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Preface

Operator-splitting methods have been around for more than a century, starting with
their common ancestor, the Lie scheme, introduced by Sophus Lie in the mid-1870s.
It seems however that one had to wait after WW2 to see these methods joining the
computational and applied mathematics mainstream, the driving force being their
applicability to the solution of challenging problems from science and engineering
modeled by partial differential equations. The main actors of this renewed inter-
est in operator-splitting methods were mainly Douglas, Peaceman, Rachford, and
Wachpress in the USA with the alternating direction implicit (ADI) methods and
Dyakonov, Marchuk, and Yanenko in the USSR with the fractional step methods.
These basic methodologies have known many variants and improvements and gen-
erated a quite important literature consisting of many articles and few books, of the-
oretical and applied natures, with computational mechanics and physics being the
main sources of applications. In the mid-1970s, tight relationships between the aug-
mented Lagrangian methods of Hestenes and Powell and ADI methods were iden-
tified, leading to the alternating direction methods of multipliers (ADMM). Albeit
originating from problems from continuum mechanics modeled by partial differen-
tial equations and inequalities, it was quickly realized that the ADMM methodology
applies to problems outside the realm of partial differential equations and inequali-
ties, in information sciences in particular, an area where ADMM has enjoyed a very
fast-growing popularity. The main reason of this popularity is that most often large-
scale optimization problems have decomposition properties that ADMM can take
advantage of, leading to modular algorithms, well suited to parallelization. Another
factor explaining ADMM’s growing popularity during the last decade was the dis-
covery around 2007 of its many commonalities with the split-Bregman algorithm
widely used first in image processing and then in compressed sensing, among other
applications.

Late 2012, the three editors of this book were participating in a conference in
Hong Kong, the main conference topics being scientific computing, image pro-
cessing, and optimization. Since most lectures at the conference had some rela-
tions with operator splitting, ADMM, and split-Bregman algorithms, the idea of
a book dedicated to these topics was explored, considering the following facts:
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(i) The practitioners of the above methods have become quite specialized, form-
ing subcommunities with very few interactions between them. (ii) New applications
of operator-splitting and related algorithms appear on an almost daily basis. (iii)
The diversification of the algorithms and their applications has become so large that
a volume containing the contributions of a relatively large number of experts is nec-
essary in order to interest a large audience; indeed, the last review publications on
the above topics being quite specialized (as shown in Chapter 1), the editors did
their very best to produce a large spectrum volume.

Following a Springer agreement to publish a book on operator splitting, ADMM,
split-Bregman, and related algorithms, covering both theory and applications, ex-
perts were approached to contribute to this volume. We are pleased to say that most
of them enthusiastically agreed to be part of the project.

This book is divided in chapters covering the history, foundations, applications,
as well as recent developments of operator splitting, ADMM, split Bregman, and re-
lated algorithms. Due to size and time constraints, many relevant information could
not be included in the book: the editors apologize to those authors whose contribu-
tions have been partially or totally overlooked.

Many thanks are in order:

• First, to the organizers of the December 2012 Hong Kong conference on Ad-
vances in Scientific Computing, Imaging Sciences and Optimization. Indeed,
the inception of this project took place during this meeting.

• To Springer for accepting to publish this volume. The editors acknowledge in
particular the assistance provided by Achi Dosanjh; she was involved with the
project from day one and never lost her faith in it (and in the editors), despite
the many (unavoidable) delays encountered during its completion.

• To the authors of the various chapters and to those colleagues who accepted to
review them. They are really the ones who brought this book into existence.

• To Hengda Wen and Tsorng-Whay Pan for their assistance on many issues as-
sociated with the preparation of the “manuscript” (some of them LATEXrelated).
Both of them saved the day more than once.

• To the various institutions supporting the authors, the editors, and the reviewers.
• To Indhumathi at SPi Global for her leadership in transforming a complicated

manuscript into a book

We would like to thank also all the scientists who contributed in their own way to
operator-splitting and related methods; they made this book possible. Among them,
we would like to give a special tribute to Ernie Esser and Michèle Schatzman; their
untimely departure was a shock to their friends and colleagues. Both of them had
outstanding contributions to various topics addressed in this book, for which we
thank them and dedicate this book to their memory.

Houston, TX, USA Roland Glowinski
Los Angeles, CA, USA Stanley J. Osher
Los Angeles, CA, USA Wotao Yin
February 2016
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Martina Bukač, Sunčica Čanić, Boris Muha, and Roland Glowinski
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

2.1 Energy Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
2.2 ALE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

3 The Splitting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
3.1 Description of the Splitting Scheme . . . . . . . . . . . . . . . . . . . . . . . . 744
3.2 Unconditional Stability of the Splitting Scheme . . . . . . . . . . . . . . 748

4 The Numerical Implementation of the Scheme . . . . . . . . . . . . . . . . . . . . 752
4.1 The Structure Sub-problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
4.2 Calculation of the ALE Mapping and ALE Velocity wn+1 . . . . . . 754
4.3 The Fluid Sub-problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
5.1 Example 1: A 2D Benchmark Problem. . . . . . . . . . . . . . . . . . . . . . 756
5.2 Example 2: A 3D Straight Tube Test Case . . . . . . . . . . . . . . . . . . . 761
5.3 Example 3: A 3D Curved Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 763
5.4 Example 4: Stenosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769



xviii Contents

23 On Circular Cluster Formation in a Rotating Suspension
of Non-Brownian Settling Particles in a Fully Filled Circular
Cylinder: An Operator Splitting Approach to the Numerical
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
Suchung Hou and Tsorng-Whay Pan
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
3 Time and Space Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

3.1 A First Order Operator-Splitting Scheme:
Lie’s Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

3.2 Space Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
3.3 On the Solution of Subproblems (23.37), (23.38), (23.39),

(23.40)–(23.42), and (23.43)–(23.44) . . . . . . . . . . . . . . . . . . . . . . . 782
4 Numerical Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 784

4.1 The Interaction of Two Balls Side by Side Initially . . . . . . . . . . . . 784
4.2 The Effect of the Angular Speed and of the Number

of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
4.3 The Cluster Effect on the Fluid Flow Field . . . . . . . . . . . . . . . . . . 793

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803



Chapter 1
Introduction

Roland Glowinski, Stanley J. Osher, and Wotao Yin

Abstract The main goal of this chapter is to present a brief overview of operator
splitting methods and algorithms when applied to the solution of initial value prob-
lems and optimization problems, topics to be addressed with many more details
in the following chapters of this book. The various splitting algorithms, methods,
and schemes to be considered and discussed include: the Lie scheme, the Strang
symmetrized scheme, the Douglas-Rachford and Peaceman-Rachford alternating
direction methods, the alternating direction method of multipliers (ADMM), and
the split Bregman method. This chapter also contains a brief description of (most
of) the following chapters of this book.

1 Motivation and Background

In December 2012, the three editors of this volume were together in Hong-Kong,
attending a conference honoring one of them (SO). A most striking fact during this
event was the large number of lectures involving, if not fully dedicated to, operator-
splitting methods, split Bregman and ADMM (for Alternating Direction Methods
of Multipliers) algorithms, and their applications. This was not surprising consider-
ing that the title of the conference was Advances in Scientific Computing, Imaging
Science and Optimization. Indeed, for many years, operator-splitting has provided
efficient methods for the numerical solution of a large variety of problems from
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2 R. Glowinski et al.

Mechanics, Physics, Finance, etc. modeled by linear and nonlinear partial differen-
tial equations and inequalities, with new applications appearing almost on a daily
basis. Actually, there are situations where the only working solution methods are
based on operator-splitting (a dramatic example being provided by the numerical
simulation of super-novae explosions). Similarly, split Bregman and ADMM algo-
rithms enjoy now a very high popularity as efficient tools for the fast solution of
problems from the information sciences. Finally, ADMM algorithms have found
applications to the solution of large-scale optimization problems, due to their ability
at taking advantage of those special structures and associated decomposition prop-
erties, which are common in large-scale optimization.

What the three editors observed also was the lack of communications between
the communities and cultures, associated with the ‘vertices’ of the ‘triangle’ PDE
oriented scientific computing - information sciences - optimization (some bridges
do exist fortunately, but it is our opinion that more are needed).

From the various facts above, the three editors came to the conclusion that time
has come to have a multi-author book, with chapters dedicated to the theory, prac-
tice, and applications of operator-splitting, ADMM, and Bregman algorithms and
methods, one of the many goals of this book being also to show the existing com-
monalities between these methods. Another justification of the present volume is
that the number of publications on the above topics with a review flavor are scarce,
the most visible ones being, by chronological order:

1. The 1990 article by G.I. Marchuk in the Volume I of the Handbook of Numerical
Analysis [23]. This book size article (266 pages) is dedicated, mostly, to the
numerical solution of linear and nonlinear time dependent partial differential
equations from Mechanics and Physics, by operator-splitting and alternating
direction methods, making it thus quite focused.

2. The (94 pages) article by R.I. McLachlan, G. Reinout W. Quispel in Acta
Numerica 2002 [24]. Despite the broad appeal of its title, namely Splitting
methods, this long article is mostly focused on the time-discretization of dy-
namical systems, modeled by ordinary differential equations, by (symplectic)
operator-splitting schemes. It ignores for example the contributions of Dou-
glas, Marchuk, Peaceman, Rachford (and of many other contributors to splitting
methods).

3. Distributed optimization and statistical learning via the alternating direction
method of multipliers [1]. This large article (122 pages) appeared in Founda-
tions and Trends’ in Machine Learning; since its publication in 2011 it has been
the most cited article on ADMM methods (2, 678 citations as of November
26, 2015), an evidence of both the popularity of ADMM and of the impor-
tance of this publication. Actually, this article is mostly concerned with finite
dimensional convex problems and ignores applications involving differential
equations and inequalities.

It seemed to us, at the time of the above Hong-Kong conference (and also now),
that a book (necessarily multi-authors), less focused than the above publications,
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and blending as much as possible the methods and points of view of the various
splitting sub-communities, will be a useful and welcome tool for the splitting com-
munity at large. It will be useful also for those in search of efficient, modular, and
relatively easy to implement solution methods for complex problems. We are glad
that Springer shared this point of view and that outstanding contributors to this type
of methods accepted contributing to this volume.

In the following sections of this chapter we will give a relatively short com-
mented description of operator-splitting methods and related algorithms, and pro-
vide the historical facts we are aware of. As expected, references will be made to
the following chapters and to many related publications.

2 Lie’s Schemes

According to [5] it is Sophus Lie himself who introduced (in 1875) the first operator-
splitting scheme recorded in history ([21], a reprint of the 1888 edition), in or-
der to solve the following initial value problem (flow in the Dynamical System
community): {

dX
dt +(A+B)X = 0, in (0,T ),

X(0) = X0
(1.1)

where in (1.1): A and B are two d × d time-independent matrices, X0 ∈ R
d (or Cd)

and 0 < T ≤+∞. The solution of problem (1.1) reads as:

X(t) = e−(A+B)tX0. (1.2)

From the relation limn→+∞

(
e−B t

n e−A t
n

)n
= e−(A+B)t , Lie suggested the follow-

ing scheme for the approximate solution of problem (1.1) (with Δ t > 0, tn = nΔ t,
and Xn an approximation of X(tn)):{

X0 = X0,

Xn+1 = e−BΔ te−AΔ tXn, ∀n ≥ 0.
(1.3)

Since computing the exponential of a matrix is a nontrivial operation, particu-
larly for large values of d, splitting practitioners prefer to use the following (matrix
exponential free) equivalent formulation of scheme (1.3):

X0 = X0. (1.4)

For n ≥ 0, Xn → Xn+ 1
2 → Xn+1 via:

• Solve {
dX1
dt +AX1 = 0, in (tn, tn+1),

X1(tn) = Xn,
(1.5)
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• and set

Xn+ 1
2 = X1(t

n+1). (1.6)

• Similarly, solve {
dX2
dt +BX2 = 0, in (tn, tn+1),

X2(tn) = Xn+ 1
2 ,

(1.7)

• and set

Xn+1 = X2(t
n+1). (1.8)

From its equivalent formulation (1.4)–(1.8), one understands better now why the
Lie scheme (1.3) is known as a fractional-step time discretization scheme. It is in
fact the common ancestor to all the fractional-step and operator-splitting schemes.
One can easily show that the Lie scheme (1.3), (1.4)–(1.8) is generically first order
accurate, that is, ‖Xn −X(tn)‖ = O(Δ t). If A and B commute the above scheme is
obviously exact. Its generalization to splitting with more than two operators is dis-
cussed in Chapter 2. The generalization to nonlinear and/or non-autonomous initial
value problems is very simple (formally at least). Indeed, let us consider the follow-
ing initial value problem:{

dX
dt +A(X , t) = 0, in (0,T ),

X(0) = X0,
(1.9)

with A(X , t) = A1(X , t)+A2(X , t), A1 and A2 being possibly nonlinear. Introducing
α1,α2 such that 0 ≤ α1,α2 ≤ 1,α1 +α2 = 1, we can generalize scheme (1.4)–(1.8)
as follows:

X0 = X0. (1.10)

For n ≥ 0, Xn → Xn+ 1
2 → Xn+1 via:

For j = 1,2, solve:{
dXj
dt +A j(Xj, tn +(∑ j−1

k=1 αk)Δ t +α j(t − tn)) = 0, in (tn, tn+1),

Xj(tn) = Xn+ j−1
2 ,

(1.11)

and set

Xn+ j
2 = Xj(t

n+1). (1.12)

Assuming that the operator A j are smooth enough, the generalized Lie scheme
(1.10)–(1.12) is generically first order accurate at best. As shown in the follow-
ing chapters, problem (1.9) is, despite its simplicity, a model for a large number of
important applications: For example, it models the flow (in the dynamical system
sense) associated with the optimality conditions of an optimization problem (= 0
being possibly replaced by � 0).
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3 On the Strang Symmetrized Operator-Splitting Scheme

Motivated by the accurate solution of hyperbolic problems, G. Strang introduced in
[30] a second order variant of the Lie scheme, based on a symmetrization principle.
Let Δ t(> 0) be a time-discretization step. We can easily show that

e−(A+B)Δ t − e−A Δt
2 e−BΔ te−A Δt

2 = O(Δ t3),

implying that the (symmetrized) scheme{
X0 = X0,

Xn+1 = e−A Δt
2 e−BΔ te−A Δt

2 Xn,∀n ≥ 0,
(1.13)

is second order accurate (and exact if AB = BA). Scheme (1.13) can be generalized
as follows in order to solve the initial value problem (1.9) (with tn+ 1

2 = (n+ 1
2 )Δ t):

X0 = X0. (1.14)

For n ≥ 0,Xn → Xn+ 1
2 → X̂n+ 1

2 → Xn+1 via

• Solve {
dX1
dt +A1(X1, t) = 0, in (tn, tn+ 1

2 ),

X1(tn) = Xn,
(1.15)

• and set

Xn+ 1
2 = X1(t

n+ 1
2 ). (1.16)

• Similarly, solve {
dX2
dt +A2(X2, tn+ 1

2 ) = 0, in (0,Δ t),

X2(0) = Xn+ 1
2 ,

(1.17)

• and set

X̂n+ 1
2 = X2(Δ t). (1.18)

• Finally, solve {
dX1
dt +A1(X1, t) = 0, in (tn+ 1

2 , tn+1),

X1(tn+ 1
2 ) = X̂n+ 1

2 ,
(1.19)

• and set

Xn+1 = X1(t
n+1). (1.20)
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Generalizing scheme (1.14)–(1.20) to decompositions of A involving more than
two operators is easy: Indeed, suppose that A = A1 + A2 + A3; we can trivially
return to two operator situations by observing that we have the choice between
A = A1 +(A2 +A3),A = (A1 +A2)+A3 and A = (A1 +

1
2 A2)+ ( 1

2 A2 +A3), other
decompositions being possible. The same idea applies for more than three oper-
ators. If the operators in (1.14)–(1.20) have the right regularity and monotonicity
properties, the above symmetrized scheme is second order accurate and uncondi-
tionally stable (it is even A - stable), making it very popular in the computational
partial differential equations community. For those situations requiring an order of
accuracy higher than two, several options do exist, the best known being:

1. The 4th order Strang-Richardson scheme discussed in [8, 6, 7].
2. The exponential operator-splitting schemes. Actually, the Lie and Strang split-

ting schemes belong to this family of time discretization methods, whose origin
(concerning schemes of order higher than two) is not easy to track back, early
significant publications being [28, 29] (see also the references therein and those
in [31], and Google Scholar). Arbitrary high accuracy can be obtained with
these methods, the price to pay being their reduced stability and robustness
(compared to the Strang scheme, for example).

We will return to these higher order schemes in Chapter 2.

4 On the Solution of the Sub-initial Value Problems

The various splitting schemes we encountered so far are generically known (for
obvious reasons) as multiplicative splitting schemes. Actually, these schemes are
only semi-constructive, in the sense that one still has to specify how to solve in
practice the various sub-initial value problems they produce. For a low order scheme
like the Lie scheme a very popular way to proceed is to solve the sub-initial value
problems using just one step of the backward Euler scheme; applying this strategy
to problem (1.9), with A(X , t) = ∑J

j=1 A j(X , t), one obtains the following scheme

X0 = X0. (1.21)

For n ≥ 0,Xn → Xn+ 1
J → . . .→ Xn+ j

J → . . .→ Xn+ J−1
J → Xn+1 via:

∀ j = 1, . . . ,J, solve

Xn+ j
J −Xn+ j−1

J

Δ t
+A j(X

n+ j
J , tn+1) = 0. (1.22)

Scheme (1.21)–(1.22) (known by some practitioners as the Marchuk-Yanenko
operator-splitting scheme) is first order accurate, at most, however, its robustness
and simplicity make it popular for the solution of complicated problems with
poorly differentiable solutions involving a large number of operators. Actually,
scheme (1.21)–(1.22) can accommodate easily non-smooth, possibly multi-valued,
operators.
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The practical implementation of the Strang symmetrized scheme will be dis-
cussed in Chapter 2.

5 Further Comments on Multiplicative Operator-Splitting
Schemes

We will conclude these generalities on multiplicative operator-splitting methods by
mentioning their following drawback: Due to splitting errors, these methods are
asymptotically inconsistent. What we mean by that is that when applied to the com-
putation of steady state solutions (assuming that such solutions exist), they converge
to limits, which are not steady state solutions, but just approximations of them.
Typically, if the operator-splitting scheme one employs is k-order accurate, the dis-
tance of the computed steady state solutions to the exact ones is O(|Δ t|k). One can
reduce this splitting-error, via an appropriate averaging for example. Actually, in
Chapter 3 of this book, S. MacNamara and G. Strang show how to modify the Strang
symmetrized operator-splitting scheme in order to recover exact steady state solu-
tions. Another way to combine exact steady state solutions and the operator-splitting
paradigm is to use schemes such as Peaceman-Rachford’s and Douglas-Rachford’s,
that is ADI (for Alternating Direction Implicit) type methods. These schemes will
be discussed in Section 6, below.

6 On ADI Methods

To the best of our knowledge, J. Douglas, D. Peaceman and H. Rachford introduced
ADI methods about 60 years ago (to know more about their inception, see the 2006
SIAM News article by A. Usadi and C. Dawson [33] on the Celebration at Rice
University of 50 Years of ADI Methods). The founding publications, namely [27]
and [9], concern the numerical solution of elliptic and parabolic equations such as
the time dependent and stationary heat equations. However, one quickly realized
that these schemes apply also to situations that are more general. Taking advan-
tage of these generalizations, our starting point will be the following initial value
problem: {

dX
dt +A1(X , t)+A2(X , t) = 0, in (0,T ),

X(0) = X0,
(1.23)

where A1 and A2 operate, possibly, on an infinite dimensional space, and 0 < T ≤
+∞. With Δ t(> 0) a time-discretization step, we denote (n+α)Δ t by tn+α , and
by Xn+α an approximation of X(tn+α). The idea behind the Peaceman-Rachford
scheme is quite simple: An approximation Xn of X(tn) being known, one computes
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Xn+1 using a scheme of the backward (resp., forward) Euler type with respect to
A1(resp., A2) on the time interval [tn, tn+ 1

2 ]. Then, one switches the roles of A1

and A2 on the time interval [tn+1/2, tn+1]. The following scheme realizes this pro-
gram:

X0 = X0. (1.24)

For n ≥ 0,Xn → Xn+ 1
2 → Xn+1 as follows:

Solve

Xn+ 1
2 −Xn

Δ t/2
+A1(X

n+ 1
2 , tn+ 1

2 )+A2(X
n, tn) = 0, (1.25)

and

Xn+1 −Xn+ 1
2

Δ t/2
+A1(X

n+ 1
2 , tn+ 1

2 )+A2(X
n+1, tn+1) = 0. (1.26)

In the particular case where A1 and A2 are linear and time independent linear opera-
tors which commute, the Peaceman-Rachford scheme (1.24)–(1.26) is second order
accurate; it is at best first order accurate in general. The convergence of the above
scheme has been proved in [22] and [18] under quite general monotonicity hypothe-
ses concerning the operators A1 and A2 (see also [10, 11], and [20]); indeed, A1 and
A2 can be nonlinear, unbounded, and even multivalued (if this is the case � 0 has to
replace = 0 in (1.25) and/or (1.26)).

Remark 1. For those fairly common situations where A2 is a smooth univalued op-
erator, but operator A1 is a ‘nasty’ one (discontinuous and/or multivalued, etc.), one
should use the equivalent formulation of the Peaceman-Rachford scheme obtained
by replacing (1.26) by

Xn+1 − 2Xn+ 1
2 +Xn

Δ t/2
+A2(X

n+1, tn+1) = A2(X
n, tn). (1.27)

Further comments and remarks concerning scheme (1.24)–(1.26) may be found
in [14, 16] (see also the references therein and various chapters of this book,
Chapter 2 in particular). Actually, several of these comments concern the frac-
tional θ -scheme, a scheme introduced in the mid-eighties for the numerical solu-
tion of the Navier-Stokes equations modeling incompressible viscous flow [13, 14].
This scheme, which is a three sub-interval variant of the Peaceman-Rachford
scheme (1.24)–(1.26) will be discussed in Chapter 2.

A classical alternative to the Peaceman-Rachford scheme (1.24)–(1.26) is the
Douglas-Rachford scheme introduced in [9]. Applied to the solution of the initial
value problem (1.23), the Douglas-Rachford scheme reads as follows:

X0 = X0. (1.28)
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For n ≥ 0,Xn → X̂n+1 → Xn+1 as follows:
Solve

X̂n+1 −Xn

Δ t
+A1(X̂

n+1, tn+1)+A2(X
n, tn) = 0, (1.29)

and
Xn+1 −Xn

Δ t
+A1(X̂

n+1, tn+1)+A2(X
n+1, tn+1) = 0. (1.30)

The convergence of the above scheme has been proved in [22] and [18] under
quite general monotonicity hypotheses concerning the operators A1 and A2 (see
also [10, 11], and [20]); indeed, A1 and A2 can be nonlinear, unbounded, and even
multivalued (if this is the case � 0 has to replace = 0 in (1.28) and/or (1.30)). As
shown in, e.g., Chapter 2 the Douglas-Rachford scheme (1.28)–(1.30) is generi-
cally first order accurate at best, a prediction supported by the results of various
numerical experiments. In order to improve the accuracy of the Douglas-Rachford
scheme (1.28)–(1.30), J. Douglas & S. Kim introduced in the late 90s–early 2000s
[33], a Crank-Nicolson based variant of the above scheme; we will briefly discuss
the Douglas-Kim scheme in Chapter 2 (the price to pay for the improved accuracy
is a loss of robustness).

Remark 2. For obvious reasons the Douglas-Rachford scheme (1.28)–(1.30) is
known as an additive operator-splitting scheme. The same terminology applies also
to the Peaceman-Rachford scheme (1.24)–(1.26).

Remark 3. Unlike the Peaceman-Rachford scheme (1.24)–(1.26), the Douglas-
Rachford scheme (1.28)–(1.30) can be generalized to decompositions A = ∑J

j=1 A j

involving more than two operators (see Section 2.5 of Chapter 2 for details and re-
lated references). Actually, the above observation applies also to the Douglas-Kim
scheme.

