
Chapter 21
Operator Splitting Algorithms for Free Surface
Flows: Application to Extrusion Processes

Andrea Bonito, Alexandre Caboussat, and Marco Picasso

Abstract We investigate the benefits of operator splitting methods in the context
of computational fluid dynamics. In particular, we exploit their capacity at han-
dling free surface flows and a large variety of physical phenomena in a flexible
way. A mathematical and computational framework is presented for the numerical
simulation of free surface flows, where the operator splitting strategy allows to sep-
arate inertial effects from the other effects. The method of characteristics on a fine
structured grid is put forward to accurately approximate the inertial effects while
continuous piecewise polynomial finite element associated with a coarser subdivi-
sion made of simplices is advocated for the other effects. In addition, the splitting
strategy also allows modularity, and in a straightforward manner rheological model
change for the fluid. We will emphasize this flexibility by treating Newtonian flows,
visco-elastic flows, multi-phase, and multi-density immiscible incompressible New-
tonian flows. The numerical framework is thoroughly presented; the test case of the
filling of a cylindrical tube with potential die swell in an extrusion process is taken
as the main illustration of the advantages of operator splitting.

A. Bonito (�)
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
e-mail: bonito@math.tamu.edu

A. Caboussat
Haute Ecole de Gestion de Genève, University of Applied Sciences Western Switzerland
(HES-SO), Rue de la Tambourine 17, 1227 Carouge, Switzerland
e-mail: alexandre.caboussat@hesge.ch

M. Picasso
MATHICSE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
e-mail: marco.picasso@epfl.ch

© Springer International Publishing Switzerland 2016
R. Glowinski et al. (eds.), Splitting Methods in Communication, Imaging, Science,
and Engineering, Scientific Computation, DOI 10.1007/978-3-319-41589-5_21

677

mailto:bonito@math.tamu.edu
mailto:alexandre.caboussat@hesge.ch
mailto:marco.picasso@epfl.ch


678 A. Bonito et al.

1 Introduction

Complex free surface phenomena involving multi-phase Newtonian and/or Non-
Newtonian flows are nowadays a topic of active research in many fields of physics,
engineering, and bioengineering. Numerous mathematical models and associated
numerical approximations for complex liquid-gas free surfaces problems are also
available.

The purpose of this chapter is to present a comprehensive review of a compu-
tational methodology developed in the group of Jacques Rappaz at Ecole polytech-
nique fédérale de Lausanne (EPFL), called cfsFlow and commercialized by a spin-
off company of EPFL named Ycoor Systems S.A. [40]. Originally proposed for
two-dimensional cases by Maronnier, Picasso, and Rappaz [25], it evolved to han-
dle three-dimensional flows [26], account for surrounding compressible gas [11, 12]
and surface tension [8], allow complex rheology [6], include space adaptive inter-
face tracking [9], and recently integrate multi-phase fluids [19]. Besides the typical
fluid flows applications, it is worth noting that these methods have been also applied
successfully to predict the evolution of glaciers [20, 21, 33].

Many algorithms are available to approximate free boundary problems, see for
instance [2, 29, 31, 37, 38]. The novelty in cfsFlow is to use a time splitting ap-
proach [15] and a two-grids method to decouple advection and diffusion regimes.
This allows the use of well-suited numerical techniques for each of the two regimes
separately. In particular, the advection phenomenon describing the evolution of each
liquid phases is approximated on structured grids by the forward method of charac-
teristics [34] on the volume-of-fluid representation of each phase. On the other hand,
finite element approximations on simplices determined as liquid are implemented to
handle diffusion-like phenomena.

We start by discussing in Section 2 the basic model for Newtonian fluids with
free surface. The type of operator splitting strategies considered and their applica-
tions to free boundary problems are presented in Section 3, the associated numerical
algorithms being presented in Section 4. Fluids verifying more complex rheology
are discussed in Section 5, where the upper convected Maxwell constitutive relation
for the extra stress tensor is chosen as our model problem. Multi-phase fluids are
considered in Section 6 and perspectives on emulsion processes are put forward in
Section 7.

The filling of a cylindrical tube with potential die swell in an extrusion process is
taken as the main illustration of the advantages of the presented numerical algorithm
and is used throughout this chapter to evaluate the effect of each component in the
final model. We note in passing that the numerical simulations of extrusion is of
great importance for instance in industrial processes involving pasta dough [22] or
textile products [1].
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2 Mathematical Modeling of Newtonian Fluids with Free
Surfaces

We present in this section the mathematical model used to describe the evolution
of an incompressible Newtonian fluid with a free surface, neglecting the effect of
the ambient fluid. A simple model for the treatment of the ambient fluid has been
proposed in [12] and the addition of surface tension effects has been described in
[8, 9].

The computational domain is denoted by Λ ⊂ R
d , d = 2,3, and T > 0 stands

for the final time. We describe in Section 2.1 the Navier-Stokes equations for fluids
subject to free boundaries and detail in Section 2.2 the Eulerian approach used to
track the liquid domain evolution.

2.1 Navier-Stokes System

We denote by Ω(t)⊂ Λ the domain occupied by the liquid at time t ∈ [0,T ] and by

Q := {(x, t) ∈ Λ × (0,T ] | x ∈ Ω(t)} ,

the space-time liquid domain. The fluid is assumed to be incompressible and New-
tonian so that its velocity u : Q → R

d and pressure p : Q → R are the solutions to
the Navier-Stokes equations:

⎧
⎪⎨

⎪⎩

ρ
(

∂
∂ t

u+(u ·∇)u
)

−2∇ · (μD(u))+∇p = f in Q,

∇ ·u = 0 in Q,

(21.1)
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where f : Q → R
d is a given external force (typically f := ρg, where g is the grav-

itational acceleration), D(u) := 1
2 (∇u+∇ut) is the symmetric part of the velocity

gradient and ρ > 0, μ > 0 are respectively the fluid density and viscosity. Notice
that the Navier-Stokes equations are only defined in the liquid domain Q, the effect
of the outside fluid being neglected. Hence, the velocity and pressure outside Q are
not defined.

We now discuss the boundary/interface conditions associated with the above sys-
tem and refer to Figure 21.1 for an illustration in the die swell context. We separate
the boundary of the computational domain in two disjoint open sets ΓD and ΓN such
that ∂Λ =ΓD∪ΓN. The velocity is prescribed on ΓD (Dirichlet boundary condition),
i.e. for a given gD : ΓD× [0,T ]→ R

d , we have

u = gD on ∂QD := {(x, t) ∈ ΓD× [0,T ] | x ∈ ∂Ω(t)} . (21.2)

On the other hand, a force is applied on ΓN (Neumann boundary condition), i.e. for
a given gN : ΓN× [0,T ]→ R

d , we have

(2μD(u)− pI)n = gN on ∂QN := {(x, t) ∈ ΓN× [0,T ] | x ∈ ∂Ω(t)} , (21.3)

where n(., t) is the outward pointing unit vector normal to ∂Ω(t) and I is the identity
tensor. More general boundary conditions such as slip boundary conditions could
be considered in a similar way but are not included here to keep the presentation as
simple as possible.

Regarding the free interface condition, we assume that no force is exerted to the
liquid, that is

(2μD(u)− pI)n = 0 on F := {(x, t) ∈ Λ × (0,T ] | x ∈ ∂Ω(t)\∂Λ} , (21.4)

and, since the interface evolves with the fluid velocity, that the interface velocity uF

satisfies
uF = u on F. (21.5)

Finally, an initial condition u0 : Ω(0)→ R
d is provided for the velocity

u(.,0) = u0 on Ω(0). (21.6)

2.2 Implicit Representation of the Liquid Domain

The liquid domain Ω(t) is mathematically represented during the evolution via its
characteristic function φ : Λ × [0,T ]→{0,1}, implying that

Ω(t) = {x ∈ Λ | φ(x, t) = 1} , t ∈ [0,T ]. (21.7)

In view of the interface velocity condition (21.5), we interpret the evolution of Ω(t)
as the transport of its characteristic function with the fluid velocity:
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Fig. 21.1 Boundary conditions in the context of die swell. The liquid enters the cavity with an
initial velocity u, the horizontal component is a parabolic profile and the vertical component van-
ishes. The velocity is imposed to vanish on the rest of the boundary. Another setup would be to
enforce slip boundary conditions on the lateral walls of the extruder, implying a constant, instead
of parabolic, profile of velocities in the tube.

∂
∂ t

φ +u ·∇φ = 0 in Q, φ = 0 in Λ \Q, (21.8)

where u is the fluid velocity only defined on the space-time fluid domain Q as noted
in Section 2.1. An illustration is provided in Figure 21.2.

∂
∂t + ·∇ = 0

(tn) = 1

t = tn

(tn)

t = tn+1

(tn+1) = 1

(tn+1)

f f

f

f

W

W

u

Fig. 21.2 Deformation of the liquid domain Ω(t) for t ∈ [tn, tn+1] deduced from the transport of
the characteristic function φ with the liquid velocity u according to (21.8).

Remark 1 (Ambient Fluid and Computational Cost). As the effect of the outside
fluid is neglected, the Navier-Stokes relations (21.1) for the velocity-pressure pair
are only considered in the space-time liquid domain Q. As a consequence, the ve-
locity is only defined on Q and so is the transport equation for the characteristic
function in (21.8). A possible equivalent alternative would consist in finding an ex-
tension of the velocity field to Λ × (0,T ], thereby extending the transport relation
to the entire space-time computational domain Λ × (0,T ]. However, the numerical
scheme described in Section 4 takes full advantage of the representation (21.8) in
order to reduce the overall computational cost.



