
Chapter 10
First Order Algorithms in Variational Image
Processing

M. Burger, A. Sawatzky, and G. Steidl

Abstract The success of non-smooth variational models in image processing is
heavily based on efficient algorithms. Taking into account the specific structure of
the models as sum of different convex terms, splitting algorithms are an appropriate
choice. Their strength consists in the splitting of the original problem into a seq-
uence of smaller proximal problems which are easy and fast to compute.

Operator splitting methods were first applied to linear, single-valued operators
for solving partial differential equations in the 60th of the last century. More than 20
years later these methods were generalized in the convex analysis community to the
solution of inclusion problems, where the linear operators have to be replaced by
nonlinear, set-valued, monotone operators. Again after more than 20 years splitting
methods became popular in image processing. In particular, operator splittings in
combination with (augmented) Lagrangian methods and primal-dual methods have
been applied very successfully.

In this chapter we give an overview of first order algorithms recently used to solve
convex non-smooth variational problems in image processing. We present computa-
tional studies providing a comparison of different methods and also illustrating their
success in applications.
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1 Introduction

Variational methods in imaging are nowadays developing towards a quite universal
and flexible tool, allowing for highly successful approaches on tasks like denoising,
deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow
estimation. The overall structure of such approaches is of the form

D(Ku)+αR(u)→ min
u
,

where the functional D is a data fidelity term also depending on some input data
f and measuring the deviation of Ku from such and R is a regularization func-
tional. Moreover K is a (often linear) forward operator modeling the dependence of
data on an underlying image, and α is a positive regularization parameter. While D
is often smooth and (strictly) convex, the current practice almost exclusively uses
nonsmooth regularization functionals. The majority of successful techniques is us-
ing nonsmooth and convex functionals like the total variation and generalizations
thereof, cf. [28, 31, 41], or �1-norms of coefficients arising from scalar products
with some frame system, cf. [78] and references therein.

The efficient solution of such variational problems in imaging demands for
appropriate algorithms. Taking into account the specific structure as a sum of very
different terms to be minimized, splitting algorithms are a quite canonical choice.
Consequently this field has revived the interest in techniques like operator splittings
or augmented Lagrangians. In this chapter we shall provide an overview of meth-
ods currently developed and recent results as well as some computational studies
providing a comparison of different methods and also illustrating their success in
applications.

We start with a very general viewpoint in the first sections, discussing basic not-
ations, properties of proximal maps, firmly non-expansive and averaging operators,
which form the basis of further convergence arguments. Then we proceed to a dis-
cussion of several state-of-the-art algorithms and their (theoretical) convergence
properties. In this chapter we focus on the so-called first order methods involving
only subgradients of the functional, but no higher order derivatives. After a section
discussing issues related to the use of analogous iterative schemes for ill-posed prob-
lems, we present some practical convergence studies in numerical examples related
to PET and spectral CT reconstruction.

2 Notation

In the following we summarize the notations and definitions that will be used
throughout the present chapter:

• x+ := max{x,0}, x ∈R
d , whereby the maximum operation has to be interpreted

componentwise.
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• ιC is the indicator function of a set C ⊆ R
d given by

ιC(x) :=

{
0 if x ∈C,

+∞ otherwise.

• Γ0(R
d) is a set of proper, convex, and lower semi-continuous functions mapping

from R
d into the extended real numbers R∪{+∞}.

• dom f := {x ∈ R
d : f (x)<+∞} denotes the effective domain of f .

• ∂ f (x0) := {p ∈R
d : f (x)− f (x0)≥ 〈p,x− x0〉 ∀x ∈R

d} denotes the subdiffer-
ential of f ∈ Γ0(R

d) at x0 ∈ dom f and is the set consisting of the subgradients
of f at x0. If f ∈ Γ0(R

d) is differentiable at x0, then ∂ f (x0) = {∇ f (x0)}. Con-
versely, if ∂ f (x0) contains only one element then f is differentiable at x0 and
this element is just the gradient of f at x0. By Fermat’s rule, x̂ is a global mini-
mizer of f ∈ Γ0(R

d) if and only if

0 ∈ ∂ f (x̂).

• f ∗(p) := supx∈Rd{〈p,x〉 − f (x)} is the (Fenchel) conjugate of f . For proper
f , we have f ∗ = f if and only if f (x) = 1

2‖x‖2
2. If f ∈ Γ0(R

d) is positively
homogeneous, i.e., f (αx) = α f (x) for all α > 0, then

f ∗(x∗) = ιCf (x
∗), Cf := {x∗ ∈ R

d : 〈x∗,x〉 ≤ f (x) ∀x ∈ R
d}.

In particular, the conjugate functions of �p-norms, p ∈ [1,+∞], are given by

‖ · ‖∗p(x∗) = ιBq(1)(x
∗) (10.1)

where 1
p +

1
q = 1 and as usual p = 1 corresponds to q = ∞ and conversely, and

Bq(λ ) := {x ∈ R
d : ‖x‖q ≤ λ} denotes the ball of radius λ > 0 with respect to

the �q-norm.

3 Proximal Operator

The algorithms proposed in this chapter to solve various problems in digital image
analysis and restoration have in common that they basically reduce to the evaluation
of a series of proximal problems. Therefore we start with these kind of problems.
For a comprehensive overview on proximal algorithms we refer to [139].

3.1 Definition and Basic Properties

For f ∈ Γ0(R
d) and λ > 0, the proximal operator proxλ f : Rd → R

d of λ f is
defined by

proxλ f (x) := argmin
y∈Rd

{
1

2λ
‖x− y‖2

2 + f (y)

}
. (10.2)
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It compromises between minimizing f and being near to x, where λ is the trade-off
parameter between these terms. The Moreau envelope or Moreau-Yoshida regular-
ization λ f : Rd → R is given by

λ f (x) := min
y∈Rd

{
1

2λ
‖x− y‖2

2 + f (y)

}
.

A straightforward calculation shows that λ f = ( f ∗+ λ
2 ‖ · ‖2

2)
∗. The following theo-

rem ensures that the minimizer in (10.2) exists, is unique, and can be characterized
by a variational inequality. The Moreau envelope can be considered as a smooth
approximation of f . For the proof we refer to [8].

Theorem 1. Let f ∈ Γ0(R
d). Then,

i) For any x ∈ R
d, there exists a unique minimizer x̂ = proxλ f (x) of (10.2).

ii) The variational inequality

1
λ
〈x− x̂,y− x̂〉+ f (x̂)− f (y)≤ 0 ∀y ∈ R

d . (10.3)

is necessary and sufficient for x̂ to be the minimizer of (10.2).
iii) x̂ is a minimizer of f if and only if it is a fixed point of proxλ f , i.e.,

x̂ = proxλ f (x̂).

iv) The Moreau envelope λ f is continuously differentiable with gradient

∇
(λ f

)
(x) =

1
λ
(
x−proxλ f (x)

)
. (10.4)

v) The set of minimizers of f and λ f are the same.

Rewriting iv) as proxλ f (x) = x−λ∇
(λ f

)
(x) we can interpret proxλ f (x) as a gra-

dient descent step with step size λ for minimizing λ f .

Example 1. Consider the univariate function f (y) := |y| and

proxλ f (x) = argmin
y∈R

{
1

2λ
(x− y)2 + |y|

}
.

Then, a straightforward computation yields that proxλ f is the soft-shrinkage func-
tion Sλ with threshold λ (see Figure 10.1) defined by

Sλ (x) := (x−λ )+− (−x−λ )+ =

⎧⎨
⎩

x−λ for x > λ ,
0 for x ∈ [−λ ,λ ],

x+λ for x <−λ .
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Setting x̂ := Sλ (x) = proxλ f (x), we get

λ f (x) = |x̂|+ 1
2λ

(x− x̂)2 =

⎧⎪⎨
⎪⎩

x− λ
2 for x > λ ,

1
2λ x2 for x ∈ [−λ ,λ ],

−x− λ
2 for x <−λ .

This function λ f is known as Huber function (see Figure 10.1).

−λ λ

Sλ

λ
2

−λ λ1
2λ

x2

Fig. 10.1: Left: Soft-shrinkage function proxλ f = Sλ for f (y) = |y|. Right: Moreau envelope λ f .

Theorem 2 (Moreau Decomposition). For f ∈ Γ0(R
d) the following decomposi-

tion holds:

prox f (x)+prox f ∗(x) = x,

1 f (x)+ 1 f ∗(x) =
1
2
‖x‖2

2.

For a proof we refer to [148, Theorem 31.5].

Remark 1 (Proximal Operator and Resolvent). The subdifferential operator is a set-
valued function ∂ f : Rd → 2R

d
. For f ∈ Γ0(R

d), we have by Fermat’s rule and
subdifferential calculus that x̂ = proxλ f (x) if and only if

0 ∈ x̂− x+λ∂ f (x̂),

x ∈ (I +λ∂ f )(x̂),

which implies by the uniqueness of the proximum that x̂ = (I +λ∂ f )−1(x). In par-
ticular, Jλ∂ f := (I+λ∂ f )−1 is a single-valued operator which is called the resolvent
of the set-valued operator λ∂ f . In summary, the proximal operator of λ f coincides
with the resolvent of λ∂ f , i.e.,

proxλ f = Jλ∂ f .

The proximal operator (10.2) and the proximal algorithms described in Section 5
can be generalized by introducing a symmetric, positive definite matrix Q ∈R

d,d as
follows:
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proxQ,λ f := argmin
y∈Rd

{
1

2λ
‖x− y‖2

Q + f (y)

}
, (10.5)

where ‖x‖2
Q := xTQx, see, e.g., [52, 57, 190].

3.2 Special Proximal Operators

Algorithms involving the solution of proximal problems are only efficient if the cor-
responding proximal operators can be evaluated in an efficient way. In the following
we collect frequently appearing proximal mappings in image processing. For epi-
graphical projections see [12, 50, 94].

3.2.1 Orthogonal Projections

The proximal operator generalizes the orthogonal projection operator. The orthogo-
nal projection of x ∈ R

d onto a nonempty, closed, convex set C is given by

ΠC(x) := argmin
y∈C

‖x− y‖2

and can be rewritten for any λ > 0 as

ΠC(x) = argmin
y∈Rd

{
1

2λ
‖x− y‖2

2 + ιC(y)
}
= proxλιC(x).

Some special sets C are considered next.

Affine set

C := {y ∈ R
d : Ay = b} with A ∈ R

m,d , b ∈ R
m.

In case of ‖x−y‖2 → miny subject to Ay = b we substitute z := x−y which leads to

‖z‖2 → min
z

subject to Az = r := Ax−b.

This can be directly solved, see [20], and leads after back-substitution to

ΠC(x) = x−A†(Ax−b),

where A† denotes the Moore-Penrose inverse of A.
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Halfspace

C := {y ∈ R
d : aTy ≤ b} with a ∈ R

d , b ∈ R.
A straightforward computation gives

ΠC(x) = x− (aTx−b)+
‖a‖2

2

a.

Box and Nonnegative Orthant

C := {y ∈ R
d : l ≤ y ≤ u} with l,u ∈ R

d .
The proximal operator can be applied componentwise and gives

(ΠC(x))k =

⎧⎨
⎩

lk if xk < lk,
xk if lk ≤ xk ≤ uk,
uk if xk > uk.

For l = 0 and u=+∞ we get the orthogonal projection onto the non-negative orthant

ΠC(x) = x+.

Probability Simplex

C := {y ∈ R
d : 1Ty = ∑d

k=1 yk = 1, y ≥ 0}.
Here we have

ΠC(x) = (x−μ1)+,

where μ ∈ R has to be determined such that h(μ) := 1T(x − μ1)+ = 1. Now μ
can be found, e.g., by bisection with starting interval [maxk xk − 1,maxk xk] or by
a method similar to those described in subSection 3.2.2 for projections onto the
�1-ball. Note that h is a linear spline function with knots x1, . . . ,xd so that μ is
completely determined if we know the neighbor values xk of μ .

3.2.2 Vector Norms

We consider the proximal operator of f = ‖ · ‖p, p ∈ [1,+∞]. By the Moreau de-
composition in Theorem 2, regarding (λ f )∗ = λ f ∗(·/λ ) and by (10.1) we obtain

proxλ f (x) = x−proxλ f ∗(·/λ )(x)

= x−ΠBq(λ )(x),

where 1
p +

1
q = 1. Thus the proximal operator can be simply computed by the pro-

jections onto the �q-ball. In particular, it follows for p = 1,2,∞:
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p = 1, q = ∞:

For k = 1, . . . ,d,

(
ΠB∞(λ )(x)

)
k =

{
xk if |xk| ≤ λ ,

λ sgn(xk) if |xk|> λ , and proxλ‖·‖1
(x) = Sλ (x),

where Sλ (x), x ∈ R
d , denotes the componentwise soft-shrinkage with threshold λ .

p = q = 2 :

ΠB2,λ (x)=

{
x if ‖x‖2 ≤ λ ,

λ x
‖x‖2

if ‖x‖2 > λ , and proxλ‖·‖2
(x)=

{
0 if ‖x‖2 ≤ λ ,

x(1− λ
‖x‖2

) if ‖x‖2 > λ .

p = ∞, q = 1 :

ΠB1,λ (x) =

{
x if ‖x‖1 ≤ λ ,

Sμ(x) if ‖x‖1 > λ ,

and

proxλ‖·‖∞(x) =

{
0 if ‖x‖1 ≤ λ ,

x−Sμ(x) if ‖x‖1 > λ ,

with μ :=
|xπ(1)|+...+|xπ(m)|−λ

m , where |xπ(1)| ≥ . . . ≥ |xπ(d)| ≥ 0 are the sorted abso-
lute values of the components of x and m ≤ d is the largest index such that |xπ(m)|
is positive and

|xπ(1)|+...+|xπ(m)|−λ
m ≤ |xπ(m)|, see also [62, 67]. Another method fol-

lows similar lines as the projection onto the probability simplex in the previous
subsection.

Further, grouped/mixed �2-�p-norms are defined for x = (x1, . . . ,xn)
T ∈ R

dn with
x j := (x jk)

d
k=1 ∈ R

d , j = 1, . . . ,n by

‖x‖2,p := ‖(‖x j‖2)
n
j=1 ‖p.

For the �2-�1-norm we see that

proxλ‖·‖2,1
(x) = argmin

y∈Rdn

{
1

2λ
‖x− y‖2

2 +‖y‖2,1

}
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can be computed separately for each j which results by the above considerations for
the �2-norm for each j in

proxλ‖·‖2
(x j) =

{
0 if ‖x j‖2 ≤ λ ,

x j(1− λ
‖x j‖2

) if ‖x j‖2 > λ .

The procedure for evaluating proxλ‖·‖2,1
is sometimes called coupled or grouped

shrinkage.

Finally, we provide the following rule from [56, Prop. 3.6].

Lemma 1. Let f = g+ μ | · |, where g ∈ Γ0(R) is differentiable at 0 with g′(0) = 0.
Then proxλ f = proxλg ◦Sλ μ .

