
Chapter 2
Some Facts About Operator-Splitting
and Alternating Direction Methods

Roland Glowinski, Tsorng-Whay Pan, and Xue-Cheng Tai

Abstract The main goal of this chapter is to give the reader a (relatively) brief
overview of operator-splitting, augmented Lagrangian and ADMM methods and
algorithms. Following a general introduction to these methods, we will give several
applications in Computational Fluid Dynamics, Computational Physics, and Imag-
ing. These applications will show the flexibility, modularity, robustness, and versa-
tility of these methods. Some of these applications will be illustrated by the results
of numerical experiments; they will confirm the capabilities of operator-splitting
methods concerning the solution of problems still considered complicated by today
standards.

1 Introduction

In 2004, the first author of this chapter was awarded the SIAM Von Kármán Prize
for his various contributions to Computational Fluid Dynamics, the direct numeri-
cal simulation of particulate flow in particular. Consequently, he was asked by some
people at SIAM to contribute an article to SIAM Review, related to the Von Kármán
lecture he gave at the 2004 SIAM meeting in Portland, Oregon. Since operator-
splitting was playing a most crucial role in the results presented during his Portland
lecture, he decided to write, jointly with several collaborators (including the second
author), a review article on operator-splitting methods, illustrated by several selected
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applications. One of the main reasons for that review article was that, to the best of
our knowledge at the time, the last comprehensive publication on the subject was
[121], a book-size article (266 pages) published in 1990, in the Volume I of the
Handbook of Numerical Analysis. Our article was rejected, on the grounds that it
was untimely. What is ironical is that the very day (of August 2005) we received the
rejection e-mail message, we were having a meeting with computational scientists
at Los Alamos National Laboratory (LANL) telling us that one of their main prior-
ities was further investigating the various properties of operator-splitting methods,
considering that these methods were (and still are) applied at LANL to solve a large
variety of challenging, mostly multi-physics, problems. Another event emphasizing
the importance of operator-splitting methods was the December 2005 conference,
at Rice University in Houston, commemorating “50 Years of Alternating-Direction
Methods” and honoring J. Douglas, D. Peaceman and H. Rachford, the inventors
of those particular operator-splitting methods bearing their name. Actually, it was
striking to observe during this conference that, at the time, most members of the
Partial Differential Equations and Optimization communities were ignoring that
most alternating-direction methods for initial value-problems are closely related to
primal-dual algorithms such as ADMM (Alternating Direction Methods of Multi-
pliers). In order to create a bridge between these two communities, we updated the
failed SIAM Review paper and submitted it elsewhere, leading to [73] (clearly, a
publication in an SIAM journal would have had more impact, worldwide). Our goal
in this chapter is to present a (kind of) updated variant of [73], less CFD (resp.,
more ADMM) oriented. It will contain in particular applications to Imaging, a topic
barely mentioned in reference [73]. The content of this chapter is as follows:

In Section 2, we will discuss the numerical solution of initial value problems
by operator-splitting time-discretization schemes such as Peaceman-Rachford’s,
Douglas-Rachford’s, Lie’s, Strang’s, Marchuk-Yanenko’s, and by the fractional
θ -scheme, a three-stage variation, introduced in [67] and [68], of Peaceman Rach-
ford’s scheme. We will conclude this section by some remarks on the parallelization
of operator-splitting schemes.

Section 3 will be dedicated to augmented Lagrangian and ADMM algorithms.
We will show in particular that some augmented Lagrangian and ADMM algorithms
are nothing but disguised operator-splitting methods (justifying thus the ADMM
terminology).

Following [73], we will discuss in Section 4 the operator-splitting based direct
numerical simulation of particulate flow, in the particular case of mixtures of inc-
ompressible viscous fluids and rigid solid particles.

In Section 5, we will discuss the application of operator-splitting methods to the
solution of two problems from Physics, namely the Gross-Pitaevskii equation, a
nonlinear Schrödinger equation modeling Bose-Einstein condensates, and the Zak-
harov system, a model for the propagation of Langmuir waves in ionized plasma.

Next, in Section 6, we will discuss applications of augmented Lagrangian and
ADMM algorithms to the solution of problems from Imaging, a highly popular topic
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nowadays (actually, the renewed interest in ADMM type algorithms that we observe
currently can be largely explained by their application to Image Processing; see
[156, 170]).

Finally, in Section 7, we will return to various issues that we left behind in
the preceding sections of this chapter: these include augmentation parameter sel-
ection, an analysis of the asymptotic behavior of the Peaceman-Rachford and
Douglas-Rachford schemes, and various comments concerning high order accurate
operator-splitting schemes. Also, owing to the fact that one of the success stories
of operator-splitting methods has been the numerical solution of the Navier-Stokes
equations modeling viscous flow, we will conclude this section (and the chapter) by
providing a (non-exhaustive) list of related references.

In addition to all the other chapters of this volume, material related to operator-
splitting, augmented Lagrangian and ADMM algorithms can be found in [72] (see
also the references therein). More references will be given in the following sections.

2 Operator-Splitting Schemes for the Time Discretization
of Initial Value Problems

2.1 Generalities

Let us consider the following autonomous initial value problem:
⎧
⎨

⎩

dφ
dt

+A(φ) = 0 on (0,T ) (with 0 < T ≤+∞),

φ(0) = φ0.
(2.1)

Operator A maps the vector space V into itself and we suppose that φ0 ∈ V . We
suppose also that A has a nontrivial decomposition such as

A =
J

∑
j=1

A j, (2.2)

with J ≥ 2 (by nontrivial we mean that the operators A j are individually simpler
than A).

A question which arises naturally is clearly:

Can we take advantage of decomposition (2.2) for the solution of (2.1)?

It has been known for many years (see for example [36]) that the answer to the
above question is definitely yes.

Many schemes have been designed to take advantage of the decomposition (2.2)
when solving (2.1); several of them will be briefly discussed in the following
paragraphs.
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2.2 Time-Discretization of (2.1) by Lie’s Scheme

Let �t(> 0) be a time-discretization step (for simplicity, we suppose �t fixed); we
denote n�t by tn. With φ n denoting an approximation of φ(tn), Lie’s scheme reads
as follows (for its derivation see, e.g., [70] (Chapter 6) and Chapter 1, Section 2, of
this book):

φ 0 = φ0; (2.3)

then, for n ≥ 0, φ n → φ n+1 via
⎧
⎨

⎩

dφ j

dt
+A j(φ j) = 0 on (tn, tn+1),

φ j(tn) = φ n+( j−1)/J;φ n+ j/J = φ j(tn+1),
(2.4)

for j = 1, . . . ,J.
If (2.1) is taking place in a finite dimensional space and if the operators A j are

smooth enough, then ‖φ(tn)−φ n‖= O(�t), function φ being the solution of (2.1).

Remark 1. The above scheme applies also for multivalued operators (such as the
subdifferentials of proper lower semi-continuous convex functionals), but in such a
case first order accuracy is not guaranteed anymore. A related application will be
given in Section 2.7.

Remark 2. The above scheme is easy to generalize to non-autonomous problems by
observing that

{ dφ
dt

+A(φ , t) = 0,

φ(0) = φ0

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ
dt

+A(φ ,θ) = 0,

dθ
dt

−1 = 0,

φ(0) = φ0,θ(0) = 0.

Remark 3. Scheme (2.3)–(2.4) is semi-constructive in the sense that we still have to
solve the initial value sub-problems in (2.4) for each j. Suppose that we discretize
these sub-problems using just one step of the backward Euler scheme. The resulting
scheme reads as follows:

φ 0 = φ0; (2.5)

then, for n ≥ 0, φ n → φ n+1 via the solution of

φ n+ j/J −φ n+( j−1)/J

�t
+A j(φ n+ j/J) = 0, (2.6)

for j = 1, . . . ,J.
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Scheme (2.5)–(2.6) is known as the Marchuk-Yanenko scheme (see, e.g., refs.
[121] and [70] (Chapter 6)) for more details). Several chapters of this volume are
making use of the Marchuk-Yanenko scheme.

2.3 Time-Discretization of (2.1) by Strang’s Symmetrized Scheme

In order to improve the accuracy of Lie’s scheme, G. Strang suggested a sym-
metrized variant of scheme (2.3)–(2.4) (ref. [153]). When applied to non-autonomous
problems, in the case where J = 2, we obtain (with tn+1/2 = (n+1/2)�t):

φ 0 = φ0; (2.7)

then, for n ≥ 0, φ n → φ n+1/2 → φ̂ n+1/2 → φ n+1 via
⎧
⎨

⎩

dφ1

dt
+A1(φ1, t) = 0 on (tn, tn+1/2),

φ1(tn) = φ n;φ n+1/2 = φ1(tn+1/2),
(2.8)

⎧
⎨

⎩

dφ2

dt
+A2(φ2, tn+1/2) = 0 on (0,�t),

φ2(0) = φ n+1/2; φ̂ n+1/2 = φ2(�t),
(2.9)

⎧
⎨

⎩

dφ1

dt
+A1(φ1, t) = 0 on (tn+1/2, tn+1),

φ1(tn+1/2) = φ̂ n+1/2;φ n+1 = φ1(tn+1).
(2.10)

If (2.1) is taking place in a finite dimensional space and if operators A1 and A2

are smooth enough, then ‖φ(tn)− φ n‖ = O(|�t|2), function φ being the solution
of (2.1).

Remark 4. In order to preserve the second order accuracy of scheme (2.7)–(2.10)
(assuming it takes place) we have to solve the initial value problems in (2.8),
(2.9) and (2.10) by schemes which are themselves second order accurate (at least);
these schemes are highly dependent of the properties of A1 and A2. The sub-
problems (2.8), (2.9) and (2.10) are all particular cases of

⎧
⎨

⎩

dφ
dt

+B(φ , t) = 0 on (t0, t f ),

φ(t0) = φ0.
(2.11)

Suppose now that B is a (positively) monotone operator; following [70] (Chapter 6),
we advocate using for the numerical integration of (2.11) the second order implicit
Runge-Kutta scheme below:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for q = 0, . . . ,Q−1, φ q → φ q+θ → φ q+1−θ → φ q+1 via⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ q+θ −φ q

θτ
+B(φ q+θ , tq+θ ) = 0,

φ q+1−θ =
1−θ

θ
φ q+θ +

2θ −1
θ

φ q,

φ q+1 −φ q+1−θ

θτ
+B(φ q+1, tq+1) = 0,

(2.12)

where in (2.12):

• Q(≥ 1) is an integer and τ =
t f − t0

Q
.

• φ q+α is an approximation of φ(tq+α), with tq+α = t0 +(q+α)τ .

• θ = 1− 1√
2

.

It is shown in [70] (Chapter 2) that the implicit Runge-Kutta scheme (2.12) is stiff
A-stable and “nearly” third-order accurate. It has been used, in particular, in [70]
and [162] for the numerical simulation of incompressible viscous flow.

Remark 5. The main (if not the unique) drawback of Strang’s symmetrized scheme
(2.7)–(2.10) concerns its ability at capturing the steady state solutions of (2.1) (when
T = +∞), assuming that such solutions do exist. Indeed, the splitting error asso-
ciated with scheme (2.7)–(2.10) prevents using large values of �t when integrat-
ing (2.1) from t = 0 to t = +∞; if the sequence {φ n}n≥0 converges to a limit,
this limit is not, in general, a steady state solution of (2.1), albeit being close
to one for small values of �t (a similar comment applies also to the sequences
{φ n+1/2}n≥0 and {φ̂ n+1/2}n≥0). A simple way to-partly-overcome this difficulty is
to use variable time discretization steps: for example, in (2.8), (2.9) and (2.10),
one can replace �t by τn (the sequence {τn}n≥0 verifying τn > 0, lim

n→∞
τn = 0 and

∞

∑
n=0

τn = +∞), and then define tn+1 and tn+1/2 by tn+1 = tn + τn ∀n ≥ 0, t0 = 0,

and tn+1/2 = tn+τn/2, respectively. A more sophisticated way to fix the asymptotic
behavior of scheme (2.7)–(2.10) is to proceed as in the chapter by McNamara and
Strang in this book (Chapter 3).

Remark 6. More comments on scheme (2.7)–(2.10) can be found in, e.g., [70]
(Chapter 6), [72] (Chapter 3) and various chapters of this volume, Chapter 3 in
particular. Among these comments, the generalization of the above scheme to those
situations where J ≥ 3 in (2.2) has been discussed. Conceptually, the case J ≥ 3 is
no more complicated than J = 2. Focusing on J = 3, we can return (in a nonunique
way) to the case J = 2 by observing that

A = A1 +A2 +A3 = A1 +(A2 +A3) = (A1 +A2)+A3 (2.13)

= (A1 +
1
2

A2)+(
1
2

A2 +A3).
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The first (resp., second and third) arrangement in (2.13) leads to 5 (resp., 7 and 9) ini-
tial value sub-problems per time step. Scheme (2.7)–(2.10), combined with the first
arrangement in (2.13), has been applied in [81] to the computation of the periodic
solution of a nonlinear integro-differential equation from Electrical Engineering.

2.4 Time-Discretization of (2.1) by Peaceman-Rachford’s
Alternating Direction Method

Another candidate for the numerical solution of the initial value problem (2.1), or
of its non-autonomous variant

⎧
⎨

⎩

dφ
dt

+A(φ , t) = 0 on (0,T ),

φ(0) = φ0.
(2.14)

is provided, if J = 2 in (2.2), by the Peaceman-Rachford scheme (introduced in
[139]). The idea behind the Peaceman-Rachford scheme is quite simple: the nota-
tion being like in Sections 2.1, 2.2 and 2.3, one divides the time interval [tn, tn+1]
into two sub-intervals of length �t/2 using the mid-point tn+1/2. Then assuming
that the approximate solution φ n is known at tn one computes first φ n+1/2 using
over [tn, tn+1/2] a scheme of the backward Euler type with respect to A1 and of the
forward Euler type with respect to A2; one proceeds similarly over [tn+1/2, tn+1],
switching the roles of A1 and A2. The following scheme, due to Peaceman and
Rachford (see [139]), realizes precisely this program when applied to the solution
of the initial value problem (2.14):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ n+1/2 → φ n+1 via the solution of
φ n+1/2 −φ n

�t/2
+A1(φ n+1/2, tn+1/2)+A2(φ n, tn) = 0,

φ n+1 −φ n+1/2

�t/2
+A1(φ n+1/2, tn+1/2)+A2(φ n+1, tn+1) = 0.

(2.15)

The convergence of the Peaceman-Rachford scheme (2.15) has been proved in [118]
and [84] under quite general monotonicity assumptions concerning the operators A1

and A2 (see also [64, 65] and [110]); indeed, A1 and/or A2 can be nonlinear, unb-
ounded and even multi-valued. In general, scheme (2.15) is first order accurate at
best; however, if the operators A1 and A2 are linear, time independent, and commute
then scheme (2.15) is second order accurate (that is ‖φ n − φ(tn)‖ = O(|�t|2)), φ
being the solution of problem (2.1)). Further properties of scheme (2.15) can be
found in, e.g., [121, 70] (Chapter 2) and [72] (Chapter 3), including its stability, and
its asymptotic behavior if T =+∞; concerning this last issue, a sensible advice is to
use another scheme to compute steady state solutions, scheme (2.15) not being stiff
A-stable.
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Remark 7. Scheme (2.15) belongs to the alternating direction method family. The
reason of that terminology is well known: one of the very first applications of
scheme (2.15) was the numerical solution of the heat equation

∂φ
∂ t

− ∂ 2φ
∂x2 − ∂ 2φ

∂y2 = f ,

completed by initial and boundary conditions. After finite difference discretization,
the roles of A1 and A2 were played by the square matrices approximating the oper-

ators − ∂ 2

∂x2 and − ∂ 2

∂y2 , respectively, explaining the terminology.

Remark 8. We observe that operators A1 and A2 play essentially symmetrical roles
in scheme (2.15).

Remark 9. For those fairly common situations where operator A2 is uni-valued, but
operator A1 is “nasty” (discontinuous and/or multi-valued, etc.), we should use the
following equivalent formulation of the Peaceman-Rachford scheme (2.15):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ n+1/2 → φ n+1 via the solution of
φ n+1/2 −φ n

�t/2
+A1(φ n+1/2, tn+1/2)+A2(φ n, tn) = 0,

φ n+1 −2φ n+1/2 +φ n

�t/2
+A2(φ n+1, tn+1) = A2(φ n, tn).

(2.16)

2.5 Time-Discretization of (2.1) by Douglas-Rachford’s Alternating
Direction Method

We assume that J = 2 in (2.2).
The Douglas-Rachford scheme (introduced in [57]) is a variant of the Peaceman-

Rachford scheme (2.15); when applied to the numerical solution of the initial value
problem (2.14) (the non-autonomous generalization of (2.1)), it takes the following
form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ̂ n+1 → φ n+1 via the solution of

φ̂ n+1 −φ n

�t
+A1(φ̂ n+1, tn+1)+A2(φ n, tn) = 0,

φ n+1 −φ n

�t
+A1(φ̂ n+1, tn+1)+A2(φ n+1, tn+1) = 0.

(2.17)

The Douglas-Rachford scheme (2.17) has clearly a predictor-corrector flavor.
The convergence of the Douglas-Rachford scheme (2.17) has been proved in [118]

and [84] under quite general monotonicity assumptions concerning the operators A1
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and A2 (see also [64, 65] and [110]); indeed, A1 and/or A2 can be nonlinear, un-
bounded, and even multi-valued. In general, scheme (2.17) is first order accurate
at best (even if the operators A1 and A2 are linear, time independent and commute,
assumptions implying second order accuracy for the Peaceman-Rachford scheme).
Further properties of scheme (2.17) can be found in, e.g., [121, 70] (Chapter 2) and
[72] (Chapter 3), including its stability, and its asymptotic behavior if T =+∞. Con-
cerning this last issue, a sensible advice is to use another scheme to compute steady
state solutions, scheme (2.17) not being stiff A-stable, a property it shares with the
Peaceman-Rachford scheme (2.15).

Remark 10. Unlike the Peaceman-Rachford scheme (2.15), we observe that the roles
played by operators A1 and A2 are non-symmetrical in scheme (2.17); actually, nu-
merical experiments confirm that fact: for example, for the same �t the speed of
convergence to a steady state solution may depend of the choice one makes for A1

and A2. As a rule of thumb, we advocate taking for A2 the operator with the best
continuity and monotonicity properties (see, for example, [62] (Chapter 3), [63]
(Chapter 3) and [74] (Chapter 3) for more details).

Remark 11. Unlike scheme (2.15), scheme (2.17) is easy to generalize to operator
decompositions involving more than two operators. Consider thus the numerical
integration of (2.14) when J ≥ 3 in (2.2). Following J. Douglas in [54] and [55] we
generalize scheme (2.17) by

φ 0 = φ0; (2.18)

then for n ≥ 0, φ n being known, compute φ n+1/J , . . . , φ n+ j/J , . . . , φ n+1 via the
solution of

⎧
⎪⎪⎨

⎪⎪⎩

φ n+1/J −φ n

�t
+

1
J−1

A1(φ n+1/J, tn+1)+
J−2
J−1

A1(φ n, tn)

+
J

∑
i=2

Ai(φ n, tn) = 0,
(19.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ n+ j/J −φ n

�t
+

j−1

∑
i=1

[
1

J−1
Ai(φ n+i/J, tn+1)+

J−2
J−1

Ai(φ n, tn)

]

+
1

J−1
A j(φ n+ j/J , tn+1)+

J−2
J−1

A j(φ n, tn)

+
J

∑
i= j+1

Ai(φ n, tn) = 0,

(19. j)

⎧
⎪⎪⎨

⎪⎪⎩

φ n+1 −φ n

�t
+

J−1

∑
i=1

[
1

J−1
Ai(φ n+i/J, tn+1)+

J−2
J−1

Ai(φ n, tn)

]

+
1

J−1
AJ(φ n+1, tn+1)+

J−2
J−1

AJ(φ n, tn) = 0,

(19.J)

Above, φ n+i/J and φ n+ j/J denote approximate solutions at steps i and j of the com-
putational process; they do not denote approximations of φ(tn+i/J) and φ(tn+ j/J)
(unless i = j = J).
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Remark 12. This is the Douglas-Rachford analog of Remark 9: for those situations
where A1 is a “bad” operator (in the sense of Remark 9), we should use (assuming
that A2 is uni-valued) the following equivalent formulation of the Douglas-Rachford
scheme (2.17):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ̂ n+1 → φ n+1 via the solution of

φ̂ n+1 −φ n

�t
+A1(φ̂ n+1, tn+1)+A2(φ n, tn) = 0,

φ n+1 − φ̂ n+1

�t
+A2(φ n+1, tn+1) = A2(φ n, tn).

(2.20)

Remark 13. To those wondering how to choose between the Peaceman-Rachford
and Douglas-Rachford schemes, we will say that, on the basis of many numer-
ical experiments, it seems that the second scheme is more robust and faster for
those situations where one of the operators is non-smooth (multi-valued or singular,
for example), particularly if one is interested by capturing steady state solutions.
Actually, a better advice could be: consider using the fractional θ -scheme to be dis-
cussed in Section 2.6, below. Indeed, we have encountered situations where this θ -
scheme outperforms both the Peaceman-Rachford and Douglas-Rachford schemes,
for steady state computations in particular; such an example is provided by the
anisotropic Eikonal equation, a nonlinear hyperbolic problem to be briefly discussed
in Section 2.7. We will return to the Peaceman-Rachford vs Douglas-Rachford issue
in Section 7.