682 A. Bonito et al.

We supplement the transport equation in (21.8) by the value of the characteristic
function φ at the inflow boundary

∂Qinflow := {(x, t) ∈ ∂Λ × (0,T ] | x ∈ ∂Ω(t) and u ·n < 0} , (21.9)

namely,
φ = 1 on ∂Qinflow. (21.10)

The initial value of the characteristic equation is chosen to match the initial given
domain Ω(0) := Ω ,

φ(.,0) = 1 on Ω(0) and φ(.,0) = 0 elsewhere. (21.11)

3 Operator Splitting Algorithm

We take advantage of an operator splitting scheme to separate the numerical issues
inherent to the approximation of the diffusion and advection operators in the ap-
proximation of the system of equations (21.1) and (21.8). In this context, it allows
to treat separately Stokes systems on given non-moving liquid domains and trans-
port equations for the velocity and the liquid characteristic function.

Several operator splitting algorithms are available in the literature, starting from
the early works of Peaceman and Rachford [32], Douglas and Rachford [14],
Marchuk [23, 24], and Yanenko [39]. We refer to Glowinski [15] for a survey of
these methods. In Section 3.1, we review a particular version of the so-called Lie
scheme and we detail in Section 3.2 its application to free boundary problems.

3.1 The Lie Scheme

We advocate in this work a particular version of the Lie scheme and follow the
description provided in [15, 16] (see also Chapters 1 and 2 in this book). Assume
that we are interested in the solution of the Cauchy problem

⎧
⎨

⎩

d
dt

v+A(v, t) = 0, t ∈ (0,T ],

v(0) = v0,

where the operator A can be decomposed as the sum of q operators

A =
q

∑
i=1

Ai. (21.12)
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The scheme starts with a subdivision 0 =: t0 < t1 < .. . < tN := T of the time
interval [0,T ]. Over each sub-interval In+1 := (tn, tn+1] the approximation of v(tn+1)
(an approximation of v(tn) being given) is obtained in q steps (corresponding to q
alternating “directions”):

set v0 = v0 and w0(t)≡ v0 for t ∈ [0, t1];

for n = 0, . . . ,N −1
for i = 1, . . . ,q

find wn+i/q(t) as the solution of
d
dt

v+Ai(v, t) = 0 on (tn, tn+1]

and satisfying the initial condition v(tn) = wn+(i−1)/q(tn+1);
end for
set vn+1 := w(tn+1)

end for

It turns out that if the operators Ai are linear, time independent, and they commute,
then vn = v(tn) for n = 0, . . . ,N. However, in generic situations, the above scheme
is, at most, first order accurate [15]. Nevertheless, this motivates the introduction of
first order discretizations in time and space for each sub-step of the algorithm, as
described in Sections 4.1 and 4.2.

3.2 Application to Free Surface Flows

In the context of fluid flows with free boundaries, we set up a splitting of type (21.12)
using two alternating “directions” (q= 2). We call these two steps the prediction and
correction steps which are now described on each time subinterval In+1 := (tn, tn+1].
They consist in separating the hyperbolic regime from the parabolic regime in order
to apply numerical methods well suited to each situation; see Section 4.

We assume that an approximation of the liquid characteristic function φ n is given,
and therefore so is an approximation of the liquid domain Ω n via the relation

Ω n := {x ∈ Λ | φ n(x) = 1} .

This relation corresponds to (21.7) after approximating the liquid characteristic
function at time t = tn. We also assume to be given a velocity approximation un(x)
of u(x, tn). The prediction step determines an approximation of the liquid domain at
time tn+1 together with a prediction of the velocity on the new domain. The correc-
tion step provides an update of the velocity and pressure on the liquid domain that
remains unchanged. Figure 21.3 provides an illustration of the process for the die
swelling example.
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t = tn

t = tn+1/2

Prediction step

t = tn+1

Correction step

n := { n = 1}, n, pn

n = 0

n+1/2 := { n+1/2 = 1}, n+1/2

n+1/2 = 0

n+1 := n+1/2, n+1, pn+1

n+1 = 0

u

u

u
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W

f

f

f

f

f

Fig. 21.3 Alternating direction splitting applied to free boundary problems. Given approximations
φ n and un of the liquid domain characteristic function φ and velocity u at time t = tn, the first step
consists in finding updated approximations of the characteristic function φ (and thus of the liquid
domain Ω ) as well as of the fluid velocity u. On the new liquid domain, the second step determines
a velocity correction together with its associated pressure. In particular, the liquid domain does not
change during the correction step.

3.2.1 The Prediction Step

The prediction step encompasses the advection components of (21.1) and (21.8). It
consists in simultaneously finding approximations of the characteristic function φ
and the velocity field u satisfying

∂
∂ t

φ +u ·∇φ = 0 and
∂
∂ t

u+(u ·∇)u = 0 in Qn+1 := Q∩ (
Λ × In+1) .

(21.13)
The numerical scheme proposed here relies on the so-called method of characteris-
tics and is detailed now. For any point x ∈ Ω n in the liquid domain, we define the
characteristic trajectory y(.;x) starting at x by

d
dt

y(t;x) = u(y(t;x), t), for t ∈ In+1, and y(tn;x) = x. (21.14)

Along this characteristic trajectory, the transport relations in (21.8) read

d
dt

φ(y(t;x), t) = 0 and
d
dt

u(y(t;x), t) = 0.
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Hence, from the initial conditions φ(tn) = φ n and u(tn) = un on Ω n, we obtain

φ(y(t;x), t) = φ n(x) = 1 and u(y(t;x), t) = un(x) (21.15)

as long as y(t;x) ∈ Λ . We set φ(x, t) = 0 whenever x ∈ Λ \ {y(t;x) | x ∈ Ω n} so
that these relations defines φ on Λ × In+1 (and the associated liquid domain) as well
as the velocity u on the liquid domain. As pointed out earlier, the algorithm does not
need the velocity u(x, t) whenever x ∈ Λ \ {y(t;x) | x ∈ Ω n}. The prediction step
ends upon setting

φ n+ 1
2 := φ(tn+1) in Λ ,

and consequently

Ω n+ 1
2 :=

{
x ∈ Λ | φ n+ 1

2 (x) = 1
}

:=
{

y(tn+1,x) | x ∈ Ω n}∩Λ (21.16)

as well as
un+ 1

2 := u(tn+1) in Ω n+ 1
2 .

3.2.2 The Correction Step

After the prediction step, the approximation of the liquid domain remains un-
changed. In the framework of the splitting scheme described in Section 3.1, the
“corrected” characteristic function satisfies

∂
∂ t

φ = 0 in Ω n+ 1
2 × In+1 with φ(tn) = φ n+ 1

2 in Ω n+ 1
2 .

As a consequence, we set φ n+1 := φ n+ 1
2 , Ω n+1 := Ω n+ 1

2 and we note that the pre-
dicted velocity is now defined over Ω n+1, i.e., un+ 1

2 : Ω n+1 → R
d .

Then, the updated velocity u : Ω n+1 × In+1 → R
d as well as the associated pres-

sure p : Ω n+1× In+1 →R are defined as the solution to the following Stokes system
on a given non-moving domain:

⎧
⎪⎨

⎪⎩

ρ
∂
∂ t

u−2∇ · (μD(u))+∇p = f

∇ ·u = 0

in Ω n+1 × In+1, (21.17)

supplemented by the boundary conditions

u = gD on ∂Ω n+1 ∩ΓD, (2μD(u)− pI)nn+1 = gN on ∂Ω n+1 ∩ΓN,

and the free interface condition

(2μD(u)− pI)nn+1 = 0 on ∂Ω n+1 \∂Λ ,
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where nn+1 is the outer pointing unit vector normal to ∂Ω n+1. Finally, we define
the corrected velocity approximation un+1 : Ω n+1 →R

d by un+1 := u(tn+1) and the
associated pressure by pn+1 : Ω n+1 → R by pn+1 := p(tn+1).

4 Numerical Approximation of Free Surface Flows

We are now in a position to describe the numerical algorithm for the approximation
of the solution to the free boundary problem (21.1) and (21.8). It takes full advan-
tage of the splitting into prediction and correction steps discussed in Section 3.2.
The time and space discretizations are presented in Sections 4.1 and 4.2 respec-
tively. This section ends with Section 4.3, where numerical illustrations are given,
in particular, in the context of die swell.

4.1 Time Discretization

We recall that the time interval [0,T ] is decomposed in N subintervals
In := (tn, tn+1], n= 0, . . . ,N−1 and we denote the associated time steps by δ tn+1 :=
tn+1 − tn. In what follows, we discuss the algorithm over the time interval In.

4.1.1 Prediction Step

An explicit Euler approximation Yn+1 of the characteristic curve y(tn+1;x) in (21.14)
is advocated for the prediction step. For all x ∈ Ω n, we set

Yn+1(x) := x+δ tn+1un(x). (21.18)

In view of (21.16), the approximation of the liquid domain Ω n+ 1
2 , denoted Ω n+ 1

2
N ,

is defined as

Ω n+ 1
2

N :=
{

Yn+1(x) | x ∈ Ω n}∩Λ .

The characteristic curves Yn+1 determine also the approximations Φn+ 1
2 and Un+ 1

2

of φ n+ 1
2 and un+ 1

2 according to the relations

Φn+ 1
2 (Yn+1(x)) = φ n(x) := 1, Un+ 1

2 (Yn+1(x)) = un(x), (21.19)

whenever Yn+1(x) ∈ Λ . In addition, we set Φn+ 1
2 (x) = 0 for x ∈ Λ \Ω n+ 1

2
N .
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4.1.2 Correction Step

The approximation of the liquid domain characteristic function is not modified in
this step, i.e.,

Φn+1 := Φn+ 1
2 and Ω n+1

N := Ω n+ 1
2

N .