Remark 4. This is the Douglas-Rachford analogue of Remark 1: For those situations
where A1 is a ‘bad’ operator (in the sense of Remark 1), we should use (assuming
that A2 is univalued) the equivalent formulation of the Douglas-Rachford scheme
obtained by replacing (1.26) by

Xn+1 − X̂n+1

Δ t
+A2(X

n+1, tn+1) = A2(X
n, tn). (1.31)

Remark 5. At those wondering how to choose between Peaceman-Rachford and
Douglas-Rachford schemes we will say that on the basis of many numerical experi-
ments, it seems that the second scheme is more robust and faster for those situations
where one of the operators is non-smooth (multivalued or singular, for example),
particularly if one is interested at capturing steady state solutions. We will give a
(kind of) justification in Chapter 2, based on the inspection of some simple particu-
lar cases.
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Remark 6. Optimization algorithms and ADI methods did not interact that much
for many years. The situation started changing when in the mid-1970s unex-
pected relationships between some augmented Lagrangian algorithms and the
Douglas-Rachford scheme (1.28)–(1.30) were identified (they have been reported in
Chapter 2, Section 3, and Chapter 8, Section 1, of this volume). This discovery lead
to what is called now the Alternating Direction Methods of Multipliers (ADMM),
and was known as ALG2 at the time. Although the problems leading to ADMM
were partial differential equations or inequalities related, this family of algorithms
has found applications outside the realm of differential operators, as shown by [1]
and several chapters of this book. Further details on the ‘birth’ of ADMM can be
found in [15] and the Chapter 4 of [16].

The above remark is a natural introduction to the more detailed discussion, below,
on the role of operator-splitting methods in Optimization.

7 Operator Splitting in Optimization

Several chapters of this book study operator splitting methods for solving optimiza-
tion problems in (non-PDE related) signal processing, imaging, statistical and ma-
chine learning, as well as those defined on a network that require decentralized com-
puting. They cover a large variety of problems and applications. The optimization
problems considered in these chapters include both constrained and unconstrained
problems, smooth and nonsmooth functionals, as well as convex and nonconvex
functionals.

Operator splitting methods are remarkably powerful since they break numeri-
cally inconvenient combinations, such as smooth + nonsmooth functionals, smooth
functionals + constraints, functionals of local variables + functionals of the shared
global variable, and convex + nonconvex functionals, in a problem and place them
in separate subproblems. It also breaks a sum of functionals that involve different
parts of the input data into subproblems so that they can be solved with less amounts
of memory. These features are especially important to the modern applications that
routinely process a large amount of data.

Operator splitting methods appear in optimization in a variety of different spe-
cial forms, and thus under different names, such as gradient-projection, proximal-
gradient, alternating-direction, split Bregman [19], and primal-dual splitting meth-
ods. All of them have strong connections (often as special cases) of the forward-
backward, Douglas-Rachford, and Peaceman-Rachford splitting methods. Recently,
their applications in optimization have significantly increased because of the emerg-
ing need to analyze massive amounts of data in a fast, distributed, and even stream-
ing manner.

A common technique in data analysis is sparse optimization, a new subfield of
optimization. Sparse here means simple structures in the solutions — a generaliza-
tion from its literal meaning of having very few nonzero elements. Owing much
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to statistical estimation with prior information and compressive sensing, sparse
optimization has been recognized as a computational tool that plays a central role
in many data processing problems. A typical sparse optimization problem has
the form

minimize
y

[r(y)+ f (y)], (1.32)

where minimizing r(y) imposes a simple structure on the solution x, such as spar-
sity and smoothness, and minimizing f (y) matches the solution x to the observa-
tions. Since f and r have distinct roles, they often possess different properties, lim-
iting your choices of classic (non-splitting) numerical methods. Therefore, splitting
methods have been the favorite numerical solution to the model (1.32).

Another frequently used model is the monotropic program

minimize
x,y

[p(x)+ q(y)]

subject to Ax+By = b, (1.33)

which applies to many problems in modern data sciences. Here, the functionals
p,q can take the extended value +∞, so the model can incorporate constraints as
indicator functionals. Connecting the two functions in the objective through linear
constraints in the model (1.33) significantly increases its modeling power over the
model (1.32). (It is easy to see that (1.32) is a special case of (1.33) with p = r,
q = f , A =−B = I, and b = 0.) The model (1.33) routinely appears in the following
classes of problems:

• network-wide problems: the linear constraints of (1.33) relate the variables
defined on the network nodes and edges;

• total variation and analysis-sparse problems: they minimize the functional
q(Ux) where U represents discrete finite difference, a frame, or other lin-
ear operators; one often separates q and U by introducing the constraints
Ux− y = 0;

• dictionary learning and dictionary-based reconstruction;
• as well as a long list of other classes of problems . . .

Operator splitting methods such as Tseng’s algorithm [32] and the alternating dir-
ection method of multipliers (ADMM) [17, 12] break the functions p and q into
different subproblems while classical methods such as the interior-point method
and the method of multipliers cannot offer such convenience.

In some problems, the objective functions in (1.32) and (1.33) are sums of mul-
tiple subfunctionals. Operator-splitting methods can let them updated in separate
subproblems and give rise to parallel or distributed implementations; therefore,
they become a strong candidate for dealing with data of extreme scale (e.g., web-
scale data mining) and those collected in a distributed manner (e.g., sensor net-
works).
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This book features several chapters on operator splitting methods for optimiza-
tion: Chapter 9 by Goldstein and Zhang covers �1 and compressive sensing/imaging
problems, Chapter 10 by Burger, Sawatzky, and Steidl covers the operator-splitting
methods for non-smooth variational problems in image processing, Chapter 12 by
Darbon and Osher applies ADMM to solve previously intractable high dimensional
Hamilton-Jacobi equations, Chapter 13 by Hu, Chi, and Allen introduces an ap-
proach to generate a regularization path (a sequence of solutions corresponding to
different strengths of regularization) by running ADMM just once, and Chapter 14
by Giannakis, Ling, Mateos, Schizas, and Zhu covers decentralized learning prob-
lems for wireless communications and networking. In addition, Chapter 4 by Davis
and Yin studies convergence rates, Chapter 5 by Yan and Yin discovers primal-dual
equivalence results, and Chapter 6 by He, Liu, Lu, and Yuan introduces a Peaceman-
Rachford based splitting method to the multi-block extension of the model (1.33).

Although they all have different approaches, several chapters review the impor-
tant concepts of proximal mapping and duality, which is a cornerstone of many
operator splitting methods for convex optimization. For a closed (that is lower semi-
continuous) proper function f , its proximal mapping maps the point y to the solu-
tion of

minimize
x

[ f (x)+
1
2
‖x− y‖2]. (1.34)

This mapping is the resolvent of the subdifferential operator ∂ f , a fundamental
concept in the monotone operator theory. The proximal mapping is often used to
deal with structured nonsmooth functions and constraints in optimization problems,
giving rise to subproblems with closed-form solutions. Chapters 9 and 10 provide a
list of such proximable functions.

Duality has always been a powerful tool in optimization. It can significantly en-
hance other optimization methodology including operator splitting. Traditionally,
duality provides an alternative perspective to optimization problems, which gives
rise to lower bounds, certificates for optimality or infeasibility, as well as alternative
formulations of the same problem and thus alternative algorithms. In the context of
operator splitting, duality helps split multiple functionals in the objective, as well
as the different parts of a constraint. For example, the ADMM algorithm for the
model (1.33) places the matrices A and B in different subproblems, and ADMM is a
dual algorithm. (ADMM is equivalent to the Douglas-Rachford splitting method ap-
plied to the dual of (1.33). In fact, ADMM is also self-dual: it is equivalent to itself
applied to the dual of (1.33), as established in Chapter 5.) In addition, in primal-dual
splitting methods, duality helps split the compositions like q(Ux) = q◦U(x) so that
one can apply the proximal mapping of q (often in a closed form) instead of that of
q◦U (usually difficult). See Chapters 4 and 5 for primal-dual splitting methods such
as BOS [37], FTVd [34], PDHG [38], Chambolle-Pock [4], and proximal/linearized-
ADMM. In order to obtain parallel and distributed algorithms for problems with
multiple functions in the objective and/or multiple components in the linear con-
straints, duality is indispensable — it helps split those functions and components
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into different subproblems. Chapter 14 provides a bag of such interesting examples
for important applications. Often seen in a dual or primal-dual algorithm are La-
grange multipliers and convex conjugate functions; their appearance lets us easily
identify the role that duality is playing.

Besides just providing faster and more scalable algorithms, there has been a novel
use of operator splitting algorithm — generating a sequence of solutions for a reg-
ularization model that correspond to varying strengths of regularization, known as
the regularization path. Throughout sparse optimization and statistical estimation
models, there is a parameter that explicitly controls how simple the solution needs
to be. The best choice of this parameter is practically unknown since it depends on
both the model and the actual data. Solving the model for all possible values of the
parameter is intractable, and even doing that for a large set of values is impracti-
cal. Homotopy techniques have been applied so that we can sequentially obtain the
solutions corresponding to different parameter values much faster than repeatedly
applying the same algorithm for each value from scratch. Chapter 13 by Hu, Chi,
and Allen provides a much faster and simpler solution. They obtain the points that
approximate the regularization path directly as the iterates of their ADMM-based
algorithm. This approach leads to a substantial save in computing time for prob-
lems such as sparse linear regression, reduced-rank multi-task learning, and convex
clustering. (Related to their method are the non-splitting methods: Bregman itera-
tive regularization [25, 36], the inverse scale space method [2, 3], and differential
inclusion regularization path [26].)

Last but not least, operator splitting algorithms are theoretically attractive
because they converge under very few assumptions, typically, only convexity,
solution existence, as well as certain constraint qualifications, imposed on the un-
derlying problem. Convergence results have been recently developed for nonconvex
problems as well. Chapter 4 by Davis and Yin covers not only the convergence but
also the rates of convergence for the generic Krasnosel’skiĭ-Mann (KM) iteration
of nonexpansive operators, as well as those for the forward-backward, Douglas-
Rachford, Peaceman-Rachford, and ADMM splitting algorithms. All the rates given
in their chapter are tight, achieved by examples in the chapter. Of particular interest
is the phenomenon that, in terms of the worst-case convergence rate, the last three
algorithms are as fast as the proximal-point algorithm in the ergodic sense (measur-
ing the quality of running averages of iterates) yet also as slow as the subgradient
algorithm in the non-ergodic sense (measuring the quality of last iterates).

In fact, operator splitting algorithms typically generate a sequence of iterates
that have non-monotonic values of objective and constraint violations, making it
very tricky to chose an algorithm parameter (in particular, line search is difficult to
apply). Empirical studies strongly suggest that best performance is observed when
the algorithm parameter is chosen so that primal optimality and dual optimality
(which correspond to the different parts of the KKT conditions) are improving at
the same pace.
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8 Bregman Methods and Operator Splitting

Bregman methods are related to operator splitting through the Bregman distance,
which generalizes the Euclidean distance. Let φ be a proper closed convex func-
tional and ∂φ be its subdifferential. Then the Bregman distance between two points
x and y is defined as

Dp
φ (y,x) := φ(y)−φ(x)−〈p,y− x〉,

which depends on the choice p ∈ ∂φ(x). In the special case of φ(x) = 1
2‖x‖2, we

have ∂φ(x) = {x} and thus p= x; therefore, we get Dp
φ (y,x) =

1
2‖y−x‖2. In general,

while Dp
φ (y,x) is not a mathematical distance, it behaves similarly to a distance.

Since φ is convex, Dp
φ (y,x)≥ 0 for any points x,y in the interior of the domain of φ .

In addition, if a point z is further away from x than y in the sense z = y+α(y−x) for
some α ≥ 0, then Dp

φ (z,x)≥ Dp
φ (y,x). Therefore, minimizing over y tends to keep y

close to x.
The Bregman distance is typically used in place of the Euclidean distance, for

example, generalizing the proximal subproblem (1.34) to

minimize
x

[ f (x)+Dp
φ (x,y)], (1.35)

which maps the input y to the minimizer x.
Traditionally, one uses a strongly convex functional φ to induce the Bregman

distance. In Bregman iteration regularization [2] and the Bregman algorithm [36],
however, (weak) convex functionals such as the �1 norm and total variation are used
to generate the sequence of points (xk, pk)k∈N based on applying (1.34) recursively:

xk ∈ argmin
x

[ f (x)+Dpk−1

φ (x,xk−1)] (1.36)

(We use “∈” instead of “=” because the solution is not unique. The new pk can be
naturally obtained from the optimality condition of (1.36). The reader is referred to
Chapters 9 and 10 for more details.) It turns out that the sequence approximates a
regularization path with φ being the regularization function and f being the data
fidelity functional. Compared to directly minimizing f + λφ , the points are less
biased in statistical estimation and are more faithful images in image reconstruction.
In addition, it was discovered that for f (x) = 1

2‖Ax − b‖2 and φ being a piece-
wise linear functional like the �1 norm, the algorithm is both fast and robust to
error [35]. Although the algorithm becomes equivalent to the method of multipliers
(a.k.a., augmented Lagrangian method) for this choice of f , the above results for
regularization path and error robustness are both new and important to compressed
sensing and statistical estimation.
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The split Bregman method [19] carries the same iteration (1.36) for φ(x) =
φ1(x1)+ φ2(x2), where x = {x1,x2}. It is numerically observed in [19] that (1.36)
can be replaced by the sequential updates:

xk
1 ∈[argmin

x1

f (x1,x
k−1
2 )+D

pk−1
1

φ1
(x1,x

k−1
1 )] (1.37a)

xk
2 ∈[argmin

x2

f (xk
1,x2)+D

pk−1
2

φ2
(x2,x

k−1
2 )], (1.37b)

while the algorithm is still running. (From the optimality conditions, one obtain pk
i ∈

∂φi(xk
i ) for i= 1,2.) Therefore, φ1 and φ2 can be split into different subproblems and

minimized separately. The imaging community soon recognized the advantage of
such splitting and started to find good performance of this method on many challeng-
ing problems. It was then discovered that when f (x1,x2) =

1
2‖A1x1 +A2x2 − b‖2,

algorithm (1.37) is equivalent to an ADMM algorithm.
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Chapter 2
Some Facts About Operator-Splitting
and Alternating Direction Methods

Roland Glowinski, Tsorng-Whay Pan, and Xue-Cheng Tai

Abstract The main goal of this chapter is to give the reader a (relatively) brief
overview of operator-splitting, augmented Lagrangian and ADMM methods and
algorithms. Following a general introduction to these methods, we will give several
applications in Computational Fluid Dynamics, Computational Physics, and Imag-
ing. These applications will show the flexibility, modularity, robustness, and versa-
tility of these methods. Some of these applications will be illustrated by the results
of numerical experiments; they will confirm the capabilities of operator-splitting
methods concerning the solution of problems still considered complicated by today
standards.

1 Introduction

In 2004, the first author of this chapter was awarded the SIAM Von Kármán Prize
for his various contributions to Computational Fluid Dynamics, the direct numeri-
cal simulation of particulate flow in particular. Consequently, he was asked by some
people at SIAM to contribute an article to SIAM Review, related to the Von Kármán
lecture he gave at the 2004 SIAM meeting in Portland, Oregon. Since operator-
splitting was playing a most crucial role in the results presented during his Portland
lecture, he decided to write, jointly with several collaborators (including the second
author), a review article on operator-splitting methods, illustrated by several selected
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applications. One of the main reasons for that review article was that, to the best of
our knowledge at the time, the last comprehensive publication on the subject was
[121], a book-size article (266 pages) published in 1990, in the Volume I of the
Handbook of Numerical Analysis. Our article was rejected, on the grounds that it
was untimely. What is ironical is that the very day (of August 2005) we received the
rejection e-mail message, we were having a meeting with computational scientists
at Los Alamos National Laboratory (LANL) telling us that one of their main prior-
ities was further investigating the various properties of operator-splitting methods,
considering that these methods were (and still are) applied at LANL to solve a large
variety of challenging, mostly multi-physics, problems. Another event emphasizing
the importance of operator-splitting methods was the December 2005 conference,
at Rice University in Houston, commemorating “50 Years of Alternating-Direction
Methods” and honoring J. Douglas, D. Peaceman and H. Rachford, the inventors
of those particular operator-splitting methods bearing their name. Actually, it was
striking to observe during this conference that, at the time, most members of the
Partial Differential Equations and Optimization communities were ignoring that
most alternating-direction methods for initial value-problems are closely related to
primal-dual algorithms such as ADMM (Alternating Direction Methods of Multi-
pliers). In order to create a bridge between these two communities, we updated the
failed SIAM Review paper and submitted it elsewhere, leading to [73] (clearly, a
publication in an SIAM journal would have had more impact, worldwide). Our goal
in this chapter is to present a (kind of) updated variant of [73], less CFD (resp.,
more ADMM) oriented. It will contain in particular applications to Imaging, a topic
barely mentioned in reference [73]. The content of this chapter is as follows:

In Section 2, we will discuss the numerical solution of initial value problems
by operator-splitting time-discretization schemes such as Peaceman-Rachford’s,
Douglas-Rachford’s, Lie’s, Strang’s, Marchuk-Yanenko’s, and by the fractional
θ -scheme, a three-stage variation, introduced in [67] and [68], of Peaceman Rach-
ford’s scheme. We will conclude this section by some remarks on the parallelization
of operator-splitting schemes.

Section 3 will be dedicated to augmented Lagrangian and ADMM algorithms.
We will show in particular that some augmented Lagrangian and ADMM algorithms
are nothing but disguised operator-splitting methods (justifying thus the ADMM
terminology).

Following [73], we will discuss in Section 4 the operator-splitting based direct
numerical simulation of particulate flow, in the particular case of mixtures of inc-
ompressible viscous fluids and rigid solid particles.

In Section 5, we will discuss the application of operator-splitting methods to the
solution of two problems from Physics, namely the Gross-Pitaevskii equation, a
nonlinear Schrödinger equation modeling Bose-Einstein condensates, and the Zak-
harov system, a model for the propagation of Langmuir waves in ionized plasma.

Next, in Section 6, we will discuss applications of augmented Lagrangian and
ADMM algorithms to the solution of problems from Imaging, a highly popular topic
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nowadays (actually, the renewed interest in ADMM type algorithms that we observe
currently can be largely explained by their application to Image Processing; see
[156, 170]).

Finally, in Section 7, we will return to various issues that we left behind in
the preceding sections of this chapter: these include augmentation parameter sel-
ection, an analysis of the asymptotic behavior of the Peaceman-Rachford and
Douglas-Rachford schemes, and various comments concerning high order accurate
operator-splitting schemes. Also, owing to the fact that one of the success stories
of operator-splitting methods has been the numerical solution of the Navier-Stokes
equations modeling viscous flow, we will conclude this section (and the chapter) by
providing a (non-exhaustive) list of related references.

In addition to all the other chapters of this volume, material related to operator-
splitting, augmented Lagrangian and ADMM algorithms can be found in [72] (see
also the references therein). More references will be given in the following sections.

2 Operator-Splitting Schemes for the Time Discretization
of Initial Value Problems

2.1 Generalities

Let us consider the following autonomous initial value problem:⎧⎨
⎩

dφ
dt

+A(φ) = 0 on (0,T ) (with 0 < T ≤+∞),

φ(0) = φ0.
(2.1)

Operator A maps the vector space V into itself and we suppose that φ0 ∈ V . We
suppose also that A has a nontrivial decomposition such as

A =
J

∑
j=1

A j, (2.2)

with J ≥ 2 (by nontrivial we mean that the operators A j are individually simpler
than A).

A question which arises naturally is clearly:

Can we take advantage of decomposition (2.2) for the solution of (2.1)?

It has been known for many years (see for example [36]) that the answer to the
above question is definitely yes.

Many schemes have been designed to take advantage of the decomposition (2.2)
when solving (2.1); several of them will be briefly discussed in the following
paragraphs.
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2.2 Time-Discretization of (2.1) by Lie’s Scheme

Let �t(> 0) be a time-discretization step (for simplicity, we suppose �t fixed); we
denote n�t by tn. With φn denoting an approximation of φ(tn), Lie’s scheme reads
as follows (for its derivation see, e.g., [70] (Chapter 6) and Chapter 1, Section 2, of
this book):

φ0 = φ0; (2.3)

then, for n ≥ 0, φn → φn+1 via⎧⎨
⎩

dφ j

dt
+A j(φ j) = 0 on (tn, tn+1),

φ j(tn) = φn+( j−1)/J;φn+ j/J = φ j(tn+1),
(2.4)

for j = 1, . . . ,J.
If (2.1) is taking place in a finite dimensional space and if the operators A j are

smooth enough, then ‖φ(tn)−φn‖= O(�t), function φ being the solution of (2.1).

Remark 1. The above scheme applies also for multivalued operators (such as the
subdifferentials of proper lower semi-continuous convex functionals), but in such a
case first order accuracy is not guaranteed anymore. A related application will be
given in Section 2.7.

Remark 2. The above scheme is easy to generalize to non-autonomous problems by
observing that

{ dφ
dt

+A(φ , t) = 0,

φ(0) = φ0

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ
dt

+A(φ ,θ ) = 0,

dθ
dt

− 1 = 0,

φ(0) = φ0,θ (0) = 0.

Remark 3. Scheme (2.3)–(2.4) is semi-constructive in the sense that we still have to
solve the initial value sub-problems in (2.4) for each j. Suppose that we discretize
these sub-problems using just one step of the backward Euler scheme. The resulting
scheme reads as follows:

φ0 = φ0; (2.5)

then, for n ≥ 0, φn → φn+1 via the solution of

φn+ j/J −φn+( j−1)/J

�t
+A j(φn+ j/J) = 0, (2.6)

for j = 1, . . . ,J.
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Scheme (2.5)–(2.6) is known as the Marchuk-Yanenko scheme (see, e.g., refs.
[121] and [70] (Chapter 6)) for more details). Several chapters of this volume are
making use of the Marchuk-Yanenko scheme.

2.3 Time-Discretization of (2.1) by Strang’s Symmetrized Scheme

In order to improve the accuracy of Lie’s scheme, G. Strang suggested a sym-
metrized variant of scheme (2.3)–(2.4) (ref. [153]). When applied to non-autonomous
problems, in the case where J = 2, we obtain (with tn+1/2 = (n+ 1/2)�t):

φ0 = φ0; (2.7)

then, for n ≥ 0, φn → φn+1/2 → φ̂n+1/2 → φn+1 via⎧⎨
⎩

dφ1

dt
+A1(φ1, t) = 0 on (tn, tn+1/2),

φ1(tn) = φn;φn+1/2 = φ1(tn+1/2),
(2.8)

⎧⎨
⎩

dφ2

dt
+A2(φ2, tn+1/2) = 0 on (0,�t),

φ2(0) = φn+1/2; φ̂n+1/2 = φ2(�t),
(2.9)

⎧⎨
⎩

dφ1

dt
+A1(φ1, t) = 0 on (tn+1/2, tn+1),

φ1(tn+1/2) = φ̂n+1/2;φn+1 = φ1(tn+1).
(2.10)

If (2.1) is taking place in a finite dimensional space and if operators A1 and A2

are smooth enough, then ‖φ(tn)− φn‖ = O(|�t|2), function φ being the solution
of (2.1).

Remark 4. In order to preserve the second order accuracy of scheme (2.7)–(2.10)
(assuming it takes place) we have to solve the initial value problems in (2.8),
(2.9) and (2.10) by schemes which are themselves second order accurate (at least);
these schemes are highly dependent of the properties of A1 and A2. The sub-
problems (2.8), (2.9) and (2.10) are all particular cases of⎧⎨

⎩
dφ
dt

+B(φ , t) = 0 on (t0, t f ),

φ(t0) = φ0.
(2.11)

Suppose now that B is a (positively) monotone operator; following [70] (Chapter 6),
we advocate using for the numerical integration of (2.11) the second order implicit
Runge-Kutta scheme below:



24 R. Glowinski et al.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for q = 0, . . . ,Q− 1, φq → φq+θ → φq+1−θ → φq+1 via⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φq+θ −φq

θτ
+B(φq+θ , tq+θ ) = 0,

φq+1−θ =
1−θ

θ
φq+θ +

2θ − 1
θ

φq,

φq+1 −φq+1−θ

θτ
+B(φq+1, tq+1) = 0,

(2.12)

where in (2.12):

• Q(≥ 1) is an integer and τ =
t f − t0

Q
.

• φq+α is an approximation of φ(tq+α), with tq+α = t0 +(q+α)τ .

• θ = 1− 1√
2

.

It is shown in [70] (Chapter 2) that the implicit Runge-Kutta scheme (2.12) is stiff
A-stable and “nearly” third-order accurate. It has been used, in particular, in [70]
and [162] for the numerical simulation of incompressible viscous flow.

Remark 5. The main (if not the unique) drawback of Strang’s symmetrized scheme
(2.7)–(2.10) concerns its ability at capturing the steady state solutions of (2.1) (when
T = +∞), assuming that such solutions do exist. Indeed, the splitting error asso-
ciated with scheme (2.7)–(2.10) prevents using large values of �t when integrat-
ing (2.1) from t = 0 to t = +∞; if the sequence {φn}n≥0 converges to a limit,
this limit is not, in general, a steady state solution of (2.1), albeit being close
to one for small values of �t (a similar comment applies also to the sequences
{φn+1/2}n≥0 and {φ̂n+1/2}n≥0). A simple way to-partly-overcome this difficulty is
to use variable time discretization steps: for example, in (2.8), (2.9) and (2.10),
one can replace �t by τn (the sequence {τn}n≥0 verifying τn > 0, lim

n→∞
τn = 0 and

∞

∑
n=0

τn = +∞), and then define tn+1 and tn+1/2 by tn+1 = tn + τn ∀n ≥ 0, t0 = 0,

and tn+1/2 = tn+τn/2, respectively. A more sophisticated way to fix the asymptotic
behavior of scheme (2.7)–(2.10) is to proceed as in the chapter by McNamara and
Strang in this book (Chapter 3).