2.6 Time-Discretization of (2.1) by a Fractional θ -Scheme

This scheme (introduced in [67, 68] for the solution of the Navier-Stokes equations)
is a variant of the Peaceman-Rachford scheme (2.15). Let θ belong to the open
interval (0,1/2) (in practice, θ ∈ [1/4,1/3]); the fractional θ -scheme, applied to
the solution of the initial value problem (2.14) (the non-autonomous generalization
of (2.1)), reads as follows if A = A1 +A2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ n+θ → φ n+1−θ → φ n+1 via the solution of
φ n+θ −φ n

θ�t
+A1(φ n+θ , tn+θ )+A2(φ n, tn) = 0,

φ n+1−θ −φ n+θ

(1−2θ)�t
+A1(φ n+θ , tn+θ )+A2(φ n+1−θ , tn+1−θ ) = 0,

φ n+1 −φ n+1−θ

θ�t
+A1(φ n+1, tn+1)+A2(φ n+1−θ , tn+1−θ ) = 0.

(2.21)

Remark 14. One should avoid confusion between scheme (2.21) and the following
solution method for the initial value problem (2.14) (with 0 ≤ θ ≤ 1)
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⎧
⎪⎪⎨

⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ n+1 via the solution of
φ n+1 −φ n

�t
+θA(φ n+1, tn+1)+(1−θ)A(φ n, tn) = 0,

(2.22)

which is also known as a θ -scheme. We observe that if θ = 1 (resp., θ = 0, θ =1/2)
scheme (2.22) reduces to backward Euler’s scheme (resp., forward Euler’s scheme,
a Crank-Nicolson’s type scheme). Another “interesting” value is θ = 2/3 (for reasons
detailed in, e.g., [70] (Chapter 2) and [72] (Chapter 3)). By the way, it is to avoid
confusion between schemes (2.21) and (2.22) that some practitioners (S. Turek, in
particular) call the first one a fractional θ -scheme. ��
The stability and convergence properties of scheme (2.21) have been discussed in
[70] (Chapter 2) and [72] (Chapter 3) for very simple finite dimensional situations
where A1 and A2 are both positive multiples of the same symmetric positive def-
inite matrix. Numerical experiments have shown that the good properties verified
by scheme (2.21) for those simple linear situations, in particular its stiff A-stability
for θ well chosen, still hold for more complicated problems, such as the numerical
simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes
equations (as shown in, e.g., [23, 41, 69] and [70]).

Remark 15. We observe that operators A1 and A2 play non-symmetrical roles in
scheme (2.21). Since, at each time step, one has to solve two problems (resp., one
problem) associated with operator A1 (resp., A2) a natural choice is to take for A1 the
operator leading to the sub-problems which are the easiest to solve (that is, whose
solution is the less time consuming). Less naive criteria may be used to choose A1

and A2, such as the regularity (or lack of regularity) of these operators.

Remark 16. If one takes A1 = A and A2 = 0 in (2.21), the above scheme reduces to
the Runge-Kutta scheme (2.12), with A replacing B.

Remark 17. The fractional θ -scheme (2.21) is a symmetrized scheme. From that
point of view, it has some analogies with Strang’s symmetrized scheme (2.7)–(2.10),
discussed in Section 2.3.

Remark 18. This is the fractional θ -scheme analog of Remarks 9 and 12. For those
situations where A1 is a “bad” operator (in the sense of Remark 9), we advocate
using the following equivalent formulation of the θ -scheme (2.21):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, φ n → φ n+θ → φ n+1−θ → φ n+1 via the solution of
φ n+θ −φ n

θ�t
+A1(φ n+θ , tn+θ )+A2(φ n, tn) = 0,

θφ n+1−θ −(1−θ)φ n+θ+(1−2θ)φ n

θ(1−2θ)�t
+A2(φ n+1−θ , tn+1−θ )=A2(φ n, tn),

φ n+1 −φ n+1−θ

θ�t
+A1(φ n+1, tn+1)+A2(φ n+1−θ , tn+1−θ ) = 0.

(2.23)
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2.7 Two Applications: Smallest Eigenvalue Computation
and Solution of an Anisotropic Eikonal Equation

2.7.1 Synopsis

It is not an exaggeration to say that applications of operator-splitting methods are
everywhere, new ones occurring “almost” every day; indeed, some well-known
methods and algorithms are disguised operator-splitting schemes as we will show in
Section 2.7.2, concerning the computation of the smallest eigenvalue of a real sym-
metric matrix. In Section 2.7.3, we will apply the fractional θ -scheme (2.21) to the
solution of an Eikonal equation modeling wave propagation in anisotropic media.
More applications will be discussed in Sections 4 and 5.

2.7.2 Application to Some Eigenvalue Computation

Suppose that A is a real d × d symmetric matrix. Ordering the eigenvalues of A
as follows: λ1 ≤ λ2 ≤ ·· · ≤ λd , our goal is to compute λ1. We have (with obvious
notation)

λ1 = min
v∈S

vtAv, with S = {v|v ∈ IRd ,‖v‖= 1}, (2.24)

the norm in (2.24) being the canonical Euclidean one. The constrained minimization
problem in (2.24) is equivalent to

min
v∈IRd

[
1
2

vtAv+ IS(v)
]

, (2.25)

where, in (2.25), the functional IS : IRd → IR∪{+∞} is defined as follows

IS(v) =
{

0 i f v ∈ S,
+∞ otherwise,

implying that IS is the indicator functional of the sphere S. Suppose that u is a
solution of (2.25) (that is a minimizer of the functional in (2.25)); we have then

Au+∂ IS(u) � 0, (2.26)

∂ IS(u) in (2.26) being a (kind of) generalized gradient of functional IS at u (∂ IS

is a multivalued operator). Next, we associate with the (necessary) optimality sys-
tem (2.26) the following initial value problem (flow in the Dynamical System termi-
nology): ⎧

⎨

⎩

du
dt

+Au+∂ IS(u) � 0 in (0,+∞),

u(0) = u0.
(2.27)
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If one applies the Marchuk-Yanenko scheme (2.5)–(2.6) to the solution of prob-
lem (2.27), one obtains (with τ =�t):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0 = u0,

for n ≥ 0, un → un+1/2 → un+1 via the solution of
un+1/2 −un

τ
+Aun+1/2 = 0,

un+1 −un+1/2

τ
+∂ IS(un+1) � 0.

(2.28)

The first finite difference equation in (2.28) implies

un+1/2 = (I+ τA)−1un. (2.29)

On the other hand, the second finite difference equation in (2.28) can be interpreted
as a necessary optimality condition for the following minimization problem

min
v∈S

[
1
2
‖v‖2 −vtun+1/2

]

. (2.30)

Since ‖v‖= 1 over S, the solution of problem (2.30) is given by

un+1 =
un+1/2

‖un+1/2‖ . (2.31)

It follows from (2.29) and (2.31) that algorithm (2.28) is nothing but the inverse
power method with shift, a well-known algorithm from Numerical Linear Algebra.
Indeed, if

0 < τ <
1

max(0+,−λ1)
,

and if the projection of u0 on the vector space spanned by the eigenvectors of A
associated with λ1 is different from 0, we can easily prove that the sequence {un}n≥0

converges to an eigenvector of A associated with λ1 and also that

lim
n→+∞

(un)tAun = λ1.

Clearly, numerical analysts have not been waiting for operator-splitting to compute
matrix eigenvalues and eigenvectors; on the other hand, operator-splitting has pro-
vided efficient algorithms for the solution of complicated problems from Differ-
ential Geometry, Mechanics, Physics, Physico-Chemistry, Finance, etc., including
some nonlinear eigenvalue problems, as shown in, e.g., [72] (Chapter 7).
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2.7.3 Application to the Solution of an Anisotropic Eikonal Equation
from Acoustics

The next application of operator-splitting, that we are going to (briefly) consider
in this chapter, was brought to our attention recently (December 2014) by our col-
leagues S. Leung and J. Qian. It concerns the numerical solution of the following
nonlinear hyperbolic partial differential equation

|∇τ |− |1−V ·∇τ |
c

= 0 in Ω , (2.32)

encountered in Acoustics and known as the anisotropic Eikonal equation. In (2.32),
we have (see [40] for more details):

• Ω ⊂ IRd , with d ≥ 2.
• τ(x) is the time of 1st arrival of the wave front at x ∈ Ω .
• c > 0 is the wave propagation speed in the medium filling Ω , assuming that this

medium is at rest (the so-called background medium).
• Assuming that the ambient medium is moving, V is its moving velocity; we

assume that V ∈ (L∞(Ω))d .

Fast-sweeping methods have been developed for the efficient numerical solution of
the classical Eikonal equation

|∇τ |= 1
c

in Ω , (2.33)

(see, e.g., [104] and [181]); these methods provide automatically viscosity solutions
in the sense of Crandall and Lions (see [38] for this notion). Unfortunately, as shown
in [40], the fast sweeping methods developed for the solution of (2.33) cannot han-
dle (2.32), unless one modifies them significantly, as done in [40]. Actually, there
exists an alternative, simpler to implement, to the method developed in [40]: it re-
lies on the operator-splitting methods discussed in Sections 2.3, 2.4, 2.5 and 2.6,
and takes advantage of the fact that the fast-sweeping methods developed for the
solution of (2.33) can be easily modified in order to handle equations such as

ατ −β∇2τ + |∇τ |= f (2.34)

and

ατ −β∇2τ − |1−V ·∇τ |
c

= f , (2.35)

with α > 0 and β ≥ 0. Therefore, in order to solve problem (2.32), we associate
with it the following initial value problem:

⎧
⎨

⎩

(I − ε∇2)
∂τ
∂ t

+ |∇τ |− |1−V ·∇τ |
c

= 0 in Ω × (0,+∞),

τ(0) = τ0,
(2.36)
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whose steady state solutions are also solutions of (2.32). In (2.36), ε is a non-
negative parameter (a regularizing one if ε > 0) and τ(t) denotes the function
t → τ(x, t). Actually, additional conditions are required to have solution uniqueness,
typical ones being τ specified on a subset of Ω(= Ω ∪∂Ω), possibly reduced to just
one point (a point source for the wave). A typical choice for τ0 is the corresponding
solution of problem (2.33).

The results reported in [75] show that, with θ = 1/3, the fractional θ -scheme dis-
cussed in Section 2.6 outperforms the Strang’s, Peaceman-Rachford’s, and Douglas-
Rachford’s schemes when applied to the computation of the steady state solutions
of (2.36). The resulting algorithm reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0 = τ0;

for n ≥ 0, τn → τn+θ → τn+1−θ → τn+1 via the solution of

(I − ε∇2)
τn+θ − τn

θ�t
+ |∇τn+θ |− |1−V ·∇τn|

c
= 0,

(I − ε∇2)
τn+1−θ − τn+θ

(1−2θ)�t
+ |∇τn+θ |− |1−V ·∇τn+1−θ |

c
= 0,

(I − ε∇2)
τn+1 − τn+1−θ

θ�t
+ |∇τn+1|− |1−V ·∇τn+1−θ |

c
= 0.

(2.37)

The three problems in (2.37) being particular cases of (2.34) and (2.35), their finite
difference analogues can be solved by fast-sweeping algorithms. Physical consid-
erations suggest that �t has to be of the order of the space discretization step h.
Actually, the numerical results reported in [75] show that, unlike the other schemes
discussed in Sections 2.2 to 2.5, scheme (2.37), with θ = 1/3, has very good con-

vergence properties, even for large values of the ratio
�t
h

(100, typically). If ε = 0

(resp., h2), these numerical experiments suggest that the number of iterations (time
steps), necessary to achieve convergence to a steady state solution, varies (roughly)
like h−1/2 (resp., h−1/3), for two- and three-dimensional test problems (see [75] for
further results and more details). Clearly, preconditioning does pay here (a well-
known fact, in general).

Remark 19. Some readers may wonder why the authors of [75] gave the role of A1

(resp., A2) to the operator τ → |∇τ | (resp., τ →−1
c
|1−V ·∇τ |), and not the other

way around. Let us say to these readers that the main reason behind that choice was
preliminary numerical experiments showing that, for the same values of α and β ,
problem (2.34) is cheaper to solve that problem (2.35).

2.8 Time-Discretization of (2.1) by a Parallel Splitting Scheme

The splitting schemes presented so far have a sequential nature, i.e. the sub-
problems associated with the decomposed operators are solved in a sequential
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manner. Actually, it is also possible to solve the sub-problems in parallel, as shown
just below, using the following variant of Marchuk-Yanenko’s scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0;

for n ≥ 0, we obtain φ n+1 from φ n by solving first
φ n+ j/2J −φ n

J�t
+A j(φ n+ j/2J, tn+1) = 0, for j = 1, . . . ,J,

φ n+1 being then obtained by averaging as follows

φ n+1 =
1
J

J

∑
j=1

φ n+ j/2J.

(2.38)

Scheme (2.38) is nothing but Algorithm 5.1 in [119]. Under suitable conditions, it
has been proved in the above reference that scheme (2.38) is first order accurate,
that is ‖φ n − φ(tn)‖ = O(�t). A parallelizable algorithm with second order accu-
racy is presented also in [119]. The main advantage of the above schemes is that
the sub-problems can be solved in parallel. Clearly, this parallel splitting idea can
be used for computing the steady state solutions of (2.1). As observed in [155], the
sub-problems (or at least some of them) can also be solved in parallel if the corre-
sponding operator A j has the right decomposition properties.

3 Augmented Lagrangian Algorithms and Alternating Direction
Methods of Multipliers

3.1 Introduction

It is our opinion that a review chapter like this one has to include some material
about augmented Lagrangian algorithms, including of course their relationships
with alternating direction methods. On the other hand, since augmented Lagrangian
algorithms and alternating direction methods of multipliers, and their last known de-
velopments, are discussed, with many details, in other chapters of this book, we will
not say much about these methods in this section. However, we will give enough in-
formation so that the reader may follow Section 6 (dedicated to Image Processing)
without spending too much time consulting the other chapters (or other references).

In Section 3.2 we will introduce several augmented Lagrangian algorithms, and
show in section 3.3 how these algorithms relate to the alternating direction methods
discussed in Sections 2.4 (Peaceman-Rachford’s) and 2.5 (Douglas-Rachford’s).

This section is largely inspired by Chapter 4 of [72].



2 Operator-Splitting and Alternating Direction Methods 35

3.2 Decomposition-Coordination Methods by Augmented
Lagrangians

3.2.1 Abstract Problem Formulation. Some Examples

A large number of problems in Mathematics, Physics, Engineering, Economics,
Data Processing, Imaging, etc. can be formulated as

u = argmin
v∈V

[F(Bv)+G(v)], (2.39)

where: (i) V and H are Banach spaces. (ii) B ∈ L(V,H). (iii) F : H → IR∪{+∞}
and G : V → IR∪ {+∞} are proper, lower semi-continuous, and convex function-
als verifying dom(F ◦B) ∩ dom(G) �= /0, implying that problem (2.39) may have
solutions.

Example 1. This first example concerns the following variational problem:

u = arg min
v∈H1

0 (Ω)

[
μ
2

∫

Ω
|∇v|2 dx+ τy

∫

Ω
|∇v|dx−ϖ

∫

Ω
vdx

]

, (2.40)

where: (i) Ω is a bounded domain (that is a bounded open connected subset) of IR2;
we denote by Γ the boundary of Ω . (ii) dx = dx1dx2. (iii) μ and τy are two positive

constants. (iv) |∇v|2 =
∣
∣
∣
∣

∂ v
∂x1

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂ v
∂x2

∣
∣
∣
∣

2

(v) The space H1
0 (Ω) (a Sobolev space) is

defined by

H1
0 (Ω) = {v|v ∈ L2(Ω),∂ v/∂xi ∈ L2(Ω),∀i = 1,2,v|Γ = 0}, (2.41)

the two derivatives in (2.41) being in the sense of distributions (see, e.g., [148, 157]
for this notion). Since Ω is bounded, H1

0 (Ω) is a Hilbert space for the inner product
{v,w} → ∫

Ω ∇v ·∇wdx, and the associated norm. Problem (2.40) is a well-known
problem from non-Newtonian fluid mechanics; it models the flow of an incompress-
ible visco-plastic fluid (of the Bingham type) in an infinitely long cylinder of cross-
section Ω , ϖ being the pressure drop per unit length and u the flow axial velocity.
In (2.40), μ denotes the fluid viscosity and τy its plasticity yield (see, e.g., [59]
and [83] for further information on visco-plastic fluid flows; see also the references
therein). It follows from, e.g., [66] and [72], that the variational problem (2.40) has
a unique solution.

Problem (2.40) is a particular case of (2.39) with V = H1
0 (Ω), H = (L2(Ω))2,

B = ∇, F(q) = τy

∫

Ω
|q|dx, and G(v) =

μ
2

∫

Ω
|∇v|2 dx−ϖ

∫

Ω
vdx; other decompo-

sitions are possible.

Close variants of problem (2.40) are encountered in imaging, as shown in Sec-
tion 6 (and other chapters of this volume).
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Example 2. It concerns the following variant of problem (2.40):

u = argmin
v∈K

[
μ
2

∫

Ω
|∇v|2 dx−C

∫

Ω
vdx

]

, (2.42)

where Ω is a bounded domain of IR2, μ is a positive constant and

K = {v|v ∈ H1
0 (Ω), |∇v| ≤ 1 a.e. in Ω}.

It is a classical result (see, e.g., [59]) that (2.42) models, in an appropriate system of
mechanical units, the torsion of an infinitely long cylinder of cross-section Ω , made
of an elastic-plastic material, C being the torsion angle per unit length and u a stress
potential. It follows from, e.g., [66] and [72], that the variational problem (2.42) has
a unique solution.

Problem (2.42) is a particular case of problem (2.39) with V = H1
0 (Ω), H =

(L2(Ω))2, B = ∇, G(v) =
μ
2

∫

Ω
|∇v|2 dx−C

∫

Ω
vdx, and F(q) = IK(q), IK(·) being

the indicator functional of the closed convex nonempty subset K of H defined by

K = {q|q ∈ H, |q| ≤ 1 a.e. in Ω}.

Other decompositions are possible.

Remark 20. We recall that, we have, (from the definition of indicator functionals)

IK(q) =

{
0 if q ∈ K ,

+∞ otherwise,

implying, from the properties of K , that IK : H → IR∪{+∞} is convex, proper and
lower semi-continuous. ��

Numerical methods for the solution of problem (2.42) can be found in, e.g., [66]
and [76].

3.2.2 Primal-Dual Methods for the Solution of Problem (2.39): ADMM
Algorithms

In order to solve problem (2.39), we are going to use a strategy introduced in [77]
and [78] (to the best of our knowledge). The starting point is the obvious equivalence
between (2.39) and the following linearly constrained optimization problem:

{u,Bu}= arg min
{v,q}∈W

j(v,q), (2.43)

where
j(v,q) = F(q)+G(v),
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and
W = {{v,q}|v ∈V,q ∈ H,Bv−q = 0}.

From now on, we will assume that V and H are (real) Hilbert spaces, the H-norm
being denoted by | · | and the associated inner-product by (·, ·). The next step is quite
natural: we associate with the minimization problem (2.43) a Lagrangian functional
L defined by

L(v,q; μ) = j(v,q)+(μ ,Bv−q),

and an augmented Lagrangian functional Lr defined (with r > 0) by

Lr(v,q; μ) = L(v,q; μ)+
r
2
|Bv−q|2. (2.44)

One can easily prove that the functionals L and Lr share the same saddle-points
over (V ×H)×H, and also that, if {{u, p},λ} is such a saddle-point, then u is a
solution of problem (2.39) and p = Bu. A classical algorithm to compute saddle-
points is the so-called Uzawa algorithm, popularized by [3] (a book dedicated to
the study of Economics equilibria), and further discussed in, e.g., [76]. Applying a
close variant of the Uzawa algorithm to the computation of the saddle-points of Lr

over (V ×H)×H, we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ 0 is given in H;

for n ≥ 0, λ n →{un, pn}→ λ n+1 via

{un, pn}= arg min
{v,q}∈V×H

Lr(v,q;λ n),

λ n+1 = λ n +ρ(Bun − pn),

(2.45)

an algorithm called ALG1 by some practitioners, following a terminology intro-
duced in [78] (an alternative name could have been augmented Lagrangian Uzawa
algorithm which summarizes quite well what algorithm (2.45) is all about).

Concerning the convergence of ALG1 it has been proved in, e.g., [62, 63, 66] and
[74] (see also [78]), that if:

(i) L has a saddle-point {{u, p},λ} over (V ×H)×H.
(ii) B is an injection and R(B) is closed in H.

(iii) lim
|q|→+∞

F(q)
|q| =+∞.

(iv) F = F0 +F1 with F0 and F1 proper, lower semi-continuous and convex,
with F0 Gateaux-differentiable, and uniformly convex on the bounded
sets of H

(the above properties imply that problem (2.39) has a unique solution), then we
have, ∀ r > 0 and if

0 < ρ < 2r,

the following convergence result

lim
n→+∞

{un, pn}= {u,Bu} in V ×H, (2.46)
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where u is the solution of problem (2.39); moreover, the convergence result (2.46)
holds ∀ λ 0 ∈ H. The convergence of the multiplier sequence {λ n}n≥0 is no better
than weak in general, implying that the criterion used to stop ALG1 has to been
chosen carefully. Of course, in finite dimension, the properties of B, F and G im-
plying convergence are less demanding than in infinite dimension; for example, the
existence of a solution to problem (2.39) is sufficient to imply the existence of a
saddle-point.