An implicit Euler method is advocated for the solution of the Stokes system (21.17).
This consists in seeking Un+1 : Ω n+1

N → R
d and Pn+1 : Ω n+1

N → R satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ρ
Un+1 −Un+ 1

2

δ tn+1 −2∇ · (μD(Un+1))+∇Pn+1 = f(., tn+1),

∇ ·Un+1 = 0,

(21.20)

in Ω n+1
N , subject to the boundary conditions

Un+1 = gD(., t
n+1) on ∂Ω n+1

N ∩ΓD,

(2μD(Un+1)−Pn+1I)nn+1
N = gN(., t

n+1) on ∂Ω n+1
N ∩ΓN,

and to the free interface condition

(2μD(Un+1)−Pn+1I)nn+1
N = 0 on ∂Ω n+1

N \∂Λ .

Here nn+1
N is the outer pointing unit vector normal to ∂Ω n+1

N .

4.2 Two-Grid Spatial Discretization

The space discretization takes also full advantage of the alternating splitting de-
scribed above. The prediction and correction steps are approximated using differ-
ent subdivisions and numerical techniques. On the one hand, a subdivision made
of structured cells is advocated for the characteristic relation (21.18) coupled with
a Simple Linear Interface Calculation (SLIC) [28] procedure in order to limit the
numerical diffusion when approximating the volume fraction of liquid in (21.19).
On the other hand, a standard stabilized finite element method is proposed for the
approximation of the solution of the Stokes system (21.20). We start with the de-
scription of the two subdivisions and define the associated discrete approximation
spaces. Then we detail the numerical techniques tailored to each discrete spaces.

4.2.1 Two Subdivisions and Associated Discrete Spaces

The prediction and correction steps rely on two different subdivisions. A volume-of-
fluid type method on a structured grid is advocated for the prediction step consisting
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of two transport equations (21.19). The computational domain Λ is bounded and
therefore can be included into a structured grid of cells Ci, i = 1, . . . ,M. We de-
note by TS := {Ci, i = 1, . . . ,M} the collection of all those structured cells and by
h := maxC∈TS diameter(C) the typical size of the elements. An example of such
mesh is shown in Figure 21.4.

Fig. 21.4 Structured subdivision used for the space discretization during the prediction step.

We denote by V
S the approximation space which consists of all piecewise con-

stant functions associated with the partition TS:

V
S :=

{
v : Λ → R | v|C is constant ∀C ∈TS} .

Note that VS will be used as the approximation space for the liquid characteristic
function Φn and the predicted velocity Un+ 1

2 . In particular, the approximation of the
former does not necessarily take values in {0,1} but in R.

The second discretization considered is a typical conforming finite element sub-
division made of triangles when d = 2 or tetrahedra when d = 3. The collection of
these elements is denoted TFEM and we denote by H := maxT∈TFEM diameter(T )
the typical size of the elements. An example of such a discretization is shown in
Figure 21.5.

Fig. 21.5 Finite element subdivision used for the space discretization during the correction step.

For any subset τ ⊂ TFEM , we denote by V(τ) the collection of vertices in τ and
by V

FEM(τ) the space of globally continuous, piecewise polynomials of degree ≤ 1
associated with the subdivision τ:
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V
FEM(τ) :=

{

V :
⋃

T∈τ
T → R | V continuous, V |T is a polynomial of degree 1,∀T ∈ τ

}

and
V

FEM
0 (τ) :=

{
V ∈ V

FEM(τ) | V |ΓD∩∂T = 0 ∀T ∈ τ
}
.

In the sequel, the subset τ will represent the “liquid” elements, i.e., an approximate
subdivision of Ω(t) at a given time t.

In order to fully exploit the potentialities of this two-grid method, we consider
a structured grid T S that is finer than the finite element mesh T FEM . This allows
us to improve the accuracy on the approximation of the transport equations (21.18),
without having a computationally prohibitive approximation of the diffusion prob-
lem (21.20). As it turns out, this allows choices of relatively large CFL, see Sec-
tion 4.3. Typically the value of H is between 5h and 10h, namely the structured grid
is five to ten times finer than the finite element mesh. Further comments about the
choice of the sizes of both discretizations can be found in [12, 26].

To alternate between the prediction and correction steps, we need projection op-
erators to map functions in V

S into functions in V
FEM(τ) and vice versa. We start

with the projection πS→FEM : VS → V
FEM(τ) mapping the structured grid into the

finite element mesh. Note that a function in V
FEM(τ) is uniquely determined by its

values on the vertex set V(τ) and it is thus sufficient for the projection operator to
set these values. Hence, for any V ∈ V

S and any v ∈ V(τ), we define

(πS→FEMV )(v) :=
∑T∈τ : v∈V(T ) ∑C∈TS, C⊂T φv(center(C))V (center(C))

∑T∈τ : v∈V(T ) ∑C∈TS, C⊂T φv(center(C))
, (21.21)

where center(C) denotes the (barycentric) center of the cell C and φv denotes the
Lagrange piecewise linear basis function associated with the vertex v. The notation
C ⊂ T indicates that center(C) ∈ T . We denote identically the projection of a scalar-
valued function or of a vector-valued function for which the projection is applied
component-wise. In Figure 21.6, we have depicted a sketch in two dimensions of
the set of cells of T S appearing in the above summation for the calculation of the
value at a vertex of V(τ) in a typical structured subdivision.

The projection from the finite element subdivision to the structured mesh is
defined for any V ∈ V

FEM(τ) as follows. First, we extend the function V to the
entire computational domain Λ by 0. Then, for each cell C ∈ T S, we denote by
T (C) ∈T FEM the element in the finite element subdivision containing the center of
the cell C and define

(πFEM→SV )|C := ∑
v∈V(T (C))

φv(center(C))V (v). (21.22)

If the cell center is exactly at the boundary of several elements of the finite ele-
ment mesh, then one arbitrary (but fixed) element is chosen among the possible
elements. Again, we denote identically the projection of a scalar-valued function or
of a vector-valued function (computed component-wise).
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v

Fig. 21.6 The shaded cells correspond to all the cells appearing in the average projection (21.21)
in order to determine the value of the function in V

FEM at the node v. The Lagrange basis function
φv is the piecewise linear function (subordinate to the finite triangular subdivision) with value 1 at
v and 0 at the other vertices.

Remark 2 (Implementation). The two projection operators (21.21) and (21.22) re-
quire a data structure mapping each cell of the structured mesh to an element of
the finite element subdivision (the element containing the cell center). This array of
indices is computed once and for all at the beginning of the simulation. However,
when allowing for mesh adaptations an updated array is required after each mesh
modification.

4.2.2 Prediction Step

The prediction steps start with given approximations Φn
M ∈ V

S and Un
M ∈ (VS)d of

the liquid fraction and velocity respectively, on the structured grid of cells (recall
that M denotes the number of structured cells in the subdivision). As noted ear-
lier, although φ(x, t) ∈ {0,1}, its approximation takes values in R. However, the
resulting numerical diffusion is counter-balanced by the SLIC and decompression
algorithms described below.

We define the approximation Yn+1
M ∈ (VS)d of the characteristic trajectories Yn+1

as follows. As Yn+1
M is constant over each cell, it suffices to determine its values at

the centers xi of each cell Ci, i = 1, . . . ,M and we set

Yn+1
M (xi) := xi +δ tn+1Un

M(xi). (21.23)

The image via Yn+1
M of each cell Ci is denoted C̃i, i.e., C̃i := Yn+1

M (Ci), so that

{
C ∈TS : Ci ∩C̃ 
= /0

}

corresponds to all the cells (at least partially) transported to the cell Ci. As a conse-

quence, the approximation Φn+ 1
2

M (xi) of the liquid characteristic function Φn+ 1
2 (xi)
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defined by (21.15) is obtained by adding the (weighted) contribution from cells
transported to Ci, that is

Φn+ 1
2

M (xi) := ∑
C∈TS

Φn
M(center(C))|Ci ∩C̃|, (21.24)

where |Ci ∩C̃| denotes the measure of Ci ∩C̃. Due to the Cartesian properties of the
structured grid TS, this measure is straightforward to compute as Ci ∩ C̃ are paral-
lelepiped rectangles. Figure 21.7 illustrates the transport of one (two-dimensional)
cell C into C̃, which overlaps four other cells.

Ci
C̃

C

Fig. 21.7 Approximation of Φn+ 1
2 using the method of characteristics. The cell C is transported

to C̃ and the quantity Φn
M(x j) is distributed among the intersecting cells. The contribution to

Φn+ 1
2

M (xi) from Φn
M(center(C)) is Φn

M(center(C))|Ci ∩ C̃| according to relation (21.24). The ele-
ments Ci ∩C̃ are rectangles, making the computation of |Ci ∩C̃| straightforward.

We emphasize again that in view of relation (21.24) the liquid domain charac-

teristic approximation Φn+ 1
2

M values are thus not necessarily 0 or 1 but could be any
positive real number. In fact, this numerical diffusion (values strictly between 0 and
1) and numerical compression (values strictly larger than 1) are the two drawbacks
of the projection formula (21.7), and are addressed now.

