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Abstract. Program synthesis can be viewed as an exploration of the
search space of candidate programs in pursuit of an implementation that
satisfies a given property. Classic synthesis techniques facilitate exhaus-
tive search, while genetic programming has recently proven the poten-
tial of generic search techniques. But is genetic programming the right
search technique for the synthesis problem? In this paper we challenge
this belief and argue in favor of simulated annealing, a different class
of general search techniques. We show that, in hindsight, the success of
genetic programming has drawn from what is arguably a hybrid between
simulated annealing and genetic programming, and compare the fitness of
classic genetic programming, the hybrid form, and pure simulated anneal-
ing. Our experimental evaluation suggests that pure simulated annealing
offers better results for automated programming than techniques based
on genetic programming.

1 Introduction

The development of correct code can be quite challenging, especially for con-
current systems. Classical software engineering methods, where the validation is
based on testing, do not seem to provide the right way to approach this type of
involved problems, as bugs easily elude predefined tests. Guaranteeing correct-
ness for such programs is also not trivial. Manual proof methods for verifying the
correctness of the code against a given formal specification were suggested in the
late 60s. The next step for achieving more reliable software has been to offer an
automatic verification procedure through model checking [1–3,6,15,18,26,27].

The holy grail of such techniques would be synthesis: the automated construc-
tion of programs that are correct by construction. Such synthesis techniques have
long been held to be impossible for reactive systems due to the complexity of
synthesis, which ranges from EXPTIME for CTL synthesis [5,25] to undecidable
for distributed systems [13,30,33,34].

This line of thought has come under attack on many fronts. On the theoretical
side, bounded [14] and succinct [11] synthesis techniques have levelled the playing
field between the verification and synthesis of reactive systems by shifting the
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focus from the input complexity to the cost measured in the minimal explicit
and symbolic solution, respectively. One could argue that this is the theoretical
underpinning of successful approaches, including implementations of bounded
synthesis [10,12] and methods based on genetic programming [20–23].

The success of genetic programming is also based on the observation that the
neighborhood of good solutions are often ‘not bad’, and would often still display
many sought after properties, such as satisfying a number of sub-specifications
fully, and others partially. Such properties are translated to a high fitness of
the candidate solution. Vice versa, the higher the fitness of a candidate, the
more likely is it to find a full solution in its proximity. This observation is also
at the heart of traditional engineering techniques: usually the elimination of a
bug does not cause errors in other places. It is also the assumption used when
applying program repair [19,36] techniques. The successive development into
correct programs is also distantly related to counter-example-guided inductive
synthesis [35] for inductive programs, where a genetic approach has also been
discussed [7].

Our work is at the same time inspired by the success of genetic programming
and driven by the doubt if genetic programming is the right generic search
technique to use. The success of genetic programming for synthesis is thoroughly
documented by a series of papers by Katz and Peled [21–23]. The doubts, on the
other hand, are fueled by the general observation that genetic programming is
often outperformed by simulated annealing [8,28,31].

On a conceptual level, the difference between simulated annealing and genetic
programming techniques are rather minor. These difference are threefold. The
first difference is in the number of candidates considered in each iteration. In
genetic programming, these are many. In the Katz and Peled papers [21–23],
for example, these are typically 150, 5 from the previous cycle and 145 mutated
programmes—numbers we have copied for our own experiments with genetic
programming. In simulated annealing, there is typically one new implementa-
tion in each iteration. The second difference is that genetic approaches may use
crossovers, a proper mix of two candidate solutions, in addition to mutations,
whereas simulated annealing only uses mutations1. The third difference is the
way the selection takes place. The rules for selection is typically static for genetic
programming, while the entropy falls over time in simulated annealing.

It is important to note that crossovers are not always used in genetic pro-
gramming, and we are not aware of any genetic programming approach that
has tried to exploit crossovers for synthesis. Personal communication with the
authors of [21–23] showed that they did not believe that crossover would be use-
ful in the context of synthesis. Simulated annealing has been reported [8,28,31]
to outperform genetic programming when crossovers do not provide an advan-
tage or are not used. Broadly speaking, this is because keeping only a single
instance increases the update speed (where the factor is roughly the number

1 The changes are usually not referred to as mutations, but the rules of obtaining them
are the same. We use the term mutations for simulated annealing, too, in order to
ease the comparison between simulated annealing and genetic programming.
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of instances), whereas many instances reduce the search depth or increase the
likelihood of success in a bounded search with a fixed number of iterations. Over-
all, the speed-up of the update tends to outweigh the increase in depth, or the
reduction in the success rate, of a bounded search. This led us to the hypothesis
that the same holds when these techniques are used in synthesis.

