y ≤ x, y ≤ x}), ({q < p}, {x ≤ q, y ≤ q, y ≤ x, y ≤ x})}.

Definition 3.4. (PTBA symbolic semantics). Let A = ((L, l0,X, P,Δ,
Inv), F) be a PTBA. Let lb and ub be a lower bound function and an upper
bound function on parameters. The symbolic semantics of A with respect to lb
and ub is a transition system (SA,Sinit,=⇒), denoted as �A�lb,ub, where

– SA = L × {�C,D� | (C,D) is a CPDBM} is the set of all symbolic states,
– the set of initial states Sinit = {(l0, �C,D�) | (C,D) ∈ (∅, E↑)[Inv(l0)]}, where

• E is a PDBM with Ei,j = (0,≤) for each i, j, and
• for each p ∈ P , the constraints p ≥ lb(p) and p ≤ ub(p) are in C.

– There is a transition (l, �C,D�) =⇒ (l′, �C ′
c,D

′
c�) if

• l
g,R−→Δ l′ and

• (C ′′,D′′) ∈ (C,D)[g] and
• (C ′′

c ,D′′
c) ∈ (C ′′,D′′)c and

• (C ′,D′) ∈ (C ′′
c ,D′′

c 〈R〉↑)[Inv(l′)] and
• (C ′

c,D
′
c) ∈ (C ′,D′)c.

We say that a state S = (l, �C,D�) ∈ SA is accepting if l ∈ F . We say
that π = S0 =⇒ S1 =⇒ . . . is a run of �A�lb,ub if S0 ∈ Sinit and for each i,
Si ∈ SA and Si−1 =⇒ Si. A run respects a parameter valuation v if for each
state Si = (li, �Ci,Di�) it holds that v ∈ �Ci�. A run π is accepting if there exists
an infinite set of indices i such that Si is accepting. For the rest of the paper we
fix lb, ub and use �A� to denote �A�lb,ub.

180 P. Bezděk et al.

3.2 Finite Abstraction

Similarly to the nonparametric case, the symbolic transition system �A� may be
infinite. In order to obtain a finite transition system we need to apply a finite
abstraction over �A�. In the standard case of timed automata without parameters
we use one of the extrapolation techniques [13,14]. In our parametric setup we
define a new finite abstraction called the pk-extrapolation which is a parametric
extension of the widely used k-extrapolation [13]. The k-extrapolation identifies
states which are identical except for the clock values which exceeds the maximal
constant from guards and invariants.

In our parametric setup, we need to define the maximal constant with which
each clock within a PTBA is compared. We define M(x) as the maximal value
in {maxlb,ub(e) | e is compared with x in a guard or an invariant of the con-
sidered PTBA}. The core idea of pk-extrapolation is the same as the idea of
k-extrapolation. We substitute each bound on clock difference in the CPDBM
whenever this bound exceeds the maximal constant. The precise description of
this substitution process is given in the Definition 3.5. Contrary to the non-
parametric case, due to the occurrence of parameters in the CPDBM bounds,
the substitution process may be ambiguous. In these situations we restrict the
parameter values in order to obtain an unambiguous situation. This solution is
similar to the constraint set splitting that is done in the application of a guard
and in the canonisation procedure. Therefore, the result of pk-extrapolation is
a set of CPDBMs instead of a single CPDBM.

Definition 3.5. Let A be a PTBA, (l, �C,D�) be a symbolic state of �A� and
Dij = xi − xj ≺ij eij for each 0 ≤ i, j ≤ |X|. We define the pk-extrapolation
αpk in the following way. αpk(l, �C,D�) is the set of all (l, �C ′,D′�) such that
for each i, j, 0 ≤ i, j ≤ |X| one of the following conditions holds:

– D′
ij = xi − xj ≺ij eij and the constraint (eij ≤ M(xi)) ∈ C ′,

– D′
ij = xi − xj < ∞ and the constraint (eij > M(xi)) ∈ C ′,

– D′
ij = xi − xj ≺ij eij and the constraint (eij ≥ −M(xj)) ∈ C ′,

– D′
ij = xi − xj < −M(xj) and the constraint (eij < −M(xj)) ∈ C ′.