Numerical diffusion manifests itself when cells are partially filled, i.e., 0 <

Φn+ 1
2

M (center(C)) < 1 for some C ∈ TS. Since the exact volume fraction of liq-
uid φ is a step function and discontinuous at the free surface, numerical diffusion
around the interfaces has to be controlled by the numerical scheme. It is reduced

by the so-called SLIC algorithm [28], where the contribution to Φn+ 1
2

M (center(Ci))

of partially filled cell Ci is still proportional to |C̃∩Ci| but depends in addition on
the values of the Φn

M on the neighboring cells of C. More precisely, before being
transported along the characteristics, the quantities Φn

M(center(C)) are concentrated
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near the boundary of the cell C instead of being spread out in the entire cell. This
procedure is illustrated in Figure 21.8 (bottom), and allows to reduce the error due
to the projection of the transported quantity in C̃ across several cells Ci. The way the
quantity Φn

M(center(Ci)) is pushed towards the boundary of the cell depends on the
neighboring values of the volume fraction. Examples in two dimensions of space are
illustrated in Figure 21.8 (top). We refer to [25, 26] for a more detailed description
of the algorithm.

0 0

0

1

1
16

1
4

9
16

1
4

3
16

1
4

3
16

1
4

ϕn = 1
4

1
41

(a) (b) (c) (d)

Fig. 21.8 (Top) Effect of the two dimensional SLIC algorithm on the cell center for four possible
interfaces. The quantity Φn

M(x j), in blue, is pushed back to the sides of C depending on the values
of Φn

M in the neighboring cells, in black. (Bottom) An example of two dimensional advection and
projection when the volume fraction of liquid in the cell is Φn

M(x j) =
1
4 . Left: without SLIC, the

volume fraction of liquid is advected and projected on four cells, with contributions (from the
top left cell to the bottom right cell) 3

16
1
4 , 1

16
1
4 , 9

16
1
4 , 3

16
1
4 . Right: with SLIC, the volume fraction

of liquid is first pushed at one corner, then it is advected and projected on one cell only, with
contribution 1

4 .

Let us discuss the compression case, i.e., Φn+ 1
2

M (C) > 1 for some cell C. In that

case, the excess Φn+ 1
2

M (C)− 1 is stored in a buffer and redistributed into partially

filled cells in order to decompress the field Φn+ 1
2

M . Our algorithm redistributes the
excess of liquid in a global way into cells that are in a neighborhood of the interface
first (cells that are partially filled). Therefore it allows to conserve the mass in a
global sense, in a way that is similar to global repair algorithms [35].
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More precisely, we proceed in two steps: first, we compute the excess of liquid

Φn+ 1
2

M (C)−1 in each cell C after advection and projection onto TS; second, we re-
distribute these amounts into partially filled cells, starting with cells that are nearly
full. The detailed algorithm can be found in [25, 26] and is illustrated in Figure 21.9
when TS is a single layer of cells. Although this figure represents a one-dimensional,
over-simplified situation, it illustrates the rebalancing principle that allows to con-
serve the mass at each time step.

�

0.9 1.0 1.0 1.0 0.4

0.5 0.9 1.7 0.8 0.4

n+ 1
2

M before the decompression algorithm

n+ 1
2

M after the decompression algorithmF

F

Fig. 21.9 Decompression algorithm. The volume fraction in excess in some cells is redistributed
into the partially filled cells. Here the excess of 0.7 in the middle cell is redistributed in the partially
filled cells, starting with the ones that are nearly full (0.9,0.8 and 0.5 in order).

Similarly to (21.24), the velocity approximation U
n+ 1

2
M is given by the formula

U
n+ 1

2
M (xi) := ∑

C∈TS

Un
M(center(C))|Ci ∩C̃|; (21.25)

but the SLIC and decompression algorithm are not applied to the approximation of
the velocity.

At the end of the prediction step, the projection onto the finite element space

Φn+ 1
2

K ∈ V
FEM of Φn+ 1

2
M is computed using the operators defined in Section 4.2.1

Φn+ 1
2

K := πS→FEMΦn+ 1
2

M ∈ V
FEM. (21.26)

The latter is used to define the liquid domain: An element T ∈ T FEM is said to

be liquid if maxx∈T Φn+1/2
K (x) ≥ 1/2, the set of all liquid elements is then denoted

by τn+ 1
2

K , and the liquid domain Ω n+ 1
2

K is the union of all liquid elements. The choice
of the value 1/2 for the threshold is arbitrary. It has been empirically discussed in
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[26], but results have shown little sensitivity with respect to the value of this param-

eter. However, this definition of the liquid domain Ω n+ 1
2

K implies an approximation
error of the order O(H) on the approximation of the free surface. Mesh refinement
techniques have been designed to address this drawback [9], but are not developed
further here.

The velocity is not directly projected onto the finite element space as the projec-

tion would depend on the values of the velocity outside Ω n+ 1
2

K (which do not exist).

Instead, we project Φn+ 1
2

M U
n+ 1

2
M and recover the velocity U

n+ 1
2

K ∈ V
FEM(τn+ 1

2
K )d at

each vertex v ∈ V(τn+ 1
2

K ) as follows:

U
n+ 1

2
K (v) :=

(πS→FEM(Φn+ 1
2

M U
n+ 1

2
M ))(v)

Φn+ 1
2

K (v)
(21.27)

if v 
∈ ΓD and U
n+ 1

2
K (v) = gD(v) otherwise. Notice that the above expression defines

U
n+ 1

2
K only on Ω n+ 1

2
K but only these values are needed in the correction step.

4.2.3 Correction Step

As already mentioned, the liquid characteristic function is not modified during this
step; so we set

Φn+1
K (v) := Φn+ 1

2
K (v)

for all v ∈ V(τn+ 1
2

K ), and

Ω n+1
K := Ω n+ 1

2
K and τn+1

K := τn+ 1
2

K .

Then, the Stokes system (21.20) on the fixed liquid domain Ω n+1
K and with vanishing

Dirichlet boundary condition gD ≡ 01 reads as follows.
Seek Un+1

K ∈ V
FEM
0 (τn+1

K )d and Pn+1
K ∈ V

FEM(τn+1
K ) satisfying

Bn+1((Un+1
K ,Pn+1

K ),(V,R))+Sn+1((Un+1
K ,Pn+1

K ),(V,R)) = Ln+1(V) (21.28)

for any (V,R)∈V
FEM
0 (τn+1

K )d ×V
FEM(τn+1

K ). The bilinear functional Bn+1 : (VFEM
0

(τn+1
K )d ×V

FEM(τn+1
K ))× (VFEM

0 (τn+1
K )d ×V

FEM(τn+1
K ))→ R is defined as

Bn+1((U,P),(V,R)) :=
ρ

δ tn+1

∫

Ω n+1
K

U ·V dx+2μ
∫

Ω n+1
K

D(U) :: D(V) dx

−
∫

Ω n+1
K

R ∇ ·V dx+
∫

Ω n+1
K

P ∇ ·V dx,

1 The case of non-vanishing Dirichlet boundary conditions reads similarly upon defining a lifting
of the boundary conditions.
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where A :: B := ∑d
i, j=1 Ai jBi j, for A,B ∈ R

d×d . The right-hand side Ln+1 : VFEM
0

(τn+1
K )d → R is given by

Ln+1(V) :=
ρ

δ tn+1

∫

Ω n+1
K

Un ·V dx+
∫

Ω n+1
K

f(tn+1) ·V dx.

The functionals Sn+1 in (21.28) are the Galerkin Least-Square stabilization terms to
cope with the fact that the choice of the finite element spaces is not inf-sup stable.
They are given by:

Sn+1((U,P),(V,R)) := ∑
T⊂Ω n+1

K

αT

∫

T

(

ρ
U−Un

δ tn+1 +∇P− f(tn+1)

)

·∇R dx,

where αT is the stabilization coefficient locally defined as:

αT :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CSUPG
diam(T )2

12μ
if 0 ≤ ReT ≤ 3

CSUPG
diam(T )2

4ReT μ
if 3 ≤ ReT

where the local Reynolds number is defined by ReT := ρ diam(T ) maxx∈T |Un|
2μ and CSUPG

is an dimensionless constant typically set to 1.0.
At the end of the correction step, the velocity is projected onto the structured grid

Un+1
M := πFEM→SUn+1

K ∈ (VS)d ,

while the volume fraction of liquid remains unchanged

Φn+1
M := Φn+ 1

2
M ∈ V

S.

4.3 Numerical Results for Newtonian Flows

The example that serves as a guideline in this work is the experiment of the die
swell with contraction in an extrusion process. This benchmark not only illustrates
the advantages of the splitting approach presented in this work, but it is also worth
noting that numerical simulation of extrusion is of great importance in industrial
processes, for instance for pasta dough in food engineering [22].

We consider an axisymmetric capillary die with a contraction at the entrance.
The fluid is injected into the die and then expands at the exit. The behavior of the
fluid depends strongly on the fluid rheology. In this section, we consider Newtonian
fluids and refer to Sections 5 and 6 for more complex fluids.
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4.3.1 Extrusion with Initial Contraction: Computational Domain

We describe the computational domain used for the subsequent extrusion experi-
ments with initial contraction. The computational domain Λ is depicted in Figures
21.10 and 21.11, together with the finite element mesh used for (most of) the sim-
ulations presented in this work. It consists of three cylinder as depicted in Figure
21.10. The first cylinder of diameter 0.010 m and length 0.005 m is where the liquid
is injected. Then, the liquid enters the die, a second cylinder of diameter 0.001 m
(contraction) and length 0.010 m. When, exiting the die, the liquid enters the third
cylinder of diameter 0.010 m and length 0.015 m. The total length of the domain
is therefore 0.030 m. The size of the finite elements in the die is characterized by
H = 0.0001 m. The structured grid consists of a subdivision made of cubic cells of
length 0.000025 m.

Injection Region

�

e3

0.001 m

0.005 m

0.010 m

0.015 m

0.01 m

Fig. 21.10 Extrusion with Initial Contraction: Dimensions of the computational domain.