The main difficulty with the Uzawa algorithm (2.45) is clearly the solution of the
minimization problem it contains. An obvious choice to solve this problem is to use
a relaxation method (as advocated in [77, 78]). Suppose that, as advocated in the
two above references (which show that, indeed, for the nonlinear elliptic problem
discussed there the number of relaxation iterations reduces quickly to two), we limit
the number of relaxation iterations to one when solving the minimization problem
in (2.45): we obtain then the following primal-dual algorithm (called ALG2 by some
practitioners):

{u−1,λ 0} is given in V ×H; (2.47)

for n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn = argmin
q∈H

Lr(u
n−1,q;λ n), (2.48)

un = argmin
v∈V

Lr(v, pn;λ n), (2.49)

λ n+1 = λ n +ρ(Bun − pn). (2.50)

Assuming that

0 < ρ <
1+

√
5

2
r,

with the other assumptions implying the convergence of ALG1 still holding, we have

lim
n→+∞

{un, pn}= {u,Bu} in V ×H,

where u is the solution of problem (2.39). Convergence proofs can be found in
[62, 63, 66] and [74].

A simple variant (called ALG3) of algorithm (2.47)–(2.50) is obtained by updat-
ing the multiplier a first time immediately after (2.48); we obtain then

{u−1,λ 0} is given in V ×H, (2.51)

for n ≥ 0, {un−1,λ n}→ pn → λ n+1/2 → un → λ n+1 via

pn = argmin
q∈H

Lr(u
n−1,q;λ n), (2.52)

λ n+1/2 = λ n +ρ(Bun−1 − pn), (2.53)
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un = argmin
v∈V

Lr(v, pn;λ n+1/2), (2.54)

λ n+1 = λ n+1/2 +ρ(Bun − pn). (2.55)

Most practitioners prefer ALG2 to ALG3, the main reason being that ALG2 is more
robust than ALG3, in general.

Remark 21. If one takes ρ = r in (2.47)–(2.50) and (2.51)–(2.55), the algorithms we
obtain belong to the Alternating Direction Methods of Multipliers (ADMM) family
(a terminology we will justify in Section 3.3). The convergence of ADMM related al-
gorithms is rather well established in the convex case (see, for example, [18, 61, 95];
see also the references therein and other chapters of this book, the one by M. Burger,
A. Sawatzky & G. Steidl in particular). On the other hand, one is still lacking a gen-
eral theory for the convergence of algorithms such as ALG1, ALG2, and ALG3 when
applied to the solution of non-convex variational problems. Nevertheless, the above
algorithms have been successfully applied to the solution of non-convex problems
as shown, for example, in [42, 72] (Chapter 4), [74], and other chapters of this book,
Chapters 7 and 8, in particular.

Remark 22. An important issue with the above primal-dual algorithms is how to
vary r and ρ dynamically in order to improve the speed of convergence of these
algorithms. This issue has been addressed in, e.g., [18, 34, 45, 46] (see also the
references therein).

Remark 23. An overlooked ([34] being a notable exception) property of primal-dual
algorithms such as ALG1, ALG2 and ALG3 is that they may be constructive still, in
those not so uncommon situations where in (2.39) one has dom(F ◦B)∩ dom(G) =
/0, implying that problem (2.39) has no solutions, strictly speaking. On the basis of
the numerical results reported in [42] (see also [72] (Chapter 4) and Chapter 8 of
this volume), we conjecture that if the parameters ρ and r are properly chosen, the
sequence {{un, pn}}n≥0 converges to a pair {u, p} minimizing the functional

{v,q}→ G(v)+F(q)

over the set

{{v,q}}|{v,q} ∈ dom(G)×dom(F), |Bv−q|= min
{w,ϖ}∈dom(G)×dom(F)

|Bw−ϖ |},

while the sequence {λ n}n≥0 diverges arithmetically (that is, |λ n| →+∞ like n mul-
tiplied by a positive constant, that is slowly). If the above convergence/divergence
result holds true (which seems to be the case for the non-convex problem discussed
in [42]), it implies that the above primal-dual algorithms solve problem (2.39) in a
least-squares sense, a most remarkable property indeed, testifying of the robustness
of these algorithms. The above results look natural, but the optimization experts we
consulted had trouble to give us a precise reference (or a proof).
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Remark 24. We encountered situations (in incompressible finite elasticity in partic-
ular; see, e.g., [74] for details) where a safe way to proceed with the above primal-
dual algorithms is as follows: Employ ALG1 with a well-balanced (that is neither
too small nor too large) stopping criterion for the relaxation algorithm used to solve
the minimization problem in (2.45); it has been observed quite often that the number
of relaxation iterations necessary to compute {un, pn} from λ n goes down quickly
to one or two (an observation at the origin of ALG2), implying that starting with
ALG1, the algorithm switches automatically to ALG2. It is not uncommon that this
implementation of ALG1 produces an algorithm faster (CPU-wise) than ALG2 and
ALG3, when solving “hard” problems. ��

Further information on the convergence of Lagrange multiplier based iterative
methods can be found in other chapters of this volume, and in, e.g., [45, 60, 62, 63],
[66, 74] and [100] (see also the many references therein).

3.3 On the Relationship Between Alternating Direction Methods
and ALG2, ALG3

As reported in [71] and [72] (Chapter 4) some previously unknown relationships
between alternating direction methods and augmented Lagrangian algorithms were
identified in 1975 by T.F. Chan and the first author of this chapter, while investi-
gating the numerical solution of some simple nonlinear elliptic problems by various
iterative methods (see [30] for details). Indeed, let us consider the particular case of
problem (2.39) where V = H, B = I, and F and G are both differentiable over V ;
then, assuming that ρ = r, ALG2 (that is algorithm (2.47)–(2.50)) takes the follow-
ing form:

{u−1,λ 0} is given in V ×H; (2.56)

for n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

r(pn −un−1)+DF(pn)−λ n = 0, (2.57)

r(un − pn)+DG(un)+λ n = 0, (2.58)

λ n+1 = λ n + r(un − pn), (2.59)

where DF (resp., DG) denotes the differential of F (resp., G). By elimination of λ n

and λ n+1 in (2.57)–(2.59), we obtain

r(pn −un−1)+DF(pn)+DG(un−1) = 0,

r(un −un−1)+DF(pn)+DG(un) = 0,
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which imply in turn (after changing n−1 in n):

r(pn+1 −un)+DF(pn+1)+DG(un) = 0, (2.60)

r(un+1 −un)+DF(pn+1)+DG(un+1) = 0. (2.61)

Comparing to (2.17) shows that in this particular case, ALG2 is a disguised form
of the Douglas-Rachford scheme discussed in Section 2.5, with r = 1/�t and DF
(resp., DG) playing the role of A1 (resp., A2). A similar interpretation holds for
ALG3: indeed, if we assume again that V = H, B = I and F and G are differen-
tiable, then, if ρ = r, algorithm (2.51)–(2.55) reduces to the Peaceman-Rachford
scheme (2.15) discussed in Section 2.4. The above equivalence result can be gener-
alized to situations where F and/or G are not differentiable.

The reasons for which ALG2 and ALG3 are called Alternating Direction Meth-
ods of Multipliers (ADMM) by many practitioners should be clear now. For further
information and details on these primal-dual equivalences, see the discussion by M.
Yan and W. Yin in Chapter 5 of this book.

4 Operator-Splitting Methods for the Direct Numerical
Simulation of Particulate Flow

4.1 Generalities. Problem Formulation

It is the (necessarily biased) opinion of the authors of this chapter that the direct
numerical simulation of particulate flow has been one of the success stories of
operator-splitting methods, justifying thus a dedicated section in this chapter, de-
spite the fact that this story has been told in several publications (see, e.g., [70]
(Chapters 8 & 9), [73] and [79], and the references therein). For simplicity, we will
discuss only the one-particle case (however, the results of numerical experiments
involving more than one particle will be presented).

Let Ω be a bounded, connected, and open region of IRd (d = 2 or 3 in applica-
tions); the boundary of Ω is denoted by Γ . We suppose that Ω contains:

(i) A Newtonian incompressible viscous fluid of density ρ f and viscosity μ f ;
ρ f and μ f are both positive constants.

(ii) A rigid body B of boundary ∂B, mass M, center of mass G, and inertia I at
the center of mass (see Figure 2.1, for additional details).

The fluid occupies the region Ω \B and we suppose that distance (∂B(0),Γ )> 0.
From now on, x = {xi}d

i=1 will denote the generic point of IRd , dx = dx1 . . .dxd ,
while φ(t) will denote the function x → φ(x, t). Assuming that the only external
force is gravity, the fluid flow-rigid body motion coupling is modeled by
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Fig. 2.1 Visualization of the rigid body and of a part of the flow region

ρ f

(
∂u
∂ t

+(u ·∇)u
)

−μ f ∇2u+∇p = ρ f g in Ω \B(t), a.e. t ∈ (0,T ), (2.62)

∇ ·u(t) = 0 in Ω \B(t), a.e. t ∈ (0,T ), (2.63)

u(t) = uΓ (t) on Γ , a.e. t ∈ (0,T ), with
∫

Γ
uΓ (t) ·ndΓ = 0, (2.64)

u(0) = u0 in Ω \B(0) with ∇ ·u0 = 0, (2.65)

and

dG
dt

= V, (2.66)

M
dV
dt

= Mg+RH , (2.67)

d(Iω)

dt
= TH , (2.68)

G(0) = G0,V(0) = V0,ω(0) = ω0,B(0) = B0. (2.69)

In relations (2.62)–(2.69):

• Vector u = {ui}d
i=1 is the fluid flow velocity and p is the pressure.

• u0 and uΓ are given vector-valued functions.
• V is the velocity of the center of mass of body B, while ω is the angular velocity.
• RH and TH denote, respectively, the resultant and the torque of the hydrody-

namical forces, namely the forces that the fluid exerts on B; we have, actually,

RH =
∫

∂B
σndγ and TH =

∫

∂B

−−→
Gx ×σndγ . (2.70)
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In (2.70) the stress-tensor σ is defined by σ = 2μ f D(u)− pId , with D(v) = 1
2 (∇v+

(∇v)t), while n is a unit normal vector at ∂B and Id is the identity tensor.
Concerning the compatibility conditions on ∂B we have: (i) the forces exerted by

the fluid on the solid body balance those exerted by the solid body on the fluid, and
we shall assume that: (ii) the no-slip boundary condition holds, namely

u(x, t) = V(t)+ω(t)×
−−−→
G(t)x , ∀x ∈ ∂B(t). (2.71)

Remark 25. System (2.62)–(2.65) (resp., (2.66)–(2.69)) is of the incompressible
Navier-Stokes (resp., Euler-Newton) type. Also, the above model can be general-
ized to multiple-particles situations and/or non-Newtonian incompressible viscous
fluids. ��

The (local in time) existence of weak solutions for problems such as (2.62)–(2.69)
has been proved in [52], assuming that, at t = 0, the particles do not touch Γ and
each other (see also [87] and [145]). Concerning the numerical solution of (2.62)–
(2.69), (2.71) several approaches are encountered in the literature, among them: (i)
The Arbitrary Lagrange-Euler (ALE) methods; these methods, which rely on mov-
ing meshes, are discussed in, e.g., [98, 103] and [127]. (ii) The fictitious boundary
method discussed in, e.g., [165], and (iii) the non-boundary fitted fictitious domain
methods discussed in, e.g., [70, 79] and [140, 141] (and in Section 4.2, hereafter).
Among other things, the methods in (ii) and (iii) have in common that the meshes
used for the flow computations do not have to match the boundary of the particles.

Remark 26. Even if theory suggests that collisions may never take place in finite
time (if we assume that the particles have smooth shapes and that the flow is still
modeled by the Navier-Stokes equations as long as the particles do not touch each
other, or Γ ), near collisions take place, and after discretization particles may collide.
These phenomena can be handled by introducing (as done in, e.g., [70] (Chapter 8)
and [79]) well-chosen short range repulsion potentials reminiscent of those encoun-
tered in Molecular Dynamics, or by using Kuhn-Tucker multipliers to authorize par-
ticle motions with contact but no overlapping (as done in, e.g., [128] and [129]).
More information on the numerical treatment of particles in flow can be found in,
e.g., [152] (and the references therein), and of course in Google.

4.2 A Fictitious Domain Formulation

Considering the fluid-rigid body mixture as a unique (heterogeneous) medium we
are going to derive a fictitious domain based variational formulation to model its
motion. The principle of this derivation is pretty simple: it relies on the following
steps (see, e.g., [70] and [79] for more details), where in Step a we denote by S : T
the Fröbenius inner product of the tensors S and T, that is (with obvious notation)
S : T = ∑

1≤i, j≤d

si jti j:
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Step a. Start from the following global weak formulation (of the virtual power type):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫

Ω\B(t)

[
∂u
∂ t

+(u ·∇)u
]

·vdx+2μ f

∫

Ω\B(t)
D(u) : D(v)dx

−
∫

Ω\B(t)
p∇ ·vdx+M

dV
dt

·Y+
d(Iω)

dt
·θ

= ρ f

∫

Ω\B(t)
g ·vdx+Mg ·Y,

∀{v,Y,θ} ∈ (H1(Ω \B(t)))d × IRd ×Θ and veri f ying

v = 0 on Γ , v(x) = Y+θ ×
−−−→
G(t)x ,∀x ∈ ∂B(t), t ∈ (0,T ),

with Θ = IR3 i f d = 3, Θ = {(0,0,θ) | θ ∈ IR} i f d = 2,

(2.72)

∫

Ω\B(t)
q∇ ·u(t)dx = 0,∀q ∈ L2(Ω \B(t)), t ∈ (0,T ), (2.73)

u(t) = uΓ (t) on Γ , t ∈ (0,T ), (2.74)

u(x, t) = V(t)+ω(t)×
−−−→
G(t)x ,∀x ∈ ∂B(t), t ∈ (0,T ), (2.75)

dG
dt

= V, (2.76)

u(x,0) = u0(x),∀x ∈ Ω \B(0), (2.77)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0. (2.78)

Step b. Fill B with the surrounding fluid and impose a rigid body motion to the fluid
inside B.

Step c. Modify the global weak formulation (2.72)–(2.78) accordingly, taking adv-
antage of the fact that if v is a rigid body motion velocity field, then ∇ · v = 0 and
D(v) = 0.

Step d. Use a Lagrange multiplier defined over B to force the rigid body motion
inside B.

Assuming that B is made of a homogeneous material of density ρs, the above
program leads to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫

Ω

[
∂u
∂ t

+(u ·∇)u
]

·vdx+2μ f

∫

Ω
D(u) : D(v)dx−

∫

Ω
p∇ ·vdx

+(1−ρ f /ρs)

[

M
dV
dt

·Y+
d(Iω)

dt
·θ

]

+< λ ,v−Y−θ ×
−−−→
G(t)x >B(t)

= ρ f

∫

Ω
g ·vdx+(1−ρ f /ρs)Mg ·Y, ∀{v,Y,θ} ∈ (H1(Ω))d × IRd ×Θ ,

t ∈ (0,T ), with Θ = IR3 i f d = 3, Θ = {(0,0,θ) | θ ∈ IR} i f d = 2,
(2.79)
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∫

Ω
q∇ ·u(t)dx = 0,∀q ∈ L2(Ω), t ∈ (0,T ), (2.80)

u(t) = uΓ (t) on Γ , t ∈ (0,T ), (2.81)
⎧
⎪⎨

⎪⎩
< μ,u(x, t)−V(t)−ω(t)×

−−−→
G(t)x >B(t)= 0,

∀μ ∈ Λ(t) (= (H1(B(t)))d), t ∈ (0,T ),
(2.82)

dG
dt

= V, (2.83)
⎧
⎨

⎩

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0,

u(x,0) = u0(x),∀x ∈ Ω \ B̄0, u(x,0) = V0 +ω0 ×
−−→
G0x, ∀x ∈ B̄0.

(2.84)

From a theoretical point of view, a natural choice for < ·, ·>B(t) is provided by, e.g.,

< μ ,v >B(t)=
∫

B(t)
[μ ·v+ l2D(μ) : D(v)]dx; (2.85)

in (2.85), l is a characteristic length, the diameter of B, for example. In practice, fol-
lowing [70] (Chapter 8) and [79], one makes things much simpler by approximating
Λ(t) by

Λ h(t) = {μ | μ =
N(t)

∑
j=1

μ jδ (x−x j), with μ j ∈ IRd , ∀ j = 1, . . . ,N(t)}, (2.86)

and the pairing in (2.85) by

< μ ,v >(B(t),h)=
N(t)

∑
j=1

μ j ·v(x j). (2.87)

In (2.86), (2.87), x → δ (x−x j) is the Dirac measure at x j, and the set {x j}N(t)
j=1 is the

union of two subsets, namely: (i) The set of the points of the velocity grid contained
in B(t) and whose distance at ∂B(t) is ≥ ch, h being a space discretization step and
c a constant ≈ 1.(ii) A set of control points located on ∂B(t) and forming a mesh
whose step size is of the order of h. It is clear that, using the approach above, one
forces the rigid body motion inside the particle by collocation.

A variant of the above fictitious domain approach is discussed in [140] and [141];
after an appropriate elimination, it does not make use of Lagrange multipliers to
force the rigid body motion of the particles, but uses instead projections on velocity
subspaces where the rigid body motion velocity property is verified over the parti-
cles (see [140] and [141] for details).
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4.3 Solving Problem (2.79)–(2.84) by Operator-Splitting

We do not consider collisions; after (formal) elimination of p and λ , problem (2.79)–
(2.84) reduces to an initial value problem of the following form

dX
dt

+
J

∑
j=1

A j(X, t) = 0 on (0,T ), X(0) = X0, (2.88)

where X= {u,V,ω ,G} (or {u,V,Iω ,G}). A typical situation will be the one where,
with J = 4, operator A1 will be associated with incompressibility, A2 with advec-
tion, A3 with diffusion, A4 with the fictitious domain treatment of the rigid body
motion; other decompositions are possible as shown in, e.g., [70] (Chapter 8) and
[79] (both references include a collision operator). The Lie’s scheme (2.3), (2.4) ap-
plies “beautifully” to the solution of problem (2.79)–(2.84). The resulting method is
quite modular implying that different space and time approximations can be used to
treat the various sub-problems encountered at each time step; the only constraint is
that two successive steps have to communicate (by projection in general) to provide
the initial condition required by each initial value sub-problem.

4.4 Numerical Experiments

4.4.1 Generalities

The methodology we described (briefly) in the above paragraphs has been vali-
dated by numerous experiments (see, in particular, [70] (Chapters 8 & 9), [73, 79],
[97, 137] and the related publications reported in http://www.math.uh.edu/∼pan/).
In this chapter, we will consider two test problems (borrowed from [73] (Section
3.4)): The first test problem involves three particles, while the second one concerns
a channel flow with 300 particles. The fictitious domain/operator-splitting approach
has made the solution of these problems (almost) routine nowadays. All the flow
computations have been done using the Bercovier-Pironneau finite element approx-
imation; namely (see [70] (Chapters 5, 8 and 9) for details), we used a globally
continuous piecewise affine approximation of the velocity (resp., the pressure) as-
sociated with a triangulation (in 2-D) or tetrahedral partition (in 3-D) Th (resp., T2h)
of Ω , h being a space discretization step. The pressure mesh is thus twice coarser
than the velocity one. The calculations have been done using uniform partitions Th

and T2h.

4.4.2 First Test Problem: Settling of Three Balls in a Vertical Narrow Tube

Our goal in this subsection is to discuss the interaction of three identical balls set-
tling in a narrow tube of rectangular cross-section, containing an incompressible
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Fig. 2.2 Projections on the x1x3-plane of the trajectories of the mass centers of the three particles

Newtonian viscous fluid. Theoretically, the tube should be infinitely long, but for
practicality we first consider the settling of the balls in a cylinder of length 6 whose
cross-section is the rectangle Ω = (0,1.5)× (0,0.25); this cylinder is moving with
the balls in such a way that the center of the lower ball is in the horizontal symmetry
plane (a possible, but less satisfying, alternative would be to specify periodicity in
the vertical direction). At time t = 0, we suppose that the truncated cylinder coin-
cides with the “box” (0,1.5)× (0,0.25)× (0,6), and the centers of the balls are on
the vertical axis of the cylinder at the points x1 = 0.75, x2 = 0.125, x3 = 1, 1.3 and
1.6. The parameters for this test case are ρs = 1.1, ρ f = 1, μ f = 1, the diameter
of the balls being d = 0.2. The mesh size used to compute the velocity field (resp.,
the pressure) is hv = h = 1/96 (resp., hp = 2h = 1/48), while we took 1/1000 for
the time-discretization step; the initial velocity of the flow is 0, while the three balls
are released from rest. The velocity on the cylinder wall is 0. On the time interval
[0,15] the drafting, kissing and tumbling phenomenon (a terminology introduced
by D.D. Joseph) has been observed several time before a stable quasi-horizontal
configuration takes place, as shown in Figures 2.2, 2.3 and 2.4. The averaged verti-
cal velocity of the balls is 2.4653 on the time interval [13,15], while the averaged
particle Reynolds number is 49.304 on the same time interval, a clear evidence that
inertia has to be taken into account.
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Fig. 2.3 Relative positions of the three balls at t = 0, 0.4, 0.6, 0.65, 0.7, 0.8, 0.9, 1, 1.5, 2, 6, 6.25,
6.4, 6.6, 6.7, 8, 9, 10, 12, and 15 (from left to right and from top to bottom)
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Fig. 2.4 Visualization of the flow and of the particles at t = 1.1, 6.6, and 15.