Example 2. Consider the elastic net regularizer f (x) := 1
2‖x‖2

2 + μ‖x‖1, see [192].
Setting the gradient in the proximal operator of g := 1

2‖ · ‖2
2 to zero we obtain

proxλg(x) =
1

1+λ
x.

The whole proximal operator of f can be then evaluated componentwise and we see
by Lemma 1 that

proxλ f (x) = proxλg

(
Sλ μ(x)

)
=

1
1+λ

Sμλ (x).

3.2.3 Matrix Norms

Next we deal with proximation problems involving matrix norms. For X ∈R
m,n, we

are looking for

proxλ‖·‖(X) = argmin
Y∈Rm,n

{
1

2λ
‖X −Y‖2

F +‖Y‖
}
, (10.6)

where ‖ · ‖F is the Frobenius norm and ‖ · ‖ is any unitarily invariant matrix norm,
i.e., ‖X‖ = ‖UXV T‖ for all unitary matrices U ∈ R

m,m,V ∈ R
n,n. Von Neumann

(1937) [176] has characterized the unitarily invariant matrix norms as those matrix
norms which can be written in the form

‖X‖= g(σ(X)),

where σ(X) is the vector of singular values of X and g is a symmetric gauge func-
tion, see [182]. Recall that g : Rd → R+ is a symmetric gauge function if it is a
positively homogeneous convex function which vanishes at the origin and fulfills

g(x) = g(ε1xk1 , . . . ,εkxkd )
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for all εk ∈ {−1,1} and all permutations k1, . . . ,kd of indices. An analogous result
was given by Davis [63] for symmetric matrices, where V T is replaced by U T and
the singular values by the eigenvalues.
We are interested in the Schatten-p norms for p = 1,2,∞ which are defined for
X ∈ R

m,n and t := min{m,n} by

‖X‖∗ :=
t

∑
i=1

σi(X) = g∗(σ(X)) = ‖σ(X)‖1, (Nuclear norm)

‖X‖F := (
m

∑
i=1

n

∑
j=1

x2
i j)

1
2 = (

t

∑
i=1

σi(X)2)
1
2 = gF (σ(X)) = ‖σ(X)‖2, (Frobenius norm)

‖X‖2 := max
i=1,...,t

σi(X) = g2(σ(X)) = ‖σ(X)‖∞, (Spectral norm).

The following theorem shows that the solution of (10.6) reduces to a proximal prob-
lem for the vector norm of the singular values of X . Another proof for the special
case of the nuclear norm can be found in [37].

Theorem 3. Let X = UΣXV T be the singular value decomposition of X and ‖ · ‖ a
unitarily invariant matrix norm. Then proxλ‖·‖(X) in (10.6) is given by X̂ =UΣX̂V T,

where the singular values σ(X̂) in ΣX̂ are determined by

σ(X̂) := proxλg(σ(X)) = argmin
σ∈Rt

{1
2
‖σ(X)−σ‖2

2 +λg(σ)} (10.7)

with the symmetric gauge function g corresponding to ‖ · ‖.

Proof. By Fermat’s rule we know that the solution X̂ of (10.6) is determined by

0 ∈ X̂ −X +λ∂‖X̂‖ (10.8)

and from [182] that

∂‖X‖= conv{UDV T : X =UΣXV T, D = diag(d), d ∈ ∂g(σ(X))}. (10.9)

We now construct the unique solution X̂ of (10.8). Let σ̂ be the unique solution of
(10.7). By Fermat’s rule σ̂ satisfies 0 ∈ σ̂ −σ(X)+λ∂g(σ̂) and consequently there
exists d ∈ ∂g(σ̂) such that

0 =U
(
diag(σ̂)−ΣX +λdiag(d)

)
V T

F ⇔ 0 =U diag(σ̂)V T −X +λU diag(d)V T.

By (10.9) we see that X̂ :=U diag(σ̂)V T is a solution of (10.8). This completes the
proof. ��
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For the special matrix norms considered above, we obtain by the previous subsection

‖ · ‖∗ : σ(X̂) := σ(X)−ΠB∞,λ (σ(X)),

‖ · ‖F : σ(X̂) := σ(X)−ΠB2,λ (σ(X)),

‖ · ‖2 : σ(X̂) := σ(X)−ΠB1,λ (σ(X)).

4 Fixed Point Algorithms and Averaged Operators

An operator T : Rd →R
d is contractive if it is Lipschitz continuous with Lipschitz

constant L < 1, i.e., there exists a norm ‖ · ‖ on R
d such that

‖T x−Ty‖ ≤ L‖x− y‖ ∀x,y ∈ R
d .

In case L = 1, the operator is called nonexpansive. A function T : Rd ⊃ Ω → R
d

is firmly nonexpansive if it fulfills for all x,y ∈ R
d one of the following equivalent

conditions [12]:

‖T x−Ty‖2
2 ≤ 〈x− y,T x−Ty〉,

‖T x−Ty‖2
2 ≤ ‖x− y‖2

2 −‖(I −T )x− (I −T )y‖2
2. (10.10)

In particular we see that a firmly nonexpansive function is nonexpansive.

Lemma 2. For f ∈Γ0(R
d), the proximal operator proxλ f is firmly nonexpansive. In

particular the orthogonal projection onto convex sets is firmly nonexpansive.

Proof. By Theorem 1ii) we have that

1
λ
〈x−proxλ f (x),z−proxλ f (x)〉+ f (proxλ f (x))− f (z)≤ 0 ∀z ∈ R

d .

With z := proxλ f (y) this gives

〈x−proxλ f (x),proxλ f (y)−proxλ f (x)〉+λ f (proxλ f (x))−λ f (proxλ f (y))≤ 0

and similarly

〈y−proxλ f (y),proxλ f (x)−proxλ f (y)〉+λ f (proxλ f (y))−λ f (proxλ f (x))≤ 0.

Adding these inequalities we obtain

〈x−proxλ f (x)+proxλ f (y)− y,proxλ f (y)−proxλ f (x)〉 ≤ 0,

‖proxλ f (y)−proxλ f (x)‖2
2 ≤ 〈y− x,proxλ f (y)−proxλ f (x)〉.

��
The Banach fixed point theorem guarantees that a contraction has a unique fixed
point and that the Picard sequence

x(r+1) = T x(r) (10.11)
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converges to this fixed point for every initial element x(0). However, in many applica-
tions the contraction property is too restrictive in the sense that we often do not have
a unique fixed point. Indeed, it is quite natural in many cases that the reached fixed
point depends on the starting value x(0). Note that if T is continuous and (T rx(0))r∈N
is convergent, then it converges to a fixed point of T . In the following, we denote by
Fix(T ) the set of fixed points of T . Unfortunately, we do not have convergence of
(T rx(0))r∈N just for nonexpansive operators as the following example shows.

Example 3. In R
2 we consider the reflection operator

R :=

(
1 0
0 −1

)
.

Obviously, R is nonexpansive and we only have convergence of (Rrx(0))r∈N if x(0) ∈
Fix(R) = span{(1,0)T}. A possibility to obtain a ‘better’ operator is to average R,
i.e., to build

T := αI +(1−α)R =

(
1 0
0 2α −1

)
, α ∈ (0,1).

By

T x = x ⇔ αx+(1−α)R(x) = x ⇔ (1−α)R(x) = (1−α)x, (10.12)

we see that R and T have the same fixed points. Moreover, since 2α −1 ∈ (−1,1),

the sequence (T rx(0))r∈N converges to (x(0)1 ,0)T for every x(0) = (x(0)1 ,x(0)2 )T ∈ R
2.

An operator T : Rd →R
d is called averaged if there exists a nonexpansive mapping

R and a constant α ∈ (0,1) such that

T = αI +(1−α)R.

Following (10.12) we see that

Fix(R) = Fix(T ).

Historically, the concept of averaged mappings can be traced back to [112, 120,
156], where the name ‘averaged’ was not used yet. Results on averaged operators
can also be found, e.g., in [12, 36, 55].

Lemma 3 (Averaged, (Firmly) Nonexpansive and Contractive Operators). space

i) Every averaged operator is nonexpansive.
ii) A contractive operator T : Rd → R

d with Lipschitz constant L < 1 is averaged
with respect to all parameters α ∈ (0,(1−L)/2].

iii) An operator is firmly nonexpansive if and only if it is averaged with α = 1
2 .

Proof. i) Let T = αI +(1−α)R be averaged. Then the first assertion follows by

‖T (x)−T (y)‖2 ≤ α‖x− y‖2 +(1−α)‖R(x)−R(y)‖2 ≤ ‖x− y‖2.
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ii) We define the operator R := 1
1−α (T −αI). It holds for all x,y ∈ R

d that

‖Rx−Ry‖2 =
1

1−α
‖(T −αI)x− (T −αI)y‖2,

≤ 1
1−α

‖T x−Ty‖2 +
α

1−α
‖x− y‖2,

≤ L+α
1−α

‖x− y‖2,

so R is nonexpansive if α ≤ (1−L)/2.
iii) With R := 2T − I = T − (I −T ) we obtain the following equalities

‖Rx−Ry‖2
2 = ‖T x−Ty− ((I−T )x− (I −T )y)‖2

2

= −‖x− y‖2
2 +2‖T x−Ty‖2

2 +2‖(I −T )x− (I −T )y‖2
2

and therefore after reordering

‖x− y‖2
2 −‖T x−Ty‖2

2 −‖(I −T )x− (I −T )y‖2
2

= ‖T x−Ty‖2
2 +‖(I −T )x− (I −T )y‖2

2 −‖Rx−Ry‖2
2

=
1
2
(‖x− y‖2

2 +‖Rx−Ry‖2
2)−‖Rx−Ry‖2

2

=
1
2
(‖x− y‖2

2 −‖Rx−Ry‖2
2).

If R is nonexpansive, then the last expression is ≥ 0 and consequently (10.10) holds
true so that T is firmly nonexpansive. Conversely, if T fulfills (10.10), then

1
2

(‖x− y‖2
2 −‖Rx−Ry‖2

2

)≥ 0

so that R is nonexpansive. This completes the proof. ��
By the following lemma averaged operators are closed under composition.

Lemma 4 (Composition of Averaged Operators). space

i) Suppose that T : Rd → R
d is averaged with respect to α ∈ (0,1). Then, it is also

averaged with respect to any other parameter α̃ ∈ (0,α].
ii) Let T1,T2 : Rd → R

d be averaged operators. Then, T2 ◦T1 is also averaged.

Proof. i) By assumption, T = αI +(1−α)R with R nonexpansive. We have

T = α̃I +
(
(α − α̃)I +(1−α)R

)
= α̃I +(1− α̃)

(
α − α̃
1− α̃

I +
1−α
1− α̃

R

)
︸ ︷︷ ︸

R̃
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and for all x,y ∈ R
d it holds that

‖R̃(x)− R̃(y)‖2 ≤ α − α̃
1− α̃

‖x− y‖2 +
1−α
1− α̃

‖R(x)−R(y)‖2 ≤ ‖x− y‖2.

So, R̃ is nonexpansive.
ii) By assumption there exist nonexpansive operators R1,R2 and α1,α2 ∈ (0,1) such
that

T2 (T1(x)) = α2T1(x)+(1−α2)R2 (T1(x))

= α2 (α1x+(1−α1)R1 (x))+(1−α2)R2 (T1 (x))

= α2α1︸ ︷︷ ︸
:=α

x+(α2 −α2α1︸ ︷︷ ︸
=α

)R1 (x)+(1−α2)R2 (T1 (x))

= αx+(1−α)

(
α2 −α
1−α

R1 (x)+
1−α2

1−α
R2 (T1 (x))

)
︸ ︷︷ ︸

=:R

The concatenation of two nonexpansive operators is nonexpansive. Finally, the con-
vex combination of two nonexpansive operators is nonexpansive so that R is indeed
nonexpansive. ��
An operator T : Rd → R

d is called asymptotically regular if it holds for all x ∈ R
d

that (
T r+1x−T rx

)→ 0 for r →+∞.

Note that this property does not imply convergence, even boundedness cannot be
guaranteed. As an example consider the partial sums of a harmonic sequence.

Theorem 4 (Asymptotic Regularity of Averaged Operators).
Let T :Rd →R

d be an averaged operator with respect to the nonexpansive mapping
R and the parameter α ∈ (0,1). Assume that Fix(T ) �= /0. Then, T is asymptotically
regular.

Proof. Let x̂ ∈ Fix(T ) and x(r) = T rx(0) for some starting element x(0). Since T is
nonexpansive, i.e., ‖x(r+1)− x̂‖2 ≤ ‖x(r)− x̂‖2 we obtain

lim
r→∞

‖x(r)− x̂‖2 = d ≥ 0. (10.13)

Using Fix(T ) = Fix(R) it follows

lim
r→∞

sup‖R(x(r))− x̂‖2 = lim
r→∞

sup‖R(x(r))−R(x̂)‖2 ≤ lim
r→∞

‖x(r)− x̂‖2 = d. (10.14)

Assume that ‖x(r+1) − x(r)‖2 �→ 0 for r → ∞. Then, there exists a subsequence
(x(rl))l∈N such that

‖x(rl+1)− x(rl)‖2 ≥ ε
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for some ε > 0. By (10.13) the sequence (x(rl))l∈N is bounded. Hence there exists a

convergent subsequence (x
(rl j

)
) such that

lim
j→∞

x
(rl j

)
= a,

where a ∈ S(x̂,d) := {x ∈R
d : ‖x− x̂‖2 = d} by (10.13). On the other hand, we have

by the continuity of R and (10.14) that

lim
j→∞

R(x
(rl j

)
) = b, b ∈ B(x̂,d).

Since ε ≤ ‖x
(rl j

+1)− x
(rl j

)‖2 = ‖(α − 1)x
(rl j

)
+ (1−α)R(x

(rl j
)
)‖2 we conclude by

taking the limit j → ∞ that a �= b. By the continuity of T and (10.13) we obtain

lim
j→∞

T (x
(rl j

)
) = c, c ∈ S(x̂,d).

However, by the strict convexity of ‖ · ‖2
2 this yields the contradiction

‖c− x̂‖2
2 = lim

j→∞
‖T (x

(rl j
)
)− x̂‖2

2 = lim
j→∞

‖α(x
(rl j

)− x̂)+(1−α)(R(x
(rl j

)
)− x̂)‖2

2

= ‖α(a− x̂)+(1−α)(b− x̂)‖2
2 < α‖a− x̂‖2

2 +(1−α)‖b− x̂‖2
2

≤ d2.

��
The following theorem was first proved for operators on Hilbert spaces by Opial
[133, Theorem 1] based on the results in [29], where convergence must be replaced
by weak convergence in general Hilbert spaces. A shorter proof can be found in the
appendix of [61]. For finite dimensional spaces the proof simplifies as follows.

Theorem 5 (Opial’s Convergence Theorem).
Let T : Rd →R

d fulfill the following conditions: Fix(T ) �= /0, T is nonexpansive and
asymptotically regular. Then, for every x(0) ∈ R

d, the sequence of Picard iterates
(x(r))r∈N generated by x(r+1) = T x(r) converges to an element of Fix(T ).