4.3.2 Slip Boundary Conditions

We consider a Newtonian fluid with density ρ = 1300 kg m−3, and viscosity
μ = 10 kg(ms)−1. The fluid is injected with a constant speed of 0.00023 ms−1, such
that the speed in the die is approximately 0.05 ms−1. No-slip boundary conditions
are imposed at the bottom of the domain and slip boundary conditions are imposed
on the other parts of ∂Λ . We postpone to Section 4.3.3 for a discussion on the ef-
fect of different types of boundary conditions. Gravity forces, g = −9.81e3 ms−2

are oriented along the die (see Figure 21.10). The time step is constant and equal to
δ t = 0.005 s, which implies a CFL number of about 10 during the prediction step
and of about 2.5 during the correction step. At time t = 0.9 s approximately, the
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Fig. 21.11 Extrusion with Initial Contraction: Computational domain and finite element mesh.

jet hits the bottom of the computational domain and the fluid buckles. Figure 21.12
visualizes, in a medium plane inside the tube, snapshots of the volume fraction of
liquid Φ and of the corresponding velocity field U. Figure 21.13 visualizes the buck-
ling of the jet of Newtonian fluid once it hits the bottom of the computational do-
main.

In this case, we observe that the operator splitting scheme does not introduce
any additional error as long as the flow is laminar and does not touch the bottom
of the domain. This allows to consider large time steps if needed, without any CFL
condition. Little oscillations in the jet are observed due to the spatial discretization
and the unstructured finite element mesh. The buckling effect when the flow touches
the boundary requires smaller time steps to retain accuracy.

4.3.3 No-Slip Boundary Conditions

When enforcing slip boundary conditions on the lateral side as in the previous test
case, the liquid has a constant velocity (until it hits the bottom) so that the operator
splitting produces the exact solution for any value of the time step; see Figure 21.12.
For this simulation, we impose no-slip boundary condition on ∂Λ except at the
inflow where we keep the constant velocity profile of magnitude 0.00023 ms−1. A
Poiseuille profile is observed for the velocity in the die with a slight perturbation due
to the contraction. Figure 21.14 shows the results obtained with the setup described
in Sections 4.3.1 and 4.3.2 but with no-slip boundary conditions in the cavity before
the die and in the die; compare with Figure 21.12.

The effect of boundary conditions is amplified for liquids with larger viscosities.
Figure 21.15 provides a similar simulation when the viscosity is 10 times larger
(μ = 100 kg(ms)−1). It demonstrates the effect of no-slip boundary conditions on
the shape of the liquid front and on the free surface front velocity, which decreases
as the viscosity increases.
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Fig. 21.12 Die swell with extrusion of a Newtonian fluid. Snapshots of the solution at times t = 0,
0.3, 0.6, and 0.9 s on a plane located in the middle of the tubes. Top: representation of volume
fraction of liquid Φ ; bottom: speed |U|.

Fig. 21.13 Die swell with extrusion of a Newtonian fluid. Snapshots of the buckling of the jet at
times t = 1.0,1.2,1.4, and 1.6 s (left to right).

Figures 21.16 and 21.17 show snapshots of the buckling effects for μ = 10
kg(ms)−1 and μ = 100 kg(ms)−1 respectively, and no-slip boundary conditions. The
boundary conditions change drastically the shape of the liquid during the buckling.
In addition, larger viscosities slow the liquid front propagation and reduce the buck-
ling effect as it was already noted in the simple cavity setting [6, 36].
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Fig. 21.14 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 10 kg(ms)−1). Snapshots of the solution at times t = 0,0.3,0.6, and 0.9 s on a plane
located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ; bottom:
speed |U|.

5 Visco-Elastic Flows with Free Surfaces

We now discuss an extension to liquids with more complex rheology and in particu-
lar the modification of the Navier-Stokes system (21.1) to account for visco-elastic
effects. The upper-convected Maxwell model is chosen to describe the complex rhe-
ology but the algorithm presented here is not restricted to specific models.

5.1 Mathematical Modeling of Visco-Elastic Flows with
Free Surfaces

Visco-elastic fluids are characterized by the presence of an extra-stress tensor

denoted by σ ∈R
d(d+1)

2 �R
d×d
sym , the space of d×d symmetric tensors, supplement-

ing the Cauchy stress tensor 2μD(u)− pI in (21.1). Hence, the velocity u, pressure
p and visco-elastic stress σ satisfy in Q:
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Fig. 21.15 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 100 kg(ms)−1). Snapshots of the solution at times t = 0,0.3,0.6, and 0.9 s on a plane
located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ; bottom:
speed |U|. Compare with Figure 21.14 representing the same setting but with a fluid of smaller
viscosity.

Fig. 21.16 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 10 kg(ms)−1). Snapshots of the buckling of the jet at times t = 1.0,1.2,1.4, and 1.6 s (left
to right).

⎧
⎪⎨

⎪⎩

ρ
(

∂
∂ t

u+(u ·∇)u
)

−∇ · (2μD(u))+∇p−∇ ·σ = f,

∇ ·u = 0.

(21.29)
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Fig. 21.17 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 100 kg(ms)−1). Snapshots of the buckling of the jet at times t = 1.0,1.2,1.4, and 1.6 s
(left to right).

The Dirichlet condition (21.2) on the velocity field remains unchanged but the Neu-
mann (21.3) as well as the interface (21.4) conditions are modified to account for
the presence of the visco-elastic stress

(2μD(u)− pI+σ)n = gN on ∂QN, (21.30)

(2μD(u)− pI+σ)n = 0 on F. (21.31)

As model problem, we consider the upper-convected Maxwell model to provide the
constitutive relation for σ , namely the extra-stress σ satisfies:

σ +λ
(

∂
∂ t

σ +(u ·∇)σ −∇u σ −σ∇ut
)

= 2μpD(u) in Q, (21.32)

where λ is the fluid relaxation time, μp is the so-called polymer viscosity [4, 5, 30].
The problem is thus coupled via the introduction of the extra-stress σ in the Navier-
Stokes equations, and reciprocally, the velocity u in the constitutive equation for σ .

The values of the stress tensor are set to a given tensor G : ∂Qin f low → R
d(d+1)

2 on
the inflow boundary of the domain:

σ = G, on ∂Qin f low.

Similar to the initial conditions (21.6) for the velocity field, the initial viscoelastic
stress is set to be

σ(0) = σ0 on Ω(0)

for a given σ0 : Ω(0)→ R
d(d+1)

2 .
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5.2 Extension of the Operator Splitting Strategy

The prediction and correction steps described in Section 3.2 extend naturally. The
constitutive relation (21.32) for σ also contains a transport relation which is ac-
counted for in the prediction step.

5.2.1 The Prediction Step

The prediction step (21.13) becomes: find the characteristic function φ , the velocity
field u, and the extra-stress σ satisfying

∂
∂ t

φ +u ·∇φ = 0

∂
∂ t

u+(u ·∇)u = 0

∂
∂ t

σ +(u ·∇)σ = 0

in Qn+1 := Q∩ (
Λ × In+1) . (21.33)

It ends upon setting

σn+ 1
2 := σ(tn+1) in Ω n+ 1

2 ,

in addition to the values for φ n+ 1
2 and un+ 1

2 . As for the velocity, the method of char-
acteristics transports each component of the symmetric tensor (namely six fields
when d = 3 and three fields when d = 2). Their values are obtained from the char-
acteristics lines as in (21.15).

After space discretization, and using the notations introduced in Section 4, the

prediction Σ n+ 1
2

M ∈ (VS)
d(d+1)

2 of σ(tn+1) is given at each cell center xi by

Σ n+ 1
2

M (xi) := ∑
C∈TS

Σ n
M(center(C))|Ci ∩C̃|;

compare with (21.24).

At the end of the prediction step, the projection of the tensor Σ n+ 1
2

M into the finite

element space into the finite element space V
FEM(τn+1

K )
d(d+1)

2 is computed accord-

ing to a formula similar to (21.27): i.e., for every v ∈ V(τn+ 1
2

K )

Σ n+ 1
2

K (v) :=
(πS→FEM(Φn+ 1

2
M Σ n+ 1

2
M ))(v)

Φn+ 1
2

K (v)
(21.34)

if v is not a vertex at the inflow boundary, and Σ n+ 1
2

K (v) = G(v) otherwise.
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5.2.2 The Correction Step

After incorporation of the extra-stress related terms, the correction step reads as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂
∂ t

u−∇ · (2μD(u))+∇p−∇ ·σ = f

∇ ·u = 0

σ +λ
(

∂
∂ t

σ −∇u σ −σ∇ut
)

= 2μpD(u)

in Ω n+1 × In+1, (21.35)

supplemented by the appropriate boundary conditions and free interface conditions.
As in Section 4, the volume fraction and liquid domain remain unchanged during

the correction step. Problem (21.35) allows to obtain a correction of the velocity u,
the extra-stress tensor σ , and the pressure p. This correction step consists in two sub-
steps decoupling the velocity-pressure corrections and the extra-stress correction.
The first sub-step consists of solving a Stokes problem of the (21.28) type with a
modified functional Ln+1(.) accounting for the extra-stress tensor term:

Ln+1(V) :=
ρ

δ tn+1

∫

Ω n+1
K

Un
K ·V dx+

∫

Ω n+1
K

f(tn+1) ·V dx−
∫

Ω n+1
K

Σ n+ 1
2

K :: D(V) dx.

