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Abstract. This paper presents a fully automatic verification technique
for Simulink block diagrams, by combining a static value range analy-
sis with symbolic execution. Our concept avoids a translation to other
languages and, instead, extracts all necessary attributes from Simulink
and interprets the model directly. With this technique, we show how user
defined specifications can be validated using sound abstractions for prim-
itives, including IEEE-754 floats, and custom data types. Moreover, we
propose optimizations by exploiting the benefits of intervals and symbolic
representations to apply our technique to larger models. We evaluate our
solution against an industrial tool.

1 Introduction

With the growing use of software controlled embedded systems, the safety of
programs plays an increasing role. As projects and teams become larger and more
interdisciplinary, model-based design tends to improve the development process
[4]. Model-based design uses graphical programming, which is easily understood
by developers from different domains. Another reason for model-based design is
the attempt to limit the designer to rules and, eventually, avoid certain classes
of software failures. This technique has been acknowledged in safety standards
for embedded software systems [9,15].

The landscape of tools supporting model-based design differs between indus-
trial sectors. For instance, Matlab/Simulink has become a widely applied tool
in the automotive domain, while some aerospace businesses prefer SCADE [3].
Both tools provide the user with a visual modeling interface for block diagrams, in
which elements are connected via lines and the flow among the blocks defines the
behavior. This paper presents solutions for block diagrams in Simulink, however,
the concepts can be adapted to similar modeling tools.

In practice, code is generated from existing models and integrated, auto-
matically at best, into custom software. As a side effect, this process enhances
rapid prototyping by allowing the user to simulate and test models on desktop
computers, independent of the target platform. Admitting that errors caused
by invalid memory access and wrong pointer arithmetic occur rather seldom in
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generated code, many design issues remain. Among these are unintended data
type over-/underflows, irrelevant or unused model parts, invalid divisions and
operations, unintended variable resets and out-of-bound access.

Since the resulting code might lead to a failure, formal methods and extensive
testing is applied for validation. Nevertheless, these techniques are often used
after code generation, requiring a linkage between code and model, necessitating
a regeneration of the code. Instead, our aim is to provide the user during the
design stage with important notifications and warnings about potential modeling
flaws, so that these can be resolved immediately.

Contribution. In this paper, we present a detailed, sound and fully automatic ver-
ification for Simulink block diagrams using sat modulo theory (SMT) techniques,
which are introduced in Sect. 2. Our contribution in Sect. 4 extends already exist-
ing proposals by combining a previously designed interval analysis [8] with SMT
checking. We use the Microsoft Z3 SMT solver [7], which is able to represent
IEEE-754 floats with bit vectors as used by Matlab/Simulink. In detail, our
algorithm identifies potential design errors, including divisions by zero, under-
and overflows, infinite and NaN values, out-of-bound access and boolean signals,
which are constant. We classify our work with others in the field, presented in
Sect. 3, and evaluate our work against an industrial tool in Sect. 5.

2 Background

Before presenting our method, we elaborate briefly the concept of SMT solving
and block diagrams, which has already been explained in previous work [14].

2.1 SMT Solver

Boolean expressions combine variables with logical operators, such as and (∧),
not (¬) and or (∨). Each variable is either true or false and thus, the boolean
expression evaluates either to true or false, depending on the variables. Solving
such a boolean expression is the computation of an assignment for the variables
so that the expression evaluates to true. Boolean expressions can be extended,
for instance, by allowing arithmetic terms which provide a broader application
range. With the combination of more underlying theories such as arithmetics,
bit vectors, lists or floats, the decidability, i.e. searching for a satisfying variable
assignment, of the expression cannot be guaranteed [13]. SMT solvers are tools
trying to find satisfying variable assignments with regard to additional theories.
Because of the potential undecidability, results of the solving procedure may be
either satisfiable, unsatisfiable or unknown.

For our application, we have chosen the latest Microsoft Z3 SMT solver [7]
and the support of multiple theories including IEEE-754 floating point arith-
metic. The interface of the solver allows users to specify either variables or
constants of a given sort, which can be boolean, integer, real, float, bit vector or
others. For real and integer expressions, a finite rational number approximation
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Fig. 1. Simulink block diagram example

is used, while floats are modeled as bit vectors, where each part, sign, fraction
and exponent can be accessed individually. Since rational numbers behave differ-
ently than IEEE-754 floats, arithmetic operations are implemented individually,
yielding the suited operation for a given sort.