Proof. Since T is nonexpansive, we have for any x̂ ∈ Fix(T ) and any x(0) ∈ R
d that

‖T r+1x(0)− x̂‖2 ≤ ‖T rx(0)− x̂‖2.

Hence (T rx(0))r∈N is bounded and there exists a subsequence (T rl x(0))l∈N
= (x(rl))l∈N which converges to some x̃. If we can show that x̃ ∈ Fix(T ) we are
done because in this case

‖T rx(0)− x̃‖2 ≤ ‖T rl x(0)− x̃‖2, r ≥ rl

and thus the whole sequence converges to x̃.
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Since T is asymptotically regular it follows that

(T − I)(T rl x(0)) = T rl+1x(0)−T rl x(0) → 0

and since (T rl x(0))l∈N converges to x̃ and T is continuous we get that (T − I)(x̃) = 0,
i.e., x̃ ∈ Fix(T ). ��
Combining the above Theorems 4 and 5 we obtain the following main result.

Theorem 6 (Convergence of Averaged Operator Iterations). Let T : Rd →R
d be

an averaged operator such that Fix(T ) �= /0. Then, for every x(0) ∈R
d, the sequence

(T rx(0))r∈N converges to a fixed point of T .

5 Proximal Algorithms

5.1 Proximal Point Algorithm

By Theorem 1 iii) the minimizer of a function f ∈ Γ0(R
d), which we suppose to

exist, is characterized by the fixed point equation

x̂ = proxλ f (x̂).

The corresponding Picard iteration gives rise to the following proximal point al-
gorithm which dates back to [121, 147]. Since proxλ f is firmly nonexpansive by
Lemma 2 and thus averaged, the algorithm converges by Theorem 6 for any initial
value x(0) ∈ R

d to a minimizer of f if there exits one.

Algorithm 1 Proximal Point Algorithm (PPA)

Initialization: x(0) ∈ R
d , λ > 0

Iterations: For r = 0,1, . . .

x(r+1) = proxλ f (x
(r)) = argminx∈Rd

{
1

2λ ‖x(r)− x‖2
2 + f (x)

}

The PPA can be generalized for the sum ∑n
i=1 fi of functions fi ∈Γ0(R

d), i= 1, . . . ,n.
Popular generalizations are the so-called cyclic PPA [18] and the parallel PPA [53].

5.2 Proximal Gradient Algorithm

We are interested in minimizing functions of the form f = g+h, where g : Rd → R

is convex, differentiable with Lipschitz continuous gradient and Lipschitz constant
L, i.e.,

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 ∀x,y ∈ R
d , (10.15)
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and h ∈ Γ0(R
d). Note that the Lipschitz condition on ∇g implies

g(x)≤ g(y)+ 〈∇g(y),x− y〉+ L
2
‖x− y‖2

2 ∀x,y ∈ R
d , (10.16)

see, e.g., [134]. We want to solve

argmin
x∈Rd

{g(x)+h(x)}. (10.17)

By Fermat’s rule and subdifferential calculus we know that x̂ is a minimizer of
(10.17) if and only if

0 ∈ ∇g(x̂)+∂h(x̂),

x̂−η∇g(x̂) ∈ x̂+η∂h(x̂),

x̂ = (I +η∂h)−1 (x̂−η∇g(x̂)) = proxηh (x̂−η∇g(x̂)) . (10.18)

This is a fixed point equation for the minimizer x̂ of f . The corresponding Picard
iteration is known as proximal gradient algorithm or as proximal forward-backward
splitting.

Algorithm 2 Proximal Gradient Algorithm (FBS)

Initialization: x(0) ∈ R
d , η ∈ (0,2/L)

Iterations: For r = 0,1, . . .

x(r+1) = proxηh

(
x(r)−η∇g(x(r))

)

In the special case when h := ιC is the indicator function of a nonempty, closed,
convex set C ⊂ R

d , the above algorithm for finding

argmin
x∈C

g(x)

becomes the gradient descent re-projection algorithm, also known as “gradient pro-
jection algorithm”.

Algorithm 3 Gradient Descent Re-Projection Algorithm

Initialization: x(0) ∈ R
d , η ∈ (0,2/L)

Iterations: For r = 0,1, . . .

x(r+1) = ΠC

(
x(r)−η∇g(x(r))

)

It is also possible to use flexible variables ηr ∈ (0, 2
L ) in the proximal gradient algo-

rithm. For further details, modifications, and extensions see also [72, Chapter 12].
The convergence of the algorithm follows by the next theorem.
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Theorem 7 (Convergence of Proximal Gradient Algorithm). Let g : Rd → R be
a convex, differentiable function on R

d with Lipschitz continuous gradient and Lip-
schitz constant L and h ∈ Γ0(R

d). Suppose that a solution of (10.17) exists. Then,
for every initial point x(0) and η ∈ (0, 2

L ), the sequence {x(r)}r generated by the
proximal gradient algorithm converges to a solution of (10.17).

Proof. We show that proxηh(I−η∇g) is averaged. Then we are done by Theorem 6.
By Lemma 2 we know that proxηh is firmly nonexpansive. By the Baillon-Haddad
Theorem [12, Corollary 16.1] the function 1

L ∇g is also firmly nonexpansive, i.e., it
is averaged with parameter 1

2 . This means that there exists a nonexpansive mapping
R such that 1

L ∇g = 1
2 (I +R) which implies

I −η∇g = I − ηL
2 (I +R) = (1− ηL

2 )I + ηL
2 (−R).

Thus, for η ∈ (0, 2
L ), the operator I −η∇g is averaged. Since the concatenation of

two averaged operators is averaged again we obtain the assertion. ��
Under the above conditions a linear convergence rate can be achieved in the sense
that

f (x(r))− f (x̂) =O (1/r) ,

see, e.g., [49, 125]1.

Example 4. For solving

argmin
x∈Rd

{ 1
2
‖Kx−b‖2

2︸ ︷︷ ︸
g

+λ‖x‖1︸ ︷︷ ︸
h

}

we compute ∇g(x) = KT(Kx−b) and use that the proximal operator of the �1-norm
is just the componentwise soft-shrinkage. Then the proximal gradient algorithm
becomes

x(r+1) = proxλη‖·‖1

(
x(r)−ηKT(Kx(r)−b)

)
= Sηλ

(
x(r)−ηKT(Kx(r)−b)

)
.

This algorithm is known as iterative soft-thresholding algorithm (ISTA) and was de-
veloped and analyzed through various techniques by many researchers. For a general
Hilbert space approach of ISTA, see, e.g., [61].

The FBS algorithm has been recently extended to the case of non-convex functions
in [6, 7, 22, 52, 132]. The convergence analysis mainly rely on the assumption that
the objective function f = g+h satisfies the Kurdyka-Lojasiewicz inequality which
is indeed fulfilled for a wide class of functions as log−exp, semi-algebraic, and
subanalytic functions which are of interest in image processing.

1 There exist different notations for the convergence rate of algorithms in the literature. Sometimes
the notation of this chapter is also called “superlinear convergence” while ‖x̂− x(r)‖ ≤Cδ r , δ < 1
is used for the linear convergence. But if C =C(r)→ 0 as r → +∞ in the last formula, this could
be also meant by “superlinear convergence”.
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5.3 Accelerated Algorithms

For large scale problems as those arising in image processing a major concern is
to find efficient algorithms solving the problem in a reasonable time. While each
FBS step has low computational complexity, it may suffer from slow linear conver-
gence [49]. Using a simple extrapolation idea with appropriate parameters τr, the
convergence can often be accelerated:

y(r) = x(r) + τr

(
x(r)− x(r−1)

)
,

x(r+1) = proxηh

(
y(r)−η∇g(y(r))

)
. (10.19)

By the next Theorem 8 we will see that τr =
r−1
r+2 appears to be a good choice.

Clearly, we can vary η in each step again. Choosing θr such that τr =
θr(1−θr−1)

θr−1
,

e.g., θr =
2

r+2 for the above choice of τr, the algorithm can be rewritten as follows:

Algorithm 4 Fast Proximal Gradient Algorithm

Initialization: x(0) = z(0) ∈ R
d , η ∈ (0,1/L), θr =

2
r+2

Iterations: For r = 0,1, . . .
y(r) = (1−θr)x(r) +θrz(r)

x(r+1) = proxηh

(
y(r)−η∇g(y(r))

)
z(r+1) = x(r) + 1

θr

(
x(r+1)− x(r)

)

By the following standard theorem the extrapolation modification of the FBS algo-
rithm ensures a quadratic convergence rate see also [125, 171].

Theorem 8. Let f = g+ h, where g : Rd → R is a convex, Lipschitz differentiable
function with Lipschitz constant L and h ∈ Γ0(R

d). Assume that f has a minimizer
x̂. Then the fast proximal gradient algorithm fulfills

f (x(r))− f (x̂) =O (
1/r2) .

Proof. First we consider the progress in one step of the algorithm. By the Lipschitz
differentiability of g in (10.16) and since η < 1

L we know that

g(x(r+1))≤ g(y(r))+ 〈∇g(y(r)),x(r+1)− y(r)〉+ 1
2η

‖x(r+1)− y(r)‖2
2 (10.20)

and by the variational characterization of the proximal operator in Theorem 1ii) for
all u ∈ R

d that
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h(x(r+1))≤ h(u)+
1
η
〈y(r)−η∇g(y(r))− x(r+1),x(r+1)−u〉

≤ h(u)−〈∇g(y(r)),x(r+1)−u〉+ 1
η
〈y(r)− x(r+1),x(r+1)−u〉. (10.21)

Adding the main inequalities (10.20) and (10.21) and using the convexity of g yields

f (x(r+1))≤ f (u)−g(u)+g(y(r))+ 〈∇g(y(r)),u− y(r)〉︸ ︷︷ ︸
≤0

+
1

2η
‖x(r+1)− y(r)‖2

2 +
1
η
〈y(r)− x(r+1),x(r+1)−u〉

≤ f (u)+
1

2η
‖x(r+1)− y(r)‖2

2 +
1
η
〈y(r)− x(r+1),x(r+1)−u〉.

Combining these inequalities for u := x̂ and u := x(r) with θr ∈ [0,1] gives

θr

(
f (x(r+1))− f (x̂)

)
+(1−θr)

(
f (x(r+1))− f (x(r))

)

= f (x(r+1))− f (x̂)+(1−θr)
(

f (x̂)− f (x(r))
)

≤ 1
2η

‖x(r+1)− y(r)‖2
2 +

1
η
〈y(r)− x(r+1),x(r+1)−θrx̂− (1−θr)x

(r)〉

=
1

2η

(
‖y(r)−θrx̂− (1−θr)x

(r)‖2
2 −‖x(r+1)−θrx̂− (1−θr)x

(r)‖2
2

)

=
θ 2

r

2η

(
‖z(r)− x̂‖2

2 −‖z(r+1)− x̂‖2
2

)
.

Thus, we obtain for a single step

η
θ 2

r

(
f (x(r+1))− f (x̂)

)
+

1
2
‖z(r+1)− x̂‖2

2 ≤
η(1−θr)

θ 2
r

(
f (x(r))− f (x̂)

)
+

1
2
‖z(r)− x̂‖2

2.

Using the relation recursively on the right-hand side and regarding that (1−θr)
θ 2

r
≤ 1

θ 2
r−1

we obtain

η
θ 2

r

(
f (x(r+1))− f (x̂)

)
≤ η(1−θ0)

θ 2
0

(
f (x(0))− f (x̂)

)
+

1
2
‖z(0)− x̂‖2

2 =
1
2
‖x(0)− x̂‖2

2.

This yields the assertion

f (x(r+1))− f (x̂)≤ 2
η(r+2)2 ‖x(0)− x̂‖2

2.

��
There exist many variants or generalizations of the above algorithm (with certain
convergence rates under special assumptions):
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- Nesterov’s algorithms [126, 128], see also [60, 171]; this includes approxima-
tion algorithms for nonsmooth g [14, 129] as NESTA,

- fast iterative shrinkage algorithms (FISTA) by Beck and Teboulle [13],
- variable metric strategies [24, 33, 57, 138], where based on (10.5) step (10.19)

is replaced by

x(r+1) = proxQr ,ηrh

(
y(r)−ηrQ

−1
r ∇g(y(r))

)
(10.22)

with symmetric, positive definite matrices Qr.

Line search strategies can be incorporated [89, 93, 127]. Finally we mention
Barzilei-Borwein step size rules [11] based on a Quasi-Newton approach and rela-
tives, see [79] for an overview and the cyclic proximal gradient algorithm related to
the cyclic Richardson algorithm [165].

6 Primal-Dual Methods

6.1 Basic Relations

The following minimization algorithms closely rely on the primal-dual formulation
of problems. We consider functions f = g+h(A ·), where g ∈ Γ0(R

d), h ∈ Γ0(R
m),

and A ∈ R
m,d , and ask for the solution of the primal problem

(P) argmin
x∈Rd

{g(x)+h(Ax)} , (10.23)

that can be rewritten as

(P) argmin
x∈Rd ,y∈Rm

{g(x)+h(y) s.t. Ax = y} . (10.24)

The Lagrangian of (10.24) is given by

L(x,y, p) := g(x)+h(y)+ 〈p,Ax− y〉 (10.25)

and the augmented Lagrangian by

Lγ(x,y, p) := g(x)+h(y)+ 〈p,Ax− y〉+ γ
2
‖Ax− y‖2

2, γ > 0,

= g(x)+h(y)+
γ
2
‖Ax− y+

p
γ
‖2

2 −
1
2γ

‖p‖2
2. (10.26)

Based on the Lagrangian (10.25), the primal and dual problem can be written as

(P) argmin
x∈Rd ,y∈Rm

sup
p∈Rm

{g(x)+h(y)+ 〈p,Ax− y〉} , (10.27)

(D) argmax
p∈Rm

inf
x∈Rd ,y∈Rm

{g(x)+h(y)+ 〈p,Ax− y〉} . (10.28)
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Since
min
y∈Rm

{h(y)−〈p,y〉}=−max
y∈Rm

{〈p,y〉−h(y)}=−h∗(p)

and in (10.23) further

h(Ax) = max
p∈Rm

{〈p,Ax〉−h∗(p)},

the primal and dual problem can be rewritten as

(P) argmin
x∈Rd

sup
p∈Rm

{g(x)−h∗(p)+ 〈p,Ax〉} ,

(D) argmax
p∈Rm

inf
x∈Rd

{g(x)−h∗(p)+ 〈p,Ax〉} .

If the infimum exists, the dual problem can be seen as Fenchel dual problem

(D) argmax
p∈Rm

{−g∗(−AT p)−h∗(p)} . (10.29)

Recall that ((x̂, ŷ), p̂) ∈ R
dm,m is a saddle point of the Lagrangian L in (10.25) if

L((x̂, ŷ), p)≤ L((x̂, ŷ), p̂)≤ L((x,y), p̂) ∀(x,y) ∈ R
dm, p ∈ R

m.