This corresponds to an explicit treatment of the visco-elastic effect Σ n+ 1
2

K in the
first equation in (21.35). We then solve the third relation of (21.35) to update the

extra-stress tensor Σ n+ 1
2

K . The time discretization considered consists of an explicit
treatment of the nonlinear terms, while continuous piecewise linear finite elements

are used for the space discretization: Seek Σ n+1
K ∈ (VFEM(τn+1

K ))
d(d+1)

2 , the subspace
of (VFEM(τn+1

K ))d×d consisting in those symmetric matrices, satisfying

∫

Ω n+1
K

(
δ tn+1Σ n+1

K +λΣ n+1
K

)
:: Θ dx

=

∫

Ω n+1
K

(

Σ n+ 1
2

K +δ tn+1Σ n+ 1
2

K

+δ tn+1∇Un+1
K Σ n+ 1

2
K +δ tn+1Σ n+ 1

2
K (∇Un+1

K )t
)

:: Θ dx

+2μpδ tn+1
∫

Ω n+1
K

D(Un+1
K ) :: Θ dx, ∀Θ ∈ V

FEM
M (τn+1

K )
d(d+1)

2 .

In addition, the Elastic Viscous Stress Splitting (EVSS) stabilization procedure
could be activated to compensate for possible small viscosities μ . Details can be
found in [6].
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5.3 Numerical Results for Visco-Elastic Flows

We first consider again the extrusion with initial contraction experiment presented
in Section 4.3.1. The goal of this section is to discuss the visco-elastic influence, via
the presence of the extra-stress σ33.

5.3.1 Extrusion with Die Swell and Contraction

Let us consider a visco-elastic fluid, which has density ρ = 1300 kg m−3, and
viscosity μ = 0. Its relaxation time is λ = 0.1 s and the polymer viscosity is
μp = 10 kg(ms)−1. The boundary condition at the inflow boundary is a Poiseuille
flow with velocity given by u=(0,0,uz) and uz(r)=−100(r2−0.012) ms−1 (where
r is the radial distance to the central axis of the die). Slip boundary conditions are
imposed on the lateral sides of ∂Λ and no-slip boundary conditions are applied on
the bottom plate. Gravity forces, g =−9.81e3 ms−2 are oriented along the die. The
time step is constant and equal to δ t = 0.005 s.

Figure 21.18 provides the volume fraction Φ , extra-stress σ33, and speed |U|
fields in a median cut in the middle of the domain at various times. Figure 21.19
visualizes the buckling effect. Since slip boundary conditions are applied along the
die, no die swell occurs after exiting the die. However, when the jet hits the wall
we observe a different buckling behavior compared to the Newtonian case; compare
Figures 21.13 and 21.19.

5.3.2 Influence of the Polymer Viscosity and Relaxation Time

The influence of the polymer viscosity μp and relaxation time λ is now investigated,
keeping slip boundary conditions along the die. Figures 21.20 and 21.21 represent
the volume fraction Φ , extra-stress σ33, and speed |U| fields in a median cut in the
middle of the domain at various times, as well as the buckling effect of the liquid
domain, for a relaxation time λ = 1 s. and a polymer viscosity μp = 10 kg(ms)−1

(larger relaxation time compared to the simulations in Section 5.3.1). Figures 21.20
and 21.21 illustrate the same quantities, for a relaxation time λ = 0.1 s. and a poly-
mer viscosity μp = 100 kg(ms)−1 (larger viscosity compared to the simulations in
Section 5.3.1). Clearly, both polymer viscosity μp and the relaxation time λ have a
significant influence on the jet shape during buckling.

5.3.3 Influence of Boundary Conditions

In this section, we discuss the influence of the boundary conditions (typically slip
vs. no-slip boundary conditions) on the die boundary, on the buckling phenomena,
and on the visco-elastic fluid behavior. The polymer viscosity and relaxation time
are kept as in Figures 21.20–21.23, μp = 100 kg(ms)−1, λ = 0.1 s, whereas no-slip
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Fig. 21.18 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s
on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

boundary conditions now apply along the die. The shape of the jet is significantly
different as shown in Figures 21.24 and 21.25. The die swell is significant, therefore
we decrease the value of the relaxation time to λ = 0.005 s, still keeping the same
polymer viscosity μp = 100 kg(ms)−1. The swelling of the die is now much smaller
as shown in Figures 21.26 and 21.27. Figures 21.28 and 21.29 illustrate the same
quantities, for a smaller relaxation time, λ = 0.002 s, still keeping the same poly-
mer viscosity μp = 100 kg(ms)−1. We therefore conclude that the type of boundary
conditions applied along the die has a significant impact on the extrusion process.
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Fig. 21.19 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and 1.6 s.
Representation of the liquid domain and buckling effect.

5.3.4 Bended Die

Finally, to conclude the discussion on viscoelastic effects, we study quantitatively
the influence of the bend of the die on the extrusion. In particular, the distribution
of the extra-stress and the differences of amplitude are fundamental in industrial
processes, as they induce a different behavior of the visco-elastic material at the exit
of the die, and thus a different final production.

We consider a geometry that is similar to the one before, with the addition of a
ninety degree angle bend in the die. All the other geometrical dimensions remain
the same. Figure 21.30 illustrates the geometry together with the associated finite
element mesh.

As before, the visco-elastic fluid has density ρ = 1300 kg m−3, and viscos-
ity μ = 0. Its relaxation time is λ = 0.1 s and the polymer viscosity is μp =
10 kg(ms)−1. The boundary condition at the inflow boundary is a Poiseuille flow,
slip boundary conditions are imposed along the die, as well as at the exit of the do-
main. Gravity forces with amplitude |g|= 9.81 ms−2 are oriented along the inflow.
The time step is constant and equal to δ t = 0.005 s.
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Fig. 21.20 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s on
a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

Figure 21.31 illustrates representations of the volume fraction Φ , speed |U|, and
extra-stress σ33 fields in a median cut in the middle of the domain at various instants
of time. Figure 21.32 illustrates snapshots of the liquid domain. These results should
be compared with those of Figures 21.18 and 21.19 which correspond to a straight
die. One can observe a significant buckling effect as the liquid is switching direc-
tions. This behavior is caused by the variation of the extra stress inside the curved
die. Figure 21.33 illustrates snapshots of the liquid domain in the same situation but
for a relaxation time λ = 0.02 s. One can observe larger effects due to the shorter
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Fig. 21.21 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and 1.6 s.
Representation of the liquid domain and buckling effect.

relaxation time. We therefore conclude that memory effects due to the shape of the
cavity before the die may strongly affect the shape of the jet after the die. This ob-
servation can be very important in industrial applications such as pasta processing
for instance.

6 Multiphase Flows with Free Surfaces

6.1 Mathematical Modeling of Multiphase Flows with Free
Surfaces

We extend here the previous model to the case of multiple liquid phases with a free
surface. More precisely, we consider P liquid phases, and the ambient gas is the
phase numbered P+ 1. We assume that the liquid phases are incompressible and
immiscible, and thus rely on the density-dependent Navier-Stokes equations for the
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Fig. 21.22 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s
on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

modeling of the global set of liquid phases. This model is based on [10, 19]. In [19],
the emphasis has been put on the simulation of landslide-generated impulse waves.
Here we show that the applications are numerous and that our algorithm can apply
at different time and space scales.

We denote by Ω�(t) ⊂ Λ , � = 1, . . . ,P, the domain occupied by the �th liquid
phase at time t ∈ [0,T ] and by Ω(t) =

⋃P
�=1 Ω�(t) the global liquid domain. The

subdomain Ω�(t) is defined by its characteristic function φ� : Λ × [0,T ]→{0,1}:

Ω�(t) = {x ∈ Λ | φ�(x, t) = 1} , �= 1, . . . ,P. (21.36)

As a consequence, φ := ∑P
�=1 φ� is the characteristic function of Ω(t).
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Fig. 21.23 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and 1.3 s.
Representation of the liquid domain and buckling effect.

All phases being considered to be Newtonian, incompressible, and immiscible,
the Navier-Stokes equations are satisfied for each of them, with physical properties
such as density and viscosity varying from one liquid phase to the other. We denote
by ρl and μl , l = 1, . . . ,P, the respective densities and viscosities. In this setting the
velocity and pressure are related through the Navier-Stokes relations (21.1), where
the mass density is recovered as ρ := ∑P

�=1 φ� ρ�, and similarly for the viscosity
μ := ∑P

�=1 φ� μ�.
The boundary conditions, interface conditions, and initial conditions are imposed

in a similar way as in the single liquid phase case. At the interfaces between liq-
uid phases, natural continuity conditions are imposed so that no forces are applied.
Figure 21.34 illustrates a 2D sketch of multiple liquid phases in the case of die swell
extrusion.

The evolution of each domain Ω�(t) is governed by the transport of its character-
istic function with the fluid velocity, that is:

∂
∂ t

φ�+u ·∇φ� = 0 in Q�, φ� = 0 in Λ \Q�, (21.37)
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Fig. 21.24 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s
on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

where
Q� := {(x, t) ∈ Λ × (0,T ] | x ∈ Ω�(t)}

and where u is the fluid velocity only defined on the space-time fluid domain Q.
The inflow boundary conditions supplementing the equations (21.37) have to be

imposed for each liquid phase on the boundary of Λ , the same way it is imposed for
one liquid phase. The initial value of the characteristic functions φ� are chosen to
match the initial given domains Ω�(0),

φ�(.,0) = 1 on Ω�(0) and φ�(.,0) = 0 otherwise. (21.38)
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Fig. 21.25 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and
1.6 s. Representation of the liquid domain and buckling effect.