One application of SMT is to interpret program variables as SMT variables
and use the solver to prove properties of the code. For instance, it might be
proven that a variable value is always different from 0 or does not exceed a
certain range.

2.2 Block Diagram

A block diagram consists of ports P , blocks B and lines L, such that P and
L form a graph. Each port is assigned to a block, whereas, subsystems, which
are blocks themselves, allow a hierarchical modeling. Since subsystems can be
reused, complex systems can be constructed in a bottom up approach. Figure 1
illustrates a Simulink block diagram, with subsystems Controller and Plant,
root input u and root output y, respectively. The interface of a subsystem is
specified with special In- and Out-blocks. Within the Controller subsystem, the
block labeled u references the in port of the Controller subsystem, whereas, y
references the out port.

While designing systems, a user may choose from a given palette of blocks
or a set of his own. For instance, the blocks shown in Fig. 1 are all part of the
Simulink standard block set. Masks are user interfaces, tied to a specific block,
which allows further parametrization and configuration of the block, such as
setting the value for Constant-blocks or changing the sign within a Sum-block.
Finally, parameters may be set in the model workspace, which is a container of
variables, with concrete values.

A simulation of a block diagram consists of a certain, possibly infinite,
amount of time steps, such that each step has a certain, potentially varying
duration, for example 0.01 s. Additionally, an individual sample time is assigned
to each block, either automatically or specifically by the user, to model systems
which run at different frequencies. Blocks are active, i.e. performing a compu-
tation, if a multiple of their sample time matches the currently considered time
step. If a block is inactive, due to the sample time, a zero order hold operation
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is performed by default1. Another way to make a block inactive is by creating
an enabled subsystem in which the block resides. These special systems contain
an enable port with a corresponding block, making all blocks in that subsystem
active or inactive.

Since loops may be constructed in block diagrams, models with circular
dependencies between blocks, called algebraic loops, can be created. For example,
feeding the output of a Sum-block back to its input yields a time synchroniza-
tion problem, because the output of the block in the current time step has to
be computed based on the current input, which has not yet been calculated.
To avoid the occurrence of algebraic loops, a block performing a time shift or
storage operation should be added within the loop. These blocks, such as delays
or integrators, have therefore a state. On the contrary, blocks without internal
states feed their input through by computing a memoryless operation.

If not otherwise specified, all states of active blocks are updated with each
time step, even those, which are not needed to calculate the root outputs. Thus,
the control flow of a block diagram is linear, so that at a given decision, both
paths of a Switch-block are evaluated by default. Unnecessary computations can
be avoided by using enabled subsystems.

Signals. In each time step, signals flow along lines from port to port through the
entire model. Each block represents a function, taking the signal values of its
input ports as parameters and writing the computed result to its output ports.

Whereas blocks, ports and lines specify the syntax of the block diagram, the
semantics are described by signals between ports. A signal has a name and a
certain value for each time step. Concrete signals are represented by a tensor
with a data type, which is equal for all elements in the tensor, ranging over
multiple dimensions. Consider a signal of type int8 containing a 2 × 2 matrix,
then each element in the matrix has type int8. Except for special cases, such as
matrix multiplication, operations on signals are defined element-wise.

Signals with different data types can be combined into one signal using buses.
A bus can be constructed in a hierarchical fashion, so that a bus may contain
concrete signals or further bus signals. Before arithmetic and other element wise
operations are performed on buses, all elements of the bus are casted to a single
concrete signal of the most expressive data type. However, signal routing or
Memory-blocks, which do not change the content of a signal, do not perform
type cast operations or the conversion of bus signals to concrete signals.

Execution Order. Finally, after the structure of block diagrams and signals has
been explained, the execution order schedules the simulation of the model. Sup-
pose a system, consisting of a Sum-block with feed back through a Memory-
block, which acts like a counter, depending on the input. In the first step, the
Memory-block, with initial output value zero, must be computed before the Sum-
block can calculate the sum over its inputs. Therefore, a sequence, guaranteeing
all inputs being available when a block is executed, is necessary. Consequently,

1 See http://de.mathworks.com/help/simulink/slref/ratetransition.html.

http://de.mathworks.com/help/simulink/slref/ratetransition.html
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source blocks, such as Constant- or Inport-blocks, must be executed before their
connected blocks can be executed based on the source blocks output. This order
is given by execution contexts, which form an ordered tree structure, in which
the leafs are non-subsystem blocks. At each level of the tree, the order set of
children represents a valid schedule yielding an order in a top-down structure.