Example 3.6. Consider x, y ∈ X, p ∈ P , p ∈ [0, 7], M(x) = M(y) = 10, and
the symbolic state (l, �C,D�) where C = ∅ and D = {x ≤ y, y ≤ x, y ≤ 2p}.
Now, αpk(l, �C,D�) contains two symbolic states: (l, �C1,D1�) and (l, �C2,D2�)
where C1 = {2p ≤ 10}, D1 = {x ≤ y, y ≤ x, y ≤ 2p}, C2 = {2p > 10},
D2 = {x ≤ y, y ≤ x, y < ∞}.

Theorem 3.7. Let A be a PTBA. The pk-extrapolation is a finite abstraction
that preserves all accepting runs of �A�v for each parameter valuation v.

Proof Idea. We can transform the proof of Theorem 1 of [15] as well as the
corresponding lemmata and definitions into our parametric setup. Due to space
constraints, we did not include the full technically detailed proof and we kindly
refer the reader to [16].

LTL Parameter Synthesis of Parametric Timed Automata 181

4 Parameter Synthesis Algorithm

We recall that our main objective is to find all parameter valuations for which the
parametric timed automaton satisfies its specification. In the previous sections
we have described the standard automata-based method employed under a para-
metric setup which produces a Büchi automaton. For the rest of this section we
use s.�C� to denote the set �C� where s = (l, �C,D�) is a state of the input Büchi
automaton. We say that a sequence of states s1 =⇒ s2 =⇒ . . . =⇒ sn =⇒ s1 is
a cycle under the parameter valuation v if each state si in the sequence satisfies
v ∈ si.�C�. A cycle is called accepting if there exists 0 ≤ i ≤ n such that si is
accepting.

The standard automata-based LTL model checking checks the emptiness of
the produced Büchi automaton. The emptiness check can be performed using
the Nested Depth First Search (NDFS) algorithm [17]. The NDFS algorithm is
a modification of the depth first search algorithm which allows a detection of
an accepting cycle in the given Büchi automaton.

Contrary to the standard LTL model checking, it is not enough to check
the emptiness of the produced Büchi automaton. Our objective is to check the
emptiness of the produced Büchi automaton for each considered parameter val-
uation. To solve this objective, we introduce a new algorithm called the Cumu-
lative NDFS algorithm which is an extension of the NDFS algorithm. The
pseudocode of Cumulative NDFS is given in Algorithm1. Our modification is
based on the set Found which accumulates all detected parametric valuations
such that an accepting cycle under these valuations was found. In contrast to
the NDFS algorithm, whenever Cumulative NDFS detects an accepting cycle,
parameter valuations are saved to the set Found and the computation continues
with a search for another accepting cycle. Note the fact that whenever we reach
a state s′ with s′.�C� ⊆ Found we already have found an accepting cycle under
all valuations from s′.�C� and there is no need to continue with the search from
s′. Therefore, we are able to speed up the computation whenever we reach such
a state.

The crucial property the algorithm is based on is that of monotonicity. The
set of parameter valuations s.�C� can not grow along any run of the input
automaton. Lemma 4.1 states this observation formally. The observation fol-
lows from the definition of successors in �A�α and the definition of operations
on CPDBMs. The clear corollary of Lemma 4.1 is the fact that each state s on
a cycle has the same set s.�C�.

Lemma 4.1. Let A be a PTBA, α be an abstraction and s be a state in �A�α.
For every state s′ reachable from s it holds that s′.�C� ⊆ s.�C�.

Theorem 4.2. Let A be a PTBA and α an abstraction over �A�. A parameter
valuation v is contained in the output of the CumulativeNDFS(�A�α) if and only
if there exists an accepting run respecting v in �A�α.

Due to space constraints, we did not include the full technically detailed proof
and we kindly refer the reader to [16].