6.2 Extension of the Operator Splitting Strategy

The extension of the operator splitting method to multiphase flows includes mainly
the transport of multiple volume fractions, which is a natural extension of the trans-
port of a single phase. However a significant step of the algorithm involves the re-
construction of the interfaces and the numerical methods to avoid artificial diffusion
and compression, which have to be re-designed in the context of multiphase flows.

The operator splitting algorithm to approximate the system of equations (21.1)
and (21.37) again decouples the approximation of the diffusion and advection oper-
ators. In this case, the diffusion operators correspond to a Stokes problem on a sta-
tionary domain with piecewise constant density and viscosity fields. The advection
operator includes the transport equations for the Navier part of the incompressible
fluid, as well as for the transport of the P characteristic functions.

The time splitting scheme reads as follows. We assume to be given an approxi-
mation of the liquid domain characteristic functions φ n

� , �= 1, . . . ,P at time tn. This
entails an approximation of the liquid domains Ω n

� and of the global liquid domain
Ω n via the relations:
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Fig. 21.26 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.005 s.). Snapshots of the solution at times t = 0,0.4,0.6, and
0.8 s on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid
Φ ; middle: speed |U|; bottom: representation of extra-stress σ33.

Ω n
� := {x ∈ Λ | φ n

� (x) = 1} , Ω n :=
P⋃

�=1

Ω n
� .

We also assume to be given a velocity approximation un(x) of u(x, tn). The pre-
diction step determines the new approximation of the liquid domain at time tn+1,
together with a prediction of the velocity on the new domain. The correction step
provides an update of the velocity and pressure while the liquid domain remains
unchanged.
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Fig. 21.27 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.005 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and
1.6 s. Representation of the liquid domain and buckling effect.

6.2.1 The Prediction Step

The projection step encompasses the advection components of (21.1) and (21.37).
It consists in solving the P+1 transport equations:

∂
∂ t

φ�+u ·∇φ� = 0, �= 1, . . . ,P,

∂
∂ t

u+(u ·∇)u = 0

(21.39)

in Qn+1 := Q∩(
Λ × In+1

)
. Outside the liquid domain Ω n

� , we set φ�(x, t) = 0 when-
ever x ∈ Λ \{y(t;x) | x ∈ Ω n

�

}
and u is not required outside Ω n. Eventually, we

end up setting φ n+1
� := φ�(tn+1) in Λ , and consequently

Ω n+1
� :=

{
x ∈ Λ | φ n+1

� (x) = 1
}
, Ω n+1 =

P⋃

�=1

Ω n+1
� , (21.40)
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Fig. 21.28 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.002 s.). Snapshots of the solution at times t = 0,0.4,0.6, and
0.8 s on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid
Φ ; middle: speed |U|; bottom: representation of extra-stress σ33.

as well as un+ 1
2 := u(tn+1) in Ω n+1. At the continuous level, these problems are

highly similar to those encountered for one single phase. However, after space dis-
cretization, the complexity is quite different.

Indeed, the prediction steps starts with given approximations Φn
�,M ∈ V

S, � =

1, . . . ,P, and Un
M ∈ (VS)d of the liquid fractions and velocity respectively. The pre-

dictions Φn+ 1
2

�,M and U
n+ 1

2
M , in V

S and (VS)d respectively, are computed as in (21.24)

by transport of the quantities in each cell C and projection on the grid TS. Notice
that each of the transport equations for Φn

�,M are solved in parallel for each liquid
phase, and the redistribution is achieved sequentially. Details can be found in [19].
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Fig. 21.29 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.002 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and
1.6 s. Representation of the liquid domain and buckling effect.

Fig. 21.30 Die swell with a bend, for the extrusion of a visco-elastic fluid. Visualization of the
geometrical domain and finite element mesh.
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Fig. 21.31 Die swell of a visco-elastic fluid for a die with a 90 degrees bend. Snapshots of the
solution at times t = 0,0.4,0.8, and 1.2 s (left to right). Top: volume fraction of liquid Φ in a
median cut in the middle of the domain; middle: speed |U| in a median cut in the middle of the
domain; bottom: Extra-stress field σ33 in a median cut in the middle of the domain.

Fig. 21.32 Die swell of a visco-elastic fluid for a die with a 90 degrees bend. Snapshots of the
solution at times t = 0,0.4,0.8, and 1.2 s (left to right).

Fig. 21.33 Die swell of a visco-elastic fluid for a die with a 90 degrees bend. Snapshots of the
solution at times t = 0,0.4,0.8, and 1.2 s (left to right) for λ = 0.02 s.
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Ω1(t)
Ω2(t)

Ω(t)

Λ

Γ(t)

∂Λ ∩ ∂Ω(t)

Fig. 21.34 Die swell with two liquid phases (phase 1 pushing phase 2). Geometrical notation
for the VOF formulation for two liquid phases with free surface included into the computational
domain Λ .

6.2.2 Numerical Diffusion vs Numerical Compression

As in the single phase case, the advected fields Φn+ 1
2

�,M (and as a matter of fact Φn+ 1
2

M
as the sum of all liquid fractions) do not necessarily have values that are exactly zero
or one. To cope with this numerical diffusion and compression, we use multiphase
versions of SLIC and decompression algorithms [12, 26, 28].

The multiphase version of the SLIC algorithm consists of a sequential use of the
SLIC algorithm for each liquid phase. It is illustrated in Figure 21.35 (middle and
right, for one liquid phase or two liquid phases). Each of the liquid phases is pushed
against the sides/corners of the cell to be transported. The transport and projection
of the cell are then made for each phase independently and sequentially. Thus the
numerical diffusion can be reduced for each phase in parallel. More precisely, on
the example illustrated in Figure 21.35 (right), the advected quantity of the first
liquid phase lies in one cell only, thus no numerical diffusion is introduced for that
particular phase. The advected quantity for the second liquid phase is redistributed
over two cells, which means that some diffusion is introduced but limited over two
cells instead of four.

Remark 3 (SLIC vs PLIC). The SLIC procedure has been preferred for instance over
the higher order PLIC procedure for its handling simplicity within the two-grid
framework. The rationale behind this approach is to use a low order interface recon-
struction technique, like SLIC, on a very fine mesh. The mesh size guarantees the
accuracy of the algorithm and compensates for the low order of the reconstruction
technique. Replacing the SLIC algorithm with a PLIC algorithm on the structured
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Fig. 21.35 An example of two dimensional advection and projection when the volume fraction of
liquid in the cell is Φn

M = 1
4 . Left: without SLIC and with one liquid phase, the volume fraction

of liquid is advected and projected on four cells, with contributions (from the top left cell to the
bottom right cell) 3

16
1
4 , 1

16
1
4 , 9

16
1
4 , 3

16
1
4 . Middle: with SLIC and with one liquid phase, the volume

fraction of liquid is first pushed at one corner, then it is advected and projected on one cell only,
with contribution 1

4 . Right: with SLIC and with two liquid phases, the volume fractions of liquid are
first pushed along one side of the cell, then they are advected. The first liquid phase (corresponding
to a volume of 1

8 ) is projected on one cell only, with contribution 1 1
8 ; the second liquid phase

(corresponding also to a volume of 1
8 ) is projected on two cells, with contribution 1 1

16 and 1 1
16 .

grid of small cells is not a fundamental problem, but a technical difficulty. Moreover,
the PLIC procedure applied before transport of a cell, and coupled with a projection
operator on the finite element mesh would be of little benefit, and expensive from
the computational viewpoint.

Note that the sequential treatment of liquid phases implicitly requires them to be
sorted; the arbitrary phase ordering influences the reconstruction of the interfaces,
as already stated in [13] for three phases. However, numerical experiments show
that the effect of the ordering of phases is not a crucial factor for the final results,
especially at the limit when the mesh size tends to zero.

After the interface reconstruction and advection steps, it may happen that some

cell Ci in the grid TS is over-filled, i.e., Φn+ 1
2

M = ∑� Φn+ 1
2

�,M > 1. Such physically
non-admissible values can indeed occur even if Φn

�,M ∈ [0,1] since the transport-
and-project algorithm is not a divergence-free process.

We thus need to decompress the fields Φn+ 1
2

�,M and Φn+ 1
2

M with a numerical tech-
nique that allows to conserve the mass in a global sense [19, 26]. This algorithm is
applied after the solution of the transport equations, but before the solution of the
diffusion equations. It proceeds in two steps: first, we compute the excess of each
liquid phase in each cell after advection and projection onto TS; second, we redis-
tribute these amounts proportionally to the amount already included in the cell in a
given arbitrary order, in a way that is similar to global repair algorithms [35]. This
method is robust, but requires to order the liquid phases (arbitrarily) to know which
phase is redistributed first into the other cells. Numerical experiments have shown
in our case that, besides guaranteeing the mass conservation globally, the error due
to this decompression algorithm is reduced as the time step decreases. This heuristic
algorithm can be found in [19] and is not detailed more extensively here.
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This multiphase decompression algorithm is illustrated in Figure 21.36, when
TS is a single layer of cells, for the case of two liquid phases. The rebalancing
principle that allows to conserve the mass in each phase at each time step is detailed
in this pseudo 1D configuration, but can be extended in three space dimensions in a
straightforward manner.