Remark 6. More comments on scheme (2.7)–(2.10) can be found in, e.g., [70]
(Chapter 6), [72] (Chapter 3) and various chapters of this volume, Chapter 3 in
particular. Among these comments, the generalization of the above scheme to those
situations where J ≥ 3 in (2.2) has been discussed. Conceptually, the case J ≥ 3 is
no more complicated than J = 2. Focusing on J = 3, we can return (in a nonunique
way) to the case J = 2 by observing that

A = A1 +A2 +A3 = A1 +(A2 +A3) = (A1 +A2)+A3 (2.13)

= (A1 +
1
2

A2)+ (
1
2

A2 +A3).
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The first (resp., second and third) arrangement in (2.13) leads to 5 (resp., 7 and 9) ini-
tial value sub-problems per time step. Scheme (2.7)–(2.10), combined with the first
arrangement in (2.13), has been applied in [81] to the computation of the periodic
solution of a nonlinear integro-differential equation from Electrical Engineering.

2.4 Time-Discretization of (2.1) by Peaceman-Rachford’s
Alternating Direction Method

Another candidate for the numerical solution of the initial value problem (2.1), or
of its non-autonomous variant⎧⎨

⎩
dφ
dt

+A(φ , t) = 0 on (0,T ),

φ(0) = φ0.
(2.14)

is provided, if J = 2 in (2.2), by the Peaceman-Rachford scheme (introduced in
[139]). The idea behind the Peaceman-Rachford scheme is quite simple: the nota-
tion being like in Sections 2.1, 2.2 and 2.3, one divides the time interval [tn, tn+1]
into two sub-intervals of length �t/2 using the mid-point tn+1/2. Then assuming
that the approximate solution φn is known at tn one computes first φn+1/2 using
over [tn, tn+1/2] a scheme of the backward Euler type with respect to A1 and of the
forward Euler type with respect to A2; one proceeds similarly over [tn+1/2, tn+1],
switching the roles of A1 and A2. The following scheme, due to Peaceman and
Rachford (see [139]), realizes precisely this program when applied to the solution
of the initial value problem (2.14):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φn+1/2 → φn+1 via the solution of
φn+1/2 −φn

�t/2
+A1(φn+1/2, tn+1/2)+A2(φn, tn) = 0,

φn+1 −φn+1/2

�t/2
+A1(φn+1/2, tn+1/2)+A2(φn+1, tn+1) = 0.

(2.15)

The convergence of the Peaceman-Rachford scheme (2.15) has been proved in [118]
and [84] under quite general monotonicity assumptions concerning the operators A1

and A2 (see also [64, 65] and [110]); indeed, A1 and/or A2 can be nonlinear, unb-
ounded and even multi-valued. In general, scheme (2.15) is first order accurate at
best; however, if the operators A1 and A2 are linear, time independent, and commute
then scheme (2.15) is second order accurate (that is ‖φn − φ(tn)‖ = O(|�t|2)), φ
being the solution of problem (2.1)). Further properties of scheme (2.15) can be
found in, e.g., [121, 70] (Chapter 2) and [72] (Chapter 3), including its stability, and
its asymptotic behavior if T =+∞; concerning this last issue, a sensible advice is to
use another scheme to compute steady state solutions, scheme (2.15) not being stiff
A-stable.
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Remark 7. Scheme (2.15) belongs to the alternating direction method family. The
reason of that terminology is well known: one of the very first applications of
scheme (2.15) was the numerical solution of the heat equation

∂φ
∂ t

− ∂ 2φ
∂x2 − ∂ 2φ

∂y2 = f ,

completed by initial and boundary conditions. After finite difference discretization,
the roles of A1 and A2 were played by the square matrices approximating the oper-

ators − ∂ 2

∂x2 and − ∂ 2

∂y2 , respectively, explaining the terminology.

Remark 8. We observe that operators A1 and A2 play essentially symmetrical roles
in scheme (2.15).

Remark 9. For those fairly common situations where operator A2 is uni-valued, but
operator A1 is “nasty” (discontinuous and/or multi-valued, etc.), we should use the
following equivalent formulation of the Peaceman-Rachford scheme (2.15):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φn+1/2 → φn+1 via the solution of
φn+1/2 −φn

�t/2
+A1(φn+1/2, tn+1/2)+A2(φn, tn) = 0,

φn+1 − 2φn+1/2+φn

�t/2
+A2(φn+1, tn+1) = A2(φn, tn).

(2.16)

2.5 Time-Discretization of (2.1) by Douglas-Rachford’s Alternating
Direction Method

We assume that J = 2 in (2.2).
The Douglas-Rachford scheme (introduced in [57]) is a variant of the Peaceman-

Rachford scheme (2.15); when applied to the numerical solution of the initial value
problem (2.14) (the non-autonomous generalization of (2.1)), it takes the following
form: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φ̂n+1 → φn+1 via the solution of
φ̂n+1 −φn

�t
+A1(φ̂n+1, tn+1)+A2(φn, tn) = 0,

φn+1 −φn

�t
+A1(φ̂n+1, tn+1)+A2(φn+1, tn+1) = 0.

(2.17)

The Douglas-Rachford scheme (2.17) has clearly a predictor-corrector flavor.
The convergence of the Douglas-Rachford scheme (2.17) has been proved in [118]

and [84] under quite general monotonicity assumptions concerning the operators A1
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and A2 (see also [64, 65] and [110]); indeed, A1 and/or A2 can be nonlinear, un-
bounded, and even multi-valued. In general, scheme (2.17) is first order accurate
at best (even if the operators A1 and A2 are linear, time independent and commute,
assumptions implying second order accuracy for the Peaceman-Rachford scheme).
Further properties of scheme (2.17) can be found in, e.g., [121, 70] (Chapter 2) and
[72] (Chapter 3), including its stability, and its asymptotic behavior if T =+∞. Con-
cerning this last issue, a sensible advice is to use another scheme to compute steady
state solutions, scheme (2.17) not being stiff A-stable, a property it shares with the
Peaceman-Rachford scheme (2.15).

Remark 10. Unlike the Peaceman-Rachford scheme (2.15), we observe that the roles
played by operators A1 and A2 are non-symmetrical in scheme (2.17); actually, nu-
merical experiments confirm that fact: for example, for the same �t the speed of
convergence to a steady state solution may depend of the choice one makes for A1

and A2. As a rule of thumb, we advocate taking for A2 the operator with the best
continuity and monotonicity properties (see, for example, [62] (Chapter 3), [63]
(Chapter 3) and [74] (Chapter 3) for more details).

Remark 11. Unlike scheme (2.15), scheme (2.17) is easy to generalize to operator
decompositions involving more than two operators. Consider thus the numerical
integration of (2.14) when J ≥ 3 in (2.2). Following J. Douglas in [54] and [55] we
generalize scheme (2.17) by

φ0 = φ0; (2.18)

then for n ≥ 0, φn being known, compute φn+1/J , . . . , φn+ j/J , . . . , φn+1 via the
solution of⎧⎪⎪⎨

⎪⎪⎩
φn+1/J −φn

�t
+

1
J− 1

A1(φn+1/J, tn+1)+
J− 2
J− 1

A1(φn, tn)

+
J

∑
i=2

Ai(φn, tn) = 0,
(19.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φn+ j/J −φn

�t
+

j−1

∑
i=1

[
1

J− 1
Ai(φn+i/J, tn+1)+

J− 2
J− 1

Ai(φn, tn)

]

+
1

J− 1
A j(φn+ j/J , tn+1)+

J − 2
J − 1

A j(φn, tn)

+
J

∑
i= j+1

Ai(φn, tn) = 0,

(19. j)

⎧⎪⎪⎨
⎪⎪⎩

φn+1 −φn

�t
+

J−1

∑
i=1

[
1

J − 1
Ai(φn+i/J, tn+1)+

J − 2
J − 1

Ai(φn, tn)

]

+
1

J− 1
AJ(φn+1, tn+1)+

J− 2
J− 1

AJ(φn, tn) = 0,

(19.J)

Above, φn+i/J and φn+ j/J denote approximate solutions at steps i and j of the com-
putational process; they do not denote approximations of φ(tn+i/J) and φ(tn+ j/J)
(unless i = j = J).
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Remark 12. This is the Douglas-Rachford analog of Remark 9: for those situations
where A1 is a “bad” operator (in the sense of Remark 9), we should use (assuming
that A2 is uni-valued) the following equivalent formulation of the Douglas-Rachford
scheme (2.17):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φ̂n+1 → φn+1 via the solution of

φ̂n+1 −φn

�t
+A1(φ̂n+1, tn+1)+A2(φn, tn) = 0,

φn+1 − φ̂n+1

�t
+A2(φn+1, tn+1) = A2(φn, tn).

(2.20)

Remark 13. To those wondering how to choose between the Peaceman-Rachford
and Douglas-Rachford schemes, we will say that, on the basis of many numer-
ical experiments, it seems that the second scheme is more robust and faster for
those situations where one of the operators is non-smooth (multi-valued or singular,
for example), particularly if one is interested by capturing steady state solutions.
Actually, a better advice could be: consider using the fractional θ -scheme to be dis-
cussed in Section 2.6, below. Indeed, we have encountered situations where this θ -
scheme outperforms both the Peaceman-Rachford and Douglas-Rachford schemes,
for steady state computations in particular; such an example is provided by the
anisotropic Eikonal equation, a nonlinear hyperbolic problem to be briefly discussed
in Section 2.7. We will return to the Peaceman-Rachford vs Douglas-Rachford issue
in Section 7.

2.6 Time-Discretization of (2.1) by a Fractional θ -Scheme

This scheme (introduced in [67, 68] for the solution of the Navier-Stokes equations)
is a variant of the Peaceman-Rachford scheme (2.15). Let θ belong to the open
interval (0,1/2) (in practice, θ ∈ [1/4,1/3]); the fractional θ -scheme, applied to
the solution of the initial value problem (2.14) (the non-autonomous generalization
of (2.1)), reads as follows if A = A1 +A2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φn+θ → φn+1−θ → φn+1 via the solution of
φn+θ −φn

θ�t
+A1(φn+θ , tn+θ )+A2(φn, tn) = 0,

φn+1−θ −φn+θ

(1− 2θ )�t
+A1(φn+θ , tn+θ )+A2(φn+1−θ , tn+1−θ ) = 0,

φn+1 −φn+1−θ

θ�t
+A1(φn+1, tn+1)+A2(φn+1−θ , tn+1−θ ) = 0.

(2.21)

Remark 14. One should avoid confusion between scheme (2.21) and the following
solution method for the initial value problem (2.14) (with 0 ≤ θ ≤ 1)
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⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φn+1 via the solution of
φn+1 −φn

�t
+θA(φn+1, tn+1)+ (1−θ )A(φn, tn) = 0,

(2.22)

which is also known as a θ -scheme. We observe that if θ = 1 (resp., θ = 0, θ =1/2)
scheme (2.22) reduces to backward Euler’s scheme (resp., forward Euler’s scheme,
a Crank-Nicolson’s type scheme). Another “interesting” value is θ = 2/3 (for reasons
detailed in, e.g., [70] (Chapter 2) and [72] (Chapter 3)). By the way, it is to avoid
confusion between schemes (2.21) and (2.22) that some practitioners (S. Turek, in
particular) call the first one a fractional θ -scheme. ��
The stability and convergence properties of scheme (2.21) have been discussed in
[70] (Chapter 2) and [72] (Chapter 3) for very simple finite dimensional situations
where A1 and A2 are both positive multiples of the same symmetric positive def-
inite matrix. Numerical experiments have shown that the good properties verified
by scheme (2.21) for those simple linear situations, in particular its stiff A-stability
for θ well chosen, still hold for more complicated problems, such as the numerical
simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes
equations (as shown in, e.g., [23, 41, 69] and [70]).

Remark 15. We observe that operators A1 and A2 play non-symmetrical roles in
scheme (2.21). Since, at each time step, one has to solve two problems (resp., one
problem) associated with operator A1 (resp., A2) a natural choice is to take for A1 the
operator leading to the sub-problems which are the easiest to solve (that is, whose
solution is the less time consuming). Less naive criteria may be used to choose A1

and A2, such as the regularity (or lack of regularity) of these operators.

Remark 16. If one takes A1 = A and A2 = 0 in (2.21), the above scheme reduces to
the Runge-Kutta scheme (2.12), with A replacing B.

Remark 17. The fractional θ -scheme (2.21) is a symmetrized scheme. From that
point of view, it has some analogies with Strang’s symmetrized scheme (2.7)–(2.10),
discussed in Section 2.3.

Remark 18. This is the fractional θ -scheme analog of Remarks 9 and 12. For those
situations where A1 is a “bad” operator (in the sense of Remark 9), we advocate
using the following equivalent formulation of the θ -scheme (2.21):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, φn → φn+θ → φn+1−θ → φn+1 via the solution of
φn+θ −φn

θ�t
+A1(φn+θ , tn+θ )+A2(φn, tn) = 0,

θφn+1−θ−(1−θ )φn+θ+(1−2θ )φn

θ (1− 2θ )�t
+A2(φn+1−θ , tn+1−θ )=A2(φn, tn),

φn+1 −φn+1−θ

θ�t
+A1(φn+1, tn+1)+A2(φn+1−θ , tn+1−θ ) = 0.

(2.23)
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2.7 Two Applications: Smallest Eigenvalue Computation
and Solution of an Anisotropic Eikonal Equation

2.7.1 Synopsis

It is not an exaggeration to say that applications of operator-splitting methods are
everywhere, new ones occurring “almost” every day; indeed, some well-known
methods and algorithms are disguised operator-splitting schemes as we will show in
Section 2.7.2, concerning the computation of the smallest eigenvalue of a real sym-
metric matrix. In Section 2.7.3, we will apply the fractional θ -scheme (2.21) to the
solution of an Eikonal equation modeling wave propagation in anisotropic media.
More applications will be discussed in Sections 4 and 5.

2.7.2 Application to Some Eigenvalue Computation

Suppose that A is a real d × d symmetric matrix. Ordering the eigenvalues of A
as follows: λ1 ≤ λ2 ≤ ·· · ≤ λd , our goal is to compute λ1. We have (with obvious
notation)

λ1 = min
v∈S

vtAv, with S = {v|v ∈ IRd ,‖v‖= 1}, (2.24)

the norm in (2.24) being the canonical Euclidean one. The constrained minimization
problem in (2.24) is equivalent to

min
v∈IRd

[
1
2

vtAv+ IS(v)
]
, (2.25)

where, in (2.25), the functional IS : IRd → IR∪{+∞} is defined as follows

IS(v) =
{

0 i f v ∈ S,
+∞ otherwise,

implying that IS is the indicator functional of the sphere S. Suppose that u is a
solution of (2.25) (that is a minimizer of the functional in (2.25)); we have then

Au+ ∂ IS(u) � 0, (2.26)

∂ IS(u) in (2.26) being a (kind of) generalized gradient of functional IS at u (∂ IS

is a multivalued operator). Next, we associate with the (necessary) optimality sys-
tem (2.26) the following initial value problem (flow in the Dynamical System termi-
nology): ⎧⎨

⎩
du
dt

+Au+ ∂ IS(u) � 0 in (0,+∞),

u(0) = u0.
(2.27)



2 Operator-Splitting and Alternating Direction Methods 31

If one applies the Marchuk-Yanenko scheme (2.5)–(2.6) to the solution of prob-
lem (2.27), one obtains (with τ =�t):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0 = u0,

for n ≥ 0, un → un+1/2 → un+1 via the solution of
un+1/2 −un

τ
+Aun+1/2 = 0,

un+1 −un+1/2

τ
+ ∂ IS(un+1) � 0.

(2.28)

The first finite difference equation in (2.28) implies

un+1/2 = (I+ τA)−1un. (2.29)

On the other hand, the second finite difference equation in (2.28) can be interpreted
as a necessary optimality condition for the following minimization problem

min
v∈S

[
1
2
‖v‖2 − vtun+1/2

]
. (2.30)

Since ‖v‖= 1 over S, the solution of problem (2.30) is given by

un+1 =
un+1/2

‖un+1/2‖ . (2.31)

It follows from (2.29) and (2.31) that algorithm (2.28) is nothing but the inverse
power method with shift, a well-known algorithm from Numerical Linear Algebra.
Indeed, if

0 < τ <
1

max(0+,−λ1)
,

and if the projection of u0 on the vector space spanned by the eigenvectors of A
associated with λ1 is different from 0, we can easily prove that the sequence {un}n≥0

converges to an eigenvector of A associated with λ1 and also that

lim
n→+∞

(un)tAun = λ1.

Clearly, numerical analysts have not been waiting for operator-splitting to compute
matrix eigenvalues and eigenvectors; on the other hand, operator-splitting has pro-
vided efficient algorithms for the solution of complicated problems from Differ-
ential Geometry, Mechanics, Physics, Physico-Chemistry, Finance, etc., including
some nonlinear eigenvalue problems, as shown in, e.g., [72] (Chapter 7).
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2.7.3 Application to the Solution of an Anisotropic Eikonal Equation
from Acoustics

The next application of operator-splitting, that we are going to (briefly) consider
in this chapter, was brought to our attention recently (December 2014) by our col-
leagues S. Leung and J. Qian. It concerns the numerical solution of the following
nonlinear hyperbolic partial differential equation

|∇τ|− |1−V ·∇τ|
c

= 0 in Ω , (2.32)

encountered in Acoustics and known as the anisotropic Eikonal equation. In (2.32),
we have (see [40] for more details):

• Ω ⊂ IRd , with d ≥ 2.
• τ(x) is the time of 1st arrival of the wave front at x ∈ Ω .
• c > 0 is the wave propagation speed in the medium filling Ω , assuming that this

medium is at rest (the so-called background medium).
• Assuming that the ambient medium is moving, V is its moving velocity; we

assume that V ∈ (L∞(Ω))d .

Fast-sweeping methods have been developed for the efficient numerical solution of
the classical Eikonal equation

|∇τ|= 1
c

in Ω , (2.33)

(see, e.g., [104] and [181]); these methods provide automatically viscosity solutions
in the sense of Crandall and Lions (see [38] for this notion). Unfortunately, as shown
in [40], the fast sweeping methods developed for the solution of (2.33) cannot han-
dle (2.32), unless one modifies them significantly, as done in [40]. Actually, there
exists an alternative, simpler to implement, to the method developed in [40]: it re-
lies on the operator-splitting methods discussed in Sections 2.3, 2.4, 2.5 and 2.6,
and takes advantage of the fact that the fast-sweeping methods developed for the
solution of (2.33) can be easily modified in order to handle equations such as

ατ −β∇2τ + |∇τ|= f (2.34)

and

ατ −β∇2τ − |1−V ·∇τ|
c

= f , (2.35)

with α > 0 and β ≥ 0. Therefore, in order to solve problem (2.32), we associate
with it the following initial value problem:⎧⎨

⎩(I − ε∇2)
∂τ
∂ t

+ |∇τ|− |1−V ·∇τ|
c

= 0 in Ω × (0,+∞),

τ(0) = τ0,
(2.36)
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whose steady state solutions are also solutions of (2.32). In (2.36), ε is a non-
negative parameter (a regularizing one if ε > 0) and τ(t) denotes the function
t → τ(x, t). Actually, additional conditions are required to have solution uniqueness,
typical ones being τ specified on a subset of Ω (=Ω ∪∂Ω), possibly reduced to just
one point (a point source for the wave). A typical choice for τ0 is the corresponding
solution of problem (2.33).

The results reported in [75] show that, with θ = 1/3, the fractional θ -scheme dis-
cussed in Section 2.6 outperforms the Strang’s, Peaceman-Rachford’s, and Douglas-
Rachford’s schemes when applied to the computation of the steady state solutions
of (2.36). The resulting algorithm reads as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0 = τ0;

for n ≥ 0, τn → τn+θ → τn+1−θ → τn+1 via the solution of

(I − ε∇2)
τn+θ − τn

θ�t
+ |∇τn+θ |− |1−V ·∇τn|

c
= 0,

(I − ε∇2)
τn+1−θ − τn+θ

(1− 2θ )�t
+ |∇τn+θ |− |1−V ·∇τn+1−θ |

c
= 0,

(I − ε∇2)
τn+1 − τn+1−θ

θ�t
+ |∇τn+1|− |1−V ·∇τn+1−θ |

c
= 0.

(2.37)

The three problems in (2.37) being particular cases of (2.34) and (2.35), their finite
difference analogues can be solved by fast-sweeping algorithms. Physical consid-
erations suggest that �t has to be of the order of the space discretization step h.
Actually, the numerical results reported in [75] show that, unlike the other schemes
discussed in Sections 2.2 to 2.5, scheme (2.37), with θ = 1/3, has very good con-

vergence properties, even for large values of the ratio
�t
h

(100, typically). If ε = 0

(resp., h2), these numerical experiments suggest that the number of iterations (time
steps), necessary to achieve convergence to a steady state solution, varies (roughly)
like h−1/2 (resp., h−1/3), for two- and three-dimensional test problems (see [75] for
further results and more details). Clearly, preconditioning does pay here (a well-
known fact, in general).

Remark 19. Some readers may wonder why the authors of [75] gave the role of A1

(resp., A2) to the operator τ → |∇τ| (resp., τ →−1
c
|1−V ·∇τ|), and not the other

way around. Let us say to these readers that the main reason behind that choice was
preliminary numerical experiments showing that, for the same values of α and β ,
problem (2.34) is cheaper to solve that problem (2.35).

2.8 Time-Discretization of (2.1) by a Parallel Splitting Scheme

The splitting schemes presented so far have a sequential nature, i.e. the sub-
problems associated with the decomposed operators are solved in a sequential
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manner. Actually, it is also possible to solve the sub-problems in parallel, as shown
just below, using the following variant of Marchuk-Yanenko’s scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0 = φ0;

for n ≥ 0, we obtain φn+1 from φn by solving first
φn+ j/2J −φn

J�t
+A j(φn+ j/2J, tn+1) = 0, for j = 1, . . . ,J,

φn+1 being then obtained by averaging as follows

φn+1 =
1
J

J

∑
j=1

φn+ j/2J.

(2.38)

Scheme (2.38) is nothing but Algorithm 5.1 in [119]. Under suitable conditions, it
has been proved in the above reference that scheme (2.38) is first order accurate,
that is ‖φn − φ(tn)‖ = O(�t). A parallelizable algorithm with second order accu-
racy is presented also in [119]. The main advantage of the above schemes is that
the sub-problems can be solved in parallel. Clearly, this parallel splitting idea can
be used for computing the steady state solutions of (2.1). As observed in [155], the
sub-problems (or at least some of them) can also be solved in parallel if the corre-
sponding operator A j has the right decomposition properties.

3 Augmented Lagrangian Algorithms and Alternating Direction
Methods of Multipliers

3.1 Introduction

It is our opinion that a review chapter like this one has to include some material
about augmented Lagrangian algorithms, including of course their relationships
with alternating direction methods. On the other hand, since augmented Lagrangian
algorithms and alternating direction methods of multipliers, and their last known de-
velopments, are discussed, with many details, in other chapters of this book, we will
not say much about these methods in this section. However, we will give enough in-
formation so that the reader may follow Section 6 (dedicated to Image Processing)
without spending too much time consulting the other chapters (or other references).

In Section 3.2 we will introduce several augmented Lagrangian algorithms, and
show in section 3.3 how these algorithms relate to the alternating direction methods
discussed in Sections 2.4 (Peaceman-Rachford’s) and 2.5 (Douglas-Rachford’s).

This section is largely inspired by Chapter 4 of [72].
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3.2 Decomposition-Coordination Methods by Augmented
Lagrangians

3.2.1 Abstract Problem Formulation. Some Examples

A large number of problems in Mathematics, Physics, Engineering, Economics,
Data Processing, Imaging, etc. can be formulated as

u = argmin
v∈V

[F(Bv)+G(v)], (2.39)

where: (i) V and H are Banach spaces. (ii) B ∈ L(V,H). (iii) F : H → IR∪{+∞}
and G : V → IR∪ {+∞} are proper, lower semi-continuous, and convex function-
als verifying dom(F ◦B) ∩ dom(G) �= /0, implying that problem (2.39) may have
solutions.