If ((x̂, ŷ), p̂) ∈ R
dm,m is a saddle point of L, then (x̂, ŷ) is a solution of the primal

problem (10.27) and p̂ is a solution of the dual problem (10.28). The converse is
also true. However the existence of a solution of the primal problem (x̂, ŷ) ∈ R

dm

does only imply under additional qualification constraint that there exists p̂ such
that ((x̂, ŷ), p̂) ∈ R

dm,m is a saddle point of L.

6.2 Alternating Direction Method of Multipliers

Based on the Lagrangian formulation (10.27) and (10.28), a first idea to solve the
optimization problem would be to alternate the minimization of the Lagrangian with
respect to (x,y) and to apply a gradient ascent approach with respect to p. This is
known as general Uzawa method [5]. More precisely, noting that for differentiable
ν(p) := infx,y L(x,y, p) = L(x̃, ỹ, p) we have ∇ν(p) = Ax̃− ỹ, the algorithm reads

(x(r+1),y(r+1)) ∈ argmin
x∈Rd ,y∈Rm

L(x,y, p(r)), (10.30)

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)), γ > 0.

Linear convergence can be proved under certain conditions (strong convexity of f )
[87]. The assumptions on f to ensure convergence of the algorithm can be relaxed
by replacing the Lagrangian by the augmented Lagrangian Lγ (10.26) with fixed
parameter γ:
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(x(r+1),y(r+1)) ∈ argmin
x∈Rd ,y∈Rm

Lγ(x,y, p(r)), (10.31)

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)), γ > 0.

This augmented Lagrangian method is known as method of multipliers [101, 141,
147]. It can be shown [35, Theorem 3.4.7], [17] that the sequence (p(r))r generated
by the algorithm coincides with the proximal point algorithm applied to −ν(p), i.e.,

p(r+1) = prox−γν

(
p(r)

)
.

The improved convergence properties came at a cost. While the minimization with

respect to x and y can be separately computed in (10.30) using 〈p(r),(A|−I)

(
x
y

)
〉=

〈
(

AT

−I

)
p(r),

(
x
y

)
〉, this is no longer possible for the augmented Lagrangian. A rem-

edy is to alternate the minimization with respect to x and y which leads to

x(r+1) ∈ argmin
x∈Rd

Lγ(x,y
(r), p(r)), (10.32)

y(r+1) = argmin
y∈Rm

Lγ(x
(r+1),y, p(r)), (10.33)

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)).

This is the alternating direction method of multipliers (ADMM) which dates back to
[82, 83, 88].

Algorithm 5 Alternating Direction Method of Multipliers (ADMM)

Initialization: y(0) ∈ R
m, p(0) ∈ R

m

Iterations: For r = 0,1, . . .

x(r+1) ∈ argminx∈Rd

{
g(x)+ γ

2‖ 1
γ p(r) +Ax− y(r)‖2

2

}
y(r+1) = argminy∈Rm

{
h(y)+ γ

2‖ 1
γ p(r) +Ax(r+1)− y‖2

2

}
= prox 1

γ h(
1
γ p(r) +Ax(r+1))

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1))

Setting b(r) := p(r)/γ we obtain the following (scaled) ADMM:
A good overview on the ADMM algorithm and its applications is given in [27],
where in particular the important issue of choosing the parameter γ > 0 is addressed.
Convergence of the ADMM under various assumptions was proved, e.g., in [83, 96,
116, 170]. The ADMM can be considered for more general problems

argmin
xi∈Rdi

{
m

∑
i=1

gi(x) s.t. Aixi = c

}
. (10.34)



368 M. Burger et al.

Algorithm 6 Alternating Direction Method of Multipliers (scaled ADMM)

Initialization: y(0) ∈ R
m, b(0) ∈ R

m

Iterations: For r = 0,1, . . .

x(r+1) ∈ argminx∈Rd

{
g(x)+ γ

2‖b(r) +Ax− y(r)‖2
2

}
y(r+1) = argminy∈Rm

{
h(y)+ γ

2‖b(r) +Ax(r+1)− y‖2
2

}
= prox 1

γ h(b
(r) +Ax(r+1))

b(r+1) = b(r) +Ax(r+1)− y(r+1)

Here we refer to [47] and the references therein. We will see that for our problem
(10.24) the convergence follows by the relation of the ADMM to the so-called
Douglas-Rachford splitting algorithm where convergence can be shown using av-
eraged operators. Few bounds on the global convergence rate of the algorithm can
be found in [68] (linear convergence for linear programs depending on a variety
of quantities), [102] (linear convergence for sufficiently small step size) and on the
local behavior of a specific variation of the ADMM during the course of iteration
for quadratic programs in [21]. Further global rates of the ADMM are given in the
recent preprints [64, 65].

Theorem 9 (Convergence of ADMM). Let g ∈ Γ0(R
d), h ∈ Γ0(R

m) and A ∈ R
m,d.

Assume that the Lagrangian (10.25) has a saddle point. Then, for r → ∞, the seq-

uence γ
(

b(r)
)

r
converges to a solution of the dual problem. If in addition the first

step (10.32) in the ADMM algorithm has a unique solution, then
(

x(r)
)

r
converges

to a solution of the primal problem.

There exist different modifications of the ADMM algorithm presented above:

- inexact computation of the first step (10.32) [48, 69] such that it might be han-
dled by an iterative method,

- variable parameter and metric strategies [27, 95, 96, 98, 111] where the fixed
parameter γ can vary in each step, or the quadratic term (γ/2)‖Ax− y‖2

2 within
the augmented Lagrangian (10.26) is replaced by the more general proximal
operator based on (10.5) such that the ADMM updates (10.32) and (10.33) rec-
eive the form

x(r+1) ∈ argmin
x∈Rd

{
g(x)+

1
2
‖b(r) +Ax− y(r)‖2

Qr

}
,

y(r+1) = argmin
y∈Rm

{
h(y)+

1
2
‖b(r) +Ax(r+1)− y‖2

Qr

}
,

respectively, with symmetric, positive definite matrices Qr. The variable param-
eter strategies might mitigate the performance dependency on the initial chosen
fixed parameter [27, 98, 111, 181] and include monotone conditions [96, 111]
or more flexible non-monotone rules [27, 95, 98].
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ADMM from the Perspective of Variational Inequalities

The ADMM algorithm presented above from the perspective of Lagrangian func-
tions has been also studied extensively in the area of variational inequalities (VIs),
see, e.g., [82, 95, 170]. A VI problem consists of finding for a mapping F : Rl →R

l

a vector ẑ ∈ R
l such that

〈z− ẑ,F(ẑ)〉 ≥ 0, ∀z ∈ R
l . (10.35)

In the following, we consider the minimization problem (10.24), i.e.,

argmin
x∈Rd ,y∈Rm

{g(x)+h(y) s.t. Ax = y} ,

for g ∈ Γ0(R
d), h ∈ Γ0(R

m). The discussion can be extended to the more general
problem (10.34) [95, 170]. Considering the Lagrangian (10.25) and its optimality
conditions, solving (10.24) is equivalent to find a triple ẑ = ((x̂, ŷ), p̂) ∈ R

dm,m such
that (10.35) holds with

z =

⎛
⎝x

y
p

⎞
⎠ , F(z) =

⎛
⎝∂g(x)+AT p

∂h(y)− p
Ax− y

⎞
⎠ ,

where ∂g and ∂h have to be understood as any element of the corresponding subdif-
ferential for simplicity. Note that ∂g and ∂h are maximal monotone operators [12].
A VI problem of this form can be solved by ADMM as proposed by Gabay [82]
and Gabay and Mercier [83]: for a given triple (x(r),y(r), p(r)) generate new iterates
(x(r+1),y(r+1), p(r+1)) by

i) find x(r+1) such that

〈x−x(r+1),∂g(x(r+1))+AT(p(r) + γ(Ax(r+1)−y(r)))〉 ≥ 0, ∀x ∈R
d , (10.36)

ii) find y(r+1) such that

〈y−y(r+1),∂h(y(r+1))−(p(r) +γ(Ax(r+1)−y(r+1)))〉 ≥ 0, ∀y ∈R
m, (10.37)

iii) update p(r+1) via
p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)),

where γ > 0 is a fixed penalty parameter. To corroborate the equivalence of the
iteration scheme above to ADMM in Algorithm 5, note that (10.35) reduces to
〈ẑ,F(ẑ)〉 ≥ 0 for z = 2ẑ. On the other hand, (10.35) is equal to 〈ẑ,F(ẑ)〉 ≤ 0 when
z = −ẑ. The both cases transform (10.35) to find a solution ẑ of a system of equa-
tions F(ẑ) = 0. Thus, the VI sub-problems (10.36) and (10.37) can be reduced to
find a pair (x(r+1),y(r+1)) with

∂g(x(r+1))+AT(p(r) + γ(Ax(r+1)− y(r))) = 0,

∂h(y(r+1))− (p(r) + γ(Ax(r+1)− y(r+1))) = 0.
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The both equations correspond to optimality conditions of the minimization sub-
problems (10.32) and (10.33) of the ADMM algorithm, respectively. The theoretical
properties of ADMM from the perspective of VI problems were studied extensively
and a good reference overview can be found in [95].

Relation to Douglas-Rachford Splitting

Finally we want to point out the relation of the ADMM to the Douglas-Rachford
splitting algorithm applied to the dual problem, see [44, 69, 70, 82, 86, 164]. We
consider again the problem (10.17), i.e.,

argmin
x∈Rd

{g(x)+h(x)},

where we assume this time only g,h ∈ Γ0(R
d) and that g or h is continuous at a

point in domg∩ domh. Fermat’s rule and subdifferential calculus imply that x̂ is a
minimizer if and only if

0 ∈ ∂g(x̂)+∂h(x̂) ⇔ ∃ξ̂ ∈ η∂g(x̂) such that x̂ = proxηh(x̂− ξ̂ ). (10.38)

The basic idea for finding such minimizer is to set up a ‘nice’ operator T : Rd →
R

d by
T := proxηh(2proxηg − I)−proxηg + I, (10.39)

whose fixed points t̂ are related to the minimizers as follows: setting x̂ := proxηg(t̂),

i.e., t̂ ∈ x̂+η∂g(x̂) and ξ̂ := t̂ − x̂ ∈ η∂g(x̂) we see that

t̂ = T (t̂) = proxηh(2x̂− t̂)− x̂+ t̂,

ξ̂ + x̂ = proxηh(x̂− ξ̂ )+ ξ̂ ,

x̂ = proxηh(x̂− ξ̂ ),

which coincides with (10.38). By the proof of the next theorem, the operator T
is firmly nonexpansive such that by Theorem 6 a fixed point of T can be found
by Picard iterations. This gives rise to the following Douglas-Rachford splitting
algorithm (DRS).

Algorithm 7 Douglas-Rachford Splitting Algorithm (DRS)

Initialization: x(0), t(0) ∈ R
d , η > 0

Iterations: For r = 0,1, . . .
t(r+1) = proxηh(2x(r)− t(r))+ t(r)− x(r),
x(r+1) = proxηg(t

(r+1)).
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The following theorem verifies the convergence of the DRS algorithm. For a recent
convergence result see also [97].

Theorem 10 (Convergence of Douglas-Rachford Splitting Algorithm). Let g,h∈
Γ0(R

d) where one of the functions is continuous at a point in domg∩domh. Assume
that a solution of argminx∈Rd{g(x)+h(x)} exists. Then, for any initial t(0),x(0) ∈R

d

and any η > 0, the DRS sequence (t(r))r converges to a fixed point t̂ of T in (10.39)
and (x(r))r to a solution of the minimization problem.

Proof. It remains to show that T is firmly nonexpansive. We have for Rηg :=
2proxηg − I and Rηh := 2proxηh − I that

2T = 2proxηh(2proxηg − I)− (2proxηg − I)+ I = Rηh ◦Rηg + I,

T = 1
2 I + 1

2 Rηh ◦Rηg.

The operators Rηg,Rηh are nonexpansive since proxηg and proxηh are firmly non-
expansive. Hence Rηh ◦Rηg is nonexpansive and we are done. ��
For variety of (sharp) convergence rates of DRS we refer to [64, 65].
The relation of the ADMM algorithm and DRS algorithm applied to the Fenchel
dual problem (10.29), i.e.,

t(r+1) = proxηg∗◦(−AT)(2p(r)− t(r))+ t(r)− p(r),
p(r+1) = proxηh∗(t

(r+1)),
(10.40)

is given by the following theorem, see [69, 82].

Theorem 11 (Relation Between ADMM and DRS). The ADMM sequences
(

b(r)
)

r

and
(

y(r)
)

r
are related to the sequences (10.40) generated by the DRS algorithm

applied to the dual problem by η = γ and

t(r) = η(b(r) + y(r)),
p(r) = ηb(r).

(10.41)

Proof. First, we show that

p̂ = argmin
p∈Rm

{η
2
‖Ap−q‖2

2 +g(p)
}

⇒ η(Ap̂−q) = proxηg∗◦(−AT)(−ηq)

(10.42)

holds true. The left-hand side of (10.42) is equivalent to

0 ∈ ηAT(Ap̂−q)+∂g( p̂) ⇔ p̂ ∈ ∂g∗
(−ηAT(Ap̂−q)

)
.

Applying −ηA on both sides and using the chain rule implies

−ηAp̂ ∈ −ηA∂g∗
(−ηAT(Ap̂−q)

)
= η ∂

(
g∗ ◦ (−AT)

)(
η(Ap̂−q)

)
.
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Adding −ηq we get

−ηq ∈ (
I +η ∂ (g∗ ◦ (−AT))

)(
η(Ap̂−q)

)
,

which is equivalent to the right-hand side of (10.42) by the definition of the resolvent
(see Remark 1).
Secondly, applying (10.42) to the first ADMM step with γ = η and q := y(r)−b(r)

yields

η(b(r) +Ax(r+1)− y(r)) = proxηg∗◦(−AT)(η(b
(r)− y(r))).

Assume that the ADMM and DRS iterates have the identification (10.41) up to some
r ∈ N. Using this induction hypothesis it follows that

η(b(r) +Ax(r+1)) = proxηg∗◦(−AT)(η(b
(r)− y(r))︸ ︷︷ ︸

2p(r)−t(r)

)+ ηy(r)︸︷︷︸
t(r)−p(r)

(10.40)
= t(r+1).(10.43)

By definition of b(r+1) we see that η(b(r+1)+y(r+1)) = t(r+1). Next we apply (10.42)
in the second ADMM step where we replace g by h and A by −I and use q :=
−b(r)−Ax(r+1). Together with (10.43) this gives

η(−y(r+1) +b(r) +Ax(r+1)) = proxηh∗(η(b
(r) +Ax(r+1))︸ ︷︷ ︸

t(r+1)

)
(10.40)
= p(r+1).(10.44)

Using again the definition of b(r+1) we obtain ηb(r+1) = p(r+1) which completes the
proof. ��
A recent work [186] shows that the ADMM is in some sense self-dual, i.e., it is
equivalent not only to the DRS applied to the dual problem, but also to the primal
one.