4.4.3 Motion of 300 Neutrally Buoyant Disks in a Two-Dimensional
Horizontal Channel

This second test problem involving 300 particles and a solid volume/fluid volume
of the order of 0.38, collisions (or near-collisions) have to be accounted for in
the simulations; to do so, we have used the methods discussed in [70] (Chapter 8)
and [79]. Another peculiarity of this test problem is that ρs = ρ f for all the particles
(a neutrally buoyant situation). Indeed, neutrally buoyant models are more delicate
to handle than those in the general case since 1− ρ f /ρs = 0 in (2.79); however
this difficulty can be overcome as shown in [136]. For this test problem, we have:
(a) Ω = (0,42)×(0,12). (b) Ω contains the mixture of a Newtonian incompressible
viscous fluid of density ρ f = 1 and viscosity μ f = 1, with 300 identical rigid solid
disks of density ρ f = 1 and diameter 0.9. (c) At t = 0, fluid and particles are at rest,
the particle centers being located at the points of a regular lattice. (d) The mixture is
put into motion by a uniform pressure drop of 10/9 per unit length (without the par-
ticles the corresponding steady flow would have been of the Poiseuille type with 20
as maximal flow speed). (e) The boundary conditions are given by u(x1,x2, t) = 0
if 0 ≤ x1 ≤ 42, x2 = 0 and 12, and 0 ≤ t ≤ 400 (no-slip boundary condition on
the horizontal parts of the boundary), and then u(0,x2, t) = u(42,x2, t), 0 < x2 < 12,
0 ≤ t ≤ 400 (space-periodic in the Ox1 direction). (f) hv = h = 1/10, hp = 2h = 1/5,
the time-discretization step being 1/1000.
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Fig. 2.5 Positions of the 300 particles at t = 100, 107.8, 114, 200, and 400 (from top to bottom).

The particle distribution at t = 100, 107.8, 114, 200, and 400 has been visual-
ized on Figures 2.5. These figures show that, initially, we have the sliding motion
of horizontal particle layers, then after some critical time a chaotic flow-motion
takes place in very few time units, the highest particle concentration being along the
channel axis (actually, a careful inspection of the results shows that the transition to
chaos takes place just after t =107.8). The maximal speed at t =400 is 7.9, implying
that the corresponding particle Reynolds number is very close to 7.1. On Figure 2.6
we show the averaged solid fraction as a function of x2, the averaging space-time
set being {{x1, t}|0 ≤ x1 ≤ 42,380 ≤ t ≤ 400}; the particle aggregation along the
channel horizontal symmetry axis appears very clearly from this figure since the
solid fraction is close to 0.58 at x2 = 6 while the global solid fraction is 0.38 (ver-
tical line in the figure). Finally, we have visualized on Figure 2.7 the x1-averaged
horizontal component of the mixture velocity at t = 400, as a function of x2. The
dashed line corresponds to a horizontal velocity distribution of the steady flow of
the same fluid, with no particle in the channel, for the same pressure drop; the cor-
responding velocity profile is (of course) of the Poiseuille type and shows that the
mixture behaves like a viscous fluid whose viscosity is (approximately) 2.5 larger
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Fig. 2.6 Averaged solid fraction distribution.
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Fig. 2.7 Horizontal velocity distribution at t = 400.

than μ f . Actually, a closer inspection (see [136] for details) shows that the mixture
behaves like a non-Newtonian incompressible viscous fluid of the power law type,
for an exponent s = 1.7093 (s = 2 corresponding to a Newtonian fluid and s = 1 to
a perfectly plastic material). Figures 2.5, 2.6, and 2.7 show also that, as well known,
some order may be found in chaos.

For more details and further results and comments on pressure driven neutrally
buoyant particulate flows in two-dimensional channels (including simulations with
much larger numbers of particles, the largest one being 1,200) see [70] (Chapter 9)
and [136].
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5 Operator-Splitting Methods for the Numerical Solution
of Nonlinear Problems from Condensate and Plasma Physics

5.1 Introduction

Operator-splitting methods have been quite successful at solving problems in Com-
putational Physics, beside those from Computational Mechanics (CFD in particular).
Among these successful applications let us mention those involving nonlinear
Schrödinger equations, as shown, for example, by [9, 10, 44] and [102]. On the
basis of some very inspiring articles (see, e.g., [9, 10] and [102]) he wrote on the
above topic, the editors asked their colleague Peter Markowich to contribute a re-
lated chapter for this book; unfortunately, Professor Markowich being busy else-
where had to say no. Considering the importance of nonlinear Schrödinger related
problems, it was decided to (briefly) discuss in this chapter the solution of some of
them by operator-splitting methods (see also Chapter 18 on the propagation of laser
pulses along optical fibers). In Section 5.2, we will discuss the operator-splitting
solution of the celebrated Gross-Pitaevskii equation for Bose-Einstein condensates,
then, in Section 5.3, we will discuss the solution of the Zakharov system modeling
the propagation of Langmuir waves in ionized plasma.

5.2 On the Solution of the Gross-Pitaevskii Equation

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of bosons
cooled to temperatures very close to absolute zero. Under such conditions, a large
fraction of the bosons occupies the lowest quantum state, at which point macro-
scopic quantum phenomena become apparent. The existence of Bose-Einstein con-
densates was predicted in the mid-1920s by S. N. Bose and A. Einstein. If dilute
enough, the time evolution of a BEC is described by the following Gross-Pitaevskii
equation (definitely of the nonlinear Schrödinger type and given here in
a-dimensional form (following [9])):

iε
∂ψ
∂ t

=−ε2

2
∇2ψ +Vd(x)ψ +Kd |ψ|2ψ in Ω × (0,T ), (2.89)

where, in (2.89), ψ is a complex-valued function of x and t, i =
√−1, Ω is an

open connected subset of IRd (with d = 1, 2 or 3), the real-valued function Vd de-
notes an external potential, and the real-valued parameter Kd is representative of the
particles interactions. Equation (2.89) has to be completed by boundary and initial
conditions. Equation (2.89) has motivated a very large literature from both physical
and mathematical points of view. Let us mention among many others [1, 9, 125] and
[126] (see also the many references therein). To solve equation (2.89) numerically
we need to complete it by boundary and initial conditions: from now on, we will
assume that
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ψ(x,0) = ψ0(x), x ∈ Ω , (2.90)

and (denoting by Γ the boundary of Ω )

ψ = 0 on Γ × (0,T ). (2.91)

The boundary conditions in (2.91) have been chosen for their simplicity, and also
to provide an alternative to the periodic boundary conditions considered in [9]. An
important (and very easy to prove) property of the solution of the initial boundary
value problem (2.89)–(2.91) reads as:

d
dt

∫

Ω
|ψ(x, t)|2 dx = 0 on (0,T ],

implying that
∫

Ω
|ψ(x, t)|2 dx =

∫

Ω
|ψ0(x)|2 dx on [0,T ]. (2.92)

As done before, we denote by ψ(t) the function x → ψ(x, t). Let �t(> 0) be a time
discretization step and denote (n+α)�t by tn+α ; applying to problem (2.89)–(2.91)
the Strang’s symmetrized scheme (2.7)–(2.10) of Section 2.3, we obtain:

ψ0 = ψ0; (2.93)

for n ≥ 0,ψn → ψn+1/2 → ψ̂n+1/2 → ψn+1 as follows
⎧
⎪⎪⎨

⎪⎪⎩

i
∂ψ
∂ t

+
ε
2

∇2ψ = 0 in Ω × (tn, tn+1/2),

ψ = 0 on Γ × (tn, tn+1/2),

ψ(tn) = ψn; ψn+1/2 = ψ(tn+1/2),

(2.94)

⎧
⎪⎪⎨

⎪⎪⎩

iε
∂ψ
∂ t

=Vd(x)ψ +Kd |ψ|2ψ in Ω × (0,�t),

ψ = 0 on Γ × (0,�t),

ψ(0) = ψn+1/2; ψ̂n+1/2 = ψ(�t),

(2.95)

⎧
⎪⎪⎨

⎪⎪⎩

i
∂ψ
∂ t

+
ε
2

∇2ψ = 0 in Ω × (tn+1/2, tn+1),

ψ = 0 on Γ × (tn+1/2, tn+1),

ψ(tn+1/2) = ψ̂n+1/2; ψn+1 = ψ(tn+1).

(2.96)

On the solution of (2.95): Let us denote by ψ1 (resp., ψ2) the real (resp., imaginary)
part of ψ; from (2.95), we have

⎧
⎪⎨

⎪⎩

ε
∂ψ1

∂ t
=Vd(x)ψ2 +Kd |ψ|2ψ2 in Ω × (0,�t),

ε
∂ψ2

∂ t
=−Vd(x)ψ1 −Kd |ψ|2ψ1 in Ω × (0,�t),

(2.97)
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Multiplying by ψ1 (resp., ψ2) the 1st (resp., the 2nd) equation in (2.97), we obtain
by addition

∂
∂ t

|ψ(x, t)|2 = 0 on(0,�t), a.e. x ∈ Ω ,

which implies in turn that

|ψ(x, t)|= |ψ(x,0)|= |ψn+1/2| on(0,�t), a.e. x ∈ Ω . (2.98)

It follows then from (2.95) and (2.98) that

⎧
⎪⎪⎨

⎪⎪⎩

iε
∂ψ
∂ t

=Vd(x)ψ +Kd |ψn+1/2|2ψ in Ω × (0,�t),

ψ = 0 on Γ × (0,�t),

ψ(0) = ψn+1/2; ψ̂n+1/2 = ψ(�t),

which implies for ψ̂n+1/2 the following closed-form solution

ψ̂n+1/2 = e−i�t
ε (Vd+Kd |ψn+1/2|2)ψn+1/2. (2.99)

On the solution of (2.94) and (2.96): The initial boundary value problems in (2.94)
and (2.96) are particular cases of

⎧
⎪⎪⎨

⎪⎪⎩

i
∂φ
∂ t

+
ε
2

∇2φ = 0 in Ω × (t0, t f ),

φ = 0 on Γ × (t0, t f ),

φ(t0) = φ 0.

(2.100)

The above linear Schrödinger problem is a very classical one. Its solution is obvi-
ously given by

φ(t) = ei ε
2 (t−t0)∇2

φ 0, ∀t ∈ [t0, t f ]. (2.101)

Suppose that Ω = (0,a)× (0,b)× (0,c) with 0 < a < +∞, 0 < b < +∞, and 0 <
c < +∞; since the eigenvalues, and related eigenfunctions, of the negative Laplace
operator −∇2, associated with the homogeneous Dirichlet boundary conditions are
known explicitly, and given, for p, q and r positive integers, by

⎧
⎪⎪⎨

⎪⎪⎩

λpqr = π2

(
p2

a2 +
q2

b2 +
r2

c2

)

,

wpqr(x1,x2,x3) = 2

√
2

abc
sin

(
pπ

x1

a

)
sin

(
qπ

x2

b

)
sin

(
rπ

x3

c

) (2.102)

(we have then
∫

Ω |wpqr(x)|2 dx = 1) it follows from (2.101) that

φ(x, t) = ∑
1≤p,q,r<+∞

φ 0
pqre

−i ε
2 λpqr(t−t0)wpqr(x), with φ 0

pqr =

∫

Ω
wpqr(y)φ 0(y)dy. (2.103)
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In practice, one takes 1 ≤ p ≤ P, 1 ≤ q ≤ Q, 1 ≤ r ≤ R, and uses the Fast Fourier
Transform (FFT) to compute the coefficients φ 0

pqr and then φ(x, t).
For those more general situations where the solutions of the following linear

eigenvalue problem
⎧
⎪⎨

⎪⎩

{w,λ} ∈ H1
0 (Ω)× IR,

∫

Ω
|w(x)|2 dx = 1, λ > 0,

∫

Ω
∇w ·∇vdx = λ

∫

Ω
wvdx, ∀v ∈ H1

0 (Ω),
(2.104)

are not known explicitly, one still has several options to solve (2.100), an obvious
one being:

Approximate (2.104) by
⎧
⎪⎨

⎪⎩

{w,λ} ∈Vh × IR,
∫

Ω
|w(x)|2 dx = 1, λ > 0,

∫

Ω
∇w ·∇vdx = λ

∫

Ω
wvdx, ∀v ∈Vh,

(2.105)

where Vh is a finite dimensional sub-space of H1
0 (Ω). Then, as in, e.g., [17, 82] use

an eigensolver (like the one discussed in [113]) to compute the first Q(≤N = dimVh)
eigen-pairs solutions of (2.105), such that (with obvious notation)

∫

Ω wpwq dx = 0
∀p,q, 1 ≤ p,q ≤ Q, p �= q, and denote by VQ the finite dimensional space span by
the basis {wq}Q

q=1. Next, proceeding as in the continuous case we approximate the
solution of problem (2.100) by φ Q defined by

φ Q(x, t) =
Q

∑
q=1

φ 0
qe−i ε

2 λq(t−t0)wq(x), with φ 0
q =

∫

Ω
wq(y)φ 0(y)dy. (2.106)

For the space Vh in (2.105), we can use these finite element approximations of
H1

0 (Ω) discussed for example in [37, 66] (Appendix 1) and [72] (Chapter 1) (see
also the references therein).

Another approach, less obvious but still natural, is to observe that if φ , the unique
solution of (2.100) is smooth enough, it is also the unique solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ 2φ
∂ t2 +

ε2

4
∇4φ = 0 in Ω × (t0, t f ),

φ = 0 and ∇2φ = 0 on Γ × (t0, t f ),

φ(t0) = φ 0,
∂φ
∂ t

(t0) = i
ε
2

∇2φ 0(= φ 1),

(2.107)

a well-known model in elasto-dynamics (vibrations of simply supported plates).

From Q, a positive integer, we define a time discretization step τ by τ =
t f − t0

Q
.

The initial-boundary value problem (2.107) is clearly equivalent to
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂φ
∂ t

= v in Ω × (t0, t f ),

∂v
∂ t

+
ε2

4
∇4φ = 0 in Ω × (t0, t f ),

φ = 0 and ∇2φ = 0 on Γ × (t0, t f ),

φ(t0) = φ 0, v(t0) = i
ε
2

∇2φ 0(= v0).

(2.108)

A time-discretization scheme for (2.107) (via (2.108)), combining good accuracy,
stability, and energy conservation properties (see, e.g., [14]) reads as follows (with
{φ q,vq} an approximation of {φ ,v} at tq = t0 +qτ):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ 0, v0 = v0;

for q = 0, · · · ,Q−1, compute {φ q+1,vq+1} from {φ q,vq} via the solution of⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ q+1 −φ q

τ
=

1
2
(vq+1 +vq),

vq+1 −vq

τ
+

ε2

8
∇4(φ q+1 +φ q) = 0 in Ω ,

φ q+1 = 0 and ∇2φ q+1 = 0 on Γ .
(2.109)

By elimination of vq+1 it follows from (2.109) that φ q+1 is solution of
⎧
⎨

⎩

φ q+1 +
(τε)2

8
∇4φ q+1 = φ q + τvq − (τε)2

8
∇4φ q in Ω ,

φ q+1 = 0 and ∇2φ q+1 = 0 on Γ ,
(2.110)

a bi-harmonic problem which is well posed in H1
0 (Ω)∩H2(Ω). Next, one obtains

easily vq+1 from

vq+1 =
2
τ
(φ q+1 −φ q)−vq.

For the solution of the bi-harmonic problem (2.110) we advocate those mixed finite
element approximations and conjugate gradient algorithms used in various chapters
of [72] (see also the references therein).

5.3 On the Solution of Zakharov Systems

In 1972, V.E. Zakharov introduced a mathematical model describing the propagation
of Langmuir waves in ionized plasma (ref. [179]). This model reads as follows (after
rescaling):

⎧
⎪⎪⎨

⎪⎪⎩

i
∂u
∂ t

+∇2u = un,

∂ 2n
∂ t2 −∇2n+∇2(|u|2) = 0,

(2.111)



2 Operator-Splitting and Alternating Direction Methods 57

where the complex-valued function u is associated with a highly oscillating elec-
tric field, while the real-valued function n denotes the fluctuation of the plasma-ion
density from its equilibrium state. In this section, following [102], we will apply the
symmetrized Strang operator-splitting scheme (previously discussed in Section 2.3
of this chapter) to the following generalization of the above equations:

⎧
⎪⎨

⎪⎩

i
∂u
∂ t

+∇2u+2λ |u|2u+2un = 0,

1
c2

∂ 2n
∂ t2 −∇2n+μ∇2(|u|2) = 0,

(2.112)

where λ and μ are real numbers and c(> 0) is the wave propagation speed. Fol-
lowing again [102], we will assume, for simplicity, that the physical phenomenon
modeled by (2.112) takes place on the bounded interval (0,L), with u, n, ∂u/∂x and
∂n/∂x space-periodic, during the time interval [0,T ]. Thus, (2.112), completed by
initial conditions, reduces to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 +2λ |u|2u+2un = 0 in (0,L)× (0,T ),

1
c2

∂ 2n
∂ t2 − ∂ 2n

∂x2 +μ
∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,T ),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,T ),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (0,T ),

u(0) = u0, n(0) = n0,
∂n
∂ t

(0) = n1.

(2.113)

As done previously in this chapter, we denote by φ(t) the function x → φ(x, t).

Remark 27. Albeit considered by some as too simple from a physical point of view,
space-periodic boundary conditions are common in plasma physics. They have been
used for example in [131], a most celebrated article dedicated to the mathematical
analysis of the behavior of plasma entropy (see also [163] which relates a discus-
sion that C. Villani had with E. Lieb concerning precisely the use of space-periodic
boundary conditions in plasma physics). ��

From the rich structure of the Zakharov’s system (2.113) it is not surprising that
a variety of operator-splitting schemes can be applied to its numerical solution,
several of these schemes being described in [102] (see also the references therein
concerning splitting schemes not described in [102]). A first step to the applica-
tion of operator-splitting scheme to the time-discretization of problem (2.113) is to

introduce the function p =
∂n
∂ t

and to rewrite (2.113) as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 +2λ |u|2u+2un = 0 in (0,L)× (0,T ),

∂n
∂ t

− p = 0 in (0,L)× (0,T ),

1
c2

∂ p
∂ t

− ∂ 2n
∂x2 +μ

∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,T ),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,T ),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (0,T ),

u(0) = u0, n(0) = n0, p(0) = n1.

(2.114)

Applying the Strang’s symmetrized scheme to the time-discretization of prob-
lem (2.114), one obtains (among other possible schemes, and with tq+α = (q +
α)�t):

{u0,n0, p0}= {u0,n0,n1}. (2.115)

For q ≥ 0, {uq,nq, pq} → {uq+1/2,nq+1/2, pq+1/2} → {ûq+1/2, n̂q+1/2, p̂q+1/2} →
{uq+1,nq+1, pq+1} via

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq, tq+1/2),

∂n
∂ t

− p
2
= 0 in (0,L)× (tq, tq+1/2),

1
c2

∂ p
∂ t

− ∂ 2n
∂x2 = 0 in (0,L)× (tq, tq+1/2),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq, tq+1/2),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (tq, tq+1/2),

u(tq) = uq, n(tq) = nq, p(tq) = pq;

uq+1/2 = u(tq+1/2),nq+1/2 = n(tq+1/2), pq+1/2 = p(tq+1/2),
(2.116)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+2λ |u|2u+2un = 0 in (0,L)× (0,�t),

∂n
∂ t

− p
2
= 0 in (0,L)× (0,�t),

1
c2

∂ p
∂ t

+μ
∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,�t),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,�t),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (0,�t),

u(0) = uq+1/2, n(0) = nq+1/2, p(0) = pq+1/2;

ûq+1/2 = u(�t), n̂q+1/2 = n(�t), p̂q+1/2 = p(�t),

(2.117)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

∂n
∂ t

− p
2
= 0 in (0,L)× (tq+1/2, tq+1),

1
c2

∂ p
∂ t

− ∂ 2n
∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq+1/2, tq+1),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (tq+1/2, tq+1),

u(tq+1/2) = ûq+1/2, n(tq+1/2) = n̂q+1/2, p(tq+1/2) = p̂q+1/2;

uq+1 = u(tq+1),nq+1 = n(tq+1), pq+1 = p(tq+1).
(2.118)

Scheme (2.115)–(2.118) is clearly equivalent to

{u0,n0, p0}= {u0,n0,n1}. (2.119)

For q ≥ 0, {uq,nq, pq} → {uq+1/2,nq+1/2, pq+1/2} → {ûq+1/2, n̂q+1/2, p̂q+1/2} →
{uq+1,nq+1, pq+1} via

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq, tq+1/2),

2
c2

∂ 2n
∂ t2 − ∂ 2n

∂x2 = 0 in (0,L)× (tq, tq+1/2),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq, tq+1/2),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (tq, tq+1/2),

u(tq) = uq, n(tq) = nq,
∂n
∂ t

(tq) = pq/2;

uq+1/2 = u(tq+1/2),nq+1/2 = n(tq+1/2), pq+1/2 = 2
∂n
∂ t

(tq+1/2),

(2.120)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+2λ |u|2u+2un = 0 in (0,L)× (0,�t),

2
c2

∂ 2n
∂ t2 +μ

∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,�t),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,�t),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (0,�t),

u(0) = uq+1/2, n(0) = nq+1/2,
∂n
∂ t

(0) = pq+1/2/2;

ûq+1/2 = u(�t), n̂q+1/2 = n(�t), p̂q+1/2 = 2
∂n
∂ t

(�t),

(2.121)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

2
c2

∂ 2n
∂ t2 − ∂ 2n

∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq+1/2, tq+1),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (tq+1/2, tq+1),

u(tq+1/2) = ûq+1/2, n(tq+1/2) = n̂q+1/2,
∂n
∂ t

(tq+1/2) = p̂q+1/2/2;

uq+1 = u(tq+1),nq+1 = n(tq+1), pq+1 = 2
∂n
∂ t

(tq+1).