Finally, the paper series on genetic programming by Katz and Peled [21–23]
has used a layered approach, where the weighing of the search function differs
over time, starting with establishing the safety properties. The effect of this
difference is comparable to the effect of cooling when a stable level of quality
is reached. We took this as another hint that simulated annealing is the more
appropriate technique when implementing synthesis based on general search with
model checking as a fitness measure. In this work we suggest to use simulated
annealing for program synthesis and compare it to similar approaches based on
genetic programming. We use a formal verification technique, model checking, as
a way of assessing its fitness in an inductive automatic programming system. We
have implemented a synthesis tool, which uses multiple calls to the model checker
NuSMV [3] to determine the fitness for a candidate program. The candidate pro-
grams exist in two forms. The main form is a simple imperative language. This
form is subject to mutation, but it is translated to a secondary form, the mod-
eling language of NuSMV, for evaluating its fitness. All choices of how exactly a
program is represented and how exactly the fitness is evaluated are disputable.
Generic search techniques are, however, usually rather robust against changes in
such details. While there has been further research on how to measure partial
satisfaction [17], we believe that the best choice for us is to keep to the choices
made for promoting genetic programming [21–23], as this is the only choice that
is completely free of suspicion of being selected for being more suitable for sim-
ulated annealing than for genetic programming. A second motivation for this
selection is that it results in very simple specifications and, therefore, in fast
evaluations of the fitness. Noting that synthesis entails on average hundreds of
thousands to millions of calls to a model checker, only simple evaluations can
be considered. We have implemented six different combinations of selection and
update mechanism to test our hypothesis: besides simulated annealing, we have
used genetic programming both without crossover (as discussed in [21–23]) and
with crossover. The tests we have run confirmed that simulated annealing per-
forms significantly better than genetic programming. As a side result, we found
that the assumption of the authors of [21–23] that crossover does not accelerate
genetic programming did not prove to be entirely correct, but the advantages
we observed were minor.

2 The Approach in a Nutshell

In a nutshell, our synthesiser (cf. Fig. 1) consists of four main components: a mod-
ifier/seeder for programs (Program Generation), a compiler into a model checker
format (Program Translation), a quantitative extension of a model checker, using
NuSMV [3] as a back-end, and a selector that determines which program to
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keep (Simulated Annealing). The specification is provided in form of a list of
sub-specifications, which is then automatically extended to additional weaker
specifications that are used to obtain a quantitative measure for partial satis-
faction. Broadly speaking, the extension takes partial satisfaction of a specifi-
cation into account by giving different weights to different weaker versions of
sub-specifications (cf. Sect. 4). The result can be manually modified, but the
results reported in Sect. 6 refer to the automatically produced extension.

Fig. 1. Synthesis Tool

The internal representation of a
program is a tree. The seeder/modifier
produces an initial seed. (Alterna-
tively, one could start with an initial
program provided by the user.) The
modifier/seeder also produces modifi-
cations of existing programs by chang-
ing sub-trees (cf. Sect. 4). The pro-
grams are then translated to the input
language of a model checker (NuSMV
in our case), which is then called sev-
eral times to determine the level of satisfaction, which is the core of the fitness
(cf. Sect. 4) of a program.

Broadly speaking, the number of candidate programs kept depends on
the search technique used. We have implemented both genetic programming
approaches and simulated annealing in order to obtain a clean point of
comparison.

3 Background

Simulated Annealing. Simulated annealing [4,16] is a general local search
technique that is able to escape from local optima, easy to implementation, and
has good convergence properties.

When applied to an optimisation problem, the fitness function (objective)
generates values for the quality of the solution constructed in each iteration.
The fitness of this newly selected solution is then compared with the fitness of
the solution from the previous round. Improved solutions are always accepted,
while some of the other solutions are accepted in the hope of escaping local
optima in search of global optima. The probability of accepting solutions with
reduced fitness depends on a temperature parameter, which is typically falling
monotonically with each iteration of the algorithm.