6.3 Primal Dual Hybrid Gradient Algorithms

The first ADMM step (10.32) requires in general the solution of a linear system of
equations. This can be avoided by modifying this step using the Taylor expansion
at x(r):

γ
2
‖1

γ
p(r) +Ax− y(r)‖2

2 ≈ const+ γ〈AT(Ax(r)− y(r) +
1
γ

p(r)),x〉+ γ
2
(x− x(r))TATA(x− x(r)),

approximating ATA ≈ 1
γτ I, setting γ := σ and using p(r)/σ instead of Ax(r)−y(r) +

p(r)/σ we obtain (note that p(r+1)/σ = p(r)/σ +Ax(r+1)− y(r+1)):
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x(r+1) = argminx∈Rd

{
g(x)+ 1

2τ ‖x−
(

x(r)− τAT p(r)
)
‖2

2

}
= proxτg

(
x(r)− τAT p(r)

)
,

y(r+1) = argminy∈Rm

{
h(y)+ σ

2 ‖ 1
σ p(r) +Ax(r+1)− y‖2

2

}
= prox 1

σ h

(
1
σ p(r) +Ax(r+1)

)
,

p(r+1) = p(r) +σ(Ax(r+1)− y(r+1)).
(10.45)

The above algorithm can be deduced in another way by the Arrow-Hurwicz method:
we alternate the minimization in the primal and dual problems (10.27) and (10.28)
and add quadratic terms. The resulting sequences

x(r+1) = argmin
x∈Rd

{
g(x)+ 〈p(r),Ax〉+ 1

2τ
‖x− x(r)‖2

2

}
,

= proxτg(x
(r)− τAT p(r)) (10.46)

p(r+1) = argmin
p∈Rm

{
h∗(p)−〈p,Ax(r+1)〉+ 1

2σ
‖p− p(r)‖2

2

}
,

= proxσh∗(p(r) +σAx(r+1)) (10.47)

coincide with those in (10.45) which can be seen as follows: For x(r) the relation is
straightforward. From the last equation we obtain

p(r) +σAx(r+1) ∈ p(r+1) +σ∂h∗(p(r+1)),

1
σ
(p(r)− p(r+1))+Ax(r+1) ∈ ∂h∗(p(r+1)),

and using that p ∈ ∂h(x)⇔ x ∈ ∂h∗(p) further

p(r+1) ∈ ∂h
( 1

σ
(p(r)− p(r+1))+Ax(r+1)

︸ ︷︷ ︸
y(r+1)

)
.

Setting

y(r+1) :=
1
σ
(p(r)− p(r+1))+Ax(r+1),

we get
p(r+1) = p(r) +σ(Ax(r+1)− y(r+1)) (10.48)

and p(r+1) ∈ ∂h(y(r+1)) which can be rewritten as

y(r+1) +
1
σ

p(r+1) ∈ y(r+1) +
1
σ

∂h(y(r+1)),

1
σ

p(r) +Ax(r+1) ∈ y(r+1) +
1
σ

∂h(y(r+1)),

y(r+1) = prox 1
σ h

(
1
σ

p(r) +Ax(r+1)
)
.



374 M. Burger et al.

There are several modifications of the basic “linearized” ADMM which improve its
convergence properties as

- the predictor corrector proximal multiplier method [48],
- the primal dual hybrid gradient method (PDHG) [191] with convergence proof

in [23],
- primal dual hybrid gradient method with extrapolation of the primal or dual

variable [43, 140], a preconditioned version [42] and a generalization [58],
Douglas-Rachford-type algorithms [25, 26] for solving inclusion equations, see
also [54, 177], as well an extension allowing the operator A to be nonlinear
[172].

A good overview on primal-dual methods is also given in [110]. Here is the algo-
rithm proposed by Chambolle, Cremers, and Pock [43, 140].

Algorithm 8 Primal Dual Hybrid Gradient Method with Extrapolation of Dual
Variable (PDHGMp)

Initialization: y(0),b(0) = b(−1) ∈ R
m, τ,σ > 0 with τσ < 1/‖A‖2

2 and θ ∈ (0,1]
Iterations: For r = 0,1, . . .

x(r+1) = argminx∈Rd

{
g(x)+ 1

2τ ‖x− (x(r)− τσATb̄(r))‖2
2

}
y(r+1) = argminy∈Rm

{
h(y)+ σ

2 ‖b(r) +Ax(r+1)− y‖2
2

}
b(r+1) = b(r) +Ax(r+1)− y(r+1).

b̄(r+1) = b(r+1) +θ(b(r+1)−b(r))

Note that the new first updating step can be also deduced by applying the so-called
inexact Uzawa algorithm to the first ADMM step (see Section 6.4). Furthermore,
it can be directly seen that for A being the identity and θ = 1 and γ = σ = 1

τ , the
PDHGMp algorithm corresponds to the ADMM as well as the Douglas-Rachford
splitting algorithm as proposed in Section 6.2. The following theorem and conver-
gence proof are based on [43].

Theorem 12. Let g ∈ Γ0(R
d), h ∈ Γ0(R

m) and θ ∈ (0,1]. Let τ ,σ > 0 fulfill

τσ < 1/‖A‖2
2. (10.49)

Suppose that the Lagrangian L(x, p) := g(x)− h∗(p)+ 〈Ax, p〉 has a saddle point.
Then the sequence {(x(r), p(r))}r produced by PDGHMp converges to a saddle point
of the Lagrangian.

Proof. We restrict the proof to the case θ = 1. For arbitrary x̄ ∈R
d , p̄ ∈R

m consider
according to (10.46) and (10.47) the iterations

x(r+1) = (I + τ∂g)−1
(

x(r)− τAT p̄
)
,

p(r+1) = (I +σ∂h∗)−1
(

p(r) +σAx̄
)
,
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i.e.,

x(r)− x(r+1)

τ
−AT p̄ ∈ ∂g

(
x(r+1)

)
,

p(r)− p(r+1)

σ
+Ax̄ ∈ ∂h∗

(
p(r+1)

)
.

By definition of the subdifferential we obtain for all x ∈ R
d and all p ∈ R

m that

g(x) ≥ g(x(r+1))+
1
τ
〈x(r)− x(r+1),x− x(r+1)〉−〈AT p̄,x− x(r+1)〉,

h∗(p) ≥ h∗(p(r+1))+
1
σ
〈p(r)− p(r+1), p− p(r+1)〉+ 〈p− p(r+1),Ax̄〉

and by adding the equations

0 ≥ g(x(r+1))−h∗(p)−
(

g(x)−h∗(p(r+1))
)
−〈AT p̄,x− x(r+1)〉+ 〈p− p(r+1),Ax̄〉

+
1
τ
〈x(r)− x(r+1),x− x(r+1)〉+ 1

σ
〈p(r)− p(r+1), p− p(r+1)〉.

By

〈x(r)− x(r+1),x− x(r+1)〉= 1
2

(
‖x(r)− x(r+1)‖2

2 +‖x− x(r+1)‖2
2 −‖x− x(r)‖2

2

)

this can be rewritten as

1
2τ

‖x− x(r)‖2
2 +

1
2σ

‖p− p(r)‖2
2

≥ 1
2τ

‖x(r)− x(r+1)‖2
2 +

1
2τ

‖x− x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p− p(r+1)‖2
2

+
(

g(x(r+1))−h∗(p)+ 〈p,Ax(r+1)〉
)
−
(

g(x)−h∗(p(r+1))+ 〈p(r+1),Ax〉
)

−〈p,Ax(r+1)〉+ 〈p(r+1),Ax〉−〈 p̄,A(x− x(r+1))〉+ 〈p− p(r+1),Ax̄〉
=

1
2τ

‖x(r)− x(r+1)‖2
2 +

1
2τ

‖x− x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p− p(r+1)‖2
2

+
(

g(x(r+1))−h∗(p)+ 〈p,Ax(r+1)〉
)
−
(

g(x)−h∗(p(r+1))+ 〈p(r+1),Ax〉
)

+ 〈p(r+1)− p,A(x(r+1)− x̄)〉−〈p(r+1)− p̄,A(x(r+1)− x)〉.
For any saddle point (x∗, p∗) we have that L(x∗, p)≤ L(x∗, p∗)≤ L(x, p∗) for all x, p
so that in particular 0 ≤ L(x(r+1), p∗)−L(x∗, p(r+1)). Thus, using (x, p) := (x∗, p∗)
in the above inequality, we get

1
2τ

‖x∗ − x(r)‖2
2 +

1
2σ

‖p∗ − p(r)‖2
2

≥ 1
2τ

‖x(r)− x(r+1)‖2
2 +

1
2τ

‖x∗ − x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p∗ − p(r+1)‖2
2

+〈p(r+1)− p∗,A(x(r+1)− x̄)〉−〈p(r+1)− p̄,A(x(r+1)− x∗)〉.
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In the algorithm we use x̄ := x(r+1) and p̄ := 2p(r)− p(r−1). Note that p̄ = p(r+1)

would be the better choice, but this is impossible if we want to keep on an explicit
algorithm. For these values the above inequality further simplifies to

1
2τ

‖x∗ − x(r)‖2
2 +

1
2σ

‖p∗ − p(r)‖2
2

≥ 1
2τ

‖x(r)− x(r+1)‖2
2 +

1
2τ

‖x∗ − x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p∗ − p(r+1)‖2
2

+ 〈p(r+1)−2p(r) + p(r−1),A(x∗ − x(r+1))〉.

We estimate the last summand using Cauchy-Schwarz’s inequality as follows:

〈p(r+1)− p(r)− (p(r)− p(r−1)),A(x∗ − x(r+1))〉
= 〈p(r+1)− p(r),A(x∗ − x(r+1))〉−〈p(r)− p(r−1),A(x∗ − x(r))〉

− 〈p(r)− p(r−1),A(x(r)− x(r+1))〉
≥ 〈p(r+1)− p(r),A(x∗ − x(r+1))〉−〈p(r)− p(r−1),A(x∗ − x(r))〉

− ‖A‖2‖x(r+1)− x(r)‖2 ‖p(r)− p(r−1)‖2.

Since

2uv ≤ αu2 +
1
α

v2, α > 0, (10.50)

we obtain

‖A‖2‖x(r+1)− x(r)‖2 ‖p(r)− p(r−1)‖2 ≤ ‖A‖2

2

(
α‖x(r+1)− x(r)‖2

2 +
1
α
‖p(r)− p(r−1)‖2

2

)

=
‖A‖2ατ

2τ
‖x(r+1)− x(r)‖2

2 +
‖A‖2σ
2ασ

‖p(r)− p(r−1)‖2
2.

With α :=
√

σ/τ the relation

‖A‖2ατ =
‖A‖2σ

α
= ‖A‖2

√
στ < 1

holds true. Thus, we get

1
2τ

‖x∗ − x(r)‖2
2 +

1
2σ

‖p∗ − p(r)‖2
2

≥ 1
2τ

‖x∗ − x(r+1)‖2
2 +

1
2σ

‖p∗ − p(r+1)‖2
2

+
1

2τ
(1−‖A‖2

√
στ)‖x(r+1)− x(r)‖2

2 +
1

2σ
‖p(r+1)− p(r)‖2

2 −
‖A‖2

√
στ

2σ
‖p(r)− p(r−1)‖2

2

+ 〈p(r+1)− p(r),A(x∗ − x(r+1))〉−〈p(r)− p(r−1),A(x∗ − x(r))〉. (10.51)

Summing up these inequalities from r = 0 to N −1 and regarding that p(0) = p(−1),
we obtain
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1
2τ

‖x∗ − x(0)‖2
2 +

1
2σ

‖p∗ − p(0)‖2
2

≥ 1
2τ

‖x∗ − x(N)‖2
2 +

1
2σ

‖p∗ − p(N)‖2
2

+ (1−‖A‖2
√

στ)

(
1

2τ

N

∑
r=1

‖x(r)− x(r−1)‖2
2 +

1
2σ

N−1

∑
r=1

‖p(r)− p(r−1)‖2
2

)

+
1

2σ
‖p(N)− p(N−1)‖2

2 + 〈p(N)− p(N−1),A(x∗ − x(N))〉

By

〈p(N)− p(N−1),A(x(N)− x∗)〉 ≤ 1
2σ

‖p(N)− p(N−1)‖2
2 +

‖A‖2
2στ

2τ
‖x(N)− x∗‖2

2

this can be further estimated as

1
2τ

‖x∗ − x(0)‖2
2 +

1
2σ

‖p∗ − p(0)‖2
2

≥ 1
2τ

(1−‖A‖2
2στ)‖x∗ − x(N)‖2

2 +
1

2σ
‖p∗ − p(N)‖2

2

+ (1−‖A‖2
√

στ)

(
1

2τ

N

∑
r=1

‖x(r)− x(r−1)‖2
2 +

1
2σ

N−1

∑
r=1

‖p(r)− p(r−1)‖2
2

)
. (10.52)

By (10.52) we conclude that the sequence {(x(n), p(n))}n is bounded. Thus, there
exists a convergent subsequence {(x(n j), p(n j))} j which converges to some point
(x̂, p̂) as j → ∞. Further, we see by (10.52) that

lim
n→∞

(
x(n)− x(n−1)

)
= 0, lim

n→∞

(
p(n)− p(n−1)

)
= 0.

