
Rocco De Nicola
Eva Kühn (Eds.)

 123

LN
CS

 9
76

3

14th International Conference, SEFM 2016
Held as Part of STAF 2016
Vienna, Austria, July 4–8, 2016, Proceedings

Software Engineering
and Formal Methods

Lecture Notes in Computer Science 9763

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Rocco De Nicola • Eva Kühn (Eds.)

Software Engineering
and Formal Methods
14th International Conference, SEFM 2016
Held as Part of STAF 2016
Vienna, Austria, July 4–8, 2016
Proceedings

123

Editors
Rocco De Nicola
IMT - School for Advanced Studies
Lucca
Italy

Eva Kühn
Institute of Computer Languages
TU Wien
Wien
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-41590-1 ISBN 978-3-319-41591-8 (eBook)
DOI 10.1007/978-3-319-41591-8

Library of Congress Control Number: 2016943040

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but all focus
on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2016 took place at TU Wien, Austria, during July 4–8, 2016, and hosted the
five conferences ECMFA 2016, ICGT 2016, ICMT 2016, SEFM 2016, and TAP 2016,
the transformation tool contest TTC 2016, eight workshops, a doctoral symposium, and
a projects showcase event. STAF 2016 featured eight internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2016 Organizing Committee thanks (a) all participants for submitting to
and attending the event, (b) the program chairs and Steering Committee members of the
individual conferences and satellite events for their hard work, (c) the keynote speakers
for their thoughtful, insightful, and inspiring talks, and (d) TU Wien, the city of Vienna,
and all sponsors for their support. A special thank you goes to the members of the
Business Informatics Group, coping with all the foreseen and unforeseen work (as
usual ☺)!

July 2016 Gerti Kappel

Preface

The 14th edition of the International Conference on Software Engineering and Formal
Methods (SEFM) presented new advances and research results in the fields of software
engineering and formal methods. The conference brought together leading researchers
and practitioners from academia and industry, to advance the state of the art in formal
methods, to facilitate their uptake in the software industry, and to encourage their
integration within practical software engineering methods and tools.

Authors were invited to submit full research papers describing original research
results, case studies, and tools; and short new ideas/work-in-progress papers describing
new approaches, techniques, and/or tools not fully validated yet. The topics of interest
for submission included the following aspects of software engineering and formal
methods:

– New frontiers in software architecture: self-adaptive, service-oriented, and cloud
computing systems; component, object, and multi-agent systems; real-time, hybrid,
and embedded systems; reconfigurable systems

– Software verification and testing: model checking, theorem proving, and decision
procedures; verification and validation; probabilistic verification and synthesis;
testing, re-engineering, and reuse

– Software development methods: requirement analysis, modeling, specification, and
design; light-weight and scalable formal methods; software evolution, maintenance,
and reuse

– Application and technology transfer: case studies, best practices, and experience
reports; tool integration, education, HCI, interactive systems, and human error
analysis

– Security and safety: security and mobility; safety-critical, fault-tolerant, and secure
systems; software certification

– Design principles: programming languages, domain-specific languages, type theory,
abstraction, and refinement.

SEFM 2016 received 114 submissions of abstracts that materialized as 88 papers.
All submitted papers underwent a rigorous review process, and each paper received at
least three reviews. After a careful discussion phase, the international Program Com-
mittee decided to select 20 research papers and five new ideas/work-in-progress short
papers. These papers cover a wide variety of topics from areas where formal methods
can be applied to software engineering. They also address a broad range of application
domains.

The conference featured two keynote talks, by Erika Ábrahám (RWTH Aachen
University, Germany) and Gul Agha (University of Illinois at Urbana-Champaign,
USA); their presentations were accompanied by the invited papers that can be found at
the beginning of this volume.

We would first like to thank the STAF general chair, Gerti Kappel, for her support
with planning and running the conference, the local Organization Committee for taking
care of the local arrangements, the SEFM Steering Committee for their assistance, and
the SEFM local support team for the local and technical support. We are grateful to
EasyChair for the support with the paper submission and reviewing process, and with
the preparation of this volume. We were able to put together an exciting technical
program that would not have been possible without the excellent work of the Program
Committee members and their external reviewers.

Finally, we would like to thank the authors of all submitted papers, our invited
speakers, and all the participants of the conference in Vienna, all of whom contributed
to the success of the 2016 edition of SEFM.

July 2016 Rocco De Nicola
Eva Kühn

VIII Preface

Organization

Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Dalal Alrajeh Imperial College London, UK
Farhad Arbab CWI and Leiden University, The Netherlands
Luis Barbosa Universidade do Minho, Portugal
Jiri Barnat Masaryk University, Czech Republic
Antonia Bertolino ISTI-CNR, Italy
Jonathan P. Bowen London South Bank University, UK
Mario Bravetti University of Bologna, Italy
Ana Cavalcanti University of York, UK
Zhenbang Chen National Laboratory for Parallel and Distributed

Processing, Changsha, China
Alessandro Cimatti Fondazione Bruno Kessler, Trento, Italy
Hung Dang Van UET, Vietnam National University, Hanoi, Vietnam
Jim Davies University of Oxford, UK
Rocco De Nicola IMT Lucca, Italy
John Derrick University of Sheffield, UK
George Eleftherakis The University of Sheffield International Faculty,

Thessaloniki, Greece
José Luiz Fiadeiro Royal Holloway, University of London, UK
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Hubert Garavel Inria Rhone-Alpes/VASY, France
Dimitra Giannakopoulou NASA Ames Research Center, USA
Stefania Gnesi ISTI-CNR, Italy
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Rob Hierons Brunel University, UK
Michaela Huhn TU Clausthal, Germany
Einar Broch Johnsen University of Oslo, Norway
Gabriel Juhas Slovak University of Technology Bratislava, Slovakia
Jens Knoop TU Vienna, Austria
Paddy Krishnan Oracle Labs, Brisbane, Australia
Eva Kühn Vienna University of Technology, Austria
Kung-Kiu Lau The University of Manchester, UK
Zhiming Liu Birmingham City University, UK
Antónia Lopes University of Lisbon, Portugal
Mercedes Merayo Universidad Complutense de Madrid, Spain
Viet Yen Nguyen RotoStadt, Ottawa, Canada

Fernando Orejas Universitat Politècnica de Catalunya, Barcelona, Spain
Corina Pasareanu CMU/NASA Ames Research Center, USA
Marinella Petrocchi IIT-CNR, Italy
Anna Philippou University of Cyprus, Nicosia, Cyprus
Sanjiva Prasad Indian Institute of Technology Delhi, India
Geguang Pu East China Normal University, China
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Bernhard Rumpe RWTH Aachen University, Germany
Gwen Salaün Grenoble INP, Inria, LIG, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Bernhard Schätz TU München, Germany
Vesna Sesum-Cavic TU Vienna, Austria
Marjan Sirjani Reykjavik University, Iceland
Graeme Smith University of Queensland, Australia
Markus Stumptner University of South Australia
Francesco Tiezzi Università di Camerino, Italy
Cláudia Werner Universidade Federal do Rio de Janeiro, Brazil
Danny Weyns Linnaeus University, Sweden

Additional Reviewers

Aravantinos, Vincent
Arellanes, Damian
Arshad, Rehman
Bagheri, Maryam
Basile, Davide
Baxter, James
Bendík, Jaroslav
Bouajjani, Ahmed
Bruintjes, Harold
Bubel, Richard
Cerna, Ivana
Chen, Xiaohong
Cheng Hum Yuen, Steven
Crass, Stefan
de Frutos Escrig, David
Di Cola, Simone
Din, Crystal Chang
Doherty, Simon
Edmunds, Andrew
Eikermann, Robert
Evrard, Hugues
Fantechi, Alessandro
Fazzolari, Michela

Filali Amine, Mamoun
Fornari, Fabrizio
Grossmann, Georg
Guedemann, Matthias
Gupta, Pragya Kirti
Hamid, Brahim
Jebali, Fatma
Johansson, Moa
K.R., Raghavendra
Khamespanah, Ehsan
Li, Qin
Lima, Lucas
Machado, Rodrigo
Margheri, Andrea
Markey, Nicolas
Mateescu, Radu
Mayer, Wolfgang
Mazzanti, Franco
Miyazawa, Alvaro
Mrázek, Jan
Muske, Tukaram
Muzi, Chiara
Nogueira, Sidney

Nuñez, Manuel
Plotnikov, Dimitri
Preguiça, Nuno
Qian, Chen
Raco, Deni
Re, Barbara
Robillard, Simon
Roth, Alexander
Ročkai, Petr
Sabouri, Hamideh
Santos, André
Sasse, Ralf
Schots, Marcelo
Schulze, Christoph
Selway, Matt
Serwe, Wendelin
Sinha, Rohit
Sokolova, Ana
Stumpf, Johanna Beate
Štill, Vladimír
Su, Ting
Taylor, Ramsay
Tiezzi, Francesco

X Organization

Tran, Cuong
Truong, Hoang
van Breugel, Franck
Vandin, Andrea
Vanzetto, Hernán

Varshosaz, Mahsa
von Rhein, Alexander
Wang, Shuling
Winter, Joost
Winter, Kirsten

Young, Bill
Yu, Hengbiao
Zhao, Liang

Organization XI

Contents

Invited Papers

Abstractions, Semantic Models and Analysis Tools for Concurrent
Systems: Progress and Open Problems (Extended Abstract) 3

Gul Agha

Satisfiability Checking: Theory and Applications. 9
Erika Ábrahám and Gereon Kremer

Concurrency and Non-interference

Automatic Derivation of Platform Noninterference Properties 27
Oliver Schwarz and Mads Dam

Linearizability and Causality. 45
Simon Doherty and John Derrick

Refinement-Based Verification of Communicating Unstructured Code 61
Nils Jähnig, Thomas Göthel, and Sabine Glesner

Guided Dynamic Symbolic Execution Using Subgraph Control-Flow
Information (Short Paper). 76

Josselin Feist, Laurent Mounier, and Marie-Laure Potet

Program Analysis

Correlating Structured Inputs and Outputs in Functional Specifications 85
Oana Fabiana Andreescu, Thomas Jensen, and Stéphane Lescuyer

Combining Predicate Abstraction with Fixpoint Approximations 104
Tuba Yavuz

Finding Boundary Elements in Ordered Sets with Application to Safety
and Requirements Analysis . 121

Jaroslav Bendík, Nikola Beneš, Jiří Barnat, and Ivana Černá

Combining Abstract Interpretation with Symbolic Execution for a Static
Value Range Analysis of Block Diagrams . 137

Christian Dernehl, Norman Hansen, and Stefan Kowalewski

http://dx.doi.org/10.1007/978-3-319-41591-8_1
http://dx.doi.org/10.1007/978-3-319-41591-8_1
http://dx.doi.org/10.1007/978-3-319-41591-8_2
http://dx.doi.org/10.1007/978-3-319-41591-8_3
http://dx.doi.org/10.1007/978-3-319-41591-8_4
http://dx.doi.org/10.1007/978-3-319-41591-8_5
http://dx.doi.org/10.1007/978-3-319-41591-8_6
http://dx.doi.org/10.1007/978-3-319-41591-8_6
http://dx.doi.org/10.1007/978-3-319-41591-8_7
http://dx.doi.org/10.1007/978-3-319-41591-8_8
http://dx.doi.org/10.1007/978-3-319-41591-8_9
http://dx.doi.org/10.1007/978-3-319-41591-8_9
http://dx.doi.org/10.1007/978-3-319-41591-8_10
http://dx.doi.org/10.1007/978-3-319-41591-8_10

Model Checking

Program Generation Using Simulated Annealing and Model Checking. 155
Idress Husien and Sven Schewe

LTL Parameter Synthesis of Parametric Timed Automata 172
Peter Bezděk, Nikola Beneš, Jiří Barnat, and Ivana Černá

Model Checking Simulation Rules for Linearizability 188
Graeme Smith

LTL Model Checking under Fairness in PROB (Short Paper). 204
Ivaylo Dobrikov, Michael Leuschel, and Daniel Plagge

Verification

Counterexamples from Proof Failures in SPARK . 215
David Hauzar, Claude Marché, and Yannick Moy

Proving Termination of Programs with Bitvector Arithmetic
by Symbolic Execution . 234

Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder

SMT-Based Automatic Proof of ASM Model Refinement 253
Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

Coq Implementation of OO Verification Framework VeriJ (Short Paper) 270
Ke Zhang and Zongyan Qiu

Towards a Proof Framework for Information Systems
with Weak Consistency (Short Paper) . 277

Peter Zeller and Arnd Poetzsch-Heffter

Interaction and Adaptation

A Cognitive Framework Based on Rewriting Logic for the Analysis
of Interactive Systems . 287

Antonio Cerone

Incentive Stackelberg Mean-Payoff Games . 304
Anshul Gupta, Sven Schewe, Ashutosh Trivedi,
Maram Sai Krishna Deepak, and Bharath Kumar Padarthi

Stability-Based Adaptation of Asynchronously Communicating Software 321
Carlos Canal and Gwen Salaün

Compliance Checking in the Open Payments Ecosystem (Short Paper) 337
Shaun Azzopardi, Christian Colombo, Gordon J. Pace, and Brian Vella

XIV Contents

http://dx.doi.org/10.1007/978-3-319-41591-8_11
http://dx.doi.org/10.1007/978-3-319-41591-8_12
http://dx.doi.org/10.1007/978-3-319-41591-8_13
http://dx.doi.org/10.1007/978-3-319-41591-8_14
http://dx.doi.org/10.1007/978-3-319-41591-8_15
http://dx.doi.org/10.1007/978-3-319-41591-8_16
http://dx.doi.org/10.1007/978-3-319-41591-8_16
http://dx.doi.org/10.1007/978-3-319-41591-8_17
http://dx.doi.org/10.1007/978-3-319-41591-8_18
http://dx.doi.org/10.1007/978-3-319-41591-8_19
http://dx.doi.org/10.1007/978-3-319-41591-8_19
http://dx.doi.org/10.1007/978-3-319-41591-8_20
http://dx.doi.org/10.1007/978-3-319-41591-8_20
http://dx.doi.org/10.1007/978-3-319-41591-8_21
http://dx.doi.org/10.1007/978-3-319-41591-8_22
http://dx.doi.org/10.1007/978-3-319-41591-8_23

Development Methods

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 347
Adrien Champion, Arie Gurfinkel, Temesghen Kahsai,
and Cesare Tinelli

Modularizing Crosscutting Concerns in Component-Based Systems. 367
Antoine El-Hokayem, Yliès Falcone, and Mohamad Jaber

Tightening a Contract Refinement . 386
Alessandro Cimatti, Ramiro Demasi, and Stefano Tonetta

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 403
Lukas Ladenberger and Michael Leuschel

Author Index . 419

Contents XV

http://dx.doi.org/10.1007/978-3-319-41591-8_24
http://dx.doi.org/10.1007/978-3-319-41591-8_25
http://dx.doi.org/10.1007/978-3-319-41591-8_26
http://dx.doi.org/10.1007/978-3-319-41591-8_27

Invited Papers

Abstractions, Semantic Models and Analysis
Tools for Concurrent Systems: Progress

and Open Problems

(Extended Abstract)

Gul Agha(B)

University of Illinois at Urbana-Champaign, Champaign, USA
agha@illinois.edu

http://osl.cs.illinois.edu

Abstract. The growth of mobile and cloud computing, cyberphysical
systems and the internet of things has arguably made scalable concur-
rency the central to computing. Actor languages and frameworks have
been widely adopted to address scalability. Moreover, new tools that
combine static and dyamic analysis are making software safer. This pre-
sentation describes the actor programming model and reasoning tools
for scalable concurrency. As we scale up cyberphysical applications and
build the internet of things, a key limitation of current languages and
tools becomes apparent: the difficulty of representing quantitative and
probabilistic properties and reasoning about them. The paper concludes
by discussing some techniques to address reasoning about the behavior
of complex scalable concurrent applications.

1 Introduction

The increasing use of web services, web applications, cloud computing, multi-
core computers, and sensor networks have made concurrency central to software
development. The software industry is adapting to these changes by adopting
concurrent programming as a key to achieving the performance goals of software
product lines. Because many applications require scalable computing, the Actor
model of concurrent computation [12] has naturally found increased applicability.
A number of actor languages and frameworks are being used by software devel-
opers in industry today. Erlang [4], originally developed by Ericsson, has been
used to implement Ericsson’s backbone system, the Facebook Chat system [5],
and the Vendetta game engine. Google released DART [2], an actor language
for the in-browser application market. Actors in Scala are used by Twitter to
program its backbone system [6]. Microsoft’s Orleans actor framework [13] has
hundreds of industrial users. Other applications written using one of these actor
frameworks include WhatsApp [3], LinkedIn, the Halo 4 game engine [1], and
the British National Health Service backbone [7]. We first describe the actor
model and then discuss how we can test actor programs. We then discuss some
techniques to scale up reasoning in order to increase confidence in large systems.
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 3–8, 2016.
DOI: 10.1007/978-3-319-41591-8 1

4 G. Agha

The Actor Model. An actor is an autonomous, interacting unit of computation
with its own memory. An actor could be a computer node, a virtual process, or
a thread with only private memory. If we were trying to model a shared memory
computation using actors, we would have to represent each variable as a (simple)
actor. But scalable systems require greater abstraction and the Actor model
is more useful for modeling such systems. Each actor operates asynchronously
rather than on a global clock. This models distributed systems where precise
synchronization between actions of subcomponents is not feasible.

Actors communicate by sending each other messages. Because there is no
action at a distance, these messages are by default asynchronous. Abstractions for
synchronous messaging must be defined using asynchronous messages (e.g., [9]).
Finally, an actor may create new actors. In software, this models creation of new
concurrent objects and in operating system it can model process creation. In the
case of hardware, it may model adding modules to an existing system. The concept
of actors is closely related to that of autonomous agents [16].

Variants of the Actor Model. In real-time systems, sometimes a global clock is
used [20]. In modeling networks, probability is added to transition [8,11]. How-
ever, as I noted in 2003, there is a need for more complex models of time than
the current extremes of asynchronous or synchronous computation and commu-
nication. In physics, the notion of distance and the speed of light bounds the
synchrony of events at different objects. Similarly, a richer model of concurrent
systems should have a notion of “virtual” distance with which the degree of syn-
chronization varies. However, this degree of synchronization need not be exact:
the model needs to incorporate probability so that we can reason about the sto-
chastic nature of message delivery, or about failures, or other hard to control
variables.

2 Concolic Testing

The behavior of a computing system can be represented as a binary tree (a higher
arity tree can be reduced to a binary tree), where the internal nodes of a com-
putation tree represent decision points (resulting from conditional statements
or from nondeterminism), and the branches represent (one or more) sequen-
tial steps. Note that the nondeterminism may be a way of modeling the results
of different mechanisms: probabilistic transitions, scheduling of actors, or com-
munication delays. For simplicity, we will call these nondeterministic choices
scheduling choices. System verification is a process of examining a tree of poten-
tial executions to see if some property holds at each step.

Themost common formof correctness reasoning is testing. Testing involves exe-
cuting a system, which in turn requires picking some data values for the inputs and
fixing an order for the scheduling choices. In order to make testing feasible, only a
finite approximation of the potentially infinite behavior is considered. Such approx-
imation is done in two ways: first, by restricting the domain of inputs. Second, by
bounding the depth of the loops. The bound on the depth is typically arbitrary.

Abstractions, Semantic Models and Analysis Tools for Concurrent Systems 5

Of course, termination is undecidable, but more pragmatically, even though for
many computations termination may be decidable, it may not be feasible to auto-
matically determine what bound to use for a loop. Finally, only a small number of
potential scheduling choices are considered.

Even with these restrictions, the space of possible behaviors is generally too
large to examine fully. To overcome the problem, symbolic testing was proposed.
The idea of symbolic testing is quite simple. Instead of using concrete values
for data inputs, a symbolic value (variable) can be associated with each value.
Then at each branch point, a constraint is generated on the variable. If there
are values for which the constraint holds, the branch in which the constraint is
true is explored, carrying the constrained forward. At the next branch point,
the constraint on that branch is added to the constraint which has been carried
forward, and again solved to see if there are values satisfying it. Similarly, if there
are values satisfying the negation of the constraint, the other branch is explored.
During the exploration, the symbolic state is checked to see if the constraints
implied by the specification could be violated.

The problem with using symbolic testing is that the constraints involved are
often unsolvable or computationally intractable. For example, if these constraints
involve some complex functions or use of dynamic memory. In this case, it is
unclear if a branch might be taken. When a constraint at a branch point cannot
be solved, tools based on symbolic checking assume that both branches might
be taken, leading to a large number of erroneous bug reports and causing tool
users to ignore the tool.

To overcome this difficulty, concolic testing was proposed [15]1. The idea is
to simultaneously do concrete testing and symbolic testing on the same system.
When a constraint cannot be solved, use randomization to simplify the constraint
and find a partial solution. This increases coverage, but of course, does not pro-
vide completeness. We extended this concept to systems with dynamic memory,
and to systems with concurrency, both the actor and the Java multi-threaded
variety.

In case of concurrent systems, there are a large number of possible execu-
tions which are result in the same causal structure. This is because independent
events (e.g. those on two different actors that have no causal relation) are simply
interleaved. However, considering different orders may not affect the outcome.
It is important to reduce or eliminate the number of such redundant executions
as there are an exponential number of choices. Such reductions are called partial
order reduction. A number of techniques, such as a macro-step semantics for
actors have been developed to facilitate partial order reduction. We have also
used concolic testing to dynamically detect interleavings that are redundant.

Concolic testing has been implemented in two tools which enable automatic
unit (as opposed to system) testing of software written in C [24], JAVA [23],
and actor programs [22]. Although the idea behind concolic testing is rather
simple, concolic testing has proved very effective in efficiently finding previously
undetected bugs in real-world software, in some cases, in software with a large

1 Although the term first appears in [24].

6 G. Agha

user base which had gone through testing before being deployed. It has since
been adopted in a number of commercial tools, including PEX from Microsoft2.

Partial Order Reductions for Testing. In case of concurrent systems, there are
a large number of possible executions which are result in the same causal struc-
ture [21]. This is because independent events (e.g. those on two different actors
that have no causal relation) are simply interleaved. However, considering dif-
ferent orders may not affect the outcome. It is important to reduce or eliminate
the number of such redundant executions as there are an exponential num-
ber of choices. Such reductions are called partial order reduction. A number of
techniques, such as a macro-step semantics for actors have been developed to
facilitate partial order reduction [10].

We have also used concolic testing to dynamically detect interleavings that
are redundant. The macro-step semantics of actors is independent of the partic-
ularly library or language used: because the processing of a message by an actor
is atomic, it can be done to an arbitrary depth before another actor takes a tran-
sition. Such properties have been used to provide a path exploration interface
which can be common to all actor frameworks in Java [19].

Concolic Walk. When concolic testing encounters a constraint that a constraint
solver cannot handle, it needs to do a heuristic search in the space defined by
the subset of constraints that it can solve. Many heuristics have been proposed
to address this problem. In fact, we have shown that it is often possible to
essentially use a combination of linear constraint solving and heuristic search to
address this problem [14].

3 Reasoning About Large-Scale Concurrent Systems

In large-scale concurrent systems, we are often interested in probabilistic guar-
antees on the behavior of the system, and in quantitative properties (energy
consumption, throughput, etc.) of such systems.

Statistical Model Checking. One possibility is sampling the behavior of a system:
in the real world, engineers often use Monte Carlo simulations to analyze systems.
This process can be made more rigorous by expressing the desired properties
of a system in a formal logic such as continuous stochastic logic (CSL). We
have proposed using an approach we call Statistical Method Checking to verify
properties expressed in a sublogic of CSL [25]. This work was extended to verify
properties involving unbounded untils in [26]. The methods are implemented in
a tool called VESTA [26] which has been used in a number of applications.

2 http://research.microsoft.com/en-us/projects/pex/.

http://research.microsoft.com/en-us/projects/pex/

Abstractions, Semantic Models and Analysis Tools for Concurrent Systems 7

Verifying Quantitative Properties in Large State Spaces. The notion of global
state also needs to be richer. In statistical physics, one often looks at the probabil-
ity distribution over states to reason about aggregate properties such as temper-
ature. Similarly, we can effectively measure certain quality of service parameters
by representing the global state of systems not as a nondeterministic interleaving
of the local states of components, but as a superposition of the individual states.
We have developed a notion of state based on this concept. The notion of state
as a probability mass function allows us to use a variant of linear temporal logic
to express properties and to solve the model checking problem by using linear
algebra for systems that are Markovian [17]. The technique is particularly useful
for systems such as sensor networks [18].

Acknowledgements. The work on this paper has been supported in part by Air Force
Research Laboratory and the Air Force Office of Scientific Research under agreement
number FA8750-11-2-0084, and by National Science Foundation under grant number
CCF-1438982.

References

1. Building Halo 4, a video game, using the actor model. http://www.infoq.com/
news/2015/03/halo4-actor-model

2. Dart. http://www.dartlang.org
3. Erlang-poweredWhatsapp.https://www.erlang-solutions.com/about/news/erlang-

powered-whatsapp-exceeds-200-million-monthly-users
4. Erlang programming language
5. Facebook chat. https://www.facebook.com/note.php?note id=14218138919
6. How and why Twitter uses Scala. https://www.redfin.com/devblog/2010/05/how

and why twitter uses scala.html
7. NHS to deploy Riak for new IT backbone. http://basho.com/posts/press/nhs-

to-deploy-riak-for-new-it-backbone-with-quality-of-care-improvements-in-sight/
8. Agha, G., Gunter, C., Greenwald, M., Khanna, S., Meseguer, J., Sen, K., Thati,

P.: Formal modeling and analysis of DOS using probabilistic rewrite theories. In:
Workshop on Foundations of Computer Security (FCS 2005), vol. 20, pp. 1–15
(2005)

9. Agha, G., Houck, C.R., Panwar, R.: Distributed execution of actor programs. In:
Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) Languages and Compil-
ers for Parallel Computing. LNCS, vol. 589, pp. 1–17. Springer, Heidelberg (1992)

10. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. J. Funct. Program. 7(1), 1–72 (1997)

11. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electron. Notes Theoret. Comput. Sci. 153(2),
213–239 (2006)

12. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press Series in Artificial Intelligence. MIT Press, Cambridge (1990)

13. Bernstein, P.A., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: distributed
virtual actors for programmability and scalability. Technical report MSR-TR-2014-
41, Microsoft Research (2014)

http://www.infoq.com/news/2015/03/halo4-actor-model
http://www.infoq.com/news/2015/03/halo4-actor-model
http://www.dartlang.org
https://www.erlang-solutions.com/about/news/erlang-powered-whatsapp-exceeds-200-million-monthly-users
https://www.erlang-solutions.com/about/news/erlang-powered-whatsapp-exceeds-200-million-monthly-users
https://www.facebook.com/note.php?note_id=14218138919
https://www.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html
https://www.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html
http://basho.com/posts/press/nhs-to-deploy-riak-for-new-it-backbone-with-quality-of-care-improvements-in-sight/
http://basho.com/posts/press/nhs-to-deploy-riak-for-new-it-backbone-with-quality-of-care-improvements-in-sight/

8 G. Agha

14. Dinges, P., Agha, G.: Solving complex path conditions through heuristic search
on induced polytopes. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pp. 425–436. ACM
(2014)

15. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
Sarkar, V., Hall, M.W. (eds.) PLDI, pp. 213–223. ACM (2005)

16. Jamali, N., Thati, P., Agha, G.A.: An actor-based architecture for customizing and
controlling agent ensembles. IEEE Intell. Syst. 2, 38–44 (1999)

17. Kwon, Y., Agha, G.: Verifying the evolution of probability distributions governed
by a DTMC. IEEE Trans. Softw. Eng. 37(1), 126–141 (2011)

18. Kwon, Y., Agha, G.: Performance evaluation of sensor networks by statistical mod-
eling and Euclidean model checking. ACM Trans. Sensor Netw. 9(4), 39:1–39:38
(2013)

19. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Basset: a tool for systematic
testing of actor programs. In: Roman, G.-C., Sullivan, K.J. (eds.) 2010 Proceedings
of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 7–11 November 2010, Santa Fe, NM, USA, pp. 363–364. ACM (2010)

20. Ren, S., Agha, G.: RTsynchronizer: language support for real-time specifications
in distributed systems. In: Gerber, R., Marlowe, T.J. (eds.) Proceedings of the
ACM SIGPLAN 1995 Workshop on Languages, Compilers, & Tools for Real-Time
Systems (LCT-RTS 1995), 21–22 June 1995, La Jolla, California, pp. 50–59. ACM
(1995)

21. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

22. Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer,
Heidelberg (2006)

23. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing
of multi-threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 166–182. Springer, Heidelberg (2007)

24. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In:
Wermelinger, M., Gall, H. (eds.) Proceedings of the 10th European Software Engi-
neering Conference held jointly with 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 5–9 September 2005, Lisbon,
Portugal, pp. 263–272. ACM (2005)

25. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

26. Sen, K., Viswanathan, M., Agha, G.: Vesta: a statistical model-checker and ana-
lyzer for probabilistic systems. In: Second International Conference on the Quan-
titative Evaluaiton of Systems (QEST 2005), 19–22 September 2005, Torino, Italy,
pp. 251–252. IEEE Computer Society (2005)

Satisfiability Checking: Theory and Applications

Erika Ábrahám(B) and Gereon Kremer

RWTH Aachen University, Aachen, Germany
abraham@cs.rwth-aachen.de

Abstract. Satisfiability checking aims to develop algorithms and tools
for checking the satisfiability of existentially quantified logical formu-
las. Besides powerful SAT solvers for solving propositional logic formu-
las, sophisticated SAT-modulo-theories (SMT) solvers are available for
a wide range of theories, and are applied as black-box engines for many
techniques in different areas. In this paper we give a short introduction
to the theoretical foundations of satisfiability checking, mention some of
the most popular tools, and discuss the successful embedding of SMT
solvers in different technologies.

1 Introduction

First-order-logic is a powerful modelling formalism frequently used to specify
problems in different areas like verification, termination analysis, test case gen-
eration, controller synthesis, equivalence checking, combinatorial tasks, schedul-
ing, planning, and product design automation and optimisation, just to mention
a few well-known examples. Once the problem is formalised, algorithms and their
implementations are needed to check the validity or satisfiability of the formulas,
and in case they are satisfiable, to identify satisfying solutions. Algorithms to
solve this problem are called decision procedures.

In mathematical logic, in the early 20th century some novel decision pro-
cedures were developed for arithmetic theories. With the advent of computer
systems, big efforts were made to provide automated solutions in form of prac-
tically feasible implementations of decision procedures. In the area of symbolic
computation, this development led to computer algebra systems supporting all
kinds of scientific computations. Another line of research, satisfiability checking
[10], started to focus on the more specific aim of checking the satisfiability of
existentially quantified logical formulas.

For Boolean propositional logic, which is known to be NP-complete, in the
late ’90s impressive progress was made in the area of satisfiability checking,
resulting in powerful SAT solvers. The first idea used resolution for quanti-
fier elimination [30], but it had serious problems with the explosion of the
memory requirements with increasing problem size. A combination of enumera-
tion and Boolean constraint propagation [29] brought important enhancements.
Another major improvement was achieved by a novel combination of enumera-
tion, Boolean constraint propagation and resolution, leading to conflict-driven

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 9–23, 2016.
DOI: 10.1007/978-3-319-41591-8 2

10 E. Ábrahám and G. Kremer

clause-learning and non-chronological backtracking [50]. Later on, this impres-
sive progress was continued by novel efficient implementation techniques (e.g.,
sophisticated decision heuristics, two-watched-literal scheme, restarts, cache per-
formance, etc.). Also different extensions are available, for example QBF solvers
for quantified Boolean formulas, Max-SAT solvers to find solutions which satisfy
a maximal number of clauses, or #SAT solvers to find all satisfying solutions
of a propositional logic formula. State-of-the-art SAT solvers are able to solve
such impressively large propositional logic problems that they became not only
applicable in industry, but one of the most important engines in, e.g., hardware
verification.

Driven by this success, the satisfiability checking community started to enrich
propositional SAT solvers with solver modules for different theories. Nowa-
days, sophisticated SAT-modulo-theories (SMT) solvers are available for a wide
range of theories like equalities and uninterpreted functions, bit-vector arith-
metic, floating-point arithmetic, array theory, difference logic, (quantifier-free)
linear real/integer/mixed arithmetic, and (quantifier-free) non-linear real/integ-
er/mixed arithmetic. Latest research led also to functional extensions, going
beyond satisfiability checking for existentially quantified formulas towards pro-
viding an unsatisfiable core for unsatisfiable input problems, proof of unsatis-
fiability, solving quantified formulas, and solving optimisation problems. Some
solvers also exploit parallelisation to make use of multi-core hardware architec-
tures.

The strength of SMT solvers is that they offer fully automated push-button
solutions. Thanks to efficient data structures and elaborate search heuristics,
their increasing efficiency is coupled with increasing popularity and success in
applications. An important enabling factor to applications was the introduction
of a standard input language SMT-LIB [8] with a first release in 2004, which allows
users to specify their problems in the standard language and to feed it to different
solvers to find the optimal tool for a given purpose.

The standard also enabled the collection of reference benchmark sets and
the start of annual competitions [7]. The first competition took place in 2005
with 12 participating solvers in 7 divisions (theories, theory combinations, or
fragments thereof) on 1360 benchmarks, which increased in 2015 to 21 solvers
competing in 40 divisions on 154238 benchmarks in the main track. All these
activities contributed to the consolidation of an SMT solving community and
to the visibility of the SMT-solving technologies. Nowadays, SMT solvers are
widely used and are key components of many techniques in different academic
and industrial areas.

In the following we give a short introduction to the theoretical foundations
of satisfiability checking in Sect. 2, give a nutshell-overview about state-of-the-
art SMT solvers including our own SMT solver SMT-RAT in Sect. 3, and discuss
the efficient embedding of SMT solvers in different technologies in Sect. 4. We
conclude the paper in Sect. 5. For further reading on SMT solving we refer to,
e.g., [9,46].

Satisfiability Checking: Theory and Applications 11

Fig. 1. Example theory constraints from some logics that are included in the SMT-LIB

standard language. The involved operators are: f, g, h are uninterpreted functions; |
and & are bit-wise or and and, respectively; finally, for arrays write(a, i, v) is the array
a after setting its ith field to v, whereas read(a, j) stays for the jth field of a. For
readability, the examples are not in SMT-LIB syntax, e.g., they use infix notation.

2 Satisfiability Checking

Satisfiability checking aims at automated solutions for determining the satis-
fiability of existentially quantified first-order-logic formulas. Such formulas are
Boolean combinations of theory constraints, where the form of the theory con-
straints depends on with which theory we instantiate first-order logic. For exam-
ple, existentially quantified non-linear real arithmetic formulas can be built
from polynomial equalities and inequalities, and their Boolean combinations.
Some example theory constraints from different theories that are included in the
SMT-LIB standard input language are depicted in Fig. 1. Exemplarily, we mention
also two combined theories in the last two rows.

2.1 SAT Solving

Before we discuss SAT-modulo-theories solving for checking the satisfiability of
quantifier-free first-order-logic formulas, we first make a short excursion to SAT
solving. SAT solvers implement decision procedures to check the satisfiability of
propositional logic formulas, being the Boolean combinations of atomic (Boolean)
propositions.

Here we only explain the DPLL-style SAT solving algorithm, which is imple-
mented in most state-of-the-art SAT solver technologies. The input formula

12 E. Ábrahám and G. Kremer

Fig. 2. The DPLL framework

is expected to be in conjunctive normal form (CNF), i.e., the conjunction of
clauses, each clause being the disjunction of literals, and each literal being a
proposition or its negation. Each formula can be transformed into CNF in linear
time and space at the cost of linearly many fresh propositions using Tseitin’s
transformation [67].

The DPLL algorithm has three main ingredients:

1. To explore the state space, the algorithm iteratively makes decisions, i.e., it
iteratively assigns truth values to some heuristically chosen propositions.

2. After each such decision, the algorithm applies Boolean constraint propagation
(BCP) to determine further variable assignments that are implied by the last
decision.

3. If BCP leads to a conflict, i.e., if the value of a proposition is implied to
be true as well as false at the same time, conflict-driven clause-learning and
non-chronological backtracking [50] are applied: The algorithm follows back
the chain of implications and applies resolution [30] to derive a reason for
the conflict in form of a conflict clause, which is added to the solver’s clause
set. Backtracking removes previous decisions and their implications until the
conflict clause can be satisfied.

If the input has clauses consisting of a single literal, these literals will be directly
assigned. Therefore, the algorithm starts with BCP, as show in Fig. 2, to detect
implications. If BCP leads to a conflict, the algorithm tries to resolve the conflict.
If the conflict cannot be resolved, the input formula is unsatisfiable. Otherwise,
if the conflict was successfully resolved, the algorithm backtracks and continues
with BCP. If BCP could be completed without any conflicts, a new decision
will be made if there are any unassigned propositions. Otherwise, a satisfying
solution is found.

Example 1. Assume as input the CNF (a) ∧ (¬a ∨ b) ∧ (c ∨ d) ∧ (¬b ∨ c ∨ ¬d).
First a is set to true. BCP implies by the second clause that b must be true in
order to complete the current partial assignment to a full satisfying solution. As
no conflict appeared and there are still unassigned variables, a new decision will

Satisfiability Checking: Theory and Applications 13

be made. Assume that this decision assigns false to c. BCP will assign true
to d based on the third clause, however, now the fourth clause is conflicting.
Resolution applied to the last two clauses will result in the conflict clause (¬b∨c),
which is added to the clause set. Backtracking removes the last decision, and BCP
implies that c must be true. As all variables are assigned, a complete solution
if found and the algorithm returns SAT.

The above algorithm is complete for propositional logic. It should be noted
that many further optimisations were proposed, which led to major improve-
ments, but cannot be discussed here.

2.2 SMT Solving

To check the satisfiability of quantifier-free first-order-logic formulas with an
underlying theory (or combined theories [54]), SAT-modulo-theories (SMT)
solvers can be applied. Eager SMT solving approaches translate the input for-
mula to a satisfiability-equivalent propositional logic formula, whose satisfiability
can be decided using a SAT solver. In the following we focus on lazy SMT-solving
approaches.

Lazy SMT solvers combine a SAT solver with one or more theory solvers.
Thereby the SAT solver handles the input formula’s logical structure and is
responsible for finding solutions for the Boolean skeleton of the input formula,
which is gained by substituting fresh propositions for the theory atoms. To be
able to check the consistency of theory atoms, the SAT solver communicates
with the theory solvers, which implement decision procedures for the underlying
theory.

Fig. 3. The SMT solving framework

Figure 3 illustrates the lazy SMT
solving framework. The SAT solver iter-
atively searches for a satisfying solu-
tions for the Boolean skeleton. During
its search, it consults the theory solver(s)
to check whether the current Boolean
assignment is consistent in the theory. To
do so, it collects all theory constraints
whose abstraction proposition is true
and appears non-negated in the formula,
and those whose abstraction proposition
is false and appears negated in the formula. The resulting theory constraint set
is sent to the theory solver(s), which checks whether it is consistent. In the full
lazy approach, this communication takes place only for full Boolean solutions,
whereas in the less lazy approach usually after each conflict-free BCP execution.

If the constraints are consistent in the theory and the SAT solver’s assignment
is already complete then a satisfying solution is found for the input formula. If
the constraints are consistent but the Boolean assignment is not yet complete,
the SAT solver continues its search. Otherwise, if the theory constraints are
conflicting, the invoked theory solver returns an explanation for the conflict.

14 E. Ábrahám and G. Kremer

The explanation is often an infeasible subset {c1, . . . , cn} of the theory solver’s
input constraints, which leads to a tautology (¬c1 ∨ . . .¬cn), whose abstraction
can be added to the SAT solver’s clause set. As the newly added clause is con-
flicting, conflict resolution is applied and the SAT solver continues its search in
other parts of the search space.

Example 2. Assume as input the linear real-arithmetic formula

(x − y > 10) ∧ (x + y = 4 ∨ x = 2y ∨ x < y)

with Boolean abstraction
(a) ∧ (b ∨ c ∨ d) .

Assume that the SAT solver’s current assignment is a = true, b = false,
c = true and d = true. The constraint set {x − y > 10, x = 2y, x < y} is sent
to a theory solver, which reports back inconsistency. A possible explanation is
{x − y > 10, x < y}, whose abstraction (¬a ∨ ¬d) assures that in the further
search either a or d will be set to false.

The above-described approach clearly separates the Boolean search and the-
ory solving. There are also other approaches in which Boolean and theory solving
are more closely integrated.

First SMT solvers addressed more light-weight theories like equality logic and
uninterpreted functions. Aiming at program verification, theories for arrays, bit-
vectors and floating-point arithmetic followed. Nowadays there are also highly
tuned SMT solvers for linear arithmetic theories. Latest developments also allow
solving non-linear arithmetic problems [26,41], quantified formulas, optimisation
problems [13], and exploit parallelisation [70].

3 SMT Solvers

The aforementioned SMT competitions [7] compare the abilities of participating
SMT solvers on SMT-LIB benchmark sets. The latest results from 2015 [64] give a
good overview of state-of-the-art solvers and their range of applicability. Table 1
shows a rough survey of these solvers for existentially quantified logics. There is
a large number of further SMT solvers, which did not participate in last year’s
competition. Other SMT solvers under active development, which we are aware
of, are Alt-Ergo [25] and iSAT3 [34,62]. Further examples for SMT solvers are
Ario, Barcelogic, Beaver, clasp, DPT, Fx7, haRVey, ICS, LPSAT, MiniSmt, Mistral,
OpenCog, RDL, SatEEn, Simplics, Simplify, SMCHR, SONOLAR, Spear, STeP, SVC, SWORD,
and UCLID.

SMT-solver technologies cover a wide range of theories and their combina-
tions. The embedding of theory decision procedures into the SMT solving context
requires not only a deep understanding of the individual decision procedures, but
also a careful software design. We illustrate how an SMT solver can be designed
to support a broad range of logics, and how a user of such a solver can exploit the

Satisfiability Checking: Theory and Applications 15

Table 1. An overview of the SMT solvers for solving quantifier-free logical formulas
that participated in SMT-COMP 2015 (for the naming of the logics see Fig. 1 and the
SMT-LIB page [8]).

Solver Website Supported SMT-LIB logics
QF XXX

AProVE [37] aprove.informatik.rwth-aachen.de NIA

Boolector [55] fmv.jku.at/boolector ABV, AUFBV, BV, UFBV

CVC4 [6] cvc4.cs.nyu.edu All not involving FP

MathSAT5 [22] mathsat.fbk.eu All not involving integers

OpenSMT2 [18] verify.inf.usi.ch/opensmt2 UF

raSAT [43] github.com/tungvx/raSAT NIA, NRA

SMTInterpol [21] github.com/ultimate-pa/smtinterpol All not involving BV, FP,
NRA and NIA

SMT-RAT [26] github.com/smtrat/smtrat/wiki BV, LIA, LIRA, LRA, NIA,
NIRA, NRA, UF

STP [35] stp.github.io BV

veriT [16] www.verit-solver.org All not involving BV, FP,
NRA and NIA

Yices2 [32] yices.csl.sri.com All not involving FP and
NIA

Z3 [51] z3.codeplex.com All

versatility, on the example of our SMT-RAT [26] solver. SMT-RAT’s focus is on non-
linear arithmetic. It adapts algebraic decision procedures to the needs of SMT
solving and exploits powerful combinations of these procedures. Currently, it
offers SMT-compliant implementations of the Fourier-Motzkin variable elimina-
tion, the simplex method [28], interval constraint propagation [36,39], methods
based on Gröbner bases [68], the virtual substitution method [69], the cylindri-
cal algebraic decomposition method [24], and a generalised branch-and-bound
method. Additionally it provides a DPLL-style SAT solver as well as several
preprocessing modules.

In SMT-RAT, all these procedures – including the SAT solver and preprocessing
modules – are implemented in encapsulated modules, which share a common
module interface. This modularisation allows for a strategic combination [52] of
these solver modules: whenever a module is unable to solve a specific problem,
it can forward the problem – or sub-problems – to other modules that might be
better suited for the given task.

The strategic combination of solver modules is governed by a user-defined
SMT-RAT strategy. Basically, a strategy is a directed tree, whose nodes are solver
module instances, and whose edges are labelled with conditions. These conditions
are evaluated in the context of a formula; an example for such a condition could

http://www.aprove.informatik.rwth-aachen.de
http://www.fmv.jku.at/boolector
http://www.cvc4.cs.nyu.edu
http://www.mathsat.fbk.eu
http://www.verify.inf.usi.ch/opensmt2
http://www.github.com/tungvx/raSAT
http://www.github.com/ultimate-pa/smtinterpol
http://www.github.com/smtrat/smtrat/wiki
http://www.stp.github.io
http://www.verit-solver.org
http://www.yices.csl.sri.com
http://www.z3.codeplex.com

16 E. Ábrahám and G. Kremer

Fig. 4. Basic structure of an SMT-RAT strategy

be that the formula is linear, or that the maximal degree of polynomials in the
formula is at most 2.

Figure 4 illustrates how such a strategy drives the solving procedure. A ded-
icated initial module (the root of the tree) receives the input formula and starts
processing. If an executing module wants to pass on (sub-)problems to other
modules, the conditions on the edges to its children are tested whether they
hold for the given (sub-)problem. For each edge, if its condition holds, the child
module will be invoked to solve the (sub-)problem. If a call to a child-module
terminates, the calling module uses the returned result to continue its solving
process. Note that this way also parallel execution can be implemented. Note
furthermore that also the child modules can invoke further modules on their
(sub-)problems.

In this framework, we can easily generate and test novel combinations of
solving techniques, extend the range of supported logics, or employ parallel exe-
cution without the need to modify the previous implementation. Given a module
that implements a certain decision procedure, it can be directly embedded within
a strategy and thus participate in the overall solving process. Still, it does not
save us the burden of handling the combination of two or more different theories.
Theory combination schemes like Nelson-Oppen [54] are not yet implemented in
SMT-RAT which is why it only supports a relatively small number of individual
logics.

4 Applications

After the previous introduction to satisfiability checking and SMT solvers, let
us turn to applications. In the following we mention some applications from
the most popular areas. SMT solvers are employed in such a wide context that
we cannot claim completeness, not only regarding single applications, but even
regarding the application domains.

Program Verification. The perhaps most prominent SMT application example
is program verification. In this area, the success of explicit model checking is
complemented with symbolic and deductive approaches.

Bounded model checking [11] can be used to unroll the transition relation and
to generate, for increasing path lengths, formulas that state the existence of a

Satisfiability Checking: Theory and Applications 17

property-violating path. SMT solvers can be used to check the involved formu-
las for satisfiability, i.e., to determine whether counterexamples exist. Whereas
the basic approach cannot prove correctness but is rather suited to find coun-
terexamples, it can be extended with, e.g., k-induction to be able to prove the
correctness of programs.

Deductive verification approaches generate verification conditions; if these condi-
tions hold, the program is provably correct. In this context, SMT solvers can be
used to check whether the verification conditions hold. Further methods related
to, e.g., invariant generation, interpolation and predicate abstraction can be
invoked to increase the verification success.

Examples for tools in this area, which embed SMT-solving technologies, are CBMC

[47] (bounded model checker for C and C++ programs), IC3 [17,48] (induction-
based verification approach), PKIND [42] (a parallel k-induction-based model
checker), the Microsoft software model checkers Boogie [15] (intermediate-langu-
age verification) and SLAM [5] (device driver verification), the Rodin platform [31]
for formal development in Event-B, and the SRI tool SAL [60] (infinite bounded
model checker).

Symbolic Execution. Besides static analysis, SMT solvers are also used for
symbolic execution. For example, the Avalanche tool [3] was developed to identify
input data that reproduces critical bugs and vulnerabilities in programs. The tool
is based on the Valgrind dynamic instrumentation framework. It analyses the
target program by tracing and produces modified input data sets (corresponding
to different execution paths) from the collected data. Finally, every possible
execution path in the target program is traversed and checked for critical runtime
defects. This way, buggy traces can be identified from a single test case.

Test-Case Generation. Due to the growing size of software, verification is
not always applicable. Though the importance of thorough testing is undisputed
among software engineers, crafting meaningful test cases remains a complex task.
An ideal set of test cases should cover every possible code path and be reasonably
concise and readable.

SMT-solving can be of help also in this area. The basic idea is similar to that
of bounded model checking: we can encode paths with certain properties, e.g.,
assuming that certain branches are followed or that certain loops are executed
a given number of times, and use SMT solvers to find paths satisfying the given
requirements. The work [19] reports on a successful application to generate test
cases that cover most of the source code of the GNU Coreutils which “arguably
are the single most heavily tested set of open-source programs in existence”. The
resulting code coverage was improved significantly and ten individual new bugs
were found, therefrom three existing since at least 1992. Another approach for
automated test case generation with SMT solving and abstract interpretation is
proposed in [56].

Superoptimiser Compiler Backends. In the area of compiler construction,
superoptimisation techniques assist to find optimal instruction sequences that

18 E. Ábrahám and G. Kremer

are semantically equivalent to the original code fragment. The tool Souper [65]
uses an SMT solver to automatically find optimisations missed by LLVM (low-
level virtual machine) bit-code optimisers. Another work from this area is [57],
where a simulator is used to evaluate the correctness of a candidate program
on concrete test cases. If a candidate passes all test cases, the search technique
verifies the equivalence of the candidate program and the reference program on
all possible inputs using an SMT solver.

Termination Analysis. An important question in formal verification is
whether a given program terminates. Though this question is undecidable in
general, an active field of research has emerged on finding provable upper bounds
on the runtime of a program. Usually, finding such complexity bounds requires
solving non-linear integer problems. SAT and SMT techniques are routinely used
by all leading termination analysis tools, for example AProVE [37], TTT2 [45] or
NaTT[71].

Program Synthesis. The paper [66] presents an SMT-based approach for
component-based program synthesis. In this work, the synthesis problem is
reduced to a satisfiability checking problem and an SMT solver is employed
to synthesise bit-vector manipulation programs, padding-based encryption
schemes, and block cipher modes of operations.

Planning. Planning as satisfiability was introduced in the area of artificial intel-
ligence by Kautz and Selman in 1990 for domain-independent planning. This
approach was limited to asynchronous discrete systems expressible in proposi-
tional logic, therefore SAT solvers could be applied. Later the approach was
extended with numeric state variables and continuous time. Both of these exten-
sions include integer- and real-valued state variables, which cannot be effectively
handled by SAT solvers. As described in [59], SMT solvers can successfully solve
such problems, but one needs to pay attention that the problem encoding is done
carefully. To mention some further examples, SMT solvers in the area of planning
were also applied for sequential numeric planning [61]. Another example is the
work [38] which combines planning as satisfiability and SMT to perform efficient
reasoning about actions that occupy realistic time. SMT solving for integrated
task and motion planning is discussed in [53].

Scheduling. Many practical problems involve the scheduling of some tasks or
processes. Oftentimes, their nature is not only combinatorial but also involves
arithmetic constraints. For example, we might need to consider running times
or certain resource demands in order to satisfy deadlines or to assure that
enough memory is available for execution. SMT solvers, being designed to handle
both combinatorial as well as arithmetic aspects, have been applied for numer-
ous scheduling problems. The work [14] uses SMT solvers to solve resource-
constrained project scheduling problems, where minimum as well as maximum
delays between tasks are considered. Other examples are, e.g., [2,27,58,72].

Cloud Applications. With the rise of cloud platforms, web applications have
become much more flexible regarding scalability. However, designing a cloud

Satisfiability Checking: Theory and Applications 19

application that consists of multiple components – for example database back-
ends, webservers and a load balancer – poses the question, how many individ-
ual components are needed and how they shall be distributed among virtual
machines. This problem has been solved in the Zephyrus tool [20] by the employ-
ment of constraint solving techniques. Based on an ongoing work of the authors
with the tool developers we can state that SMT solvers equipped with linear
optimisation are a valuable addition for such applications and can outperform
previously used solutions. Implementing optimisation techniques for SMT solvers
has seen a lot of progress in the last few years, for example in [13,49,63], thus
we expect further interesting applications in domains that are so far dominated
by constraint programming techniques.

Another work [12] is devoted the the analysis of cloud contracts, which cap-
ture architectural requirements in datacenters. The contracts are checked using
the SecGuru tool, which is based on SMT solving and models network configu-
rations in bit-vector arithmetic. SecGuru was also used to automatically validate
network connectivity policies [40].

Hybrid Systems Reachability Analysis. Hybrid systems are systems with
mixed discrete-continuous behaviour, typical examples being physical plants
whose behaviour is controlled by a discrete controller. While the controller senses
the plant state and executes control actions in a discrete manner, the dynamic
state of the plant evolves continuously. For such systems, reachability analysis
can be applied to assure that the plant never reaches any critical states.

One way to employ SMT solving technologies for reachability analysis is, sim-
ilarly to programs, bounded model checking. However, as the dynamic behaviour
is usually modelled using differential equations, the invoked SMT solvers need
to be able to deal with the theory of differential equations. Suitable solvers for
this task are dReach [23,44] and iSAT-ODE [33]. Beyond reachability analysis, the
recent work [4] shows how various verification problems for complex synchro-
nous hybrid PALS (physically asynchronous, logically synchronous) models can
be reduced to SMT solving.

5 Conclusion

In this paper we gave a short introduction to SAT and SMT solving, discussed
software design issues, and gave a number of SMT-solving applications.

The research area of satisfiability checking is highly active. New results and
novel software engineering solutions constantly improve the power and the prac-
tical applicability of solver technologies. This holds not only for the efficiency, but
also for the functionality of SMT solvers: Latest developments show that SMT
solvers can also be successfully extended to handle, e.g., quantified formulas or
optimisation problems.

We expect this trend to be continued, on the one hand because there are
still unused potentials (for example through building closer interactions with
the symbolic computation community to improve on non-linear arithmetic theo-
ries [1]), and on the other hand because there is still a wide variety of problems,
whose solutions could be improved by using SMT solving.

20 E. Ábrahám and G. Kremer

References

1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability
checking. In: Proceedings of ISSAC 2015, pp. 1–6. ACM (2015)

2. Ansótegui, C., Bofill, M., Palahı, M., Suy, J., Villaret, M.: Satisfiability modulo the-
ories: An efficient approach for the resource-constrained project scheduling prob-
lem. In: Proceedings of SARA 2011, pp. 2–9. AAAI (2011)

3. Avalanche.: Dynamic program analysis tool. http://www.ispras.ru/en/
technologies/avalanche dynamic program analysis tool/

4. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of
virtually synchronous distributed hybrid systems. In: Proceedings of HSCC 2016
(2016). (to appear)

5. Ball, T., Bounimova, E., Levin, V., De Moura, L.: Efficient evaluation of pointer
predicates with Z3 SMT solver in SLAM2. Technical report, Microsoft Research
(2010)

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

7. Barrett, C.W., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo the-
ories competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol.
3576, pp. 20–23. Springer, Heidelberg (2005)

8. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

9. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability, Chap. 26. Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 825–885. IOS Press, Amsterdam (2009)

10. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

11. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

12. Bjørner, N., Jayaraman, K.: Checking cloud contracts in microsoft azure. In:
Natarajan, R., Barua, G., Patra, M.R. (eds.) ICDCIT 2015. LNCS, vol. 8956,
pp. 21–32. Springer, Heidelberg (2015)

13. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015)

14. Bofill, M., Coll, J., Suy, J., Villaret, M.: A system for generation and visualization of
resource-constrained projects. In: Proceedings of CCIA 2014. Frontiers in Artificial
Intelligence and Applications, vol. 269, pp. 237–246. IOS Press (2014)

15. Boogie.: An intermediate verification language. http://research.microsoft.com/
en-us/projects/boogie/

16. Bouton, Thomas, de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, Renate A. (ed.) CADE-22. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

17. Bradley, A.R.: SAT-based model checking without unrolling. In: Schmidt, D.,
Jhala, R. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg
(2011)

http://www.ispras.ru/en/technologies/avalanche_dynamic_program_analysis_tool/
http://www.ispras.ru/en/technologies/avalanche_dynamic_program_analysis_tool/
http://www.SMT-LIB.org
http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/projects/boogie/

Satisfiability Checking: Theory and Applications 21

18. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

19. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings of OSDI 2008,
pp. 209–224. USENIX Association (2008)

20. Catan, M., et al.: Aeolus: mastering the complexity of cloud application deploy-
ment. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS,
vol. 8135, pp. 1–3. Springer, Heidelberg (2013)

21. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

22. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

23. Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear
hybrid automata. In: Proceedings of FMCAD 2012, pp. 187–195. IEEE (2012)

24. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

25. Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-
linear integer arithmetic reasoning in Alt-Ergo. In: Proceedings of SYNASC 2013,
pp. 161–168. IEEE (2013)

26. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-24318-4 26

27. Craciunas, S.S., Oliver, R.S.: SMT-based task- and network-level static schedule
generation for time-triggered networked systems. In: Proceedings of RTNS 2014,
p. 45. ACM (2014)

28. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

29. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

30. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

31. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94(P2), 130–143 (2014)

32. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

33. Eggers, A., Ramdani, N., Nedialkov, N.S., Fränzle, M.: Improving the SAT mod-
ulo ODE approach to hybrid systems analysis by combining different enclosure
methods. Softw. Syst. Model. 14(1), 121–148 (2012)

34. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisf. Boolean Model. Comput. 1(3–4), 209–236 (2007)

35. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

http://dx.doi.org/10.1007/978-3-319-24318-4_26

22 E. Ábrahám and G. Kremer

36. Gao, S., Ganai, M., Ivančić, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.:
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems.
In: Proceedings of FMCAD 2010, pp. 81–90. IEEE (2010)

37. Giesl, J., et al.: Proving termination of programs automatically with AProVE.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 184–191. Springer, Heidelberg (2014)

38. Hallin, M.: SMT-Based Reasoning and Planning in TAL. Master’s thesis, Linköping
University (2010)

39. Herbort, S., Ratz, D.: Improving the efficiency of a nonlinear-system-solver using
a componentwise Newton method. Technical report 2/1997, Inst. für Angewandte
Mathematik, University of Karlsruhe (1997)

40. Jayaraman, K., Bjrner, N., Outhred, G., Kaufman, C.: Automated analysis
and debugging of network connectivity policies. Technical report MSR-TR-2014-
102, Microsoft Research (2014). http://research.microsoft.com/apps/pubs/default.
aspx?id=225826

41. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

42. Kahsai, T., Tinelli, C.: PKIND: A parallel k-induction based model checker. arXiv
preprint (2011). arXiv:1111.0372

43. Khanh, T.V., Vu, X., Ogawa, M.: raSAT: SMT for polynomial inequality. In: Pro-
ceedings of SMT 2014, p. 67 (2014)

44. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach :δ-reachability analysis for
hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 200–205. Springer, Heidelberg (2015)

45. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

46. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, New York (2008)

47. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

48. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow
automata. In: Proceedings of FMCAD 2015, pp. 97–104. IEEE (2015)

49. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: Proceedings of POPL 2014, pp. 607–618. ACM
(2014)

50. Marques-silva, J.P., Sakallah, K.A.: Grasp: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)

51. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

52. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)

53. Nedunuri, S., Prabhu, S., Moll, M., Chaudhuri, S., Kavraki, L.E.: SMT-based syn-
thesis of integrated task and motion plans from plan outlines. In: Proceedings of
ICRA 2014, pp. 655–662. IEEE (2014)

54. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

http://research.microsoft.com/apps/pubs/default.aspx?id=225826
http://research.microsoft.com/apps/pubs/default.aspx?id=225826
http://arxiv.org/abs/1111.0372

Satisfiability Checking: Theory and Applications 23

55. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9, 53–58 (2015)

56. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011)

57. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: GreenThumb: Super-
optimizer construction framework. In: Proceedings of CCC 2016, pp. 261–262.
ACM (2016)

58. Pike, L.: Modeling time-triggered protocols and verifying their real-time schedules.
In: Proceedings of FMCAD 2007, pp. 231–238. IEEE (2007)

59. Rintanen, J.: Discretization of temporal models with application to planning with
SMT. In: Proceedings of AAAI 2015, pp. 3349–3355. AAAI (2015)

60. Symbolic analysis laboratory. http://sal.csl.sri.com/introduction.shtml
61. Scala, E., Ramirez, M., Haslum, P., Thiebaux, S.: Numeric planning with disjunc-

tive global constraints via SMT. In: Proceedings of ICASP 2016 (2016, to appear)
62. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT

solver iSAT. In: Proceedings of MBMV 2013, pp. 231–241. Institut für Angewandte
Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik,
Universität Rostock (2013)

63. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Heidelberg (2015)

64. SMT-COMP 2015 result summary (2015). http://smtcomp.sourceforge.net/2015/
results-summary.shtml

65. Souper. http://github.com/google/souper
66. Tiwari, A., Gascón, A., Dutertre, B.: Program synthesis using dual interpretation.

In: Felty, A., Middeldorp, A. (eds.) CADE-25. Lecture Notes in Computer Science,
vol. 9195, pp. 482–497. Springer, Heidelberg (2015)

67. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer,
New York (1983)

68. Weispfenning, V.: A new approach to quantifier elimination for real algebra.
In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindri-
cal Algebraic Decomposition. Texts and Monographs in Symbolic Computation,
pp. 376–392. Springer, NEw York (1998)

69. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

70. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach
to SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 715–720. Springer, Heidelberg (2009)

71. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)

72. Yuan, M., He, X., Gu, Z.: Hardware/software partitioning and static task schedul-
ing on runtime reconfigurable FPGAs using an SMT solver. In: Proceedings of
RTAS 2008, pp. 295–304. IEEE (2008)

http://sal.csl.sri.com/introduction.shtml
http://smtcomp.sourceforge.net/2015/results-summary.shtml
http://smtcomp.sourceforge.net/2015/results-summary.shtml
http://github.com/google/souper

Concurrency and Non-interference

Automatic Derivation of Platform
Noninterference Properties

Oliver Schwarz1,2(B) and Mads Dam2

1 SICS Swedish ICT, Kista, Sweden
oschwarz@kth.se

2 KTH Royal Institute of Technology, Stockholm, Sweden
mfd@kth.se

Abstract. For the verification of system software, information flow
properties of the instruction set architecture (ISA) are essential. They
show how information propagates through the processor, including some-
times opaque control registers. Thus, they can be used to guarantee that
user processes cannot infer the state of privileged system components,
such as secure partitions. Formal ISA models - for example for the HOL4
theorem prover - have been available for a number of years. However, lit-
tle work has been published on the formal analysis of these models. In
this paper, we present a general framework for proving information flow
properties of a number of ISAs automatically, for example for ARM. The
analysis is represented in HOL4 using a direct semantical embedding of
noninterference, and does not use an explicit type system, in order to
(i) minimize the trusted computing base, and to (ii) support a large
degree of context-sensitivity, which is needed for the analysis. The frame-
work determines automatically which system components are accessible
at a given privilege level, guaranteeing both soundness and accuracy.

Keywords: Instruction set architectures · ARM · MIPS ·
Noninterference · Information flow · Theorem proving · HOL4

1 Introduction

From a security perspective, isolation of processes on lower privilege levels is one
of the main tasks of system software. More and more vulnerabilities discovered in
operating systems and hypervisors demonstrate that assurance of this isolation
is far from given. That is why an increasing effort has been made to formally
verify system software, with noticeable progress in recent years [1,6,10,14,16].
However, system software depends on hardware support to guarantee isolation.
Usually, this involves at least the ability to execute code on different privilege
levels and with basic memory protection. Kernels need to control access to their
own code and data and to critical software, both in memory and as content of
registers or other components. Moreover, they need to control the management of
the access control itself. For the correct configuration of hardware, it is essential
to understand how and under which circumstances information flows through
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 27–44, 2016.
DOI: 10.1007/978-3-319-41591-8 3

28 O. Schwarz and M. Dam

the system. Hardware must comply to a contract that kernels can rely on. In
practice, however, information flows can be indirect and hidden. For example,
some processors automatically set control flags on context switches that can
later be used by unprivileged code to see if neighbouring processes have been
running or to establish a covert channel [19]. Such attacks can be addressed by
the kernel, but to that end, kernel developers need machinery to identify the
exact components available to unprivileged code, and specifications often fail to
provide this information in a concise form. When analysing information flow, it
is insufficient to focus on direct register and memory access. Confidentiality, in
particular, can be broken in more subtle ways. Even if direct reads from a control
flag are prevented by hardware, the flag can be set as an unintended side effect
of an action by one process and later influence the behaviour of another process,
allowing the latter to learn something about the control flow of the former.

In this paper we present a framework to automate information flow analysis
of instruction set architectures (ISAs) and their operational semantics inside the
interactive theorem prover HOL4 [11]. We employ the framework on ISA models
developed by Fox et al. [7] and verify noninterference, that is, that secret (high)
components can not influence public (low) components. Besides an ISA model,
the input consists of desired conditions (such as a specific privilege mode) and
a candidate labelling, specifying which system components are already to be
considered as low (such as the program counter) and, implicitly, which compo-
nents might possibly be high. The approach then iteratively refines the candi-
date labelling by downgrading new components from high to low until a proper
noninterference labelling is obtained, reminiscent of [12]. The iteration may fail
for decidability reasons. However, on successful termination, both soundness
and accuracy are guaranteed unless a warning is given indicating that only an
approximate, sound, but not necessarily accurate solution has been found.

What makes accurate ISA information flow analysis challenging is not only
the size and complexity of modern instruction sets, but also particularities in
semantics and representation of their models. For example, arithmetic operations
(e.g., with bitmasks) can cancel out some information flows and data struc-
tures can contain a mix of high and low information. Modification of the models
to suit the analysis is error prone and requires manual effort. Automatic, and
provably correct, preprocessing of the specifications could overcome some, but
not all, of those difficulties, but then the added value of standard approaches
such as type systems over a direct implementation becomes questionable. By
directly embedding noninterference into HOL4, we can make use of machinery
to address the discussed difficulties and at the same time we are able to min-
imize the trusted computing base (TCB), since the models, the preprocessing
and the actual reasoning are all implemented/represented in HOL4. Previous
work on HOL4 noninterference proofs for ISA models [13] had to rely on some
manual proofs, since its compositional approach suffered from the lack of suf-
ficient context in some cases (e.g., the secrecy level of a register access in one
step can depend on location lookups in earlier steps). In contrast, the approach
suggested in the present paper analyses ISAs one instruction at a time, allowing

Automatic Derivation of Platform Noninterference Properties 29

for accuracy and automation at the same time. However, since many instruc-
tions involve a number of subroutines, this instruction-wide context introduces
complexity challenges. We address those by unfolding definitions of transitions
in such a way that their effects can be extracted in an efficient manner.

Our analysis is divided into three steps: (i) rewriting to unfold and sim-
plify instruction definitions, (ii) the actual proof attempt, and (iii) automated
counterexample-guided refinement of the labelling in cases where the proof fails.
The framework can with minor adaptations be applied to arbitrary HOL4 ISA
models. We present benchmarks for ARMv7 and MIPS. With a suitable labelling
identified, the median verification time for one ARMv7 instruction is about 40
seconds. For MIPS, the complete analysis took slightly more than one hour and
made configuration dependencies explicit that we had not been aware of before.
We report on the following contributions: (i) a backward proof tactic to auto-
matically verify noninterference of HOL4 state transition functions, as used in
operational ISA semantics; (ii) the automated identification of sound and accu-
rate labellings; (iii) benchmarks for the ISAs of ARMv7-A and MIPS, based on
an SML-implementation of the approach.

2 Processor Models

2.1 ISA Models

In the recent years, Fox et al. have created ISA models for x86-64, MIPS, several
versions of ARM and other architectures [7,8]. The instruction sets are modelled
based on official documentations and on the abstraction level of the program-
mer’s view, thus being agnostic to internals like pipelines. The newest models
are produced in the domain-specific language L3 [7] and can be exported to the
interactive theorem prover HOL4. Our analysis targets those purely-functional
HOL4 models for single-core systems. An ISA is formalized as a state transition
system, with the machine state represented as record structure (on memory, reg-
isters, operational modes, control flags, etc.) and the operational semantics as
functions (or transitions) on such states. The top-level transition NEXT processes
the CPU by one instruction. While L3 also supports export to HOL4 definitions
in monadic style, we focus our work on the standard functional representation
based on let-expressions. States resulting from an unpredictable (i.e., underspeci-
fied) operation are tagged with an exception marker (see Sect. 7 for a discussion).

2.2 Notation

A state s = {C1 := c1, C2 := c2, . . .} is a record, where the fields C1, C2, . . .
depend on the concrete ISA. As a naming convention, we use Ri for fields that
are records themselves (such as control registers) and Fi for fields of a func-
tion/mapping type (such as general purpose register sets). The components of
a state are all its fields and subfields (in arbitrary depth), as well as the single
entries of the state’s mappings. The value of field C in s is derived by s.C. An
update of field C in s with value c is represented as s[C := c]. Similarly, function

30 O. Schwarz and M. Dam

updates of F in location l by value v are written as F [l := v]. Conditionals and
other case distinctions are written as C(b, a1, a2, . . . , ak), with b being the selector
and a1, a2, . . . , ak the alternatives. A transition Φ transforms a pre-state s into
a return-value v and a post-state s′, formally Φs = (v, s′). Usually, a transition
contains subtransitions Φ1, Φ2, . . . , Φn, composed of some structure φ of abstrac-
tions, function applications, case distinctions, sequential compositions and other
semantic operators, so that Φs = φ(Φ1, Φ2, . . . , Φn)s. Transition definitions
can be recursively unfolded: φ(Φ1, . . . , Φn)s = φ(φ1(Φ1,1, . . . , Φ1,m), . . . , Φn)s =
. . . = �φs, where �φ is the completely unfolded transition, called the evaluated
form. For the transitions of the considered instruction sets, unfolding always
terminates. Note that ‘=’ is used here for the equivalence of states, transitions
or values, not for the syntactical equivalence of terms. Below we give the defini-
tion of the ARMv7-NOOP-instruction and its evaluated (and simplified) form:

dfn′NoOperation s
= BranchTo(s.REG RName PC + C(FST (ThisInstrLength () s) = 16, 2, 4)) s
= ((), s[REG := s.REG[RName PC := s.REG RName PC + C(s.Encoding = Thumb, 2, 4)]])

NOOP branches to the current program counter (s.REG RName PC) plus some
offset. The offset depends on the current instruction length, which in turn
depends on the current encoding. Here, FST selects the actual return value of
the ThisInstrLength transition, ignoring its unchanged post-state.

2.3 Memory Management

For simplicity, our analysis focuses on core-internal flows (e.g., between reg-
isters) and abstracts away from the concrete behaviour of the memory sub-
system (including address translation, memory protection, caching, peripherals,
buses, etc.). Throughout the course of the - otherwise core internal - analysis,
a contract on the memory subsystem is assumed that then allows the reasoning
on global properties. The core can communicate with the memory subsystem
through an interface, but never directly accesses its internal state. The inter-
face expects inputs like the type of access (read, fetch, write, . . .), the virtual
address, the privilege state of the processor, and other parameters. It updates
the state of the memory subsystem and returns a success or error message along
with possibly read data. While being agnostic about the concrete behaviour
of the memory subsystems, we assume that there is a secure memory configu-
ration Pm, restricting unprivileged accesses, e.g., through page table settings.
Furthermore, we assume the existence of a low-equivalence relation Rm on pairs
of memory subsystems. Typically, two memories in Rm would agree on mem-
ory content accessible in an unprivileged processor mode. When in unprivileged
processor mode and starting from secure memory configurations, transitions on
memory subsystems are assumed to maintain both the memory relation and
secure configurations. Consider an update of state s assigning the sum of the
values of register y and the memory at location a to register x, slightly sim-
plified: s[x := s.y + read(a, s.mem)]. Since read - as a function of the memory
interface - satisfies the constraints above, for two pre-states s1 and s2 satisfying

Automatic Derivation of Platform Noninterference Properties 31

Pms1.mem ∧ Pms2.mem ∧ Rm(s1.mem, s2.mem), we can infer that read will return
the same value or error. Overall, with preconditions met, two states that agree
on x, y, and the low parts of the memory before the computation, will also agree
after the computation. That is, as long as read fulfils the contract, the analysis
of the core (and in the end the global analysis) does not need to be concerned
with details of the memory subsystem.

3 ISA Information Flow Analysis

3.1 Objectives

Consider an ISA model with an initial specification determining some precondi-
tions (e.g., on the privilege mode) and some system components, typically only
the program counter, that are to be regarded as observable (or low) by some
given actor. If there is information flow from some other component (say, a con-
trol register) to some of these initially-low components, this other component
must be regarded as observable too for noninterference to hold. The objective of
the analysis is to identify all these other components that are observable due to
their direct or indirect influence on the given low components.

A labelling L assigns to each atomic component (component without subcom-
ponents) a label, high or low.1 It is sound if it does not mark any component as
high that can influence, and hence pass information to, a component marked as
low. In the refinement order the labelling L′ refines L (L � L′), if low compo-
nents in L are low also in L′. The labelling L is accurate, if L is minimal in the
refinement order such that L is sound and refines the initial labelling.

Determining whether a labelling is accurate is generally undecidable. Suppose
C(P (x), s.C, 0) is assigned to a low component. Deciding whether C needs to be
deemed low requires deciding whether there is some valid instantiation of x,
such that P (x) holds, which might not be decidable. However, it appears that
in many cases, including those considered here, accurate labellings are feasible.
In our approach we check the necessity of a label refinement by identifying an
actual flow from the witness component to some low component. We cannot
guarantee that this check always succeeds, for undecidability reasons. If it does
not, the tool still tries to refine the low equivalence and a warning that the final
relation may no longer be accurate is generated. For the considered case studies
the tool always finds an accurate labelling, which is then by construction unique.

Labellings correspond to low-equivalence relations on pairs of states, relations
that agree on all low components including the memory relation Rm and leave
all other components unrestricted. Noninterference holds if the only components
affecting the state or any return value are themselves low. Formally, assume the
two pre-states s1 and s2 agree on the low-labelled components, expressed by a
low-equivalence relation R on those states. Then, for a given transition Φ and
preconditions P, noninterference N (R,P, Φ) holds if after Φ the post-states are
again in R and the resulting return values are equal:

1 We have not found a use for ISA security lattices of finer granularity.

32 O. Schwarz and M. Dam

N (R,P, Φ) := ∀s1, s2, v1, v2, t1, t2 :
((v1, t1) = Φs1) ∧ ((v2, t2) = Φs2) ∧ R(s1, s2) ∧ Ps1 ∧ Ps2
⇒ R(t1, t2) ∧ (v1 = v2)

Preconditions on the starting states can include architecture properties (ver-
sion number, present extensions, etc.), a secure memory configuration and a
specification of the privilege level. In our framework the user defines relevant
preconditions and an initial low-equivalence relation R0 for an input ISA. The
goal of the analysis is to statically and automatically find an accurate refine-
ment of R0 so that noninterference holds for Φ = NEXT. The analysis yields the
final low-equivalence relation, the corresponding HOL4 noninterference theorem
demonstrating the soundness of the relation, and a notification of whether the
analysis succeeded to establish a guarantee on the relation’s accuracy. The proof
search is not guaranteed to terminate successfully, but we have found it robust
enough to reliably produce accurate output on ISA models of considerable com-
plexity (see Sect. 5). We do not treat timing and probabilistic channels and leave
safety-properties about unmodified components for future work.

3.2 Challenges

Our goal is to perform the analysis from an initial, user-supplied labelling on a
standard ISA with minimal user interaction. In particular, we wish to avoid user
supplied label annotations and error-prone manual rewrites of the ISA specifi-
cation, that a type-based approach might depend on to eliminate some of the
complications specific to ISA models. Instead, we address those challenges with
symbolic evaluation and the application of simplification theorems. Since both
are available in HOL4, and so are the models, we verify noninterference in HOL4
directly. This also frees us from external preprocessing and soundness proofs,
thus minimizing the TCB. Below, we give examples for common challenges.

Representation. The functional models that we use represent register sets as
mappings. Static type systems for (purely) functional languages [9,17] need to
assign secrecy levels uniformly to all image values, even if a mapping has both
public and secret entries. Adaptations of representation and type system might
allow to type more accurately for lookups on constant locations. But common
lookup patterns on locations represented by variables or complex terms would
require a preprocessing that propagates constraints throughout large expressions.

Semantics. Unprivileged ARMv7 processes can access the current state of the
control register CPSR. The ISA specifies to (i) map all subcomponents of the
control register to a 32-bit word and (ii) apply the resulting word to a bitmask.
As a result, the returned value does actually not depend on all subcomponents
of the CPSR, even though all of them were referred to in the first step. For
accuracy, an actual understanding of the arithmetics is required.

Automatic Derivation of Platform Noninterference Properties 33

Context-Sensitivity. Earlier work on ISA information flow [13] deals with ARM’s
complex operational semantics in a stepwise analysis, focusing on one subpro-
cedure at a time. This allows for a systematic solution, but comes with the
risk of insufficient context. For example, when reading from a register, usually
two steps are involved: first, the concrete register identifier with respect to the
current processor mode is looked up; second, the actual reading is performed.
Analysing the reading operation in isolation is not accurate, since the lack of
constraints on the register identifier would require to deem all registers low. In
order to include restrictions from the context, [13] required a number of manual
proofs. To avoid this, we analyse entire instructions at a time, using HOL4’s
machinery to propagate constraints.

4 Approach

We are not the first to study (semi-)automated hardware verification using the-
orem proving. As [5] points out for hardware refinement proofs, a large share of
the proof obligations can be discharged by repeated unfolding (rewriting) of def-
initions, case splits and basic simplification. While easy to automate, these steps
lead easily to an increase in complexity. The challenge, thus, is to find efficient
and effective ways of rewriting and to minimize case splits throughout the proof.
Our framework traverses the instruction set instruction by instruction, managing
a task queue. For each instruction, three steps are performed: (i) rewriting/un-
folding to obtain evaluated forms, (ii) attempting to prove noninterference for
the instruction, (iii) on failure, using the identified counterexample to refine the
low-equivalence relation. This section details those steps. After each refinement,
the instructions verified so far are re-enqueued. The steps are repeated until
the queue is empty and each instruction has successfully been verified with the
most recent low-equivalence relation. Finally, noninterference is shown for NEXT,
employing all instruction lemmas, as well as rewrite theorems for the fetch and
decode transitions. Soundness is inherited from HOL4’s machinery. Accuracy is
tracked by the counterexample verification in step (iii).

4.1 Rewriting Towards an Evaluated Form

The evaluated form of instructions is obtained through symbolic evaluation.
Starting from the definition of a given transition, (i) let-expressions are elimi-
nated, (ii) parameters of subtransitions are evaluated (in a call-by-value man-
ner), (iii) the subtransitions are recursively unfolded by replacing them with
their respective evaluated forms, (iv) the result is normalized, and (v) in a
few cases substituted with an abstraction. Normalization and abstraction are
described below. For the first three steps we reuse evaluation machinery from [7]
and extend it, mainly to add support for automated subtransition identification
and recursion. Preconditions, for example on the privilege level, allow to reduce
rewriting time and the size of the result. Since they can become invalid during
instruction execution, they have to be re-evaluated for each recursive invocation.

34 O. Schwarz and M. Dam

Throughout the whole rewriting process, various simplifications are applied, for
example on nested conditional expressions, case distinctions, words, and pairs,
as well as conditional lifting, which we motivate below. For soundness, all steps
produce equivalence theorems.

Step Library. The ISA models are provided together with so-called step
libraries, specific to every architecture [7]. They include a database of pre-
computed rewrite theorems, connecting transitions to their evaluated forms.
Those theorems are computed in an automated manner, but are guided man-
ually. Our tool is able to employ them as hints, as long as their preconditions
are not too restrictive for the general security analysis. Otherwise, we compute
the evaluated forms autonomously. Besides instruction specific theorems, we use
some datatype specific theorems and general machinery from [7].

Conditional Lifting. Throughout the rewriting process, the evaluated forms of
two sequential subtransitions might be composed by passing the result of the first
transition into the formal parameters of the second. This often leads to terms
like γ(s) := C(b, s[C1 := c1], s[C2 := c2]).C3. However, in order to derive equality
properties in the noninterference proof (e.g., [s1.C3 = s2.C3] � γ(s1) = γ(s2)) or
to check validity of premises (e.g., γ(s) = 0), conditional lifting is applied:

γ(s) = C(b, s[C1 := c1], s[C2 := c2]).C3 lifting
= C(b, (s[C1 := c1]).C3, (s[C2 := c2]).C3) simplifying
= C(b, s.C3, s.C3) merging
= s.C3

To mitigate exponential blow-up, conditional lifting should only be applied where
needed. For record field accesses we do this in a top-down manner, ignoring fields
outside the current focus. For example, in γ(s) there is no need to process c1 at
all, even in cases where c1 itself is a conditional expression.

Normalization. With record field accesses being so critical for performance,
both rewriting and proof benefit from (intermediate) evaluated forms being nor-
malized. A state term is normalized if it only consists of record field updates to
a state variable s, that is, it has the form

s[C1 := c1, . . . , Cn := cn, R1 := s.R1[C1,1 := c1,1, . . . , C1,k := c1,k], . . .].

For a state term τ updating state variable s in the fields C1, . . . , Cn with the val-
ues c1, . . . , cn, we verify the normalized form in a forward construction (omitting
subcomponents here and below for readability; they are treated analogously):

τ = τ [C1 := τ.C1, . . . , Cn := τ.Cn] (1)
= s[C1 := τ.C1, . . . , Cn := τ.Cn] (2)
= s[C1 := c1, . . . , Cn := cn] (3)

Automatic Derivation of Platform Noninterference Properties 35

We significantly improve proof performance with the abstraction of complex
expressions by showing (1) independently of the concrete τ and (2) independently
of the values of the updates, both those inside τ and those applied to τ . We obtain
c1, . . . , cn by similar means to those shown in the lifting example of γ above.

In [7], both conditional lifting and normalization are based on the precom-
putation of datatype specific lifting and unlifting lemmas for updates. Our pro-
cedures are largely independent of record types and update patterns. However,
because of the performance benefits of [7], we plan to generalize/automate their
normalization machinery or combine both approaches in future work.

Abstracted Transitions. Even with normalization, the specification of a tran-
sition grows quickly when unfolding complex subtransitions, especially for loops.
We therefore choose to abstract selected subtransitions. To this end, we substi-
tute their evaluated forms with terms that make potential flows explicit, but
abstract away from concrete specifications. Let the normalized form of transi-
tion Φ be �φs = (β(s), s[C1 := γ1(s), . . . , Cn := γn(s)]). The values of all primitive
state updates γ1(s), . . . , γn(s) on s and the return value β(s) of Φ are substituted
with new function constants f0, f1, . . . , fn applied to relevant state components
actually accessed instead of to the entire state:

Φs = �φs = (f0(s.C0,1, . . . , s.C0,k0),
s[C1 := f1(s.C1,1, . . . , s.C1,k1), . . . , Cn := fn(s.Cn,1, . . . , s.Cn,kn

)])

Except for situations that suggest the need for a refinement of the low-
equivalence relation, f0, . . . , fn do not need to be unfolded in the further process-
ing of Φ. Low-equivalence of the post-states can be inferred trivially:

[(s1.C1,1 = s2.C1,1) ∧ . . .] � f1(s1.C1,1, s1.C1,2, . . .) = f1(s2.C1,1, s2.C1,2, . . .))

To avoid accuracy losses in cases where �φ mentions components that neither
return value nor low components actually depend on, we unfold abstractions as
last resort before declaring a noninterference proof as failed.

4.2 Backward Proof Strategy

Having computed the evaluated form for an instruction Φ, we proceed with
the verification attempt of N (R,P, Φ) through a backward proof, for the user-
provided preconditions P and the current low-equivalence relation R. The sound
backward proof employs a combination of the following steps:

– Conditional Lifting: Especially in order to resolve record field accesses
on complex state expressions, we apply conditional lifting in various scopes
(record accesses, operators, operands) and degrees of aggressiveness.

– Equality of Subexpressions: Let F be a functional component and n and
m be two variables ranging over {0, 1, 2}. The equality

C(n = 2, 0, s1.F (C(n, a, b, c))) + s1.F (C(m,a, b, a))
= C(n = 2, 0, s2.F (C(n, a, b, c))) + s2.F (C(m,a, b, a))

36 O. Schwarz and M. Dam

can be established from the premises s1.F (a) = s2.F (a) and s1.F (b) = s2.F (b)
by lifting the distinctions on n and m outwards or - alternatively - by case
splitting on n and m. Either way, equality should be established for each sum-
mand separately, in order to limit the number of considered cases to 3 + 3
instead of 3×3. Doing so in explicit subgoals also helps in discarding unreach-
able cases, such as the one where c would be chosen. We identify relevant
expressions via pre-defined and user-defined patterns.

– Memory Reasoning: Axioms and derived theorems on noninterference prop-
erties of the memory subsystem and maintained invariants are applied.

– Simplifications: Throughout the whole proof process, various simplifications
take effect, for example on record field updates.

– Case Splitting: Usually the mentioned steps are sufficient. For a few harder
instructions or if the low-equivalence relation requires refinement, we apply
case splits, following the branching structure closely.

– Evaluation: After the case splitting, a number of more aggressive simplifica-
tions, evaluations, and automatic proof tactics are used to unfold remaining
constants and to reason about words, bit operations, unusual forms of record
accesses, and other corner cases.

4.3 Relation Refinement

Throughout the analysis, refinement of the low-equivalence relation is required
whenever noninterference does not hold for the instruction currently consid-
ered. Counterexamples to noninterference enable the identification of new com-
ponents to be downgraded to low. When managed carefully, failed backward
proofs of noninterference allow to extract such counterexamples. However, back-
ward proofs are not complete. Unsatisfiable subgoals might be introduced despite
the goal being verifiable. For accuracy, we thus verify the necessity of downgrad-
ing a component C before the actual refinement of the relation. To that end, it
is sufficient to identify two witness states that fulfil the preconditions P, agree
on all components except C, and lead to a violation of noninterference in respect
to the analysed instruction Φ and the current (yet to be refined) relation R. We
refer to the existence of such witnesses as N :

N (R,P, Φ, C) := ∃s, x1, x2, v1, v2, t1, t2 :
((v1, t1) = Φ(s[C := x1])) ∧ ((v2, t2) = Φ(s[C := x2]))
∧P(s[C := x1]) ∧ P(s[C := x2]) ∧ (¬R(t1, t2) ∨ (v1 	= v2))

If such witnesses exist, any sound relation R′ refining R will have to contain
some restriction on C. With the chosen granularity, that translates to ∀s1, s2 :
R′(s1, s2) ⇒ (R(s1, s2) ∧ s1.C = s2.C). We proceed with the weakest such
relation, i.e., R′(s1, s2) := (R(s1, s2) ∧ s1.C = s2.C). As discussed in Sect. 3.1,
it can be undecidable whether the current relation needs refinement. However,
for the models that we analyzed, our framework was always able to verify the
existence of suitable witnesses. The identification and verification of new low
components consists of three steps:

Automatic Derivation of Platform Noninterference Properties 37

1. Identification of a new low component. We transform subgoal G on top
of the goal stack into a subgoal false with premises extended by ¬G. In this
updated list of premises for the pre-states s1 and s2, we identify a premise on
s1 which would solve the transformed subgoal by contradiction when assumed
for s2 as well. Intuitively, we suspect that noninterference is prevented by the
disagreement on components in the identified premise. We arbitrarily pick
one such component as candidate for downgrading.

2. Existential verification of the scenario. To ensure that the extended
premises alone are not already in contradiction, we prove the existence of a
scenario in which all of them hold. We furthermore introduce the additional
premise that the two pre-states disagree on the chosen candidate, but agree
on all other components. An instantiation satisfying this existential statement
is a promising suspect for the set of witnesses for N . The existential proof in
HOL4 refines existentially quantified variables with patterns, e.g., symbolic
states for state variables, bit vectors for words, and mappings with abstract
updates for function variables (allowing to reduce ∃f : P (f(n)) to ∃x : P (x)).
If possible, existential goals are split. Further simplifications include HOL4
tactics particular to existential reasoning, the application of type-specific exis-
tential inequality theorems, and simplifications on word and bit operations.
If after those steps and automatic reasoning existential subgoals remain, the
tool attempts to finish the proof with different combinations of standard val-
ues for the remaining existentially quantified variables.

3. Witness verification. We use the anonymous witnesses of the existential
statement in the previous step as witnesses for N . After initialisation, the core
parts of the proof strategy from the failed noninterference proof are repeated
until the violation of noninterference has been demonstrated.

In order to keep the analysis focused, it is important to handle case splits before
entering the refinement stage. At the same time, persistent case splits can be
expensive on a non-provable goal. Therefore, we implemented a depth first proof
tactical, which introduces hardly any performance overhead on successful proofs,
but fails early in cases where the proof strategy does not succeed. Furthermore,
whenever case splits become necessary in the proof attempt, the framework
strives to diverge early, prioritizing case splits on state components.

5 Evaluation

We applied our framework to analyse information flows on ARMv7-A and MIPS-
III (64-bit RS4000). For ARM, we focus on user mode execution without secu-
rity or virtualization extension. Since unprivileged ARM code is able to switch
between several instructions sets (ARM, Thumb, Thumb2, ThumbEE), the infor-
mation flow analysis has to be performed for all of them. For MIPS, we consider
all three privilege modes (user, kernel, and supervisor). The single-core model
does not include floating point operations or memory management instructions.

Table 1 shows the initial and accurate final low-equivalence relations for the
two ISAs with different configurations. All relations refine the memory rela-
tion. The final relation column only lists components not already restricted by

38 O. Schwarz and M. Dam

Table 1. Identified flows (model components might deviate from physical systems)

ISA Mode Initial relation Final relation

ARMv7-A user mode program counter user registers; con-
trol register CPSR (all
flags); floating point
registers of FP.REG
and FP.FSPCR; TEEHBR

register (coprocessor
14); Encoding ghost
component; system
control register SCTLR

(coprocessor 15, flags:
EE, TE, V, A, U, DZ)

MIPS-III user or kernel or
supervisor mode

program counter;
BranchTo; BranchDelay;
CP0.Count; exception
marker; CP0.Status.KSU;
CP0.Status.EXL;
CP0.Status.ERL

all modelled system
components

MIPS-III restricted user mode general purpose reg-
ister set; LLbit; lo;
hi; CP0.Config.BE;
CP0.Status.RE;
CP0.Status.BEV;
exceptionSignalled

the corresponding initial relations. For simplicity, the initial relation for MIPS
restricts three components accessed on the highest level of NEXT. The corre-
sponding table cell also lists components already restricted by the preconditions.
Initially unaware of the privilege management in MIPS, we were surprised that
our tool first yielded the same results for all MIPS processor modes and that
even user processes can read the entire state of system coprocessor CP0, which
is responsible for privileged operations such as the management of interrupts,
exceptions, or contexts. To restrict user privileges, the CU0 status flag must be
cleared (see last line of the table). While ARMv7-processes in user mode can
not read from banked registers of privileged modes, they can infer the state
of various control registers. Alignment control register flags (CP15.SCTLR.A/U in
ARMv7) are a good example for implicit flows in CPUs. Depending on their val-
ues, an unaligned address will either be accessed as is, forcibly aligned, or cause
an alignment fault. Table 2 shows the time that rewriting, instruction proofs
(including relation refinement), and the composing proof for NEXT took on a sin-
gle Xeon� X3470 core. The first benchmark for MIPS refers to unrestricted user
mode (with similar times as for kernel and supervisor mode), the second one to
restricted user mode. Even though we borrowed a few data type theorems and
some basic machinery from the step library, we did not use instruction specific

Automatic Derivation of Platform Noninterference Properties 39

Table 2. Proof performance
(in seconds)

ISA Rewrite Instr NEXT Total

ARMv7 29,829 46,146 2,171 78,146 (21 h, 42min)

MIPS (1) 537 1,790 1,594 3,921 (1 h, 5min)

MIPS (2) 537 1,216 562 2,315 (38min)

Table 3. Performance
ARMv7 proof

Step Min Median Mean Max

rewrite 1 25 167 2,384

instr. (success) 1 15 96 3,605

instr. (fail) 3 26 72 1,544

refinement 7 50 89 1,326

theorems for the MIPS verification. Both ISAs have around 130 modelled instruc-
tions, but with 9238 lines of L3 compared to 2080 lines [7], the specifications of
the ARMv7 instructions are both larger and more complex. Consequently, we
observed a remarkable difference in performance. However, as Table 3 shows,
minimum, median, and mean processing times (given in seconds) for the ARM
instructions are actually moderate throughout all steps (rewriting, successful and
failed noninterference proofs, and relation refinement). Merely a few complex
outliers are responsible for the high verification time of the ARM ISA. While we
believe that optimizations and parallelization could significantly improve perfor-
mance, those outliers still demonstrate the limits of analyzing entire instructions
as a whole. Combining our approach with compositional solutions such as [13]
could overcome this remaining challenge. We leave this for future work.

6 Related Work

While most work on processor verification focuses on functional correctness [4,5,
21] and ignores information flow, we survey hardware noninterference, both for
special separation hardware and for general purpose hardware.

Noninterference Verification for Separation Hardware. Wilding et al. [24] verify
noninterference for the partitioning system of the AAMP7G microprocessor. The
processor can be seen as a separation kernel in hardware, but lacks for example
user-visible registers. Security is first shown for an abstract model, which is later
refined to a more concrete model of the system, comprising about 3000 lines of
ACL2. The proof appears to be performed semi-automatically.

SAFE is a computer system with hardware operating on tagged data [2].
Noninterference is first proven for a more abstract machine model and then
transferred to the concrete machine by refinement. The proof in Coq does not
seem to involve much automation.

Sinha et al. [20] verify confidentiality of x86 programs that use Intel’s
Software Guard Extensions (SGX) in order to execute critical code inside an
SGX enclave, a hardware-isolated execution environment. They formalize the
extended ISA axiomatically and model execution as interleaving between enclave
and environment actions. A type system then checks that the enclave does not
contain insecure code that leaks sensitive data to non-enclave memory. At the

40 O. Schwarz and M. Dam

same time, accompanying theorems guarantee some protection from the envi-
ronment, in particular that an adversary can not influence the enclave by any
instruction other than a write to input memory. However, [20] assumes that
SGX management data structures are not shared and that there are no register
contents that survive an enclave exit and are readable by the environment. Once
L3/HOL4 models of x86 with SGX are available, our machinery would allow to
validate those assumptions in an automated manner, even for a realistic x86 ISA
model. Such a verification would demonstrate that instructions executed by the
environment do not leak enclave data from shared resources (like non-mediated
registers) to components observable by the adversary.

Noninterference Verification for General Purpose Hardware. Information flow
analysis below ISA level is discussed in [15,18]. Procter et al. [18] present a
functional hardware description language suitable for formal verification, while
the language in [15] can be typed with information flow labels to allow for static
verification of noninterference. Described hardware can be compiled into VHDL
and Verilog, respectively. Both papers demonstrate how their approaches can be
used to verify information flow properties of hardware executing both trusted
and untrusted code. We are not aware of the application of either approach to
information flow analysis of complex commodity processors such as ARM.

Tiwari et al. [23] augment gate level designs with information flow labels,
allowing simulators to statically verify information flow policies. Signals from
outside the TCB are modelled as unknown. Logical gates are automatically
replaced with label propagating gates that operate on both known and unknown
values. The authors employ the machinery to verify the security of a combination
of a processor, I/O, and a microkernel with a small TCB. It is unclear to us how
the approach would scale to commodity processors with a more complex TCB.
From our own experience on ISA-level, the bottleneck is mainly constituted by
the preprocessing to obtain the model’s evaluated form and by the identification
of a suitable labelling. The actual verification is comparatively fast.

In earlier work [13] we described a HOL4 proof for the noninterference (and
other isolation properties) of a monadic ARMv7-model. A compositional app-
roach based on proof rules was used to support a semi-automatic analysis. How-
ever, due to insufficient context, a number of transitions had to be verified man-
ually or with the support of context-enhancing proof rules. In the present work,
we overcome this issue by analysing entire instructions. Furthermore, our new
analysis exhibits the low-equivalence relation automatically, while [13] provides
it as fixed input. Finally, the framework described in the present paper is less
dependent of the analysed architecture.

Verification of Binaries. Fox’s ARM model is also used to automatically verify
security properties of binary code. Balliu et al. [3] does this for noninterference,
Tan et al. [22] for safety-properties. Despite the seeming similarities, ISA analy-
sis and binary code analysis differ in many respects. While binary verification
considers concrete assembly instructions for (partly) known parameters, ISA

Automatic Derivation of Platform Noninterference Properties 41

analysis has to consider all possible assembly instructions for all possible para-
meters. On the other hand, it is sufficient for an ISA analysis to do this for each
instruction in isolation, while binary verification usually reasons on a sequence
(or a tree of) instructions. In effect, that makes the verification of a binary pro-
gram an analysis on imperative code. In contrast, ISA analysis (in our setting)
is really concerned with functional code, namely the operational semantics that
describe the different steps of single instructions. In either case, to enable full
automation, both analyses have to include a broader context when the local con-
text is not sufficient to verify the desired property for a single step in isolation.
As discussed above, we choose an instruction-wide context from the beginning.
Both [3,22] employ a more local reasoning. In [22] a Hoare-style logic is used
and context is provided by selective synchronisation of pre- and postconditions
between neighbouring code blocks. In [3] a forward symbolic analysis carries
the context in a path condition when advancing from instruction to instruction.
SMT solvers then allow to discard symbolic states with non-satisfiable paths.

7 Discussion on Unpredictable Behaviour

ISA specifications usually target actors responsible for code production, like pro-
grammers or compiler developers. Consequently, they are often based on the
assumption that executed code will be composed from a set of well-defined
instructions and sound conditions, so that no one relies on combinations of
instructions, parameters and configurations not fully covered by the specifi-
cation. This allows to keep instructions partly underspecified and leave room
for optimizations on the manufacturer’s side. However, this practice comes at
the cost of actors who have to trust the execution of unknown and potentially
malicious third-party code. For example, an OS has an interest in maintaining
confidentiality between processes. To that end, it has different means such as
clearing visible registers on context switches. But if the specification is incom-
plete on which registers actually are visible to an instruction with uncommon
parameters, then there is no guarantee that malicious code can not use under-
specified instructions (i.e., instructions resulting in unpredictable states) to learn
about otherwise secret components. ARM attempts to address this by specify-
ing that “unpredictable behaviour must not perform any function that cannot
be performed at the current or lower level of privilege using instructions that
are not unpredictable”.2 While this might indeed remedy integrity concerns, it
is still problematic for noninterference. An underspecified instruction can be
implemented by two different “safe” behaviours, with the choice of the behav-
iour depending on an otherwise secret component. The models by Fox et al.
mark the post-states of underspecified operations as unpredictable by assigning
an exception marker to those states. In addition, newer versions still model a
reasonable behaviour for such cases, but there is no guarantee that the manu-
facturer chooses the same behaviour. A physical implementation might include
2 ARMv7-A architecture reference manual, issue C: http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0406c.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c

42 O. Schwarz and M. Dam

flows from more components than the model does, or vice versa. A more conser-
vative analysis like ours takes state changes after model exceptions into account,
but can still miss flows simply not specified. To the rescue might come state-
ments from processor designers like ARM that “unpredictable behaviour must
not represent security holes”.3 In one interpretation, flows not occurring else-
where can be excluded in underspecified instructions. The need to rely on this
interpretation can be reduced (but not entirely removed) when the exception
marker itself is considered low in the initial labelling. As an example, consider
an instruction that is well-defined when system component C1 is 0, but under-
specified when it is 1. The manufacturer might choose different behaviours for
both cases, thus possibly introducing a flow from C1 to low components. At the
same time, the creator of the formal model might implement both cases in the
same way, so that the analysis could miss the flow. But with a low exception
marker, C1 would also be labelled low, since it influences the marker. However,
an additional undocumented dependency on another component C2 that only
exists when C1 is 1 can still be missed.

8 Conclusions and Future Work

We presented a sound and accurate approach to automatically and statically
verify noninterference on instruction set architectures, including the automatic
identification of a least restrictive low-equivalence relation. Besides applying our
framework to more models such as the one of ARMv8, we intend to improve
robustness and performance, and to cover integrity properties as well.

Integrity Properties. We plan to enhance the framework by safety-properties
such as nonexfiltration [10,13] and mode switch properties [13]. Nonexfiltration
asserts that certain components do not change throughout (unprivileged) execu-
tion. Mode switch properties make guarantees on how components change when
transiting to higher privilege levels, for example that the program counter will
point to a well-defined entry point of the kernel code. We believe that both
properties can be derived relatively easily from the normalized forms of the
instructions.

Performance Optimization. While our benchmarks have demonstrated that ISA
information flow analysis on an instruction by instruction basis allows for a large
degree of automation, they also have shown that this approach introduces severe
performance penalties for more complex instructions. To increase scalability and
at the same time maintain automation, we plan to investigate how to combine
the compositional approach of [13] with the more global reasoning demonstrated
here. Furthermore, there is potential for improvements in the performance of
individual steps. E.g., our normalization could be combined with the one of [7].

3 ARMv7-A architecture reference manual, issue B.

Automatic Derivation of Platform Noninterference Properties 43

Acknowledgments. Work supported by the Swedish Foundation for Strategic
Research, by VINNOVA’s HASPOC-project, and by the Swedish Civil Contingencies
Agency project CERCES. Thanks to Anthony C. J. Fox, Roberto Guanciale, Nicolae
Paladi, and the anonymous reviewers for their helpful comments.

References

1. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a
small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

2. Azevedo de Amorim, A., Collins, N., DeHon, A., Demange, D., Hriţcu, C.,
Pichardie, D., Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow
architecture. In: Principles of Programming Languages, POPL, pp. 165–178 (2014)

3. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS, pp. 1080–1091 (2014)

4. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all
together - formal verification of the VAMP. Int. J. Softw. Tools Technol. Transf.
8(4), 411–430 (2006)

5. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.K.: Effective theorem proving for
hardware verification. In: Kumar, R., Kropf, T. (eds.) TPCD 1994. LNCS, vol.
901, pp. 203–222. Springer, Heidelberg (1995)

6. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Computer and Communications Security, CCS, pp. 223–234 (2013)

7. Fox, A.C.J.: Improved tool support for machine-code decompilation in HOL4. In:
Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, pp. 187–202. Springer, Heidelberg
(2015)

8. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

9. Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and
integrity. In: Principles of Programming Languages, POPL, pp. 365–377 (1998)

10. Heitmeyer, C., Archer, M., Leonard, E., McLean, J.: Applying formal methods to
a certifiably secure software system. IEEE Trans. Softw. Eng. 34(1), 82–98 (2008)

11. HOL4 project. http://hol.sourceforge.net/
12. Hunt, S., Sands, D.: On flow-sensitive security types. In: Principles of Programming

Languages, POPL, pp. 79–90 (2006)
13. Khakpour, N., Schwarz, O., Dam, M.: Machine assisted proof of ARMv7 instruction

level isolation properties. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS,
vol. 8307, pp. 276–291. Springer, Heidelberg (2013)

14. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: SOSP, pp. 207–220
(2009)

15. Li, X., Tiwari, M., Oberg, J.K., Kashyap, V., Chong, F.T., Sherwood, T.,
Hardekopf, B.: Caisson: A hardware description language for secure information
flow. In: Programming Language Design and Implementation, PLDI, pp. 109–120
(2011)

http://hol.sourceforge.net/

44 O. Schwarz and M. Dam

16. Murray, T.C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: seL4: From general purpose to a proof of information
flow enforcement. In: Security and Privacy, pp. 415–429 (2013)

17. Pottier, F., Simonet, V.: Information flow inference for ML. In: Principles of Pro-
gramming Languages, POPL, pp. 319–330 (2002)

18. A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein.: Semantics driven
hardware design, implementation, and verification with ReWire. In: Languages,
Compilers and Tools for Embedded Systems, LCTES, pp. 13:1–13:10 (2015)

19. Sibert, O., Porras, P.A., Lindell, R.: The Intel 80x86 processor architecture: Pitfalls
for secure systems. In: Security and Privacy, SP, pp. 211–222 (1995)

20. Sinha, R., Rajamani, S., Seshia, S., Vaswani, K.: Moat: verifying confidentiality
of enclave programs. In: Computer and Communication Security, pp. 1169–1184
(2015)

21. Srivas, M., Bickford, M.: Formal verification of a pipelined microprocessor. IEEE
Softw. 7(5), 52–64 (1990)

22. Tan, J., Tay, H.J., Gandhi, R., Narasimhan, P.: AUSPICE: automatic safety prop-
erty verification for unmodified executables. In: Gurfinkel, A., et al. (eds.) VSTTE
2015. LNCS, vol. 9593, pp. 202–222. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29613-5 12

23. Tiwari, M., Oberg, J.K., Li, X., Valamehr, J., Levin, T., Hardekopf, B., Kastner, R.,
Chong, F.T., Sherwood, T.: Crafting a usable microkernel, processor, and I/O sys-
tem with strict and provable information flow security. In: International Symposium
on Computer Architecture, ISCA, pp. 189–200 (2011)

24. Wilding, M.M., Greve, D.A., Richards, R.J., Hardin, D.S.: Formal verification of
partition management for the AAMP7G microprocessor. In: Hardin, D.S. (ed.)
Design and Verification of Microprocessor Systems for High-Assurance Applica-
tions, pp. 175–191. Springer, New York (2010)

http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12

Linearizability and Causality

Simon Doherty(B) and John Derrick

Department of Computing, University of Sheffield, Sheffield, UK
s.doherty@sheffield.ac.uk

Abstract. Most work on the verification of concurrent objects for
shared memory assumes sequential consistency, but most multicore
processors support only weak memory models that do not provide sequen-
tial consistency. Furthermore, most verification efforts focus on the lin-
earizability of concurrent objects, but there are existing implementations
optimized to run on weak memory models that are not linearizable.

In this paper, we address these problems by introducing causal lin-
earizability, a correctness condition for concurrent objects running on
weak memory models. Like linearizability itself, causal linearizability
enables concurrent objects to be composed, under weak constraints on
the client’s behaviour. We specify these constraints by introducing a
notion of operation-race freedom, where programs that satisfy this prop-
erty are guaranteed to behave as if their shared objects were in fact
linearizable.

We apply these ideas to objects from the Linux kernel, optimized to
run on TSO, the memory model of the x86 processor family.

1 Introduction

The past decade has seen a great deal of interest in the verification of highly
optimized, shared-memory concurrent objects. This interest is partly motivated
by the increasing importance of multicore systems. Much of this verification work
has assumed that these concurrent implementations run on the sequentially con-
sistent memory model. However, contemporary multicore architectures do not
implement this strong model. Rather, they implement weak memory models,
which allow reorderings of memory operations, relative to what would be legal
under sequential consistency. Examples of such models include TSO (imple-
mented on the x86) [10], POWER and ARM [2]. These models create significant
challenges for verifying that an implementation satisfies a particular correctness
condition [5].

Furthermore it is not always clear what correctness conditions are appropri-
ate for an implementation running on a weak memory model. Specifically, the
standard correctness condition for concurrent objects is linearizabilty [8]. How-
ever, as described in Sect. 1.1, there are implementations of concurrent objects
optimized to run on weak memory models that are not linearizable. Neverthe-
less, these implementations are used in important contexts, including the Linux
kernel. This is possible because when these objects are used in a stereotypical
fashion, their nonlinearizable behaviours are not observable to their clients.
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 45–60, 2016.
DOI: 10.1007/978-3-319-41591-8 4

46 S. Doherty and J. Derrick

Our goal in this paper is to define a correctness condition appropriate for
these nonlinearizable objects. We introduce a correctness condition called causal
linearizablilty. Roughly speaking, an object is causally linearizable if all its exe-
cutions can be transformed into linearizable executions, in a way that is not
observable to any thread. As we shall see, causal linearizability is stronger than
sequential consistency, and therefore programmers can reason about causally
linearizable systems using established intuitions and verification techniques.
Furthermore, unlike some competing proposals, causal linearizability places no
constraints on the algorithmic techniques used in the implementation of concur-
rent objects.

Causal linearizability enables concurrent objects to be composed, under
certain constraints on the client’s behaviour. We specify these constraints by
introducing a notion of operation-race freedom, where programs that satisfy this
property are guaranteed to behave as if their shared objects were linearizable.

In the remainder of the introduction we motivate our work by describing a
nonlinearizable data structure designed for a particular weak memory model (in
this case, TSO). The structure of the rest of the paper is as follows. Section 2
outlines our contribution, and compares it to related work. Section 3 defines the
formal framework and notation, and Sect. 4 defines independence and causal
ordering, which are key concepts in our definition of causal linearizability.
Section 5 defines causal linearizability itself. Section 6 then defines operation-race
freedom and outlines a proof method for proving causal linearizability. Section 7
applies our ideas to the TSO memory model. Section 8 concludes.

1.1 Motivation - Nonlinearizable Objects on TSO

The Total Store Order (TSO) memory model optimizes write operations by
first buffering a write to a local write buffer, and later flushing the write to
shared memory. The effect of the write is immediately visible to the core that
issues it, but is only visible to other cores after the write has been flushed. The
x86 instruction set provides primitives for ensuring that the effect of a write is
visible to other threads on other cores. The barrier operation flushes all writes of
the executing core that have not previously been flushed. In addition, memory
operations that both read and modify shared memory may be locked. A locked
operation appears to execute atomically, and the locking mechanism causes the
executing core’s write buffer to be emptied both before and after the execution
of the locked operation. We formalize this memory model in Sect. 7.

Locked operations and barriers are typically costly, relative to simple reads
and writes. For this reason, optimized datastructures often avoid such synchro-
nization primitives where possible. Here we describe a simple example of such an
algorithm: a spinlock algorithm for x86 processors that is adapted from an imple-
mentation in the Linux kernel. Figure 1 presents pseudocode for the algorithm,
which uses a simple boolean flag (F below) to record whether the lock is currently
held by some thread. A thread acquires the lock using the try acquire proce-
dure, which fails if the lock is currently held (an unconditional acquire proce-
dure can be implemented by repeatedly invoking try acquire until successful).

Linearizability and Causality 47

Fig. 1. Nonlinearizable spinlock implementation

The try acquire procedure uses a locked operation to atomically determine
whether the lock is held and to set the flag to true. (This operation is called an
atomic test-and-set). Note that this operation has no effect if the flag is already
true. Thus, if the lock is not held, then try acquire successfully acquires the
lock and returns true. Otherwise, the acquisition attempt fails, and try acquire
returns false. The optimised release operation simply sets the flag to false,
without using any locked or barrier operations.

The spinlock implementation is not linearizable. Intuitively, linearizability
requires that each operation on the lock appears to take effect at some point
between its invocation and response. To see how this fails, consider the execution
in Fig. 2. In this example, two threads, t1 and t2 attempt to acquire the lock L,
using the try acquire operation. The first acquisition attempt (of t1) succeeds,
because the lock is free; t1 then releases the lock (presumably after accessing some
shared state protected by the lock), but the write that changes the lock’s state is
not yet flushed to shared memory. Now t2’s lock acquisition fails, despite being
invoked after the end of t1’s release operation. This is because, in the example,
the releasing write is not flushed until after the completion of t2’s try acquire.
Thus, t2’s try acquire appears to take effect between t1’s acquisition and release
operations. Linearizability requires that the try acquire appear to take effect
after t1’s release.

Fig. 2. Nonlinearizable spinlock history.

Despite the fact that it is not lineariz-
able, there are important circumstances
in which this spinlock implementation
can be correctly used. Indeed, a spin-
lock essentially identical to this has been
used extensively in the Linux kernel.
Fundamentally, the goal of this paper is
to investigate and formalize conditions
under which objects like this spinlock
may be used safely on weak memory

models.

2 Our Contribution

In this paper, we describe a weakening of linearizability which we call causal
linearizability. Note that in the execution of Fig. 2, no thread can observe that

48 S. Doherty and J. Derrick

the invocation of thread t2’s try acquire occurred after the response of t1’s
release, and therefore no thread can observe the failure of linearizability. Causal
linearizability allows operations to be linearized out of order, in cases where no
thread can observe this reordering.

However, the lock L is the only object in execution in Fig. 2. In general,
clients of the lock may have other means of communicating, apart from opera-
tions on L. Therefore, under some circumstances, clients may observe that the
execution is not linearizable. Our second contribution is to define a condition
called operation-race freedom (ORF) on the clients of nonlinearizable objects like
the TSO spinlock, such that clients satisfying ORF cannot observe a failure of
linearizability. ORF is inspired by data-race freedom (DRF) approaches, which
we discuss below. However, unlike DRF, ORF is defined in terms of high-level
invocations and responses, rather than low-level reads and writes.