Simulated annealing starts with an initial candidate solution. In each itera-
tion, a neighboring solution is generated by mutating the previous solution. Let,
for the ith iteration, Fi−1 be the fitness of the ‘old’ solution and Fi the fitness
of its mutation constructed in the ith iteration. If the fitness is not decreased
(Fi ≥ Fi−1), then the mutated solution is kept. If the fitness is decreased
(Fi < Fi−1), then the probability p that this mutated solution is kept is

p = e
Fi−Fi−1

Ti ,



Program Generation Using Simulated Annealing and Model Checking 159

where Ti is the temperature parameter for the ith step. The chance of changing
to a mutation with smaller fitness is therefore reduced with an increasing gap
in the fitness, but also with a falling temperature parameter. The temperature
parameter is positive and usually non-increasing (0 < Ti ≤ Ti−1). The develop-
ment of the sequence Ti is referred to as the cooling schedule and inspired by
cooling in the physical world [16].

Algorithm 1. Simulated Annealing algorithm
i := 0
loop local search with cooling
repeat

i := i + 1
derive a neighbor x′ of x
ΔF := F (x′) − F (x)
if ΔF < 0 then

x := x′

else
derive random number p[0, 1]

if p < e
ΔF
T (i) then

x := x′

end if
end if

until the goal is reached or i = imax

The effect of cooling on the simulation of annealing is that the probability of
following an unfavorable move is reduced. In practice, the temperature is often
decreased in stages. During each stage the temperature is kept constant until
a balanced solution is reached. The set of parameters that determines how the
temperature is reduced (i.e., the initial temperature, the stopping criterion, the
temperature decrements between successive stages, and the number of transi-
tions for each temperature value) is called the cooling schedule. We have used
a simple cooling schedule, where the temperature is dropped by a constant in
each iteration. The algorithm is described in Algorithm 1.

Genetic programming. Genetic programming [24] is a different general search
technique that has been used for program synthesis in a similar setting [20–23].
In genetic programming, a population of λ candidate programs is first generated
randomly. In each step, a small share of the population consisting of μ candidates
(with μ � λ) is maintained based on the fitness. Usually, a random function that
makes it more likely for fitter candidate programs to be selected for spawning
the next generation is applied. The selected candidates are then mated to retain
a population of λ, and mutations are applied to a high share of the resulting
programs (e.g., on all duplicates).

We have implemented genetic programming as a comparison point, using the
values λ = 150 and μ = 5 from [21]. We also use the 2, 000 iterations suggested
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there as a cut-off point, where the algorithm is re-started. In its pure form, it uses
the sum of the partial satisfaction values of all sub-specifications as a foundation
of the fitness function.

We have additionally implemented a hybrid form that changes the selection
technique over time. This technique works in layers: it first establish the safety
properties, and then the liveness properties. Specifications with better values
for the safety properties are always given preference, while liveness properties
are—for equal values for the safety properties—used to determine the fitness.
I.e., they are merely tie-breakers.

This approach has been used in [21–23]. We refer to it as a hybrid approach as
it introduces a property known from simulated annealing: in the beginning, the
algorithm is applying changes more flexibly, while it becomes more rigid later.

We have implemented the genetic approaches with and without crossover,
and used both evaluation techniques for simulated annealing, where we refer to
using the classic fitness function as a rigid evaluation, and to the hybrid approach
as flexible evaluation.

Model checking. Model checking [2,6] is a technique used to determine whether
a program satisfies a number of specifications. A model checker takes two inputs.
The first of them, the specification, is a description of the temporal behavior a
correct system shall display, given in a temporal logic. The second input, the
model, is a description of the dynamics of the system that the user wants to
evaluate. This might be a computer program, a communications protocol, a
state machine, a circuit diagram, etc.

A model checker uses a symbolic representation of the model to decide effi-
ciently if the model satisfies the specification. Standard temporal logic used in
model checking are linear-time temporal logic (LTL) [32] and computation tree
logic (CTL) [5]. We focus on the latter.