Example 1. This first example concerns the following variational problem:

u = arg min
v∈H1

0 (Ω)

[
μ
2

∫
Ω
|∇v|2 dx+ τy

∫
Ω
|∇v|dx−ϖ

∫
Ω

vdx

]
, (2.40)

where: (i) Ω is a bounded domain (that is a bounded open connected subset) of IR2;
we denote by Γ the boundary of Ω . (ii) dx = dx1dx2. (iii) μ and τy are two positive

constants. (iv) |∇v|2 =
∣∣∣∣ ∂v
∂x1

∣∣∣∣
2

+

∣∣∣∣ ∂v
∂x2

∣∣∣∣
2

(v) The space H1
0 (Ω) (a Sobolev space) is

defined by

H1
0 (Ω) = {v|v ∈ L2(Ω),∂v/∂xi ∈ L2(Ω),∀i = 1,2,v|Γ = 0}, (2.41)

the two derivatives in (2.41) being in the sense of distributions (see, e.g., [148, 157]
for this notion). Since Ω is bounded, H1

0 (Ω) is a Hilbert space for the inner product
{v,w} → ∫

Ω ∇v ·∇wdx, and the associated norm. Problem (2.40) is a well-known
problem from non-Newtonian fluid mechanics; it models the flow of an incompress-
ible visco-plastic fluid (of the Bingham type) in an infinitely long cylinder of cross-
section Ω , ϖ being the pressure drop per unit length and u the flow axial velocity.
In (2.40), μ denotes the fluid viscosity and τy its plasticity yield (see, e.g., [59]
and [83] for further information on visco-plastic fluid flows; see also the references
therein). It follows from, e.g., [66] and [72], that the variational problem (2.40) has
a unique solution.

Problem (2.40) is a particular case of (2.39) with V = H1
0 (Ω), H = (L2(Ω))2,

B = ∇, F(q) = τy

∫
Ω
|q|dx, and G(v) =

μ
2

∫
Ω
|∇v|2 dx−ϖ

∫
Ω

vdx; other decompo-

sitions are possible.

Close variants of problem (2.40) are encountered in imaging, as shown in Sec-
tion 6 (and other chapters of this volume).
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Example 2. It concerns the following variant of problem (2.40):

u = argmin
v∈K

[
μ
2

∫
Ω
|∇v|2 dx−C

∫
Ω

vdx

]
, (2.42)

where Ω is a bounded domain of IR2, μ is a positive constant and

K = {v|v ∈ H1
0 (Ω), |∇v| ≤ 1 a.e. in Ω}.

It is a classical result (see, e.g., [59]) that (2.42) models, in an appropriate system of
mechanical units, the torsion of an infinitely long cylinder of cross-section Ω , made
of an elastic-plastic material, C being the torsion angle per unit length and u a stress
potential. It follows from, e.g., [66] and [72], that the variational problem (2.42) has
a unique solution.

Problem (2.42) is a particular case of problem (2.39) with V = H1
0 (Ω), H =

(L2(Ω))2, B = ∇, G(v) =
μ
2

∫
Ω
|∇v|2 dx−C

∫
Ω

vdx, and F(q) = IK(q), IK(·) being

the indicator functional of the closed convex nonempty subset K of H defined by

K = {q|q ∈ H, |q| ≤ 1 a.e. in Ω}.

Other decompositions are possible.

Remark 20. We recall that, we have, (from the definition of indicator functionals)

IK(q) =

{
0 if q ∈ K ,

+∞ otherwise,

implying, from the properties of K , that IK : H → IR∪{+∞} is convex, proper and
lower semi-continuous. ��

Numerical methods for the solution of problem (2.42) can be found in, e.g., [66]
and [76].

3.2.2 Primal-Dual Methods for the Solution of Problem (2.39): ADMM
Algorithms

In order to solve problem (2.39), we are going to use a strategy introduced in [77]
and [78] (to the best of our knowledge). The starting point is the obvious equivalence
between (2.39) and the following linearly constrained optimization problem:

{u,Bu}= arg min
{v,q}∈W

j(v,q), (2.43)

where
j(v,q) = F(q)+G(v),
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and
W = {{v,q}|v ∈V,q ∈ H,Bv− q = 0}.

From now on, we will assume that V and H are (real) Hilbert spaces, the H-norm
being denoted by | · | and the associated inner-product by (·, ·). The next step is quite
natural: we associate with the minimization problem (2.43) a Lagrangian functional
L defined by

L(v,q;μ) = j(v,q)+ (μ ,Bv− q),

and an augmented Lagrangian functional Lr defined (with r > 0) by

Lr(v,q;μ) = L(v,q;μ)+
r
2
|Bv− q|2. (2.44)

One can easily prove that the functionals L and Lr share the same saddle-points
over (V ×H)×H, and also that, if {{u, p},λ} is such a saddle-point, then u is a
solution of problem (2.39) and p = Bu. A classical algorithm to compute saddle-
points is the so-called Uzawa algorithm, popularized by [3] (a book dedicated to
the study of Economics equilibria), and further discussed in, e.g., [76]. Applying a
close variant of the Uzawa algorithm to the computation of the saddle-points of Lr

over (V ×H)×H, we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ 0 is given in H;

for n ≥ 0, λ n → {un, pn}→ λ n+1 via

{un, pn}= arg min
{v,q}∈V×H

Lr(v,q;λ n),

λ n+1 = λ n +ρ(Bun− pn),

(2.45)

an algorithm called ALG1 by some practitioners, following a terminology intro-
duced in [78] (an alternative name could have been augmented Lagrangian Uzawa
algorithm which summarizes quite well what algorithm (2.45) is all about).

Concerning the convergence of ALG1 it has been proved in, e.g., [62, 63, 66] and
[74] (see also [78]), that if:

(i) L has a saddle-point {{u, p},λ} over (V ×H)×H.
(ii) B is an injection and R(B) is closed in H.

(iii) lim
|q|→+∞

F(q)
|q| =+∞.

(iv) F = F0 +F1 with F0 and F1 proper, lower semi-continuous and convex,
with F0 Gateaux-differentiable, and uniformly convex on the bounded
sets of H

(the above properties imply that problem (2.39) has a unique solution), then we
have, ∀ r > 0 and if

0 < ρ < 2r,

the following convergence result

lim
n→+∞

{un, pn}= {u,Bu} in V ×H, (2.46)



38 R. Glowinski et al.

where u is the solution of problem (2.39); moreover, the convergence result (2.46)
holds ∀ λ 0 ∈ H. The convergence of the multiplier sequence {λ n}n≥0 is no better
than weak in general, implying that the criterion used to stop ALG1 has to been
chosen carefully. Of course, in finite dimension, the properties of B, F and G im-
plying convergence are less demanding than in infinite dimension; for example, the
existence of a solution to problem (2.39) is sufficient to imply the existence of a
saddle-point.

The main difficulty with the Uzawa algorithm (2.45) is clearly the solution of the
minimization problem it contains. An obvious choice to solve this problem is to use
a relaxation method (as advocated in [77, 78]). Suppose that, as advocated in the
two above references (which show that, indeed, for the nonlinear elliptic problem
discussed there the number of relaxation iterations reduces quickly to two), we limit
the number of relaxation iterations to one when solving the minimization problem
in (2.45): we obtain then the following primal-dual algorithm (called ALG2 by some
practitioners):

{u−1,λ 0} is given in V ×H; (2.47)

for n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn = argmin
q∈H

Lr(u
n−1,q;λ n), (2.48)

un = argmin
v∈V

Lr(v, pn;λ n), (2.49)

λ n+1 = λ n +ρ(Bun − pn). (2.50)

Assuming that

0 < ρ <
1+

√
5

2
r,

with the other assumptions implying the convergence of ALG1 still holding, we have

lim
n→+∞

{un, pn}= {u,Bu} in V ×H,

where u is the solution of problem (2.39). Convergence proofs can be found in
[62, 63, 66] and [74].

A simple variant (called ALG3) of algorithm (2.47)–(2.50) is obtained by updat-
ing the multiplier a first time immediately after (2.48); we obtain then

{u−1,λ 0} is given in V ×H, (2.51)

for n ≥ 0, {un−1,λ n}→ pn → λ n+1/2 → un → λ n+1 via

pn = argmin
q∈H

Lr(u
n−1,q;λ n), (2.52)

λ n+1/2 = λ n +ρ(Bun−1− pn), (2.53)
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un = argmin
v∈V

Lr(v, pn;λ n+1/2), (2.54)

λ n+1 = λ n+1/2 +ρ(Bun − pn). (2.55)

Most practitioners prefer ALG2 to ALG3, the main reason being that ALG2 is more
robust than ALG3, in general.

Remark 21. If one takes ρ = r in (2.47)–(2.50) and (2.51)–(2.55), the algorithms we
obtain belong to the Alternating Direction Methods of Multipliers (ADMM) family
(a terminology we will justify in Section 3.3). The convergence of ADMM related al-
gorithms is rather well established in the convex case (see, for example, [18, 61, 95];
see also the references therein and other chapters of this book, the one by M. Burger,
A. Sawatzky & G. Steidl in particular). On the other hand, one is still lacking a gen-
eral theory for the convergence of algorithms such as ALG1, ALG2, and ALG3 when
applied to the solution of non-convex variational problems. Nevertheless, the above
algorithms have been successfully applied to the solution of non-convex problems
as shown, for example, in [42, 72] (Chapter 4), [74], and other chapters of this book,
Chapters 7 and 8, in particular.

Remark 22. An important issue with the above primal-dual algorithms is how to
vary r and ρ dynamically in order to improve the speed of convergence of these
algorithms. This issue has been addressed in, e.g., [18, 34, 45, 46] (see also the
references therein).

Remark 23. An overlooked ([34] being a notable exception) property of primal-dual
algorithms such as ALG1, ALG2 and ALG3 is that they may be constructive still, in
those not so uncommon situations where in (2.39) one has dom(F ◦B)∩ dom(G) =
/0, implying that problem (2.39) has no solutions, strictly speaking. On the basis of
the numerical results reported in [42] (see also [72] (Chapter 4) and Chapter 8 of
this volume), we conjecture that if the parameters ρ and r are properly chosen, the
sequence {{un, pn}}n≥0 converges to a pair {u, p} minimizing the functional

{v,q}→ G(v)+F(q)

over the set

{{v,q}}|{v,q} ∈ dom(G)× dom(F), |Bv− q|= min
{w,ϖ}∈dom(G)×dom(F)

|Bw−ϖ |},

while the sequence {λ n}n≥0 diverges arithmetically (that is, |λ n| →+∞ like n mul-
tiplied by a positive constant, that is slowly). If the above convergence/divergence
result holds true (which seems to be the case for the non-convex problem discussed
in [42]), it implies that the above primal-dual algorithms solve problem (2.39) in a
least-squares sense, a most remarkable property indeed, testifying of the robustness
of these algorithms. The above results look natural, but the optimization experts we
consulted had trouble to give us a precise reference (or a proof).
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Remark 24. We encountered situations (in incompressible finite elasticity in partic-
ular; see, e.g., [74] for details) where a safe way to proceed with the above primal-
dual algorithms is as follows: Employ ALG1 with a well-balanced (that is neither
too small nor too large) stopping criterion for the relaxation algorithm used to solve
the minimization problem in (2.45); it has been observed quite often that the number
of relaxation iterations necessary to compute {un, pn} from λ n goes down quickly
to one or two (an observation at the origin of ALG2), implying that starting with
ALG1, the algorithm switches automatically to ALG2. It is not uncommon that this
implementation of ALG1 produces an algorithm faster (CPU-wise) than ALG2 and
ALG3, when solving “hard” problems. ��

Further information on the convergence of Lagrange multiplier based iterative
methods can be found in other chapters of this volume, and in, e.g., [45, 60, 62, 63],
[66, 74] and [100] (see also the many references therein).

3.3 On the Relationship Between Alternating Direction Methods
and ALG2, ALG3

As reported in [71] and [72] (Chapter 4) some previously unknown relationships
between alternating direction methods and augmented Lagrangian algorithms were
identified in 1975 by T.F. Chan and the first author of this chapter, while investi-
gating the numerical solution of some simple nonlinear elliptic problems by various
iterative methods (see [30] for details). Indeed, let us consider the particular case of
problem (2.39) where V = H, B = I, and F and G are both differentiable over V ;
then, assuming that ρ = r, ALG2 (that is algorithm (2.47)–(2.50)) takes the follow-
ing form:

{u−1,λ 0} is given in V ×H; (2.56)

for n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

r(pn − un−1)+DF(pn)−λ n = 0, (2.57)

r(un − pn)+DG(un)+λ n = 0, (2.58)

λ n+1 = λ n + r(un − pn), (2.59)

where DF (resp., DG) denotes the differential of F (resp., G). By elimination of λ n

and λ n+1 in (2.57)–(2.59), we obtain

r(pn − un−1)+DF(pn)+DG(un−1) = 0,

r(un − un−1)+DF(pn)+DG(un) = 0,
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which imply in turn (after changing n− 1 in n):

r(pn+1 − un)+DF(pn+1)+DG(un) = 0, (2.60)

r(un+1 − un)+DF(pn+1)+DG(un+1) = 0. (2.61)

Comparing to (2.17) shows that in this particular case, ALG2 is a disguised form
of the Douglas-Rachford scheme discussed in Section 2.5, with r = 1/�t and DF
(resp., DG) playing the role of A1 (resp., A2). A similar interpretation holds for
ALG3: indeed, if we assume again that V = H, B = I and F and G are differen-
tiable, then, if ρ = r, algorithm (2.51)–(2.55) reduces to the Peaceman-Rachford
scheme (2.15) discussed in Section 2.4. The above equivalence result can be gener-
alized to situations where F and/or G are not differentiable.

The reasons for which ALG2 and ALG3 are called Alternating Direction Meth-
ods of Multipliers (ADMM) by many practitioners should be clear now. For further
information and details on these primal-dual equivalences, see the discussion by M.
Yan and W. Yin in Chapter 5 of this book.

4 Operator-Splitting Methods for the Direct Numerical
Simulation of Particulate Flow

4.1 Generalities. Problem Formulation

It is the (necessarily biased) opinion of the authors of this chapter that the direct
numerical simulation of particulate flow has been one of the success stories of
operator-splitting methods, justifying thus a dedicated section in this chapter, de-
spite the fact that this story has been told in several publications (see, e.g., [70]
(Chapters 8 & 9), [73] and [79], and the references therein). For simplicity, we will
discuss only the one-particle case (however, the results of numerical experiments
involving more than one particle will be presented).

Let Ω be a bounded, connected, and open region of IRd (d = 2 or 3 in applica-
tions); the boundary of Ω is denoted by Γ . We suppose that Ω contains:

(i) A Newtonian incompressible viscous fluid of density ρ f and viscosity μ f ;
ρ f and μ f are both positive constants.

(ii) A rigid body B of boundary ∂B, mass M, center of mass G, and inertia I at
the center of mass (see Figure 2.1, for additional details).

The fluid occupies the region Ω \B and we suppose that distance (∂B(0),Γ )> 0.
From now on, x = {xi}d

i=1 will denote the generic point of IRd , dx = dx1 . . .dxd ,
while φ(t) will denote the function x → φ(x, t). Assuming that the only external
force is gravity, the fluid flow-rigid body motion coupling is modeled by



42 R. Glowinski et al.

−2

0

2 −2

0

2

−4

−3

−2

−1

0

1

2

3

4

B

Ω

Fig. 2.1 Visualization of the rigid body and of a part of the flow region

ρ f

(
∂u
∂ t

+(u ·∇)u
)
− μ f ∇2u+∇p = ρ f g in Ω \B(t), a.e. t ∈ (0,T ), (2.62)

∇ ·u(t) = 0 in Ω \B(t), a.e. t ∈ (0,T ), (2.63)

u(t) = uΓ (t) on Γ , a.e. t ∈ (0,T ), with
∫
Γ

uΓ (t) ·ndΓ = 0, (2.64)

u(0) = u0 in Ω \B(0) with ∇ ·u0 = 0, (2.65)

and

dG
dt

= V, (2.66)

M
dV
dt

= Mg+RH , (2.67)

d(Iω)

dt
= TH , (2.68)

G(0) = G0,V(0) = V0,ω(0) = ω0,B(0) = B0. (2.69)

In relations (2.62)–(2.69):

• Vector u = {ui}d
i=1 is the fluid flow velocity and p is the pressure.

• u0 and uΓ are given vector-valued functions.
• V is the velocity of the center of mass of body B, while ω is the angular velocity.
• RH and TH denote, respectively, the resultant and the torque of the hydrody-

namical forces, namely the forces that the fluid exerts on B; we have, actually,

RH =

∫
∂B

σndγ and TH =

∫
∂B

−−→
Gx ×σndγ. (2.70)
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In (2.70) the stress-tensor σ is defined by σ = 2μ f D(u)− pId , with D(v) = 1
2 (∇v+

(∇v)t), while n is a unit normal vector at ∂B and Id is the identity tensor.
Concerning the compatibility conditions on ∂B we have: (i) the forces exerted by

the fluid on the solid body balance those exerted by the solid body on the fluid, and
we shall assume that: (ii) the no-slip boundary condition holds, namely

u(x, t) = V(t)+ω(t)×
−−−→
G(t)x , ∀x ∈ ∂B(t). (2.71)

Remark 25. System (2.62)–(2.65) (resp., (2.66)–(2.69)) is of the incompressible
Navier-Stokes (resp., Euler-Newton) type. Also, the above model can be general-
ized to multiple-particles situations and/or non-Newtonian incompressible viscous
fluids. ��

The (local in time) existence of weak solutions for problems such as (2.62)–(2.69)
has been proved in [52], assuming that, at t = 0, the particles do not touch Γ and
each other (see also [87] and [145]). Concerning the numerical solution of (2.62)–
(2.69), (2.71) several approaches are encountered in the literature, among them: (i)
The Arbitrary Lagrange-Euler (ALE) methods; these methods, which rely on mov-
ing meshes, are discussed in, e.g., [98, 103] and [127]. (ii) The fictitious boundary
method discussed in, e.g., [165], and (iii) the non-boundary fitted fictitious domain
methods discussed in, e.g., [70, 79] and [140, 141] (and in Section 4.2, hereafter).
Among other things, the methods in (ii) and (iii) have in common that the meshes
used for the flow computations do not have to match the boundary of the particles.

Remark 26. Even if theory suggests that collisions may never take place in finite
time (if we assume that the particles have smooth shapes and that the flow is still
modeled by the Navier-Stokes equations as long as the particles do not touch each
other, or Γ ), near collisions take place, and after discretization particles may collide.
These phenomena can be handled by introducing (as done in, e.g., [70] (Chapter 8)
and [79]) well-chosen short range repulsion potentials reminiscent of those encoun-
tered in Molecular Dynamics, or by using Kuhn-Tucker multipliers to authorize par-
ticle motions with contact but no overlapping (as done in, e.g., [128] and [129]).
More information on the numerical treatment of particles in flow can be found in,
e.g., [152] (and the references therein), and of course in Google.

4.2 A Fictitious Domain Formulation

Considering the fluid-rigid body mixture as a unique (heterogeneous) medium we
are going to derive a fictitious domain based variational formulation to model its
motion. The principle of this derivation is pretty simple: it relies on the following
steps (see, e.g., [70] and [79] for more details), where in Step a we denote by S : T
the Fröbenius inner product of the tensors S and T, that is (with obvious notation)
S : T = ∑

1≤i, j≤d

si jti j:
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Step a. Start from the following global weak formulation (of the virtual power type):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
Ω\B(t)

[
∂u
∂ t

+(u ·∇)u
]
·vdx+ 2μ f

∫
Ω\B(t)

D(u) : D(v)dx

−
∫

Ω\B(t)
p∇ ·vdx+M

dV
dt

·Y+
d(Iω)

dt
·θ

= ρ f

∫
Ω\B(t)

g ·vdx+Mg ·Y,

∀{v,Y,θ} ∈ (H1(Ω \B(t)))d × IRd ×Θ and veri f ying

v = 0 on Γ , v(x) = Y+θ ×
−−−→
G(t)x ,∀x ∈ ∂B(t), t ∈ (0,T ),

with Θ = IR3 i f d = 3, Θ = {(0,0,θ ) | θ ∈ IR} i f d = 2,

(2.72)

∫
Ω\B(t)

q∇ ·u(t)dx = 0,∀q ∈ L2(Ω \B(t)), t ∈ (0,T ), (2.73)

u(t) = uΓ (t) on Γ , t ∈ (0,T ), (2.74)

u(x, t) = V(t)+ω(t)×
−−−→
G(t)x ,∀x ∈ ∂B(t), t ∈ (0,T ), (2.75)

dG
dt

= V, (2.76)

u(x,0) = u0(x),∀x ∈ Ω \B(0), (2.77)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0. (2.78)

Step b. Fill B with the surrounding fluid and impose a rigid body motion to the fluid
inside B.

Step c. Modify the global weak formulation (2.72)–(2.78) accordingly, taking adv-
antage of the fact that if v is a rigid body motion velocity field, then ∇ · v = 0 and
D(v) = 0.

Step d. Use a Lagrange multiplier defined over B to force the rigid body motion
inside B.

Assuming that B is made of a homogeneous material of density ρs, the above
program leads to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
Ω

[
∂u
∂ t

+(u ·∇)u
]
·vdx+ 2μ f

∫
Ω

D(u) : D(v)dx−
∫
Ω

p∇ ·vdx

+(1−ρ f/ρs)

[
M

dV
dt

·Y+
d(Iω)

dt
·θ

]
+< λ ,v−Y−θ ×

−−−→
G(t)x >B(t)

= ρ f

∫
Ω

g ·vdx+(1−ρ f/ρs)Mg ·Y, ∀{v,Y,θ} ∈ (H1(Ω))d × IRd ×Θ ,

t ∈ (0,T ), with Θ = IR3 i f d = 3, Θ = {(0,0,θ ) | θ ∈ IR} i f d = 2,
(2.79)
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Ω

q∇ ·u(t)dx = 0,∀q ∈ L2(Ω), t ∈ (0,T ), (2.80)

u(t) = uΓ (t) on Γ , t ∈ (0,T ), (2.81)⎧⎪⎨
⎪⎩< μ ,u(x, t)−V(t)−ω(t)×

−−−→
G(t)x >B(t)= 0,

∀μ ∈Λ (t) (= (H1(B(t)))d), t ∈ (0,T ),
(2.82)

dG
dt

= V, (2.83)⎧⎨
⎩

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0,

u(x,0) = u0(x),∀x ∈ Ω \ B̄0, u(x,0) = V0 +ω0 ×
−−→
G0x, ∀x ∈ B̄0.

(2.84)

From a theoretical point of view, a natural choice for < ·, ·>B(t) is provided by, e.g.,

< μ ,v >B(t)=
∫

B(t)
[μ ·v+ l2D(μ) : D(v)]dx; (2.85)

in (2.85), l is a characteristic length, the diameter of B, for example. In practice, fol-
lowing [70] (Chapter 8) and [79], one makes things much simpler by approximating
Λ(t) by

Λh(t) = {μ | μ =
N(t)

∑
j=1

μ jδ (x− x j), with μ j ∈ IRd , ∀ j = 1, . . . ,N(t)}, (2.86)

and the pairing in (2.85) by

< μ ,v >(B(t),h)=
N(t)

∑
j=1

μ j ·v(x j). (2.87)

In (2.86), (2.87), x → δ (x−x j) is the Dirac measure at x j, and the set {x j}N(t)
j=1 is the

union of two subsets, namely: (i) The set of the points of the velocity grid contained
in B(t) and whose distance at ∂B(t) is ≥ ch, h being a space discretization step and
c a constant ≈ 1.(ii) A set of control points located on ∂B(t) and forming a mesh
whose step size is of the order of h. It is clear that, using the approach above, one
forces the rigid body motion inside the particle by collocation.

A variant of the above fictitious domain approach is discussed in [140] and [141];
after an appropriate elimination, it does not make use of Lagrange multipliers to
force the rigid body motion of the particles, but uses instead projections on velocity
subspaces where the rigid body motion velocity property is verified over the parti-
cles (see [140] and [141] for details).
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4.3 Solving Problem (2.79)–(2.84) by Operator-Splitting

We do not consider collisions; after (formal) elimination of p and λ , problem (2.79)–
(2.84) reduces to an initial value problem of the following form

dX
dt

+
J

∑
j=1

A j(X, t) = 0 on (0,T ), X(0) = X0, (2.88)

where X= {u,V,ω ,G} (or {u,V,Iω ,G}). A typical situation will be the one where,
with J = 4, operator A1 will be associated with incompressibility, A2 with advec-
tion, A3 with diffusion, A4 with the fictitious domain treatment of the rigid body
motion; other decompositions are possible as shown in, e.g., [70] (Chapter 8) and
[79] (both references include a collision operator). The Lie’s scheme (2.3), (2.4) ap-
plies “beautifully” to the solution of problem (2.79)–(2.84). The resulting method is
quite modular implying that different space and time approximations can be used to
treat the various sub-problems encountered at each time step; the only constraint is
that two successive steps have to communicate (by projection in general) to provide
the initial condition required by each initial value sub-problem.