After the decompression, the approximations Φn+ 1
2

�,M , � = 1, . . . ,P and U
n+ 1

2
M are

projected into the finite element spaces

Φn+1
�,K := πS→FEMΦn+ 1

2
�,M ∈ V

FEM, �= 1, . . . ,P,

and U
n+ 1

2
K ∈ V(τn+1

K ) is defined according to formula (21.27) and where τn+1
K is the

collection of liquid tetrahedra, see Section 4.2.
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Fig. 21.36 Decompression algorithm in the case of two liquid phases. The volume fractions in
excess in some cells are redistributed into the under filled cells, proportionally to the contribu-

tion of each phase. The total liquid volume fraction is given by Φn+ 1
2

M = Φn+ 1
2

1,M + Φn+ 1
2

2,M . The
excesses are first removed in overfilled cells proportionally to the contribution of each phase
(0.37 = 0.7 · (0.9/1.7) and 0.33 = 0.7 · (0.8/1.7)). The excesses are then redistributed into each

phase independently before recalculating the total liquid volume fraction Φn+ 1
2

M = Φn+ 1
2

1,M +Φn+ 1
2

2,M .
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6.2.3 The Correction Step

After the prediction step, the approximations of the liquid domains Ω n+1
K and the

set of liquid elements τn+1
K are defined as in the single phase case. Note that the

approximation of the liquid domains Ω n+1
�,K can be defined similarly, but they are not

used explicitly in the correction step. Indeed the global Stokes system is defined and
solved on the global liquid domain, and the interfaces between phases are implicitly
taken into account in a diffuse modeling via the density and viscosity fields. In fact,
the velocity and pressure correction Un+1

K ∈ (VFEM(τn+1
K ))d , Pn+1

K ∈ V
FEM(τn+1

K )
are defined as the solution to (21.28) upon redefining on each tetrahedral element
T ∈ τn+1

K the density and viscosity as

ρ |T := ρn+1
∣
∣
T :=

1
d +1

d+1

∑
i=1

∑P
�=1 Φn+1

�,K (vT
i )ρ�

∑P
�=1 Φn+1

�,K (vT
i )

,

μ | := μn+1
∣
∣
T :=

1
d +1

d+1

∑
i=1

∑P
�=1 Φn+1

�,K (vT
i )μ�

∑P
�=1 Φn+1

�,K (vT
i )

,

where
{

vT
i , i = 1, . . . ,d +1

}
denotes the vertices of T .

6.3 Numerical Results for Multiphase Flows

We consider again the extrusion with initial contraction described in Section 4.3.1.
The computational domain is still the one reported in Figure 21.11.

6.3.1 Successive Phases

We consider three incompressible and immiscible liquid phases, each of them a
Newtonian fluid, with equal densities ρ1 = ρ2 = ρ3 = 1300 kg m−3, and correspond-
ing (equal) viscosities μ1 = μ2 = μ3 = 10 kg(ms)−1. As the goal of this example is
to study the accuracy of the splitting algorithm, the choice of the three phases is ar-
tificial. The liquids are initially located in a successive sequence such that the liquid
1 is pushing the liquid 2 and then the liquid 3. The boundary conditions at the inflow
boundary are u = 0.00023 ms−1, such that the order of magnitude of the velocity in
the die is approximately 0.05 ms−1. There is only a liquid from phase 1 that flows
inside the computational domain. Slip boundary conditions are imposed on ∂Λ , ex-
cept at the bottom of the computational domain where no-slip boundary conditions
are enforced. Gravity forces, with amplitude |g|= 9.81 ms−2 are oriented along the
die. The time step is constant and equal to δ t = 0.005 s.

Figure 21.37 illustrates, in a medium plane inside the tube, snapshots of the vol-
ume fractions of liquid Φ� and of the magnitude of the corresponding speed |U|. We
observe that the operator splitting algorithm does not introduce any additional error
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as long as the flow is laminar (i.e., does not hit the boundary of the computational
domain and starts to buckle). The liquid 1 is perfectly pushing the liquids 2 and 3.
The velocity is perfectly aligned with the direction of the die, even when using dif-
ferent values of the time step if needed, without the drawback of a CFL condition.
The mass in each phase is conserved.

The previous results have been obtained when the three phases have the same
densities and viscosities. We now provide a short sensitivity analysis with respect
to the value of the viscosities, all the other physical quantities remaining the same.
More precisely, we consider again three successive liquid phases. The initial config-
uration, denoted (a), with μ1 = μ2 = μ3 = 10, is compared with two cases, namely
(b) μ1 = 10, μ2 = 1, μ3 = 0.1, and (c) μ1 = 10, μ2 = μ3 = 0.1. Figure 21.38 illus-
trates in a medium plane inside the tube, snapshots of the volume fractions of liquid

Fig. 21.37 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Snapshots of the solution at times t = 0,0.5 and 1.0 s on a plane located
in the middle of the tubes. Top: representation of volume fractions of liquid Φ�; bottom: velocity
field U.

Φ� for the three configurations. One can observe that, when the two liquid phases
at the front of the jet have a smaller viscosity, they are crashed by the more viscous
phases when the jet hits the boundary of the domain; in that particular case, the
less viscous liquid phases do not contribute to the buckling effect. The difference
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between configurations (b) and (c) is not remarkable. Before touching the boundary
of the domain, the laminar behavior of the three liquid phases is identical to that
illustrated in Figure 21.37.

Fig. 21.38 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Snapshots of the solution at times t = 1.2,1.3, and 1.4 s on a plane
located in the middle of the tubes. First row: (a) μ1 = μ2 = μ3 = 10; Second row: (b) μ1 = 10,
μ2 = 1, μ3 = 0.1; Third row: (c) μ1 = 10, μ2 = μ3 = 0.1.
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6.3.2 Parallel Phases

Finally, let us consider the configuration where the three liquid phases (with equal
viscosities) are next to each other. The initial configuration is illustrated in Figure
21.39 and shows that each phase is contained in one-third of the total angle along
the die direction. Figure 21.40 shows that the three phases remain parallel when
advected through the operator splitting algorithm (the red phase is ’hidden’ behind
the two other phases!). The velocities are parallel and the reconstruction of the in-
terface does not jeopardize the approximation of the location of each liquid phase.
Figure 21.41 shows the buckling effect when the jet hits the boundary of the domain;
as all phases have the same viscosity, this effect is quite similar as in the case of one
single Newtonian liquid.

Fig. 21.39 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Initial configuration of the three phases, each having one-third of the
total volume.

7 Perspectives: Application to Emulsion in Food Engineering

The simulation of emulsion in microfluidic devices is a stringent application, as
the physical process involves instabilities and strong influence from surface tension
effects. Thus the numerical method requires an accurate approximation of the inter-
faces and of those surface tension effects. Further details about microfluidic emul-
sions can be found in [3, 7, 27] and references therein. Applications of interest exist
in food engineering when producing types of mayonnaise for instance [17, 18]. Fur-
thermore, from the numerical viewpoint, adaptive mesh refinement techniques help
tremendously to increase the accuracy of the method and sharpen the approxima-
tion of the interfaces. Details about an adaptive method making a first attempt into
this direction can be found in [9] when discussing the mesh refinement between
one liquid phase and a vacuum. The same type of techniques have been extended in
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Fig. 21.40 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Snapshots of the solution at times t = 0,0.5, and 1.0 s on a plane located
in the middle of the tubes. Top: representation of volume fraction of liquid Φ�; bottom: velocity
field U.

Fig. 21.41 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue,
liquid 2 in red, liquid 3 in green). Snapshots of the approximation of the liquid domain at times
t = 1.2,1.4, and 1.6 s.

subsequent work to mesh refinement around interfaces between two liquid phases.
The results presented in this section have been obtained by P. Clausen while staying
at EPFL on a postdoctoral position. Details of the method will be presented in a
forthcoming paper.
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In order to illustrate such a situation, we consider a microfluidic device com-
posed by a tube intersected by another tube. The geometrical domain, as well as
the corresponding finite element mesh TFEM , are shown in Figure 21.42. A liquid
from phase 1 is introduced at the longitudinal entrance, while a phase 2 liquid is in-
jected transversally and “cuts” the flow of the liquid 1 to form droplets of one liquid
phase trapped into the other. This phenomenon is called droplet breakup, and is re-
peated periodically by the process leading to the formation of a sequence of droplets.
The velocity is initialized with a parabolic velocity profile at each of the three en-
trances (a zero tangential velocity is prescribed, and the normal velocity is given by
a parabolic profile). Along the channel, no-slip boundary conditions are prescribed.
At the outlet, zero tangential velocity and zero normal stress are enforced.

Fig. 21.42 Microfluidic emulsion simulation. Description of the geometry and representation of
the finite element mesh TFEM

In an emulsion, two motions are interacting: first the movement initiated by the
flow induced by the inlet velocities; second the displacements induced by the surface
tension effects at the interfaces. These two effects are on different time scales, and
the time step we choose has to take into account the smallest of these two scales.
Despite the fact that our method does not suffer from a CFL condition, here we
observe that the treatment of the surface tension effects impose a constraint on the
time step to prevent instabilities.

For illustration, we consider the injection of oil in water. Oil has density
1000 kg m−3 and viscosity 0.5 kg(ms)−1, while water has density 1000 kg m−3

and viscosity 0.001 kg(ms)−1. The surface tension coefficient is given by γ =
0.02 Nm−1. Oil is introduced with a maximum velocity of umax,oil = 0.01 ms−1,
while water is injected with a maximum velocity of umax,water = 0.02 ms−1.

Figure 21.43 illustrates, in a medium plane inside the tube, snapshots of the two
liquid phases and the corresponding velocity field.

The results of these numerical experiments show the difficulty of producing a
regular succession of droplet breakings, which is controlled by the balance between
surface energy and viscosity effects. Numerical difficulties include droplets gener-
ated with different sizes and volume losses when the stabilization terms are large.
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Fig. 21.43 Microfluidic emulsion simulation. Snapshots of the solution at times t = 0.2,
0.5,0.8,1.1,1.4, and 1.7 s on a plane located in the middle of the longitudinal tube. Left: repre-
sentation of volume fraction of liquid ; right velocity field.
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