3 Related Work

Analyzing and verifying Simulink diagrams is a task which has been addressed
before. Reicherdt and Glesner [14] present a similar approach and translate Mat-
lab/Simulink models into the intermediate verification Boogie language. The
subsequent verification relies on the Microsoft Z3 SMT solver. Our algorithm
abstracts feed through and bounded blocks, such as sin, cos, arctan in a simi-
lar fashion. Their algorithm supports up to 44 blocks, however, their solution
has some limitations regarding buses and the soundness, since corner cases for
IEEE-754 floating point types and corresponding rounding methods are not con-
sidered. Although their solution incorporates intervals specified by the user, our
algorithm utilizes the fully automatically calculated intervals from a static value
range analysis. Eventually, Reicherdt and Glesner prove their solution to per-
form in certain aspects better than the Simulink Design Verifier2, which is a tool
to verify Matlab/Simulink models, by computing reachable values and detect-
ing design flaws. The Design Verifier uses rational numbers, as indicated by the
tool, and lacks a correct abstraction of IEEE-754 floats, too. Furthermore, there
are many unsupported blocks by the Design Verifier, causing large over approx-
imations and a variety of false positive results and even undetected flaws in the
model. Other techniques, such as abstract simulation by Chapoutot et al. focus
on numerical errors caused by continuous models [5]. Hence, we present a static
value range analysis based on abstract interpretation [6] with symbolic execution
to refine derived value ranges with regard to IEEE-754 floating point arithmetic.

Apart from the verification on model level, block diagrams can be trans-
lated to intermediate representations which can subsequently be analyzed. Tri-
pakis et al. propose in their work [16] the translation of discrete Matlab/Simulink
models to Lustre. Based on the resulting Lustre representation, verification tech-
niques can be applied. Agrawal et al. [1] convert Matlab/Simulink block diagrams
to hybrid automata, which are analyzed using domain specific methods. However,
the approaches based on translation of block diagrams into different representa-
tions are in general only applicable for a subset of the available Matlab/Simulink
model elements and functionalities.

4 Concept

In this section, we give a basic introduction into our approach for abstract inter-
pretation of Matlab/Simulink models. Consequently, the construction of SMT
expressions and use of symbolic execution is presented before the combination
of both approaches, is described.
2 See http://de.mathworks.com/products/sldesignverifier/.

http://de.mathworks.com/products/sldesignverifier/
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Overview. Before discussing the concrete analysis, we highlight the construction
of our intermediate representation. First, a simulation of the model is launched
and paused to retrieve the compiled data types of ports, model parameters and
the execution order, using the Matlab API. For block parameters, which are
expressions such as 3 ∗ x + 5, a resolution is used which first looks up the mask
parameters of parent blocks in the model for matching variables and replaces
variable occurrences in the expressions recursively. Second, the model workspace,
where the user may set parameters, is investigated. Finally, the expression is
evaluated with the Matlab API, yielding a concrete value.

The block diagram itself is represented as a graph with ports and lines, with a
linking between ports and blocks. For simplicity, we enrich the graph and connect
In- and Out-blocks with the matching in- and out-ports along potentially multi-
ple hierarchical levels in the diagram. With these lines, plain subsystems without
further configuration can be omitted in the analysis. For enabled, triggered or
other subsystems, each affected block references its enable blocks. Signals are
abstracted and are either concrete, buses or variable size signals3. A signal flow
analysis, based on a depth-first-search, computes the hierarchical structure of
each bus in the model, providing each port with a primitive or bus type.

The blocks of the model are interpreted during analysis based on previously
defined abstractions and corresponding model parametrizations. As abstract
domain for the interpretation, interval sets are used.