182 P. Bezděk et al.

Algorithm CumulativeNDFS(G)
1 Found ← ∅; Stack ← ∅

Outer ← ∅; Inner ← ∅
2 OuterDFS(sinit)
3 return Accepted ← Found

Procedure OuterDFS(s)
4 Stack ← Stack ∪ {s}
5 Outer ← Outer ∪ {s}
6 foreach s′ such that s → s′ do
7 if s′ /∈ Outer ∧ s′ /∈ Stack ∧

s′.�C� �⊆ Found then
8 OuterDFS(s′)
9 if s ∈ Accepting ∧ s.�C� �⊆ Found

then
10 InnerDFS(s)

11 Stack ← Stack \ {s}

Procedure InnerDFS(s)
12 Inner ← Inner ∪ {s}
13 foreach s′ such that s → s′ do
14 if s′ ∈ Stack then
15 “Cycle detected”
16 Found ← Found ∪ s′.�C�
17 return

18 if s′ /∈ Inner ∧
s′.�C� �⊆ Found then

19 InnerDFS(s′)

Algorithm 1. Cumulative NDFS

As the last step in the solution to our problem, we need to complement the
set Accepted. Thus, the solution is the complement of the set Accepted, more
precisely the set V allb,ub(X,P)\Accepted. To conclude this section, we state that
Theorem 4.2 together with Theorem 3.7 imply the correctness of our solution.

5 Implementation

We have implemented our approach in a proof-of-concept tool. We are able to
process models given as networks of parametric timed automata. A network
represents a product of several parametric timed automata where handshake
synchronization of two components at a time is allowed. We also extend the
parametric timed automata with data variables which enable the usage of guards
on data values and transition effects on data values. Such model is considered
standard in the field and is used as the modelling language in the tool UPPAAL.

Deadlocks. Cumulative NDFS algorithm returns all parameter valuations for
which LTL property does not hold. However, state space can contain deadlock
states which also need to be detected and reported. In the nonparametric setting
a state is a deadlock state if there are no enabled outgoing transitions. In a para-
metric setting the deadlock status of a state depends on the parameter valuation.
To decide for which parameter valuations a state (l, �C,D�) is a deadlock we
need to consider all guards g1, . . . , gn of the outgoing transitions of l. The state
(l, �C,D�) is a deadlock for all parameter valuations in �C,D�[¬g1 ∧ . . . ∧ ¬gn].
Applying this detection to each reachable state, all parameter valuations leading
to deadlock are detected during computation.

LTL Parameter Synthesis of Parametric Timed Automata 183

Procedure InitializeStorage()
1 Storage ← ∅; M1 ← ∅; M2 ← ∅

Procedure SetData(l, C,D, data)
2 if M2(C,D) �= ∅ then
3 (C′, D′) ← M2(C,D)
4 Storage(l, C′, D′) ← data

5 else
6 IH ← integerHull(C,D)
7 foreach (C′, D′) in M1(IH) do
8 if �C′, D′� = �C,D� then
9 M2(C,D) ← (C′, D′)

10 Storage(l, C′, D′) ← data

11 M2(C,D) ← (C,D)
12 M1(IH) ← M1(IH) ∪ {(C,D)}
13 Storage(l, C,D) ← data

Procedure GetData(l, C,D)
14 if M2(C,D) �= ∅ then
15 (C′, D′) ← M2(C,D)
16 return Storage(l, C′, D′)
17 else
18 IH ← integerHull(C,D)
19 foreach (C′, D′) in M1(IH) do
20 if �C′, D′� = �C,D� then
21 M2(C,D) ← (C′, D′)
22 return Storage(l, C′, D′)
23 M2(C,D) ← (C,D)
24 M1(IH) ← M1(IH) ∪ {(C,D)}
25 Storage(l, C,D) ← initialData
26 return initialData

Algorithm 2. State space storage operations

State space storage. One of the performance critical parts of the implementa-
tion is the state space storage. We use the state space storage to look up and store
information about presence of each state in the sets Inner, Outer, and Stack.
We refer to this information as data. A straightforward implementation would
simply store each state together with its data. Such a solution is only efficient
when a unique representation of states is available. Without such a unique rep-
resentation the storage operations have to perform expensive equivalence checks
with each stored state in the worst case scenario. In [10] the authors introduce
unique representation based on a computation of an integer hull. The integer
hull of a given set is a convex hull of all integer elements of a given set.