Finally, we provide a proof method for verifying causal linearizability. We
define a correctness condition called response-synchronized linearizability (RS-
linearizability). In the context of TSO, proving that a data structure satisfies
RS-linearizability amounts to proving that the structure is linearizable in all
executions where every write executed during an operation are flushed by the
time any operation completes. Because of this, we can prove RS-linearizability
using essentially standard techniques used for proving linearizability. In Sect. 6,
we show that any set of RS-linearizable objects is causally linearizable, when the
objects’ clients satisfy ORF.

Related Work. One way to address the issues raised by weak memory models
is based on the observation that locks and other synchronization primitives are
typically used in certain stereotypical ways. For example, a lock is never released
unless it has been first acquired; and the shared state that a lock protects is not
normally accessed without holding the lock. As shown in [9], these circumstances
mean that the spinlock’s nonlinearizable behaviour can never be observed by any
participating thread.

The analysis given in [9] belongs to a class of approaches that define con-
ditions under which a program running on a weak memory model will behave
as if it were running on a sequentially-consistent memory. These conditions are
often phrased in terms data-races: a data-race is a pair of operations executed
by different threads, one of which is a write, such that the two operations can
be adjacent in some execution of the (multithreaded) program. Data-race free
(DRF) programs are those whose executions never contain data races, and the
executions of DRF programs are always sequentially consistent.

Data-race free algorithms that are linearizable on the sequentially-consistent
model will appear to be linearizable on the appropriate weak memory model.
Thus the problem of verifying a DRF algorithm on weak-memory is reduced
to that of verifying it under the standard assumption of sequential consistency.
However, DRF-based approaches have the drawback that algorithms that are
not DRF cannot be verified. Our approach does not suffer from this limitation:
implementations are free to use any algorithmic techniques, regardless of DRF.

Linearizability and Causality 49

Furthermore, the ORF property only constrains the ordering of high-level invo-
cations and responses, rather than low level reads and writes.

[3,7] define correctness conditions for TSO by weakening linearizability. [3]
introduces abstract specifications that manipulate TSO-style write-buffers such
that the abstract effect of an operation can be delayed until after the operation’s
response. [7] proposes adding nondeterminism to concurrent objects’ specifica-
tions to account for possible delay in the effect of an operation becoming visi-
ble. Neither work systematically addresses how to reason about the behaviour
of clients that use these weakened abstract objects. In our work, the abstract
specifications underlying linearizability are unchanged, and programs satsifying
the ORF constraint are guaranteed to behave as if their shared objects were
linearizable.

RS-linearizability is a generalisation of TSO-linearizability, described in [5].
That work shows that TSO-linearizability can be verified using more-or-less
standard techniques for proving linearizability. However, [5] does not address
how to reason about the behaviour of clients that use TSO-linearizable objects,
as we do with the ORF constraint.

3 Modelling Threads, Histories and Objects

As is standard, we assume a set of invocations I and responses R, which are
used to represent operations on a set X of objects. The invocations and responses
of an object define its interactons with the external environment so we define
Ext = I ∪ R to be the set of external actions. We denote by obj (a) the object
associated with a ∈ Ext . We also assume a set of memory actions Mem, which
typically includes reads, writes and other standard actions on shared-memory.
Operational definitions of weak memory models typically involve hidden actions
that are used to model the memory system’s propagation of information between
threads, so we assume a set Hidden ⊆ Mem (for example, in TSO the hidden
actions are the flushes). Let Act = Ext ∪ Mem be the set of actions.

In our model, each action is executed either on behalf of a thread (e.g.,
invocations, or read operations), or on behalf of some memory system (these are
the hidden actions). To represent this, we assume a set of threads T , a function
thr : Act → T ∪ {⊥} = T⊥, such that thr(a) = ⊥ iff a ∈ Hidden.

Executions are modelled as histories, which are sequences of actions. We
denote by gh the concatenation of two histories g and h. When h is a history
and A a set of actions, we denote by h � A the sequence of actions a ∈ A
occurring in h. For a history h, the thread history of t ∈ T , denoted h � t , is
h � {a : thr(a) = t}. Two histories h and h ′ are thread equivalent if h � t = h ′ � t ,
for all threads t ∈ T . (Note that two histories may be thread equivalent while
having different hidden actions.)

For example, the behaviour shown in Fig. 2 is represented by the history:

L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true),L.releaset1 ,writet1(F , false),

respt1(L),L.try acqt2 , lockedt2(TAS ,F , true), respt2(L, false),flush(F , false) (1)

50 S. Doherty and J. Derrick

Let a = L.try acqt1 . Then a is an invocation of the try acquire operation,
thr(a) = t1 and obj (a) = L. The action respt1(L, true) is a response from object
L, of the thread t1, returning the value true. lockedt1(TAS ,F , false) is a locked
invocation of the test-and-set operation on the location F , again by thread t1 that
returns the value false. flush(F , false) is a flush action of the memory subsystem,
that sets the value of F to false in the shared store. This history is thread
equivalent to the following:

L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true),
L.try acqt2 , lockedt2(TAS ,F , true), respt2(L, false),

L.releaset1 ,writet1(F , false),flush(F , false), respt1(L) (2)

A history is well-formed if for all t ∈ T , h � t �Ext is an alternating sequence
of invocations and responses, beginning with an invocation. Note that well-
formedness only constrains invocations and responses. Memory operations may
be freely interleaved with the external actions. From now on, we assume that all
histories are well-formed. A history is complete if every thread history is empty
or ends in a response.

An object system is a prefix-closed set of well-formed histories. A sequential
object system is an object system where every invocation is followed immediately
by a response, in every history. If O is an object system then acts(O) is the set
of actions appearing in any history of O .

We wish to reason about orders on the actions appearing in histories. In
general, each action may appear several times in a history. Strictly speaking, to
define appropriate orders on the actions, we would need to tag actions with some
identifying information, to obtain an event which is guaranteed to be unique in
the history. However, for the sake of simplicity, we assume that each action
only appears at most once in each history. For example, each thread may only
execute at most one write for each location-value pair. This restriction can be
lifted straightforwardly, at the cost of some notational complexity.1

Given a history h, the real-time order of h, denoted →h is the strict total
order on actions such that a →h b if a occurs before b in h. The program
order, denoted

p−→h , is the strict partial order on the actions of h such that
a

p−→h b if thr(a) = thr(b) and a →h b. For example, in History 1 above,
L.releaset1

p−→h writet1(F , false) and writet1(F , false) →h flush(F , false).

4 Independence and Causal Ordering

In this section, we develop a notion of causal ordering. Roughly speaking, an
action a is causally prior to an action b in a history h if a →h b and some
thread can observe that a and b occurred in that order. Therefore, we can safely
reorder events that are not causally ordered. Causal order itself is expressed in
1 The full version of the paper, which can be found at arXiv.org/abs/1604.06734,

presents a model of histories in which events are unique.

http://arxiv.org/abs/1604.06734

Linearizability and Causality 51

terms of an independence relation between actions, which we now define. The
notion of independence, and the idea of using independence to construct a causal
order has a long history. See [6] for a discussion in a related context.

Given an object system S , two actions a and b are S-independent if thr(a) �=
thr(b) and for all histories g and h,

g〈a, b〉h ∈ S ⇔ g〈b, a〉h ∈ S (3)

(Here, 〈a, b〉 denotes the sequence of length two containing a and then b.)
According to this definition, TSO flushes are independent iff they are to dis-
tinct locations. Again in TSO, read and write actions in different threads are
always independent, but two actions of the same thread never are. (Inter-thread
communication only occurs during flush or locked actions.)

We define the causal order over a history in terms of this independence rela-
tion. We say that h is S-causally equivalent to h ′ if h ′ is obtained from h by
zero or more transpositions of adjacent, S -independent actions. Note that causal
equivalence is an equivalence relation. Actions a and b are S -causally ordered in
h, denoted a ↪→S

h b if for all causally equivalent histories h ′, a →h′ b. This is a
transitive and acyclic relation, and therefore ↪→S

h is a strict partial order.
For example, because the release operation does not contain any locked

actions, Histories 1 and 2 on page 6 are causally equivalent. On the other hand,
the actions lockedt2(TAS ,F , true) and flush(F , false) are not independent, and
therefore lockedt2(TAS ,F , true) ↪→h flush(F , false).

Note that independence, causal equivalence, and causal order are all defined
relative to a specific object system. However, we often elide the object system
parameter when it is obvious from context.

One key idea of this work is that a history is “correct” if it can be transformed
into a linearizable history in a way that is not observable to any thread. The
following lemma is our main tool for effecting this transformation. It says that a
history can be reordered to be consistent with any partial order that contains the
history’s causal ordering. The thrust of our compositionality condition, presented
in Sect. 6, is to provide sufficient conditions for the existence of a strict partial
order satisfying the hypotheses of this lemma.2

Lemma 1. Let S be an object system, let h ∈ S be a history, and let < be a
strict partial order on the events of h such that ↪→S

h⊆<. Then there exists an
h ′ causally equivalent to h such that for all events a, b in h (equivalently in h ′)
a < b implies a →h′ b. �

We are now in a position to formally define causal linearizability. Essentially,
an object system is causally linearizable if all its histories have causally equivalent
linearizable histories. The key idea behind linearizablity is that each operation
should appear to take effect atomically, at some point between the operation’s
invocation an response. See [8] or [4] for a formal definition.
2 For reasons of space, this paper does not contain proofs of Lemma 1 or the other

results presented in this paper. The full version of the paper contains the proofs,
and can be found at arXiv.org/abs/1604.06734.

http://arxiv.org/abs/1604.06734

52 S. Doherty and J. Derrick

Definition 1 (Causal Linearizability). An object system S is causally lin-
earizable to a sequential object system T if for all h ∈ S, h is S-causally equiv-
alent to some history h ′ such that h ′ � acts(T) ∩ Ext is linearizable to T.

Note that causal linearizability is defined in terms of histories that contain both
external and internal actions. Typically linearizability and related correctness
conditions are defined purely in terms of external actions. Here, we preserve the
internal actions of the object, because those internal actions carry the causal
order.

5 Observational Refinement and Causal Linearizability

In this section, we introduce a notion of client and a notion of composition
of a client with an object system (Definition 5). We then define a notion of
observational refinement for object systems. One object system S observationally
refines another object system T for a client C if the external behaviour of C
composed with S is included in the external behaviour of C composed with
T . These notions have a twofold purpose. First, they provide a framework in
which to show that causal linearizability is a reasonable correctness condition:
the composition of a client with a causally linearizable object system has only
the behaviours of the client composed with a corresponding linearizable object
system (Theorem 1). Second, these notions allow us to specify a constraint on
the behaviour of a client, such that the client can safely use a composition of
nonlinearizable objects.

A client is a prefix-closed set of histories, where each history contains only one
thread, and all actions are thread actions (so that the client contains no hidden
actions). Each client history represents a possible interaction of a client thread
with an object system. While each client history contains only one thread, the
client itself may contain histories of several threads. For example, consider the
histories that might be generated by a thread t1 repeatedly executing spinlock’s
try acquire operation (Fig. 1) until the lock is successfully acquired. The set of
histories generated in this way for every thread is a client. One such history is
L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true), where t1 successfully acquires
the lock on the first attempt. A history where the thread acquires the lock after
two attempts is

L.try acqt1 , lockedt1(TAS ,F , true), respt1(L, false),
L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true)(4)

Thus, the client histories contain the memory operations determined by the
implementations of the shared objects.

The composition of an object system O and client program C , denoted C [O]
is the object system defined as follows:

C [O] = {h : h � acts(O) ∈ O ∧ ∀ t ∈ T . h � t ∈ C} (5)

Linearizability and Causality 53

So for all h ∈ C [O], h is an interleaving of actions of the threads in C , and every
thread history of h is allowed by both the object system and the client program.

We need a notion of observational refinement relative to a given client.

Definition 2 (Observational Refinement). An object system S observation-
aly refines an object system T for a client C if for every h ∈ C [S], there exists
some h ′ ∈ C [T] where h � Ext and h ′ � Ext are thread equivalent.

The following theorem shows that causal linearizability is sound with respect
to observational refinement. Because of this, a causally linearizable object can be
used instead of a linearizable object, while preserving correctness of the client’s
behaviour.

Theorem 1 (Causal Linearizability Implies Observational Refine-
ment). Let T be a sequential object system, and let T ′ be its set of linearizable
histories. Let S be an object system such that acts(T) ∩ Ext = acts(S) ∩ Ext. If
C [S] is causally linearizable to T, then S observationally refines T ′ for C .

6 Flush-Based Memory and Operation-Race Freedom

Causal linearizability is a general correctness condition, potentially applicable
in a range of contexts. Our goal is to apply it to objects running on weak mem-
ory models. To this end, we formally define a notion of flush-based memory.
Flush-based memory is a generalisation of TSO and some other memory mod-
els, including partial store order [1]. This section develops a proof technique for
causal linearizability of an object system running on flush-based memory, and
hence for observational refinement.

Our proof technique can be encapsulated in the following formula: Operation-
race freedom + Response-synchronized linearizabilty ⇒ Causal linearizability.
Response-synchronized linearizability, a weakening of linearizability, is a cor-
rectness property specialised for flush-based memory, and is adapted from TSO
linearizability studied in [5]. That work presents techniques for verifying TSO lin-
earizability and proofs that spinlock and seqlock are TSO linearizable. Theorem 2
below shows that a multi-object system composed of response-synchronized lin-
earizable objects is causally linearizable, under a constraint on the multi-object
system’s clients. This constraint is called operation-race freedom, given in Defi-
nition 6.

A flush-based memory is an object system whose histories do not contain
invocations or responses (so its only actions are memory actions), together with
a thread-action function thr acth : Hidden → Act , for each history h in the
memory model. Hidden actions model the propagation of writes and other oper-
ations that modify shared memory. We use the thr act function to record the
operation that each hidden action propagates. Therefore, for each f ∈ Hidden,
we require that thr acth(f) �∈ Hidden. (f is short for flush.) For example, in
TSO, the hidden actions are the flushes, and thr acth associates with each flush
the write that created the buffer entry which is being flushed.

54 S. Doherty and J. Derrick

Flush based memories must satisfy a technical constraint. We require that
the effect of a flush be invisible to the thread on whose behalf the flush is being
performed. This captures the idea that flushes are responsible for propagating
the effect of operations from one thread to another, rather than affecting the
behaviour of the invoking thread.

Definition 3 (Local Flush Invisible). A memory model M is local flush
invisible if for all histories h ∈ M, actions a, b, f in h such that a = thr act(f)
and a

p−→h b →h f , b and f are M -independent.

For the rest of this section, fix a memory model M with thread action function
thr act . Furthermore, fix an object system S , such that for all h ∈ S , h �Mem ∈
M . Thus, S is an object system that may contain both external and internal
actions.

Definition 4 (Response Synchronization). Given a history h, the
response-synchronization relation of h is

RS−−→h=↪→S
h ∪{(f , resph(thr acth(f))) : f ∈ Hidden} (6)

A response-synchronized history is one where each flush appears before its
associated response. That is, h ∈ S is response-synchronized if RS−−→h⊆→h . An
object system is response-synchronized linearizable (or RS-linearizable) if all its
response synchronized histories are linearizable.

It is relatively easy to verify RS-linearizability. The idea is to construct a
model of the system such that response actions are not enabled until the oper-
ation’s writes have been flushed, and then to prove that the implementation
is linearizable on this stronger model. See [5] for a careful development of the
technique.

Operation-race freedom requires that clients provide sufficent synchroniza-
tion to prevent any thread from observing that a flush has taken place after its
corresponding response action. Definition 5 formalizes which actions count as
synchronizing actions, for the purposes of operation-race freedom. Operation-
race freedom has one key property not shared by standard notions of data-race
freedom: invocations and responses can count as synchronizing actions. This has
two advantages. First, we can reason about the absence of races based on the
presence of synchronizing invocations and responses, rather than being based
on low-level memory operations that have synchronization properties. Second,
implementations of concurrent objects are free to employ racey techniques within
each operation.

Definition 5 (Synchronization Point). An action b is a synchronization
point in h ∈ S, if for all actions a such that a

p−→h b or a = b, all actions
c such that thr(c) �= thr(a) and b ↪→S

h c, and all hidden actions f such that
thr act(f) = a, not c ↪→S

h f .

Linearizability and Causality 55

For example, in TSO, barrier operations are synchronization points. This is
because such operations ensure that the issuing thread’s write buffer is empty
before the barrier is executed. Therefore, any write before the barrier in program
order is flushed before the barrier executes, and so the write’s flush cannot be
after the barrier in causal order. For the same reason, locked operations are also
synchronization points in TSO.

Under this definition, invocations and responses may also be synchronization
points. An invocation is a synchronization point if its first memory action is
a synchronization point, and a response is a synchronization point if its last
memory action is a synchronization point. This is because any external action
is independent of any hidden action.

Definition 6 (Operation Race). An operation race (or o-race) in a history
h is a triple r0, i , r1, where r0, r1 are responses, i is an invocation such that
r0

p−→h i , i ↪→S
h r1, thr(r0) �= thr(r1), obj (r0) = obj (r1), there is some hidden

action f such that r0 = resph(thr acth(f)), and there is no synchronization point
between r0 and i (inclusive) in program order.

We say that an object system is o-race free (ORF) if no history has an o-race.
Below we provide an example of an execution containing an o-race. This

example and the next use a datastructure called a seqlock, another concurrent
object optimised for use on TSO, and adapted from an implementation in the
Linux kernel [9]. Seqlock is an object providing read and write operations with
the usual semantics, except that several values can be read or written in one
operation. Seqlock has the restriction that there may only be one active write
operation at a time, but there may be any number of concurrent read operations
and reads may execute concurrently with a write. Seqlock does not use any
locking mechanism internally, instead relying on a counter to ensure that read
operations observe a consistent set of values. Seqlock does not use any locked
or barrier operations, and the read operation never writes to any location in
memory. Other details of the algorithm do not matter for our purposes. See [3]
for a complete description.

Consider the behaviour presented in Fig. 3, adapted from [9]. Here, three
threads interact using an instance L of the spinlock object, and an instance S
of seqlock. In this example execution, the flush correponding to the write of
t2’s release operation is delayed until the end of the execution, but the flushes
associated with the writes of t1’s seqlock write operation occur immediately (note
that because the seqlock does not use any barrier or locked operations, this flush
could have occurred at any point after the write to memory). This history is
not sequentially consistent. If it were sequentially consistent, thread t2’s release
would need to take effect before thread t1’s write, which in turn would take
effect before thread t3’s read. However, this is inconsistent with the fact that
t3’s try-acquire appears to take effect before thread t2’s release. Because it is not
sequentially consistent, this execution would be impossible if the spinlock and
seqlock were both linearizable objects. Therefore, the composition of spinlock
and seqlock do not observationally refine a composition of linearizable objects,

56 S. Doherty and J. Derrick

Fig. 3. A racey execution of a spinlock L and a seqlock S. Operation-race freedom
prohibits the race between t2’s release and read, and t3’s try-acquire.

for any client capable of producing this behaviour. There is a race between the
response of t2’s release operation, the invocation of t2’s subsequent read, and the
release of t3’s try-acquire.

Theorem 2 below shows that an ORF multi-object system composed of
response-synchronized linearizable objects is causally linearizable, under one
technical assumption. We require that the objects themselves must not inter-
fere. That is, each action of each object must be independent of all potentially
adjacent actions of other objects. This constraint is implicit in the standard
composition result for linearizability, and is satisfied by any multi-object sys-
tem where each object uses regions of shared-memory disjoint from all the other
objects. If a multi-object system does not satisify this property, then one object
can affect the behaviour of another object by modifying its representation. There-
fore, a composition of individually linearizable objects may not be linearizable
itself.

Definition 7 (Noninterfering Object System). An object system S is
noninterfering if for all histories h ∈ S, and actions a, b adjacent in h, if
thr(a) �= thr(b) and obj (a) �= obj (b) then a and b are independent.

The following lemma shows that the response-synchronization relation is
acyclic for an operation-race free object system. This allows us to prove Theo-
rem 2 by applying Lemma 1.

Lemma 2 (Acyclicity of the Response-synchronization Relation). If
M is a memory model and C [M] is a noninterfering, ORF object system, then
for all h ∈ C [M], the response-synchronisation relation is acyclic.

We can now state our compositionality result. This result says that any client
composed with a set of RS-linearizable objects observationally refines the client
when composed with linearizable objects, so long as the client is ORF when
composed with the RS-linearizable objects. In this case, RS-linearizable objects
can be used instead of linearizable objects, while preserving correctness of the
client.

Theorem 2 (Composition). Let X be a set of objects and for each x ∈ X ,
let Tx be a sequential object system. If M is a flush-based memory and C [M] is

Linearizability and Causality 57

an ORF noninterfering multi-object system such that for each x ∈ X , C [M] � x
is response-synchronized linearizable to Tx , then C [M] is causally linearizable
to T = h : ∀ x ∈ X . h � acts(Tx) ∈ Tx , and thus C [M] observationally refines
C [T].

7 Operation-Race Freedom on TSO

We apply our technique to the well-known total store order (TSO) memory
model, a version of which is implemented by the ubiqitous x86 processor family.
Indeed, we closely follow the formalization of TSO for x86 given in [10]. We then
argue that TSO has the properties required of a flush-based memory, including
the local flush invisibility property. Finally, we demonstrate how to determine
whether a client is operation-race free.

We model TSO as a labelled transition system (LTS) T = 〈ST ,AT , IT ,RT 〉.
Each state s ∈ ST has the form 〈M ,B〉 where

– M is the contents of shared memory, M : Loc → Z, where Loc is the set of
locations.

– B records for each thread the contents of its buffer, which is a sequence of
location/value pairs. Thus, B : T → (Loc × Z)∗.

The initial state predicate IT says only that every buffer is empty (formally,
∀ t ∈ T . B(s) = 〈〉). The transition relation RT is given in Fig. 4. The labels (or
actions) in the set AT are as follows. For each thread t ∈ T , location x ∈ Loc
and value v , r ∈ Z, there is a write action writet(x , v), a read action readt(x , r), a
flush action flush(t , x , v) and a barrier action barriert . Further, there is a locked
action lockt(f , x , v , r), for each f : Z × Z → Z taken from an appropriate list of
read-modify-write (RMW) operations. Locked actions model the atomic appli-
cation of an RMW operation to shared memory. For example, lockt(+, x , 1, r)
models the atomic increment of the value at x , and r is the value in location x
immediately before the increment. The x86 instruction set supports a range of
other RMW operations, such as add and test-and-set.

The set of traces of this TSO LTS is prefix-closed and thus forms an object
system, which we denote by TSO . The system actions of TSO are just the flush
actions, so the TSO thr function returns ⊥ for flush actions, and the thread index
of all other actions. The thr acth function associates with each flush f the write
that is being flushed. TSO has the flush invisibility property, of Definition 3,
because a flush is independent of any action of the issuing thread, except for the
write that is being flushed (as proved in the full version of the paper).

We now explain by example how to check that a client is ORF. Our example is
the double-checked locking implementation presented in Fig. 5. Double-checked
locking is a pattern for lazily initializing a shared object at most once in any exe-
cution. The ensure init procedure implements this pattern. Here, the shared
object is represented using a seqlock X. The ensure init procedure first reads
the values in X, and completes immediately if X has already been initialised.
Otherwise, ensure init acquires a spinlock L and then checks again whether

58 S. Doherty and J. Derrick

Fig. 4. Transition relation of the TSO memory model. If b is a write buffer,
latest write(b, x) returns the value of the last write to x in b, if it exists, or ⊥ otherwise.

Fig. 5. Pseudocode for a client executing a double checked locking protocol.

X has already been initialised (by some concurrent thread), again completing if
the initialisation has already occurred. Otherwise, ensure init initialises the
object, executes a barrier, releases the lock and returns.

To show that this code is ORF, we must employ knowledge about which invo-
cations and responses of our objects are synchronization points, and which oper-
ations do not execute write actions. As we described in the discussion after Def-
inition 5, in TSO all barriers and locked operations are synchronization points.

Linearizability and Causality 59

Furthermore, because the try-acquire’s only memory operation is a locked opera-
tion, both the invocation and response of try-acquire are synchronization points.
Finally, the read operation of seqlock can never execute a write action.

To show that ensure init has no o-races, we must consider the relationship
between each operation, and the next operation in program order. For each case,
we must show that no o-race is possible.

– The read on Line 1 never executes a write, so its response cannot form an
o-race with the subsequent invocation.

– The response of the acquire on Line 3 is a synchronization point, so it cannot
form an o-race with the subsequent read.

– As with the read on Line 1, the read on Line 4 never executes a write opera-
tion, and so its response cannot form an o-race.

– The write on Line 7 is followed by the barrier on Line 8, so this cannot form
an o-race.

Note that during this argument, we only need to consider whether or not the
invocation or response of each operation is a synchronization point, or whether
the operation never executes write actions. We do not require any further infor-
mation about the operation’s implementation. Again, this means that operations
may themselves be racey.

8 Concluding Remarks

Although the details of the paper are fairly technical the essence of the contri-
bution is simple: how can we use non-linearizable algorithms safely. The context
that we work in here is that of weak memory models, where TSO provides an
important example. This work should also be applicable to other flush-based
memory models. Such an extension is work for the future.

To enable our multi-object systems to be composed safely we introduced a
notion of operation-race freedom. However, what about non-operation-race free
programs? Our formulation provides no composability guaranteess for a family
of objects where even one of those objects is not response-synchronized. As
indicated in Sect. 6, this is a less severe restriction than other proposals based
on some notion of data race freedom (because of its modularity). However, it
seems reasonable to expect that some compositionality result would hold for the
subset of response-synchronized objects. Again this is left as future work.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

2. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The semantics of power and ARM multiprocessor machine code. In: Petersen, L.,
Chakravarty, M.M.T. (eds.) DAMP 2009, pp. 13–24. ACM (2008)

60 S. Doherty and J. Derrick

3. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4:1–4:43 (2011)

5. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 341–356.
Springer, Heidelberg (2014)

6. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

7. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012)

8. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

9. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

10. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

Refinement-Based Verification
of Communicating Unstructured Code

Nils Jähnig1(B), Thomas Göthel2, and Sabine Glesner1

1 Technische Universität Berlin, Berlin, Germany
nils.jaehnig@tu-berlin.de

2 Universität Potsdam, Potsdam, Germany

Abstract. Formal model refinement aims at preserving safety and live-
ness properties of models. However, there is usually a verification gap
between model and executed code, especially if concurrent processes are
involved. The reason for this is that a manual implementation and further
code optimizations can introduce implementation errors. In this paper,
we present a framework that allows for formally proving a failures refine-
ment between a CSP specification and its low-level implementation. The
implementation is given in a generic unstructured language with gotos

and an abstract communication instruction. We provide a failures-based
denotational semantics of it with an appropriate Hoare calculus. Since
failures-based refinement is compositional w.r.t. parallel composition of
concurrent components and preserves safety and liveness properties, this
contributes to reducing the verification gap between high-level specifica-
tions and their low-level implementations.

Keywords: gotos · Unstructured code · Formal semantics · Hoare
calculus · CSP · Failures refinement

1 Introduction

Verification is usually performed on abstract models, as usually proofs are more
manageable than corresponding proofs on an implementation model. However,
when the model is transformed to executable (low-level) code, bugs can be intro-
duced. This is especially the case for manual transformations, which are often
necessary as an abstract model is strictly more abstract than the implementa-
tion model, and as such is missing implementation details. Furthermore, if done
automatically, optimizations and their implementations are usually not verified
as this is hard to do at a general level.

Still, the verified properties of the abstract model need to be carried over
to the implementation. To preserve safety and liveness properties when refining
the model, the notion of stable failures refinement of Communicating Sequential
Processes (CSP) is suitable. Additionally, CSP is specifically designed for veri-
fication of communicating and non-terminating systems. It allows a refinement
from abstract models to concrete models, but only within CSP, not to relate
CSP with other executable code.
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 61–75, 2016.
DOI: 10.1007/978-3-319-41591-8 5

62 N. Jähnig et al.

To overcome the problem described above, we present a framework that
allows for formally proving stable failures refinement between CSP specifica-
tions and Communicating Unstructured Code (CUC) implementations, which
preserves safety and liveness properties. CUC is a generic low-level language with
gotos and an abstract communication instruction. Our contribution includes a
stable failure semantics for CUC and a corresponding Hoare calculus. The stable
failures refinement implies that all liveness and safety properties of the specifi-
cation also hold for the implementation.

The rest of this paper is structured as follows. We provide necessary back-
ground information about CSP in the next section. In Sect. 3, we present our
framework for relating CSP specifications with CUC implementations. In Sect. 4,
we define the stable failures semantics for CUC and in Sect. 5 the corresponding
Hoare calculus. We illustrate the applicability of our framework in Sect. 6. In
Sect. 7, we discuss related work. We give a conclusion and pointers to future
work in Sect. 8.

2 Communicating Sequential Processes (Background)

Communicating Sequential Processes (CSP) is a process algebra, originally intro-
duced in [Hoa78]. It is designed specifically to model concurrent processes that
communicate via events. Communication is synchronous and can thus be used
to synchronize processes or exchange data.

Processes can be constructed from the basic processes STOP and SKIP and
using operators such as event prefixing, external and internal choice, interrupts,
and sequential and parallel composition. In CSP, the channels are introduced
as syntactic sugar on events. The event c.v is said to communicate the value v
over channel c. To describe an input in CSP, c?x : T is used, which denotes an
external choice over all events of the form c.x with x ∈ T . An output is denoted
as c!v and means simply c.v. Note, that there is no actual native concept of
sending and receiving in CSP, only synchronization. Therefore CUC needs only
a single communication instruction.

There are two important semantic models for CSP with raising complexity
and expressiveness: (1) The trace semantics T , which describes the communica-
tion histories of processes and preserves safety properties. (2) The stable failures
semantics SF , which additionally captures the events a process can refuse after
a trace, and thereby preserves safety and liveness properties. In this paper, we
focus on the stable failures semantics.

A failure is a pair of a trace and a refusal set (tr,X). A process is stable, if no
internal progress can be made. Thus the process is either waiting to communicate
or has stopped (i.e., behaves like STOP). We call the former communication
failures and the latter terminal failures. A stable failure (tr,X) is a failure where,
after engaging in the events in tr, the process is stable and refuses to engage in
events from X. When sequentially combining processes P and Q, terminal stable
failures of P can become unstable as the combined process might not longer stop
after those traces.

Refinement-Based Verification of Communicating Unstructured Code 63

The semantic models of CSP allow for modeling various layers of abstrac-
tion as described in [Sch99]: Specification, design and implementation, where
specification is most abstract, and implementation is closer to an actual imple-
mentation. CSP processes can be put into relation across all abstraction levels
via refinements. Informally, stable failures refinement (P �SF Q) describes the
reduction of (internal) non-determinism.

An important property of all the semantical models of CSP is their com-
positionality. From the refinements P � P ′ and Q � Q′ it follows that in any
arbitrary composition ⊗ also P ⊗ Q � P ′ ⊗ Q′ holds, i.e., refinement can be
shown component-wise. This enables modular verification in CSP.

The automatic refinement checker FDR3 [GABR14] supports refinement
checks for both mentioned semantics.

3 Framework for Formally Relating CSP Specifications
and CUC Implementations

In this section, we give an overview of our framework for establishing the relation
between a CSP specification and a low-level implementation. We assume that
a CSP specification Spec is given, as well as an implementation Impl thereof in
CUC. To preserve liveness and safety properties from Spec to Impl , we aim at
showing that Spec �SF Impl holds in the stable failures model. Our proposed
workflow is depicted in Fig. 1a and consists of three steps:

Fig. 1. Overview of the workflow

(1) Manually constructing a connecting property Conn from Spec,
(2) showing that Conn is sufficient for Spec, and
(3) showing that Conn holds for Impl .

64 N. Jähnig et al.

The property Conn that is constructed from Spec in step (1) is a predicate on
CSP failures and needs to be stronger than Spec. Thus, a connecting property
Conn has to be sufficiently strong in the sense that it contains the semantics
of a concrete CUC program Impl while being contained in the semantics of the
original CSP specification Spec. The inclusion relation is visualized in Fig. 1b.
It also shows that the weaker Conn is, the more implementations can be shown
to be a refinement. The ideal property Conn is describing exactly the possible
failures of Spec. This is similar to finding an invariant, and as such, there is
no automatic way of finding it in general. For our framework, we just require a
proof showing that the failures captured by Conn are failures of Spec.

It is hard to establish a refinement between Spec and Impl directly, as they
are structurally very different: CSP is structured and unstructured languages
(such as CUC) are not. In structured languages the control flow is visible in the
structure. This is not the case for languages with unrestricted jumps.

In step (3), it needs to be shown that the property Conn holds for the CUC
program Impl with the Hoare logic presented in Sect. 5. In such a proof it has to
be shown that starting with a precondition Pre, describing the initial states, the
program fulfills the postcondition Post, which doubles as an invariant for traces
due to the way the semantics is defined (this will be explained in Sects. 4.2 and 5).
In Sect. 6, we will conduct such a proof for an example consisting of a parallel
combination of two simple buffers. This is formally captured by (tr, s,X) ∈
�Impl� =⇒ Conn(tr,X), i.e., ignoring the state, the failures of Impl fulfill Conn.
Here, (tr, s,X) is a tuple of trace, state, and refusal set, and �Impl� denotes the
stable failures semantics of Impl .

After completing all three steps, we get by transitivity that (tr, s,X) ∈
�Impl� =⇒ (tr,X) ∈ SF(Spec) holds, which is equivalent to our goal Spec �SF
Impl. In the next section we introduce CUC and its stable failure semantics,
which we need for step (3).

4 Communicating Unstructured Code and Its Semantics

We published the language CUC and its operational semantics in [JGG15]. In
this section, we give a brief overview of CUC and then proceed to one of the con-
tributions of this paper, the stable failures semantics. We discuss its properties
and finally define the parallel composition.

4.1 Communicating Unstructured Code

We start with a rationale and continue with some type definitions and a descrip-
tion of the instructions.

We aim at being as close to low-level code as possible to reduce the gap
between executed code and verified code. CUC focuses on abstract communi-
cation and not its detailed implementation. The detailed implementation of the
communication can be verified separately, which is not the focus of this paper.
Therefore, we decided to study a generic, unstructured language with a higher

Refinement-Based Verification of Communicating Unstructured Code 65

level construct for communication. CUC is generic and simple, which allows for
manageable semantics design and proofs without compromising expressiveness.

A state s consists of a program counter spc and a register store srs ∈ RS.
CUC uses events to model communication. As in CSP, let Σ denote the set
of all events ev. In the stable failures semantics, we consider traces tr that are
sequences of events, and refusal sets X ⊆ Σ.

Being a low-level language, instructions are labeled. We choose set of labels
to be N. A simple form of a program is a set of labeled instructions. To facilitate
compositional reasoning about programs, we use a tree structure [SU05,JGG15]
in the denotational semantics instead. In either case it is important, that labels
are unique. The program counter points to the label of the current instruction.

Fig. 2. Syntax of CUC programs

The tree structure of CUC and its instructions are depicted in Fig. 2. The three
basic instructions are explained below. We consider as (part of) a program a
tree of labeled instructions. ⊕ connects two program parts. All potential jumps
between them are considered. When using a Hoare calculus a suitable tree struc-
ture can be used to reason compositionally. For more details, we refer to [SU05].

do f – The command do is a generalized assignment. f is a function
f : RS → P(RS) and is applied to the current state. The register store of the
resulting state is one element of the set returned by f. The instruction can thus
be thought of as a nondeterministic multiple assignment, i.e., multiple variables
can be manipulated in one step. The program counter is increased by one.

cbr b m n – The instruction cbr is a usual conditional branch. If the function
b : RS → {True,False} evaluates to True then the program counter is set to
m else to n.

comm ef f – The command comm is the communication primitive. It com-
municates an event from the result of ef : RS → P(Σ) and then changes the
state according to f : RS × Σ → RS. Observe that here f is deterministic to
ease reasoning. The comm instruction needs to modify the register store to record
input data. We reserve nondeterminism of the successor state to the instruction
do f . The program counter is increased by one.

4.2 Stable Failures Semantics

In [JGG15] we presented a trace semantics for CUC. We enhance this semantics
to carry refusal information, i.e., the information on which communications are
not possible after performing a particular trace. As a result, we get a stable

66 N. Jähnig et al.

failures semantics for CUC that is designed to capture stable failures similarly
to CSP.

In CSP, there are two kinds of stable processes (i.e., where no internal tran-
sitions are possible): Processes ready to communicate and STOP. Let us call
failures resulting from the former communication failures and from the latter
terminal failures. When a process is combined with another, a terminal failure
might no longer be terminal and thus become unstable. The unstable failures
are removed in the sequential composition (see Sect. 2).

To be able to differentiate between terminal failures and communication fail-
ures in CUC, we introduce two kinds of states: normal states and communication
states. In the former, the next instruction can be executed. In the latter, the exe-
cution is in the middle of a comm instruction and ready to communicate. Formally,
we define a sum type over the state defined in Sect. 4.1:

NCstate := normal state | communication state

We introduce a predicate N(·) to test if a state is normal, and a function ·C
which converts a normal state to a communication state. We define a failure in
CUC to be a triple (tr, s,X), where tr is a trace, s a normal-/communication-
state, and X a refusal set. Let SF be the type of all failures. It will be clear from
the context, whether we talk about CSP or CUC failures. We can now express
terminal failures in CUC: A failure with normal state whose program counter
is not among the labels of the considered program part is a terminal failure. As
we remove (former) terminal failures with specific program counters frequently,
we introduce an operator, which removes all failures with a normal state and a
program counter from a given set.

S\pcs := S\{(tr, s,X)
∣
∣ spc ∈ pcs ∧ N(s)

}

Lastly, let labels(code) be the set of all labels in code and let pc ∈� code denote
whether pc points to a label within code, i.e., pc ∈ labels(code).

Our failures semantics is given in Fig. 3. We first explain the general structure
of the semantics and then the rules individually. The failures semantics is a
denotational semantics, which assigns every code tree a function (also called
denotation) �code� : P(SF) → P(SF). Allowing sets of failures as input eases the
sequential composition. We also allow bogus traces as input, thus the semantics is
only meaningful if used with sensible initial failures, which usually means triples
of: an empty trace, a normal state, and the maximal refusal set or a subset. All
failures from the initial input set that are still stable after the execution of the
code are carried over to the semantics of the code. This has two reasons. (1) To
be compatible with CSP, the semantics needs to be prefix closed w.r.t. traces.
(2) States that do not point into the code are not processed and remain as they
are.

We illustrate this with the first rule D-do: Consider the initial input set
{(〈〉, t,X), (〈〉, s, Y)}, where 〈〉 is the empty trace, X,Y are arbitrary refusal
sets, tpc = 5, spc = 1, both normal, and the instruction (1:: do λσ. {σ}), which
does nothing but increment the program counter. As the pc of t is not pointing

Refinement-Based Verification of Communicating Unstructured Code 67

Fig. 3. Stable failures semantics for CUC

to this instruction, the failure is still terminal. There is no successor failure of
(〈〉, t,X). Within the state s, the program counter spc points to the instruction,
so there is “a” successor failure {(〈〉, s′, Z) | s′ = s[pc ← 2]∧Z ⊆ Σ}. The initial
failure (〈〉, s,X) is not terminal anymore, thus no longer stable and needs to be
removed. Thus the resulting failures are

�1::do λσ. {σ}�({(〈〉, t,X), (〈〉, s, Y)}) ={(〈〉, t,)} ∪
{(〈〉, s′, Z) | s′ = s[pc ← 2] ∧ Z ⊆ Σ}

The rule D-cbr works in similar way, but alters the subsequent program counter
instead of the register store. The rule D-comm adds two kinds of failures: The
terminal failures after the execution of the instruction, in the same way as the
two previous rules. Furthermore, it adds the communication failures, when it is
ready to communicate.

The ruleD-seq is the most complex, and it is based onD-ext. The latter takes
a denotation d and extends it with the execution of code1 and code2, separately.

68 N. Jähnig et al.

More specifically, the input set S is first evaluated with the denotations for code1
and code2 and then passed to d, which corresponds to executing code1 or code2
first, and then executing d. In D-seq, we “loop” this construct now indefinitely,
and obtain as a result all possible interleavings of code1 and code2. To this end, we
use the least fixpoint over the complete partial order of functions P(SF) → P(SF),
with the pointwise subset inclusion a ordering

(
f ≤ g := ∀S. f(S) ⊆ g(S)

)
.1 As

in the other rules, we need to remove all former terminal failures.
We illustrate the rule D-seq with an example. Consider the initial failure

(〈〉, s,X) with spc = 1, X arbitrary, and the program

(1:: comm λσ. {a} λσ event. {σ}) ⊕ (2:: cbr λσ. True 1 1)

It is a non-terminating program communicating a repeatedly with its environ-
ment. According to D-seq, both instructions are evaluated separately, where
initially comm modifies the set accordingly (e.g., append a to the trace) and cbr
does nothing, as spc does not point to it. In the next iteration of the fixpoint
iteration, both instructions are again executed. This time comm does nothing
(new) but cbr will now generate failures whose program counter points to comm,
so in the next iteration the loop will be executed from the beginning. As a global
fixpoint we get the failure set

�(1::comm ...) ⊕ (2::cbr ...)�({(〈〉, s,X)}) = {(〈a〉∗, sC , Y) | Y ⊆ Σ\{a}}

As this program does not terminate, there are no normal states in its semantics.

4.3 Compatibility to CSP

In this section, we show that our CUC semantics enjoys basic properties of the
CSP semantics. This allows us to show that CUC is compatible with CSP, which
finally allows us to prove failures refinement between a CUC implementation and
its CSP specification. As the refinement relation is basically just a subset relation,
its use is clear for safety properties, but for liveness properties the considered
failure sets need to fulfill some properties (simply speaking they may not be too
small). We introduce and explain adapted versions of the properties of the CSP
failures semantics (see e.g., in [Sch99]) and briefly discuss why they hold. We
omit the program and the initial failures set for brevity. For each of the following
properties, we require that it holds for the initial set of failures. Let SF be the
stable failures of the omitted program, and T the traces according to the trace
semantics given in [JGG15].

SF1: (tr, s,X) ∈ SF =⇒ (tr, s) ∈ T – All trace-state pairs are included
in the trace semantics. This property ensures that we still have all benefits of
the traces semantics (safety properties). The trace semantics for CUC and its
properties are published in [JGG15]. It holds as we extended the trace semantics
in a safe way.

1 For an introduction to denotational semantics and fixpoints see, e.g., [Rey98].

Refinement-Based Verification of Communicating Unstructured Code 69

SF2: (tr, s,X) ∈ SF ∧ X ′ ⊆ X =⇒ (tr, s,X ′) ∈ SF – Refusal sets are subset
closed. This holds by construction.

SF3: (tr, s,X) ∈ SF ∧∀ a ∈ X ′, t. (tr�〈a〉, t) �∈ T =⇒ (tr, s,X ∪X ′) ∈ SF –
The refusal set can be augmented with events not possible. This is the important
property ensuring that there are “enough” refusals to show liveness properties.
This also holds by construction.

SF4: (tr, s) ∈ T ∧ spc �∈� code =⇒ (tr, s,X) ∈ SF – Terminal failures are
stable. This also holds by construction.

Properties SF3 and SF4 ensure that all stable failures are included, and thus
guarantee that the stable failures refinement relation allows to carry over (safety
and) liveness properties.

4.4 Concurrent Semantics

Having defined the sequential semantics in Sect. 4.2, we now define the concur-
rent semantics. It is defined as close a possible to the concurrent CSP semantics.
The purpose is to inherit the compositionality of the parallel composition of
CSP and thus the compositionality of its refinement relation. This enables us to
refine each component separately. It is important to notice that we only define
top-level parallel composition, so components can be composed in parallel, but
may themselves not contain parallel components.

To define the concurrent semantics of CUC, we first define the notion of a con-
current state. As components communicate via events, the states of components do
not share variables. We define a concurrent state to be a normal-/communication-
state or pair of concurrent states:

concurrent state := NCstate | concurrent state ‖ concurrent state

The nesting structure of a concurrent state should match the nesting structure
of a parallel program. We choose alphabetized parallel as the most general par-
allel combination in CSP that can be used to represent the other two, namely
interface parallel and interleaving. We closely follow the CSP definition of alpha-
betized parallel and adjust it to CUC. As in CSP, the concurrent composition
of two components considers all interleavings of the traces of the components,
synchronizing on the given alphabets. As we only allow top-level composition,
we assume initial failures to have an empty trace and a normal state.

�code1 α‖β code2�(S) =
{
(tr, t1 ‖ t2,X)

∣
∣ ∃ X1,X2.

(〈〉, s1 ‖ s2, Y) ∈ S ∧ N(s1) ∧ N(s2) ∧
X ∩ (α ∪ β) = (X1 ∩ α) ∪ (X2 ∩ β) ∧
(tr |̀ α, t1,X1) ∈ �code1�

({
(〈〉, s1, Y)

}) ∧
(tr |̀ β, t2,X2) ∈ �code2�

({
(〈〉, s2, Y)

}) ∧
set(tr) ⊆ (α ∪ β)

}

70 N. Jähnig et al.

We have created a semantics which fulfills our needs, and in particular, preserves
the properties from the previous section. We are now able to combine CUC pro-
grams in parallel. As we have defined parallel composition within CUC like in
CSP, we enjoy its compositionality. We thus need only to refine single compo-
nents and can combine the results, thanks to the compositionality of the stable
failures refinement w.r.t. parallel composition. This is the reason, why we do not
need a rule for parallel composition in our Hoare calculus, which we introduce
in the following section.

5 Hoare Calculus

Our assertions are predicates on single NCstates. We define a Hoare triple as
usual with one catch:

{P} code {Q} := ∀ s.
(
P (s) −→ ∀ t ∈ �code�({s}). Q(t)

)

Observe that our semantics yields a set that includes all intermediate stable
failures. Postconditions in our Hoare calculus are thus also invariants for com-
munication failures. We still can construct usual postconditions, e.g., by setting
Q(t) := tpc �∈ code −→ Q′(t).

We present our Hoare calculus for stable failures of CUC in Fig. 4. In H-
do, H-cbr and H-comm, it is described how pre- and postconditions can be
connected for the basic instructions. As all sequential compositions potentially
introduce loops in CUC, H-seq is based on an invariant I, which is tailored to
its placement in the rule: For codei, only the relevant parts of the invariant have
to hold as its precondition. In the postcondition of the combination, all parts
of the invariant that deal with now former terminal failures are ignored by the
conjunction with the requirement that all normal states do not point into the
code. H-cons is the usual rule of consequence.

All rules of the calculus are correct w.r.t. the definition at the start of this
section. This can be shown by structural induction over the structure of an
arbitrary CUC program. This corresponds to a partial correctness for normal
states where the program terminates (we do not show termination). However,
for communication failures the postcondition holds universally thus can be used
as invariant about trace-refusal pairs (CSP failures). This is important, as this
enables us to show properties for reactive systems, i.e., communicating, non-
terminating systems. Our Hoare calculus is not complete.

In this paper, we assume that sequential system components are refined only
separately. Due to the compositionality of failures refinement w.r.t. parallel com-
position, we do not need an additional rule for concurrent components. In sum-
mary, our overall framework allows for proving properties about sequential com-
ponents and their parallel combination in a compositional way. We demonstrate
its applicability with an example in the next section.

Refinement-Based Verification of Communicating Unstructured Code 71

Fig. 4. Hoare calculus for CUC

Fig. 5. CSP specification and CUC implementation of a one place buffer

72 N. Jähnig et al.

6 Example

We demonstrate the applicability of our formal framework as presented above
and show that a given CSP specification Spec for a one place buffer is refined
by a given CUC implementation Impl of a buffer. Both are shown in Fig. 5.
The elements that can be stored in the buffer are of type T . Spec waits for an
input on channel in, i.e., synchronizes on any event {in.x | x ∈ T}, outputs the
received value x on channel out, and then starts over. We define ⊕ to be right
associative. Next, we explain Impl line by line:

(1::do) – This is the initialization. The boolean free indicates that the buffer
is ready to store data.
(2::comm) – The comm-instruction both offers the events and changes the state
after the communication happened. The events offered by ef are all values of
type T on channel in if the buffer is free, else the output event with the value
stored in the buffer is offered. According to the event communicated, it either
stores the input value and sets the buffer to not free, or it just sets the buffer to
free.
(3::cbr) – The conditional branch is used in this case to model an unconditional
branch and always jumps back to the comm-instruction at label 2.

Step 1: Manual Extraction of Conn from Spec

First, we need to extract a connecting property Conn which is only true for the
failures of Spec. Let trace∗ mean trace zero or more times concatenated, where
the variable x ∈ T is fresh in every occurrence of trace. We define

Conn(F) := F ∈ Feven ∨ F ∈ Fodd where

Feven :=
{(

(in.x�out.x)∗,X
) ∣

∣
∣ X ⊆ Σ\{in.y | y ∈ T}

}

Fodd :=
{(

(in.x�out.x)∗�in.y,X
) ∣

∣
∣ y ∈ T ∧ X ⊆ Σ\{out.y}

}

This means, we choose pairs of matching inputs and outputs and at most one
“free” input at the end. Initially and after an output only inputs are possible.
After an input only the matching output is possible.

Step 2: Relation Between Conn and Spec

We need to prove that this holds only for stable failures of Spec, i.e.,
Conn(F) =⇒ F ∈ SF(Spec), but in this simple case it is easy to see, as Conn
describes exactly the failures of Spec.

Lemma 1. Conn(F) =⇒ F ∈ SF(Spec).

Step 3: Relation Between Conn and Impl

In the next step, we need to show that Conn holds for all failures of the pro-
gram Impl , or more exactly for all elements of the projection of the failures of

Refinement-Based Verification of Communicating Unstructured Code 73

Impl onto the traces-refusal pairs. To this end, we need an invariant Inv, which
implies Conn but is effectively stronger, as we need state information such as
the current program counter. We also need to specify the initial failures with a
precondition Pre. We omit Pre in the formulation of several lemmas for brevity.
In the following, we show {Pre} Impl {Inv}. First, we define Pre and Inv:

Pre(tr, s,X) :=spc = 1 ∧ tr = 〈〉
Inv :=Pre ∨ I2,3

I2,3(tr, s,X) := tpc ∈ {2, 3} ∧
((tr,X) ∈ Feven ∧ srs(free) = True ∨
(tr,X) ∈ Fodd ∧ srs(free) = False

∧ ∃x. trs(buffer) = x ∧ last(tr) = in.x)

Lemma 2. (tr, s,X) ∈ �Impl� =⇒ Conn(tr,X).

Proof. We show (tr, s,X) ∈ �Impl�({(tr, t, Y) | Pre(tr, t, Y)}) =⇒ Inv(tr, s,X)
with our Hoare calculus, i.e., {Pre} Impl {Inv} holds. For brevity we denote the
instruction by their label and instruction name, e.g., 1:: do. The idea of the Hoare
calculus proof is that starting in Pre, 1:: do leads to the loop (2:: comm ⊕ 3:: cbr)
and I2,3 holds. During execution of the loop, the invariant I2,3 is preserved, thus
overall the invariant Inv ≡ Pre ∨ I2,3 holds. As Inv(tr, s,X) =⇒ Conn(tr,X)
holds too, we conclude

(tr, s,X) ∈ �Impl�({(tr, t, Y) | Pre(tr, t, Y)}) =⇒ Conn(tr,X)

��
From Lemmas 1 and 2 we conclude Theorem 1 that all trace-refusal pairs of Impl
are failures of Spec, i.e., Spec �SF Impl holds. �SF being CSP (stable) failures
refinement, Impl thus enjoys all liveness and safety properties of Spec.

Theorem 1. Spec �SF Impl.

6.1 Concurrency

Thanks to the compositionality of refinement and parallel composition of CSP,
we are able to model a two place buffer by letting two buffers communicate.
Still, all safety and liveness properties are preserved. Consider the following
CSP processes:

Spec1 = in?x : T → mid!x → Spec1
Spec2 = mid?x : T → out!x → Spec2
Spec‖ = Spec1 {mid}‖{mid} Spec2

We can show that two programs Impl1 and Impl2 (similar to the code in Fig. 5)
refine Spec1 and Spec2 respectively (see Theorem 1). Let

Impl‖ = Impl1 {mid}‖{mid} Impl2

74 N. Jähnig et al.

Due to the compositionality of CSP and the equal nature of the parallel com-
positions of CSP and CUC, we can immediately follow that Spec‖ �SF Impl‖,
which demonstrates the compositionality of our approach. Please observe that
it scales well with the number of components: a system with N components
requires only N separate refinement proofs. For homogeneous systems (as the in
the buffer example) we even can reuse the refinement proof.

7 Related Work

To the best of our knowledge there exists no other approach to define a stable
failures semantics for low-level code.

A denotational semantics and a proof calculus for a high-level language with
communication are defined by Zwiers [Zwi89]. The semantics deals with traces
and ready sets, which are similar in intention to refusals. As low-level code is not
considered, the semantics is not directly applicable.

There are some attempts to give unstructured code a semantics for later veri-
fication. Tews [Tew04] developed a compositional semantics for a C-like language
with goto, which is used to verify Duff’s device. However, this approach does not
model communication, and is thus not appropriate to describe non-terminating
systems. Saabas and Uustalu [SU05] present a compositional bigstep semantics
of an unstructured language. To this end, a generic structuring mechanism for
the code is presented, which makes the semantics compositional and also allows
for a compositional proof calculus. Although they formally relate a high-level
and a low-level language, they do not relate a process specification with the low-
level language. Communication is not considered. CUC uses their structuring
mechanism [JGG15].

CUC, presented in [JGG15], is based on our previous work [BJ14] enhanced
with communication capabilities. The approach in [BJ14] focuses on a small-
step and a bigstep operational semantics based on which a compositional proof
calculus is built. We used similar semantics in [BG11] to show correspondence
between unstructured code and (Timed) CSP processes. We used events as obser-
vation points, but did not consider actual communication. Furthermore, the use
of a bisimulation to relate unstructured code and CSP processes allows only for
equivalence, which is inappropriate for an implementation process.

8 Conclusion

In this paper, we have defined a stable failures semantics and a Hoare calculus for
CUC. Both are used in our framework, which allows for formally proving stable
failures refinement between specifications in CSP and implementations in CUC.
Our framework thus contributes to reducing the verification gap between behav-
ioral abstract specification and executed low-level code. This relation preserves
all safety and liveness properties of the specification. Our approach is composi-
tional w.r.t. parallel system components, i.e., we only need to show refinements

Refinement-Based Verification of Communicating Unstructured Code 75

for the sequential components of the system, as the properties are preserved for
the entire system due to compositionality of stable failures refinement.

In future work, we aim at extending our existing Isabelle/HOL [NPW02] for-
malization of the trace semantics for CUC and the corresponding Hoare calculus
for stable failures. To enable a further refinement of the CUC implementation, we
plan to model the detailed implementation of the comm instruction in a low level
language with primitives to implement a channel, such as shared variables and
locks. We aim at investigating the applicability of our approach with more com-
plex systems. We are especially interested in the utility of the intra-component
compositionality of CUC. Finally, our framework could be combined with other
frameworks, e.g., the CSP++ framework [GGC15], where a C++ communication
backbone is generated from a CSP specification.

References

[BG11] Bartels, B., Glesner, S.: Verification of distributed embedded real-time sys-
tems and their low-level implementation using timed CSP. In: APSEC 2011,
pp. 195–202. IEEE Computer Society (2011)

[BJ14] Bartels, B., Jähnig, N.: Mechanized, compositional verification of low-level
code. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430,
pp. 98–112. Springer, Heidelberg (2014)

[GABR14] Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 —
a modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg
(2014)

[GGC15] Gardner, W.B., Gumtie, A., Carter, J.D.: Supporting selective formalism
in CSP++ with process-specific storage. In: ICESS 2015, pp. 1057–1065
(2015)

[Hoa78] Hoare, C.A.R.: Communicating sequential processes. Commun. ACM
21(8), 666–677 (1978)

[JGG15] Jähnig, N., Göthel, T., Glesner, S.: A denotational semantics for commu-
nicating unstructured code. In: FESCA 2015. EPTCS, vol. 178, pp. 9–21
(2015)

[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.: The basics. In: Nipkow, T., Paulson,
L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS, vol. 2283, p. 3. Springer,
Heidelberg (2002)

[Rey98] Reynolds, J.C.: Theories of Programming Languages. Cambridge Univer-
sity Press, Cambridge (1998)

[Sch99] Schneider, S.: Concurrent and Real Time Systems: The CSP Approach.
Wiley, New York (1999)

[SU05] Saabas, A., Uustalu, T.: A compositional natural semantics and hoare logic
for low-level languages. SOS 156(1), 151–168 (2005). Elsevier

[Tew04] Tews, H.: Verifying Duff’s device: a simple compositional denotational
semantics for goto and computed jumps. Technical report, Technische Uni-
versität Dresden (2004)

[Zwi89] Zwiers, J.: Compositionality, Concurrency, and Partial Correctness. LNCS,
vol. 321. Springer, Heidelberg (1989)

Guided Dynamic Symbolic Execution
Using Subgraph Control-Flow Information

Josselin Feist(B), Laurent Mounier, and Marie-Laure Potet

Univ. Grenoble Alpes, 38000 Grenoble, France
josselin.feist@imag.fr

Abstract. Dynamic symbolic execution (DSE) is an efficient SMT-
based path enumeration technique used in software testing. In this work
in progress, we consider here the case of guided DSE, where the paths
to enumerate should be part of a given program slice. We propose a new
path selection criterion, which aims to minimize the number of queries
to the SMT solvers. This criterion is based on the probability of a path
to exit the program slice. Experiments show that this information can
be computed in a reasonable time for DSE purpose.

1 Guided Dynamic Symbolic Execution

Dynamic symbolic execution (DSE) is a technique used in software testing
and vulnerability analysis. This subject has received a large interest these past
years [5]. DSE mixes a concrete execution trace and a symbolic reasoning on it.
From a given symbolic execution path, a logical formula called path predicate is
built, from which conditional instructions can be inverted using an SMT solver.
This operation leads to the generation of a new input, which can be used to
obtain a new path, and so on. Exploring all bounded paths in a software is not
realistic, due to the large number of paths. This limitation is well known as the
path explosion problem [2]. A key feature of DSE is thus the strategy used to
select which part of the program should be explored first, either to maximize
path coverage or to reach specific locations. Our work falls in the latter category:
exploration is led towards a goal and focuses on a specific part of the program.
This approach is called Guided Dynamic Symbolic Execution. For example, [8]
uses DSE to reach a given instruction, while [1,6] use it to confirm results coming
from static analysis. In order to reach a goal, two kinds of strategies are used:
Control Flow Guided and Data Flow Guided. For example, [8] belongs to the first
family: distance between the source and the destination is used to select which
part of the program will be explored first. Meanwhile, [6] belongs the second
one: taint analysis is used to guide the exploration.

We focus on Control Flow Guided strategies. We observed that most of the
strategies in this family are not well adapted in a context of program slice explo-
ration. We propose a new metric based on subgraph information, that we com-
bine with random walks to guide the exploration. The paper is organized as
follows. In Sect. 1.1, we give a motivating example and explain limitations of
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 76–81, 2016.
DOI: 10.1007/978-3-319-41591-8 6

Guided Dynamic Symbolic Execution 77

state of the art techniques on it. Then we present our subgraph representation
in Sect. 2.1 and define our new metric in Sect. 2.2. We give a criterion on subgraph
extraction for which our approach is well adapted in Sect. 2.3. Afterwards, we
present related work on guided strategies in Sect. 3. Finally, in Sect. 4 we discuss
possible improvements.

1.1 Motivating Example

Figure 1 is used to illustrate our proposition. The right side of the Figure is the
control-flow graph representation of the source code, where node numbers fit
with source code lines. We assume that the objective of the DSE is to reach the
call to function goal (line 11), and that long computation (line 9) is a very
large subgraph, with all internal paths leading to node 11. The explored slice is
represented by nodes in the subgraph: {3, 4, 9, 11} (nodes in the dotted square).
Starting from node 3, there are three path categories: (i) paths that do not reach
destination node 11 and so are outside the subgraph (called Pathout) (ii) paths
that reach destination node 11 through node 4 (called Pathsp, those in shortest
paths), and (iii) paths that reach destination node 11 through node 9 (called
Pathlp, those in longest paths). Paths in Pathlp are assumed to be significantly
longer1 than paths in Pathsp and Pathout. Paths containing the node 4 can
either be in Pathout or Pathsp. So, going through node 4 can potentially lead
to not reach the destination. Conversely, paths containing node 9 can only be in
Pathlp and choosing such paths will ensure to reach the destination.

Fig. 1. Motivating example

1.2 Proposition

We observe that most Control Flow Guided strategies are based on shortest
path, without taking into account the context of program slice exploration (see
Sect. 3). In Fig. 1, state of the art strategies will first select node 4 rather than
node 9 in order to reach node 11 from node 3. However, this choice is clearly not
the most appropriate. A path going through node 9 requires no further inversion,
1 In number of nodes and comparisons.

78 J. Feist et al.

while passing through node 4 there is a 50% chance to need an inversion (that
requires one more solver query). We notice that classical exploration of program
slice does not take into account branches that do not reach the destination. For
example, by removing node 5 and its incoming edge, the information needed to
choose node 9 over 4 is lost. Our metric is based on this particular information.

We propose a new path selection heuristic, based on the number of instruction
inversions necessary to reach the goal, rather than on the length of a path. More
specifically, we compute the probability of a path starting from a node to reach
the destination, while taking into account that it can go out of the subgraph.

2 Using Subgraph Control-Flow Information

2.1 Subgraph Transformation

We define G = (V,E), where G is the control-flow graph representation of the
analyzed program, V a set of nodes ni and E a set of directed edges. ei,j denotes
the edge between nodes ni and nj . A program slice is given as a pair (ndst, ϕ)
where ndst ∈ V and ϕ is a property on paths. Gdst = (V ′, E′) is the subgraph
of G with ndst as destination node. V ′ is the set of nodes satisfying ϕ. All nodes
that do not satisfy ϕ are merged into one single node: nout. In a context of line
reachability, ϕ states if a node can reach the destination or not. In more complex
contexts, as in static analysis validation, ϕ can describe more specific proper-
ties [4]. nout and ndst are both absorbing nodes, meaning that we replace their
out-edges by self-loops. Figure 2 explains the subgraph extraction algorithm.

Fig. 2. Subgraph transformation

2.2 Using Random Walk to Guide the Exploration

The main idea is now to compute the probability to reach rather ndst than nout.
From a node, this probability can be seen as the number of elementary2 paths
reaching ndst rather than nout. Unfortunately, elementary paths computation
is exponential. In order to be scalable, we propose a more realistic heuristic.
A way to approximate program paths is to use random walks. Computing the
probability for a random walk to reach ndst starting from a node yields the
desired probability. This can be computed using the transition matrix of the
graph [7]. A transition matrix T is a |N | ∗ |N | matrix where |N | is the number
of nodes and T (ni, nj) represents the probability for a random walk to move

2 A elementary path is a path where no node appears more than once.

Guided Dynamic Symbolic Execution 79

from ni to nj in one step. If there is no edge between ni and nj , this probability
is 0, otherwise it is equal to 1 divided by the number of out-edges of ni in a
unweighted graph:

T (ni, nj) =
{

0 if ei,j /∈ E,
1

degout(ni))
otherwise.

An absorbing node a is a special node, where T (a, a) = 1 and T (a, j) = 0,∀j �= a.
Absorbing nodes are used to stop the random walk. From our subgraph transfor-
mation (Sect. 2.1), ndst and nout are both absorbing nodes. Then T l(i, j) repre-
sents the probability of a random walk to be in j starting from i after l steps [7].
An interesting point is that we focus only on two specific destinations: ndst and
nout. Since they are absorbing nodes, paths represented by T l(ni, ndst) (resp.
T l(ni, nout)) contain the one represented by T l−1(ni, ndst) (resp. T l−1(ni, nout)).
For our example in Fig. 1 we have3:

T =

n3 n4 nout n9 n11⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

n3 0 1
2 0 1

2 0
n4 0 0 1

2 0 1
2

nout 0 0 1 0 0
n9 0 0 0 0 1
n11 0 0 0 0 1

T 2 =

n3 n4 nout n9 n11⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

n3 0 0 1
4 0 3

4
n4 0 0 1

2 0 1
2

nout 0 0 1 0 0
n9 0 0 0 0 1
n11 0 0 0 0 1

We define P l(ni, ei,j) as the probability to reach the destination ndst in at most
l steps starting from ni and going through ei,j , as follows:

P l(ni, ei,j) = T l(nj , ndst)

P l is computed before the DSE exploration and it is used as score during the
exploration to prioritize over the choice of edges. In case of equality, a classical
shortest path, or T l(ni, nout)4, can be used to settle the choice. In our example,
P 2(n3, e3,4) = T 2(n4, n11) = 1

2 and P 2(n3, e3,9) = T 2(n9, n11) = 1, so e3,9 is
chosen.

2.3 Subgraph Pattern

Our proposed strategy makes sense only if nodes in shortest paths could lead
out of the subgraph. Yet this corresponds to concrete programming patterns as
shown in Fig. 3. The first one is close to the example given in Fig. 1. Here, the
true branch of a comparison leads to a short function, but with paths inside this
function that do not satisfy the property ϕ (see Sect. 2.1). On the contrary, the
false branch leads to a longer function, with all paths satisfying ϕ. The second
pattern appears every time there is a list of comparisons and only the first one
contains another comparison leading paths to not satisfy ϕ. More generally, our

3 There are at most 2 steps in this example, so we choose l = 2.
4 T l(ni, ndst)+T l(ni, nout) ≤ 1 since a random walk ends not necessary in an absorbing

node after l steps.

80 J. Feist et al.

approach differs from shortest path algorithms whenever subgraph respects the
following criterion:

Criterion 1. In the subgraph, nodes in the shortest paths to ndst also appear in
numerous paths leading out of the subgraph.

Fig. 3. Pattern examples

2.4 Overhead

Our approach is not yet implemented in a DSE. However we compute P l on a
slice coming from Jasper-JPEG-2000 5. The slice contains 2000 nodes and 2600
edges. For random walks with a length of 200000 steps (l = 200000), the compu-
tation takes 8 s. Since we only need to compute P one time (as preprocessing), it
is clearly negligible compared to the computation time needed by a guided DSE
to explore this slice.

3 Related Work

As discussed in previous sections, state of the art strategies are mostly based
on different variants of shortest path and on data-flow analysis. For example, [8]
mixes a shortest path analysis with a backward analysis to reach a specific line
of code. [11] uses a proximity heuristics that computes the shortest path on basic
blocks. [9] combines shortest paths on conditional instructions with a data-flow
analysis to remove unreachable paths. In [1], data-flow analysis is combined with
shortest path in the Visible Pushdown Automaton (VPA) representation of the
program. [12] proposes to join a data-flow analysis with Finite State Machine
(FSM) to select a path that satisfies a property as soon as possible. There are
many other strategies and it is not in the scope of this paper to list them all.
Yet, to the best of our knowledge, there are no Control Flow Guided strategies
that are not based on shortest paths.

5 https://www.ece.uvic.ca/∼frodo/jasper/#overview.

https://www.ece.uvic.ca/~frodo/jasper/#overview

Guided Dynamic Symbolic Execution 81

4 Conclusion and Perspectives

We present in this paper the use of a new heuristic, using control-flow information
and random walks to guide a DSE towards a goal in a program slice. It still has a
large possibility of improvement. First of all, our metric needs to be integrated in
a DSE and compared with state of the art strategies. It would be also relevant to
test our metric on results of static analysis [4,10], to determine if some analyses
create subgraphs that fit well with Criterion 1. We plan to integrate our work
inside the BINSEC/SE framework [3] and use it in a security oriented purpose.
More specifically, this work is driven by the need to confirm results coming from
an use-after-free static analyzer [4]. Another perspective is also to correlate our
approach with data-flow analysis, by weighing the random walk from its results,
or directly during subgraph transformation. We also believe that strategies in
DSE exploration currently lack of an adapted use of graph theory metrics. One
of future directions is to better integrate these notions in DSE usage.

References

1. Babic, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic
automated test generation. In: ISSTA (2011)

2. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
ACM Commun. 56(2), 82–90 (2013)

3. David, R., Bardin, S., Ta, T.D., Feist, J., et al.: BINSEC/SE: a dynamic symbolic
execution toolkit for binary-level analysis. In: SANER (2016)

4. Feist, J., Mounier, L., Potet, M.L.: Statically detecting use-after-free on binary
code. JCVHT 10(3), 211–217 (2014)

5. Godefroid, P.: 500 machine-years of software model checking and SMT solving
(invited speaker). In: SEFM (2014)

6. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows: a
guided fuzzer to find buffer boundary violations. In: USENIX SEC (2013)

7. Lovász, L.: Random walks on graphs: a survey. In: Erdős, P., Miklós,D., Sós, V.T.,
Szőnyi, T., Bolyai János Matematikai Társulat (eds.) Combinatorics, Paul Erdös
is Eighty. Bolyai Society Mathematical Studies, vol. 2, pp. 1–46. János Bolyai
Mathematical Society (1996)

8. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011)

9. Marinescu, P.D., Cadar, C.: Katch: high-coverage testing of software patches. In:
ESEC/SIGSOFT FSE (2013)

10. Rawat, S., Mounier, L.: Finding buffer overflow inducing loops in binary executa-
bles. In: SERE (2012)

11. Zamfir, C., Candea, G.: Execution synthesis: a technique for automated software
debugging. In: EuroSys (2010)

12. Zhang, Y., Chen, Z., Wang, J., Dong, W., Liu, Z.: Regular property guided dynamic
symbolic execution. In: ICSE (2015)

Program Analysis

Correlating Structured Inputs and Outputs
in Functional Specifications

Oana Fabiana Andreescu1,2(B), Thomas Jensen1,2, and Stéphane Lescuyer1

1 Prove & Run, 75017 Paris, France
{oana.andreescu,thomas.jensen,stephane.lescuyer}@provenrun.com

2 INRIA Rennes – Bretagne Atlantique, Rennes, France

Abstract. We present a static correlation analysis that computes a safe
approximation of what part of an input state of a function is copied to
the output state. This information is to be used by an interactive theo-
rem prover to automate the discharging of proof obligations concerning
unmodified parts of the state. The analysis is defined for a strongly-
typed, functional language that handles structures, variants and arrays.
It uses partial equivalence relations as approximations of fine-grained
correlations between inputs and outputs. The analysis is interproce-
dural and summarizes not only what is modified but also how and to
what extent. We have applied it to a functional specification of a micro-
kernel, and obtained results that demonstrate both its precision and its
scalability.

1 Introduction

Any complete formal software verification endeavour focuses on two fundamen-
tal, mutually dependent questions: what are the effects of program operations on
their environment, i.e. what do program operations do, and what do they leave
unmodified, i.e. what are they not doing. The latter concern inevitably leads to
some manifestation of the frame problem [8], imposing superfluous manual verifi-
cation effort and having notoriously tedious consequences. These are particularly
visible in the context of complex transitions systems, which consist of complex
states and transitions between them, i.e. state changes. States are defined using
associative arrays and algebraic data types (structures and variants). Transi-
tions map an input state to an output state. In reality, the transitions’ effects
are often restricted to a small subset of the state, thus impacting only a limited
number of invariants simultaneously. However, a considerable amount of time is
spent on proof obligations concerning unmodified parts. Though intuitively easy,
these are in practice a lengthy and repetitive task. Specifying and proving the
preservation of logical properties for the unmodified part thus becomes a nat-
ural target for automation [9]. We propose to tackle the inference of preserved
invariants for the unmodified parts by answering the following two questions, by
means of static analysis:

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 85–103, 2016.
DOI: 10.1007/978-3-319-41591-8 7

86 O.F. Andreescu et al.

(1) What is the input subset on which a logical property depends?
(2) How does the output relate to the input of an operation?

In [1], we have presented a static dependency analysis that addresses the first
question and automatically determines the input subsets on which a property
depends. This paper deals with the second question. More specifically, given
an operation that manipulates a structured input, we strive to determine the
subset that remains unchanged and is propagated into the output. Our goal is
thus to summarize the behaviour of an operation by computing relations between
parts of the input and parts of the output. To this end, we present a correlation
analysis, meant to be used in an interactive verification context, that tracks the
origin of subparts of the output and relates it to subparts of the input. The
analysis produces expressive results without sacrificing scalability. By unifying
these correlation and dependency results and thus by knowing the effects of an
operation, after having detected that a property only depends on unmodified
parts, the preservation of some invariants can be inferred.

1.1 Motivating Example

The motivation and ideas behind the correlation analysis presented in this paper
stemmed from the formal verification of ProvenCore [7], a full-featured industrial
isolation micro-kernel. To exemplify the addressed problem and the fine-grained
correlation results that we are targeting, we consider an abstract process manager
and the data structures for its fundamental components: process and thread,
shown in Fig. 1-a. A process is an executing instance of an application that
can consist of multiple threads that share the same address space. A thread is
a path of execution within a process and it is modeled as a structure having
fields such as the thread’s identifier and the memory region for its stack. The
current state of a thread is defined as a variant having three alternatives: READY,
BLOCKED, RUNNING. Similarly, a process is a structure including an identifier for
the currently running thread and an array of possibly inactive threads associated
with it. Whether a thread in the thread array is active or has terminated is
indicated by a variant of type option thread = | Some(thread t) | None.

Fig. 1. Example – data structures and functions of an abstract process manager

Correlating Structured Inputs and Outputs in Functional Specifications 87

The signature of a function stop, written in a modeling language that we
present in Sect. 2, is shown in Fig. 1-b. It has two possible execution scenarios:
true, when the given index i corresponds to an active thread, and inval other-
wise. In the former case, stop copies the i-th element of the threads array to a
local variable th, sets its state to BLOCKED and leaves everything else unmodified.
The new state o of the process is then returned, with its i-th element set to th

and everything else copied from in. The body of stop is detailed in Fig. 2.
Our analysis should infer that between the input process in and the out-

put o, the values of the fields pid, current thread and address space are equal.
Furthermore, it should detect that all elements of the array threads are equal,
except the value of the i-th element, for which only the current state differs.

By tracking only equalities between pairs of variables of the same type, we
can detect the equality of the values of the pid, current thread and address space

fields between the input and the output. However, if we ignore the flow of an
input’s subelement value to a variable (or conversely, the flow of a variable’s value
to an output’s subelement) valuable information is lost. We are not only losing
information between inputs and outputs of different types, but by accumulating
imprecisions, we also lose information concerning inputs and outputs of the same
type. This is exactly what can happen in our example. The equality between the
values extracted from the input in and copied into th as well as the relation
between the value of th and o.threads[i] are ignored because th is not of the
same type as in and o. As a consequence, we lose the information concerning the
relation between in’s and o’s threads value altogether. It is therefore imperative
to track (cor)relations between variables of different types as well.

The contributions of this paper include an interprocedural domain and a
static analysis that allow us to compute expressive correlations between parts of
the inputs and parts of the outputs in a flexible manner. An in-depth presentation
of these is given in Sect. 3. Results obtained on a functional specification of an
operating system are discussed in Sect. 4.

2 Language

We briefly present the unified programming and specification language targeted
by our analysis. This is an idealized version of a language developed at Prove
& Run1, designed with a focus on subsequent proof facilitation. It is a first-
order, purely functional and strongly-typed language with algebraic data types
and arrays. The basic building blocks of programs written in our language are
predicates, the equivalent of functions in common programming languages.

2.1 Types and Statements

We let T be the universe of type identifiers and T0 ⊂ T the set of base type
identifiers. The sets of structure field identifiers and variant constructors are
denoted by F and C , respectively.
1 http://www.provenrun.com/.

http://www.provenrun.com/

88 O.F. Andreescu et al.

A structure represents the Cartesian product of the different types of its
elements, called fields. A variant is the disjoint union of different types. It rep-
resents data that may take on multiple forms, where each form is marked by a
specific tag called the constructor. Arrays group elements of data of the same
type (given in angle brackets) into a single entity; elements are selected by an
index whose type is included (as denoted by the superscript) in the array’s def-
inition.

τ ∈ T, τ := | τ0 ∈ T0 base types

| struct{f1 : τ, . . . , fn : τ} fi ∈ F , 0 ≤ n structures

| variant[C1 : τ | . . . | Cm : τ] Ci ∈ C , 1 ≤ m variants

| arrτ 〈τ〉 arrays

Variants and structures can be used together to model traditional algebraic
variants with zero or several parameters. For instance, the option thread type
given in Sect. 1.1 is actually modeled as:

variant [Some : struct{t : thread} | None : struct{}].

A program in our language is a collection of predicates. A predicate has input
and output parameters and a body of statements of the form shown in Table 1.
The first statement represents a generic predicate call and is described later. All
other statements can be seen as special cases of it, representing calls to built-in
predicates. They all have a functional nature and handle immutable data. Thus,
setting the value of a structure’s field, shown in (4), returns a new structure
where all fields have the same value as in r, except fi which is set to e. Similarly,
updating the i-th cell of an array, shown in (8), returns a new array where all
cells have the same value as in a, except the i-th cell which is set to e.

2.2 Exit Labels

In addition to input and output parameters, the declaration of a predicate also
includes a non-empty set of exit labels, which behave like exit codes. When called,
a predicate exits with one of the specified exit labels, thus summarizing and
returning to its callers further information regarding its execution.

Table 1. Subset of supported statements

Correlating Structured Inputs and Outputs in Functional Specifications 89

Table 2. Statements and their exit labels

Exit labels play an important role for control flow management, which is
expressed and directed by catching and transforming labels. Furthermore, they
condition the existence of output parameters, as these are associated to the exit
labels of a predicate. Whenever a predicate exits with an exit label λ, all the
outputs associated to it are effectively produced, whereas all other outputs are
discarded. If no output is associated to an exit label, it means that no output
is generated when the predicate exits with this particular label. We can now
explain the generic predicate call statement (1) from Table 1: the predicate p is
called with inputs e1, . . . , en and yields one of the declared exit labels λ1, . . . , λm,
each having its own set of associated output variables ō1, . . . , ōm, respectively.

Fig. 2. Body of the stop predicate

As shown in Table 2, statement
(6) has a label corresponding to
each constructor of the input vari-
ant. Statements (7) and (8) are bi-
labeled, using false as an “out of
bounds” exception and generating
an output only for the label true.

Figure 2 details the body of our
example predicate from Sect. 1.1,
where arrows show the control-
flow between the various state-
ments of the predicate.

3 Correlation Analysis

We present a flow-sensitive, conservative static analysis inferring what is modi-
fied by an operation and to what extent. It approximates the flow of input values
into output values, by uncovering equalities and computing correlations as pairs
between input parts and the output parts into which these are injected.

Outputs are often complex compounds of different subparts of different input
variables: a subset of the input is modified, while the rest is injected as is. We
track the origin of subparts of the output and relate it to subparts of the input. As
previously explained in Sect. 1.1, we prevent avoidable over-approximations by
considering pairs of different types and granularities. As a consequence, in order

90 O.F. Andreescu et al.

to avoid dealing with data in a monolithic manner, we are forced to introduce an
extra level of granularity below variables. At the intraprocedural level, illustrated
in Fig. 3(a), we define the correlation domain as mappings between pairs of inputs
and outputs to which we associate mappings between pairs of valid inner paths
and the relations binding them. Correlations for arrays and variants are shown
in Fig. 3(b, c).

Fig. 3. Intraprocedural domain - general representation and examples

3.1 Partial Equivalence Relations

The first step towards automatically reasoning about the propagation of input
subelements into output subelements is the definition of an abstract partial equiv-
alence type R that mimics the structure of algebraic data types and arrays. A
partial equivalence R ∈ R is defined inductively from the two atomic elements,
Equal and Any, and mirrors the structure of the concrete types:

R := | Equal | Any atomic cases
| {f1 �→ R1 ; . . . ; fn �→ Rn} f1 , . . . , fn fields (i)

| [C1 �→ R1 ; . . . ;Cn �→ Rn] C1, . . . , Cn constructors (ii)

| 〈Rdef 〉 array (iii)

| 〈Rdef � i : Rexc〉 i array index (iv)

Such relations represent fine-grained partial equivalences between pairs of
values of the same type. Equal and Any represent respectively equal and unrelated
values. Partial equivalence relations for structures (given by (i)) and for variants
(given by (ii)), are expressed in terms of the partial equivalences of their subparts,
by mapping each field or constructor to the corresponding relations. For arrays,
we distinguish between two cases, namely arrays with a general relation applying
to all of the cells (as given by (iii)) or to all but one exceptional cell (as given
by (iv)), for which a specific relation is known.

Even if the syntactic partial equivalences are untyped, their interpretation is
made in the context of a type τ ∈ T. The semantics of a partial equivalence R
for a type τ is a partial equivalence relation over values of type τ . Cases other
than Equal and Any only have non-empty interpretations for types τ which are
compatible with their shape. For instance, the structured relation {f �→ R} only
really makes sense for structured types with a single field f , whose type itself is

Correlating Structured Inputs and Outputs in Functional Specifications 91

compatible with R, and shall not be used in connection with variant or array
types for example.

To describe the semantics of elements in R, we define for each type τ the set
Dτ of semantic values of that type. For each primitive type t ∈ T0, we suppose
a given Dt. Other semantic values are defined inductively as follows:

Dstruct{f1:τ1,...,fn:τn} = {{f1 = v1, . . . fn = vn} | ∀i, vi ∈ Dτi
}

Dvariant[C1:τ1 | ... | Cn:τn] =
⊎

1≤i≤n{Ci[vi] | vi ∈ Dτi
}

Darrτi 〈τ〉 = {(P, (vk)k∈P) | P ⊆ Dτi
,∀k, vk ∈ Dτ}.

Given a valuation E from variables to semantic values, the interpretation
of a relation R ∈ R with respect to some type τ is a binary relation over Dτ

defined as shown in Table 3.

Table 3. Partial equivalence relations – semantics

The preorder relation of the partial equivalence lattice is denoted by �R. It
is defined in Table 4.

�R ⊆ R × R ∨R: R × R → R ∧R: R × R → R.

The defined join and meet operations, denoted by ∨R and ∧R, are com-
mutative operations, applied pointwise on each subelement. Join has Equal as
its identity element and Any as its absorbing element. Meet has Equal as its
absorbing element and Any as its identity element.

Additionally, the following extraction functions are defined:

extrf : R � R extraction of a field’s relation

extrC : R � R extraction of a constructor’s relation

extr 〈i〉 : R � R extraction of a cell’s relation.

These are partial functions and can only be applied on relations of the corre-
sponding types. For example, the field extraction extrf only makes sense for

92 O.F. Andreescu et al.

Table 4. �R – Comparison of two domains

atomic or structured relations having a field named f , which should be the case
if the relation connects two values of a structured type with a field f . For any
of the two atomic relations Ra, applying any of these extractions yields Ra.

3.2 Paths and Correlations

Partial equivalence relations are enough to represent fine-grained information
for values of the same structured type. For the example introduced in Sect. 1.1
and detailed in Fig. 2 these would suffice to express the equality of the pid,
current thread and address space fields between the input process in and the
output process o, by simply mapping this pair to {threads �→ Any; pid �→
Equal; current thread �→ Equal; address space �→ Equal}. However, the partial
equivalence relations cannot, for example, be used to convey the equality at line
1 in Fig. 2 between the value of the threads field of in and the local ta variable.
In order to express this information, we first need to be able to refer to the
substructure in.threads and relate its value to the one of ta.

Rather than handling only partial equivalences between pairs of variables of
the same type and approximating the rest to Any – the element that conveys no
information – we introduce an intermediate level, allowing us to store relations
between subparts of values. To this end, we begin by introducing paths.

A path is rooted at one of the program’s variables and represents a unique
sequence of internal accesses inside some value’s structure, i.e. it is a traversal
from one value to one of its subparts. Each path is a unique chain of accesses
leading to a nested element. We define a recursive type Π encompassing this:

Correlating Structured Inputs and Outputs in Functional Specifications 93

π ∈ Π, π := | ε empty − root
| .fπ f ∈ F
| @Cπ C ∈ C
| 〈i〉π i index, program variable.

The empty path, denoted by ε, is the special case denoting an access to an
entire element, i.e. the root. The action of appending a non-empty path π′ to
another path π is denoted by π ::π′.

Meaningful information is conveyed by associating paths and partial equiva-
lence relations. For example, the equality between in.threads and ta at line 1 in
Fig. 2 can be expressed by associating Equal to the pair of subelements identified
by the .threads path in in and by ε in ta. Thus, we introduce correlation maps
ĉ ∈ Ĉ, which are finite mappings from pairs of paths to relations R ∈ R:

Ĉ : Π × Π → R

Generally, for two given variables e and o, a correlation (π, ρ) �→ R specifies
that e and o have nested subelements, respectively identified by the inner paths
π and ρ, whose values are related by the relation R.

There is no clear canonical form for correlations. For instance, it is equiva-
lent to write (ε, ε) �→ {f �→ R} and (.f, .f) �→ R. Operations can create and
manipulate them in different manners, that are hard to predict. New correlations
can also be introduced while considering def-use chains in the transfer function
presented later in Sect. 3.3. This trait renders the definition of a partial order
between correlation maps difficult. In order to compare two correlation maps ĉ1
and ĉ2, we cannot simply verify if the path pairs are identical and compare their
associated relations. A correlation of the second map could be linked, in different
manners, to multiple mappings of the first. For example, between a process p of
the type defined in Sect. 1.1 and an array ta of the same type as the field threads

of the process, we might have the following correlation maps:

ĉ1 :

(.threads, ε) �→ 〈Equal � i : Any〉

(.threads〈i〉@Some.t, 〈i〉@Some.t) �→
⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

ĉ2 : (.threads, ε) �→
〈
⎡

⎢
⎢
⎣

None �→ Any

Some �→
⎧
⎨

⎩
t �→

⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎫
⎬

⎭

⎤

⎥
⎥
⎦

〉

.

To compare two correlation maps ĉ1 and ĉ2, we need to collect for each
pair (π, ρ) mapped to R in ĉ2 all the information contained by ĉ1 that refers
to the elements identified by (π, ρ) and verify if this covers at least the same
information as the relation R. This information could be scattered across
multiple mappings of the correlation map ĉ1. For example, in the given map
ĉ1, in addition to the relation associated to (.threads, ε), the relation associated

94 O.F. Andreescu et al.

to (.threads〈i〉@Some.t, 〈i〉@Some.t) expresses information about the values of
the process’ threads field and ta as well. These are nested in the i-th element
of each, as identified by 〈i〉@Some.t. To compare these two correlation maps, we
have to first determine the relationships between the pair of paths (.threads, ε)
from ĉ2 and each pair of paths of ĉ1. The first pair of paths in ĉ1 is identical,
whereas the second pair refers to elements that are further away from the root.
Based on these relationships, we have to extract all the information relevant to
(.threads, ε) from ĉ1. This amounts to:

(.threads, ε) �→
〈

Equal � i :

⎡

⎢
⎢
⎣

None �→ Any

Some �→
⎧
⎨

⎩
t �→

⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎫
⎬

⎭

⎤

⎥
⎥
⎦

〉

.

which is more precise than the relation associated to (.threads, ε) in ĉ2. We call
this process alignment. It is necessary in the absence of a canonical form, a trait
of our approach that is both a weakness and a strength: it leads to complex
computations but gives considerable flexibility.

For aligning, we first determine the relationships between paths by deter-
mining the relationship between the sequences of internal accesses that they
represent. These can be identical, representing the same traversal to the same
subelement of a value or they can be completely unrelated, such as .f and .g for
example, representing accesses to two different fields of a structure. They can
also represent sequences of accesses of different depths, one being the prefix of
the other, i.e. being closer to the root. For example, the path .f is a prefix of
the path .f〈i〉; the first represents the access to the field f , whereas the second
one represents an access to the i-th element of the array nested in the field f .

To distinguish between these cases, we have defined a link type, μ ∈ M :

μ := | Identical | Left π | Right π | Incompatible

and a matching operator �:

� : Π × Π → M � (π, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

Identical, π = ρ
Left π′, π ::π′ = ρ
Right ρ′, ρ :: ρ′ = π
Incompatible, otherwise

that retrieves the link between two paths. Aligning a correlation (π, ρ) �→ R to
another pair of paths (π′, ρ′), is denoted by ‖.

‖ : Ĉ × (Π × Π) → R [(π, ρ) �→ R] ‖ (π′, ρ′) = R(π,ρ)
‖(π′,ρ′).

From R we obtain the information referring to the elements identified by (π′, ρ′)
and denote it by R(π,ρ)

‖(π′,ρ′). This is done by matching on π and π′ on the one
hand and on ρ and ρ′ on the other and by distinguishing between the differ-
ent cases. When the paths are identical, we can simply return the relation R.

Correlating Structured Inputs and Outputs in Functional Specifications 95

When the links between the paths differ or when the paths are incompatible, we
have to approximate to the least precise relation, thus returning Any. When π
and ρ are more shallow paths, i.e. closer to the root, we need to make a projection,
denoted by �. For example, aligning (.f, ε) �→ {a �→ Ra; b �→ Rb; c �→ Rc} to
(.f.b, .b) consists in projecting .b on the relation {a �→ Ra; b �→ Rb; c �→ Rc} and
thus obtaining Rb. On the contrary, if π′ and ρ′ are closer to the root, we need
to perform an injection, denoted by �. For example, aligning (.f.b, .b) �→ Rb to
(.f, ε) consists in creating a relation {a �→ Any; b �→ Rb; c �→ Any}.

R(π,ρ)
‖(π′,ρ′) =

⎧
⎪⎨

⎪⎩

R when � (π, π′) = �(ρ, ρ′) = Identical
�(σ, R) when � (π, π′) = �(ρ, ρ′) = Left σ
�(R, σ) when � (π, π′) = �(ρ, ρ′) = Right σ
Any otherwise

where : � : Π × R � R � : R × Π � R

�(π,R) =

⎧
⎪⎨

⎪⎩

R when π = ε
�(π′, extrf (R)), when π = .fπ′

�(π′, extrC(R)), when π = @Cπ′

�(π′, extr 〈i〉(R)), when π = 〈i〉π′

�(R, π) =

{R whenπ = ε
{f1 	→ Any; . . . ; fi 	→ �(R, π′); . . . ; fn 	→ Any}, whenπ = .fπ′, f = fi

[C1 	→ Any; . . . ;Ci 	→ �(R, π′); . . . ;Cn 	→ Any], whenπ = @Cπ′, C = Ci〈
Any � i : �(R, π′)

〉
, whenπ = 〈i〉π′

Aligning a correlation map ĉ ∈ Ĉ to (π′, ρ′), amounts to performing this
operation for each element (π, ρ) �→ R of ĉ and intersecting the results with the
∧R operator:

ĉ ‖ (π′, ρ′) =
∧

R
(π,ρ) 	→R∈ĉ

R(π,ρ)
‖(π′,ρ′).

Finally, we can define the preorder for correlation maps:

ĉ1 �̂ ĉ2 ⇐⇒ ∀ [(π, ρ) �→ R] ∈ ĉ2, ĉ1 ‖ (π, ρ) �R R.

Any correlation map ĉ ∈ Ĉ is smaller than ∅, the empty correlation map.
The defined join operation between two correlation maps is denoted by

∨̂
:

ĉ1
∨̂

ĉ2 = ĉ3 ⇐⇒ ∀ [(π, ρ) �→ R] ∈ ĉ1, ĉ3(π, ρ) = R ∨R (ĉ2 ‖ (π, ρ)) .

The meet operation between two correlation maps is denoted by
∧̂

:
ĉ1

∧̂
ĉ2 = ĉ3 ⇐⇒ ĉ3(π, ρ) = ĉ1(π, ρ) ∧R ĉ2(π, ρ), ∀(π, ρ).

3.3 Intraprocedural Analysis and Correlation Summaries

We work with a control flow graph (CFG) representation of the predicates’
bodies. Nodes represent program states and edges are defined by statements
with a particular exit label λ. In our case, all the outgoing edges of a node n

96 O.F. Andreescu et al.

bear the different cases of the same statement s found at the program point n.
For each statement s there is an edge labeled s, λk for each of its possible exit
labels λk. However, the analysis does not depend on this specificity.

Correlation information has to be kept at each point of the CFG, for each
input and output pair of the node. An intraprocedural correlation summary:

Δ ∈ D , Δ : V × V → Ĉ.

is thus a mapping from pairs of variables v ∈ V to correlation maps.
For each node of a given control flow graph, Δ(e, o) retrieves the correlation

map between the local variable e and the output variable o. If a mapping for e
and o does not currently exist, Δ(e, o) retrieves the correlation (ε, ε) �→ Equal
when e = o or the empty correlation map ∅, otherwise. Establishing the partial
order � and the join operation

∨
: D × D → D is straightforward: �̂ and

∨̂

are extended pointwise to an intraprocedural summary, for each ordered input-
output pair and its associated correlation map.

� ⊆ D × D Δ1 � Δ2 ⇐⇒ ∀e, o ∈ V, Δ1(e, o) �̂ Δ2(e, o)

Δ1

∨
Δ2 = Δ3 ⇐⇒ ∀(e, o), Δ3(e, o) = Δ1(e, o)

∨̂
Δ2(e, o)

Our correlation analysis is a backward data-flow analysis, computing an
intraprocedural summary at each point of the control flow graph. This repre-
sents the correlations at the node’s entry point. For each exit label, it traverses
the control flow graph starting with its corresponding exit node. The intraproce-
dural summary for the currently analyzed label is initialized with pairs between
the local value of each associated output variable of the label and the final value
of the same output variable, mapped to (ε, ε) �→ Equal. The analysis traverses the
control flow graph and gradually refines the correlations, using Kildall’s worklist
algorithm [5], until a fixed point is reached. Table 5 summarizes the representa-
tion and general equation of the statements. For each statement, the presented
data-flow equation operates on the intraprocedural summaries of the statement’s
successor nodes. The intraprocedural summary at the entry point of the node is
obtained by joining the contributions of each outgoing edge. The contribution
of an edge (n, ni) labeled with s and λi is given by C

s
λi

(Δni
) ∈ C where C

s
λi

(.)
is the transfer function of the edge labeled s, λi.

The transfer function C
s
λ(.) formalizes the correlations created by the state-

ment s on the label λ between its local input variables and its local output
variables, denoted by δs

λ, as well as the set killλ of variables whose values have
been redefined by the statement s on the label λ. These are shown in Table 5.
There is one crucial difference between transfer functions C

s
λ(.) and intraproce-

dural summaries Δ. An intraprocedural summary Δ implicitly maps any pair
(v, v) for v ∈ V to (ε, ε) �→ Equal. On the contrary, in δs

λ, when the variable v is
used as both input and output by the statement s, the pair (v, v) is mapped to
the correlation known between the input’s v old value and the output’s v fresh
value. Otherwise, when v is an output, i.e. v ∈ killλ, but not an input of s, (v, v)
is mapped to ∅.

Correlating Structured Inputs and Outputs in Functional Specifications 97

Table 5. Statements – representations and data-flow equations

In order to obtain the contribution C
s
λi

(Δni
) of an edge labeled with s and

λi, we need to connect the information given by the δs
λi

to the information con-
tained in the intraprocedural summary Δni

. For example, at the entry of node 3
in Fig. 2, when considering the scenario in which the predicate exits with true,
the intraprocedural summary contains the mapping:

(th, o) �→
⎡

⎣(@Some.t, .threads〈i〉@Some.t) �→
⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎤

⎦ .

On the true edge statement 2 creates the mapping: (ta, th) �→ [(〈i〉, ε) �→ Equal] .

Intuitively, since we are traversing the graph backwards and mapping ordered
(local) input-output pairs, (ta, th) and (th, o) can be seen as a def-use pair: the
correlation associated to (ta, th) expresses the relation between the defined value
of th and the input ta used for creating it, while the correlation associated to
(th, o) shows a subsequent use of that value of th for creating o. The contribution
of statement 2 on the true edge should capture this flow of ta’s value to o’s value,
through the variable th. Thus, it should contain a mapping for the pair (ta, o).
In the general case we need to detect any variable r such that [(p, r) �→ ĉ] ∈ δs

λi
,

[(r, q) �→ ĉ′] ∈ Δni
and compute the mapping for (p, q) in C

s
λi

(Δni
).

In order to compute the correlation map associated to (ta, o), we take into
account the fact that both the right path ε of δs

λ(ta, th) and the left path @Some.t

of Δn3(th, o) refer to the th variable. However, they do not represent traversals
of the same depth: ε refers to the entire value of th, while @Some.t refers to the
value below the constructor Some. Between ta and o we can conclude that the
values nested under the Some constructor of the i-th elements are related:

98 O.F. Andreescu et al.

(ta, o) �→
⎡

⎣〈i〉@Some.t, .threads〈i〉@Some.t) �→
⎧
⎨

⎩

identifier �→ Equal
current state �→ Any

stack �→ Equal

⎫
⎬

⎭

⎤

⎦ .

We call the process of obtaining the correlation map associated to (ta, o)
from the correlations associated to (ta, th) and (th, o) composition and denote
it by �. In the general case, we obtain the link between ρ and π′ by match-
ing with �. In the context of the example given above, ρ and π′ are the paths
referring to the th variable, i.e. ε and @Some.t, respectively. If these paths are
compatible, we compose the correlation elements (π, ρ) �→ R and (π′, ρ′) �→ R′,
obtaining a new correlation element, (π•, ρ•) �→ R��, computed as follows:

(π•, ρ•) = (π, ρ) • (π′, ρ′)
def
=

⎧
⎨

⎩

(π, ρ′) when � (ρ, π′) = Identical
(π ::σ, ρ′) when � (ρ, π′) = Left σ
(π, ρ′ ::σ) when � (ρ, π′) = Right σ

R�� = R �� R′ def
=

⎧
⎨

⎩

R ∨R R′ when � (ρ, π′) = Identical
�(σ,R) ∨R R′ when � (ρ, π′) = Left σ
R ∨R �(σ,R′) when � (ρ, π′) = Right σ

Note that given the special form of partial relations R ∈ R, the compose oper-
ation at this level is equivalent to ∨R. However, this would not be the case
anymore for a more complex partial relation type.

The composition of correlation maps is denoted by �. Computing ĉ1 � ĉ2
amounts to intersecting the composition of all correlation elements from ĉ1
and ĉ2:

(ĉ1 � ĉ2)(π•, ρ•) =
∧

R
(π,ρ) 	→R∈ĉ1

(π′,ρ′) 	→R′∈ĉ2
(π•,ρ•)=(π,ρ)•(π′,ρ′)

R �� R′.

Finally, the contribution C
s
λi

(Δni
) is obtained by:

� : C × D → D δs
λ � Δ = Δ′ where Δ′(p, q) =

∧̂

r
(δs

λ(p, r)� Δ(r, q)).

Interprocedural Level. Our analysis is performed label by label and interproce-
dural correlation domains associate an intraprocedural summary to each exit
label of the analyzed predicate. Therefore, interprocedural domains encapsulate
an intraprocedural summary for each possible execution scenario of a predicate.

An interprocedural domain of a predicate p is thus defined as follows:

Ξp : Λp → Δ where Λp is the set of output labels of predicate p.

The intraprocedural summary associated to each label is filtered so as to contain
only ordered pairs of variables where the left member is an input of the analyzed
predicate and the right member is an output associated to the analyzed label.
The correlation maps associated to such pairs are built so as to contain correla-
tions where only input variables may appear in array cell paths. Similarly, the

Correlating Structured Inputs and Outputs in Functional Specifications 99

exception index in partial equivalence relations of arrays must be an input vari-
able. Registering exceptions in array correlations only for input variables is not
a consequence of a language restriction on array operations, but simply a conse-
quence of the fact that at the interprocedural level, only correlation information
between inputs and outputs makes sense.

The interprocedural domain of a predicate is used for deducing the transfer
functions for a predicate call statement.

In the following we detail the equation corresponding to a call to a predicate:

p(e1, . . . , en)[λ1 : ō1 | . . . | λm : ōm]

having the following signature:

p(ε1, . . . , εn)[λ1 : ω̄1 | . . . | λm : ω̄m].

The general equation form applies:

Δn =
∨

n
s,λi−−→ni

C
p(e1,...,en) [λ1:ō1 |...| λm:ōm]
λi

(Δni
).

The transfer functions for the predicate call statement are deduced from the
predicate’s interprocedural domain in the following fashion:

C
s
λi

(Δni
) = δs

λi
� Δni

, killλi
= {ōi}

δs
λi

(ej , o
k
i) = ĉj,k

i ,∀j ∈ {1, . . . , n},∀k ∈ {1, . . . , h}

where

ĉj,k
i = Ξp(λi)(εj , ω

k
i) � (ε̄ �→ ē)

s = p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]; ōi = {o1i , . . . , o
h
i }.

Namely, the contribution of a predicate call to each (ej , o
k
i) input-output pair

stems from the contribution of the interprocedural domain for label λi and formal
input-output pair (εj , ω

k
i). In these, all the formal input parameters ε̄ in array

partial equivalences and in array cell paths are substituted by the corresponding
effective input parameters from ē or approximated away.

The substitution operation is denoted by � (σ) where σ is a substitution
from formal to effective parameters.

4 Preliminary Results and Experiments

Our analysis has currently been applied to a functional specification of Proven-
Core [7], a general-purpose microkernel inspired by Minix 3.1 that ensures isola-
tion. Its proof is based on multiple refinements between successive models, from
the most abstract, on which the isolation property is defined and proved, to the
most concrete, i.e. the actual model used for code generation.

100 O.F. Andreescu et al.

Some of the abstract layers of ProvenCore are the Refined Security Model
(RSM), the Functional Specification (FSP) and the Target of Evaluation Design
(TDS). RSM is an abstract layer located just below the top-most layer of the
refinement chain; the FSP is a model closely resembling the most concrete layer –
TDS – but using data structures and algorithms that facilitate reasoning. Each
layer is characterized by a global state with numerous fields, and different tran-
sitions, i.e. supported commands such as fork, exec, exit. Each of these receives
as an input the global state before executing the command and returns the state
of the system after execution. Most supported commands affect only a limited
subset of the input state. For example, in FSP there are 25 possible transitions.
Its state contains 15 fields; it is characterized by 70 invariants. In the TDS these
figures are doubled. Each invariant is concerned with a different subset of the
global’s state fields. Some of these invariants concern all the processes held in
the process store. Processes are complex structures in their own right, having
more than 20 fields themselves. However, most transitions affect only a few of
these fields.

We have applied our analysis on the RSM, FSP and TDS layers. These are
medium-sized experiments. An overview of their characteristics and the time
needed to obtain the correlation results are given in Table 6. The first column
shows the total number of predicates of the analysed layers. In parentheses,
we indicate the number of predicates that only read information, i.e. logical
properties, as well as the number of opaque predicates for which a pessimistic
assumption is made. The second column shows the total number of lines of
code (LoC) for each. The next two columns indicate the number of LoC cor-
responding to type definitions and comments, respectively. The average time
needed to compute the correlation and dependency results are shown in the last
two columns. Unlike the correlation analysis that only computes information for
predicates that actually modify data structures, the dependency analysis com-
putes information for code as well as specifications, i.e. logical properties, in a
unified manner. This explains the time difference between the two analyses.

Table 6. Abstract layers - evaluation data and analysis timing

Predicates Total LoC Types Comments Correlation Dependency

RSM/FSP 633 (235/65) 9853 596 855 0.90 s 1.84 s

TDS 418 (58/105) 6804 460 623 0.62 s 1.09 s

One of the analyzed predicates is do auth. It is a system call clearing or
granting an authorization to some process to read from or write to some mem-
ory range of the current process. It receives a global state in and an index i as
inputs and produces, on the true label, the new global state out, after modifying
the permission for the i-th process in the process store. The code of do auth per-
forms various system-wide checks before registering the permission change, and
is therefore not trivial, although its effect is quite limited. Indeed, the correlation

Correlating Structured Inputs and Outputs in Functional Specifications 101

results computed by our analysis for the true label of this predicate are shown
below. The analysis detects that out of the 15 fields of out, only the i-th element
of the procs field is changed. Furthermore, it detects that if this element is an
active process, only the mem auth field is modified out of the total of 26 fields.
Everything else is copied from the input state in.

true : (in, out) �→ [

(ε, ε) �→ { ... �→ Equal} 14 fields

procs �→ Any }
(.procs, .procs) �→ 〈 Equal � i : [None �→ Equal

Some �→ {v �→ { ... �→ Equal } 25 fields

mem auth �→ Any}}]〉]
Combined with dependency results for logical properties, these results would

allow us to infer the preservation of all invariants that are not concerned with the
memory permissions. All but one out of the 70 properties fall into this category.
This is the relevant memory permissions property, which states that a process
has permissions covering a valid range of memory addresses and referring only
to existing processes. It has to hold for every process in the process store. After
executing do auth, this property is threatened and needs to be verified only for
the i-th process of the store. It is preserved for all others.

Space constraints prevent us from discussing more examples here. However,
various other examples are provided and explained on the web page2 dedicated
to our analysis. Users can devise and test their own examples as well.

5 Related Work

In [3], Chang and Leino present the congruence-closure abstract domain,
designed for an object-oriented context and implemented in the Spec# pro-
gram verifier. They infer and express relations between fields of variables, a goal
similar to ours. The congruence-closure domain maintains equivalence graphs
mapping field accesses to symbolic locations. On its own, this domain allows
the inference and expression of relations for accessed fields. In order to take
into account updates as well, this needs to use the heap succession domain as
a base. Unlike us, they can express preorders between fields, depending on the
base domains used. However, our domain handles both accesses and updates to
structures, arrays and variants in a uniform manner, independent of additional
information.

Rakamarić and Hu report in [12] a method to infer frame axioms of pro-
cedures and loops based on static analysis. As a starting point, they use the
DSA shape analysis, presented by Lattner et al. [6]. DSA provides a summary of
points-to relations as a graph, that is used to compute a set of memory locations
that are modified by a procedure or its callers. By a pass through the graph,

2 http://ajl-demo.fr/2016.

http://ajl-demo.fr/2016

102 O.F. Andreescu et al.

for each node reachable from the globals or procedure parameters, they generate
expressions representing a path to that node. The generated frame axioms are
used internally by an extended static checker of C programs, i.e. in a purely
automatic setting. In contrast, our analysis is designed for an interactive veri-
fication context. Our technique focusing on a purely functional language is not
concerned by aliasing and does not depend on an external points-to framework.

In [15], Taghdiri et al. present a technique for extracting procedure summaries
for object-oriented procedures, used to prove verification conditions. Procedures
are executed symbolically and the environment of the post-state is computed so
as to express every variable and field in terms of the values of the variables and
fields of the pre-state. Their goal is broader than ours. However, unlike their
summaries, our correlation results encompass only information that is visible
from the outside (to the callers).

The literature on shape analysis [2,4,11,13] and side effects analyses [10,14]
is vast. The former is aimed at deep-heap mutations, while we are focusing on
deep-state modifications, in the context of complex transition systems. The latter
determine memory locations that may be modified by an operation. Reasoning
about heap locations is beyond our scope. We treat mappings between variables
and their values, analyze their evolution in a side-effect free environment and
detect not only what is modified, but also how and to what extent.

6 Conclusion and Future Work

Identifying precise information concerning the effects of program operations is
possible by means of static analysis without sacrificing scalability. We have pre-
sented a flow-sensitive, interprocedural correlation analysis that has been applied
to a functional specification of an operating system. The analysis tracks the origin
of subparts of the output and relates it to subparts of the inputs thus detecting
not only what is modified, but also how and to what extent. It is designed as a
companion tool to be used during interactive program verification.

We have plans for future work along two main directions. The first is to go
beyond the detection of equivalences and to handle preorders. This would allow
us to detect the evolution of constructors for variants. Tracking this would allow
the inference of properties that are not affected by a transition from a stronger
state to a weaker state. Also, experiments show that the simultaneous use of
dependency and correlation information can lead to a substantial reduction of
proof obligations. Our priority is to employ the two, to develop a proof tactic
for the inference of preserved invariants and to integrate it in our prover.

Acknowledgments. We would like to thank the anonymous referees for helpful com-
ments and suggestions. For their excellent comments and sharp observations, we are
particularly grateful to Olivier Delande and Georges Dupéron. Our article also bene-
fited from the remarks of B. Montagu and H. Chataing.

Correlating Structured Inputs and Outputs in Functional Specifications 103

References

1. Andreescu, O.F., Jensen, T., Lescuyer, S.: Dependency analysis of functional spec-
ifications with algebraic data structures. In: Formal Methods and Software Engi-
neering - 17th International Conference on Formal Engineering Methods, ICFEM
2015, Proceedings, pp. 116–133 (2015). doi:10.1007/978-3-319-25423-4 8

2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of Bi-abduction. In: Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, pp. 289–300
(2009). http://doi.acm.org/10.1145/1480881.1480917

3. Chang, B.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Verification, Model Checking, and Abstract Interpretation, 6th
International Conference, VMCAI 2005, Proceedings, pp. 147–163 (2005). http://
dx.doi.org/10.1007/978-3-540-30579-8 11

4. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of lisp-like structures.
In: Conference Record of the Sixth Annual ACM Symposium on Principles of
Programming Languages, 1979, pp. 244–256 (1979). http://doi.acm.org/10.1145/
567752.567776

5. Kildall, G.A.: A unified approach to global program optimization. In: Conference
Record of the ACM Symposium on Principles of Programming Languages, 1973,
pp. 194–206 (1973). http://doi.acm.org/10.1145/512927.512945

6. Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Implementation,
2007, pp. 278–289 (2007). http://doi.acm.org/10.1145/1250734.1250766

7. Lescuyer, S.: ProvenCore: towards a verified isolation micro-kernel (2015).
http://milsworkshop2015.euromils.eu/downloads/hipeac literature/04-mils15
submission 6.pdf

8. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence. Edinburgh University Press (1969)

9. Meyer, B.: Framing the frame problem. In: Dependable Software Systems Engi-
neering, pp. 193–203 (2015). http://dx.doi.org/10.3233/978-1-61499-495-4-193

10. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41. http://
doi.acm.org/10.1145/1044834.1044835 (2005)

11. Montenegro, M., Peña, R., Segura, C.: Shape analysis in a functional language by
using regular languages. Sci. Comput. Program. 111, 51–78 (2015). http://dx.doi.
org/10.1016/j.scico.2014.12.006

12. Rakamaric, Z., Hu, A.J.: Automatic inference of frame axioms using static analysis.
In: 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2008), pp. 89–98 (2008). http://dx.doi.org/10.1109/ASE.2008.19

13. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL 1999, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1999, pp. 105–118 (1999). http://doi.acm.
org/10.1145/292540.292552

14. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

15. Taghdiri, M., Seater, R., Jackson, D.: Lightweight extraction of syntactic specifi-
cations. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2006, pp. 276–286 (2006). http://doi.
acm.org/10.1145/1181775.1181809

http://dx.doi.org/10.1007/978-3-319-25423-4_8
http://doi.acm.org/10.1145/1480881.1480917
http://dx.doi.org/10.1007/978-3-540-30579-8_11
http://dx.doi.org/10.1007/978-3-540-30579-8_11
http://doi.acm.org/10.1145/567752.567776
http://doi.acm.org/10.1145/567752.567776
http://doi.acm.org/10.1145/512927.512945
http://doi.acm.org/10.1145/1250734.1250766
http://milsworkshop2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
http://milsworkshop2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
http://dx.doi.org/10.3233/978-1-61499-495-4-193
http://doi.acm.org/10.1145/1044834.1044835
http://doi.acm.org/10.1145/1044834.1044835
http://dx.doi.org/10.1016/j.scico.2014.12.006
http://dx.doi.org/10.1016/j.scico.2014.12.006
http://dx.doi.org/10.1109/ASE.2008.19
http://doi.acm.org/10.1145/292540.292552
http://doi.acm.org/10.1145/292540.292552
http://doi.acm.org/10.1145/1181775.1181809
http://doi.acm.org/10.1145/1181775.1181809

Combining Predicate Abstraction
with Fixpoint Approximations

Tuba Yavuz(B)

University of Florida, Gainesville, USA
tuba@ece.ufl.edu

Abstract. In this paper we consider combining two techniques that have
been effective in analyzing infinite-state systems: predicate abstraction
and fixpoint approximations. Using a carefully crafted model of Airport
Ground Network Control, we show that when predicate abstraction in a
CEGAR loop fails to verify temporal logic properties of an infinite-state
transition system, a combination of predicate abstraction with fixpoint
approximations may provide improved performance for both safety and
liveness property verification.

Keywords: Predicate abstraction · Widening · Model checking

1 Introduction

State-explosion is an inherent problem in model checking. Every model checking
tool - no matter how optimized - will report or demonstrate one of the following
for systems that push its limits: out of memory error, non-convergence, or incon-
clusive result. As the target systems of interest (hardware, software, or biological
systems) grow in terms of complexity, and consequently in size, a great deal of
manual effort is spent on verification engineering to produce usable results. We
admit that this effort will always be needed. However, we also think that hybrid
approaches should be employed to push the limits for automated verification.