4.4 Numerical Experiments

4.4.1 Generalities

The methodology we described (briefly) in the above paragraphs has been vali-
dated by numerous experiments (see, in particular, [70] (Chapters 8 & 9), [73, 79],
[97, 137] and the related publications reported in http://www.math.uh.edu/∼pan/).
In this chapter, we will consider two test problems (borrowed from [73] (Section
3.4)): The first test problem involves three particles, while the second one concerns
a channel flow with 300 particles. The fictitious domain/operator-splitting approach
has made the solution of these problems (almost) routine nowadays. All the flow
computations have been done using the Bercovier-Pironneau finite element approx-
imation; namely (see [70] (Chapters 5, 8 and 9) for details), we used a globally
continuous piecewise affine approximation of the velocity (resp., the pressure) as-
sociated with a triangulation (in 2-D) or tetrahedral partition (in 3-D)Th (resp.,T2h)
of Ω , h being a space discretization step. The pressure mesh is thus twice coarser
than the velocity one. The calculations have been done using uniform partitions Th

and T2h.

4.4.2 First Test Problem: Settling of Three Balls in a Vertical Narrow Tube

Our goal in this subsection is to discuss the interaction of three identical balls set-
tling in a narrow tube of rectangular cross-section, containing an incompressible



2 Operator-Splitting and Alternating Direction Methods 47

0 0.5 1 1.5
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Fig. 2.2 Projections on the x1x3-plane of the trajectories of the mass centers of the three particles

Newtonian viscous fluid. Theoretically, the tube should be infinitely long, but for
practicality we first consider the settling of the balls in a cylinder of length 6 whose
cross-section is the rectangle Ω = (0,1.5)× (0,0.25); this cylinder is moving with
the balls in such a way that the center of the lower ball is in the horizontal symmetry
plane (a possible, but less satisfying, alternative would be to specify periodicity in
the vertical direction). At time t = 0, we suppose that the truncated cylinder coin-
cides with the “box” (0,1.5)× (0,0.25)× (0,6), and the centers of the balls are on
the vertical axis of the cylinder at the points x1 = 0.75, x2 = 0.125, x3 = 1, 1.3 and
1.6. The parameters for this test case are ρs = 1.1, ρ f = 1, μ f = 1, the diameter
of the balls being d = 0.2. The mesh size used to compute the velocity field (resp.,
the pressure) is hv = h = 1/96 (resp., hp = 2h = 1/48), while we took 1/1000 for
the time-discretization step; the initial velocity of the flow is 0, while the three balls
are released from rest. The velocity on the cylinder wall is 0. On the time interval
[0,15] the drafting, kissing and tumbling phenomenon (a terminology introduced
by D.D. Joseph) has been observed several time before a stable quasi-horizontal
configuration takes place, as shown in Figures 2.2, 2.3 and 2.4. The averaged verti-
cal velocity of the balls is 2.4653 on the time interval [13,15], while the averaged
particle Reynolds number is 49.304 on the same time interval, a clear evidence that
inertia has to be taken into account.
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Fig. 2.3 Relative positions of the three balls at t = 0, 0.4, 0.6, 0.65, 0.7, 0.8, 0.9, 1, 1.5, 2, 6, 6.25,
6.4, 6.6, 6.7, 8, 9, 10, 12, and 15 (from left to right and from top to bottom)
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Fig. 2.4 Visualization of the flow and of the particles at t = 1.1, 6.6, and 15.

4.4.3 Motion of 300 Neutrally Buoyant Disks in a Two-Dimensional
Horizontal Channel

This second test problem involving 300 particles and a solid volume/fluid volume
of the order of 0.38, collisions (or near-collisions) have to be accounted for in
the simulations; to do so, we have used the methods discussed in [70] (Chapter 8)
and [79]. Another peculiarity of this test problem is that ρs = ρ f for all the particles
(a neutrally buoyant situation). Indeed, neutrally buoyant models are more delicate
to handle than those in the general case since 1− ρ f /ρs = 0 in (2.79); however
this difficulty can be overcome as shown in [136]. For this test problem, we have:
(a) Ω = (0,42)×(0,12). (b) Ω contains the mixture of a Newtonian incompressible
viscous fluid of density ρ f = 1 and viscosity μ f = 1, with 300 identical rigid solid
disks of density ρ f = 1 and diameter 0.9. (c) At t = 0, fluid and particles are at rest,
the particle centers being located at the points of a regular lattice. (d) The mixture is
put into motion by a uniform pressure drop of 10/9 per unit length (without the par-
ticles the corresponding steady flow would have been of the Poiseuille type with 20
as maximal flow speed). (e) The boundary conditions are given by u(x1,x2, t) = 0
if 0 ≤ x1 ≤ 42, x2 = 0 and 12, and 0 ≤ t ≤ 400 (no-slip boundary condition on
the horizontal parts of the boundary), and then u(0,x2, t) = u(42,x2, t), 0 < x2 < 12,
0≤ t ≤ 400 (space-periodic in the Ox1 direction). (f) hv = h = 1/10, hp = 2h= 1/5,
the time-discretization step being 1/1000.
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Fig. 2.5 Positions of the 300 particles at t = 100, 107.8, 114, 200, and 400 (from top to bottom).

The particle distribution at t = 100, 107.8, 114, 200, and 400 has been visual-
ized on Figures 2.5. These figures show that, initially, we have the sliding motion
of horizontal particle layers, then after some critical time a chaotic flow-motion
takes place in very few time units, the highest particle concentration being along the
channel axis (actually, a careful inspection of the results shows that the transition to
chaos takes place just after t =107.8). The maximal speed at t =400 is 7.9, implying
that the corresponding particle Reynolds number is very close to 7.1. On Figure 2.6
we show the averaged solid fraction as a function of x2, the averaging space-time
set being {{x1, t}|0 ≤ x1 ≤ 42,380 ≤ t ≤ 400}; the particle aggregation along the
channel horizontal symmetry axis appears very clearly from this figure since the
solid fraction is close to 0.58 at x2 = 6 while the global solid fraction is 0.38 (ver-
tical line in the figure). Finally, we have visualized on Figure 2.7 the x1-averaged
horizontal component of the mixture velocity at t = 400, as a function of x2. The
dashed line corresponds to a horizontal velocity distribution of the steady flow of
the same fluid, with no particle in the channel, for the same pressure drop; the cor-
responding velocity profile is (of course) of the Poiseuille type and shows that the
mixture behaves like a viscous fluid whose viscosity is (approximately) 2.5 larger
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Fig. 2.6 Averaged solid fraction distribution.
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Fig. 2.7 Horizontal velocity distribution at t = 400.

than μ f . Actually, a closer inspection (see [136] for details) shows that the mixture
behaves like a non-Newtonian incompressible viscous fluid of the power law type,
for an exponent s = 1.7093 (s = 2 corresponding to a Newtonian fluid and s = 1 to
a perfectly plastic material). Figures 2.5, 2.6, and 2.7 show also that, as well known,
some order may be found in chaos.

For more details and further results and comments on pressure driven neutrally
buoyant particulate flows in two-dimensional channels (including simulations with
much larger numbers of particles, the largest one being 1,200) see [70] (Chapter 9)
and [136].
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5 Operator-Splitting Methods for the Numerical Solution
of Nonlinear Problems from Condensate and Plasma Physics

5.1 Introduction

Operator-splitting methods have been quite successful at solving problems in Com-
putational Physics, beside those from Computational Mechanics (CFD in particular).
Among these successful applications let us mention those involving nonlinear
Schrödinger equations, as shown, for example, by [9, 10, 44] and [102]. On the
basis of some very inspiring articles (see, e.g., [9, 10] and [102]) he wrote on the
above topic, the editors asked their colleague Peter Markowich to contribute a re-
lated chapter for this book; unfortunately, Professor Markowich being busy else-
where had to say no. Considering the importance of nonlinear Schrödinger related
problems, it was decided to (briefly) discuss in this chapter the solution of some of
them by operator-splitting methods (see also Chapter 18 on the propagation of laser
pulses along optical fibers). In Section 5.2, we will discuss the operator-splitting
solution of the celebrated Gross-Pitaevskii equation for Bose-Einstein condensates,
then, in Section 5.3, we will discuss the solution of the Zakharov system modeling
the propagation of Langmuir waves in ionized plasma.

5.2 On the Solution of the Gross-Pitaevskii Equation

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of bosons
cooled to temperatures very close to absolute zero. Under such conditions, a large
fraction of the bosons occupies the lowest quantum state, at which point macro-
scopic quantum phenomena become apparent. The existence of Bose-Einstein con-
densates was predicted in the mid-1920s by S. N. Bose and A. Einstein. If dilute
enough, the time evolution of a BEC is described by the following Gross-Pitaevskii
equation (definitely of the nonlinear Schrödinger type and given here in
a-dimensional form (following [9])):

iε
∂ψ
∂ t

=−ε2

2
∇2ψ +Vd(x)ψ +Kd |ψ|2ψ in Ω × (0,T), (2.89)

where, in (2.89), ψ is a complex-valued function of x and t, i =
√−1, Ω is an

open connected subset of IRd (with d = 1, 2 or 3), the real-valued function Vd de-
notes an external potential, and the real-valued parameter Kd is representative of the
particles interactions. Equation (2.89) has to be completed by boundary and initial
conditions. Equation (2.89) has motivated a very large literature from both physical
and mathematical points of view. Let us mention among many others [1, 9, 125] and
[126] (see also the many references therein). To solve equation (2.89) numerically
we need to complete it by boundary and initial conditions: from now on, we will
assume that
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ψ(x,0) = ψ0(x), x ∈ Ω , (2.90)

and (denoting by Γ the boundary of Ω )

ψ = 0 on Γ × (0,T ). (2.91)

The boundary conditions in (2.91) have been chosen for their simplicity, and also
to provide an alternative to the periodic boundary conditions considered in [9]. An
important (and very easy to prove) property of the solution of the initial boundary
value problem (2.89)–(2.91) reads as:

d
dt

∫
Ω
|ψ(x, t)|2 dx = 0 on (0,T ],

implying that ∫
Ω
|ψ(x, t)|2 dx =

∫
Ω
|ψ0(x)|2 dx on [0,T ]. (2.92)

As done before, we denote by ψ(t) the function x →ψ(x, t). Let �t(> 0) be a time
discretization step and denote (n+α)�t by tn+α ; applying to problem (2.89)–(2.91)
the Strang’s symmetrized scheme (2.7)–(2.10) of Section 2.3, we obtain:

ψ0 = ψ0; (2.93)

for n ≥ 0,ψn → ψn+1/2 → ψ̂n+1/2 → ψn+1 as follows⎧⎪⎪⎨
⎪⎪⎩

i
∂ψ
∂ t

+
ε
2
∇2ψ = 0 in Ω × (tn, tn+1/2),

ψ = 0 on Γ × (tn, tn+1/2),

ψ(tn) = ψn; ψn+1/2 = ψ(tn+1/2),

(2.94)

⎧⎪⎪⎨
⎪⎪⎩

iε
∂ψ
∂ t

=Vd(x)ψ +Kd |ψ |2ψ in Ω × (0,�t),

ψ = 0 on Γ × (0,�t),

ψ(0) = ψn+1/2; ψ̂n+1/2
= ψ(�t),

(2.95)

⎧⎪⎪⎨
⎪⎪⎩

i
∂ψ
∂ t

+
ε
2
∇2ψ = 0 in Ω × (tn+1/2, tn+1),

ψ = 0 on Γ × (tn+1/2, tn+1),

ψ(tn+1/2) = ψ̂n+1/2; ψn+1 = ψ(tn+1).

(2.96)

On the solution of (2.95): Let us denote by ψ1 (resp., ψ2) the real (resp., imaginary)
part of ψ; from (2.95), we have⎧⎪⎨

⎪⎩
ε
∂ψ1

∂ t
=Vd(x)ψ2 +Kd |ψ |2ψ2 in Ω × (0,�t),

ε
∂ψ2

∂ t
=−Vd(x)ψ1 −Kd|ψ |2ψ1 in Ω × (0,�t),

(2.97)
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Multiplying by ψ1 (resp., ψ2) the 1st (resp., the 2nd) equation in (2.97), we obtain
by addition

∂
∂ t

|ψ(x, t)|2 = 0 on(0,�t), a.e. x ∈ Ω ,

which implies in turn that

|ψ(x, t)|= |ψ(x,0)|= |ψn+1/2| on(0,�t), a.e. x ∈ Ω . (2.98)

It follows then from (2.95) and (2.98) that⎧⎪⎪⎨
⎪⎪⎩

iε
∂ψ
∂ t

=Vd(x)ψ +Kd |ψn+1/2|2ψ in Ω × (0,�t),

ψ = 0 on Γ × (0,�t),

ψ(0) = ψn+1/2; ψ̂n+1/2 = ψ(�t),

which implies for ψ̂n+1/2 the following closed-form solution

ψ̂n+1/2 = e−i�t
ε (Vd+Kd |ψn+1/2|2)ψn+1/2. (2.99)

On the solution of (2.94) and (2.96): The initial boundary value problems in (2.94)
and (2.96) are particular cases of⎧⎪⎪⎨

⎪⎪⎩
i
∂φ
∂ t

+
ε
2
∇2φ = 0 in Ω × (t0, t f ),

φ = 0 on Γ × (t0, t f ),

φ (t0) = φ0.

(2.100)

The above linear Schrödinger problem is a very classical one. Its solution is obvi-
ously given by

φ (t) = ei ε
2 (t−t0)∇2

φ 0, ∀t ∈ [t0, t f ]. (2.101)

Suppose that Ω = (0,a)× (0,b)× (0,c) with 0 < a < +∞, 0 < b < +∞, and 0 <
c < +∞; since the eigenvalues, and related eigenfunctions, of the negative Laplace
operator −∇2, associated with the homogeneous Dirichlet boundary conditions are
known explicitly, and given, for p, q and r positive integers, by⎧⎪⎪⎨

⎪⎪⎩
λpqr = π2

(
p2

a2 +
q2

b2 +
r2

c2

)
,

wpqr(x1,x2,x3) = 2

√
2

abc
sin

(
pπ

x1

a

)
sin

(
qπ

x2

b

)
sin

(
rπ

x3

c

) (2.102)

(we have then
∫
Ω |wpqr(x)|2 dx = 1) it follows from (2.101) that

φ (x, t) = ∑
1≤p,q,r<+∞

φ 0
pqre

−i ε
2 λpqr(t−t0)wpqr(x), with φ0

pqr =

∫
Ω

wpqr(y)φ0(y)dy. (2.103)
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In practice, one takes 1 ≤ p ≤ P, 1 ≤ q ≤ Q, 1 ≤ r ≤ R, and uses the Fast Fourier
Transform (FFT) to compute the coefficients φ 0

pqr and then φ (x, t).
For those more general situations where the solutions of the following linear

eigenvalue problem⎧⎪⎨
⎪⎩
{w,λ} ∈ H1

0 (Ω)× IR,
∫

Ω
|w(x)|2 dx = 1, λ > 0,∫

Ω
∇w ·∇vdx = λ

∫
Ω

wvdx, ∀v ∈ H1
0 (Ω),

(2.104)

are not known explicitly, one still has several options to solve (2.100), an obvious
one being:

Approximate (2.104) by⎧⎪⎨
⎪⎩
{w,λ} ∈Vh × IR,

∫
Ω
|w(x)|2 dx = 1, λ > 0,∫

Ω
∇w ·∇vdx = λ

∫
Ω

wvdx, ∀v ∈Vh,
(2.105)

where Vh is a finite dimensional sub-space of H1
0 (Ω). Then, as in, e.g., [17, 82] use

an eigensolver (like the one discussed in [113]) to compute the first Q(≤N = dimVh)
eigen-pairs solutions of (2.105), such that (with obvious notation)

∫
Ω wpwq dx = 0

∀p,q, 1 ≤ p,q ≤ Q, p �= q, and denote by VQ the finite dimensional space span by
the basis {wq}Q

q=1. Next, proceeding as in the continuous case we approximate the
solution of problem (2.100) by φQ defined by

φQ(x, t) =
Q

∑
q=1

φ0
qe−i ε

2 λq(t−t0)wq(x), with φ0
q =

∫
Ω

wq(y)φ0(y)dy. (2.106)

For the space Vh in (2.105), we can use these finite element approximations of
H1

0 (Ω) discussed for example in [37, 66] (Appendix 1) and [72] (Chapter 1) (see
also the references therein).

Another approach, less obvious but still natural, is to observe that if φ , the unique
solution of (2.100) is smooth enough, it is also the unique solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2φ
∂ t2 +

ε2

4
∇4φ = 0 in Ω × (t0, t f ),

φ = 0 and ∇2φ = 0 on Γ × (t0, t f ),

φ(t0) = φ 0,
∂φ
∂ t

(t0) = i
ε
2
∇2φ 0(= φ1),

(2.107)

a well-known model in elasto-dynamics (vibrations of simply supported plates).

From Q, a positive integer, we define a time discretization step τ by τ =
t f − t0

Q
.

The initial-boundary value problem (2.107) is clearly equivalent to
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⎪⎪⎪⎪⎪⎪⎩

∂φ
∂ t

= v in Ω × (t0, t f ),

∂v
∂ t

+
ε2

4
∇4φ = 0 in Ω × (t0, t f ),

φ = 0 and ∇2φ = 0 on Γ × (t0, t f ),

φ (t0) = φ0, v(t0) = i
ε
2
∇2φ0(= v0).

(2.108)

A time-discretization scheme for (2.107) (via (2.108)), combining good accuracy,
stability, and energy conservation properties (see, e.g., [14]) reads as follows (with
{φq,vq} an approximation of {φ ,v} at tq = t0 + qτ):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 0 = φ0, v0 = v0;

for q = 0, · · · ,Q− 1, compute {φq+1,vq+1} from {φq,vq} via the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φq+1 −φq

τ
=

1
2
(vq+1 + vq),

vq+1 − vq

τ
+

ε2

8
∇4(φ q+1 +φq) = 0 in Ω ,

φq+1 = 0 and ∇2φ q+1 = 0 on Γ .
(2.109)

By elimination of vq+1 it follows from (2.109) that φq+1 is solution of⎧⎨
⎩φq+1 +

(τε)2

8
∇4φ q+1 = φq + τvq − (τε)2

8
∇4φq in Ω ,

φq+1 = 0 and ∇2φ q+1 = 0 on Γ ,
(2.110)

a bi-harmonic problem which is well posed in H1
0 (Ω)∩H2(Ω). Next, one obtains

easily vq+1 from

vq+1 =
2
τ
(φ q+1 −φq)− vq.

For the solution of the bi-harmonic problem (2.110) we advocate those mixed finite
element approximations and conjugate gradient algorithms used in various chapters
of [72] (see also the references therein).

5.3 On the Solution of Zakharov Systems

In 1972, V.E. Zakharov introduced a mathematical model describing the propagation
of Langmuir waves in ionized plasma (ref. [179]). This model reads as follows (after
rescaling): ⎧⎪⎪⎨

⎪⎪⎩
i
∂u
∂ t

+∇2u = un,

∂ 2n
∂ t2 −∇2n+∇2(|u|2) = 0,

(2.111)
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where the complex-valued function u is associated with a highly oscillating elec-
tric field, while the real-valued function n denotes the fluctuation of the plasma-ion
density from its equilibrium state. In this section, following [102], we will apply the
symmetrized Strang operator-splitting scheme (previously discussed in Section 2.3
of this chapter) to the following generalization of the above equations:⎧⎪⎨

⎪⎩
i
∂u
∂ t

+∇2u+ 2λ |u|2u+ 2un= 0,

1
c2

∂ 2n
∂ t2 −∇2n+ μ∇2(|u|2) = 0,

(2.112)

where λ and μ are real numbers and c(> 0) is the wave propagation speed. Fol-
lowing again [102], we will assume, for simplicity, that the physical phenomenon
modeled by (2.112) takes place on the bounded interval (0,L), with u, n, ∂u/∂x and
∂n/∂x space-periodic, during the time interval [0,T ]. Thus, (2.112), completed by
initial conditions, reduces to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 + 2λ |u|2u+ 2un= 0 in (0,L)× (0,T ),

1
c2

∂ 2n
∂ t2 − ∂ 2n

∂x2 + μ
∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,T ),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,T ),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (0,T ),

u(0) = u0, n(0) = n0,
∂n
∂ t

(0) = n1.

(2.113)

As done previously in this chapter, we denote by φ(t) the function x → φ(x, t).

Remark 27. Albeit considered by some as too simple from a physical point of view,
space-periodic boundary conditions are common in plasma physics. They have been
used for example in [131], a most celebrated article dedicated to the mathematical
analysis of the behavior of plasma entropy (see also [163] which relates a discus-
sion that C. Villani had with E. Lieb concerning precisely the use of space-periodic
boundary conditions in plasma physics). ��

From the rich structure of the Zakharov’s system (2.113) it is not surprising that
a variety of operator-splitting schemes can be applied to its numerical solution,
several of these schemes being described in [102] (see also the references therein
concerning splitting schemes not described in [102]). A first step to the applica-
tion of operator-splitting scheme to the time-discretization of problem (2.113) is to

introduce the function p =
∂n
∂ t

and to rewrite (2.113) as:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 + 2λ |u|2u+ 2un = 0 in (0,L)× (0,T ),

∂n
∂ t

− p = 0 in (0,L)× (0,T ),

1
c2

∂ p
∂ t

− ∂ 2n
∂x2 + μ

∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,T ),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,T ),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (0,T ),

u(0) = u0, n(0) = n0, p(0) = n1.

(2.114)

Applying the Strang’s symmetrized scheme to the time-discretization of prob-
lem (2.114), one obtains (among other possible schemes, and with tq+α = (q +
α)�t):

{u0,n0, p0}= {u0,n0,n1}. (2.115)

For q ≥ 0, {uq,nq, pq} → {uq+1/2,nq+1/2, pq+1/2} → {ûq+1/2, n̂q+1/2, p̂q+1/2} →
{uq+1,nq+1, pq+1} via⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq, tq+1/2),

∂n
∂ t

− p
2
= 0 in (0,L)× (tq, tq+1/2),

1
c2

∂ p
∂ t

− ∂ 2n
∂x2 = 0 in (0,L)× (tq, tq+1/2),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq, tq+1/2),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (tq, tq+1/2),

u(tq) = uq, n(tq) = nq, p(tq) = pq;

uq+1/2 = u(tq+1/2),nq+1/2 = n(tq+1/2), pq+1/2 = p(tq+1/2),
(2.116)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+ 2λ |u|2u+ 2un = 0 in (0,L)× (0,�t),

∂n
∂ t

− p
2
= 0 in (0,L)× (0,�t),

1
c2

∂ p
∂ t

+ μ
∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,�t),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,�t),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (0,�t),

u(0) = uq+1/2, n(0) = nq+1/2, p(0) = pq+1/2;

ûq+1/2 = u(�t), n̂q+1/2 = n(�t), p̂q+1/2 = p(�t),

(2.117)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

∂n
∂ t

− p
2
= 0 in (0,L)× (tq+1/2, tq+1),

1
c2

∂ p
∂ t

− ∂ 2n
∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq+1/2, tq+1),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t), p(0, t) = p(L, t) on (tq+1/2, tq+1),

u(tq+1/2) = ûq+1/2, n(tq+1/2) = n̂q+1/2, p(tq+1/2) = p̂q+1/2;

uq+1 = u(tq+1),nq+1 = n(tq+1), pq+1 = p(tq+1).
(2.118)

Scheme (2.115)–(2.118) is clearly equivalent to

{u0,n0, p0}= {u0,n0,n1}. (2.119)

For q ≥ 0, {uq,nq, pq} → {uq+1/2,nq+1/2, pq+1/2} → {ûq+1/2, n̂q+1/2, p̂q+1/2} →
{uq+1,nq+1, pq+1} via

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq, tq+1/2),

2
c2

∂ 2n
∂ t2 − ∂ 2n

∂x2 = 0 in (0,L)× (tq, tq+1/2),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq, tq+1/2),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (tq, tq+1/2),

u(tq) = uq, n(tq) = nq,
∂n
∂ t

(tq) = pq/2;

uq+1/2 = u(tq+1/2),nq+1/2 = n(tq+1/2), pq+1/2 = 2
∂n
∂ t

(tq+1/2),

(2.120)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+ 2λ |u|2u+ 2un= 0 in (0,L)× (0,�t),

2
c2

∂ 2n
∂ t2 + μ

∂ 2

∂x2 (|u|2) = 0 in (0,L)× (0,�t),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (0,�t),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (0,�t),

u(0) = uq+1/2, n(0) = nq+1/2,
∂n
∂ t

(0) = pq+1/2/2;

ûq+1/2 = u(�t), n̂q+1/2 = n(�t), p̂q+1/2 = 2
∂n
∂ t

(�t),

(2.121)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∂u
∂ t

+
∂ 2u
∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

2
c2

∂ 2n
∂ t2 − ∂ 2n

∂x2 = 0 in (0,L)× (tq+1/2, tq+1),

u(0, t) = u(L, t),
∂u
∂x

(0, t) =
∂u
∂x

(L, t) on (tq+1/2, tq+1),

n(0, t) = n(L, t),
∂n
∂x

(0, t) =
∂n
∂x

(L, t) on (tq+1/2, tq+1),

u(tq+1/2) = ûq+1/2, n(tq+1/2) = n̂q+1/2,
∂n
∂ t

(tq+1/2) = p̂q+1/2/2;

uq+1 = u(tq+1),nq+1 = n(tq+1), pq+1 = 2
∂n
∂ t

(tq+1).