Consequently,

lim
j→∞

(
x(n j−1)− x̂

)
= 0, lim

j→∞

(
p(n j−1)− p̂

)
= 0

holds true. Let T denote the iteration operator of the PDHGMp cycles, i.e., T (x(r),
p(r)) = (x(r+1), p(r+1)). Since T is the concatenation of affine operators and proxi-

mation operators, it is continuous. Now we have that T
(

x(n j−1), p(n j−1)
)
=(

x(n j), p(n j)
)

and taking the limits for j → ∞ we see that T (x̂, p̂) = (x̂, p̂) so that

(x̂, p̂) is a fixed point of the iteration and thus a saddle point of L. Using this par-
ticular saddle point in (10.51) and summing up from r = n j to N − 1, N > n j we
obtain
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1
2τ

‖x̂− x(n j)‖2
2 +

1
2σ

‖p̂− p(n j)‖2
2

≥ 1
2τ

‖x̂− x(N)‖2
2 +

1
2σ

‖p̂− p(N)‖2
2

+ (1−‖A‖2
√

στ)

(
1

2τ

N−1

∑
r=n j

‖x(r+1)− x(r)‖2
2 +

1
2σ

N−1

∑
r=n j+1

‖p(r)− p(r−1)‖2

)

+
1

2σ
‖p(N)− p(N−1)‖2 − ‖A‖2

√
στ

2σ
‖p(n j)− p(n j−1)‖2

2

+ 〈p(N)− p(N−1),A(x̂− x(N))〉−〈p(n j)− p(n j−1),A(x̂− x(n j))〉

and further

1
2τ

‖x̂− x(n j)‖2
2 +

1
2σ

‖p̂− p(n j)‖2
2

≥ 1
2τ

‖x̂− x(N)‖2
2 +

1
2σ

‖p̂− p(N)‖2
2

+
1

2σ
‖p(N)− p(N−1)‖2

2 −
‖A‖2

√
στ

2σ
‖p(n j)− p(n j−1)‖2

2

+ 〈p(N)− p(N−1),A(x̂− x(N))〉−〈p(n j)− p(n j−1),A(x̂− x(n j))〉

For j → ∞ this implies that (x(N), p(N)) converges also to (x̂, ŷ) and we are done. ��

6.4 Proximal ADMM

To avoid the computation of a linear system of equations in the first ADMM step
(10.32), we can more generally use the proximal ADMM algorithm [95, 190] that
can be interpreted as a preconditioned variant of ADMM. In this variant the mini-
mization step (10.32) is replaced by a proximal-like iteration based on the general
proximal operator (10.5),

x(r+1) = argmin
x∈Rd

{Lγ(x,y
(r), p(r))+

1
2
‖x− x(r)‖2

R} (10.53)

with a symmetric, positive definite matrix R ∈ R
d,d . The introduction of R provides

an additional flexibility to cancel out linear operators which might be difficult to
invert. In addition the modified minimization problem is strictly convex inducing a
unique minimizer. In the same manner the second ADMM step (10.33) can also be
extended by a proximal term (1/2)‖y− y(r)‖2

S with a symmetric, positive definite
matrix S ∈ R

m,m [190]. The convergence analysis of the proximal ADMM was pro-
vided in [190] and the algorithm can be also classified as an inexact Uzawa method.
A generalization, where the matrices R and S can non-monotonically vary in each
iteration step, was analyzed in [95], additionally allowing an inexact computation
of minimization problems.
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In case of the PDHGMp algorithm, it was mentioned that the first updating step can
be deduced by applying the inexact Uzawa algorithm to the first ADMM step. Using
the proximal ADMM, it is straightforward to see that the first updating step of the
PDHGMp algorithm with θ = 1 corresponds to (10.53) in case of R = 1

τ I −σATA
with 0 < τ < 1/‖σATA‖, see [43, 71]. Further relations of the (proximal) ADMM
to primal dual hybrid methods discussed above can be found in [71].

6.5 Bregman Methods

Bregman methods became very popular in image processing by a series papers of
Osher and co-workers, see, e.g., [91, 135]. Many of these methods can be interpreted
as ADMM methods and its linearized versions. In the following we briefly sketch
these relations.
The PPA is a special case of the Bregman PPA. Let ϕ : Rd →R∪{+∞} be a convex
function. Then the Bregman distance Dp

ϕ : Rd ×R
d → R is given by

Dp
ϕ(x,y) = ϕ(x)−ϕ(y)−〈p,x− y〉

with p ∈ ∂ϕ(y), y ∈ dom f . If ∂ϕ(y) contains only one element, we just write Dϕ .
If ϕ is smooth, then the Bregman distance can be interpreted as subtracting the first
order Taylor expansion of ϕ(x) at y.

Example 5. (Special Bregman Distances)

1. The Bregman distance corresponding to ϕ(x) := 1
2‖x‖2

2 is given by Dϕ(x,y) =
1
2‖x− y‖2

2.
2. For the negative Shannon entropy ϕ(x) := 〈1d ,x logx〉, x > 0 we obtain the (dis-

crete) I-divergence or generalized Kullback-Leibler entropy Dϕ(x,y) = x log x
y −

x+ y.

For f ∈ Γ0(R
d) we consider the generalized proximal problem

argmin
y∈Rd

{
1
γ

Dp
ϕ(x,y)+ f (y)

}
.

The Bregman Proximal Point Algorithm (BPPA) for solving this problem reads as
follows:

Algorithm 9 Bregman Proximal Point Algorithm (BPPA)

Initialization: x(0) ∈ R
d , p(0) ∈ ∂ϕ(x(0)), γ > 0

Iterations: For r = 0,1, . . .

x(r+1) = argminy∈Rd

{
1
γ Dp(r)

ϕ (y,x(r))+ f (y)
}

p(r+1) ∈ ∂ϕ(x(r+1))



380 M. Burger et al.

The BPPA converges for any initialization x(0) to a minimizer of f if f ∈ Γ0(R
d)

attains its minimum and ϕ is finite, lower semi-continuous and strictly convex. For
convergence proofs we refer, e.g., to [107, 108]. We are interested again in the prob-
lem (10.24), i.e.,

argmin
x∈Rd ,y∈Rm

{Φ(x,y) s.t. Ax = y} , Φ(x,y) := g(x)+h(y).

We consider the BPP algorithm for the objective function f (x,y) := 1
2‖Ax−y‖2 with

the Bregman distance

D
(p(r)x ,p(r)y )
Φ

(
(x,y),(x(r),y(r))

)
= Φ(x,y)−Φ(x(r),y(r))−〈p(r)x ,x− x(r)〉−〈p(r)y ,y− y(r)〉,

where
(

p(r)x , p(r)y
) ∈ ∂Φ(x(r),y(r)). This results in

(x(r+1),y(r+1)) = argmin
x∈Rd ,y∈Rm

{1
γ

D
(p(r)x ,p(r)y )
Φ

(
(x,y),(x(r),y(r))

)
+

1
2
‖Ax− y‖2},

p(r+1)
x = p(r)x − γA∗(Ax(r+1)− y(r+1)), (10.54)

p(r+1)
y = p(r)y + γ(Ax(r+1)− y(r+1)), (10.55)

where we have used that the first equation implies

0 ∈ 1
γ

∂
(

Φ(x(r+1),y(r+1))− (
p(r)x , p(r)y

))
+
(
A∗(Ax(r+1)− y(r+1)),−(Ax(r+1)− y(r+1))

)
,

0 ∈ ∂Φ(x(r+1),y(r+1))− (
p(r+1)

x , p(r+1)
y

)
,

so that
(

p(r)x , p(r)y
) ∈ ∂Φ(x(r),y(r)). From (10.54) and (10.55) we see by induction

that p(r)x =−A∗p(r)y . Setting p(r) = p(r)y and regarding that

1
γ

Dp(r)

Φ

(
(x,y),(x(r),y(r))

)
+

1
2
‖Ax− y‖2

2

= const+
1
γ

(
Φ(x,y)+ 〈A∗p(r),x〉−〈p(r),y〉

)
+

1
2
‖Ax− y‖2

2

= const+
1
γ

(
Φ(x,y)+

γ
2
‖ p(r)

γ
+Ax− y‖2

2

)

we obtain the following split Bregman method, see [91]:
Obviously, this is exactly the form of the augmented Lagrangian method in (10.31).
Concerning the elastic net example 2 we refer to [38, 114, 187] for convergence
results of the so-called linearized Bregman algorithm.
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Algorithm 10 Split Bregman Algorithm

Initialization: x(0) ∈ R
d , p(0), γ > 0

Iterations: For r = 0,1, . . .

(x(r+1),y(r+1)) = argmin
x∈Rd ,y∈Rm

{
Φ(x,y)+ γ

2‖ p(r)

γ +Ax− y‖2
2

}

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1))

7 Iterative Regularization for Ill-Posed Problems

So far we have discussed the use of splitting methods for the numerical solution of
well-posed variational problems, which arise in a discrete setting and in particular
for the standard approach of Tikhonov-type regularization in inverse problems in
imaging. The latter is based on minimizing a weighted sum of a data fidelity and
a regularization functional, and can be more generally analyzed in Banach spaces,
cf. [163]. However, such approaches have several disadvantages, in particular it has
been shown that they lead to unnecessary bias in solutions, e.g., a contrast loss
in the case of total variation regularization, cf. [136, 31]. A successful alternative
to overcome this issue is iterative regularization, which directly applies iterative
methods to solve the constrained variational problem

argmin
x∈X

{g(x) s.t. Ax = f} . (10.56)

Here A :X →Y is a bounded linear operator between Banach spaces (also nonlinear
versions can be considered, cf. [9, 105]) and f are given data. In the well-posed case,
(10.56) can be rephrased as the saddle-point problem

min
x∈X

sup
q
(g(x)−〈q,Ax− f 〉) (10.57)

The major issue compared to the discrete setting is that for many prominent exam-
ples the operator A does not have a closed range (and hence a discontinuous pseudo-
inverse), which makes (10.56) ill-posed. From the optimization point of view, this
raises two major issues:

• Emptyness of the constraint set: In the practically relevant case of noisy mea-
surements one has to expect that f is not in the range of A, i.e., the constraint
cannot be satisfied exactly. Reformulated in the constrained optimization view,
the standard paradigm in iterative regularization is to construct an iteration
slowly increasing the functional g while decreasing the error in the constraint.

• Nonexistence of saddle points: Even if the data or an idealized version Ax∗ to
be approximated are in the range of A, the existence of a saddle point (x∗,q∗)
of (10.57) is not guaranteed. The optimality condition for the latter would yield

A∗q∗ ∈ ∂g(x∗), (10.58)
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which is indeed an abstract smoothness condition on the subdifferential of g
at x∗ if A and consequently A∗ are smoothing operators, it is known as source
condition in the field of inverse problems, cf. [31].

Due to the above reasons the use of iterative methods for solving respectively ap-
proximating (10.56) has a different flavor than iterative methods for well-posed
problems. The key idea is to employ the algorithm as an iterative regularization
method, cf. [105], where appropriate stopping in dependence on the noise, i.e. a
distance between Ax∗ and f , needs to be performed in order to obtain a suitable
approximation. The notion to be used is called semiconvergence, i.e., if δ > 0 de-
notes a measure for the data error (noise level) and r̂(δ ) is the stopping index of the
iteration in dependence on δ , then we look for convergence

x(r̂(δ )) → x∗ as δ → 0, (10.59)

in a suitable topology. The minimal ingredient in the convergence analysis is the
convergence x(r) → x∗, which already needs different approaches as discussed
above. For iterative methods working on primal variables one can at least use the
existence of (10.56) in this case, while real primal-dual iterations still suffer from
the potential nonexistence of solutions of the saddle point problem (10.57).
A well-understood iterative method is the Bregman iteration

x(r+1) ∈ argmin
x∈X

(μ
2
‖Ax− f‖2 +Dp(r)

g (x,x(r))
)
, (10.60)

with p(r) ∈ ∂g(x(r)), which has been analyzed as an iterative method in [136], re-
spectively for nonlinear A in [9]. Note that again with p(r) = A∗q(r) the Bregman
iteration is equivalent to the augmented Lagrangian method for the saddle-point
problem (10.57). With such iterative regularization methods superior results com-
pared to standard variational methods can be computed for inverse and imaging
problems, in particular bias can be eliminated, cf. [31].
The key properties are the decrease of the data fidelity

‖Ax(r+1)− f‖2 ≤ ‖Ax(r)− f‖2, (10.61)

for all r and the decrease of the Bregman distance to the clean solution

Dp(r+1)

g (x∗,x(r+1))≤ Dp(r)
g (x∗,x(r)) (10.62)

for those r such that
‖Ax(r)− f‖ ≥ ‖Ax∗ − f‖= δ .

Together with a more detailed analysis of the difference between consecutive Breg-
man distances, this can be used to prove semiconvergence results in appropriate
weak topologies, cf. [136, 163]. In [9] further variants approximating the quadratic
terms, such as the linearized Bregman iteration, are analyzed, however with further
restrictions on g. For all other iterative methods discussed above, a convergence
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analysis in the case of ill-posed problems is completely open and appears to be a
valuable task for future research. Note that in the realization of the Bregman it-
eration, a well-posed but complex variational problem needs to be solved in each
step. By additional operator splitting in an iterative regularization method one could
dramatically reduce the computational effort.
If the source condition is satisfied, i.e. if there exists a saddle-point (x∗,q∗), one can
further exploit the decrease of dual distances

‖q(r+1)−q∗‖ ≤ ‖q(r)−q∗‖ (10.63)

to obtain a quantitative estimate on the convergence speed, we refer to [30, 32] for
a further discussion.

8 Applications

So far we have focused on technical aspects of first order algorithms whose (fur-
ther) development has been heavily forced by practical applications. In this section
we give a rough overview of the use of first order algorithms in practice. We start
with applications from classical imaging tasks such as computer vision and image
analysis and proceed to applications in natural and life sciences. From the area of
biomedical imaging, we will present the Positron Emission Tomography (PET) and
Spectral X-ray CT in more detail and show some results reconstructed with first
order algorithms.
At the beginning it is worth to emphasize that many algorithms based on proxi-
mal operators such as proximal point algorithm, proximal forward-backward split-
ting, ADMM, or Douglas-Rachford splitting have been introduced in the 1970s, cf.
[83, 116, 146, 147]. However these algorithms have found a broad application in the
last two decades, mainly caused by the technological progress. Due to the ability of
distributed convex optimization with ADMM related algorithms, these algorithms
seem to be qualified for ‘big data’ analysis and large-scale applications in applied
statistics and machine learning, e.g., in areas as artificial intelligence, internet appli-
cations, computational biology and medicine, finance, network analysis, or logistics
[27, 139]. Another boost for the popularity of first order splitting algorithms was the
increasing use of sparsity-promoting regularizers based on �1- or L1-type penalties
[91, 151], in particular in combination with inverse problems considering nonlin-
ear image formation models [9, 172] and/or statistically derived (inverse) problems
[31]. The latter problems lead to non-quadratic fidelity terms which result from the
non-Gaussian structure of the noise model. The overview given in the following
mainly concentrates on the latter mentioned applications.
The most classical application of first order splitting algorithms is image analysis
such as denoising, where these methods were originally pushed by the Rudin, Osher,
and Fatemi (ROF) model [151]. This model and its variants are frequently used as
prototypes for total variation methods in imaging to illustrate the applicability of
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proposed algorithms in case of non-smooth cost functions, cf. [43, 70, 71, 91, 136,
164, 191]. Since the standard L2 fidelity term is not appropriate for non-Gaussian
noise models, modifications of the ROF problem have been considered in the past
and were solved using splitting algorithms to denoise images perturbed by non-
Gaussian noise, cf. [19, 43, 76, 153, 168]. Due to the close relation of total variation
techniques to image segmentation [31, 140], first order algorithms have been also
applied in this field of applications (cf. [42, 43, 90, 140]). Other image analysis tasks
where proximal based algorithms have been applied successfully are deblurring and
zooming (cf. [23, 43, 71, 166]), inpainting [43], stereo and motion estimation [46,
43, 188], and segmentation [10, 115, 140, 106].
Due to increasing noise level in modern biomedical applications, the requirement on
statistical image reconstruction methods has been risen recently and the proximal
methods have found access to many applied areas of biomedical imaging. Among
the enormous amount of applications from the last two decades, we only give the
following selection and further links to the literature:

• X-ray CT: Recently statistical image reconstruction methods have received in-
creasing attention in X-ray CT due to increasing noise level encountered in
modern CT applications such as sparse/limited-view CT and low-dose imag-
ing, cf., e.g., [173, 178, 179], or K-edge imaging where the concentrations
of K-edge materials are inherently low, see, e.g., [159, 158, 160]. In partic-
ular, first order splitting methods have received strong attention due to the
ability to handle non-standard noise models and sparsity-promoting regulariz-
ers efficiently. Beside the classical fan-beam and cone-beam X-ray CT (see,
e.g., [4, 45, 51, 104, 130, 145, 167, 173]), the algorithms have also found
applications in emerging techniques such as spectral CT, see Section 8.2 and
[85, 155, 185] or phase contrast CT [59, 131, 184].