Limitations. Although our technique can be applied to a variety of systems,
we pose some limitations on the models. First, models must be updatable and
compilable, i.e. a simulation must be carried out. Note, that our method does not
rely on simulation results, but rather fetches the resolved data types and signal
dimensions from the model. Systems may not contain algebraic loops, since those
cannot be generally resolved and no code can be generated. Furthermore, our
algorithm works for discrete models with a fixed time step solver. Currently,
we have implemented abstractions for over 50 blocks supporting most possible
configurations and parametrizations, including basic support for custom masked
blocks. Blocks without correspondent abstractions are over approximated by
default.

4.1 Abstract Interpretation with Interval Sets

Intervals provide means to define a set of values by two boundaries, making it
an efficient representation. Arithmetics and all other operations, which can be
expressed by Matlab/Simulink, can be adapted to intervals [2,12]. For instance,
[1, 2] + [3, 4] yields [4, 6], which is the set of all possible sums between values
x, y with x ∈ [1, 2], y ∈ [3, 4]. We have shown in previous work [8] how interval
sets can be used for abstract interpretation of Simulink models. In our imple-
mentation, which is reused in this work, the interval analysis is a sound abstrac-
tion of IEEE-754 floats, including rounding modes after each operation and
3 Our algorithm currently does not support all variable size operations, which are

allowed by Simulink.
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symbols such as ±∞ and NaN. Thus, our implemented abstract interpretation
yields an interval set for each port and internal state of a block for the entire
model. Although interval sets provide an efficient method for analyzing large
models, interval sets lack, the capability to represent relations among multiple
variables [8].

4.2 Symbolic Execution with SMT

After having referenced how abstract interpretation using interval set domains is
carried out, we explain how SMT expressions, describing relations among signals
of a model, are constructed from block diagrams.

Types and Casting. For the Z3 SMT expressions, there are three different sorts,
boolean, integer and float, which we use in our algorithm. The boolean(B) and
floating point (F32,F64) data types from Simulink can be directly mapped to the
corresponding SMT sorts, while the wrapping effects or configurable saturation
of integers (In, n = 8, 16, 32) must be treated by adding modulo operations or
respectively constraining the value. For instance, u0 + u1 becomes (u0 + u1)
mod 216 if the types are uint16. The additional mod operation, which has to be
added to ensure correct type behavior after every operation, increases complexity
of the SMT expressions across the model and can be omitted if the intervals
prove, that no under- and overflow occurs.

For floating point operations, a rounding mode according to IEEE-754 must
be specified, such as towards zero or ±∞. By introducing a new variable z, the
plus operation between float expressions x and y can be precisely specified by
adding a global statement

∨

r∈R

z = plus(x, y, r) (1)

where R is the set of rounding modes. However, this approach leads to large
SMT expressions and increases the number of variables and computation effort
significantly. Therefore, we allow the user to specify a concrete rounding mode,
which is used for all floating point operations. This approach seems reasonable,
when assuming that neither Simulink nor external code changes the rounding
mode of the floating point unit.

Type casts are handled in different fashions, depending on the input and the
output type. Table 1 shows an overview of type casts, where ϕ is the expression,
which shall be casted. If both types are the same, the casting operation is ignored,
yielding the input. Boolean casts are represented by the if-then-else (ite) oper-
ator, yielding one or zero depending on the boolean value. The ite is a ternary
operator, so that the first argument is a boolean statement and the latter ones
are the results, depending on the first argument. Casting integers or floats to
boolean is modeled by setting the expression unequal to zero ¬(ϕ = 0). Sup-
pose both are integer types and the source type is larger than the destination
type, then the implicitly added mod operator takes care of the overflow effect.
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Table 1. Type casts as SMT expressions

From To SMT expression From To SMT expression

B I ite(ϕ, 1, 0) I B ¬(ϕ = 0)

B F ite(ϕ, 1.0, +0.0) Ia Ib ϕ mod b if b > a, no op otherwise

F B ¬(ϕ = 0) I32 F32 bit vector to fraction if |ϕ| ≤ 223

F I via rational and modulo I<32 F32 via bit vector to fraction

F64 F32 fresh variable I F64 via bit vector to fraction

F32 F64 copy bit vector parts

Assume the Matlab/Simulink setting saturate on integer overflow is active, then
the modulo operation is substituted by two ite operations

ite(ϕ > max,max, ite(ϕ < min,min, ϕ)) (2)

which restrict ϕ to the range [min,max].
For the special case, in which a 32-bit integer is casted to a 32-bit float,

several steps are taken. First, if the calculated interval proves the maximum
absolute value below 223, then the expression fits into the fraction of a 32-bit
float, since the other eleven bits are used for the exponent. In this case, we can
copy the bit vector representation of the integer into the fraction and set the
exponent to the bias value, i.e. such that the value of the exponent is zeroed,
yielding only the fraction. If the 32-bit integer exceeds ±223, then we create a
fresh variable, since we cannot make any assumptions on the typecast. For 64-bit
floats, no check needs to be done, since the largest integer in Simulink with 32
bits fits into the fraction of 52 bits.