(2.122)

The linear Schrödinger and wave equations in (2.120) and (2.122) are uncoupled,
implying that they can be solved by a variety of classical spectral or finite difference
methods taking advantage of the space-periodic boundary conditions. On the other
hand, the nonlinear system (2.121) can be solved pointwise: Indeed, since u and n
are real-valued functions, it follows from the first and fifth equations in (2.121) that

|u(x, t)|= |uq+1/2(x)|, ∀t ∈ [0,�t], x ∈ [0,L]. (2.123)

It follows then from (2.121) and (2.123) that the solution n in (2.121) is also a
solution of the following linear problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ 2n
∂ t2 =−μ

2
c2 ∂ 2

∂x2 (|uq+1/2|2) in (0,L)× (0,�t),

n(0, t) = n(L, t) on (0,�t),

n(0) = nq+1/2,
∂n
∂ t

(0) = pq+1/2/2.

(2.124)

The closed form solution of (2.124) is given by

n(x, t) = nq+1/2(x)+
1
2

pq+1/2(x)t − μ
4

c2 ∂ 2

∂x2 (|uq+1/2|2)t2 on (0,L)× (0,�t),

(2.125)
implying, in particular, that

n̂q+1/2 = nq+1/2 +
�t
2

pq+1/2 − μ
4
(c�t)2 ∂ 2

∂x2 (|uq+1/2|2).

Finally, to obtain the u solution of system (2.121), we observe that (n being known
from (2.125)) it is the unique solution of the following non-autonomous linear initial
value problem

⎧
⎪⎪⎨

⎪⎪⎩

i
∂u
∂ t

+2(λ |uq+1/2|2 +n)u = 0 in (0,L)× (0,�t),

u(0, t) = u(L, t) on (0,�t),

u(0) = uq+1/2,

(2.126)
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a particular case of

⎧
⎪⎪⎨

⎪⎪⎩

i
∂φ
∂ t

+2(λ |ψ|2 + v)φ = 0 in (0,L)× (t0, t f ),

φ(0, t) = φ(L, t) on (t0, t f ),

φ(t0) = φ0,

(2.127)

ψ (resp., v) being a given complex (resp., real)-valued function of x (resp., of {x, t}).

With M ≥ 1 an integer, let us define τ , a time-discretization step, by τ =
t f − t0

M
, and

tm = t0+mτ . To solve (2.127) we advocate the following time-discretization scheme
of the Crank-Nicolson type:

φ 0 = φ0. (2.128)

For m = 0, · · · , M−1, φ m → φ m+1 via the solution of

⎧
⎨

⎩

i
φ m+1−φ m

τ
+

[

λ |ψ|2+ v(tm+1)+ v(tm)

2

]

(φ m+1+φ m)=0 in (0,L),

φ m+1(0) = φ m+1(L).
(2.129)

Problem (2.129), can be solved point-wise (in practice at the grid-points of a finite
difference one- dimensional “grid”). Scheme (2.128)–(2.129) is second-order accu-
rate and modulus preserving (that is, verifies |φ m+1| = |φ m|, ∀m = 0, . . . ,M − 1 ).
On [0,L], φ m+1(x) is obtained via the solution of a 2× 2 linear system (for those
who prefer to use real arithmetic).

Remark 28. In [102], one advocates using instead of n the function n− μ |u|2. The
numerical results reported in the above publication clearly show that operator-
splitting provides efficient methods for the numerical solution of the Zakharov’s
system (2.112).

6 Applications of Augmented Lagrangian and ADMM
Algorithms to the Solution of Problems from Imaging

6.1 Variational Models for Image Processing

6.1.1 Generalities

Usually, image processing refers to the processing and analysis of digital images.
Variational models have become an essential part of image processing, such models
relying on the minimization of a well-chosen energy functional, the minimization
problem reading typically as

u = arg minv∈V

[
E f itting(v)+Eregularizing(v)

]
. (2.130)
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As shown above, the energy functional has two parts, namely a fitting part
and a regularizing one. In the following we will present various variational image
processing models and show that the operator-splitting and ADMM methodology
provides efficient methods for the numerical solution of the related minimization
problems. We will start our discussion with the well-known Rudin-Osher-Fatemi
(ROF) model, and then follow with the presentation of some higher order models.
Before going into more details, some remarks are in order, namely:

Remark 29. Most of the models we are going to consider below are not fully un-
derstood yet from a mathematical point of view, two of the main issues being,
in (2.130), the choice of the space V and the weak-continuity properties of the en-
ergy functional. This will not prevent us to use these continuous models, for the
simplicity of their formalism which facilitates the derivation of algorithms whose
discrete analogues have provable convergence properties.

Remark 30. For image processing problems, the computational domain is always
a rectangle, the image pixels providing a natural mesh for space discretization.
This particularity makes easy, in general, the finite difference discretization of prob-
lem (2.130) and the implementation of iterative solution algorithms. The method-
ology we are going to discuss is not restricted to rectangular domains, however for
domains with curved boundaries using finite-difference discretization may become
complicated near the boundary; an elegant way to overcome this difficulty is to em-
ploy finite element approximations, as done in, e.g., [133].

Remark 31. A very detailed analysis of ADMM algorithms for the solution of image
processing problems can be found in the chapter of this book by M. Burger, A.
Sawatzky & G. Steidl (Chapter 10).

6.1.2 Total Variation and the ROF Model

One of the most popular variational models for image processing was proposed by
Rudin, Osher, and Fatemi in their seminal work (ROF model) [144]. In [144], a
denoised image is obtained by minimizing the following energy functional

E(v) =
1
2

∫

Ω
| f − v|2 dx+η

∫

Ω
|∇v|dx, (2.131)

where: dx = dx1dx2, f : Ω → IR is a given noisy image defined on Ω ,
∫

Ω |∇v|dx
stands for the total variation of the trial function v (see [157] and [169] for a def-
inition of the notion of total variation), and η > 0 is a positive tuning parameter
controlling how much noise will be removed. The remarkable feature of the ROF
model lies in its effectiveness in preserving object edges while removing noise. In
fact, the total variation regularizer has been widely employed to accomplish other
image processing tasks such as deblurring, segmentation, and registration.

In order to incorporate more geometrical information into the regularizer, a
number of higher order regularization models have been proposed and used for
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image processing and computer vision problems. The ROF model has several un-
favorable features. The main caveat is the stair-case effect, that is, the resulting
cleaned image would present blocks even though the desired image may be smooth.
Other undesirable properties include corner smearing and loss of image contrast.
To remedy these drawbacks, a very rich list of results exists in the literature, see
[2, 31, 120, 182, 185]. Despite the effectiveness of these models in removing the
staircase effect, it is often a challenging issue to minimize the corresponding func-
tionals. Note that if the functional E contains second-order derivatives of v, the
related Euler-Lagrange equation is a fourth-order linear or nonlinear partial differ-
ential equation.

6.1.3 Regularization Using TV 2

In [120], Lysaker et al. directly incorporated second order derivative information
into the image denoising process, by proposing to minimize the following energy
functional

E(v) =
1
2

∫

Ω
| f − v|2 dx+η

∫

Ω

√

(vx1x1)
2 +2(vx1x2)

2 +(vx2x2)
2 dx (2.132)

This higher order energy functional is much simpler than the Elastica regularizer
that we shall introduce later. Numerically, this regularizer shows rather good perfor-
mance with noise suppression and edge preservation. In the literature, there exists
quite a number of related models, see [20, 24, 25, 26, 28, 39, 53, 58, 89, 99, 101,
134, 138, 147, 171, 146, 180]. The well posedness of the variational problem as-
sociated with the energy functional in (2.132), and its gradient flow equation, have
been studied in [88, 130]. High order models, such as the one associated with the
energy in (2.132), have been discussed in, e.g., [15, 24, 32, 149, 176].

6.1.4 Regularization Using the Euler’s Elastica Energy

In order to ‘clean’ a given function f : Ω → IR, the Euler’s Elastica model relies on
the minimization of the following energy functional

E(v) =
1
2

∫

Ω
| f − v|2 dx+

∫

Ω

[

a+b

∣
∣
∣
∣∇ · ∇v

|∇v|
∣
∣
∣
∣

2
]

|∇v|dx. (2.133)

In (2.133), a and b are non-negative with a+b > 0. These two constants have to be
chosen properly, depending of the application under consideration. The image pro-
cessing model associated with the above energy functional comes from the Euler’s
Elastica energy for curves (see [31, 124] for the derivation of this energy): indeed,
for a given curve Γ ⊂ IR2 with curvature κ , the Euler’s Elastica energy is defined
(with obvious notation) by

∫

Γ (a+ bκ2)ds. For a function v, the curvature of the
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level curve Γc := {x|v(x) = c} is κ = ∇ · ∇v
|∇v| (if ∇v �= 0). Thus, the Euler’s Elastica

energy for the level curve Γc is given by

l(c) =
∫

Γc

[

a+b

∣
∣
∣
∣∇ · ∇v

|∇v|
∣
∣
∣
∣

2
]

ds.

Summing up (integrating) the Euler’s Elastica energy over all the level curves Γc, it
follows from the co-area formula (see [168]) that the total Euler’s Elastica energy is
given by

∫ ∞

−∞
l(c)dc =

∫ ∞

−∞

∫

Γc

[

a+b

∣
∣
∣
∣∇ · ∇v

|∇v|
∣
∣
∣
∣

2
]

dsdc =
∫

Ω

[

a+b

∣
∣
∣
∣∇ · ∇v

|∇v|
∣
∣
∣
∣

2
]

|∇v|dx.

6.1.5 Regularization Using the Image Graph Mean Curvature

In [182], the authors proposed a variational image processing model making use of
the mean curvature of the graph of function f , that is of the surface {x,y,z= f (x,y)},
to remove the noise. More specifically, the model considered in [182] employs the
L1 norm of the mean curvature of the above graph as a regularizer, the associated
energy functional being defined by

E(v) =
1
2

∫

Ω
| f − v|2 dx+η

∫

Ω

∣
∣
∣
∣
∣
∇ · ∇v

√
1+ |∇v|2

∣
∣
∣
∣
∣

dx. (2.134)

Above, η(> 0) is a tuning parameter and the term
∇v

√
1+ |∇v|2 is the mean curvature

of the surface φ(x,y,z) = 0 with φ(x,y,z) = u(x,y)− z. Clearly, the model tries to
fit the given noisy image surface {x,y,z = f (x,y)} with a surface {x,y,z = u(x,y)},
u being a minimizer of the L1-mean curvature energy functional (2.134). This idea
goes back to much earlier publications, [108] for example. The model can sweep
noise while keeping object edges, and it also avoids the staircase effect. More impor-
tantly, as discussed in [185], the model is also capable of preserving image contrasts
as well as object corners.

6.1.6 Interface Problems: Chan-Vese Segmentation Model, Labeling
Techniques, Min-Cut, and Continuous Max-Flow

In image processing, computer vision, etc., one encounters operations more compli-
cated than denoising, segmentation being one of them. These applications require
mathematical models more complicated (in some sense) than those considered in
Sections 6.1.2 to 6.1.5, one of them being the Chan-Vese model introduced in [33].
Actually (as obvious from [33]), the snake and active contour model (ref. [106]) and



2 Operator-Splitting and Alternating Direction Methods 65

the Mumford-Shah model (ref. [132]) can be viewed as ancestors of the Chan-Vese
model. Using the notation of [33], the Chan-Vese segmentation model relies on the
minimization of the following energy functional:

ECV (φ ,d1,d2) = λ1

∫

Ω
| f −d1|2H(φ)dx+λ2

∫

Ω
| f −d2|2[1−H(φ)]dx (2.135)

+μ
∫

Ω
|∇H(φ)|dx+ν

∫

Ω
H(φ)dx,

where in (2.135): (i) φ is a level set function whose zero level curves set represents
the segmentation boundary. (ii) H(·) is the Heaviside function. (iii) d1 and d2 are two
real numbers. (iv) λ1, λ2 and μ (resp., ν ) are positive (resp., non-negative) tuning
parameters (in many applications, one takes λ1 = λ2 = 1). The Euler-Lagrange equa-
tion associated with the minimization of the functional in (2.135) has been derived
in [33]. In the above reference the associated gradient flow has been time-discretized
by an explicit scheme to compute the solution of the above minimization problem
(after an appropriate finite difference space discretization). Operator- splitting and
ADMM can be used to develop algorithms with much faster convergence properties
than the above explicit schemes; we will return on this issue in Section 6.2. Let us
denote H(φ) by v; there is clearly equivalence between minimizing the functional
defined by (2.135) and

⎧
⎪⎨

⎪⎩

inf
{v,d1,d2}∈V×IR×IR

[λ1

∫

Ω
| f −d1|2vdx+λ2

∫

Ω
| f −d2|2[1− v]dx

+μ
∫

Ω
|∇v|dx+ν

∫

Ω
vdx],

(2.136)

where V = {v|v ∈ L∞(Ω),v(x) ∈ {0,1},a.e. in Ω ,∇v ∈ L1(Ω)}. The model asso-
ciated with (2.136) was proposed in [117] and referred as a binary level set based
model. More generally, we can consider the minimization, over the above set V , of
energy functionals such as Epotts defined by

Epotts(v) =
∫

Ω
f1vdx+

∫

Ω
f2[1− v]dx+

∫

Ω
g|∇v|dx, (2.137)

where f1 and f2 are given functions indicating the possibility that a point belongs
to phase 0 or to phase 1, and where g is a non-negative function, possibly constant;
if d1 and d2 are fixed in (2.136), the Chan-Vase model becomes a particular case of
the model associated with the functional Epotts defined by (2.137). It was recently
observed (see [173, 175]) that minimizing Epotts over the above V is a (kind of)
continuous min-cut problem, itself equivalent (by duality) to a max-flow problem.
Indeed, let us consider the following continuous max-flow problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
qs,q f ,v

∫

Ω
qs dx subject to

qs ≤ f1,qt ≤ f2, |v| ≤ g,

∇ ·v = qs −qt in Ω ,v ·n = 0 on Γ (= ∂Ω),

(2.138)
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where in (2.138)): (i) v = {v1,v2} and |v| =
√

v2
1 + v2

2, v being the flow inside Ω .
(ii) n is the unit outward vector normal at Γ . (iii) qs (resp., qt ) represents a flow
from a source (resp., to a sink). (iv) f1 and f2 are as in (2.137). We can also define
|v| by |v| := |v1|+ |v2| ; if we do so, the discretized max-flow problem can be solved
by traditional graph cut methods. It follows from [175] that a dual of the max flow
problem (2.138) reads as:

inf
μ∈Λ

[∫

Ω
f1(1−μ)dx+

∫

Ω
f2μ dx+

∫

Ω
g|∇μ |dx

]

, (2.139)

where Λ = {μ |μ ∈ L∞(Ω),0 ≤ μ(x) ≤ 1,a.e. in Ω} ∩W 1,1(Ω). We have recov-
ered thus the functional Epotts from (2.137) and shown a link between the Chan-
Vese model and the max-flow problem. The dual problem (2.139) is known as
a (continuous) min-cut problem. Actually, Chan, Esedoglu and Nikolova have
shown in [29] that there is equivalence between (2.139) and minimizing over
V = {v|v ∈ L∞(Ω),v(x) ∈ {0,1}, a.e. in Ω ,∇v ∈ L1(Ω)} the functional Epotts de-
fined by (2.137), a most remarkable result indeed since problem (2.139) is a convex
variational problem whose discrete variants can be solved by ADMM type algo-
rithms (see [5, 6, 7, 8, 114, 173, 174, 175, 178] for more details and generalizations).

Remark 32. In (2.136), (2.138) and (2.139), it is on purpose that we used inf (resp.,
sup) instead of min (resp., max) since we have no guarantee that the minimizing
sequences of the functionals under consideration will converge weakly in the space
or set where the minimization takes place.

Remark 33. Suppose that in (2.138) we replace the constraint |v| ≤ g by |v1| ≤ g1

and |v2| ≤ g2, everything else being the same; then, the dual problem of the associ-
ated variant of (2.138) reads (with Λ as in (2.139)) as

inf
μ∈Λ

[∫

Ω
f1(1−μ)dx+

∫

Ω
f2μ dx+

∫

Ω

(

g1

∣
∣
∣
∣

∂ μ
∂x1

∣
∣
∣
∣+g2

∣
∣
∣
∣

∂ μ
∂x2

∣
∣
∣
∣

)

dx

]

,

clearly a close variant of (2.139). Similarly, if we replace in (2.138) the constraint
|v| ≤ g by |v1|+ |v2| ≤ g, we obtain (as expected) the following dual problem

inf
μ∈Λ

[∫

Ω
f1(1−μ)dx+

∫

Ω
f2μ dx+

∫

Ω
g sup

(∣
∣
∣
∣

∂ μ
∂x1

∣
∣
∣
∣ ,

∣
∣
∣
∣

∂ μ
∂x2

∣
∣
∣
∣

)

dx

]

,

the set Λ being as above.

6.1.7 Segmentation Models with Higher Order Regularization

As could have been expected, first order segmentation models have limitations
(discussed in [132]). To give an example let us consider the situation depicted in
Figure 2.8(a) where some parts of the four letters have been erased: albeit one
can easily recognize the four letters, first order segmentation models such as Chan-
Vese’s, might often capture the existing boundary instead of restoring the missing
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Fig. 2.8 Broken letters “UCLA” and its connected segmentation.

ones, as illustrated in Figure 2.8(b). In inpainting problems (see [31, 124]), missing
image information is also recovered, but within given regions assigned in advance.
In contrast, one would like to have a segmentation model that can interpolate the
missing boundaries automatically without specifying the region of interest. To this
end, one may employ the Euler’s Elastica functional as a novel regularization term
in the Chan-Vese’s model (2.135), in order to replace the weighted TV term. Doing
so we obtain the following energy functional (we assume ν = 0, here):

ECV E(φ ,d1,d2) = λ1

∫

Ω
| f −d1|2H(φ)dx+λ2

∫

Ω
| f −d2|2[1−H(φ)]dx (2.140)

+
∫

Ω

[

a+b

(

∇ · ∇φ
|∇φ |

)2
]

|∇H(φ)|dx

where λ1, λ2, a and b are positive parameters. If φ is the signed distance level set
function, it can be proved that the last term in (2.140) is equal to the Euler’s elastica
energy of the segmentation curve. This regularization was originally proposed and
used in the celebrated paper on segmentation with depth by Nitzberg, Mumford,
and Shiota (ref. [135]). Actually, it has also been used in [31] (resp., [183, 184])
for the solution of the in-painting (resp., illusory contour) problem. In [146], linear
programming was used to minimize (after space discretization) curvature dependent
functionals, the functional defined by (2.140) being one of those considered in this
article.

Remark 34. Observe that since (formally at least, but this can be justified using a

well-chosen regularization of the Heaviside function, such as ξ → 1
2

[

1+ ξ√
ε2+ξ 2

]

)

∇φ
|∇φ | =

∇H(φ)
|∇H(φ)| , only the sign H(φ) of the function φ is needed when solving the

segmentation problem via the functional in (2.140). This property suggests, as done
in [117], to use a binary level set representation via the introduction of the function
v = H(φ). Such a change of function was also used in [29] for finding the global
minimizer associated with the Chan-Vese’s model. More general binary level set
representations with global minimization techniques have been developed (see, e.g.,
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[7, 173, 174, 175, 177]) using the relationships existing between graph cuts, binary

labeling and continuous max flow problems. Since ∇ · ∇φ
|∇φ | = ∇ · ∇H(φ)

|∇H(φ)| , one can

rewrite the functional in (2.140) as

E(v,d1,d2) = λ1

∫

Ω
| f −d1|2vdx+λ2

∫

Ω
| f −d2|2[1− v]dx (2.141)

+

∫

Ω

[

a+b

(

∇ · ∇v
|∇v|

)2
]

|∇v|dx

with the values taken by v being either 0 or 1. Strictly speaking the mean curvature of
the graph makes sense for “smooth” functions only; to fix this issue, one relaxes the
above binary restriction by replacing it by 0 ≤ v ≤ 1, a less constraining condition
indeed.

6.2 Fast Numerical Algorithms for Variational Image Processing
Models Based on Operator- Splitting and Augmented
Lagrangian Methods (ALM)

In this section, we will present operator-splitting and ALM based fast numerical
algorithms, for the numerical treatment of variational image processing models.