(2.122)

The linear Schrödinger and wave equations in (2.120) and (2.122) are uncoupled,
implying that they can be solved by a variety of classical spectral or finite difference
methods taking advantage of the space-periodic boundary conditions. On the other
hand, the nonlinear system (2.121) can be solved pointwise: Indeed, since u and n
are real-valued functions, it follows from the first and fifth equations in (2.121) that

|u(x, t)|= |uq+1/2(x)|, ∀t ∈ [0,�t], x ∈ [0,L]. (2.123)

It follows then from (2.121) and (2.123) that the solution n in (2.121) is also a
solution of the following linear problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2n
∂ t2 =−μ

2
c2 ∂ 2

∂x2 (|uq+1/2|2) in (0,L)× (0,�t),

n(0, t) = n(L, t) on (0,�t),

n(0) = nq+1/2,
∂n
∂ t

(0) = pq+1/2/2.

(2.124)

The closed form solution of (2.124) is given by

n(x, t) = nq+1/2(x)+
1
2

pq+1/2(x)t − μ
4

c2 ∂ 2

∂x2 (|uq+1/2|2)t2 on (0,L)× (0,�t),

(2.125)
implying, in particular, that

n̂q+1/2 = nq+1/2 +
�t
2

pq+1/2 − μ
4
(c�t)2 ∂ 2

∂x2 (|uq+1/2|2).

Finally, to obtain the u solution of system (2.121), we observe that (n being known
from (2.125)) it is the unique solution of the following non-autonomous linear initial
value problem⎧⎪⎪⎨

⎪⎪⎩
i
∂u
∂ t

+ 2(λ |uq+1/2|2 + n)u = 0 in (0,L)× (0,�t),

u(0, t) = u(L, t) on (0,�t),

u(0) = uq+1/2,

(2.126)
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a particular case of⎧⎪⎪⎨
⎪⎪⎩

i
∂φ
∂ t

+ 2(λ |ψ|2 + v)φ = 0 in (0,L)× (t0, t f ),

φ(0, t) = φ(L, t) on (t0, t f ),

φ(t0) = φ0,

(2.127)

ψ (resp., v) being a given complex (resp., real)-valued function of x (resp., of {x, t}).

With M ≥ 1 an integer, let us define τ , a time-discretization step, by τ =
t f − t0

M
, and

tm = t0+mτ . To solve (2.127) we advocate the following time-discretization scheme
of the Crank-Nicolson type:

φ0 = φ0. (2.128)

For m = 0, · · · , M− 1, φm → φm+1 via the solution of⎧⎨
⎩i

φm+1−φm

τ
+

[
λ |ψ |2+ v(tm+1)+ v(tm)

2

]
(φm+1+φm)=0 in (0,L),

φm+1(0) = φm+1(L).
(2.129)

Problem (2.129), can be solved point-wise (in practice at the grid-points of a finite
difference one- dimensional “grid”). Scheme (2.128)–(2.129) is second-order accu-
rate and modulus preserving (that is, verifies |φm+1| = |φm|, ∀m = 0, . . . ,M − 1 ).
On [0,L], φm+1(x) is obtained via the solution of a 2× 2 linear system (for those
who prefer to use real arithmetic).

Remark 28. In [102], one advocates using instead of n the function n− μ |u|2. The
numerical results reported in the above publication clearly show that operator-
splitting provides efficient methods for the numerical solution of the Zakharov’s
system (2.112).

6 Applications of Augmented Lagrangian and ADMM
Algorithms to the Solution of Problems from Imaging

6.1 Variational Models for Image Processing

6.1.1 Generalities

Usually, image processing refers to the processing and analysis of digital images.
Variational models have become an essential part of image processing, such models
relying on the minimization of a well-chosen energy functional, the minimization
problem reading typically as

u = arg minv∈V

[
E f itting(v)+Eregularizing(v)

]
. (2.130)
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As shown above, the energy functional has two parts, namely a fitting part
and a regularizing one. In the following we will present various variational image
processing models and show that the operator-splitting and ADMM methodology
provides efficient methods for the numerical solution of the related minimization
problems. We will start our discussion with the well-known Rudin-Osher-Fatemi
(ROF) model, and then follow with the presentation of some higher order models.
Before going into more details, some remarks are in order, namely:

Remark 29. Most of the models we are going to consider below are not fully un-
derstood yet from a mathematical point of view, two of the main issues being,
in (2.130), the choice of the space V and the weak-continuity properties of the en-
ergy functional. This will not prevent us to use these continuous models, for the
simplicity of their formalism which facilitates the derivation of algorithms whose
discrete analogues have provable convergence properties.

Remark 30. For image processing problems, the computational domain is always
a rectangle, the image pixels providing a natural mesh for space discretization.
This particularity makes easy, in general, the finite difference discretization of prob-
lem (2.130) and the implementation of iterative solution algorithms. The method-
ology we are going to discuss is not restricted to rectangular domains, however for
domains with curved boundaries using finite-difference discretization may become
complicated near the boundary; an elegant way to overcome this difficulty is to em-
ploy finite element approximations, as done in, e.g., [133].

Remark 31. A very detailed analysis of ADMM algorithms for the solution of image
processing problems can be found in the chapter of this book by M. Burger, A.
Sawatzky & G. Steidl (Chapter 10).

6.1.2 Total Variation and the ROF Model

One of the most popular variational models for image processing was proposed by
Rudin, Osher, and Fatemi in their seminal work (ROF model) [144]. In [144], a
denoised image is obtained by minimizing the following energy functional

E(v) =
1
2

∫
Ω
| f − v|2 dx+η

∫
Ω
|∇v|dx, (2.131)

where: dx = dx1dx2, f : Ω → IR is a given noisy image defined on Ω ,
∫
Ω |∇v|dx

stands for the total variation of the trial function v (see [157] and [169] for a def-
inition of the notion of total variation), and η > 0 is a positive tuning parameter
controlling how much noise will be removed. The remarkable feature of the ROF
model lies in its effectiveness in preserving object edges while removing noise. In
fact, the total variation regularizer has been widely employed to accomplish other
image processing tasks such as deblurring, segmentation, and registration.

In order to incorporate more geometrical information into the regularizer, a
number of higher order regularization models have been proposed and used for
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image processing and computer vision problems. The ROF model has several un-
favorable features. The main caveat is the stair-case effect, that is, the resulting
cleaned image would present blocks even though the desired image may be smooth.
Other undesirable properties include corner smearing and loss of image contrast.
To remedy these drawbacks, a very rich list of results exists in the literature, see
[2, 31, 120, 182, 185]. Despite the effectiveness of these models in removing the
staircase effect, it is often a challenging issue to minimize the corresponding func-
tionals. Note that if the functional E contains second-order derivatives of v, the
related Euler-Lagrange equation is a fourth-order linear or nonlinear partial differ-
ential equation.

6.1.3 Regularization Using TV2

In [120], Lysaker et al. directly incorporated second order derivative information
into the image denoising process, by proposing to minimize the following energy
functional

E(v) =
1
2

∫
Ω
| f − v|2 dx+η

∫
Ω

√
(vx1x1)

2 + 2(vx1x2)
2 +(vx2x2)

2 dx (2.132)

This higher order energy functional is much simpler than the Elastica regularizer
that we shall introduce later. Numerically, this regularizer shows rather good perfor-
mance with noise suppression and edge preservation. In the literature, there exists
quite a number of related models, see [20, 24, 25, 26, 28, 39, 53, 58, 89, 99, 101,
134, 138, 147, 171, 146, 180]. The well posedness of the variational problem as-
sociated with the energy functional in (2.132), and its gradient flow equation, have
been studied in [88, 130]. High order models, such as the one associated with the
energy in (2.132), have been discussed in, e.g., [15, 24, 32, 149, 176].

6.1.4 Regularization Using the Euler’s Elastica Energy

In order to ‘clean’ a given function f : Ω → IR, the Euler’s Elastica model relies on
the minimization of the following energy functional

E(v) =
1
2

∫
Ω
| f − v|2 dx+

∫
Ω

[
a+ b

∣∣∣∣∇ · ∇v
|∇v|

∣∣∣∣
2
]
|∇v|dx. (2.133)

In (2.133), a and b are non-negative with a+b > 0. These two constants have to be
chosen properly, depending of the application under consideration. The image pro-
cessing model associated with the above energy functional comes from the Euler’s
Elastica energy for curves (see [31, 124] for the derivation of this energy): indeed,
for a given curve Γ ⊂ IR2 with curvature κ , the Euler’s Elastica energy is defined
(with obvious notation) by

∫
Γ (a+ bκ2)ds. For a function v, the curvature of the
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level curve Γc := {x|v(x) = c} is κ =∇ · ∇v
|∇v| (if ∇v �= 0). Thus, the Euler’s Elastica

energy for the level curve Γc is given by

l(c) =
∫
Γc

[
a+ b

∣∣∣∣∇ · ∇v
|∇v|

∣∣∣∣
2
]

ds.

Summing up (integrating) the Euler’s Elastica energy over all the level curves Γc, it
follows from the co-area formula (see [168]) that the total Euler’s Elastica energy is
given by

∫ ∞

−∞
l(c)dc =

∫ ∞

−∞

∫
Γc

[
a+ b

∣∣∣∣∇ · ∇v
|∇v|

∣∣∣∣
2
]

dsdc =
∫

Ω

[
a+ b

∣∣∣∣∇ · ∇v
|∇v|

∣∣∣∣
2
]
|∇v|dx.

6.1.5 Regularization Using the Image Graph Mean Curvature

In [182], the authors proposed a variational image processing model making use of
the mean curvature of the graph of function f , that is of the surface {x,y,z= f (x,y)},
to remove the noise. More specifically, the model considered in [182] employs the
L1 norm of the mean curvature of the above graph as a regularizer, the associated
energy functional being defined by

E(v) =
1
2

∫
Ω
| f − v|2 dx+η

∫
Ω

∣∣∣∣∣∇ · ∇v√
1+ |∇v|2

∣∣∣∣∣ dx. (2.134)

Above, η(> 0) is a tuning parameter and the term
∇v√

1+ |∇v|2 is the mean curvature

of the surface φ(x,y,z) = 0 with φ(x,y,z) = u(x,y)− z. Clearly, the model tries to
fit the given noisy image surface {x,y,z = f (x,y)} with a surface {x,y,z = u(x,y)},
u being a minimizer of the L1-mean curvature energy functional (2.134). This idea
goes back to much earlier publications, [108] for example. The model can sweep
noise while keeping object edges, and it also avoids the staircase effect. More impor-
tantly, as discussed in [185], the model is also capable of preserving image contrasts
as well as object corners.

6.1.6 Interface Problems: Chan-Vese Segmentation Model, Labeling
Techniques, Min-Cut, and Continuous Max-Flow

In image processing, computer vision, etc., one encounters operations more compli-
cated than denoising, segmentation being one of them. These applications require
mathematical models more complicated (in some sense) than those considered in
Sections 6.1.2 to 6.1.5, one of them being the Chan-Vese model introduced in [33].
Actually (as obvious from [33]), the snake and active contour model (ref. [106]) and
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the Mumford-Shah model (ref. [132]) can be viewed as ancestors of the Chan-Vese
model. Using the notation of [33], the Chan-Vese segmentation model relies on the
minimization of the following energy functional:

ECV (φ ,d1,d2) = λ1

∫
Ω
| f − d1|2H(φ)dx+λ2

∫
Ω
| f − d2|2[1−H(φ)]dx (2.135)

+μ
∫

Ω
|∇H(φ)|dx+ν

∫
Ω

H(φ)dx,

where in (2.135): (i) φ is a level set function whose zero level curves set represents
the segmentation boundary. (ii) H(·) is the Heaviside function. (iii) d1 and d2 are two
real numbers. (iv) λ1, λ2 and μ (resp., ν ) are positive (resp., non-negative) tuning
parameters (in many applications, one takes λ1 = λ2 = 1). The Euler-Lagrange equa-
tion associated with the minimization of the functional in (2.135) has been derived
in [33]. In the above reference the associated gradient flow has been time-discretized
by an explicit scheme to compute the solution of the above minimization problem
(after an appropriate finite difference space discretization). Operator- splitting and
ADMM can be used to develop algorithms with much faster convergence properties
than the above explicit schemes; we will return on this issue in Section 6.2. Let us
denote H(φ) by v; there is clearly equivalence between minimizing the functional
defined by (2.135) and⎧⎪⎨

⎪⎩
inf

{v,d1,d2}∈V×IR×IR
[λ1

∫
Ω
| f − d1|2vdx+λ2

∫
Ω
| f − d2|2[1− v]dx

+μ
∫

Ω
|∇v|dx+ν

∫
Ω

vdx],
(2.136)

where V = {v|v ∈ L∞(Ω),v(x) ∈ {0,1},a.e. in Ω ,∇v ∈ L1(Ω)}. The model asso-
ciated with (2.136) was proposed in [117] and referred as a binary level set based
model. More generally, we can consider the minimization, over the above set V , of
energy functionals such as Epotts defined by

Epotts(v) =
∫

Ω
f1vdx+

∫
Ω

f2[1− v]dx+
∫
Ω

g|∇v|dx, (2.137)

where f1 and f2 are given functions indicating the possibility that a point belongs
to phase 0 or to phase 1, and where g is a non-negative function, possibly constant;
if d1 and d2 are fixed in (2.136), the Chan-Vase model becomes a particular case of
the model associated with the functional Epotts defined by (2.137). It was recently
observed (see [173, 175]) that minimizing Epotts over the above V is a (kind of)
continuous min-cut problem, itself equivalent (by duality) to a max-flow problem.
Indeed, let us consider the following continuous max-flow problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
sup

qs,q f ,v

∫
Ω

qs dx subject to

qs ≤ f1,qt ≤ f2, |v| ≤ g,

∇ ·v = qs − qt in Ω ,v ·n = 0 on Γ (= ∂Ω),

(2.138)
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where in (2.138)): (i) v = {v1,v2} and |v| =
√

v2
1 + v2

2, v being the flow inside Ω .
(ii) n is the unit outward vector normal at Γ . (iii) qs (resp., qt ) represents a flow
from a source (resp., to a sink). (iv) f1 and f2 are as in (2.137). We can also define
|v| by |v| := |v1|+ |v2| ; if we do so, the discretized max-flow problem can be solved
by traditional graph cut methods. It follows from [175] that a dual of the max flow
problem (2.138) reads as:

inf
μ∈Λ

[∫
Ω

f1(1− μ)dx+
∫
Ω

f2μ dx+
∫
Ω

g|∇μ |dx

]
, (2.139)

where Λ = {μ |μ ∈ L∞(Ω),0 ≤ μ(x) ≤ 1,a.e. in Ω} ∩W 1,1(Ω). We have recov-
ered thus the functional Epotts from (2.137) and shown a link between the Chan-
Vese model and the max-flow problem. The dual problem (2.139) is known as
a (continuous) min-cut problem. Actually, Chan, Esedoglu and Nikolova have
shown in [29] that there is equivalence between (2.139) and minimizing over
V = {v|v ∈ L∞(Ω),v(x) ∈ {0,1}, a.e. in Ω ,∇v ∈ L1(Ω)} the functional Epotts de-
fined by (2.137), a most remarkable result indeed since problem (2.139) is a convex
variational problem whose discrete variants can be solved by ADMM type algo-
rithms (see [5, 6, 7, 8, 114, 173, 174, 175, 178] for more details and generalizations).

Remark 32. In (2.136), (2.138) and (2.139), it is on purpose that we used inf (resp.,
sup) instead of min (resp., max) since we have no guarantee that the minimizing
sequences of the functionals under consideration will converge weakly in the space
or set where the minimization takes place.

Remark 33. Suppose that in (2.138) we replace the constraint |v| ≤ g by |v1| ≤ g1

and |v2| ≤ g2, everything else being the same; then, the dual problem of the associ-
ated variant of (2.138) reads (with Λ as in (2.139)) as

inf
μ∈Λ

[∫
Ω

f1(1− μ)dx+
∫
Ω

f2μ dx+
∫
Ω

(
g1

∣∣∣∣ ∂μ
∂x1

∣∣∣∣+ g2

∣∣∣∣ ∂μ
∂x2

∣∣∣∣
)

dx

]
,

clearly a close variant of (2.139). Similarly, if we replace in (2.138) the constraint
|v| ≤ g by |v1|+ |v2| ≤ g, we obtain (as expected) the following dual problem

inf
μ∈Λ

[∫
Ω

f1(1− μ)dx+
∫
Ω

f2μ dx+
∫
Ω

g sup

(∣∣∣∣ ∂μ
∂x1

∣∣∣∣ ,
∣∣∣∣ ∂μ
∂x2

∣∣∣∣
)

dx

]
,

the set Λ being as above.

6.1.7 Segmentation Models with Higher Order Regularization

As could have been expected, first order segmentation models have limitations
(discussed in [132]). To give an example let us consider the situation depicted in
Figure 2.8(a) where some parts of the four letters have been erased: albeit one
can easily recognize the four letters, first order segmentation models such as Chan-
Vese’s, might often capture the existing boundary instead of restoring the missing
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Fig. 2.8 Broken letters “UCLA” and its connected segmentation.

ones, as illustrated in Figure 2.8(b). In inpainting problems (see [31, 124]), missing
image information is also recovered, but within given regions assigned in advance.
In contrast, one would like to have a segmentation model that can interpolate the
missing boundaries automatically without specifying the region of interest. To this
end, one may employ the Euler’s Elastica functional as a novel regularization term
in the Chan-Vese’s model (2.135), in order to replace the weighted TV term. Doing
so we obtain the following energy functional (we assume ν = 0, here):

ECV E(φ ,d1,d2) = λ1

∫
Ω
| f − d1|2H(φ)dx+λ2

∫
Ω
| f − d2|2[1−H(φ)]dx (2.140)

+
∫

Ω

[
a+ b

(
∇ · ∇φ

|∇φ |
)2

]
|∇H(φ)|dx

where λ1, λ2, a and b are positive parameters. If φ is the signed distance level set
function, it can be proved that the last term in (2.140) is equal to the Euler’s elastica
energy of the segmentation curve. This regularization was originally proposed and
used in the celebrated paper on segmentation with depth by Nitzberg, Mumford,
and Shiota (ref. [135]). Actually, it has also been used in [31] (resp., [183, 184])
for the solution of the in-painting (resp., illusory contour) problem. In [146], linear
programming was used to minimize (after space discretization) curvature dependent
functionals, the functional defined by (2.140) being one of those considered in this
article.

Remark 34. Observe that since (formally at least, but this can be justified using a

well-chosen regularization of the Heaviside function, such as ξ → 1
2

[
1+ ξ√

ε2+ξ 2

]
)

∇φ
|∇φ | =

∇H(φ)
|∇H(φ)| , only the sign H(φ) of the function φ is needed when solving the

segmentation problem via the functional in (2.140). This property suggests, as done
in [117], to use a binary level set representation via the introduction of the function
v = H(φ). Such a change of function was also used in [29] for finding the global
minimizer associated with the Chan-Vese’s model. More general binary level set
representations with global minimization techniques have been developed (see, e.g.,
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[7, 173, 174, 175, 177]) using the relationships existing between graph cuts, binary

labeling and continuous max flow problems. Since ∇ · ∇φ
|∇φ | =∇ · ∇H(φ)

|∇H(φ)| , one can

rewrite the functional in (2.140) as

E(v,d1,d2) = λ1

∫
Ω
| f − d1|2vdx+λ2

∫
Ω
| f − d2|2[1− v]dx (2.141)

+
∫

Ω

[
a+ b

(
∇ · ∇v

|∇v|
)2

]
|∇v|dx

with the values taken by v being either 0 or 1. Strictly speaking the mean curvature of
the graph makes sense for “smooth” functions only; to fix this issue, one relaxes the
above binary restriction by replacing it by 0 ≤ v ≤ 1, a less constraining condition
indeed.

6.2 Fast Numerical Algorithms for Variational Image Processing
Models Based on Operator- Splitting and Augmented
Lagrangian Methods (ALM)

In this section, we will present operator-splitting and ALM based fast numerical
algorithms, for the numerical treatment of variational image processing models.

6.2.1 Parallel Splitting Schemes for the ROF Model

The first model that we are going to consider is the ROF model discussed in Sec-
tion 6.1.2. The formal Euler-Lagrange equation associated with the minimization
of the (strictly convex) functional in (2.131) reads as

−η∇ · ∇u
|∇u| + u = f in Ω ,

∇u
|∇u| ·n = 0 on ∂Ω , (2.142)

with n the outward unit vector normal at ∂Ω . In order to solve the nonlinear non-
smooth elliptic equation (2.142) we associate with it an initial value problem and
look for steady-state solutions. We consider thus⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂ t

−η∇ · ∇u
|∇u| + u = f in Ω × (0,+∞),

∇u
|∇u| ·n = 0 on ∂Ω × (0,+∞),

u(0) = u0,

(2.143)
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an obvious choice for u0 in (2.143) being u0 = f . Actually to overcome the difficulty
associated with the non-smoothness of the elliptic operator in (2.142) and (2.143),
we consider the following regularized variant of (2.143):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂ t

−η∇ · ∇u√|∇u|2 + ε2
+ u = f in Ω × (0,+∞),

∂u
∂n

= 0 on ∂Ω × (0,+∞),

u(0) = u0,

(2.144)

with ε a small positive number. The simplest time-stepping scheme we can think
about to capture the steady state solution of (2.144) is clearly the forward-Euler
scheme. Let �t(> 0) be a time-discretization step; applied to the solution of (2.144)
the forward Euler scheme produces the following algorithm:

u0 = u0. (2.145)

For n ≥ 0, un → un+1 via⎧⎪⎪⎨
⎪⎪⎩

un+1 − un

�t
−η∇ · ∇un√|∇un|2 + ε2

+ un = f in Ω ,

∂un+1

∂n
= 0 on ∂Ω .

(2.146)

In practice, scheme (2.145)–(2.146) is applied to a discrete variant of (2.144) ob-
tained by finite difference or finite element space discretization. Scheme (2.145)–
(2.146) being explicit and the condition number of the operator in (2.146) rather
large, its conditional stability requires small time steps leading to a slow conver-
gence to a steady state solution. Suppose that Ω is the rectangle (0,a)× (0,b); in
order to improve the speed of convergence to a steady state solution, we are going
to apply to the solution of (2.144) the parallelizable operator-splitting scheme dis-
cussed in Section 2.8, taking advantage of the following decomposition of the oper-
ator in (2.144)

−η∇ · ∇u√|∇u|2 + ε2
+ u− f = A1(u)+A2(u), (2.147)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1(u) =−η
∂

∂x1

⎛
⎜⎜⎝

∂u
∂x1√

|∇u|2 + ε2

⎞
⎟⎟⎠+

1
2
(u− f ),

A2(u) =−η
∂

∂x2

⎛
⎜⎜⎝

∂u
∂x2√

|∇u|2 + ε2

⎞
⎟⎟⎠+

1
2
(u− f ).

(2.148)
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Combining the scheme we mentioned just above with a semi-explicit time dis-
cretization of the nonlinear terms we obtain

u0 = u0. (2.149)

For n ≥ 0, un → {un+1/4,un+2/4}→ un+1 via⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un+1/4 − un

2�t
−η

∂
∂x1

⎛
⎜⎜⎝

∂un+1/4

∂x1√
|∇un|2 + ε2

⎞
⎟⎟⎠+

un+1/4

2
=

f
2

in Ω ,

∂un+1/4

∂x1
(0,x2) =

∂un+1/4

∂x1
(a,x2) = 0 ∀x2 ∈ (0,b),

(150.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un+2/4 − un

2�t
−η

∂
∂x2

⎛
⎜⎜⎝

∂un+2/4

∂x2√
|∇un|2 + ε2

⎞
⎟⎟⎠+

un+2/4

2
=

f
2

in Ω ,

∂un+2/4

∂x2
(x1,0) =

∂un+2/4

∂x2
(x1,b) = 0 ∀x1 ∈ (0,a),

(150.2)

un+1 =
1
2
(un+1/4 + un+2/4). (2.151)

Scheme (2.149)–(2.151) can accommodate large time steps implying a fast conver-
gence to steady state solutions. It preserves also the symmetry of the images. More-
over since in most applications Ω is a rectangle with the image pixels uniformly
distributed on it, it makes sense to use a finite difference discretization on a uni-
form Cartesian grid to approximate (150.1) and (150.2). For Dirichlet or Neumann
boundary conditions, the finite difference discretization of (150.1) and (150.2) will
produce two families of uncoupled tri-diagonal linear systems easily solvable (the
good parallelization properties of the above scheme are quite obvious). The above
operator-splitting scheme can be generalized to the numerical treatment of other
variational models (such as Chan-Vese’s, and to models involving derivatives of or-
der higher than one, as shown in, e.g., [89]). A closely related scheme is discussed
in [167].