Abstract interpretation framework [6] provides a theoretical basis for sound
verification of finite as well as infinite-state systems. Two major elements of this
framework are abstraction and approximation. Abstraction defines a mapping
between a concrete domain and an abstract domain (less precise) in a conserva-
tive way so that when a property is satisfied for an abstract state the property
also holds for the concrete states that map to the abstract state. Approximation,
on the other hand, works on values in the same domain and provides a lower or
an upper bound. Abstraction is a way to deal with the state-explosion problem
whereas approximation is a way to achieve convergence and hence potentially
a conclusive result. When an infinite-state system is considered there are three
basic approaches that can be employed: pure abstraction, pure approximation1,
and a combination of abstraction and approximation.

1 Assuming the logic that describes the system is decidable.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 104–120, 2016.
DOI: 10.1007/978-3-319-41591-8 8

Combining Predicate Abstraction with Fixpoint Approximations 105

The most popular abstraction technique is predicate abstraction [9], in which
the abstract domain consists of a combination of valuations of Boolean variables
that represent truth values of a fixed set of predicates on the variables from the
concrete system. Since it is difficult to come up with the right set of predicates
that would yield a precise analysis, predicate abstraction has been combined
with the counter-example guided abstraction refinement (CEGAR) framework.
Predicate abstraction requires computing a quantifier-free version of the trans-
formed system and, hence, potentially involves an exponential number of queries
to the underlying SMT solver.

A widely used approximation technique is widening. The widening oper-
ator takes two states belonging to the same domain and computes an over-
approximation of the two. A key point of the widening operator is the guarantee
for stabilizing an increasing chain after a finite number of steps. So one can
apply the widening operator to the iterates of a non-converging fixpoint compu-
tation and achieve convergence, where the last iterate is an over-approximation
of the actual fixpoint. In this paper we use an implementation of the widening
operator for convex polyhedra [8] that is used in the infinite-state model checker
Action Language Verifier (ALV) [18]. ALV uses fixpoint approximations to check
whether a CTL property is satisfied by an infinite-state system [2].

In [7] it is demonstrated that both model checking and automated testing
can benefit from a combination of carefully designed abstractions and approxi-
mations that improve precision of the analysis. In this paper, we take a modest
step by combining predicate abstraction with widening for infinite-state systems
described in terms of Presburger arithmetic. Our approach requires the user to
provide the set of predicates to be considered. In our approach only the vari-
ables that are involved in the predicates are abstracted and all other variables are
preserved in their concrete domains. We implemented the combined approach
by extending the Action Language Verifier (ALV) [18] with automated predi-
cate abstraction capability. We show the need for such a combined approach
through a specially crafted infinite-state model that requires fixpoint approxi-
mation. Our experimental results show that combining the two techniques can
provide improved performance for safety as well as liveness property specifica-
tion.

The rest of the paper is organized as follows. We first present the basic defin-
itions and key results of the two approaches, approximate fixpoint computations
and predicate abstraction in the context of CTL model checking, in Sect. 2.
Section 3 presents the hybrid approach and demonstrates soundness of combin-
ing the two techniques. Section 4 presents the experimental results. Section 5
discusses related work and Sect. 6 concludes with directions for future work.

2 Preliminaries

In this paper, we consider transition systems that are described in terms of
boolean and unbounded integer variables.

106 T. Yavuz

Definition 1. An infinite-state transition system is described by a Kripke struc-
ture T = (S, I,R, V), where S, I, R, and V denote the state space, set of ini-
tial states, the transition relation, and the set of state variables, respectively.
V = Vbool ∪ Vint such that S ⊆ B|Vbool| × Z |Vint|, I ⊆ S, and R ⊆ S × S.

Definition 2. Given a Kripke structure, T = (S, I,R, V) and a set of states
A ⊆ S, the post-image operator, post[R](A), computes the set of states that can
be reached from the states in A in one step:

post[R](A) = {b | a ∈ A ∧ (a, b) ∈ R}.

Similarly, the pre-image operator, pre[R](A), computes the set of states that can
reach the states in A in one step:

pre[R](A) = {b | a ∈ A ∧ (b, a) ∈ R}.

Model Checking via Fixpoint Approximations. Symbolic Computation-Tree
Logic (CTL) model checking algorithms decide whether a given Kripke struc-
ture, T = (S, I,R, V), satisfies a given CTL correctness property, f , by checking
whether I ⊆ �f�T , where �f�T denotes the set of states that satisfy f in T . Most
CTL operators have either least fixpoint (EU , AU) or greatest fixpoint (EG,
AG) characterizations in terms of the pre-image operator.

Fig. 1. The ticket mutual exclusion algorithm for two processes. Variable z is an addi-
tion to demonstrate the merits of the proposed approach.

Symbolic CTL model checking for infinite-state systems may not converge.
Consider the so-called ticket mutual exclusion model for two processes [1] given
in Fig. 1. Each process gets a ticket number before attempting to enter the critical
section. There are two global integer variables, t and s, that show the next ticket
value that will be available to obtain and the upper bound for tickets that are
eligible to enter the critical section, respectively. Local variable ai represents the
ticket value held by process i. We added variable z to model an update in the
critical region. It turns out that checking AG(z ≤ 1) for this model does not
terminate.

Combining Predicate Abstraction with Fixpoint Approximations 107

One way is to compute an over or an under approximation to the fixpoint
computations as proposed in [2] and check I ⊆ �f�−

T , i.e., check whether all initial
states in T satisfy an under-approximation (denoted by superscript −) of the
correctness property or check I ∩ �¬f�+T �= ∅, i.e., check whether no initial state
satisfies an over-approximation of the negated correctness property. If so, the
model checker certifies that the property is satisfied. Otherwise, no conclusions
can be made without further analysis.

The key in approximating a fixpoint computation is the availability of over-
approximating and under-approximating operators. So we give the basic defi-
nitions and a brief explanation here and refer the reader to [2,8] for technical
details on the implementation of these operators for Presburger arithmetic.

Definition 3. Given a complete lattice (L,
,�,�,⊥,�), � : L × L → L, is a
widening operator iff

– ∀x, y ∈ L. x � y
 x�y,
– For all increasing chains x0
 x1
 ...xn in L, the increasing chain y0 =

x0, ..., yn+1 = yn�xn+1, ... is not strictly increasing, i.e., stabilizes after a
number of terms.

Definition 4. Given a complete lattice (L,
,�,�,⊥,�), ∇ : L × L → L, is a
dual of the widening operator iff

– ∀x, y ∈ L.x∇y
 x � y,
– For all decreasing chains x0 � x1 � ...xn in L, the decreasing chain y0 =

x0, ..., yn+1 = yn∇xn+1, ... is not strictly decreasing, i.e., stabilizes after a
number of terms.

The approximation of individual temporal operators in a CTL formula is
decided recursively based on the type of approximation to be achieved and
whether the operator is preceded by a negation. The over-approximation can
be computed using the widening operator for least fixpoint characterizations
and terminating the fixpoint iteration after a finite number of steps for greatest
fixpoint characterizations. The under-approximation can be computed using the
dual of the widening operator for the greatest fixpoint characterizations and ter-
minating the fixpoint iteration after a finite number of steps for the least fixpoint
characterizations. Another heuristic that is used in approximate symbolic model
checking is to compute an over-approximation (denoted by superscript +) of the
set of reachable states ((μZ.I ∨ post[R](Z))+), a least fixpoint characterization,
and to restrict all the fixpoint computations within this set.

Lemma 1. Given an infinite-state transition system T = (S, I,R, V) and T+ =
((μZ.I ∨ post[R](Z))+, I, R, V), and a temporal property f , the conclusive results
obtained using fixpoint approximations for the temporal operators and the approxi-
mate set of reachable states are sound, i.e., (I ⊆ �f�−

T+ ∨ I∩�¬f�+T+ = ∅) → T |= f
(see [2] for the proof).

108 T. Yavuz

So for the example model in Fig. 1, an over-approximation to EF (z > 1), the
negation of the correctness property, is computed using the widening operator.
Based on the implementation of the widening operator in [18], it turns out that
the initial states do not intersect with �EF (z > 1)�+ticket2 and hence the model
satisfies AG(z ≤ 1).

Abstract Model Checking and Predicate Abstraction.

Definition 5. Let ϕ denote a set of predicates over integer variables. Let ϕi

denote a predicate in ϕ and bi denote the boolean variable that corresponds to
ϕi. ϕ̄ represents an ordered sequence (from index 1 to |ϕ|) of predicates in ϕ.
The set of variables that appear in ϕ is denoted by V (ϕ). Let ϕ′ denote the set
of next state predicates obtained from ϕ by replacing variables in each predicate
ϕi with their primed versions. Let b denote the set of bi that corresponds to each
ϕi. Let V� = V� ∪ b \ V (ϕ), where V� denotes the set of variables in the concrete
model.

Abstracting states. A concrete state s� is predicate abstracted using a mapping
function α via a set of predicates ϕ by introducing a predicate boolean variable bi

that represents predicate ϕi and existentially quantifying the concrete variables
V (ϕ) that appear in the predicates:

α(s�) = ∃V (ϕ).(s� ∧
|ϕ|∧

i=1

ϕi ⇐⇒ bi). (1)

Concretization of abstract states. An abstract state s� is mapped back to all the
concrete states it represents by replacing each predicate boolean variable bi with
the corresponding predicate ϕi:

γ(s�) = s�[ϕ̄/b̄] (2)

Abstraction function α provides a safe approximation for states:

Lemma 2. (α, γ), as defined in Eqs. 1 and 2, defines a Galois connection, i.e.,
α and γ are monotonic functions and s� ⊆ γ(α(s�)) and α(γ(s�)) = s� (see the
Appendix for the proof).

A concrete transition system can be conservatively approximated by an
abstract transition system through a simulation relation or a surjective map-
ping function involving the respective state spaces:

Definition 6. (Existential Abstraction) Given transition systems T1 = (S1, I1,
R1, V1) and T2 = (S2, I2, R2, V2), T2 approximates T1 (denoted T1
h T2) iff

– ∃s1.(h(s1) = s2 ∧ s1 ∈ I1) implies s2 ∈ I2,
– ∃s1, s

′
1.(h(s1) = s2 ∧ h(s′

1) = s′
2 ∧ (s1, s′

1) ∈ R1) implies (s2, s′
2) ∈ R2,

where h is a surjective function from S1 to S2.

Combining Predicate Abstraction with Fixpoint Approximations 109

It is a known [13] fact that one can use a Galois connection (α, γ) to construct
an approximate transition system. Basically, α is used as the mapping function
and γ is used to map properties of the approximate or abstracted system to the
concrete system:

Definition 7. Given transition systems T1 = (S1, I1, R1, V1) and T2 = (S2, I2,
R2, V2), assume that T1
α T2, the ACTL formula φ describes properties of T2,
and (α, γ) forms a Galois connection. C(φ) represents a transformation on φ
that descends on the subformulas recursively and transforms every atomic atomic
formula a with γ(a) (see [4] for details).

For example, let φ be AG(b1∨b2), where b1 and b2 represent z = 1 and z < 1,
respectively, when the model in Fig. 1 is predicate abstracted wrt to the set of
predicates ϕ = {z = 1, z < 1} and the Galois connection (α, γ) defined as in
Eqs. 1 and 2. Then, C(φ) = AG(z ≤ 1).

The preservation of ACTL properties when going from the approximate sys-
tem to the concrete system is proved for existential abstraction in [4]. Here, we
adapt it to an instantiation of existential abstraction using predicate abstraction
as in [5]:

Lemma 3. Assume T1
α T2, φ denotes an ACTL formula that describes a
property of T2, C(φ) denotes the transformation of the correctness property as in
Definition 7, and (α, γ) forms a Galois connection and defines predicate abstrac-
tion and concretization as given in Eqs. 1 and 2, respectively. Then, T2 |= φ
implies T1 |= C(φ).

Proof. Preservation of atomic properties: If a state s2 in T2 satisfies an atomic
abstract property φ, due to the correctness preserving property of a Galois con-
nection, s2 also satisfies γ(φ) [14]. Due to soundness of the mapping between the
states in T1 to states in T2 and monotonic property of α and γ, any state s1 in
T1 that gets mapped to s2, that is every state in γ(s2) also satisfies γ(φ).
Preservation of ACTL Properties: Follows from Corollary 1 in [4] and using α
as the mapping function h in [4].

3 A Hybrid Approach

In Sect. 3.1, we introduce a symbolic abstraction operator for transitions and
an over-approximating abstract post operator derived from it. The abstract
post operator enables partial predicate abstraction of an infinite-state system.
Section 3.2 elaborates on the proposed hybrid approach that combines predi-
cate abstraction and fixpoint approximations to perform CTL model checking
of infinite-state systems. It also demonstrates soundness of the hybrid approach,
which follows from the soundness results of the individual approaches and the
over-approximating nature of the proposed abstract post operator.

110 T. Yavuz

3.1 Computing a Partially Predicate Abstracted Transition System

We compute an abstraction of a given transition system via a set of predicates
such that only the variables that appear in the predicates disappear, i.e., exis-
tentially quantified, and all the other variables are preserved in their concrete
domains and in the exact semantics from the original system. As an example,
using the set of predicates {z = 1, z < 1}, we can partially abstract the model
in Fig. 1 in a way that z is removed from the model, two new boolean variables
b1 (for z = 1) and b2 (for z < 1) are introduced, and s, t, a1, a2, pc1, and pc2
remain the same as in the original model.

Abstracting transitions. A concrete transition r� is predicate abstracted using
a mapping function ατ via a set of current state predicates ϕ and a set of
next state predicates ϕ′ by introducing a predicate boolean variable bi that
represents predicate ϕi in the current state and a predicate boolean variable b′

i

that represents predicate ϕi in the next state and existentially quantifying the
current and next state concrete variables V (ϕ)∪V (ϕ′) that appear in the current
state and next state predicates:

ατ (r�) = ∃V (ϕ).∃V (ϕ′).(r� ∧ CS ∧
|ϕ|∧

i=1

ϕi ⇐⇒ bi ∧
|ϕ|∧

i=1

ϕ′
i ⇐⇒ b′

i), (3)

where CS represents a consistency constraint that if all the abstracted vari-
ables that appear in a predicate remains the same in the next state then the
corresponding boolean variable is kept the same in the next state:

CS =
∧

ϕi∈ϕ

((
∧

v∈V (ϕi)

v′ = v) =⇒ b′
i ⇐⇒ bi).

Concretization of abstract transitions. An abstract transition r� is mapped back
to all the concrete transitions it represents by replacing each current state
boolean variable bi with the corresponding current state predicate ϕi and each
next state boolean variable b′

i with the corresponding next state predicate ϕ′
i:

γτ (r�) = r�[ϕ̄, ϕ̄′/b̄, b̄′]

For instance, for the model in Fig. 1 and predicate set φ = {z = 1, z < 1},
partial predicate abstraction of rcs

i , ατ (rcs
i), is computed as

pci =try ∧ s ≥ ai ∧ ((b1 ∧ ¬b2 ∧ ¬b′
1 ∧ ¬b′

2) ∨ (¬b1 ∧ b2 ∧ (b′
1 ∨ b′

2))
∨ (¬b1 ∧ ¬b2 ∧ ¬b′

1 ∧ ¬b′
2)) ∧ pc′

i = cs.
(4)

It is important to note that the concrete semantics pertaining to the integer
variables s and ai and the enumerated variable pci are preserved in the partially
abstract system.

Combining Predicate Abstraction with Fixpoint Approximations 111

Abstraction function ατ represents a safe approximation for transitions:

Lemma 4. (ατ , γτ) defines a Galois connection (see the Appendix for the
proof).

One can compute an over-approximation to the set of reachable states via an
over-approximating abstract post operator that computes the abstract successor
states:

Lemma 5. ατ provides an over-approximate post operator:

post[r�](γ(s�)) ⊆ γ(post[ατ (r�)](s�))

Proof.

post[τ �](γ(s�)) ⊆ post[γτ (ατ (τ �))](γ(s�))(due to Lemma 4) (5)

We need to show the following:

post[γτ (ατ (τ �))](γ(s�)) ⊆ γ(post[ατ (τ �)](s�))

post[γτ (τ �)](γ(s�)) ⊆ γ(post[τ �](s�))

(∃V�. τ �[ϕ̄, ϕ̄′/b̄, b̄′] ∧ s�[ϕ̄/b̄])[V�/V ′
�] ⊆ (∃V�. τ � ∧ s�)[V�/V ′

�][ϕ̄/b̄]

(∃V�. τ �[ϕ̄, ϕ̄′/b̄, b̄′] ∧ s�[ϕ̄/b̄])[V�/V ′
�] ⊆ (∃V�. τ � ∧ s�)[ϕ̄′/b̄′][V�/V ′

�]

(∃V�.(τ � ∧ s�)[ϕ̄, ϕ̄′/b̄, b̄′])[V�/V ′
�] ⊆ (∃V�. τ � ∧ s�)[ϕ̄′/b̄′][V�/V ′

�]

(6)

post[τ �](γ(s�)) ⊆ γ(post[ατ (τ �)](s�))(due to Eqs. 5 & 6) (7)

3.2 Combining Predicate Abstraction with Fixpoint
Approximations

At the heart of the hybrid approach is a partially predicate abstracted transition
system and we are ready to provide a formal definition:

Definition 8. Given a concrete infinite-state transition system T � =
(S�, I�, R�, V �) and a set of predicates ϕ, where V (ϕ) ⊆ V �

int, the partially pred-
icate abstracted transition system T � = (S�, I�, R�, V �) is defined as follows:

– S� ⊆ B|V �
bool|+|ϕ| × Z |V �

int\V (ϕ)|

– S� =
⋃

s�∈S� α(s�).
– I� =

⋃
is�∈I� α(is�).

– R� =
⋃

r�∈R� ατ (r�).

A partially predicate abstracted transition system T � defined via α and ατ

functions is a conservative approximation of the concrete transition system.

Lemma 6. Let the abstract transition system T � = (S�, I�, R�, V �) be defined as
in Definition 8 with respect to the concrete transition system T � = (S�, I�, R�, V �)
and the set of predicates ϕ. T � approximates T �: T �
α T �.

112 T. Yavuz

Proof. It is straightforward to see, i.e., by construction, that ∃s1.(α(s1) = s2 ∧
s1 ∈ I�) implies s2 ∈ I�. To show ∃s1, s

′
1.(α(s1) = s2 ∧ α(s′

1) = s′
2 ∧ (s1, s′

1) ∈
R�) implies (s2, s′

2) ∈ R�, we need to show that ∃s1, s
′
1.(α(s1) = s2 ∧ α(s′

1) =
s′
2 ∧ s′

1 ∈ post[R�](s1)) implies s′
2 ∈ post[ατ (R�)](s2), which follows from

Lemma 5: s′
1 ∈ γ(post[ατ (R�)](s2)) and α(s′

1) ∈ α(γ(post[ατ (R�)](s2))), and
hence s′

2 ∈ post[ατ (R�)](s2).

Therefore, ACTL properties verified on T � also holds for T �:

Lemma 7. Let the abstract transition system T � = (S�, I�, R�, V �) be defined as
in Definition 8 with respect to the concrete transition system T � = (S�, I�, R�, V �)
and the set of predicates ϕ. Given an ACTL property f �, T � |= f � → T � |= γ(f �).

Proof. Follows from Lemmas 3 and 6.

Using fixpoint approximation techniques on an infinite-state partially predi-
cate abstracted transition system in symbolic model checking of CTL properties
[2] preserves the verified ACTL properties due to Lemmas 1 and 7.

Restricting the state space of an abstract transition system T � =
(S�, I�, R�) with an over-approximation of the set of reachable states T �

RS =
(μZ.post[R�](Z) ∨ I�)+, I�, R�) also preserves the verified ACTL properties:

Lemma 8. Let the abstract transition system T � = (S�,I�,R�, V �) be defined
as in Definition 8 with respect to the concrete transition system T � =
(S�, I�, R�, V �). Let T �

RS = ((μZ.I� ∨ post[R�](Z))+, I�,R�, V �). Given an ACTL
property f �, I� ⊆ �f ��−

T �
RS

→ T � |= γ(f �).

Proof. Follows from Lemma1 that approximate symbolic model checking is
sound, i.e., I� ⊆ �f ��−

T �
RS

implies T � |= f �, and from Lemma7 that ACTL prop-

erties verified on the partially predicate abstracted transition system holds for the
concrete transition system, i.e., T � |= f � implies T � |= γ(f �).

As an example, using the proposed hybrid approach one can show that the
concrete model, T �

ticket2 given in Fig. 1 satisfies the correctness property AG(z ≤
1) by first generating a partially predicate abstracted model, T �

ticket2, wrt the
predicate set {z = 1, z < 1} and performing approximate fixpoint computations
to prove AG(b1 ∨ b2). Due to Lemma 8, if T �

ticket2,RS satisfies AG(b1 ∨ b2), it can
be concluded that T �

ticket2 satisfies AG(z ≤ 1).
The main merit of the proposed approach is to combat the state explosion

problem in the verification of problem instances for which predicate abstraction
does not provide the necessary precision (even in the case of being embedded
in a CEGAR loop) to achieve a conclusive result. In such cases approximate
fixpoint computations may turn out to be more precise. The hybrid approach
may provide both the necessary precision to achieve a conclusive result and an
improved performance by predicate abstracting the variables that do not require
fixpoint approximations. In Sect. 4, we present a crafted model that embeds
bigger instances of the ticket mutual exclusion model and provide empirical
evidence on the merits of the hybrid approach.

Combining Predicate Abstraction with Fixpoint Approximations 113

4 Experiments

The hypothesis we would like to test in this paper is that the hybrid approach
would be more effective than the individual techniques alone if the analysis does
not converge without computing an approximation to the fixpoint and the number
of integer variables pushes the limits of of the underlying symbolic, e.g., polyhe-
dral, representation for the integer domain. The ticket mutual exclusion model
shown in Fig. 1 is too small to be a useful case study for the hypothesis that we
set to test. So we combined a model for Airport Ground Network Traffic Control
(AGNTC) [18] with the mutual exclusion algorithm shown in Fig. 1. AGNTC is
a resource sharing model for multiple processes, where the resources are taxiways
and runways of an airport ground network and the processes are the arriving
and departing airplanes. We changed the AGNTC model given in [18] by (1)
using the mutual exclusion algorithm for synchronization on one of the taxiways
and (2) making parked arriving airplanes fly and come back to faithfully include
the mutual exclusion model, i.e., processes go back to think state after they are
done with the critical section to attempt to enter the critical section again. The
mutual exclusive use of the taxiway and the progress of an airplane attempting
to use the taxiway could not be verified for the final model we obtained without
using approximate fixpoint computations.

Although we will be using the AGNTC model to present our results, we would
like to start by presenting verification results for the ticket mutual exclusion
algorithm using ALV [18] and NuXmv [3]. ALV is a symbolic model checker that
can represent the state space of an infinite-state system through a composition
of symbolic representations so that each state variable can be encoded with
the most suitable symbolic representation. It uses BDD representation for the
boolean domain and supports two alternative representations for the integer
domain: polyhedra based representation2 (using the Omega library [12]) and
automata based representation. ALV leverages the widening operator defined by
the underlying integer representations to compute over-approximations for the
fixpoint computations of EU , AU , EF , AF operators (-A flag) and the set of
reachable states (-F flag). The reason we chose NuXmv is that it is a symbolic
model checker that supports full CTL and implements an efficient CEGAR loop
in connection with k-induction [16]. So we tried to verify safety property of the
ticket model with both tools and the results are given in Fig. 1. The experiments
have been executed on a 64-bit Intel Xeon(R) CPU with 8 GB RAM running
Ubuntu 14.04 LTS.

We varied the size of the model by varying the number of processes that
try to have mutual exclusive access to the critical section. ALV using fixpoint
approximations only could verify all 4 cases; the biggest model taking around
20 min, which is a perfect example of state-explosion as one smaller instance was
verified in less than 4 s. NuXmv’s explicit predicate abstraction did not finish. So
we tried implicit predicate abstraction. In that mode NuXmv could successfully

2 Experimental results are based on the widening operator implemented for the poly-
hedral representation.

114 T. Yavuz

Table 1. Comparison of ALV’s fixpoint approximation based approach with NuXmv’s
CEGAR loop using predicate abstraction and k-induction.

Model ALV (Appr.) NuXmv (CEGAR, k-induction)

Memory Time Memory Time

ticket2 1.73 M 0.06 79.43 M 2.01 (bound=24, verified)

ticket3 3.71 M 0.88 - >2700 (bound >115, unable to prove)

ticket4 6.64 M 3.49 - >2700 (bound >58, unable to prove)

ticket5 280.77 M 1170.36 - >2700 (bound >24, unable to prove)

verify the smallest instance in 2 secs by inferring the necessary predicates. How-
ever, for all the remaining instances it could neither prove nor falsify the models
in 45 mins. So this experiment shows that the ticket mutual exclusion algorithm
is a benchmark for which widening based fixpoint approximation is more effective
than predicate abstraction in a CEGAR loop (Table 1).

To find out whether combining predicate abstraction with fixpoint approxi-
mations has any benefit, we extended ALV with predicate abstraction and con-
ducted some experiments. In our implementation, we did not instantiate pred-
icate abstraction in the context of a CEGAR loop. So we used predicates that
can be easily inferred from the model. Therefore, for all the configurations we
made sure that the set of predicates produce a conclusive result.

Table 2 shows sizes of the Airport Ground Network Control models for 2, 3,
4, and 5 arriving airplanes and one departing airplane. There are 2 taxiways and
2 runways. The number of integer variables, Int, and the number of boolean
variables, Bool, are due to the state variables in the model for the fixpoint
approximation only case. For the predicate abstraction, we used different sets
of predicates for safety and liveness. In the case of safety, we abstracted the 6
integer variables that modeled the taxiways and runways and used 6 predicates
whereas in the case of liveness, we abstracted two integer variables that represent
the runways and used 2 predicates. The difference in the number of predicates are
reflected in the memory consumption during transition system construction for
safety verification and liveness verification cases. We used predicates in the form
of rc < 1 and rc = 1 for verification of safety and liveness properties, respectively.
Here, rc denotes the number of airplanes on ground network resource r.

Tables 3 and 4 show various statistics for safety and liveness verification of the
Airport Ground Network Control model, respectively. Size column presents data
about the last fixpoint iterate. Time includes the transition relation construction
time and the verification time in seconds. In the case of safety property verification,
the combined approach provides significant improvements for the total time as the
model gets bigger. The memory overhead could be tolerated as long as the memory
is not exhausted. In the case of liveness property verification, the combined app-
roach shows improvement both in terms of time and memory. This is due to the
greatest fixpoint computation (EG) for the negated property and the conjunction

Combining Predicate Abstraction with Fixpoint Approximations 115

Table 2. Comparison of the transition system size in terms of memory (M) in MBs
and the sizes of the symbolic representations (I for integer constraints, |B| for BDDS
size) and the number of integer (Int) and boolean variables (Bool) for fixpoint approxi-
mation only mode versus the mixed mode of predicate abstraction and fixpoint approx-
imation.

Fix. Apr. Pred. Abs + Fix. Apr.

Safety & Liveness Safety Liveness

M,#I, |BDD| Int,Bool M,#I, |BDD| Int,Bool M,#I, |BDD| Int,Bool

2A 4.53, 354, 726 10, 10 214.66, 26, 566 4, 16 29.26, 102, 553 8, 12

3A 7.31, 547, 1590 11, 14 281.27, 43, 883 5, 20 45.79, 133, 922 9, 16

4A 10.32, 760, 2794 12, 18 348.08, 64, 1248 6, 24 64.33, 168, 1339 10, 20

5A 13.64, 993, 4338 13, 28 417.10, 89, 1661 7, 26 85.20, 207, 1804 11, 24

Table 3. Comparison of using fixpoint approximation only versus a combination of
predicate abstraction and fixpoint approximation for safety property verification of
the Airport Ground Network Control model using the approximate set of reachable
states (-F flags).

Model Fix. Apr. Pred. Abs + Fix. Apr.

Size Time Size Time

M, #Int, |BDD| M, #Int, |BDD|
2A 10.02, 558, 791 1.76 414.67, 21, 1019 16.30

3A 32.46, 2176, 4466 59.29 511.78, 73, 3872 52.67

4A 95.76, 6072, 17586 1216.47 676.19 , 185, 10175 271.48

5A 245.92, 12272, 50162 11199.00 912.34, 381, 22850 639.33

Table 4. Comparison of using fixpoint approximation only versus a combination of
predicate abstraction and fixpoint approximation for liveness property verification of
the Airport Ground Network Control case study using the approximate set of reachable
states (-F flag).

Model Fix. Apr. Pred. Abs. + Fix. Apr.

Size Time Size Time

M, #Int, |BDD| M, #Int, |BDD|
2A 47.84, 474, 680 5.71 43.76, 138, 412 3.85

3A 194.70, 1856, 3908 174.62 106.41, 538, 2101 96.81

4A 451.76, 5216, 15596 3142.21 273.78, 1625, 8006 1850.27

5A >1772.30, 12272, 50139 > 11431.70 >288.60, 3980, 40434 >7867.00

causing an exponential blow-up in the symbolic representation as the number of
fixpoint iterations increase. For both safety and liveness verification, we used
ALV’s approximate reachable state computation.

116 T. Yavuz

Table 5. Percentage of reductions achieved using ALV’s simplification heuristic. The
reductions are shown for the number of integer constraints (#Int) and the sizes of the
BDDs (|BDD|). The time taken by the simplification stage is given in secs.

of Preds. 2A 3A 4A

Reduction Time Reduction Time Reduction Time

#Int |BDD| #Int |BDD| #Int |BDD|
1 %71.62 %59.68 0.29 %77.56 %66.56 0.53 %80.66 %71.14 0.93

2 %85.47 %78.59 0.54 %88.35 %81.81 1.03 %89.87 %84.62 1.75

3 %93.27 %89.84 0.96 %94.64 %91.73 1.96 %95.35 %92.90 3.46

4 %97.34 %95.34 1.81 %97.78 %96.16 3.90 %98.01 %96.67 7.23

5 %98.82 %97.80 4.45 %98.99 %98.17 9.75 %99.11 %98.41 18.08

6 %99.56 %98.98 11.83 %99.60 %99.16 25.83 %99.62 %99.27 45.86

Unlike traditional implementation of predicate abstraction, our approach to
generation of the abstract transition system does not involve weakest precondi-
tion computation with respect to the predicates. Also, our approach does not
use an SMT solver, in the traditional sense, to compute the abstraction. This is
because we literally perform the existential quantification in Eqs. 1 and 3 using
ALV’s polyhedral symbolic representation that uses the Omega Library [12].
However, in our approach the price is paid by having a blow-up in the abstract
transition system that is exponential in the number of predicates. We deal with
this blow-up by using the simplification heuristic of ALV [17] after the existen-
tial quantification is computed as part of the abstraction process (Eq. 3). The
existential quantification yields an exponentially large (in the number of predi-
cates) transition system. Table 5 shows the reductions we obtained in the sizes of
the transition relations and the time the simplification stages took. As the table
shows the range of reductions is approximately [%60, %99.56] and the reductions
increase with the increasing number of predicates as well as the model size.

Predicate Abstraction Only With ALV, generating a finite-state abstraction of
the model using predicate abstraction only, i.e., abstracting all integer variables,
has not been effective as it ended up in an out of memory error while building
the abstract transition system. Since the predicate abstraction in ALV is not
optimized, we wanted to use another tool that has an optimized implementation
to see if using predicate abstraction alone would be more effective than the
combined approach. As we did for the ticket example, we chose to use NuXmv.
In the context of this model checking tool, explicit predicate abstraction did not
scale as building the model for 2A instance did not finish in 40 min. NuXmv’s
implicit predicate abstraction, which can verify invariant properties of infinite-
state systems using a combination of predicate abstraction inside a CEGAR loop
and Bounded Model Checking, could neither verify nor refute the same model in
40 min. So even for the smallest instance of the case study, predicate abstraction
alone has not been effective in verifying the safety property. Since NuXmv cannot

Combining Predicate Abstraction with Fixpoint Approximations 117

handle liveness properties when it uses implicit predicate abstraction, we were
not able to compare its performance for that case.

5 Related Work

In [10] a new abstract domain that combines predicate abstraction with numeri-
cal abstraction is presented. The idea is to improve precision of the analysis when
the predicates involve numeric variables that are represented by an abstract
numeric domain, e.g., a predicate on an array cell, where the domain of the
index variables are represented using polyhedral domain. In our approach the
predicates and the numeric variables do not have any interference. Although [10]
has evaluated the combined approach in the context of software model checking,
our evaluation in the context of CTL model checking shows similar improvement
in performance over complete numeric representation.

In [11] Jhala et al. point out the inadequacy of generating predicates for
integer domain based on weakest preconditions over counter-examples. They
propose a complete technique for finding effective predicates when the system
satisfies the property and involves a bounded number of iterations. The technique
limits the range of constants to be considered at each refinement stage and avoids
generation of diverging predicates in the interpolation stage by discovering new
constraints that relate program variables. Unlike the examples considered in [11],
the presented mutual exclusion algorithm does not have a bound and, therefore,
it is not obvious whether that technique would be successful on ticket-like models.

Transition predicate abstraction [15] is a technique that overcomes the inher-
ent imprecision of state-based predicate abstraction with respect to proving live-
ness properties. Although we also consider primed versions of variables in the
predicate as part of the transition, our approach cannot handle predicates that
directly relate primed and unprimed variables. In [15] such predicates can be
handled as it uses the abstract transitions to label nodes of the abstract pro-
gram. However, our approach is able to handle liveness properties that relate
abstracted and concrete variables.

6 Conclusion

We have implemented a hybrid approach that combines predicate abstraction
with fixpoint approximations so that when approximate fixpoint computation
is more effective than predicate abstraction in terms of providing the necessary
precision, the state explosion can be dealt with the help of predicate abstraction.
We have implemented the proposed approach in the context of Action Language
Verifier, an infinite-state symbolic model checker that performs approximate
CTL model checking. Experimental results show cases of improved performance
for both safety and liveness verification when the hybrid approach is used. For
future work, we would like to incorporate a CEGAR loop that would be capable
of inferring a suitable partitioning of the state space between predicate abstrac-
tion and fixpoint approximations.

118 T. Yavuz

A Appendix

Let Ā denote an ordered list of terms from set A. Let cubeĀ =
∧|A|

k=1 ak, where ak ∈ A or

¬ak ∈ A and k denotes the index of ak in Ā. Let cubeĀ
i denote the cube that evaluates

to i when regarded as a |A| bit number when the terms’ encoding are interpreted as
0 for those that are negated and as 1 for the non-negated. For instance cubeA

0 denotes
∧|A|

k=1 ¬ak, where ak ∈ A. Also, let |ϕ| = n.
Lemma 2.

Proof.

s ∧ cubeϕ
i → ∃Vϕ.s ∧ cubeϕ

i (due to Existential Introduction)

s ∧ cubeϕ
i ∧ cubeϕ

i → (∃Vϕ.s ∧ cubeϕ
i) ∧ cubeϕ

i

s ∧ cubeϕ
i → (∃Vϕ.s ∧ cubeϕ

i) ∧ cubeϕ
i

2n−1∨

i=0

s ∧ cubeϕ
i →

2n−1∨

i=0

(∃Vϕ.s ∧ cubeϕ
i) ∧ cubeϕ

i

s ∧
2n−1∨

i=0

cubeϕ
i →

2n−1∨

i=0

(∃Vϕ.s ∧ cubeϕ
i) ∧ cubeϕ

i

s ∧ true →
2n−1∨

i=0

(∃Vϕ.s ∧ cubeϕ
i) ∧ cubeϕ

i

s →
2n−1∨

i=0

(∃Vϕ.s ∧ cubeϕ
i) ∧ cubeϕ

i

s → (

2n−1∨

i=0

∃Vϕ.(s ∧ cubeϕ
i) ∧ cubeb

i))[ϕ̄/b̄]

s → (

2n−1∨

i=0

∃Vϕ.(s ∧ cubeϕ
i ∧ cubeb

i))[ϕ̄/b̄] (due to Vϕ ∩ Vb = ∅)

s → (∃Vϕ.(

2n−1∨

i=0

s ∧ cubeϕ
i ∧ cubeb

i))[ϕ̄/b̄]

s → (∃Vϕ.(s ∧
2n−1∨

i=0

cubeϕ
i ∧ cubeb

i))[ϕ̄/b̄]

s → γ(∃Vϕ.(s ∧
2n−1∨

i=0

cubeϕ
i ∧ cubeb

i))

s → γ(∃Vϕ.(s ∧
|ϕ|∧

j=1

ϕj ⇐⇒ bj))

s → γ(α(s))

(8)
Lemma 4.

Proof. Showing r� → γτ (ατ (r�)): Also, let ϕ′′ and b′′ denote the ordered list of
terms from the set ϕ ∪ ϕ′ and the ordered list of terms from the set b ∪ b′, respectively.
Let n = |ϕ| = |ϕ′| and CS′ =

∧
ϕi∈ϕ((

∧
v∈V (ϕi)

v′ = v) =⇒ ϕ′
i ⇐⇒ ϕi).

Combining Predicate Abstraction with Fixpoint Approximations 119

r
� ∧ CS

′ ∧ cube
ϕ′′
i → ∃Vϕ∪ϕ′ .r� ∧ CS

′ ∧ cube
ϕ′′
i

r
� ∧ CS

′ ∧ cube
ϕ′′
i ∧ cube

ϕ′′
i → (∃Vϕ∪ϕ′ .r� ∧ CS

′ ∧ cube
ϕ′′
i) ∧ cube

ϕ′′
i

r
� ∧ CS

′ ∧ cube
ϕ′′
i → (∃Vϕ∪ϕ′ .r� ∧ CS

′ ∧ cube
ϕ′′
i) ∧ cube

ϕ′′
i

22n−1∨

i=0

r
� ∧ CS

′ ∧ cube
ϕ′′
i →

22n−1∨

i=0

(∃Vϕ∪ϕ′ .r� ∧ CS
′ ∧ cube

ϕ′′
i) ∧ cube

ϕ′′
i

r
� ∧ CS

′ ∧
22n−1∨

i=0

cube
ϕ′′
i →

22n−1∨

i=0

(∃Vϕ∪ϕ′ .r� ∧ CS
′ ∧ cube

ϕ′′
i) ∧ cube

ϕ′′
i

r
� ∧ true →

22n−1∨

i=0

(∃Vϕ∪ϕ′ .r� ∧ CS
′ ∧ cube

ϕ′′
i) ∧ cube

ϕ′′
i

r
� →

22n−1∨

i=0

(∃Vϕ∪ϕ′ .r� ∧ CS
′ ∧ cube

ϕ′′
i) ∧ cube

ϕ′′
i

r
� → (

22n−1∨

i=0

∃Vϕ∪ϕ′ .(r� ∧ CS ∧ cube
ϕ′′
i) ∧ cube

b′′
i))[ϕ′′/b′′]

r
� → (

22n−1∨

i=0

∃Vϕ∪ϕ′ .(r� ∧ CS ∧ cube
ϕ′′
i ∧ cube

b′′
i))[ϕ̄′′/b′′]

(due to Vϕ∪ϕ′ ∩ Vb = ∅)

r
� → (∃Vϕ∪ϕ′ .(

22n−1∨

i=0

r
� ∧ CS ∧ cube

ϕ′′
i ∧ cube

b′′
i))[ϕ′′/b′′]

r
� → (∃Vϕ∪ϕ′ .(r� ∧ CS ∧

22n−1∨

i=0

cube
ϕ′′
i ∧ cube

b′′
i))[ϕ′′/b′′]

r
� → γ

τ
(∃Vϕ∪ϕ′ .(r� ∧ CS ∧

22n−1∨

i=0

cube
ϕ′′
i ∧ cube

b′′
i))

r
� → γ

τ
(∃Vϕ∪ϕ′ .(r� ∧ CS ∧

|ϕ|∧

j=1

ϕj ⇐⇒ bj ∧
|ϕ′|∧

j=1

ϕ
′
j ⇐⇒ b

′
j))

r
� → γ

τ
(α

τ
(r

�
))

Showing r� = α(γ(r�)):

≡ α(γ(r�))

≡ ∃V (ϕ).∃V (ϕ′).(r�[ϕ̄, ϕ̄′/b̄, b̄′] ∧ CS ∧
|ϕ|∧

i=1

ϕi ⇐⇒ bi ∧
|ϕ|∧

i=1

ϕ′
i ⇐⇒ b′

i)

≡ ∃V (ϕ).∃V (ϕ′).(r�[ϕ̄, ϕ̄′/b̄, b̄′] ∧
|ϕ|∧

i=1

ϕi ⇐⇒ bi ∧
|ϕ|∧

i=1

ϕ′
i ⇐⇒ b′

i)

≡ r�

(9)

120 T. Yavuz

References

1. Andrews, G.R.: Concurrent Programming: Principles and Practice. Benjamin-
Cummings Publishing Co., Inc., Redwood City (1991)

2. Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems
using Presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 400–411. Springer, Heidelberg (1997)

3. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014)

4. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

5. Clarke, E., Grumberg, O., Talupur, M., Wang, D.: Making predicate abstraction
effcient: how to eliminate redundant predicates. In: Hunt Jr., W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 126–140. Springer, Heidelberg (2003)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysisof programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACTSymposium on Principles
of Programming Languages, Los Angeles, California, pp. 238–252. ACM Press,
New York (1977)

7. Cousot, P., Cousot, R.: On abstraction in software verification. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 37–56. Springer, Heidelberg
(2002)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the Fifth Annual ACM Symposium on Prin-
ciples of Programming Languages, Tucson, Arizona, USA, pp. 84–96, January 1978

9. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

10. Gurfinkel, A., Chaki, S.: Combining predicate and numeric abstraction for software
model checking. STTT 12(6), 409–427 (2010)

11. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 459–473. Springer, Heidelberg (2006)

12. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
omega library interface guide. Technical report, University of Maryland at College
Park, College Park, MD, USA (1995)

13. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Form. Methods Syst. Des.
6(1), 11–44 (1995)

14. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York Inc., Secaucus (1999)

15. A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termi-
nation. ACM Trans. Program. Lang. Syst. 29(3), May 2007

16. Tonetta, S.: Abstract model checking without computing the abstraction. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer,
Heidelberg (2009)

17. Yavuz-Kahveci, T., Bultan, T.: Heuristics for efficient manipulation of compos-
ite constraints. In: Armando, A. (ed.) FroCos 2002. LNCS (LNAI), vol. 2309,
pp. 57–71. Springer, Heidelberg (2002)

18. Yavuz-Kahveci, T., Bultan, T.: Action language verifier: an infinite-state model
checker for reactive software specifications. Formal Methods Syst. Des. 35(3),
325–367 (2009)

Finding Boundary Elements in Ordered
Sets with Application to Safety
and Requirements Analysis

Jaroslav Bend́ık(B), Nikola Beneš, Jǐŕı Barnat, and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,xbenes3,barnat,cerna}@fi.muni.cz

Abstract. The motivation for this study comes from various sources
such as parametric formal verification, requirements engineering, and
safety analysis. In these areas, there are often situations in which we
are given a set of configurations and a property of interest with the
goal of computing all the configurations for which the property is valid.
Checking the validity of each single configuration may be a costly process.
We are thus interested in reducing the number of such validity queries.
In this work, we assume that the configuration space is equipped with
a partial ordering that is preserved by the property to be checked. In such
a case, the set of all valid configurations can be effectively represented
by the set of all maximum valid (or minimum invalid) configurations
w.r.t. the ordering. We show an algorithm to compute such boundary
elements. We explain how this general setting applies to consistency and
redundancy checking of requirements and to finding minimum cut-sets
for safety analysis. We further discuss various heuristics and evaluate
their efficiency, measured primarily by the number of validity queries, on
a preliminary set of experiments.

Keywords: Requirements analysis · Formal verification · Safety
analysis

1 Introduction

The motivation of this work comes from various source areas, such as parametric
formal verification, requirements engineering, safety analysis, or software prod-
uct lines. In these areas, the following situation often arises: We are given, as
an input, a set of configurations and a property of interest. The goal is to com-
pute the set of all the configurations that satisfy the given property. We call
such configurations valid. As a short example, one may imagine a system with
tunable parameters that is to be verified for correctness. The set of configura-
tions, in that case, is a set of all possible parameter values and the goal is to find
all such values that ensure the correctness of the given system. If we are given
a method to ascertain the validity of a single configuration, we could try running
the method repeatedly for each configuration to obtain the desired result. In the
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 121–136, 2016.
DOI: 10.1007/978-3-319-41591-8 9

122 J. Bend́ık et al.

case of an infinite set of configurations, this approach does not terminate, and we
get at most a partial answer. However, even if the configuration space is finite,
checking configurations one by one may be too costly. We are thus interested in
reducing the number of validity checks in the finite case.

Although such reduction might be impossible in general, we focus on prob-
lems whose configuration space is equipped with a certain structure that is pre-
served by the property of interest. This may then be exploited in order to check
a smaller number of configurations and still obtain the full answer. The desired
structure is a set of dependencies of the form: “If configuration A violates the
property then configuration B does too.” Mathematically, we can either view
such structure as a directed acyclic graph of those dependencies, or as a par-
tial ordering on the set of all configurations induced by this graph. Viewed as
an ordered set, the set of all the valid configurations can be effectively represented
by the set of all the maximal valid (alternatively, minimal invalid) configurations.

We are interested in finding this boundary between valid and invalid con-
figurations while minimising the number of validity queries, i.e. the potentially
costly checks whether a given configuration satisfies the property.

We are not aware of any previous work which deals with exactly the same
problem as we do. The most related problems can be found among the Con-
straint Satisfaction Problems (CSPs) where a satisfiability of a set of constraints
is examined. When a set of constraints C is infeasible the most common analy-
sis is the maximum satisfiability problem (MaxSAT, MaxCSP), which asks for
a satisfiable subset of C with the greatest possible cardinality. Our problem
is different from MaxSAT and more related to the maximum satisfiable subset
problem (MSS) that considers maximality in the ordering sense instead of max-
imum cardinality. The goal of MSS is to find a subset of C that is satisfiable,
and that becomes unsatisfiable if any other constraint is added to this subset.
Similarly, one can define the minimum unsatisfiable subset problem (MUS).

Both MSSes and MUSes describe the boundary between the satisfiable and
unsatisfiable subsets of C and both these problems were recently addressed in
works [1,3,6,15,16]. To solve the problem, the papers use different approaches
like the duality that exists between MUSes and MSSes [1,16] or parallel enumer-
ation from bottom and top [3]. In [15] authors unify and expand upon the earlier
work, presenting a detailed explanation of the algorithm’s operation in a frame-
work that also enables clear comparisons. Paper [6] describes an MUS extractor
tool MUSer2 which implements a number of MUS extraction algorithms.

Subsets of a set of requirements are naturally ordered by the subset relation,
thus our approach can be also used to solve these problems. We deal with a more
general problem as we consider arbitrary graphs instead of the hypercube graphs
representing subsets of requirements. Our approach has thus a wider area of
potential usage. Furthermore, as is explained in Sect. 4, in the case of hypercubes
our approach can be competitive with the state-of-the-art tool Marco [15].

Safety Analysis. The safety analysis techniques are widely used during the
design phase of safety-critical systems. Their aim is to assure that the sys-
tems provide prescribed levels of safety via exploring the dependencies between

Finding Boundary Elements in Ordered Sets 123

a system-level failure and the failures of individual components. Traditionally,
the various safety analyses are done manually and are based on an informal
model of the systems. This leads to the process being very time-consuming and
the results being highly subjective. The desire to alleviate such issues somewhat
and to make the process more automated led to the development of Model-Based
Safety Analysis (MBSA) approach [13]. This approach assumes the existence of
a system model that is extended by an error model describing the way faults
may happen and propagate throughout the system. One of the problems solved
in MBSA is the computation of the so-called minimal cut-sets for a given fail-
ure, i.e. the minimal sets of low-level faults that cause the high-level failure to
manifest in the system.

One can map the minimal cut-sets problem to our setting easily. The con-
figurations are the possible sets of faults that may be enabled in the extended
system model, their ordering is given by set inclusion. Note that there might be
dependencies between some of the faults, which means that not all sets of faults
are considered to be possible. The property of interest is the non-existence of
failure and the valid configurations are exactly those sets of faults that do not
cause the failure to happen. Clearly, in this case, the minimal cut-sets correspond
exactly to the minimal invalid configurations. This means that the problem can
be solved using our approach.

To illustrate the application on a simple example, we consider an avionics
triplex sensor voter, described in [9]. The voter gains measurement data from
three sensors as well as information whether the sensors are operational. It com-
putes the differences between the sensor data and detects persistent miscompare,
i.e. situations where two sensors differ above a certain threshold for a certain
amount of time. If all three sensors are operational and two pairs of sensors have
persistent miscompare, the common sensor is marked as invalid and data is no
longer received from that sensor. If just two sensors are operational, a persistent
miscompare between the two means that the output data is considered invalid.

For simplicity, let us assume that there are two kinds of faults per sensor
and let us call these fault A and fault B. Fault A causes the sensor to transmit
wrong data while fault B causes the sensor to stop working completely. Note
that we may assume that both faults cannot occur on the same sensor, as once
fault B happens, the occurrence of fault A is irrelevant. In general, we thus have
six possible faults and 27 sets of faults to be checked, including the empty set of
faults. However, as the situation of sensors is symmetrical, we may get rid of this
symmetry and simply count the number of fault-A sensors and fault-B sensors
instead. This situation is illustrated in Fig. 1. The nodes in the graph represent
the various fault configurations: ∅ represents that no faults occur, AB represents
that fault A occurred on one sensor and fault B occurred on another sensor, etc.
The graph is created from the inclusion ordering on the fault situations.

Let us now consider the failure to deliver data to the output. As explained
above, the voter fails to deliver output if either all sensors stopped working or
have been eliminated, or if there are just two sensors working with persistent
miscompare. We assume that the persistent miscompare situation is detected

124 J. Bend́ık et al.

Fig. 1. Illustration of the safety analysis example

once at least one of a pair of sensors starts transmitting wrong data, i.e. fault
A occurred on that sensor. For this reason, the minimum invalid configurations
(i.e. the minimal cut-set) are AA, AB, and BBB, while the maximum valid
configurations are A and BB.

Requirements Analysis. Establishing the requirements is an important stage
in all development. Although traditionally, software requirements were given
informally, recently there has been a growing interest in formalising these require-
ments [12]. Formal description in a kind of mathematical logic enables various
model-based techniques, such as formal verification. Moreover, we also get the
opportunity to check the requirements earlier, even before any system model is
built. This so-called requirements sanity checking [3] aims to assure that a given
set of requirements is consistent and that there are no redundancies. If incon-
sistencies or redundancies are found, it is usually desirable to present them to
the user in a minimal fashion, exposing the core problems in the requirements.
As redundancy checking can be usually reduced to inconsistency checking [2],
the goal is thus to find all minimal inconsistent subsets of requirements. Such
a problem may be clearly seen as an instance of our setting, where the configu-
rations are sets of requirements and the ordering is given by the subset relation.

We illustrate the inconsistency checking on an example. Assume that we are
given a set of four requirements. These requirements consider one particular com-
ponent in a system and constrain the way the component is used. We formalise
the requirements using the branching temporal logic CTL [8]. In the formulae
we use the atomic propositions q denoting that a query has arrived, r denoting
that the component is running, and m denoting that the system is taken down
for maintenance. Our first requirement states that whenever a query arrives, the
component has to become active eventually, formally ϕ1 := AG(q → AF r).
The second requirement states that once the component is started, it may never
be stopped. This may be a reasonable requirement e.g. if the component’s ini-
tialisation is expensive, formally ϕ2 := AG(r → AG r). The third requirement
states that the system has to be taken down for maintenance once in a while.
This also means that the component has to become inactive at that time. This
is formalised as ϕ3 := AGAF (m ∧ ¬r). Our last requirement states that after
the maintenance, the system (including the component we are interested in) has
to be restarted, formally ϕ4 := AG(m → AF (¬m ∧ r)). The situation is illus-
trated in Fig. 2. We discover that there is one minimum inconsistent subset of
the four requirements, namely {ϕ2, ϕ3, ϕ4}, and that there are three maximum

Finding Boundary Elements in Ordered Sets 125

Fig. 2. Illustration of the requirements analysis example. The subset with dashed out-
line is the maximum inconsistent one, the subsets with solid outline are the maximum
consistent ones.

consistent subsets of the requirements, namely {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ4},
{ϕ1, ϕ3, ϕ4}. The consistency of the first set {ϕ1, ϕ2, ϕ3} might be surprising,
as one would suspect the pair of requirements ϕ2 and ϕ3 to be the source of
inconsistency. However, the first three requirements can hold at the same time –
in systems where no queries arrive at all. In these situations we say that the
requirements hold vacuously. There are ways of dealing with vacuity, such as
employing the so-called vacuity witnesses [5].

Note that although in this example, the space of all sets of requirements had
the particular shape of a hypercube, this might not always be the case. We might
sometimes be interested in certain subsets of requirements instead of all of them.
Such a situation may arise e.g. if there are some known implications between
the requirements. Consider the example above with the added requirement that
once the component is started, it may only stop after 1 h. This requirement
is clearly implied by ϕ2 and we would therefore omit all subsets that contain
both ϕ2 and this new requirement. Another way of obtaining a non-hypercube
requirements graph is when considering requirements for several components at
once in a component-based or software product line setting. In such cases, some
of the components or product features may be incompatible and it thus only
makes sense to consider subsets of requirements that reason about compatible
components.

Outline of the Paper. The rest of this paper is organised as follows. In Sect. 2
we present the basic definitions and preliminaries and state our problem formally.
In Sect. 3 we present our new algorithm to solve the problem and discuss several
variants and heuristics of it, as well as we analyse its complexity. The algorithm
is then evaluated on a set of experiments in Sect. 4 and the paper is concluded
in Sect. 5.

2 Preliminaries and Problem Statement

In this section, we recall some basic notions that we use later in the paper.
We also introduce the formalism of annotated directed acyclic graphs that forms
the basic setting for our problem.

126 J. Bend́ık et al.

Fig. 3. An example of an ADAG, the dashed vertices are the invalid ones, the grey
vertices are the maximum valid ones.

Definition 1 (Directed Acyclic Graph). A directed graph G is a pair (V,E),
where V is a finite set of vertices and E ⊆ V × V is a set of edges. An edge
(u, v) is an outgoing edge of the vertex u and an incoming edge of the vertex
v. The indegree (outdegree) of a vertex v is the number of incoming (outgoing)
edges of v. A path from a vertex u to a vertex v in G is a sequence 〈v0, v1, · · · vk〉
of vertices such that v0 = u, vk = v, k > 0 and (vi, vi+1) ∈ E for i = 0, 1, · · · , k−
1. We say that v is reachable from u if there is a path in G from u to v.

A directed graph G = (V,E) is called a directed acyclic graph (DAG) if there
is no path 〈v0, v1, · · · vk〉 in the graph such that v0 = vk. A DAG induces a strict
partial order relation �G on its vertices as follows: u �G v if v is reachable
from u. A vertex v is said to be a minimum vertex in G if there is no u such
that u �G v. Dually, a vertex u is a maximum vertex in G if there is no v such
that u �G v.

Definition 2 (Chain Cover). A chain in a DAG G with its induced relation
�G is a sequence of one or more vertices 〈v0, v1, . . . , vk〉 such that v0 �G v1 �G

· · · �G vk. A chain cover of a DAG is a set of chains C = {c1, · · · , cl} such that
each vertex is included in exactly one chain from C. A minimum chain cover
is a chain cover containing the fewest possible number of chains. Note that the
minimum chain cover is not given uniquely.

Definition 3 (Annotated DAG). An annotated directed acyclic graph (ADAG)
is a pair (G, valid), where G = (V,E) is a directed acyclic graph and valid :
V → Bool is a validation function. The validation function is monotone on V ,
which means that for every pair u, v ∈ V if u �G v and valid(u) = false then
valid(v) = false.

The problem we are interested in can be stated as finding either a set of maxi-
mum valid vertices or a set of minimum invalid vertices. We present an algorithm
to obtain the former. However, the algorithm can be also used to obtain the lat-
ter, as the two formulations are dual.

Definition 4 (Maximum Valid Vertex and Cut). Let G = ((V,E), valid) be an
ADAG. A vertex u ∈ V is a maximum valid vertex of G iff valid(u) = true and
∀v ∈ V such that u �G v is valid(v) = false.

The maximum valid cut of G is a set of all its maximum valid vertices.

Finding Boundary Elements in Ordered Sets 127

Problem Formulation. Given an ADAG G = ((V,E), valid), find the maxi-
mum valid cut of G.

As mentioned in the introduction, evaluating the function valid on a single
configuration (a single vertex of the ADAG) might be an expensive operation.
Therefore, our aim is to propose an algorithm minimising the number of evalu-
ations of the valid function even for the price of the increased complexity of the
algorithm with respect to the number of operations over the graph.

The problem formulation assumes that the graph is acyclic and that the
validation function is monotone. We might, however, be also interested in cases
where one of these preconditions is violated. We postpone the discussion of these
possibilities to Sect. 3.5.

3 Algorithm

A naive solution of the maximum valid cut problem for a given ADAG G would
be to evaluate the valid function on each vertex, compute the �G relation for
valid vertices, and choose the maximum ones. In this naive approach, the valid
function is called once per each vertex.

3.1 Chain-Based Algorithm

Instead of dealing with each vertex of G separately we build our solution on
a decomposition of G into a set of chains and we use the fact that the validation
function is monotone. The algorithm takes as an input an ADAG G and one of
its chain covers C. Then it iteratively handles chains and removes those vertices
which cannot be the maximum valid ones.

From the definition, each vertex of the maximum valid cut of G belongs to
exactly one chain from C. Moreover, every chain contains at most one maximum
valid vertex of the graph and this vertex is at the same time the maximum
valid vertex of the chain. Let us note that the opposite implication does not
hold generally, the maximum valid vertex of a chain may not be a maximum
valid vertex of the whole graph. Therefore, the set of maximum valid vertices of
individual chains contains the maximum valid cut as its subset.

Let c = 〈v0, v1, · · · , vl〉 be an arbitrary chain of C. To find the maximum
valid vertex vh of this chain we use binary search. We take the middle vertex
cmid of c, cmid = v� l

2 � and evaluate the valid function on cmid. If cmid is valid,
then we know for sure that none of the lower vertices from c can be the maximum
valid vertex of this chain. In the other case, we claim that none of the higher
vertices from c can be maximum valid vertex. This allows us to reduce c into
half and recursively repeat the procedure. We finish with a chain consisting of
only one vertex vi. If vi is a valid vertex then it is the maximum valid vertex
of c, otherwise c does not have any valid vertex at all.

Once we have applied the binary search on each chain from C, we have the
set H of maximum vertices of these chains. To obtain the maximum valid cut
of G from H we just compute the �G relation for each pair from H and remove
from H all those vertices that are not maximum w.r.t. �G.

128 J. Bend́ık et al.

For an illustration of the chain based algorithm, assume that we are given
the graph from Fig. 3 and as a chain cover we take these chains: 〈b, c, d, e, f, g〉,
〈a, h, j, k,m〉, 〈i, o, l, p〉. The vertices e, j, o are found to be the maximum valid
vertices of these chains and the �G relation is computed for these three vertices.
Vertex j is found to be lower than e and vertices o, e are mutually unreachable,
hence {e, o} is the resulting maximum valid cut.

The number of calls to valid in this algorithm depends on the number of
chains in C and the number of calls used in the binary searches. The number of
calls is logarithmic in the length of the chain in every binary search. Therefore,
the total number of calls is O(|C| log L) where |C| is the number of chains in C
and L is the length of the longest chain in C.

Note that there are algorithms such as [7,11] that compute the minimum
chain cover of a given graph. We may thus make use of these algorithms to
reduce the number of chains that need to be processed by this algorithm.

3.2 Cutoff-Based Algorithm

We now improve the efficiency of our algorithm by decreasing the chain lengths
and possibly eliminating some of the chains completely. The main idea makes use
of the fact that a vertex vi is recognised as the maximum valid vertex of a chain
c = 〈v0, v1, · · · , vi, · · · , vl〉 (if c has any). From this we can deduce that not
only vertices from c lower than vi cannot belong to the maximum valid cut, but
neither do any vertices from G lower than vi. Symmetrically, none of the vertices
from G higher than vi+1 can belong to the maximum valid cut. Therefore, we
can remove all vertices lower than vi and higher than vi+1, including vi+1, from
all chains and thus reduce their size and possibly the number of valid calls in
the future.

Definition 5 (Cutoff Transformation). Let G be an ADAG and C its chain
cover. Let c = 〈v0, v1, · · · , vi, · · · , vl〉 be a chain from C and let vi be its maximum
valid vertex. Then the cutoff of G is a pair G and C generated from G and C,
respectively, by removing:

– vertices which are lower than vi,
– vertices which are higher than vi+1, and
– the vertex vi+1.

In case that c does not have a maximum valid vertex we define the cutoff of G
to be a tuple G and C created from G and C, respectively, by removing:

– vertices which are higher than v0, and
– the vertex v0.

As this vertex removal may make some chains empty, we also remove the empty
chains from C.

Theorem 1 (Cutoff Property). Let G be an ADAG, C its chain cover, and
G,C be their cutoff. Then graphs G and G have the same maximum valid cuts,
C is a chain cover of G, and |C| ≥ |C|.

Finding Boundary Elements in Ordered Sets 129

MaxValid(c = 〈v0, v1, . . . , vl〉, IsV alid())

1 if c is empty
2 then return nil
3 middle ← � l

2
�

4 if IsValid(vmiddle)
5 then x ← MaxValid(〈vmiddle+1, . . . , vl〉, IsV alid())
6 if x = nil
7 then return middle
8 else return x
9 else

10 return MaxValid(〈v0, . . . , vmiddle−1〉, IsV alid())

Cutoff(G = (V,E), c = 〈v0, v1, ..., vl〉, i)
1 if i �= nil
2 then set v.cand = false for each v ∈ V lower than vi
3 set v.cand = false for each v ∈ V higher than vi+1

4 set vi+1.cand = false
5 else set v.cand = false for each v ∈ V higher than v0
6 set v0.cand = false

MaxValidCut(G = (V,E), IsV alid())

1 set v.cand = true for each v ∈ V
2 compute the relation �G

3 ChainCover ← MinimumChainCover(G)
4 for each chain ∈ ChainCover
5 do ProcessChain(G, IsV alid(), chain)
6 return V

ProcessChain(G, IsV alid(), c)

1 remove from c all vertices v with v.cand = false
2 index ← MaxValid(c, IsV alid())
3 Cutoff(G, c, index)

Algorithm 1. Maximum Valid Cut Algorithm

Theorem 2 (Maximal Cut Property). Let G be an ADAG and C its chain cover.
Let us apply step by step the cutoff transformation on all chains from C and let
G and C be the resulting graph and its chain cover respectively. Then every chain
in C is just a single vertex and C is exactly the maximum valid cut of G.

The algorithm based on the cutoff transformation is shown as Algorithm1.
The algorithm assumes that the reachability relation �G is pre-computed.
The relation is used both for computing the minimum chain cover and when
detecting lower and higher vertices, however, bread-first-search can be also used
for this detection. Instead of removing vertices from the graph we just mark
them with a binary flag cand (for candidate) initially set to true. Once we have
discovered that a vertex cannot be a maximum valid one, the flag is set to false.

Contrary to the previous algorithm based on chains, once the algorithm based
on cutoffs processes the last chain from the chain cover of the original graph G,

130 J. Bend́ık et al.

Fig. 4. Illustration of the cutoff based algorithm. The graph is covered with three
chains 〈b, c, d, e, f, g〉, 〈a, h, j, k,m〉, 〈i, o, l, p〉 and they are processed in this order. At
first, the vertex e is found to be the maximum valid vertex of the first chain and the
consequently made cutoff reduces the set of chains to 〈e〉, 〈k〉, 〈o, l, p〉. In the next
step, the chain 〈k〉 is processed and no valid vertex on this chain is found, but the
cutoff is made and the set of chains is reduced to 〈e〉, 〈o〉. In the last step, the chain
〈o〉 is processed and o is found to be valid. The result of the third cutoff is the maximal
valid cut {e, o}. The grey nodes are nodes which have already been determined to be
valid ones.

the set C contains exactly the maximum valid cut of G and no other computation
is needed.

Figure 4 illustrates the cutoff based algorithm on the graph from Fig. 3.
The cutoffs significantly reduce the space of vertices that can be maximum valid
ones. After processing of the first two chains only two vertices are left as the
possible maximum valid ones.

3.3 Complexity

The time complexity analysis of the cutoff algorithm is given w.r.t. the size of
the graph G = (V,E) and we separately evaluate the number of valid calls and
the number of all other operations.

The number of calls to the valid function depends on the number of chains
in C and the number of calls used in the binary searches. The total number
of calls is in the worst case the same as with the algorithm based on chains,
i.e. O(|C| log L) where |C| is the number of chains in C and L is the length of
the longest chain in C. Note that the size of the minimum chain cover can be
bounded due to Dilworth’s theorem.

Finding Boundary Elements in Ordered Sets 131

Theorem 3 (Dilworth’s Theorem [10]). The size of the minimum chain cover of
graph G equals to the size of a maximum number of pairwise unrelated elements,
where u is unrelated to v if neither u �G v not v �G u.

To evaluate the overall complexity of the algorithm we denote by Tvalid the
time needed for one evaluation of valid .

The reachability relation �G is in fact equal to the transitive closure of the
graph and can be computed in O(|V | · |E|) with the help of, e.g., depth-first
search starting from each node of the graph.

The procedure ProcessChain first removes from the chain all vertices that
have been recognised as not maximum valid in some of the previous cutoff trans-
formations. When starting the MaxValidCut algorithm, each vertex is included
in exactly one chain of the chain cover. Each vertex is removed at most once,
hence the overall number of removals is bounded by the size of V and the com-
plexity of the removals only is O(|V |).

The procedure MaxValid is an analogy of the binary search. It calls the
validation function on the middle vertex of the given chain c, splits the chain
into two halves, and recursively continues on one of these halves. The complexity
of MaxValid is O(Tvalid · log |c|) where |c| is the length of c. The procedure is
called once for each chain of the chain cover C of G resulting in the overall
complexity of O(Tvalid · |C| · log L) where L is the length of the longest chain
from C.

The procedure Cutoff marks those vertices which cannot be maximum
valid ones. Either bread-first-search or the �G relation can be used to detect the
vertices, which should be marked, and each vertex is marked as false at most
once. Therefore all the markings (including the initialisation) take time O(|V |).

The most time consuming part of the algorithm (excluding the valid calls)
is the computation of the minimum chain cover taking time O(|C| · |V |2). For
details and complexity analysis please refer to [7,11]. The total time complexity
of the cutoff algorithm is thus O(|V |3 + Tvalid · |C| · log L).

3.4 Heuristics

The cutoff algorithm works with the minimum chain cover, however, the algo-
rithm does not prescribe the order in which individual chains are processed.
Each cutoff transformation affects the chains that have not been processed yet.
Therefore the order in which the chains are processed affects the total number
of calls to the validation function.

Cutting Power Based Heuristics. The order which minimises the number of
calls to the validation function cannot be determined without the information
which vertices are valid and which are not. Instead, for each chain c we can
identify the minimum and the maximum number of vertices that can be cut
off as a result of its processing. Let us define for each vertex vi from the chain
〈v0, v1, . . . , vl〉 its cutting power as the number of vertices of G lower than vi plus
the number of vertices higher than vi+1 plus 1 (for vertex vi+1). Then the max-
imum cutting power of chain c is the maximum of cutting powers of its vertices.

132 J. Bend́ık et al.

Average and median cutting power of a chain can be defined in a similar way.
Cutting powers of vertices can be used to propose several heuristics decreasing
the number of calls to the validation function.

The first heuristic sorts the chains in descending order according to their
maximum cutting powers. This heuristic can lead to a large reduction of the
graph while processing the first few chains. However, this happens only if the
vertices with maximum cutting power are the maximum valid vertices of these
chains.

As the second heuristic we propose to compute for each chain c its average
cutting power which equals to the arithmetic mean of the cutting powers of its
vertices. The heuristic sorts the chains in descending order according to their
average cutting power. A similar heuristic is to order the chains according to the
median of the cutting powers of its vertices. These two heuristics can speed up
the average performance of the algorithm.

Note that to compute the cutting power of a vertex we need to know the
reachability relation of the graph. The reachability relation is pre-computed
when the minimum chain cover is constructed. The only additional computation
required by the heuristics is thus the sorting which takes O(|C| · log |C|) time
and does not increase the asymptotic complexity of the cutoff algorithm.

All heuristics can be improved if we recompute the cutting powers of ver-
tices and sort the chains after each cutoff transformation. However, this requires
recomputation of the reachability relation which is rather expensive and increases
the complexity of the algorithm. As explained in the introduction, our goal is to
minimise the number of calls to the validation function as it is assumed to be
a very expensive operation. When choosing the appropriate heuristic we have to
trade off between the number of validation function calls and the complexity of
the heuristic.

Cutting Power Approximation. Yet another possibility is to approximate the
cutting power of vertices by some easily computable characteristic. For instance,
we can take the outdegree of a vertex as a high outdegree can indicate high cut-
ting power. The same holds for the indegree of a vertex. Again, we can sort chains
according to out/indegrees, average degree or median. On the one hand, this app-
roach could be less effective than the approaches based on cutting powers. On
the other hand, it is relatively cheap and affords to recompute the ordering after
each cutoff transformation.

Online Computed Chains. As the precomputation of the minimum chain
cover is rather expensive, our last heuristic drops this precomputation. The
chains are instead computed on the fly. To construct a chain we take an arbi-
trary unprocessed vertex (i.e. a vertex whose validity is not known yet) and by
following its unprocessed predecessors and successors we extend it to a chain.
This chain is then processed as described in the cutoff algorithm and we repeat
this process as long as there are some unprocessed vertices. We call this heuris-
tic the online heuristic. Obviously, the disadvantage of this approach is that
the number of the on-the-fly constructed chains can be much higher than the
size of the minimal chain cover. However, if we precompute the minimal chain

Finding Boundary Elements in Ordered Sets 133

Fig. 5. Efficiency of our algorithm with online computed chain cover (online), minimum
chain cover (randO), and heuristics determining the order in which individual chains
are processed. The graph is in log scale.

cover, its minimality is guaranteed only before the first cutoff transformation
is made as this transformation can shorten some chains of the cover and there
can emerge some chains that can be joined together. The online heuristic always
processes a chain that cannot be extended any more. It can thus possibly process
even less chains than the original algorithm with the minimum chain cover pre-
computed. Moreover, the computation of the minimal chain cover is the most
expensive operation of our algorithm besides the validation calls. The online
heuristic does not need this precomputation and hence the �G relation does
not need to be computed. The time complexity of the algorithm is reduced to
O(|V |+ |E|+Tvalid · |C| · log L). We compare the online heuristic with the others
in the next section.

3.5 Relaxing the Preconditions

The two main preconditions of our approach are that the graph is assumed to
be acyclic and that the validation function is monotone on this graph. A natural
question might arise whether we could relax one of these preconditions. Consider
first an arbitrary annotated graph, i.e. a directed graph with a monotone valida-
tion function. The monotonicity implies that all vertices lying on one cycle are
either all valid or all invalid. This means that we can preprocess the graph using
any standard algorithm for decomposition into strongly connected components
and work on the resulting (acyclic!) graph of strongly connected components.

Consider now a second possibility, where we retain the acyclic property of the
graph yet relax the monotonicity precondition. If we run our algorithm on such
a graph, we might not get the maximal valid cut of the graph. Nevertheless, the

134 J. Bend́ık et al.

Fig. 6. A log scale graph that compares our algorithm with the Marco algorithm. The
graph shows the percentage of subsets that were validated by the algorithms. Our
algorithm is denoted by MVC (Maximum Valid Cut).

algorithm terminates and we obtain a set of vertices with the property that they
are valid and their immediate successors in the graph are all invalid. We thus
obtain at least partial evidence of the boundary between valid and invalid ver-
tices. This can help us identify the source of errors in application areas such as
software-product lines or in version control branches, which may not necessarily
be monotone.

4 Experimental Evaluation

We implemented the cutoff algorithm and experimentally evaluated its behaviour
on different types of graphs. While evaluating the algorithm we focused on the
number of calls of the validation function as our aim is to minimise this number.

The first set of experiments was run on three different sets of randomly gener-
ated ADAGs of size up to 5000 vertices. The efficiency of the algorithm strongly
depends on many factors like the relative number of pairwise unreachable ver-
tices, the number and lengths of chains, density of the graph, etc. We tested
the variant of our algorithm with online computed chain cover (online) and with
precomputed minimum chain cover (randO). The results are shown in boxplot
in Fig. 5, the boxplot shows the percentage of vertices which were validated.
The online variant has higher third quartile but lower median.

Moreover, we tried the five heuristics described earlier. The heuristics sort
chains from the minimum chain cover according to average cutting powers of
individual chains (aveCP), medians of cutting powers of chains (medCP), average
degrees of vertices of chains (aveD), and sum of the degrees of vertices of chains.
The best performance was achieved using the sumD heuristic which has a median
of 13 %.

Finding Boundary Elements in Ordered Sets 135

Note that there are ADAGs for which almost all vertices have to be validated,
namely graphs where almost all vertices are pairwise unreachable. These types
of graphs were not included in our data sets for the experimental evaluation.

Requirements Checking. We now evaluate the performance of the algorithm
on the graphs with the specific shape of a hypercube that represent all subsets
of a set of requirements. For n requirements the hypercube consists of 2n ver-
tices and n2n−1 edges. We used requirements specified in propositional logic and
employed the SAT instances generator from [14] to generate experimental data.
Experiments were run on requirements sets containing up to 24 requirements
and hundred instances for each size. For these experiments we ran the online
algorithm as it has shown to be the best one for hypercubes. The minimum-
chain based approach performs worse on hypercubes as the minimal chain cover
of a hypercube contains a large number of short chains. However, the binary
search approach performs better on longer chains.

To provide a better insight into the qualitative parameters of our algorithm
we compare its behaviour with two other tools solving the problem of finding the
minimal unsatisfiable subsets of a set of requirements, namely [3,15]. Authors
of [3] use the linear temporal logic (LTL) to specify requirements and report
efficiency of around 10 % (i.e. 10 % of all vertices of the hypercube were vali-
dated). We were not able to repeat their experiments exactly as the authors do
not provide their experimental data. Moreover, LTL is hard-coded in their tool.
However, in our experiments with SAT instances the ratio of validated vertices
decreases to 0.05 %. The MARCO tool, presented in [15], is proposed to solve any
constraint sets. We compared the efficiency of our algorithm against MARCO
on the same sets of SAT instances. As can be seen in Fig. 6, our tool makes less
queries to the SAT-solver.

5 Conclusion

In this paper, we have focused on finding boundary elements in partially ordered
sets, seen as a kind of graphs. We have discussed the mapping of this problem to
various activities in software engineering; we have shown applications in safety
and requirements analysis. We have presented a new general algorithm to solve
this problem, including several variants and heuristics. We have found that the
efficiency of the heuristics depends on the structure of the input graph. For
graphs with the hypercube structure, the online variant of our algorithm per-
formed the best.

As a future work, we consider several improvements of our basic algorithm.
One possible direction of research is to aim at parallel processing of the con-
figuration space in order to further improve the performance of our approach.
Another is to focus more on the specific cases of hypercube graphs and exploit
their structure more on the fly. We also want to consider more applications of
our approach, such as software product line engineering and discovering incom-
patibilities in component-based designs. We also believe that our method can be

136 J. Bend́ık et al.

applied to various other domains, such as the parameter synthesis for biological
systems [4]. We intend to explore these applications in more detail.

Acknowledgement. The research leading to these results has received funding from
the European Unions Seventh Framework Program (FP7/2007-2013) for CRYSTAL
Critical System Engineering Acceleration Joint Undertaking under grant agreement
No. 332830 and from specific national programs and/or funding authorities.

References

1. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

2. Barnat, J., Bauch, P., Beneš, N., Brim, L., Beran, J., Kratochv́ıla, T.: Analysing
sanity of requirements for avionics systems. Form. Aspects Comput. 28(1), 45–63
(2016). doi:10.1007/s00165-015-0348-9

3. Barnat, J., Bauch, P., Brim, L.: Checking sanity of software requirements. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504,
pp. 48–62. Springer, Heidelberg (2012)

4. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek, T.:
On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput.
Biol. Bioinform. 9(3), 693–705 (2012)

5. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
temporal model checking. Form. Methods Syst. Des. 18(2), 141–163 (2001)

6. Belov, A., Marques-Silva, J.: MUSer2: an efficient MUS extractor. J. Satisfiability
Boolean Model. Comput. 8, 123–128 (2012)

7. Chen, Y., Chen, Y.: On the decomposition of posets. In: 2012 International Con-
ference on Computer Science Service System (CSSS), pp. 134–138 (2012)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. Dajani-Brown, S., Cofer, D., Hartmann, A.C., Pratt, T.W.: Formal modeling and
analysis of an avionics triplex sensor voter. In: Ball, T., Rajamani, S.K. (eds.)
SPIN 2003. LNCS, vol. 2648, pp. 34–48. Springer, Heidelberg (2003)

10. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
51(1), 161–166 (1950)

11. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered
sets. Proc. Am. Math. Soc. 7(4), 701–702 (1956)

12. Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Soft-
ware engineering and formal methods. Commun. ACM 51, 54–59 (2008)

13. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based
safety analysis. In: The 24th Digital Avionics Systems Conference, 2005. DASC
2005, vol. 2. IEEE (2005)

14. Lauria, M.: CNFgen formula generator. http://massimolauria.github.io/cnfgen/.
Accessed 11 Jan 2016

15. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016). http://link.springer.com/article/10.
1007%2Fs10601-015-9183-0

16. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

http://dx.doi.org/10.1007/s00165-015-0348-9
http://massimolauria.github.io/cnfgen/
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10601-015-9183-0
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10601-015-9183-0

Combining Abstract Interpretation
with Symbolic Execution for a Static Value

Range Analysis of Block Diagrams

Christian Dernehl(B), Norman Hansen, and Stefan Kowalewski

RWTH Aachen University, Lehrstuhl Informatik 11 - Embedded Software,
Aachen, Germany

{dernehl,hansen,kowalewski}@embedded.rwth-aachen.de

Abstract. This paper presents a fully automatic verification technique
for Simulink block diagrams, by combining a static value range analy-
sis with symbolic execution. Our concept avoids a translation to other
languages and, instead, extracts all necessary attributes from Simulink
and interprets the model directly. With this technique, we show how user
defined specifications can be validated using sound abstractions for prim-
itives, including IEEE-754 floats, and custom data types. Moreover, we
propose optimizations by exploiting the benefits of intervals and symbolic
representations to apply our technique to larger models. We evaluate our
solution against an industrial tool.

1 Introduction

With the growing use of software controlled embedded systems, the safety of
programs plays an increasing role. As projects and teams become larger and more
interdisciplinary, model-based design tends to improve the development process
[4]. Model-based design uses graphical programming, which is easily understood
by developers from different domains. Another reason for model-based design is
the attempt to limit the designer to rules and, eventually, avoid certain classes
of software failures. This technique has been acknowledged in safety standards
for embedded software systems [9,15].

The landscape of tools supporting model-based design differs between indus-
trial sectors. For instance, Matlab/Simulink has become a widely applied tool
in the automotive domain, while some aerospace businesses prefer SCADE [3].
Both tools provide the user with a visual modeling interface for block diagrams, in
which elements are connected via lines and the flow among the blocks defines the
behavior. This paper presents solutions for block diagrams in Simulink, however,
the concepts can be adapted to similar modeling tools.

In practice, code is generated from existing models and integrated, auto-
matically at best, into custom software. As a side effect, this process enhances
rapid prototyping by allowing the user to simulate and test models on desktop
computers, independent of the target platform. Admitting that errors caused
by invalid memory access and wrong pointer arithmetic occur rather seldom in
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 137–152, 2016.
DOI: 10.1007/978-3-319-41591-8 10

138 C. Dernehl et al.

generated code, many design issues remain. Among these are unintended data
type over-/underflows, irrelevant or unused model parts, invalid divisions and
operations, unintended variable resets and out-of-bound access.

Since the resulting code might lead to a failure, formal methods and extensive
testing is applied for validation. Nevertheless, these techniques are often used
after code generation, requiring a linkage between code and model, necessitating
a regeneration of the code. Instead, our aim is to provide the user during the
design stage with important notifications and warnings about potential modeling
flaws, so that these can be resolved immediately.

Contribution. In this paper, we present a detailed, sound and fully automatic ver-
ification for Simulink block diagrams using sat modulo theory (SMT) techniques,
which are introduced in Sect. 2. Our contribution in Sect. 4 extends already exist-
ing proposals by combining a previously designed interval analysis [8] with SMT
checking. We use the Microsoft Z3 SMT solver [7], which is able to represent
IEEE-754 floats with bit vectors as used by Matlab/Simulink. In detail, our
algorithm identifies potential design errors, including divisions by zero, under-
and overflows, infinite and NaN values, out-of-bound access and boolean signals,
which are constant. We classify our work with others in the field, presented in
Sect. 3, and evaluate our work against an industrial tool in Sect. 5.

2 Background

Before presenting our method, we elaborate briefly the concept of SMT solving
and block diagrams, which has already been explained in previous work [14].

2.1 SMT Solver

Boolean expressions combine variables with logical operators, such as and (∧),
not (¬) and or (∨). Each variable is either true or false and thus, the boolean
expression evaluates either to true or false, depending on the variables. Solving
such a boolean expression is the computation of an assignment for the variables
so that the expression evaluates to true. Boolean expressions can be extended,
for instance, by allowing arithmetic terms which provide a broader application
range. With the combination of more underlying theories such as arithmetics,
bit vectors, lists or floats, the decidability, i.e. searching for a satisfying variable
assignment, of the expression cannot be guaranteed [13]. SMT solvers are tools
trying to find satisfying variable assignments with regard to additional theories.
Because of the potential undecidability, results of the solving procedure may be
either satisfiable, unsatisfiable or unknown.

For our application, we have chosen the latest Microsoft Z3 SMT solver [7]
and the support of multiple theories including IEEE-754 floating point arith-
metic. The interface of the solver allows users to specify either variables or
constants of a given sort, which can be boolean, integer, real, float, bit vector or
others. For real and integer expressions, a finite rational number approximation

Combining Abstract Interpretation with Symbolic Execution 139

Fig. 1. Simulink block diagram example

is used, while floats are modeled as bit vectors, where each part, sign, fraction
and exponent can be accessed individually. Since rational numbers behave differ-
ently than IEEE-754 floats, arithmetic operations are implemented individually,
yielding the suited operation for a given sort.

One application of SMT is to interpret program variables as SMT variables
and use the solver to prove properties of the code. For instance, it might be
proven that a variable value is always different from 0 or does not exceed a
certain range.

2.2 Block Diagram

A block diagram consists of ports P , blocks B and lines L, such that P and
L form a graph. Each port is assigned to a block, whereas, subsystems, which
are blocks themselves, allow a hierarchical modeling. Since subsystems can be
reused, complex systems can be constructed in a bottom up approach. Figure 1
illustrates a Simulink block diagram, with subsystems Controller and Plant,
root input u and root output y, respectively. The interface of a subsystem is
specified with special In- and Out-blocks. Within the Controller subsystem, the
block labeled u references the in port of the Controller subsystem, whereas, y
references the out port.

While designing systems, a user may choose from a given palette of blocks
or a set of his own. For instance, the blocks shown in Fig. 1 are all part of the
Simulink standard block set. Masks are user interfaces, tied to a specific block,
which allows further parametrization and configuration of the block, such as
setting the value for Constant-blocks or changing the sign within a Sum-block.
Finally, parameters may be set in the model workspace, which is a container of
variables, with concrete values.

A simulation of a block diagram consists of a certain, possibly infinite,
amount of time steps, such that each step has a certain, potentially varying
duration, for example 0.01 s. Additionally, an individual sample time is assigned
to each block, either automatically or specifically by the user, to model systems
which run at different frequencies. Blocks are active, i.e. performing a compu-
tation, if a multiple of their sample time matches the currently considered time
step. If a block is inactive, due to the sample time, a zero order hold operation

140 C. Dernehl et al.

is performed by default1. Another way to make a block inactive is by creating
an enabled subsystem in which the block resides. These special systems contain
an enable port with a corresponding block, making all blocks in that subsystem
active or inactive.

Since loops may be constructed in block diagrams, models with circular
dependencies between blocks, called algebraic loops, can be created. For example,
feeding the output of a Sum-block back to its input yields a time synchroniza-
tion problem, because the output of the block in the current time step has to
be computed based on the current input, which has not yet been calculated.
To avoid the occurrence of algebraic loops, a block performing a time shift or
storage operation should be added within the loop. These blocks, such as delays
or integrators, have therefore a state. On the contrary, blocks without internal
states feed their input through by computing a memoryless operation.

If not otherwise specified, all states of active blocks are updated with each
time step, even those, which are not needed to calculate the root outputs. Thus,
the control flow of a block diagram is linear, so that at a given decision, both
paths of a Switch-block are evaluated by default. Unnecessary computations can
be avoided by using enabled subsystems.

Signals. In each time step, signals flow along lines from port to port through the
entire model. Each block represents a function, taking the signal values of its
input ports as parameters and writing the computed result to its output ports.

Whereas blocks, ports and lines specify the syntax of the block diagram, the
semantics are described by signals between ports. A signal has a name and a
certain value for each time step. Concrete signals are represented by a tensor
with a data type, which is equal for all elements in the tensor, ranging over
multiple dimensions. Consider a signal of type int8 containing a 2 × 2 matrix,
then each element in the matrix has type int8. Except for special cases, such as
matrix multiplication, operations on signals are defined element-wise.

Signals with different data types can be combined into one signal using buses.
A bus can be constructed in a hierarchical fashion, so that a bus may contain
concrete signals or further bus signals. Before arithmetic and other element wise
operations are performed on buses, all elements of the bus are casted to a single
concrete signal of the most expressive data type. However, signal routing or
Memory-blocks, which do not change the content of a signal, do not perform
type cast operations or the conversion of bus signals to concrete signals.

Execution Order. Finally, after the structure of block diagrams and signals has
been explained, the execution order schedules the simulation of the model. Sup-
pose a system, consisting of a Sum-block with feed back through a Memory-
block, which acts like a counter, depending on the input. In the first step, the
Memory-block, with initial output value zero, must be computed before the Sum-
block can calculate the sum over its inputs. Therefore, a sequence, guaranteeing
all inputs being available when a block is executed, is necessary. Consequently,

1 See http://de.mathworks.com/help/simulink/slref/ratetransition.html.

http://de.mathworks.com/help/simulink/slref/ratetransition.html

Combining Abstract Interpretation with Symbolic Execution 141

source blocks, such as Constant- or Inport-blocks, must be executed before their
connected blocks can be executed based on the source blocks output. This order
is given by execution contexts, which form an ordered tree structure, in which
the leafs are non-subsystem blocks. At each level of the tree, the order set of
children represents a valid schedule yielding an order in a top-down structure.

3 Related Work

Analyzing and verifying Simulink diagrams is a task which has been addressed
before. Reicherdt and Glesner [14] present a similar approach and translate Mat-
lab/Simulink models into the intermediate verification Boogie language. The
subsequent verification relies on the Microsoft Z3 SMT solver. Our algorithm
abstracts feed through and bounded blocks, such as sin, cos, arctan in a simi-
lar fashion. Their algorithm supports up to 44 blocks, however, their solution
has some limitations regarding buses and the soundness, since corner cases for
IEEE-754 floating point types and corresponding rounding methods are not con-
sidered. Although their solution incorporates intervals specified by the user, our
algorithm utilizes the fully automatically calculated intervals from a static value
range analysis. Eventually, Reicherdt and Glesner prove their solution to per-
form in certain aspects better than the Simulink Design Verifier2, which is a tool
to verify Matlab/Simulink models, by computing reachable values and detect-
ing design flaws. The Design Verifier uses rational numbers, as indicated by the
tool, and lacks a correct abstraction of IEEE-754 floats, too. Furthermore, there
are many unsupported blocks by the Design Verifier, causing large over approx-
imations and a variety of false positive results and even undetected flaws in the
model. Other techniques, such as abstract simulation by Chapoutot et al. focus
on numerical errors caused by continuous models [5]. Hence, we present a static
value range analysis based on abstract interpretation [6] with symbolic execution
to refine derived value ranges with regard to IEEE-754 floating point arithmetic.

Apart from the verification on model level, block diagrams can be trans-
lated to intermediate representations which can subsequently be analyzed. Tri-
pakis et al. propose in their work [16] the translation of discrete Matlab/Simulink
models to Lustre. Based on the resulting Lustre representation, verification tech-
niques can be applied. Agrawal et al. [1] convert Matlab/Simulink block diagrams
to hybrid automata, which are analyzed using domain specific methods. However,
the approaches based on translation of block diagrams into different representa-
tions are in general only applicable for a subset of the available Matlab/Simulink
model elements and functionalities.

4 Concept

In this section, we give a basic introduction into our approach for abstract inter-
pretation of Matlab/Simulink models. Consequently, the construction of SMT
expressions and use of symbolic execution is presented before the combination
of both approaches, is described.
2 See http://de.mathworks.com/products/sldesignverifier/.

http://de.mathworks.com/products/sldesignverifier/

142 C. Dernehl et al.

Overview. Before discussing the concrete analysis, we highlight the construction
of our intermediate representation. First, a simulation of the model is launched
and paused to retrieve the compiled data types of ports, model parameters and
the execution order, using the Matlab API. For block parameters, which are
expressions such as 3 ∗ x + 5, a resolution is used which first looks up the mask
parameters of parent blocks in the model for matching variables and replaces
variable occurrences in the expressions recursively. Second, the model workspace,
where the user may set parameters, is investigated. Finally, the expression is
evaluated with the Matlab API, yielding a concrete value.

The block diagram itself is represented as a graph with ports and lines, with a
linking between ports and blocks. For simplicity, we enrich the graph and connect
In- and Out-blocks with the matching in- and out-ports along potentially multi-
ple hierarchical levels in the diagram. With these lines, plain subsystems without
further configuration can be omitted in the analysis. For enabled, triggered or
other subsystems, each affected block references its enable blocks. Signals are
abstracted and are either concrete, buses or variable size signals3. A signal flow
analysis, based on a depth-first-search, computes the hierarchical structure of
each bus in the model, providing each port with a primitive or bus type.

The blocks of the model are interpreted during analysis based on previously
defined abstractions and corresponding model parametrizations. As abstract
domain for the interpretation, interval sets are used.

Limitations. Although our technique can be applied to a variety of systems,
we pose some limitations on the models. First, models must be updatable and
compilable, i.e. a simulation must be carried out. Note, that our method does not
rely on simulation results, but rather fetches the resolved data types and signal
dimensions from the model. Systems may not contain algebraic loops, since those
cannot be generally resolved and no code can be generated. Furthermore, our
algorithm works for discrete models with a fixed time step solver. Currently,
we have implemented abstractions for over 50 blocks supporting most possible
configurations and parametrizations, including basic support for custom masked
blocks. Blocks without correspondent abstractions are over approximated by
default.

4.1 Abstract Interpretation with Interval Sets

Intervals provide means to define a set of values by two boundaries, making it
an efficient representation. Arithmetics and all other operations, which can be
expressed by Matlab/Simulink, can be adapted to intervals [2,12]. For instance,
[1, 2] + [3, 4] yields [4, 6], which is the set of all possible sums between values
x, y with x ∈ [1, 2], y ∈ [3, 4]. We have shown in previous work [8] how interval
sets can be used for abstract interpretation of Simulink models. In our imple-
mentation, which is reused in this work, the interval analysis is a sound abstrac-
tion of IEEE-754 floats, including rounding modes after each operation and
3 Our algorithm currently does not support all variable size operations, which are

allowed by Simulink.

Combining Abstract Interpretation with Symbolic Execution 143

symbols such as ±∞ and NaN. Thus, our implemented abstract interpretation
yields an interval set for each port and internal state of a block for the entire
model. Although interval sets provide an efficient method for analyzing large
models, interval sets lack, the capability to represent relations among multiple
variables [8].

4.2 Symbolic Execution with SMT

After having referenced how abstract interpretation using interval set domains is
carried out, we explain how SMT expressions, describing relations among signals
of a model, are constructed from block diagrams.

Types and Casting. For the Z3 SMT expressions, there are three different sorts,
boolean, integer and float, which we use in our algorithm. The boolean(B) and
floating point (F32,F64) data types from Simulink can be directly mapped to the
corresponding SMT sorts, while the wrapping effects or configurable saturation
of integers (In, n = 8, 16, 32) must be treated by adding modulo operations or
respectively constraining the value. For instance, u0 + u1 becomes (u0 + u1)
mod 216 if the types are uint16. The additional mod operation, which has to be
added to ensure correct type behavior after every operation, increases complexity
of the SMT expressions across the model and can be omitted if the intervals
prove, that no under- and overflow occurs.

For floating point operations, a rounding mode according to IEEE-754 must
be specified, such as towards zero or ±∞. By introducing a new variable z, the
plus operation between float expressions x and y can be precisely specified by
adding a global statement

∨

r∈R

z = plus(x, y, r) (1)

where R is the set of rounding modes. However, this approach leads to large
SMT expressions and increases the number of variables and computation effort
significantly. Therefore, we allow the user to specify a concrete rounding mode,
which is used for all floating point operations. This approach seems reasonable,
when assuming that neither Simulink nor external code changes the rounding
mode of the floating point unit.

Type casts are handled in different fashions, depending on the input and the
output type. Table 1 shows an overview of type casts, where ϕ is the expression,
which shall be casted. If both types are the same, the casting operation is ignored,
yielding the input. Boolean casts are represented by the if-then-else (ite) oper-
ator, yielding one or zero depending on the boolean value. The ite is a ternary
operator, so that the first argument is a boolean statement and the latter ones
are the results, depending on the first argument. Casting integers or floats to
boolean is modeled by setting the expression unequal to zero ¬(ϕ = 0). Sup-
pose both are integer types and the source type is larger than the destination
type, then the implicitly added mod operator takes care of the overflow effect.

144 C. Dernehl et al.

Table 1. Type casts as SMT expressions

From To SMT expression From To SMT expression

B I ite(ϕ, 1, 0) I B ¬(ϕ = 0)

B F ite(ϕ, 1.0, +0.0) Ia Ib ϕ mod b if b > a, no op otherwise

F B ¬(ϕ = 0) I32 F32 bit vector to fraction if |ϕ| ≤ 223

F I via rational and modulo I<32 F32 via bit vector to fraction

F64 F32 fresh variable I F64 via bit vector to fraction

F32 F64 copy bit vector parts

Assume the Matlab/Simulink setting saturate on integer overflow is active, then
the modulo operation is substituted by two ite operations

ite(ϕ > max,max, ite(ϕ < min,min, ϕ)) (2)

which restrict ϕ to the range [min,max].
For the special case, in which a 32-bit integer is casted to a 32-bit float,

several steps are taken. First, if the calculated interval proves the maximum
absolute value below 223, then the expression fits into the fraction of a 32-bit
float, since the other eleven bits are used for the exponent. In this case, we can
copy the bit vector representation of the integer into the fraction and set the
exponent to the bias value, i.e. such that the value of the exponent is zeroed,
yielding only the fraction. If the 32-bit integer exceeds ±223, then we create a
fresh variable, since we cannot make any assumptions on the typecast. For 64-bit
floats, no check needs to be done, since the largest integer in Simulink with 32
bits fits into the fraction of 52 bits.

In addition to potential overflows, casts from floating point to integers need
special treatment for NaN and ±∞ symbols. We wrap the expression

ite(isNaN(ϕ), 0, ite(isInf(ϕ), ite(sgn > 0,max,min), I(Q(ϕ)))) mod 2n (3)

around, where isNaN is translated to a bit vector operator by the SMT solver.
The integer cast (I(Q(ϕ))) is executed by a detour to rational number abstrac-
tion (Q), which is then translated to an integer using the modulo operation.
Similarly to the NaN check, we map the ±∞ symbols to either the minimum or
maximum value of the integer, if the saturation option is activated. Thus, if ∞
is casted to an 8-bit integer, the result is 127. In case the saturation option of
the block performing the type cast is deactivated, the first part of the isInf check
is set to zero, so that a cast from ±∞ results in zero, as it does in Simulink.
Consequently, the fraction and exponent are represented by rational number,
which is then rounded to an integer with the configured mode. Nevertheless, a
major drawback is that the bit vector constraints, which are attached to the
float expression, must be propagated, causing a large overhead. Therefore, we
deactivate the propagation for better efficiency, with the cost of an additional
over approximation.

Combining Abstract Interpretation with Symbolic Execution 145

Finally, if both types are different floats, and the input is F32, a few checks
are made. First, a fresh F64 variable is constructed and optionally constraints
with respect to NaN, ±∞ are added, if the input variable cannot reach these
values. This is an approximation, since no F32 except ∞ yields a F64 ∞, which
holds for -∞ and NaN, too. Furthermore the bit vectors from the F32 are taken
into consideration, when the F64 variable is created. This procedure cannot be
used the other way around, except for NaN, since certain non ∞ F64 values yield
an ∞ F32 value. Furthermore, since the type and bit vectors are larger, this data
cannot be copied without loss of information. Thus, a new variable with the
optional NaN constraint, is created.

ite(isNaN(ϕ),NaN, ite(isInf(ϕ), sgn(ϕ)∞, ϕ) (4)

Block Functions. Block operations, as long as they are supported, are mapped
to the according SMT operation. In addition, Simulink adds implicit type casts,
when necessary. For example, if two float signals are connected to a logical
operator block, an implicit cast to boolean is executed. All supported blocks
perform the implicit casting operation.

Arithmetic operators are mapped to the corresponding integer or floating
point, i.e. bit vector implementation. For integers, the absolute value function
is mapped to the ite(ϕ < 0,−ϕ,ϕ) expression, while for floating point types
the sign bit is adjusted. Both, power and modulo can be expressed with integer
expressions, while for floats a fresh variable is created, over approximating those
functions. Finally, the square root on integers is expressed by a fresh variable z
and adding ∃z .zz = ϕ to the global constraints.

Functions, which are not supported by the SMT solver, such as transcen-
dentals, are mapped to anonymous functions, allowing the solver to choose any
value of the associated sort. For example, such an over approximation is applied
for trigonometric or exponential functions. In addition, constraints for bounded
functions, such as sine, are added to a list of global constraints, which is included,
when the solver is invoked. Concretely,

∧

z∈{±∞,
NaN}

sin(z) = NaN ∧∀x ¬(x = ±∞∨x = NaN) → sin(x) ≤ 1∧sin(x) ≥ 1 (5)

expresses the limitation of the sine function except for ±∞ and NaN as argu-
ments. Analogous expressions can be constructed for cos and arctan. For unsup-
ported blocks, fresh variables, which can take any value, are created. However,
since a data type is assigned to each port, further global constraints for the fresh
variable are added, in case of an integer type. For instance, if the output is an
uint8 data type, global constraints y0 ≥ 0 ∧ y0 ≤ 28 − 1 can be added for the
fresh variable y0.

Unlike intervals, which loose information about the control flow and relations
between values, SMT expressions abstract switches by the ite operation, keeping
the condition and relation between variables available for further analysis. This
memory of the formula is expressed by an abstract syntax tree (AST), which is

146 C. Dernehl et al.

Fig. 2. Abstract syntax tree example

constructed internally by the Z3 solver. An illustration of an AST is given in
Fig. 2, where each node represents an operator and the children the operands.
There is the ite ternary operator, binary relational operators(>, ≤) and an unary
cast operation. Suppose the ite is created from a switch block, then during the
evaluation of the root, no decision between the nodes uint8(u3) and −5 has been
made. Consider further, the expression

ite(u1, ite(¬u1, u2, u3), u4) (6)

where the result is never u2, since u1 cannot be true and false at the same time.
This is because, if u1 would be true, then the result would be u3, if u1 is false,
then the result is u4. A similar problem exists in the more complex tree in Fig. 2,
between the root and the second child, because the cast to u3 is never the result.

Sometimes SMT formulas can be theoretically constructed for blocks, but
in practice this is not feasible. Consider a large lookup table, which can be
expressed by a nested combination of ite operators. For each point in the lookup
table, a new ite expression is constructed, yielding a large overhead. In this case,
our implementation omits the computation of the SMT expression and yields a
fresh variable with additional constraints. These constraints are taken from the
interval analysis to limit the created variable.

Finally, the selector block allows the user to select a subset from an input
vector or matrix, such as the first two entries of a vector of length 20. Addition-
ally, the selection can be specified by a signal, which potentially changes with
each time step. Furthermore, if the selection signal is above 20, an unintended
data access occurs. Our verification solution adds constraints to verify, that the
selection signal stays within bounds.

Model Sources. Inputs to the entire system are expressed by In-blocks at root
level, which receive a special handling, since other In-blocks are virtually con-
nected to the corresponding Out-blocks during the enrichment of the model. For
each scalar in each root In-block, a new variable is created u0, . . . un, such that
the SMT sort is chosen based on the data type. Constants with an associated
data type, such as block parameters, are expressed by the corresponding SMT
constants. Since the inputs may change over time, new variables for the model
sources have to be created for each time step.

Path Encoding. With the generation of symbolic expressions for single blocks
given, this technique can be adapted to entire block diagrams. The execution

Combining Abstract Interpretation with Symbolic Execution 147

order from Simulink is used as a schedule for the symbolic execution, such that
for each block a symbolic output expression can be computed based on the
symbolic input expression. For blocks with internal states, such as integrators,
delays or others, symbolic representation is computed, too.

4.3 Combining Abstract Interpretation with Symbolic Execution

Our technique, based on abstract interpretation, terminates if a fix point for
the model is found, i.e. any further considered time step does not change the
computed reachable values for any signal [6,8]. Assuming an infinite run time,
approximations need to be made for blocks with states and models with loops
to enforce the existence of a fix point, since our analysis would potentially not
terminate otherwise. After a specified time horizon, states, for which no fix point
was reached yet, are widened to the biggest interval for the states type. Since
each loop contains at least a block with a state, a fix point for every loop is
eventually reached.

By comparison, widening for SMT formulas is hard, if no fresh variable with-
out any constraints is used [11]. To avoid the construction of symbolic expressions
over multiple considered model time steps, we introduce new variables where con-
structed expressions would depend on expressions of a previous time step, which
is the case for blocks with states. However, our technique exploits the computed
intervals and uses the interval constraints for the further analysis. For example,
if an interval is only positive ([0,∞)), the constraint v0 ≥ 0 is added for the
newly created variable v0.

Nevertheless, the calculation and evaluation of SMT operations takes the
largest share of the computational time. Therefore, we add further optimiza-
tions, so that information among the two domains is shared. First, before a
boolean signal is evaluated by the SMT solver, the interval is checked, whether
it actually contains both boolean values and may thus be shrinked by evalu-
ating the SMT expression. This improvement provides a performance benefit,
especially for variant models, in which constant booleans are used to configure
a variant. A similar enhancement is applied during the evaluation of divisions.
First, the interval is evaluated if it contains zero and then the SMT solver is
invoked to find a solution, yielding a division by zero.

Vice versa, optimizations from the SMT solver are feed back to intervals.
First, if the SMT solver proves or disproves a boolean formula, the interval is
adjusted and the according constant is removed. Second, if a divisor is proven
to be non-zero, the zero is removed from the interval, before the operation is
carried out, which reduces the number of potential division by zero warnings.

Since formulas grow along paths, we evaluate each boolean expression along
the path to potentially decrease the size of the formula. In this way expressions
like x ∧ ¬x are reduced to zero, which is the signal value being passed to the
next ports.

148 C. Dernehl et al.

5 Evaluation

After having presented, how we combine abstract interpretation with interval
sets and symbolic execution with SMT to perform value range analysis on block
diagrams, we demonstrate the performance and discuss benefits and drawbacks
of our approach. We compare results of our analysis with results of the Math-
Works Simulink Design Verifier (SLDV)4, which performs a value range analysis
on Simulink models, too. We have applied our methods to several block diagrams
to highlight the main aspects of our technique. Table 2 provides an overview of all
models which have been evaluated. The second and third column in Table 2 lists
blocks and lines, while the fourth column presents the number of virtual blocks5,
i.e. blocks performing no operation and serving only as visual aids. Structural
properties of the systems are given in the last three columns. The fifth column
lists the number of subsystems, including conditional and atomic ones, while col-
umn six denotes the hierarchy, i.e. the maximum number of nested subsystems.
Finally, the last column determines, whether the system is a feedback systems
and contains a loop.

Table 2. Model metrics

Model Blocks Lines Virtual blocks Subsystems Hierarchy Closed loop

ABS Brake 48 50 16 5 2 yes

Quarter Car 57 70 11 3 2 yes

Suspension 46 55 13 3 1 yes

DAS 970 915 562 189 13 yes

8 Bit Counter 190 213 126 20 4 no

The first three systems represent applications from the automotive domain
and contain continuous blocks, which are not supported by the SLDV. Therefore,
we have discretized the systems with MathWorks model discretizer, using Tustins
method [10] (trapezoidal integration). Further adaptions, which are described
below, were necessary for some models. The ABS Brake represents an anti-lock
braking system and is taken from the Simulink examples6. In addition to the
discretization, we replaced the stop simulation block with an Out-block yield-
ing a feasible model for the SLDV. Given our current implementation, we had
to exchange the user defined function block, computing the relative slip7 by
1 − u1/u2 with a subsystem, an addition and division block, respectively. The
Quarter Car (we analyzed not the entire system) and Suspension systems, both

4 See http://www.mathworks.com/products/sldesignverifier/.
5 See http://mathworks.com/help/simulink/ug/nonvirtual-and-virtual-blocks.html.
6 See http://de.mathworks.com/help/simulink/examples/modeling-an-anti-lock-bra

king-system.html.
7 In case u2 = 0, ε is used, which is considered in our verification.

http://www.mathworks.com/products/sldesignverifier/
http://mathworks.com/help/simulink/ug/nonvirtual-and-virtual-blocks.html
http://de.mathworks.com/help/simulink/examples/modeling-an-anti-lock-braking-system.html
http://de.mathworks.com/help/simulink/examples/modeling-an-anti-lock-braking-system.html

Combining Abstract Interpretation with Symbolic Execution 149

model vehicle suspension in the automotive domain and are taken from the
Simulink examples and Matlab Central8. To analyze both models, no further
modification, except the discretization, was necessary. As a pure discrete system,
the 8 Bit Counter, taken from Matlab Central and extended by an additional
Out-block, is being evaluated. Due to the nature of the hardware related model,
the entire system consists mainly of Memory- and Truth Table-blocks. The DAS
model is an industrial example of an assistance system from the automotive
domain.

Our evaluation platform is a computer with an Intel i5 2.67 GHz CPU, eight
gigabytes memory, with a 64-bit Windows 7 operating system and Matlab 2015b.
The logged analysis times of the SLDV exclude the duration of model com-
pilation and translation to the internal intermediate representation. Thus, we
exclude for our algorithm the time for starting Matlab, loading the model and
translating it to our intermediate abstract block diagram representation. Addi-
tionally to time elapse for analysis, we compare the number and type of issued
warnings.

Table 3. Analysis results

Model Time (s) Warnings

SMTR SMTF SLDV SMTR SMTF SLDV

ABS Brake 4.838 81.777 102 30 (1) 30 (1) 4

Quarter Car 1.315 1.255 11 35 (0) 35 (0) 2

Suspension 28.483 30.388 12 83 (0) 83 (0) 1

DAS 37.658 1317.478 75 225 (5) 225 (5) 31

8 Bit Counter 44.273 32.165 44 97 (0) 97 (0) 12

In Table 3, an overview of the comparison is given. On the left part of
the table, the time elapse is denoted, while the right part contains the num-
ber of warnings issued by each algorithm, including symbolic execution with
reals (SMTR), floats (SMTF) and the Simulink Design Verifier (SLDV). Since
the SLDV uses rational number approximations and no IEEE-754 floats, we
extended the evaluation by adding the symbolic execution with reals, to high-
light the computational cost for sound floating point abstractions. Hence, our
solution issues warning types, which are not considered by the SLDV, such as
potential NaN values or implicit rate transitions. Consequently, our algorithm
issues more warnings on all chosen models. Therefore, we indicated the number
of warnings, excluding warning types not being issued by the SLDV, in paren-
thesis.

As expected, because of the more complicated theory used for SMTF, the
time elapse using SMTR is for most models lower. Moreover, SMTF scales worse

8 See http://de.mathworks.com/matlabcentral/.

http://de.mathworks.com/matlabcentral/

150 C. Dernehl et al.

than SMTR to larger models. Comparing SMTR to SLDV, it can be noticed, that
SLDV is faster analyzing the Suspension model. Regarding the issued warnings,
SMTR and SMTF differ for no evaluated model, which we find to be plausible.
This is due to the fact, that no model was constructed, using IEEE-754 specific
blocks, such as isNaN or isInf. In addition, no model was chosen which exploits
differences between SMTR and SMTF. The SMTR yields also NaN warnings,
because IEEE-754 operations are also covered by the interval sets. However,
differences between the number of warnings of our approach and the SLDV will
further be discussed for the evaluated models.

The main difference concerns the Result could be NaN warning which is
non-existent for SLDV. However, SLDV computes for many signals the same
reachable values as SMTF/SMTR, which are often (−∞;∞) due to overapprox-
imations and thus could lead to a NaN result in case the sum of two signals
with reachable values (−∞;∞) is computed, as in many of the benchmark mod-
els. The further discussion will focus on warnings which are supported by both
approaches. SLDV detects for the ABS Brake model, two potential divisions by
zero (DbZ) and two potential data type overflows (DTO). Using SMTF/SMTR,
we were able to avoid the detection of three false positives to only one poten-
tial DbZ warning. Regarding the Quarter Car model, SLDV issues two DbZ
warnings. However, these result from constant values which were different from
zero at the time of analysis and were thus not detected by SMTF/SMTR. The
Suspension model causes SLDV to detect a false positive DTO warning. The
SMTF/SMTR warnings, however, are limited to potential NaN and implicit
rate transition warnings.

Comparing the warnings and computed reachable values for the DAS model,
we detected that SLDV is in general less overapproximative regarding data stores
(which are not yet supported by our tool) and triggered subsystems. However,
SLDV issues 19 DbZ and 12 DTO warnings which are caused by lookup tables
and divisions by constants or constant signals and data types as float64 which
may not overflow. Besides warnings for unsupported features, NaN occurrences
and implicit rate transitions, we were able to detect two paths in the model which
do not contribute to any model result. Furthermore a violation of the specified
design ranges has been detected, which might be a false positive warning.

For the 8 Bit Counter model, SLDV issues 12 overflow warnings. However,
these relate to signals which are either of integer types or of boolean type as a
result of a lookup. Inspecting the correspondent blocks and paths of the model,
these warnings can be identified as false positives and are, furthermore, not
detected using SMTR/SMTF.

6 Conclusion

This paper presented the combination of abstract interpretation with symbolic
execution based on SMT with IEEE-754 floating point arithmetic for static value
range analysis of block diagrams. The evaluation of the presented approach
against an industrial state of the art tool showed, that the industrial tool scales

Combining Abstract Interpretation with Symbolic Execution 151

better to large models regarding the time elapse for analysis. However, it is not
able to detect IEEE-754 related modeling flaws, such as potential occurrences
of NaN or correct handling of infinity values due to the used rational number
approximation. Moreover, we were able to show that our presented approach
is able to reduce the number of false positives regarding warnings for potential
overflows and divisions by zero, compared to the industrial tool.