6.2.1 Parallel Splitting Schemes for the ROF Model

The first model that we are going to consider is the ROF model discussed in Sec-
tion 6.1.2. The formal Euler-Lagrange equation associated with the minimization
of the (strictly convex) functional in (2.131) reads as

−η∇ · ∇u
|∇u| +u = f in Ω ,

∇u
|∇u| ·n = 0 on ∂Ω , (2.142)

with n the outward unit vector normal at ∂Ω . In order to solve the nonlinear non-
smooth elliptic equation (2.142) we associate with it an initial value problem and
look for steady-state solutions. We consider thus

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂ t

−η∇ · ∇u
|∇u| +u = f in Ω × (0,+∞),

∇u
|∇u| ·n = 0 on ∂Ω × (0,+∞),

u(0) = u0,

(2.143)
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an obvious choice for u0 in (2.143) being u0 = f . Actually to overcome the difficulty
associated with the non-smoothness of the elliptic operator in (2.142) and (2.143),
we consider the following regularized variant of (2.143):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂ t

−η∇ · ∇u
√

|∇u|2 + ε2
+u = f in Ω × (0,+∞),

∂u
∂n

= 0 on ∂Ω × (0,+∞),

u(0) = u0,

(2.144)

with ε a small positive number. The simplest time-stepping scheme we can think
about to capture the steady state solution of (2.144) is clearly the forward-Euler
scheme. Let �t(> 0) be a time-discretization step; applied to the solution of (2.144)
the forward Euler scheme produces the following algorithm:

u0 = u0. (2.145)

For n ≥ 0, un → un+1 via
⎧
⎪⎪⎨

⎪⎪⎩

un+1 −un

�t
−η∇ · ∇un

√
|∇un|2 + ε2

+un = f in Ω ,

∂un+1

∂n
= 0 on ∂Ω .

(2.146)

In practice, scheme (2.145)–(2.146) is applied to a discrete variant of (2.144) ob-
tained by finite difference or finite element space discretization. Scheme (2.145)–
(2.146) being explicit and the condition number of the operator in (2.146) rather
large, its conditional stability requires small time steps leading to a slow conver-
gence to a steady state solution. Suppose that Ω is the rectangle (0,a)× (0,b); in
order to improve the speed of convergence to a steady state solution, we are going
to apply to the solution of (2.144) the parallelizable operator-splitting scheme dis-
cussed in Section 2.8, taking advantage of the following decomposition of the oper-
ator in (2.144)

−η∇ · ∇u
√

|∇u|2 + ε2
+u− f = A1(u)+A2(u), (2.147)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1(u) =−η
∂

∂x1

⎛

⎜
⎜
⎝

∂u
∂x1√

|∇u|2 + ε2

⎞

⎟
⎟
⎠+

1
2
(u− f ),

A2(u) =−η
∂

∂x2

⎛

⎜
⎜
⎝

∂u
∂x2√

|∇u|2 + ε2

⎞

⎟
⎟
⎠+

1
2
(u− f ).

(2.148)
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Combining the scheme we mentioned just above with a semi-explicit time dis-
cretization of the nonlinear terms we obtain

u0 = u0. (2.149)

For n ≥ 0, un →{un+1/4,un+2/4}→ un+1 via

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1/4 −un

2�t
−η

∂
∂x1

⎛

⎜
⎜
⎝

∂un+1/4

∂x1√
|∇un|2 + ε2

⎞

⎟
⎟
⎠+

un+1/4

2
=

f
2

in Ω ,

∂un+1/4

∂x1
(0,x2) =

∂un+1/4

∂x1
(a,x2) = 0 ∀x2 ∈ (0,b),

(150.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+2/4 −un

2�t
−η

∂
∂x2

⎛

⎜
⎜
⎝

∂un+2/4

∂x2√
|∇un|2 + ε2

⎞

⎟
⎟
⎠+

un+2/4

2
=

f
2

in Ω ,

∂un+2/4

∂x2
(x1,0) =

∂un+2/4

∂x2
(x1,b) = 0 ∀x1 ∈ (0,a),

(150.2)

un+1 =
1
2
(un+1/4 +un+2/4). (2.151)

Scheme (2.149)–(2.151) can accommodate large time steps implying a fast conver-
gence to steady state solutions. It preserves also the symmetry of the images. More-
over since in most applications Ω is a rectangle with the image pixels uniformly
distributed on it, it makes sense to use a finite difference discretization on a uni-
form Cartesian grid to approximate (150.1) and (150.2). For Dirichlet or Neumann
boundary conditions, the finite difference discretization of (150.1) and (150.2) will
produce two families of uncoupled tri-diagonal linear systems easily solvable (the
good parallelization properties of the above scheme are quite obvious). The above
operator-splitting scheme can be generalized to the numerical treatment of other
variational models (such as Chan-Vese’s, and to models involving derivatives of or-
der higher than one, as shown in, e.g., [89]). A closely related scheme is discussed
in [167].

6.2.2 A Split-Bregman Method and Related ADMM Algorithm
for the ROF Model

In ref. [86], T. Goldstein and S. Osher proposed and tested a fast converging iterative
method for the ROF model: this algorithm, of the split-Bregman type, is certainly
one of the fastest numerical methods for the ROF model. It was quickly realized (see
[156, 170, 172]) that the Bregman algorithm discussed in [86] is equivalent to an
ADMM one. Here, we will explain the ideas in an informal way using the continuous
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model whose formalism is much simpler. As stated in Remark 29, to make our dis-
cussion more rigorous mathematically, the functional spaces for which the continu-
ous model makes sense have to be specified (here, they are of the bounded variation
type). This difficulty is one of the reasons explaining why some authors (as in [170])
consider discrete models, directly.

Let us denote ∇u by p; then, it is easy to see that (from (2.131)) the ROF model
is equivalent to the following linearly constrained minimization problem:

{u,p}= arg min {v,q}
∇v−q=0

[

η
∫

Ω
|q|dx+

1
2

∫

Ω
|v− f |2 dx

]

. (2.152)

Clearly, problem (2.152) belongs to the family of variational problems discussed
in Section 3.2, the associated augmented Lagrangian being defined (with r > 0) by
(see, e.g., [72] (Chapter 4)):

Lro f (v,q; μ) = η
∫

Ω
|q|dx+

1
2

∫

Ω
|v− f |2 dx (2.153)

+
r
2

∫

Ω
|∇v−q|2 dx+

∫

Ω
μ · (∇v−q)dx.

Above, u : Ω → IR denotes the restored image we are looking for, p = ∇u, μ is
a Lagrange multiplier. Due to the strict convexity of the second term, the discrete
analogues of the minimization problem (2.152) have a unique solution. Applying
algorithm ALG2 of Section 3.2.2 to the solution of (2.152) we obtain the following

Algorithm 6.1: An augmented Lagrangian method for the ROF model

0. Initialization: λ 0 = 0, u0 = f .

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2Lro f (u
k,q;λ k). (2.154)

2. Compute uk+1 from

uk+1 = arg minv∈H1(Ω)Lro f (v,pk+1;λ k). (2.155)

3. Update λ k by

λ k+1 = λ k + r(∇uk+1 −pk+1). (2.156)

It was observed in [156, 170] that this augmented Lagrangian algorithm is equivalent
to the split-Bregman algorithm discussed in [86]. This equivalence is also explained
in [172] for compressive sensing models. The minimization sub-problems (2.154)
have closed form solutions which can be computed point-wise; solving them is
thus quite easy. The minimization sub-problems (2.155) (in fact their discrete
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analogues) reduce to discrete well-posed linear Neumann problems; the associ-
ated matrix being symmetric, positive definite and sparse, these discrete elliptic
problems can be solved by a large variety of direct and iterative methods (among
them: sparse Cholesky, multi-level, Gauss-Seidel, conjugate gradient, FFT, etc.; see
[170, 172] for more details). The convergence of algorithm (2.154)–(2.156) is dis-
cussed in [170].

Remark 35. As described above, Algorithm 6.1 is largely formal since it operates in
the space W = [H1(Ω)× (L2(Ω))2]× (L2(Ω))2, although the solution u of prob-
lem (2.131) may not have enough regularity to belong to H1(Ω). However, Algo-
rithm 6.1 makes sense for the discrete analogues of problem (2.131) and space W
obtained by finite difference or finite element approximation; for finite element ap-
proximations in particular, the formalisms of Algorithm 6.1 and of its discrete coun-
terparts are nearly identical. The above observation applies to most of the ADMM
algorithms described below (see Remark 36, for example).

Remark 36. As shown in, e.g., [109] (for image denoising applications), Algorithm
6.1 is easy to modify in order to handle those situations where the functional
∫

Ω |∇v|dx is replaced by 1
s

∫

Ω |∇v|s dx with 0 < s < 1, or by other non-convex func-
tionals of |∇v|; once discretized, these modifications of Algorithm 6.1 perform very
well as shown in [109].

Remark 37. It is easy to extend algorithm (2.154)–(2.156) to the solution of the min-
cut problem (2.139), since the additional constraint encountered in this last problem,
namely 0 ≤ μ(x)≤ 1, a.e. in Ω , is (relatively) easy to treat; actually, this extension
has been done in [22] (see also [4, 27], and Section 6.2.3, below, for a number of
related new approaches). As shown in [170] (page 320), and [142, 143], it is also
easy to extend algorithm (2.154)–(2.156) to those situations where one uses vector-
TV regularization in order to process vector- valued data.

6.2.3 An Augmented Lagrangian Method for the Continuous Min-Cut
and Max-Flow Problems

The continuous max-flow problems (2.138) and (2.139) are dual to each other in
the sense that if the function λ is solution of (2.139), it is a Lagrange multiplier for
the flow conservation equation in (2.138). We can solve both problems simultane-
ously using a primal-dual method à la ALG2 relying on the following augmented
Lagrangian functional

Lc(qs,qt ,v; μ) =−
∫

Ω
qs dx−

∫

Ω
μ(∇ ·v−qs +qt)dx+

r
2

∫

Ω
(∇ ·v−qs +qt)

2 dx,

(2.157)

where in (2.157): r > 0, and qs, qt and v verify, a.e. in Ω , qs ≤ f1, qt ≤ f2,

|v| ≤ g; here |v| =
√

v2
1 + v2

2, ∀v = {v1,v2}. Applying ALG2 to the computation
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of the saddle-points of Lc over the set (Q1 ×Q2 ×K)×L2(Ω), where Q1 = {q|q ∈
L2(Ω),q ≤ f1}, Q2 = {q|q ∈ L2(Ω),q ≤ f2}, and K = {v|v ∈ (L2(Ω))2,∇ · v ∈
L2(Ω),v ·n = 0 on Γ , |v| ≤ g}, we obtain

Algorithm 6.2: An augmented Lagrangian method for the continuous max-flow
problem

0. Initialization: λ 0 = 0, p0
s = f1, p0

t = f2.

For k = 0, 1, · · · , until convergence:

1. Compute uk+1 from

uk+1 = arg minv∈KLc(pk
s , pk

t ,v;λ k). (2.158)

2. Compute {pk+1
s , pk+1

t } from

{pk+1
s , pk+1

t }= arg min{qs,qt}∈Q1×Q2
Lc(qs,qt ,uk+1;λ k). (2.159)

3. Update λ k by

λ k+1 = λ k − r(∇ ·uk+1 − pk+1
s + pk+1

t ). (2.160)

We observe that (2.159) has a closed form solution (and that pk+1
s and pk+1

t can
be computed point-wise independently of each other). The sub-problem (2.158) is a
simple variant of the dual of the ROF problem (that is, the unconstrained minimiza-
tion of the functional in (2.131)). We just need to solve this problem approximately;
indeed, in our implementations we just used few steps of a descent algorithm, fol-
lowed by a projection on the convex set {v|v ∈ (L2(Ω))2, |v| ≤ g} (see [173, 175]
for more details on the solution of these sub-problems). The discrete variant of al-
gorithm (2.158)–(2.160) that we implemented (via a finite difference discretization)
proved being very robust with respect to initialization and to the value of the aug-
mentation parameter r; it is also very efficient computationally.

Remark 38. As written, algorithm (2.158)–(2.160) is applicable only to the solution
of two-phase flow problems. There are several ways to generalize this algorithm to
models involving more than two phases, as shown in, e.g., [5, 6, 7, 8, 173, 177].
Also, we would like to emphasize the fact that the discrete analogue of algo-
rithm (2.158)–(2.160) we implemented has good convergence properties no matter
which of the following two norms we used for the flow constraint in (2.138) (see
Remark 33 for the dual formulation associated with (2.162)):

|v|2 =
√

v2
1 + v2

2 (2.161)

or

|v|1 = |v1|+ |v2|. (2.162)
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If one uses the meshes classically used in digital imaging, traditional graph cut
methods (like those discussed in [19]) can be used to solve the discrete min-cut
and max-flow problems if one uses the norm defined by (2.162) to bound v. On the
other hand, the above-mentioned graph cut methods cannot handle the norm defined
by (2.161). It is also known that the solutions of the discrete min-cut and max-flow
problems suffer from the matrication error if the norm in (2.162) is used. Compared
to graph cut methods, ADMM algorithms such as (2.158)–(2.160) can handle both
norms without particular difficulty. Moreover, these augmented Lagrangian algo-
rithms are easy to parallelize and to implement on GPUs; also, they use much less
memory than traditional graph cut methods; this enables using these algorithms for
high dimensional and large size images or data.

6.2.4 A Split-Bregman Method and Related ADMM Algorithm for a Second
Order Total Variation Model

Here, we will discuss the application of ALG2 (that is ADMM) to the solution of
those image processing problems associated with the functional defined by (2.132)
(also known as the TV 2 model). The presentation follows [42, 73, 170], where the
main ideas are: (i) transfer the burden of nonlinearity from the Hessian

D2u

(

=

(
∂ 2u/∂x2

1 ∂ 2u/∂x1∂x2

∂ 2u/∂x1∂x2 ∂ 2u/∂x2
2

))

to an additional unknown p, via the relation

p = D2u, (2.163)

and (ii) use a well-chosen augmented Lagrangian functional, associated with the
linear relation (2.163). A similar idea has been (successfully) used in [42] for the
augmented Lagrangian solution of the Dirichlet problem for the Monge-Ampère
equation det D2u = f (see also Chapter 8 of this book).

Back to the TV 2 model (2.132), let us recall that the related minimization prob-
lem reads as

u = arg minv∈V

[
1
2

∫

Ω
|v− f |2 dx+η

∫

Ω
|D2v|dx

]

, (2.164)

with V = {v|v ∈ L2(Ω),D2v ∈ (L1(Ω))2×2} and |M| =
√

∑
1≤i, j≤2

m2
i j denoting the

Fröbenius norm of matrix M. Proceeding as in Section 3.2.2, we observe the equiv-
alence between (2.164) and

{u,D2u}= arg min{v,q}∈W

[
1
2

∫

Ω
|v− f |2 dx+η

∫

Ω
|q|dx

]

, (2.165)
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where
W = {{v,q}|v ∈V,q ∈ (L1(Ω))d×d ,D2v−q = 0},

an observation leading us to introduce the following augmented Lagrangian func-
tional

LTV 2(v,q; μ) =
1
2

∫

Ω
|v− f |2 dx+η

∫

Ω
|q|dx (2.166)

+
r
2

∫

Ω
|D2v−q|2 dx+

∫

Ω
μ : (D2v−q)dx,

where, in (2.166), r > 0, and (with obvious notation) S : T = ∑1≤i, j≤2 si jti j. Ap-
plying the methods discussed in Section 3.2.2 to the solution of the minimization
problem (2.164) we obtain the following

Algorithm 6.3: An augmented Lagrangian method for the TV 2 model

0. Initialization: λ 0 = 0, u0 = f .

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2×2LTV 2(u
k,q;λ k). (2.167)

2. Compute uk+1 from

uk+1 = arg minv∈H2(Ω)LTV 2(v,pk+1;λ k). (2.168)

3. Update λ k by
λ k+1 = λ k + r(D2uk+1 −pk+1). (2.169)

As with Algorithm 6.1 (that is (2.154)–(2.156)), the sub-problems (2.167) have
closed-form solutions which can be computed point-wise. On the other hand, the
sub-problems (2.168) reduce to linear bi-harmonic problems for the elliptic operator
I + r∇4; if properly discretized on a uniform grid (typically by finite differences),
the discrete analogues of these bi-harmonic problems can be solved by FFT or by
iterative methods (see [170] (page 324) for details).

Remark 39. Obviously, Remark 35 applies also to Algorithm 6.3, with H2(Ω) play-
ing here the role of H1(Ω) there.

6.2.5 An Augmented Lagrangian Method for the Euler’s Elastica Model

The energy functional defined by (2.133), namely

E(v) =
1
2

∫

Ω
| f − v|2 dx+

∫

Ω

[

a+b

∣
∣
∣
∣∇ · ∇v

|∇v|
∣
∣
∣
∣

2
]

|∇v|dx,
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makes no sense on the subset of Ω where ∇v vanishes. Following an approach very
common in visco-plasticity (see, e.g., [66, 83]) one make things more rigorous by
defining (following [154]) the energy functional by

E(v,m) =
1
2

∫

Ω
| f − v|2 dx+

∫

Ω

[
a+b |∇ ·m|2

]
|∇v|dx (2.170)

the functions v and m in (2.170) verifying

|∇v|= m ·∇v, |m| ≤ 1. (2.171)

The related minimization problem reads as
{
{u,n}= arg min{v,m}E(v,m),

with {v,m} verifying (2.171).
(2.172)

Introducing the vector-valued function p verifying p = ∇u, we clearly have equiva-
lence between (2.172) and

⎧
⎨

⎩

{u,p,n}= arg min{v,q,m}

[
1
2

∫

Ω
| f − v|2 dx+

∫

Ω

[
a+b |∇ ·m|2

]
|q|dx

]

,

with {v,q,m} verifying q = ∇v, |q|= m ·q, |m| ≤ 1.
(2.173)

Following [154], we associate with the minimization problem (2.173) the following
augmented Lagrangian functional

Lelas{v,q,m; μ1,μ2) =
1
2

∫

Ω
|v− f |2 dx+

∫

Ω

[
a+b |∇ ·m|2

]
|q|dx

+
r1

2

∫

Ω
|∇v−q|2 dx+ r2

∫

Ω
(|q|−q ·m)dx (2.174)

+
∫

Ω
μ1 · (∇v−q)dx+

∫

Ω
μ2(|q|−q ·m)dx,

with r1 and r2 both positive. Suppose that in (2.174) the vector-valued function m
belongs to M, the closed convex set of (L2(Ω))2 defined by

M = {m|m ∈ (L2(Ω))2, |m(x)| ≤ 1,a.e. in Ω};

we have then |q| −q ·m ≥ 0, implying (since |q| −q ·m = ||q| −q ·m|)) that the
variant of ALG2 described just below will force the condition |q|−q ·m = 0 in the
sense of L1(Ω). This variant of ALG2 reads as follows when applied to the solution
of problem (2.172) (below, H(Ω ;div) = {v|v ∈ (L2(Ω))2,∇ ·v ∈ L2(Ω)}):

Algorithm 6.4: An augmented Lagrangian method for the Euler’s Elastica model

0. Initialization: λ 0
1 = 0, λ 0

2 = 0, u0 = f , n0 = 0.

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2Lelas(u
k,q,nk;λ k

1,λ k
2 ). (2.175)
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2. Compute nk+1 from

nk+1 = arg minm∈H(Ω ;div)∩MLelas(u
k,pk+1,m;λ k

1,λ k
2 ). (2.176)

3. Compute uk+1 from

uk+1 = arg minv∈H1(Ω)Lelas(v,p
k+1,nk+1;λ k

1,λ k
2 ). (2.177)

4. Update {λ k
1,λ k

2} by

{
λ k+1

1 = λ k
1 + r1(∇uk+1 −pk+1),

λ k+1
2 = λ k

2 + r2(|pk+1|−pk+1 ·nk+1).
(2.178)

Below, we will give some details and comments about the solution of the sub-
problems encountered when applying algorithm (2.175)–(2.178); implementation
issues will be also addressed. Further information is provided in [154].

• The minimization sub-problem (2.175) has a unique closed-form solution which
can be computed point-wise.

• The minimization sub-problem (2.176) is equivalent to the following elliptic
variational inequality
⎧
⎪⎪⎨

⎪⎪⎩

nk+1 ∈ H(Ω ;div)∩M,

b
∫

Ω
|pk+1| ∇ ·nk+1 ∇ · (m−nk+1)dx ≥

∫

Ω
(r2 +λ k

2 )p
k+1 · (m−nk+1)dx,

∀m ∈ H(Ω ;div)∩M.
(2.179)

We observe that the bilinear functional in the left-hand side of (2.179) is sym-
metric and positive semi-definite (indeed,

∫

Ω |pk+1|(∇ ·m)2 dx= 0 if m=∇×z.
However, the boundedness of M implies that the variational problem (2.176),
(2.179) has solutions. For the solution of the discrete analogues of the above
problem we advocate using few iterations of those relaxation methods with
projection discussed in, e.g., [66, 76] (other methods are possible as shown
in [154]).

• The minimization sub-problem (2.177) has a unique solution characterized by
⎧
⎪⎪⎨

⎪⎪⎩

uk+1 ∈ H1(Ω),
∫

Ω
uk+1vdx+ r1

∫

Ω
∇uk+1 ·∇vdx =

∫

Ω
f vdx+

∫

Ω
(r1pk+1 −λ k

1) ·∇vdx,

∀v ∈ H1(Ω).
(2.180)

Actually, (2.180) is nothing but a variational formulation of the following
Neumann problem

⎧
⎨

⎩

uk+1 − r1∇2uk+1 = f −∇ · (r1pk+1 −λ k
1) in Ω ,

r1
∂uk+1

∂ν
= (r1pk+1 −λ k

1) ·ν on ∂Ω ,
(2.181)
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where, in (2.181), ν denotes the outward unit vector normal at the boundary
∂Ω of Ω . The numerical solution of linear elliptic problems such as (2.181) is
routine nowadays; after an appropriate space discretization it can be achieved by
a large variety of direct and iterative methods (sparse Cholesky, FFT, relaxation,
multilevel, etc.).