In addition to potential overflows, casts from floating point to integers need
special treatment for NaN and ±∞ symbols. We wrap the expression

ite(isNaN(ϕ), 0, ite(isInf(ϕ), ite(sgn > 0,max,min), I(Q(ϕ)))) mod 2n (3)

around, where isNaN is translated to a bit vector operator by the SMT solver.
The integer cast (I(Q(ϕ))) is executed by a detour to rational number abstrac-
tion (Q), which is then translated to an integer using the modulo operation.
Similarly to the NaN check, we map the ±∞ symbols to either the minimum or
maximum value of the integer, if the saturation option is activated. Thus, if ∞
is casted to an 8-bit integer, the result is 127. In case the saturation option of
the block performing the type cast is deactivated, the first part of the isInf check
is set to zero, so that a cast from ±∞ results in zero, as it does in Simulink.
Consequently, the fraction and exponent are represented by rational number,
which is then rounded to an integer with the configured mode. Nevertheless, a
major drawback is that the bit vector constraints, which are attached to the
float expression, must be propagated, causing a large overhead. Therefore, we
deactivate the propagation for better efficiency, with the cost of an additional
over approximation.
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Finally, if both types are different floats, and the input is F32, a few checks
are made. First, a fresh F64 variable is constructed and optionally constraints
with respect to NaN, ±∞ are added, if the input variable cannot reach these
values. This is an approximation, since no F32 except ∞ yields a F64 ∞, which
holds for -∞ and NaN, too. Furthermore the bit vectors from the F32 are taken
into consideration, when the F64 variable is created. This procedure cannot be
used the other way around, except for NaN, since certain non ∞ F64 values yield
an ∞ F32 value. Furthermore, since the type and bit vectors are larger, this data
cannot be copied without loss of information. Thus, a new variable with the
optional NaN constraint, is created.

ite(isNaN(ϕ),NaN, ite(isInf(ϕ), sgn(ϕ)∞, ϕ) (4)

Block Functions. Block operations, as long as they are supported, are mapped
to the according SMT operation. In addition, Simulink adds implicit type casts,
when necessary. For example, if two float signals are connected to a logical
operator block, an implicit cast to boolean is executed. All supported blocks
perform the implicit casting operation.

Arithmetic operators are mapped to the corresponding integer or floating
point, i.e. bit vector implementation. For integers, the absolute value function
is mapped to the ite(ϕ < 0,−ϕ,ϕ) expression, while for floating point types
the sign bit is adjusted. Both, power and modulo can be expressed with integer
expressions, while for floats a fresh variable is created, over approximating those
functions. Finally, the square root on integers is expressed by a fresh variable z
and adding ∃z .zz = ϕ to the global constraints.

Functions, which are not supported by the SMT solver, such as transcen-
dentals, are mapped to anonymous functions, allowing the solver to choose any
value of the associated sort. For example, such an over approximation is applied
for trigonometric or exponential functions. In addition, constraints for bounded
functions, such as sine, are added to a list of global constraints, which is included,
when the solver is invoked. Concretely,

∧

z∈{±∞,
NaN}

sin(z) = NaN ∧∀x ¬(x = ±∞∨x = NaN) → sin(x) ≤ 1∧sin(x) ≥ 1 (5)

expresses the limitation of the sine function except for ±∞ and NaN as argu-
ments. Analogous expressions can be constructed for cos and arctan. For unsup-
ported blocks, fresh variables, which can take any value, are created. However,
since a data type is assigned to each port, further global constraints for the fresh
variable are added, in case of an integer type. For instance, if the output is an
uint8 data type, global constraints y0 ≥ 0 ∧ y0 ≤ 28 − 1 can be added for the
fresh variable y0.