Future work will focus on extending the support of Simulink features, e.g.
Stateflow which is only partly supported yet, and to reduce over approximations
for special system classes.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/Stateflow
models to hybrid automata using graph transformations. Electron. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Alefeld, G., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl.
Math. 121(12), 421–464 (2000)

3. Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.: Model checking flight control
systems: the airbus experience. In: ICSE Companion (2009), pp. 18–27 (2009)

4. Broy, M., Kirstan, S., Krcmar, H., Schätz, B., Zimmermann, J.: What is the benefit
of a model-based design of embedded software systems in the car industry? In: Soft-
ware Design and Development: Concepts, Methodologies, Tools, and Applications:
Concepts, Methodologies, Tools, and Applications, p. 310 (2013)

5. Chapoutot, A., Martel, M.: Abstract simulation: a static analysis of simulink mod-
els. In: International Conference on Embedded Software and Systems, 2009. ICESS
2009, pp. 83–92, May 2009

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

7. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Dernehl, C., Hansen, N., Kowalewski, S.: Static value range analysis for
Matlab/Simulink-models. In: 13. Workshop Automotive Software, INFORMATIK
2015, pp. 1649–1660 (2015)

9. ISO: ISO 26262–6 - Road vehicles - functional safety - Part 6 product development
software level. Technical report, Geneva, Switzerland (2011)

10. Korlinchak, C., Comanescu, M.: Discrete time integration of observers with con-
tinuous feedback based on Tustin’s method with variable prewarping. In: 6th
IET International Conference on Power Electronics, Machines and Drives (PEMD
2012), pp. 1–6. IET (2012)

11. Leino, K.R.M., Logozzo, F.: Using widenings to infer loop invariants inside an
SMT solver, or: a theorem prover as abstract domain. In: Workshop on Invariant
Generation, pp. 70–84 (2007)

12. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2009)

152 C. Dernehl et al.

13. de Moura, L., Bjørner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer,
Heidelberg (2009)

14. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using Boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Heidelberg (2014)

15. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

16. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embed. Comput. Syst. (TECS) 4(4), 779–818 (2005)

Model Checking

Program Generation Using Simulated Annealing
and Model Checking

Idress Husien(B) and Sven Schewe

Department of Computer Science, University of Liverpool, Liverpool, UK
idress.husien@liv.ac.uk

Abstract. Program synthesis can be viewed as an exploration of the
search space of candidate programs in pursuit of an implementation that
satisfies a given property. Classic synthesis techniques facilitate exhaus-
tive search, while genetic programming has recently proven the poten-
tial of generic search techniques. But is genetic programming the right
search technique for the synthesis problem? In this paper we challenge
this belief and argue in favor of simulated annealing, a different class
of general search techniques. We show that, in hindsight, the success of
genetic programming has drawn from what is arguably a hybrid between
simulated annealing and genetic programming, and compare the fitness of
classic genetic programming, the hybrid form, and pure simulated anneal-
ing. Our experimental evaluation suggests that pure simulated annealing
offers better results for automated programming than techniques based
on genetic programming.

1 Introduction

The development of correct code can be quite challenging, especially for con-
current systems. Classical software engineering methods, where the validation is
based on testing, do not seem to provide the right way to approach this type of
involved problems, as bugs easily elude predefined tests. Guaranteeing correct-
ness for such programs is also not trivial. Manual proof methods for verifying the
correctness of the code against a given formal specification were suggested in the
late 60s. The next step for achieving more reliable software has been to offer an
automatic verification procedure through model checking [1–3,6,15,18,26,27].

The holy grail of such techniques would be synthesis: the automated construc-
tion of programs that are correct by construction. Such synthesis techniques have
long been held to be impossible for reactive systems due to the complexity of
synthesis, which ranges from EXPTIME for CTL synthesis [5,25] to undecidable
for distributed systems [13,30,33,34].

This line of thought has come under attack on many fronts. On the theoretical
side, bounded [14] and succinct [11] synthesis techniques have levelled the playing
field between the verification and synthesis of reactive systems by shifting the

This work was supported by the Ministry of Higher Education in Iraq through the
University of Kirkuk and by the EPSRC through grant EP/M027287/1.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 155–171, 2016.
DOI: 10.1007/978-3-319-41591-8 11

156 I. Husien and S. Schewe

focus from the input complexity to the cost measured in the minimal explicit
and symbolic solution, respectively. One could argue that this is the theoretical
underpinning of successful approaches, including implementations of bounded
synthesis [10,12] and methods based on genetic programming [20–23].

The success of genetic programming is also based on the observation that the
neighborhood of good solutions are often ‘not bad’, and would often still display
many sought after properties, such as satisfying a number of sub-specifications
fully, and others partially. Such properties are translated to a high fitness of
the candidate solution. Vice versa, the higher the fitness of a candidate, the
more likely is it to find a full solution in its proximity. This observation is also
at the heart of traditional engineering techniques: usually the elimination of a
bug does not cause errors in other places. It is also the assumption used when
applying program repair [19,36] techniques. The successive development into
correct programs is also distantly related to counter-example-guided inductive
synthesis [35] for inductive programs, where a genetic approach has also been
discussed [7].

Our work is at the same time inspired by the success of genetic programming
and driven by the doubt if genetic programming is the right generic search
technique to use. The success of genetic programming for synthesis is thoroughly
documented by a series of papers by Katz and Peled [21–23]. The doubts, on the
other hand, are fueled by the general observation that genetic programming is
often outperformed by simulated annealing [8,28,31].

On a conceptual level, the difference between simulated annealing and genetic
programming techniques are rather minor. These difference are threefold. The
first difference is in the number of candidates considered in each iteration. In
genetic programming, these are many. In the Katz and Peled papers [21–23],
for example, these are typically 150, 5 from the previous cycle and 145 mutated
programmes—numbers we have copied for our own experiments with genetic
programming. In simulated annealing, there is typically one new implementa-
tion in each iteration. The second difference is that genetic approaches may use
crossovers, a proper mix of two candidate solutions, in addition to mutations,
whereas simulated annealing only uses mutations1. The third difference is the
way the selection takes place. The rules for selection is typically static for genetic
programming, while the entropy falls over time in simulated annealing.

It is important to note that crossovers are not always used in genetic pro-
gramming, and we are not aware of any genetic programming approach that
has tried to exploit crossovers for synthesis. Personal communication with the
authors of [21–23] showed that they did not believe that crossover would be use-
ful in the context of synthesis. Simulated annealing has been reported [8,28,31]
to outperform genetic programming when crossovers do not provide an advan-
tage or are not used. Broadly speaking, this is because keeping only a single
instance increases the update speed (where the factor is roughly the number

1 The changes are usually not referred to as mutations, but the rules of obtaining them
are the same. We use the term mutations for simulated annealing, too, in order to
ease the comparison between simulated annealing and genetic programming.

Program Generation Using Simulated Annealing and Model Checking 157

of instances), whereas many instances reduce the search depth or increase the
likelihood of success in a bounded search with a fixed number of iterations. Over-
all, the speed-up of the update tends to outweigh the increase in depth, or the
reduction in the success rate, of a bounded search. This led us to the hypothesis
that the same holds when these techniques are used in synthesis.

Finally, the paper series on genetic programming by Katz and Peled [21–23]
has used a layered approach, where the weighing of the search function differs
over time, starting with establishing the safety properties. The effect of this
difference is comparable to the effect of cooling when a stable level of quality
is reached. We took this as another hint that simulated annealing is the more
appropriate technique when implementing synthesis based on general search with
model checking as a fitness measure. In this work we suggest to use simulated
annealing for program synthesis and compare it to similar approaches based on
genetic programming. We use a formal verification technique, model checking, as
a way of assessing its fitness in an inductive automatic programming system. We
have implemented a synthesis tool, which uses multiple calls to the model checker
NuSMV [3] to determine the fitness for a candidate program. The candidate pro-
grams exist in two forms. The main form is a simple imperative language. This
form is subject to mutation, but it is translated to a secondary form, the mod-
eling language of NuSMV, for evaluating its fitness. All choices of how exactly a
program is represented and how exactly the fitness is evaluated are disputable.
Generic search techniques are, however, usually rather robust against changes in
such details. While there has been further research on how to measure partial
satisfaction [17], we believe that the best choice for us is to keep to the choices
made for promoting genetic programming [21–23], as this is the only choice that
is completely free of suspicion of being selected for being more suitable for sim-
ulated annealing than for genetic programming. A second motivation for this
selection is that it results in very simple specifications and, therefore, in fast
evaluations of the fitness. Noting that synthesis entails on average hundreds of
thousands to millions of calls to a model checker, only simple evaluations can
be considered. We have implemented six different combinations of selection and
update mechanism to test our hypothesis: besides simulated annealing, we have
used genetic programming both without crossover (as discussed in [21–23]) and
with crossover. The tests we have run confirmed that simulated annealing per-
forms significantly better than genetic programming. As a side result, we found
that the assumption of the authors of [21–23] that crossover does not accelerate
genetic programming did not prove to be entirely correct, but the advantages
we observed were minor.

2 The Approach in a Nutshell

In a nutshell, our synthesiser (cf. Fig. 1) consists of four main components: a mod-
ifier/seeder for programs (Program Generation), a compiler into a model checker
format (Program Translation), a quantitative extension of a model checker, using
NuSMV [3] as a back-end, and a selector that determines which program to

158 I. Husien and S. Schewe

keep (Simulated Annealing). The specification is provided in form of a list of
sub-specifications, which is then automatically extended to additional weaker
specifications that are used to obtain a quantitative measure for partial satis-
faction. Broadly speaking, the extension takes partial satisfaction of a specifi-
cation into account by giving different weights to different weaker versions of
sub-specifications (cf. Sect. 4). The result can be manually modified, but the
results reported in Sect. 6 refer to the automatically produced extension.

Fig. 1. Synthesis Tool

The internal representation of a
program is a tree. The seeder/modifier
produces an initial seed. (Alterna-
tively, one could start with an initial
program provided by the user.) The
modifier/seeder also produces modifi-
cations of existing programs by chang-
ing sub-trees (cf. Sect. 4). The pro-
grams are then translated to the input
language of a model checker (NuSMV
in our case), which is then called sev-
eral times to determine the level of satisfaction, which is the core of the fitness
(cf. Sect. 4) of a program.

Broadly speaking, the number of candidate programs kept depends on
the search technique used. We have implemented both genetic programming
approaches and simulated annealing in order to obtain a clean point of
comparison.

3 Background

Simulated Annealing. Simulated annealing [4,16] is a general local search
technique that is able to escape from local optima, easy to implementation, and
has good convergence properties.

When applied to an optimisation problem, the fitness function (objective)
generates values for the quality of the solution constructed in each iteration.
The fitness of this newly selected solution is then compared with the fitness of
the solution from the previous round. Improved solutions are always accepted,
while some of the other solutions are accepted in the hope of escaping local
optima in search of global optima. The probability of accepting solutions with
reduced fitness depends on a temperature parameter, which is typically falling
monotonically with each iteration of the algorithm.

Simulated annealing starts with an initial candidate solution. In each itera-
tion, a neighboring solution is generated by mutating the previous solution. Let,
for the ith iteration, Fi−1 be the fitness of the ‘old’ solution and Fi the fitness
of its mutation constructed in the ith iteration. If the fitness is not decreased
(Fi ≥ Fi−1), then the mutated solution is kept. If the fitness is decreased
(Fi < Fi−1), then the probability p that this mutated solution is kept is

p = e
Fi−Fi−1

Ti ,

Program Generation Using Simulated Annealing and Model Checking 159

where Ti is the temperature parameter for the ith step. The chance of changing
to a mutation with smaller fitness is therefore reduced with an increasing gap
in the fitness, but also with a falling temperature parameter. The temperature
parameter is positive and usually non-increasing (0 < Ti ≤ Ti−1). The develop-
ment of the sequence Ti is referred to as the cooling schedule and inspired by
cooling in the physical world [16].

Algorithm 1. Simulated Annealing algorithm
i := 0
loop local search with cooling
repeat

i := i + 1
derive a neighbor x′ of x
ΔF := F (x′) − F (x)
if ΔF < 0 then

x := x′

else
derive random number p[0, 1]

if p < e
ΔF
T (i) then

x := x′

end if
end if

until the goal is reached or i = imax

The effect of cooling on the simulation of annealing is that the probability of
following an unfavorable move is reduced. In practice, the temperature is often
decreased in stages. During each stage the temperature is kept constant until
a balanced solution is reached. The set of parameters that determines how the
temperature is reduced (i.e., the initial temperature, the stopping criterion, the
temperature decrements between successive stages, and the number of transi-
tions for each temperature value) is called the cooling schedule. We have used
a simple cooling schedule, where the temperature is dropped by a constant in
each iteration. The algorithm is described in Algorithm 1.

Genetic programming. Genetic programming [24] is a different general search
technique that has been used for program synthesis in a similar setting [20–23].
In genetic programming, a population of λ candidate programs is first generated
randomly. In each step, a small share of the population consisting of μ candidates
(with μ � λ) is maintained based on the fitness. Usually, a random function that
makes it more likely for fitter candidate programs to be selected for spawning
the next generation is applied. The selected candidates are then mated to retain
a population of λ, and mutations are applied to a high share of the resulting
programs (e.g., on all duplicates).

We have implemented genetic programming as a comparison point, using the
values λ = 150 and μ = 5 from [21]. We also use the 2, 000 iterations suggested

160 I. Husien and S. Schewe

there as a cut-off point, where the algorithm is re-started. In its pure form, it uses
the sum of the partial satisfaction values of all sub-specifications as a foundation
of the fitness function.

We have additionally implemented a hybrid form that changes the selection
technique over time. This technique works in layers: it first establish the safety
properties, and then the liveness properties. Specifications with better values
for the safety properties are always given preference, while liveness properties
are—for equal values for the safety properties—used to determine the fitness.
I.e., they are merely tie-breakers.

This approach has been used in [21–23]. We refer to it as a hybrid approach as
it introduces a property known from simulated annealing: in the beginning, the
algorithm is applying changes more flexibly, while it becomes more rigid later.

We have implemented the genetic approaches with and without crossover,
and used both evaluation techniques for simulated annealing, where we refer to
using the classic fitness function as a rigid evaluation, and to the hybrid approach
as flexible evaluation.

Model checking. Model checking [2,6] is a technique used to determine whether
a program satisfies a number of specifications. A model checker takes two inputs.
The first of them, the specification, is a description of the temporal behavior a
correct system shall display, given in a temporal logic. The second input, the
model, is a description of the dynamics of the system that the user wants to
evaluate. This might be a computer program, a communications protocol, a
state machine, a circuit diagram, etc.

A model checker uses a symbolic representation of the model to decide effi-
ciently if the model satisfies the specification. Standard temporal logic used in
model checking are linear-time temporal logic (LTL) [32] and computation tree
logic (CTL) [5]. We focus on the latter.

Given a finite set Π of atomic propositions, the syntax of a CTL formula is
defined as follows:

φ :: = p | ¬φ | φ ∨ φ | Aψ | Eψ,

ψ :: = Xφ | φUφ | Gφ,

where p ∈ Π. For each CTL formula φ we denote the length of φ by |φ|.
Let T = (V,E) be an infinite directed tree, with all edges pointing away

from the root. (In model checking, this is the unraveling of the model.) Let
l : V → 2Π be a labeling function. The semantics of CTL is defined as follows.
For each v ∈ V we have:

– v |= p if, and only if, p ∈ l(v).
– v |= ¬φ if, and only if, v � |= φ.
– v |= φ ∨ ψ if, and only if, v |= φ or v |= ψ.
– v |= Aψ if, and only if, for all paths π starting at v, we have π |= ψ.
– v |= Eψ if, and only if, there exists a path π starting at v with π |= ψ.

Program Generation Using Simulated Annealing and Model Checking 161

Let π = v1, v2, . . . be an infinite path in T . We have:

– π |= Xφ if, and only if, v2 |= φ.
– π |= φUφ′ if, and only if, there exists an i ∈ N such that vi |= φ′ and, for

all j in the range 1 ≤ j < i, we have vj |= φ.
– π |= Gφ if, and only if, vi |= φ for all i ∈ N.

Note that the φ and φ′ here are state formulas.
The pair (T, l), where T is a tree and l is a labeling function, is a model of φ

if, and only if, r |= φ, where r ∈ V is the root of the tree. If (T, l) is a model of
φ, then we write T, l |= φ.

For the candidate programs in our paper, the tree is the tree of all runs /
interleaving of the programs under asynchronous composition, and the labels are
the program states.

4 Synthesis Tool Architecture

Our tool consists of four main parts: a generator and mutator of abstract pro-
grams (Program Generation); a translator from abstract programs to models
(Program Translator); a model checker as a basis for determining the fitness,
and the simulated annealing mechanism for selecting the candidate program to
continue with (cf. Fig. 1).

We use NuSMV [3] as a model checker. The translator therefore translates
the abstract programs into the model language of NuSMV. The other parts of
the tool are written in C++. Figure 1 gives an overview on the main components
of our tool.

When comparing simulated annealing to genetic programming, we merely
replace the simulated annealing component by a similar component for the
respective genetic programming variant and optionally add crossover to the avail-
able mutations.

The user provides specifications for the desired properties of a system in the
form of a list of CTL specifications for the system dynamics that the program
has to satisfy. The simulated annealing component then derives the intermediate
specifications (full and partial compliance) that are used to determine the fitness
of a candidate (cf. Sect. 4).

If the candidate program satisfied all required properties, then the synthesiser
returns it as a correct program.

Otherwise, it will compare the fitness of the current candidate with the (stored)
fitness value of the program it is derived from by mutation. (This is the currently
stored candidate.) If the fitness is lower, then the tool will update the stored can-
didate with the probability eΔF/T (i) defined by the loss ΔF = Fi − Fi−1 in fitness
and the current temperature T (i) taken from the cooling schedule. If the fitness
is not lower, the tool will always replaces the stored candidate by the mutated
one. When the end of the cooling schedule is reached, the tool aborts. The syn-
thesis process is then re-started, either with a fresh cooling schedule (usually with

162 I. Husien and S. Schewe

a higher starting temperature or slower cooling) or with the same cooling sched-
ule. We have implemented the latter. Additional information about the tool can
be found at: http://cgi.csc.liv.ac.uk/∼idresshu/index2.html.

Model checking as a fitness function. We use model checking to determine
the fitness of a candidate program in the same way as it has been used for genetic
programming [21–23]. Based on the model checking results, we derive a quan-
titative measure for the fitness (as a level of partial correctness) of a program.
This can be the share of properties that are satisfied so far, or mechanically
produced simpler properties. For example, if a property shall hold on all paths,
it is better if it holds on some paths, and yet better if it holds almost surely.

Our implementation considers the specification as a list of sub-specifications
and assigns full marks for each sub-specification, which is satisfied by the can-
didate program. For cases where the sub-specification is not satisfied, we distin-
guish between different levels of partial satisfaction.

We offer an automated translation of properties with up to two univer-
sal quantifiers that occur positively. 100 points are assigned when the sub-
specification is satisfied, 80 points if the specification is satisfied when replacing
one universal path quantifier by an existential path quantifier, and 10 points are
assigned if the specification is satisfied after replacing both universal path quanti-
fiers by existential ones. (Existential quantifiers that occur negatively are treated
accordingly.) Examples of this automated translation are shown in Sect. 5.

The output of the model checker is used to evaluate the fitness of the current
candidate. The main part of the fitness is the average of the values for all sub-
specifications in the rigid evaluation and the average of all liveness specifications
in the flexible evaluation. Following [21], we apply a penalty for long programs
by deducing the number of inner nodes of a program from this average when
assigning the fitness of a candidate program. The resulting fitness value will be
used by simulated annealing to compare the current candidate with the previous
one when using rigid evaluation, and to make a decision whether the changes will
be preserved or discarded. When using flexible evaluation, this only happens if
the value for the safety specification is equal; falling resp. rising values for safety
specifications always result in discarding resp. selecting the update when using
flexible evaluation.

Programs as trees. The main form of the programs is a tree, in which each
leaf node represents a parameter or constant, while each parent node represents
an operation like assignments, comparisons, or algorithm instruction like if or
while. The candidate programs are built from the root down to the terminal
nodes (cf. [21,24]). Figure 2 shows the tree representation of the program

while (turn==me)
other=0

on the left, and two mutations of these programs in the middle and on the
right.

Mutations are changes in the program tree. Changes can be applied as follows:

1. Randomly select a node to be changed.

http://cgi.csc.liv.ac.uk/~idresshu/index2.html

Program Generation Using Simulated Annealing and Model Checking 163

Fig. 2. Program tree (left) with two mutations (middle and right)

2. Apply one of the following changes:
(a) Replace a boolean comparator by a different boolean comparator. E.g.,

the middle program from Fig. 2 can result from the left program when
‘==’ is replaced by ‘!=’.

(b) Replace a leaf by a different parameter or constant from a user defined
set.

(c) Replace a sub-tree (which is no leaf) by a different sub-tree of size 3 with
the same type. E.g., the right program from Fig. 2 can result from the left
program when by replacing the left sub-tree.

(d) Add a new internal node, using the node that was there as one sub-tree
and creating further offspring of minimal size (which is ≤ 3) to make the
resulting tree well typed.

Crossovers between two programs P1 and P2 randomly select nodes N1 of
P1 and N2 of P2, and swap the sub-trees rooted in N1 and N2. This way, they
produce a proper mix of the two programs.

Besides standard commands—‘while’, ‘if’, assignments, boolean connectives
and comparators—there are also variable names and constants. They have to be
provided by the user. The user also needs to specify, which variables are local
and which are global. She can provide an initial tree with nodes that the modifier
is not allowed to alter. Examples of this are provided in Sect. 5.

To evaluate the fitness of the produced program, it is first translated into
the language of the model checker NuSMV [3]. We have used the translation
method suggested by Clarke, Grumberg, and Peled [6]. In this translation, the
program is converted into very simple statements (similar to assembly language).
To simplify the translation, the program lines are first labeled, and this label
is then uses as a pointer that represents the program counter (PC). From this
intermediate language, the NuSMV model is then built by creating (case) and
(next) statements that use the PC. Figure 3 shows the translation of a mutual
exclusion algorithm. At first, each line in the source algorithm labelled, then a
variable pc (which is local for each MODULE) is added to represent the control
state.

164 I. Husien and S. Schewe

Fig. 3. Translation example – source(left) and target (right)

5 Case Studies

We have selected mutual exclusion [9] and leader election [23,29] as case stud-
ies, because these are the examples, for which genetic programming has been
successfully attempted.

Mutual exclusion. In mutual exclusion, no two processes are allowed to be in
the critical section at the same time. In addition, there are liveness properties
that essentially require non-starvation.

For the mutual exclusion example, we consider programs that progress
through four sections, a ‘non-critical section’, an ‘entry section’, a ‘critical
section’, and an ‘exit section’. The ‘non-critical section’ and ‘critical section’
parts are not targets of the synthesis process. In this example, we start with a
small program tree that includes the non-critical section and the critical section
as privileged commands that cannot be changed by the modifier. Neither can
any of their ancestors in the program tree. The entry and exit sections, on the
other hand, are standard parts of the tree that can be changed.

The modifier is also provided with the vocabulary it can use. Besides the
standard commands and the privileged commands for the critical and non-critical
sections, these are the variables ‘me’ and ‘other’ that identify the two processes
involved and, depending on the benchmark, two or three global / shared boolean
variables.

The mutual exclusion example uses one safety specification: only one process
can be in the critical sections at a time. This is represented by the CTL formula

!EF (P0 in critical section & P1 in critical section).

Program Generation Using Simulated Annealing and Model Checking 165

When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied, and
80 points when !AF (P0 in critical section & P1 in critical section) holds.

In addition, there is a non-starvation property that, whenever a process enters
its entry section, it will eventually enter the critical section. For process, one this is

AG(P1 in entry section → AFP1 in critical section).

When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied,
80 points when EG(P1 in entry section → AFP1 in critical section) holds,
80 points when AG(P1 in entry section → EFP1 in critical section) holds,

and
10 points when EG(P1 in entry section → EFP1 in critical section) holds.

Leader election. As a second case study, we consider synthesising a solution
for the leader election problem [23,29]. For that purpose, we use clockwise unidi-
rectional ring networks with two different sizes, three or four nodes, respectively.

For leader election, we do not consider any privileged commands. Again, the
modifier needs to be provided with vocabulary. Besides the standard commands,
this includes

– id: a specific integer value for each node in the ring, which have the values
1, . . . , i for rings of size i.

– myval,other,leaderID: local variables; leaderID is initialized to 0.
– Send (myval): a command that refers to sending the value of ‘myval’ to the

next node in the ring. (It is placed in a variable the next process can read
using the following command.)

– Receive (other): a command that reads the last value sent by the previous
node.

The specification for leader election requires the safety specification that
there is never more than one leader, and the liveness requirement that a leader
will eventually be elected. For both requirement, we assign

100 points when the sub-specification is satisfied on all paths, and
80 points when the sub-specification is satisfied on some path.

6 Results

We have implemented the simulated annealing and genetic programming
algorithms as described, using NuSMV [3] as a solver when deriving the fit-
ness of candidate programs. For simulated annealing, we have set the initial
temperature to 20, 000. The cooling schedule decreases the temperature by 0.8

166 I. Husien and S. Schewe

Fig. 4. Average time required for synthesising a correct program (Color figure online)

in each iteration. The schedule ends after 25, 000 iterations, when the tempera-
ture hits 0. In a failed execution, this leads to determining the fitness of 25, 001
candidate programs.

As described in Sect. 3, we have taken the values suggested in [21] for genetic
programming: λ = 150 candidate programs are considered in each step, μ = 5
are kept, and we abort after 2, 000 iterations. In a failed execution, this leads to
determining the fitness of 290, 150 candidate programs.

For the mutual exclusion benchmark, we distinguish between programs that
use two and three shared bits, respectively. For the leader election benchmark
we use ring networks with three and four nodes, respectively. The results are
shown in Figs. 4 and 5 and summarised in Table 1. The experiments have been
conducted using a machine with an Intel core i7 3.40 GHz CPU and 16GB RAM.
Figure 4 shows the average time needed for synthesising a correct program. The
two factors that determine the average running time are the success rate and
the running time for a full execution, successful or not. These values are shown
in Fig. 5.

An individual execution of simulated annealing ends when a correct program
is found or when the stopping temperature is reached after 25, 000 iterations.
Similarly, the genetic programming approaches stop when they have found a
solution or when the number or iterations has reached its maximum of 2, 000
iterations. Note that, while simulated annealing incurs more iterations before
reaching its termination criterion, it needs to perform only a fraction of the
model checking tasks in each iteration. While the number of iterations is slightly
more than an order of magnitude higher, the number of programs, for which the

Program Generation Using Simulated Annealing and Model Checking 167

Fig. 5. Average running time of an individual execution (left) and success rate of
individual executions (right) (Color figure online)

fitness needs to be calculated, is slightly more than an order of magnitude lower
(25, 001 vs. 290, 150).

For the model checking community, success rates of around 20% may sound
very low, but this is the appropriate range for such techniques. Note that it is
very simple to drive the success rate up: one can decrease the cooling speed for
simulated annealing and increase the number of iterations for genetic program-
ming, respectively. However, this also increases the running time for individual
full executions. A very high success rate is therefore not the goal when devising
these algorithms, but a low expected overall running time. A 20% success rate
is in a good region for achieving this goal. Table 1 shows the average running
time for single executions in seconds, the success rate in %, and the resulting
overall running time. The best values (shortest expected running time or high-
est success rate) for each comparison printed in bold. Both simulated annealing
and the hybrid approach significantly outperform the pure genetic programming
approach. The low success rate for pure genetic programming suggests that the
number of iterations might be too small. However, as the individual execution
time is already ways above the average time simulated annealing needs for con-
structing a correct program, we did not increase the number of iterations.

The advantage in the individual execution time between the classic and the
hybrid version of genetic programming is in the range that is to be expected,
as the number of calls to the model checker is reduced. It is interesting to note
that simulated annealing, where the shift from rigid to flexible evaluation might
be expected to have a similar effect, does not benefit to the same extent. It is
also interesting to note that the execution time suggests that determining the
fitness of programs produced by simulated annealing is slightly more expensive.
This was to be expected, as the average program length grows over time. The
penalty for longer programs reduces this effect, but cannot entirely remove it.
(This potential disadvantage is the reason why an occasional re-start provides
better results than prolonging the search.)

The advantage in running of simulated annealing compared to the hybrid
approach reach from factor 4 to factor 10, and the comparison to pure genetic
programming reach from factor 35 to factor 76. It is interesting to note that

168 I. Husien and S. Schewe

Table 1. Search techniques comparison

Search technique Single execution Success rate Overall time

2 shared bits SA rigid 20 19 105.26

SA flexible 18 21 85.71

Hybrid w/o crossover 113 31 364.51

Hybrid with crossover 115 33 348.48

GP w/o crossover 583 7 8,328.57

GP with crossover 589 9 6,544.44

3 shared bits SA rigid 23 23 100

SA flexible 20 22 90.9

Hybrid w/o crossover 171 17 1,005.88

Hybrid with crossover 175 19 921.05

GP w/o crossover 615 7 8,785.71

GP with crossover 620 9 6,888.88

3 nodes SA rigid 84 19 442.1

SA flexible 81 20 405

Hybrid w/o crossover 418 15 2,786.66

Hybrid with crossover 421 16 2,631.25

GP w/o crossover 1120 3 37,333.33

GP with crossover 1123 6 18,716.66

4 nodes SA rigid 145 17 852.94

SA flexible 138 18 766.66

Hybrid w/o crossover 536 11 4,872.72

Hybrid with crossover 541 14 3,864.28

GP w/o crossover 1311 3 43,700.00

GP with crossover 1314 5 26,280.00

both the pure and the hybrid approach to genetic programming benefit from
crossovers, but while the benefit for the pure approach is significant, almost
halving the average time for synthesising a program in one case, the benefit for
the superior hybrid approach is small.

7 Conclusion

We have implemented an automated programming technique based on simu-
lated annealing and genetic programming, both in the pure form of [20] and the
arguably hybrid form of [21,22]. The implementations from these papers were
unavailable for comparison, but this is, in our view, a plus: the performance is
naturally sensitive to the quality of the integration, the suitability of the model
checker used, and hidden details, like how the seed is chosen or details of how

Program Generation Using Simulated Annealing and Model Checking 169

the fitness is computed. The integrated comparison makes sure that all methods
are on equal footage in these regards.

The results are very clear and in line with the expectation we had drawn
from the literature [8,28,31]. When crossovers are not used, the main difference
between the established genetic programming techniques and simulated anneal-
ing is the search strategy of using many and using a single instance, respectively.
The data gathered confirms that an increase of the number of iterations can easily
overcompensate the broader group of candidates kept in genetic programming.
In our experiments, we have used an increase that fell short of creating the same
expected running time for a single full execution (with or without success), and
yet outperformed even the hybrid approach w.r.t. the success rate on three of our
four benchmarks. We have also added variations of genetic programming that
include crossover to validate the assumption that crossovers do not lead to an
annihilation of the advantage, but it proved that the hybrid approach, and thus
the stronger competitor, does not benefit much from using crossover. The double
advantage of shorter running time and higher success rate led to an improvement
of 1.5 to 2 orders of magnitude compared to pure genetic programming (with
and without crossover), and between half an order and one order of magnitude
when compared to the hybrid approach (with or without crossover).

It will be interesting to see if future work will show that these factors are
essentially constant, or if they depend heavily on the circumstances.

References

1. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.:
MOCHA: modularity in model checking. In: Hu, A.L., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

2. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

4. Clark, J.A., Jacob, J.L.: Protocols are programs too: the meta-heuristic search for
security protocols. Inf. Softw. Technol. 43, 891–904 (2001)

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

6. Clarke Jr., E.M., Grumberg, O., Peled, O.: Model Checking. MIT Press, Cambridge
(1999)

7. David, C., Kroening, D., Lewis, M.: Using program synthesis for program analy-
sis. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20
2015. LNCS, vol. 9450, pp. 483–498. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48899-7 34

8. Davis, L.: Genetic Algorithms and Simulated Annealing. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1987)

9. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8, 569 (1965)

http://dx.doi.org/10.1007/978-3-662-48899-7_34
http://dx.doi.org/10.1007/978-3-662-48899-7_34

170 I. Husien and S. Schewe

10. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

11. Fearnley, J., Peled, D., Schewe, S.: Synthesis of succinct systems. J. Comput. Syst.
Sci. 81(7), 1171–1193 (2015)

12. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

13. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, pp. 321–330.
IEEE Computer Society Press (2005)

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Trans-
fer 15(5–6), 519–539 (2013)

15. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)

16. Henderson, D., Jacobson, S.H., Johnson, A.W.: The theory and practice of sim-
ulated annealing. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Meta-
heuristics, pp. 287–319. Springer, New York (2003)

17. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory.
LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013)

18. Holzmann, G.J.: The model checker SPIN. Softw. Eng. 23(5), 279–295 (1997)
19. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,

K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

20. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

21. Katz, G., Peled, D.A.: Model checking-based genetic programming with an appli-
cation to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

22. Katz, G., Peled, D.: Model checking driven heuristic search for correct programs.
In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp.
122–131. Springer, Heidelberg (2009)

23. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

24. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

25. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. Bull. Symb. Logic 5(2),
245–263 (1999)

26. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

28. Lahtinen, J., Myllymäki, P., Silander, T., Tirri, H.: Empirical comparison of sto-
chastic algorithms. In: 2NWGA, pp. 45–60 (1996)

29. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy
their linear specification. In: POPL, pp. 97–107. ACM (1985)

Program Generation Using Simulated Annealing and Model Checking 171

30. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001)

31. Mann, J., Smith, G.: A comparison of heuristics for telecommunications traffic
routing. In: Modern Heuristic Search Methods, pp. 235–254 (1996)

32. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society Press (1977)

33. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757. IEEE Computer Society Press (1990)

34. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Puebla, G. (ed.)
LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)

35. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf.
15(5–6), 475–495 (2013)

36. von Essen, C., Jobstmann, B.: Program repair without regret. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 896–911. Springer, Heidelberg
(2013)

LTL Parameter Synthesis of Parametric
Timed Automata

Peter Bezděk(B), Nikola Beneš, Jǐŕı Barnat, and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
bezdek@mail.muni.cz, {xbenes3,barnat,cerna}@fi.muni.cz

Abstract. The parameter synthesis problem for parametric timed
automata is undecidable in general even for very simple reachability
properties. In this paper we introduce restrictions on parameter valua-
tions under which the parameter synthesis problem is decidable for LTL
properties. The investigated bounded integer parameter synthesis prob-
lem could be solved using an explicit enumeration of all possible parame-
ter valuations. We propose an alternative symbolic zone-based method
for this problem which results in a faster computation. Our technique
extends the ideas of the automata-based approach to LTL model check-
ing of timed automata. To justify the usefulness of our approach, we
provide experimental evaluation and compare our method with explicit
enumeration technique.

1 Introduction

Model checking [1] is a formal verification technique applied to check for logical
correctness of discrete distributed systems. While it is often used to prove the
unreachability of a bad state (such as an assertion violation in a piece of code),
with a proper specification formalism, such as the Linear Temporal Logic (LTL),
it can also check for many interesting liveness properties of systems, such as
repeated guaranteed response, eventual stability, live-lock, etc.

Timed automata have been introduced in [2] and have emerged as a use-
ful formalism for modelling time-critical systems as found in many embedded
and cyber-physical systems. The formalism is built on top of the standard finite
automata enriched with a set of real-time clocks and allowing the system actions
to be guarded with respect to the clock valuations. In the general case, such
a timed system exhibits infinite-state semantics (the clock domains are continu-
ous). Nevertheless, when the guards are limited to comparing clock values with
integers only, there exists a bisimilar finite state representation of the original
infinite-state real-time system referred to as the region abstraction. A practically
efficient abstraction of the infinite-state space came with the so called zones [3].
The zone-based abstraction is much coarser and the number of zones reachable

N. Beneš—The author has been supported by the Czech Science Foundation grant
no. GA15-11089S.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 172–187, 2016.
DOI: 10.1007/978-3-319-41591-8 12

LTL Parameter Synthesis of Parametric Timed Automata 173

from the initial state is significantly smaller. This in turns allows for an efficient
implementation of verification tools for timed automata, see e.g. UPPAAL [4].

Very often the correctness of a time-critical system relates to a proper timing,
i.e. it does not only depend on the logical result of the computation, but also on
the time at which the results are produced. To that end the designers are not only
in the need of tools to verify correctness once the system is fully designed, but
also in the need of tools that would help them derive proper time parameters
of individual system actions that would make the system as a whole satisfy
the required specification. After all this problem of parameter synthesis is more
urgent in practice than the verification as such.

Related Work. The problem of the existence of a parameter valuation for
a reachability property of a parametric timed automaton in continuous time has
been shown to be undecidable in [5,6] for a parametric timed automaton with
as few as 3 clocks. This problem remains undecidable even for integer-valued
parameters [7]. A solution for the parameter synthesis problem and reachability
properties is presented in [8] where the authors provide a semi-decision algorithm
which is not guaranteed to terminate in all cases. Authors also introduce a sub-
class of parametric timed automata, called L/U automata for which the empti-
ness problem is decidable. Decidability results for the class of L/U automata are
further extended in [9]. In particular, the authors show that emptiness, finiteness
and universalitity problems of the set of parameter valuations for which there is
an infinite accepting run are decidable.

To obtain a decidable version of parameter synthesis problem for paramet-
ric timed automata we need to restrict parameter valuations to bounded inte-
gers. When modelling a real-time system, designers can usually provide practical
bounds on time parameters of individual system actions. Therefore, introducing
a parameter synthesis method with such a restriction is still reasonable. In [10]
the authors show that the problem of existence of bounded integer parameter
value such that a given property is satisfied is PSPACE-complete for a significant
number of properties, which include Timed Computational Tree Logic. They give
symbolic algorithms only for reachability and unavoidability properties.

Contribution. The main contribution of this paper is a symbolic method
that solves the parameter synthesis problem for specifications given in the Lin-
ear Time Logic (LTL) and parametric timed automata with bounded integer
parameters. To this end, we introduce a finite abstraction of parametric timed
automata with bounded integer parameters and provide an algorithm working
over this abstraction. To evaluate our technique we implemented both a sym-
bolic approach and explicit enumeration technique in a proof-of-concept tool and
compare the techniques on a case study. The finite abstraction does not provide
a unique representation of states and therefore we design an efficient state stor-
age mechanism that deals with this problem. The experiments demonstrate the
strength of the symbolic approach which may be faster by an order of magnitude.

174 P. Bezděk et al.

Outline. The rest of the paper is organised as follows. The problem definition
is given in Sect. 2 that also introduces the basic notions. We then define the sym-
bolic semantics of a parametric timed Büchi automaton and its finite abstraction
in Sect. 3. Section 4 describes the parameter synthesis algorithm itself. Section 5
describes the implementation and used heuristics. Then, in Sect. 6 we experimen-
tally evaluate the proposed algorithm and compare it with explicit enumeration.
Finally, Sect. 7 concludes the paper.

2 Preliminaries and Problem Statement

In order to state our main problem formally, we need to describe the notion of
a parametric timed automaton. We start by describing some basic notation.

Let P be a finite set of parameters. An affine expression is an expression of
the form z0 + z1p1 + . . .+ znpn, where p1, . . . , pn ∈ P and z0, . . . , zn ∈ Z. We use
E(P) to denote the set of all affine expressions over P . A parameter valuation
is a function v : P → Z which assigns an integer number to each parameter.
Let lb : P → Z be a lower bound function and ub : P → Z be an upper
bound function. For an affine expression e, we use e[v] to denote the integer
value obtained by replacing each p in e by v(p). We use maxlb,ub(e) to denote
the maximal value obtained by replacing each p with a positive coefficient in e
by ub(p) and replacing each p with a negative coefficient in e by lb(p). We say
that the parameter valuation v respects lb and ub if for each p ∈ P it holds that
lb(p) ≤ v(p) ≤ ub(p). We denote the set of all parameter valuations respecting lb
and ub by V allb,ub(P). In the following, we only consider parameter valuations
from V allb,ub(P).

Let X be a finite set of clocks. We assume the existence of a special zero clock,
denoted by x0, that has always the value 0. A guard is a finite conjunction of
expressions of the form xi −xj ∼ e where xi, xj ∈ X, e ∈ E(P) and ∼∈ {≤, <}.
We use G(X,P) to denote the set of all guards over a set of clocks X and a set of
parameters P . A simple guard is a guard containing only expressions of the form
xi −xj ∼ e where xi, xj ∈ X, e ∈ E(P), ∼∈ {≤, <}, and xi = x0 or xj = x0. We
also use G(X,P) to denote the set of all simple guards over a set of clocks X and
a set of parameters P . A clock valuation is a function η : X → R≥0 assigning non-
negative real numbers to each clock such that η(x0) = 0. We denote the set of
all clock valuations by V al(X). Let g ∈ G(X,P) and v be a parameter valuation
and η be a clock valuation. Then g[v, η] denotes a boolean value obtained from g
by replacing each parameter p with v(p) and each clock x with η(x). A pair
(v, η) satisfies a guard g, denoted by (v, η) |= g, if g[v, η] evaluates to true.
The semantics of a guard g, denoted by �g�, is a set of all valuation pairs (v, η)
such that (v, η) |= g. For a given parameter valuation v we write �g�v for the
set of clock valuations {η | (v, η) |= g}.

We define two operations on clock valuations. Let η be a clock valuation,
d a non-negative real number and R ⊆ X a set of clocks. We use η +d to denote
the clock valuation that adds the delay d to each clock, i.e. (η +d)(x) = η(x)+d
for all x ∈ X\{x0}. We further use η〈R〉 to denote the clock valuation that resets
clocks from the set R, i.e. η〈R〉(x) = 0 if x ∈ R, η〈R〉(x) = η(x) otherwise.

LTL Parameter Synthesis of Parametric Timed Automata 175

Definition 2.1 (PTA). A parametric timed automaton (PTA) is a tuple M =
(L, l0,X, P,Δ, Inv) where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X is a finite set of clocks,
– P is a finite set of parameters,
– Δ ⊆ L × G(X,P) × 2X × L is a finite transition relation, and
– Inv : L → G(X,P) is an invariant function.

We use q
g,R−−→Δ q′ to denote (q, g,R, q′) ∈ Δ. The semantics of a PTA is given

as a labelled transition system. A labelled transition system (LTS) over a set of
symbols Σ is a triple (S, s0,→), where S is a set of states, s0 ∈ S is an initial
state and → ⊆ S × Σ × S is a transition relation. We use s

a−→ s′ to denote
(s, a, s′) ∈ →.

Definition 2.2 (PTA semantics). Let M = (L, l0,X, P,Δ, Inv) be a PTA
and v be a parameter valuation. The semantics of M under v, denoted by �M�v,
is an LTS (SM , s0,→) over the set of symbols {act} ∪ R≥0, where

– SM = L × V al(X) is a set of all states,
– s0 = (l0,0), where 0 is a clock valuation with 0(x) = 0 for all x, and
– the transition relation → is specified for all (l, η), (l′, η′) ∈ SM as follows:

• (l, η) d−→ (l′, η′) if l = l′, d ∈ R≥0, η′ = η + d, and (v, η′) |= Inv(l′),

• (l, η) act−−→ (l′, η′) if ∃g,R : l
g,R−−→Δ l′, (v, η) |= g, η′ = η〈R〉,

and (v, η′) |= Inv(l′).
The transitions of the first kind are called delay transitions, the latter are
called action transitions.

We write s1
act−−→d s2 if there exists s′ ∈ SM and d ∈ R

≥0 such that s1
act−→

s′ d−→ s2. A proper run π of �M�v is an infinite alternating sequence of delay
and action transitions that begins with a delay transition π = (l0, η0)

d0−→ (l0, η0+
d0)

act−−→ (l1, η1)
d1−→ · · · . A proper run is called Zeno if the sum of all its delays

is finite.

Let M be a PTA, L : L → 2Ap be a labelling function that assigns a set
of atomic propositions to each location of M , v be a parameter valuation, and
ϕ be an LTL formula. We say that M under v with L satisfies ϕ, denoted by
(M,v,L) |= ϕ if for all proper runs π of �M�v, π satisfies ϕ where atomic
propositions are determined by L.

Given a parametric timed automaton M , a labelling function L, and an LTL
property ϕ, the parameter synthesis problem is to compute the set of all para-
meter valuations v such that (M,v,L) |= ϕ. Unfortunately, it is known that
the parameter synthesis problem for a PTA is undecidable even for very simple
(reachability) properties [5]. Instead of solving the general problem, we thus focus
on a more constrained version which is still reasonable for practical purposes.

176 P. Bezděk et al.

Problem Formulation. Given an LTL property ϕ, a parametric timed automa-
ton M = (L, l0,X, P,Δ, Inv), a labelling function L, a lower bound function lb
and an upper bound function ub, the bounded integer parameter synthesis prob-
lem is to compute the set of all parameter valuations v such that (M,v,L) |= ϕ
and lb(p) ≤ v(p) ≤ ub(p) for each p ∈ P .

This problem is trivially decidable using the standard zone-based abstrac-
tion and explicit enumeration of all parameter valuations. In order to avoid the
necessity of the explicit enumeration of all parameter valuations we use a combi-
nation of the zone-based abstraction and a symbolic representation of parameter
valuation sets. Our algorithmic framework which solves this problem consists of
three steps.

As the first step, we apply the standard automata-based LTL model checking
of timed automata [2] to parametric timed automata. We employ this approach
in the following way. From a PTA M and an LTL formula ϕ we produce a prod-
uct parametric timed Büchi automaton (PTBA) A. The accepting runs of the
automaton A correspond to the runs of M violating the formula ϕ.

As the second step, we employ a symbolic semantics of a PTBA A with
a suitable extrapolation. From the symbolic state space of a PTBA A we finally
produce a Büchi automaton B in which each state is associated symbolic infor-
mation about parameter valuations. This transformation is described in Sect. 3.

As the last step, we need to detect all parameter valuations for which there
exists an accepting run in Büchi automaton B. To that end, we employ a new
algorithm, which we call the Cumulative NDFS. The algorithm is described in
detail in Sect. 4.

We now proceed with the definitions of a Büchi automaton, a parametric
timed Büchi automaton and its semantics.

Definition 2.3 (BA). A Büchi automaton (BA) is a tuple B =
(Q, q0, Σ,→, F), where Q is a finite set of states, q0 ∈ Q is an initial state, Σ is
a finite set of symbols, →⊆ Q×Σ ×Q is a set of transitions, and F ⊆ Q is a set
of accepting states (acceptance condition). An ω-word w = a0a1a2 . . . ∈ Σω is
accepting if there is an infinite sequence of states q0q1q2 . . . such that qi

ai−→ qi+1

for all i ∈ N, and there exist infinitely many i ∈ N such that qi ∈ F .

Definition 2.4 (PTBA). A parametric timed Büchi automaton (PTBA) is
a pair A = (M,F) where M = (L, l0,X, P,Δ, Inv) is a PTA, and F ⊆ L is a set
of accepting locations.

Zeno runs represent non-realistic behaviours and it is desirable to ignore
them in analysis. Therefore, we are interested only in non-Zeno accepting runs
of a PTBA. There is a syntactic transformation to the so-called strongly non-
Zeno form [11] of a PTBA, which guarantees that each accepting run is non-Zeno.
For the rest of the paper, we thus assume that there are no Zeno accepting runs
in the PTBA.

Definition 2.5 (PTBA semantics). Let A = (M,F) be a PTBA and v be
a parameter valuation. The semantics of A under v, denoted by �A�v, is defined
as �M�v = (SM , s0,→).

LTL Parameter Synthesis of Parametric Timed Automata 177

We say a state s = (l, η) ∈ SM is accepting if l ∈ F . A proper run π =
s0

d0−→ s′
0

act−→ s1
d1−→ s′

1
act−→ . . . of �A�v is accepting if there exists an infinite

set of indices i such that si is accepting.

3 Symbolic Semantics

In this section we show the construction of a finite system which represents the
semantics of a given PTBA. First, we describe a parametric extension of the zone
abstraction. This extension is based on constrained parametric difference bound
matrices, described in [8]. However, this abstraction itself does not guarantee
finiteness in our setting. To solve this problem we further introduce a finite
parametric extrapolation.

3.1 Constrained Parametric Difference Bound Matrix

A constraint is an inequality of the form e ∼ e′ where e, e′ ∈ E and ∼ ∈ {>,≥,
≤, <}. We define c[v] as the boolean value obtained by replacing each p in c by
v(p). A valuation v satisfies a constraint c, denoted v |= c, if c[v] evaluates to
true. The semantics of a constraint c, denoted �c�, is the set of all valuations
that satisfy c. A finite set of constraints C is called a constraint set. A valuation
satisfies a constraint set C if it satisfies each c ∈ C. The semantics of a constraint
set C is given by �C� =

⋂
c∈C�c�. A constraint set C is satisfiable if �C� �= ∅.

A constraint c covers a constraint set C, denoted C |= c, if �C� ⊆ �c�.
As in [8], we identify the relation symbol ≤ with the boolean value true and

< with the boolean value false. Then, we treat boolean connectives on relation
symbols ≤, < as operations with boolean values. For example, (≤ =⇒ <) = <.

We now define the parametric difference bound matrix, the constrained para-
metric difference bound matrix, several operations on them, and the symbolic
semantics of a PTBA.

Definition 3.1. A parametric difference bound matrix (PDBM) over P and X
is a set D which contains for all 0 ≤ i, j ≤ |X| a guard of the form xi−xj ≺ij eij

where xi, xj ∈ X and eij ∈ E(P) ∪ {∞} and i = j =⇒ eii = 0. We denote
by Dij a guard of the form xi − xj ≺ij eij contained in D. Given a parameter
valuation v, the semantics of D is given by �D�v = �

∧
i,j Dij�v. A PDBM D is

satisfiable with respect to v if �D�v is non-empty.

Definition 3.2. A constrained parametric difference bound matrix (CPDBM)
is a pair (C,D), where C is a constraint set and D is a PDBM and for each
0 ≤ i ≤ |X| it holds that C |= e0i ≥ 0. The semantics of (C,D) is given by
�C,D� = {(v, η) | v ∈ �C� ∧ η ∈ �D�v}. We call (C,D) satisfiable if �C,D� is
non-empty. A CPDBM (C,D) is said to be in the canonical form if and only if
for all i, j, k, C |= eij(≺ik ∧ ≺kj)eik + ekj.

178 P. Bezděk et al.

Resetting a Clock. Suppose (C,D) is a CPDBM in the canonical form. The
reset of the clock xr in (C,D), denoted by (C,D)〈xr〉, is given as (C,D〈xr〉)
where:

D〈xr〉ij =

⎧
⎪⎨

⎪⎩

D0j if i �= j and i = r,
Di0 if i �= j and j = r,
Dij else.

We can again generalise this definition to a set of clocks:
(C,D)〈xi0 , xi1 , . . . , xik〉 def⇔ (C,D)〈xi0〉〈xi1〉 . . . 〈xik〉.

Applying a Guard. Suppose g is a guard of the form xi − xj ≺ e, (C,D) is
a CPDBM in the canonical form and Dij = (eij ,≺ij). The application of the
guard g on (C,D) generally results in a set of CPDBMs and is defined as follows:

(C,D)[g] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(C,D[g])} if C |= ¬(eij(≺ij =⇒ ≺)e),
{(C,D)} if C |= eij(≺ij =⇒ ≺)e,
{(C ∪ {eij(≺ij =⇒ ≺)e},D), otherwise,
(C ∪ {¬eij(≺ij =⇒ ≺)e},D[g]), }

where D[g] is defined as follows:

D[g]kl =

{
(e,≺) if k = i and l = j,
Dkl else.

We can generalise this definition to conjunctions of guards as follows:
D[gi0 ∧ gi1 ∧ . . . ∧ gik]

def⇔ D[gi0][gi1] . . . [gik].

Time Successors. Suppose (C,D) is a CPDBM in the canonical form. The
time successor of (C,D), denoted by (C,D)↑, represents a CPDBM with all
upper bounds on clocks removed and is given as (C,D↑) where:

D↑
ij =

{
(∞, <) if i �= 0 and j = 0,
Dij else.

The reset and time successor operations preserve the canonical form of
a CPDBM. After the application of a guard the CPDBM may no longer be
in the canonical form and thus a transformation to the canonical form needs to
be performed. However, due to the presence of parameters the standard canon-
isation [12] process can be ambiguous. The canonisation procedure is therefore
extended to cope with this ambiguity. As a consequence, the result of the canon-
isation is not a single CPDBM, but may generally be a set containing potentially
more CPDBMs in the canonical form with mutually disjoint constraint sets.

To canonise the given CPDBM we need to derive the tightest constraint on
each clock difference. Deriving the tightest constraint on a clock difference can be

LTL Parameter Synthesis of Parametric Timed Automata 179

seen as finding the shortest path in the graph interpretation of the CPDBM. In [8]
the authors implement the canonisation using a nondeterministic extension of
the Floyd-Warshall algorithm where on each relaxation a split into two different
CPDBMs can occur.

Canonisation. First, we define a relation −→FW on constrained parametric
bound matrices as follows, for all 0 ≤ k, i, j ≤ |X|:
– (k, i, j, C1,D1) −→FW (k, i, j + 1, C2,D2)

if (C2,D2) ∈ (C1,D1)[xi − xj(≺ik ∧ ≺kj)eik + ekj]
– (k, i, |X| + 1, C1,D1) −→FW (k, i + 1, 0, C1,D1)
– (k, |X| + 1, 0, C1,D1) −→FW (k + 1, 0, 0, C1,D1)

The relation −→FW can be seen as a representation of the computation steps
of the extended Floyd-Warshall algorithm.

Suppose now (C,D) is a CPDBM. The canonical set of (C,D), denoted as
(C,D)c, represents a set of CPDBMs with the tightest constraint on each clock
difference in D and is defined as follows:

(C,D)c = {(C ′,D′) | (0, 0, 0, C,D) −→∗
FW (|X| + 1, 0, 0, C ′,D′)}

Example 3.3. Let x, y ∈ X and p, q ∈ P . For a CPDBM (C,D) = (∅, {x ≤ p, y ≤
q, y ≤ x, y ≤ x}) we obtain by canonisation (C,D)c = {({p ≤ q}, {x ≤ p, y ≤
p, y ≤ x, y ≤ x}), ({q < p}, {x ≤ q, y ≤ q, y ≤ x, y ≤ x})}.

Definition 3.4. (PTBA symbolic semantics). Let A = ((L, l0,X, P,Δ,
Inv), F) be a PTBA. Let lb and ub be a lower bound function and an upper
bound function on parameters. The symbolic semantics of A with respect to lb
and ub is a transition system (SA,Sinit,=⇒), denoted as �A�lb,ub, where

– SA = L × {�C,D� | (C,D) is a CPDBM} is the set of all symbolic states,
– the set of initial states Sinit = {(l0, �C,D�) | (C,D) ∈ (∅, E↑)[Inv(l0)]}, where

• E is a PDBM with Ei,j = (0,≤) for each i, j, and
• for each p ∈ P , the constraints p ≥ lb(p) and p ≤ ub(p) are in C.

– There is a transition (l, �C,D�) =⇒ (l′, �C ′
c,D

′
c�) if

• l
g,R−→Δ l′ and

• (C ′′,D′′) ∈ (C,D)[g] and
• (C ′′

c ,D′′
c) ∈ (C ′′,D′′)c and

• (C ′,D′) ∈ (C ′′
c ,D′′

c 〈R〉↑)[Inv(l′)] and
• (C ′

c,D
′
c) ∈ (C ′,D′)c.

We say that a state S = (l, �C,D�) ∈ SA is accepting if l ∈ F . We say
that π = S0 =⇒ S1 =⇒ . . . is a run of �A�lb,ub if S0 ∈ Sinit and for each i,
Si ∈ SA and Si−1 =⇒ Si. A run respects a parameter valuation v if for each
state Si = (li, �Ci,Di�) it holds that v ∈ �Ci�. A run π is accepting if there exists
an infinite set of indices i such that Si is accepting. For the rest of the paper we
fix lb, ub and use �A� to denote �A�lb,ub.

180 P. Bezděk et al.

3.2 Finite Abstraction

Similarly to the nonparametric case, the symbolic transition system �A� may be
infinite. In order to obtain a finite transition system we need to apply a finite
abstraction over �A�. In the standard case of timed automata without parameters
we use one of the extrapolation techniques [13,14]. In our parametric setup we
define a new finite abstraction called the pk-extrapolation which is a parametric
extension of the widely used k-extrapolation [13]. The k-extrapolation identifies
states which are identical except for the clock values which exceeds the maximal
constant from guards and invariants.

In our parametric setup, we need to define the maximal constant with which
each clock within a PTBA is compared. We define M(x) as the maximal value
in {maxlb,ub(e) | e is compared with x in a guard or an invariant of the con-
sidered PTBA}. The core idea of pk-extrapolation is the same as the idea of
k-extrapolation. We substitute each bound on clock difference in the CPDBM
whenever this bound exceeds the maximal constant. The precise description of
this substitution process is given in the Definition 3.5. Contrary to the non-
parametric case, due to the occurrence of parameters in the CPDBM bounds,
the substitution process may be ambiguous. In these situations we restrict the
parameter values in order to obtain an unambiguous situation. This solution is
similar to the constraint set splitting that is done in the application of a guard
and in the canonisation procedure. Therefore, the result of pk-extrapolation is
a set of CPDBMs instead of a single CPDBM.

Definition 3.5. Let A be a PTBA, (l, �C,D�) be a symbolic state of �A� and
Dij = xi − xj ≺ij eij for each 0 ≤ i, j ≤ |X|. We define the pk-extrapolation
αpk in the following way. αpk(l, �C,D�) is the set of all (l, �C ′,D′�) such that
for each i, j, 0 ≤ i, j ≤ |X| one of the following conditions holds:

– D′
ij = xi − xj ≺ij eij and the constraint (eij ≤ M(xi)) ∈ C ′,

– D′
ij = xi − xj < ∞ and the constraint (eij > M(xi)) ∈ C ′,

– D′
ij = xi − xj ≺ij eij and the constraint (eij ≥ −M(xj)) ∈ C ′,

– D′
ij = xi − xj < −M(xj) and the constraint (eij < −M(xj)) ∈ C ′.

Example 3.6. Consider x, y ∈ X, p ∈ P , p ∈ [0, 7], M(x) = M(y) = 10, and
the symbolic state (l, �C,D�) where C = ∅ and D = {x ≤ y, y ≤ x, y ≤ 2p}.
Now, αpk(l, �C,D�) contains two symbolic states: (l, �C1,D1�) and (l, �C2,D2�)
where C1 = {2p ≤ 10}, D1 = {x ≤ y, y ≤ x, y ≤ 2p}, C2 = {2p > 10},
D2 = {x ≤ y, y ≤ x, y < ∞}.

Theorem 3.7. Let A be a PTBA. The pk-extrapolation is a finite abstraction
that preserves all accepting runs of �A�v for each parameter valuation v.

Proof Idea. We can transform the proof of Theorem 1 of [15] as well as the
corresponding lemmata and definitions into our parametric setup. Due to space
constraints, we did not include the full technically detailed proof and we kindly
refer the reader to [16].

LTL Parameter Synthesis of Parametric Timed Automata 181

4 Parameter Synthesis Algorithm

We recall that our main objective is to find all parameter valuations for which the
parametric timed automaton satisfies its specification. In the previous sections
we have described the standard automata-based method employed under a para-
metric setup which produces a Büchi automaton. For the rest of this section we
use s.�C� to denote the set �C� where s = (l, �C,D�) is a state of the input Büchi
automaton. We say that a sequence of states s1 =⇒ s2 =⇒ . . . =⇒ sn =⇒ s1 is
a cycle under the parameter valuation v if each state si in the sequence satisfies
v ∈ si.�C�. A cycle is called accepting if there exists 0 ≤ i ≤ n such that si is
accepting.

The standard automata-based LTL model checking checks the emptiness of
the produced Büchi automaton. The emptiness check can be performed using
the Nested Depth First Search (NDFS) algorithm [17]. The NDFS algorithm is
a modification of the depth first search algorithm which allows a detection of
an accepting cycle in the given Büchi automaton.

Contrary to the standard LTL model checking, it is not enough to check
the emptiness of the produced Büchi automaton. Our objective is to check the
emptiness of the produced Büchi automaton for each considered parameter val-
uation. To solve this objective, we introduce a new algorithm called the Cumu-
lative NDFS algorithm which is an extension of the NDFS algorithm. The
pseudocode of Cumulative NDFS is given in Algorithm1. Our modification is
based on the set Found which accumulates all detected parametric valuations
such that an accepting cycle under these valuations was found. In contrast to
the NDFS algorithm, whenever Cumulative NDFS detects an accepting cycle,
parameter valuations are saved to the set Found and the computation continues
with a search for another accepting cycle. Note the fact that whenever we reach
a state s′ with s′.�C� ⊆ Found we already have found an accepting cycle under
all valuations from s′.�C� and there is no need to continue with the search from
s′. Therefore, we are able to speed up the computation whenever we reach such
a state.

The crucial property the algorithm is based on is that of monotonicity. The
set of parameter valuations s.�C� can not grow along any run of the input
automaton. Lemma 4.1 states this observation formally. The observation fol-
lows from the definition of successors in �A�α and the definition of operations
on CPDBMs. The clear corollary of Lemma 4.1 is the fact that each state s on
a cycle has the same set s.�C�.

Lemma 4.1. Let A be a PTBA, α be an abstraction and s be a state in �A�α.
For every state s′ reachable from s it holds that s′.�C� ⊆ s.�C�.

Theorem 4.2. Let A be a PTBA and α an abstraction over �A�. A parameter
valuation v is contained in the output of the CumulativeNDFS(�A�α) if and only
if there exists an accepting run respecting v in �A�α.

Due to space constraints, we did not include the full technically detailed proof
and we kindly refer the reader to [16].

182 P. Bezděk et al.

Algorithm CumulativeNDFS(G)
1 Found ← ∅; Stack ← ∅

Outer ← ∅; Inner ← ∅
2 OuterDFS(sinit)
3 return Accepted ← Found

Procedure OuterDFS(s)
4 Stack ← Stack ∪ {s}
5 Outer ← Outer ∪ {s}
6 foreach s′ such that s → s′ do
7 if s′ /∈ Outer ∧ s′ /∈ Stack ∧

s′.�C� �⊆ Found then
8 OuterDFS(s′)
9 if s ∈ Accepting ∧ s.�C� �⊆ Found

then
10 InnerDFS(s)

11 Stack ← Stack \ {s}

Procedure InnerDFS(s)
12 Inner ← Inner ∪ {s}
13 foreach s′ such that s → s′ do
14 if s′ ∈ Stack then
15 “Cycle detected”
16 Found ← Found ∪ s′.�C�
17 return

18 if s′ /∈ Inner ∧
s′.�C� �⊆ Found then

19 InnerDFS(s′)

Algorithm 1. Cumulative NDFS

As the last step in the solution to our problem, we need to complement the
set Accepted. Thus, the solution is the complement of the set Accepted, more
precisely the set V allb,ub(X,P)\Accepted. To conclude this section, we state that
Theorem 4.2 together with Theorem 3.7 imply the correctness of our solution.

5 Implementation

We have implemented our approach in a proof-of-concept tool. We are able to
process models given as networks of parametric timed automata. A network
represents a product of several parametric timed automata where handshake
synchronization of two components at a time is allowed. We also extend the
parametric timed automata with data variables which enable the usage of guards
on data values and transition effects on data values. Such model is considered
standard in the field and is used as the modelling language in the tool UPPAAL.

Deadlocks. Cumulative NDFS algorithm returns all parameter valuations for
which LTL property does not hold. However, state space can contain deadlock
states which also need to be detected and reported. In the nonparametric setting
a state is a deadlock state if there are no enabled outgoing transitions. In a para-
metric setting the deadlock status of a state depends on the parameter valuation.
To decide for which parameter valuations a state (l, �C,D�) is a deadlock we
need to consider all guards g1, . . . , gn of the outgoing transitions of l. The state
(l, �C,D�) is a deadlock for all parameter valuations in �C,D�[¬g1 ∧ . . . ∧ ¬gn].
Applying this detection to each reachable state, all parameter valuations leading
to deadlock are detected during computation.

LTL Parameter Synthesis of Parametric Timed Automata 183

Procedure InitializeStorage()
1 Storage ← ∅; M1 ← ∅; M2 ← ∅

Procedure SetData(l, C,D, data)
2 if M2(C,D) �= ∅ then
3 (C′, D′) ← M2(C,D)
4 Storage(l, C′, D′) ← data

5 else
6 IH ← integerHull(C,D)
7 foreach (C′, D′) in M1(IH) do
8 if �C′, D′� = �C,D� then
9 M2(C,D) ← (C′, D′)

10 Storage(l, C′, D′) ← data

11 M2(C,D) ← (C,D)
12 M1(IH) ← M1(IH) ∪ {(C,D)}
13 Storage(l, C,D) ← data

Procedure GetData(l, C,D)
14 if M2(C,D) �= ∅ then
15 (C′, D′) ← M2(C,D)
16 return Storage(l, C′, D′)
17 else
18 IH ← integerHull(C,D)
19 foreach (C′, D′) in M1(IH) do
20 if �C′, D′� = �C,D� then
21 M2(C,D) ← (C′, D′)
22 return Storage(l, C′, D′)
23 M2(C,D) ← (C,D)
24 M1(IH) ← M1(IH) ∪ {(C,D)}
25 Storage(l, C,D) ← initialData
26 return initialData

Algorithm 2. State space storage operations

State space storage. One of the performance critical parts of the implementa-
tion is the state space storage. We use the state space storage to look up and store
information about presence of each state in the sets Inner, Outer, and Stack.
We refer to this information as data. A straightforward implementation would
simply store each state together with its data. Such a solution is only efficient
when a unique representation of states is available. Without such a unique rep-
resentation the storage operations have to perform expensive equivalence checks
with each stored state in the worst case scenario. In [10] the authors introduce
unique representation based on a computation of an integer hull. The integer
hull of a given set is a convex hull of all integer elements of a given set.

The solution of [10] assumes the existence of an upper bound for each clock.
We do not have such an upper-bound assumption and therefore this solution
is not directly applicable in our technique. However, we use the integer hull as
a heuristic approximation of a unique representation of a CPDBM instead. This
way we obtain a practically efficient solution that deals with the non-existence
of a unique representation of a state.

The solution is based on two mappings. The first mapping, denoted by M1

maps a given integer hull to a list of CPDBM representations. Each such list
contains the representations of semantically different CPDBMs with the same
integer hull. Thanks to M1 we can quickly distinguish states with different inte-
ger hulls. However, each storage operation still needs to perform the expensive
computation of the integer hull. In order to reduce number of the integer hull
computations, we introduce the second mapping, denoted by M2. This second
mapping serves as a cache which maps a given CPDBM to its unique repre-
sentative in the storage. Once a CPDBM representative is resolved, it is saved
in M2.

184 P. Bezděk et al.

Fig. 1. Parametric TrainGate model

The pseudo code of state space storage operations is given in Algorithm 2.
Note that the procedures SetData and GetData are analogous. In our prototype
tool, the two mappings as well as the storage itself are implemented using hash
tables. Checking whether two states are semantically equivalent is implemented
using Parma Polyhedra Library [18]. The library is also used to check parametric
constraint satisfaction in the CPDBM operations.

6 Experimental Evaluation

We have implemented the proposed technique for integer parameter synthesis in
our proof-of-concept tool. Our goal is to compare our method with the explicit
enumeration technique. To be able to compare performance of both techniques
under similar conditions we also implemented the standard DBM-based LTL
model checker for timed automata. Both tools use the same LTL to BA transla-
tion method [19] and analogous extrapolation techniques.

Our evaluation was performed on a parametric extension of the case study
TrainGate [20] provided with the tool UPPAAL. In the TrainGate model we sub-
stitute all 6 integer bounds with separate parameters and consider two trains.
This model is presented in Fig. 1. We checked two LTL properties. The first
property prop1 states that the two trains can not cross the bridge simultane-
ously (G!(Train1.cross and Train2.cross)). The second property prop2 states
that whenever the first train is approaching the bridge it will cross the bridge
eventually (G Train1.appr =⇒ F Train1.cross). For all considered parameter
valuations which do not lead to the deadlock, prop1 and prop2 are satisfied.

Experiments were performed on a PC with CPU i5-4690 and 16 GB RAM.
We considered a timeout of 12 h for each task. We provide percentage of solved
parameter valuations if the timeout was reached by explicit enumeration.

Table 1 shows the impact of the number of parameters used in the model. For
models with a small number of parameters and small value ranges the explicit

LTL Parameter Synthesis of Parametric Timed Automata 185

Table 1. Impact of model parameter count

TrainGate model 2 trains 3 params 4 params 5 params 6 params

p1 ∈ [20, 50] p1 ∈ [20, 50] p1 ∈ [20, 50] p1 ∈ [20, 50]

p2 ∈ [10, 50] p2 ∈ [10, 50] p2 ∈ [10, 50] p2 ∈ [10, 50]

p3 ∈ [15, 50] p3 ∈ [15, 50] p3 ∈ [15, 50] p3 ∈ [15, 50]

p4 = 7 p4 ∈ [7, 50] p4 ∈ [7, 50] p4 ∈ [7, 50]

p5 = 5 p5 = 5 p5 ∈ [5, 50] p5 ∈ [5, 50]

p6 = 3 p6 = 3 p6 = 3 p6 ∈ [3, 50]

prop1 explicit enumeration 0:01:03 0:44:50 Timeout(51%) Timeout(2%)

prop1 cumulative algorithm 0:08:16 0:54:39 3:20:25 7:58:42

prop2 explicit enumeration 0:01:21 0:58:17 Timeout(42%) Timeout(1%)

prop2 cumulative algorithm 0:12:20 1:23:37 5:11:01 10:48:16

Table 2. Impact of parameter range size

TrainGate model p1 ∈ [20, 50] p1 ∈ [20, 100] p1 ∈ [10, 100]

2 trains p2 ∈ [10, 50] p2 ∈ [10, 100] p2 ∈ [10, 100]

4 parameters p3 ∈ [15, 50] p3 ∈ [15, 100] p3 ∈ [10, 100]

p5 = 5 p6 = 3 p4 ∈ [7, 50] p4 ∈ [7, 100] p4 ∈ [10, 100]

prop1 explicit enumeration 0:44:50 Timeout(68 %) Timeout(63 %)

prop1 cumulative algorithm 0:54:39 7:39:43 6:56:49

prop2 explicit enumeration 0:58:17 Timeout(56 %) Timeout(53 %)

prop2 cumulative algorithm 1:23:37 10:25:28 8:59:11

enumeration can be more efficient. However, higher parameter count significantly
favours the cumulative algorithm. Table 2 shows the impact of the parameter
range size on the execution times. Note that for larger parameter ranges the
cumulative algorithm is faster than explicit enumeration.

7 Conclusion and Future Work

We have presented an algorithmic framework for the bounded integer parameter
synthesis for parametric timed automata with an LTL specification. The pro-
posed framework allows the avoidance of the explicit enumeration of all possible
parameter valuations.

Our symbolic technique is based on the zone abstraction and uses a para-
metric extension of difference bound matrices. To be able to employ the zone-
based method successfully we have introduced a finite abstraction called the
pk-extrapolation. To be able to synthesize all violating parameter valuations we
have introduced the Cumulative NDFS algorithm which is an extension of the
NDFS algorithm.

186 P. Bezděk et al.

We have implemented the proposed technique in an experimental tool and
our experiments confirm that this technique can be significantly faster than the
explicit enumeration technique.

As for future work we plan to introduce different finite abstractions based on
different extrapolations and compare their influence on the state space size. We
also plan to introduce a parallel version of the cumulative algorithm. Other area
that can be investigated is the employment of different linear specification logics,
e.g. Clock-Aware LTL [21] which enables the use of clock-valuation constraints
as atomic propositions.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

4. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE (2006)

5. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 592–601. ACM (1993)

6. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, p. 296. Springer, Heidelberg (2000)

7. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015)

8. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. J. Logic Algebraic Programm. 52, 183–220 (2002)

9. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009)

10. Jovanovic, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

11. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness
efficiently. Formal Methods Syst. Des. 26(3), 267–292 (2005)

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems.
LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

13. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods Syst.
Des. 24(3), 281–320 (2004)

14. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transf.
8(3), 204–215 (2006)

LTL Parameter Synthesis of Parametric Timed Automata 187

15. Li, G.: Checking timed Büchi automata emptiness using LU-abstractions. In:
Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp.
228–242. Springer, Heidelberg (2009)

16. Bezděk, P., Beneš, N., Barnat, J., Černá, I.: LTL parameter synthesis of parametric
timed automata. CoRR abs/1409.3696 (2016)

17. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1992)

18. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1–2), 3–21 (2008)

19. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 53. Springer,
Heidelberg (2001)

20. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

21. Bezděk, P., Beneš, N., Havel, V., Barnat, J., Černá, I.: On clock-aware LTL prop-
erties of timed automata. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS,
vol. 8687, pp. 43–60. Springer, Heidelberg (2014)

Model Checking Simulation Rules
for Linearizability

Graeme Smith(B)

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

smith@itee.uq.edu.au

Abstract. Linearizability is the standard notion of correctness for con-
current objects. A number of approaches have been developed for prov-
ing linearizability along with associated tool support. In this paper, we
extend the tool support for an existing simulation-based method. We
complement the current theorem-prover support with model checking to
allow a means of quickly finding problems with an implementation before
attempting a full verification. Our model checking approach is novel in
that it is used to verify the simulation rules, rather than directly trying
to check an object being accessed by a number of threads. As a con-
sequence, verification can be done for an arbitrary number of accessing
threads; something that is not possible with existing approaches based
on model checking.

1 Introduction

Concurrent objects are objects which have been designed to allow simultaneous
access by more than one thread. They include locks and data structures, and
are common in modern software libraries such as java.util.concurrent. They
may employ coarse-grained locking , where one thread locks the object forcing all
others to wait, but for efficiency are more likely to employ fine-grained locking ,
where only parts of the object are locked, e.g., two adjacent nodes in a linked
list, or non-blocking algorithms, where no locking is employed [11]. In the cases
of fine-grained locking and non-blocking algorithms, lines of the object’s code
being executed by different threads are interleaved leading to subtle behaviour
that is difficult to verify.

The main notion of correctness for concurrent objects is linearizability [12].
It compares an abstract specification of a concurrent object, where all operations
are atomic, and a concrete specification (or implementation), where operations
may overlap. It requires that each operation of the concrete specification appears
to take place atomically at some point between its invocation and return – the
operation’s linearization point [12] – and that the resulting sequence of such
points corresponds to a sequence of operations on the abstract specification.
Effectively this means that overlapping concrete operations can occur in any
order in the abstract sequence, but when one concrete operation returns before
another is invoked that order must be preserved in the abstract sequence.
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 188–203, 2016.
DOI: 10.1007/978-3-319-41591-8 13

Model Checking Simulation Rules for Linearizability 189

A number of approaches have been developed for proving linearizability along
with associated tool support [1,4,7–9,18,24]. In particular, Derrick et al. [7,8,18]
have developed a simulation-based method for proving linearizability supported
by the interactive theorem prover KIV [17]. This approach has been proved
sound and complete, the soundness and completeness proofs themselves being
done in KIV.

Although not automatic, a strength of Derrick et al.’s approach is the fact
that, being based on theorem proving, the size of the concurrent object’s state
space is not restricted, and verification can be done for an arbitrary number of
accessing threads. This is not possible with existing approaches based on model
checking where both the size of the data structure, and the number of threads
needs to be restricted [2,14,22,25,26,28]. In each model checking approach, the
size of stacks and queues is limited to between 2 and 5 items. In all approaches
other than [28], the number of threads is limited to between 2 and 4 (depending
on the complexity of the object). In [28], which uses partial-order reduction
and symmetry reduction to increase the number of threads, that number is still
limited to between 3 and 6 for the objects verified.

In this paper, we provide a model checking approach that, while similarly
limited in terms of state space, allows an arbitrary number of threads. This is
achieved by using the model checker to verify the simulation rules of Derrick
et al.’s approach, rather than trying to directly check an object being accessed
by a number of threads. The approach is intended to complement, rather than
act as a replacement for, the use of KIV. In particular, it is intended to be used
as a means of quickly finding problems with implementations before attempting
a full verification in KIV.

We show how the approach is encoded in TLC [27], the model checker for
TLA+ [13],1 but other state-based model checkers, e.g. SAL [5], could be used.
We do not try to optimise the model checking; this paper is a proof of concept
and we leave the development of an efficient tool to future work.

The paper is structured as follows. In Sect. 2, we introduce the simulation
rules of Derrick et al. and our running example, the Treiber stack [23]. In Sect. 3,
we show how the simulation rules can be encoded in TLC when the abstract
specification’s operations are deterministic; as argued by Burkhardt et al. [2] this
is nearly always the case. For completeness, we provide an alternative encoding
to handle cases where the abstract specification has one or more nondeterministic
operations in Sect. 4. We conclude with a discussion of future work in Sect. 5.

2 Simulation-Based Proof Method

The work of Derrick et al. [7,8,18] identifies different proof rules for use with
3 classes of linearizability proofs of increasing complexity. The first and sim-
plest class of proofs are those where each operation’s linearization point can be
determined from the current state of the calling thread and object [7]. The next

1 This choice was partly inspired by the use of TLA+ and TLC at Amazon [15,16].

190 G. Smith

class involves operations whose linearization points are determined by future
states, possibly resulting from the operations of other threads [8]. The final class
includes objects whose linearization points can only be determined by examining
the whole global history [18].

In the first two cases, the proof rules reduce reasoning about an arbitrary
number of processes to thread-local reasoning about one process and its envi-
ronment which is abstracted to one other process. In the latter case, proving lin-
earizability is reduced to finding a backward simulation relation between simple
extensions of the abstract and concrete specifications of the concurrent object.
This latter approach is complete in itself, but is generally more difficult to apply
than the approaches for the first two cases. In all cases, proofs are step-local
meaning reasoning is performed on one line of code at a time.

In this paper, we focus on the first class of proofs. Extending our work to the
other classes is discussed in Sect. 5.

2.1 The Treiber Stack

To illustrate the proof method and our model checking approach in the rest of
the paper, we introduce as a case study the Treiber stack [23]. The Treiber stack
was the first proposed non-blocking implementation of a concurrent list-based
stack. A typical implementation (taken from [7]) is given below, where Node is a
class with two fields val:T and next:Node, and T empty is the type T augmented
with the additional value empty.

head : Node; \\ global variable
n, ss, ssn : Node; lv:T; \\ thread-local variables

push(v : T) :
1 n = new(Node);
2 n.val = v;

repeat
3 ss = head;
4 n.next = ss;
5 until CAS(head, ss, n)
6 return;

pop() : T_empty
repeat

7 ss = head;
8 if ss = null
9 return empty;
10 ssn = ss.next;
11 lv = ss.val;
12 until CAS(head, ss, ssn);
13 return lv;

A thread doing a push operation assigns the value being pushed onto the
stack to the val variable of a new node stored in local variable n. It then repeat-
edly tries to make n the head of the stack by setting a local variable ss to the
global variable head, setting n’s next variable to ss, and then assigning head
to n provided it is still equal to ss (i.e., provided another thread has not in
the meantime changed the value of head). CAS(a,b,c) is an atomic operation

Model Checking Simulation Rules for Linearizability 191

(supported by most microprocessors) which compares a and b and, if they are
equal, sets a to c and returns true; otherwise it leaves a unchanged and returns
false.

A thread doing a pop operation repeatedly sets ss to head, returning empty
if ss is null, and otherwise setting ssn to ss’s next variable and local variable lv
to ss’s val variable and, finally, assigning ssn to head and returning lv provided
head is still equal to ss.

The Treiber stack is linearizable with respect to the following abstract spec-
ification of a stack (given in Z [21]2). The linearization point of push is the final
CAS which returns true. The linearization point of pop is either line 7 (when ss
is assigned null), or the final CAS which returns true.

[T]

AS
stack : seqT

ASInit
AS

stack = 〈 〉

Push
ΔAS
v? : T

stack ′ = 〈v?〉 � stack

Pop
ΔAS
v ! : T ∪ {empty}
stack = 〈 〉 ⇒
v ! = empty ∧ stack ′ = stack

stack �= 〈 〉 ⇒ stack = 〈v !〉 � stack ′

We use set union to add the special value empty to the type T in operation Pop
although strictly this should be done using a free type definition in Z [21].

2.2 Simulation-Based Proof

To apply the approach of [7], we first need to derive a concrete Z specification
from the implementation. This specification has one or two operations for each
line of code. The state is described by two schemas representing the global and
thread-local variables. For the Treiber stack, the global state GS includes a
variable head and the shared memory in which nodes are stored. Let Ref be the
set of all references to nodes, and T be the type of values in a node.

2 Following [7] we adopt the blocking semantics of Z in which operations are guarded ,
i.e., unable to occur when their predicate cannot be satisfied [6].

192 G. Smith

GS
head : Ref ∪ {null}
mem : Ref �→ (T × (Ref ∪ {null}))

GSInit
GS

head = null
mem = ∅

The local state LS includes the variables n, ss, ssn, lv and v (the input
variable) appearing in the code, as well as a variable pc denoting the program
counter. Let PC == 0..13 where 0 denotes that the thread is idle, i.e., not
executing an operation.

LS
n, ss, ssn : Ref
lv , v : T
pc : PC

LSInit
LS

pc = 0

For each operation, there is an invocation operation which requires pc to be
0 and sets it to the first line of the operation.3

Push0
ΞGS
ΔLS
v? : T

pc = 0 ∧ v ′ = v? ∧ pc′ = 1

Pop0
ΞGS
ΔLS

pc = 0 ∧ pc′ = 7

Then for each non-branching line of code there is a single operation. For
example, for lines 2 and 3 we have

Push2
ΔGS
ΔLS

pc = 2 ∧ pc′ = 3
mem ′(n) = (v , second(mem(n)))

Push3
ΞGS
ΔLS

pc = 3 ∧ pc′ = 4
ss ′ = head

3 Following [7], we assume all values of variables and values in the range of functions
that are not explicitly changed by a Z operation, remain unchanged.

Model Checking Simulation Rules for Linearizability 193

For each branching line of code there are 2 operations. For example, for line
5 we have

Push5t
ΔGS
ΔLS

pc = 5 ∧ head = ss ∧ pc′ = 6
head ′ = n

Push5f
ΞGS
ΔLS

pc = 5 ∧ head �= ss ∧ pc′ = 3

Following the approach of [7], we then have two proof obligations for each
operation of the concrete specification.
Step 1. Firstly, we need to show that the lines of code defining the concrete
operations simulate the abstract operations. To do this, we identify one line
of code as the linearization step. This line of code must simulate the abstract
operation, all others simulating an abstract skip. For example, for the operation
push we require that line 5 simulates the abstract operation when head equals ss,
and all other lines simulate an abstract skip (see Fig. 1 for a possible execution
of the operation).

Fig. 1. Simulation of Push

To do this we need to define an abstraction relation relating the global con-
crete state space gs and abstract state space as. The abstraction relation ABS
for the Treiber stack is defined recursively as follows.

ABS(as, gs) == ABS0(as.stack , gs.head , gs.mem)

ABS0(s, h,m) == (h = null ⇒ s = 〈 〉) ∧
(h �= null ⇒ s �= 〈 〉 ∧ h ∈ dom m ∧ first(m(h)) = head(s)

∧ ABS0(tail(s), second(m(h)),m)

We also need to define an invariant to enable the simulation of each line of
code to be proven independently. In our example, to prove that the line of code

194 G. Smith

CAS(head,ss,ssn) simulates the effect of the abstract operation when head
equals ss, this invariant needs to ensure that when pc = 5 and head = ss we
have

n ∈ dom mem ∧ first(mem(n)) = v ∧ second(mem(n)) = ss ∧
(∀ r : dom mem • second(mem(r)) �= n) ∧ ss �= n

The second line of this predicate ensures that n is a new node not referenced by
any other.

Such an invariant is stated in terms of the global concrete state space gs and
the local concrete state space ls. Hence, the invariant INV (gs, ls) must imply
the following.

ls.pc = 5 ∧ gs.head = ls.ss ⇒ ls.n ∈ dom gs.mem ∧
first(gs.mem(n)) = ls.v ∧ second(gs.mem(n)) = ls.ss) ∧
(∀ r : dom gs.mem • second(gs.mem(r)) �= ls.n) ∧ ls.ss �= ls.n

Each simulation is then proved by one of 5 rules depending on whether the
line of code is an invocation (beginning an operation), return (ending an opera-
tion) or internal step (neither an invocation nor return), and whether it occurs
before or after the linearization step. A function status(gs, ls) is defined to iden-
tify the linearization step. Before invocation, status(gs, ls) is IDLE . After invo-
cation but before the linearization step it is equal to IN (in), where in : In is
the input to the abstract operation, and after the linearization step it is equal to
OUT (out), where out : Out is the output of the abstract operation. The types
In and Out have a special value ⊥ denoting no input or output, respectively. As
well as identifying the linearization point, the status function is used to store the
input of the invocation step until it is needed at the linearization point, and to
store the abstract output of the linearization step until it is need at the return
step.

Let σ and σ′ be status values, and λ be a list of parameters comprising gs,
gs ′, ls and ls ′, and possibly in or out . For a step COP which is not a linearization
step, the proof obligation is always of the following form.

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In; out : Out •
ABS (as, gs) ∧ INV (gs, ls) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒

status(gs ′, ls ′) = σ′ ∧ ABS (as, gs ′) ∧ INV (gs ′, ls ′) (1)

For a linearization step such as the step Push5t which simulates an abstract
operation AOP , the proof obligation is of the following form.

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In •
ABS (as, gs) ∧ INV (gs, ls) ∧ status(gs, ls) = σ ∧ COP(λ) ⇒

(∃ as ′ : AS ; out : Out • AOP(in, as, as ′, out) ∧
status(gs ′, ls ′) = σ′ ∧ ABS (as ′, gs ′) ∧ INV (gs ′, ls ′) (2)

Model Checking Simulation Rules for Linearizability 195

Step 2. Secondly, we need to prove non-interference between threads. This
amounts to showing that a thread p (with local state ls) cannot invalidate the
invariant INV (gs, lsq) or change the status status(gs, lsq) which another thread q
(with local state lsq) relies on. To do this we require a further invariant D(ls, lsq)
relating the local states of two threads. For the Treiber stack, this invariant
includes a predicate that the local variable n of two threads cannot be the same
reference. That is, D includes the conjunct pcq ∈ 2..5 ∧ pc ∈ 2..5 ⇒ n �= nq .

The proof obligation then requires we prove

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′, lsq : LS •
ABS (as, gs) ∧ INV (gs, ls) ∧ INV (gs, lsq) ∧ D(ls, lsq) ∧ COP(λ)

⇒ INV (gs ′, lsq) ∧ D(ls ′, lsq) ∧ status(gs ′, lsq) = status(gs, lsq) (3)

Additionally, we have a proof obligation related to initialisation.

∀ gs : GSInit • ∃ as : ASInit • ABS (as, gs) ∧
(∀ ls : LSInit • INV (gs, ls)) ∧ (∀ ls, lsq : LSInit • D(ls, lsq)) (4)

Each of these proof obligations is step-local, involving a single line of code,
and involving the states of at most two threads. Together they have been shown
to prove linearizability between the abstract and concrete specifications [7].

3 Encoding the Rules for Deterministic Specifications

To verify the Treiber stack, the theorem proving approach using KIV proposed
in [7] requires 295 proof steps, 85 of which are interactive. If an error is found
in either the implementation or the abstraction relation and invariants, all proof
steps need to be redone once it is corrected. Our model checking approach can be
applied to find such errors automatically before any proof steps are attempted.
It uses the abstraction relation and invariants proposed for the proof steps in
order to do this. KIV can then be applied to ensure no errors have been missed
due to the limited state space used during the model checking.

In this section, we show how to encode each proof obligation as a separate
model checking problem in TLC. We can alternatively encode a model checking
problem that checks several, or even all, of the proof obligations at once. Sepa-
rating the proof obligations, however, improves scalability; each model checking
problem involves only one step of a single, generally deterministic operation.4

Whether this separation needs to be done depends on the size of the state space
of our abstract and concrete specifications.

A TLC model checking problem comprises a TLA+ module (encoding a
specification in terms of variables, constants and definitions, including an initial-
state and next-state definition), and a configuration file assigning finite values
to constants, and listing the properties that need to be checked.
4 An example of a nondeterministic operation is an invocation operation that takes

an input. Such an operation is nondeterministic on the value of that input.

196 G. Smith

For each concrete step, we need to prove the proof obligations for the one or
two operations derived from the line of code. Part of these obligations is that the
status function is updated correctly. We assume we have already classified the
type of each step, e.g., whether it is a linearization step or not. The remaining
purpose of status is to store the input and output values until they are needed.
To capture this we include in and out as variables, and introduce an invariant
STATUS over them. For the Treiber stack, we have

STATUS =̂ (pc ∈ 1..5 ⇒ in = v) ∧ (pc ∈ 8..9 ⇒ out = empty)
∧ (pc = 13 ⇒ out = lv)

3.1 Non-linearization Steps

For each concrete step which is not a linearization step, we need to prove proof
obligation (1) for each operation COP derived from the line of code. As an exam-
ple, consider the operation Push0. We need to show that when this operation
occurs from a state satisfying ABS ∧ INV ∧ STATUS , it results in a state
satisfying these conditions. Hence, we build a model which, from such a state,
can do a single Push0 operation, and prove that ABS , INV and STATUS are
invariants.5

The initial state space of such a model will be large, and hence we employ
some simple strategies to reduce it. Firstly, we can ignore local variables that are
not used in the push operation, i.e., the variables ssn and lv do not have to be
included in the state. Similarly, since the operation has no output, the variable
out can be left out of the state. Since these variables can occur in INV and
STATUS we additionally remove all conjuncts of INV and STATUS that are
not relevant immediately before or after the step, i.e., for Push0 all conjuncts
that are not relevant when pc = 0 or pc = 1. Also, to reduce the size of the initial
state, we can equate all local variables and in to default values (since they have
not yet been assigned values at this step of push).

For Push0, the state is defined in terms of variables stack , head , mem, n, ss,
v , pc and in. We also have constants Ref , T and null , as well as 2 additional
constants N and undef . N is the maximum size of the stack, and undef is
required since, unlike Z, TLA+ does not support partial functions; we model a
partial function with a total function f by letting f [e] = undef when e is not in
the domain of the partial function. The initial state is then

Init =̂ stack ∈ FiniteSeq(T ,N)
∧ mem ∈ [Ref → ((T × (Ref ∪ {null})) ∪ undef)]
∧ head ∈ Ref ∪ {null} ∧ ABS ∧ n = null ∧ ss = null ∧ v = 0
∧ pc = 0 ∧ INV ∧ in = 0 ∧ STATUS

5 The output of the model checker run can be checked to ensure that this model does
not have an empty set of initial states.

Model Checking Simulation Rules for Linearizability 197

where FiniteSeq is defined in terms of the function Seq of TLA+ [13]. Since TLC
evaluates predicates from left to right it is necessary that all variables appearing
in the definitions ABS , INV and STATUS are typed in a conjunct appearing to
the left of them. Furthermore, since these definitions constrain the set of states
under consideration, it is more efficient to have them as early as possible in the
predicate, i.e., immediately following the typing of their variables.

The next-state relation is then defined in terms of the single operation

Push0 =̂ pc = 0 ∧ pc′ = 1 ∧ v ′ ∈ Ref ∧ in ′ = v ′

∧ UNCHANGED〈stack , head ,mem,n, ss〉

where UNCHANGED is a TLA+ operator for stating that particular variables
are not changed by an operation.

The complete TLA+ module is shown below.6

Modules for other non-linearization steps are constructed similarly. For exam-
ple, the module for operation Push2 has the same variables and constants. How-
ever, the initial state cannot assign n to null as it is assigned a value in the
previous line of code. Therefore, we have n ∈ Ref , rather than n = null in Init ;
the other conjuncts of Init being the same as before.

The next-state relation for Push2 is

Push2 =̂ pc = 2 ∧ pc′ = 3 ∧ mem ′ = [mem EXCEPT ![n] = 〈v ,@[2]〉]
∧ UNCHANGED〈stack , head ,n, ss, v , in〉

6 The notation Init ∧ �[Op]〈v1,...,vn 〉 describes the module’s behaviours whose initial
states satisfy Init and whose state transitions satisfy Op, and specifies that the
environment of the module is unable to change the values of v1, . . . , vn .

198 G. Smith

where the TLA+ notation f ′ = [f EXCEPT ![n] = e] updates the function f
so that f ′[n] = e, where @ in e equals f [n], e.g., 〈v ,@[2]〉 = 〈v ,mem[n][2]〉 in
Push2 above.

3.2 Linearization Step

For each linearization step, we need to prove proof obligation (2). This proof
obligation again requires that ABS , INV and STATUS hold after the concrete
step. However, the values for out and the abstract states after the step are values
reached by applying the abstract operation AOP . To simplify the encoding, we
assume two properties of the abstract operation in this section. We return to
more general abstract operations in Sect. 4.

The first property is that abstract operations are deterministic. The second
is that they are total , i.e., have a true guard and so can be applied at any time.
Both of these properties are true of our specification of the Treiber stack in
Sect. 2.1.

Proof obligation (2) is of the form

∀ x , y , y ′ • P(x , y , y ′) ⇒ (∃ x ′ • Q(x , x ′) ∧ R(x ′, y ′))

where Q(x , x ′) is the abstract operation. If this operation is deterministic, we
have Q(x , x ′) ≡ q(x) ∧ x ′ = e for some expression e and predicate q(x). If it
is also total then q(x) = true and we have Q(x , x ′) ≡ x ′ = e. Therefore, proof
obligation (2) can be written as

∀ x , y , y ′ • P(x , y , y ′) ⇒ (∃ x ′ • x ′ = e ∧ R(x ′, y ′))

Applying the one-point rule for existential quantification (∃ x • x = e ∧ P(x) ≡
P(e)), to ∃ x ′ • x ′ = e ∧ R(x ′, y ′) we get

∀ x , y , y ′ • P(x , y , y ′) ⇒ R(e, y ′)

Then, applying the one-point rule for universal quantification (P(e) ⇒ R(e) ≡
∀ x • P(x) ∧ x = e ⇒ R(x)), to P(x , y , y ′) ⇒ R(e, y ′) we get

∀ x , x ′, y , y ′ • P(x , y , y ′) ∧ x ′ = e ⇒ R(x ′, y ′)

which is
∀ x , x ′, y , y ′ • P(x , y , y ′) ∧ Q(x , x ′) ⇒ R(x ′, y ′)

Hence, we can prove proof obligation (2) in the same way we prove proof obliga-
tion (1) after extending the next-state relation to produce the unique values for
the abstract specification. For example, for Push5t we have

Push5t =̂ pc = 5 ∧ head = ss ∧ pc′ = 6 ∧ head ′ = n
∧ stack ′ = 〈in〉 ◦ stack ∧ UNCHANGED〈mem,n, ss, v , in〉

where s ◦ t concatenates sequences s and t . That is, stack is updated according
to the abstract operation Push of Sect. 2.1.

Model Checking Simulation Rules for Linearizability 199

3.3 Non-interference

For each concrete step, whether a linearization step or not, we need to prove
proof obligation (3). This proof obligation requires that under an invariant D
the actions of one thread p do not break the invariant INV of another thread q .
Again, for scalability, we decide to encode the proof obligation for a single step
of p and for a single state of q . For example, we will have one TLA+ module for
the case when p executes Push5t while q is at line 2.

To encode such a module we need to have local variables for both p and q
and invariants INVq and STATUSq for q , as well as the new invariant D . The
module is as follows.

Given this module, we then prove INVq , D and STATUSq are invariants to
discharge proof obligation (3).

3.4 Initialisation

The final proof obligation (4) is proved by creating a module with 2 local states
(as above). All variables, global and local, are initialised according to the abstract
and concrete initialisation schemas, or in the case of local variables, given a
default value (since they are not assigned a value initially when the threads are
idle). Then we check that ABS , INV , INVq and D are invariants under the
empty next-state relation. That is, the required module is

200 G. Smith

3.5 Discussion

To make our approach practical we need to address the fact that it requires
many model checking jobs to be run. A batch program is required to handle
these jobs and report any errors that are encountered. While developing our
approach, we ran the jobs manually7 and were able to successfully verify the
Treiber stack, a test-and-test-and-set spinlock implementation taken from [10]
and an implementation of the Linux reader-writer mechanism, seqlock, taken
from [3].

Checking a single proof obligation for the Treiber stack with a maximum
stack size of 4 takes around 16 s on an iMac with a 2.7 GHz Intel Core i5 processor
and 4GB RAM. Since it is intended that the full verification of the stack is to
be carried out using KIV, this stack size is sufficient for our purposes.

In general, however, checking larger state spaces has the potential to uncover
more errors. One area of future work is to look at improving the efficiency of
our approach. Although TLC is capable of running multiple threads, these are
only employed after the initial states have been computed [27]. Hence, reducing
the number of initial states by ignoring unused local variables, and setting local
variables which have not been assigned a value to a default value is important.
Since we can determine when to apply these state space reductions statically, this
process can be automated. Using a different encoding where the initial state is
built up over a number of state transitions would enable us to use TLC’s option

7 To save time, we often ran multiple jobs at once, i.e., using one module, at the
expense of a smaller state space.

Model Checking Simulation Rules for Linearizability 201

to run a user-defined number of threads. Then efficiency could be improved by
using more and better hardware. For example, Amazon run TLC on a cluster of
10 machines, each with eight cores plus hyperthreads and 23 GB of RAM [16].

Another area of future work is to investigate encoding the simulation rules
in other model checkers such as SAL [5] to compare efficiency.

4 Encoding the Rules for Nondeterministic Specifications

Consider a bounded version of the Treiber stack whose specification abstracts
from what happens when a push occurs and the stack is full. The state schema
and operation Push are updated as follows.

AS
stack : seqT

#stack ≤ Max

Push
ΔAS
v? : T

#stack < Max ⇒
stack = 〈v?〉 � stack

We could implement Push to simply ignore the new value when the stack is
full. Alternatively, we could implement it to delete the oldest value in the stack,
in order to make place for the new value. Whether such implementations are
sensible would depend on the envisaged application.

To prove any such implementation is linearizable with respect to Push, we
cannot use the approach of Sect. 3.2 which relies on Push being deterministic.
Instead we encode proof obligation (2) more directly. Instead of proving that
ABS is an invariant for all concrete steps, we instead prove that for the lin-
earization step of a nondeterministic operation that there exists an execution of
the abstract operation which leads to ABS being true. That is, for the module
corresponding to step Push5t we prove ABS1 is an invariant, where

ABS1 =̂ (pc = 5 ⇒ ABS)

∧ (pc = 6 ⇒ (∃ s ∈ FiniteSeq(T ,N) •
Len(stack) < Max ⇒ s = (〈in〉 ◦ stack) ∧ ABS0[s, head]))

and Push5t is encoded in the same way as a non-linearization step. The model
checking time for this encoding is comparable to that of Sect. 4, taking around
16 s for a stack of maximum size 4.

A similar approach can be used for an abstract operation which is not total,
ensuring the linearization step occurs only when the operation is enabled.

202 G. Smith

5 Conclusion

In this paper, we have provided model checking support for a simulation-based
approach to proving linearizability [7]. The approach enables developers of con-
current objects to quickly check their designs for errors before attempting a full
verification using a theorem prover. The approach is the only model checking
approach we are aware of that allows checking linearizability for an arbitrary
number of threads. Other approaches are typically limited to between 2 and 4
threads depending on the concurrent object.

At present, the approach can only be used with concurrent objects whose lin-
earization points can be determined from the current state of the calling thread
and object. As future work, we would like to extend this to other concurrent
objects. As a first step, we will investigate encoding the additional simulation
rules of [8], allowing objects whose linearization points are determined by future
states. These simulation rules are only slightly more complicated than the ones
we encoded in this paper. Following this, we will investigate handling the com-
plete approach, for all possible concurrent objects, described in [18]. This app-
roach requires that the implementation is a backward simulation of the speci-
fication. Earlier work on verifying backward simulations using model checking
[19,20] will provide a starting point for this investigation.

Acknowledgements. Thanks to Kirsten Winter for her helpful comments. This work
was supported by ARC Discovery Grant DP160102457.

References

1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

2. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI 2010, pp. 330–340. ACM (2010)

3. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

4. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
233–248. Springer, Heidelberg (2007)

5. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

6. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced
Applications, 2nd edn. Springer, London (2014)

7. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

8. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential
linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 323–337. Springer, Heidelberg (2011)

Model Checking Simulation Rules for Linearizability 203

9. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

10. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012)

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2008)

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman, Boston (2002)

14. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009)

15. Newcombe, C.: Why Amazon Chose TLA+. In: Ait Ameur, Y., Schewe, K.-D.
(eds.) ABZ 2014. LNCS, vol. 8477, pp. 25–39. Springer, Heidelberg (2014)

16. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

17. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and
interactive proofs with KIV. In: Automated Deduction, pp. 13–39. Kluwer (1998)

18. Schellhorn, G., Wehrheim, H., Derrick, J.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4),
31:1–31:37 (2014)

19. Smith, G., Derrick, J.: Verifying data refinements using a model checker. Formal
Aspects Comput. 18(3), 264–287 (2006)

20. Smith, G., Winter, K.: Model checking action system refinements. Formal Aspects
Comput. 21(1–2), 155–186 (2009)

21. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, London (1992)
22. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under

weak memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol.
8244, pp. 311–326. Springer, Heidelberg (2013)

23. Treiber, R.K.: Systems programming: Coping with parallelism. Technical report
RJ 5118, IBM Almaden Res. Ctr. (1986)

24. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2007)

25. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010)

26. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009)

27. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999)

28. Zhang, S.J.: Scalable automatic linearizability checking. In: ICSE 2011, pp. 1185–
1187. ACM (2011)

LTL Model Checking under Fairness in ProB

Ivaylo Dobrikov(B), Michael Leuschel, and Daniel Plagge

Institut für Informatik, Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

{dobrikov,leuschel,plagge}@cs.uni-duesseldorf.de

Abstract. Model checking of liveness properties often results in unre-
alistic, unfair infinite behaviors as counterexamples. Fairness is a notion
where the search is constrained to infinite paths that do not ignore infi-
nitely the execution of a set of enabled actions. In this work we present
an implementation for efficient checking of LTL formulas under strong
and weak fairness in ProB, available for model checking B, Event-B, Z,
CSP and CSP‖B models. The fairness checking algorithm can cope with
both weak and strong fairness conditions, where the respective fairness
conditions can be joined by means of the logical operators for conjunc-
tion and disjunction, which makes setting up and checking fairness to a
property more flexible. We evaluate the implementation on various CSP
models and compare it to t he fairness implementation of the PAT tool.

1 Introduction and Motivation

Many system requirements can be readily specified in temporal logic such as the
linear-time temporal logic (LTL). Subsequently, using an LTL model checker one
can check automatically the property specified in LTL on the respective finite
state model. There are two general approaches for developing an LTL model
checker: the tableau approach [10] and the automata-theoretic approach [14].

The ProB LTL model checker, introduced in [11], follows the tableau app-
roach from [10] and can check properties specified in LTL[e][11], an extended
version of LTL providing also support for transition propositions. The algorithm
presented in [11] can cope with deadlock states and partially explored state
spaces. The LTL search algorithm of ProB is implemented in C using a call-
back mechanism for exploring the states and evaluating the atomic propositions
in SICStus Prolog.

Adding fairness constraints to liveness properties is sometimes necessary in
order to exclude unreasonable behaviors of the model and to direct the search
for counterexamples on “fair” paths only. The fact that the ProB LTL model
checker can deal with transition propositions using LTL[e] enables the user to
easily express the fairness conditions as an LTL[e] formula [15]. That is, fair-
ness constraints fair can be added as a premise to a liveness property f by
means of implication. Then, one can check “fair ⇒ f” in order to restrict the
search for fault system behaviors on paths fair in regard to the imposed fairness
constraints fair . However, setting fairness constraints to an LTL[e] formula via
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 204–211, 2016.
DOI: 10.1007/978-3-319-41591-8 14

LTL Model Checking under Fairness in ProB 205

re-formulating the formula causes an exponential growth of the search graph and
on that account is considered to be in most cases a very inefficient approach.

In this work we briefly describe the implementation of the fairness algorithm
in ProB’s LTL model checker [11] and explain how one can flexibly impose fair-
ness conditions. Additionally, we discuss the enhancements of the LTL model
checking process in ProB and evaluate the fairness implementation by compar-
ing ProB and PAT on various CSP specifications.

2 Preliminaries

Linear time properties that require some progress in the system are called live-
ness properties. Intuitively, liveness properties state that “something good” will
happen in the future [8]. Liveness properties are violated by infinite computa-
tions comprising a bad cycle for the property.

The LTL model checker of ProB uses a tableau approach for checking
whether an LTL[e] formula is satisfied or violated by a model. In general, the
model checker algorithm searches for a strongly connected component (SCC)
with certain properties, referred also as self-fulfilling SCC [10]. Such an SCC
contains a (bad) cycle that represents a violation of the liveness property.

Fairness is used to rule out bad behaviors that may be considered as unrealis-
tic by the developer of the formal model. There are different variants of fairness
in terms of at which granularity level of the system are imposed: action-based [7],
state-based fairness [4], process fairness [5], etc. In this work we concentrate on
action-based fairness and more particularly, on weak and strong fairness, notions
often used in verification of many applied systems [2,15].

An infinite computation is weakly fair with respect to an action a when: if
a is continuously enabled from some point, then a is executed infinitely often.
Further, an infinite computation is said to be strongly fair with respect to an
action a when: if a is enabled infinitely many times, then it is executed infinitely
often. In LTL[e] the fairness conditions can be imposed by means of the execution
operator [·] and the derived LTL operators G (globally) and F (eventually). If,
for example, a search for a counterexample for some LTL formula f should be
constrained on infinite paths that are weakly fair with respect to some action a,
then one can re-formulate f as follows:

(FG e(a) ⇒ GF [a]) ⇒ f.

Similarly, one can constrain the search to computations violating the property f
which are strongly fair in regard to some event a by re-formulating f as follows:

(GF e(a) ⇒ GF [a]) ⇒ f.

In both formulae e(a) is an atomic proposition stating that a is enabled at
the currently processed state.

206 I. Dobrikov et al.

3 Fairness Algorithm and Implementation

Given a model M and an LTL[e] formula f , the ProB LTL model checker checks
M � f by searching for self-fulfilling strongly connected components (SCCs) that
can be reached from some initial state of M . In case that such a self-fulfilling
SCC is found the model checker will return a counterexample for f . Otherwise,
if no self-fulfilling SCC is discovered, we have proven that M � f . The search for
SCCs in the ProB LTL[e] model checker is based on the Tarjan’s algorithm [13].

We extended the search algorithm of the LTL model checker [11] for sup-
porting fairness checking separately, i.e. not adding the fairness constraints by
encoding them as a premise to the original LTL[e] formula. In general, the idea
of our fairness implementation is to check if each found self-fulfilling SCC C sat-
isfies the imposed fairness conditions. If C is unfair with respect to the fairness
constraints, then the model checker declines C as a possible counterexample for
f and continues the search for fair self-fulfilling SCCs until a fair self-fulfilling
SCC is found or all possible states are visited. Otherwise, if the discovered SCC
C is fair, then the search finishes with generating a counterexample satisfying
the imposed fairness constraints and violating the formula being checked. The
process of model checking under fairness in ProB can be illustrated as in Fig. 1.

Since the fairness checks are performed on the discovered self-fulfilling SCCs,
it was not necessary to modify the main search algorithm. Basically, we added
a new procedure testing additionally the respective SCC in case the user has
set some fairness constraints. We implemented support for action-based weak
and strong fairness. The implementation allows setting fairness constraints on
all possible actions of the system or on a subset thereof. Furthermore, both
the weak and strong fairness assumptions can be imposed simultaneously for a

Fig. 1. LTL model checking under fairness

LTL Model Checking under Fairness in ProB 207

given formula. That is, a property that should be satisfied under certain weak
and strong fairness conditions can be checked in one run of the model checker.

We extended the LTL[e] grammar with four new operators: sef and wef
for imposing strong fairness and weak fairness in regard to all actions of the
system, respectively, and sf(·) (strong fairness) and wf(·) (weak fairness) for
setting fairness conditions on single actions of the system. Both operators sf(·)
and wf(·) expect a transition proposition as an argument and can be used in
combination with conjunction and disjunction in order to allow to impose more
sophisticated fairness assumptions. The syntactic extensions enable the user to
set the fairness constraints fair to a formula f in the well-known way: fair ⇒ f .
Both the strong and weak fairness requirements, can be given simultaneously as
a premise to the LTL[e] property by joining them with the conjunction operator.
The fairness constraints are recognised on the syntactical level by the LTL[e]

parser and are not included in the original property. The syntax for imposing
fairness conditions in ProB can be outlined by the following grammar:

fair ::= wfair | sfair | wfair ∧ sfair | wef | sef
wfair ::= wf(tp) | wfair ∨ wfair | wfair ∧ wfair | (wfair)
sfair ::= sf(tp) | sfair ∨ sfair | sfair ∧ sfair | (sfair)

where tp is a transition proposition, and wef and sef are the tokens for setting
weak and strong fairness conditions on all possible transitions, respectively.

To give an example of how one can set up fairness constraints to an LTL[e]

formula in ProB consider a semaphored-based mutual exclusion algorithm for
two processes.1 Assume that each process is simplified to perform three types of
actions: req (sending a request for entering the critical section), enter (entering
the critical section), and rel (leaving the critical section). Further, consider the
following property P : “each process gets access to its critical section infinitely
often”. To prove P on the model one needs to assume that all executions are
weakly fair in regard to the req actions of both processes and that every execu-
tion is strongly fair in regard to the enter actions of both processes. Suppose that
req. 1 and req. 2 denote the request actions of process 1 and process 2, respec-
tively; and enter.1 and enter.2 the enter actions of process 1 and process 2,
respectively. The corresponding fairness conditions can then be expressed by the
grammar above as follows:

(
wf(req. 1) ∧ wf(req. 2)

) ∧ (
sf(enter.1) ∧ sf(enter.2)

)

Evaluation. First of all, encoding the fairness conditions by means of an LTL[e]

formula and then adding it as a premise to the property is very inefficient since
the state space of the search graph grows exponentially in the length of the
formula [10]. For instance, if we encode the fairness conditions of the semaphored-
based mutual exclusion model for two processes in LTL[e] and then check the
re-formulated formula on the model, then the ProB LTL model checker would
need to explore overall 1,048,576 atoms (the number of nodes in the search
1 A detailed description of the algorithm could be viewed, for example, in [1] Chap. 2.

208 I. Dobrikov et al.

graph) to check P . On the other hand, checking P on the model using the
fairness checking capabilities of ProB will need to explore only 44 atoms.

For the evaluation of the algorithm we have tested various CSP specifica-
tions where imposing fairness constraints is necessary to prove certain liveness
properties. Further, we have evaluated model checking under fairness on ProB
and PAT. PAT provides among others support for LTL model checking with
fairness assumptions [12] for CSP#. A part of the results2 of the evaluation is
given in Table 1. It has been acquired by executing each test case 10 times with
ProB 1.5.1 and PAT 3.5.1 on a Virtual Machine Version of Windows 7 (64 Bit)
installed on a MacBook Pro Intel Core i5 Dual 2.90 GHz with 16 GB RAM.

All models in Table 1 are provided as examples with the PAT tool and have
been translated into CSP-M and CSP ‖ B to be tested also within ProB. In all
test cases the respective fairness constraints (Weak and Strong) were imposed
on all transitions. The first sub-column of the State Space column reports the
number of states of the model, whereas the second one the number of states of
the product of the system with the respective automaton of the formula. In the
Time column we have listed the time needed for checking the LTL[e] formula on
the model. In the parentheses of the Time column we have also given the times
needed for the exploration of the complete state space of the respective model.3

In all test cases in Table 1 the PAT tool has outperformed ProB. Observing
the times just for the state space exploration (the times in parentheses), we
can see that the discrepancy in the performance of both tools remains. On the
other hand, comparing the overhead in PAT caused for checking the property
on the model and for performing all fairness checks with this of ProB one can

Table 1. Part of the experimental Results (times in seconds)

Model & # Procs LTL[e] formula Fairness Tool State space Time (+)

States States×Aut

Peterson∗ # Procs: 3 GF [cs.0] Weak ProB 514 2,113 1.415 (1.387)

PAT 513 2,099 0.092 (0.052)

Peterson∗ # Procs: 4 GF [cs.0] Weak ProB 10,369 42,001 38.869 (37.035)

PAT 10,368 53,122 1.504 (0.207)

DP # Procs: 6 GF [eat.0] Strong ProB 1,763 7,604 4.131 (3.898)

PAT 1,762 4,273 0.333 (0.121)

DP # Procs: 8 GF [eat.0] Strong ProB 22,363 96,500 188.800 (149.220)

PAT 22,362 240,620 24.098 (1.291)

Scheduler # Procs: 7 G([enter.1] ⇒ F [leave.1]) Strong ProB 9,478 46,656 16.644 (11.976)

PAT 7,290 61,238 4.785 (0.384)

Scheduler # Procs: 8 G([enter.1] ⇒ F [leave.1]) Strong ProB 30,619 148,716 97.913 (87.074)

PAT 24,057 227,450 18.233 (0.808)

(∗) In ProB the model is specified and verified using the CSP ‖ B methodology [9].