The solution of [10] assumes the existence of an upper bound for each clock.
We do not have such an upper-bound assumption and therefore this solution
is not directly applicable in our technique. However, we use the integer hull as
a heuristic approximation of a unique representation of a CPDBM instead. This
way we obtain a practically efficient solution that deals with the non-existence
of a unique representation of a state.

The solution is based on two mappings. The first mapping, denoted by M1

maps a given integer hull to a list of CPDBM representations. Each such list
contains the representations of semantically different CPDBMs with the same
integer hull. Thanks to M1 we can quickly distinguish states with different inte-
ger hulls. However, each storage operation still needs to perform the expensive
computation of the integer hull. In order to reduce number of the integer hull
computations, we introduce the second mapping, denoted by M2. This second
mapping serves as a cache which maps a given CPDBM to its unique repre-
sentative in the storage. Once a CPDBM representative is resolved, it is saved
in M2.

184 P. Bezděk et al.

Fig. 1. Parametric TrainGate model

The pseudo code of state space storage operations is given in Algorithm 2.
Note that the procedures SetData and GetData are analogous. In our prototype
tool, the two mappings as well as the storage itself are implemented using hash
tables. Checking whether two states are semantically equivalent is implemented
using Parma Polyhedra Library [18]. The library is also used to check parametric
constraint satisfaction in the CPDBM operations.

6 Experimental Evaluation

We have implemented the proposed technique for integer parameter synthesis in
our proof-of-concept tool. Our goal is to compare our method with the explicit
enumeration technique. To be able to compare performance of both techniques
under similar conditions we also implemented the standard DBM-based LTL
model checker for timed automata. Both tools use the same LTL to BA transla-
tion method [19] and analogous extrapolation techniques.

Our evaluation was performed on a parametric extension of the case study
TrainGate [20] provided with the tool UPPAAL. In the TrainGate model we sub-
stitute all 6 integer bounds with separate parameters and consider two trains.
This model is presented in Fig. 1. We checked two LTL properties. The first
property prop1 states that the two trains can not cross the bridge simultane-
ously (G!(Train1.cross and Train2.cross)). The second property prop2 states
that whenever the first train is approaching the bridge it will cross the bridge
eventually (G Train1.appr =⇒ F Train1.cross). For all considered parameter
valuations which do not lead to the deadlock, prop1 and prop2 are satisfied.

Experiments were performed on a PC with CPU i5-4690 and 16 GB RAM.
We considered a timeout of 12 h for each task. We provide percentage of solved
parameter valuations if the timeout was reached by explicit enumeration.

Table 1 shows the impact of the number of parameters used in the model. For
models with a small number of parameters and small value ranges the explicit

LTL Parameter Synthesis of Parametric Timed Automata 185

Table 1. Impact of model parameter count

TrainGate model 2 trains 3 params 4 params 5 params 6 params

p1 ∈ [20, 50] p1 ∈ [20, 50] p1 ∈ [20, 50] p1 ∈ [20, 50]

p2 ∈ [10, 50] p2 ∈ [10, 50] p2 ∈ [10, 50] p2 ∈ [10, 50]

p3 ∈ [15, 50] p3 ∈ [15, 50] p3 ∈ [15, 50] p3 ∈ [15, 50]

p4 = 7 p4 ∈ [7, 50] p4 ∈ [7, 50] p4 ∈ [7, 50]

p5 = 5 p5 = 5 p5 ∈ [5, 50] p5 ∈ [5, 50]

p6 = 3 p6 = 3 p6 = 3 p6 ∈ [3, 50]

prop1 explicit enumeration 0:01:03 0:44:50 Timeout(51%) Timeout(2%)

prop1 cumulative algorithm 0:08:16 0:54:39 3:20:25 7:58:42

prop2 explicit enumeration 0:01:21 0:58:17 Timeout(42%) Timeout(1%)

prop2 cumulative algorithm 0:12:20 1:23:37 5:11:01 10:48:16

Table 2. Impact of parameter range size

TrainGate model p1 ∈ [20, 50] p1 ∈ [20, 100] p1 ∈ [10, 100]