Unlike intervals, which loose information about the control flow and relations
between values, SMT expressions abstract switches by the ite operation, keeping
the condition and relation between variables available for further analysis. This
memory of the formula is expressed by an abstract syntax tree (AST), which is
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Fig. 2. Abstract syntax tree example

constructed internally by the Z3 solver. An illustration of an AST is given in
Fig. 2, where each node represents an operator and the children the operands.
There is the ite ternary operator, binary relational operators(>, ≤) and an unary
cast operation. Suppose the ite is created from a switch block, then during the
evaluation of the root, no decision between the nodes uint8(u3) and −5 has been
made. Consider further, the expression

ite(u1, ite(¬u1, u2, u3), u4) (6)

where the result is never u2, since u1 cannot be true and false at the same time.
This is because, if u1 would be true, then the result would be u3, if u1 is false,
then the result is u4. A similar problem exists in the more complex tree in Fig. 2,
between the root and the second child, because the cast to u3 is never the result.

Sometimes SMT formulas can be theoretically constructed for blocks, but
in practice this is not feasible. Consider a large lookup table, which can be
expressed by a nested combination of ite operators. For each point in the lookup
table, a new ite expression is constructed, yielding a large overhead. In this case,
our implementation omits the computation of the SMT expression and yields a
fresh variable with additional constraints. These constraints are taken from the
interval analysis to limit the created variable.

Finally, the selector block allows the user to select a subset from an input
vector or matrix, such as the first two entries of a vector of length 20. Addition-
ally, the selection can be specified by a signal, which potentially changes with
each time step. Furthermore, if the selection signal is above 20, an unintended
data access occurs. Our verification solution adds constraints to verify, that the
selection signal stays within bounds.

Model Sources. Inputs to the entire system are expressed by In-blocks at root
level, which receive a special handling, since other In-blocks are virtually con-
nected to the corresponding Out-blocks during the enrichment of the model. For
each scalar in each root In-block, a new variable is created u0, . . . un, such that
the SMT sort is chosen based on the data type. Constants with an associated
data type, such as block parameters, are expressed by the corresponding SMT
constants. Since the inputs may change over time, new variables for the model
sources have to be created for each time step.

Path Encoding. With the generation of symbolic expressions for single blocks
given, this technique can be adapted to entire block diagrams. The execution
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order from Simulink is used as a schedule for the symbolic execution, such that
for each block a symbolic output expression can be computed based on the
symbolic input expression. For blocks with internal states, such as integrators,
delays or others, symbolic representation is computed, too.

4.3 Combining Abstract Interpretation with Symbolic Execution

Our technique, based on abstract interpretation, terminates if a fix point for
the model is found, i.e. any further considered time step does not change the
computed reachable values for any signal [6,8]. Assuming an infinite run time,
approximations need to be made for blocks with states and models with loops
to enforce the existence of a fix point, since our analysis would potentially not
terminate otherwise. After a specified time horizon, states, for which no fix point
was reached yet, are widened to the biggest interval for the states type. Since
each loop contains at least a block with a state, a fix point for every loop is
eventually reached.

By comparison, widening for SMT formulas is hard, if no fresh variable with-
out any constraints is used [11]. To avoid the construction of symbolic expressions
over multiple considered model time steps, we introduce new variables where con-
structed expressions would depend on expressions of a previous time step, which
is the case for blocks with states. However, our technique exploits the computed
intervals and uses the interval constraints for the further analysis. For example,
if an interval is only positive ([0,∞)), the constraint v0 ≥ 0 is added for the
newly created variable v0.

Nevertheless, the calculation and evaluation of SMT operations takes the
largest share of the computational time. Therefore, we add further optimiza-
tions, so that information among the two domains is shared. First, before a
boolean signal is evaluated by the SMT solver, the interval is checked, whether
it actually contains both boolean values and may thus be shrinked by evalu-
ating the SMT expression. This improvement provides a performance benefit,
especially for variant models, in which constant booleans are used to configure
a variant. A similar enhancement is applied during the evaluation of divisions.
First, the interval is evaluated if it contains zero and then the SMT solver is
invoked to find a solution, yielding a division by zero.

Vice versa, optimizations from the SMT solver are feed back to intervals.
First, if the SMT solver proves or disproves a boolean formula, the interval is
adjusted and the according constant is removed. Second, if a divisor is proven
to be non-zero, the zero is removed from the interval, before the operation is
carried out, which reduces the number of potential division by zero warnings.