(+) The time needed for exploring the state space of the model.

2 The models and the results of the experiments can be obtained from the following
web page http://nightly.cobra.cs.uni-duesseldorf.de/fairness/.

3 Generally, we have performed deadlock checking on the model for both tools in order
to measure the times for state space exploration.

http://nightly.cobra.cs.uni-duesseldorf.de/fairness/

LTL Model Checking under Fairness in ProB 209

Table 2. Experimental results on MINT Linux (64 Bit) - (times in seconds)

Model LTL[e] Formula Fairness Tool States × Aut Time

DP # Procs: 8 GF [eat.0] Strong ProB 96,500 362.452

PAT (Mono) 240,620 380.755

Scheduler # Procs: 8 G([enter.1] ⇒ F [leave.1]) Strong ProB 148,716 110.454

PAT (Mono) 227,450 777.441

observe that the differences are very small. For instance, for Scheduler8 ProB
needed 87.074 s to explore the state space of the model and 97.913 to explore the
state space of the specification and check the LTL[e] formula, i.e. ProB needed
about ten seconds to check the property on the already explored state space and
perform all necessary fairness checks. In the same time, the overhead for testing
the LTL property under fairness in PAT is about 17 s. This suggests that the main
reason for ProB being outperformed by PAT is due to the poor performance
of ProB’s CSP interpreter responsible for the state space exploration of CSP
specifications.

To reproduce the results from Table 1 one needs to run the experiments on
Windows as PAT is mainly developed for Windows. On other operating systems
such as Linux one can run PAT with the mono platform. However, experiments
have shown that PAT 3.5.1 with mono performs poorly on other systems such
as Linux and in most cases will be outperformed by ProB as can be seen in
Table 2. The PAT experments in Table 2 were performed with mono 3.2.8.

In Table 3 we have listed several experiments run with ProB to reveal the
overhead caused by the fairness check. We have measured the time needed
for checking and rejecting of all non-fair SCCs violating the checked property.
Although the number of non-fair SCCs is considerably high, the fairness checking
times in all cases are very small in comparison to the overall checking times.

Related Work. Besides the two notions of action-based fairness discussed in this
paper, PAT [12] supports also verification under weak and strong process fair-
ness. Furthermore, PAT provides also support for strong global fairness, fairness
notion concerned with the infinite execution of both actions and states. One of
the most prominent model checkers, SPIN [6], provides support for weak fairness.

Table 3. Fairness checking statistics in ProB (times in seconds)

Model & LTL[e] # Atoms # Rejected Fairness Total Time

Procs Formula SCCs Checking Time

DP 7 sef ⇒ GF [eat.0] 27,093 291 0.824 29.188

DP 8 sef ⇒ GF [eat.0] 96,501 824 4.311 205.559

ME Sem 10 sef ⇒ GF [enter.1] 26,628 2,305 0.664 36.044

ME Sem 11 sef ⇒ GF [enter.1] 57,349 5,121 1.898 162.136

210 I. Dobrikov et al.

In [12], the performance of verification under weak fairness in SPIN is compared
with that of PAT. In most of the test cases in [12], PAT performed better than
SPIN. Another model checker that provides support for fairness is NuSMV [3], a
symbolic model checker supporting two types of state-based fairness: justice and
compassion. A justice constraint assumes that a given state formula is fulfilled
infinitely often, whereas the compassion assumption requires that a formula must
be true infinitely often if another state formula is true infinitely often.

Conclusion. We have presented a fairness implementation in ProB support-
ing verification under weak and strong action-based fairness for B, Event-B,
Z, CSP, and CSP‖B. Fairness assumptions in ProB can be easily imposed on
all actions of the checked model, or on a subset thereof; it is even possible to
specify action parameters. It appears that for LTL model checking of large-scale
CSP specifications ProB performs poorly compared to other model checkers for
CSP. However, the main motivation of ProB’s CSP support was to provide an
FDR/CSP-M compliant interpreter which can be used for CSP‖B, and which
has not been tuned for model checking. On the positive side, experiments have
shown that the overhead caused by the fairness checking procedure is consider-
ably small and it can be applied to a wide range of specification formalisms.

Acknowledgements. We would like to thank David Williams for the ideas, very
useful feedback and support on this work.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Chouali, S., Julliand, J., Masson, P.-A., Bellegarde, F.: Pltl-partitioned model
checking for reactive systems under fairness assumptions. ACM Trans. Embed.
Comput. Syst. 4(2), 267–301 (2005)

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a new symbolic model
checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

5. Francez, N.: Fairness. Springer-Verlag New York Inc., New York (1986)
6. Holzmann, G.: Spin Model Checker: Primer and Reference Manual, 1st edn.

Addison-Wesley Professional, Boston (2003)
7. Kwiatkowska, M.: Event fairness and non-interleaving concurrency. Formal Aspects

Comput. 1(1), 213–228 (1989)
8. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.

Eng. 3(2), 125–143 (1977)
9. Butler, M., Leuschel, M.: Combining CSP and B for specification and property

verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

10. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy
their linear specification. In: POPL 1985, pp. 97–107. ACM, New York (1985)

LTL Model Checking under Fairness in ProB 211

11. Plagge, D., Leuschel, M.: Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. STTT 12(1), 9–21 (2010)

12. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

13. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

14. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of 1st Symposium on Logic in Computer Science, pp.
332–344, Cambridge, June 1986

15. Williams, D.M., de Ruiter, J., Fokkink, W.: Model checking under fairness in ProB
and its application to fair exchange protocols. In: Roychoudhury, A., D’Souza, M.
(eds.) ICTAC 2012. LNCS, vol. 7521, pp. 168–182. Springer, Heidelberg (2012)

Verification

Counterexamples from Proof Failures in SPARK

David Hauzar1,2,3, Claude Marché1,2(B), and Yannick Moy3

1 Inria, Université Paris-Saclay, 91893 Palaiseau, France
Claude.Marche@inria.fr

2 LRI, CNRS & Univ. Paris-Sud, 91405 Orsay, France
3 AdaCore, 75009 Paris, France

Abstract. A major issue in the activity of deductive program verifica-
tion is the understanding of the reason why a proof fails. To help the user
understand the problem and decide what needs to be fixed in the code
or the specification, it is essential to provide means to investigate such
a failure. We present our approach for the design and the implementa-
tion of counterexample generation within the SPARK 2014 environment,
exhibiting values for the variables of the program where a given part
of the specification fails to be validated. To produce a counterexample,
we exploit the ability of SMT solvers to propose, when a proof of a for-
mula is not found, a counter-model. Turning such a counter-model into
a counterexample for the initial program is not trivial because of the
many transformations leading from a given code and specification to a
verification condition.

1 Introduction

Deductive program verification is an activity that aims at checking that a given
program respects a given functional behavior. In this context, the expected
behavior must be expressed formally by logical assertions, i.e. preconditions
and postconditions, forming a contract. Deductive program verification typi-
cally proceeds by generating, from both the code and the formal specification,
a set of logic formulas called verification conditions (VCs). If one proves that
all generated VCs are tautologies, then the program is guaranteed to satisfy its
specification. In recent program verification environments like Dafny [20], Open-
JML [12] and Why3 [7], VCs are discharged using automated theorem provers, in
particular those of the Satisfiability Modulo Theories (SMT) family such as Alt-
Ergo [5], CVC4 [2] and Z3 [22]. These theorem provers are used as black-boxes
that, given a VC, may produce three kinds of results:

1. The prover answers something meaning “yes, the VC is a tautology”
2. The prover answers anything else, meaning “I don’t know”, in order words

the prover is not able to prove the VC for any reason
3. The prover runs for a too long time (seemingly infinitely) or runs out of

memory

Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007,
http://www.spark-2014.org/proofinuse) of the French national research organization.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 215–233, 2016.
DOI: 10.1007/978-3-319-41591-8 15

http://www.spark-2014.org/proofinuse

216 D. Hauzar et al.

The case where the prover runs for too long time is handled in practice by setting
a given time limit, so that the prover process is killed when exceeding this limit.
The cases 2 and 3 are the same from the user’s perspective: the VC is not proved.
Note that we do not distinguish a case where the prover would answer “no it is
not a tautology”, because the VCs typically involve undecidable logic features
(e.g. non-linear integer arithmetic, first-order quantification) so provers are in
practice incomplete: there is no way for them to be sure that a given VC is not
provable.

A major issue in the activity of deductive verification is thus understanding
the reasons for a proof failure. There are various reasons why it may fail:

1. The property to prove is indeed invalid: the code is not correct with respect
to the given specification.

2. The property is in fact valid, but is not proved, again for two possible reasons:
– The prover is not able to obtain a proof (in the given time and memory

limits): this is the incompleteness of the proof search;
– The proof may need extra intermediate annotations, such as loop invari-

ants, or more complete contracts of the subprograms

For the user to be able to fix the code or the specification of their program, it
is essential to understand into which of the two above cases any undischarged
VC falls. The solution we propose in this paper is to generate counterexamples,
or more precisely potential counterexamples. Such a counterexample should give
values for the variables of the program, demonstrating a particular case where
a given annotation may not hold. To produce a counterexample, we exploit an
additional feature of SMT solvers: the ability to propose, when a proof of a
formula is not found, a counter-model, exhibiting an interpretation of the free
variables where the formula cannot be proved true. Turning such a counter-
model into a counterexample for the initial program is not a trivial task because
of the many transformations that lead to a VC from a given code and speci-
fication. For this work, our goal was to design and implement counterexample
generation within the SPARK 2014 [21] environment for the development of
safety-critical Ada programs. In this context, the initial program with anno-
tations is first translated into the intermediate language WhyML. The Why3
tool [7] processes WhyML to generate verification conditions using a weakest
precondition calculus. These VCs are then passed to SMT solvers after several
possible transformations: simplifications and encoding of features not natively
supported by SMT-LIB. Then, to turn the counter-model into a counterexample,
one has to relate the model produced by the SMT solver back to the original
problem, taking into account the entire transformation chain.

In Sect. 2 we present the support for counterexamples in SPARK 2014, from
a user’s point of view, illustrated by simple examples. In Sect. 3 we go into
the internals of the tools, and explain how we designed our approach to gener-
ate counterexamples. We discuss related work and future work in Sect. 4. More
details can be found in a technical report [16].

Counterexamples from Proof Failures in SPARK 217

2 Counterexamples in SPARK

Ada 2012 is the latest version of the Ada language [1], a general purpose lan-
guage, traditionally used in embedded software development. This version adds
new features for specifying the behavior of programs, such as subprogram con-
tracts and type invariants. SPARK is a subset of Ada targeted at formal veri-
fication [21]. Its restrictions ensure that the behavior of a SPARK program is
unambiguously defined. The SPARK language and toolset for static verification
has been applied for many years in on-board aircraft systems, control systems,
cryptographic systems, and rail systems [8]. SPARK also provides dedicated
features that are not part of Ada 2012: essential constructs for deductive verifi-
cation (e.g. loop invariants, ghost code) have been added. To formally prove a
SPARK 2014 program, GNATprove uses WhyML as an intermediate language.
The SPARK program is translated into an equivalent WhyML program which
can then be verified using the Why3 tool.

Fig. 1. A failed postcondition.

Figure 1 shows an example of a saturation procedure, ensuring that values
stay in a given range. In this example, the procedure should ensure that the out-
put value is less or equal to 255. More precisely, the postcondition requires that
if the input value is in the range, it is unmodified, and set to 255 otherwise. Note
the attribute ’Old that refers to the values that expressions had at procedure
entry. The procedure is implemented using bit-wise AND with mask 0xFF. As
the message at the bottom shows, GNATprove does not succeed in proving the
postcondition.

The means for the user to investigate the possible reason of the failure are:

– Execute code and properties during tests, in a way that violations of the
property will stop execution with an exception. This depends of course on
the availability of tests that exercise the violation, but testing is a well-known

218 D. Hauzar et al.

software engineering discipline that engineers usually master, hence uncover-
ing incorrect code and properties is comparatively easier than investigating
other reasons for proof failure.

– A focused manual review of the code and assertions can efficiently diagnose
many cases of missing annotations.

– The user can try to increase the proof power along different axes, in order
to combine the results of different provers and allocate more resources (in
particular time) for each proof attempt. In GNATprove, in addition to the
lower level switches, there are predefined proof levels between 0 and 4 that
the user can increase to augment the proof power: more time allocated, use
more provers.

GNATprove also helps users by pinpointing the part of a larger assertion which
is not proved, and the execution path along which the proof fails. During inter-
actions, the IDE integration is of utmost importance to allow focusing the proof
on a single subprogram or even a single line of code. Yet, testing and manual
review may not identify all errors and missing annotations, and increasing the
proof power may prove the property either. The burden is then on the user to
verify the unproved property by other means: more tests, manual reviews, or
using an interactive prover whose proof script is checked by GNATprove.

Adding Counterexamples in SPARK. We describe now the new facilities to
generate counterexamples that is the purpose of this paper. There are multiple
ways to integrate counterexamples in a development environment, depending
on the expected degree of interactions with users. In SPARK, we have chosen
to simplify the interactions to a minimum, so that users are directly presented
with the most relevant information. GNATprove displays the values of relevant
variables in the message displayed to the user for an unproved check. The message
displayed by GNATprove on the example from Fig. 1 is:

medium: postcondition might fail (e.g. when Val’Old = 4096 and Val = 0)

This information alone might be sufficient to understand the problem. Otherwise,
GNATprove has pre-computed for every unproved check a counterexample trace
that can be displayed in the IDE. This trace consists of a sequence of program
lines, annotated with values of relevant variables.

For example, Fig. 2 shows the trace computed by GNATprove and displayed
in GNAT Programming Studio on the example seen before. A variable is selected
as relevant in the summary message if it appears in the expression being checked.
A variable on any given line is selected as relevant in the trace if it is assigned
a new value on this line. As visible from Fig. 2, the counterexample trace is
displayed inside special lines in the editor, that are not part of the code and
cannot be edited manually (note the absence of a line number). These lines
are prefixed with the token -- that introduces comments in Ada code to make
it clear to users that they are not part of the code. The lines in the program

Counterexamples from Proof Failures in SPARK 219

Fig. 2. Counterexample interleaved with code.

to which the trace applies (lines 3, 6 and 10) are emphasized in the editor. The
counterexample shows that the implementation is indeed not correct with respect
to the specification. Bitwise AND of 4096 and 0xFF is 0, while the specification
requires that the returned value of Val be 255.

Counterexamples with Records and Arrays. Counterexamples can con-
tain values of record types and array types. Their values are displayed in the
usual Ada syntax as aggregates, as illustrated in Fig. 3. If the counterexample
value of a field is not known, it is displayed as question mark. If there is more
than one such field, then these fields are aggregated under the name others.
On Fig. 3, type Saturable_Value defined at line 5–8 contains a field Value rep-
resenting the actual value and a field Upper_Bound being an upper bound of
the saturation range. The postcondition of the function Saturate is analogous
to the postcondition of the procedure Saturate from Fig. 2. The field Value
of the returned record must contain the value of the field Value of the input
record if it is in the range, otherwise it must contain the upper bound of the
range. The saturation is now implemented using function Unsigned_16’Max.
The counterexample shows that if Val.Value is 16383 and Val.Upper_Bound
is 49152, Saturate’Result.Val is 49152. Indeed, instead of the function
Unsigned_16’Max, the function Unsigned_16’Min should be used.

Similarly for records, the content of arrays is shown in Ada syntax for array
aggregates. For arrays with statically unknown ranges, the array range is also
part of the counterexample, shown again in Ada syntax using the attributes
’First and ’Last. See the report [16] for a more detailed example.

220 D. Hauzar et al.

Fig. 3. Counterexample with a record type.

Fig. 4. Why3 architecture

3 Implementation of Counterexamples

3.1 Short Introduction to Why3

Why3 (http://why3.lri.fr) is an environment for deductive program verification,
providing the language WhyML for specification and programming [14]. WhyML
is used as an intermediate language for verification of SPARK programs as well
as C and Java programs [13], and can also be used as a primary programming
language (it can be compiled to Ocaml).

A schematic view of Why3’s components is shown in Fig. 4. The specifi-
cation component of WhyML [6], used to write program annotations and back-
ground theories, is an extension of first-order logic. It features ML-style polymor-
phic types (prenex polymorphism), algebraic datatypes (in particular records),

http://why3.lri.fr

Counterexamples from Proof Failures in SPARK 221

abstract types, and functions and predicates specified axiomatically. Why3 comes
with a rich standard library providing general-purpose theories useful for spec-
ifying programs [7]. This includes integer and real arithmetic, arrays, and bit-
vectors. The specification part of the language serves as a common format for
theorem proving problems, proof tasks in Why3’s jargon. The programming part
of WhyML is a dialect of ML with a number of restrictions to make verification
easier [14]. WhyML function definitions are annotated with preconditions and
postconditions both for normal and exceptional termination, and loops are also
annotated with invariants. Why3 generates proof tasks from user lemmas and
annotated programs (using a weakest precondition calculus), then dispatches
them to multiple provers. We detail below a few features of Why3 that are of
particular interest for the counterexamples feature.

Transformations. A Why3 transformation is any procedure taking a proof task
as an argument and producing another proof task, or more generally a set of
proof tasks. Transformations must be sound in the sense that validity of the
resulting tasks must imply the validity of the input task. The converse is gener-
ally true but not always. A typical example is the split transformation: for a given
proof task of the form H1, . . . , Hk � ∀x.H → (G1 ∧ · · · ∧Gn), that is, if the goal
ends with a conjunction, it produces the set of n tasks H1, . . . , Hk � ∀x.H → Gi

for 1 ≤ i ≤ n. As most of the provers do not support some of the language
features, (e.g. pattern matching, polymorphic types, recursion), Why3 applies a
series of encoding transformations to eliminate unsupported constructions before
dispatching a proof task to provers. Other transformations can also be imposed
by the user in order to simplify the proof search: inlining of definitions, simpli-
fication by computation, case analysis, application of inductive schemes, etc.

Labels. Why3 labels are arbitrary character strings, written between double
quotes. They can be attached to any logic formula or term, and also to any
declaration. Their interpretation is not fixed a priori ; in some cases they are
interpreted by specific transformations. For example, the asymmetric conjunc-
tion of Why3’s logic is a connective written as &&. Internally, it is in fact the usual
conjunction ∧ with the label "asym split" on the first argument. The split
transformation interprets this label so that a goal of the form f1 && f2 is split
into the goals f1 and f1 → f2. Transformations that do not interpret labels
keep them attached to formulas and terms, if possible. For example, a trans-
formation may rename a variable, in that case it should propagate labels from
the original variable to the new one. Analogously, if a transformation rewrites a
given sub-term into another, it should also propagate labels of the old term to
the new one.

Locations. To help traceability of errors from its various front-ends, WhyML
has a mechanism of source locations similar to the #line directive of C pre-
processor. Instead of being line-oriented, it is character-precise: any term or
declaration can be given an annotation of the form #file l b e# meaning that
this term or declaration originates from the source file file, at line l, from first

222 D. Hauzar et al.

character b to last character e. Similarly as for labels, transformations should
propagate locations.

The Weakest Precondition calculus. The VC generator, which implements a
variant of the weakest precondition calculus (WP for short), takes any WhyML
function and creates a proof task. If that proof task is a tautology then the
input function satisfies its contract. This formula is typically quite large, as it
collects all the necessary checks that need to hold for the function to be safe:
postcondition, but also initialization and preservation of loop invariants if any,
any kind of runtime checks, etc. To present the resulting formula to the user
in a more friendly manner, a default application of the split transformation is
applied, so as to obtain a set of VCs that corresponds to the various checks to
perform on the original program. To make this more user-friendly, Why3’s WP
calculus is instrumented so that each of the sub-formulas that corresponds to a
program check is annotated with a label of the form "expl:text". The text is an
explanation of the VC, and is interpreted by the graphical interface. Regarding
the counterexample feature, an important aspect is that during the computation
of the WP, for each program statement that updates a program variable as a
side-effect, a fresh logical variable holding this new value is created. This is the
case for assignment statements, but also occurs in case of function calls and in
presence of loops.

Metas. Why3’s metas provide a way to associate metadata to a proof task that,
unlike labels, are not attached to any particular sub-term or declaration, but
are declared globally to the task. A meta is characterized by a name and a set
of parameters that can be nearly of any kind of object: a number, a boolean, a
string, but also a reference to another declaration: a type, a function symbol, an
hypothesis. As for labels, metas can be interpreted by transformations, but are
usually kept unchanged. Unlike labels, the name of metas, and the type of their
arguments, must be declared first.

3.2 Model Features of SMT-LIB

An SMT solver takes as input a set of formulas, and checks whether this set
is satisfiable or not. To prove that a given proof task H � G is a tautology,
we query the solver for the satisfiability of H and the negation of G: if the
solver answers that this set is unsatisfiable, it means that proof task is valid.
If the solver terminates with any other answer, the SMT solver may propose
a potential model of H and ¬G describing why H � G cannot be proved. To
get such a model, we use features of SMT-LIB [3], and the solvers CVC4 and
Z3. SMT-LIB defines commands get-model and get-value for getting models.
The command get-model returns a set of interpretations for all user-declared
function symbols in the input task. The command (get-value t1 · · · tn) returns
for each term ti a value term that is equivalent to ti in the potential model.

Counterexamples from Proof Failures in SPARK 223

3.3 Counterexamples at Why3 Level

Our goal is to exploit the generation of models by SMT solvers to construct a
potential counterexample to the input Why3 program. This means that we need
to add counterexample generation to the Why3 architecture described in Fig. 4:
some feedback from the bottom (prover results) to the top (input program) must
be implemented. Because the VC generation and the Why3 transformations can
rename variables and introduce fresh ones, re-interpreting the model returned
by the solver into a counterexample of the input source is a non-trivial process.

A first choice we have to make is on whether using the get-model or the
get-value command of SMT-LIB. The command get-model might seem easier
to use at first because no argument needs to be given. However, from the large
set of function symbols and their values returned by get-model, it would be a
hard task to extract which part of it corresponds to the initial program, because
we have no trace of the extra logical variables and renamings made by WP
and transformations. That’s why we decided to use the get-value command
instead. We provide the variables or terms to query as arguments of this com-
mand by properly propagating traceability information along the WP and the
Why3 transformations. This is done using Why3 labels and metas instrument-
ing the different processing steps as shown in Fig. 5. This has to be performed
regarding different aspects that are detailed in the subsections below.

Marking variables to show in a counterexample. In a Why3 task, variables that
should be shown in a counterexample are marked with the label "model". When
the task is printed into SMT-LIB format, SMT-LIB terms corresponding to
these variables are collected and then passed as parameters of the get_value
command. As an example, see the following Why3 task:

constant x "model" :int
goal G : x+x > 0

When printing the task into SMT-LIB syntax, the SMT-LIB term corresponding
to the constant x will be collected and queried for counterexample value v.
The counterexample will be displayed to the user in the form x = v and this
equality will be associated to the location of the goal G. For a Why3 task that is
generated from WhyML or SPARK program, we additionally need to annotate
each variable with two things. First, with a location in the original source code
and second with the name of the variable in the source language.

constant x "model" "model_trace:X" #file.adb 42 1 2#:int
goal G : x+x > 0

In such a case the counterexample will be displayed in the form X = v and
associated with location in file file.adb, line 42 (in practice inside a comment
as in Fig. 2).

Instrumenting WP calculus for counterexamples. The user expects that all suc-
cessive values of a variable, marked with label "model", appear in a counterexam-
ple. WP creates a fresh logical variable for every modification of a given variable.
For variables marked with label "model", counterexample labels are propagated

224 D. Hauzar et al.

Fig. 5. Counterexamples at Why3 level.

to these fresh logical variables. Moreover, each of these fresh variables is given
the location of the expression that triggers its creation. As an example, let us
consider the following WhyML code implementing a simple loop:

let test_loop (x "model" "model_trace:X" : ref int): unit
requires { !x > 0 }

= while !x > 0 do (* counterexample: X = 1 *)
invariant { !x ≥ 0 }
x := !x - 2 (* counterexample: X = -1 *)

done

Fig. 6. Logical formula generated by WP.

The variable x is marked
with labels "model" and
"model_trace" as counterex-
ample variable. The prop-
erty preserving loop invariant
is not proved, and a coun-
terexample, shown in com-
ments, is generated. The for-
mula encoding this property
is shown in Fig. 6. The vari-
able x quantified at the top of the formula stands for the input value of the
variable x of the test_loop function. Then, WP creates another fresh variable

Counterexamples from Proof Failures in SPARK 225

x1 for the value of variable x at the beginning of some arbitrary loop iteration.
Finally, WP creates a fresh variable x2 for the value of variable x after the
assignment statement.

Fig. 7. Counterexample located at post-
condition annotated with "model vc"

As shown on Fig. 6, the "model"
label on the variable xof test_loop
is propagated to all those logical fresh
variables corresponding to x. A sim-
ilar propagation occurs with label
"model_trace" with some additional
information (after the "@" sign) to
explain the origin of the fresh vari-
able. Source code locations are not dis-
played here for readability.

Get values of variables from a given
assertion. In practice, it is useful for

the user to see values of counterexample variables at the location of the assertion
that fails. As an example, see Fig. 2. Both initial and final value of variable Val
are displayed on line 6, which is the location of the failed postcondition and this
information is also a part of the message summarizing the unproved assertion in
the “messages” panel.

Fig. 8. Projections of abstract types and
records.

During WP, all modifications of
variables relevant for counterexamples
are marked, and their values are dis-
played at the respective locations that
triggered the modifications. However,
the user expects to see also, at the
location of a failed check, the values
of the variables involved in that check.
One way to display these variables at
the location of a failed check would
be to retrieve the last point of mod-
ification of a variable and display this
counterexample value at the location
of a failed proof. However, this is quite
complex to do when multiple program
paths are encoded in a VC.

That is why we preferred to explic-
itly mark variables that appear at the
location of a failed check. In WhyML
programs, expressions that trigger
generating a proof task are marked
with label "model_vc". These expres-
sions can be asserts, preconditions,
and postconditions. We implemented
a dedicated Why3 transformation that

226 D. Hauzar et al.

uses this label to find the expression that triggers generating the current proof
task. The transformation then marks all counterexample variables read in this
expression as a part of the counterexample at locations of the expression.

The example of Fig. 7 shows a function with a postcondition marked with a
label "model_vc". This postcondition cannot be proved and a counterexample
is generated. At the location of the postcondition, the values of the variable x
at the function start and the variable y at exit are displayed.

Projections in models. For some types, SMT-LIB standard does not specify how
values of these types should be displayed. Most notably, this is the case for
abstract types. When an SMT solver is queried for values of such a type, it
usually returns just an internal reference. To display values of these types in a
counterexample, we decided to project them to values of types that can be dis-
played. To project values of a type T1 to a type T2, a meta "model_projection"
must be declared taking as argument some function P1 from T1 to T2. If some
element E of type T1 is labeled with "model_projected", then instead of query-
ing for a value for E, the solver is queried for a value of P1(E). Projections are
applied transitively: if there is a projection function P2 from T2 to T3, a value
of P2(P1(E)) is queried. Moreover, if there are more than one projection for a
projected type, all of them are applied. Projecting values is implemented as a
Why3 transformation intro_projections_cntexmp.

Figure 8 defines an abstract type byte to represent integers from -128 to
127. Values of this type can be projected to integers using function to_rep.
This function is marked as a projection using meta "model_projection".
The variable a of type byte is marked with the label "model_projected". This
means that a will be queried in counterexamples and will be projected from byte
to int using to_rep.

Querying record values reuses projection mechanism to extract their
fields. For each field, a projection function is defined, marked using meta
"model_projection", and annotated with a "model_trace" label specifying
the name of the field. When the transformation intro_projections_cntexmp
uses this function to project a record value to the record field, it adds the name
of the field to the content of "model_trace" label of the record value. Remember
that projections are applied transitively: if a field is of a type with a defined pro-
jection, it is further projected. Figure 8 shows an example of definition of record
type r with fields f and g. Functions proj_f and proj_g project a value of type
r to field f and g and they are annotated with "model_trace" labels capturing
the names of the fields that will be displayed in a counterexample. The constant
b is marked to be queried for a counterexample with "model_projected" label
meaning that the value must be projected before being displayed and it is anno-
tated with "model_trace" label that captures the name of the variable that will
be displayed in a counterexample.

Arrays. SMT-LIB does not define how values of array types should be output in a
counterexample. To get values of array types, we rely on the form in which values
of array types are returned by the CVC4 solver: an array as a constant array

Counterexamples from Proof Failures in SPARK 227

and series of store operations defining relevant indices. Here are two examples
of array values that CVC4 may return:

(store (store ((as const (Array Int Int)) 0) 1 2) 3 4)
((as const (Array Int (Array Int Int))) ((as const (Array Int Int)) 0))

The first array is a single-dimensional array with index 1 equal to 2, index 3 equal
to 4, and other indices equal to 0. The second array is a two-dimensional array
with all indices equal to 0. The values stored in the array may be of abstract or
record types so we need to project them. The problem is that we cannot proceed
as for records by introducing projections for each array index because there
are infinitely many of them. To overcome this problem, for an array orig_arr
that should be queried for a counterexample and has values of an abstract type
t_val, a projection function pf_val from the abstract type t_val to concrete
type t_val_c is defined. Then, new array proj_arr with values of the type
t_val_c is defined together with an axiom stating that projections of values in
the original array are equal to the values in the new array:

constant proj_arr: map int t_val_c
axiom proj_axiom : (forall i : int. proj_arr[i] = pf_val(orig_arr[i]))

Instead of querying the solver for the original array, the solver is queried for the
new, projected array.

3.4 Building Counterexamples for SPARK

A SPARK program is translated by the tool gnat2why into a WhyML program
with counterexample annotations. Why3 generates VCs and tries to prove each
resulting proof task with selected provers. If all fail, the task is split into smaller
tasks. When a task can be neither proved nor split, it is attempted to be proved in
the counterexample mode described in Sect. 3.3. The generated counterexample
is returned back to gnat2why and post-processed, before being displayed to the
user.

Generating WhyML code. gnat2why marks all WhyML elements corresponding
to declarations of SPARK variables or to declarations of arguments of SPARK
functions to be part of a counterexample using "model" or "model_projected"
labels, generates projection functions for abstract and record types generated
by gnat2why and marks WhyML elements that trigger generating of a VC
by "model_vc" labels. gnat2why also generates "model_trace" labels storing
traceability information to corresponding elements in SPARK program. Instead
of storing names, "model_trace" labels store unique identifiers from SPARK
internal representation (AST). gnat2why generates Why3 location tags, which
make it possible to explicitly specify source code locations of WhyML elements.

Post-processing counterexamples. The counterexample returned from Why3 to
gnat2why is a map from locations in SPARK source code to lists of counterex-
ample elements at these locations. A counterexample element consists of an
identifier and a value. The identifier has the form x.f1 . . . fn (n ≥ 0) where x

228 D. Hauzar et al.

(resp. fi) is the internal AST identifier of a variable (resp. field). Counterexample
elements are post-processed in the following way: identifiers are mapped back to
names in the source code, elements in the same source code line corresponding
to same record are grouped together as an aggregate (as in Fig. 3). Values are
converted to SPARK syntax.

3.5 Experimental Evaluation

Our implementation of counterexample generation is publicly available in Why3
0.87 and SPARK 16.0. On the full SPARK regression test-suite consisting in
1472 tests, enabling counterexample generation only induce a small slowdown if
any on all supported platforms.

Figure 9 presents the results on the section of the test-suite that was ini-
tially created for the Riposte tool [25], which was used in the previous ver-
sions of SPARK to generate counterexamples. Overall, in most of the cases,
counterexamples were obtained and they were of a good quality. The main
difficulty for counterexample generation was the use of non-linear arithmetic
(tests arithmetic, alpha_launch_examples, and victor_divmod_rules) and
the presence of arrays (tests array_aggregates, arrays, simple_arrays,
arrays_multidim, array_application, and complex_arrays). In the case of
arrays, this is likely caused by the additional projections and axioms that are
generated for arrays when generating counterexamples, as described in Sect. 3.3.

Fig. 9. Results of counterexample generation on Riposte tests.

Counterexamples from Proof Failures in SPARK 229

4 Conclusions and Perspectives

We added the generation of counterexamples to SPARK 2014, by exploiting
the model generation feature of SMT solvers, and appropriately instrumenting
the process of generating VCs from a SPARK program, through the intermedi-
ate WhyML program, weakest precondition calculus and logic transformations.
Instead of complex post-processing of the complete model that would be returned
by the SMT-LIB get-model command, we instrumented the processing steps so
that only the adequate terms are queried with the get-value command, and
then a simple mapping from the terms queried to the initial program variables
can be applied to build the counterexample.

Recent user training sessions showed a clear appeal of counterexamples to
users, which motivated our choice to enable them by default in SPARK (versions
16.0 and later). Based on our initial feedback with the use of counterexamples
inside SPARK, counterexamples may be the most useful feature in SPARK for
investigating unproved properties, after the possibility to execute contracts and
assertions in tests.

Related Work. The model returned by a SAT or SMT solver on a satisfiable
problem is exploited in several areas of program verification, a major case being
the one of model checking, as for example in the Alloy analyzer [26] or the
CBMC model checker for C programs [15]. In the case of deductive verification,
generating counterexamples is not as common. The Riposte tool based on answer
set programming [25] was used in the previous versions of SPARK to generate
counterexamples, but only at the level of VCs without source traceability. There
is also the case of the NitPick tool inside the Isabelle proof assistant [4].

In the more specific case of program verifiers using SMT solvers, the
idea of instrumenting the generation of VCs originates from the old system
ESC/Modula-3, that generates VCs for the Simplify solver, adding specific labels
to determine the source location and the path of execution leading to the poten-
tial program error. The same mechanism was reused in ESC/Java [19]. The
potential counterexample proposed by Simplify can be displayed to the user, but
is very hard to understand because of the various encodings from the input pro-
gram to the VC. Only recently a way to reinterpret the counterexample in terms
of variables of the source code was designed in the OpenJML framework [12].
They use SMT-LIB command get-value to get counterexample values for all
sub-expressions in the original program, supporting values of scalar types only,
and also to get values of block predicates, which they use to determine the
control-flow path of the failed assertion [11]. In SPARK, it is possible to gen-
erate VCs for individual control-flow paths and display control-flow path for
such VCs if they cannot be proved. In OpenJML, SMT-LIB VCs are generated
directly, without using intermediate representation. On one hand, this make it
easier to maintain mapping between source-code variables and logical variables.
On the other hand, using Why3 as intermediate language makes it possible to
use the power of Why3 transformations to transform a proof task to forms well

230 D. Hauzar et al.

suited for different provers. Another deductive program verification framework
that makes use of SMT counter-models is the Boogie Verifier Debugger [18].
Boogie is used as an intermediate language by Dafny [20] and VCC [10]. Boogie
also has its own way of reinterpreting the counter-model, generated by its back-
end prover Z3, in terms of the source code. Besides scalar values, Boogie makes
it possible to display the content of dynamically allocated data structures such
as objects. Unlike SPARK and OpenJML, Boogie encodes locations and source
variable names in the generated VC, uses SMT-LIB command get-model to get
whole SMT-LIB counterexample and then relies on reverse transformations to
map the SMT-LIB counterexample into the source code.

Both OpenJML and Boogie present the counterexample in a user-friendly
manner, in their respective graphical interfaces (Eclipse, Visual Studio). Their
presentation is a bit different from our way of presenting the counterexample,
where we give values of relevant variables inside comments at proper locations of
the source code. We have no evidence that our approach is better than these other
approaches in terms of quality of the generated counterexamples. We designed
our approach so that it is the best fit for SPARK users.

Another recent approach for helping users in debugging their specification
and code is to use some kind of symbolic execution, as is proposed by the Visual
Studio dynamic debugger [23] and the Verifast verifier [17].

Future Work. During this work, we encountered a few issues that could be
addressed by authors of SMT solvers.

First, SMT-LIB standard does not fix any rule for displaying model values. In
particular, it is not standardized how values of array types and bit-vector types
should be displayed. This need for standardization is already known and it is
likely to appear in the near future. Related to this, we believe that the feature
of projections that we introduced could be handled by the solvers themselves
as part of the standard to display counterexamples. This would be particularly
useful in the case of arrays: the solution we proposed, involving the introduction
of another array and an axiom, makes the problem harder to prove because of
the additional universal quantification.

A second issue concerns the validity of generated counterexamples. In prin-
ciple, one should query SMT solvers for models only if the answer was ’sat’.
However, on a VC generated by a program verification task, most of the time
the answer is ’unknown’ or the solver hits the time limit given. As expected,
in this case the model is not guaranteed to be a true model. However, there
are some cases where the model returned is trivially wrong because it is not
even a model of the ground part of the goal. A suggestion for improvement is
as follows: since the main source of incompleteness comes from the quantified
hypotheses, there could be two different modes of operation, with two corre-
sponding time limits. A first time limit, say a “soft” one, gives the time during
which the solver is allowed to instantiate quantifiers as it wants. After this soft
time limit is reached, a “hard” time limit should give the solver extra time to
continue its search but in a specific mode where no new quantifier instantiation

Counterexamples from Proof Failures in SPARK 231

is performed. In this second mode, it is likely that the solver would terminate its
search, and if a model is returned, it would be valid with respect to the ground
part of the goal. If such modes were implemented in SMT solvers, it would be
of major interest for counterexample generation.

Another technical issue is the ability to support model generation for all
supported theories. This is not always the case, for example CVC4 does not
produce models when non-linear arithmetic is selected. It is understandable since
this logic is undecidable, there is no way to be sure that the model returned would
be a true one. However, a similar degraded mode as described above could be
implemented, for example in the degraded mode non-linear parts of the formulas
could be ignored.

To double-check that a counterexample produced by our technique is a true
one, one may consider turning it into a test case and run the program with
the given values. This is unfortunately not an easy task because of the proce-
dure calls: a procedure has a concrete semantics given by concrete execution
and abstract semantics given by contracts. Since only the abstract semantics is
visible to a solver, it may happen that a counterexample is true with respect
to the abstract semantics, but false with respect to the concrete semantics and
moreover it can happen that there is a different counterexample, not returned
by the solver, true with respect to both semantics. Thus, properly combining
counterexamples generated by failed proof attempts and run-time verification
needs to investigated further. Recent work by Christakis et al. [9] and Petiot
et al. [24] pursue such a direction.

Acknowledgements. We would like to thank David Cok, Clément Fumex, Rustan
Leino, Andrei Paskevich, Florian Schanda, as well as the anonymous reviewers for their
useful comments. We are pleased that a reviewer specifically agreed with us on “the
suggested improvement to SMT solvers regarding hard and soft limits” and another
confirmed that “the insights discussed as future work are very interesting”.

References

1. Barnes, J.: Programming in Ada 2012. Cambridge University Press, Cambridge
(2014)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: 8th
International Workshop on Satisfiability Modulo Theories (2010)

4. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

5. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008). http://alt-ergo.lri.fr/

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: International Workshop on Intermediate Verification Languages,
Wroc�law, Poland, pp. 53–64 (2011)

http://alt-ergo.lri.fr/

232 D. Hauzar et al.

7. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
Int. J. Softw. Tools Technol. Transfer 17(6), 709–727 (2015)

8. Chapman, R., Schanda, F.: Are we there yet? 20 years of industrial theorem proving
with SPARK. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp.
17–26. Springer, Heidelberg (2014)

9. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment
for diagnosing verification errors. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 424–441. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 25

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

11. Cok, D.R.: Improved usability and performance of SMT solvers for debugging
specifications. Int. J. Softw. Tools Technol. Transf. 12(6), 467–481 (2010)

12. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK,
and Eclipse. In: Formal Integrated Development Environments (2014). Elec. Proc.
Theor. Comput. Sci. 149, 79–92 (2014)

13. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007)

14. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013)

15. Groce, A., Kroning, D., Lerda, F.: Understanding counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 453–456. Springer,
Heidelberg (2004)

16. Hauzar, D., Marché, C., Moy, Y.: Counterexamples from proof failures in the
SPARK program verifier. Research Report 8854, Inria (2016). https://hal.inria.
fr/hal-01271174

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

18. Le Goues, C., Leino, K.R.M., Moskal, M.: The boogie verification debugger (tool
paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 407–414. Springer, Heidelberg (2011)

19. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification-
condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226 (2005)

20. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
Formal Integrated Development Environments (2014). Elec. Proc. Theor. Comput.
Sci. 149, 3–15 (2014)

21. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

22. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87.
Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-662-49674-9_25
http://dx.doi.org/10.1007/978-3-662-49674-9_25
https://hal.inria.fr/hal-01271174
https://hal.inria.fr/hal-01271174

Counterexamples from Proof Failures in SPARK 233

24. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
testing helps to find the reason (2015). http://arxiv.org/abs/1508.01691

25. Schanda, F., Brain, M.: Using answer set programming in the development of ver-
ified software. In: Technical Communications of the 28th International Conference
on Logic Programming. LIPIcs, vol. 17, pp. 72–85. Leibniz-Zentrum fuer Informatik
(2012)

26. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

http://arxiv.org/abs/1508.01691

Proving Termination of Programs with Bitvector
Arithmetic by Symbolic Execution

Jera Hensel, Jürgen Giesl(B), Florian Frohn, and Thomas Ströder

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
{hensel,giesl,florian.frohn,stroeder}@informatik.rwth-aachen.de

Abstract. In earlier work, we developed an approach for automated ter-
mination analysis of C programs with explicit pointer arithmetic, which
is based on symbolic execution. However, similar to many other termina-
tion techniques, this approach assumed the program variables to range
over mathematical integers instead of bitvectors. This eases mathemat-
ical reasoning but is unsound in general. In this paper, we extend our
approach in order to handle fixed-width bitvector integers. Thus, we
present the first technique for termination analysis of C programs that
covers both byte-accurate pointer arithmetic and bit-precise modeling of
integers. We implemented our approach in the automated termination
prover AProVE and evaluate its power by extensive experiments.

1 Introduction

In [14], we developed an approach for termination analysis of C with explicit
pointer arithmetic, which we implemented in our tool AProVE [9]. AProVE won
the termination category of the International Competition on Software Veri-
fication (SV-COMP)1 at TACAS in 2015 and 2016. However, like the other
termination tools at SV-COMP, our approach was restricted to mathematical
integers.

In general, this is unsound: The function f below does not terminate if x
has the maximum value of its type2. But we can falsely prove termination if we
treat x and j as mathematical integers. For g, we could falsely conclude non-
termination, although g always terminates due to the wrap-around for unsigned
overflows.

void f(unsigned int x) { void g(unsigned int j) {
unsigned int j = 0; while (j > 0) j++; }
while (j <= x) j++; }

Supported by the DFG grant GI 274/6-1.
1 See http://sv-comp.sosy-lab.org/.
2 In C, adding 1 to the maximal unsigned integer results in 0. In contrast, for signed

integers, adding 1 to the maximal signed integer results in undefined behavior. How-
ever, most C implementations return the minimal signed integer as the result.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 234–252, 2016.
DOI: 10.1007/978-3-319-41591-8 16

http://sv-comp.sosy-lab.org/

Proving Termination of Programs with Bitvector Arithmetic 235

In this paper, we adapt our approach for termination of C from [14] to handle
the bitvector semantics correctly. To avoid dealing with the intricacies of C, we
analyze programs in the platform-independent intermediate representation of
the LLVM compilation framework [12]. Our approach works in two steps: First,
a symbolic execution graph is automatically constructed that represents an over-
approximation of all possible program runs (Sects. 2 and 3). This graph can
also be used to prove that the program does not result in undefined behavior
(so in particular, it is memory safe). In a second step (Sect. 4), this graph is
transformed into an integer transition system (ITS), whose termination can be
proved by existing techniques. In Sect. 5, we compare our approach with related
work and evaluate our corresponding implementation in AProVE. AppendixA
discusses details on the semantics of abstract states and Appendix B gives the
proofs of the theorems.

To extend our approach to fixed-width integers, we express relations between
bitvectors by corresponding relations between mathematical integers Z. In this
way, we can use standard SMT solving over Z for all steps needed to construct the
symbolic execution graph. Moreover, this allows us to obtain ITSs over Z from
these graphs, and to use standard approaches for generating ranking functions
to prove termination of these ITSs. So our contribution is a general technique
to adapt byte-accurate symbolic execution to the handling of bitvectors, which
can also be used for many other program analyses besides proving termination.

Limitations. To simplify the presentation and to concentrate on the issues
related to bitvectors, we restrict ourselves to a single LLVM function and to
LLVM types of the form in (for n-bit integers), in* (for pointers to values of
type in), in**, in***, etc. Moreover, we assume a 1 byte data alignment (i.e.,
values may be stored at any address) and only handle memory allocation by the
LLVM instruction alloca. See [14] for an extension of our approach to programs
with several LLVM functions, arbitrary alignment, and external functions like
malloc. As discussed in [14], some LLVM concepts are not yet supported by our
approach (e.g., undef, floating point values, vectors, struct types, and recur-
sion). Another limitation is that our approach cannot directly disprove proper-
ties like memory safety or termination, as it is based on over-approximating all
possible program runs.

2 LLVM States for Symbolic Execution

In this section, we define concrete and abstract LLVM states that represent sets
of concrete states. These states will be needed for symbolic execution in Sect. 3.
As an example, consider the function g from Sect. 1. In the corresponding3 LLVM
code in Fig. 1, the integer variable j has the type i32, as it is represented as
a bitvector of length 32. The program is split into the basic blocks entry, cmp,
3 This LLVM program corresponds to the code obtained from g with the Clang compiler

[3]. To ease readability, we wrote variables without “%” in front (i.e., we wrote “j”
instead of “%j” as in proper LLVM) and added line numbers.

236 J. Hensel et al.

body, and done. We will explain this LLVM code in detail when constructing the
symbolic execution graph in Sect. 3.

Fig. 1. LLVM code for the function g

In our abstract domain,
an LLVM state consists
of the current program
position, the values of the
local program variables,
a knowledge base with
information about these
values, and two sets to
describe allocations and
the contents of memory.
The program position is
represented by a pair
(b, k). Here, b is the name
of the current basic block
and k is the index of the
next instruction. So if Blks is the set of all basic blocks, then the set of program
positions is Pos = Blks × N. We represent an assignment to the local program
variables VP (e.g., VP = {j, ad, . . .}) by an injective function LV : VP → Vsym ,
where Vsym is an infinite set of symbolic variables with Vsym ∩ VP = ∅. Let
Vsym(LV) ⊆ Vsym be the set of all symbolic variables v where LV (x) = v for
some x ∈ VP .

The third component of states is the knowledge base KB ⊆ QF IA(Vsym), a
set of first-order quantifier-free integer arithmetic formulas. For concrete states,
KB uniquely determines the values of symbolic variables, whereas for abstract
states several values are possible. We identify sets of formulas {ϕ1, . . . , ϕn} with
their conjunction ϕ1 ∧ . . . ∧ ϕn and require that KB is just a conjunction of
equalities and inequalities in order to speed up SMT-based arithmetic reasoning.

The fourth component of a state is an allocation list AL. It contains expres-
sions of the form [[v1, v2]] for v1, v2 ∈ Vsym , which indicate that v1 ≤ v2 and that
all addresses between v1 and v2 have been allocated by an alloca instruction.

The fifth component PT is a set of “points-to” atoms v1 ↪→ty,i v2 where
v1, v2 ∈ Vsym , ty is an LLVM type, and i ∈ {u, s}. This means that the value
v2 of type ty is stored at the address v1, where i ∈ {u, s} indicates whether v2
represents this value as an unsigned or signed integer. As each memory cell stores
one byte, v1 ↪→i32,i v2 states that v2 is stored in the four cells v1, . . . , v1 + 3.

Finally, we use a special state ERR to be reached if we cannot prove absence
of undefined behavior (e.g., if a non-allowed overflow or a violation of memory
safety by accessing non-allocated memory might take place).

Definition 1 (States). LLVM states have the form (p,LV ,KB ,AL,PT) where
p∈Pos, LV : VP → Vsym , KB ⊆ QF IA(Vsym), AL ⊆ {[[v1, v2]] | v1, v2 ∈ Vsym},
and PT ⊆ {(v1 ↪→ty,i v2) | v1, v2∈Vsym , ty is an LLVM type, i∈{u, s}}. In addi-
tion, there is a state ERR for undefined behavior. For a = (p,LV,KB,AL,PT),
let Vsym(a) consist of Vsym(LV) and all symbolic variables in KB, AL, or PT.

Proving Termination of Programs with Bitvector Arithmetic 237

We often identify the mapping LV with the equations {x = LV (x) | x ∈ VP}.
As an example, consider the following abstract state for our function g:

((entry, 2), {j = vj, ad = vad}, {vend = vad + 3}, {�vad, vend�}, {vad ↪→i32,u vj}) (1)

It represents states in the entry block immediately before executing the instruc-
tion in line 2. Here, LV (j) = vj, the memory cells between LV (ad) = vad and
vend = vad + 3 have been allocated, and vj is stored in the 4 cells vad, . . . , vend .

In contrast to [14], we partition the program variables VP into two disjoint
sets UP and SP . If x ∈ UP (resp. x ∈ SP), then LV (x) is x’s value as an
unsigned (resp. signed) integer. This is advantageous when formulating rules
to execute LLVM instructions like icmp ugt and sgt, since the LLVM types
do not distinguish between unsigned and signed integers. Instead, some LLVM
instructions consider their arguments as “unsigned” whereas others consider
them as “signed”.

To determine UP and SP , we use the following heuristic which statically scans
the program P for variables which are (mainly) used in unsigned resp. signed
interpretation. We iteratively add a variable x to UP if

• x is an address (i.e., it has a type of the form ty∗),
• x occurs in an unsigned comparison instruction (e.g., icmp ugt for the integer

comparison “unsigned greater than”) or in another unsigned operation (e.g.,
udiv or urem for “unsigned division” or “remainder”),

• x occurs in a sign neutral comparison (icmp eq or ne) or in a phi or select
instruction together with another variable y ∈ UP , where y is not the condi-
tion,

• x occurs in an add, sub, mul, or shl instruction without nsw flag (“no signed
wrap-up” means that overflow of signed integers yields undefined behavior),

• x occurs in a binary or conversion instruction with another y ∈ UP ,
• x is the result of icmp or the condition of a branch (br) or select instruction,
• x occurs in a lshr (“logical shift right”) instruction,
• x occurs in a zext instruction (the “zero extension” adds zero bits in front),
• x is loaded from an address where a variable y ∈ UP is stored to, or
• x is stored to an address where a variable y ∈ UP is loaded from.

Afterwards, we iteratively remove x from UP again if

• x is one of the two arguments of a signed comparison (e.g., icmp sgt) or x
occurs in another signed operation (e.g., sdiv or srem),

• x occurs in a comparison or in a phi or select instruction together with
another variable y ∈ VP \ UP , where x is not the condition,

• x occurs in an instruction flagged by nsw,
• x occurs in a binary or conversion instruction with another y ∈ VP \ UP ,
• x occurs in an ashr (“arithmetic shift right”) instruction,
• x occurs in a sext instruction (the “sign extension” adds copies of the most

significant bit in front),
• x is loaded from an address where a variable y ∈ VP \ UP is stored to, or
• x is stored to an address where a variable y ∈ VP \ UP is loaded from.

238 J. Hensel et al.

We then define SP = VP \UP . In this way, we make sure that in each instruction
in P, all occurring program variables of type in with n > 1 are either from UP
or from SP . In our example, we obtain UP = VP = {j, ad, . . . , inc} and SP = ∅.
Note that there is no guarantee that all variables in UP resp. SP are used as
unsigned resp. signed integers in the original C program (e.g., if y, z ∈ SP and
the C program contains “unsigned int x = y + z;”, then our heuristic would
conclude x ∈ SP , since the resulting LLVM code has the instruction “x = add
i32 y, z”). Our analysis remains correct if there are (un)signed variables that
we do not recognize as being (un)signed (i.e., failure of the above heuristic for UP
and SP only affects the performance, but not the soundness of our approach).

To construct symbolic execution graphs, for any state a we use a first-order
formula 〈a〉FO , which is a conjunction of equalities and inequalities containing
KB and obvious consequences of AL and PT . Moreover, 〈a〉FO states that all
integers belong to intervals corresponding to their types. Here, let umaxn =
2n −1, sminn = −2n−1, and smaxn = 2n−1 −1. Moreover, size(ty) is the number
of bits required for values of type ty (e.g., size(in) = n and size(ty∗) = 32 (resp.
64) on 32-bit (resp. 64-bit) architectures). As usual, “v ∈ [k,m]” is a shorthand
for “k ≤ v ∧ v ≤ m” and “|= ϕ” means that ϕ is a tautology.

Definition 2 (FO Formulas for States). 〈a〉FO is the smallest set with4

〈a〉FO = KB ∪ {0 < v1 ≤ v2 | [[v1, v2]] ∈ AL} ∪
{v2 = w2 | (v1 ↪→ty,i v2), (w1 ↪→ty,i w2) ∈ PT and |= 〈a〉FO ⇒ v1 = w1} ∪
{v1 	= w1 | (v1 ↪→ty,i v2), (w1 ↪→ty,i w2) ∈ PT and |= 〈a〉FO ⇒ v2 	= w2} ∪
{0 < v1 ∧ v2 ∈ [0, umaxsize(ty)] | (v1 ↪→ty,u v2) ∈ PT} ∪
{0 < v1 ∧ v2 ∈ [sminsize(ty), smaxsize(ty)] | (v1 ↪→ty,s v2) ∈ PT} ∪
{LV (x) ∈ [0, umaxsize(ty)] | x ∈ UP , x has type ty} ∪
{LV (x) ∈ [sminsize(ty), smaxsize(ty)] | x ∈ SP , x has type ty}.

Concrete states determine the values of variables and the contents of the
memory uniquely. To enforce a uniform representation, in concrete states we only
allow statements of the form (w1 ↪→ty,i w2) in PT where ty = i8 and i = u. In
addition, concrete states (p,LV ,KB ,AL,PT) must be well formed, i.e., for every
(w1 ↪→ty,i w2) ∈ PT , there is an [[v1, v2]] ∈ AL such that |= KB ⇒ v1 ≤ w1 ≤ v2.
So PT only contains information about addresses that are known to be allocated.

Definition 3 (Concrete States). An LLVM state c is concrete iff c = ERR
or c = (p,LV ,KB ,AL,PT) is well formed, 〈c〉FO is satisfiable, and

• For all v ∈ Vsym(c) there exists an n ∈ Z such that |= 〈c〉FO ⇒ v = n.
• For all [[v1, v2]] ∈ AL and for all integers n with |= 〈c〉FO ⇒ v1 ≤ n ≤ v2,

there exists (w1 ↪→i8,u w2) ∈ PT for some w1, w2 ∈ Vsym such that |= 〈c〉FO ⇒
w1 = n and |= 〈c〉FO ⇒ w2 = k, for some k ∈ [0, umax8].

• There is no (w1 ↪→ty,i w2) ∈ PT for ty �= i8 or i = s.
4 Of course, 〈a〉FO can be extended by more formulas, e.g., on the connection between

v2 and v′
2 if (v1 ↪→in,u v2), (v1 ↪→im,u v′

2) ∈ PT for n < m. Then we can also handle
programs which load an in integer from an address where an im integer was stored.

Proving Termination of Programs with Bitvector Arithmetic 239

In [14], for every abstract state a, we also introduced a separation logic for-
mula 〈a〉SL which extends 〈a〉FO by detailed information about the memory.
(We recapitulate 〈a〉SL and the semantics of separation logic in AppendixA.)
For this semantics, we use interpretations (as,mem). Here, as : VP → Z is
an assignment of the program variables, where for x∈ VP of type ty, we have
as(x)∈ [0, umaxsize(ty)] if x ∈ UP and as(x) ∈ [sminsize(ty), smaxsize(ty)] if x ∈ SP .
The partial function mem : N>0 ⇀ {0, . . . , umax8} with finite domain describes
the memory contents at allocated addresses (as unsigned integers). We use “⇀”
for partial functions. For any abstract state a, we have |= 〈a〉SL ⇒ 〈a〉FO . So
〈a〉FO is a weakened version of 〈a〉SL, used to construct symbolic execution
graphs. This allows us to use standard first-order SMT solving for all reasoning
in our approach.

Now we define which concrete states are represented by an abstract state a.
We extract an interpretation (asc,memc) from every concrete state c �= ERR.
Then a represents all concrete states c where (asc,memc) is a model of some
concrete instantiation of 〈a〉SL. A concrete instantiation is a function σ : Vsym →
Z. So σ does not instantiate VP . Instantiations are extended to formulas as usual.

Definition 4 (Representing Concrete by Abstract States). Let c =
(p,LV c,KBc,ALc,PT c) be a concrete state. For every x ∈ VP , let asc(x) = n
for the number n ∈ Z with |= 〈c〉FO ⇒ LV c(x) = n. For n ∈ N>0, the func-
tion memc(n) is defined iff there exists a (w1 ↪→i8,u w2) ∈ PT such that
|= 〈c〉FO ⇒ w1 = n. Let |= 〈c〉FO ⇒ w2 = k, where k ∈ [0, umax8]. Then
memc(n) = k.

We say that an abstract state a = (p,LV a,KBa,ALa,PT a) represents a con-
crete state c = (p,LV c,KBc,ALc,PT c) iff a is well formed and (asc,memc) is
a model of σ(〈a〉SL) for some concrete instantiation σ of the symbolic variables.
The only state that represents the error state ERR is ERR itself.

So the abstract state (1) represents all concrete states c = ((entry, 2),
LV,KB,AL,PT) where memc stores the 32-bit integer asc(j) at the address
asc(ad).

3 From LLVM to Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that
over-approximates all executions of a program. To this end, we define operations
to convert any integer expression t into an unsigned resp. signed n-bit integer5:

unsn(t) = t mod 2n sign(t) = ((t + 2n−1) mod 2n) − 2n−1

The correctness of unsn is obvious and by Theorem 5, sign is correct as well.

Theorem 5 (Converting Integers to Signed n-Bit Integers). Let n ∈ N

with n ≥ 1. Then sign(t) ∈ [sminn, smaxn] and t mod 2n = sign(t) mod 2n.
5 As usual, mod is defined as follows: For any m ∈ Z and n ∈ N>0, we have t =

m mod n iff t ∈ [0, n − 1] and there exists a k ∈ Z such that t = k · n + m.

240 J. Hensel et al.

Moreover, we extend LV to apply it also to concrete integers. To this end,
we use LVu,n,LVs,n : VP � Z → Vsym � Z, where LVu,n(t) (resp. LVs,n(t)) is t
represented as an unsigned (resp. signed) integer with n bits, for any t ∈ VP �Z:

LVu,n(t) =

⎧
⎨

⎩

LV (t), if t ∈ UP
unsn(LV (t)), if t ∈ SP
unsn(t), if t ∈ Z

LVs,n(t) =

⎧
⎨

⎩

sign(LV (t)), if t ∈ UP
LV (t), if t ∈ SP
sign(t), if t ∈ Z

We developed symbolic execution rules for all LLVM instructions that are
affected by the adaption to bitvectors. We handle overflows by appropriate
case analyses (Sect. 3.1) or by introducing “modulo” relations (Sect. 3.2). More-
over, Sect. 3.3 presents rules for bitwise binary and conversion instructions. The
remaining bitvector instructions of LLVM are handled in an analogous way (see
[1] for details), and rules for other LLVM instructions can be found in [14].

3.1 Handling Bitvector Operations by Case Analysis

We start with the initial states that one wants to analyze for termination, e.g.,
with the abstract state A where j has an unknown value. In the symbolic exe-
cution graph for g in Fig. 2, we abbreviated parts by “...” and wrote ↪→i32 and
umax instead of ↪→i32,u and umax32. To ease readability, we replaced some sym-
bolic variables by their values (e.g., we wrote j1pos = 1) and explicitly depicted
formulas like vj ∈ [0, umax] that follow from 〈A〉FO since j ∈ UP and LV (j) = vj.

The function g allocates [[vad, vend]] and stores the value vj of j at address
ad. Next, we jump to the block cmp for the loop comparison. After loading the
value vj (stored at address ad) to the program variable j1, in State E we check
whether j1’s value in unsigned interpretation is greater than 0 (icmp ugt).

The following rule evaluates such instructions symbolically. In our rules, “p :
ins” states that ins is the instruction at position p. Let a always denote the
abstract state before the execution step (i.e., above the horizontal line of the
rule), where we write 〈a〉 instead of 〈a〉FO . Moreover, LV [x := v] is the function
where (LV [x := v])(x) = v and (LV [x := v])(y) = LV (y) for y �= x. If p = (b, k),
then p+ = (b, k + 1) is the position of the next instruction in the same block.

icmp ugt (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT)
if v ∈ Vsym is fresh and if

either |= 〈a〉⇒ (LVu,size(ty)(t1) > LVu,size(ty)(t2)) and ϕ is “v = 1”
or |= 〈a〉⇒ (LVu,size(ty)(t1) ≤ LVu,size(ty)(t2)) and ϕ is “v = 0”

However, in our example the value of LV u,32(j1) = LV (j1) = vj is unknown.
Therefore, we first have to refine State E to States F and G such that the
comparison can be decided. For this case analysis, we use the following rule.

Proving Termination of Programs with Bitvector Arithmetic 241

Fig. 2. Symbolic execution graph for the function g

icmp ugt refinement (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT)

(p,LV ,KB ∪ {ϕ},AL,PT) | (p,LV ,KB ∪ {¬ϕ},AL,PT)
if

ϕ is “LVu,size(ty)(t1) > LVu,size(ty)(t2)” and we have both 	|= 〈a〉⇒ ϕ and 	|= 〈a〉⇒ ¬ϕ

The rules for other comparisons are analogous. So the rules for the signed
“greater than” comparison (sgt) are obtained by replacing LVu,size(ty) with
LVs,size(ty).

If y is compared by ugt and y ∈ UP , then LV (y) is y’s value as an unsigned
integer, which makes the comparison very simple. (Similarly, LV (y) is signed
if y is compared by sgt). In contrast, if LV represented the value of all pro-
gram variables as signed integers, then for icmp ugt we would have to consider
more cases, which results in a significantly larger graph (i.e., in a less efficient
approach)6.

6 Then we would have to check first whether LVs,size(ty)(t1) < 0 and LVs,size(ty)(t2) ≥ 0.
In that case, “icmp ugt ty t1, t2” is true, since the most significant bits of t1 and t2
are 1 and 0, respectively. The other cases are LVs,size(ty)(t1) ≥ 0∧LVs,size(ty)(t2) < 0,
and the two cases where LVs,size(ty)(t1) and LVs,size(ty)(t2) have the same sign and
either LVs,size(ty)(t1) > LVs,size(ty)(t2) or LVs,size(ty)(t1) ≤ LVs,size(ty)(t2).

242 J. Hensel et al.

In our example, if ¬vj > 0 (State F), we return from the function. If vj > 0
(State G), the conditional branch instruction leads us to the block that cor-
responds to the body of the while-loop. In the step from State I to J , again
the value vj stored at address vad is loaded to a program variable j2. The next
instruction is an overflow-sensitive addition: If vj < umax32, then vj + 1 is
assigned to inc. But if vj = umax32, then there is an overflow. If KB does not
contain enough information to decide whether an overflow occurs, we perform a
case analysis.

unsigned add refinement (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT)

(p,LV ,KB ∪ {ϕ},AL,PT) | (p,LV ,KB ∪ {¬ϕ},AL,PT)
if x ∈ UP and

ϕ is “LVu,n(t1) + LVu,n(t2) ≤ umaxn”, where 	|= 〈a〉⇒ ϕ and 	|= 〈a〉⇒ ¬ϕ

Therefore, State J is refined to K and L. In K, j2 has the value umax32, i.e.,
adding 1 results in an overflow. In State L, this overflow cannot happen.

The rule for “signed add refinement” is analogous, but here we have x ∈
SP and we obtain three instead of two cases: “LVs,n(t1) + LVs,n(t2) < sminn”,
“LVs,n(t1) + LVs,n(t2) ∈ [sminn, smaxn]”, and “LVs,n(t1) + LVs,n(t2) > smaxn”.

Now we define rules for add. If no overflow can occur, then the result is the
addition of the operators. Thus, State L evaluates to N , where vinc = vj + 1.

add without overflow (p : “x = add [nsw] in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT)
if v ∈ Vsym is fresh and if

either x ∈ UP , |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) ∈ [0, umaxn]),
and ϕ is “v = LVu,n(t1) + LVu,n(t2)”

or x ∈ SP , |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) ∈ [sminn, smaxn]),
and ϕ is “v = LVs,n(t1) + LVs,n(t2)”

If an overflow occurs, then due to the wrap-around, the unsigned result value
is the sum of the operands minus the type size 2n. For example, in the evaluation
of State K to M , we add the relation vinc = umax32 + 1 − 232 = 0.

unsigned add with overflow (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪Z)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {v = LVu,n(t1) + LVu,n(t2) − 2n}, AL, PT)
if

x ∈ UP , v ∈ Vsym is fresh, and |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) > umaxn)

When adding two signed integers in C, an overflow leads to undefined behav-
ior. Thus, this is translated into an LLVM instruction with the flag nsw. However,
when adding an unsigned and a signed integer in C, an overflow does not yield
undefined behavior (i.e., the resulting LLVM instruction is not flagged with nsw).
Our heuristic for UP and SP would consider this to be “signed” addition. Thus,
we also need a rule for overflow of signed add without the flag nsw.

Proving Termination of Programs with Bitvector Arithmetic 243

Moreover, most C implementations use a wrap-around semantics also for
signed integers. Thus, they compile C to LLVM code where nsw is not used at all.
Our approach is independent of the actual C compiler, as it analyzes termination
of the resulting LLVM program instead and it can also handle signed overflows.

Thus, we use a similar rule for x ∈ SP . If |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) >
smaxn), then we add “v = LVs,n(t1)+LVs,n(t2)−2n ” to the knowledge base KB .
If |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) < sminn), we add “v = LVs,n(t1) + LVs,n(t2) +
2n ”. However, a potential signed overflow that is flagged with nsw leads to ERR.

signed add with nsw overflow (p : “x = add nsw in t1, t2”, x∈VP , t1, t2 ∈ VP ∪Z)

(p, LV , KB , AL, PT)

ERR
if x∈SP and 	|= 〈a〉⇒(LVs,n(t1)+LVs,n(t2) ∈ [sminn, smaxn])

For M , the execution ends after some more steps. For N , after storing vinc
to vad, we branch to block cmp again. State P is like D (but ad points to j in
D whereas ad points to inc in P). Therefore, we continue the execution, where
the steps from P to Q are similar to the steps from D to J . Here, dotted arrows
abbreviate several steps. Q is again refined and in the case where no overflow
occurs, we finally reach State R at the same program position as D and P .

To obtain finite symbolic execution graphs, we can generalize states whenever
an evaluation visits a program position (b, k) multiple times. We say that a′ is
a generalization of a with the instantiation μ whenever the conditions (b) –
(e) of the following rule from [14] are satisfied. Again, a is the state before the
generalization step and a′ is the state resulting from the generalization.

generalization with μ
(p, LV , KB , AL, PT)

(p′, LV ′, KB ′, AL′, PT ′)
if

(a) a has an incoming “evaluation edge” (not just refinement or generalization edges)
(b) LV (x) = μ(LV ′(x)) for all x ∈ VP
(c) |= 〈a〉 ⇒ μ(KB ′)
(d) if [[v1, v2]] ∈ AL′, then [[μ(v1), μ(v2)]] ∈ AL
(e) for i ∈ {u, s}, if (v1 ↪→ty,i v2) ∈ PT ′, then (μ(v1) ↪→ty,i μ(v2)) ∈ PT

Clearly, we have |= 〈a〉SL ⇒ μ(〈a′〉SL). Condition (a) is needed to avoid cycles
of refinement and generalization steps, which do not correspond to any compu-
tation. See [14] for a heuristic to compute suitable generalizations automatically.

In our graph, P is a generalization of State R. If we use an instantiation μ
with μ(vj) = vinc and μ(vinc) = vinc2, then all conditions of the rule are satisfied.
So we can conclude the graph construction with a (dashed) generalization edge
from R to P . A symbolic execution graph is complete if all its leaves correspond
to ret instructions (so in particular, the graph does not contain ERR states). As
shown in [14], any LLVM evaluation of concrete states can be simulated by our
symbolic execution rules. So in particular, a program with a complete symbolic
execution graph does not exhibit undefined behavior (thus, it is memory safe).

244 J. Hensel et al.

Fig. 3. Multiplication of unsigned integers

3.2 Handling Bitvector Operations by Modulo Relations

We now consider further LLVM instructions whose symbolic execution rules have
to be adapted to bitvector arithmetic. A refinement with two cases was sufficient
to express the result of unsigned addition (or subtraction): if y + z exceeds
umaxn = 2n − 1 for unsigned integers y and z, then the result of the addition
is (y + z) − 2n ∈ [0, umaxn], since y + z can never exceed 2 · umaxn. But for
multiplication, if y · z exceeds umaxn, then (y · z) − 2n is not necessarily in
[0, umaxn]. In contrast, one might have to subtract 2n multiple times. Even worse,
if one only knows that y and z are values from some interval, then for some values
of y ·z one may have to subtract 2n more often than for others in order to obtain
a result in [0, umaxn]. So for multiplication, performing case analysis to handle
overflows is not practical7. Thus, we use modulo relations instead, which hold
regardless of whether an overflow occurs or not: for unsigned integers, if x is
the result of multiplying y and z, then the relation “x = y · z mod 2n” (i.e.,
x = unsn(y · z)) correctly models the overflow of bitvectors of size n. To use
standard SMT solvers for “modulo”, any expression “t = m mod n” can be
transformed into “t = k · n + m”, where 0 ≤ t < m and k is an existentially
quantified fresh variable.

In some cases, the result of a multiplication “x = mul in t1, t2” can be in
disjoint intervals. For example, if y ∈ [�, u] such that � · z ≤ umaxk < u · z for
some k, then there can be two intervals (x1, x2 in Fig. 3) for x = y · z, when x
is regarded as an unsigned integer in [0, umaxn]. Here, it is useful to extend KB
by additional information on the intervals of the result. If LVu,n(t1) ∈ [�1, u1]
and LVu,n(t2) ∈ [�2, u2] for numbers �1, �2, u1, u2 ∈ N, then for �b = �1 · �2 and
ub = u1 ·u2, we have LVu,n(t1) ·LVu,n(t2) ∈ [�b, ub]. However, our goal is to infer
information on the possible value of unsn(LVu,n(t1) · LVu,n(t2)).

To this end, we compute the size of the interval [�b, ub]. If ub − �b + 1 ≥ 2n,
then [�b, ub] contains more numbers than those that can be represented with
n bits and LV (x) can be any n-bit integer. Otherwise, we check whether
unsn(�b) ≤ unsn(ub) holds. In this case, we add “LV (x) ∈ [unsn(�b), unsn(ub)]”
to KB . Finally, if the size of [�b, ub] is < 2n but unsn(�b) > unsn(ub), then
LV (x) ∈ [0, unsn(ub)] ∪ [unsn(�b), umaxn], i.e., LV (x) is not between the inner
bounds unsn(ub) and unsn(�b), cf. Fig. 3. However, we cannot add “LV (x) ≤
unsn(ub) ∨ LV (x) ≥ unsn(�b)” to KB as it contains “∨”, but KB is a conjunc-
tion of (in)equalities.

7 If y, z ∈ [0, 2n −1], then y ·z ∈ [0, 22·n −2n+1 +1]. So there are O(2n) many potential
intervals of size 2n for the result, i.e., we would have to consider O(2n) many cases.

Proving Termination of Programs with Bitvector Arithmetic 245

Hence, Theorem 6 shows how to express a condition of the form “t ∈ [min, u]∪
[�,max]” for min ≤ u < � ≤ max by a single inequality. To this end, we subtract �
so that the second subinterval [�,max] (x2 in Fig. 4) starts with 0. Then we apply
“mod 2n” (this results in moving the first subinterval x1, cf. the dashed arrow
in Fig. 4). Afterwards, we shift the whole interval back (by adding � again).

Fig. 4. Expressing unions of intervals

Theorem 6 (Expressing Unions of Intervals in a Single Inequality). Let
n ∈ N>0, min ∈ Z, max = min + 2n − 1, t ∈ [min,max], and min ≤ u < � ≤ max.
Let inBounds(t,min, u, �,max) be the formula “((t − �) mod 2n) + � ≤ 2n + u”.
Then we have t ∈ [min, u] ∪ [�,max] iff inBounds(t,min, u, �,max) holds.

unsigned mul (p : “x = mul in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {ϕ, ψ}, AL, PT)
if x ∈ UP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVu,n(t1)·LVu,n(t2) ∈ [0, umaxn]), then ϕ is “v = LVu,n(t1)·LVu,n(t2)”.
Otherwise, ϕ is “v = unsn(LVu,n(t1)·LVu,n(t2))”.

• �1, �2, u1, u2 ∈ N such that |= 〈a〉⇒ (LVu,n(t1) ∈ [�1, u1] ∧ LVu,n(t2) ∈ [�2, u2])
• �b = �1 · �2 and ub = u1 · u2

• If ub − �b + 1 ≥ 2n, then ψ is true.
Otherwise, if unsn(�b) ≤ unsn(ub), then ψ is “v ∈ [unsn(�b), unsn(ub)]”.
Otherwise, ψ is inBounds(v, 0, unsn(ub), unsn(�b), umaxn).

We have an analogous rule for signed multiplication by using x ∈ SP
instead of UP , LVs,n instead of LVu,n, sminn and smaxn instead of 0 and
umaxn, sign instead of unsn, Z instead of N, and by defining �b (resp. ub)
as the minimum (resp. maximum) of {x1 · x2 | x1 ∈ [�1, u1], x2 ∈ [�2, u2]}.
Moreover, for signed multiplication with the flag “nsw”, we reach ERR if
�|= 〈a〉 ⇒ (LVs,n(t1) · LVs,n(t2) ∈ [sminn, smaxn]). We also use similar rules for
division and remainder (where LLVM has separate instructions for unsigned and
signed integers), cf. [1].

3.3 Handling Bitwise Operations

For bitwise binary LLVM operations like “and” (computing bitwise logical con-
junction), we also infer knowledge about the range of the result. For instance,
the conjunction of 3 (0 1 1) and 5 (1 0 1) is 1 (0 0 1). So if “x = and in t1, t2”
and x ∈ UP , then LV (x) ≤ LVu,n(t1) and LV (x) ≤ LVu,n(t2), since a “1” on a
position of the bitvector results in a larger number than a “0” on that position.

246 J. Hensel et al.

The same is true for signed integers, if both are positive or negative. So the
conjunction of −1 (1 1 . . . 1 1) and −2 (1 1 . . . 1 0) is −2. The conjunction of a
negative and a positive signed integer is at most as large as the positive integer.

signed and (p : “x = and in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT)
if x ∈ SP , v ∈ Vsym is fresh, and

• �1, �2, u1, u2 ∈ Z such that |= 〈a〉⇒ (LVs,n(t1) ∈ [�1, u1] ∧ LVs,n(t2) ∈ [�2, u2])
• If 〈a〉⇒ (LVs,n(t1) = LVs,n(t2)), then ϕ is “v = LVs,n(t1)”.

Otherwise, if �1 ≥0 ∧ �2 ≥0 or u1 <0 ∧ u2 <0, ϕ is “v≤LVs,n(t1) ∧ v≤LVs,n(t2)”.
Otherwise, if �1 ≥0 then ϕ is “v≤LVs,n(t1)” and if �2 ≥0 then ϕ is “v≤LVs,n(t2)”.
Otherwise, ϕ is “v≤max(u1, u2)”.

In the corresponding rule for unsigned and, ϕ is “v = LVu,n(t1)” if 〈a〉 ⇒
(LVu,n(t1) = LVu,n(t2)). Otherwise, ϕ is “v ≤ LVu,n(t1) ∧ v ≤ LVu,n(t2)”.

Moreover, we adapt the rules for conversion instructions (e.g., extension and
truncation). Sign extension (sext) copies the most significant bit to all extension
bits, while for zero extension (zext) only zeros are used. So for 1 0 1, the sign
extension is 1 . . . 1 1 0 1 and the zero extension is 0 . . . 0 1 0 1. The following rule
for sext (resp. zext) considers its argument as a signed (resp. unsigned) integer.
Then these instructions do not change the value of their operands.

extension (p : “x = sext/zext in t to im” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT)
if v ∈ Vsym is fresh and if

either p : “x = sext in t to im”, x ∈ SP , and ϕ is “v = LVs,n(t)”
or p : “x = zext in t to im”, x ∈ UP , and ϕ is “v = LVu,n(t)”

The instruction trunc truncates a value to the n least significant bits. Similar
to the rules for multiplication, we again use the operations sign (resp. unsn) and
inBounds to express our knowledge about the result of the truncation.

signed trunc (p : “x = trunc im t to in” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT)

(p+, LV [x := v], KB ∪ {ϕ, ψ}, AL, PT)
if x ∈ SP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVs,m(t) ∈ [sminn, smaxn]), then ϕ is “v = LVs,m(t)”.
Otherwise, ϕ is “v = sign(LVs,m(t))”.

• �, u ∈ Z such that |= 〈a〉⇒ (LVs,m(t) ∈ [�, u])
• If u − � + 1 ≥ 2n, then ψ is true.

Otherwise, if sign(�) ≤ sign(u), then ψ is “v ∈ [sign(�), sign(u)]”.
Otherwise, ψ is inBounds(v, sminn, sign(u), sign(�), smaxn).

In the rule for unsigned trunc, we have x ∈ UP instead of SP , LVu,m(t) instead
of LVs,m(t), 0 and umaxn instead of sminn and smaxn, and unsn instead of sign.

Proving Termination of Programs with Bitvector Arithmetic 247

4 From Symbolic Execution Graphs to Integer Systems

After the graph construction has been completed, we extract an integer transition
system (ITS) from the cycles of the symbolic execution graph and then use
existing tools to prove its termination.

ITSs can be represented as graphs whose nodes correspond to program loca-
tions and whose edges correspond to transitions. A transition is labeled with
conditions that are required for its application. These conditions are quantifier-
free formulas over a set of variables V and a corresponding set V ′ = {x′ | x ∈ V}
which refers to the values of the variables after applying the transition.

Fig. 5. ITS for function g

The only cycle of the symbolic execution graph
in Fig. 2 is the one from P to R and back. The
resulting ITS is shown in Fig. 5. The values of the
variables do not change in transitions that corre-
spond to evaluation edges of the symbolic execution
graph. For the generalization edge from R to P with
the instantiation μ, the corresponding transition in
the ITS gets the condition v′ = μ(v) for all v ∈
Vsym(P). So we obtain the condition v′

inc = μ(vinc), i.e., v′
inc = vinc2 = vinc + 1.

In contrast, vinc2’s value can change arbitrarily here, since vinc2 /∈ Vsym(P).
Moreover, the transitions of the ITS contain conditions like vinc ≤ umax32,
which are also present in the states P – R. Standard tools can easily prove
termination of this ITS. See [14] for details on extracting ITSs from symbolic
execution graphs.

Recall that the bitvector arithmetic is covered by the rules to construct the
symbolic execution graph, whereas the variables in the graph and in the resulting
ITS range over Z. Therefore, the following theorem from [14] still holds. It states
that termination of the ITS implies termination of the analyzed LLVM program.

Theorem 7 (Termination). Let P be an LLVM program with a complete sym-
bolic execution graph G and let IG be the ITS resulting from G. If IG terminates,
then P also terminates for all concrete states represented by the states in G.

5 Related Work, Experiments, and Conclusion

We adapted our approach for proving memory safety and termination of C (resp.
LLVM) programs to bitvectors. Since we represent bitvectors by relations on Z,
we can use standard SMT solving and standard termination analysis on Z for
the symbolic execution and the termination proofs in our approach.

There are few other methods and tools for termination of bitvector programs
(e.g., KITTeL [7,8], TAN [4,11], 2LS [2], Juggernaut [5], Ultimate [10]8)9. Com-
pared to related work, our approach has the following characteristics:
8 However, there is not yet any paper describing Ultimate’s adaption to bitvectors.
9 Outside of termination analysis, there exist several tools for overflow detection. How-

ever, we cannot easily apply such external tools in our approach, since we want to
use the result of potential overflows to continue our symbolic execution and analysis.

248 J. Hensel et al.

(a) Handling Memory: KITTeL, TAN, 2LS, and Juggernaut either do not han-
dle dynamic data structures, strings, and arrays, or they abstract their proper-
ties to arithmetic ones. Thus, they fail for programs whose termination depends
on explicit pointer arithmetic. Note that without considering the memory, ter-
mination of bitvector programs is decidable in PSPACE [4]. In contrast, our
approach is the first which combines the handling of bitvectors with the precise
representation of low-level memory operations, by using symbolic execution.

(b) Representation with Z: Similar to KITTeL and the first approach in [4],
we represent bitvectors by relations on Z. In contrast, 2LS, Juggernaut, and
the second approach in [4] use vectors of Boolean variables instead and reduce
the termination problem to second-order satisfiability. This would have draw-
backs when constructing symbolic execution graphs, where large numbers of
SMT queries have to be solved. Here, using Z instead of bitvectors often simpli-
fies the graph structure and lets us benefit from the efficiency of SMT solving
over Z.

(c) Unsigned resp. Signed Representation: We use a heuristic to determine
whether we represent information about the unsigned or the signed value of
variables in the states for symbolic execution. In contrast, KITTeL resp. the first
approach of [4] represent only the signed resp. the unsigned values. The drawback
is that then one needs a larger case analysis for instructions like icmp ugt resp.
sgt which differ for unsigned and signed integers. Thus, this affects efficiency.

(d) Case Analysis vs. “Modulo”: When representing bitvectors by relations
on Z, the wrap-around for overflows can either be handled by case analysis or by
“modulo” relations. We use a hybrid approach with case analysis for instructions
like addition (to avoid “modulo” which is less efficient for SMT solving) and with
“modulo” for operations like multiplication (where case analysis could lead to
an exponential blow-up). KITTeL only uses case analysis. While [4] also applies
“modulo”, our approach infers more complex relations about the ranges of vari-
ables, even if these ranges are unions of disjoint intervals. For an efficient SMT
reasoning during symbolic execution, we express such “disjunctive properties”
by single inequalities, cf. the formula inBounds(t,min, u, �,max).

We implemented our approach in AProVE [14] using the SMT solvers Yices [6]
and Z3 [13] in the back-end. The previous version of AProVE won the SV-COMP
2015 and 2016 competitions for termination of C programs (where tools were
restricted to mathematical integers). To evaluate the new version of AProVE
with bitvectors, we performed experiments on 118 C programs. We took the 61
Windows Driver Development Kit examples used for the evaluation of [4] and
[8], 61 of the 62 examples from the repository of Juggernaut where we excluded
one example containing float, 7 of the 9 examples of [5] where we excluded two
examples with float, 4 new examples where termination depends on overflows of
multiplication, and 4 new examples combining pointer and bitvector arithmetic.
From these 137 examples, we removed 19 examples which are known to be non-
terminating. Since Ultimate does not support bitvector arithmetic for signed
integers yet, the right half of the table in Fig. 6 consists of those examples where

Proving Termination of Programs with Bitvector Arithmetic 249

termination does not depend on signed integers. We ran all tools in a mode
where signed overflows are allowed and result in a wrap-around behavior.

Fig. 6. Experimental evaluation

Figure 6 shows the performance of the tools for a time limit of 300 s per
example on an Intel Core i7-950 with 6 GB memory. We did not compare with
TAN, since it was outperformed by its successor 2LS in [2]. “T” is the number of
examples where termination was proved, “F” states how often the termination
proof failed in ≤ 300 s, “TO” is the number of time-outs, “RT” is the average
run time in seconds for the examples where the tool showed termination, and
“%” is the percentage of examples where termination was proved.

So on our collection (which mainly consists of the examples from the evalu-
ations of the other tools), AProVE is most powerful. To evaluate the benefit of
representing both unsigned and signed values (cf. (c)), we also ran AProVE in a
mode where all values are represented as signed integers (i.e., SP = VP). Here,
we lost 11 termination proofs. To evaluate the use of case analysis vs. “mod-
ulo” (cf. (d)), we tested a version of AProVE where we used “modulo” also for
operations like addition. Here, we failed on 13 more examples. For details on our
experiments, to access our implementation via a web interface, and for symbolic
execution rules for further LLVM instructions, we refer to [1]. In future work, we
plan to extend our approach to recursion, to inductive data structures, and to
a compositional treatment of LLVM functions (the main challenge is to combine
these tasks with the handling of explicit pointer arithmetic).

Acknowledgments. We are grateful to M. Heizmann, D. Kroening, M. Lewis, and
P. Schrammel for their help with the experiments.

A Separation Logic Semantics of Abstract States

To formalize the semantics of an abstract state a, in [14] we introduced a separa-
tion logic formula 〈a〉SL, which extends 〈a〉FO by information about the memory
(i.e., about AL and PT). In 〈a〉SL, we combine the elements of AL with the sep-
arating conjunction “∗” to express that different allocated memory blocks are
disjoint. As usual, ϕ1 ∗ ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts of the
memory. In contrast, the elements of PT are combined by the ordinary conjunc-
tion “∧”. So (v1 ↪→ty,i v2) ∈ PT does not imply that v1 is different from other

250 J. Hensel et al.

addresses in PT . Similarly, we also combine the two formulas resulting from AL
and PT by “∧”, as both express different properties of the same addresses.

Definition 8 (SL Formulas for States). For v1, v2 ∈ Vsym , let 〈[[v1, v2]]〉SL =
(∀x.∃y. (v1 ≤ x ≤ v2) ⇒ (x ↪→ y)). For any LLVM type ty, we define

〈v1 ↪→ty,u v2〉SL = 〈v1 ↪→size(ty) v2〉SL.

To handle the two’s complement representation of signed integers, we define
〈v1 ↪→ty,s v2〉SL =

〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 + 2size(ty)),

where v3 ∈ Vsym is fresh. We assume a little-endian data layout (where least
significant bytes are stored in the lowest address). Hence, we define 〈v1 ↪→0

v3〉SL = true and 〈v1 ↪→n+8 v3〉SL = (v1 ↪→ (v3 mod 28)) ∧ 〈(v1 + 1) ↪→n

(v3 div 28)〉SL.
A state a = (p,LV ,KB ,AL,PT) is represented in separation logic by

〈a〉SL = 〈a〉FO ∧ (∗ϕ∈AL 〈ϕ〉SL) ∧ (
∧

ϕ∈PT
〈ϕ〉SL).

We use interpretations (as,mem) for the semantics of separation logic (Sect. 2).

Definition 9 (Semantics of Separation Logic). Let as :VP →Z be an assign-
ment, mem : N>0 ⇀ {0, . . . , umax8}, and ϕ be a formula. Let as(ϕ) result from
replacing all local variables x in ϕ by the value as(x). By construction, local
variables x are never quantified in our formulas. Then we define (as,mem) |= ϕ
iff mem |= as(ϕ).

We now define mem |= ψ for formulas ψ that may contain symbolic variables
from Vsym . As usual, all free variables v1, . . . , vn in ψ are implicitly universally
quantified, i.e., mem |= ψ iff mem |= ∀v1, . . . , vn. ψ. The semantics of arithmetic
operations and predicates as well as of first-order connectives and quantifiers are
as usual. In particular, we define mem |= ∀v. ψ iff mem |= σ(ψ) holds for all
instantiations σ where σ(v) ∈ Z and σ(w) = w for all w ∈ Vsym \ {v}.

We still have to define the semantics of ↪→ and ∗ for variable-free formulas.
For n1, n2 ∈ Z, let mem |= n1 ↪→ n2 hold iff mem(n1) = n2

10. The semantics of
∗ is defined as usual in separation logic: For two partial functions mem1,mem2 :
N>0 ⇀ Z, we write mem1⊥mem2 to indicate that the domains of mem1 and
mem2 are disjoint. If mem1⊥mem2, then mem1 � mem2 denotes the union of
mem1 and mem2. Now mem |= ϕ1 ∗ ϕ2 holds iff there exist mem1⊥mem2 such
that mem = mem1 � mem2 where mem1 |= ϕ1 and mem2 |= ϕ2.

10 We use “↪→” instead of “ �→” in separation logic, since mem |= n1 �→ n2 would
imply that mem(n) is undefined for all n 	= n1. This would be inconvenient in
our formalization, since PT usually only contains information about a part of the
allocated memory.

Proving Termination of Programs with Bitvector Arithmetic 251

B Proofs

Proof of Theorem 5. Since the result of “mod 2n” is always in the interval
[0, 2n − 1], we immediately obtain sign(t) = ((t + 2n−1) mod 2n) − 2n−1 ∈
[0 − 2n−1, 2n − 1 − 2n−1] = [−2n−1, 2n−1 − 1] = [sminn, smaxn]. Moreover, we
have

t mod 2n

= (t + 2n−1 − 2n−1) mod 2n

= (((t + 2n−1) mod 2n) − 2n−1) mod 2n

= sign(t) mod 2n.

��
Proof of Theorem 6. We consider three cases.
Case 1: t ∈ [min, u]
Clearly, u < � implies u − � < 0. Moreover, we also have u − � ≥ min − max =
−2n + 1, which together implies

− 2n < u − � < 0. (2)

Thus, we have: t ≤ u ⇒ t − � ≤ u − �
⇒ (t − �) mod 2n ≤ u − � + 2n by (2)
⇒ ((t − �) mod 2n) + � ≤ u + 2n

⇒ inBounds(t,min, u, �,max) holds
Case 2: t ∈ [u + 1, � − 1]
This entails u + 1 ≤ � − 1, i.e., u − � + 1 < 0. Moreover, we also have u − � + 1 ≥
min − max + 1 = −2n + 2, which together implies

− 2n < u − � + 1 < 0. (3)

We obtain: t ≥ u + 1 ⇒ t − � ≥ u − � + 1
⇒ (t − �) mod 2n ≥ u − � + 1 + 2n by (3)
⇒ ((t − �) mod 2n) + � ≥ u + 1 + 2n

⇒ inBounds(t,min, u, �,max) does not hold
Case 3: t ∈ [�,max]
Note that max − � ≥ 0 and moreover, max − � < max − min = 2n − 1, i.e.,

0 ≤ max − � < 2n. (4)

In addition, we have

max = min + 2n − 1 ≤ u + 2n − 1. (5)

Here, we obtain: t ≤ max ⇒ t − � ≤ max − �
⇒ (t − �) mod 2n ≤ max − � by (4)
⇒ ((t − �) mod 2n) + � ≤ max
⇒ ((t − �) mod 2n) + � ≤ u + 2n by (5)
⇒ inBounds(t,min, u, �,max) holds ��

252 J. Hensel et al.

Proof of Theorem 7. The proof of Theorem 7 is identical to the proofs of
Theorems 10 and 13 in [14]. It relies on the fact that our symbolic execution
rules correspond to the actual execution of LLVM when they are applied to
concrete states (this also holds for the new bitvector rules of the current paper).
So if a concrete state c is represented in the symbolic execution graph, then
every LLVM evaluation of c corresponds to a path in the graph. The generation
of an ITS from the graph is done in such a way that termination of the ITS
implies that there is no such infinite path in the graph. As all integers in the
symbolic execution graphs and in the ITSs are still mathematical integers, the
construction of ITSs has not changed in the current paper, i.e., the corresponding
proof of [14] directly carries over to the present setting.

References

1. AProVE. http://aprove.informatik.rwth-aachen.de/eval/Bitvectors/
2. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wächter, B.: Synthesis-

ing interprocedural bit-precise termination proofs. In: Cohen, M.B., Grunske, L.,
Whalen, M. (eds.) ASE 2015, pp. 53–64. IEEE (2015)

3. Clang compiler. http://clang.llvm.org
4. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.: Ranking function synthesis

for bit-vector relations. Formal Methods Syst. Des. 43(1), 93–120 (2013)
5. David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-termination

arguments for bit-vector programs. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032,
pp. 183–204. Springer, Heidelberg (2015)

6. Dutertre, B., de Moura, L.M.: The Yices SMT solver (2006). Tool paper at http://
yices.csl.sri.com/tool-paper.pdf

7. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10,
pp. 41–50 (2011)

8. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using
bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012)

9. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
184–191. Springer, Heidelberg (2014)

10. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Heidelberg (2013)

11. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

12. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO 2004, pp. 75–88. IEEE (2004)

13. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P.: Proving termination and memory safety for programs with pointer arith-
metic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 208–223. Springer, Heidelberg (2014)

http://aprove.informatik.rwth-aachen.de/eval/Bitvectors/
http://clang.llvm.org
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

SMT-Based Automatic Proof
of ASM Model Refinement

Paolo Arcaini1(B), Angelo Gargantini2, and Elvinia Riccobene3

1 Charles University in Prague, Faculty of Mathematics and Physics,
Prague, Czech Republic

arcaini@d3s.mff.cuni.cz
2 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Bergamo, Italy

angelo.gargantini@unibg.it
3 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. Model refinement is a technique indispensable for modeling
large and complex systems. Many formal specification methods share this
concept which usually comes together with the definition of refinement
correctness, i.e., the mathematical proof of a logical relation between an
abstract model and its refined models.

Model refinement is one of the main concepts which the Abstract
State Machine (ASM) formal method is built on. Proofs of correct model
refinement are usually performed manually, which reduces the usability
of the ASM model refinement approach. An automatic support to assist
the developer in proving refinement correctness along the chain of refine-
ment steps could be of extreme importance to improve, in practice, the
adoption of ASMs.

In this paper, we present how the integration between the ASMs and
Satisfiability Modulo Theories (SMT) can be used to automatically prove
correctness of model refinement for the ASM method.

1 Introduction

Modeling is a fundamental activity of system life-cycle: models allow developers
to reason about the systems under construction and represent central artifacts
of their development. Building models of large and complex systems is, however,
not an easy task since lots of requirements have to be taken into consideration.

To manage such a complexity, many specification methods share a modeling
process based on model refinement [1]. It consists in developing models starting
from a high-level description of the system and proceeding through a sequence
of more detailed models each introducing, step-by-step, design decisions and
implementation details. The concept of model refinement usually comes together
with the definition of refinement correctness, i.e., the mathematical proof of a
logical relation between an abstract model and its refined models.

This work was partially supported by the Grant Agency of the Czech Republic
project 14-11384S.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 253–269, 2016.
DOI: 10.1007/978-3-319-41591-8 17

254 P. Arcaini et al.

Model refinement is a key concept for the Abstract State Machine (ASM)
formal method. The ASM modeling process is based on the concept of a ground
model representing a precise but concise high-level system specification, and on
the refinement principle that allows to capture all details of the system design
by a sequence of refined machines to the desired level of detail, possibly to the
code level. In [12,14], Börger presents the ASM refinement, discusses its charac-
teristics compared to other refinement approaches, and provides the definition of
correctness proofs, namely the guaranty that a machine is a correct refinement
of an abstract machine.

In developing ASM specifications of different case studies [3,4,6,8], we have
modeled through refinement and we have observed that (a) the usual refinement
schema a modeler uses is a (1:n) refinement in which one step of the abstract
machine corresponds to n steps of the refined machine; (b) each refinement step
introduces very small changes, either in terms of data and of control structure;
(c) along the chain of models, the proofs of refinement correctness are similar
and often tedious to repeat. Such observations reinforced in us the idea, felt for
a long time, of having a tool assisting the modeler along the refinement steps
and being able to provide automatic proof of the refinement correctness.

A mechanized approach to prove correctness of the ASM refinement already
exists [22]. It requires the encoding of an ASM model into dynamic logic, a
deep knowledge of the KIV theorem prover and an active role of the modeler in
conducting the proofs. The tool is not integrated in any existing framework for
ASM model development and manipulation [7,17], thus this verification activity
appears separated with respect to other activities on models and does not permit
reusing information. Our goal is, instead, to have a prover of correct model
refinement fully integrated into a framework for editing, simulating, validating
and verifying ASM models, so to improve the practical usability of the ASM
method. We cannot expect practitioners to have deep skills in theorem provers
or verification strategies, and we are aware of the necessity to compensate these
lacks with suitable mechanized support which hides the mathematical complexity
of the proof obligations that model refinement requires.

By exploiting the symbolic representation of ASMs into Satisfiability Modulo
Theories (SMT), already presented in [5] as part of an SMT-based technique for
runtime verification, we here present an automatic approach where the proof of
ASM refinement is performed by means of satisfiability checking.

We introduce the definition of ASM stuttering refinement between two ASMs.
It is a restricted form of the ASM model refinement defined in [12], but we have
found it recurring in our modeling experience and shared with other formal
approaches [2,20]. It has also the advantage of allowing the reduction of the
ASM correct refinement problem to an SMT problem, since the proof strategy
to guarantee stuttering refinement does not reason on possible corresponding
subruns of the two machines, but on the concept of a state to be initial and to
be in (transition) relation with another state. This SMT problem consists of two
conditions (initial refinement and step refinement) that guarantee a machine to

SMT-Based Automatic Proof of ASM Model Refinement 255

be a stuttering refinement of an abstract machine. An SMT solver is used to
prove the validity of such properties.

The paper is organized as follows. Section 2 briefly introduces the ASMs and
their use when modeling through refinement. A running case study is used for
exemplification purposes. In Sect. 3 we give our notion of refinement and in
Sect. 4 we provide a technique for proving it. Section 5 presents the SMT encod-
ing of the model refinement correctness problem. Section 6 gives a preliminary
evaluation of the approach. Section 7 presents work related to the verification of
correct refinement for ASMs, and Sect. 8 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [14] are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data. The
method has a rigorous mathematical foundation; however, a practitioner can
understand ASMs as pseudo-code or virtual machines working over abstract data
structures. We here give the necessary background to understand our approach.

ASM states are algebraic structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location, defined as the pair (function-
name, list-of-parameter-values), represents the abstract ASM concept of basic
object containers. The couple (location, value) represents a machine memory
unit. Therefore, ASM states can be viewed as abstract memories.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments
of the form loc := v, where loc is a location and v its new value. They are
the basic units of rules construction. There is a limited but powerful set of
rule constructors to express: guarded actions (if-then), simultaneous parallel
actions (par), sequential actions (seq), nondeterminism (existential quantifica-
tion choose), and unrestricted synchronous parallelism (universal quantification
forall).

An ASM computation is, therefore, defined as a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states of the machine, where S0 is an initial state and each
Sn+1 is obtained from Sn by firing the unique main rule which in turn could
fire other transitions rules. An ASM can have more than one initial state. It is
possible to specify state invariants.

During a machine computation, not all the locations can be updated. Indeed,
functions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read and written by the machine).
A further classification is between basic and derived functions, i.e., those coming
with a specification or computation mechanism given in terms of other functions.

256 P. Arcaini et al.

asm LGS GM

signature:
enum domain HandleStatus = {UP | DOWN}
enum domain DoorStatus =

{CLOSED | OPENING | OPEN | CLOSING}
enum domain GearStatus =

{RETRACTED|EXTENDING|EXTENDED|RETRACTING}
dynamic monitored handle: HandleStatus
dynamic controlled doors: DoorStatus
dynamic controlled gears: GearStatus

definitions:
rule r closeDoor =
switch doors
case OPEN: doors := CLOSING
case CLOSING: doors := CLOSED
case OPENING: doors := CLOSING

endswitch

rule r retractionSequence =
if gears != RETRACTED then
switch doors
case CLOSED: doors := OPENING
case CLOSING: doors := OPENING
case OPENING: doors := OPEN
case OPEN:
switch gears
case EXTENDED:
gears := RETRACTING

case RETRACTING:
gears := RETRACTED

case EXTENDING:
gears := RETRACTING

endswitch
endswitch

else
r closeDoor[]

endif

main rule r Main =
if handle = UP then
r retractionSequence[]

else
r outgoingSequence[]

endif

default init s0:
function doors = CLOSED
function gears = EXTENDED

’

Code 1. Landing Gear System – Abstract model

ASMs allow modeling any kind of computational paradigm, from a single
agent executing parallel actions, to distributed multiple agents interacting in a
synchronous or asynchronous way. Moreover, an ASM can be nondeterministic
due to the presence of monitored functions (external nondeterminism) and of
choose rules (internal nondeterminism).

A set of tools exists to support the ASM modeling process. Tools are part
of the ASMETA (ASM mETAmodeling) framework1 [7], and are strongly inte-
grated in order to permit reusing information about models during different
development phases. ASMETA provides basic functionalities for ASM models
creation and manipulation (as editing, storage, interchange, access, etc.), and
supports advanced model analysis techniques (as validation, verification, test-
ing, model review, requirements analysis, runtime verification, etc.).

Example 1 (Landing Gear System case study). We here consider, as supporting
case study, the Landing Gear System [11] (LGS), which is the airplane compo-
nent responsible for the maneuvering of the landing gears and associated doors.
The system can be in nominal mode or in emergency mode. In nominal mode,
a landing sequence is: opening of the doors of the landing gear boxes, extension
of the landing gears, and closing of the doors. The system also elaborates health
parameters for all the equipments and, if necessary, switches to emergency mode.

Model LGS GM (shown in Code 1) specifies the system behavior at a very
abstract level: we only represent the statuses of the gears and of their doors
and how they change in the retraction and outgoing sequences. Although there
are three landing sets, we abstract and we model all of them as one. Functions
doors and gears represent the status of the doors and of the gears, respectively.
The state transitions are driven by the value of the monitored function handle.
As long as handle is UP, the retraction sequence is executed; when handle is
DOWN, the outgoing sequence is executed. Let us see how the retraction sequence
works. We assume handle to be UP in each state. In the initial state, the doors
are CLOSED and the gears are EXTENDED; then the doors start OPENING. When
the doors become OPEN, the gears start RETRACTING. When the gears become

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

SMT-Based Automatic Proof of ASM Model Refinement 257

RETRACTED, the doors start CLOSING. The retraction sequence terminates with
the doors CLOSED and the gears RETRACTED. The outgoing sequence behaves
similarly. Note that a retraction (resp. an outgoing) sequence can be always
interrupted by switching the value of the handle; in this case, an outgoing (resp.
a retraction) sequence begins, starting from the status of the doors and the
gears reached in the previous sequence.

2.1 ASM Modeling Through Refinement

Modeling by ASMs starts by developing an initial abstract model, called ground
model, which is a precise and concise high-level system description and can be
considered as reference model for the further steps of the design. Model LGS GM
shown in Code 1 is an example of ground model.

Modeling proceeds by model refinement, namely by a chain of step-wise
refined models, starting from the ground model. At each refined level, further
details are added to capture the major design decisions and provide descriptions
of the complete software architecture and component design of the system. The
end point of the chain is decided by the designer, and it should be a model
detailed enough to be mapped into executable code or at least a model against
which the code can be automatically tested for conformance checking.

Several examples [9,21,24] show the applicability of this approach which
permits to keep the complexity of the system under control, and to bridge, in a
seamless manner, the gap between specification and code.

In model refinement, a key point is to prove that a refined model is correct
w.r.t. the abstract one. For ASMs, the original description of the refinement
method and the definition of correct model refinement are due to Börger in [12].
That definition of refinement is very general and makes it difficult to prove
refinement correctness in an automatic way or, at least, to find proof patterns.

3 Stuttering Refinement

We here define stuttering refinement between two ASMs, which is a restricted
form of the ASM model refinement as in [12] (a comparison is given in Sect. 7).
This notion of refinement allows us to provide an automatic approach to refine-
ment proof, based on a logic representation of ASM signatures and transition
rules. We consider deterministic and nondeterministic single-agent ASMs.

As stated in Sect. 2, a state S of an ASM M is a set of locations with value.
We here denote by val(l, S) the value of a location l at state S.

A model refinement first requires the definition of corresponding locations of
interest, i.e., pairs of (possibly sets of) locations one wants to relate in corre-
sponding abstract and refined states.

Definition 1 (Corresponding Locations of Interest). Given two ASMs A
and R, we denote by corrLoc the correspondence over the set of locations of
interest of the refined machine R and their corresponding locations of the abstract
machine A, i.e., corrLoc(lR, lA) is true iff lR is a location of interest in R and
lA is its unique corresponding location in A.

258 P. Arcaini et al.

Fig. 1. Stuttering refinement – Relation between a refined run and an abstract run

On the base on the corresponding locations of interest, we define conformant
states between the abstract and refined machines, namely states having equiv-
alent values for the corresponding locations of interest. Obviously, a notion of
equivalence ≡ of the data in the locations of interest is assumed available.

Definition 2 (Conformance). Let S be a state of the abstract machine A (also
called abstract state), S̃ a state of the refined machine R (also called refined
state). The two states are conformant iff corresponding locations of interest have
equivalent values, i.e.,

conf (S̃, S) iff ∀lR∀lAcorrLoc(lR, lA) → val(lR, S̃) ≡ val(lA, S)

Typically, corrLoc is a one-to-one correspondence between the locations
of interest of A and R and the designer uses the same function symbols to
denote these corresponding locations. We here assume – as in [16] – linked
locations to have the same names and equality as equivalence relation. More
complicated conformance relations can be easily reduced to this simplified
form by introducing convenient derived functions representing predicates over
the abstract or refined states. Suppose to have a function fuelStatus in the
abstract machine defined over the domain {NORMAL, RESERVE} and that this
function is refined by the function fuelLevel defined over the interval [1,30].
The two specifications can be linked by introducing in the refined machine a
derived function fuelStatus that specifies the desired conformance relation (e.g.,
fuelStatus = if fuelLevel > 10 then NORMAL else RESERVE endif).

Once the notions of corresponding locations of interest and of state con-
formance have been determined, one can define that R is a correct stuttering
refinement of A as follows:

Definition 3 (Stuttering Refinement). An ASM R is a correct stuttering
refinement of an ASM A if and only if each R-run can be split in a sequence of
subruns ρ̃0, ρ̃1, . . . and there is an A-run S0, S1, . . . such that for each ρ̃i it holds
∀S̃ ∈ ρ̃i : conf (S̃, Si).

Note that infinite R-runs can be split in an infinite number of finite subruns,
or in a finite number of subruns where only the last one is infinite. Figure 1
depicts a stuttering refined run and a corresponding abstract run.

SMT-Based Automatic Proof of ASM Model Refinement 259

asm LGS SE

signature:
...
dynamic monitored doorsOpen: Boolean
dynamic monitored doorsClosed: Boolean
dynamic monitored gearsExtended: Boolean
dynamic monitored gearsRetracted: Boolean

definitions:
rule r closeDoor =
switch doors
case CLOSING:
if doorsClosed then
par
generalEV := false
closeDoorsEV := false
doors := CLOSED

endpar
endif

...

rule r retractionSequence =
if gears != RETRACTED then
switch doors
case CLOSED:
par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
case OPENING:
if doorsOpen then
par
openDoorsEV := false
doors := OPEN

endpar
endif

...

invariant over doorsClosed, doorsOpen: not(doorsClosed and doorsOpen)
invariant over gearsExtended, gearsRetracted: not(gearsExtended and gearsRetracted)

Code 2. Landing Gear System – Refined model

Fig. 2. LGS case study – Relation between a refined run and an abstract run

Example 2 (Refinement of the case study). We modeled the LGS by means of
four refinement steps. The model LGS GM in Code 1 is the ground ASM. In
the refined model LGS SE, we have added the modeling of the sensors that
detect when the doors and the gears change their status. Code 2 shows the
new elements introduced in the model. Four boolean monitored functions are
used to indicate whether the gears are extended (gearsExtended) or retracted
(gearsRetracted), and whether the doors are closed (doorsClosed) or open
(doorsOpen). In this model, we have refined some rules by adding the reading
of sensors. Some update rules have been guarded by conditional rules checking
the value of the monitored functions; for example, we can see in Code 2 that
if the doors are CLOSING, they become CLOSED only if the sensor doorsClosed
is turned on (i.e., the guard of conditional rule is true). Note that LGS SE is
a stuttering refinement of LGS GM because when the sensors do not detect
any change, the state is still conformant to the previous abstract state (i.e., the
doors and the gears have not changed their statuses). See Fig. 2 as an example
of corresponding runs.

4 Proving Refinement

We here aim at automating the proof of stuttering refinement between two ASMs
by reducing it to a satisfability checking problem (to be solved by, e.g., an SMT

260 P. Arcaini et al.

solver). Therefore, we need to describe the concepts of ASM state and ASM
transition by means of suitable predicates, and Definition 3 as a first order
formula. The validity of such a formula should guarantee the stuttering machine
refinement.

We introduce the following predicates capturing the concepts of initial state,
next state, and conformant states.

– init(S) iff S is an initial state;
– step(S, S′) iff the state S′ can be obtained by applying the main rule at S;
– conf (S̃, S) iff states S and S̃ are conformant (see Definition 2).

In the following, let us indicate by S a state of the abstract machine A and
by S′ the next state of S. Similarly, S̃ and S̃′ are two subsequent states of the
refined machine R.

Theorem 1. If the following properties hold

∀S̃ : (init(S̃) → ∃S : (init(S) ∧ conf (S̃, S))) (1)

∀S̃∀S̃′∀S :

⎡

⎣

⎛

⎝
step(S̃, S̃′)

∧
conf (S̃, S)

⎞

⎠ →
⎛

⎝
∃S′ : (step(S, S′) ∧ conf (S̃′, S′))

∨
conf (S̃′, S)

⎞

⎠

⎤

⎦ (2)

then R is a stuttering refinement of A.

Proof. Definition 3 follows from properties (1) and (2) by induction on the length
of a run of the refined machine R.

Let ρ̃ = S̃0, S̃1, . . . , be a run of R. ρ̃ can be splitted in subruns ρ̃0, ρ̃1, . . .
such that all the states in each ρ̃i have the same values of the linking variables,
whereas states of two consecutive subruns ρ̃i and ρ̃i+1 have different values for
the linking variables.

We build a run ρ = S0, S1, . . . of A such that ρ and ρ̃ satisfy Definition 3.
By property (1), it holds conf (S̃0, S0) by taking S̃0 as S̃ and S0 as one existing

state S satisfying the implication in (1).
Let us suppose that Definition 3 holds till state S̃j of ρ̃k and that S̃j con-

forms to the abstract state Sk of ρ. We now consider the next state S̃j+1 (i.e.,
step(S̃j , S̃j+1)). By inductive hypothesis, it holds conf (S̃j , Sk). By property (2),
considering S̃ = S̃j , S̃′ = S̃j+1, S = Sk, one of the two conditions must hold:
∃S′ : (step(Sk, S

′) ∧ conf (S̃j+1, S
′)) or conf (S̃j+1, Sk). In the first case, we take

Sk+1 = S′ and we start considering a new subrun ρ̃k+1 of refined states con-
formant to Sk+1, while in the second case S̃j+1 is still part of the subrun ρ̃k
whose states conform to Sk. In both cases the A-run satisfies the property of
Definition 3.

In the sequel, we refer to property (1) as initial refinement, and to property (2)
as step refinement.

SMT-Based Automatic Proof of ASM Model Refinement 261

asm M0
signature:

controlled x: Integer
definitions:

main rule r Main = x := x + 1

default init s0:
function x = 0

’

Code 3. Abstract model

asm M1
signature:

controlled x: Integer
definitions:

main rule r Main =
if x > 0 then x := x + 1
else x := 1
endif

default init s0: function x = 0

Code 4. Refined model of Code 3

Example 3 (Proof of LGS stuttering refinement). The model LGS SE is a correct
stuttering refinement of LGS GM. The two models have the same initial state
and then property (1) of Theorem 1 is guaranteed. Moreover, model LGS SE
step refines model LGS GM (i.e., property (2) of Theorem 1 is guaranteed).
Indeed, in each state, the refined machine can move to a state in which the
doors status or the gears status are either changed (if the sensors detect the
changing) or unchanged (if the sensors do not detect any change). Therefore,
if a state S̃ of the refined model LGS SE is conformant with a state S of the
abstract model LGS GM, a step in the refined model can lead to a state S̃′ that
is either conformant with S (if the sensors do not detect any change) or with
the next state S′ of the abstract model (if the sensors detect the changing).

4.1 Using Invariants in Refinement Proof

The step refinement property in Theorem 1 is a sufficient but not a necessary
condition for a correct (stuttering) refinement. A machine R could be a correct
refinement of a machine A but it may not guarantee step refinement. Indeed, step
refinement is also checked over states that are not reachable in R: if step refine-
ment is violated only in unreachable states, then we falsely judge the refinement
not correct.

Example 4. Let us consider the ASM model M0 in Code 3 that simply incre-
ments function x, and the model M1 in Code 4 that increments x if it is greater
than 0, otherwise updates it to 1. Model M1 does not step refine model M0
(property (2) of Theorem 1), because, when x is negative, x is incremented in
M0 and updated to 1 in M2 : therefore, by Theorem 1 we could not state that
model M1 is a correct stuttering refinement of model M0 . However, M1 is a
correct stuttering refinement of M0 ; indeed, states in which x is negative are
not reachable in both models.