• Since the energy functional associated with the Euler’s Elastica is non-convex
(see (2.170)) the augmentation parameters r1 and r2 have to be chosen large
enough to guarantee the convergence of algorithm (2.175)–(2.179). Actually,
the tuning of r1 and r2 is a delicate issue in itself and we can expect (as shown
for example in [133], for a problem involving three augmentation parameters)
the optimal values of these parameters to be of different orders of magnitude
with respect to the space discretization h.

• Another solution method for the Euler’s Elastica is discussed in [21]. It relies
on tractable convex relaxation in higher dimension.

Remark 40. In [154], an alternative method for the solution of the Euler’s Elastica
problem (2.172) is also considered. It relies on the equivalence between (2.172) and
⎧
⎪⎨

⎪⎩

{u,p,n1,n2}= arg min
{v,q,m1,m2}

[
1
2

∫

Ω
| f − v|2 dx+

∫

Ω

[
a+b |∇ ·m1|2

]
|q|dx

]

,

with {v,q,m1,m2} verifying q = ∇v, m1 = m2, |q|= m2 ·q, |m2| ≤ 1.
(2.182)

An augmented Lagrangian associated with (2.182) is clearly the one defined by

Lelas{v,q,m1,m2; μ1,μ2,μ3) =
1
2

∫

Ω
|v− f |2 dx+

∫

Ω

[
a+b |∇ ·m1|2

]
|q|dx

+
r1

2

∫

Ω
|∇v−q|2 dx+ r2

∫

Ω
(|q|−q ·m2)dx+ r3

∫

Ω
|m1 −m2|2 dx (2.183)

+
∫

Ω
μ1 · (∇v−q)dx+

∫

Ω
μ2(|q|−q ·m2)dx+

∫

Ω
μ3 · (m1 −m2)dx,

with r1, r2 and r3 all positive. From (2.184), one can easily derive a variant of al-
gorithm (2.175)–(2.178) for the solution of the minimization problem (2.172); such
an algorithm is discussed in [154]. Actually the above reference discusses also the
solution by a similar methodology of the variant of problem (2.172) obtained by

replacing the fidelity term
1
2

∫

Ω
| f − v|2 dx by

1
s

∫

Ω
| f − v|s dx with s ∈ [1,+∞).

Typically, one takes s = 1 (resp., s = 2) for salt-and-pepper noise (resp., Gaussian
noise). Further details and generalizations are given in [154].

Remark 41. As shown in [186], the methodology we employed to solve the mini-
mization problem (2.172) can be easily modified in order to handle the Chan-Vese
Elastica model.
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6.2.6 An Augmented Lagrangian Method for the L1-Mean Curvature Model

In this section, we follow closely the presentation used in [185]. The rational of the
L1-mean curvature model has been given in Section 6.1.5, leading one to consider
the following minimization problem

u = arg minv∈V

[
1
2

∫

Ω
|v− f |2 dx+η

∫

Ω

∣
∣
∣
∣
∣
∇ · ∇v

√
1+ |∇v|2

∣
∣
∣
∣
∣

dx

]

, (2.184)

where ∇ = {∂/∂xi}2
i=1. In (2.184), the choice of V is a delicate theoretical issue;

indeed the safest way to proceed would be to take V = H2(Ω) in (2.184), and to
replace min by inf (a (kind) of justification for this approach can be found in [133]).
Let us observe (as in [185], where a slightly different notation is used) that

∇ · ∇v
√

1+ |∇v|2 = ∇3 · {∇v,−1}
|{∇v,−1}| , (2.185)

where, in (2.185), ∇3 = {∂/∂x1,∂/∂x2,0},and where {∇v,−1} denotes the 3-
dimensional vector-valued function {∂ v/∂x1,∂ v/∂x2,−1}. In order to simplify (in
some sense) the nonlinear structure of the minimization problem (2.184), we asso-
ciate new unknown functions with its solution u, namely p, n and ψ verifying

⎧
⎪⎪⎨

⎪⎪⎩

p = {∇u,−1},
n =

p
|p| , or equivalently here |p|−p ·n = 0, |n| ≤ 1,

ψ = ∇3 ·n.
(2.186)

From (2.185) and (2.186), there is clearly equivalence between (2.184) and
⎧
⎨

⎩

{u,ψ,p,n}= arg min{v,ϕ,q,m}

[
1
2

∫

Ω
|v− f |2 dx+η

∫

Ω
|ϕ|dx

]

,

with {v,ϕ,q,m} verifying q = {∇v,−1}, |q|−q ·m = 0, |m| ≤ 1,∇3 ·m = ϕ.
(2.187)

In order to solve the minimization problem (2.184), taking advantage of its equiva-
lence with (2.187), we introduce the following augmented Lagrangian functional

LMC(v,ϕ,q,z,m; μ1,μ2,μ3,μ4) =
1
2

∫

Ω
|v− f |2 dx+η

∫

Ω
|ϕ|dx

+
r1

2

∫

Ω
(|q|−q · z)dx+

∫

Ω
μ1(|q|−q · z)dx

+
r2

2

∫

Ω
|{∇v,−1}−q|2 dx+

∫

Ω
μ2 · ({∇v,−1}−q)dx (2.188)

+
r3

2

∫

Ω

∣
∣
∣
∣ϕ −

(
∂m1

∂x1
+

∂m2

∂x2

)∣
∣
∣
∣

2

dx+
∫

Ω
μ3

(

ϕ −
(

∂m1

∂x1
+

∂m2

∂x2

))

dx,

+
r4

2

∫

Ω
|z−m|2 dx+

∫

Ω
μ4 · (z−m)dx.



80 R. Glowinski et al.

The additional vector-valued function z has been introduced in order to decouple
∇3 ·m from the nonlinear relations verified by m in (2.187). Following [185], and
taking (2.187) and (2.188) into account, we advocate the following algorithm for
the solution of problem (2.184):

Algorithm 6.5: An augmented Lagrangian method for the L1-mean curvature model

0. Initialization: λ 0
1 = 0, λ 0

2 = 0,λ 0
3 = 0, λ 0

4 = 0, u0 = f , p0 = {∇u0,−1}, n0 =

y0 =
p0

|p0| , ψ0 = ∇3 ·n0.

For k = 0, 1, · · · , until convergence:

1. Compute uk+1 from

uk+1 = arg minv∈H1(Ω)LMC(v,ψk,pk,yk,nk;λ k
1 ,λ

k
2,λ k

3 ,λ
k
4). (2.189)

2. Compute ψk+1 from

ψk+1 = arg minϕ∈L2(Ω)LMC(u
k+1,ϕ,pk,yk,nk;λ k

1 ,λ
k
2,λ k

3 ,λ
k
4). (2.190)

3. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))3LMC(u
k+1,ψk+1,q,yk,nk;λ k

1 ,λ
k
2,λ k

3 ,λ
k
4). (2.191)

4. Compute yk+1 from

yk+1 = arg minz∈ZLMC(u
k+1,ψk+1,pk+1,z,nk;λ k

1 ,λ
k
2,λ k

3 ,λ
k
4). (2.192)

5. Compute nk+1 from

nk+1 = arg minm∈MLMC(u
k+1,ψk+1,pk+1,yk+1,m;λ k

1 ,λ
k
2,λ k

3 ,λ
k
4). (2.193)

6. Update {λ k
1 ,λ

k
2,λ k

3 ,λ
k
4} by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ k+1
1 = λ k

1 + r1(|pk+1|−pk+1 ·yk+1),

λ k+1
2 = λ k

2 + r2({∇uk+1,−1}−pk+1),

λ k+1
3 = λ k

3 + r3

(

ψk+1 −
(

∂nk+1
1

∂x1
+

∂nk+1
2

∂x2

))

,

λ k+1
4 = λ k

4 + r4(yk+1 −nk+1).

(2.194)

In (2.189)–(2.194), the sets Z and M are defined by

Z = {z|z ∈ (L2(Ω))3, |z(x)| ≤ 1, a.e. in Ω},
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and

M = {m|m ∈ (L2(Ω))3,
∂m1

∂x1
+

∂m2

∂x2
∈ L2(Ω)},

respectively.
We observe that the minimization sub-problems (2.190), (2.191), and (2.192)

have closed form solutions which can be computed point-wise. On the other hand,
the Euler-Lagrange equations of the sub-problems (2.189) and (2.193) are well-
posed linear elliptic equations with constant coefficients; fast solvers exist for the
solution of the discrete analogues of these elliptic problems (see [185] for details and
the results of numerical experiments validating the above algorithm). An important
issue is the tuning of the augmentation parameters r1, r2, r3, and r4; the comments
we did in Section 6.2.5, concerning the adjustment of r1 and r2 in algorithm (2.176)–
(2.178), still apply here.

Remark 42. Another augmented Lagrangian based solution method for the L1-mean
curvature problem (2.184) is discussed and numerically tested in ref. [133]. The
related ADMM algorithm involves only three Lagrange multipliers and three aug-
mentation parameters. Moreover, the various vector-valued functions encountered
in the approach discussed in [133] map Ω into IR2 (instead of IR3, as it is the case
for algorithm (2.189)–(2.194)).

7 Further Comments and Complements

There is much more to say about operator-splitting and ADMM algorithms; fortu-
nately, many of these issues and topics we left behind, or said very little about, are
developed in the other chapters of this book. There are however some issues we
would like to-briefly-comment to conclude this chapter, namely:

(i) The convergence of operator-splitting methods and ADMM algorithms,
when applied to the solution of problems involving non-monotone oper-
ators and/or non-convex functionals.

(ii) The choice of the augmentation parameters and their dynamical adjust-
ment when applying ADMM algorithms.

(iii) The derivation of operator-splitting schemes of high (or higher) orders of
accuracy.

(iv) Trying to understand why the Douglas-Rachford scheme is more robust
than the Peaceman-Rachford one, using simple model problems to clarify
this issue.

(v) Very few problems have generated as many operator-splitting based
solution methods than the Navier-Stokes equations modeling viscous
fluid flows. From this fact, providing the reader with a significant number
of related references is a must in a book like this one. These references
will conclude this chapter.
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Concerning the first issue, to the best of our knowledge, there is no general theory
concerning the convergence of operator-splitting methods and ADMM algorithms
when the problem under consideration involves at least one non-monotone operator
and/or a non-convex functional. Actually, one can find in the literature convergence
results for some problems lacking monotonicity and/or convexity, but, most often,
the proofs of these results are very specific of the problem under consideration, and
therefore are not easy to generalize to other situations. However, some recent results
obtained by R. Luke [96, 115] and W. Yin [166], and collaborators, suggest that a
fairly general theory is not out of reach. However, we think that there always will be
situations where one not will be able to prove the convergence of operator-splitting
methods and ADMM algorithms. This is not surprising since these methods and
algorithms have been quite successful at solving problems for which the existence
of solutions has not been proved.

The second issue concerning the choice and the dynamical adaptation of the aug-
mentation parameters is another complicated one, particularly for those non-convex
and non-monotone situations involving more than one of such parameters. Indeed,
numerical experiments have shown that the optimal values of these parameters may
have several orders of magnitude (as shown in, e.g., [80] and [133]), and, from the
possible existence of multiple solutions, that bifurcations can take place depending
also of the values of these parameters (and of the algorithm initialization). How-
ever, for particular problems, heuristics have been found, significantly improving
the speed of convergence of these ADMM algorithms (see, e.g., [46]).

In order to address the high (or higher) orders of accuracy issue (our third issue)
we return to Section 2.3 of this chapter (the one dedicated to the Strang symmetrized
operator-splitting scheme), and consider the following initial value problem

⎧
⎨

⎩

dX
dt

+(A+B)X = 0 on (0,T ),

X(0) = X0,
(2.195)

where A and B are linear operators independent of t. When applied to the solution
of the initial value problem (2.195), the Strang symmetrized scheme (2.7)–(2.10)
can be written in the following more compact form

{
X0 = X0,

Xn+1 = e−A�t/2e−B�t e−A�t/2Xn, ∀n ≥ 0.
(2.196)

The relation
e−(A+B)�t − e−A�t/2e−B�t e−A�t/2 = O(�t3),

shows that scheme (2.196) is second order accurate (and exact if AB = BA). For
those situations requiring an order of accuracy higher than two, several options do
exist, the best known being:

(a) The 4th order Strang-Richardson scheme discussed in [49, 50, 48] where it is ap-
plied (among other problems) to the numerical solution of real-valued or vector-
valued reaction-diffusion equations such as
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∂u
∂ t

−M∇2u+F(u) = 0,

where u(x, t) ∈ IRd , ∇2 denotes the Laplace operator, M is a d × d symmetric
positive definite matrix, and F is a smooth mapping from IRd into IRd .

(b) The exponential operator-splitting schemes. Actually, the Lie and Strang split-
ting schemes belong to this family of time discretization methods, whose origin
(concerning schemes of order higher than two) is not easy to track back, early
significant publications being [150, 151] (see also the references therein and
those in [161], and in Google Scholar). Arbitrary high accuracy can be obtained
with these methods, the price to pay being their reduced stability (compared to
the Strang scheme, for example).

The best way to introduce the Strang-Richardson scheme is to start, one more
time, from the simple initial value problem (2.195). Applied to the solution of
(2.195), the Strang-Richardson scheme reads as

⎧
⎪⎪⎨

⎪⎪⎩

X0 = X0,

Xn+1 =
1
3

[
4e−A�t/4e−B�t/2e−A�t/2e−B�t/2e−A�t/4

−e−A�t/2e−B�t e−A�t/2
]

Xn, ∀n ≥ 0.

(2.197)

A more practical equivalent formulation of the symmetrized scheme (2.197) can be
found in the Chapter 6 of [70]; it avoids the use of matrix exponentials and can
be generalized easily to nonlinear problems (it requires the solution of eight sub-
initial value problems per time step). Scheme (2.197) is fourth order accurate but
not as stable as the original Strang scheme (scheme (2.196)). Also, its application
to decompositions involving more than two operators becomes a bit complicated to
say the least (higher order methods of the same type are discussed in [85]).

In a similar fashion, we consider again the initial value problem (2.195) to int-
roduce exponential splitting methods. Applied to the solution of (2.195) the typical
exponential operator-splitting scheme reads as follows:

⎧
⎪⎨

⎪⎩

X0 = X0,

Xn+1 =

(
J
∏
j=1

e−b jB�t e−a jA�t

)

Xn, ∀n ≥ 0,
(2.198)

where a j, b j ∈ IR, for 1 ≤ j ≤ J. The Strang symmetrized scheme (2.196) is a par-
ticular case of (2.198) (corresponding to J = 2, b1 = 0, a1 = 1/2, b2 = 1, a2 = 1/2).
By an appropriate choice of J, and of the coefficients a j and b j, scheme (2.198)
can be made of order higher than two (as shown in, e.g., [16]), the price to pay
being that some of the coefficients a j, b j are negative making the scheme inappro-
priate to those situations where some of the operators are dissipative. On the other
hand, these higher order schemes produce spectacular results when applied to re-
versible systems, like those associated with some linear and nonlinear Schrödinger
operators, as shown in, e.g.,[51, 161]. Their generalization to those (fairly common)
situations involving more than two operators is rather complicated, although theo-
retically doable.
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Concerning the fourth issue, the Peaceman-Rachford and Douglas-Rachford
schemes have been briefly discussed in Sections 2.4 and 2.5, respectively. In or-
der to have a better idea of their accuracy and stability properties, we will consider
the particular situation where, in problem (2.14), φ0 ∈ IRd , T = +∞, and where A1

(resp., A2) is given by A1 = αA (resp., A2 = βA), A being a real symmetric positive
definite d × d matrix, and α,β verifying 0 ≤ α,β ≤ 1 and α + β = 1. The exact
solution of the associated problem (2.14) reads as

φ(t) = e−Atφ0, ∀t ≥ 0,

which implies (by projection on an orthonormal basis of eigenvectors of matrix A,
and with obvious notation)

φi(t) = e−λitφ0i, ∀t ≥ 0, ∀i = 1, . . . ,d, (2.199)

where 0 < λ1 ≤ ·· · ≤ λi ≤ ·· · ≤ λd , the λi’s being the eigenvalues of matrix A.
Applying the Peaceman-Rachford scheme (2.15) to the particular problem (2.14)
defined above, we obtain the following discrete analogue of (2.199):

φ n
i = (R1(λi�t))n φ0i, ∀n ≥ 0, ∀i = 1, . . . ,d, (2.200)

R1 being the rational function defined by

R1(ξ ) =

(
1− α

2
ξ
)(

1− β
2

ξ
)

(
1+

α
2

ξ
)(

1+
β
2

ξ
) . (2.201)

Since |R1(ξ )| < 1, ∀ξ > 0, the Peaceman-Rachford scheme (2.15) is uncondition-
ally stable in the particular case considered here. However, the property lim

ξ→+∞
R1(ξ )

= 1 shows that the above scheme is not stiff A-stable, making it not a first choice
scheme to capture steady state solutions or to simulate fast transient phenomena.
Actually, the stability drawback we just mentioned is not specific to the particular
case we are considering, but seems to hold in general for scheme (2.15). Inciden-
tally, the relation

R1(ξ )− e−ξ = O(ξ 3) in the neighborhood of ξ = 0

implies that in the particular case under consideration (where A1 and A2 com-
mute) scheme (2.15) is second order accurate. Applying now the Douglas-Rachford
scheme (2.17) to the same particular case of problem (2.14), we obtain

φ n+1 = (I +α�tA)−1(I +β�tA)−1(I +αβ (�t)2A2)φ n, ∀n ≥ 0,

which implies

φ n = (I +α�tA)−n(I +β�tA)−n(I +αβ (�t)2A2)nφ0, ∀n ≥ 0. (2.202)
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By projection of (2.202) on an orthonormal basis of IRd consisting of eigenvectors
of A, we obtain the following variant of (2.200):

φ n
i = (R2(λi�t))n φ0i, ∀n ≥ 0, ∀i = 1, . . . ,d, (2.203)

R2 being the rational function defined by

R2(ξ ) =
1+αβξ 2

(1+αξ )(1+βξ )
. (2.204)

Since 0 < R2(ξ ) < 1, ∀ξ > 0, the Douglas-Rachford scheme (2.17) is uncon-
ditionally stable in the particular case considered here. However, the property
lim

ξ→+∞
R2(ξ ) = 1 shows that the above scheme is not stiff A-stable, making it not

a first choice scheme to capture steady state solutions or to simulate fast transient
phenomena. Actually, the stability drawback we just mentioned is not specific to the
particular case we are considering, but seems to hold in general for scheme (2.17).
Concerning the accuracy of scheme (2.17), we observe that in the neighborhood of
ξ = 0, we have

R2(ξ ) = 1−ξ +ξ 2 +O(ξ 3),

which implies, by comparison with e−ξ = 1−ξ +
ξ 2

2
+O(ξ 3), that scheme (2.17) is

no better than first order accurate in the particular case we are considering. Since this
particular case is the most favorable one can think about, one expects the Douglas-
Rachford scheme (2.17) to be generically first order accurate, a prediction sup-
ported by the results of various numerical experiments. It is worth mentioning that
in order to improve the accuracy of the Douglas-Rachford scheme (2.17), J. Dou-
glas & S. Kim introduced in the late 90s–early 2000s [56], the following variant of
the above scheme

φ 0 = φ0. (2.205)

For n ≥ 0, φ n → φ̂ n+1 → φ n+1 as follows:

Solve

φ̂ n+1 −φ n

�t
+A1

(
φ̂ n+1 +φ n

2
, tn+1/2

)

+A2(φ n, tn) = 0, (2.206)

and

φ n+1 −φ n

�t
+A1

(
φ̂ n+1 +φ n

2
, tn+1/2

)

+A2

(
φ n+1 +φ n

2
, tn+1/2

)

= 0. (2.207)

The Douglas-Kim scheme (2.205)–(2.207) is clearly inspired from the Crank-
Nicolson scheme. Scheme (2.205)–(2.207) is second order accurate if the operators
A1 and A2 are sufficiently smooth, the price to pay for this accuracy enhancement
being a reduction of stability and robustness compared to the original Douglas-
Rachford scheme (2.17).
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At those wondering how to choose between Peaceman-Rachford and Douglas-
Rachford schemes we will say that on the basis of many numerical experiments, it
seems that the second scheme is more robust and faster for those situations where
one of the operators is non-smooth (multivalued or singular, for example), particu-
larly if one is interested at capturing steady state solutions. Actually, this behavior is
consistent with the fact that the rational function R1 associated with the Peaceman-
Rachford scheme (the one defined by (2.201)) may change sign when ξ varies on
(0,+∞), unlike the rational function R2 defined by (2.204) (the one associated with
the Douglas- Rachford scheme) which stays positive on the above interval. These
sign changes suggest a more oscillatory behavior for the associated scheme if fast
transients take place, or if one tries to capture steady state solutions starting far away
from these solutions.