Since formulas grow along paths, we evaluate each boolean expression along
the path to potentially decrease the size of the formula. In this way expressions
like x ∧ ¬x are reduced to zero, which is the signal value being passed to the
next ports.
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5 Evaluation

After having presented, how we combine abstract interpretation with interval
sets and symbolic execution with SMT to perform value range analysis on block
diagrams, we demonstrate the performance and discuss benefits and drawbacks
of our approach. We compare results of our analysis with results of the Math-
Works Simulink Design Verifier (SLDV)4, which performs a value range analysis
on Simulink models, too. We have applied our methods to several block diagrams
to highlight the main aspects of our technique. Table 2 provides an overview of all
models which have been evaluated. The second and third column in Table 2 lists
blocks and lines, while the fourth column presents the number of virtual blocks5,
i.e. blocks performing no operation and serving only as visual aids. Structural
properties of the systems are given in the last three columns. The fifth column
lists the number of subsystems, including conditional and atomic ones, while col-
umn six denotes the hierarchy, i.e. the maximum number of nested subsystems.
Finally, the last column determines, whether the system is a feedback systems
and contains a loop.

Table 2. Model metrics

Model Blocks Lines Virtual blocks Subsystems Hierarchy Closed loop

ABS Brake 48 50 16 5 2 yes

Quarter Car 57 70 11 3 2 yes

Suspension 46 55 13 3 1 yes

DAS 970 915 562 189 13 yes

8 Bit Counter 190 213 126 20 4 no

The first three systems represent applications from the automotive domain
and contain continuous blocks, which are not supported by the SLDV. Therefore,
we have discretized the systems with MathWorks model discretizer, using Tustins
method [10] (trapezoidal integration). Further adaptions, which are described
below, were necessary for some models. The ABS Brake represents an anti-lock
braking system and is taken from the Simulink examples6. In addition to the
discretization, we replaced the stop simulation block with an Out-block yield-
ing a feasible model for the SLDV. Given our current implementation, we had
to exchange the user defined function block, computing the relative slip7 by
1 − u1/u2 with a subsystem, an addition and division block, respectively. The
Quarter Car (we analyzed not the entire system) and Suspension systems, both

4 See http://www.mathworks.com/products/sldesignverifier/.
5 See http://mathworks.com/help/simulink/ug/nonvirtual-and-virtual-blocks.html.
6 See http://de.mathworks.com/help/simulink/examples/modeling-an-anti-lock-bra

king-system.html.
7 In case u2 = 0, ε is used, which is considered in our verification.

http://www.mathworks.com/products/sldesignverifier/
http://mathworks.com/help/simulink/ug/nonvirtual-and-virtual-blocks.html
http://de.mathworks.com/help/simulink/examples/modeling-an-anti-lock-braking-system.html
http://de.mathworks.com/help/simulink/examples/modeling-an-anti-lock-braking-system.html
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model vehicle suspension in the automotive domain and are taken from the
Simulink examples and Matlab Central8. To analyze both models, no further
modification, except the discretization, was necessary. As a pure discrete system,
the 8 Bit Counter, taken from Matlab Central and extended by an additional
Out-block, is being evaluated. Due to the nature of the hardware related model,
the entire system consists mainly of Memory- and Truth Table-blocks. The DAS
model is an industrial example of an assistance system from the automotive
domain.

Our evaluation platform is a computer with an Intel i5 2.67 GHz CPU, eight
gigabytes memory, with a 64-bit Windows 7 operating system and Matlab 2015b.
The logged analysis times of the SLDV exclude the duration of model com-
pilation and translation to the internal intermediate representation. Thus, we
exclude for our algorithm the time for starting Matlab, loading the model and
translating it to our intermediate abstract block diagram representation. Addi-
tionally to time elapse for analysis, we compare the number and type of issued
warnings.