Theorem 1 can be modified by strengthening the inductive hypothesis by
introducing a state invariant I over the refined machine as follows:

262 P. Arcaini et al.

Theorem 2. If there exists an invariant I such that the following properties
hold

∀S̃ : (init(S̃) → (I (S̃) ∧ ∃S : (init(S) ∧ conf (S̃, S)))) (3)

∀S̃∀S̃′∀S :

⎡

⎢
⎣

⎛

⎜
⎝

I (S̃)∧
step(S̃, S̃′)∧
conf (S̃, S)

⎞

⎟
⎠→ I (S̃′)∧

⎛

⎝
∃S′ :(step(S, S′) ∧ conf (S̃′, S′))

∨
conf (S̃′, S)

⎞

⎠

⎤

⎥
⎦(4)

then R is a stuttering refinement of A.

Proof. The invariant used in the formulas simply restricts the set of states of
the refined machine over which we need to verify refinement correctness. For this
reason, the proof of Theorem 1 is applicable also in this case.

Example 5. The refinement between model M0 in Code 3 and M1 in Code 4 is
correctly proved correct using the invariant I = x ≥ 0 in Formulas 3 and 4.

Although finding a suitable invariant I may be difficult, thanks to Theorem 2
designers can prove arbitrary complex stuttering refinements.

4.2 Towards an SMT Encoding

To be useful for our final goal, namely reducing the proof of initial and step
refinement to an SMT problem, in Formulas (1) and (2) we need to symbolically
represent the states and the transition relation.

Functions of any arity are supported by our technique (and by the tool imple-
mentation), provided that all the function domains are finite; note that infinite
domains may introduce quantifications that are not evaluated (i.e., unknown
result) by the SMT solver. In the following, in order not to over complicate the
notation of our formulas, we only consider 0-ary functions.

Let f̄A = [fa1, . . . , fan] be the ordered list of the functions of the abstract
machine A and f̄ ′

A = [fa ′
1, . . . , fa

′
n] a renamed copy of the functions in the

next state. Similarly, we define ordered lists f̄R = [fr1, . . . , frm] and f̄ ′
R =

[fr ′
1, . . . , fr

′
m] for the refined machine R. We order the functions of all the previous

lists such that the first L functions are the locations of interest. When necessary,
we split a list of functions f̄ between the functions corresponding to locations of
interest (those for which we are interested in checking the conformance relation)
and those which are not related: f̄ = f̄c + f̄nc .

We can express the predicates init , step, conf , and I used in Theorem 2, in
terms of the function lists of a machine.

– Given a machine M with functions f̄M , we introduce the predicates initM (f̄M)
and stepM (f̄M , f̄ ′

M) formalizing the initial predicate and the step predicate of
the machine.

– We can define the conformance relation between states of two related machines
by using a relation between the lists of machine functions. Given two ordered

SMT-Based Automatic Proof of ASM Model Refinement 263

lists p̄ = [p1, . . . , pL, . . .] and q̄ = [q1, . . . , qL, . . .], both long at least L, we
introduce

conf (p̄, q̄) ≡
L∧

i=1

pi = qi ≡ p̄c = q̄c (5)

to represent conformance: if conf (p̄, q̄) is true, all the locations of interest have
equal values in p̄ and q̄.

– The invariant I , if necessary, is provided by the user as a predicate over the
functions f̄R.

In order to prove initial refinement (property (3) of Theorem 2), we check
whether the following formula is valid:

∀f̄R : (initR(f̄R) → (I (f̄R) ∧ ∃f̄A : (initA(f̄A) ∧ conf (f̄R, f̄A)))) (6)

In order to prove step refinement (property (4) of Theorem 2), we check
whether the following formula is valid:

∀f̄R ∀f̄ ′
R ∀f̄A :⎡

⎣

⎛

⎝
I (f̄R)∧

stepR(f̄R, f̄ ′
R)∧

conf (f̄R, f̄A)

⎞

⎠ → I (f̄ ′
R) ∧

⎛

⎝
∃f̄ ′

A : (stepA(f̄A, f̄ ′
A) ∧ conf (f̄ ′

R, f̄ ′
A))

∨
conf (f̄ ′

R, f̄A)

⎞

⎠

⎤

⎦

(7)
We can transform Formulas 6 and 7 in order to eliminate universal quantifiers

(by Herbrandization) and reduce the number of variables (by exploiting the
equality of variable values induced by the conformance), as follows:

initR(f̄R) → (I (f̄R) ∧ ∃f̄nc
A : initA(f̄c

R + f̄nc
A)) (8)

(
I (f̄R)∧

stepR(f̄R, f̄ ′
R)

)
→ I (f̄ ′

R) ∧
⎛

⎝
∃f̄nc′

A : stepA(f̄c
R + f̄nc

A , f̄c′
R + f̄nc′

A)
∨

f̄c′
R = f̄c

R

⎞

⎠ (9)

Formulas 8 and 9 no longer contain the variable lists f̄c
A and f̄c′

A ; so we can avoid
the duplication for A of all the locations of interest in the current and next state.

5 Proving Refinement by SMT

In this section, we show how we can prove stuttering refinement in an automatic
way by reducing it to a Satisfiability Modulo Theories (SMT) problem.

An SMT problem is a decision problem for logical formulas with respect to
combinations of background theories expressed in classical first-order logic with
equality. An SMT instance is a generalization of a boolean SAT instance in which
various sets of variables are replaced by predicates from a variety of underlying
theories. SMT solvers can be used, as in our case, as automatic theorem provers
by checking unsatisfiability.

264 P. Arcaini et al.

5.1 SMT-Based Refinement Proof

We need to represent the initial states and a generic step of the ASM machine in
an SMT solver and prove initial and step refinement (i.e., Theorem 2 encoded as
Formulas 8 and 9). In order to do this, we here extend the mapping from ASM
to SMT already presented in [5] for different purposes.

Given a machine M = 〈sig , funcDefs , funcInit , r main〉, being sig the sig-
nature containing the functions f̄ , funcInit = {fi1, . . . , fip} the sequence of
function initializations and funcDefs = {fd1, . . . , fdq} the sequence of function
definitions, we define the predicates initM and stepM , formalizing the initial
state and the generic step of the machine (see Sect. 4), as follows:

initM = (and Td(fi1) . . . Td(fip)) stepM = (and Tr(r main) Td(fd1) . . . Td(fdq))

where Td and Tr are functions that map, respectively, ASM function definitions
and transition rules to SMT formulas. Note that Tr(r main) fully captures the
semantics of ASM transition rules: it specifies that a location must be updated
under some given conditions, and must be kept unchanged otherwise. ASMs
semantics prescribes that non-updated locations are kept unchanged; in SMT
this must be specified explicitly. We refer to [5] for details on the mapping.

We now show how we verify the validity of Formulas 8 and 9 using two
SMT instances. Let {Da1, . . . ,Dan} be the codomains of the functions f̄A of
the abstract machine A and {Dr1, . . . ,Drm} those of the functions f̄R of the
refined machine R. We identify with inv the mapping of the proof invariant, i.e.,
inv = Tt(I), being Tt the map function from ASM terms to SMT.

For Formula 8, we build the following SMT instance:

(declare−fun fr1 () Dr1) . . . (declare−fun frm () Drm)
(define−fun initR () Bool initR(f̄R))
(define−fun invR () Bool inv(f̄R))
(define−fun existsInitA () Bool

(exists ((faL+1 DaL+1) . . . (fan Dan)) initA(f̄
c
R + f̄nc

A)))
(assert (not (=> initR (and invR existsInitA))))

where the antecedent of the implication is represented through the SMT function
initR, and the consequent by the conjunction of functions invR and existsInitA.

For Formula 9, we build the following instance2:

(declare−fun fr1 () Dr1) . . . (declare−fun frm () Drm)
(declare−fun fr′1 () Dr1) . . . (declare−fun fr′m () Drm)
(declare−fun faL+1 () DaL+1) . . . (declare−fun fan () Dan)
(define−fun stepR () Bool stepR(f̄R, f̄

′
R))

(define−fun invR () Bool inv(f̄R))
(define−fun inv′

R () Bool inv(f̄ ′
R))

(define−fun existsStepA () Bool
(exists ((fa′

L+1 DaL+1) . . . (fa
′
n Dan)) stepA(f̄

c
R + f̄nc

A , f̄c′
R + f̄nc′

A)))

2 Note that in concrete instances we also do not declare constants for monitored and
derived functions belonging to f̄nc′

R and f̄nc′
A , as they do not appear in the asserted

formulas.

SMT-Based Automatic Proof of ASM Model Refinement 265

(define−fun stutteringState () Bool (and (= fr′1 fr1) . . . (= fr′L frL)))
(assert (not (=> (and invR stepR) (and inv′

R (or existsStepA stutteringState)))))

where the conjunction of the antecedent of the implication is represented
by functions invR and stepR. The consequent is represented by functions
inv′

R, existsStepA and stutteringState; the latter one models the equality of vec-
tors in the stuttering state (i.e., f̄c′

R = f̄c
R in Formula 9) as a conjunction of

equalities.
As usual in SMT solvers, in order to prove validity of a formula, we check that

its negation is unsatisfiable. Therefore, if both previous two instances are proved
to be unsatisfiable, the refinement is proved correct. However, since the step
refinement condition is sufficient but not necessary, when Formula 9 is proved
not valid (i.e., the corresponding SMT instance is satisfiable), we cannot state
that the refinement is not correct.

Note that, when the refinement is not proved correct, the SMT solver pro-
vides us a model (over functions f̄R, f̄ ′

R, and f̄nc
a) that acts as a witness of the

refinement incorrectness: by examining the witness, we can understand whether
it is really the case that the refinement is not correct, or it is a false negative
result and so we have to strengthen the invariant. For example, proving refine-
ment between Codes 3 and 4 (without any invariant) returns as witness (= x0
-1) (= x1 1). The witness tells us that step refinement does not hold from the
state in which x is -1; however, since x cannot be negative, the result is a false
negative and we can strengthen the proof by adding the invariant x ≥ 0.

Example 6. Codes 5 and 6 show the SMT instances built for proving initial and
step refinement between the ASMs shown in Codes 1 and 2 for the LGS. In this
case, there is no need to specify any invariant.

(define−fun doors0 () DoorStatus) (define−fun gears0 () GearStatus)
(define−fun doorsOpen0 () Bool) (define−fun doorsClosed0 () Bool) ...
(define−fun generalElectroValve0 () Bool) ...
(define−fun initLGS SE () Bool (and (= doors0 CLOSED) (= gears0 EXTENDED)

(not generalElectroValve0) (not extendGearsElectroValve0) ...))
(define−fun existsInitLGS GM () Bool (and (= doors0 CLOSED) (= gears0 EXTENDED)))
(assert (not (=> initLGS SE existsInitLGS GM)))
(check−sat)

Code 5. LGS case study – Initial refinement proof (from Code 1 to Code 2)

(define−fun doors0 () DoorStatus) (define−fun gears0 () GearStatus)
(define−fun doorsOpen0 () Bool) (define−fun doorsClosed0 () Bool) ...
(define−fun generalElectroValve0 () Bool) ...
(define−fun doors1 () DoorStatus) (define−fun gears1 () GearStatus)
(define−fun doorsOpen1 () Bool) (define−fun doorsClosed1 () Bool) ...
(define−fun generalElectroValve1 () Bool) ...
(define stepLGS SE () Bool (and (if (= handle0 UP) ...)))
(define existsStepLGS GM () Bool (exists (handle HandleStatus)

(and (if (= handle UP) (if (/= gears0 RETRACTED) ...)))
(define−fun stutteringState () Bool (and (= gears0 gears1) (= doors0 doors1)))
(assert (not (=> stepLGS SE (or existsStepLGS GM stutteringState))))
(check−sat)

Code 6. LGS case study – Step refinement proof (from Code 1 to Code 2)

266 P. Arcaini et al.

6 Evaluation

Based on the translation presented in previous sections, we have developed a
tool3 that, given two ASMs, builds the SMT instances and calls the SMT solver
Yices in order to prove refinement correctness. The refinement prover is inte-
grated in the ASMETA toolset.

The effectiveness of our approach has been tested on different case studies.
Some are taken from the literature [13] and are examples of ASM model refine-
ment whose correctness was manually proved. Others are specification case stud-
ies developed by ourselves in different contexts: Cloud-based applications [8], a
Landing Gear System [6], and the validation of medical software [3,4]. In almost
all the cases, the refinement has been proved in less than 10 secs on a Linux
machine, Intel(R) Core(TM) i7, 4 GB RAM. However, for one refinement step
in [4], we were not able to complete the proof in less than 5 min, the fixed timeout
after which we stop the proof. The limiting factor for scalability is the number
of monitored functions that are existentially quantified in Formula 9; the refined
model whose refinement correctness we were not able to prove has 32 boolean
monitored functions. As future work, we plan to assess the approach scalability
and apply techniques to reduce the time and memory consumption of the tool
(e.g., using cone of influence reduction techniques).

7 Related Work

Formal methods whose computational model is a transition system, e.g., B [2],
Z [15], I/O automata [18,19], support the concept of model refinement. The
ASM refinement can be compared to that of all the other formalisms and this
has already been extensively done in [12]. For this reason, we here relate our
work only with Börger’s original notion of ASM refinement and its definition of
correct model refinement.

Börger’s refinement definition [12] is based on checking correspondence
between run segments of abstract and refined machines, in a way that the starting
and ending states (those of interest) of such corresponding subruns are confor-
mant. The definition allows (m,n)-refinements, namely a run segment of length
n in the refined machine simulates as a run segment of length m in the abstract
machine. Moreover, it permits that some abstract/refined states don’t have cor-
responding refined/abstract states. We keep the concepts of locations of interests
and state conformance given in terms of data equivalence relation between loca-
tions of interest. Stuttering refinement is a particular case of Börger’s definition,
i.e., (1, n)-refinement with the constraint of total conformance relation on the
states of the refined machine. In our opinion, the restriction of Börger’s schema
of refinement we propose here is not particularly disadvantageous. Firstly, (1, n)-
refinement is a kind of refinement that is already considered in literature (with
the name of action refinement [10]). Secondly, this restricted schema applies to
3 The tool and experimental results can be found at http://asmeta.sourceforge.net/
download/asmrefprover.html.

http://asmeta.sourceforge.net/download/asmrefprover.html
http://asmeta.sourceforge.net/download/asmrefprover.html

SMT-Based Automatic Proof of ASM Model Refinement 267

all the ASM specifications we have considered to evaluate the effectiveness of our
approach (see Sect. 6). Furthermore, when modeling, it is often useful to guaran-
tee that invariants holding in the abstract level, still hold in the refined one (this
was the case for the Landing Gear System specification [6]). The classical refine-
ment [12] preserves the invariants only weakly, since intermediate refined states
are not required to conform to some abstract state, while stuttering refinement
preserves all the invariants (as also the approach in [23]): if a property is true in
every abstract state, it will be true also in every refined state (modulo the conf
relation). The need to guarantee preservation of those state invariants inspired
our definition.

Another framework supporting ASM refinement is that proposed by Schell-
horn [22], which is based on the use of the KIV theorem prover. With respect
to that framework, ours has several differences. Our definition of conformity is
much simpler than that used by the KIV tool, because we simply assume that
a refined state conforms to its abstract one if they have equal values of func-
tions having the same name (which are the functions of interest). If the user
wants to define an ad hoc conformance relation, (s)he must add a derived func-
tion representing a predicate over the abstract or refined states (see Sect. 3). In
order to prove refinement, a relation between the runs must be proved in [22],
while we require to prove only a relation between the initial states and between
two consecutive states. Using runs permits completeness but requires the use
of temporal logics, while our proof is much simpler. Our approach is analogous
to induction-based bounded model checking, in which the next relation suffices
in proving the validity of temporal invariants. KIV supports interactive verifi-
cation, while we aim to a completely automatic technique. Also for this reason,
we have chosen an SMT solver. In case the proof fails, we are able to show a
counterexample in which the refinement is not preserved. As shown before, there
are some cases in which our technique produces spurious counterexamples and
it is unable to prove the refinement. These spurious counterexamples can be
eliminated by invariant strengthening.

8 Conclusions

We have presented an approach for proving the refinement correctness of
Abstract State Machines. The approach considers a particular type of refine-
ment (i.e., stuttering refinement) that frequently occurs in concrete case studies.
The proposed approach exploits the symbolic representation of an ASM model
in an SMT solver, and reduces the proof of refinement correctness to a sat-
isfiability problem that is automatically solved by the SMT solver. The tech-
nique has been implemented in a tool integrated in the ASMETA framework.
Although the limits in terms of completeness (some refinements could be very
hard to prove) and expressive power (some refinements may be not stuttering),
the tool has the advantages of usability, integration in an existing framework,
and automation in proving refinement correctness. This relieves the modeler of
the necessity to drive a mathematical proof manually or in an interactive way (as

268 P. Arcaini et al.

requested in [22,23]), which requires certain verification skills. Furthermore, in
case a model is not proved a correct stuttering refinement of another model, our
framework provides counterexamples useful to reason about incorrect modeling
of the refined machine.

In this work, we have considered deterministic and nondeterministic single-
agent ASMs. As future work, we plan to prove refinement of multi-agent ASMs.
Moreover, we want to study techniques for automatic invariant generation.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

2. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundam. Inform. 77(1), 1–28 (2007)

3. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Formal
validation and verification of a medical software critical component. In: Proceedings
of MEMOCODE 2015, pp. 80–89. IEEE (2015)

4. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33600-8 29

5. Arcaini, P., Gargantini, A., Riccobene, E.: Using SMT for dealing with nondeter-
minism in ASM-based runtime verification. In: ECEASST, vol. 70 (2014)

6. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process of a
safety-critical system: from ASM models to Java code. Int. J. Softw. Tools Technol.
Transf. 1–23 (2015)

7. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Experience 41, 155–166
(2011)

8. Arcaini, P., Holom, R.-M., Riccobene, E.: ASM-based formal design of an adap-
tivity component for a cloud system. Formal Aspects Comput. 1–29 (2016)

9. Beierle, C., Börger, E., Durdanović, I., Glässer, U., Riccobene, E.: Refining abstract
machine specifications of the steam boiler control to well documented executable
code. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl Seminar 1995.
LNCS, vol. 1165, pp. 52–78. Springer, Heidelberg (1996)

10. Boiten, E.A.: Introducing extra operations in refinement. Formal Aspects Comput.
26(2), 305–317 (2012)

11. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Heidelberg (2014)

12. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15(2), 237–257
(2003)

13. Börger, E.: The Abstract State Machines method for high-level system design and
analysis. In: Formal Methods: State of the Art and New Directions, pp. 79–116.
Springer, London (2010)

14. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

15. Derrick, J., Boiten, E.: Refinement in Z and object-Z: Foundations and Advanced
Applications. Springer, London (2001)

http://dx.doi.org/10.1007/978-3-319-33600-8_29

SMT-Based Automatic Proof of ASM Model Refinement 269

16. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular refinement for subma-
chines of ASMs. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol.
8477, pp. 188–203. Springer, Heidelberg (2014)

17. Farahbod, R., Glässer, U.: The CoreASM modeling framework. Softw. Pract. Expe-
rience 41(2), 167–178 (2011)

18. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2, 219–246 (1989)

19. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: Part I.
untimed systems. Inf. Comput. 121(2), 214–233 (1995)

20. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. J. Logic Alge-
braic Program. 79(2), 103–143 (2010)

21. Riccobene, E., Schmid, J.: Capturing requirements by abstract state machines:
The light control case study. J. UCS 6(7), 597–620 (2000)

22. Schellhorn, G.: Verification of ASM refinements using generalized forward simula-
tion. J. UCS 7(11), 952–979 (2001)

23. Schellhorn, G.: ASM refinement preserving invariants. J. UCS 14(12), 1929–1948
(2008)

24. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine, vol. 24.
Springer, Heidelberg (2001)

Coq Implementation of OO Verification
Framework VeriJ

Ke Zhang(B) and Zongyan Qiu

LMAM and Department of Informatics, School of Mathematics,
Peking University, Beijing, China

zksms@pku.edu.cn, qzy@math.pku.edu.cn

Abstract. We implement an OO specification and verification frame-
work VeriJ in the proof assistant Coq. This framework covers the main
OO features like encapsulation, inheritance and polymorphism. It can
modularly specify and verify programs, while only one specification per
method is necessary. In this paper, we introduce the framework VeriJ,
our tool in Coq, and an example to illustrate how to specify/verify the
program in a modular and abstract way.

1 Introduction

The main features of Object Orientation (OO), such as inheritance and poly-
morphism, bring challenges to formal verification, as discussed in [1]. To address
the challenges, we need a specification/verification framework to: verify OO pro-
gram modularly; achieve information hiding in the specification; and handle the
complicated problems brought by inheritance.

The OO specification and verification framework VeriJ [2] is able to solve the
problems above. VeriJ uses behavioral subtyping [3] to address inheritance and
polymorphism, and uses specification predicates to support modular verification
of OO programs, and improve information hiding.

We implement the framework VeriJ in the proof assistant Coq [4], giving
some functions and lemmas for users to define and specify the programs. Thus,
we can formally prove that a program satisfies its specification.

The paper is organized as follows: Sect. 2 introduces the main idea and design
of VeriJ; Sect. 3 introduces our Coq implementation, and shows an example as
an illustration; Sect. 4 discusses the related work and concludes.

2 The VeriJ Framework

Now we briefly introduce VeriJ, which consists of a simple OO language which
supports the main OO features; a general OO memory model; a revised separa-
tion logic for describing states and transitions of OO programs; and a verification

K. Zhang—Supported by the NSFC under grant No. 61272160, No. 61202069 and
No. 61532019.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 270–276, 2016.
DOI: 10.1007/978-3-319-41591-8 18

Coq Implementation of OO Verification Framework VeriJ 271

framework which give facilities to support modular specification and verification.
More details about VeriJ can be found in [2,5].

The programming language in VeriJ is a sequential subset of Java. It is
relatively simple to facilitate theoretical study, and large enough for covering
important OO issues such as dynamic binding, object sharing, aliasing, casting,
etc. The syntax is shown below, here x is a variable, y a local variable, z a
parameter, C a class name, I an interface name, π a method specification, a and
m field and method names respectively. Assertion p(this, r) is the specification
predicate, we will explain it below.

v ::= this | x e ::= true | false | null | v | numeric exps
b ::= true | false | e = e | e < e | ¬b | b ∨ b | b ∧ b
c ::= skip | x := e | x := b | v.a := e | x := v.a | x := (C)v | x := v.m(e)

| x := newC(e) | return e | c; c | if b c else c | while b c
T ::= Bool | Int | Object | C | I P ::= def p(this, r)

M ::= T m(T1) L ::= interface I[: I] {P ; M [π];}
K ::= class C : C [� I] {T a; P : ψ; C(T1) [π] {T2 y ; c} M [π] {T2 y ; c} }
G ::= (K | L) | (K | L) G

VeriJ takes a pure reference memory model. A runtime state s = (σ,O) ∈
State consists of a stack and a heap:

Stack =̂ Name → Ref Heap =̂ Ref → Name → Ref
State =̂ Stack × Heap.

A stack σ ∈ Stack maps variables and constants to references, and a heap maps
references to field-reference pairs.

The assertion language is similar to that of Separation Logic [6] with some
revisions to fit the needs of OO verification.

ρ ::= true | false | r1 = r2 | r : T | r <: T | v = r
η ::= emp | r1.a �→ r2 | obj(r, T)
ψ ::= ρ | η | p(r) | ¬ψ | ψ ∨ ψ | ψ ∗ ψ | ψ −∗ ψ | ∃r · ψ

– Here r denotes a reference; ρ denotes assertions independent of heaps; r1 = r2
holds iff r1 and r2 are identical; and v = r denotes v holds the reference r.
r : T and r <: T denote that r refers to an object of type T , or of some
subtype of T respectively.

– η denotes the assertions involving heaps. Empty and singleton assertions are
similar to those in Separation Logic. The singleton r1.a �→ r2 means the heap
only contains the field r1.a, whose value is r2. obj(r, T) indicates that the heap
contains exactly an object of type T , and r refers to this object.

– Connectors ∗ and −∗ comes from Separation Logic. ψ1 ∗ψ2 indicates the heap
can be split into two parts, where ψ1 and ψ2 holds respectively.

In a class C, we can declare specification predicates in the form of p(this, r) :
ψ. Here this and r are the parameters, and ψ is the definition of predicate p. ψ
is only visible in C or subclasses of C. Out of the scope, p can be used only as
an atomic assertion. Predicates can also be defined recursively.

272 K. Zhang and Z. Qiu

The subclass inherits all the predicates defined in its superclass, and can
override them. Using the specification predicates, we are able to reason about
OO programs at an abstract level, without exposing the implementation details.
It also allows us to define abstract specifications for interfaces.

The verification rules of VeriJ can be found in [2,5], and we will not introduce
them in this paper, due to the space limit.

3 Coq Implementation of VeriJ

In this section, we introduce our implementation of VeriJ in Coq. Then we use
a simple example to show how to use our tool to verify OO program. Our coq
code can be found at https://github.com/fm-pku/VeriJ-tool.

3.1 Modules

We implement VeriJ as the following Coq modules: Util (Utilities), Heap,
Stack, Expr (Expression), Lang (Language), Env (Static environment), State, Asn
(Assertion Language), Sem (Operation semantics), Spec (Specification). Each
module has an interface for the users, showing which functions and lemmas are
provided in this module.

Heap and Stack define the memory model; Expr, Lang and Sem define the
programming language and its semantics; Env stores useful information such
as the class hierarchy and method declarations. When verifying real programs,
users do not need to be concerned about these modules too much. The most
important modules are as follows:

– State. It contains the information about the static environment Env and the
runtime state (Heap and Stack). When declaring the program, we need to call
the functions like build class and build method in this module.

– Asn. It defines the assertion language of VeriJ and its semantics. The assertion
can be evaluated with respect to any given heap, stack and type environment.
Besides, this module also provides several lemmas about first order logic and
separation logic.

– Spec. It defines the specification of the programs. All the verification rules of
VeriJ are defined as lemmas in this module. When verifying a program against
its specification, the generated proof obligations are: all methods in all classes
satisfy their specifications; and each subclass is a behavioral subtype of its
superclass (and the interfaces that it implements). For inherited methods, we
can prove a specification refinement relation (rule [H-INH] in [2]) instead of
re-verifying the method body.

3.2 Example

Code in Fig. 1 is modified from the example in [7], which is a typical example
in OO verification. Cell declares a specification predicate cell for describing its

https://github.com/fm-pku/VeriJ-tool

Coq Implementation of OO Verification Framework VeriJ 273

Fig. 1. Interface Undoable and Classes Cell ,ReCell

behavior, and ReCell overrides predicate cell by adding a field y. Here 〈·〉〈·〉
stands for pre and post-conditions of methods, and res denotes the return value.

To verify this example in Coq, we need to define the program and its speci-
fication at first. For example, ReCell is defined by the following Coq code:

Module ReCell.

Definition fields := RType.update_field_type "y" Int.

Definition cell : pred := .\(fun this => .\(fun v =>

=| (fun r’ => this‘"x" |-> v * this‘"y" |-> r’))).

Definition bak : pred := .\(fun this => .\(fun v =>

=| (fun r’ => this‘"x" |-> r’ * this‘"y" |-> v))).

Definition set_cmd := Lang.fread "c" "this" "x";

Lang.fwrite "this" "y" (^"c");

Lang.fwrite "this" "x" (^"v").

Definition undo_cmd := Lang.fread "c" "this" "y";

Lang.fwrite "this" "x" (^"c").

Definition declare (s : state) : state :=

State.build_method "ReCell" "undo" ...

(State.build_method "ReCell" "set" ...

(State.build_class "ReCell" ("Cell"::"Undoable"::nil) fields s)).

End ReCell.

The function declare maps a state into a new state, in which the static envi-
ronment is updated, adding the information about class ReCell and its methods.
The method get and all the method specifications are inherited, thus do not need
to be declared in module ReCell. Here the predicate cell means:

λthis · λv · ∃r′ · this.x �→ v ∗ this.y �→ r′.

274 K. Zhang and Z. Qiu

Modules Cell and Undoable are defined similarly. Therefore, the state

Definition program :=

ReCell.declare (Undoable.declare (Cell.declare init_state))).

contains all the information about the program of this example.
Then we can verify this program in Coq by proving:

Lemma verify_cell: program + preds |= spec.

It denotes that for the given program and predicate environment, the specifi-
cation of the program holds, i.e. (1) each method satisfies its specification; (2)
ReCell is a behavioral subtype of both Cell and Undoable. We successfully verify
this example in Coq. Besides, we verify a more complicated example about two
different implementations of Queue, which can be found in our Coq project.

4 Related Work and Conclusion

In recent years, researchers have proposed many OO verification tools, such as
jStar [8] and VeriFast [9]. However, these tools do not generate formal proof of
the program correctness. To solve this problem, some works [10,11] use proof
assistants—such as Coq, Isabelle—to verify programs, since they can generate
machine-checkable proofs.

Bengtson et al. [11,12] present a verification tool Charge! for verifying Java-
like programs using higher-order separation logic. Charge! is also implemented
in Coq, and its goal is analogous to ours, but the logic it uses and the way it
models the OO programs are quite different from VeriJ. As shown in Sect. 3.2,
VeriJ supports both class inheritance and interface-based inheritance. However,
Charge! does not support class inheritance. Therefore, VeriJ allows code re-use,
and can avoid re-verifying the inherited methods. Furthermore, it is more struc-
tured to declare programs using VeriJsince VeriJ defines a static environment
which Charge! lacks. For example, in VeriJ the proof obligations for behavioral
subtyping are automatically generated, but in Charge! those proof obligations
need to be manually declared in the sub-interfaces.

Parkinson and Bierman [13,14] propose a framework based on separation
logic and abstract predicate family, and they use a pair of static and dynamic
specifications to specify each method. Based on this, Distefano and Parkinson
develop a semi-automatic program verifier jStar [8] for Java programs. Com-
pared to their work, the specification predicate in VeriJ is similar with the
abstract predicate family, but VeriJ introduces visibility, inheritance and over-
riding rules for specification predicates. Thus the specification predicates provide
better encapsulation for implementation details, meanwhile, each method only
need one specification in VeriJ.

In conclusion, we implement the OO specification and verification framework
VeriJ in Coq. It uses behavioral subtyping to solve the problems brought by
inheritance and polymorphism, and uses specification predicates to ensure a
modular reasoning system. VeriJ is able to specify and verify programs of a

Coq Implementation of OO Verification Framework VeriJ 275

subset of Java, including dynamic/static binding, interfaces, implementation of
multiple interfaces, etc. Inherited fields/methods/specifications do not need to
be re-declared or re-verified.

We have developed a set of Coq functions, as a tool, which allows user to
define and specify the programs in Coq. All the verification rules of VeriJ are
defined as lemmas in Coq, users can use them to prove the specifications of pro-
grams. We provide two examples Cell and Queue, together with their correctness
proof in the Coq project.

As the future work, we are going to:

– Prove more examples using our tool, to get more experience for improving the
tool. In addition, we plan to develop a more user-friendly syntax in Coq for
the users to describe programs with specification in VeriJ.

– Define the weakest pre-condition semantics of VeriJ in Coq, and also define
more Coq tactics, to make the tool more automatic. With these facilities, the
tool may automatically derive the specification of intermediate states, instead
of asking for manual declarations.

– Define more specific tactics to improve the speed of verification. Although
some Coq built-in tactics work well in the verification, they are relatively
slow. Some specific tactics for VeriJ would be helpful.

– Apply more static checks to the real programs. Now we only prove the par-
tial correctness of programs (i.e. if a program successfully terminates, then it
satisfies the specification). Based on the static environment, we can further
check the well-typedness, termination, etc.

References

1. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects Comput. 19(2), 159–189
(2007)

2. Liu, Y., Hong, A., Qiu, Z.: Inheritance and modularity in specification and verifi-
cation of OO programs. In: TASE 2011, pp. 19–26. IEEE Computer Society (2011)

3. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

4. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version
8.4) (2012)

5. Qiu, Z., Hong, A., Liu, Y.: Modular verification of OO programs with interfaces. In:
Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 151–166. Springer,
Heidelberg (2012)

6. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science 2002,
pp. 55–74. IEEE (2002)

7. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
8. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. ACM

SIGPLAN Notices, vol. 43, No. 10, pp. 213–226 (2008)
9. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:

VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

276 K. Zhang and Z. Qiu

10. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358.
Springer, Heidelberg (2009)

11. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge!. In: Beringer, L., Felty, A. (eds.)
ITP 2012. LNCS, vol. 7406, pp. 315–331. Springer, Heidelberg (2012)

12. Bengtson, J., Jensen, J.B., Sieczkowski, F., Birkedal, L.: Verifying object-oriented
programs with higher-order separation logic in Coq. In: van Eekelen, M., Geuvers,
H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 22–38. Springer,
Heidelberg (2011)

13. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
POPL 2008, pp. 75–86. ACM (2008)

14. Parkinson, M., Bierman, G.: Separation logic for object-oriented programming. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. LNCS, vol. 7850, pp. 366–406. Springer, Heidelberg (2013)

Towards a Proof Framework for Information
Systems with Weak Consistency

Peter Zeller(B) and Arnd Poetzsch-Heffter

University of Kaiserslautern, Kaiserslautern, Germany
{p zeller,poetzsch}@cs.uni-kl.de

Abstract. Weakly consistent data stores are more scalable and can pro-
vide a higher availability than classical, strongly consistent data stores.
However, it is much harder to reason about and to implement applica-
tions, when the underlying infrastructure provides only few guarantees.
In this paper, we report on work in progress on a proof framework, which
can be used to formally reason about the correctness of such applications.
The framework supports the verification of functional properties, which
go beyond the guarantees given by the data store and can cover rela-
tions between multiple interactions with clients and invariants between
several objects. Additionally, we modeled and support modern database
features, like causal consistency, snapshot-transactions, and conflict-free
replicated data types (CRDTs). The framework and the proofs are devel-
oped within the interactive theorem prover Isabelle/HOL.

1 Introduction

Today, many information systems are built without a strongly consistent data
store. There is a variety of reasons for this trend: For services which are offered
world-wide, the concept of Geo-Replication allows for low latency in all regions,
by replicating data at servers, which are geographically close to the users. How-
ever, Geo-Replication does not work well with the concepts of strong consis-
tency. In particular, distributed transactions are incompatible with low latency
and high availability [6]. Mobile applications have problems comparable to Geo-
Replicated systems. Since the network connection is sometimes slow or unavail-
able, it is not feasible to use strong consistency to synchronize data between
mobile devices and cloud services.

Programming applications using weak consistency is inherently complex.
Most importantly, convergence must be ensured, meaning that all replicas repre-
sent the same abstract state when they have observed the same set of operations,
without losing writes. To help programmers handle this problem, conflict-free
replicated data types (CRDTs) [14] have been developed. A CRDT is a reusable
data type, which embodies a certain strategy to handle concurrent updates.
Examples are counters, sets, and maps. When an application is written using
CRDTs, the convergence property comes for free and thus the development effort
is reduced.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 277–283, 2016.
DOI: 10.1007/978-3-319-41591-8 19

278 P. Zeller and A. Poetzsch-Heffter

However, convergence is not the only desirable property of an application.
It is also important that concurrent updates are handled in a way that makes
sense for the application (see Sect. 2). These correctness properties are often
overlooked by developers. One reason for this is that there is no systematic
method to reason about the correctness of an implementation. While there are
multiple program logics for working with sequential and concurrent programs,
there are no frameworks yet, which support reasoning about eventual consistency
and CRDTs on a higher level. Thus, it is not feasible to use existing frameworks
to reason about nontrivial correctness properties of these kinds of applications.

To make the verification practical, our work aims to considerably reduce the
required proof work. We are developing a proof framework in Isabelle/HOL [13],
which captures commonalities of applications, which are built on top of weakly
consistent data stores with replicated data types. With the common verification
tasks lifted to the framework level, the verification of a concrete application can
be done on a higher level and focus on the application specific properties and
invariants. We discuss our approach to verification in Sect. 3.

2 Developing Applications with Weak Consistency

To show the need to reason about causal consistency and the choice of data
types, we consider a small application to manage user accounts. This application
provides the following API to clients:

Fig. 1. System architecture Fig. 2. Problematic execution

The function registerUser(name, email) creates a new user account with
the given data and returns the unique identifier of the newly created user. To
update the mail address of a user with a given identifier, there is a function
updateMail(id, newMail). To remove a user from the system, removeUser(id) can
be called. The data of a user can be retrieved via getUser(id), which returns a
record with the name and the mail address of a given user, or not found when
the user does not exist.

We assume an architecture similar to the one shown in Fig. 1 on which we
want to implement our application. At the bottom there are several (full) repli-
cas of the database, which asynchronously synchronize their states. At the top

Towards a Proof Framework for Information Systems with Weak Consistency 279

Fig. 3. Pseudocode implementation of example application to manage user accounts.

there is a set of clients, for which we do not have any additional assumptions. In
particular clients might be stateful and communicate with each other. The appli-
cation layer itself is stateless, all data is assumed to be stored in the database
or by clients.

In this scenario, an application consists of a set of methods, which can be
called by clients. The application can then interact with the database by querying
the data and by issuing updates to the database. Queries and updates can be
enclosed in a transaction, which works on a causally consistent snapshot and
guarantees atomicity of the enclosed operations, but transactions do not provide
serializability. In particular, it is possible to read from stale states and there
can be concurrent updates on the same object. The data store is parametrized
by a data type specification, which defines how concurrent updates are merged.
Often, the top-level data type is a map which results in a key-value data store.
Furthermore we assume, that the database provides session guarantees as in [4].

Implementation: Figure 3 shows a pseudocode implementation of the user man-
agement example. The variable users refers to a map data type in the database
and maps user identifiers to another map containing the user data. The inner
map contains entries for id, name, and mail which all are last-writer-wins reg-
isters [14]. The registers provide write and read methods. The maps allow to
look up a key (squared brackets syntax) and they allow to delete entries and to
check whether an entry exists. We use an add-wins map, which means that a
delete-operation will win over concurrent update operations.

One difficulty in implementing this example on a weakly consistent data store
is to make removeUser work correctly. As an example we consider the following
property, which links the invocation of the removeUser-method with the expected
effect and therefore is more than just an integrity constraint: “A user that is
removed should eventually be removed on all replicas, and not reappear because
of other operations being called afterwards or concurrently”.

280 P. Zeller and A. Poetzsch-Heffter

When using CRDTs, eventual consistency and high availability come for free.
However, a developer still has to reason about the behavior of the application. For
example, consider the scenario in Fig. 2. In this scenario, an update operation on
user u is first executed in session 2. Concurrently, user u is removed in session 1.
Later, the update from session 2 is received in session 1 and the CRDT handles
the concurrent updates by letting the update-operation win over the remove-
operation of the user. Thus the getUser-operation in session 1 will return a
user-record, although the user has been removed. Even worse, the user record
would be inconsistent, since the name was removed, but the mail exists because
of the write-operation from the concurrent update.

Choosing a last-writer-wins semantics for the map would lead to similar
problems, as the previously explained add-wins semantics. With a remove-wins
semantics for the map, the application would work as intended, as we demon-
strate in the next section. But there are more pitfalls, into which a developer can
run. Even with the remove-wins semantics at the database level, if the update
method would not check, whether the user is deleted and just did a blind update,
then a user could reappear after being removed. A user could also reappear, if
the users identifier was not generated in a way which guarantees uniqueness.

The chosen example of object-deletion often comes up in practice. Riak,
a distributed key-value store, uses tombstones for deletion, which means that
remove operations win over concurrent updates. However, in the default settings
tombstones are purged after 3 s1, which can lead to objects which reappear after
they have been deleted.

3 Specification and Verification

Having seen some possible pitfalls of the example, the question arises, how we can
assure ourself, that the given implementation is indeed correct, when a remove-
wins map is used. We want to describe application properties from the clients
perspective. The clients can only observe the procedure calls sent to the sys-
tem and the responses of the system, which we model as a trace of request
and response-events. However, it is hard to specify the system just in terms of
this trace, because of the inherent nondeterminism of the system. The response
depends on the internal delivery of messages at the database level.

Specification: To handle the problem of nondeterminism, we adapt a technique
used for specifying replicated data types [5,15], where the outcome of operations
is expressed using the happens-before relation on update-operations in the his-
tory of operations. We lift the happens before relation from the database level
to the level of client-calls, by defining that a call c1 happens before a call c2 (we
write c1 ≺ c2), when all database calls in c1 happen before every database call
in c2. Using the happens before relation and the set of all client-calls, we can
specify invariants about the communication history between the application and
1 See “Configuring Object Deletion” at http://docs.basho.com/riak/latest/

ops/advanced/deletion/. The behavior in Cassandra is similar.

http://docs.basho.com/riak/latest/ops/advanced/deletion/
http://docs.basho.com/riak/latest/ops/advanced/deletion/

Towards a Proof Framework for Information Systems with Weak Consistency 281

its clients. For example, we can formalize the property from Sect. 2, which states
that a removed user should not reappear:

∀c1, c2 ∈ clientCalls. ∀u. args(c1) = removeUser(u) ∧ c1 ≺ c2

∧ args(c2) = getUser(u) −→ res(c2) = not found

Verification: For verification we have to express additional invariants about the
internals of the application. In particular, we have to relate the client-calls with
the corresponding database operations and we have to reason about the internal,
local steps done by the application. We explain how our framework supports the
verification of the different kind of invariants using a proof sketch for the example
property.

Property 1: When removeUser(id) has been called, then there must be a corre-
sponding database operation users[id].delete(). To support properties like this,
our framework provides a mapping function, which maps each database opera-
tion to the corresponding client-call. This function can be used in invariants and
is automatically updated by the framework in each step.

Property 2: There are no map update operations on a removed user, which
happen causally after the remove (except for other removes).

The operations in the registerUser procedure cannot come afterwards,
because newUID never returns an identifier known to clients. Therefore
removeUser(id) must happen at a point in time after registerUser and no
happens-before relation can exist which points into the past.

The operations in updateMail cannot happen after a remove, because the
procedure checks whether the user exists before doing any updates. Because the
code is packed in an atomic unit, the check and the map updates see the same
set of operations. So if the update operations were executed after a remove, the
existence check would have returned false.

The maintenance of property 2 has to be shown for the code of each method.
Our framework supports this by annotating the code with assertions, similar
to work by Ashcroft [1]. Some proof obligations can already be handled auto-
matically using general properties proven in the framework. In particular, the
framework restricts local assertions so that it is not necessary to consider the
effect of local steps on other, concurrent procedure invocations. We believe that
we can further reduce the effort by automatically generating verification condi-
tions from the code and a few invariants.

Property 3: When getUser is called after a remove, we get that there is a database
operation for deleting the user by property 1. By property 2 we know that no
database operation on the same user happened after the remove. There can be
concurrent updates, but since we used a remove-wins semantics for the map, we
always get the required result, that the user does not exist.

282 P. Zeller and A. Poetzsch-Heffter

For the reasoning about CRDT semantics, out framework supports high-level
specifications of CRDTs, as used in work on verification of CRDTs [3,5,7,15].
Users can write custom CRDT specifications for their applications or reuse and
compose the existing specifications of some commonly used CRDTs.

4 Related Work

Gotsman and others have worked on modeling and verifying replicated data
types [4,5,7]. This work is mostly focused on pen and paper proofs and therefore
requires too much effort for realistic applications. Still, the work on Composite
Replicated Data Types [7] is the work most similar to ours, since it also uses
transactions to build bigger applications from simpler data types.

CISE [8] is a framework which concentrates on the combination of weak
consistency with strong consistency and pessimistic concurrency control. The
work presents proof rules for this scenario and a tool based on an approximation
of these rules, which can automatically check whether enough locks are used to
ensure the maintenance of data integrity constraints. However, the tool mostly
concentrates on locks and cannot handle more complicated interactions with
replicated data types and properties which go beyond integrity constraints and
is therefore not applicable to our userbase example.

Chapar [12] is a proof framework for causally consistent databases, which
was developed using Coq. The work also includes a simple model checker for
applications, which can explore different schedules consistent with causal consis-
tency, but cannot be used to prove the correctness of complex applications. Also
the work only considers simple key-value stores without support for replicated
data types.

Finally there is a lot of work on general purpose tools like TLA+ [11] or Alloy
[9]. While these tools can be applied to check the applications we are interested
in, they require to model the complete system, including the database and the
data types. Hence the models can be quite big, and the automated checkers
become infeasible.

5 Conclusion and Future Work

We aim to reduce the amount of manual work required for performing proofs
in the future by capturing more general properties in proof rules and by using
more automation. In particular we believe that it will be possible to handle
atomic blocks as one single step and to generate verification conditions with
more automation, which would significantly reduce the manual effort. The for-
malization in Isabelle/HOL allows us to improve on this incrementally, since
manual proofs are always available, when no automation has been developed
yet.

The primitive proof rule we use currently, already helps with informal rea-
soning about program correctness. We hope that developing more specialized
proof rules will also lead to more insights for informal reasoning and thus help
developers in writing correct applications.

Towards a Proof Framework for Information Systems with Weak Consistency 283

Acknowledgement. This research is supported in part by European FP7 project 609
551 SyncFree https://syncfree.lip6.fr/ (2013–2016).

References

1. Ashcroft, E.A.: Proving assertions about parallel programs. J. Comput. Syst. Sci.
10(1), 110–135 (1975)

2. Bodik, R., Majumdar, R. (eds.): Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, 20–22 January 2016. ACM (2016)

3. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: Jagannathan and Sewell [10], pp. 285–296

4. Burckhardt, S., Gotsman, A., Yang, H.: Understanding eventual consistency. Tech-
nical report MSR-TR-2013-39, this document is work in progress. Feel free to cite,
but note that we will update the contents without warning (the first page contains
a timestamp), and that we are likely going to publish the content in some future
venue, at which point we will update this paragraph, March 2013

5. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: Jagannathan and Sewell [10], pp. 271–284

6. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

7. Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 585–609. Springer, Heidelberg (2015)

8. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ‘Cause I’m
strong enough: reasoning about consistency choices in distributed systems. In:
Bodik and Majumdar [2], pp. 371–384

9. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

10. Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2014, San Diego, CA,
USA, 20–21 January 2014. ACM (2014)

11. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

12. Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified causally consistent distributed
key-value stores. In: Bodik and Majumdar [2], pp. 357–370

13. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Rapport de recherche RR-7506,
INRIA, January 2011

15. Zeller, P., Bieniusa, A., Poetzsch-Heffter, A.: Formal specification and verification
of CRDTs. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461,
pp. 33–48. Springer, Heidelberg (2014)

https://syncfree.lip6.fr/

Interaction and Adaptation

A Cognitive Framework
Based on Rewriting Logic

for the Analysis of Interactive Systems

Antonio Cerone(B)

IMT School for Advanced Studies, Lucca, Italy
antonio.cerone@imtlucca.it

http://sysma.imtlucca.it/people/antonio-cerone/

Abstract. Interactive systems may appear to work correctly and safely
when analysed in isolation from the human environment in which they
are supposed to work. In fact, the same cognitive skills that enable
humans to perform complex tasks may also become the source of critical
errors in the interaction with systems and devices designed as supports
for such tasks. It is thus essential to verify the desired properties of an
interactive system using a model that not only includes a user-centered
description of the task, but also incorporates a representation of human
cognitive processes within the task execution.

In this paper we consider automatic and deliberate cognitive processes
in combination with the use of the Short Term Memory (STM), and pro-
vide a formal notation to model the set of basic tasks that a human com-
ponent (user or operator) has to carry out to accomplish a goal by inter-
acting with an interface. The semantics of the notation is given in terms
of a cognitive framework that makes use of rules driven by the basic tasks
to rewrite both the system state and the STM until all necessary tasks
have been completed. Potential human errors are then detected using
model checking. Our notation, which is implemented using the MAUDE
rewrite system, and our formal verification methodology are finally illus-
trated by two case studies: a user of an Automatic Teller Machine (ATM)
and an operator of an Air Traffic Control (ATC) system.

Keywords: Formal modelling and verification · Rewriting logic · Inter-
active systems · Model checking · MAUDE

1 Introduction

Interactive systems are characterised by a cooperative work between a human
component and the interface of a system, which can be a computer system,
a device, a control system, a transportation system, etc. The purpose of the
cooperation is the accomplishment of a goal, which may be a specific objective
to achieve, such as purchasing a product from a vending machine, or a correct
state of the system to be preserved. In the former situation the human component

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 287–303, 2016.
DOI: 10.1007/978-3-319-41591-8 20

288 A. Cerone

is the user of the system underlying the interface, in the latter the operator,
through the interface, of a plant control (e.g. a nuclear plant) or a control service
(e.g. traffic control).

The systematic analysis of human errors in interactive systems has its roots
in Human Reliability Assessment (HRA) techniques [12], which mostly emerged
in the 1980’s. However, these first attempts in the safety assessment of interactive
systems were typically based on ad hoc techniques [13], with no efforts to incor-
porate a representation of human cognitive processes within the model of the
interaction. Although Mach already stated at the beginning of last century that
“knowledge and error flow from the same mental sources, only success can tell
the one from the other” [15], we had to wait until the 1990’s to clearly understand
that “correct performance and systematic errors are two sides of the same coin”
[21]. At that time the increasing use of formal methods yielded more objective
analysis techniques [9] that resulted, on the one hand, in the notion of cogni-
tively plausible user behaviour, based on formal assumptions to bound the way
users act driven by cognitive processes [1] and, on the other hand, in the formal
description of expected effective operator behaviour [20] and the formal analysis
of errors performed by the operator as reported by accident analysis [11]. Thus,
research in the formal analysis of interactive systems branched into two sepa-
rate directions: the analysis of cognitive errors of users involved in everyday-life
[2] and work-related [18,22] interactive tasks, and the analysis of skilled opera-
tors behaviour in traditionally critical domains, such as transportation, chemical
and nuclear plants, health and defence [3,4,7,17,23]. The different interaction
contexts of a user, who applies attention very selectively and acts mainly under
automatic control [2,19], and an operator, who deals with high cognitive load and
whose attentional mechanisms risk to be overloaded due to coping with Stimulus
Rich Reactive Interfaces (SRRIs) [23], have led to the development of distinct
approaches, keeping separate these two research directions. However, users have
sometimes to deal with decision points or unexpected situations, which require
a “reactivation” of their attentional mechanisms, and operators must sometime
resort to automatisms to reduce attentional and cognitive loads.

In this paper, we try to unify these two research directions by providing a
general framework to reconcile automatic control with attentional and cognitive
loads. Section 2 adopts the information processing approach in explaining human
behaviour and defines a framework, together with a formal notation, to describe
the cognitive processes underlying human behaviour and the way they exploit
human memory. Section 3 provides the semantics of our notation in terms of a
rewriting system model (Sect. 3.1) and briefly presents its implementation and
use (Sect. 3.2). Section 4 illustrates the generality of our cognitive framework on
two case studies: a user of an Automatic Teller Machine (ATM), and an operator
of an Air Traffic Control (ATC) system. Both case studies had been previously
modelled [2–4] using the CSP (Communicating Sequential Processes) process
algebra [10]. While in such previous work two distinct ad hoc frameworks had
been developed to model a user [2] and an operator [3,4], in this paper we unify

A Cognitive Framework Based on Rewriting Logic 289

the two contexts within the same formal framework, which is based on rewriting
logic [16] and is implemented within the MAUDE rewrite system [5].

2 Modelling Cognitive Processes

Following the information processing approach normally used in cognitive psy-
chology, we model human cognitive processes as processing activities that make
use of input-output channels, to interact with the external environment, and
three main kinds of memory, to store information: sensory memory, where infor-
mation perceived through the senses persists for a very short time; short-term
memory (STM), which has a limited capacity and where the information that is
needed for processing activities is temporary stored with rapid access and rapid
decay; long-term memory (LTM), which has a virtually unlimited capacity and
where information is organised in structured ways, with slow access but little or
no decay [8].

2.1 Input as Perceptions and Output as Actions

Input and output occur in humans through senses. In our work we give a general
representation of input channels in term of perceptions, with little or no details
about the specific senses involved in the perception, but with a strong emphasis
on the semantics of the perception in terms of its potential cognitive effects. For
instance, if the user of a vending machine perceives that the requested product
has been delivered, the emphasis is on the fact that the user will be induced to
collect the product and not on whether the user has seen or rather heard the
product coming out of the machine.

We represent output channels in term of actions. Actions are performed in
response to perceptions. We are interested in the urgency to react created by
the perception: for example, if we are withdrawing cash, we need to collect the
delivered cash before the machine takes it back. Analogously, if an operator
perceives an anomalous system behaviour, in general we are not interested in
whether such perception occurs through sight, hearing, or even by touching a hot
component or through a burning smell; instead, we are interested in the action
that the operator has to carry out to solve the problem and in the urgency of
such an action.

2.2 Attention and Processing Control

Perceptions are briefly stored in the sensory memory and only relevant percep-
tions are transfered to the STM using attention, a selective processing activ-
ity that aims to focus on one aspect of the environment while ignoring others.
Inspired by Norman and Shallice [19], we consider two levels of cognitive control:

automatic control fast processing activity that does not require attention to
occur and is carried out outside awareness with no conscious effort;

290 A. Cerone

deliberate control processing activity triggered and focussed by attention and
carried out under the intentional control of the individual, who is aware and
conscious of the required effort.

For example, automatic control is essential in driving a car and, in such a context,
it develops throughout a learning process based on deliberate control: during the
learning process the driver has to make a conscious effort to use gear, indicators,
etc. in the right way (deliberate control) and would not be able to do this while
talking or listening to the radio. Once automaticity in driving is acquired, the
driver is aware of the high-level tasks that are carried out, such as driving to
office, turning to the right and waiting at a traffic light, but is not aware of
low-level details such as changing gear, using the indicator and the colour of the
light, amber or red, while stopping at a traffic light (automatic control).

2.3 Tasks and Short-Term Memory (STM)

The purpose of an interaction between a human and an interface is to allow
the human to accomplish a goal. In Sect. 2.2 we have referred to high-level and
low-level tasks. The goal is associated with the top-level task. For both users
and operators the top-level task can be decomposed in a hierarchy of tasks until
reaching basic tasks, which cannot be further decomposed. A difference between
the user and operator cases is that the user’s goal is normally associated with
the basic task that accomplishes it, whereas there is no such basic task in the
operator case.

We model a basic task as a quadruple

infoi ↑ perch =⇒ acth ↓ infoj

where perception perch triggers the retrieval of information infoi from the STM,
the execution of action acth and the storage of information infoj in the STM.

Information is kept promptly available, while it is needed to perform the
current top-level task, by storing it in the STM. Several kinds of information
may be stored in the STM: the goal of the interaction (which we identify with the
top-level task), a partial result of a calculation, a piece of information retrieved
from the LTM, a perception transferred from the sensory memory through the
attention mechanism, a reference to a future action to be performed, the current
state of the ongoing reasoning process or plan currently carried out. For the
purpose of our work we consider only three kinds of information that can be
stored in the STM:

task goal represented as the action that leads to the direct achievement of the
goal (user), or as the action that contributes to preserve the correct system
state or a placeholder if such an action cannot be identified (operator);

action reference which refers to a future action to be performed;
cognitive state that is the state of the plan developed by the user/operator.

A Cognitive Framework Based on Rewriting Logic 291

A task goal is formally modelled as

goal(act, type)

where act is the action that either leads to the direct achievement of the goal,
if type = achieve, or contributes to preserve the correct system state, if type =
preserve (in this case the action may be left unspecified).

We formally denote by none when an entity (information, perception, action)
of a task or the action of a task goal is absent or left unspecified (none is a
placeholder in the latter case). When none is used as information it denotes the
absence of action reference.

We model the two levels of control considered in Sect. 2.2 as three categories
of basic tasks:

automatic task triggered by a perception, or an information in the STM;
cognitive task triggered by a cognitive state;
decision task triggered by a task goal in the STM.

An automatic tasks must include an action, but may not include a perception or
may not use the STM (thus it may have one or both information fields empty).
A cognitive task must always have the two information fields to contain the
current cognitive state to retrieve from STM and the next cognitive state to
store in the STM, but it has neither perception nor action. A decision task
must include a perception and store in the STM a reference to an action that
is related to the task goal contained in the retrieval information field, with the
perception triggering the retrieval of the task goal; for instance, if the first part
of the driving route to our workplace is in common with the driving route to
our favourite supermarket and our goal is driving to work, the perception of
approaching the branching point will trigger the storage of a reference to the
action related to the goal (i.e. taking the road to drive to work) in the STM.

Automatic tasks are performed under automatic control, whereas cognitive
and decision tasks are performed under deliberate control. Normally, a user works
mainly under automatic control [19], with most of the performed tasks being
automatic tasks, whereas an operator works mainly under deliberate control
[21], with most of the performed tasks being cognitive tasks.

2.4 Interface

In our context a user perception refers to a stimulus produced by an action of
the interface with which the human is interacting. Hence we identify an inter-
face state created by an interface action with the perception such an action
produces in humans. For example, the interface state created by the action of
giving change, performed by the interface of a vending machine, is identified with
the perception (sound of falling coins or sight of the coins) produced. Thus, in
our notation, interface state and corresponding human perception are denoted
by the same formal entity (which, assuming the user’s perspective, we call “per-
ception”).

292 A. Cerone

In Sect. 2.1 we anticipated that perceptions may induce different degrees
of urgency in reacting. Since we identify a perception with the interface state
caused by the interface action that produced that perception, the urgency of a
perception can be modelled by associating a timeout with such an interface state
(hence with the perception itself). For example the urgency of the user of a cash
machine in collecting the delivered cash is associated with the machine timeout
for taking back the cash. In order to use perceptions as interface states, possibly
with timeouts, to define interface transitions, we decorate a perception perc as
follows.
perc!0 state that produces a perception inducing no urgency in reacting and is

not associated with a timeout;
perc!1 state that produces a perception inducing urgency and is associated with

a timeout that is not expired;
perc!2 state that produces a perception inducing urgency and is associated with

a timeout that has already expired.

By interpreting perceptions in terms of the interface states that caused them,
we model an interface transition as a triple

perch!m acth−→ perck!n

where interface state perch, with possible timeout characterised by m, triggers
the execution of action acth with a transition of the interface to state perck,
whose possible timeout is characterised by n. An action act �= none is, therefore,
performed through a cooperation between human and interface and thus belongs
to both a task and an interface transition and represents the basic form of
interaction. An action act = none is denoted by an unlabelled arrow. The initial
state of the interface is normally an idling state (the interface is available for
an interaction), thus it is not associated with a timeout (perc!0). In our formal
representation we keep track of the action act that produced the state perc by
defining an interface state as a pair act � perc!m. The initial state becomes
then none � perc!0. We will exploit this redundant notation in Sect. 3.1.

2.5 Closure and Post-completion Error

An important phenomenon that occurs in automatic behaviour is closure [8].
When the goal of a task has been achieved there is a tendency to flush out the
STM to be ready to start a new task. This may cause the removal from the STM
of some important subtasks that are still not completed and result in some form
of failure of the main task, called post-completion error. Undesired closure most
commonly occurs when the main goal of the task is achieved before completing
some subsidiary tasks, due to the task sequentialisation forced by the interface.
A classical example is provided by an ATM that delivers cash before returning
the card. Since the user’s main goal is to get cash, once the cash is collected,
the STM is flushed out and the user may terminate the task, thus forgetting the
card in the ATM. That is why modern ATMs return the card before delivering
cash. Closure has been formally modelled in previous works using Higher Order
Logic (HOL) [6] and the CSP process algebras [2].

A Cognitive Framework Based on Rewriting Logic 293

2.6 Long-Term Memory (LTM) and Supevisory Attentional System

LTM is used for long-term storage of “factual information, experiential knowl-
edge, procedural rules of behaviour — in fact, everything that we know” [8].
Information may be transferred from the STM to the LTM through rehearsal, the
well-known recycling mechanism functionally equivalent to the idea of repeating
things to yourself.

In our cognitive framework, we do not consider transfer of information from
STM to LTM. In fact, we assume that the LTM already contains procedural
rules of behaviour, such as the basic tasks (automatic, cognitive and decision
tasks) introduced in Sect. 2.3. Moreover, during automatic control, experiential
knowledge already stored in the LTM may be used to solve situations in which
automatic tasks result inappropriate. Norman and Shallice [19] propose the exis-
tence of a Supervisory Attentional System (SAS), sometimes also called Super-
visory Activating System, which becomes active whenever none of the automatic
tasks are appropriate. The activation of the SAS is triggered by perceptions that
are assessed as danger, novelty, requiring decision or the source of strong feelings
such as temptation and anger.

We formalise such an assessment as a function assess(act, perc), where perc
is the perception that triggered the SAS activation and act is the last interac-
tion before that perception. The function returns one of the following values:
danger, decision, novelty, anger and auto. For example, if we start overtak-
ing a car (act) and we hear honking from behind (perc) the assessment will be
assess(act, perc) = danger. Normally the automatic response to a danger is to
abandon the ongoing task without accomplishing the goal, in our example the
overtaking task/goal. Responses to novelties (novelty) and feelings (e.g. anger)
vary from individual to individual and cannot be captured by our framework.
Response to requiring decision (decision) are driven by a specific basic task of
the model. Value auto denotes that the SAS is not activated.

Therefore, the assessment function is a way of formalising experiential knowl-
edge that has been stored in the LTM, in our example the experience that honk-
ing is a warning of danger.

3 Rewriting System Model and Analysis

3.1 Rewrite Rules

Let Π be a set of perceptions, Σ be a set of actions, Γ be a set of action
references and Δ a set of cognitive states, with Γ ∩ Δ = ∅. We model our
cognitive framework on Π, Σ, Γ and Δ as a rewrite system consisting of four
sets of objects

T a set of basic tasks;
I a set of interface transitions;
C a singleton containing the current interface state and its causal action;
M the set of entities in the STM;

294 A. Cerone

and a set R of rewriting rules

T I C M rewrite−→ T I C′M′

that are defined as follows:

interacting: if infoi ↑ perch =⇒ acth ↓ infoj ∈ T , with acth �= none

and C = {act � perch!m} and perch!m acth−→ perck!n ∈ I, with m < 2,
and infoi ∈ M and there exists a goal in M
then C′ = {acth � perck!n}
and M′ = M− {infoi} ∪ {infoj}

closure: if infoi ↑ perch =⇒ acth ↓ infoj ∈ T , with acth �= none

and C = {act � perch!m} and perch!m acth−→ perck!n ∈ I and m < 2
and goal(acth, achieve), infoi ∈ M
then C′ = {acth � perck!n}
and M′ = {infoj}

danger: if infoi ↑ perch =⇒ acth ↓ infoj ∈ T , with acth �= none

and C = {act � perch!m} and perch!m acth−→ perck!n ∈ I and m < 2
and infoi ∈ M
and assess(act, perch) = danger
then C′ = {acth � perck!expired(n)} where

expired(n) =
{

2 if n = 1
n otherwise

and M′ = {infoj}
timeout: if C = {act � perch!m} and perch!m −→ perck!n ∈ I and m > 1

then C′ = {none � perck!n}
and M′ = M

cognitive: if infoi ↑ perch =⇒ none ↓ infoj ∈ T
and infoi ∈ M∩Δ and infoj ∈ Δ
then C′ = C
and M′ = M − {info〉} ∪ {info|}

decision: if infoi ↑ perch =⇒ none ↓ infoj ∈ T
and infoi ∈ M is a goal
and assess(none, perch) = decision
then C′ = C
and M′ = M ∪ {info|}

Automatic tasks enable the application of rules interacting, closure and dan-
ger, which involve an interaction between user and interface (acth �= none). Cog-
nitive and decision tasks enable the application of rules cognitive and decision,
respectively, which operate on the STM only, without involving any interaction
with the interface (acth = none) and with no change to the interface state
(C′ = C). Rule timeout refers to an autonomous action of the interface, with
no involvement of the human component (there is no basic task involved).

A Cognitive Framework Based on Rewriting Logic 295

The interacting rule is applied if there is a perception perch in the current
state C and/or information infoi in the STM M that are associated in a task of
T with the execution of action acth, there is a goal in the STM M and there is
no expired timeout (m < 2) associated with the interface state perch!m that has
generated perception perch. The next state C′ of the interface is perck!n, which
results by executing action acth, and the next STM M′ is obtained by removing
information infoi and storing information infoj .

The closure rule is very similar to the interacting rule, but now the goal
in the STM M must be of type achievement (goal(acth, achieve)) and the exe-
cution of action acth results in emptying the STM before storing information
infoj .

The danger rule is applied if the current perception perch that follows the
execution of action act is assessed as a danger (assess(act, perch) = danger).
The user performs action acth. Moreover, since, as we have seen in Sect. 2.6, the
user’s normal response to a danger is to abandon the task, if there is a timeout
associated with the current state (perck!1), then the next state is perck!2, which
is the current state now associated with an expired timeout (since expired(1) =
2), otherwise it is perck!n (since expired(n) = n for n �= 1). The next STM
M′ is obtained by removing all information and storing information infoj , as
it happens for the closure. The need for this rule to assess a perception with
respect to the action that has caused it explains why, in Sect. 2.4, we have kept
track, in the formal notation of an interface state, of the action that produced
that state.

The timeout rule is triggered by the expiration of the timeout (m > 1) and
leads through the autonomous action acth to the new interface state perck!n.

The cognitive rule refers to a cognitive process of the human, with cognitive
state infoi retrieved from and cognitive state stored in the STM.

Finally, the decision rule differs from the cognitive rule because the retrieved
information is a goal, which is then stored again in the STM, and because of the
presence of the assessment as a precondition. It models the SAS-induced switch
from automatic control to deliberate control due to a required decision.

3.2 Implementation and Analysis with MAUDE

The MAUDE implementation, which can be downloaded at

http://sysma.imtlucca.it/cognitive-framework-sefm-2016/,

consists of the following generic modules

entities which defines the basic sorts that model perceptions, actions, and infor-
mation that can be stored in the STM;

cognitive architecture which defines the structures of tasks, STM, LTM, and
interfaces (including the current interface state) and the MAUDE rewrite
rules that work on such structures;

and the following modules that are specific to the case study under analysis

http://sysma.imtlucca.it/cognitive-framework-sefm-2016/

296 A. Cerone

tasks which defines the basic tasks and the goals of the case study;
interfaces which includes the different interfaces to be analysed;
LTM information such as the assessment function introduced in Sect. 2.6.

Simulation is performed by running the rewrite commands available in MAUDE.
Model-checking analysis requires the use of the model-checker predefined

MAUDE module and the definition of two further modules that are specific to
the case study:

preds which defines predicates on perceptions, actions and STM information;
check which includes properties to be verified and runs the model checker.

We define the truth value of predicates on an entity e as follows:

Px(e) =

⎧
⎪⎪⎨

⎪⎪⎩

true if x = cogn and e ∈ M
or x = act and there exist p,m such that e � p!m ∈ C
or x = perc and there exist a,m such that a � e!m ∈ C

false otherwise

The preds module implements predicates Pcogn(e), Pact(e) and Pperc(e).

4 Case Studies

In this section our cognitive framework is illustrated through two case studies by
effectively using it in two distinct ways: to formally verify properties of interfaces
in the context of human usage and compare different interface designs (Sect. 4.1);
and to analyse the operator’s behaviour by formally checking whether a given
decomposition of the operator’s task failure is sound and complete (Sect. 4.2).
These two case studies were presented in our previous work [2,3] using two
independent ad hoc approaches, both based on the CSP process algebra.

4.1 Automatic Teller Machine (ATM) User

Let be Π = {cardR, pinR, cashO, cardO}, Σ = {cardI, pinI, cashC, cardC},
Γ = {cardB} and Δ = ∅. A simple ATM task, in which the user has only the
goal to withdraw cash, is modelled by the following four basic tasks:

none ↑ cardR =⇒ cardI ↓ cardB
When the interface is perceived ready (cardR), the user inserts the card
(cardI) and remembers (in the STM) that the card has to be taken back
(cardB) at a later stage;

none ↑ pinR =⇒ pinI ↓ none
When the interface is perceived to request a pin (pinR), the user inputs the
pin (pinI);

none ↑ cashO =⇒ cashC ↓ none
When perceiving that the cash has been delivered (cashO), the user collects
the cash (cashC);

A Cognitive Framework Based on Rewriting Logic 297

cardB ↑ cardO =⇒ cardC ↓ none
When perceiving that the card has been returned (cardO), the user collects
the card (cardC) and no longer needs to remember to collect it (cardB);

The goal (“to withdraw cash”) is identified with the act of collecting cash (action
cashC) and is formally modelled as goal(cashC, achieve).

We model an old interface that sequentially requests a card, requests a pin,
delivers the cash and returns the card, and a new interface that returns the card
before delivering the cash. The two interface models are as follows.

Old ATM: transitions

1. cardR!0 cardI−→ pinR!1
2. pinR!1

pinI−→ cashO!1
3. cashO!1 cashC−→ cardO!1
4. cardO!1 cardC−→ cardR!0
5. pinR!2 −→ cardO!1
6. cashO!2 −→ cardO!1
7. cardO!2 −→ cardR!0

New ATM: transitions

1. cardR!0 cardI−→ pinR!1
2. pinR!1

pinI−→ cardO!1
3. cardO!1 cardC−→ cashO!1
4. cashO!1 cashC−→ cardR!0
5. pinR!2 −→ cardO!1
6. cashO!2 −→ cardR!0
7. cardO!2 −→ cardR!0

For both interfaces the initial state is none � cardR!0.
In both interfaces, transitions 1–4 model the normal sequences of interactions

for the specific design (old or new). The last three transitions model interface
autonomous actions. In both interfaces, if the timeout expires after requesting
a pin, then the card is returned (transitions 5). If the timeout expires after
delivering the cash (transitions 6), then in the old ATM the card is returned,
whereas in the new ATM the control goes back to the initial state, so inhibiting
a cash collection action and, as a result, implicitly modelling that the cash is
taken back by the ATM. Finally, in both interfaces, if the timeout expires after
returning the card, then the control goes back to the initial state, so inhibiting
a card collection action and, as a result, implicitly modelling that the card is
confiscated (transitions 7).

We model the user experience for the two ATM designs as follows.

Old ATM: user experience

1. assess(cardI, pinR) = auto
2. assess(pinI, cashO) = auto
3. assess(cashC, cardO) = auto
4. assess(cardC, cardR) = auto
5. assess(pinI, cardO) = danger
6. assess(pinI, cardR) = anger
7. assess(act, perc) = novelty,

otherwise

New ATM: user experience

1. assess(cardI, pinR) = auto
2. assess(pinI, cardO) = auto
3. assess(cardC, cashO) = auto
4. assess(cashC, cardR) = auto
5. assess(cardC, cardR) = anger
6. assess(act, perc) = novelty,

otherwise

In both experiences the value of the assessment is auto when the sequence of
action and perception is the same as in the experienced interface (assessments
1–4, corresponding to the tasks 1–4 above). A user who has experience with the
old ATM design could interpret: the perception that the card is returned after

298 A. Cerone

having input the pin as if the pin were incorrect and there were a danger for the
card to be confiscated at one of the next attempts (5. assess(pinI, cardO) =
danger); the perception that the ATM goes back to the initial card request with-
out returning the card after having input the pin as if the card were confiscated
(6. assess(pinI, cardR) = anger); and any other sequence of action and percep-
tion as a novelty. A user who has experience with the new ATM design could
interpret: the perception that the ATM goes back to the initial card request after
returning the card without delivering cash as a sign that cash cannot be with-
drawn, e.g. because the ATM is out of cash (5. assess(cardC, cardR) = anger);
and any other sequence of action and perception as a novelty.

We want to verify, for each interface design, whether there are cognitive errors
that may prevent the user from collecting the card and from collecting the cash.
The properties that the user is always able to collect a returned card (property
AlwaysCardBack) and is always able to collect the delivered cash (property
AlwaysCashGot) are specified as follows:

AlwaysCardBack = �(Pperc(cardO) → (¬Pperc(cardR) U Pact(cardC)))
AlwaysCashGot = �(Pperc(cashO) → (¬Pperc(cardR) U Pact(cashC)))

The model checking analysis shows that AlwaysCardBack is true with the new
ATM and not with the old ATM, independently of the user experience, while
AlwaysCashGot is false only with the new ATM and a user experienced with the
old ATM. Property AlwaysCardBack detects possible post-completion errors in
using the old design of the ATM and shows that such errors cannot occur in
the new design of the ATM. Property AlwaysCashGot detects the possibility of
missing the collection of delivered cash. Although the new design of the ATM
works in an ideal world where all ATMs are designed according to the new
criterion, there are countries, in the developing world, where ATMs are still
designed according to the old criterion. Thus we can imagine that a user from
one of such countries, while visiting a country where all ATMs are designed
according to the new criterion, is likely to assess the early return of the card as
a danger and is prone to abandon the interaction forgetting to collect the cash
(falsifying AlwaysCashGot).

4.2 Air Traffic Control (ATC) Operator

The goal of an ATC task is to avoid that the distance between aircraft goes below
a minimum prescribed distance. If this happens, we say that the aircraft violate
separation. The ATC operator has to monitor the local air traffic situation and
execute communication actions to urge aircraft to change speed, altitude and/or
direction in order to avoid separation violation. Aircraft whose trajectories are
leading to separation violation are called “in conflict”.

We consider a purely cognitive task, which models the cognitive processes
of the operator after having perceived the state of the system, indepen-
dently of whether such a perception is correct or erroneous. Thus basic tasks
will have no perceptions. Let be Π = ∅ Σ = {act}, Γ = ∅ and Δ =

A Cognitive Framework Based on Rewriting Logic 299

{scan, part, con, non decide, reclassify, intend}. Following the Operator Choice
Model (OCM), defined by Lindsay and Connelly [14], we decompose the ATC
task into a number of basic tasks that the operator has to perform:

scan ↑ none =⇒ none ↓ part
The operator scans the interface (scan) until finding a part where there are
aircraft that may violate separation (part).

part ↑ none =⇒ none ↓ con
In the part of the interface under analysis (part) the operator identifies air-
craft that are in conflict (con).

part ↑ none =⇒ none ↓ non
In the part of the interface under analysis (part) the operator does not identify
aircraft that are in conflict (non).

con ↑ none =⇒ none ↓ scan
If the conflict (con) does not require urgent action, the operator goes back to
scan the interface (scan), looking for more urgent conflicts.

non ↑ none =⇒ none ↓ scan
If no conflict has been identified (non) in the part under analysis, the operator
goes back to scan the interface (scan).

con ↑ none =⇒ none ↓ decide
The operator develops a plan (decide) to solve the conflict under investigation
(con).

con ↑ none =⇒ none ↓ reclassify
The operator reclassifies (reclassify) a conflict (con) under investigation as a
non conflict.

reclassify ↑ none =⇒ none ↓ scan
After reclassifying (reclassify), the operator goes back to scan the interface
(scan).

decide ↑ none =⇒ none ↓ scan
After developing a plan to solve a conflict (decide), the operator goes back
to scan the interface (scan), looking for other conflicts.

decide ↑ none =⇒ none ↓ intend
After developing a plan to solve a conflict (decide), the operator intends to
carry out a specific action to solve the conflict (intend).

intend ↑ none =⇒ act ↓ scan
The operator implements the intention (intend) by performing an action (act)
and then goes back to scan the interface (scan).

The goal (“to prevent separation violation”) is expressed simply as the preserva-
tion of the state by performing actions (act models a generic action) and is formally
modelled as goal(act, preserve). Note that only the last basic task is an automatic
task; all other tasks are cognitive tasks. Once the intention is established, the cog-
nitive process terminates and the execution of the action is a purely automatic
activity triggered by the intention.

In this case study we focus on the cognitive aspects of the ATC operator
rather than on the specific aspects of the interface that may induce the opera-
tor’s errors. Many cognitive errors may occur in the execution of the tasks above

300 A. Cerone

independently of the characteristics of the interface that presents the air traffic
situation to the operator. Our aim is the analysis of a set of task failures that
have been identified by psychologists through the observation of operators while
using an ATC simulator [3,4,14], in order to find out if such a set is a sound and
complete decomposition of the top-level ATC task failure, that is the occurrence
of separation violation. As in our previous work [3,4], we use temporal logic to
formalise the task failures and model checking to verify the soundness and com-
pleteness of the decomposition. However, in that previous work, the OCM and
a “toy environment” consisting of three aircrafts were formalised using the CSP
process algebra, and the results could not be generalised to any environment.
Here, instead, we use our cognitive framework to formalise the OCM as a list
of basic tasks, as shown above, and we model the environment as the following
trivial interface consisting of just one transition, which is independent of the
number of aircrafts involved and the number of conflicts between them.

1. none!0 act−→ none!0

The initial state is obviously none � none!0. In this case study there is no
information on previous experience. Hence, there is no need to introduce an
assessment function.

We can characterise a separation violation as an operator who persistently
misses the intention to carry out a specific action to solve the conflict [3,4].
Hence the top-level task failure is formalised as �¬Pcogn(intend). We distinguish
between intention (intend) and action (act) to be able to model an unintended
action that does not match the intention [21]. Although this is not part of our
analysis, such a mismatch would be relevant in the analysis of errors induced by
a specific interface design, which could be carried out on this case study by intro-
ducing alternative interface designs and using our formal cognitive framework
as in the ATM case study.

The formalisation of the ATC task failure decomposition suggested by Lind-
say and Connelly [14] is

D = {FailureOfScanning,PerMisClass,PerMisPrior,DeferAction}
where

FailureOfScanning = �¬Pcogn(part)
PerMisClass = ♦Pcogn(part) ∧ �(Pcogn(part) ∨ Pcogn(con) → ©Pcogn(non))
PerMisPrior = ♦Pcogn(con) ∧ �(Pcogn(con) → ©Pcogn(scan))
DeferAction = ♦Pcogn(decide)) ∧ �(Pcogn(decide) → ©Pcogn(scan))

Failure of scanning (FailureOfScanning) occurs when the operator fails to mon-
itor a specific part of the interface, thus missing possible conflicts. Persistent
mis-classification (PerMisClass) occurs when the operator persistently classi-
fies as a non conflict what is actually a conflict. Persistent mis-prioritisation
(PerMisPrior) occurs when the operator persistently gives a low priority to a
conflict, thus missing to solve it. Defer action for too long (DeferAction) occurs
when the operator persistently delays to implement an already developed plan

A Cognitive Framework Based on Rewriting Logic 301

to solve a conflict. Note that the “eventually” part in the last three formulae
guarantees that the task failures are not overlapping.

The soundness of the decomposition is expressed by model-checking formula
∧

F∈D
(F → �¬Pcogn(intend))

The completeness of the decomposition is expressed by model-checking formula

(�¬Pcogn(intend)) →
∨

F∈D
F

Model checking analysis using MAUDE shows that decomposition D is sound
but not complete. However, if we redefine PersMisClass as

PersMisClass’ = ♦Pcogn(part)) ∧ �(Pcogn(part) → ©Pcogn(non))

and we define

ConDecPro = ♦Pcogn(reclassify)∧
�(Pcogn(con) → ©(Pcogn(scan) ∨ Pcogn(reclassify))

then model checking analysis using MAUDE shows that decomposition

D′ = {FailureOfScanning,PerMisClass’,PerMisPrior,ConDecPro,DeferAction}

is sound and complete.
Contrary decision process (ConDecPro) new task failure occurs when a con-

flict is persistently reclassified as a non conflict. Details on the psychological
interpretation of all task failures can be found in our previous work [3].

5 Conclusion

We have presented a cognitive framework for the formal analysis of the interac-
tion between humans and interfaces both in the case of a user, who acts mainly
under automatic control using selective attention, and in the case of an operator,
who deals with high cognitive and attentional load. The ATC case study pre-
sented in Sect. 4.2 illustrates how cognitive processes carried out under deliberate
control result in automatic activities performed under automatic control.

This is a major generalisation with respect to our two previous CSP works. In
fact, in one work [2] the user model captured automatic control with attentional
mechanisms limited to automatic responses to unexpected events but not sensi-
tive to decisional clues that trigger responses carried out under deliberate control
(decisions); in the other work [3,4] the operator model expressed deliberate con-
trol with no capability to formalise perceptions, which are instead fundamental
in the SRRIs used in plant and traffic control, and was ad hoc for an ATC task
in a fixed “toy environment”.

302 A. Cerone

References

1. Butterworth, R., Blandford, A.E., Duke, D.: Demonstrating the cognitive plaus-
ability of interactive systems. Formal Aspects Comput. 12, 237–259 (2000)

2. Cerone, A.: Closure and attention activation in human automatic behaviour: a
framework for the formal analysis of interactive systems. In Proceedings of FMIS
2011. Electronic Communications of the EASST, vol. 45 (2011)

3. Cerone, A., Connelly, S., Lindsay, P.: Formal analysis of human operator behav-
ioural patterns in interactive surveillance systems. Softw. Syst. Model. 7(3), 273–
286 (2008)

4. Cerone, A., Lindsay, P., Connelly, S.: Formal analysis of human-computer inter-
action using model-checking. In: Proceedings of SEFM 2005, pp. 352–361. IEEE
(2005)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

6. Curzon, P., Blandford, A.: Formally justifying user-centred design rules: a case
study on post-completion errors. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.)
IFM 2004. LNCS, vol. 2999, pp. 461–480. Springer, Heidelberg (2004)

7. De Oliveira, R.A.: Formal specification and verification of interactive systems with
plasticity : applications to nuclear-plant supervision. Ph.D. thesis, University of
Grenoble (2015)

8. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction. Pearson
Education, Englewood Cliffs (1998)

9. Dix, A.J.: Formal Methods for Interactive Systems. Academic Press, Cambridge
(1991)

10. Hoare, C.: Communicating Sequential Processes. International Series in Computer
Science. Prentice Hall, Upper Saddle River (1985)

11. Johnson, C.: Reasoning about human error and system failure for accident analysis.
In: Howard, S., Hammond, J., Lindgaard, G. (eds.) INTERACT 1997. IFIP, pp.
331–338. Chapman and Hall, London (1997)

12. Kirwan, B.: Human reliability assessment (chap. 28). In: Evaluation of Human
Work. Taylor and Francis, London (1990)

13. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Boston
(1995)

14. Lindsay, P., Connelly, S.: Modelling erroneous operator behaviours for an air-traffic
control task. In: Proceedings of AUIC 2002. Conferences in Research and Practice
in Information Technology, vol. 7, pp. 43–54. Australian Computer Society (2002)

15. Mach, C.: Knowledge and Error. Reidel (1905). English Translation (1976)
16. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoret.

Comput. Sci. 285(2), 121–154 (2002)
17. Martinie, C., Palanque, P., Fahssi, R., Blanquart, J.P., Fayollas, C., Seguin, C.:

Task model-based systematic analysis of both system failures and human errors.
IEEE Trans. Human-Mach. Syst. 46(2), 243–254 (2016)

18. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: The benefits of formalising design guidelines: a case study on
the predictability of drug infusion pumps. Innovations Syst. Softw. Eng. 11(2),
73–93 (2015)

19. Norman, D.A., Shallice, T.: Attention to action: willed and automatic control
of behaviour. In: Consciousness and Self-Regulation. Advances in Research and
Theory, vol. 4. Plenum Press (1986)

A Cognitive Framework Based on Rewriting Logic 303

20. Palanque, P., Bastide, R., Paterno, F.: Formal specification as a tool for objective
assessment of safety-critical interactive systems. In: Howard, S., Hammond, J.,
Lindgaard, G. (eds.) INTERACT 1997. IFIP, pp. 323–330. Chapman and Hall,
London (1997)

21. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
22. Rukšėnas, R., Curzon, P., Blandford, A.E., Back, J.: Combining human error

verification and timing analysis: a case study on an infusion pump. Formal Aspects
Comput. 26, 1033–1076 (2014)

23. Su, L., Bowman, H., Barnard, P., Wyble, B.: Process algebraic model of atten-
tional capture and human electrophysiology in interactive systems. Formal Aspects
Comput. 21(6), 513–539 (2009)

Incentive Stackelberg Mean-Payoff Games

Anshul Gupta1(B), Sven Schewe1, Ashutosh Trivedi2,
Maram Sai Krishna Deepak2, and Bharath Kumar Padarthi2

1 University of Liverpool, Liverpool, UK
Anshul.Gupta@liverpool.ac.uk

2 Indian Institute of Technology Bombay, Mumbai, India

Abstract. We introduce and study incentive equilibria for multi-player
mean-payoff games. Incentive equilibria generalise well-studied solution
concepts such as Nash equilibria and leader equilibria. Recall that a
strategy profile is a Nash equilibrium if no player can improve his pay-
off by changing his strategy unilaterally. In the setting of incentive and
leader equilibria, there is a distinguished player—called the leader—who
can assign strategies to all other players, referred to as her followers.
A strategy profile is a leader strategy profile if no player, except for the
leader, can improve his payoff by changing his strategy unilaterally, and
a leader equilibrium is a leader strategy profile with a maximal return
for the leader. In the proposed case of incentive equilibria, the leader can
additionally influence the behaviour of her followers by transferring parts
of her payoff to her followers. The ability to incentivise her followers pro-
vides the leader with more freedom in selecting strategy profiles, and we
show that this can indeed improve the leader’s payoff in such games. The
key fundamental result of the paper is the existence of incentive equi-
libria in mean-payoff games. We further show that the decision problem
related to constructing incentive equilibria is NP-complete. On a positive
note, we show that, when the number of players is fixed, the complexity
of the problem falls in the same class as two-player mean-payoff games.
We present an implementation of the proposed algorithms, and discuss
experimental results that demonstrate the feasibility of the analysis.

1 Introduction

The classical mean-payoff games [7,30] are two-player zero-sum games that are
played on weighted finite graphs, where two players—Max and Min—take turn to
move a token along the edges of the graph to jointly construct an infinite play. The
objectives of the players Max and Min are to respectively maximise and minimise
the limit average reward associated with the play. Mean-payoff games enjoy a spe-
cial status in verification, since μ-calculus model checking and parity games can
be reduced in polynomial-time to solving mean-payoff games. Mean-payoff objec-
tives can also be considered as quantitative extensions [13,15] of classical Büchi

This work was supported by the EPSRC through grant EP/M027287/1 (Energy
Efficient Control), by DARPA under agreement number FA8750-15-2-0096 and by
the US National Science Foundation (NSF) under grant numbers CPS-1446900.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 304–320, 2016.
DOI: 10.1007/978-3-319-41591-8 21

Incentive Stackelberg Mean-Payoff Games 305

objectives, where we are interested in the limit-average share of occurrences of
accepting states rather than merely in whether or not infinitely many accepting
states occur. For a broader discussion on quantitative verification, in general, and
the transition from the classical qualitative to the modern quantitative interpre-
tation of deterministic Büchi automata, we refer the reader to Henzinger’s survey
on quantiative reactive modelling and verification [15].

We focus on multi-player extension of mean-payoff games where a finite num-
ber of players control various vertices and move a token along the edges to col-
lectively produce an infinite run. There is a player-specific reward function that,
for every edge of the graph, gives an immediate reward to each player. The pay-
off to a player associated with a play is the limit average of the rewards in the
individual moves. The most natural question related to the multi-player game
setting is to find an optimal ‘stable’ strategy profile (a set of strategies, one for
each player). Broadly speaking, a strategy profile is stable, if no player has an
incentive to deviate from it. Nash equilibria [19] and leader equilibria [13,29]
(also known as Stackelberg equilibria) are the most common notions of stable
strategy profiles for multi-player games.

A strategy profile is called a Nash equilibrium if no player can improve his
payoff by unilaterally changing his strategy. In a setting where we have a distin-
guished player (called the leader) who is able to suggest a strategy profile to other
players (called followers), a strategy profile is stable if no follower can improve
his payoff by unilaterally deviating from the profile. A leader equilibrium is a
stable strategy profile that maximises the reward for the leader.

In this paper, we introduce and study a novel notion of stable strategy profiles
for multi-player mean-payoff games that we call incentive Stackelberg equilibria
(or incentive equilibria for short). In this setting, the leader has more powerful
strategies, where she not only puts forward strategies that describe how the play-
ers move, but also gives non-negative incentives to the followers for compliance.
These incentives are then added to the overall rewards the respective follower
would receive in each move of the play, and deduced from the overall reward of
the leader. Like for leader equilibria, a strategy profile is stable if no follower
has an incentive to deviate. An incentive equilibrium is a stable strategy profile
with maximal reward for the leader.

Using incentive equilibria has various natural justifications. The techniques
we discussed here can be applied where distributed development of a system
is considered. That is, when several rational components interact among them-
selves along with a rational controller and they try to optimise their individual
objectives and specifications. Our techniques can be applied to maximise utility
of a central controller while also complying with individual component specifica-
tions. Transferring utilities is also quite natural where the payoffs on the edges
directly translate to the gains incurred by individual components. These tech-
niques can also be used to maximise social optima where rational controller follow
the objective of maximising joint utility. We now discuss two simple examples
that exemplify the role that incentives can play to achieve good stable solutions
of multi-player mean-payoff games.

306 A. Gupta et al.

Fig. 1. (a) Incentive equilibrium beats leader equilibrium and Nash equilibrium and
(b) incentive equilibrium gives much better system utilisation.

Example 1. Consider the multi-player mean-payoff game shown in Fig. 1(a). Here
we have three players: Player 1, Player 2 (the leader), and Player 3. The vertex
labelled 1 is controlled by Player 1, while the vertex labelled 2 is controlled by
Player 2. All other vertices are controlled by Player 3. We further annotate the
rewards of various players on the edges of the graph by giving a triple, where
the reward of the players 1, 2, and 3 are shown in that order. We omit the
labels when the rewards of all players are 0. An incentive equilibrium would
be given by (a strategy profile leading to) the play 〈1, 2, 3ω〉, where the leader
pays an incentive of 1 to Player 1 for each step and 0 to Player 3. By doing
this, she secures a payoff of 8 for herself. The reward for the players 1 and 3 in
this incentive equilibrium are each 1 and −9, respectively. A leader equilibrium
would result in the play 〈1, 2, 5ω〉 with rewards of 1 for Player 1 and the leader
and −2 for Player 3: when the leader cannot pay any incentive to Player 1, then
the move from Vertex 2 to Vertex 3 will not be part of a stable strategy. The only
Nash equilibrium in this game would result in the play 〈1, 4ω〉 with the rewards
of 1 for Player 1, 0 for the leader, and −1 for Player 3. This example shows how
leader benefits from her additional choices in leader and incentive equilibria. ��
Example 2. Consider the multi-player mean-payoff game shown in the Fig. 1(b)
with five players—Player 0 (or: leader) and Player 1 to 4 (followers). For i ∈
{1, 2, 3, 4}, Player i controls the vertex labelled i in the game and gets a reward
of 1 whenever token is at vertex i. (To keep the rewards on the edges, one could
encode this by giving this reward whenever vertex i is entered.) Player 0 gets
a reward of 1 in all of these vertices. The payoff of all other players is 0 in all
other cases. Notice that the only play defined by Nash or leader equilibria in this
example is 〈(1, 5, 6)ω〉, which provides a payoff of 1

3 to Player 0 and Player 1, and
a payoff of 0 to all other players. For incentive equilibria, however, the leader can
give an incentive of 1

12 to all followers when they follow the play 〈(1, 2, 3, 4)ω〉. It
is easy to see that such a strategy profile is incentive stable. The leader will then
receive a payoff of 2

3 , i.e., her payoff from the cycle, 1, minus the incentives given
to the other players, 4 · 1

12 . All other players receive a payoff of 1
3 , consisting of

the payoff from the cycle, 1
4 , plus the incentive they receive from the leader, 1

12 .
Notice that this payoff is not only better from the leader’s point-of-view, the
other players are also better off in this equilibrium. ��

Incentive Stackelberg Mean-Payoff Games 307

In both examples, we saw that the incentive equilibria are strictly better
than Nash and leader equilibria. It is not a coincidence—note that leader reward
from any Nash equilibrium cannot be greater than her reward from any leader
equilibrium, as in the case of leader strategy profiles, leader can select from a
wider range of strategy profiles. Thus, if compared to a Nash equilibrium, a
leader equilibrium can only be superior w.r.t. the leader reward. Similarly, a
leader equilibrium cannot beat an incentive equilibrium, as here also, leader can
select from a wider range of strategy profiles (‘leader stable’ strategy profiles can
be viewed as an ‘incentive stable’ strategy profiles with 0 incentives). It again
implies that leader reward from any leader equilibrium cannot be greater than
her reward from any incentive equilibrium.

Related Work. Ummels and Wojtczak [27,28] considered Nash equilibria for
mean-payoff games and showed that the decision problem of finding a Nash
equilibria is NP-complete for pure (not allowing randomisation) strategy profiles,
while the problem is undecidable for arbitrary randomised strategies. Gupta and
Schewe [13] have extended these results to leader equilibria. The undecidability
result of [28] for Nash equilibria in arbitrary randomised strategies can be eas-
ily extended to leader equilibria. For this reason, we focus on non-randomised
strategies throughout this paper. Leader equilibria were introduced by von Stack-
elberg [29] and were further studied in [11]. The strategy profiles we study here
are inspired from [12] and are studied in detail for infinite games in [13]. Incentive
equilibria have recently been introduced for bi-matrix games [14], but have, to the
best of our knowledge, not been used in infinite games. Two-player mean-payoff
games were first studied in [9] and were shown to be positionally determined.
They can be solved in pseudo-polynomial time [6,30], smoothed polynomial time
[3], PPAD [10] and randomised subexponential [2] time. Their decision problem
is also known to be in UP∩co-UP [16,30].

Contributions. The key contribution of the paper is the concept of incentive
equilibria to system analysis in general and to multi-player mean-payoff games
in particular. We show that the complexity of finding incentive equilibria is same
as that for finding leader equilibria [13] for multi-player mean-payoff games: it is
NP-complete in general, but, for a fixed number of players, it is in the same com-
plexity class as solving two-player mean-payoff games (2MPGs). In other words,
solving two-player mean-payoff games is the most expensive step involved. We
have implemented an efficient version of the optimal strategy improvement algo-
rithm from [24] as a backbone, and equipped it with a logarithmic search to
expand it from the qualitative evaluation (finding mean partitions) of mean-
payoff games to their quantitative evaluation. We construct incentive equilibria
by implementing a constraint system that gives necessary and sufficient con-
ditions for a strategy profile to be (1) stable and (2) provide optimal leader
return among them. The evaluation of the constraint system involves evaluating
a bounded number of calls to the linear programming solver. The contribution
of the paper is therefore two-fold—first to conceptualise incentive equilibria in
multi-player mean-payoff games (Sects. 2 and 3), and second to present a tool

308 A. Gupta et al.

(Sect. 4) deriving optimal return for the leader by evaluating a number of multi-
player games.

2 Incentive Equilibrium

We introduce the concept of incentive equilibria for multi-player mean-payoff
games. These games are played among multiple players on a multi-weighted
finite directed graph arena where a distinguished player, called the leader, is
able to put forward a strategy profile. She will follow the strategy she assigned
for herself, while all other players, called her followers, will comply with the
strategy she suggested, unless they benefit from unilateral deviation. The leader
is further allowed to incentivise the behaviour of her followers by sharing her
payoff with them, in order to make compliance with the strategy she has put
forward sufficiently attractive. This, in turn, may improve the leader’s payoff.
Before we define incentive equilibria, let us recall a few key definitions.

Definition 1 (Multi-player Mean-Payoff Games). A multi-player mean-
payoff game (MMPG) arena G is a tuple (P, V, (Vp)p∈P , v0, E, (rp)p∈P) where

– P is a finite set of players with a distinguished leader player l ∈ P ,
– V is a finite set of vertices with a distinguished initial vertex v0 ∈ V ,
– (Vp)p∈P is a partition of V characterising vertices controlled by players,
– E ⊆ V ×V is a set of edges such that for all v ∈ V there is v′ ∈ V with

(v, v′)∈E, and
– (rp)p∈P is a family of reward functions rp : E → Q, that for each player p ∈ P ,

assigns reward for player p associated with that edge.

A finite play π = 〈v0, v1, . . . , vn〉 of the game G is a sequence of vertices such
that v0 is the initial vertex, and for every 0 ≤ i < n, we have, (vi, vi+1) ∈ E.
An infinite play is defined in an analogous manner. A multi-player mean-payoff
game is played on a game arena G among several players by moving a token
along the edges of the arena. The game begins by placing a token on the initial
vertex. Each time the token is on the vertex controlled by a player p ∈ P ,
the player p chooses an outgoing edge and moves the token along this edge.
The game continues in this fashion forever, and the players thus construct an
infinite play of the game. The (raw) payoff rp(π) of a player p ∈ P associated
with a play π = 〈v0, v1, . . .〉 is the limit average reward of the path, given as
rp(π) def= lim infn→∞ 1

n

∑n−1
i=0 rp

(
(vi, vi+1)

)
. We refer to this value as the raw

payoff of the player p to distinguish it from the payoff for the player that also
includes the incentive given to the player by the leader.

A strategy of a player is a recipe for the player to choose the successor vertex.
It is given as a function σp : V ∗Vp → V such that σp(π) is defined for a finite
play 〈v0, . . . , vn〉 when vn ∈ Vp and it is such that (vn, σp(π)) ∈ E. A family of
strategies σ = (σp)p∈P is called a strategy profile. Given a strategy profile σ,
we write σ(p) for the strategy of player p ∈ P in σ. A strategy profile σ defines
a unique play πσ, and therefore a raw payoff rp(σ) = rp(πσ) for each player p.

Incentive Stackelberg Mean-Payoff Games 309

We write ΣG
p for the set of strategy of player p ∈ P and ΠG for the set of strategy

profiles in a game arena G. When the game arena is clear from the context, we
omit it from the superscript.

For a strategy profile σ, a player p ∈ P , and a strategy σ′ of p, we write
σp,σ′ for the strategy profile σ′ such that σ′(p) = σ′ and σ′(p′) = σ(p′) for all
p′ ∈ P \ {p}. We can now define Nash and leader (aka Stackelberg) equilibria.

Definition 2 (Nash Equilibria and Leader Equilibria). A strategy profile
σ is a Nash equilibrium if no player would gain from unilateral deviation, i.e.,
for all p ∈ P we have rp(σ) ≥ rp(σp,σ′) for all σ′ ∈ Σp. A strategy profile σ
is a leader strategy profile if no player, except for the leader, would gain from
unilateral deviation, i.e., for all p ∈ P\ {l} we have rp(σ) ≥ rp(σp,σ′) for all
σ′ ∈ Σp. A leader equilibrium is a maximal leader strategy profile.

We next define an incentive strategy profile as a strategy profile which satisfies
the stability requirements of the leader equilibria and allows the leader to give
incentives to the followers. We refer to an optimal strategy profile in this class
that provides maximal reward to the leader as an incentive equilibrium.

An incentive to a player p is a function ιp:V ∗Vp→R≥0 from the set of histories
to incentives. Incentives can be extended to infinite play π = 〈v0, v1, . . .〉 in
the usual mean-payoff fashion: ιp(π) def= lim infn→∞ 1

n

∑n−1
i=0 ιp(v0 . . . vn−1). The

overall payoff ρp(π) to a follower in run π is the raw payoff plus all incentives,

ρp(π) def= rp(π) + ιp(π), while the overall payoff of the leader ρl(π) is her raw

payoff after deducting all incentives, ρl(π) def= rl(π) − ∑
p∈P�{l} ιp(π).

We extend the notion of a strategy profile in the presence of incentives as
a pair (σ, ι), where σ is a strategy profile assigned by the leader, in which the
leader pays an incentive given by the incentive profile ι = (ιp)p∈P�{l}. We write
ιp for the incentive for player p ∈ P \ {l}. We write ιp(σ) for the incentive to
player p for the unique run πσ under incentive profile ι. In any incentive strategy
profile (σ, ι), no player but the leader may benefit from deviation. An optimal
strategy profile among this class would form an incentive equilibrium.

Definition 3 (Incentive Equilibria). A strategy profile (σ, ι) is an incentive
strategy profile, if no follower can improve his overall payoff from a unilat-
eral deviation, i.e., for all players p ∈ P � {l} we have that rp(σ) + ιp(σ) ≥
rp(σp,σ′) + ιp(σp,σ′) for all σ′ ∈ Σp. An incentive strategy profile (σ, ι) is
an incentive equilibrium if the leader’s total payoff for this profile is max-
imal among all incentive strategy profiles, i.e., for all (σ′, ι′) we have that
rl(σ) − ∑

p∈P�{l} ιp(σ) ≥ rl(σ′) − ∑
p∈P�{l} ι′p(σ

′).

An incentive strategy profile is a leader strategy profile if all incentives are 0,
and a Nash strategy profile if, in addition, σ is also a Nash equilibrium. We write
SP, ISP, LSP, and Nash SP for the set of strategy profiles, incentive strategy
profiles, leader strategy profiles, and Nash strategy profiles respectively. It is clear
that Nash SP ⊆ LSP ⊆ ISP ⊆ SP. This observation, together with Example 1(a)
yield the following result.

310 A. Gupta et al.

Theorem 1 (IE ≥ LE ≥ NE). Incentive equilibria do not provide smaller
return than leader equilibria, and leader equilibria do not provide smaller return
than Nash equilibria. Moreover, there are games for which the leader reward from
three equilibria are different.

3 Existence, Construction, and Complexity

This section is dedicated to the existence, construction, and complexity of incen-
tive equilibria. Similar results were developed by Gupta and Schewe [13] for
leader equilibria for multi-player mean-payoff games. If we are only interested
in complexity classes, the results in the following section can be obtained by a
simple reduction to leader equilibria [13] using a gadget (Fig. 2) that replaces
each state by intuitively circling through the followers and allowing the leader to
transfer a large part h (for high incentive) of her utility to each of the followers1.
Following this approach leads, however, to an increase in the size of the linear
programs, simply because we would incur a blow-up of the game by a factor
of 2|P |. To avoid this unnecessary blowup, we adapt the proofs from [13] that
result in a more efficient algorithm.

Proof Sketch. We first introduce a canonical class of incentive strategy
profiles—the perfectly-incentivised strategy profiles (PSPs)—that corresponds to

Fig. 2. Gadget reducing incentive equilibrium to leader equilibrium. Here we assume
that � is the leader player and 1, . . . , n are n followers. Here we label a state by � if it
is controlled by leader, and by p if it is controlled by a player p. Every state p of the
original game arena is replaced by 2n + 2 states in the gadget in the manner shown
above. Here reward vector bi corresponds to reward −h for the leader, reward +h to
follower i, and reward 0 to all other followers.

1 When translating a strategy in the presence of incentives (σ, ι), the translation can
be done by simulating the runs. The translation of the strategy profile σ is straight
forward; it determines the choices at the respective last states from the gadgets. The
translation of the incentives refer to the choices within the gadgets. They can be
obtained by letting the leader make the decision to transfer h to follower p if, and
only if, the sum of the incentives this follower p has collected in the game on the
original MMPG is at least h higher than the sum of the utilities the leader has so
far transferred to p in the gadgets. If passing through a gadget is counted as one
step, all lim inf values agree on the original and its simulation. The back translation
is even more direct: it suffices to wait till the end of each gadget, and then assign
incentives accordingly.

Incentive Stackelberg Mean-Payoff Games 311

the Stackelberg version of the classic subgame perfection. Keep in mind that not
all perfectly-incentivised strategy profiles (PSPs) are valid incentive strategy
profiles (ISPs). On the other hand, we show that every ISP has a corresponding
PSP (which is also an ISP) with the same leader reward. Thanks to this result,
in order to construct incentive equilibrium it suffices to consider PSPs that are
also ISPs.

Further, we show that, for PSPs that are ISPs, it suffices to find a maximum
in a well behaved class of strategy profiles: strategy profiles where every edge has
a limit share of the run—by showing that the supremum of general strategies
cannot be higher than the supremum of these well behaved ones. We then show
how to construct well behaved PSPs that are ISPs based on a family of constraint
systems that depend on the occurring and recurring vertices on the play. At the
same time, we show that no general ISP that defines a play with this set of
occurring and recurrent vertices can have a higher value. The set of occurring
and recurrent vertices can be guessed and the respective constraint system can
be build and solved in polynomial time, which also provides inclusion of the
related decision problem in NP.

3.1 Perfectly-Incentivised Strategy Profiles

We define a canonical form of an incentive equilibrium with this play that we call
perfectly-incentivised strategy profiles (PSP). In a PSP, a deviator (a deviating
follower) is punished, and the leader incentivises all other followers to collude
against the deviator. While the larger set of strategies and plays that define
them (when compared to Nash and leader equilibria) lead to a better value,
this incentive scheme leads to a higher stability: the games are subgame perfect
relative to the leader. A strategy profile (σ, ι) is a subgame perfect incentive
strategy profile, if every reachable subgame is also an incentive strategy profile.
This term adjusts the classic notion of subgame perfect equilibria to our setting.
In a subgame perfect Nash equilibrium, it is required that the subgame started
on each history also forms a Nash equilibrium. Note that the leader is allowed
to benefit from deviation in our setting.

The means to obtain subgame perfection after deviation is to make all players
harm the most recent deviator. Thus, we essentially resort to a two-player game.
For a multi-player mean-payoff game G, we define, for each follower p, the two-
player mean-payoff game (2MPG) Gp where p keeps his reward function, while all
other players have the same antagonistic reward −rp. Two-player mean-payoff
games are memoryless determined, such that every vertex v has a value, which
we denote by rp(v). This value clearly defines a minimal payoff of a follower:
when he passes by a vertex in a play, then he cannot expect an outcome below
rp(v), as he would otherwise deviate.

PSP strategy profiles are in the tradition of reward and punish strategy
profiles [13]. In any ’reward and punish’ strategy profile, the leader facilitates
the power of all remaining followers to punish a deviator. If a player p chooses
to deviate from the strategy profile at history h, the game would turn into a
two-player game, where all the other followers and the leader forsake their own

312 A. Gupta et al.

interests, and jointly try to ‘punish’ p. That is, player p may still try to maximise
his reward and his objective remains exactly the same, but the rewards of the
rest of the players have changed to negative of the reward of player p. As they
form a coalition with the joint objective to harm p, this is an ordinary two-player
mean-payoff game that starts at the vertex last(h).

For a strategy profile σ and a history h, we call h a deviating history, if it is
not a prefix of πσ. We denote by dev(h, σ) the last player p, who has deviated from
his or her strategy σp on a deviating history h. A perfectly-incentivised strategy
profile is defined as a strategy profile (PSP) (σ, ι) with the following properties.
For all prefixes h and h′ of πσ and for all followers p, it holds that ιp(h) = ιp(h′).
We also refer to this value by ιp. For deviator histories h′, the incentive ιp(h′) is 0
except for the following cases. On every deviating history h with deviating player
p = dev(h, σ), the player p′ who owns the vertex v = last(h) follows the strategy
from the 2MPG Gp. If, under this strategy, player p′ selects the successor v′ at
a vertex v in the 2MPG Gp (and thus σp′(h) = v′), p′ is a follower, and p′ �= p,
then player p′ receives an incentive, such that rp′(v, v′) + ιp′(h · v′) = rmax + 1.

Note that, technically, the leader punishes herself in this definition. This is
only to keep definitions simple; she is allowed to have an incentive to deviate,
and the subgame perfection does not impose a criterion upon her. Note also that
a PSP is not necessarily an incentive strategy profile, as it does not guarantee
anything about πσ. The following theorem states the importance of PSPs in
constructing incentive equilibrium.

Theorem 2. Let (σ, ι) be an ISP that defines a play πσ. Then we can define a
PSP (σ, ι), that is also an ISP, with the same reward, and defines the same play.

The proof of this theorem follows from Lemmas 1 and 2.

Lemma 1. Let (σ′, ι′) be a strategy profile that defines a play πσ′ , which contains
precisely the reachable vertices Q. Let (σ′, ι′) satisfy that, ∀ followers p ∈ P \{l}
and all vertices v ∈ Q∩Vp owned by p we have that ιp(σ′)+rp(σ′) ≥ rp(v). Then
we can define a PSP (σ, ι) with the same reward, which defines the same play.

Proof. We note that a PSP (σ, ι) is fully defined by the play πσ and the ι
restricted to the prefixes of πσ. We now define the PSP (σ, ι) with the following
property: πσ = πσ′ , that is the play of the PSP equals the play defined by
the ISP we started with. For all followers p and all prefixes h of πσ, we have
ιp(h) = ι′p(σ). It is obvious that (σ′, ι′) and (σ, ι) yield the same reward for all
followers and the same reward for the leader. We now assume for contradiction
that the resulting PSP is not an incentive strategy profile. If this is the case,
then a follower p must benefit from deviation at some history h. Let us start
with the case that h is a deviator history. In this case, the reward for p upon
not deviating is rmax + 1, while it is the outcome of some game upon deviation,
which is clearly bounded by rmax.

We now turn to the case that h is not a deviator history, and therefore a
prefix of πσ. Let p be the owner of v = last(h). If p is the leader, we have nothing
to show. If p is a follower and does not have an incentive to deviate in (σ, ι), we

Incentive Stackelberg Mean-Payoff Games 313

have nothing to show. If p is a follower and has an incentive to deviate in (σ, ι),
we note that his payoff after deviation would be bounded from above by rp(v).
Thus, he does not have an incentive to deviate (contradiction). ��
Lemma 2. Let (σ, ι) be an ISP that defines a play πσ, which contains precisely
the vertices Q. Then, for all followers p ∈ P \ {l} and all vertices v ∈ Q ∩ Vp

owned by p, we have that ιp(σ′) + rp(σ′) ≥ rp(v).

Proof. Assume that this is not the case for a follower p and a vertex v ∈ Q
owned by p. Then p would benefit upon deviating when visiting v. ��

3.2 Existence and Construction of Incentive Equilibria

We say that a strategy profile σ is well-behaved if in the resulting play πσ,
the frequency (ratio) of occurrence of every edge of the game arena occurs has
a limit, i.e., each edge here occurs with a limit probability (the limes inferior
and superior of the share of its occurrence on πσ are equal). Such notion of
well-behaved strategy profiles were also defined in [13] for the case of leader
equilibria. We first construct optimal ISPs among well behaved PSPs, and then
show that no ISP give a better payoff for leader.

Let σ is a well-behaved perfectly-incentivised strategy profile and let Q be
the set of vertices visited in πσ and S ⊆ Q be the set of vertices that are visited
infinitely often (note that S is strongly connected). Let p(s,t) be the limit ratio
(frequency) of occurrence of an edge (s, t) ∈ E ∩ S × S in πσ and let pv be the
limit ratio of each vertex v ∈ S.

Thanks to the proof of Lemma 1, the following constraint system (linear pro-
gram) characterises the necessary and sufficient conditions for the well-behaved
perfectly-incentivised strategy profile σ to be an ISP.

1. pv = 0 if v ∈ V � S and pv ≥ 0 if v ∈ S.
2. pe = 0 if e ∈ E � S × S and pe ≥ 0 if e ∈ E ∩ S × S
3.

∑
v∈V pv = 1

4. ps =
∑

(s,t)∈E p(s,t) for all s ∈ S and pt =
∑

(s,t)∈E p(s,t) for all t ∈ S

5. ιp +
∑

e∈E perp(e) ≥ maxv∈Q(rp(v)) where rp(v) is the value at vertex v in
the 2MPG Gp characterising minimum payoff expected by player p.

The constraints presented above are quite self-explanatory. Constraints 1
and 2 state that the limit ratio of occurrence of a vertex and edge is positive
only when it is visited infinitely often. Constraint 3 expresses that the sum of
ratio of occurrence of vertices is equal to 1, while constraint 4 expresses the
fact the limit ratio of a vertex should be equal to limit ratios of all incoming
edges, and equal to limit ratio of all outgoing edges from that vertex. The last
constraint stems from the proof of Lemma 1 combined with the observation that
reward rp(σ) of a player p in σ is simply

∑
e∈E perp(e), that is, it is the weighted

sum of the raw rewards of the individual edges. Before we define the objective
function, we state a simple corollary from the proof of Lemma 1.

314 A. Gupta et al.

Corollary 1. Every well behaved PSP that is an ISP satisfies these constraints,
and every well behaved strategy profile (σ, ι), whose play πσ satisfies these con-
straints, defines a PSP, which is then an ISP.

Note that the resulting PSP is an ISP even if (σ, ι) is not. This is because the
satisfaction of the constraints are enough for the final contradiction in the proof
of Lemma 1.

Construction of Incentive Equilibria. The objective of the leader is obviously to
maximise rl(σ)−∑

p∈P�{l} ιp =
∑

e∈E perl(e)−∑
p∈P�{l} ιp. Once we have this

linear programming problem, it is simple to determine a solution in polynomial
time [17,18]. We first observe that it is standard to construct a play defining a
PSP from a solution. A key observation is that, if the linear program detailed
above for sets Q of reachable vertices and S of vertices visited infinitely often
has a solution, then there is a well behaved reward and punish strategy profile
that meets this solution.