Given a finite set Π of atomic propositions, the syntax of a CTL formula is
defined as follows:

φ :: = p | ¬φ | φ ∨ φ | Aψ | Eψ,

ψ :: = Xφ | φUφ | Gφ,

where p ∈ Π. For each CTL formula φ we denote the length of φ by |φ|.
Let T = (V,E) be an infinite directed tree, with all edges pointing away

from the root. (In model checking, this is the unraveling of the model.) Let
l : V → 2Π be a labeling function. The semantics of CTL is defined as follows.
For each v ∈ V we have:

– v |= p if, and only if, p ∈ l(v).
– v |= ¬φ if, and only if, v � |= φ.
– v |= φ ∨ ψ if, and only if, v |= φ or v |= ψ.
– v |= Aψ if, and only if, for all paths π starting at v, we have π |= ψ.
– v |= Eψ if, and only if, there exists a path π starting at v with π |= ψ.
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Let π = v1, v2, . . . be an infinite path in T . We have:

– π |= Xφ if, and only if, v2 |= φ.
– π |= φUφ′ if, and only if, there exists an i ∈ N such that vi |= φ′ and, for

all j in the range 1 ≤ j < i, we have vj |= φ.
– π |= Gφ if, and only if, vi |= φ for all i ∈ N.

Note that the φ and φ′ here are state formulas.
The pair (T, l), where T is a tree and l is a labeling function, is a model of φ

if, and only if, r |= φ, where r ∈ V is the root of the tree. If (T, l) is a model of
φ, then we write T, l |= φ.

For the candidate programs in our paper, the tree is the tree of all runs /
interleaving of the programs under asynchronous composition, and the labels are
the program states.

4 Synthesis Tool Architecture

Our tool consists of four main parts: a generator and mutator of abstract pro-
grams (Program Generation); a translator from abstract programs to models
(Program Translator); a model checker as a basis for determining the fitness,
and the simulated annealing mechanism for selecting the candidate program to
continue with (cf. Fig. 1).

We use NuSMV [3] as a model checker. The translator therefore translates
the abstract programs into the model language of NuSMV. The other parts of
the tool are written in C++. Figure 1 gives an overview on the main components
of our tool.

When comparing simulated annealing to genetic programming, we merely
replace the simulated annealing component by a similar component for the
respective genetic programming variant and optionally add crossover to the avail-
able mutations.

The user provides specifications for the desired properties of a system in the
form of a list of CTL specifications for the system dynamics that the program
has to satisfy. The simulated annealing component then derives the intermediate
specifications (full and partial compliance) that are used to determine the fitness
of a candidate (cf. Sect. 4).

If the candidate program satisfied all required properties, then the synthesiser
returns it as a correct program.

Otherwise, it will compare the fitness of the current candidate with the (stored)
fitness value of the program it is derived from by mutation. (This is the currently
stored candidate.) If the fitness is lower, then the tool will update the stored can-
didate with the probability eΔF/T (i) defined by the loss ΔF = Fi − Fi−1 in fitness
and the current temperature T (i) taken from the cooling schedule. If the fitness
is not lower, the tool will always replaces the stored candidate by the mutated
one. When the end of the cooling schedule is reached, the tool aborts. The syn-
thesis process is then re-started, either with a fresh cooling schedule (usually with
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a higher starting temperature or slower cooling) or with the same cooling sched-
ule. We have implemented the latter. Additional information about the tool can
be found at: http://cgi.csc.liv.ac.uk/∼idresshu/index2.html.

Model checking as a fitness function. We use model checking to determine
the fitness of a candidate program in the same way as it has been used for genetic
programming [21–23]. Based on the model checking results, we derive a quan-
titative measure for the fitness (as a level of partial correctness) of a program.
This can be the share of properties that are satisfied so far, or mechanically
produced simpler properties. For example, if a property shall hold on all paths,
it is better if it holds on some paths, and yet better if it holds almost surely.

Our implementation considers the specification as a list of sub-specifications
and assigns full marks for each sub-specification, which is satisfied by the can-
didate program. For cases where the sub-specification is not satisfied, we distin-
guish between different levels of partial satisfaction.