• Magnetic resonance imaging (MRI): Image reconstruction in MRI is mainly
achieved by inverting the Fourier transform which can be performed efficiently
and robustly if a sufficient number of Fourier coefficients is measured. How-
ever, this is not the case in special applications such as fast MRI protocols, cf.,
e.g., [117, 142], where the Fourier space is undersampled so that the Nyquist
criterion is violated and Fourier reconstructions exhibit aliasing artifacts. Thus,
compressed sensing theory have found the way into MRI by exploiting sparsity-
promoting variational approaches, see, e.g., [15, 103, 118, 144]. Furthermore,
in advanced MRI applications such as velocity-encoded MRI or diffusion MRI,
the measurements can be modeled more accurately by nonlinear operators and
splitting algorithms provide the ability to handle the increased reconstruction
complexity efficiently [172].

• Emission tomography: Emission tomography techniques used in nuclear
medicine such as positron emission tomography (PET) and single photon emis-
sion computed tomography (SPECT) [183] are classical examples for inverse
problems in biomedical imaging where statistical modeling of the reconstruc-
tion problem is essential due to Poisson statistics of the data. In addition, in
cases where short time or low tracer dose measurements are available (e.g., us-
ing cardiac and/or respiratory gating [34]) or tracer with a short radioactive
half-life are used (e.g., radioactive water H2

15O [157]), the measurements
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suffer from inherently high noise level and thus a variety of first order split-
ting algorithms has been utilized in emission tomography, see, e.g., [4, 16, 122,
123, 143, 153].

• Optical microscopy: In modern light microscopy techniques such as stimulated
emission depletion (STED) or 4Pi-confocal fluorescence microscopy [99, 100]
resolutions beyond the diffraction barrier can be achieved allowing imaging at
nanoscales. However, by reaching the diffraction limit of light, measurements
suffer from blurring effects and Poisson noise with low photon count rates [66,
162], in particular in live imaging and in high resolution imaging at nanoscopic
scales. Thus, regularized (blind) deconvolution addressing appropriate Poisson
noise is quite beneficial and proximal algorithms have been applied to achieve
this goal, cf., e.g., [30, 81, 153, 166].

• Other modalities: It is quite natural that first order splitting algorithms have
found a broad usage in biomedical imaging, in particular in such applica-
tions where the measurements are highly perturbed by noise and thus regu-
larization with probably a proper statistical modeling are essential as, e.g., in
optical tomography [1, 80], medical ultrasound imaging [154], hybrid photo-
/optoacoustic tomography [84, 180], or electron tomography [92].

8.1 Positron Emission Tomography (PET)

PET is a biomedical imaging technique visualizing biochemical and physiologi-
cal processes such as glucose metabolism, blood flow, or receptor concentrations,
see, e.g., [183]. This modality is mainly applied in nuclear medicine and the data
acquisition is based on weak radioactively marked pharmaceuticals (so-called trac-
ers), which are injected into the blood circulation. Then bindings dependent on the
choice of the tracer to the molecules are studied. Since the used markers are radio-
isotopes, they decay by emitting a positron which annihilates almost immediately
with an electron. The resulting emission of two photons is detected and, due to the
radioactive decay, the measured data can be modeled as an inhomogeneous Poisson
process with a mean given by the X-ray transform of the spatial tracer distribution
(cf., e.g., [124, 174]). Note that, up to notation, the X-ray transform coincides with
the more popular Radon transform in the two dimensional case [124]. Thus, the
underlying reconstruction problem can be modeled as

M

∑
m=1

(
(Ku)m − fm log((Ku)m)

)
+αR(u)→ min

u≥0
, α > 0, (10.64)

where M is the number of measurements, f are the given data, and K is the system
matrix which describes the full properties of the PET data acquisition.
To solve (10.64), algorithms discussed above can be applied and several of them
have been already studied for PET recently. In the following, we will give a
(certainly incomplete) performance discussion of different first order splitting al-
gorithms on synthetic PET data and highlight the strengths and weaknesses of them
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which could be carried over to many other imaging applications. For the study
below, the total variation (TV) was applied as regularization energy R in (10.64)
and the following algorithms and parameter settings were used for the performance
evaluation:

• FB-EM-TV: The FB-EM-TV algorithm [153] represents an instance of the
proximal forward-backward (FB) splitting algorithm discussed in Section 5.2
using a variable metric strategy (10.22). The preconditioned matrices Q(r) in
(10.22) are chosen in a way that the gradient descent step corresponds to an
expectation-maximization (EM) reconstruction step. The EM algorithm is a
classically applied (iterative) reconstruction method in emission tomography
[124, 174]. The TV proximal problem was solved by an adopted variant of the
modified Arrow-Hurwicz method proposed in [43] since it was shown to be the
most efficient method for TV penalized weighted least-squares denoising prob-
lems in [152]. Furthermore, a warm starting strategy was used to initialize the
dual variables within the TV proximal problem and the inner iteration sequence
was stopped if the relative error of primal and dual optimality conditions was
below an error tolerance δ , i.e., using the notations from [43], if

max{d(r), p(r)} ≤ δ (10.65)

with

d(r) = ‖(y(r)− y(r−1))/σr−1 +∇(x(r)− x(r−1))‖/‖∇x(r)‖,
p(r) = ‖x(r)− x(r−1)‖/‖x(r)‖.

The damping parameter η(r) in (10.22) was set to η(r) = 1 as indicated in [153].
• FB-EM-TV-Nes83: A modified version of FB-EM-TV described above using

the acceleration strategy proposed by Nesterov in [128]. This modification can
be seen as a variant of FISTA [13] with a variable metric strategy (10.22). Here,
η(r) in (10.22) was chosen fixed (i.e. η(r) = η) but has to be adopted to the
predefined inner accuracy threshold δ (10.65) to guarantee the convergence of
the algorithm and it was to be done manually.

• CP-E: The fully explicit variant of the Chambolle-Pock’s primal-dual algo-
rithm [43] (cf. Section 6.3) studied for PET reconstruction problems in [3] (see
CP2TV in [3]). The dual step size σ was set manually and the primal one corre-
sponding to [43] as τσ(‖∇‖2 +‖K‖2) = 1, where ‖K‖ was pre-estimated using
the Power method.

• Precond-CP-E: The CP-E algorithm described above but using the diagonal
preconditioning strategy proposed in [42] with α = 1 in [42, Lemma 2].

• CP-SI: The semi-implicit variant of the Chambolle-Pock’s primal-dual algo-
rithm [43] (cf. Section 6.3) studied for PET reconstruction problems in [3] (see
CP1TV in [3]). The difference to CP-E is that a TV proximal problem has to
be solved in each iteration step. This was performed as in case of FB-EM-TV
method. Furthermore, the dual step size σ was set manually and the primal one
corresponding to [43] as τσ‖K‖2 = 1, where ‖K‖ was pre-estimated using the
Power method.
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• Precond-CP-SI: The CP-SI algorithm described above but using the diagonal
preconditioning strategy proposed in [42] with α = 1 in [42, Lemma 2].

• PIDSplit+: An ADMM based algorithm (cf. Section 6.2) that has been dis-
cussed for Poisson deblurring problems of the form (10.64) in [166]. However,
in case of PET reconstruction problems, the solution of a linear system of equa-
tions of the form

(I +KTK +∇T∇)u(r+1) = z(r) (10.66)

has to be computed in a different way in contrast to deblurring problems. This
was done by running two preconditioned conjugate gradient (PCG) iterations
with warm starting and cone filter preconditioning whose effectiveness has been
validated in [145] for X-ray CT reconstruction problems. The cone filter was
constructed as described in [73, 74] and diagonalized by the discrete cosine
transform (DCT-II) supposing Neumann boundary conditions. The PIDSplit+
algorithm described above can be accomplished by a strategy of adaptive aug-
mented Lagrangian parameters γ in (10.26) as proposed for the PIDSplit+ al-
gorithm in [27, 169]. The motivation behind this strategy is to mitigate the per-
formance dependency on the initial chosen fixed parameter that may strongly
influence the speed of convergence of ADMM based algorithms.

All algorithms were implemented in MATLAB and executed on a machine with 4
CPU cores, each 2.83 GHz, and 7.73 GB physical memory, running a 64 bit Linux
system and MATLAB 2013b. The built-in multi-threading in MATLAB was dis-
abled such that all computations were limited to a single thread. The algorithms
were evaluated on a simple object (image size 256 × 256) and the synthetic 2D
PET measurements were obtained via a Monte-Carlo simulation with 257 radial
and 256 angular samples, using one million simulated events (see Figure 10.2). Due
to sustainable image and measurement dimensions, the system matrix K was pre-
computed for all reconstruction runs. To evaluate the performance of algorithms
described above, the following procedure was applied. First, since K is injective
and thus an unique minimizer of (10.64) is guaranteed [153], we can run a well-
performing method for a very long time to compute a “ground truth” solution u∗α for
a fixed α . To this end, we have run the Precond-CP-E algorithm for 100,000 itera-
tions for the following reasons: (1) all iteration steps can be solved exactly such that
the solution cannot be influenced by inexact computations (see discussion below);
(2) due to preconditioning strategy, no free parameters are available those may in-
fluence the speed of convergence negatively such that u∗α is expected to be of high
accuracy after 100,000 iterations. Having u∗α , each algorithm was applied until the
relative error

‖u(r)α −u∗α‖/‖u∗α‖ (10.67)

was below a predefined threshold ε (or a maximum number of iterations adopted
for each algorithm individually was reached). The “ground truth” solutions for three
different values of α are shown in Figure 10.3.
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Fig. 10.2: Synthetic 2D PET data. Left: Exact object. Middle: Exact Radon data. Right: Simulated
PET measurements via a Monte-Carlo simulation using one million events.
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Fig. 10.3: The “ground truth” solutions for regularization parameter values α = 0.04 (left), α =
0.08 (middle), and α = 0.20 (right).

Figures 10.4–10.8 show the performance evaluation of algorithms plotting the prop-
agation of the relative error (10.67) in dependency on the number of iterations and
CPU time in seconds. Since all algorithms have a specific set of unspecified parame-
ters, different values of them are plotted to give a representative overall impression.
The reason for showing the performance both in dependency on the number of it-
erations and CPU time is twofold: (1) in the presented case where the PET system
matrix K is pre-computed and thus available explicitly, the evaluation of forward
and backward projections is nearly negligible and TV relevant computations have
the most contribution to the run time such that the CPU time will be a good indicator
for algorithm’s performance; (2) in practically relevant cases where the forward and
backward projections have to be computed in each iteration step implicitly and in
general are computationally consuming, the number of iterations and thus the num-
ber of projection evaluations will be the crucial factor for algorithm’s efficiency. In
the following, we individually discuss the behavior of algorithms observed for the
regularization parameter α = 0.08 (10.64) with the “ground truth” solution shown
in Figure 10.3:

• FB-EM-TV(-Nes83): The evaluation of FB-EM-TV based algorithms is shown
in Figure 10.4. The major observation for any δ in (10.65) is that the inexact
computations of TV proximal problems lead to a restrictive approximation of
the “ground truth” solution where the approximation accuracy stagnates after
a specific number of iterations depending on δ . In addition, it can also be ob-
served that the relative error (10.67) becomes better with more accurate TV
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proximal solutions (i.e., smaller δ ) indicating that a decreasing sequence δ (r)

should be used to converge against the solution of (10.64) (see, e.g., [161, 175]
for convergence analysis of inexact proximal gradient algorithms). However, as
indicated in [119] and is shown in Figure 10.4, the choice of δ provides a trade-
off between the approximation accuracy and computational cost such that the
convergence rates proved in [161, 175] might be computationally not optimal.
Another observation concerns the accelerated modification FB-EM-TV-Nes83.
In Figure 10.4 we can observe that the performance of FB-EM-TV can actually
be improved by FB-EM-TV-Nes83 regarding the number of iterations but only
for smaller values of δ . One reason might be that using FB-EM-TV-Nes83 we
have seen in our experiments that the gradient descent parameter 0 < η ≤ 1
[153] in (10.22) has to be chosen smaller with increased TV proximal accuracy
(i.e., smaller δ ). Since in such cases the effective regularization parameter value
in each TV proximal problem is ηα , a decreasing η will result in poorer denois-
ing properties increasing the inexactness of TV proximal operator. Recently, an
(accelerated) inexact variable metric proximal gradient method was analyzed in
[52] providing a theoretical view on such a type of methods.
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Fig. 10.4: Performance of FB-EM-TV (dashed lines) and FB-EM-TV-Nes83 (solid lines) for dif-
ferent accuracy thresholds δ (10.65) within the TV proximal step. Evaluation of relative error
(10.67) is shown as a function of the number of iterations (left) and CPU time in seconds (right).

• (Precond-)CP-E: In Figure 10.5, the algorithms CP-E and Precond-CP-E are
evaluated. In contrast to FB-EM-TV-(Nes83), the approximated solution cannot
be influenced by inexact computations such that a decaying behavior of relative
error can be observed. The single parameter that affects the convergence rate is
the dual steplength σ and we observe in Figure 10.5(a) that some values yield
a fast initial convergence (see, e.g., σ = 0.05 and σ = 0.1), but are less suited
to achieve fast asymptotic convergence and vice versa (see, e.g., σ = 0.3 and
σ = 0.5). However, the plots in Figure 10.5(b) indicate that σ ∈ [0.2,0.3] may
provide an acceptable trade-off between initial and asymptotic convergence in
terms of the number of iterations and CPU time. Regarding the latter mentioned
aspect we note that in case of CP-E the more natural setting of σ would be
σ =

√
‖∇‖2 +‖K‖2 what is approximately 0.29 in our experiments providing

acceptable trade-off between initial and asymptotic convergence. Finally, no
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acceleration was observed in case of Precond-CP-E algorithm due to the regular
structure of linear operators ∇ and K in our experiments such that the perfor-
mance is comparable to CP-E with σ = 0.5 (see Figure 10.5(a)).
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(a) Evaluation of relative error for fixed dual step sizes s .

(b) Performance to get the relative error below the threshold å  as a function of dual step size s.

Fig. 10.5: Performance of Precond-CP-E (dashed lines in ((a))) and CP-E (solid lines) for different
dual step sizes σ . ((a)) Evaluation of relative error as a function of the number of iterations (left)
and CPU time in seconds (right). ((b)) Required number of iterations (left) and CPU time (right)
to get the relative error below a predefined threshold ε as a function of σ .