As a final comment on ADI methods we have to mention that one of their main
contributors (if not the main one), beyond their founders (J. Douglas, H. Rach-
ford, and D. Peaceman), is definitely E. Wachpress: His wonderful book The ADI
Model Problem [164] is an invaluable source of information and references on the
Peaceman-Rachford and Douglas-Rachford methods, from the theoretical and prac-
tical points of view.

As a conclusion, let us observe that the Navier-Stokes equations modeling the
flow of viscous fluids have been mentioned quite a few times in this chapter (Sec-
tion 4 in particular), and in other chapters of this book. There is no doubt that
very few partial differential equation problems have motivated such a large number
of operator-splitting based solution methods. Focusing on those publications with
which we have some familiarity, let us mention: [11, 12, 13, 23, 35, 43, 47, 70, 72,
73, 90, 91, 92, 93, 94, 105, 107, 111, 112, 116, 122, 123, 158, 159, 160] (see also
the references therein, Google Scholar, and Chapters 21, 22 and 23 of this book).

References

1. Aftalion, A.: Vortices in Bose-Einstein Condensates, Birkhäuser, Boston, MA (2006)
2. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image rec-

onstruction. Interfaces and Free Boundaries, 5, 63–82 (2003)
3. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Linear and Nonlinear Programing. Stanford

University Press, Stanford, CA (1958)
4. Aujol, J.F.: Some first-order algorithms for total variation based image restoration. Journal

of Mathematical Imaging and Vision, 34, 307–327 (2009)
5. Bae, E., Lellmann, J., Tai, X.C.: Convex relaxations for a generalized Chan-Vese model.

In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.C. (eds) Energy Minimization
Methods in Computer Vision and Pattern Recognition, pp. 223–236. Springer, Berlin (2013)

6. Bae, E., Tai, X.C.: Efficient global minimization methods for image segmentation models
with four regions. Journal of Mathematical Imaging and Vision, 51, 71–97 (2015)

7. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning
problems using a dual approach. International Journal of Computer Vision, 92, 112–129
(2011)

8. Bae, E., Yuan, J., Tai, X.C., Boykov, Y.: A fast continuous max-flow approach to non-convex
multilabeling problems. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for
Global Optimization Methods in Computer Vision, pp. 134–154. Springer, Berlin (2014)



2 Operator-Splitting and Alternating Direction Methods 87

9. Bao, W., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross-Pitaevskii equation
for Bose-Einstein condensation. J. Comp. Phys., 187, 318–342 (2003)

10. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the
Schrödinger equation in the semi-classical regime. J. Comp. Phys, 175, 487–524 (2002)

11. Beale, J.T., Greengard, C.: Convergence of Euler-Stokes splitting of the Navier-Stokes equa-
tions. Communications on Pure and Applied Mathematics, 47 (8),1083–115 (1994)

12. Beale, J.T., Greengard, C., Thomann, E.: Operator splitting for Navier-Stokes and Chorin-
Marsden product formula. In: Vortex Flows and Related Numerical Methods, NATO ASI
Series, Vol. 395, pp. 27–38. Springer-Netherlands (1993)

13. Beale, J.T., Majda, A.: Rates of convergence for viscous splitting of the Navier-Stokes equa-
tions. Mathematics of Computation, 37 (156), 243–259 (1981)

14. Belytschko, T., Hughes, T.J.R.(editors): Computational Methods for Transient Analysis.
North-Holland, Amsterdam (1983)

15. Bertozzi, A.L., Greer, J.B.: Low curvature image simplifiers: global regularity of smooth
solutions and Laplacian limiting schemes. Comm. Pure Appl. Math., 57, 764–790 (2004)

16. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-
Nyström methods. J. Comp. Appl. Math., 142 (2), 313–330 (2002)

17. Bonito, A., Glowinski, R.: On the nodal set of the eigenfunctions of the Laplace-Beltrami
operator for bounded surfaces in R3: A computational approach. Commun. Pure Appl. Anal-
ysis, 13, 2115–2126 (2014)

18. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3, 1–122 (2011)

19. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 26, 359–374 (2001)

20. Bredies, K.: Recovering piecewise smooth multichannel images by minimization of con-
vex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.C.
(eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 44–77.
Springer, Berlin (2014)

21. Bredies, K., Pock, T., Wirth, B.: Convex relaxation of a class of vertex penalizing functionals.
Journal of Mathematical Imaging and Vision, 47, 278–302 (2013)

22. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization
of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28, 151–167
(2007)

23. Bristeau, M.O., Glowinski, R., Périaux, J.: Numerical methods for the Navier-Stokes equa-
tions. Application to the simulation of compressible and incompressible viscous flow. Com-
puter Physics Reports, 6, 73–187 (1987)

24. Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-
valued images. IEEE Transactions on Image Processing, 19, 1518–1527 (2010)

25. Calder, J., Mansouri, A.,Yezzi, A.: Image sharpening via Sobolev gradient flows. SIAM Jour-
nal on Imaging Sciences, 3, 981–1014 (2010)

26. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related
problems. Numerische Mathematik, 76, 167–188, (1997)

27. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with app-
lications to imaging. Journal of Mathematical Imaging and Vision, 40, 120–145 (2011)

28. Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of tex-
tured images using fractional order regularization. Numerical Mathematics: Theory, Methods
& Applications, 6, 276–296 (2013)

29. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image seg-
mentation and denoising models. SIAM J. Appl. Math., 66, 1632–1648 (electronic) (2006)

30. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of
Mildly Nonlinear Elliptic Equations. Stanford report STAN-CS-78-674, Computer Science
Department, Stanford University, Palo Alto, CA (1978)



88 R. Glowinski et al.

31. Chan, T., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Journal
on Applied Mathematics, 62, 564–592 (2002)

32. Chan, T. F., Marquina, A., Mulet, P.: High-order total variation-based image restoration.
SIAM J. Sci. Comput., 22 (2), 503–516 (2000).

33. Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans Image Proc., 10, 266–277
(2001)

34. Chiche, A., Gilbert, J.C.: How the augmented Lagrangian algorithm can deal with an infea-
sible convex quadratic optimization problem. Journal of Convex Analysis, 22, 30 (2015)

35. Chorin, A.J.: Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57 (4),
785–796 (1973)

36. Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and numer-
ical algorithms. Com. Pure Appl. Math., 31, 205–256 (1978)

37. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA
(2002)

38. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Transactions
of the American Mathematical Society, 277, 1–42 (1983)

39. Cuesta, E., Kirane, M., Malik, S.A.: Image structure preserving denoising using generalized
fractional time integrals. Signal Processing, 92, 553–563 (2012)

40. Dahiya, D., Baskar, S., Coulouvrat, F.: Characteristic fast marching method for monotoni-
cally propagating fronts in a moving medium. SIAM J. Scient. Comp., 35, A1880–A1902
(2013)

41. Dean, E.J., Glowinski, R.: On some finite element methods for the numerical simulation of
incompressible viscous flow In: Gunzburger, M.D., Nicolaides, R.A. (eds.) Incompressible
Computational Fluid Dynamics, pp. 109–150. Cambridge University Press, New York, NY
(1993)

42. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of
the Dirichlet problem for the Monge-Ampère equation in two dimensions. Electronic Trans-
actions on Numerical Analysis, 22, 71–96 (2006)

43. Dean, E.J., Glowinski, R., Pan, T.W.: A wave equation approach to the numerical simulation
of incompressible viscous fluid flow modeled by the Navier-Stokes equations. In: J.A. de
Santo (ed.) Mathematical and Numerical Aspects of Wave Propagation, pp. 65–74. SIAM,
Philadelphia, PA (1998)

44. Deiterding, R., Glowinski, R., Olivier, H., Poole, S.: A reliable split-step Fourier method
for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. Lightwave
Technology, 31, 2008–2017 (2013)

45. Delbos, F., Gilbert, J.C.: Global linear convergence of an augmented Lagrangian algorithm
for solving convex quadratic optimization problems. Journal of Convex Analysis, 12, 45–69
(2005)

46. Delbos, F., Gilbert, J.C., Glowinski, R., Sinoquet, D.: Constrained optimization in seismic
reflection tomography: A Gauss-Newton augmented Lagrangian approach. Geophys. J. In-
ternat., 164, 670–684 (2006)

47. Demkowicz, L., Oden, J.T., Rachowicz, W.: A new finite element method for solving com-
pressible Navier-Stokes equations based on an operator splitting method and h-p adaptivity.
Comp. Meth. Appl. Mech. Eng., 84 (3), 275–326 (1990)

48. Descombes, S.: Convergence of splitting methods of high order for reaction-diffusion sys-
tems. Math. Comp., 70 (236), 1481–1501 (2001)

49. Descombes, S., Schatzman, M.: Directions alternées d’ordre élevé en réaction-diffusion. C.R.
Acad. Sci. Paris, Sér. I, Math., 321 (11), 1521–1524 (1995)

50. Descombes, S., Schatzman, M.: On Richardson extrapolation of Strang’s formula for
reaction-diffusion equations. In : Equations aux Dérivées Partielles et Applications : Arti-
cles dédiés à J.L. Lions, Gauthier-Villars-Elsevier, Paris, pp. 429–452 (1998)

51. Descombes, S., Thalhammer, M.: The Lie-Trotter splitting for nonlinear evolutionary prob-
lems with critical parameters: a compact local error representation and application to nonlin-
ear Schrödinger equations in the semiclassical regime. IMA J. Num. Anal., 33 (2), 722–745
(2013)



2 Operator-Splitting and Alternating Direction Methods 89

52. Desjardin, B., Esteban. M.: On weak solution for fluid-rigid structure interaction: compress-
ible and incompressible models. Archives Rat. Mech. Anal., 146, 59–71 (1999)

53. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering.
Journal of Mathematical Imaging and Vision, 35, 208–226 (2009)

54. Douglas, J.: Alternating direction methods in three space variables. Numer. Math., 4, 41–63
(1962)

55. Douglas, J.: Alternating direction methods for parabolic systems in m-space variables. J.
ACM, 9, 42–65 (1962)

56. Douglas, J., Kim, S.: Improved accuracy for locally one-dimensional methods for parabolic
equations. Math. Models Meth. Appl. Sciences, 11 (9), 1563–1579 (2001)

57. Douglas, J., Rachford, H.H.: On the solution of the heat conduction problem in 2 and 3 space
variables. Trans. Amer. Math. Soc., 82, 421–439 (1956)

58. Duan, Y., Huang, W.: A fixed-point augmented Lagrangian method for total variation
minimization problems. Journal of Visual Communication and Image Representation, 24,
1168–1181 (2013)

59. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
60. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal

point algorithm for maximal monotone operators. Math. Progam., 55, 293–318 (1992)
61. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections

to split Bregman. CAM report, 9(31), Department of Mathematics, UCLA, Los Angeles, CA
(2009)

62. Fortin, M., Glowinski, R.: Lagrangiens Augmentés: Application à la Résolution Numérique
des Problèmes aux Limites. Dunod, Paris (1982)

63. Fortin, M., Glowinski, R.: Augmented Lagrangians: Application to the Numerical Solution
of Boundary Value Problems. North-Holland, Amsterdam (1983)

64. Gabay, D.: Application de la méthode des multiplicateurs aux inéquations variationnelles.
In: Fortin, M., Glowinski, R. (eds.) Lagrangiens Augmentés: Application à la Résolution
Numérique des Problèmes aux Limites, pp. 279–307. Dunod, Paris (1982)

65. Gabay, D.: Application of the methods of multipliers to variational inequalities In: Fortin,
M., Glowinski, R. (eds.) Augmented Lagrangians: Application to the Numerical Solution of
Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

66. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York,
NY (1984, 2nd printing: 2008)

67. Glowinski, R.: Viscous flow simulation by finite element methods and related numerical
techniques. In: Murman, E.M., Abarbanel, S.S. (eds.) Progress and Supercomputing in Com-
putational Fluid Dynamics, pp. 173–210. Birkhäuser, Boston, MA (1985)

68. Glowinski, R.: Splitting methods for the numerical solution of the incompressible Navier-
Stokes equations. In: Balakrishnan, A.V., Dorodnitsyn, A.A., Lions, J.L. (eds.) Vistas in Ap-
plied Mathematics, pp. 57–95. Optimization Software, New York, NY (1986)

69. Glowinski, R.: Finite element methods for the numerical simulation of incompressible vis-
cous flow. Application to the control of the Navier-Stokes equations. In: Anderson, C.R.,
Greengard, C. (eds.) Vortex Dynamics and Vortex Methods, pp. 219–301. American Mathe-
matical Society, Providence, RI (1991)

70. Glowinski, R.: Finite element methods for incompressible viscous flow In: Ciarlet, P.G.,
Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. IX, pp. 3–1176. North-Holland,
Amsterdam (2003)

71. Glowinski, R.: On alternating direction methods of multipliers: A historical perspective. In:
Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmäki, P., Pironneau, O. (eds.) Modeling, Simula-
tion and Optimization for Science and Technology, Vol. 34, pp. 59–82. Springer, Dordrecht
(2014)

72. Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Prob-
lems. SIAM, Philadelphia, PA (2015)

73. Glowinski, R., Dean, E.J., Guidoboni, G., Juarez, H.L., Pan, T.-W.: Applications of operator-
splitting methods to the direct numerical simulation of particulate and free-surface flows and
to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J.
Ind. Appl. Math., 25, 1–63 (2008)



90 R. Glowinski et al.

74. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Non-
linear Mechanics. SIAM, Philadelphia, PA (1989)

75. Glowinski, R., Leung, Y., Qian, J.: Operator-splitting based fast sweeping methods for
isotropic wave propagation in a moving fluid. SIAM J. Scient. Comp., 38(2), A1195–A1223
(2016)

76. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities.
North-Holland, Amsterdam (1981).

77. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la réso-
lution par pénalisation-dualité d’une classe de problèmes de Dirichlet non-linéaires. C. R.
Acad. Sci. Paris, 278A, 1649–1652 (1974)

78. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolu-
tion par pénalisation-dualité d’une classe de problèmes de Dirichlet non-linéaires. ESAIM :
Math. Model. Num. Anal., 9(R2), 41–76 (1975)

79. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach
to the direct numerical simulation of incompressible viscous fluid flow past moving rigid
bodies: application to particulate flow. J. Comp. Phys., 169, 363–426 (2001)

80. Glowinski, R., Quaini, A.: On an inequality of C. Sundberg: A computational investigation
via nonlinear programming. Journal of Optimization Theory and Applications, 158 (3), 739–
772 (2013)

81. Glowinski, R., Shiau, L., Sheppard, M.: Numerical methods for a class of nonlinear integro-
differential equations. Calcolo, 50, 17–33 (2013)

82. Glowinski, R., Sorensen, D.C.: Computing the eigenvalues of the Laplace-Beltrami operator
on the surface of a torus: A numerical approach. In: Glowinski, R., Neittaanmäki, P. (eds.)
Partial Differential Equations: Modeling and Numerical Solution, pp. 225–232. Springer,
Dordrecht (2008)

83. Glowinski, R., Wachs, A.: On the numerical simulation of visco-plastic fluid flow. In: Ciarlet,
P.G., Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, Vol. XVI, pp. 483–717.
North-Holland, Amsterdam (2011)

84. Godlewsky, E.: Méthodes à Pas Multiples et de Directions Alternées pour la Discrétisation
d’Equations d’Evolution. Doctoral Dissertation, Department of Mathematics, University P.
& M. Curie, Paris, France (1980)

85. Goldman, D., Kaper, T.J.: N th-order operator-splitting schemes and non-reversible systems.
SIAM J. Num. Anal., 33 (1), 349–367 (1996)

86. Goldstein, T., Osher, S.: The split-Bregman method for L1-regularized problems. SIAM Jour-
nal on Imaging Sciences, 2, 323–343 (2009)

87. Grandmont, C., Maday, Y.: Existence for an unsteady fluid-structure interaction problem.
Math. Model. Num. Anal., 34, 609–636 (2000)

88. Greer, J.B., Bertozzi, A.L.: Traveling wave solutions of fourth order PDEs for image pro-
cessing. SIAM Journal on Mathematical Analysis, 36, 38–68 (2004)

89. Guidotti, P., Longo, K.: Two enhanced fourth order diffusion models for image denoising.
Journal of Mathematical Imaging and Vision, 40, 188–198 (2011)

90. Guermond, J.L.: Some implementations of projection methods for Navier-Stokes equations.
RAIRO-Model. Math. Anal. Num., 30 (5), 637–667 (1996)

91. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible
flows. Comp. Meth. Appl. Mech. Eng., 195 (44), 6011–6045 (2006)

92. Guermond, J.L., Quartapelle, L.: Calculation of incompressible viscous flows by an uncon-
ditionally stable projection FEM. J. Comp. Phys., 132 (1),12–33(1997)

93. Guermond, J.L., Quartapelle, L.: On the approximation of the unsteady Navier-Stokes equa-
tions by finite element projection methods. Numer. Math., 80 (2), 207–238 (1998)

94. Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompress-
ible flows. J. Comp. Phys., 192 (1), 262–276 (2003)

95. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas-Rachford alternating direc-
tion method. SIAM J. Numer. Anal., 50, 700–709 (2012)

96. Hesse, R, Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental al-
gorithms for feasibility problems. SIAM Journal on Optimization, 23 (4), 2397–2419 (2013)



2 Operator-Splitting and Alternating Direction Methods 91

97. Hou, S., T.-W. Pan, Glowinski, R.: Circular band formation for incompressible viscous fluid-
rigid-particle mixtures in a rotating cylinder. Physical Review E, 89, 023013 (2014)

98. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulation of fluid-solid systems
using arbitrary Lagrangian-Eulerian techniques. J. Comp. Phys., 169, 427–462 (2001)

99. Hu, L., Chen, D., Wei, G.W.: High-order fractional partial differential equation transform for
molecular surface construction. Molecular Based Mathematical Biology, 1, 1–25 (2013)

100. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems. SIAM, Philadel-
phia, PA (2008)

101. Jidesh, P., George, S.: Fourth–order variational model with local–constraints for denois-
ing images with textures. International Journal of Computational Vision and Robotics, 2,
330–340 (2011)

102. Jin, S., Markowich, P.A., Zheng, C.: Numerical simulation of a generalized Zakharov system.
J. Comp. Phys., 201, 376–395 (2004)

103. Johnson, A.A., Tezduyar, T.E.: 3-D simulations of fluid-particle interactions with the number
of particles reaching 100. Comp. Meth. Appl. Mech. Engrg., 145, 301–321 (1997)

104. Kao, C.Y., Osher, S.J., Qian, J.: Lax-Friedrichs sweeping schemes for static Hamilton-Jacobi
equations. J. Comput. Phys., 196, 367–391 (2004)

105. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incom-
pressible Navier-Stokes equations. J. Comp. Phys., 97 (2), 414–443 (1991)

106. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal
of Computer Vision, 1, 321–331 (1988)

107. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes
equations. Journal of Computational Physics, 59 (2), 308–323 (1985)

108. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces:
movies, color, texture, and volumetric medical images. International Journal of Computer
Vision, 39, 111–129 (2000)

109. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization.
In: Aujol, J.F., Nikolova, M., Papadakis, N. (eds.) Scale Space and Variational Methods in
Computer Vision, pp. 666–677, Proceedings, LNCS 9087, Springer International Publishing
(2015).

110. Layton, W.J., Maubach, J.M., Rabier, P.J.: Parallel algorithms for maximal monotone opera-
tors of local type. Numer. Math., 71, 29–58 (1995)

111. Le, H., Moin, P.: An improvement of fractional step methods for the incompressible Navier-
Stokes equations. Journal of Computational Physics, 92 (2), 369–379 (1991)

112. Lee, M.J., Do Oh, B., Kim, Y.B.: Canonical fractional-step methods and consistent boundary
conditions for the incompressible Navier-Stokes equations. J. Comp. Phys., 168 (1), 73–100
(2001)

113. Lehoucq, R.B., Sorensen, D. C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA
(1998)

114. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM
J. Imaging Sci., 4, 1049–1096 (2011)

115. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged
nonconvex projections. Foundations of Computational Mathematics, 9 (4), 485–513 (2009)

116. Li, C.H., Glowinski, R.: Modeling and numerical simulation of low-Mach number compress-
ible flows. Int. J. Numer. Meth. Fluids, 23 (2), 77–103 (1996)

117. Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications to Mumford-
Shah image segmentation. IEEE Transactions on Image Processing, 15, 1171–1181 (2006)

118. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM
J. Num. Anal., 16, 964–979 (1979)

119. Lu, T., Neittaanmäki, P., Tai, X.-C.: A parallel splitting up method for partial differential
equations and its application to Navier-Stokes equations. RAIRO Math. Model. and Numer.
Anal., 26, 673–708 (1992)

120. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential
equation with applications to medical magnetic resonance images in space and time. Image
Processing, IEEE Transactions on, 12, 1579–1590 (2003)



92 R. Glowinski et al.

121. Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L. (eds.)
Handbook of Numerical Analysis, Vol. I, pp. 197–462. North-Holland, Amsterdam (1990)

122. Marion, M., Temam, R.: Navier-Stokes equations: Theory and approximation. In: Ciarlet,
P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. VI, pp. 503–689. North-
Holland, Amsterdam (1998)

123. Marsden, J.: A formula for the solution of the Navier-Stokes equation based on a method of
Chorin. Bulletin of the American Mathematical Society, 80 (1),154–158 (1974)

124. Masnou, S., Morel, J.M.: Level lines based disocclusions. In: Proceedings IEEE International
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