6.2.2 A Split-Bregman Method and Related ADMM Algorithm
for the ROF Model

In ref. [86], T. Goldstein and S. Osher proposed and tested a fast converging iterative
method for the ROF model: this algorithm, of the split-Bregman type, is certainly
one of the fastest numerical methods for the ROF model. It was quickly realized (see
[156, 170, 172]) that the Bregman algorithm discussed in [86] is equivalent to an
ADMM one. Here, we will explain the ideas in an informal way using the continuous
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model whose formalism is much simpler. As stated in Remark 29, to make our dis-
cussion more rigorous mathematically, the functional spaces for which the continu-
ous model makes sense have to be specified (here, they are of the bounded variation
type). This difficulty is one of the reasons explaining why some authors (as in [170])
consider discrete models, directly.

Let us denote ∇u by p; then, it is easy to see that (from (2.131)) the ROF model
is equivalent to the following linearly constrained minimization problem:

{u,p}= arg min {v,q}
∇v−q=0

[
η
∫

Ω
|q|dx+

1
2

∫
Ω
|v− f |2 dx

]
. (2.152)

Clearly, problem (2.152) belongs to the family of variational problems discussed
in Section 3.2, the associated augmented Lagrangian being defined (with r > 0) by
(see, e.g., [72] (Chapter 4)):

Lro f (v,q;μ) = η
∫

Ω
|q|dx+

1
2

∫
Ω
|v− f |2 dx (2.153)

+
r
2

∫
Ω
|∇v−q|2 dx+

∫
Ω

μ · (∇v−q)dx.

Above, u : Ω → IR denotes the restored image we are looking for, p = ∇u, μ is
a Lagrange multiplier. Due to the strict convexity of the second term, the discrete
analogues of the minimization problem (2.152) have a unique solution. Applying
algorithm ALG2 of Section 3.2.2 to the solution of (2.152) we obtain the following

Algorithm 6.1: An augmented Lagrangian method for the ROF model

0. Initialization: λ 0 = 0, u0 = f .

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2Lro f (u
k,q;λ k). (2.154)

2. Compute uk+1 from

uk+1 = arg minv∈H1(Ω)Lro f (v,pk+1;λ k). (2.155)

3. Update λ k by

λ k+1 = λ k + r(∇uk+1 −pk+1). (2.156)

It was observed in [156, 170] that this augmented Lagrangian algorithm is equivalent
to the split-Bregman algorithm discussed in [86]. This equivalence is also explained
in [172] for compressive sensing models. The minimization sub-problems (2.154)
have closed form solutions which can be computed point-wise; solving them is
thus quite easy. The minimization sub-problems (2.155) (in fact their discrete
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analogues) reduce to discrete well-posed linear Neumann problems; the associ-
ated matrix being symmetric, positive definite and sparse, these discrete elliptic
problems can be solved by a large variety of direct and iterative methods (among
them: sparse Cholesky, multi-level, Gauss-Seidel, conjugate gradient, FFT, etc.; see
[170, 172] for more details). The convergence of algorithm (2.154)–(2.156) is dis-
cussed in [170].

Remark 35. As described above, Algorithm 6.1 is largely formal since it operates in
the space W = [H1(Ω)× (L2(Ω))2]× (L2(Ω))2, although the solution u of prob-
lem (2.131) may not have enough regularity to belong to H1(Ω). However, Algo-
rithm 6.1 makes sense for the discrete analogues of problem (2.131) and space W
obtained by finite difference or finite element approximation; for finite element ap-
proximations in particular, the formalisms of Algorithm 6.1 and of its discrete coun-
terparts are nearly identical. The above observation applies to most of the ADMM
algorithms described below (see Remark 36, for example).

Remark 36. As shown in, e.g., [109] (for image denoising applications), Algorithm
6.1 is easy to modify in order to handle those situations where the functional∫
Ω |∇v|dx is replaced by 1

s

∫
Ω |∇v|s dx with 0 < s < 1, or by other non-convex func-

tionals of |∇v|; once discretized, these modifications of Algorithm 6.1 perform very
well as shown in [109].

Remark 37. It is easy to extend algorithm (2.154)–(2.156) to the solution of the min-
cut problem (2.139), since the additional constraint encountered in this last problem,
namely 0 ≤ μ(x)≤ 1, a.e. in Ω , is (relatively) easy to treat; actually, this extension
has been done in [22] (see also [4, 27], and Section 6.2.3, below, for a number of
related new approaches). As shown in [170] (page 320), and [142, 143], it is also
easy to extend algorithm (2.154)–(2.156) to those situations where one uses vector-
TV regularization in order to process vector- valued data.

6.2.3 An Augmented Lagrangian Method for the Continuous Min-Cut
and Max-Flow Problems

The continuous max-flow problems (2.138) and (2.139) are dual to each other in
the sense that if the function λ is solution of (2.139), it is a Lagrange multiplier for
the flow conservation equation in (2.138). We can solve both problems simultane-
ously using a primal-dual method à la ALG2 relying on the following augmented
Lagrangian functional

Lc(qs,qt ,v;μ) =−
∫

Ω
qs dx−

∫
Ω

μ(∇ ·v− qs+ qt)dx+
r
2

∫
Ω
(∇ ·v− qs+ qt)

2 dx,

(2.157)

where in (2.157): r > 0, and qs, qt and v verify, a.e. in Ω , qs ≤ f1, qt ≤ f2,

|v| ≤ g; here |v| =
√

v2
1 + v2

2, ∀v = {v1,v2}. Applying ALG2 to the computation
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of the saddle-points of Lc over the set (Q1 ×Q2 ×K)×L2(Ω), where Q1 = {q|q ∈
L2(Ω),q ≤ f1}, Q2 = {q|q ∈ L2(Ω),q ≤ f2}, and K = {v|v ∈ (L2(Ω))2,∇ · v ∈
L2(Ω),v ·n = 0 on Γ , |v| ≤ g}, we obtain

Algorithm 6.2: An augmented Lagrangian method for the continuous max-flow
problem

0. Initialization: λ 0 = 0, p0
s = f1, p0

t = f2.

For k = 0, 1, · · · , until convergence:

1. Compute uk+1 from

uk+1 = arg minv∈KLc(pk
s , pk

t ,v;λ k). (2.158)

2. Compute {pk+1
s , pk+1

t } from

{pk+1
s , pk+1

t }= arg min{qs,qt}∈Q1×Q2
Lc(qs,qt ,uk+1;λ k). (2.159)

3. Update λ k by

λ k+1 = λ k − r(∇ ·uk+1 − pk+1
s + pk+1

t ). (2.160)

We observe that (2.159) has a closed form solution (and that pk+1
s and pk+1

t can
be computed point-wise independently of each other). The sub-problem (2.158) is a
simple variant of the dual of the ROF problem (that is, the unconstrained minimiza-
tion of the functional in (2.131)). We just need to solve this problem approximately;
indeed, in our implementations we just used few steps of a descent algorithm, fol-
lowed by a projection on the convex set {v|v ∈ (L2(Ω))2, |v| ≤ g} (see [173, 175]
for more details on the solution of these sub-problems). The discrete variant of al-
gorithm (2.158)–(2.160) that we implemented (via a finite difference discretization)
proved being very robust with respect to initialization and to the value of the aug-
mentation parameter r; it is also very efficient computationally.

Remark 38. As written, algorithm (2.158)–(2.160) is applicable only to the solution
of two-phase flow problems. There are several ways to generalize this algorithm to
models involving more than two phases, as shown in, e.g., [5, 6, 7, 8, 173, 177].
Also, we would like to emphasize the fact that the discrete analogue of algo-
rithm (2.158)–(2.160) we implemented has good convergence properties no matter
which of the following two norms we used for the flow constraint in (2.138) (see
Remark 33 for the dual formulation associated with (2.162)):

|v|2 =
√

v2
1 + v2

2 (2.161)

or

|v|1 = |v1|+ |v2|. (2.162)
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If one uses the meshes classically used in digital imaging, traditional graph cut
methods (like those discussed in [19]) can be used to solve the discrete min-cut
and max-flow problems if one uses the norm defined by (2.162) to bound v. On the
other hand, the above-mentioned graph cut methods cannot handle the norm defined
by (2.161). It is also known that the solutions of the discrete min-cut and max-flow
problems suffer from the matrication error if the norm in (2.162) is used. Compared
to graph cut methods, ADMM algorithms such as (2.158)–(2.160) can handle both
norms without particular difficulty. Moreover, these augmented Lagrangian algo-
rithms are easy to parallelize and to implement on GPUs; also, they use much less
memory than traditional graph cut methods; this enables using these algorithms for
high dimensional and large size images or data.

6.2.4 A Split-Bregman Method and Related ADMM Algorithm for a Second
Order Total Variation Model

Here, we will discuss the application of ALG2 (that is ADMM) to the solution of
those image processing problems associated with the functional defined by (2.132)
(also known as the TV 2 model). The presentation follows [42, 73, 170], where the
main ideas are: (i) transfer the burden of nonlinearity from the Hessian

D2u

(
=

(
∂ 2u/∂x2

1 ∂ 2u/∂x1∂x2

∂ 2u/∂x1∂x2 ∂ 2u/∂x2
2

))

to an additional unknown p, via the relation

p = D2u, (2.163)

and (ii) use a well-chosen augmented Lagrangian functional, associated with the
linear relation (2.163). A similar idea has been (successfully) used in [42] for the
augmented Lagrangian solution of the Dirichlet problem for the Monge-Ampère
equation det D2u = f (see also Chapter 8 of this book).

Back to the TV2 model (2.132), let us recall that the related minimization prob-
lem reads as

u = arg minv∈V

[
1
2

∫
Ω
|v− f |2 dx+η

∫
Ω
|D2v|dx

]
, (2.164)

with V = {v|v ∈ L2(Ω),D2v ∈ (L1(Ω))2×2} and |M| =
√

∑
1≤i, j≤2

m2
i j denoting the

Fröbenius norm of matrix M. Proceeding as in Section 3.2.2, we observe the equiv-
alence between (2.164) and

{u,D2u}= arg min{v,q}∈W

[
1
2

∫
Ω
|v− f |2 dx+η

∫
Ω
|q|dx

]
, (2.165)
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where
W = {{v,q}|v ∈V,q ∈ (L1(Ω))d×d ,D2v−q = 0},

an observation leading us to introduce the following augmented Lagrangian func-
tional

LTV2(v,q;μ) =
1
2

∫
Ω
|v− f |2 dx+η

∫
Ω
|q|dx (2.166)

+
r
2

∫
Ω
|D2v−q|2 dx+

∫
Ω

μ : (D2v−q)dx,

where, in (2.166), r > 0, and (with obvious notation) S : T = ∑1≤i, j≤2 si jti j. Ap-
plying the methods discussed in Section 3.2.2 to the solution of the minimization
problem (2.164) we obtain the following

Algorithm 6.3: An augmented Lagrangian method for the TV2 model

0. Initialization: λ 0 = 0, u0 = f .

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2×2LTV2(u
k,q;λ k). (2.167)

2. Compute uk+1 from

uk+1 = arg minv∈H2(Ω)LTV 2(v,pk+1;λ k). (2.168)

3. Update λ k by
λ k+1 = λ k + r(D2uk+1 −pk+1). (2.169)

As with Algorithm 6.1 (that is (2.154)–(2.156)), the sub-problems (2.167) have
closed-form solutions which can be computed point-wise. On the other hand, the
sub-problems (2.168) reduce to linear bi-harmonic problems for the elliptic operator
I + r∇4; if properly discretized on a uniform grid (typically by finite differences),
the discrete analogues of these bi-harmonic problems can be solved by FFT or by
iterative methods (see [170] (page 324) for details).

Remark 39. Obviously, Remark 35 applies also to Algorithm 6.3, with H2(Ω) play-
ing here the role of H1(Ω) there.

6.2.5 An Augmented Lagrangian Method for the Euler’s Elastica Model

The energy functional defined by (2.133), namely

E(v) =
1
2

∫
Ω
| f − v|2 dx+

∫
Ω

[
a+ b

∣∣∣∣∇ · ∇v
|∇v|

∣∣∣∣
2
]
|∇v|dx,
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makes no sense on the subset of Ω where ∇v vanishes. Following an approach very
common in visco-plasticity (see, e.g., [66, 83]) one make things more rigorous by
defining (following [154]) the energy functional by

E(v,m) =
1
2

∫
Ω
| f − v|2 dx+

∫
Ω

[
a+ b |∇ ·m|2

]
|∇v|dx (2.170)

the functions v and m in (2.170) verifying

|∇v|= m ·∇v, |m| ≤ 1. (2.171)

The related minimization problem reads as{
{u,n}= arg min{v,m}E(v,m),

with {v,m} verifying (2.171).
(2.172)

Introducing the vector-valued function p verifying p = ∇u, we clearly have equiva-
lence between (2.172) and⎧⎨
⎩{u,p,n}= arg min{v,q,m}

[
1
2

∫
Ω
| f − v|2 dx+

∫
Ω

[
a+ b |∇ ·m|2

]
|q|dx

]
,

with {v,q,m} verifying q = ∇v, |q|= m ·q, |m| ≤ 1.
(2.173)

Following [154], we associate with the minimization problem (2.173) the following
augmented Lagrangian functional

Lelas{v,q,m;μ1,μ2) =
1
2

∫
Ω
|v− f |2 dx+

∫
Ω

[
a+ b |∇ ·m|2

]
|q|dx

+
r1

2

∫
Ω
|∇v−q|2 dx+ r2

∫
Ω
(|q|−q ·m)dx (2.174)

+

∫
Ω

μ1 · (∇v−q)dx+
∫
Ω

μ2(|q|−q ·m)dx,

with r1 and r2 both positive. Suppose that in (2.174) the vector-valued function m
belongs to M, the closed convex set of (L2(Ω))2 defined by

M = {m|m ∈ (L2(Ω))2, |m(x)| ≤ 1,a.e. in Ω};

we have then |q| − q ·m ≥ 0, implying (since |q| − q ·m = ||q| − q ·m|)) that the
variant of ALG2 described just below will force the condition |q|−q ·m = 0 in the
sense of L1(Ω). This variant of ALG2 reads as follows when applied to the solution
of problem (2.172) (below, H(Ω ;div) = {v|v ∈ (L2(Ω))2,∇ ·v ∈ L2(Ω)}):

Algorithm 6.4: An augmented Lagrangian method for the Euler’s Elastica model

0. Initialization: λ 0
1 = 0, λ 0

2 = 0, u0 = f , n0 = 0.

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2Lelas(u
k,q,nk;λ k

1,λ k
2 ). (2.175)
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2. Compute nk+1 from

nk+1 = arg minm∈H(Ω ;div)∩MLelas(u
k,pk+1,m;λ k

1,λ
k
2 ). (2.176)

3. Compute uk+1 from

uk+1 = arg minv∈H1(Ω)Lelas(v,p
k+1,nk+1;λ k

1,λ
k
2 ). (2.177)

4. Update {λ k
1,λ k

2} by{
λ k+1

1 = λ k
1 + r1(∇uk+1 −pk+1),

λ k+1
2 = λ k

2 + r2(|pk+1|−pk+1 ·nk+1).
(2.178)

Below, we will give some details and comments about the solution of the sub-
problems encountered when applying algorithm (2.175)–(2.178); implementation
issues will be also addressed. Further information is provided in [154].

• The minimization sub-problem (2.175) has a unique closed-form solution which
can be computed point-wise.

• The minimization sub-problem (2.176) is equivalent to the following elliptic
variational inequality⎧⎪⎪⎨
⎪⎪⎩

nk+1 ∈ H(Ω ;div)∩M,

b
∫

Ω
|pk+1| ∇ ·nk+1 ∇ · (m−nk+1)dx ≥

∫
Ω
(r2 +λ k

2 )p
k+1 · (m−nk+1)dx,

∀m ∈ H(Ω ;div)∩M.
(2.179)

We observe that the bilinear functional in the left-hand side of (2.179) is sym-
metric and positive semi-definite (indeed,

∫
Ω |pk+1|(∇ ·m)2 dx= 0 if m=∇×z.

However, the boundedness of M implies that the variational problem (2.176),
(2.179) has solutions. For the solution of the discrete analogues of the above
problem we advocate using few iterations of those relaxation methods with
projection discussed in, e.g., [66, 76] (other methods are possible as shown
in [154]).

• The minimization sub-problem (2.177) has a unique solution characterized by⎧⎪⎪⎨
⎪⎪⎩

uk+1 ∈ H1(Ω),∫
Ω

uk+1vdx+ r1

∫
Ω

∇uk+1 ·∇vdx =
∫

Ω
f vdx+

∫
Ω
(r1pk+1 −λ k

1) ·∇vdx,

∀v ∈ H1(Ω).
(2.180)

Actually, (2.180) is nothing but a variational formulation of the following
Neumann problem⎧⎨

⎩
uk+1 − r1∇2uk+1 = f −∇ · (r1pk+1 −λ k

1) in Ω ,

r1
∂uk+1

∂ν
= (r1pk+1 −λ k

1) ·ν on ∂Ω ,
(2.181)
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where, in (2.181), ν denotes the outward unit vector normal at the boundary
∂Ω of Ω . The numerical solution of linear elliptic problems such as (2.181) is
routine nowadays; after an appropriate space discretization it can be achieved by
a large variety of direct and iterative methods (sparse Cholesky, FFT, relaxation,
multilevel, etc.).

• Since the energy functional associated with the Euler’s Elastica is non-convex
(see (2.170)) the augmentation parameters r1 and r2 have to be chosen large
enough to guarantee the convergence of algorithm (2.175)–(2.179). Actually,
the tuning of r1 and r2 is a delicate issue in itself and we can expect (as shown
for example in [133], for a problem involving three augmentation parameters)
the optimal values of these parameters to be of different orders of magnitude
with respect to the space discretization h.

• Another solution method for the Euler’s Elastica is discussed in [21]. It relies
on tractable convex relaxation in higher dimension.

Remark 40. In [154], an alternative method for the solution of the Euler’s Elastica
problem (2.172) is also considered. It relies on the equivalence between (2.172) and⎧⎪⎨
⎪⎩
{u,p,n1,n2}= arg min

{v,q,m1,m2}

[
1
2

∫
Ω
| f − v|2 dx+

∫
Ω

[
a+ b |∇ ·m1|2

]
|q|dx

]
,

with {v,q,m1,m2} verifying q = ∇v, m1 = m2, |q|= m2 ·q, |m2| ≤ 1.
(2.182)

An augmented Lagrangian associated with (2.182) is clearly the one defined by

Lelas{v,q,m1,m2;μ1,μ2,μ3) =
1
2

∫
Ω
|v− f |2 dx+

∫
Ω

[
a+ b |∇ ·m1|2

]
|q|dx

+
r1

2

∫
Ω
|∇v−q|2 dx+ r2

∫
Ω
(|q|−q ·m2)dx+ r3

∫
Ω
|m1 −m2|2 dx (2.183)

+

∫
Ω

μ1 · (∇v−q)dx+
∫
Ω

μ2(|q|−q ·m2)dx+
∫

Ω
μ3 · (m1 −m2)dx,

with r1, r2 and r3 all positive. From (2.184), one can easily derive a variant of al-
gorithm (2.175)–(2.178) for the solution of the minimization problem (2.172); such
an algorithm is discussed in [154]. Actually the above reference discusses also the
solution by a similar methodology of the variant of problem (2.172) obtained by

replacing the fidelity term
1
2

∫
Ω
| f − v|2 dx by

1
s

∫
Ω
| f − v|s dx with s ∈ [1,+∞).

Typically, one takes s = 1 (resp., s = 2) for salt-and-pepper noise (resp., Gaussian
noise). Further details and generalizations are given in [154].

Remark 41. As shown in [186], the methodology we employed to solve the mini-
mization problem (2.172) can be easily modified in order to handle the Chan-Vese
Elastica model.
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6.2.6 An Augmented Lagrangian Method for the L1-Mean Curvature Model

In this section, we follow closely the presentation used in [185]. The rational of the
L1-mean curvature model has been given in Section 6.1.5, leading one to consider
the following minimization problem

u = arg minv∈V

[
1
2

∫
Ω
|v− f |2 dx+η

∫
Ω

∣∣∣∣∣∇ · ∇v√
1+ |∇v|2

∣∣∣∣∣ dx

]
, (2.184)

where ∇ = {∂/∂xi}2
i=1. In (2.184), the choice of V is a delicate theoretical issue;

indeed the safest way to proceed would be to take V = H2(Ω) in (2.184), and to
replace min by inf (a (kind) of justification for this approach can be found in [133]).
Let us observe (as in [185], where a slightly different notation is used) that

∇ · ∇v√
1+ |∇v|2 = ∇3 · {∇v,−1}

|{∇v,−1}| , (2.185)

where, in (2.185), ∇3 = {∂/∂x1,∂/∂x2,0},and where {∇v,−1} denotes the 3-
dimensional vector-valued function {∂v/∂x1,∂v/∂x2,−1}. In order to simplify (in
some sense) the nonlinear structure of the minimization problem (2.184), we asso-
ciate new unknown functions with its solution u, namely p, n and ψ verifying⎧⎪⎪⎨

⎪⎪⎩
p = {∇u,−1},
n =

p
|p| , or equivalently here |p|−p ·n = 0, |n| ≤ 1,

ψ = ∇3 ·n.
(2.186)

From (2.185) and (2.186), there is clearly equivalence between (2.184) and⎧⎨
⎩{u,ψ ,p,n}= arg min{v,ϕ,q,m}

[
1
2

∫
Ω
|v− f |2 dx+η

∫
Ω
|ϕ |dx

]
,

with {v,ϕ ,q,m} verifying q = {∇v,−1}, |q|−q ·m = 0, |m| ≤ 1,∇3 ·m = ϕ .
(2.187)

In order to solve the minimization problem (2.184), taking advantage of its equiva-
lence with (2.187), we introduce the following augmented Lagrangian functional

LMC(v,ϕ ,q,z,m;μ1,μ2,μ3,μ4) =
1
2

∫
Ω
|v− f |2 dx+η

∫
Ω
|ϕ |dx

+
r1

2

∫
Ω
(|q|−q · z)dx+

∫
Ω

μ1(|q|−q · z)dx

+
r2

2

∫
Ω
|{∇v,−1}−q|2 dx+

∫
Ω

μ2 · ({∇v,−1}−q)dx (2.188)

+
r3

2

∫
Ω

∣∣∣∣ϕ −
(

∂m1

∂x1
+

∂m2

∂x2

)∣∣∣∣
2

dx+
∫
Ω

μ3

(
ϕ −

(
∂m1

∂x1
+

∂m2

∂x2

))
dx,

+
r4

2

∫
Ω
|z−m|2 dx+

∫
Ω

μ4 · (z−m)dx.
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The additional vector-valued function z has been introduced in order to decouple
∇3 ·m from the nonlinear relations verified by m in (2.187). Following [185], and
taking (2.187) and (2.188) into account, we advocate the following algorithm for
the solution of problem (2.184):

Algorithm 6.5: An augmented Lagrangian method for the L1-mean curvature model

0. Initialization: λ 0
1 = 0, λ 0

2 = 0,λ 0
3 = 0, λ 0

4 = 0, u0 = f , p0 = {∇u0,−1}, n0 =

y0 =
p0

|p0| , ψ0 = ∇3 ·n0.

For k = 0, 1, · · · , until convergence:

1. Compute uk+1 from

uk+1 = arg minv∈H1(Ω)LMC(v,ψk,pk,yk,nk;λ k
1 ,λ

k
2,λ

k
3 ,λ

k
4). (2.189)

2. Compute ψk+1 from

ψk+1 = arg minϕ∈L2(Ω)LMC(u
k+1,ϕ ,pk,yk,nk;λ k

1 ,λ
k
2,λ

k
3 ,λ

k
4). (2.190)

3. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))3LMC(u
k+1,ψk+1,q,yk,nk;λ k

1 ,λ
k
2,λ

k
3 ,λ

k
4). (2.191)

4. Compute yk+1 from

yk+1 = arg minz∈ZLMC(u
k+1,ψk+1,pk+1,z,nk;λ k

1 ,λ
k
2,λ

k
3 ,λ

k
4). (2.192)

5. Compute nk+1 from

nk+1 = arg minm∈MLMC(u
k+1,ψk+1,pk+1,yk+1,m;λ k

1 ,λ
k
2,λ

k
3 ,λ

k
4). (2.193)

6. Update {λ k
1 ,λ

k
2,λ k

3 ,λ
k
4} by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ k+1
1 = λ k

1 + r1(|pk+1|−pk+1 ·yk+1),

λ k+1
2 = λ k

2 + r2({∇uk+1,−1}−pk+1),

λ k+1
3 = λ k

3 + r3

(
ψk+1 −

(
∂nk+1

1

∂x1
+

∂nk+1
2

∂x2

))
,

λ k+1
4 = λ k

4 + r4(yk+1 −nk+1).