Theorem 3. Non-well behaved PSPs that are also ISPs cannot provide better
rewards for the leader than those from well behaved PSPs that are also ISPs.

Proof. Corollary 1 shows that there exists a well defined constraint system
obeyed by all well behaved PSPs that are also ISPs with a set Q of reach-
able vertices and a set S of recurrent vertices. Let us assume for contradiction
that there is a reward and punish strategy profile (σ, ι) that defines a play πσ

with the same sets Q and S of reachable and recurrent vertices, respectively,
that provides a strictly better reward rl(σ) − ∑

p∈P�{l} ιp, which exceeds the
maximal reward obtained by the leader in well behaved PSPs that are also ISPs
by some ε > 0.

We now construct a well behaved PSPs that are also ISPs and that also
provides a better return. First, we take a ι′ with ιp = ι′p for all followers p. This
allows us to focus on the raw rewards only. Let k be some position in πσ such
that, for all i ≥ k, only positions in the infinity set S of πσ occur. Let π be
the tail vkvk+1vk+2 . . . of πσ that starts in position k. Obviously rp(π) = rp(σ)
holds for all players p ∈ P . We observe that, for all δ > 0, there is an l ∈ N
such that, for all m ≥ l, 1

m

∑m−1
i=0 rp

(
(vi, vi+1)

)
> rp(π) − δ holds for all p ∈ P ,

as otherwise the limes inferior property would be violated. We now fix, for all
a ∈ N, a sequence πa = vkvk+1vk+2 . . . vk+ma

, such that vk+ma+1 = vk and
1
m

∑ma−1
i=0 rp

(
(vi, vi+1)

)
> rp(π) − 1

a holds for all p ∈ P . Let π0 = v0v1 . . . vk−1.
We now select π′ = π0π1

b1π2
b2π3

b3 . . ., where the bi are natural numbers big
enough to guarantee that bi·|πi|

|πi+1|+|π0|+∑i
j=1 bj ·|πj | ≥ 1 − 1

i holds. Letting bi grow

this fast ensures that the payoff, which is at least rp(π)− 1
i for all players p ∈ P ,

dominates till the end of the first iteration2 of |πi+1|. The resulting play belongs
to a well behaved (as the limit exists) strategy profile, and can thus be obtained
2 Including the first iteration of πi+1 is a technical necessity, as a complete iteration

of πi+i provides better guarantees, but without the inclusion of this guarantee, the
πj ’s might grow too fast, preventing the existence of a limes.

Incentive Stackelberg Mean-Payoff Games 315

by a well behaved PSP by Corollary 1. It thus provides a solution to the linear
program from above, which contradicts our assumption. ��

Consequently, it suffices to guess the optimal sets Q of vertices that occur
and S of vertices that occur infinitely often to obtain a constraint system that
describes an incentive equilibrium, which is well behaved and a PSP—and there-
fore subgame perfect.

Corollary 2. The decision problems ‘is there a (subgame perfect) incentive equi-
librium with leader reward ≥ r’ is in NP, and the answer to these two questions
is the same.

Note that, if we have a fixed number of players, the number of possible
constraint systems is polynomial. Like in [13], there are only polynomially many
(for n vertices and k followers O(nk) many) second parts (the constraints on the
follower rewards) of the constraint systems. For them, it suffices to consider the
most liberal sets Q (which is unique) and S (the SCCs in the game restricted
to Q, at most n). For a fixed number of players, finding incentive equilibria is
therefore in the same class as solving 2MPGs. We adapt the NP hardness proof
for leader equilibrium in mean-payoff games from [13] by reducing the 3SAT
satisfiability formula over n atomic propositions with m conjuncts to solve a
MMPG with 2n + 1 players and 5m + 4n + 2 vertices with payoffs 0 and 1 only.

Theorem 4. The problem of deciding whether an incentive equilibrium σ with
reward rl(σ) ≥ 1 − 1/n of the leader exists in games with rewards in {0, 1}, is
NP-complete.

4 Experimental Results

We have implemented a tool [1] in C++ to evaluate the performance of the
proposed algorithms for multi-player mean-payoff games (MMPG) for a small
number of players. We implemented an algorithm from [24] to find mean values
at the vertices. We then infer and solve a number of constraint systems. We
describe our main algorithm here.

4.1 Algorithm Specific Details

We first evaluate MMPGs using reduction to solving underlying 2MPGs. We
then infer and solve a number of linear programming problems to find a solution.
For few number of players, the number of different solutions to these games is
usually small, and, consequently, the number of linear programming problems
to solve is small, too. In order to find the individual mean partition, we use an
algorithm from [24], that finds 0-mean partitions, and expand it quantitatively
to find the value of 2MPGs. We recall that for 2MPG both players have optimal
memoryless strategies. Under such strategies, the game will follow a ‘lasso path’
from every starting vertex: a finite (and possibly empty) path, followed by a

316 A. Gupta et al.

cycle, which is repeated infinitely many times. The value of a game position is
defined by the average of the edge weights on this cycle.

In our context, the edge weights are either 0 or 1. The values of the vertices
are therefore fractions a

l with 0 ≤ a ≤ l ≤ n, where l is the length of the cycle,
and a is the number of ‘accepting’ events in the DBA that refers to the objective
of the respective player, i.e., the edges with value 1, occurring on this cycle.

An α-mean partition of a 2MPG is the subset of vertices, for which the return
is ≥ α. Conceptually, to find the a

l -mean partition, one would simply subtract a
l

from the weight of every edge and look for the 0-mean partition. However, to stay
with integers, it is better to use integer values on the edges, e.g., by replacing
the 0s by −a, and the 1s by l − a. For games with n vertices, there are only
O(n2) values for the fraction a

l to consider, as optimal memoryless strategies
always lead to lasso paths and only the cycle at the end of the lasso determines
the values for a and l, where 0 < a < l ≤ n.

We start by narrowing down the set of values by classifying the mean partition
in a logarithmic search. After determining the 1

2 mean partition, we know which
values are < 0.5 and ≥ 0.5, respectively. The two parts of the game can then be
analysed further, determining the 1

4 and 3
4 mean partition, respectively. After s

such partitionings, all values in a partition of the game are either known to be in
an [k ·2−s, (k+1) ·2−s[interval for some k < 2s −1, or in the interval [1−2−s, 1].
We stop to bisect when the size p of a partition is at most 2s. In this case, the
respective interval has f ≤ p fractions with a denominator ≤ p. We determine
them, store them in a balanced tree, and use it to determine the correct value
of all vertices of the partition in �log2 f� steps.

The number of different values of nodes in a 2MPG is usually small, and
certainly it would be much smaller than the number of vertices in the game.
Consequently, the number of constraint systems is also small for a small number
of players. We use this algorithm to evaluate a number of randomly created
three player mean-payoff games, where the player take turns. We consider three
players – player 1, player 2 and a leader and two different evaluations on the same
game graph. We first see how each player fares when they try to maximise their
return against a coalition of all other players, including the leader. In the first
evaluation, leader forms a coalition with player 1 (minimiser) against player 2
(maximiser) on the payoffs defined for player 2. We find the different possible
mean values at the nodes in this evaluation, using the algorithm from above.
In the second evaluation, leader forms a coalition with player 2 (minimiser)
against player 1 (maximiser) on the payoffs defined for player 1. We also note
the different possible mean values at the nodes in this evaluation, using again the
algorithm from above. The resultant two-player games provide the constraints for
the linear programming problems that we presented in Sect. 3.2. These different
values form the different thresholds that we have to consider. We now consider
all possible combinations of these different threshold values for the followers and
determine the vertices that comply with them.

Incentive Stackelberg Mean-Payoff Games 317

Fig. 3. The figure shows results for a generalisation of example 2 for multiple players
with n nodes in the inner cycle and n−1 in outer cycles where n is number of players.

4.2 Experimental Results

Experiments indicate that our implementation of the algorithm can solve exam-
ples of size 100 nodes and 10 players within 30 min. The algorithm is, of course,
much faster for the games with two or three players. Figures 3 and 4 show the
experimental results for the following two problem classes.

– Recall the example from Fig. 1(b). We generalise this example for token ring
graph parameterised by 2 variables, n and d. It has ‘n’ nodes on the inner
cycle, each of which correspond to ‘n’ different players and each of these ‘n’
nodes is also present on another cycle of length ‘d’. The weights are set such
that, all players except the leader get ‘1/n’ if they chose the inner ring and
get ‘1/d’ if they chose their respective outer ring. The leader reward is ‘1’ in
the inner ring and ‘1/d’ in all the other rings. The data supports the pen-and-
paper analysis that incentives are useful iff n > d > n(n − 1)/(2n − 1) holds.
Figure 3 shows the leader reward for this example and the running time of our
tool to compute it.

– Fig. 4 (left plot) shows the difference between incentive equilibrium and leader
equilibrium for randomly generated 3 player MMPGs, while the right plot
shows similar results on random graphs, where the number of players range
from 3 to 10.

The evaluation results confirm that the leader reward increases significantly in
incentive equilibria when compared to leader equilibria.

318 A. Gupta et al.

Fig. 4. The left figure shows the results for randomly generated MMPGs with 3 players,
while the right one is for randomly generated MMPGs with 3 to 10 players.

5 Discussion

The main contribution of this paper is the introduction of incentive equilibria
in multi-player mean-payoff games and the implementation of our techniques
in a tool. We study how a rational leader might improve over her outcome by
paying small incentives to her followers. At first, it may not seem to be a rational
move of the leader, but close insight would show how a leader might improve
her reward in this way. The incentive equilibria are seen as an extension to
leader equilibria, where a rational leader, by giving an incentive to every other
player in the game, can derive an optimal strategy profile. We believe that these
techniques are helpful for the leader when maximising the return for a single
player and would also be instrumental in defining stable rules and optimising
various outcomes. The evaluation results from Sect. 4 show that the results are
significantly better for the leader in an incentive equilibrium as compared to her
return in a leader equilibrium.

References

1. MMPGSolver. http://www.cse.iitb.ac.in/∼trivedi/mmpgsolver/
2. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy

improvement algorithm for mean-payoff games. Discrete Appl. Math. 155(2),
210–229 (2007)

3. Boros, E., Elbassioni, K., Fouz, M., Gurvich, V., Makino, K., Manthey, B.: Sto-
chastic mean payoff games: smoothed analysis and approximation schemes. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755,
pp. 147–158. Springer, Heidelberg (2011)

4. Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in quantitative reachability games.
In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 72–83. Springer,
Heidelberg (2010)

http://www.cse.iitb.ac.in/~trivedi/mmpgsolver/

Incentive Stackelberg Mean-Payoff Games 319

5. Brihaye, T., De Pril, J., Schewe, S.: Multiplayer cost games with simple Nash
equilibria. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734,
pp. 59–73. Springer, Heidelberg (2013)

6. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms
for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)

7. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
Proceedings of LICS 2005, pp. 178–187 (2005)

8. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria.
Theor. Comput. Sci. 67–82 (2006)

9. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J.
Game Theory 8(2), 109–113 (1979)

10. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)

11. Friedman, J.W.: Oligopoly and the Theory of Games. Advanced Textbooks in
Economics. North-Holland Pub. Co. (1977)

12. Friedman, J.W.: A Non-cooperative equilibrium for supergames. Rev. Econ. Stud.
1–12 (1971)

13. Gupta, A., Schewe, S.: Quantitative verification in rational environments. In: Pro-
ceedings of TIME, pp. 123–131 (2014)

14. Gupta, A., Schewe, S.: It pays to pay in bi-matrix Ggmes - a rational explanation
for bribery. In: Proceedings of AAMAS, pp. 1361–1369 (2015)

15. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci.
R&D 28(4), 331–344 (2013)

16. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

17. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Pro-
ceedings of STOC, pp. 302–311 (1984)

18. Khachian, L.G.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk
SSSR 244, 1093–1096 (1979)

19. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1),
48–49 (1950)

20. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT Press, Cam-
bridge (1994). Electronic edition

21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
POPL, pp. 179–190 (1989)

23. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc.
IEEE 77(2), 81–98 (1989)

24. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213,
pp. 369–384. Springer, Heidelberg (2008)

25. Schewe, S.: From parity and payoff games to linear programming. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 675–686. Springer, Heidelberg
(2009)

26. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 212–223. Springer, Heidelberg (2006)

320 A. Gupta et al.

27. Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 20–34. Springer,
Heidelberg (2008)

28. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in limit-average
games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 482–496. Springer, Heidelberg (2011)

29. von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vienna (1934)
30. Zwick, U., Paterson, M.S.: The complexity of mean-payoff games on graphs. Theor.

Comput. Sci. 158(1–2), 343–359 (1996)

Stability-Based Adaptation of Asynchronously
Communicating Software

Carlos Canal1(B) and Gwen Salaün2

1 University of Málaga, Málaga, Spain
canal@lcc.uma.es

2 University of Grenoble Alpes, Inria, LIG, CNRS, Grenoble, France

Abstract. Software Adaptation aims at composing incompatible black-
box components or services (peers) whose individual functionality is as
required for the new system. Adaptation techniques aim at automati-
cally generating new components called adapters. An adapter works as
an orchestrator and makes the involved peers work correctly together by
receiving all messages exchanged in the system and by correcting mis-
match between them. A challenging issue in this area is to consider that
peers are described with (possibly cyclic) behavioural models and inter-
act asynchronously, that is, exchanging messages via message buffers.
The synthesis of adapters in this context is difficult because the compo-
sition of peers may result in infinite systems. In this paper, we propose
new adaptation techniques, which rely on a property of communicating
systems called stability. Stability aims at verifying whether a communi-
cating system exhibits the same observational behaviour from a certain
buffer bound on. We also provide adapter generation techniques using
process algebra encodings and enumerative analysis techniques.

1 Introduction

New software is constructed in many cases by reusing and composing existing
software elements, hereafter called peers. These peers correspond to a large vari-
ety of software, such as software components, Web servers, databases, Graph-
ical User Interfaces, Software-as-a-Service in the cloud, or Web services. The
composition of such heterogeneous software pieces is possible because peers are
equipped with public interfaces, which exhibit their provided/required services
as well as any other composition requirements that must be respected to ensure
the correct execution of the system. A problem in this context is that some
peer may be relevant wrt. a new composition-to-be from a functional point of
view, but does not exactly match with the partner peers from an interface point
of view. Mismatch takes different forms such as disparate operation names or
unspecified message receptions, and it prevents the direct assembly of the peers.

Software Adaptation [7,26] is a non-intrusive solution for composing black-
box software peers that present interface mismatch, leading to deadlock or other
undesirable behaviour when they are combined. Adaptation techniques aim at
automatically generating new components called adapters, and usually rely on
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 321–336, 2016.
DOI: 10.1007/978-3-319-41591-8 22

322 C. Canal and G. Salaün

an adaptation contract, which is an abstract description of how mismatch can
be worked out. The adapter acts as an orchestrator and makes the involved
peers work correctly together by receiving all messages and by compensating for
mismatch. Many solutions have been proposed since the seminal work by Yellin
and Strom [26], but most of them assume that peers interact using synchronous
communication, that is, synchronization via rendez-vous.

One of the main open challenges in the adaptation area is to assume that
peers interact using asynchronous communication, which is a valid assump-
tion given that nowadays many systems rely on this communication model
(cloud computing, Web, grid computing, GALS, multi-core architectures, IoT,
etc.). Asynchronous communication highly complicates the adapter generation
process, because the corresponding systems are not necessarily bounded and
may result into infinite systems. It is known that in this context, the verification
problem is undecidable for communicating finite state machines [4]. An option
is to arbitrary bound the sources of infiniteness (buffers, cycles, number of par-
ticipants, etc.), but we want to avoid imposing this kind of constraints, since it
would unnecessarily restrict the behaviour of the whole system.

We assume that peers are modelled using behavioural descriptions and
interact asynchronously via (possibly unbounded) FIFO buffers. In a previ-
ous work [9], we presented a preliminary proposal for asynchronous adaptation
in which a sufficient condition, called synchronizability, was required. However,
many asynchronous systems are not synchronizable. Hence, in order to widen
the number of systems to be adapted, in this paper we propose new synthesis
techniques, which rely on an encoding into the LNT process algebra [10] on the
one hand, and on a property of stability [1] on the other hand. Using stability
is an improvement over synchronizability, as many systems in practice are not
synchronizable yet stable. A set of peers is stable if from some buffer bound
k, the k-bounded asynchronous composition is equivalent to the k + 1-bounded
asynchronous composition, considering only the ordering of output messages and
ignoring that of input messages. If this k exists, it is proved [1] that the observ-
able behaviour remains the same for any larger buffer bound. This property can
be verified using equivalence checking techniques on finite systems, although the
set of peers interacting asynchronously can result in infinite systems. Based on
this result, one can check on the system a property, concerning output messages,
for the smallest bound satisfying stability and claim that this property is also
satisfied for any larger bound. We use stability here for verifying whether an
adapter generated for a certain bound k can be used with any larger bound, or
even with unbounded buffers.

As far as the adapter synthesis techniques are concerned, we encode all inputs
(peers, contract, buffers) into the LNT process algebra and use the CADP verifi-
cation toolbox [13] for generating the corresponding adapter model. The stability
property is also checked automatically using the CADP equivalence checker. Since
the adaptation contract is manually written, the designer can take advantage of the
LNT encoding to verify using CADP that the final adapter works correctly, that is,
respects certain properties of interest. We have validated our approach on several
case studies, one of them presented in detail throughout this paper.

Stability-Based Adaptation of Asynchronously Communicating Software 323

The rest of this paper is organized as follows. Section 2 introduces the behav-
ioural model for peers and the notation for specifying adaptation contracts.
Section 3 overviews the encoding into LNT. In Sect. 4, we present the stability
property and how we use it in our context. Section 5 shows how we generate the
adapter model from the LNT encoding and using CADP verification techniques.
In this section, we also present our whole adaptation method for asynchronous
environments. Finally, Sect. 6 surveys related work, and Sect. 7 concludes this
paper.

2 Models

In this section, we first introduce the interface model through which peers are
accessed and used. Then, we define adaptation contracts, and present the moti-
vating example that will be used throughout the paper.

2.1 Interface LTS

We assume that peers are described using a behavioural interface in the form of
a Labelled Transition System (LTS).

Definition 1 (LTS). A Labelled Transition System is a tuple (S, s0, Σ, T)
where: S is a set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? is a finite
alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.) message
events, and T ⊆ S × Σ × S is the transition function.

The alphabet of the LTS is built on the set of operations used by the peer
in its interaction with the world. This means that for each operation p provided
by the peer, there is a message event p? ∈ Σ? in the alphabet of the LTS
describing the behaviour of the peer, and for each operation r required from its
environment, there is a message event r! ∈ Σ!. When two peers present events
with the same name and complementary directions (a!, a?) they can be matched
for inter-peer communication through message-passing.

Note that as usually done in the literature [11,16,23], our interfaces abstract
from operation arguments, types of return values, and exceptions. Nevertheless,
they can be easily extended to explicitly represent operation arguments and
their associated data types, by using Symbolic Transition Systems (STSs) [18]
instead of LTSs. However, this renders the definitions and results presented in
this work much longer and cumbersome, without adding anything substantial to
the technical aspects of our proposal. Hence, it is omitted in this paper.

It is worth observing that other formalisms, such as process algebra, could
be used alternatively to LTS [8]. However, for this paper we have preferred to
use LTS as the input notation of our proposal, since they provide a compact
representation, graphical, and easy to understand for all developers.

324 C. Canal and G. Salaün

2.2 Adaptation Contracts and Adapter LTS

Typical mismatch situations between peers appear when event names do not
correspond, the order of events is not respected, or an event in one peer has no
counterpart or matches several events in another one. All these cases of behav-
ioural mismatch can be worked out by specifying an adaptation contract [8].
Adaptation contracts consist of rules that express correspondences between oper-
ations of the peers, like bindings between ports or connectors in architectural
descriptions. Adaptation rules are given as vectors, as defined below:

Definition 2 (Vector). An adaptation vector (or vector for short) for a set
of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), is a tuple 〈e1, . . . , en〉 with

ei ∈ Σi ∪ {ε}, ε meaning that a peer does not participate in the vector.

In order to unambiguously identify them, we prefix event names with the
name of the peer, e.g., Pi : p?, or Pj : r!, and in that case ε can be omitted.
For instance, the vector 〈p1 : a!, p3 : b?, p4 : c?〉 represents an adaptation rule
indicating that the output event a! from peer p1 should match both input events
b? and c? in p3 and p4, respectively, while peer p2 does not participate in this
interaction.

In some complex adaptation scenarios, adaptation rules must be taken con-
textually (i.e., vectors cannot be applied at any time, but only in certain situa-
tions). For this purpose, we may use regular expressions (regex) on vectors [9],
indicating a pattern for applying them that will constrain the adaptation process,
enforcing additional properties on the adapter. This endows adaptation contracts
with extended expressivity, though in this work we do not show their use, in order
to avoid additional complexity in the presentation of our proposal.

Definition 3 (Adaptation Contract). An adaptation contract V for a set
of peers {P1, . . ., Pn} is a set of adaptation vectors for those peers.

Writing the adaptation contract is the only step of our approach which is not
handled automatically. This step is crucial because an inadequate contract would
induce the generation of an adapter that will not make the composition of peers to
behave correctly. However, the adaptation methodology that we propose is itera-
tive, which helps in writing the contract contract. Furthermore, in [5,6], we pre-
sented a tool-supported approach for assisting and making easier the specification
of the adaptation contract. For more details on adaptation contracts and the kinds
of mismatch that can be resolved with them, we refer to [8].

Given a set of peers represented by their LTS interfaces and an adaptation
contract, our goal is to generate an adapter, which will play the role of man-
in-the-middle, solving the mismatch presented by the peers. The adapter is also
represented by an LTS consisting of messages to be consumed from its buffer
and messages to be sent to the other peers. The adapter also keeps track of
the messages received by its own local buffer. This information is important to
enforce the adapter to execute the correct behaviour, avoiding engaging in a
branch that may lead to an erroneous execution of the whole system.

Stability-Based Adaptation of Asynchronously Communicating Software 325

Definition 4 (Adapter LTS). An adapter LTS is a tuple (S, s0, Σ, T) where:
S is a set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ ΣB is a finite
alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.) messages
and a set of messages received by its buffer ΣB, and T ⊆ S × Σ × S is the
transition function.

In the following we will show how this adapter LTS can be automatically
generated from the LTS interfaces of the peers and the adaptation contract.

2.3 Running Example

In order to illustrate the main features of our proposal, the following motivating
example will be used throughout this paper. Consider a simple Client/Server
system, in which clients are identified to the server by their username and pass-
word, and submit requests for a certain service. Upon receiving the result of the
request, the client issues an acknowledging message, and then quits. The inter-
face LTS representing the behaviour of clients is shown in Fig. 1, top, where the
black dot indicates the initial state.

On the other side, the server follows a similar behaviour, as shown in Fig. 1,
left bottom. The main differences, which are used in the example in order to show
how to perform adaptation, are: (i) connections are expected by the server with
a single login? message (instead of two separate usr! and pwd! messages issued
by the client); (ii) after login, the server is ready to receive several consecutive
requests or a logout message, while the client only sends one request before
quitting; and (iii) messages for disconnection are also named differently in the
client and the server. Finally the server interacts with a third peer, a database
log (Fig. 1, right bottom), which stores all the requests fulfilled by the server.

The example above has been chosen deliberately simple in order to avoid it
taking too much space in this paper. However, it shows the different kinds of
adaptation that our proposal addresses: differences in message names (e.g., quit!
and logout?), differences in the granularity or the order of messages (e.g., user!,

Fig. 1. Interface LTSs of the peers.

326 C. Canal and G. Salaün

pwd! and login?), and differences in decision-taking roles and other higher level
behavioural aspects (e.g., the client decides to quit after a request, while the
server allows new requests). How to address all these differences or mismatch
between the interfaces of the peers is specified with an adaptation contract.
Assuming that sv refers to a server, cl to its client and db to the database log,
these three peers can be adapted by means of the following contract, which shows
how message names are interconnected between the different peers involved in
this system:

{ 〈cl :user!, sv : login?〉,
〈cl :pwd!〉,
〈cl :quit!, sv : logout?〉,
〈cl :request!, sv :request?〉,
〈cl :result?, sv :result!〉,
〈cl :ack!, sv :ack?〉,
〈sv :store!, db : log?〉 }

3 Process Algebra Encoding

Our asynchronous adapter generation techniques rely on an encoding into
LNT [10] that we overview in this section. LNT is a formal specification language
which combines traits of process calculi, functional and imperative languages.
We chose LNT for two main reasons. First, it is expressive enough for encoding
all inputs (LTSs, contract, buffers, architecture) of our problem. Second, it is
equipped with a rich verification toolbox (CADP) that we use for checking the
existence of an adapter and, if this is the case, for generating an adapter LTS
and for analyzing properties of interest on it.

Interface LTSs. An LNT process is generated for each state in the interface LTS
of a peer. The alphabet of the process contains the set of messages appearing
in the transitions of the LTS. The behaviour of the process encodes all the
transitions of the LTS going out from the corresponding state. If there is no
such transition, the body of the process is the null statement. If there is a single
transition, the body of the process corresponds to the message labelling this
transition, followed by a call to the process encoding the target state of the
transition. If there is more than one transition, we use the select operator, which
encodes a nondeterministic choice between the different transitions going out
of that state. Name clashes are avoided by prefixing each message with the
name of the corresponding peer. We encode emitted messages (received messages,
resp.) with a EM (REC, resp.) suffix. These suffixes are necessary because LNT
symbols ! and ? are used for data transfer only.

Adaptation Contract. The vectors are encoded into an LNT process called
contract. The process alphabet is composed of all received and emitted mes-
sages between the adapter-to-be and the involved participant peers, that is, all
messages appearing in the vectors. Each vector is encoded as a sequence of
actions starting with the emissions and followed by the receptions. Notice that

Stability-Based Adaptation of Asynchronously Communicating Software 327

in the LNT process representing the adaptation contract, message directions are
reversed with respect to the peers because the adapter will receive the output
messages and emit the input messages expected by the recipient peers.

Fig. 2. Architecture and exchanged messages.

Asynchronous Assembling. Now, we need to encode how all participants
(peer interfaces and adaptation contract) are composed together using asynchro-
nous communication. The architecture of the whole assembly is shown in Fig. 2.
The contract represents an abstract description of the future adapter, and all
messages must go through this adapter, which acts as a centralized orchestrator.
Each participant is equipped with an input FIFO buffer. A buffer in LNT is
first encoded using an LNT list and LNT functions are used to describe classic
operations on these buffers (e.g., adding and retrieving messages). Then, for the
behavioural part, a buffer is encoded using a process with a buffer data type as
parameter. This process can receive messages from the other participants, and it
synchronizes with its own participant when the latter wants to read a message.
More precisely, when a participant reads a message, it reads the oldest message
in its buffer. When a participant sends a message to another participant, it sends
the message to the input buffer of that participant. In the next sections, we will
show how buffer bounds are determined for generating the adapter LTS while
avoiding the manipulation of infinite state spaces.

We also generate a process encoding each couple (participant, buffer) that
corresponds to a parallel composition (par) of the participant with its buffer.
The synchronization set contains messages consumed by the participant from its
buffer. Finally, the whole system (main process in LNT) consists of the paral-
lel composition of all these couples. It is worth noting that since the involved
peers communicate via the adapter, they evolve independently from one another
and are therefore composed using the par operator without synchronizations.
In contrast, the couple (contract, buffer) must synchronize with all couples
(peer, buffer) on all emissions from/to the peers, and this is made explicit in
the corresponding synchronization set of this parallel composition.

4 Stability of Adapted Systems

In this section, we characterize the stability property for adapted systems, where
peers communicate with the adapter asynchronously via FIFO buffers. Hence,
each peer Pi is equipped with an input message buffer Qi, and the adapter A

328 C. Canal and G. Salaün

with an input buffer Q. A peer can either send a message m ∈ Σ! to the tail of
the adapter buffer Q at any state where this send message is available, or either
read a message m ∈ Σ? from its buffer Qi if the message is available at the buffer
head. We recall that we focus on output events, since reading from the buffer is
private non-observable information, which is encoded as an internal transition
in the asynchronous system.

Definition 5 (Adapted Asynchronous Composition). Given a set of peers
{P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), Qi being its associated input buffer, and

an adapter A = (S, s0, Σ, T) with input buffer Q, their asynchronous composition
is the labelled transition system LTSaa = (Saa, s0aa, Σaa, Taa) where:

– Saa ⊆ S1 × Q1 × . . . × Sn × Qn × S × Q where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

and Q ⊆ (Σ?)∗
– s0aa ∈ Saa such that s0aa = (s01, ε, . . . , s

0
n, ε, s0, ε) (where ε denotes an empty

buffer)
– Σaa = ∪iΣi ∪ Σ
– Taa ⊆ Saa × Σaa × Saa, and for s = (s1, Q1, . . . , sn, Qn, sa, Q) ∈ Saa and

s′ = (s′
1, Q

′
1, . . . , s

′
n, Q′

n, s′
a, Q′) ∈ Saa we have that

(p2a!) s
m!−−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?, (i) si
m!−−→ s′

i ∈ Ti,
(ii) Q′ = Qm, (iii) s′

a = sa, (iv) ∀k ∈ {1, . . . , n} : Q′
k = Qk, and

(v) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′
k = sk

(p2a?) s
τ−→ s′ ∈ Taa if m ∈ Σ?, (i) sa

m?−−→ s′
a ∈ T , (ii) mQ′ = Q, (iii) ∀k ∈

{1, . . . , n} : Q′
k = Qk, and (iv) ∀k ∈ {1, . . . , n} : s′

k = sk

(a2p!) s
m!−−→ s′ ∈ Taa if ∃j ∈ {1, . . . , n} : m ∈ Σ! ∩ Σ?

j , (i) sa
m!−−→ s′

a ∈ T ,
(ii) Q′

j = Qjm, (iii) Q′ = Q, (iv) ∀k ∈ {1, . . . , n} : k �= j ⇒ Q′
k = Qk,

and (v) ∀k ∈ {1, . . . , n} : s′
k = sk

(a2p?) s
τ−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′

i ∈ Ti, (ii) mQ′
i =

Qi, (iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ Q′
k = Qk, (iv) ∀k ∈ {1, . . . , n} : k �=

i ⇒ s′
k = sk, (v) Q′ = Q, and (vi) s′

a = sa

We denote by LTSaa an unbounded adapted asynchronous composition,
while we use LTSk

aa for referring to the k-bounded adapted asynchronous compo-
sition, where each message buffer is bounded to size k. The definition of LTSk

aa

can be obtained from Definition 5 by allowing send transitions only if the message
buffer of the receiving peer has less than k messages in it. Otherwise, the sender
is blocked, i.e., we assume reliable communication without message losses.

The stability property applies here by considering the adapter as a peer whose
peculiarity is to interact with all the other participants.

Definition 6 (Stability). A set of peers {P1, . . . ,Pn} and an adapter A are
stable if ∃k such that LTSk

aa ≡br LTSq
aa (∀q > k).

A sufficient condition for ensuring stability was presented in [1]: if there exists
a bound k such that the k-bounded and the (k + 1)-bounded asynchronous
systems are branching equivalent, i.e., LTSk

aa ≡br LTSk+1
aa , then the system

Stability-Based Adaptation of Asynchronously Communicating Software 329

remains stable, meaning that the observable behaviour is always the same for
any bound greater than k. The smallest k satisfying the stability property can be
found using heuristics and a search algorithm. However, stability is undecidable.
Therefore an arbitrary max bound is used during these computations and the
algorithm stops when the current value goes beyong that arbitrary value. In that
case, stability checking is inconclusive.

5 Adapter Generation and Methodology

In the previous section we have defined stability for adapted asynchronous sys-
tems. If a system is stable for a certain bound k, we are able to generate an
adapter model that communicates asynchronously with the peers, where all the
participants use buffers of size k. The adapter will play the role that until now
had taken the adaptation contract. This adapter is obtained from our LNT
encoding by keeping only the behaviour we expect from the adapter point of
view, that is, we need to preserve send and receive messages for the adaptation
contract. To do so, we hide message exchanges corresponding to consumptions
of the peers from their buffers and we rename emissions from peers to the adap-
tation contract (ΣB) in order to distinguish these messages from the adapter
regular behaviour (Σ! and Σ?). In order to keep only the behaviour correspond-
ing to the most permissive adapter, we use CADP compilers, which explore all
the possible executions of the generated LNT specification. We also make use of
minimization techniques available in CADP for eliminating all internal actions,
removing duplicated paths, and determinizing the final LTS. The whole adapter
generation process is achieved automatically.

Figure 2 shows an example of architecture with the contract/adapter and two
peers. Each participant is equipped with one input buffer. The dashed box shows
the messages we keep in order to generate the adapter LTS where mi! ∈ Σ!,
pi? ∈ Σ?, and pi! ∈ ΣB , i ∈ {1, 2}.

Note that stability is checked on the whole LNT encoding. We show below
that this property is preserved when we extract the adapter LTS from this encod-
ing for using it with the peer LTSs, all interacting via FIFO buffers.

Theorem 1 (Stability Preservation). Given a set of peers {P1, . . ., Pn}
and an adaptation contract V , if the corresponding asynchronous LNT encoding
is stable for a certain k, then the system where all peers interact through the
generated adapter LTS A via k-bounded FIFO buffers is also stable for this k.

Proof. Let Sk
1 = ((P1|Q1)| . . . |(Pn|Qn))|(V |Q) be the encoding into LNT of the

peers {P1, . . ., Pn}, of the contract V , and of FIFO buffers Qi for peers and
Q for the contract/adapter-to-be. The alphabet ΣV = Σ!

V ∪ Σ?
v of V coincides

with the alphabet Σ = Σ!
A ∪ Σ?

A ∪ ΣB
A of the adapter LTS A, that is, Σ!

V = Σ!
A

and Σ?
V = Σ?

A, but for actions ΣB
A . However, actions in ΣB

A are not synchronized
with the system, they are internally used in the adapter LTS for keeping track
of the content of its buffer Q only.

330 C. Canal and G. Salaün

Once the adapter is generated, the current behaviour of the whole system is
as follows: Sk

2 = ((P1|Q1)| . . . |(Pn|Qn))|(A|Q). Actually, the adapter LTS A is
obtained by extraction from Sk

1 , by keeping the behaviour of V constrained by
the peers’ behaviours as explained beforehand in this section, which is exactly
the behaviour of A. Thus, (C|V) ≡br (C|A), where C stands for the context,
i.e., the rest of the system. Hence, Sk

1 ≡br Sk
2 and this proves the theorem. �

Figure 3 gives an overview of our approach for generating an adapter LTS in
asynchronous environments. First of all, we assume that the peers are incompat-
ible and thus cannot be reused and composed directly without using adaptation
techniques for compensating mismatch. This can be checked using existing com-
patibility techniques as those presented, e.g., in [21]. If an adapter is required, the
user needs to provide an adaptation contract. The next step consists in encod-
ing all these inputs (peer LTSs and adaptation contract) into LNT as presented
in Sect. 3.

Then, we check stability directly on the LNT encoding, trying to find a k
from which the k-bounded adapted asynchronous composition and the k + 1-
bounded adapted asynchronous composition are equivalent. If this is the case,
it means that the system is stable and its observable behaviour will remain the
same whatever bound is chosen for buffers from that bound k. In that case, we
can generate the adapter for that k, and it can be used in practice for whatever
bound equal or greater than it. If the system is not stable, the sole solution is
to fix an arbitrary bound before generating the adapter model, to generate the
adapter LTS for that bound, and to use it further with that bound only.

Finally, since the adaptation contract is written manually, some mistake may
appear at this level ending up with a faulty adapter. However, we can take advan-
tage of the LNT encoding in order to formally analyse the system. This can be
achieved by verifying the global LTS obtained direclty from the encoding and
corresponding to the execution of the whole application (peers and adapter), or
by verifying the adapter LTS obtained after synthesis from the LNT encoding
as explained at the beginning of this section. In both cases, one can use the
verification techniques and tools available in the CADP toolbox, and in partic-
ular, the Evaluator model checker, which accepts as input an LTS and an MCL
formula [19], and returns a diagnostic (Boolean value + a counterexample if the
property is false). If some property is not satisfied, we can go back to the con-
tract writing, make corrections on it, and start again from this step the overall
synthesis.

Coming back to our Client/Server example, we start from the LTSs of the
peers, as presented in Sect. 2.3. As already explained there, the client, the server,
and the database log show several sources of mismatch, the most obvious being
that they communicate using different message names, but also that messages
do not correspond one-to-one between the server and the client (during the
login phase), and that the server admits several requests after connection, while
the client does not. Hence, adaptation is required, and the adaptation contract
presented in Sect. 2.3 is the first step of the adaptation process.

Stability-Based Adaptation of Asynchronously Communicating Software 331

Fig. 3. Overview of our approach.

Then, we can check whether the system is synchronizable. If that were the
case, we would be under the conditions defined in [9], which require the asyn-
chronous system to be behaviourally equivalent to its synchronous version. This
is not the case of our adapted Client/Server system, in which the client is able
to issue several output messages (user!, pwd!, request!) in a row in the asyn-
chronous version of the system, whereas this is not possible in the synchronous
system because the adapter, after the reception of the two first messages (user?,
pwd?), cannot receive the third one (request?) until it sends the login! message
to the server. Hence, the results in [9] do not apply to our example, whereas
the approach presented in this paper works as we will show in the rest of this
section.

First of all, we need to check whether the system is stable. In order to analyse
stability, both the interface LTSs of the peers and the adaptation contract are
automatically encoded into LNT, as described in Sect. 3, and we check the LNT
resulting system as defined in Sect. 4. We use the CADP toolbox for checking
this property, which finds out that the asynchronous adapted system is stable
for k = 4. Intuitively, this means than from buffers of that size, the observable
collective behaviour of all peers remain the same, and hence, we can generate
an asynchronous adapter using buffers bounded to that size. For this particular
example, the asynchronous adapter presents 1,630 states and 4,278 transitions,
though its generation takes only a few seconds. These figures show that, despite
we have committed to a very simple system, asynchronous adaptation could
not be possibly performed without automated techniques, as those presented in
this paper. The asynchronous adapter, generated and visualized with CADP, is
shown in Fig. 4, after the removal of internal transitions and identical paths, and
abstracting for messages in ΣB in order to make it fit in one page. We remind
that event names in the adapter are reversed with respect to those of the peers
and the adaptation contract, as explained in Sect. 3.

Once we have obtained the adapter, we can check the system (adapter alone
or composition of the adapter with the peers) for properties of interest, like
for instance deadlock freedom. Not fulfilling these properties would mean that
the adaptation contract is ill-written, and from the counterexample provided we

332 C. Canal and G. Salaün

Fig. 4. Asynchronous adapter for the running example.

could adjust the contract, until the system behaves as expected. In our case, the
adapted system is deadlock free, and we can also check for additional user-defined
properties, which are expected to be enforced by the adapter. For instance, that
every request! of the client will be followed by the delivery of the result! message,
or that every login? message received by the server is followed by a corresponding
logout? message. All these properties can be automatically analysed using the
CADP model checker. When all properties of interest are satisfied, and this is the
case with our example, we can conclude that our adaptation problem is solved.

Stability-Based Adaptation of Asynchronously Communicating Software 333

6 Related Work

First of all, adaptation differs from automatic software composition approaches,
particularly studied in the Web services area, e.g., [3,17], where services involved
into a new composition are assumed to perfectly match altogether with respect
to certain compatibility property [12].

The major part of the contributions on the software adaptation area assume
that peers interact synchronously, while our proposal addresses asynchronous
communication. Van der Aalst et al. [25] propose a solution to behavioural
adaptation based on open nets, a variant of Petri nets. A behavioural controller
(a transition system and BPEL) is synthesised for the product net of the ser-
vices and a set of message transformation rules. In [20], the authors provide
a method for identification of the split/merge class of interface mismatch and
a semi-automated, behaviour-aware approach for interface-level mismatch that
results in identifying parameters of mapping functions that resolve that mis-
match. In [8,18], the authors proposed automated techniques for generating an
adapter model from a set of service behavioural interfaces and an adaptation
contract. Some BPEL code is automatically generated from the adapter model,
which may finally be deployed.

Inverardi and Tivoli [15] formalise a method for the automated synthesis
of modular connectors. A modular connector is structured as a composition of
independent mediators, each of them corresponding to the solution of a recurring
behavioural mismatch. Bennaceur et al. [2] propose a technique for automated
synthesis of mediators using a quotient operator, that is based on behavioural
models of the components and an ontological model of the data domain. The
obtained mediator is the most general component that ensures deadlock-freedom
and the absence of communication mismatch.

There are only a few attempts to generate adapters considering asynchronous
communication. Padovani [22] presents a theory based on behavioural contracts
to generate orchestrators between two services related by a subtyping (namely,
sub-contract) relation. This is used to generate an adapter between a client of
some service S and a service replacing S. An interesting feature of this approach
is its expressiveness as far as behavioural descriptions are concerned, with sup-
port for asynchronous orchestrators and infinite behaviour. The author resorts
to the theory of regular trees and imposes two requirements on the orchestrator,
namely regularity and contractivity. However, this work does not support name
mismatch nor data-related adaptation. Seguel et al. [24] present automatic tech-
niques for constructing a minimal adapter for two business protocols possibly
involving parallelism and loops. The approach works by assigning to loops a
fixed number of iterations, whereas we do not impose any restriction, and peers
may loop infinitely.

Gierds and colleagues [14] present an approach for specifying behavioural
adapters based on domain-specific transformation rules that reflect the elemen-
tary operations that adapters can perform. The authors also present a novel way
to synthesise complex adapters that adhere to these rules by consistently sep-
arating data and control, and by using existing controller synthesis algorithms.

334 C. Canal and G. Salaün

Asynchronous adaptation is supported in this work, but buffers/places must be
arbitrarily bounded for ensuring computability of the adapter.

In [9], we presented a solution to the software adaptation problem by using
the synchronizability property and adapter generation techniques for synchro-
nous communication. The adapter synthesis in this approach relies on an iter-
ative process, which works properly in asynchronous environments. The main
limitation of our previous work is that the synchronizability property is quite
restrictive and requires asynchronous systems to behave de facto as synchro-
nous. Stability is a much looser condition, allowing to address a wider class of
asynchronous systems.

7 Conclusion

Software adaptation is an approach for simplifying the reuse of existing peers
when building a new software by composition of these entities. Adaptation is
particularly relevant when the peers to be composed fulfill the functional require-
ments of the system but they are not compatible from an interface point of view.
In that case, we can rely on such techniques for synthesising an adapter, which
acts as an orchestrator and intervenes on the messages exchanged for correct-
ing mismatch among peer interfaces. Most solutions existing for this problem
assume peers interact synchronously via rendez-vous communication.

In this paper, we consider they exchange messages asynchronously via FIFO
buffers. We also focus on a behavioural description model for peers, involving
non-determinism and cycles. We propose new synthesis techniques for asynchro-
nous communication semantics, which are based on an encoding into LNT, a
modern process algebra. As far as adapter generation is concerned, we use the
CADP toolbox for compiling the generated process algebraic specification to an
LTS, and for minimizing the obtained result using classic reduction techniques.
Beyond synthesis techniques, we also provide two kinds of verification. The first
one relies on the stability property and aims at ensuring that the generated
adapter will work from a certain size chosen for buffers. The second one is to use
model checking techniques in order to verify that the adapter respect certain
properties of interest. Our approach has been applied to several examples for
validation purposes.

Our main perspective is to find some sufficient conditions on the LTS models
or on the adaptation contract specification that could help ensuring the stability
property preservation. Such conditions would avoid to check this property and
ensure by construction that the generated adapter would work in unconstrained
asynchronous environments.

References

1. Akroun, L., Salaün, G., Ye, L.: Automated analysis of asynchronously communi-
cating systems. In: Bošnacki, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp.
1–18. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32582-8 1

http://dx.doi.org/10.1007/978-3-319-32582-8_1

Stability-Based Adaptation of Asynchronously Communicating Software 335

2. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated mediator synthe-
sis: combining behavioural and ontological reasoning. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer,
Heidelberg (2013)

3. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artif. Intell. 174(3–4), 316–361 (2010)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

5. Cámara, J., Mart́ın, J.A., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel,
E.: ITACA: an integrated toolbox for the automatic composition and adaptation
of web services. In: Proceedings of ICSE 2009, pp. 627–630. IEEE (2009)

6. Cámara, J., Salaün, G., Canal, C., Ouederni, M.: Interactive specification and
verification of behavioral adaptation contracts. Inf. Softw. Technol. 54(7), 701–
723 (2012)

7. Canal, C., Murillo, J.M., Poizat, P.: Software adaptation. L’Objet 12(1), 9–31
(2006)

8. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioural mis-
matching components. IEEE Trans. Softw. Eng. 34(4), 546–563 (2008)

9. Canal, C., Salaün, G.: Model-based adaptation of software communicating via
FIFO buffers. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp.
252–266. Springer, Heidelberg (2015)

10. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Powazny, V., Lang, F., Serwe,
W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS Translator
(Version 5.4). INRIA/VASY, 149 p. (2011)

11. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of ESEC/FSE
2001, pp. 109–120. ACM Press (2001)

12. Durán, F., Ouederni, M., Salaün, G.: A generic framework for N-protocol compat-
ibility checking. Sci. Comput. Program. 77(7–8), 870–886 (2012)

13. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

14. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthe-
sis. IEEE Trans. Serv. Comput. 5(1), 72–85 (2012)

15. Inverardi, P., Tivoli, M.: Automatic synthesis of modular connectors via compo-
sition of protocol mediation patterns. In: Proceedings of ICSE 2013, pp. 3–12.
IEEE/ACM (2013)

16. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour analysis of software archi-
tectures, pp. 35–49. Kluwer Academic Publishers (1999)

17. Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

18. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. IEEE Trans. Softw. Eng. 38(4), 755–
777 (2012)

19. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

20. Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of
web service interfaces for adapter development. In: Proceedings of WWW 2010,
pp. 731–740. ACM (2010)

336 C. Canal and G. Salaün

21. Ouederni, M., Salaün, G., Bultan, T.: Compatibility checking for asynchronously
communicating software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 310–328. Springer, Heidelberg (2014)

22. Padovani, L.: Contract-based discovery and adaptation of web services. In:
Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569,
pp. 213–260. Springer, Heidelberg (2009)

23. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.
Softw. Eng. 28(11), 1056–1076 (2002)

24. Seguel, R., Eshuis, R., Grefen, P.W.P.J.: Generating minimal protocol adaptors
for loosely coupled services. In: Proceedings of ICWS 2010, pp. 417–424. IEEE
Computer Society (2010)

25. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: pat-
terns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

26. Yellin, D.M., Strom, R.E.: Protocol specifications and components adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Compliance Checking in the Open Payments
Ecosystem

Shaun Azzopardi1(B), Christian Colombo1, Gordon J. Pace1, and Brian Vella2

1 University of Malta, Msida, Malta
shaun.azzopardi@um.edu.mt

2 Ixaris Ltd., San Ġwann, Malta

Abstract. Given the strict legal frameworks which regulate the move-
ments and management of funds, building financial applications typically
proves to be prohibitively expensive for small companies. Not only is it
the case that understanding legal requirements and building a framework
of compliance checks to ensure that such legislation is adhered to is a
complex process, but also, service providers such as banks require certifi-
cation and reporting before they are willing to take on the risks associated
with the adoption of applications from small application developers. In
this paper, we propose a solution which provides a centralised Open Pay-
ments Ecosystem which supports compliance checking and allows for the
matching of financial applications with service providers and programme
managers, automatically providing risk analysis and reporting. The solu-
tion proposed combines static and dynamic verification in a real-life use
case, which can shed new insights on the use of formal methods on large
complex systems. We also report on the software engineering challenges
encountered when analysing formal requirements arising from the needs
of compliance to applicable legislation.

1 Introduction

Businesses often find themselves needing diverse ways of affecting or enabling
payments in various contexts. As an example, consider a business providing a
payment service to a travel agency to purchase flights, hotel bookings, etc. Hav-
ing several such purchases from a single corporate card, particularly if that
same card is also used for other purchases, would make reconciliation non-
straightforward at best. On the other hand, providing one shot cards for use
by the travel agency, which are cards that can be used once and disabled after
the first purchase, makes reconciliation easier as only one purchase will be asso-
ciated with any given card. However, for a business to set up such a payment
programme, it is quite complex (implement cards processes for provisioning, rec-
onciliation, dispute management, as well as creating a compliant application) and
the costs may be prohibitive. In addition, negotiating with a bank or payment

The Open Payments Ecosystem has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant number 666363.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 337–343, 2016.
DOI: 10.1007/978-3-319-41591-8 23

338 S. Azzopardi et al.

service provider in order to use their services to perform the actual financial
movements and the resulting investment required to guarantee compliance to
national legislation can be daunting. Even understanding the legal requirements
is a major task, let alone the building of the necessary infrastructure to ensure
compliance and to perform the risk analysis required by law and the banks pro-
viding the services.

In this paper, we present a proposed architecture which addresses these issues,
and we outline the research challenges ahead in deploying such an architecture.
It is of particular interest to the formal methods community in that it is a
real-life challenge with a solution built around the possibilities opened by for-
mal verification and analysis techniques. The solution is also a showcase of how
formal methods are applicable to the challenging area of financial application
compliance, ranging from risk monitoring and capabilities analysis to regulatory
compliance.

Open Payments Ecosystem (OPE) aims at building an infrastructure to
address this need by providing an execution environment for financial trans-
actions. In order to support developers, OPE makes a development environ-
ment available with the necessary APIs for application development and service
provider integration. The OPE itself does not hold funds (which legally, can only
be held by a regulated institution). Therefore, payment applications are submit-
ted to the OPE by developers together with a corresponding model. Programme
managers, in turn, perform an automated compliance check on the model and,
if successful, pair the adopted application with an integrated service provider.
Since service providers are regulated institutions, this arrangement enables the
application to be executed on the OPE platform. In this manner, the OPE brings
together a number of players1 including: (i) service providers (typically banks)
which affect the underlying financial transactions; (ii) developers who create the
payment applications; (iii) corporate customers (the travel agent in our exam-
ple) who in turn provide the payment applications to their customers; and (iv)
programme managers who take responsibility of putting end to end financial ser-
vices (programmes) together — combining applications to service providers —
and provide them to corporate customers.

1 In the rest of the paper, we will use the following terms:

Application: The artefact defining how instruments are issued and funds are moved.
Programme: An application deployed by a programme manager using a specific

service provider(s).
Programme manager: An institution (not necessarily regulated) managing a num-

ber of programmes. Programme managers have contractual liability for the man-
aged programmes.

Service Provider: A regulated institution providing some type of financial service to
programme managers. Service providers have financial and regulatory liability for
the services offered, some of which can be contractually transferred to programme
managers while some would need to be evaluated against risk.

.

Compliance Checking in the Open Payments Ecosystem 339

2 Compliance Engine

The compliance subsystem at the core of OPE (shown in Fig. 1) has multiple
roles: (i) it is used to support programme managers when matchmaking an appli-
cation and a service provider; (ii) it ensures that a programme does not violate
national legislation and regulations based on the location where it is planned to
be deployed; and (iii) provides runtime monitoring on the running programme
to continually check whether the monitored constraints are violated.

Fig. 1. The OPE compliance engine

Since the OPE architecture envisages that the payment application is exe-
cuted outside the platform (typically on the end user’s device or a web server),
only accessing the OPE platform through API calls, it is possible that the
application submitted for validation and matched with an appropriate service
provider is compromised or tampered with. Furthermore, providing compliance
algorithms which support different programming languages and technologies
which developers may adopt is not scalable in the long run. The solution to
be adopted is that of having the developer submit a suitable model of the appli-
cation behaviour, sufficiently detailed to enable verification and matching with
the service providers. The Payment Application Modelling Language (PAML) is
a domain-specific language being developed specifically to enable the descrip-
tion of a model of a payments application — its components and attributes,
and constraints amongst them. This is used for the verification phase which
will be performed when a developer submits an application, but in order to
ensure that the application is, in fact, a faithful implementation of the PAML
model submitted, the application’s interaction with the OPE will be monitored

340 S. Azzopardi et al.

Fig. 2. The combination of static and dynamic analysis in the proposed architecture

at runtime to verify this. The compliance system thus combines static verifica-
tion upon submission of an application with runtime or dynamic verification in
a single framework as shown in Fig. 2. We envisage adopting techniques from
recent work combining these two forms of verification [1,2,4,8].

One of the major challenges is the diverse nature of compliance it attempts
to address. We have identified four different types of constraints which need to
be verified by the compliance engine:

Legal: In order to ensure interest from service providers, it is necessary that
applications making use of payment accounts held by them, do not perform
anything that is not allowed by regulations. For this reason, the compliance
engine will require, in an encoded form, the definition and applicability of
directives and legislation for different countries in which programmes may
be deployed. For instance, UK e-money regulations require that funds on
financial instruments must be redeemable at par value. This would require
the compliance engine to (i) identify whether UK e-money legislation applies
(confirm that the programme is regulated under UK law and that it deals with
e-money), and if so; (ii) ensure that the application allows for redemption i.e.
money remaining on a payment instrument (e.g. a card) after being closed can
be withdrawn. However, checking that the amount of redemption is actually
correct is not straightforward to check statically since the amount will depend
on various runtime variables, thus splitting this compliance check into a sta-
tic and a runtime verification component. The formalisation of the nuances
of legislation is far from being straightforward, although we are considering
techniques such as those developed in [3] to support this transformation, or
validate it.

Capabilities: Service providers may have different capabilities e.g. in terms of
what types of cards they can issue or amount of money they are able to

Compliance Checking in the Open Payments Ecosystem 341

handle, which means that when matching an application with potential ser-
vice providers, the analysis must also cater for capabilities. These correspond
more closely with traditional software engineering requirements, and we envis-
age that we can adopt existing techniques e.g. type systems, to enable their
verification.

Risks: Service providers may also have guidelines in terms of risks they are will-
ing to take. For instance, they may want a payment application not to issue
more than a certain number of cards per person, or not to process more than
a particular amount of money. As in the case of capabilities, this corresponds
closely to business logic rules from financial transaction applications e.g. [6].
However, unlike regular properties, violation of which would require action to
be taken, in this case, monitoring the properties as they approach thresholds,
and giving the service providers the facility to act as they deem appropriate
when these guidelines are not adhered to, is a more appropriate approach. For
this reason, the compliance engine will be split into two tiers, one layer which
computes these statistics (using an approach similar to [5]), and another layer
processes them, generating alerts, notifications and actions automatically.

PAML compliance: Finally already discussed, some of the compliance checking
will happen statically against the PAML model of an application. To ensure
that this compliance holds for the application, the engine will also need to
monitor the applications’ behaviour to ensure that is faithful to the model
describing it.

Figure 1 shows the architecture of this compliance engine, illustrating also at
which stage the previous constraints are tackled (where L corresponds to legal
constraints, C to capabilities, R to risks, and P to PAML compliance).

3 Formalising Regulatory Compliance

One of the major challenges of setting up the compliance engine is that of cap-
turing what needs to be checked to ensure adherence to applicable regulations.
To start with, the regulation come in the form of a number of regulatory texts,
each consisting of a number of pages full of legal jargon. Secondly, regulations
typically allow grey areas which leave room for interpretation. Furthermore, the
lawyers who are familiar with the regulations are not technical people. In this
context, we chose to apply an iterative process typical in software engineering
practices [7] to ensure that the communication process between lawyers and
developers does not leave room for misunderstandings. The steps we adopted
were as follows:

Annotating regulations. As a first step, lawyers provided the technical team
with the regulatory texts annotated with comments and explanations. The
comments mainly consisted of their opinion on whether the regulation falls
within the scope of the compliance engine. The explanations were aimed at
clarifying jargon or providing an interpretation when the regulations left was
room for one.

342 S. Azzopardi et al.

Shortlisting of applicable regulations. The technical team went through the
annotated regulations, and for each regulation decided whether or not it falls
within the scope of the compliance engine and in what way: which rules could
be checked statically, which could be checked at runtime, etc. Once this list
was compiled, it was discussed with the lawyers, having the technical team
explaining the reasoning behind the adopted classification.

Summarising the shortlisted regulations. Each shorlisted regulation was
summarised in a few words by the technical team, trying as far as possible
to avoid ambiguity. These summaries were once more communicated to the
lawyers and any disagreements on the choice of words were discussed.

Formalising the regulations. For each concisely described regulation
approved by the lawyers, the technical team formulated the corresponding
mathematics from which it is now straightforward to turn into code which
automatically checks compliance. Once more, any questions which arose dur-
ing formalisation process were discussed with the lawyers.

Following this iterative process, involving regular discussions based on evolv-
ing documentation, proved to be effective, leaving both the lawyers and technical
team feeling confident the interpretation of the legal texts and the semantics of
the formal specifications coincided.

4 Conclusions

Work on the OPE is still ongoing. We are currently completing the analysis of
applicable legislation and incorporating these regulations within the compliance
engine. Parts of this compliance process can be resolved statically, while other
parts can only be verified dynamically at runtime. What we are currently looking
into is how the two analysis approaches can be combined together in order to (i)
enable the static checks to classify financial applications and match them with
appropriate programme managers and service providers; (ii) ensure that none
of the parts of the regulations which cannot be verified statically are violated
at runtime through the use of runtime verification. Given the real-time nature
and volume of transactions, it is crucial that runtime checks are reduced to
a minimum, which can only be achieved by trying to verify as many of the
properties as possible statically.

Compared to the current state of the art where banks have to manage risks by
approving programs manually and requesting reports at particular intervals, the
OPE will be offloading significant overheads off the risk takers, namely the banks,
making the setting up and management of payment applications significantly
more feasible. It is still be assessed to what degree the pre-deployment static
analysis of the compliance process can alleviate the runtime overheads.

Compliance Checking in the Open Payments Ecosystem 343

References

1. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: A specification language
for static and runtime verification of data and control properties. In: Bjørner, N.,
de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 108–125. Springer, Heidelberg
(2015)

2. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime
verification: framework and applications. In: Steffen, B., Margaria, T. (eds.) ISoLA
2012, Part I. LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012)

3. Azzopardi, S., Gatt, A., Pace, G.J.: Formally analysing natural language contracts.
In: Computer Science Annual Workshop (2015)

4. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating
finite-state runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV
2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

5. Colombo, C., Gauci, A., Pace, G.J.: LarvaStat: monitoring of statistical properties.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 480–484. Springer,
Heidelberg (2010)

6. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods Syst. Des. 41(3), 269–294 (2012)

7. Larman, C., Basili, V.R.: Iterative and incremental developments. a brief history.
Computer 36(6), 47–56 (2003)

8. Wonisch, D., Schremmer, A., Wehrheim, H.: Zero overhead runtime monitoring.
In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137,
pp. 244–258. Springer, Heidelberg (2013)

Development Methods

CoCoSpec: A Mode-Aware Contract Language
for Reactive Systems

Adrien Champion1(B), Arie Gurfinkel2, Temesghen Kahsai3,
and Cesare Tinelli1

1 The University of Iowa, Iowa City, USA
adrien.champion@email.com

2 SEI/Carnegie Mellon University, Pittsburgh, USA
3 NASA Ames/Carnegie Mellon University, Pittsburgh, USA

Abstract. Contract-based software development has long been a lead-
ing methodology for the construction of component-based reactive sys-
tems, embedded systems in particular. Contracts are an effective way
to establish boundaries between components and can be used efficiently
to verify global properties by using compositional reasoning techniques.
A contract specifies the assumptions a component makes on its con-
text and the guarantees it provides. Requirements in the specification
of a component are often case-based, with each case describing what
the component should do depending on a specific situation (or mode)
the component is in. We introduce CoCoSpec, a mode-aware assume-
guarantee-based contract language for embedded systems built as an
extension of the Lustre language. CoCoSpec lets users specify mode
behavior directly, instead of encoding it as conditional guarantees, thus
preventing a loss of mode-specific information. Mode-aware model check-
ers supporting CoCoSpec can increase the effectiveness of the compo-
sitional analysis techniques found in assume-guarantee frameworks and
improve scalability. Such tools can also produce much better feedback
during the verification process, as well as valuable qualitative informa-
tion on the contract itself. We presents the CoCoSpec language and
illustrate the benefits of mode-aware model-checking on a case study
involving a flight-critical avionics system. The evaluation uses Kind 2, a
collaborative, parallel, SMT-based model checker extended to fully sup-
port CoCoSpec.

1 Introduction

The process of developing safety-critical embedded software (as used, for instance,
in transportation, in aerospace and in medical devices) is becoming increasingly

This material is based upon work funded and supported by NASA under Grant #
NNX14AI09G, and by the Department of Defense under Contract # FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center. This material has
been approved for public release and unlimited distribution. DM-0002921.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 347–366, 2016.
DOI: 10.1007/978-3-319-41591-8 24

348 A. Champion et al.

more challenging. The high number of functionalities now implemented at the
software level, the inter-dependencies of software tasks, and the need to integrate
different existing subsystems all lead to highly complex software-intensive cyber-
physical systems. To manage this complexity embedded software is designed and
implemented as the composition of several reactive components, each perform-
ing a specific, relatively simple functionality. A leading methodology to develop
component-based software is contract-based design. In this paradigm, each com-
ponent is associated with a contract specifying its input-output behavior in terms
of guarantees provided by the component when its environment satisfies certain
given assumptions. When contracts are specified formally for individual compo-
nents, they can facilitate a number of development activities such as compositional
reasoning during static analysis, stepwise refinement, systematic component reuse,
and component-level and integration-level test case generation.

Embedded system components often exhibit complex discrete internal behav-
ior akin to state transitions in finite-state machines. At any one time, the com-
ponent is in some of a number of different modes as a consequence of past events,
and its response to the current inputs differs depending on the mode(s) it is in.
For instance, in a flight guidance system, modes govern the choice of a specific
control algorithm: an approach mode enables a controller that attempts to land
the airplane, whereas a climb mode enables a controller that attempts to take the
aircraft to a suitably safe altitude. The behavior of a multi-component system
emerges from complex interactions between the modes of these components.

Despite the prevalence of modes in embedded system design, common con-
tract formalisms for such systems are not mode-aware, as they only allow one
to express general assumptions and guarantees. As a consequence, mode-based
behavior, which is ubiquitous in specification documents, ends up being encoded
in conditional guarantees of the form “situation ⇒ behavior”. Correspondingly,
assume-guarantee-based tools are mode-agnostic, they cannot easily distinguish
between mode-specific requirements and general guarantees such as “the output
shall always be positive” although the two kinds of requirement describe very
different expectations. We see mode-awareness as a natural and important evolu-
tion of assume-guarantee contracts and compositional reasoning based on them.
We argue that by distinguishing between modes and guarantees in contract-
based design we avoid losing fine-grained information that can be used to further
improve the scalability and the user feedback of automated analyses.

Contributions. This paper focuses on a large class of embedded systems, (finite-
and infinite-state) discrete synchronous reactive systems. For these systems,
we introduce CoCoSpec, a mode-aware specification language for Contract-
based Compositional verification of safety properties that extends the assume-
guarantee paradigm, and describe the sort of advantages that mode-aware tools
can provide. We focus on features of the language that help with (i) detecting
shortcomings in the (modes of the) specification of a system independently of
its implementation, (ii) improving fault localization, (iii) comparing the user’s
understanding of the contract/system pair with its actual behavior, and (iv)
improving the scalability of the verification process.

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 349

For concreteness, we have developed and implemented CoCoSpec as an
extension of the synchronous dataflow language Lustre [12], and so we will
describe it as such here. We stress, however, that its theory and applications
are generic with respect to the whole class of specification languages for discrete
synchronous reactive systems.

We briefly introduce the Lustre language and the assume-guarantee paradigm
in Sect. 2. The syntax and semantics of CoCoSpec are described in Sect. 3,
along with a running example extracted from a medium-size case study we did
to showcase CoCoSpec’s main features. We present our case-study in more
details in Sect. 5 and report on the benefits of mode-awareness to write and
debug contracts, raise the trust in their accuracy, and improve the scalability of
automatic contract verification.

Related Work. The notion of a contract has a long history in software engi-
neering and traces its root to rely-guaranteed approaches introduced by Hoare,
Dijkstra and others [10,14,17]. It is adopted in earnest in the design by con-
tract methodology [16,25], which has been applied in different areas of software
development and verification. Newer programming languages such as Dafny [22]
incorporate formal contracts and compile-time contract checking as native fea-
tures. Formal contracts have also been integrated into popular programming
languages, via the addition of ad hoc specification languages, e.g., ACSL [20]
for C/C++, JML [21] for Java, or SPARK [2] for Ada. ACSL in particular has
a notion of behavior in function contracts which is similar to that of mode in
CoCoSpec. One major difference is that predicates in an ASCL contract refer
only to individual states (such as the pre- and the post-state of a function call),
while in CoCoSpec, which is meant for reactive systems, they can use temporal
operators.

A suitable notion of contract for reactive software, where components contin-
uously process incoming data and produce output based on the input data and
internal state information, is provided by the assume-guarantee paradigm for
compositional verification [3]. A large number of contract formalisms have been
proposed for reactive systems; for instance, Cimatti and Tonetta [7] develop a
trace-based contract framework and adapt it to the properties specification lan-
guage Othello [6]. Cofer et al. [8] follow a contract-based approach to perform
compositional verification geared towards architectural models. Our approach
differs from the techniques and languages above in the emphasis CoCoSpec
puts on the mode-based behavior of the analyzed embedded system. In this
sense, it is more in the spirit of Parnas tables [26], but for reactive systems.

2 Background

Lustre. CoCoSpec was conceived as a contract extension to languages, such
as Lustre [12], for modeling systems composed of synchronous reactive compo-
nents. Such languages are based on the theory of synchronous time in which
all components maintain a permanent interaction with their environment

350 A. Champion et al.

(e.g., a larger component, or the physical environment in case of top level com-
ponents) and are triggered by an abstract universal clock. Lustre is a stream-
based executable modeling language for finite- and infinite-state reactive sys-
tems. Every system in Lustre takes as input one or more infinite streams of
values of the same type, and produces one or more infinite streams as output.
Lustre systems are assumed to run on a universal base clock that represents the
smallest time span the system is able to distinguish. Individual components can,
however, be defined to run on coarser-grained clocks. For simplicity, we ignore
this feature here and pretend that all components run on the same clock. In that
case, each stream of type τ can be understood mathematically as a function from
N to τ .

System components are expressed in Lustre as nodes with an externally vis-
ible set of inputs and outputs. Variables are used to represent input, output and
locally defined streams. Basic value types include real numbers, integer numbers,
and Booleans. Operationally, a node has a cyclic behavior: at each clock tick t it
reads the value of each input stream at position or time t, and instantaneously
computes and returns the value of each output stream at time t. Lustre nodes
can be made stateful by having them refer to stream values from (a fixed number
of) previous instants.

Typically, the body of a Lustre node consists in a set of stream equations of
the form x = s, where x is a variable denoting an output or a locally defined
stream and s is a stream algebra over input, output, and local variables. Most
stream operators are point-wise liftings of the usual operators over stream values.
For example, if x and y are two integer streams, the expression x + y is the
stream denoting the function λt.x(t) + y(t); an integer constant c, denotes the
constant function λt.c. Two important additional operators are a unary right-
shift operator pre, used to specify state computations, and a binary initialization
operator ->, used to specify initial state values. At time t = 0, the value (pre x)(t)
is undefined; for each time t > 0, it is x(t − 1). In contrast, the value (x -> y)(t)
equals x(t) for t = 0 and y(t) for t > 0. Syntactic restrictions guarantee that all
streams in a node are inductively well defined.

Since a node is itself a mapping from input to (one or more) output streams,
once defined, it can be used like any other stream operator in the right-hand
side of equations in the body of other nodes, by applying it to streams of the
proper type.

Example 1. As an example, here is howa stopwatch could bemodeled in Lustre.
node previous (x : int) returns (y : int)
let

y = 0 -> pre x ;
tel

node stopwatch (toggle, reset : bool) returns (count : int);
var running : bool;
let

running = (false -> pre running) <> toggle ;
count = if reset then 0

else if running then previous(count) + 1
else previous(count) ;

tel

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 351

Auxiliary node previous defines an initializing delay operator for integer
streams that takes a stream with values x0, x1, x2, . . . and returns the stream
0, x0, x1, x2, . . . Node stopwatch models a stopwatch with two buttons, modeled
respectively by the Boolean input variables toggle and reset, one to start/stop
the stopwatch and the other to reset its time to zero. The locally defined auxil-
iary stream running keeps track of when the clock is running. Its value is true

initially iff toggle is not equal to (<>) false at that time; it is true later iff its
previous value is different from the current value of toggle. Stream count counts
the number of instants the clock has been running since the beginning or the last
reset, if any. Initially, it is 0 unless reset is false and toggle is true, in which
case it is 1. Afterwards, it is reset to 0 every time reset is true, is incremented
by 1 while the clock is running, and is kept at its previous value when the clock
is stopped. The definition of count contains two applications of node previous,
to count itself. Note that despite the apparent circularity of this definition, count
is well defined because of the delay in previous. ��

Lustre has a formally specified semantics, which interprets nodes as a vari-
ant of extended-state Mealy machines [13] and node application as parallel com-
position. Discrete embedded systems developed in popular modeling languages
such as Simulink or SCADE can be faithfully translated into Lustre (e.g., [9]).
A large class of safety properties of Lustre models can be internalized as
(Boolean) observer streams or observer nodes [11] and verified efficiently by
SMT-based model checkers [18].

Assume-Guarantee Paradigm. Assume-guarantee contracts [24] in
component-based reactive systems provide a mechanism for capturing the infor-
mation needed to specify and reason about component-level properties. An
assume-guarantee contract for a component K is a pair of past linear tempo-
ral logic (pLTL) [19] predicates 〈A,G〉 where the assumption A ranges over the
inputs of K, and the guarantee G ranges over its inputs and outputs.

pLTL is a rich logic that uniformly supports the formulation of bounded live-
ness and safety properties, the kind of properties we focus on in this work. In
terms of standard LTL, the semantics of an assume-guarantee contract 〈A,G〉
is the formula GA ⇒ GG where G is the globally operator. From a verifica-
tion point of view, however, proving that a component K satisfies that formula
amounts to proving that the pLTL formula HA ⇒ G is invariant for K where
H is the historically modality of pLTL [23].1

Compositional reasoning is achieved by proving that each component satisfies
its own contract as well as the guarantees of any component it provides input to.
More precisely, for the latter proof obligation, if a component K1 is composed
in parallel with a component K2 and provides inputs to K2, one must also prove
that those inputs always satisfy the assumptions of K2. The proof that K1

satisfies its contract can then assume that any output provided by K2 satisfies

1 Intuitively, HP states that P has been true in all states of an execution up to the
current state.

352 A. Champion et al.

the guarantees in K2’s contract. In Lustre terms, one must prove that every
application n(s1, . . . , sn) of a node n inside another node m is safe in the sense
that the actual parameters s1, . . . , sn satisfy at all times the assumptions of n
on its inputs. To prove that m satisfies its own contract one can assume that the
result of the application n(s1, . . . , sn) satisfies the guarantees in n’s contract.

3 The CoCoSpec Language

CoCoSpec extends Lustre by adding constructs to specify contracts for indi-
vidual nodes, either as special Lustre comments added directly inside the node
declaration, or as external, stand-alone contract declarations. The latter are sim-
ilar in shape to nodes but are introduced with the contract instead of the node

keyword. A node can import an external contract using a special Lustre comment
of the form

(*@contract import <name>(<input params>) returns (<output params>); *)

For specification convenience, the body of a stand-alone contract can con-
tain equalities defining local streams, using the var (const) keyword for
(constant) streams. Besides local streams, a contract contains assume and
guarantee statements, and mode declarations. Modes are named and consist of
require and ensure statements. They have the form shown on Fig. 1. Statements
can be any well-typed Lustre expressions of type bool. In particular, expressions
can contain applications to previously defined Lustre nodes. This is convenient,
for instance but not exclusively, if one wants to use pLTL operators since those
can be defined as Lustre nodes.

Example 2. A possible contract, and associated import, for the stopwatch com-
ponent from Example 1 could be the following:

contract stopwatchSpec (tgl, rst : bool) returns (c : int) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;
assume not (rst and tgl) ; guarantee c >= 0 ;
mode resetting (require rst ; ensure c = 0 ;) ;
mode running (require not rst ; require on ; ensure c = (1 -> pre c + 1) ;) ;
mode stopped (require not rst ; require not on ; ensure c = (0 -> pre c) ;) ;

tel

node stopwatch (toggle, reset : bool) returns (time : int) ;
(*@contract import stopwatchSpec(toggle, reset) returns (time) ; *)
let ... tel

Note that pre binds more strongly than all other operators; => is Boolean impli-
cation.

The contract has the same interface as the node. It uses an auxiliary Boolean
variable on capturing the exact conditions under which the stopwatch should be
on: initially when the start/stop button tgl is pressed (i.e., true); later when
it was previously on and the start/stop button is not being pressed, or it was
previously off and the start/stop button is being pressed. The contract con-
tains a global assumption that the reset button rst and the start/stop but-
ton are never pressed at the same time, and a global guarantee that the time

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 353

counter c is always non-negative. It also specifies three modes for the stopwatch.
The component is in resetting mode if the reset button is pressed. When that
button is not pressed, it is in running mode if the conditions captured by on

hold, and is in stopped mode otherwise. The ensure statements of the three
modes specify how c, the counter, should behave. It (i) is reset to 0 in resetting

mode, (ii) is incremented by 1 in running mode, and (iii) maintains its previous
value in stopped mode. To import the contract, node stopwatch instantiates the
contract’s formal (input an output) parameters with any expression of the same
type. ��

In our experience, the ability of a node to import a stand-alone contract pro-
vides great flexibility. It makes writing specifications and implementations more
independent, and facilitates the reuse of contracts between components. In gen-
eral, a node can import more than one contract and have also local assumptions,
guarantees and modes. The contract of a node is the union of all the local and
imported assumptions, guarantees and modes.

Expressions in contracts can refer to a mode directly by using its name as
if it were a Boolean variable. This is just a shorthand for the conjunction of
all the require statements in the mode. CoCoSpec avoids potential depen-
dency cycles between modes due to this feature by prohibiting forward and
self references. Each stand-alone contract defines a namespace, with :: as the
namespace projection operator. As a consequence, modes can be referred to both
inside and outside the contract they belong to. For example, in the stopwatch

contract the require statement not on of mode stopped can be replaced, equiv-
alently, by not ::running. In contrast, the require and ensure statements of
running cannot contain a (forward) reference to mode stopped. The expression
::stopwatchSpec::running can be used in the contract of stopwatch to refer to
the running mode of the imported stopwatchSpec contract, as in

node stopwatch (toggle, reset : bool) returns (time : int) ;
(*@contract import stopwatchSpec(toggle, reset) returns (time) ;

guarantee true -> (
(pre ::stopwatchSpec::running and tgl) => ::stopwatchSpec::stopped

) ; *)

Finally, neither assume nor require statements can contain references to cur-
rent values of an output stream—although they may refer to previous values of
those streams via the pre operator. This is a natural restriction because it does
not make sense in practice to impose preconditions on the current output values.

3.1 Formal Semantics and Methodology

A CoCoSpec contract for a Lustre node N is a triple 〈A,G,M〉 where A is a
set of assumptions, G is a set of guarantees, and M is a set of modes. A mode is
a pair (R, E) where R is a set of requires and E is a set of ensures. Assumptions,
guarantees, requires and ensures are all stream formulas, i.e., Boolean expressions
over streams. A mode (R, E) in the contract of N is active at time t in in an
execution of N if

∧
R is true at that time.

354 A. Champion et al.

Formally, we define a CoCoSpec contract C = 〈A,G,M = {(Ri, Ei)}〉
for some node N as the assume-guarantee contract C ′ = 〈A, G′〉, with G′ =
G∪{Ri ⇒ Ei}.2 Node N satisfies C if its corresponding extended-state machine
satisfies contract C ′ in the standard sense, that is, if it satisfies GA ⇒ GG′.

We require for a contract C = 〈A,G,M = {(Ri, Ei)}〉 to be such that the
formula

G (A ∧ G ∧ {Ri ⇒ Ei}) ⇒ G (
∨

{Ri}) (1)

is logically valid in LTL. Note that this is a (meta)requirement on the contract
itself, not on its associated node(s). Intuitively, it states that in the scenario
where the contract’s assumptions and guarantees both hold, at least one of the
requires holds at all times. CoCoSpec modes are meant to formalize require-
ments coming from specification documents that describe a transient behavior.
If property (1) holds, then any node satisfying contract C, and used in a context
where C’s assumptions are always met, has at all times at least one active mode.
This ensures that the contract covers all possible cases whenever its assumptions
hold.

In practice, the first step when verifying a CoCoSpec contract is to check
the defensive property (1). If it does not hold, a situation unspecified by the
contract is reachable, hence the contract is incomplete and must be fixed. If one
desires, temporarily perhaps, to have an underspecified contract on purpose, one
can add a mode with an empty set of ensures and a set of requires that captures
the missing cases. The point is that the underspecification of mode behavior
should be formalized explicitly and not be a consequence of a missing set of
requirements.

If the defensive property of a contract C of a node N holds, the next step
is to verify, using assume-guarantee reasoning, that N respects C. We abstract
each application of another node inside N by that node’s contract, replacing the
contract’s formal parameters with the actual parameters in the application. We
then prove that N respects C whenever its subnodes respect their own contract.
We also prove that N contains only safe applications of other nodes. Overall, the
analysis of a system is successful if we can prove that (i) none of the contracts
used allow unspecified behavior, (ii) all nodes respect their contract, and (iii)
all node applications are safe.

Note that a traditional assume-guarantee contracts 〈A,G〉 is expressible in
CoCoSpec, as the contract 〈A,G, ∅〉. Property (1) is then trivially valid, and the
analysis reduces to verifying 〈A,G〉. CoCoSpec is thus an extension of assume-
guarantee contracts that natively supports, via the use of modes, requirements
for transient behavior. We discuss the benefits that modes bring to mode-aware
analyses in Sect. 5.

2 We will identify sets of formulas, such as Ri and Ei, with the conjunction of their
elements.

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 355

Fig. 1. Mode
syntax.

Fig. 2. Activates one of the
controllers.

Fig. 3. switch helper
node.

3.2 Using CoCoSpec: An Example

We now describe an example of system specification in CoCoSpec that allows
us to illustrate concretely the main features of the language. The example is
derived from an extensive case study where we took a realistic Lustre model of
an avionics system developed by NASA [4,15], and wrote CoCoSpec contracts
based on a natural language requirement specification. We discuss the study in
detail in Sect. 5. For the purposes of this subsection, it is not crucial to explain
the whole model and its expected overall functionality except to say that the
system has a component ml that governs the engagement of two sub-controllers.
Figure 2 shows the signature of the corresponding Lustre node3. This component
decides whether two controllers, an altitude controller (alt) and a flight path
angle (FPA) controller (fpa), should be engaged or not based on their respective
request flags (altRequest and fpaRequest), a deactivation flag (deactivate), the
current altitude (altitude), and the target altitude (targetAlt).4

Let smallGap be a predicate that holds iff the distance between the current
and the target altitude is smaller than a certain value, say 200 ft. The require-
ments relevant to the ml component, namely Guide 170, 180, and 210 in [15],
state that when smallGap holds then the altitude controller has priority over
the FPA controller: when requested to, the latter can engage provided that
there is no request for the altitude controller to engage. When smallGap is false
the FPA controller has priority instead (Guide 170 and 180). The request pro-
tocol is the following. An engagement request for a controller becomes active as
soon as the corresponding input flag becomes true, and remains active until the
deactivate flag becomes true. A generic auxiliary node modeling this protocol
for an arbitrary pair of activation and deactivation flags is shown in Fig. 3.

The specification for the ml component does not have any explicit assump-
tions. In the traditional assume-guarantee setting (e.g., in [1]) one would then
be inclined to write a contract for ml with the following guarantee:

3 The node, called MODE LOGIC AltAndFPAMode in the original model, was slightly
altered and its specification simplified for readability and simplicity.

4 What the altitude and the FPA controllers actually do is not important at this point.

356 A. Champion et al.

(smallGap and altRequested => altEngaged) and
(smallGap and fpaRequested and not altRequested => fpaEngaged) and
(not smallGap and fpaRequested => fpaEngaged) and
(not smallGap and altRequested and not fpaRequested => altEngaged)

where altRequested = switch(altRequest, deactivate) and fpaRequested is
defined similarly. A contract with a single, complex guarantee, leads to loss
of information in practice, for both human readers and static analysis tools
such as model checkers. In contrast, CoCoSpec allows one to provide the same
information but in a disaggregated form, explicitly accounting for the various
cases through the use of modes. With a mode-based specification, assumptions
only state general conditions on legal uses of the component—for instance,
that the altitude values are always positive. Similarly, guarantees specify mode-
independent behavior—in this case, that the altitude and FPA controllers never
engage at the same time.

contract ml (altRequest, fpaRequest, deactivate : bool ; altitude, targetAlt : real)
returns (altEngaged, fpaEngaged : bool) ;
let

var altRequested = switch(altRequest, deactivate) ;
var fpaRequested = switch(fpaRequest, deactivate) ;
var smallGap = abs(altitude - targetAlt) < 200.0 ;
assume altitude >= 0.0 ;
guarantee targetAlt >= 0.0 ;
guarantee not altEngaged or not fpaEngaged ;
mode guide210Alt (require smallGap ; require altRequested; ensure altEngaged ;) ;
mode guide210FPA (require smallGap ; require fpaRequested ; require not altRequested;

ensure fpaEngaged;) ;
mode guide180 (require not smallGap ; require fpaRequested; ensure fpaEngaged;) ;
mode guide170 (require not smallGap ; require altRequested ; require not fpaRequested;

ensure altEngaged ;) ;
tel

Debugging the Specification Early on. We argue that, in addition to
enabling compositional reasoning, CoCoSpec contracts also lead to more
accurate analyses compared to traditional assume-guarantee by facilitating
blame assignment. A mode-aware tool knows which modes are active at each
step of a counterexample execution. Hence it can provide better feedback since
modes are in effect user-provided abstractions of concrete states. Designers can
reason about them to fix the system or its specification, instead of looking at
concrete values, which may be less readable and informative.

In our running example, attempting to prove ml correct does not go very far:
the defensive check fails right away and produces a counterexample triggering
unspecified behavior. The problem is resolved by noting that the English spec-
ification means to say that fpaRequested and altRequested should be true only
in the cases discussed above. Hence, this issue is easily addressed by adding the
following two modes:

mode noAlt (require not altRequested ; ensure not altEngaged ;) ;
mode noFPA (require not fpaRequested ; ensure not fpaEngaged ;) ;

Now, because this example is quite simple, an experienced reader may have
noticed the incompleteness in the specification already when we first introduced
it. As we argue in Sect. 5, however, mode-based blame assignment is a very

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 357

valuable feature on realistic systems with a large number of modes and complex
require predicates.

Evaluating the Specification. We discuss next two approaches for checking
that the semantics of a CoCoSpec contract corresponds to a user’s understand-
ing of it.

Unreachable Properties Over the Specification as Modes. Going back to the ml

node, one could argue that mode guide170 should not be reachable from mode
guide210FPA in one step (i.e., from time t to time t + 1). That this is the case is
not necessarily obvious because of the memorization capabilities provided by the
switch component from Fig. 3.5 Since the property is expected to hold, verifying
it would raise trust in the contract. Moreover, if the specification or the system
later evolved to the point of not satisfying that property anymore, it would be
useful for a new analysis to reveal that. This can be achieved by formulating the
property explicitly as a CoCoSpec mode:

mode no170From210FPA (require false -> pre ::guide210FPA ; ensure not ::guide170 ;) ;

Exploration of Reachable Modes. When the defensive property (1) holds, modes
provide effectively a small, user-defined abstraction of a component’s reachable
state set, with each abstract state represented by a set of active modes. One
can then use explicit-state model checking techniques to analyze the possible
executions of a component at the level of mode transitions. For instance, one
can unroll the abstract transition relation to some depth to verify the presence
of expected mode transition sequences or see if unexpected ones occur. Figure 4
shows (up to depth 1 only, for space constraints) the graph of reachable modes
for the ml system, starting from each possible initial mode combination. Even
by simple visual inspection, one can obtain a better high-level validation of
one’s understanding of the contract against the actual behavior of the model.
For instance, is it expected that guide170 is active only when noFpa is, or that
the mode combination {noFpa, noAlt} can be reached from any initial mode
combination?

Fig. 4. Reachable combinations of modes in one transition from the initial state for ml.

5 It is true in this instance because in the switch mode, off has priority over on.

358 A. Champion et al.

4 Implementation

We added full support for CoCoSpec to Kind 2 [5], an open-source, multi-
engine, SMT-based model checker for safety properties of Lustre programs,
built as a successor of the PKind model checker [18].6 Its basic version takes
as input a Lustre file annotated with multiple properties to be proven invariant,
and outputs for each property either a confirmation or a counterexample trace,
a sequence of inputs that falsifies the property. Kind 2 is able to read Lustre
models annotated with CoCoSpec contracts and verify them using compo-
sitional reasoning. We implemented all the features discussed in the previous
section, including the exploration of the reachable modes of the input system to
generate the corresponding graph.

Given a Lustre system S annotated with CoCoSpec contracts, Kind 2 can
be run in compositional mode on S. In that case it will analyze the top node
of S by abstracting its subnodes by their contracts, as discussed above. This is
not enough to prove S correct though, since the correctness of the subsystems
represented by the subnodes is not checked. Kind’s modular mode addresses
this shortcoming: in modular mode, Kind 2 will analyze each subsystem of the
hierarchy, bottom-up, reusing previous results as it goes. When run in com-
positional and modular mode together, Kind 2 will analyze each subsystem
compositionally, after proving the defensive check on its contract. If all systems
of the hierarchy are proved correct, then the system as a whole is deemed safe.

Kind 2 also has a refinementmechanism. Say a node M contains an application
of a node N , and the compositional analysis of M produces a counterexample. The
counterexamplemightbe spurious, asN wasabstractedby its contractwhichmight
be too weak to verify M . In this case, if N was proved correct previously under some
abstraction A of the node applications in its own body, then Kind 2 will launch a
new analysis where the application of N in M is (in effect) replaced by the body of
N under the abstraction A. The failure of the compositional analysis signals that
there is something wrong with the system and/or its specification. The refinement
mechanism aims at giving more information about the problem. For instance, if M
can be proved correct after refining the application of N as described above then
probably the contract ofN should be strengthened until the compositional analysis
succeeds without having to use refinement.

5 Evaluation

As a case study to evaluate the usefulness and effectiveness of CoCoSpec, we
chose a model derived from NASA Langley’s Transport Class Model (TCM) [15],
a control system for a mid-size (∼250 K lb), twin-engine, commercial transport-
class aircraft. While the TCM is not intended as a high-fidelity simulation of any
particular transport aircraft, it was designed to be representative of the types
of nonlinear behaviors of this class of aircraft. We specified in CoCoSpec some
of the safety requirements for the TMC recently elicited by Brat et al. [4] from
6 Kind 2 is available at http://kind.cs.uiowa.edu/.

http://kind.cs.uiowa.edu/

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 359

Federal Aviation Regulations and other documents. We will refer to those as FAR
requirements. In this section, we discuss our specification of the FAR requirements
and how CoCoSpec aided their automated compositional verification.7

Fig. 5. Autopilot subsystem of the TCM.

The TCM includes submodels for the avionics (with transport delay), actu-
ators, engines, landing gear, nonlinear aerodynamics, sensors (including noise),
aircraft parameters, equations of motion, and gravity. It is primarily written
in Simulink, consisting of approximately 5,700 Simulink blocks. The system also
includes several thousand lines of C/C++ code in libraries, primarily used for the
simulation of the aircraft engines and the nonlinear aerodynamics models. Here,
we focus on the guidance and control submodels and their properties within the
context of the TCM. These models are written entirely in Simulink and so can
be faithfully converted automatically to a (multi-node) Lustre model. We will
call Autopilot the subsystem of the TCM that combines these subcomponents.

The subsystem is depicted in Fig. 5. Each node in the graph corresponds
to a component of the Autopilot system, and to a node in the Lustre model.
The system actually has more nodes than this graph, which only shows the
main components that are specified by a contract. While using the same name,
we will distinguish between a component (for instance, the Autopilot node of
the graph) and its corresponding subsystem, obtained as the composition of
that component with all of its subcomponents. Of particular interest to us is
the Longitudinal Controller subsystem, which combines two mutually exclusive
subcontrollers, the Altitude Controller and the FPA Controller, to produce an
elevation command for the aircraft. When engaged, the first subcontroller pro-
duces an elevation command aimed at reaching the target altitude it is given as
input. The other subcontroller produces instead an elevation command aimed
at reaching a target flight path angle (FPA). In practice, the two subcontrollers
are not independent since the FPA Controller uses the output of the Altitude
Controller to produce its output, regardless of which controller is engaged. The
Longitudinal Controller and all its subcomponents are mostly numerical and
include nonlinear arithmetic expressions.

7 Full data on the case study, including models, contracts, reachability graphs, and
instructions on how to reproduce our experimental results using the CoCoSpec
version of Kind 2 are available at https://github.com/kind2-mc/cocospec tcm
experiments.

https://github.com/kind2-mc/cocospec_tcm_experiments
https://github.com/kind2-mc/cocospec_tcm_experiments

360 A. Champion et al.

Another subsystem of Autopilot, called Mode Logic, is in charge of deciding
which of the subcontrollers, if any, should be active at any time. The decision
is based on a number of parameters, including the aircraft’s speed, altitude,
and pitch, and the commands from the cockpit. A simplified version of the
Mode Logic component is modeled by the ml Lustre node described in Sect. 3,
and so we will not discuss it further here. Instead, we present the benefits of
mode-awareness in the specification and verification of the Longitudinal Con-
troller and of the Autopilot overall.

5.1 Benefits of CoCoSpec

Since we are not experts in flight control systems, we do not have a full under-
standing of the TCM or the details that the rather high-level FAR requirements
leave unspecified. So, for our case study, we started from the FAR requirements
and the TCM models (in Simulink and in their Lustre translation), and wrote
näıve contracts for the Lustre components, which Kind 2 would then promptly
disprove. In general, the concrete counterexample traces returned by Kind 2
were too detailed and specific for us to see what was wrong. However, thanks
to the mode information, Kind 2 could point us relatively precisely to relevant
parts of a trace. Additionally, knowing what modes were active at any point in
the trace provided a nice abstraction that would allow us to reframe the problem
in more general terms and help us find ways to revise the contract.

Probably the most useful feature was the exploration of reachable modes
yielding the reachability graphs introduced in Sect. 3. Even when Kind 2 proved
the correctness of the modes we wrote, the mode reachability graph it generated
would often reveal significant gaps in our understanding of the system’s behavior.
Sometimes only idle modes would be reachable, because of problems in our
require statements; some other times the graph would contain mode transitions
we expected not to be possible; or, even worse, it would contain deadlocked
states. We cannot overstate the usefulness of this feature in the case study: it
quickly became impossible for us to trust a contract without examining the mode
reachability graph first.

We discussed in Sect. 3.2 how easy it is to express in CoCoSpec mode prop-
erties by using a mode’s identifier to refer to the conjunction of its require

statements. For instance, properties like “mode m2 cannot immediately follow
mode m1” and “modes m3 and m4 cannot be active at the same time” can be
encoded respectively as:

guarantee true -> pre :: m1 => not :: m2 ;
guarantee not (:: m3 and :: m4) ;

Based on the reachability graphs and our understanding of the specification
and the various subsystems, we ended up writing several properties like the
above, to assess the quality of our contract. While reachability graphs provide a
graphical mode-based exploration of the system and its specification up to some
depth, expressing and checking properties over the specification itself consider-
ably raises the trust in both the specification and the verification process. The

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 361

fact that we do not duplicate mode requirements, but instead rely on a mode-
aware tool to refer directly to mode identifiers, guarantees that these properties
are synchronized with the current definition of each mode.

5.2 Verifying the Longitudinal Controller

Kind 2, like other model checkers for infinite-state systems, eventually relies on
issuing queries to an SMT solver to reason about the system under analysis.
Lustre models are converted internally into transition systems with an initial
state condition and a two-state transition relation. These transition systems are
then expressed as first-order formulas in one of the theories supported by the
back-end SMT solver(s). Given the state of the art in SMT, without any composi-
tional mechanism, an analysis of the Longitudinal Controller is currently impos-
sible. The reason is that the system features nonlinear arithmetic constraints
(with multiplications and divisions) which are very challenging for today’s SMT
solvers. On a system the size of this one, all solvers we tried give up as soon as
we unroll the transition relation once, and return unknown.

The first step towards verifying any contract in the Autopilot system was
thus for us to abstract the nonlinear expressions in it. To do so, we manually
replaced nonlinear applications of the * and / Lustre operators with applications
of Lustre nodes, written by us, meant to abstract those operators. For instance,
an expression of the form s * t with s and t of type real would be abstracted by
times(s, t) where time is the node

node times(x, y : real) returns (z : real)
let

z = x * y ;
tel

The abstracting nodes were provided with a contract specifying salient algebraic,
and linear, properties of the abstracted operators, such as the existence of neu-
tral and absorbing elements, sign, and proportionality. Because we isolated the
nonlinear expressions, we were able to get the SMT solvers to prove these con-
tracts. This allowed us to use just the contracts, which are on purpose weaker
than the full implementation of the multiplication and division nodes, in the
analysis of components using those nodes. As a nice side effect, by adding in
the contract for the division node divid the assumption that the denominator
argument is nonzero, we also got the analysis to check that no division by zero
can happen in the system.

Armed with this sort of abstraction, we wrote contracts for the Longitudinal
Controllers and its two subcontroller based on Guide 120 and 130 of the FAR
requirements. A major challenge was that the output of the Altitude controller
feeds also into the FPA controller, even when the former is disengaged. We thus
had to write a contract for the Altitude Controller to specify its behavior even
when it is not engaged. Now, the output in question is the result r of a nonlinear
division of two values n and d, and is supposed to be within certain bounds. Our
generic abstraction of division did not have a strong enough contract to guarantee
that. However, the way the system is defined, when the Altitude Controller is

362 A. Champion et al.

disengaged both n and d are themselves bounded. So, we designed a custom
abstraction for division, divid bounded num, which takes as input constant upper
and lower bounds on the denominator and has a contract that extend our generic
one for division with modes specifying that the result is within in an interval:8

contract divid_bounded_num(num, den: real ; const lbound, ubound: real)
returns (res: real) ;
let

...
assume dem <> 0.0 and lbound <> 0.0 and u_bound <> 0.0 ;
assume lbound <= den and den <= ubound ;
...
mode num_pos_lbound_pos (

require 0.0 <= num ; require 0.0 < lbound ;
ensure num/ubound <= res and res <= num/lbound ;

) ;
tel

There are six modes like num pos lbound pos in the full contract, depending on
the sign of the numerator and how the denominator compares to zero. Using this
version of division we were able to prove that the output of the Altitude Controller
is indeed within the expected bounds when the controller is disengaged.

Compositional Analysis. Due to the nonlinearities discussed above, Kind 2 is
unable to perform a monolithic analysis of the Longitudinal Controller subsys-
tem, that is, one that looks at the subsystem as a whole, ignoring that it is the
composition of several components. Hence, we evaluated the compositional app-
roach by comparing a linearized-monolithic analysis, where only the nonlinear
expressions are abstracted, with a compositional one, where the two Altitude
and the FPA subcontrollers are abstracted.

Both analysis were successful, but with no appreciable difference: they both
terminate in a matter of seconds. This is not surprising because the implemen-
tation of those subcontrollers is not a lot more complex than their contract. In
contrast, we did see a significant difference between the linearized monolithic
analysis and the compositional one when we analyze the Autopilot system, as
we explain next.

5.3 Verifying Autopilot

To verify the full Autopilot we wrote contracts also for its Mode Logic subsystem.
The pertinent FAR requirements for that subsystem are Guide 170, 180, and 210,
which specify how and when the altitude and the FPA controllers supposed to
engage. We will not go over the contracts of Mode Logic here but describe instead
our experience in verifying its composition with the Longitudinal Controller in
the Autopilot system.

Before that, it is worth noting that during the verification of the Mode Logic
component we found a bug in the Lustre model. The bug occurs when the input
signals respectively enabling the Altitude and the FPA controller go from true

8 Full contracts for times, divid, and divid bounded num are available on the case
study website.

https://github.com/kind2-mc/cocospec_tcm_experiments/blob/master/systems/helpers.lus#L168
https://github.com/kind2-mc/cocospec_tcm_experiments/blob/master/systems/helpers.lus#L197
https://github.com/kind2-mc/cocospec_tcm_experiments/blob/master/systems/helpers.lus#L230

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 363

to false at the same time.9 In that case, the output flag for the controller that
has been given priority by Mode Logic will become true, as expected, but then
alternate between true and false at every step afterwards. Since fixing the model
was beyond our level of expertise, we side-stepped the problem for this case
study by adding a require clause stating that the two input signals never fall
together.

Fig. 6. A sketch of the contract for the Autopilot node.

Contracts for high-level components like Autopilot can be expressed in terms
of the contracts for their subcomponents. Overall we found that lifting subcom-
ponent contracts to their calling component is relatively straightforward thanks
to the contract import feature discussed in Sect. 3. This feature is often flexible
enough to let one write parametric contracts that can be adapted, by instan-
tiation, to nodes with similar behavior. In the case of the Autopilot node, its
contract can be created by importing and suitably connecting the contracts of its
Mode Logic and Longitudinal Controller subcomponents, as illustrated in Fig. 6.
Note that the two first parameters of the longitudinal import refer to the modes
of the mode logic contract to communicate whether the Altitude or the FPA con-
troller is active. Reusing the contracts of the two subsystems through imports to
write the contract for the Autopilot component reduces the duplication of specs
across the overall system. This improves user-friendliness, maintainability and,
hence, trust in the correctness of the specs.

There is still, however, room for errors in the contracts themselves. Mode
information helps fix those errors that cause the contract to be falsifiable. Once
a contract is proved, the exploration of reachable modes is again an invaluable
9 This is possible in principle if these signals come from distinct physical on/off but-

tons, as opposed to a switch, that are released at the same time.

364 A. Champion et al.

tool to make sure all the modes can actually be activated, and that the system
and the contract behave as expected, at least up to the explored depth of the
reachability graph.

Compositional Versus Linearized-Monolithic. The Autopilot system is rather
complex. Recall that the Mode Logic component decides which controller is
engaged based on information arbitrarily far in the past because of the request
mechanism. Its outputs control the mutually-exclusive activation of the two sub-
systems of the Longitudinal Controller. Moreover, these subsystems are not
independent as the FPA Controller takes as input the output of the Altitude
Controller.

A monolithic analysis of this system in Kind 2 is again impossible because of
the nonlinear expressions in the Longitudinal Controller subsystem, as discussed
in Sect. 5.2. We therefore compared a linearized-monolithic analysis of Autopilot
with a compositional one. The former could discharge some of the proof oblig-
ations generated for the Autopilot contract, but was overall inconclusive after
running for one hour on an i7 (2014) CPU running Mac OS X. The composi-
tional analysis, on the other hand, was able to prove the entire contract of the
Autopilot node and all the proof obligations for the calls to its subcomponents
in about 80 s.

We also had Kind 2 run a full analysis on Autopilot. As explained in Sect. 4,
Kind 2 does that automatically by going through the hierarchy of nodes in
a Lustre model bottom-up, and running a compositional analysis on each of
them, where immediate subcomponents with contracts are abstracted by their
contract. This guarantees that every node with a contract is correct, in the sense
that it respects its contract as well as all the assumptions, if any, of the nodes
it calls. The overhead of checking the correctness of all the subcomponents of
Autopilot is minimal. The total runtime for this analysis, including the nonlinear
abstractions, was under 100 s.

6 Conclusion

We described CoCoSpec, a mode aware assume-guarantee-based contract lan-
guage for the specification of synchronous reactive systems. The starting point
of CoCoSpec was the need to have a contract language able to accurately cap-
ture the behaviors of embedded systems. CoCoSpec is currently designed as
an extension of the synchronous dataflow language Lustre. We have described
CoCoSpec’s main benefits, including (i) bringing the specification language
closer to the specification documents, (ii) enabling defensive semantics checking
of the specification for oversights, (iii) allowing more effective and more scalable
compositional analyses, and (iv) providing better feedback for fault localization.
In addition to these direct benefits come features such as the exploration of reach-
able modes or the formulation of properties about the specification (by referring
to mode requirements). This allows a mode-aware tool supporting CoCoSpec
to provide several means to raise trust in the specification.

CoCoSpec: A Mode-Aware Contract Language for Reactive Systems 365

We added full support for CoCoSpec to the Lustre model-checker Kind 2.
We demonstrated the usefulness of compositional reasoning in the context of
CoCoSpec by applying it successfully to the TCM, a flight-critical system case
study which, due to its realistic functionality, size, and complexity, is not amenable
to monolithic analyses.

Future Work. Kind 2 is also able to generate a concrete trace of inputs for
each path in the tree of reachable modes. We conjecture that, by exploring the
reachable modes of a contract, it is possible to generate specification-based test
cases which are of better quality than those produced by syntactic test generation
techniques. This is particularly relevant for outsourced components, which are
often provided by subcontractors in executable form only. For such components,
test cases are the only means to verify contract compliance. We plan to evaluate
our conjecture experimentally in future work.

References

1. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 82–96. Springer, Heidelberg (2015)

2. Barnes, J.G.P.: High Integrity Software - The SPARK Approach to Safety and
Security. Addison-Wesley, Boston (2003)

3. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

4. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.:
Verifying the safety of a flight-critical system. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 308–324. Springer, Heidelberg (2015)

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780. Springer International
Publishing, Switzerland (2016, to appear)

6. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Validation of requirements for hybrid
systems: a formal approach. ACM Trans. Softw. Eng. Methodol. 21(4), 22 (2012)

7. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: Cortellessa, V., Muccini, H., Demirörs, O. (eds.) 38th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2012. IEEE Computer
Society (2012)

8. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012)

9. Dieumegard, A., Garoche, P., Kahsai, T., Taillar, A., Thirioux, X.: Compilation
of synchronous observers as code contracts. In: Wainwright, R.L., Corchado, J.M.,
Bechini, A., Hong, J. (eds.) Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015. ACM (2015)

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

366 A. Champion et al.

11. Halbwachs, N., Fernandez, J.C., Bouajjanni, A.: An executable temporal logic to
express safety properties and its connection with the language lustre. In: Sixth
International Symposium on Lucid and Intensional Programming, ISLIP 1993
(1993)

12. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow language LUSTRE. IEEE Trans.
Software Eng. 18(9), 785–793 (1992)

13. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verifi-
cation of reactive systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.)
Algebraic Methodology and Software Technology (AMAST). Workshops in Com-
puting, pp. 83–96. Springer, London (1993)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

15. Hueschen, R.M.: Development of the Transport Class Model (TCM) aircraft sim-
ulation from a sub-scale Generic Transport Model (GTM) simulation. Technical
report, NASA, Langley Research Center (2011)

16. Jézéquel, J., Meyer, B.: Design by contract: the lessons of Ariane. IEEE Comput.
30(1), 129–130 (1997)

17. Jones, C.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University (1981)

18. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Barnat, J., Heljanko, K. (eds.) Proceedings 10th International Workshop on Paral-
lel and Distributed Methods in VerifiCation, PDMC 2011. EPTCS, vol. 72 (2011)

19. Kamp, J.: Tense logic and the theory of order. Ph.D. Thesis, UCLA (1968)
20. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:

a software analysis perspective. Form. Asp. Comput. 27(3), 573–609 (2015)
21. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In:

Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems. The Springer International Series in Engineering and Computer Sci-
ence, vol. 523, pp. 175–188. Springer, New York (1999)

22. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

23. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer,
New York (1995)

24. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer,
Heidelberg (1999)

25. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
26. Parnas, D.L.: Inspection of safety-critical software using program-function tables.

In: Duncan, K.A., Krueger, K.H. (eds.) Linkage and Developing Countries, Infor-
mation Processing, 1994, IFIP Transactions, vol. A-53. North-Holland (1994)

Modularizing Crosscutting Concerns
in Component-Based Systems

Antoine El-Hokayem1, Yliès Falcone1(B), and Mohamad Jaber2

1 Univ. Grenoble Alpes, Inria, LIG, Grenoble, France
{antoine.el-hokayem,ylies.falcone}@imag.fr
2 American University of Beirut, Beirut, Lebanon

mj54@aub.edu.lb

Abstract. We define a method to modularize crosscutting concerns in
the Behavior Interaction Priority (BIP) component-based framework.
Our method is inspired from the Aspect Oriented Programming (AOP)
paradigm which was initially conceived to support the separation of con-
cerns during the development of monolithic systems. BIP has a formal
operational semantics and makes a clear separation between architec-
ture and behavior to allow for compositional and incremental design
and analysis of systems. We thus distinguish local from global aspects.
Local aspects model concerns at the component level and are used to
refine the behavior of components. Global aspects model concerns at the
architecture level, and hence refine communications (synchronization and
data transfer) between components. We formalize global aspects as well
as their integration into a BIP system through rigorous transformation
primitives and overview local aspects. We present AOP-BIP, a tool for
Aspect-Oriented Programming of BIP systems, and demonstrate its use
to modularize logging, security, and fault-tolerance in a network protocol.

1 Introduction

A component-based approach [2] consists in building complex systems by
composing components (building blocks). This confers numerous advantages
(e.g., productivity, incremental construction, compositionality) that allow to deal
with complexity in the construction phase. Component-based design is based on
the separation between coordination and computation. The isolation of coor-
dination mechanisms allows a global treatment and analysis on coordination
constraints between components even if local computations on components are
not visible (i.e., components are “black boxes”).

A typical system consists of its main logic along with tangled code that imple-
ments multiple other functionalities. Such functionalities are often seen as sec-
ondary to the system. For example, logging is not particularly related to the main
logic of most systems, yet it is often scattered throughout multiple locations in the
code. Logging and the main code are separate domains and represent different con-
cerns. A concern is defined in [5] as a “domain used as a decomposition criterion for
a system or another domain with that concern”. Domains include logging, persis-
tence and system policies like security. Concerns are often found in different parts
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 367–385, 2016.
DOI: 10.1007/978-3-319-41591-8 25

368 A. El-Hokayem et al.

of a system, or in some cases multiple concerns overlap one region. These are called
crosscutting concerns. AOP aims at modularizing crosscutting concerns by iden-
tifying a clear role for each of them in the system, implementing each concern in
a separate module, and loosely coupling each module to only a limited number of
other modules. At a glance, AOP defines mechanisms to determine the locations
of the concerns in the system execution by introducing the concept of joinpoints
and pointcuts. Then, it determines what to do at these locations by introducing
advices. Finally, it provides a mechanism to coordinate all advices happening at a
location by introducing a process called weaving.

Motivations and Challenges. In CBSs, crosscutting concerns arise at the levels
of components [9,19] (building blocks) and architectures (communications). Inte-
grating crosscutting concerns in CBSs improves the progressiveness of building
complex systems. More importantly, it allows users to reason about crosscutting
concerns in separation, and favors correct-by-construction design.

Defining an AOP paradigm for CBSs poses multiple challenges. Firstly, the
notion of program execution, while clear in a sequential program, needs to be
redefined for CBSs. Indeed, the execution of a sequential program can be seen
as a sequence of instructions, whereas the semantics of a CBS is generally more
complex and relies on a notion of architecture imposing several constraints on
their execution. Secondly, we aim to ensure that the locations where concerns
arise in CBSs are represented homogeneously. This facilitates the verification and
instrumentation of the system when incorporating crosscutting concerns (both
at the syntactic and semantic levels). Finally, at any location, it is necessary
to identify the possible modifications of a CBS that preserve semantics and
coordination constraints.

Approach. We use the Behavior Interaction Priority (BIP) component-based
framework [2,20] with formal operational semantics. Coordination between com-
ponents is achieved by using multiparty interactions and dynamic priorities for
scheduling interactions. BIP consists of three layers: (1) Behavior which is han-
dled by atomic components; (2) Interaction that describes the collaboration
between the atomic components; (3) Priority chooses which interaction to exe-
cute out of many. BIP can be used to formally specify CBSs and generate efficient
code that implements a CBS description.

We augment the BIP framework with the aspect-oriented paradigm. We begin
by presenting the concepts of the BIP framework in Sect. 2. In general, concerns
are expressed by determining their locations in the system, and their behavior
at the given locations. Based on the formalization of concerns, we determine the
rules that govern the integration of these concerns in a BIP system. Therefore,
given an initial BIP system, and a description of concerns, we transform it so as
to include the desired concerns. We distinguish and define two types of aspects:
Global and Local. In Sect. 3, we give a full definition of global aspects and we
briefly, for the lack of space, discuss local aspects and the composition of aspects.
A full description of (1) local aspects, (2) aspect containers (which serve as a
construct for composing aspects), (3) a high-level language for writing local

Modularizing Crosscutting Concerns in Component-Based Systems 369

and global aspects; and (4) the full example can all be found in [10]. Section 4
describes the AOP-BIP tool and its evaluation on network protocol case study.
We present related work in Sect. 5 and future work in Sect. 6.

2 Behavior Interaction Priority

Behavior Interaction Priority (BIP) [2,20] allows to define systems as sets of
atomic components with prioritized interactions. We present components, inter-
actions, priorities, and their composition. An atomic component is the basic
computation unit. It is defined by its interface (i.e., a set of ports) and behavior
defined as a Labeled Transition System (LTS) extended with data. Transitions
are labeled with update functions, guards, and ports. Ports define communica-
tion and synchronization points for components. A port can be associated with
some variables (of the component), to exchange data with other components.
Ports are said to be exported by the component as they define its interface.

Definition 1 (Update function). An update function over a set of variables
X is a sequence of assignments 〈x1 := f1(X1), . . . , xn := fn(Xn)〉, where ∀i ∈
[1, n] : xi ∈ X ∧ Xi ⊆ X.

Definition 2 (Port). A port 〈p, xp〉 is defined by an identifier p and a set of
attached local variables xp (denoted by p.vars).

Definition 3 (Atomic component). An atomic component is a tuple
〈P,L, T,X〉, where:

– X is a set of variables.
– L is a set of control locations.
– P is the set of ports such that ∀p ∈ P : p.vars ⊆ X.
– T = L × P × B[X] × Exp[X] × L is the set of transitions, where B[X] (resp.

Exp[X]) is the set of boolean predicates (resp. update functions) over X.

In a transition τ = 〈�, pτ , gτfτ , �′〉 ∈ T , (1) � is the source location; (2) �′ is
the destination location; (3) pτ is a port exported by the component; (4) gτ is
the guard (a boolean predicate), a boolean function over X; (5) fτ is an update
function over X. For a component B = 〈P,L, T,X〉 we denote P , L, T , X, by
B.locs, B.ports, B.trans, B.vars, respectively. Additionally, we denote by B the
set of all atomic components. Furthermore, for a transition τ = 〈�, p, g, f, �′〉, we
denote �, p, g, f, �′ by τ.src, τ.port, τ.guard , τ.func, τ.dest , respectively.

The semantics of an atomic component B is defined as an LTS. A state of
the LTS consists of a location and valuation v of the variables of B. A transition
is labeled with port along with valuation of its variables vp, which is possibly
received from other components. A transition 〈l, p[Xp], gτ , fτ , l′〉 is possible iff
B has a transition τ = 〈�, p[Xp], gτ , fτ , �′〉 ∈ T such that: (1) the guard before
receiving the new valuation vp of the port variables holds, i.e., gτ (v) = true; (2)
the application of the computation function fτ (vp/v) yields v′.

370 A. El-Hokayem et al.

Definition 4 (Semantics of an atomic component). The semantics of an
atomic component B is the LTS SB = 〈B.locs × X, B.ports × X,→〉, where:
→= {〈〈l, v〉, p(vp), 〈l′, v′〉〉 | ∃τ = 〈l, p[Xp], gτ , fτ , l′〉 ∈ T.trans : gτ (v) ∧ v′ =
fτ (vp/v)}; and, X denotes the set of possible valuations of the variables in X.

Furthermore, we say that a port p is enabled in a state 〈�, v〉, if there exists at
least one transition τ from � labeled by p and its guard gτ (v) holds.

Interactions serve as the glue that coordinates (i.e., synchronization and data
transfer) the components through their ports. An interaction consists of one or
more ports of different atomic components, a guard on the variables of its ports,
an update function that realizes data transfer between the ports.