2 trains p2 ∈ [10, 50] p2 ∈ [10, 100] p2 ∈ [10, 100]

4 parameters p3 ∈ [15, 50] p3 ∈ [15, 100] p3 ∈ [10, 100]

p5 = 5 p6 = 3 p4 ∈ [7, 50] p4 ∈ [7, 100] p4 ∈ [10, 100]

prop1 explicit enumeration 0:44:50 Timeout(68 %) Timeout(63 %)

prop1 cumulative algorithm 0:54:39 7:39:43 6:56:49

prop2 explicit enumeration 0:58:17 Timeout(56 %) Timeout(53 %)

prop2 cumulative algorithm 1:23:37 10:25:28 8:59:11

enumeration can be more efficient. However, higher parameter count significantly
favours the cumulative algorithm. Table 2 shows the impact of the parameter
range size on the execution times. Note that for larger parameter ranges the
cumulative algorithm is faster than explicit enumeration.

7 Conclusion and Future Work

We have presented an algorithmic framework for the bounded integer parameter
synthesis for parametric timed automata with an LTL specification. The pro-
posed framework allows the avoidance of the explicit enumeration of all possible
parameter valuations.

Our symbolic technique is based on the zone abstraction and uses a para-
metric extension of difference bound matrices. To be able to employ the zone-
based method successfully we have introduced a finite abstraction called the
pk-extrapolation. To be able to synthesize all violating parameter valuations we
have introduced the Cumulative NDFS algorithm which is an extension of the
NDFS algorithm.

186 P. Bezděk et al.

We have implemented the proposed technique in an experimental tool and
our experiments confirm that this technique can be significantly faster than the
explicit enumeration technique.

As for future work we plan to introduce different finite abstractions based on
different extrapolations and compare their influence on the state space size. We
also plan to introduce a parallel version of the cumulative algorithm. Other area
that can be investigated is the employment of different linear specification logics,
e.g. Clock-Aware LTL [21] which enables the use of clock-valuation constraints
as atomic propositions.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

4. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE (2006)

5. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 592–601. ACM (1993)

6. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, p. 296. Springer, Heidelberg (2000)

7. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015)

8. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. J. Logic Algebraic Programm. 52, 183–220 (2002)

9. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009)

10. Jovanovic, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

11. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness
efficiently. Formal Methods Syst. Des. 26(3), 267–292 (2005)

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems.
LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

13. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods Syst.
Des. 24(3), 281–320 (2004)

14. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transf.
8(3), 204–215 (2006)

LTL Parameter Synthesis of Parametric Timed Automata 187

15. Li, G.: Checking timed Büchi automata emptiness using LU-abstractions. In:
Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp.
228–242. Springer, Heidelberg (2009)

16. Bezděk, P., Beneš, N., Barnat, J., Černá, I.: LTL parameter synthesis of parametric
timed automata. CoRR abs/1409.3696 (2016)

17. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1992)

18. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1–2), 3–21 (2008)

19. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 53. Springer,
Heidelberg (2001)

20. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

21. Bezděk, P., Beneš, N., Havel, V., Barnat, J., Černá, I.: On clock-aware LTL prop-
erties of timed automata. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS,
vol. 8687, pp. 43–60. Springer, Heidelberg (2014)

	LTL Parameter Synthesis of Parametric Timed Automata
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Symbolic Semantics
	3.1 Constrained Parametric Difference Bound Matrix
	3.2 Finite Abstraction

	4 Parameter Synthesis Algorithm
	5 Implementation
	6 Experimental Evaluation
	7 Conclusion and Future Work
	References