We offer an automated translation of properties with up to two univer-
sal quantifiers that occur positively. 100 points are assigned when the sub-
specification is satisfied, 80 points if the specification is satisfied when replacing
one universal path quantifier by an existential path quantifier, and 10 points are
assigned if the specification is satisfied after replacing both universal path quanti-
fiers by existential ones. (Existential quantifiers that occur negatively are treated
accordingly.) Examples of this automated translation are shown in Sect. 5.

The output of the model checker is used to evaluate the fitness of the current
candidate. The main part of the fitness is the average of the values for all sub-
specifications in the rigid evaluation and the average of all liveness specifications
in the flexible evaluation. Following [21], we apply a penalty for long programs
by deducing the number of inner nodes of a program from this average when
assigning the fitness of a candidate program. The resulting fitness value will be
used by simulated annealing to compare the current candidate with the previous
one when using rigid evaluation, and to make a decision whether the changes will
be preserved or discarded. When using flexible evaluation, this only happens if
the value for the safety specification is equal; falling resp. rising values for safety
specifications always result in discarding resp. selecting the update when using
flexible evaluation.

Programs as trees. The main form of the programs is a tree, in which each
leaf node represents a parameter or constant, while each parent node represents
an operation like assignments, comparisons, or algorithm instruction like if or
while. The candidate programs are built from the root down to the terminal
nodes (cf. [21,24]). Figure 2 shows the tree representation of the program

while (turn==me)
other=0

on the left, and two mutations of these programs in the middle and on the
right.

Mutations are changes in the program tree. Changes can be applied as follows:

1. Randomly select a node to be changed.

http://cgi.csc.liv.ac.uk/~idresshu/index2.html
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Fig. 2. Program tree (left) with two mutations (middle and right)

2. Apply one of the following changes:
(a) Replace a boolean comparator by a different boolean comparator. E.g.,

the middle program from Fig. 2 can result from the left program when
‘==’ is replaced by ‘!=’.

(b) Replace a leaf by a different parameter or constant from a user defined
set.

(c) Replace a sub-tree (which is no leaf) by a different sub-tree of size 3 with
the same type. E.g., the right program from Fig. 2 can result from the left
program when by replacing the left sub-tree.

(d) Add a new internal node, using the node that was there as one sub-tree
and creating further offspring of minimal size (which is ≤ 3) to make the
resulting tree well typed.

Crossovers between two programs P1 and P2 randomly select nodes N1 of
P1 and N2 of P2, and swap the sub-trees rooted in N1 and N2. This way, they
produce a proper mix of the two programs.

Besides standard commands—‘while’, ‘if’, assignments, boolean connectives
and comparators—there are also variable names and constants. They have to be
provided by the user. The user also needs to specify, which variables are local
and which are global. She can provide an initial tree with nodes that the modifier
is not allowed to alter. Examples of this are provided in Sect. 5.

To evaluate the fitness of the produced program, it is first translated into
the language of the model checker NuSMV [3]. We have used the translation
method suggested by Clarke, Grumberg, and Peled [6]. In this translation, the
program is converted into very simple statements (similar to assembly language).
To simplify the translation, the program lines are first labeled, and this label
is then uses as a pointer that represents the program counter (PC). From this
intermediate language, the NuSMV model is then built by creating (case) and
(next) statements that use the PC. Figure 3 shows the translation of a mutual
exclusion algorithm. At first, each line in the source algorithm labelled, then a
variable pc (which is local for each MODULE) is added to represent the control
state.
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Fig. 3. Translation example – source(left) and target (right)

5 Case Studies

We have selected mutual exclusion [9] and leader election [23,29] as case stud-
ies, because these are the examples, for which genetic programming has been
successfully attempted.

Mutual exclusion. In mutual exclusion, no two processes are allowed to be in
the critical section at the same time. In addition, there are liveness properties
that essentially require non-starvation.

For the mutual exclusion example, we consider programs that progress
through four sections, a ‘non-critical section’, an ‘entry section’, a ‘critical
section’, and an ‘exit section’. The ‘non-critical section’ and ‘critical section’
parts are not targets of the synthesis process. In this example, we start with a
small program tree that includes the non-critical section and the critical section
as privileged commands that cannot be changed by the modifier. Neither can
any of their ancestors in the program tree. The entry and exit sections, on the
other hand, are standard parts of the tree that can be changed.