Definition 5 (Interaction). An interaction a is a tuple 〈Pa, Fa, Ga〉 s.t.:

– Pa ⊆ ⋃
B∈B(B.ports) is a nonempty set of ports not containing more than one

port per atomic component, i.e., ∀B ∈ B : |B.ports ∩ Pa| ≤ 1.
– Fa is an update function over

⋃
pi∈Pa

(pi.vars) executed with the interaction.
– Ga is a boolean expression, the guard of the interaction.

For an interaction a, we denote Pa, Ga, Fa, as a.ports, a.guard , a.func respec-
tively.

We fix B = {B1, . . . , Bn} as the set of atomic components where the seman-
tics of Bi is SBi = 〈QBi, PBi,→〉, i ∈ [1, n], and γ as the set of interactions.
A composite component is defined by composing atomic components using glue
consisting of interactions and priorities.

Definition 6 (Semantics of composite component). The semantics of the
composite component built with B and γ (noted γ(B)) is the LTS 〈Q, γ,→〉 where
Q = QB1 × QB2 × . . . × QBn

, and → is the least set of transitions satisfying

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({vpi}i∈I)

∀i ∈ I, qi
pi(vi)−−−−→i q′

i ∧ vi = F i
a({vpi}i∈I) ∀i �∈ I, qi = q′

i

〈q1, . . . , qn〉 a−→ 〈q′
1, . . . , q

′
n〉

where vpi is the valuation of the variables attached to port pi and F i
a is the partial

update function derived from Fa restricted to the variables of pi.

An interaction a is enabled iff its guard Ga holds and all of its ports are enabled.
An enabled interaction is selected from the complete list of interactions, based
on the current states of the atomic components. The BIP engine selects one
of the enabled interactions and executes its update function Fa, which may
modify its port variables. Then, the involved atomic components execute their
corresponding transitions given the new valuations vi received by the selected
ports. In the following, we consider a composite component C = γ(B) with
behavior 〈Q, γ,→〉.

Multiple interactions can be enabled in a configuration. Priorities are used
to filter the enabled interactions and reduce non-determinism.

Modularizing Crosscutting Concerns in Component-Based Systems 371

Definition 7 (Priority). A priority model π over C is a strict partial order
on the set of interactions γ. We abbreviate 〈a, a′〉 ∈ π by a ≺π a′. Adding π to
C results in a new composite component C′ = π(C) which semantics is the LTS
〈Q, γ,→π〉 where →π is the least set of transitions satisfying the following rule:

q
a−→ q′ ¬(∃a′ ∈ γ,∃q′′ ∈ Q : a ≺π a′ ∧ q

a′
−→ q′′)

q
a−→π q′

Whenever according to π an interaction a ∈ γ is selected, there does not exist
an enabled interaction in γ which has higher priority than a.

A composite component obtained by the composition of a set of atomic com-
ponents can be composed with other components (composite or atomic) in a
hierarchical and incremental fashion using the same operational semantics. For
the scope of this paper, we flatten a hierarchical composite component to obtain
a non-hierarchical one (i.e., consisting only of atomic components and simple
interactions) using the method presented in [4]. The non-hierarchical compos-
ite component is subsequently referred to as the BIP model. A BIP system is
constructed by composing atomic components using interactions and priorities
(to form the BIP model), with an initial state (initial locations and variable
initialization of atomic components).

Definition 8 (BIP system). A BIP system is a tuple 〈C, q0〉, where q0 =
〈Init , v〉 is the initial state with Init ∈ B1.locs × . . . × Bn.locs being the tuple of
initial locations of atomic components, and v ∈ XInit is the tuple formed by the
initial valuations of all variables in atomic components XInit ⊆ ⋃

B∈B(B.vars).

Fig. 1. Two communicating agents

Example 1 (BIP System). Figure 1 depicts a BIP system composed of two atomic
components: Ping and Pong. The Ping component has one variable p1 initialized
to a random number and two locations IDL and SND, and two ports send1 and
recv1. We associate the variable p1 with both send1 and recv1. Initially, the
Ping and Pong components are at the IDL locations. From location IDL, in
component Ping, port send1 is enabled, since the guard of the transition from

372 A. El-Hokayem et al.

IDL to SND holds. Similarly the transition from IDL to REP in Pong is possible, and
recv2 is enabled. The interaction that has both ports send1 and recv2 enabled,
and its guard holding, is now enabled. Since no other interaction is enabled, it
executes. Its update function executes the data transfer using the ports send1
and recv2 and their associated variables p1 and p2. Then, the update function
of each transition executes (generating the acknowledgment packet in Pong).
Ping will move to location SND and Pong to REP. Similarly, on the next step, the
acknowledgement is sent back to Ping and it generates a new number. The two
interactions ensure synchronization between the two components.

3 Modularizing Crosscutting Concerns in BIP

We address the concerns arising in the global view, namely the view where atomic
components are black boxes and only the interactions are accessible.

3.1 Preliminaries

For the rest of the paper, we fix an arbitrary BIP-system 〈C, q0〉 where C =
π(γ(B)) with semantics S = 〈Q, γ,→〉.

We abstract the execution of a BIP system as a trace. Then, we define oper-
ations for inspecting data access and control flow.

Definition 9 (BIP trace). A BIP trace ρ = (q0 ·a0 ·q1 ·a1 · · · qi−1 ·ai−1 ·qi) is
an alternating sequence of states of S and interactions in γ; and qk

ak−→ qk+1 ∈→,
for k ∈ [0, i − 1].

A global event defines an interaction execution moving the system from a state
to another state. From a trace, one can extract a sequence of global events.

Definition 10 (Global events). The sequence of global events Eρ extracted
from the trace ρ = (q0 · a0 · q1 · · · ai−1 · qi−1 · ai−1 · qi) is (E0 · E1 · · · Ei−1) where
Ek = 〈qk, ak, qk+1〉, for k ∈ [0, i − 1].

Definition 11 (readvar and writevar). Given a set of variablesX and an update
function f = 〈x1 := f1(X1), . . . , xn := fn(Xn)〉 as per Definition 1:

– readvar(f) = X1 ∪ X2 ∪ . . . ∪ Xn denotes the read variables;
– writevar(f) = {x1, x2, . . . , xn} denotes the modified variables.

3.2 Global Joinpoints

In the global view, we focus on the atomic components used in a composite
component. These components only export their ports, on which interactions are
defined. Generally, each atomic component computes its enabled ports. Given
the enabled ports and the guards of the interactions, the composite compo-
nent executes one interaction which has: (1) all its ports enabled, (2) its guard
holds, (3) there does not exist another interaction with higher priority which is

Modularizing Crosscutting Concerns in Component-Based Systems 373

also enabled. At the interaction level, the following operations exist: interaction
enablement1 and interaction execution.

Whenever an interaction executes, three kinds of global joinpoints can be
identified: (1) Synchronization between different atomic components; (2) One
or more atomic components sending data; (3) One or more atomic components
receiving data. In the case of the global view, a joinpoint is simply any event
appearing in the execution (in the sense of Definition 10). For the rest of the
section, we consider E to be the set of all reachable events in 〈C, q0〉 with →.

Definition 12 (Global joinpoint). A global joinpoint is a global event E ∈ E.

3.3 Global Pointcuts

Since we only consider the interaction execution joinpoint, we consider criteria
for matching interactions and relate them to global joinpoints. To select a set of
interactions, we use constraints over their associated ports (and their variables)
and the involved data transfer. For this, a global pointcut expression has three
parts: the ports themselves, a set of read variables, and a set of write variables.
Note that the port variables should be involved in the computation function of
the interaction. In Sect. 3.4, we use the read and written variables to define the
context information passed to the advice.

Definition 13 (Global pointcut). A global pointcut is a 3-tuple 〈p, vr, vw〉
that satisfies the following constraints:

– p ⊆ ⋃
B∈B(B.ports) is a set of ports.

– vr ⊆ ⋃
pi∈p(pi.vars) is the set of read variables.

– vw ⊆ ⋃
pi∈p(pi.vars) is the set of modified variables.

Definition 14 (Matching a global joinpoint with a global pointcut).
A global event 〈q, a, q′〉 is a joinpoint selected by a global pointcut 〈p, vr, vw〉
iff 〈q, a, q′〉 � 〈p, vr, vw〉, where:
〈
q, a, q′〉 � 〈p, vr, vw〉 iff p ⊆ a.ports ∧ vr ⊆ readvar(a.func) ∧ vw ⊆ writevar(a.func).

A global event 〈q, a, q′〉 matches a global pointcut 〈p, vr, vw〉 if the interaction a
involves all the ports in p, and its update function reads from the variables in
vr and writes to the variables in vw.

A global pointcut captures interaction execution. For this purpose, we cap-
ture the interactions on the syntax of BIP models. Matching a global pointcut
consists in selecting a subset of the interactions of a composite component.

Proposition 1. (〈q, a, q′〉 � gpc) iff a ∈ matchg(C, gpc), where: matchg

(C, 〈p, vr, vw〉) = {a′ ∈ γ | p ⊆ a′.ports ∧ vr ⊆ readvar(a′.func) ∧ vw ⊆
writevar(a′.func)}
1 In this paper, we only consider interaction execution because of the complexity of

matching interaction enablement which requires to include the BIP engine as part
of the BIP model. To consider interaction enablement, it is better to interface with
the BIP engine, meaning re-implement the BIP runtime.

374 A. El-Hokayem et al.

The proposition ensures that an event is a joinpoint (i.e., 〈q, a, q′〉 � gpc)) iff its
interaction a is syntactically selected (i.e., a ∈ matchg(C, gpc)).

Example 2 (Interactions matched by a pointcut). Figure 2a shows the interac-
tions obtained by matching four pointcuts:

1. 〈{pa1, pb1} , ∅, ∅〉 matches all interactions including {pa1, pb1} in their ports,
that is, it only matches a0 as it is the only interaction involving both ports.

2. 〈{pb2} , ∅, ∅〉 matches all interactions including {pb2} in their ports, that is, it
matches interactions a1 and a3, since they both involve pb2.

3. 〈{pb2} , {xb} , ∅〉 matches interactions including {pb2} and which computation
reads variable xb associated with pb2. The pointcut only matches a1.

4. 〈{pd1} , {xd} , {xd}〉 matches interactions that include {pd1} and which com-
putation read and write the variable xd associated with pd1 (to receive data).
The pointcut only matches a1.

3.4 Global Advice and Global Aspect

A global advice defines the possible actions allowed on a global joinpoint 〈q, a, q′〉.
These actions are restricted to two update functions fb and fa respectively before
and after the interaction function a.func. Moreover, a global advice can only
modify the ports that it matches, as interactions could include other ports. The
non-matching ports and their variables are hidden from the advice as per appli-
cation of Demeter’s law [18]. Given a global pointcut pc = 〈{p1, . . . , pn} , vr, vw〉,
an advice is restricted to the ports {p1, . . . , pn} and their variables, and a set of
extra variables V called the inter-type variables.

Definition 15 (Global advice). Given a set of ports p ⊆ ⋃
B∈B B.ports and

a set of inter-type variables V , Xadv = V ∪ ⋃
pi∈p(pi.vars) is the set of advice

variables. A global advice is a pair of functions 〈fb, fa〉 such that:

– (readvar(fb) ∪ writevar(fb)) ⊆ Xadv, and
– (readvar(fa) ∪ writevar(fa)) ⊆ Xadv.

The global advice bound to p and V is noted gadv(p, V).

The functions fb and fa are referred to as the before and after advice functions,
respectively. The variables that they read and write (captured with readvar and
writevar, respectively) should be variables of the advice.

We bind an advice to a pointcut expression with a global aspect. The advice
should then apply to every joinpoint that the pointcut matches.

Definition 16 (Global aspect). A global aspect is a tuple 〈C, V, gpc, 〉
〈gadv(p, V)〉 such that:

– C is a composite component (as per Definition 8);
– V is the set of variables associated with the aspect;
– gpc = 〈p, vr, vw〉 is the global pointcut (as per Definition 13);
– gadv(p, V) is the global advice (as per Definition 15).

Modularizing Crosscutting Concerns in Component-Based Systems 375

A global aspect therefore acts as a constraint between the pointcut and the
advice. It ensures that the ports referred to the pointcut are the same for the
advice, and that the advice has access to the variables of all ports in p and V .

Example 3 (Global Advice and Global Aspect). The global aspect:

〈C, {v0} , 〈{pd1} , {xd} , {xd}〉 , 〈v0 := xd, xd := v0〉〉

defines the inter-type variable v0. It also defines the pointcut to match the inter-
actions that include port pd1 and which update function reads and writes to
xd. The advice’s before and after update functions are respectively 〈v0 := xd〉
and 〈xd := v0〉; saving the value of xd in v0 before the update function exe-
cutes and then setting it back afterwards. The pointcut matches a1 as shown in
Fig. 2a and specifies that a1 should execute the following sequence of instruc-
tions: 〈(v0 := xd), (xd := xd + xb), (xd := v0)〉. An advice function in this case
can only access {v0} ∪ pd1.vars. The advice functions have no access to xb, as it
is not related to the port pd1 but pb2. This aspect disallows all interactions that
read and write to xd to modify its value.

3.5 Global Weaving

Using the binding of an advice to a pointcut, the weaving procedure instruments
the BIP model. The procedure ensures that whenever a joinpoint matched by a
pointcut occurs, the BIP system executes the advice. Recall that interactions are
stateless (i.e., they have no variables of their own), but they rely on data transfer
from ports. Variables can only be defined in atomic components. Therefore, the
weaving procedure must create an extra atomic component (so called inter-type
component) that contains the variables of the aspect along with necessary ports
and interactions. The weaving operation is only concerned with syntactically
modifying the system representation. For this, we separate the two notions of
matching to find the locations to modify from the instrumentation itself. We
therefore define first the transformation procedure and then its application with
matching.

The transformation procedure uses the following parameters:

– A BIP composite component C;
– A set of interactions I resulting from syntactically matching a pointcut;
– A set of extra variables (i.e., the inter-type variables);
– The two functions fb and fa of the advice.

Accordingly, we create a new BIP composite component where the update func-
tion of each a ∈ I is preceded by fb and followed by fa. In the following, we
describe the weaving of a global aspect which requires weaving of the inter-type
component and weaving of the advice.

Generating an Inter-type Component. We first define the inter-type component.

376 A. El-Hokayem et al.

Definition 17 (Inter-type component). The inter-type component asso-
ciated to the set of inter-type variables V is defined as BV =
〈{pV } , {�0} , {〈�0, pV , true, 〈〉, �0〉} , V 〉 where pV = 〈pV , V 〉.
BV contains V as its variables, one port pV = 〈pV , V 〉 with all the variables
attached to it, and one control location with a transition labeled with pV and
guarded with the expression true. This ensures that the port will not stop any
other interaction from executing once connected to it. The inter-type component
is added to the set of atomic components B of the BIP system.

Example 4 (Adding an inter-type component to a system). Figure 2b depicts C′ =
π(γ(B ∪{BV })) where V = {v0, v1} and C = π(γ(B)). A new atomic component
BV is created. BV has two local variables v0 and v1 and has its port pV always
enabled. The variables in V are attached to pV .

Weaving the Advice. Once the inter-type component is added to the system, the
advice is woven by connecting the existing interactions to it.

Definition 18 (Global weave). Given a composite component C = π(γ(B)),
a set of interactions I, an inter-type V , and a global advice adv = 〈fb, fa〉, the
global weave is defined as C′ = weaveg(C, I, V, adv) where C′ = π(γ′(B′)) is the
new composite component; with:

– B′ = B ∪ {BV } is the new set of atomic components;
– BV = 〈{pV } , {�0} , {〈�0, pV , true, 〈, 〉�0〉} , V 〉 is the inter-type component iden-

tified by V (as per Definition 17);
– γ′ is defined as {m(a) | a ∈ γ} with:

m(a) : γ → γ′ =
{ 〈a.ports ∪ {pV } , fb · a.func · fa, a.guard〉 ifa ∈ I,

a otherwise.

The inter-type component BV is added to B. The interactions that require instru-
mentation (i.e., a ∈ (γ ∩ I)) are extended with the port pV so as to have access
to the inter-type variables and their computation function is prepended with
fb and fa. The interactions not matched (i.e., a ∈ (γ \ I)) are unmodified and
copied. Priorities (π) are not modified, thereby preserving the priorities on the
interactions.

Example 5. Figure 2b displays the weave on the set of interactions {a1} with
the set of inter-type variables V = {v0, v1} of the advice 〈fb, fa〉. A new atomic
component is created BV that has two local variables v0 and v1 and has its port
pV always enabled. The variables in V are attached to pV .

– The interaction a1 is connected to pV so as to allow access to V on which fb

and fa can operate.
– The computation fb is prepended to a1.func so as to execute before and fa is

appended to a1.func so as to execute after.

Modularizing Crosscutting Concerns in Component-Based Systems 377

Fig. 2. Matching and weaving a global aspect

– Since pV is always enabled, the interaction a1 will be enabled when pb2 and pd1
are both enabled and g1 holds. The extension to pV does not affect enablement.

– Once a1 is executed if fb or fa write onto pV .vars, they will then be received
in BV and changed accordingly.

We now define the operation that takes a global aspect, matches its pointcut
expression, and weaves the result into the model.

Definition 19 (Weaving of a single global aspect). Weaving a global aspect
GA = 〈C, V, gpc, 〈fb, fa〉〉 into a composite component C is noted C�g GA and yields
a new composite component C′ = weaveg(C,matchg(C, gpc), V, 〈fb, fa〉).

Correctness of Weaving. We consider E ′ (resp. E), to be the set of reachable
events in the resulting (resp. original) BIP system 〈C′, q′

0〉 (resp. 〈C, q0〉) where
C′ = C �g 〈C, V, gpc, 〈fb, fa〉〉. We begin by defining function remg : E ′ → E ∪ {ε}.
Function remg removes the global advice from an event in E ′ and constructs a
similar event in E or the empty event ε if it does not match the advice.

remg(〈qs, a, qe〉) =
{ 〈q′

s, a
′, q′

e〉 if ∃f : a.func = fb · f · fa

ε otherwise

with:

– a′ = 〈a.ports \ {pV } , f, a.guard〉 where a.func = f s.t. ∃f : fb · f · fa.
– q′

s and q′
e exclude the valuations of V from qs and qe, respectively.

The following proposition expresses the correct application of the advice on
the joinpoints selected by a pointcut expression.

Proposition 2 (Weaving correctness). ∀ 〈q, a, q′〉 ∈ E ′ : ∃f : a.func =
〈fb · f · fa〉 iff (e′ �= ε ∧ e′ � gpc) s.t. e′ = remg(〈q, a, q′〉)
We say that an interaction’s update function satisfies an advice application if
its update function (a.func) starts with fb and ends with fa (i.e., the advice’s

378 A. El-Hokayem et al.

before and after update functions). This proposition states that any event’s
interaction satisfies an advice application iff we can construct an event e′ without
the advice fb and fa (e′ = remg(〈q, a, q′〉)) which matches gpc (e′ � gpc) in the
original system. Since an advice can add extra behavior like reading and writing
to variables, it can cause the event to match more joinpoints, therefore it is
removed before matching with gpc.

3.6 Overview of Local Aspects

Due to lack of space, we only give an overview of local aspects. In this view, we
focus on atomic components seen as white boxes and seek to refine their behavior.
An atomic component’s state is studied to locate possible points where cross-
cutting concerns apply. Since in this view we see components as whiteboxes, we
have knowledge of the full BIP system and can extract a local execution trace
for a given atomic component. An atomic component has control locations, vari-
ables, and transitions labeled with ports, guards and computation functions.
At this level, concerns need to be managed at the following points: port execu-
tion/enablement, guard evaluation, access and modification of state’s variables
(i.e., location and local variables).

The local advice defines the possible actions to be injected at a local joinpoint.
Similarly to a global advice (Definition 15), a local advice executes two functions
before and after the local joinpoint. The functions of a local advice may only
modify the variables of the atomic component and an extra set of inter-type
variables V , specific to the local aspect. Furthermore, in order to increase the
expressiveness of the local advice, a local advice may change the location of the
atomic component depending on a specific guard.

3.7 Weaving Multiple Aspects

When weaving multiple aspects, specific problems and extra considerations arise.
Whenever a new concern is added to the joinpoint, it is possible to interfere
with the existing concern at the joinpoint. This behavior is called interference.
We manage multiple aspects by grouping them in modules (called containers).
Local containers (resp. global containers) apply to local (resp. global) aspects.
Containers define an order on the aspects they encapsulate so that the weaving
order is deterministic. Moreover, containers ensure that aspects share the same
inter-type variables. In the case of local containers, local aspects are further
required to operate on the same atomic component encouraging encapsulation,
since aspects that operate on different atomic components do not interfere and
cannot share inter-type variables. Weaving multiple aspects is fully described
in [10].

Modularizing Crosscutting Concerns in Component-Based Systems 379

4 Implementation

4.1 AOP-BIP: Aspect-Oriented Programming for BIP Systems

AOP-BIP is a proof-of-concept, aspect-oriented extension to BIP. AOP-BIP lan-
guage supports both global and local aspects. Moreover, AOP-BIP’s command
line front-end takes as input: (1) a .bip file that represents a BIP system written
in the BIP language [23]; and (2) a list of .abip files that describe the aspects.
AOP-BIP produces an output BIP model where the aspects are woven.

4.2 Example

A network protocol is used to illustrate the handling of crosscutting concerns
in BIP and is shown in Fig. 3. The Network composite component consists of a
Server, Client and a Channel. The double circles denote the start locations for
each component. The Server waits for the clear-to-send signal on its cts port

Fig. 3. The Network composite component

380 A. El-Hokayem et al.

Fig. 4. Authentication aspects and trace

indicating that a channel is available. It then generates a packet and sends it to
the channel. The channel forwards the packet to the client which acknowledges
it. The channel will then send the acknowledgement back to the server.

Crosscutting Concerns. The network protocol is augmented by refining its speci-
fication. The correctness of our transformation ensures that the crosscutting con-
cerns are rigorously handled. First, logging is introduced by capturing port exe-
cutions locally in all components. Second, security is added in the form of authen-
tication. A signature (hash) is added to the packet and checked. To accomplish
the above we introduce two local aspects. The various aspects along with the out-
put are displayed in Fig. 4. The first intercepts the Server’s cts port execution
and adds the signature once the server is ready to send, by modifying the packet
stored in the local variable p. The second intercepts the Channel’s add1 port execu-
tion, this port executes when a packet from the Server is sent. The advice verifies
the signature (using check(p)) and stores the result (logical 0 or 1) in an inter-
type variable clear. The advice also adds a reset location to IDL if the verifica-
tion failed (clear == 0), preventing the Channel from forwarding the packet to
the Client. The Carol aspect is added to modify the packet in transit to dis-
play a failed authentication. The global pointcut expression matches: (1) ports
server.send and channel.add1, and (2) variable server.send.r. The advice in
the Carol aspect changes the value of channel.add1.r after the execution of any
interaction that matches the pointcut. Normally the system will execute the packet
transfer by reading a.r and modifying b.r. The advice function instead will over-
ride b.r by generating a fake packet from a.r using pfake(a.r). The output displays
a successful and an unsuccessful attempt. The packet is represented by a number
and the signature is the last digit in the number. We first notice that the first aspect
added |6 to the packet 886 and the second aspect removed it when the channel for-
warded it (Channel1.rem1). Carol replaces the first packet 886 with 386, which
both have the same signature (6). The verification succeeds in this case unlike in
the second try, when 763 is replaced by 736 since the signature of 736 is 6 but not
3. Third, congestion avoidance is added by computing the round-trip time of the

Modularizing Crosscutting Concerns in Component-Based Systems 381

message and then waiting before sending further messages. Fourth, basic fault tol-
erance is introduced in the form of a failsafe mechanism. The system deadlocks
and then terminates safely, after the server fails to receive a certain number of
acknowledgments.

Coverage of Concerns. The coverage of the concerns is shown in Table 1. Column
Transitions reports the number transitions that have been modified including the
number of added transitions for reset locations. Column Interactions reports the
number of modified interactions. Column OT (resp. OI) reports the number
of transitions (resp. interactions) that overlap with other concerns. Interfering
concerns are reported in column OC. Concerns are indicated by label (1–4). We
illustrate concerns that target multiple areas in the system. Without using our
tool, implementing these concerns would require to edit a significant part of the
system. For instance, in the case of logging, the code must be inserted in 10
transitions, of which half overlap with other concerns.

Table 1. Crosscutting concerns in Network

Concern Transitions Interactions OT OI OC

1 Logging 10 0 5 0 2,3

2 Authentication 2 1 2 1 1,3.4

3 Congestion 5 0 4 0 1,2

4 Fault Tolerance 0 3 0 1 2

Network 12 5

5 Related Work

AOP for CBS. Pessemier et al. [21] present a framework to deal with cross-
cutting concerns in CBSs. It is a symmetric approach that presents aspects as
components containing the advice and additional interfaces, and are therefore
integrated homogeneously within the system. Joinpoints are a combination of
interfaces of different components. Thus, components are seen as black boxes.
The approach has several advantages. First it explicitly models dependencies
between aspects and components, and allows for their composition at an archi-
tectural level. Second, it allows the aspects to be manipulated and reconfigured
at runtime. Third, it clearly defines the relationships (1) between aspects and
other aspects, and (2) between aspects and the components they modify. This
approach however does not consider the semantics of interactions. It targets arbi-
trary interface signatures, so the implementation itself must explicitly address
the synchronization amongst the different components and data transfer.

Similarly, other works such as [9,19] have been done to integrate AOP into
CBSs as well. These approaches are however asymmetric and subsumed by [21].

382 A. El-Hokayem et al.

Duclos’ approach [9] defines two languages to integrate aspects. Lieberherr’s
approach [19] defines aspects as part of the modules they apply to, and compares
the expressiveness of the approach with both AspectJ and HyperJ [22].

SAFRAN [6] differs from the above approaches by using AOP in the Fractal
component model to define adaptation policies.

Formalization of Aspects. None of the above approaches relies on formal models.
Work to formalize aspects in programs has been undertaken by [16]. The app-
roach specifies different categories of aspects and how they affect various classes
of properties (safety, liveness). The work has been extended by Djoko et al. [8]
by expanding the categories and defining languages of aspects. The languages
of aspects ensure by construction that aspects written with them fit a specific
category. Additional tools for verification and analysis of aspects and their inter-
ferences have been developed and are presented in [17]. Larissa [1] is a language
for handling crosscutting concerns in reactive systems modeled as the composi-
tion of Mealy automata. The matching is done by assigning monitor programs
that look for a specific execution trace. Joinpoints are then associated with the
input history. Advices consist of two types: toInit and recovery. The toInit
advice places the program back in its original state. The recovery advice con-
sists of restoring the program to the last recovery state it was in. A recovery state
is determined by a monitor: the recovery program. The recovery states are asso-
ciated with specific execution traces and are matched similarity to joinpoints.
Compared to our approach, Larissa supports joinpoints based on the input his-
tory. It can also be seen as symmetric since aspects are introduced in the syn-
chronous language used. However, the underlying model is conceived for reactive
systems, and not CBSs, it does not have a clear distinction between communica-
tion and components, and thus does not distinguish between aspects related to
components and communications. The communication model is based on simple
input/output matching. Moreover, advices are not expressive and only consider
reset/restore the state of the system. Formalizing aspects in the BRIC compo-
nent model has been undertaken by [7]. BRIC formalizes component behavior
and their interactions using the Communicating Sequential Processes (CSP) lan-
guage. Unlike our approach, it is symmetric, aspects, pointcuts and advices are
described in CSP, and woven using CSP operators. Additionally, it targets inter-
actions and not the components themselves. It regards components as black
boxes. Verification on the resulting woven system is possible in both approaches.
However, BIP has a strong expressive synchronization primitive [3] which is more
expressive than CSP [14]. This allows more concerns to be formalized.

6 Future Work

Future work comprises five directions. The first consists in capturing more
joinpoints and extending the possible behavior of advices. Possible new join-
points include variable in interaction guard, specific values of variables. Advices
can be extended to modify guards on matching transitions and interactions.

Modularizing Crosscutting Concerns in Component-Based Systems 383

The second consists in applying CBS methods to define advices and aspect com-
position. This helps integrate AOP in BIP symmetrically, where aspects are
implemented as components and interactions within the existing system. This
would allow to enable or disable aspects in the system, and specify more complex
advices (i.e., advices as components instead of update functions and extra transi-
tions). The third consists in elaborating new ways to compose aspects by finding
new criteria to order them. Aspects can be re-ordered in a container based on
their pointcut expressions, by grouping those which affect the same transitions or
interactions, and whether or not they modify the existing variables (read/write
aspects). Additionally, the language could be extended to allow the explicit def-
inition of precedence rules. The fourth consists in implementing model-to-model
transformations using Domain Specific Languages inspired by ATL [15] target-
ing the BIP model and comparing their expressiveness with our approach. The
fifth is to integrate existing crosscutting concerns (such as monitoring [11]) with
AOP-BIP, and in particular existing work such as [12,13].

Acknowledgement. The work reported in this article is in the context of the COST
Action ARVI IC1402, supported by COST (European Cooperation in Science and Tech-
nology). Moreover, the authors acknowledge the support of the University Research
Board (URB) at American University of Beirut.

A Proofs

We first prove that the global joinpoints can be selected syntactically
(Proposition 1), and then prove the correctness of advice application
(Proposition 2).

Proof (Proof of Proposition 1). We consider a global event 〈q, a, q′〉 ∈ E and a
global pointcut expression 〈p, vr, vw〉. The proof follows from the definition of
matchg(C, gpc) which selects all interactions matching the criteria that should
be matched by (Ei = 〈q, a, q′〉 � gpc).

(〈q, a, q′〉 � 〈p, vr, vw〉) iff p ⊆ a.ports
∧ vr ⊆ readvar(a.func)
∧ vw ⊆ writevar(a.func) (Definition 14)

iff a ∈ matchg(γ, gpc) (Def. of matchg)

Proof (Proof of Proposition 2). We assume that fb and fa can be uniquely deter-
mined and are not empty. It is possible to add an assignment statement at the
start and end of each fb and fa which has no effect and is not present in the
original system and acts as a marker (example: x = x + NUM − NUM , with
NUM being a unique number not found in any other assignment). We consider
an event 〈qs, a, qe〉 ∈ E ′, and remg(〈qs, a, qe〉) = 〈q′

s, a
′, q′

e〉 the constructed event
without the advice.

384 A. El-Hokayem et al.

∃f : a.func = 〈fb · f · fa〉 iff ∃a′ ∈ γ : m(a′) = a ∧ a′ ∈ I) (Definition 18, m())
iff a′ ∈ matchg(C, gpc) (Definition 19)
iff (〈q′

s, a
′, q′

e〉 � gpc) (Proposition 1)
iff remg(〈qs, a, qe〉) � gpc)

An event interaction’s update function a.func starts with fb and ends with fa,
according to the definition of m() in Definition 18 iff it is the result of weaving the
advice on it from an interaction a′ (∃a′ ∈ γ : m(a′) = a∧a′ ∈ I). The interaction
a′ is in I iff it was selected by the local pointcut expression (a′ ∈ matchg(C, gpc)).
According to Proposition 1, any event with interaction a′ ∈ matchg(C, gpc) is a
joinpoint, specifically 〈q′

s, a
′, q′

e〉 = remg(〈qs, a, qe〉).

References

1. Altisen, K., Maraninchi, F., Stauch, D.: Aspect-oriented programming for reactive
systems: larissa, a proposal in the synchronous framework. Sci. Comput. Program.
63(3), 297–320 (2006)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

3. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: Proceedings of the 19th International Conference on Concurrency Theory,
pp. 508–522 (2008)

4. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in BIP. IEEE Trans. Ind. Inform. 6(4), 708–718 (2010)

5. Czarnecki, K., Eisenecker, U.W., Steyaert, P.: Beyond objects: generative pro-
gramming. In: The 23rd International Conference on Software Engineering, pp.
5–14 (1997)

6. David, P.-C., Ledoux, T.: An aspect-oriented approach for developing self-adaptive
fractal components. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089,
pp. 82–97. Springer, Heidelberg (2006)

7. Dihego, J., Sampaio, A.: Aspect-oriented development of trustworthy component-
based systems. In: Leucker, M., et al. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
425–444. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25150-9 25

8. Djoko, S.D., Douence, R., Fradet, P.: Aspects preserving properties. Sci. Comput.
Program. 77(3), 393–422 (2012)

9. Duclos, F., Estublier, J., Morat, P.: Describing and using non functional aspects
in component based applications. In: AOSD, pp. 65–75 (2002)

10. El-Hokayem, A., Falcone, Y., Jaber, M.: http://ujf-aub.bitbucket.org/aop-bip/
11. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Engi-

neering Dependable Software Systems, vol. 34, pp. 141–175. IOS Press (2013)
12. Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S.: Runtime verification

of component-based systems in the BIP framework with formally-proved sound
and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015)

13. Falcone, Y., Jaber, M.: Fully automated runtime enforcement of component-based
systems with formal and sound recovery. Int. J. Softw. Tools. Technol. Transf. 1–25,
(2016). doi:10.1007/s10009-016-0413-6. ISSN:1433-2787

http://dx.doi.org/10.1007/978-3-319-25150-9_25
http://ujf-aub.bitbucket.org/aop-bip/
http://dx.doi.org/10.1007/s10009-016-0413-6

Modularizing Crosscutting Concerns in Component-Based Systems 385

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

16. Katz, S.: Aspect categories and classes of temporal properties. In: Rashid, A.,
Akşit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS,
vol. 3880, pp. 106–134. Springer, Heidelberg (2006)

17. Katz, S., Faitelson, D.: The common aspect proof environment. STTT 14(1), 41–52
(2012)

18. Lieberherr, K.J., Holland, I.M.: Formulations and benefits of the law of demeter.
SIGPLAN Not. 24(3), 67–78 (1989)

19. Lieberherr, K.J., Lorenz, D.H., Ovlinger, J.: Aspectual collaborations: combining
modules and aspects. Comput. J. 46(5), 542–565 (2003)

20. Noureddine, M., Jaber, M., Bliudze, S., Zaraket, F.A.: Reduction and abstraction
techniques for BIP. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol.
8997, pp. 288–305. Springer, Heidelberg (2015)

21. Pessemier, N., Seinturier, L., Duchien, L., Coupaye, T.: A component-based and
aspect-oriented model for software evolution. IJCAT 31(1/2), 94–105 (2008)

22. Tarr, P., Ossher, H.: Hyper/J: multi-dimensional separation of concerns for Java.
In: Proceedings of the 23rd International Conference on Software Engineering, pp.
729–730 (2001)

23. Verimag: BIP Tools. http://www-verimag.imag.fr/BIP-Tools,93.html

http://www-verimag.imag.fr/BIP-Tools,93.html

Tightening a Contract Refinement

Alessandro Cimatti, Ramiro Demasi(B), and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,demasi,tonettas}@fbk.eu

Abstract. Contract-based design is an emerging paradigm for correct-
by-construction hierarchical systems: components are associated with
assumptions and guarantees expressed as formal properties; the architec-
ture is analyzed by verifying that each contract of composite components
is correctly refined by the contracts of its subcomponents.

The approach is very efficient, because the overall correctness proof is
decomposed into proofs local to each component. However, part of the
complexity is delegated to the designer, who has the burden of specifying
the contracts. Typical problems include understanding which contracts
are necessary, and how they can be simplified without breaking the cor-
rectness of the refinement.

In this paper, we tackle these problems by proposing a new technique
to understand and simplify a contract refinement. The technique, called
tightening, is based on parameter synthesis. The idea is to generate a set
of parametric proof obligations, where each parameter evaluation corre-
sponds to a variant of the original contract refinement, and to search for
tighter variants of the contracts that still ensure the correctness of the
refinement. We cast this approach in the OCRA framework, where con-
tracts are expressed with LTL formulas, and we evaluate its performance
and effectiveness on a number of benchmarks.

1 Introduction

Embedded systems are growing in number and technical complexity. They are
becoming more and more sophisticated towards open, interconnected and net-
worked systems. Such complexity requires a rigorous analysis especially for
those functions that have safety-critical requirements. Formal architectural mod-
els provide an important means to guarantee the correct refinement of system
requirements along the design development and decomposition of the system.

Contract-based design, first conceived for software specification by Meyer
in [20] and nowadays also applied to embedded systems (cfr. e.g., [2–4,12,14–
16,22]), is an emerging paradigm for correct-by-construction systems which
structures components properties into contracts. A contract specifies the prop-
erties assumed to be satisfied by the component environment (assumptions),
and the properties guaranteed by the component in response (guarantees). The
architecture is analyzed by verifying that each contract of composite components
is correctly refined by the contracts of its subcomponents.

c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 386–402, 2016.
DOI: 10.1007/978-3-319-41591-8 26

Tightening a Contract Refinement 387

In the contract framework proposed in [12,13], assumptions and guarantees
are specified as temporal formulas. Checking the correctness of contracts refine-
ment is supported by generating a set of necessary and sufficient conditions.
These proof obligations are temporal formulas obtained from assumptions and
guarantees, which are valid if and only if the refinement is correct. The app-
roach is implemented in the OCRA tool [8] and is parametrized by a linear-time
temporal logic, either propositional LTL [21], or LTL with SMT predicates [11],
or HRELTL [10,11], a variant of LTL where formulas represent sets of hybrid
traces, mixing discrete- and continuous-time steps, and therefore amenable to
model properties of hybrid systems. The approach has been used in several con-
texts and domains. A significant case study is presented in [5], where different
variants of an industrial-size architectural model of a wheel braking system are
analyzed, following the example outlined in the avionic AIR6110 standard.

The approach is very efficient, because the overall correctness proof is decom-
posed into proofs local to each component. However, part of the complexity is
delegated to the designer, who has the burden of specifying the contracts. Typi-
cal problems include understanding which contracts are necessary, and how they
can be simplified without breaking the correctness of the refinement.

In this paper, we tackle these problems by proposing a new technique to
understand and simplify a contract refinement. The technique, called tightening,
is based on parameter synthesis. The idea is to generate a set of parametric proof
obligations, where each parameter evaluation corresponds to a variant of the
original contract refinement, and to search for tighter variants of the contracts
that still ensures the correctness of the refinement. We cast this approach in the
OCRA framework and we evaluate its performance and effectiveness on a number
of benchmarks, including the industrial-size architectures described in [5].

Related Work. We are not aware of similar works in the context of contract-based
design. The problem of contract tightening is related to vacuity checking [18] and
unsatisfiability core extraction [9]. The probably most related work is the notion
of unsatisfiability core for LTL proposed in [23]. However, the design problem, the
formal problem, and the technical solution are very different. First, differently
from the above-mentioned problems, we are not weakening/strengthening the
occurrence of a subformula, but we need to weaken/strengthen all occurrences
of an assumption/guarantee inside the proof obligations in the same way. Second,
we do not have just one property to simplify, but every assumption/guarantee
that is simplified occurs in different proof obligations; this corresponds to dif-
ferent unsatisfiability or model checking problems to consider at the same time.
Third, we reduce the problem to a parameter synthesis problem and we ensure
the monotonicity of parameters to ensure scalable results.

Also the work described in [17] addresses the problem of simplifying a con-
tract refinement, but with a different purpose and solution: the approach relies
on a library of contracts and refinement relations considered as additional inputs
to the refinement check problem, and simplifies the contract refinement based on
such library. The main objective of the authors is to improve the performance

388 A. Cimatti et al.

of the refinement check based on the library, while we search a tighter version
of the contracts that still ensure the correctness of the refinement.

Outline. The remainder of the paper is structured as follows. In Sect. 2 we intro-
duce some notions used throughout the paper. In Sect. 3, we introduce the prob-
lem of tightening a contract refinement. We present in Sect. 4 the main algorithm
for solving such problem. We describe the experimental evaluation performed in
Sect. 5. Finally, we discuss some conclusions and directions for further work.

2 Background

2.1 Transition Systems

Given a finite set V of variables with a (potentially infinite) domain D, we
denote with Σ(V) the set of assignments to V , i.e. mapping from V to D.
A transition system (TS) S is a tuple S = 〈V, I, T 〉, where V is a set of (state)
variables, I ⊆ Σ(V) is the set of initial states, and T ⊆ Σ(V) × Σ(V) is the
set of transitions. A state s ∈ Σ(V) of S is an assignment to the variables
V . A trace σ of S is an infinite sequence of states σ = s0, s1, · · · such that
s0 ∈ I and for all i ≥ 0, 〈si, si+1〉 ∈ T . Given two transition systems S1 =
〈V1, I1, T1〉 and S2 = 〈V2, I2, T2〉, we define the synchronous product S1 × S2 as
〈V1 ∪ V2, I1 ∧ I2, T1 ∧ T2〉. Since the product is commutative and associative, it
can be generalized to a set of transitions systems.

2.2 LTL

Given a set of variables V , we assume to be given a set Expr(V) of Boolean
expressions over V as in [19]. In particular, in this paper we consider standard
arithmetic predicates (<,≤, >,≥, . . .) and functions (+,−, . . .) over integer and
real variables, although the proposed methods can be applied to more general
settings.

We define the set of LTL formulas over the variables V with the following
grammar rule:

φ := p | φ ∧ φ | φ ∨ φ | ¬φ | Xφ | φUφ | φRφ

where p ranges in Expr(V). We use the following standard abbreviations: � :=
p ∨ ¬p, ⊥ := ¬�, φ → ψ := (¬φ) ∨ ψ, Fφ := �Uφ, Gφ := ¬F¬φ.

Traces over V are infinite sequences of assignments to V . Given a trace
σ = s0, s1, . . ., we denote with σ[i] the i + 1-th state si and with σi the suffix
trace starting from s[i].

Given a trace σ and an LTL formula φ over V , we define σ |= φ as follows:

– σ |= p iff p evaluates to true given the assignment σ[0]
– σ |= ¬φ iff σ �|= φ
– σ |= Xφ iff σ1 |= φ

Tightening a Contract Refinement 389

– σ |= φUψ iff there exists i ≥ 0 s.t. σi |= ψ and for all j, 0 ≤ j < i, σj |= φ
– σ |= φRψ iff for all i ≥ 0 σi |= ψ or there exists j, 0 ≤ j < i, s.t. σj |= φ

The satisfiability problem is the problem of checking if for a given LTL for-
mula φ there exists a trace σ such that σ |= φ.

Given a TS S = 〈V, I, T 〉 and an LTL formula φ over V ′ ⊆ V , M |= φ if for all
traces σ of M , σ |= φ. The satisfiability problem of an LTL formula over V can
be reduced to model checking by considering the universal model as transition
system: i.e., φ is satisfiable iff 〈V,Σ(V), Σ(V) × Σ(V)〉 �|= ¬φ.

Note that we are considering in general infinite-state transition systems for
which these problems are undecidable. Our methods are based on SMT-based
algorithms as those implemented in nuXmv [7].

2.3 Parameter Synthesis

The goal of parameter synthesis is to find the maximal set of values for some
parameters, so that a given property is satisfied. Let S be a transition system
and let U be a set of parameter, we define the parametric transition system
P = (V,U, IU , TU), where I and T are now defined on both the state variables
and parameters. We define the parameters as frozen, i.e., we set their value in the
initial state and preserve it during the execution of the system. Given a valuation
for the parameters (γ ∈ Σ(U)), and a formula ψ we write γ(ψ) = ψ[u ∈ U/γ(u)],
to indicate that each parameter has been substituted with its value. Given a
parametric transition system P and a valuation for the parameters γ, we can
compute the induced transition system, by replacing the parameters with their
valuation: Pγ = (V, γ(IU), γ(TU)). Given an LTL property φ expressed over the
state variables and parameters, the parameter region ρ is the maximal set of
assignments to the parameters, such that the property is satisfied by every trace
of the induced system, formally: ρ = {γ | Pγ |= γ(φ)}.

In this paper, we consider Boolean parameters and, with abuse of notation,
we identify a parameter evaluation γ with the set {p | p ∈ U, γ(p) = �}. The
parameter region is monotonic iff whenever γ ⊆ γ′, if γ ∈ ρ then γ′ ∈ ρ. The
monotonicity of the parameter region is typically exploited by parameter synthe-
sis algorithms that enumerate the parameter evaluations γ such that Pγ �|= γ(φ).
In fact, one can proceed with γ of increasing cardinality and as soon as Pγ |= γ(φ)
all γ′ with γ ⊆ γ′ can be included in ρ.

2.4 Contract Refinement

In order to simplify the presentation, in this paper, we define a contract refine-
ment independently from the component interfaces. In practice, in the tool sup-
port we consider, contracts are specified in terms of component input/output
ports and the refinement has to take into account the connections among ports
in component decomposition.

A contract C over the variables V is a pair 〈A,G〉 of LTL formulas over VS

representing respectively an assumption and a guarantee.

390 A. Cimatti et al.

We also denote A by A(C), G by G(C), and the assertion ¬A ∨ G by nf(C).
Let C = 〈A,G〉 be a contract over V . Let I and E be TS over V . We say that

I is a correct implementation of C iff I |= A → G. We say that E is a correct
environment of C iff E |= A. We denote by I(C) and E(C), respectively, the
set of correct implementations and the set of correct environments of C.

Given two contracts C and C ′ over V , we say that C refines C ′ (denoted by
C � C ′) iff I(C ′) ⊆ I(C) and E(C) ⊆ E(C ′).

In a system architecture, each contract is associated to a component. If a com-
ponent is decomposed into subcomponents, the associated contracts are imple-
mented by the composition of the subcomponents’ implementations. Similarly,
the environment of the contract of a subcomponent is given by the composition
of the environment of the composite component and the implementations of the
other subcomponents. In order to prove that such decomposition is correct, we
generalize the refinement notion to a set of contracts.

Given a contract C and a set of contracts Sub = {C1, . . . , Cn}, we say that
Sub is a refinement of C, written Sub � C, iff the following conditions hold:

1. The correct implementations of the sub-contracts form a correct implemen-
tation of C:

{S1 × . . . × Sn | S1 ∈ I(C1), . . . , Sn ∈ I(Cn)} ⊆ I(C)

2. For every Ci ∈ Sub, the correct implementation of the other sub-contracts
and a correct environment of C form a correct environment of Ci:

{E × S1 × . . . × Sj �=i × . . . × Sn | E ∈ E(C), for all j, 1 ≤ j ≤ n, j �= i, Sj ∈ I(Cj)} ⊆ E(Ci)

In [12,13], we proved that the refinement is correct if and only if the following
proof obligations are valid temporal formulas:

nf(C1) ∧ . . . ∧ nf(Cn) → nf(C)

A ∧
∧

1≤j≤n,j �=i

nf(Cj) → Ai (for every i, 1 ≤ i ≤ n)

3 The Problem of Tightening a Refinement

3.1 Motivation

Contract-Based Design. The contract-based design flow is depicted in Fig. 1,
using the example of a Wheel Braking System (WBS), which takes care of trans-
lating the brake signals of the braking pedals into physical brake of the wheel.
The brake pedal position is electrically fed to the braking computer, which in
turn produces corresponding control signals to the brakes. This computer is
named the Braking System Control Unit (BSCU). The BSCU is implemented
with two redundant sub-systems, called subBSCU. Therefore, the BSCU takes
as input two redundant Pedal Pos brake positions and outputs a pressure on
the Brake Line.

Tightening a Contract Refinement 391

Fig. 1. Contract-based design flow.

The design starts with the view of
the system as a whole black box with
ports to interact with its environment.
Then, it is decomposed into BSCU and
Hydraulic components. The BSCU is in
turn decomposed into two redundant
subBSCU and a switch. The decompo-
sition also defines how the ports of
the component being decomposed are
mapped down into the decomposition.
For example, the “left” ports of the
WBS are mapped onto the “left” ports
of the BSCU.

Each component in the hierar-
chy is associated with a set of con-
tracts, depicted in green, specifying the
acceptable behaviors for the compo-
nent and its environment. Contracts
are refined, following the decomposi-
tion of components. For example, the
contracts of the WBS are refined by
some contracts of the BSCU and the
Hydraulic subcomponents. The framework guarantees that, under specific con-
ditions (corresponding to correct contract refinement), if the contracts of the
subcomponents hold, then the contract of the parent component also holds.

Need for Tightening. The typical design of a system follows a top-down
approach starting from the system requirements and iteratively deriving the
requirements of subcomponents. The process is however quite expensive, espe-
cially if the requirements are formalized into formal properties. It may happen
therefore to specify contracts on the subcomponents that are more demand-
ing than necessary or that contain unwanted redundancies. It may happen also
that the designer specifies a very strong assumption on the system to make the
refinement correct and she/he wants to relax such assumption while keeping the
design correct. In general, given a correct contract refinement, we would like to
understand if the guarantees of subcomponents or assumption on the compos-
ite component can be weakened. We call this problem top-down tightening of a
contract refinement.

In some cases, the guarantees of subcomponents or the assumption of the
system are fixed. For example, the designer used the contract specification of an
existing component. After having verified the contract refinement, the designer
would like to understand if, using this subcomponents’ specification, the system
properties can be strengthened. Similarly, a given subcomponent specification
can entail stronger assumptions on other subcomponents, which would allow
the designer to choose alternative design solutions. We call bottom-up tightening

392 A. Cimatti et al.

of a contract refinement to this problem of strengthening the guarantees of a
composite component and the assumptions of the subcomponents.

3.2 Formal Definition

Tightening. We now define formally the problem of tightening a contract refine-
ment as follows. Given a contract C, and a set of contracts C1, . . . , Cn such that
{C1, . . . Cn} � C, a tightening of this contract refinement is given by a set of
contracts C ′, C ′

1, . . . , C
′
n such that:

– {C ′
1, . . . C

′
n} � C ′

– C ′ � C and, for every i, 1 ≤ i ≤ n, Ci � C ′
i.

A top-down tightening is a tightening as defined above such that G(C) =
G(C ′) and, for all i, 1 ≤ i ≤ n, A(Ci) = A(C ′

i). We can easily prove that,
equivalently, a top-down tightening is given by a set of contracts C ′, C ′

1, . . . , C
′
n

such that:

– {C ′
1, . . . C

′
n} � C ′

– A(C) |= A(C ′) and, for every i, 1 ≤ i ≤ n, G(Ci) |= G(C ′
i).

A bottom-up tightening is a tightening as defined above such that A(C) =
A(C ′) and, for all i, 1 ≤ i ≤ n, G(Ci) = G(C ′

i). We can easily prove that,
equivalently, a bottom-up tightening is given by a set of contracts C ′, C ′

1, . . . , C
′
n

such that:

– {C ′
1, . . . C

′
n} � C ′

– G(C ′) |= G(C) and, for every i, 1 ≤ i ≤ n, A(C ′
i) |= A(Ci).

4 The Algorithm

4.1 Overview

In this section, we present the main algorithm for tightening a contract refine-
ment for the two variants of the problem we defined (top-down and bottom-up).
The procedure first injects a set P of parameters in the contract specification to
create a search space of weakened or strengthened assumptions and guarantees.
Second, it creates the related proof obligations that are now parametrized by
P and we want to find for which configurations of the parameters the contract
refinement holds. This is a multiple parameter synthesis problem, because we
have to search for the assignment to P such that all proof obligations are valid.
Thus, as third step, we convert the problem to a single standard parameter
synthesis problem and we call an off-the-shelf algorithm to solve it. In the first
step, we make sure that the injection creates a monotonic parameter region by
construction, which can be exploited by the synthesis algorithm.

These steps are formalized as follows, while the pseudo-code is shown in
Algorithm 1. Suppose we want to obtain a top-down tightening of Sub � C.

Tightening a Contract Refinement 393

1. We transform C and Sub into a parametrized version CP and SubP such that
for every evaluation γ of P , if γ(SubP) � γ(CP), then 〈γ(CP), γ(SubP)〉 is a
top-down tightening of 〈C,Sub〉.

2. We generate the proof obligations PO(V, P) of γ(SubP) � γ(CP).
3. We generate a single proof obligation φ that is equivalent to PO(V, P) in the

sense that {γ ∈ Σ(P) s.t. |= γ(φ) for every φ ∈ PO(V, P)} = {γ ∈ Σ(P) s.t.
|= γ(φPO)}.

Algorithm 1. Tightening a Contract Refinement
Input: a contract C, a set of contracts Sub = {C1, . . . , Cn} such that Sub � C, and

T = bottom-up or top-down
Output: Sub′ = {C′

1, . . . C
′
n} � C′and C′ � C and, for every i, 1 ≤ i ≤ n, Ci � C′

i.
1: {Calling top-down or bottom-up alg. on Sub and C}
2: if T = top-down then
3: 〈〈SubP , CP 〉, P 〉 = Top down tightening(Sub, C)
4: else {T = bottom-up}
5: 〈〈SubP , CP 〉, P 〉 = Bottom up tightening(Sub, C)
6: end if
7: {Construction of the Proof Obligations}
8: POs = ConstructPOs(SubP , CP)
9: {Encodes all POs into a single PO}

10: PO = BuildSinglePO(POs)
11: {Calling Parameter Synthesis Algorithm}
12: param region = ComputeParamRegion(PO, P)
13: {Generate output}
14: GenerateT ightenedContractRef(PO, param region)

4.2 Generation of the Parametric Problem

In this section, we describe how we introduce parameters in the contracts and
generate a monotonic parameter synthesis problem. The high-level transforma-
tion is described in Algorithms 2 and 3 where assumptions and guarantees are
weakened or strengthened depending on whether we are targeting a top-down
or a bottom-up tightening of the contract refinement.

If the target is the top-down tightening of Sub � C, the Algorithm 2 weakens
every guarantee of the subcontracts in Sub and the assumption of the C. If the
target is the bottom-up tightening, the Algorithm 3 strengthens the guarantee
of C and every assumption of Sub.

The Weaken and Strengthen functions are described respectively in
Algorithms 4 and 5. They take as input a formula and they return a para-
metric formula and a set of injected parameters. The definition assumes that
every new parameter p is a fresh symbol. The number of parameters is linear in
the size of the formula.

Parameters are injected so that every parameter evaluation yields a respec-
tively weaker or stronger formula.

394 A. Cimatti et al.

Algorithm 2. Top-down tightening (Top down tightening(Sub,C))
Input: a contract C and a set of contracts Sub = {C1, . . . , Cn}
Output: 〈〈Sub′, C′〉, P 〉
1: Sub′ = ∅
2: P = ∅ {Set of parameters}
3: for all Ci ∈ Sub do
4: 〈G(C′

i), P
′〉 = Weaken(G(Ci))

5: Sub′ = Sub′ ∪ {〈A(Ci), G(C′
i)〉}

6: P = P ∪ P ′

7: end for
8: 〈A(C′), P ′〉 = Weaken(A(C))
9: C′ = 〈A(C′), G(C)〉

10: P = P ∪ P ′

11: return 〈〈Sub′, C′〉, P 〉

Algorithm 3. Bottom-up tightening (Bottom up tightening(Sub,C))
Input: a contract C and a set of contracts Sub = {C1, . . . , Cn}
Output: 〈〈Sub′, C′〉, P 〉
1: Sub′ = ∅
2: P = ∅ {Set of parameters}
3: for all Ci ∈ Sub do
4: 〈A(C′

i), P
′〉 = Strengthen(A(Ci))

5: Sub′ = Sub′ ∪ {〈A(C′
i), G(Ci)〉}

6: P = P ∪ P ′

7: end for
8: 〈G(C′), P ′〉 = Strengthen(G(C))
9: C′ = 〈A(C), G(C′)〉

10: P = P ∪ P ′

11: return 〈〈Sub′, C′〉, P 〉

We remark that we do not aim to obtain the weakest or strongest version of
a formula. In our approach, the definition of Weaken and Strengthen functions is
pattern-based where new patterns can be investigated to complement or improve
the current ones.

Theorem 1. For any parameter evaluation γ, φ → γ(Weaken(φ)) and
γ(Strengthen(φ)) → φ.

Proof. We prove the theorem by induction on the structure of the formula. If
Weaken(φ) = 〈φW , P 〉, we denote with φ′ the instantiation of φW with some
evaluation γ. Similarly, if Strengthen(φ) = 〈φS , P 〉, we denote with φ′′ the instan-
tiation of φS with some evaluation γ.

The result of Weaken and Strengthen is outlined in Tables 1 and 2. It is
routine to check line by line that φ → φ′ and φ′′ → φ, based on the inductive
hypothesis that φ1 → φ′

1, φ2 → φ′
2, φ′′

1 → φ1. ��

Tightening a Contract Refinement 395

Algorithm 4. Weaken(φ)
Input: a formula φ
Output: 〈φW , P 〉
1: if φ = a > b (similar for φ = a < b) then
2: φW = p1 → (a > b) ∧ p2 → (a ≥ b)
3: return 〈φW , {p1, p2}〉
4: else if φ = φ1 ∧ φ2 then
5: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

6: φW = p1 → φW
1 ∧ p2 → φW

2

7: return 〈φW , P1 ∪ P2 ∪ {p1, p2}〉
8: else if φ = φ1 ∨ φ2 then
9: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

10: φW = φW
1 ∨ φW

2

11: return 〈φW , P1 ∪ P2〉
12: else if φ = φ1 R φ2 then
13: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

14: φW = p1 → (φW
1 ∧ φW

2) ∧ p2 → (φW
1 R φW

2)
15: return 〈φW , P1 ∪ P2 ∪ {p1, p2}〉
16: else if φ = φ1 U φ2 then
17: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

18: φW = φW
1 U φW

2

19: return 〈φW , P1 ∪ P2〉
20: else if φ = ¬φ1 then
21: 〈φS

1 , P1〉 = Strengthen(φ1)
22: return 〈¬φS

1 , P1〉
23: else
24: return 〈p → φ, {p}〉
25: end if

It follows immediately that Algorithms 2 and 3 yield a correct top-
down/bottom-up tightening, as stated in the following corollary.

Corollary 1. Let C be a contract and Sub a set of contracts. Let 〈〈Sub′, C ′〉, P 〉
be the result of Top down tightening(Sub,C) or Bottom up tightening(Sub,C).
Then, for any evaluation γ of the parameters P , if γ(Sub′) � γ(C ′) then
〈γ(Sub′), γ(C ′)〉 is a top-down or bottom-up tightening of 〈Sub,C〉, respectively.

Moreover, the parameter injection is designed so that the semantics of the
parametric formulas is monotonic with respect to the parameter evaluations.

Theorem 2. If γ ⊆ γ′, γ′(Weaken(φ)) → γ(Weaken(φ)) and
γ(Strengthen(φ)) → γ′(Strengthen(φ)).

Proof. Looking again at Tables 1 and 2, one can check the monotonicity case by
case. In fact, for each type of formula, the lines reporting the result of Weaken
and Strengthen are sorted according to the strength of the parameter evaluation
(third column). More precisely, if γ is below γ′, then either they are incom-
parable or γ ⊂ γ′. Therefore it is routine to prove that, in the second case,

396 A. Cimatti et al.

Table 1. Simplification table for Weaken(φ), where φ′
i denotes the instantiation of φW

i

with some evaluation γ.

Formula φ Weaken(φ) = 〈φW , P 〉 Evaluation γ γ(Weaken(φ))

a < b p1 → (a < b) ∧ p2 → (a ≤ b) {p1, p2} a ≤ b

{p1} a < b

{p2} a ≤ b

∅
φ1 ∧ φ2 p1 → φW

1 ∧ p2 → φW
2 {p1, p2} φ′

1 ∧ φ′
2

{p1} φ′
1

{p2} φ′
2

∅
φ1 ∨ φ2 φW

1 ∨ φW
2 NA φ′

1 ∨ φ′
2

φ1 R φ2 p1 → (φW
1 ∧ φW

2) ∧ p2 → (φW
1 R φW

2) {p1, p2} φ′
1 ∧ φ′

2

{p2} φ′
1 R φ′

2

{p1} φ′
1 ∧ φ′

2

∅
φ1 U φ2 φW

1 U φW
2 NA φ′

1 U φ′
2

¬φ1 ¬φS
1 NA ¬φ′

1

Table 2. Simplification table for Strengthen(φ), where φ′′
i denotes the instantiation of

φS
i with some evaluation γ.

Formula φ Strengthen(φ) = 〈φS , P 〉 Evaluation γ γ(Strengthen(φ))

a ≤ b ¬p1 → (a < b) ∧ ¬p2 → (a = b)∧ {p1, p2} a ≤ b

(p1 ∧ p2) → (a ≤ b) {p2} a < b

{p1} a = b

∅ ⊥
φ1 ∨ φ2 ¬p1 → φS

1 ∧ ¬p2 → φS
2 ∧ {p1, p2} φ′′

1 ∨ φ′′
2

(p1 ∧ p2) → (φS
1 ∨ φS

2) {p2} φ′′
1

{p1} φ′′
2

∅ φ′′
1 ∧ φ′′

2

φ1 ∧ φ2 φS
1 ∧ φS

2 NA φ′′
1 ∧ φ′′

2

φ1 U φ2 ¬p → φS
2 ∧ p → φS

1 U φS
2 {p} φ′′

1 U φ′′
2

∅ φ′′
2

φ1 R φ2 φS
1 R φS

2 NA φ′′
1 R φ′′

2

¬φ1 ¬φW
1 NA ¬φ′′

1

γ′(Weaken(φ)) → γ(Weaken(φ)) and γ(Strengthen(φ)) → γ′(Strengthen(φ))
(fourth column). ��

Tightening a Contract Refinement 397

Note that parameters are introduced per contract, so they are shared by
difference occurrences of the assumption/guarantee in the proof obligations. It
is immediate to show that, thanks to the structured way in which formulas
are either strengthened or weakened according to the target top-down/bottom-
up tightening, the resulting synthesis problem is monotonic, as stated in the
following corollary.

Corollary 2. Let C be a contract and Sub a set of contracts. Let 〈〈Sub′, C ′〉, P 〉
the result of Top down tightening(Sub,C) or Bottom up tightening(Sub,C).
Then, for any evaluation γ, γ′ of the parameters P such that γ ⊆ γ′, if γ(Sub′) �
γ(C ′) then γ′(Sub′) � γ′(C ′).

Algorithm 5. Strengthen(φ)
Input: a formula φ
Output: 〈φS , P 〉
1: if φ = a ≤ b (similar for a ≥ b) then
2: φS = ¬p1 → (a < b) ∧ ¬p2 → (a = b) ∧ (p1 ∧ p2) → (a ≤ b)
3: return 〈φS , {p1, p2}〉
4: else if φ = φ1 ∨ φ2 then
5: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

6: φS = ¬p1 → φS
1 ∧ ¬p2 → φS

2 ∧ (p1 ∧ p2) → (φS
1 ∨ φS

2)
7: return 〈φS , P1 ∪ P2 ∪ {p1, p2}〉
8: else if φ = φ1 ∧ φ2 then
9: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

10: φS = φS
1 ∧ φS

2

11: return 〈φS , P1 ∪ P2〉
12: else if φ = φ1 U φ2 then
13: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

14: φS = ¬p → φS
2 ∧ p → φS

1 U φS
2

15: return 〈φS , P1 ∪ P2 ∪ {p}〉
16: else if φ = φ1 R φ2 then
17: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

18: φS = φS
1 R φS

2

19: return 〈φS , P1 ∪ P2〉
20: else if φ = ¬φ1 then
21: 〈φW

1 , P1〉 = Weaken(φ1)
22: return 〈¬φW

1 , P1〉
23: else
24: return 〈¬p → φ, {p}〉
25: end if

4.3 Multiple Validity Parameter Synthesis Problem

The approach to solve the tightening problem proposed in Sect. 4.1 introduces
the problem of finding the parameter evaluations γ such that each formula
φ(P, V) ∈ PO instantiated with γ is valid. Each validity problem can be reduced

398 A. Cimatti et al.

to a model checking problem but the parameter evaluation is shared by the differ-
ent verification problems. This is different from the standard parameter synthesis
problem where only one verification problem is considered. We called this prob-
lem a multiple validity parameter synthesis problem (not to be confused with
multiple objective parameter synthesis problem).

We propose to reduce the multiple validity to one validity problem by renam-
ing the variables in V and taking the conjunction of the proof obligations.
Namely, if PO = {φ1, . . . , φn} we create the formula φPO(P, V1, . . . , Vn) =∧

1≤j≤n φj [Vj/V], where Vj contains one copy vj for each variable v ∈ V and
φj [Vj/V] is the formulas obtained by substituting every variable v ∈ V with vj

(while the parameters P remain unchanged).

Theorem 3. For all parameter evaluation γ, γ(φPO) is valid iff, for all formulas
φ ∈ PO, γ(φ) is valid.

Proof. ⇒) Suppose for some φj ∈ PO, γ(φj) is not valid. Let σ be a trace over
V satisfying ¬γ(φj). Let us define the trace σj such that, for every i ≥ 0, for
all v ∈ V , σj [i](vj) = σ[j](v). Let us extend σj to a trace σ′

j over V1 ∪ . . . Vn

assigning variables not in Vj in an arbitrary way. Then σ′
j satisfies ¬γ(φPO).

⇐) Suppose φPO is not valid. Let σ be a trace over V1 ∪ . . . ∪ Vn satisfying
¬γ(φPO). Then, there exists j, 1 ≤ j ≤ n, such that σ |= ¬γ(φj [Vj/V]). Let us
define the trace σj such that, for every i ≥ 0, for all v ∈ V , σj [i](v) = σ[j](vj).
Then σ′

j satisfies ¬γ(φj). ��

5 Experimental Evaluation

5.1 Details of the Implementation

We have implemented the algorithms described in the previous section on top
of OCRA [8], a tool for architectural design based on contract-based design. In
more details, we implemented a new command in OCRA that takes as input an
OCRA specification, a contract’s name, a component’s name, and a desired vari-
ant of tightening (top-down or bottom-up) and produces as output an OCRA
specification containing the tightened version of the given contract and its sub-
contracts. Regarding the parameter synthesis algorithm, we have used as back-
end an implementation reported in [6]. Since the synthesis is quite expensive for
large number of parameters, we arbitrarily limit the injection to 350 parame-
ters. This allows to get a tightening also in cases in which the definitions would
produce many more parameters making the synthesis blow up.

We also implemented self checks to validate the results: first, we automatically
check that each tightened contract refinement is correct; second, we automati-
cally check for each tightened specification that the original formula entails the
weaken formula (top-down tightening) and the strengthened formula entails the
original formula (bottom-up tightening), see Theorem 1.

Tightening a Contract Refinement 399

5.2 Description of Benchmarks

We have taken several benchmarks from several case studies developed manually
using the OCRA language. Some examples are: several versions of the Wheel
Brake System described in Sect. 3, a Lift System, a system with Redundant
Sensors, and Airbag system [1]. Particularly, an interesting case study is taken
from [5], where the authors presented a complete formal analysis of the AIR6110,
a document describing the informal design of a Wheel Brake System, covering all
the phases of the process, and modeled the case study by means of a combination
of formal methods including contract-based design using OCRA, model checking
and safety analysis.

5.3 Experimental Results

We carried out an experimental evaluation for 875 contract refinements taking
into account the simplification obtained on each tightened contract refinement
with respect to the length of the formulas on the original contracts involved1.
The results of applying top-down (red crosses) and bottom-up (grey circles)
tightening are shown in Fig. 2. From the results, we can clearly see a significant
simplification for top-down tightening. As for bottom-up tightening, we did not
get important simplification, but we observed that the main reason is that the
size of formulas of the contracts involved are much smaller compared to the ones
involved on the top-down tightening.

Fig. 2. Analysis of length of formulas for top-down and bottom-up. (Color figure online)

1 We consider the standard definition of the length of a formula (number of symbols),
apart from the length of which is set to 0.

400 A. Cimatti et al.

Fig. 3. Parameter scalability.

In Fig. 3 it is shown how our approach scales with respect to the number of
parameters used for tightening a contract refinement and the time for comput-
ing the parameter region for three extended versions of the WBS example. All
benchmarks have been performed with a time limit of 5 min for checking the
contract refinement before and after tightening, the computation of the para-
meter region, and the check of the entailments properties. For the 875 contract
refinements, 68 could not be completed within the timeout. We have run our
experiments on a Linux machine with 8 CPU of 3.40 GHz Intel Xeon, with a
memory of 15 GB.

The benchmarks and executables for reproducing the results are available at
https://es-static.fbk.eu/people/demasi/SEFM2016/experiments.html.

6 Conclusions and Future Work

Motivated by validation problems of contract-based design, we defined the prob-
lem of tightening a contract refinement. We provided a solution based on the
synthesis of parameters of temporal satisfiability problems. We evaluated the
approach on a number of benchmarks and showed that the solution is effective
and scalable. For future work, we will extend the approach to consider also the
tightening of metric operators and the preservation of realizability.

References

1. Arts, T., Dorigatti, M., Tonetta, S.: Making implicit safety requirements explicit.
In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666,
pp. 81–92. Springer, Heidelberg (2014)

https://es-static.fbk.eu/people/demasi/SEFM2016/experiments.html

Tightening a Contract Refinement 401

2. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., W ↪asowski, A.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012)

3. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

4. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen,
K.G.: Contracts for system design. Technical report RR-8147, INRIA, November
2012

5. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri,
T., Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel
brake system. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 518–535. Springer, Heidelberg (2015)

6. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient anytime techniques
for model-based safety analysis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 603–621. Springer, Heidelberg (2015)

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014)

8. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement
of temporal contracts. In: ASE, pp. 702–705 (2013)

9. Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean abstraction for tem-
poral logic satisfiability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 532–546. Springer, Heidelberg (2007)

10. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203.
Springer, Heidelberg (2009)

11. Cimatti, A., Roveri, M., Tonetta, S.: HRELTL: a temporal logic for hybrid systems.
Inf. Comput. 245, 54–71 (2015)

12. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: SEAA (2012)

13. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97, 333–348 (2015)

14. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012)

15. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture
design. In: DATE, pp. 1023–1028 (2011)

16. Graf, S., Passerone, R., Quinton, S.: Contract-based reasoning for component sys-
tems with complex interactions. In: TIMOBD 2011 (2011)

17. Iannopollo, A., Nuzzo, P., Tripakis, S., Sangiovanni-Vincentelli, A.L.: Library-
based scalable refinement checking for contract-based design. In: DATE, pp. 1–6
(2014)

18. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. STTT
4(2), 224–233 (2003)

402 A. Cimatti et al.

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

20. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
21. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
22. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of com-

ponents. In: SEFM, pp. 377–381 (2008)
23. Schuppan, V.: Towards a notion of unsatisfiable and unrealizable cores for LTL.

Sci. Comput. Program. 77(7–8), 908–939 (2012)

BMotionWeb: A Tool for Rapid Creation
of Formal Prototypes

Lukas Ladenberger(B) and Michael Leuschel

Institut für Informatik, Universität Düsseldorf, Düsseldorf, Germany
{ladenberger,leuschel}@cs.uni-dusseldorf.de

Abstract. The application of formal methods to the development of
reliable interactive systems usually involves a multidisciplinary team
with different roles and expertises (e.g. formal engineers, user interface
designers and domain experts). While formal engineers provide the nec-
essary expertise in formal methods, other roles may not be well versed in
formal methods, such as user interface engineers or domain experts; con-
sequently barriers may arise while working in a multidisciplinary team.
For instance, communication problems and challenges in the rigorous
use of formal method tools. Tools like BMotion Studio may reduce these
barriers by creating visualizations of formal specifications, however, lacks
features needed for the analysis of interactive systems. In this paper, we
present a novel graphical environment that continues the ideas of BMo-
tion Studio called BMotionWeb to provide support for the rapid creation
of formal prototypes. A formal prototype links a mockup of a graphical
user interface or device to an animated formal specification with the
aim of providing lightweight formal validation of interactive systems. In
order to demonstrate the application of BMotionWeb, we provide two
case studies: a formal prototype of a simple phonebook software and a
cruise control device.

Keywords: Formal methods · Animation · Visualization · Rapid
prototyping · Validation · Mockup · Interactive user interface

1 Introduction

Formal methods are often applied in the field of safety-critical systems. They
allow the specification and analysis of systems based on mathematical techniques
with the main goal to ensure reliability and robustness of the system. The appli-
cation of formal methods for the development of safety-critical systems usually
involves a multidisciplinary team with different roles and expertise (e.g. formal
engineers, domain experts and end users). Nowadays, however, safety-critical
systems, such as, medical devices, airplane cockpits, or railway- and nuclear
plant control systems, typically include interactive user interfaces (UI). Thus,
the development of safety-critical systems also requires to properly account for
user’s cognition and to ensure the usability of the system. This task is typically
performed by UI engineers. However, UI engineers, domain experts and end
c© Springer International Publishing Switzerland 2016
R. De Nicola and E. Kühn (Eds.): SEFM 2016, LNCS 9763, pp. 403–417, 2016.
DOI: 10.1007/978-3-319-41591-8 27

404 L. Ladenberger and M. Leuschel

users are rarely trained in formal methods. Consequently barriers could arise
while working in a multidisciplinary team which can compromise the success of
the project. For example, it can be challenging to find a common language for
discussing potential system and design issues. The use of a formal specification
as a basis for discussion requires significant knowledge about the mathemati-
cal notation of the respective formal method which non-formal method experts
typically not have. Moreover, formal method tools may become inaccessible to
non-formal method experts. On the other hand, formal engineers typically have
no experience in common UI engineering techniques. As a consequence, there is
a great demand for tools that can significantly reduce these barriers applying
formal methods for developing interactive systems.

One tool that faces these barriers is BMotion Studio [9], a graphical environ-
ment for creating visualizations of formal specifications. While BMotion Studio
provides a very convenient and fast approach to create simple visualizations of
formal specifications, it makes it difficult to use and apply it when validating
interactive systems. A reason for this is the limited reuse of existing components
(e.g. interactive graphical elements and advanced UI techniques) and the lack
of validation features needed for the analysis of UIs, such as logging of user
interactions and deployment of visualizations.

In this paper we present a novel graphical environment called BMotionWeb
that builds on the ideas of BMotion Studio to provide support for the light-
weight validation of interactive systems by combining techniques known from
the formal- and UI-engineering discipline: animation [8] and mockup. Animation
allows the user to inspect the behavior of a formal specification by “executing it”.
Mockup is a common technique in the field of UI design to describe a model of a
device or software UI. Combining an animation tool and a mockup, the formal
specification becomes a “tool” in a real sense: it serves as a formal prototype that
binds the intended functionality of the system to an interactive UI or device.
BMotionWeb contributes new features for the rapid creation and lightweight
validation of formal prototypes: (1) a visual editor that allows UI engineers to
create mockups of a system UI or device; (2) the necessary technique to link a
mockup with an animated formal specification; (3) and UI validation features
such as logging of user interactions, visualizing the behavior of UI elements and
deployment of formal prototypes. Throughout the paper, we demonstrate the
application of BMotionWeb based on two case studies: a formal prototype of a
simple phonebook software and a cruise control system.

The paper is organised as follows: Sect. 2 describes the architecture of
BMotionWeb. In Sect. 3 we describe our approach for creating formal proto-
types using BMotionWeb based on two case-studies. In Sect. 4 we demonstrate
the application of a formal prototype for the lightweight validation of interac-
tive systems. Finally, we compare our work with related work in Sect. 5 and
conclude in Sect. 6. For more information and resources we refer the reader to
our project website: http://stups.hhu.de/ProB/FormalPrototyping. The website
contains the case-studies (specifications and formal prototypes) and interactive
online-versions of the formal prototypes.

http://stups.hhu.de/ProB/FormalPrototyping

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 405

2 BMotionWeb

BMotionWeb builds on the ideas of BMotion Studio [9] to provide support for
the rapid creation of formal prototypes. BMotion Studio is a graphical environ-
ment for creating domain specific visualizations of formal specifications. It is
based on Eclipse and GEF (Graphical Editing Framework) [19] and comes as
a separate plug-in for Rodin [2] with support for the Event-B specification lan-
guage [1]. BMotionWeb is a complete rewrite based on web technologies. Figure 1
gives an overview of the architecture of BMotionWeb. The overall architecture is
subdivided into a client front-end and a server back-end, where WebSockets [6]
are used to realise the communication between client and server. The client and
server can be run in a standalone application based on electron1, a framework
for building cross-platform desktop applications using JavaScript or as separate
processes (either on the same machine or on different machines).

Fig. 1. Architecture overview of BMotionWeb for ProB

In the following subsections we describe the components of the client and
server in more detail.

2.1 Server Back-End

The server is entirely written in Java and provides an animation tool interface
capable of integrating external animation tools with BMotionWeb. Currently,
BMotionWeb integrates the ProB animator [11] that supports among others clas-
sical B [20] and Event-B [1]. The aim of the animation tool interface is to provide
1 http://electron.atom.io/.

http://electron.atom.io/

406 L. Ladenberger and M. Leuschel

communication between the client front-end and the respective animation tool
via WebSockets. For instance, to obtain information about the animated formal
specification (e.g. values of state variables or results of evaluating formulas) and to
trigger transitions (e.g. executing operations in classical B or events in Event-B).

2.2 Client Front-End

The client front-end consists of a visual editor and a simulation engine and is
entirely written in JavaScript. The aim of the visual editor is to facilitate the
creation and editing of visualization templates, whereas the simulation engine is
responsible for executing visualization templates.

Visualization Template. At the heart of a formal prototype one finds a visual-
ization template. A visualization template uses web-technologies to describe the
mockup and its bindings to the animated formal specification of a formal pro-
totype. In particular, it is composed of graphical elements, observers and event
handlers:

– A graphical element is based on SVG (Scalable Vector Graphics) [22] and
HTML [23], two markup languages which provide widgets like shapes, images,
labels, tables and lists.

– An observer observes a specific part of the animated formal specification dur-
ing the simulation. BMotionWeb provides various observers. For instance, a
formula observer that binds a formula (e.g. an expression or a variable) to a
graphical element and allows the tool to compute a visualization for any given
state of the animated formal specification by changing the properties of the
graphical element (e.g. the colour or position) according to the evaluation of
the formula in the respective state.

– Finally, an event handler wires an interactive action to a graphical element.
As an example, BMotionWeb provides an execute event handler that binds
a classical B operation or an Event-B event to a graphical element and exe-
cutes the operation or event respectively when the user clicks on the graphical
element.

BMotionWeb also provides a JavaScript API for scripting observers and event
handlers. Indeed, the use of web-technologies and especially the possibility to
reuse existing resources like SVG images and external JavaScript libraries enables
users to create formal prototypes for a wider range of systems.

Visual Editor. Figure 2 shows a snapshot of the visual editor. The editor consists
of a palette for creating graphical elements, like shapes, labels, images and input
fields and a view for managing the properties, observers and event handlers of
graphical elements. Graphical elements can be added to a canvas which provides
features known from modern graphical editors like drag and drop, undo/redo,
copy/paste and zooming.

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 407

Simulation Engine. The simulation engine allows users to interact with the
formal prototype and to explore its behavior. For this purpose, it renders a
visualization template and manages the communication between the mockup
and the animated formal specification. In particular, it sends requests from an
observer (e.g. evaluating a formula) to the animation tool via the animation tool
interface on the server side and forwards the returned results of the animation
tool back to the observer. In addition, it triggers state changes in the animated
formal specification based on user actions like clicking on an graphical element
that wires an execute event handler.

Apart from the formal prototype view, several additional views for analysing
a formal prototype have been made available from the ProB animator. For
instance, a view that shows the values of variables and constants for the current
and previous state of the animated formal specification and a view that lists
all enabled and disabled transitions based on the current state of the animated
formal specification.

3 Creating Formal Prototypes

In the following two subsections we give more details about the features of
BMotionWeb based on two case studies: a classical B specification of a phone-
book software (Sect. 3.1) and an Event-B specification of a cruise control device
(Sect. 3.2). Both case studies are supported by code examples in which observers
and event handlers are described using the BMotionWeb JavaScript API.

3.1 Formal Prototype of a Phonebook Software

In this section we demonstrate our approach based on a classical B specification
of a phonebook software. The phonebook allows users to manage persons and
telephone numbers and provides the following functionalities: adding and delet-
ing persons with an associated number, searching for numbers and activating or
deactivating persons. Moreover, the user can lock the phonebook which results
in deactivating the phonebook, i.e. the user can not add new entries. The aim
of this case-study is to exemplify the creation of software UI mockups, as well
as to demonstrate how the connection between a software UI mockup and an
animated formal specification can be established with BMotionWeb.

Mockup Software User Interfaces. Figure 2 shows a snapshot of the visual editor
of BMotionWeb while creating the mockup of the input form of the phonebook
software. As can be seen in Fig. 2, the mockup of the input form is composed
of different graphical elements like input fields, buttons, a checkbox, shapes
and labels. The UI engineer can change the properties of the selected graphical
element by means of the properties view located on the right side of the editor.
For instance, in Fig. 2, the phonenumber input field is selected. Thus, related
properties like a property for defining the placeholder or the ID of the input
field are made available to the UI engineer. Further, the input field element

408 L. Ladenberger and M. Leuschel

Fig. 2. UI mockup of the phonebook software in visual editor of BMotionWeb

provides a property that defines a classical B set like INTEGER or NAT or a
custom set which comes from the animated formal specification. Defining a set
causes a validation of the entered input, i.e. the input field checks whether the
entered input is an element of the set or not.

1 bms.executeEvent({
2 selector:"#btAdd",
3 name:"add",
4 predicate: function(ui) {
5 var name = ui.find("#name");
6 var nr = ui.find("#nr");
7 return"name="+ name.val() +
8 "& nr="+ nr.val();
9 }});

Listing 1. Execute event handler for
“Add contact” button (JavaScript)

1 add(name, nr) =

2 PRE

3 name ∈ STRING ∧
4 name /∈ dom(db) ∧
5 nr ∈ NATURAL ∧
6 lock = FALSE

7 THEN

8 db := db ∪ {name �→ nr}

9 END;

Listing 2. Phonebook add Operation
(classical B)

The values of the interactive graphical elements (e.g. the entered input of an
input field or the value of a checked checkbox) can be used for defining event
handlers. For instance, the “Add contact” button shown in Fig. 3 is wired to
the event handler defined in Listing 1. Lines 1 and 2 state that we register a
new execute event handler on the graphical element that matches the selector

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 409

“#btAdd” (The prefix “#” is used to match a graphical element by its ID.2),
i.e. the graphical element that represents the “Add contact” button. Line 3
states that the event handler should execute the add operation of the classical B
specification of the phonebook software (see Listing 2). In lines 4 to 9 we define a
JavaScript function that returns a predicate determining the parameters of the
add operation. The returned predicate (lines 7 to 8) is composed of the values of
the name and number input fields (line 5 and 6). Figure 3 shows a snapshot of
the formal prototype of the phonebook software where the user hovers the “Add
contact” button. We have defined the event handler for the “Search” button in
a similar fashion.

Fig. 3. Formal prototype of phonebook software

Listing 3 shows the formula observer for observing the lock variable of the
phonebook specification (see Listing 4). Line 1 and 2 state that we register a new
formula observer on the name and number input fields (#name and #nr) and
on the “Add contact” button (#btAdd). Line 3 states that the observer should
observe the variable lock during the simulation. In lines 4 to 6 we define a trigger
function that is called whenever a state change has occurred. The reference to
the matched graphical element (e) and the state values of the observed formulas
(v) are passed as arguments to the trigger function. In line 6 we define the trigger
action: the observer sets the disabled property of the graphical elements to the
value of the lock variable (v[0]). Since we have set the translate property of the
2 BMotionWeb makes use of the jQuery selector syntax to link event handlers and

observers to graphical elements. For more information about the jQuery selector
API we refer the reader to http://api.jquery.com/category/selectors/.

http://api.jquery.com/category/selectors/

410 L. Ladenberger and M. Leuschel

formula observer to true (see line 4) the value is automatically translated into a
JavaScript object.

1 bms.observe("formula", {
2 selector:"#name,#nr,#btAdd",
3 formulas: ["lock"],
4 translate: true,
5 trigger: function(e, v) {
6 e.prop("disabled", v[0]);
7 }
8 });

Listing 3. Formula observer for lock
variable (JavaScript)

1 VARIABLES db, active, lock

2 INVARIANT

3 lock : BOOL &

4 db : STRING +-> NATURAL &

5 active : POW(STRING)

6 INITIALISATION

7 db := {} || active := {} ||

8 lock := FALSE

Listing 4. Variables of phonebook
specification (classical B)

Mockup Dynamic Data-Structures. In formal specification languages like clas-
sical B, the software is often modeled with data-structures like sets and rela-
tions. These data-structures typically contain a dynamic number of elements.
For instance, the database of the phonebook is modeled as a relation between
persons and numbers, where the size of the database increases or decreases,
whenever the user adds or deletes a phonebook entry. In this section, we demon-
strate the use of an external JavaScript library to connect HTML elements like
tables and lists with dynamic data-structures like sets or relations.

In order to establish a connection between HTML elements and an animated
formal specification we make use of the JavaScript MVC (Model View Controller)
framework AngularJS [7].3 AngularJS provides controllers and directives. A con-
troller defines the data and behavior of HTML templates, whereas a directive
can attach a specified behavior to an existing HTML element. As an exam-
ple, consider the controller pCtrl in Listing 5. In lines 4 to 10 we register a new
formula observer which observers the two state variables db and active (see List-
ing 4). The values of the variables are assigned to the scope of the controller and
updated whenever a state change occurred in the animated formal specification
(line 8 and 9). Moreover, in lines 12 to 14 we assign a helper function isActive
to the scope that takes a person as its parameter and returns true whenever the
person is in the active set. Otherwise it returns false.

A scope can be made available to an HTML template using the ngController
directive as demonstrated in line 1 in Listing 6. Once the scope has been attached
to the template, the values of the two variables db and active can be used within
the template. For instance, in line 7 we assign a ngRepeat directive which creates
a table row (lines 7 to 15) once per element from the db relation. Each row gets

3 We choose AngularJS because BMotionWeb is also based on AngularJS, however,
we could also use other JavaScript MVC libraries as well.

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 411

its own scope, where the current element (el) of the db relation is set to the row’s
scope. Thus, we can access the name ({{el[0]}}), the number ({{el[1]}}) and the
status of each element ({{isActive(el[0]}})) and show them in the respective
columns of the row (lines 8 to 14). In addition, we assign to each status column
an executeEvent directive which creates a new execute event handler with toggle
as the operation’s name and name=“{{el[0]}}” as the operation’s predicate. The
lower left side of Fig. 3 demonstrates the HTML table during the simulation of
the phonebook formal prototype.

1 angular.module(’phone’, [])

2 .controller(’pCtrl’, function() {

3

4 bms.observe("formula", {

5 formulas: ["db","active],

6 translate: true,

7 trigger: function(v) {

8 $scope.db = v[0];

9 $scope.act = v[1];

10 }});

11

12 $scope.isActive = function(n) {

13 return $scope.act.indexOf(n) > -1;

14 }

15

16 });

Listing 5. Controller for database view
(JavaScript)

1 <table ng−controller="pCtrl">
2 <tr>
3 <th>Name</th>
4 <th>Number</th>
5 <th>Active</th>
6 </tr>
7 <tr ng−repeat="el in db">
8 <td>{{el[0]}}</td>
9 <td>{{el[1]}}</td>

10 <td execute−event

11 name="toggle"

12 predicate=’name="{{el[0]}}"’>
13 {{isActive(el[0])}}
14 </td>
15 </tr>
16 </table>

Listing 6. Template for database view
(HTML)

3.2 Formal Prototype of a Cruise Control Device

A common way to develop mockups is to create graphical sketches using the clas-
sical paper-and-pencil approach. In this section we demonstrate the application
of BMotionWeb for reusing such graphical sketches for the creation of formal
prototypes. For this purpose, we use an Event-B specification of a cruise control
system (CCS) and a graphical sketch of a car cockpit including an exemplar of a
device (see Fig. 4) as a case-study. A CCS is an automotive system implemented
in software which automatically controls the speed of a car. The CCS device
provides buttons to switch the CCS system on/off, to set the current speed of
the car as the target speed of the CCS system and to increase and decrease the
target speed. In addition, the speedometer provides information about the state
of the CCS system and about the target speed in dependence on the current car
speed.

Using the visual editor of BMotionWeb, UI engineers can select a picture
(e.g. a graphical sketch or a photograph) of a device or a UI as a starting point

412 L. Ladenberger and M. Leuschel

Fig. 4. Formal prototype of cruise control device

for creating a formal prototype. Once a picture is selected it can be extended
with additional graphical elements. For this purpose, BMotionWeb contributes
an interactive area graphical element which can be placed over the picture. An
interactive area allows UI engineers to bind an execute event handler or a value of
a variable to a specific area of a picture. As an example, Fig. 4 shows a snapshot
of the formal prototype of the CCS device based on a graphical sketch, where the
user hovers the “+” button on the graphical sketch. An interactive area overlays
the button and binds an execute event handler (see Listing 7) that wires the
event USER Adapt Speed (see Listing 8), one with with the predicate s=1 and
one with the predicate s=2. In addition, the speedometer of the graphical sketch
binds the two variables car speed (the current speed of the car) and ccs target
(the target speed of the CCS system).

4 Validating Formal Prototypes

The use of a formal prototype for validation can take place at different stages of
the development process. On the one hand, a formal prototype can be created of
existing specifications (e.g. when the system is already implemented) as demon-
strated in Sect. 3. On the other hand, a formal prototype can be maintained
and used for validation at earlier stages of the development process, e.g. as a

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 413

1 bms.executeEvent({
2 selector:"#btSpeedUp",
3 events: [{ name: "USER_Adapt_Speed",
4 predicate: "s=1" },
5 { name: "USER_Adapt_Speed",
6 predicate: "s=5" }],
7 label: function(evt) {
8 return "Increase speed" +
9 evt.predicate";

10 }});

Listing 7. Execute event handler
“increase target speed” (JavaScript)

1 event USER_Adapt_Speed

2 any

3 s

4 where

5 @g1 ccs_status = cruise

6 @g2 s ∈ Z

7 @g3 ccs_target + s ≥ 0

8 then

9 @a1 ccs_target := ccs_target+s

10 end

Listing 8. CCS “increase target speed”
event (Event-B)

by-product of the developed formal specification. In the following we describe
different application examples of a formal prototype to support the validation
process of interactive systems.

Formal Prototype as a Base for Communication. A common understanding of
the system in a multidisciplinary team is crucial for the success of the project.
Indeed, it is important for the formal engineer to get feedback from the UI engi-
neer for further development of the formal specification. On the other hand, the
UI engineer needs to check whether his expectations are met in the formal spec-
ification. However, rarely all persons involved in a project are versed in formal
methods. The application of a formal prototype can overcome this challenge:
it allows UI engineers to validate the behavior of the system and the system’s
UI or device by interacting with a realistic prototype rather than by examining
a substantial amount of mathematical formulas. Moreover, a formal prototype
can be used to demonstrate features of the system’s UI or device and to discuss
validation results (e.g. system and design issues).

Deployment of Formal Prototypes. Running the client and server components
of BMotionWeb as web-server processes allows the deployment of formal proto-
types online. This can be in particularly useful for accessing a formal prototype
from other devices, such as tablets and mobile phones and for sharing a formal
prototype with other stakeholders (e.g. during an online project meeting). For
example, a UI engineer could demonstrate a specific scenario of the system’s
UI or device by interacting with the formal prototype. All updates made on the
formal prototype are automatically reflected to other stakeholders that have also
opened the same formal prototype.

Logging and Visualizing User Interactions. BMotionWeb contributes new fea-
tures for logging and visualizing user interactions. Figure 5 demonstrates the user
interactions log view that lists the so far executed transitions of a simulation,
where each transition shows the id of the graphical element that triggered the

414 L. Ladenberger and M. Leuschel

Fig. 5. User interactions log and transition diagram of a CCS device scenario

transition. The user can toggle between the states of a simulation by clicking on
an entry of the list.

Based on the user interactions log, a transition diagram visualizing the behav-
ior of graphical elements for a specific scenario can be generated. In order to gen-
erate a transition diagram, we apply the following approach: (1) the user selects
the graphical elements for the transition diagram from the formal prototype;
(2) we determine the observers of the selected graphical elements and derive
their formulas (which can be simple variables or expressions) that are required
to draw the state of the selected graphical elements; (3) for each state of the user
interactions log we compute the representation of the selected graphical elements
according to the value of the formulas in the respective state. As an example,
Fig. 5(b) illustrates the behavior of the graphical element that represents the
speedometer of the CCS device. Each rectangle represents a state, whereas a
directed edge between two rectangles represents a transition labelled with the
associated transition name.

Other Validation Features. BMotionWeb integrates other features that may sup-
port the validation of formal prototypes. For instance, a projection diagram can
be generated for individual graphical elements following the approach presented
in [10]. The objective of a projection diagram is to support human analysis of
the system by highlighting relevant aspects of it, while hiding information that
is not relevant from the diagram based on the state space of the animated formal
specification.

Several additional views for analysing a formal prototype are made available
from the ProB animator, e.g. a model-checking view with the goal to auto-
matically check properties of the system like deadlock freeness and invariant
preservation.

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 415

5 Related Work

Brama [21], AnimB [13] and the ProB based tool presented in [3] allow devel-
opers creating UIs of Event-B specifications using graphical elements provided
by Flash4 (e.g. labels and images, as well as interactive graphical elements like
input fields and radio buttons). In Brama and AnimB the mapping between an
animated formal specification and a UI is realised with the built-in programming
language ActionScript, whereas the ProB based tool requires the developer to
write Java as the gluing code. Although the use of Flash seems to be a promising
tool for creating rich interactive prototypes, it involves some disadvantages for
the developer: Since Flash is a self-contained tool the developer requires skills
for using it. Furthermore, the developer requires additional programming skills
for writing the gluing code that maps a state to the UI (e.g. ActionScript for
Brama and AnimB and Java for [3]).

Other tools which provide comparable concepts to that of BMotionWeb are:
JeB [24], an animator that provides an HTML5 canvas allowing the creation of
UIs for Event-B specifications and WebASM [25], a web-based tool that brings
the CoreASM [5] animator into the web and allows developing UIs for ASM [4]
specifications. Similar to the previously mentioned Flash based tools, JeB and
WebASM requires programmings skills to map a state to the UI. Moreover, the
Flash- and web-based tools lack features for the validation of UIs (e.g. logging
of user interactions).

PVSio-web [17] is a web environment including the animation engine
PVSio [14] and a visual editor for creating interactive prototypes for the PVS
formalism [18]. The visual editor of PVSio-web allows users to choose an image
that represents the layout of the UI and to place interactive areas over it (e.g.
areas to execute events and to display variable values). In contrast to PVSio-
web, BMotionWeb allows users to compose a UI prototype of different graphical
elements (e.g. images, labels and shapes). Moreover, in BMotionWeb variable
values can also be mapped to the different attributes of the graphical elements
using the observer concept of BMotionWeb.

The authors in [16] present three alternatives to extend the animation capa-
bilities of VDMPad [15]. Especially the “Lively Walk-Through” approach can
be compared to our work. It combines VDM animation with a UI to provide
lightweight validation features for VDM specifications. For this, the approach
introduces its own language called “LiveTalk” to wire interactive actions (e.g.
executing an VDM operation) to UI widgets. In contrast to the “Lively Walk-
Through” approach, in BMotionWeb at best no additional languages are required
to create interactive actions (e.g. executing classicalB operations or Event-B
events). Another difference between BMotionWeb and “Lively Walk-Through”
is that the latter lacks of linking state variables to the UI.

6 Conclusion

In this paper we have presented BMotionWeb, a novel graphical environment for
the rapid creation of formal prototypes. A formal prototype combines a mockup
4 http://www.adobe.com/devnet/flash.html.

http://www.adobe.com/devnet/flash.html

416 L. Ladenberger and M. Leuschel

of a UI or device with the intended functionality of an animated formal speci-
fication. Thus, we eliminate (at least to a large degree) the need to implement
and maintain the functional part of a prototype, e.g. using additional program-
ming languages. BMotionWeb provides a visual editor that facilitates the cre-
ation of formal prototypes and different features for the lightweight validation of
interactive systems, such as logging of user interactions, visualizing the behav-
ior of graphical elements and deployment of formal prototypes. Since a formal
prototype is based on web-technologies, external web-resources like third party
JavaScript libraries and SVG images can be used to create formal prototypes
for a wider range of interactive systems. We have demonstrated the application
of BMotionWeb based on two case studies: a formal prototype of a classical B
specification of a simple phonebook software and an Event-B specification of
a cruise controller. The case studies (specifications and formal prototypes) and
interactive online-versions of the formal prototypes have been made available at
our project website.5

BMotionWeb can be used at any stage of the development process to sup-
port the validation of interactive systems. In summary, we believe that BMotion-
Web can be useful for the following purposes: (i) to get a common understanding
of the system between formal method and non-formal method experts; (ii) to
demonstrate features of the system’s UI or device; (iii) to discuss validation
results (e.g. system and design issues).

Future Work. In future, we plan to apply BMotionWeb to create formal pro-
totypes of other case studies, especially case studies coming from industrial
projects. In this context, our aim is to integrate other animation tools with
BMotionWeb to address a wider range of interactive systems. First experiments
towards supporting the CoreASM animator [5] have already been made. We also
plan to develop more features for the lightweight validation of interactive sys-
tems, such as A/B testing to compare two variants of a system UI or device.
Finally, we plan to consider other techniques and tools to support the validation
process, like the ProB constraint solver [12], e.g. to intelligently disable/enable
graphical elements.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transfer 12(6), 447–466 (2010)

3. Bendisposto, J., Leuschel, M.: A generic flash-based animation engine for ProB.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 266–269.
Springer, Heidelberg (2006)

4. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-level System
Design and Analysis. Springer Science & Business Media, New York (2012)

5 http://www.stups.hhu.de/ProB/FormalPrototyping.

http://www.stups.hhu.de/ProB/FormalPrototyping

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes 417

5. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: an extensible ASM execution
engine. Fundamenta Informaticae 77(1–2), 71–103 (2007)

6. Fette, I., Melnikov, A.: The websocket protocol (2011)
7. Green, B., Seshadri, S.: AngularJS. O’Reilly Media Inc., California (2013)
8. Hazel, D., Strooper, P., Traynor, O.: Requirements engineering and verification

using specification animation. In: Automated Software Engineering, p. 302 (1998)
9. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with

B-motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009.
LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009)

10. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) Formal
Methods and Software Engineering. LNCS, vol. 9407, pp. 153–169. Springer,
Switzerland (2015)

11. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Softw. Tools Technol. Transfer (STTT) 10(2), 185–203 (2008)

12. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.-L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
Chap. 14, pp. 427–446. Wiley ISTE, Hoboken (2014)

13. Mtayer, C.: AnimB Homepage. http://www.animb.org/. Accessed 12 Jan 2015
14. Munoz, C.A.: Pvsio reference manual. National Institute of Aerospace (NIA), For-

mal Methods Group, 100 (2005)
15. Oda, T., Araki, K.: Overview of VDMPad: an interactive tool for formal specifica-

tion with vdm. In: Proceedings of International Conference on Advanced Software
Engineering and Information Systems (ICASEIS) (2013)

16. Oda, T., Yamamoto, Y., Nakakoji, K., Araki, K., Larsen, P.G.: VDM animation
for a wider range of stakeholders. Grace Technical reports, p. 18 (2015)

17. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid
prototyping device user interfaces in PVS. In: FMIS2013 (2013)

18. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system.
In: Kapur, D. (ed.) Automated Deduction–CADE-11. LNCS (LNAI), vol. 607,
pp. 748–752. Springer, Heidelberg (1992)

19. Rubel, D., Wren, J., Clayberg, E.: The Eclipse Graphical Editing Framework
(GEF). Addison-Wesley Professional, Boston (2011)

20. Schneider, S.: The B-Method: An Introduction. Palgrave Oxford, Oxford (2001)
21. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand,

J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer,
Heidelberg (2006)

22. W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 (2nd edn.), August
2011. http://www.w3.org/TR/SVG11/

23. W3C SVG Working Group. HTML5, A vocabulary and associated APIs for HTML
and XHTML, October 2014. http://www.w3.org/TR/html5/

24. Yang, F.: A Simulation Framework for the Validation of Event-B Specifications.
Ph.D. thesis, Université de Lorraine (2013)

25. Zenzaro, S., Gervasi, V., Soldani, J.: WebASM: an abstract state machine execution
environment for the web. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS,
vol. 8477, pp. 216–221. Springer, Heidelberg (2014)

http://www.animb.org/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/html5/

Author Index

Ábrahám, Erika 9
Agha, Gul 3
Andreescu, Oana Fabiana 85
Arcaini, Paolo 253
Azzopardi, Shaun 337

Barnat, Jiří 121, 172
Bendík, Jaroslav 121
Beneš, Nikola 121, 172
Bezděk, Peter 172

Canal, Carlos 321
Černá, Ivana 121, 172
Cerone, Antonio 287
Champion, Adrien 347
Cimatti, Alessandro 386
Colombo, Christian 337

Dam, Mads 27
Deepak, Maram Sai Krishna 304
Demasi, Ramiro 386
Dernehl, Christian 137
Derrick, John 45
Dobrikov, Ivaylo 204
Doherty, Simon 45

El-Hokayem, Antoine 367

Falcone, Yliès 367
Feist, Josselin 76
Frohn, Florian 234

Gargantini, Angelo 253
Giesl, Jürgen 234
Glesner, Sabine 61
Göthel, Thomas 61
Gupta, Anshul 304
Gurfinkel, Arie 347

Hansen, Norman 137
Hauzar, David 215
Hensel, Jera 234
Husien, Idress 155

Jaber, Mohamad 367
Jähnig, Nils 61
Jensen, Thomas 85

Kahsai, Temesghen 347
Kowalewski, Stefan 137
Kremer, Gereon 9

Ladenberger, Lukas 403
Lescuyer, Stéphane 85
Leuschel, Michael 204, 403

Marché, Claude 215
Mounier, Laurent 76
Moy, Yannick 215

Pace, Gordon J. 337
Padarthi, Bharath Kumar 304
Plagge, Daniel 204
Poetzsch-Heffter, Arnd 277
Potet, Marie-Laure 76

Qiu, Zongyan 270

Riccobene, Elvinia 253

Salaün, Gwen 321
Schewe, Sven 155, 304
Schwarz, Oliver 27
Smith, Graeme 188
Ströder, Thomas 234

Tinelli, Cesare 347
Tonetta, Stefano 386
Trivedi, Ashutosh 304

Vella, Brian 337

Yavuz, Tuba 104

Zeller, Peter 277
Zhang, Ke 270

	Foreword
	Preface
	Organization
	Contents
	Invited Papers
	Abstractions, Semantic Models and Analysis Tools for Concurrent Systems: Progress and Open Problems
	1 Introduction
	2 Concolic Testing
	3 Reasoning About Large-Scale Concurrent Systems
	References

	Satisfiability Checking: Theory and Applications
	1 Introduction
	2 Satisfiability Checking
	2.1 SAT Solving
	2.2 SMT Solving

	3 SMT Solvers
	4 Applications
	5 Conclusion
	References

	Concurrency and Non-interference
	Automatic Derivation of Platform Noninterference Properties
	1 Introduction
	2 Processor Models
	2.1 ISA Models
	2.2 Notation
	2.3 Memory Management

	3 ISA Information Flow Analysis
	3.1 Objectives
	3.2 Challenges

	4 Approach
	4.1 Rewriting Towards an Evaluated Form
	4.2 Backward Proof Strategy
	4.3 Relation Refinement

	5 Evaluation
	6 Related Work
	7 Discussion on Unpredictable Behaviour
	8 Conclusions and Future Work
	References

	Linearizability and Causality
	1 Introduction
	1.1 Motivation - Nonlinearizable Objects on TSO

	2 Our Contribution
	3 Modelling Threads, Histories and Objects
	4 Independence and Causal Ordering
	5 Observational Refinement and Causal Linearizability
	6 Flush-Based Memory and Operation-Race Freedom
	7 Operation-Race Freedom on TSO
	8 Concluding Remarks
	References

	Refinement-Based Verification of Communicating Unstructured Code
	1 Introduction
	2 Communicating Sequential Processes (Background)
	3 Framework for Formally Relating CSP Specifications and CUC Implementations
	4 Communicating Unstructured Code and Its Semantics
	4.1 Communicating Unstructured Code
	4.2 Stable Failures Semantics
	4.3 Compatibility to CSP
	4.4 Concurrent Semantics

	5 Hoare Calculus
	6 Example
	6.1 Concurrency

	7 Related Work
	8 Conclusion
	References

	Guided Dynamic Symbolic Execution Using Subgraph Control-Flow Information
	1 Guided Dynamic Symbolic Execution
	1.1 Motivating Example
	1.2 Proposition

	2 Using Subgraph Control-Flow Information
	2.1 Subgraph Transformation
	2.2 Using Random Walk to Guide the Exploration
	2.3 Subgraph Pattern
	2.4 Overhead

	3 Related Work
	4 Conclusion and Perspectives
	References

	Program Analysis
	Correlating Structured Inputs and Outputs in Functional Specifications
	1 Introduction
	1.1 Motivating Example

	2 Language
	2.1 Types and Statements
	2.2 Exit Labels

	3 Correlation Analysis
	3.1 Partial Equivalence Relations
	3.2 Paths and Correlations
	3.3 Intraprocedural Analysis and Correlation Summaries

	4 Preliminary Results and Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

	Combining Predicate Abstraction with Fixpoint Approximations
	1 Introduction
	2 Preliminaries
	3 A Hybrid Approach
	3.1 Computing a Partially Predicate Abstracted Transition System
	3.2 Combining Predicate Abstraction with Fixpoint Approximations

	4 Experiments
	5 Related Work
	6 Conclusion
	A Appendix
	References

	Finding Boundary Elements in Ordered Sets with Application to Safety and Requirements Analysis
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Algorithm
	3.1 Chain-Based Algorithm
	3.2 Cutoff-Based Algorithm
	3.3 Complexity
	3.4 Heuristics
	3.5 Relaxing the Preconditions

	4 Experimental Evaluation
	5 Conclusion
	References

	Combining Abstract Interpretation with Symbolic Execution for a Static Value Range Analysis of Block Diagrams
	1 Introduction
	2 Background
	2.1 SMT Solver
	2.2 Block Diagram

	3 Related Work
	4 Concept
	4.1 Abstract Interpretation with Interval Sets
	4.2 Symbolic Execution with SMT
	4.3 Combining Abstract Interpretation with Symbolic Execution

	5 Evaluation
	6 Conclusion
	References

	Model Checking
	Program Generation Using Simulated Annealing and Model Checking
	1 Introduction
	2 The Approach in a Nutshell
	3 Background
	4 Synthesis Tool Architecture
	5 Case Studies
	6 Results
	7 Conclusion
	References

	LTL Parameter Synthesis of Parametric Timed Automata
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Symbolic Semantics
	3.1 Constrained Parametric Difference Bound Matrix
	3.2 Finite Abstraction

	4 Parameter Synthesis Algorithm
	5 Implementation
	6 Experimental Evaluation
	7 Conclusion and Future Work
	References

	Model Checking Simulation Rules for Linearizability
	1 Introduction
	2 Simulation-Based Proof Method
	2.1 The Treiber Stack
	2.2 Simulation-Based Proof

	3 Encoding the Rules for Deterministic Specifications
	3.1 Non-linearization Steps
	3.2 Linearization Step
	3.3 Non-interference
	3.4 Initialisation
	3.5 Discussion

	4 Encoding the Rules for Nondeterministic Specifications
	5 Conclusion
	References

	LTL Model Checking under Fairness in ProB
	1 Introduction and Motivation
	2 Preliminaries
	3 Fairness Algorithm and Implementation
	References

	Verification
	Counterexamples from Proof Failures in SPARK
	1 Introduction
	2 Counterexamples in SPARK
	3 Implementation of Counterexamples
	3.1 Short Introduction to Why3
	3.2 Model Features of SMT-LIB
	3.3 Counterexamples at Why3 Level
	3.4 Building Counterexamples for SPARK
	3.5 Experimental Evaluation

	4 Conclusions and Perspectives
	References

	Proving Termination of Programs with Bitvector Arithmetic by Symbolic Execution
	1 Introduction
	2 LLVM States for Symbolic Execution
	3 From LLVM to Symbolic Execution Graphs
	3.1 Handling Bitvector Operations by Case Analysis
	3.2 Handling Bitvector Operations by Modulo Relations
	3.3 Handling Bitwise Operations

	4 From Symbolic Execution Graphs to Integer Systems
	5 Related Work, Experiments, and Conclusion
	A Separation Logic Semantics of Abstract States
	B Proofs
	References

	SMT-Based Automatic Proof of ASM Model Refinement
	1 Introduction
	2 Abstract State Machines
	2.1 ASM Modeling Through Refinement

	3 Stuttering Refinement
	4 Proving Refinement
	4.1 Using Invariants in Refinement Proof
	4.2 Towards an SMT Encoding

	5 Proving Refinement by SMT
	5.1 SMT-Based Refinement Proof

	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	Coq Implementation of OO Verification Framework VeriJ
	1 Introduction
	2 The VeriJ Framework
	3 Coq Implementation of VeriJ
	3.1 Modules
	3.2 Example

	4 Related Work and Conclusion
	References

	Towards a Proof Framework for Information Systems with Weak Consistency
	1 Introduction
	2 Developing Applications with Weak Consistency
	3 Specification and Verification
	4 Related Work
	5 Conclusion and Future Work
	References

	Interaction and Adaptation
	A Cognitive Framework Based on Rewriting Logic for the Analysis of Interactive Systems
	1 Introduction
	2 Modelling Cognitive Processes
	2.1 Input as Perceptions and Output as Actions
	2.2 Attention and Processing Control
	2.3 Tasks and Short-Term Memory (STM)
	2.4 Interface
	2.5 Closure and Post-completion Error
	2.6 Long-Term Memory (LTM) and Supevisory Attentional System

	3 Rewriting System Model and Analysis
	3.1 Rewrite Rules
	3.2 Implementation and Analysis with MAUDE

	4 Case Studies
	4.1 Automatic Teller Machine (ATM) User
	4.2 Air Traffic Control (ATC) Operator

	5 Conclusion
	References

	Incentive Stackelberg Mean-Payoff Games
	1 Introduction
	2 Incentive Equilibrium
	3 Existence, Construction, and Complexity
	3.1 Perfectly-Incentivised Strategy Profiles
	3.2 Existence and Construction of Incentive Equilibria

	4 Experimental Results
	4.1 Algorithm Specific Details
	4.2 Experimental Results

	5 Discussion
	References

	Stability-Based Adaptation of Asynchronously Communicating Software
	1 Introduction
	2 Models
	2.1 Interface LTS
	2.2 Adaptation Contracts and Adapter LTS
	2.3 Running Example

	3 Process Algebra Encoding
	4 Stability of Adapted Systems
	5 Adapter Generation and Methodology
	6 Related Work
	7 Conclusion
	References

	Compliance Checking in the Open Payments Ecosystem
	1 Introduction
	2 Compliance Engine
	3 Formalising Regulatory Compliance
	4 Conclusions
	References

	Development Methods
	CoCoSpec: A Mode-Aware Contract Language for Reactive Systems
	1 Introduction
	2 Background
	3 The CoCoSpec Language
	3.1 Formal Semantics and Methodology
	3.2 Using CoCoSpec: An Example

	4 Implementation
	5 Evaluation
	5.1 Benefits of CoCoSpec
	5.2 Verifying the Longitudinal Controller
	5.3 Verifying Autopilot

	6 Conclusion
	References

	Modularizing Crosscutting Concerns in Component-Based Systems
	1 Introduction
	2 Behavior Interaction Priority
	3 Modularizing Crosscutting Concerns in BIP
	3.1 Preliminaries
	3.2 Global Joinpoints
	3.3 Global Pointcuts
	3.4 Global Advice and Global Aspect
	3.5 Global Weaving
	3.6 Overview of Local Aspects
	3.7 Weaving Multiple Aspects

	4 Implementation
	4.1 AOP-BIP: Aspect-Oriented Programming for BIP Systems
	4.2 Example

	5 Related Work
	6 Future Work
	A Proofs
	References

	Tightening a Contract Refinement
	1 Introduction
	2 Background
	2.1 Transition Systems
	2.2 LTL
	2.3 Parameter Synthesis
	2.4 Contract Refinement

	3 The Problem of Tightening a Refinement
	3.1 Motivation
	3.2 Formal Definition

	4 The Algorithm
	4.1 Overview
	4.2 Generation of the Parametric Problem
	4.3 Multiple Validity Parameter Synthesis Problem

	5 Experimental Evaluation
	5.1 Details of the Implementation
	5.2 Description of Benchmarks
	5.3 Experimental Results

	6 Conclusions and Future Work
	References

	BMotionWeb: A Tool for Rapid Creation of Formal Prototypes
	1 Introduction
	2 BMotionWeb
	2.1 Server Back-End
	2.2 Client Front-End

	3 Creating Formal Prototypes
	3.1 Formal Prototype of a Phonebook Software
	3.2 Formal Prototype of a Cruise Control Device

	4 Validating Formal Prototypes
	5 Related Work
	6 Conclusion
	References

	Author Index