Table 3. Analysis results

Model Time (s) Warnings

SMTR SMTF SLDV SMTR SMTF SLDV

ABS Brake 4.838 81.777 102 30 (1) 30 (1) 4

Quarter Car 1.315 1.255 11 35 (0) 35 (0) 2

Suspension 28.483 30.388 12 83 (0) 83 (0) 1

DAS 37.658 1317.478 75 225 (5) 225 (5) 31

8 Bit Counter 44.273 32.165 44 97 (0) 97 (0) 12

In Table 3, an overview of the comparison is given. On the left part of
the table, the time elapse is denoted, while the right part contains the num-
ber of warnings issued by each algorithm, including symbolic execution with
reals (SMTR), floats (SMTF) and the Simulink Design Verifier (SLDV). Since
the SLDV uses rational number approximations and no IEEE-754 floats, we
extended the evaluation by adding the symbolic execution with reals, to high-
light the computational cost for sound floating point abstractions. Hence, our
solution issues warning types, which are not considered by the SLDV, such as
potential NaN values or implicit rate transitions. Consequently, our algorithm
issues more warnings on all chosen models. Therefore, we indicated the number
of warnings, excluding warning types not being issued by the SLDV, in paren-
thesis.

As expected, because of the more complicated theory used for SMTF, the
time elapse using SMTR is for most models lower. Moreover, SMTF scales worse

8 See http://de.mathworks.com/matlabcentral/.

http://de.mathworks.com/matlabcentral/
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than SMTR to larger models. Comparing SMTR to SLDV, it can be noticed, that
SLDV is faster analyzing the Suspension model. Regarding the issued warnings,
SMTR and SMTF differ for no evaluated model, which we find to be plausible.
This is due to the fact, that no model was constructed, using IEEE-754 specific
blocks, such as isNaN or isInf. In addition, no model was chosen which exploits
differences between SMTR and SMTF. The SMTR yields also NaN warnings,
because IEEE-754 operations are also covered by the interval sets. However,
differences between the number of warnings of our approach and the SLDV will
further be discussed for the evaluated models.

The main difference concerns the Result could be NaN warning which is
non-existent for SLDV. However, SLDV computes for many signals the same
reachable values as SMTF/SMTR, which are often (−∞;∞) due to overapprox-
imations and thus could lead to a NaN result in case the sum of two signals
with reachable values (−∞;∞) is computed, as in many of the benchmark mod-
els. The further discussion will focus on warnings which are supported by both
approaches. SLDV detects for the ABS Brake model, two potential divisions by
zero (DbZ) and two potential data type overflows (DTO). Using SMTF/SMTR,
we were able to avoid the detection of three false positives to only one poten-
tial DbZ warning. Regarding the Quarter Car model, SLDV issues two DbZ
warnings. However, these result from constant values which were different from
zero at the time of analysis and were thus not detected by SMTF/SMTR. The
Suspension model causes SLDV to detect a false positive DTO warning. The
SMTF/SMTR warnings, however, are limited to potential NaN and implicit
rate transition warnings.

Comparing the warnings and computed reachable values for the DAS model,
we detected that SLDV is in general less overapproximative regarding data stores
(which are not yet supported by our tool) and triggered subsystems. However,
SLDV issues 19 DbZ and 12 DTO warnings which are caused by lookup tables
and divisions by constants or constant signals and data types as float64 which
may not overflow. Besides warnings for unsupported features, NaN occurrences
and implicit rate transitions, we were able to detect two paths in the model which
do not contribute to any model result. Furthermore a violation of the specified
design ranges has been detected, which might be a false positive warning.

For the 8 Bit Counter model, SLDV issues 12 overflow warnings. However,
these relate to signals which are either of integer types or of boolean type as a
result of a lookup. Inspecting the correspondent blocks and paths of the model,
these warnings can be identified as false positives and are, furthermore, not
detected using SMTR/SMTF.

6 Conclusion

This paper presented the combination of abstract interpretation with symbolic
execution based on SMT with IEEE-754 floating point arithmetic for static value
range analysis of block diagrams. The evaluation of the presented approach
against an industrial state of the art tool showed, that the industrial tool scales
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better to large models regarding the time elapse for analysis. However, it is not
able to detect IEEE-754 related modeling flaws, such as potential occurrences
of NaN or correct handling of infinity values due to the used rational number
approximation. Moreover, we were able to show that our presented approach
is able to reduce the number of false positives regarding warnings for potential
overflows and divisions by zero, compared to the industrial tool.

Future work will focus on extending the support of Simulink features, e.g.
Stateflow which is only partly supported yet, and to reduce over approximations
for special system classes.
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