The modifier is also provided with the vocabulary it can use. Besides the
standard commands and the privileged commands for the critical and non-critical
sections, these are the variables ‘me’ and ‘other’ that identify the two processes
involved and, depending on the benchmark, two or three global / shared boolean
variables.

The mutual exclusion example uses one safety specification: only one process
can be in the critical sections at a time. This is represented by the CTL formula

!EF (P0 in critical section & P1 in critical section).
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When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied, and
80 points when !AF (P0 in critical section & P1 in critical section) holds.

In addition, there is a non-starvation property that, whenever a process enters
its entry section, it will eventually enter the critical section. For process, one this is

AG(P1 in entry section → AFP1 in critical section).

When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied,
80 points when EG(P1 in entry section → AFP1 in critical section) holds,
80 points when AG(P1 in entry section → EFP1 in critical section) holds,

and
10 points when EG(P1 in entry section → EFP1 in critical section) holds.

Leader election. As a second case study, we consider synthesising a solution
for the leader election problem [23,29]. For that purpose, we use clockwise unidi-
rectional ring networks with two different sizes, three or four nodes, respectively.

For leader election, we do not consider any privileged commands. Again, the
modifier needs to be provided with vocabulary. Besides the standard commands,
this includes

– id: a specific integer value for each node in the ring, which have the values
1, . . . , i for rings of size i.

– myval,other,leaderID: local variables; leaderID is initialized to 0.
– Send (myval): a command that refers to sending the value of ‘myval’ to the

next node in the ring. (It is placed in a variable the next process can read
using the following command.)

– Receive (other): a command that reads the last value sent by the previous
node.

The specification for leader election requires the safety specification that
there is never more than one leader, and the liveness requirement that a leader
will eventually be elected. For both requirement, we assign

100 points when the sub-specification is satisfied on all paths, and
80 points when the sub-specification is satisfied on some path.

6 Results

We have implemented the simulated annealing and genetic programming
algorithms as described, using NuSMV [3] as a solver when deriving the fit-
ness of candidate programs. For simulated annealing, we have set the initial
temperature to 20, 000. The cooling schedule decreases the temperature by 0.8
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Fig. 4. Average time required for synthesising a correct program (Color figure online)

in each iteration. The schedule ends after 25, 000 iterations, when the tempera-
ture hits 0. In a failed execution, this leads to determining the fitness of 25, 001
candidate programs.

As described in Sect. 3, we have taken the values suggested in [21] for genetic
programming: λ = 150 candidate programs are considered in each step, μ = 5
are kept, and we abort after 2, 000 iterations. In a failed execution, this leads to
determining the fitness of 290, 150 candidate programs.

For the mutual exclusion benchmark, we distinguish between programs that
use two and three shared bits, respectively. For the leader election benchmark
we use ring networks with three and four nodes, respectively. The results are
shown in Figs. 4 and 5 and summarised in Table 1. The experiments have been
conducted using a machine with an Intel core i7 3.40 GHz CPU and 16GB RAM.
Figure 4 shows the average time needed for synthesising a correct program. The
two factors that determine the average running time are the success rate and
the running time for a full execution, successful or not. These values are shown
in Fig. 5.

An individual execution of simulated annealing ends when a correct program
is found or when the stopping temperature is reached after 25, 000 iterations.
Similarly, the genetic programming approaches stop when they have found a
solution or when the number or iterations has reached its maximum of 2, 000
iterations. Note that, while simulated annealing incurs more iterations before
reaching its termination criterion, it needs to perform only a fraction of the
model checking tasks in each iteration. While the number of iterations is slightly
more than an order of magnitude higher, the number of programs, for which the
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Fig. 5. Average running time of an individual execution (left) and success rate of
individual executions (right) (Color figure online)

fitness needs to be calculated, is slightly more than an order of magnitude lower
(25, 001 vs. 290, 150).