• (Precond-)CP-SI: In Figures 10.6 and 10.7, the evaluation of CP-SI and Precond-
CP-SI is presented. Since a TV proximal operator has to be approximated in
each iteration step, the same observations can be made as in case of FB-EM-
TV that depending on δ the relative error stagnates after a specific number of
iterations and that the choice of δ provides a trade-off between approximation
accuracy and computational time (see Figure 10.6 for Precond-CP-SI). In addi-
tion, since the performance of CP-SI not only depends on δ but also on the dual
steplength σ , the evaluation of CP-SI for different values of σ and two stopping
values δ is shown in Figure 10.7. The main observation is that for smaller σ a
better initial convergence can be achieved in terms of the number of iterations
but results in less efficient performance regarding the CPU time. The reason is
that the effective regularization parameter within the TV proximal problem is
τα (see (10.22)) with τ = (σ‖K‖2)−1 and a decreasing σ leads to an increasing
TV denoising effort. Thus, in practically relevant cases, σ should be chosen op-
timally in a way balancing the required number of iterations and TV proximal
computation.

• PIDSplit+: In Figure 10.8 the performance of PIDSplit+ is shown. It is well
evaluated that the convergence of ADMM based algorithms is strongly depen-
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Fig. 10.6: Performance of Precond-CP-SI for different accuracy thresholds δ (10.65) within the
TV proximal step. Evaluation of relative error as a function of number of iterations (left) and CPU
time in seconds (right).
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(a) Performance with TV proximal accuracy d = 0.05 (65).

(b) Performance with TV proximal accuracy d = 0.005 (65).

Fig. 10.7: Performance of Precond-CP-SI (dashed lines) and CP-SI (solid lines) for different dual
step sizes σ . Evaluation of relative error as a function of number of iterations (left) and CPU time in
seconds (right) for accuracy thresholds δ = 0.05 ((a)) and δ = 0.005 ((b)) within the TV proximal
problem.

dent on the augmented Lagrangian parameter γ (10.26) and that some values
yield a fast initial convergence but are less suited to achieve a fast asymptotic
convergence and vice versa. This behavior can also be observed in Figure 10.8
(see γ = 30 in upper row).

Finally, to get a feeling how the algorithms perform against each other, the required
CPU time and number of projection evaluations to get the relative error (10.67)
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Fig. 10.8: Performance of PIDSplit+ for fixed augmented Lagrangian penalty parameters γ
(10.26). Evaluation of relative error as a function of number of iterations (left) and CPU time
in seconds (right).

below a predefined threshold are shown in Table 10.1 for two different values of ε .
The following observations can be made:

• The FB-EM-TV based algorithms are competitive in terms of required number
of projection evaluations but have a higher CPU time due to the computation
of TV proximal operators, in particular the CPU time strongly grows with de-
creasing ε since TV proximal problems have to be approximated with increased
accuracy. However, in our experiments, a fixed δ was used in each TV denois-
ing step and thus the performance can be improved utilizing the fact that a rough
accuracy is sufficient at the beginning of the iteration sequence without influenc-
ing the performance regarding the number of projector evaluations negatively
(cf. Figure 10.4). Thus, a proper strategy to iteratively decrease δ in (10.65) can
strongly improve the performance of FB-EM-TV based algorithms.

• The CP-E algorithm is optimal in our experiments in terms of CPU time since
the TV regularization is computed by the shrinkage operator and thus is simply
to evaluate. However, this algorithm needs almost the highest number of projec-
tion evaluations that will result in a slow algorithm in practically relevant cases
where the projector evaluations are highly computationally expansive.

• The PIDSplit+ algorithm is slightly poorer in terms of CPU time than CP-E but
required a smaller number of projector evaluations. However, we remind that
this performance may probably be improved since two PCG iterations were
used in our experiments and thus two forward and backward projector evalua-
tions are required in each iteration step of PIDSplit+ method. Thus, if only one
PCG step is used, the CPU time and number of projector evaluations can be de-
creased leading to a better performing algorithm. However, in the latter case, the
total number of iteration steps might be increased since a poorer approximation
of (10.66) will be performed if only one PCG step is used. Another opportu-
nity to improve the performance of PIDSplit+ algorithm is to use the proximal
ADMM strategy described in Section 6.4, namely, to remove KTK from (10.66).
That will result in only a single evaluation of forward and backward projectors
in each iteration step but may lead to an increased number of total number of
algorithm iterations.
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Table 10.1: Performance evaluation of algorithms described above for α = 0.08 (see u∗α in Fig-
ure 10.3 (middle)). The table displays the CPU time in seconds and required number of forward
and backward projector evaluations (K/KT) to get the relative error (10.67) below the error toler-
ance ε . For each algorithm the best performance regarding the CPU time and K/KT evaluations
are shown where � means that the value coincides with the value directly above.

ε = 0.05 ε = 0.005

K/KT CPU K/KT CPU

FB-EM-TV (best K/KT) 20 40.55 168 4999.71

� (best CPU) � � 230 3415.74

FB-EM-TV-Nes83 (best K/KT) 15 14.68 231 308.74

� (best CPU) � � � �

CP-E (best K/KT) 48 4.79 696 69.86

� (best CPU) � � � �

CP-SI (best K/KT) 22 198.07 456 1427.71

� (best CPU) 25 23.73 780 1284.56

PIDSplit+ (best K/KT) 30 7.51 698 179.77

� (best CPU) � � � �

Finally, to study the algorithm’s stability regarding the choice of regularization pa-
rameter α , we have run the algorithms for two additional values of α using the
parameters shown the best performance in Table 10.1. The additional penalty pa-
rameters include a slightly under-smoothed and over-smoothed result respectively
as shown in Figure 10.3 and the evaluation results are shown in Tables 10.2 and 10.3.
In the following we describe the major observations:

• The FB-EM-TV method has the best efficiency in terms of projector evalua-
tions, independently from the penalty parameter α , but has the disadvantage
of solving a TV proximal problem in each iteration step which get harder to
solve with increasing smoothing level (i.e., larger α) leading to a negative com-
putational time. The latter observation holds also for the CP-SI algorithm. In
case of a rough approximation accuracy (see Table 10.2), the FB-EM-TV-Nes83
scheme is able to improve the overall performance, respectively at least the
computational time for higher accuracy in Table 10.3, but here the damping pa-
rameter η in (10.22) has to be chosen carefully to ensure the convergence (cf.
Table 10.2 and 10.3 in case of α = 0.2). Additionally based on Table 10.1, a
proper choice of η is dependent not only on α but also on the inner accuracy of
TV proximal problems.

• In contrast to FB-EM-TV and CP-SI, the remaining algorithms provide a supe-
rior computational time due to the solution of TV related steps by the shrinkage
formula but show a strongly increased requirements on projector evaluations
across all penalty parameters α . In addition, the performance of these algo-
rithms is strongly dependent on the proper setting of free parameters (σ in case
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of CP-E and γ in PIDSplit+) which unfortunately are able to achieve only a fast
initial convergence or a fast asymptotic convergence. Thus different parameter
settings of σ and γ were used in Tables 10.2 and 10.3.

Table 10.2: Performance evaluation for different values of α (see Figure 10.3). The table dis-
plays the CPU time in seconds and required number of forward and backward projector evalua-
tions (K/KT) to get the relative error (10.67) below the error tolerance ε = 0.05. For each α , the
algorithms were run using the following parameters: FB-EM-TV (δ = 0.1), FB-EM-TV-Nes83
(δ = 0.1, η = 0.5), CP-E (σ = 0.07), CP-SI (δ = 0.1, σ = 0.05), PIDSplit+ (γ = 10), which were
chosen based on the “best” performance regarding K/KT for ε = 0.05 in Table 10.1.

α = 0.04 α = 0.08 α = 0.2

K/KT CPU K/KT CPU K/KT CPU

FB-EM-TV 28 16.53 20 40.55 19 105.37

FB-EM-TV-Nes83 17 5.26 15 14.68 - -

CP-E 61 6.02 48 4.79 51 5.09

CP-SI - - 25 23.73 21 133.86

PIDSplit+ 32 8.08 30 7.51 38 9.7

Table 10.3: Performance evaluation for different values of α (see Figure 10.3) as in Table 10.2
but for ε = 0.005 and using the following parameters: FB-EM-TV (δ = 0.005), FB-EM-TV-Nes83
(δ = 0.005, η = 0.05), CP-E (σ = 0.2), CP-SI (δ = 0.005, σ = 0.3), PIDSplit+ (γ = 3).

α = 0.04 α = 0.08 α = 0.2

K/KT CPU K/KT CPU K/KT CPU

FB-EM-TV 276 2452.14 168 4999.71 175 12612.7

FB-EM-TV-Nes83 512 222.98 231 308.74 - -

CP-E 962 94.57 696 69.86 658 65.42

CP-SI 565 1117.12 456 1427.71 561 7470.18

PIDSplit+ 932 239.35 698 179.77 610 158.94

8.2 Spectral X-Ray CT

Conventional X-ray CT is based on recording changes in the X-ray intensity due to
attenuation of X-ray beams traversing the scanned object and has been applied in
clinical practice for decades. However, the transmitted X-rays carry more informa-
tion than just intensity changes since the attenuation of an X-ray depends strongly
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on its energy [2, 109]. It is well understood that the transmitted energy spectrum
contains valuable information about the structure and material composition of the
imaged object and can be utilized to better distinguish different types of absorbing
material, such as varying tissue types or contrast agents. But the detectors employing
in traditional CT systems provide an integral measure of absorption over the trans-
mitted energy spectrum and thus eliminate spectral information [39, 158]. Even so,
spectral information can be obtained by using different input spectra [77, 193] or us-
ing the concept of dual-layer (integrating) detectors [40]. This has limited the prac-
tical usefulness of energy-resolving imaging, also referred to as spectral CT, to dual
energy systems. Recent advances in detector technology towards binned photon-
counting detectors have enabled a new generation of detectors that can measure and
analyze incident photons individually [39] providing the availability of more than
two spectral measurements. This development has led to a new imaging method
named K-edge imaging [113] that can be used to selectively and quantitatively im-
age contrast agents loaded with K-edge materials [75, 137]. For a compact overview
on technical and practical aspects of spectral CT we refer to [39, 158].
Two strategies have been proposed to reconstruct material specific images from
spectral CT projection data and we refer to [158] for a compact overview. Either
of them is a projection-based material decomposition with a subsequent image re-
construction. This means that in the first step, estimates of material-decomposed
sinograms are computed from the energy-resolved measurements, and in the second
step, material images are reconstructed from the decomposed material sinograms. A
possible decomposition method to estimate the material sinograms fl , l = 1, . . . ,L,
from the acquired data is a maximum-likelihood estimator assuming a Poisson noise
distribution [150], where L is the number of materials considered. An accepted noise
model for line integrals fl is a multivariate Gaussian distribution [158, 159] lead-
ing to a penalized weighted least squares (PWLS) estimator to reconstruct material
images ul :

1
2
‖ f − (IL ⊗K)u‖2

Σ−1 +αR(u)→ min
u
, α > 0, (10.68)

where f = ( f T
1 , . . . , f T

L)
T, u = (uT

1, . . . ,u
T
L)

T, IL denotes the L×L identity matrix, ⊗
represents the Kronecker product, and K is the forward projection operator. The
given block matrix Σ is the covariance matrix representing the (multivariate) Gaus-
sian distribution, where the off-diagonal block elements describe the inter-sinogram
correlations, and can be estimated, e.g., using the inverse of the Fisher information
matrix [149, 159]. Since f is computed from a common set of measurements, the
correlation of the decomposed data is very high and thus a significant improvement
can in fact be expected intuitively by exploiting the fully populated covariance ma-
trix Σ in (10.68). In the following, we exemplary show reconstruction results on
spectral CT data where (10.68) was solved by a proximal ADMM algorithm with a
material independent total variation penalty function R as discussed in [155]. For a
discussion why ADMM based methods are more preferable for PWLS problems in
X-ray CT than, e.g., gradient descent based techniques, we refer to [145].
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Figures 10.10 and 10.11 show an example for a statistical image reconstruction
method applied to K-edge imaging. A numerical phantom as shown in Figure 10.9
was employed in a spectral CT simulation study assuming a photon-counting de-
tector. Using an analytical spectral attenuation model, spectral measurements were
computed. The assumed X-ray source spectrum and detector response function of
the photon-counting detector were identical to those employed in a prototype spec-
tral CT scanner described in [160]. The scan parameters were set to tube voltage
130 kVp, anode current 200 μA, detector width/height 946.38/1.14 mm, number of
columns 1024, source-to-isocenter/-detector distance 570/1040 mm, views per turn
1160, time per turn 1 s, and energy thresholds to 25, 46, 61, 64, 76, and 91 keV.
The spectral data were then decomposed into ‘photo-electric absorption’, ‘Compton
effect’, and ‘ytterbium’ by performing a maximum-likelihood estimation [150]. By
computing the covariance matrix Σ of the material decomposed sinograms via the
Fisher information matrix [149, 159] and treating the sinograms as the mean and Σ
as the variance of a Gaussian random vector, noisy material sinograms were com-
puted. Figures 10.10 and 10.11 show material images that were then reconstructed
using the traditional filtered backprojection (upper row) and proximal ADMM algo-
rithm as described in [155] (middle and lower row). In the latter case, two strategies
were performed: (1) keeping only the diagonal block elements of Σ in (10.68) and
thus neglecting cross-correlations and decoupling the reconstruction of material im-
ages (middle row); (2) using the fully populated covariance matrix Σ in (10.68)
such that all material images have to be reconstructed jointly (lower row). The re-
sults suggest, best visible in the K-edge images in Figure 10.11, that the iterative re-
construction method, which exploits knowledge of the inter-sinogram correlations,
produces images that possess a better reconstruction quality. For comparison of iter-
ative reconstruction strategies, the regularization parameters were chosen manually
so the reconstructed images possessed approximately the same variance within the
region indicated by the dotted circle in Figure 10.9. Further (preliminary) results
that demonstrate advantages of exploiting inter-sinogram correlations on computer-
simulated and experimental data in spectral CT can be found in [155, 189].

Fig. 10.9: Software thorax phantom comprising sternum, ribs, lungs, vertebrae, and one circle and
six ellipsoids containing different concentrations of K-edge material ytterbium [137]. The phantom
was used to simulate spectral CT measurements with a six-bin photon-counting detector.
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Fig. 10.10: Reconstructions based on the thorax phantom (see Figure 10.9) using the traditional
filtered backprojection with Shepp-Logan filter (upper row) and a proximal ADMM algorithm
as described in [155] (middle and lower row). The middle row shows results based on (10.68)
neglecting cross-correlations between the material decomposed sinograms and lower row using the
fully populated covariance matrix Σ . The material images show the results for the ‘Compton effect’
(left column) and ‘photo-electric absorption’ (right column). The K-edge material ‘ytterbium’ is
shown in Figure 10.11.
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Fig. 10.11: Reconstructions of the K-edge material ‘ytterbium’ using the thorax phantom shown
in Figure 10.9. For details see Figure 10.10. To recognize the differences, the maximal intensity
value of original reconstructed images shown in left column was set down in the right column.
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