For the model checking community, success rates of around 20% may sound
very low, but this is the appropriate range for such techniques. Note that it is
very simple to drive the success rate up: one can decrease the cooling speed for
simulated annealing and increase the number of iterations for genetic program-
ming, respectively. However, this also increases the running time for individual
full executions. A very high success rate is therefore not the goal when devising
these algorithms, but a low expected overall running time. A 20% success rate
is in a good region for achieving this goal. Table 1 shows the average running
time for single executions in seconds, the success rate in %, and the resulting
overall running time. The best values (shortest expected running time or high-
est success rate) for each comparison printed in bold. Both simulated annealing
and the hybrid approach significantly outperform the pure genetic programming
approach. The low success rate for pure genetic programming suggests that the
number of iterations might be too small. However, as the individual execution
time is already ways above the average time simulated annealing needs for con-
structing a correct program, we did not increase the number of iterations.

The advantage in the individual execution time between the classic and the
hybrid version of genetic programming is in the range that is to be expected,
as the number of calls to the model checker is reduced. It is interesting to note
that simulated annealing, where the shift from rigid to flexible evaluation might
be expected to have a similar effect, does not benefit to the same extent. It is
also interesting to note that the execution time suggests that determining the
fitness of programs produced by simulated annealing is slightly more expensive.
This was to be expected, as the average program length grows over time. The
penalty for longer programs reduces this effect, but cannot entirely remove it.
(This potential disadvantage is the reason why an occasional re-start provides
better results than prolonging the search.)

The advantage in running of simulated annealing compared to the hybrid
approach reach from factor 4 to factor 10, and the comparison to pure genetic
programming reach from factor 35 to factor 76. It is interesting to note that
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Table 1. Search techniques comparison

Search technique Single execution Success rate Overall time

2 shared bits SA rigid 20 19 105.26

SA flexible 18 21 85.71

Hybrid w/o crossover 113 31 364.51

Hybrid with crossover 115 33 348.48

GP w/o crossover 583 7 8,328.57

GP with crossover 589 9 6,544.44

3 shared bits SA rigid 23 23 100

SA flexible 20 22 90.9

Hybrid w/o crossover 171 17 1,005.88

Hybrid with crossover 175 19 921.05

GP w/o crossover 615 7 8,785.71

GP with crossover 620 9 6,888.88

3 nodes SA rigid 84 19 442.1

SA flexible 81 20 405

Hybrid w/o crossover 418 15 2,786.66

Hybrid with crossover 421 16 2,631.25

GP w/o crossover 1120 3 37,333.33

GP with crossover 1123 6 18,716.66

4 nodes SA rigid 145 17 852.94

SA flexible 138 18 766.66

Hybrid w/o crossover 536 11 4,872.72

Hybrid with crossover 541 14 3,864.28

GP w/o crossover 1311 3 43,700.00

GP with crossover 1314 5 26,280.00

both the pure and the hybrid approach to genetic programming benefit from
crossovers, but while the benefit for the pure approach is significant, almost
halving the average time for synthesising a program in one case, the benefit for
the superior hybrid approach is small.

7 Conclusion

We have implemented an automated programming technique based on simu-
lated annealing and genetic programming, both in the pure form of [20] and the
arguably hybrid form of [21,22]. The implementations from these papers were
unavailable for comparison, but this is, in our view, a plus: the performance is
naturally sensitive to the quality of the integration, the suitability of the model
checker used, and hidden details, like how the seed is chosen or details of how
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the fitness is computed. The integrated comparison makes sure that all methods
are on equal footage in these regards.

The results are very clear and in line with the expectation we had drawn
from the literature [8,28,31]. When crossovers are not used, the main difference
between the established genetic programming techniques and simulated anneal-
ing is the search strategy of using many and using a single instance, respectively.
The data gathered confirms that an increase of the number of iterations can easily
overcompensate the broader group of candidates kept in genetic programming.
In our experiments, we have used an increase that fell short of creating the same
expected running time for a single full execution (with or without success), and
yet outperformed even the hybrid approach w.r.t. the success rate on three of our
four benchmarks. We have also added variations of genetic programming that
include crossover to validate the assumption that crossovers do not lead to an
annihilation of the advantage, but it proved that the hybrid approach, and thus
the stronger competitor, does not benefit much from using crossover. The double
advantage of shorter running time and higher success rate led to an improvement
of 1.5 to 2 orders of magnitude compared to pure genetic programming (with
and without crossover), and between half an order and one order of magnitude
when compared to the hybrid approach (with or without crossover).

It will be interesting to see if future work will show that these factors are
essentially constant, or if they depend heavily on the circumstances.
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