(2.194)

In (2.189)–(2.194), the sets Z and M are defined by

Z = {z|z ∈ (L2(Ω))3, |z(x)| ≤ 1, a.e. in Ω},
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and

M = {m|m ∈ (L2(Ω))3,
∂m1

∂x1
+

∂m2

∂x2
∈ L2(Ω)},

respectively.
We observe that the minimization sub-problems (2.190), (2.191), and (2.192)

have closed form solutions which can be computed point-wise. On the other hand,
the Euler-Lagrange equations of the sub-problems (2.189) and (2.193) are well-
posed linear elliptic equations with constant coefficients; fast solvers exist for the
solution of the discrete analogues of these elliptic problems (see [185] for details and
the results of numerical experiments validating the above algorithm). An important
issue is the tuning of the augmentation parameters r1, r2, r3, and r4; the comments
we did in Section 6.2.5, concerning the adjustment of r1 and r2 in algorithm (2.176)–
(2.178), still apply here.

Remark 42. Another augmented Lagrangian based solution method for the L1-mean
curvature problem (2.184) is discussed and numerically tested in ref. [133]. The
related ADMM algorithm involves only three Lagrange multipliers and three aug-
mentation parameters. Moreover, the various vector-valued functions encountered
in the approach discussed in [133] map Ω into IR2 (instead of IR3, as it is the case
for algorithm (2.189)–(2.194)).

7 Further Comments and Complements

There is much more to say about operator-splitting and ADMM algorithms; fortu-
nately, many of these issues and topics we left behind, or said very little about, are
developed in the other chapters of this book. There are however some issues we
would like to-briefly-comment to conclude this chapter, namely:

(i) The convergence of operator-splitting methods and ADMM algorithms,
when applied to the solution of problems involving non-monotone oper-
ators and/or non-convex functionals.

(ii) The choice of the augmentation parameters and their dynamical adjust-
ment when applying ADMM algorithms.

(iii) The derivation of operator-splitting schemes of high (or higher) orders of
accuracy.

(iv) Trying to understand why the Douglas-Rachford scheme is more robust
than the Peaceman-Rachford one, using simple model problems to clarify
this issue.

(v) Very few problems have generated as many operator-splitting based
solution methods than the Navier-Stokes equations modeling viscous
fluid flows. From this fact, providing the reader with a significant number
of related references is a must in a book like this one. These references
will conclude this chapter.
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Concerning the first issue, to the best of our knowledge, there is no general theory
concerning the convergence of operator-splitting methods and ADMM algorithms
when the problem under consideration involves at least one non-monotone operator
and/or a non-convex functional. Actually, one can find in the literature convergence
results for some problems lacking monotonicity and/or convexity, but, most often,
the proofs of these results are very specific of the problem under consideration, and
therefore are not easy to generalize to other situations. However, some recent results
obtained by R. Luke [96, 115] and W. Yin [166], and collaborators, suggest that a
fairly general theory is not out of reach. However, we think that there always will be
situations where one not will be able to prove the convergence of operator-splitting
methods and ADMM algorithms. This is not surprising since these methods and
algorithms have been quite successful at solving problems for which the existence
of solutions has not been proved.

The second issue concerning the choice and the dynamical adaptation of the aug-
mentation parameters is another complicated one, particularly for those non-convex
and non-monotone situations involving more than one of such parameters. Indeed,
numerical experiments have shown that the optimal values of these parameters may
have several orders of magnitude (as shown in, e.g., [80] and [133]), and, from the
possible existence of multiple solutions, that bifurcations can take place depending
also of the values of these parameters (and of the algorithm initialization). How-
ever, for particular problems, heuristics have been found, significantly improving
the speed of convergence of these ADMM algorithms (see, e.g., [46]).

In order to address the high (or higher) orders of accuracy issue (our third issue)
we return to Section 2.3 of this chapter (the one dedicated to the Strang symmetrized
operator-splitting scheme), and consider the following initial value problem⎧⎨

⎩
dX
dt

+(A+B)X = 0 on (0,T ),

X(0) = X0,
(2.195)

where A and B are linear operators independent of t. When applied to the solution
of the initial value problem (2.195), the Strang symmetrized scheme (2.7)–(2.10)
can be written in the following more compact form{

X0 = X0,

Xn+1 = e−A�t/2e−B�te−A�t/2Xn, ∀n ≥ 0.
(2.196)

The relation
e−(A+B)�t − e−A�t/2e−B�te−A�t/2 = O(�t3),

shows that scheme (2.196) is second order accurate (and exact if AB = BA). For
those situations requiring an order of accuracy higher than two, several options do
exist, the best known being:

(a) The 4th order Strang-Richardson scheme discussed in [49, 50, 48] where it is ap-
plied (among other problems) to the numerical solution of real-valued or vector-
valued reaction-diffusion equations such as
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∂u
∂ t

−M∇2u+F(u) = 0,

where u(x, t) ∈ IRd , ∇2 denotes the Laplace operator, M is a d × d symmetric
positive definite matrix, and F is a smooth mapping from IRd into IRd .

(b) The exponential operator-splitting schemes. Actually, the Lie and Strang split-
ting schemes belong to this family of time discretization methods, whose origin
(concerning schemes of order higher than two) is not easy to track back, early
significant publications being [150, 151] (see also the references therein and
those in [161], and in Google Scholar). Arbitrary high accuracy can be obtained
with these methods, the price to pay being their reduced stability (compared to
the Strang scheme, for example).

The best way to introduce the Strang-Richardson scheme is to start, one more
time, from the simple initial value problem (2.195). Applied to the solution of
(2.195), the Strang-Richardson scheme reads as⎧⎪⎪⎨

⎪⎪⎩
X0 = X0,

Xn+1 =
1
3

[
4e−A�t/4e−B�t/2e−A�t/2e−B�t/2e−A�t/4

−e−A�t/2e−B�te−A�t/2
]

Xn, ∀n ≥ 0.

(2.197)

A more practical equivalent formulation of the symmetrized scheme (2.197) can be
found in the Chapter 6 of [70]; it avoids the use of matrix exponentials and can
be generalized easily to nonlinear problems (it requires the solution of eight sub-
initial value problems per time step). Scheme (2.197) is fourth order accurate but
not as stable as the original Strang scheme (scheme (2.196)). Also, its application
to decompositions involving more than two operators becomes a bit complicated to
say the least (higher order methods of the same type are discussed in [85]).

In a similar fashion, we consider again the initial value problem (2.195) to int-
roduce exponential splitting methods. Applied to the solution of (2.195) the typical
exponential operator-splitting scheme reads as follows:⎧⎪⎨

⎪⎩
X0 = X0,

Xn+1 =

(
J
∏
j=1

e−b jB�te−a jA�t

)
Xn, ∀n ≥ 0,

(2.198)

where a j, b j ∈ IR, for 1 ≤ j ≤ J. The Strang symmetrized scheme (2.196) is a par-
ticular case of (2.198) (corresponding to J = 2, b1 = 0, a1 = 1/2, b2 = 1, a2 = 1/2).
By an appropriate choice of J, and of the coefficients a j and b j, scheme (2.198)
can be made of order higher than two (as shown in, e.g., [16]), the price to pay
being that some of the coefficients a j, b j are negative making the scheme inappro-
priate to those situations where some of the operators are dissipative. On the other
hand, these higher order schemes produce spectacular results when applied to re-
versible systems, like those associated with some linear and nonlinear Schrödinger
operators, as shown in, e.g.,[51, 161]. Their generalization to those (fairly common)
situations involving more than two operators is rather complicated, although theo-
retically doable.
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Concerning the fourth issue, the Peaceman-Rachford and Douglas-Rachford
schemes have been briefly discussed in Sections 2.4 and 2.5, respectively. In or-
der to have a better idea of their accuracy and stability properties, we will consider
the particular situation where, in problem (2.14), φ0 ∈ IRd , T = +∞, and where A1

(resp., A2) is given by A1 = αA (resp., A2 = βA), A being a real symmetric positive
definite d × d matrix, and α,β verifying 0 ≤ α,β ≤ 1 and α +β = 1. The exact
solution of the associated problem (2.14) reads as

φ(t) = e−Atφ0, ∀t ≥ 0,

which implies (by projection on an orthonormal basis of eigenvectors of matrix A,
and with obvious notation)

φi(t) = e−λitφ0i, ∀t ≥ 0, ∀i = 1, . . . ,d, (2.199)

where 0 < λ1 ≤ ·· · ≤ λi ≤ ·· · ≤ λd , the λi’s being the eigenvalues of matrix A.
Applying the Peaceman-Rachford scheme (2.15) to the particular problem (2.14)
defined above, we obtain the following discrete analogue of (2.199):

φn
i = (R1(λi�t))n φ0i, ∀n ≥ 0, ∀i = 1, . . . ,d, (2.200)

R1 being the rational function defined by

R1(ξ ) =

(
1− α

2
ξ
)(

1− β
2

ξ
)

(
1+

α
2

ξ
)(

1+
β
2

ξ
) . (2.201)

Since |R1(ξ )| < 1, ∀ξ > 0, the Peaceman-Rachford scheme (2.15) is uncondition-
ally stable in the particular case considered here. However, the property lim

ξ→+∞
R1(ξ )

= 1 shows that the above scheme is not stiff A-stable, making it not a first choice
scheme to capture steady state solutions or to simulate fast transient phenomena.
Actually, the stability drawback we just mentioned is not specific to the particular
case we are considering, but seems to hold in general for scheme (2.15). Inciden-
tally, the relation

R1(ξ )− e−ξ = O(ξ 3) in the neighborhood of ξ = 0

implies that in the particular case under consideration (where A1 and A2 com-
mute) scheme (2.15) is second order accurate. Applying now the Douglas-Rachford
scheme (2.17) to the same particular case of problem (2.14), we obtain

φn+1 = (I +α�tA)−1(I +β�tA)−1(I +αβ (�t)2A2)φn, ∀n ≥ 0,

which implies

φn = (I +α�tA)−n(I +β�tA)−n(I +αβ (�t)2A2)nφ0, ∀n ≥ 0. (2.202)
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By projection of (2.202) on an orthonormal basis of IRd consisting of eigenvectors
of A, we obtain the following variant of (2.200):

φn
i = (R2(λi�t))n φ0i, ∀n ≥ 0, ∀i = 1, . . . ,d, (2.203)

R2 being the rational function defined by

R2(ξ ) =
1+αβξ 2

(1+αξ )(1+βξ )
. (2.204)

Since 0 < R2(ξ ) < 1, ∀ξ > 0, the Douglas-Rachford scheme (2.17) is uncon-
ditionally stable in the particular case considered here. However, the property
lim

ξ→+∞
R2(ξ ) = 1 shows that the above scheme is not stiff A-stable, making it not

a first choice scheme to capture steady state solutions or to simulate fast transient
phenomena. Actually, the stability drawback we just mentioned is not specific to the
particular case we are considering, but seems to hold in general for scheme (2.17).
Concerning the accuracy of scheme (2.17), we observe that in the neighborhood of
ξ = 0, we have

R2(ξ ) = 1− ξ + ξ 2 +O(ξ 3),

which implies, by comparison with e−ξ = 1−ξ +
ξ 2

2
+O(ξ 3), that scheme (2.17) is

no better than first order accurate in the particular case we are considering. Since this
particular case is the most favorable one can think about, one expects the Douglas-
Rachford scheme (2.17) to be generically first order accurate, a prediction sup-
ported by the results of various numerical experiments. It is worth mentioning that
in order to improve the accuracy of the Douglas-Rachford scheme (2.17), J. Dou-
glas & S. Kim introduced in the late 90s–early 2000s [56], the following variant of
the above scheme

φ0 = φ0. (2.205)

For n ≥ 0, φn → φ̂n+1 → φn+1 as follows:

Solve

φ̂n+1 −φn

�t
+A1

(
φ̂n+1 +φn

2
, tn+1/2

)
+A2(φn, tn) = 0, (2.206)

and

φn+1 −φn

�t
+A1

(
φ̂n+1 +φn

2
, tn+1/2

)
+A2

(
φn+1 +φn

2
, tn+1/2

)
= 0. (2.207)

The Douglas-Kim scheme (2.205)–(2.207) is clearly inspired from the Crank-
Nicolson scheme. Scheme (2.205)–(2.207) is second order accurate if the operators
A1 and A2 are sufficiently smooth, the price to pay for this accuracy enhancement
being a reduction of stability and robustness compared to the original Douglas-
Rachford scheme (2.17).
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At those wondering how to choose between Peaceman-Rachford and Douglas-
Rachford schemes we will say that on the basis of many numerical experiments, it
seems that the second scheme is more robust and faster for those situations where
one of the operators is non-smooth (multivalued or singular, for example), particu-
larly if one is interested at capturing steady state solutions. Actually, this behavior is
consistent with the fact that the rational function R1 associated with the Peaceman-
Rachford scheme (the one defined by (2.201)) may change sign when ξ varies on
(0,+∞), unlike the rational function R2 defined by (2.204) (the one associated with
the Douglas- Rachford scheme) which stays positive on the above interval. These
sign changes suggest a more oscillatory behavior for the associated scheme if fast
transients take place, or if one tries to capture steady state solutions starting far away
from these solutions.

As a final comment on ADI methods we have to mention that one of their main
contributors (if not the main one), beyond their founders (J. Douglas, H. Rach-
ford, and D. Peaceman), is definitely E. Wachpress: His wonderful book The ADI
Model Problem [164] is an invaluable source of information and references on the
Peaceman-Rachford and Douglas-Rachford methods, from the theoretical and prac-
tical points of view.

As a conclusion, let us observe that the Navier-Stokes equations modeling the
flow of viscous fluids have been mentioned quite a few times in this chapter (Sec-
tion 4 in particular), and in other chapters of this book. There is no doubt that
very few partial differential equation problems have motivated such a large number
of operator-splitting based solution methods. Focusing on those publications with
which we have some familiarity, let us mention: [11, 12, 13, 23, 35, 43, 47, 70, 72,
73, 90, 91, 92, 93, 94, 105, 107, 111, 112, 116, 122, 123, 158, 159, 160] (see also
the references therein, Google Scholar, and Chapters 21, 22 and 23 of this book).
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Chapter 3
Operator Splitting

Shev MacNamara and Gilbert Strang

Abstract Operator splitting is a numerical method of computing the solution to
a differential equation. The splitting method separates the original equation into
two parts over a time step, separately computes the solution to each part, and
then combines the two separate solutions to form a solution to the original equa-
tion. A canonical example is splitting of diffusion terms and convection terms in a
convection-diffusion partial differential equation. Related applications of splitting
for reaction-diffusion partial differential equations in chemistry and in biology are
emphasized here. The splitting idea generalizes in a natural way to equations with
more than two operators. In all cases, the computational advantage is that it is faster
to compute the solution of the split terms separately, than to compute the solution
directly when they are treated together. However, this comes at the cost of an error
introduced by the splitting, so strategies have been devised to control this error.
This chapter introduces splitting methods and surveys recent developments in the
area. An interesting perspective on absorbing boundary conditions in wave equa-
tions comes via Toeplitz-plus-Hankel splitting. One recent development, balanced
splitting, deserves and receives special mention: it is a new splitting method that
correctly captures steady state behavior.
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1 Introduction

It has been said that there are only ten big ideas in numerical analysis; all the rest
are merely variations on those themes. One example of those big ideas is multi-
scale computational approaches. A multi-scale motif reappears in numerous places
including: multigrid for solving linear systems [51], wavelets for image processing
[11], and in Multi-level Monte Carlo for the solution of stochastic differential equa-
tions [20]. Another of those big ideas could surely be splitting [42, 4, 57]: start with
a complicated problem, split it into simpler constituent parts that can each be solved
separately, and combine those separate solutions in a controlled way to solve the
original overall problem. Often we solve the separate parts sequentially. The output
of the first subproblem is the input to the next subproblem (within the time step).

Like all great ideas, splitting is a theme that continues to resurface in many
places. Splitting principles have taken a number of generic forms:

• Split linear from nonlinear.
• Split x-direction from y-direction (dimensional splitting).
• Split terms corresponding to different physical processes. For example, split

convection from diffusion in ODEs or in PDEs.
• Split a large domain into smaller pieces. For example, domain decomposition

helps to solve large PDEs in parallel.
• Split objective functions in optimization.
• Split resolvents when solving linear systems: Instead of working directly with
(λ I − (A+B))−1, we iterate between working separately with each of (λ I −
A)−1 and (λ I−B)−1.

Not surprisingly, a principle as fundamental as splitting finds applications in
many areas. Here is a non-exhaustive list:

• A recent application of splitting is to low-rank approximation [36].
• Balanced splitting has been developed to preserve the steady state [53].
• Splitting of reaction terms from diffusion terms in reaction-diffusion PDEs is a

common application of splitting in biology. Now splitting is also finding app-
lications in stochastic, particle-based methods, such as for master equations
[19, 32, 38, 37, 18, 26, 25], including analysis of sample path approaches [16].

• Splitting stochastic differential equations, by applying the component operators
in a random sequence determined by coin flipping is, on average, accurate. This
has applications in finance [45]. Though in a different sense, splitting also finds
application in Monte Carlo estimation of expectations [2].

• Maxwell’s equations for electromagnetic waves can be solved on staggered
grids via Yee’s method, which is closely related to splitting [55, 34].

• Motivated in part by the need for accurate oil reservoir simulations, Alternating
Direction Implicit methods and Douglas-Rachford splittings have by now found
wide applications [62, 47, 14].

• Split-Bregman methods are a success for compressed sensing and for image
processing [21].
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• Navier-Stokes equations in fluid mechanics are often approximated numeri-
cally by splitting the equations into three parts: (i) a nonlinear convection term,
u ·(∇u), is treated explicitly, (ii) diffusion, Δu, is treated implicitly, and (iii) con-
tinuity is imposed via Poisson’s equation, divu = 0. Chorin’s splitting method
is a well-known example of this approach [7, 55].

• Split the problem of finding a point in the intersection of two or more sets into
alternating projections onto the individual sets [4].

This chapter places emphasis on applications to partial differential equations
(PDEs) involving reaction, diffusion, and convection. Balanced splitting, which has
found application in models of combustion, receives special attention. Computer
simulation of combustion is important to understand how efficiently or how cleanly
fuels burn. It is common to use operator splitting to solve the model equations.
However, in practice this was observed to lead to an unacceptable error at steady
state. The new method of balanced splitting was developed to correct this [53]. This
balanced method might be more widely applicable because operator splitting is used
in many areas. Often the steady state is important. In reaction-diffusion models, in
biology for example, it is very common to split reaction terms from diffusion terms,
and the steady state is almost always of interest. As we will see in the next section,
the most obvious splitting scheme is only first order accurate but a symmetrized
version achieves second order accuracy. Do such schemes yield the correct steady
state? The answer is no, not usually. Balanced splitting corrects this.

Outline: The rest of this chapter is organized as follows. We begin with the sim-
plest possible example of splitting. First order accurate and second order accurate
splitting methods come naturally. Higher order splitting methods, and reasons why
they are not always adopted, are then discussed. Next, we observe that splitting
does not capture the correct steady state. This motivates the introduction of bal-
anced splitting: a new splitting method that does preserve the steady state. All these
ideas are illustrated by examples drawn from reaction-diffusion PDEs such as arise
in mathematical biology, and from convection-diffusion-reaction PDEs such as in
models of combustion. We aim especially to bring out some recent developments
in these areas [59, 53]. Finally, we investigate a very special Toeplitz-plus-Hankel
splitting that sheds light on the reflections at the boundary in a wave equation.

2 Splitting for Ordinary Differential Equations

The best example to start with is the linear ordinary differential equation (ODE)

du
dt

= (A+B)u. (3.1)

The solution is well known to students of undergraduate differential equation
courses [58]:

u(h) = eh(A+B)u(0),
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at time h. We are interested in splitting methods that will compute that solution
for us, at least approximately. If we could simply directly compute eh(A+B), then
we would have solved our ODE (3.1), and we would have no need for a splitting
approximation. However, in applications it often happens that eh(A+B) is relatively
difficult to compute directly, whilst there are readily available methods to compute
each of ehA and ehB separately. For example, (3.1) may arise as a method-of-lines
approximation to a PDE in which A is a finite difference approximation to diffu-
sion, and B is a finite difference approximation to convection. (This example of a
convection-diffusion PDE, together with explicit matrices, is coming next.) In that
case it is natural to make the approximation

First order splitting eh(A+B) ≈ ehAehB. (3.2)

We call this approximate method of computing the solution splitting. This chapter
stays with examples where A and B are matrices, although the same ideas apply in
more general settings where A and B are operators; hence the common terminology
operator splitting.

To begin thinking about a splitting method we need to see the matrix that appears
in the ODE as the sum of two matrices. That sum is immediately obvious in (3.1) by
the way it was deliberately written. However, had we instead been given the ODE
du/dt = Mu, then before we could apply a splitting method, we would first need
to identify A and B that add up to M. Given M, identifying a good choice for A
and thus for B = M −A is not trivial, and the choice is critical for good splitting
approximations.

When the matrices commute, the approximation is exact.1 That is, if the com-
mutator [A,B]≡ AB−BA = 0, then eh(A+B) = ehAehB. Otherwise the approximation
of (3.2), eh(A+B) ≈ ehAehB, is only first order accurate: the Taylor series of ehAehB

agrees with the Taylor series of eh(A+B) up to first order, but the second order terms
differ. The Taylor series is

eh(A+B) = I+ h(A+B)+
1
2

h2(A+B)2 + . . .

If we expand (A+B)2 = A2 +AB+BA+B2 then we see the reason we are lim-
ited to first order accuracy. In all terms in the Taylor series for our simple splitting
approximation ehAehB, A always comes before B, so we cannot match the term BA
appearing in the correct series for eh(A+B).

The previous observation suggests that symmetry might help and indeed it does.
The symmetric Strang splitting [54, 57]

1 An exercise in Golub and Van Loan [22] shows that [A,B] = 0 if and only if eh(A+B) = ehAehB for
all h.
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Second order splitting eh(A+B) ≈ e
1
2hAehBe

1
2 hA

(3.3)

agrees with this Taylor series up to second order so it is a more accurate approxi-
mation than (3.2). Splitting methods have grown to have a rich history with many
wonderful contributors. Marchuk is another of the important pioneers in the field.
He found independently the second order accurate splitting that we develop and
extend in this chapter [40, 41].

When we numerically solve the ODE (3.1) on a time interval [0 T ], we usually do
not compute u(T ) = eT (A+B)u(0) in one big step time step T , nor do we approximate

it by e
1
2 T AeT Be

1
2 T Au(0). Our approximations are accurate for small time steps h > 0

but not for large times T . Therefore, instead, we take very many small steps h that
add up to T . The first step is v1 = e

1
2 hAehBe

1
2 hA u(0), which is our approximation to

the solution of (3.1) at time h. The next step is computed from the previous step,
recursively, by vi+1 = e

1
2 hAehBe

1
2 hA vi, so that vi is our approximation to the exact

solution u(ih) at time ih for i = 1,2, . . . . After N steps, so that Nh = T , we arrive at
the desired approximation vN ≈ u(T ).

Notice that a few Strang steps in succession

(e
1
2 hAehBe

1
2 hA) (e

1
2 hAehBe

1
2 hA) = (e

1
2 hAehB) ehAehB︸ ︷︷ ︸

first order step

(e
1
2 hA)

is the same as a first order step in the middle, with a special half-step at the start and
a different half-step at the end. This observation helps to reduce the overall work
required to achieve second order accuracy when taking many steps in a row. This
was noticed in the original paper [54] but perhaps it is not exploited as often as it
could be.

Here is a more explicit example of first order and of second order accuracy.
Notice the difference between the local error over one small time step h, and
the global error over the whole time interval (those local errors grow or decay).
We are interested in how fast the error decays as the time step h becomes smaller.
The power of h is the key number. In general, the local error is one power of h more
accurate than the global error from 1/h steps. Comparing Taylor series shows that

local error e
1
2 hAehBe

1
2 hA − eh(A+B) =Ch3 +O(h4).

where the constant is C = 1
24([[A,B],A] + 2[[A,B],B]). That is, for a single small

time step h, the symmetric Strang splitting (3.3) has a local error that decays like h3.
As usual, the error gets smaller as we reduce the time step h: if we reduce the time
step h from 1 to 0.1, then we expect the error to reduce by a factor of 0.13 = 0.001.
However, to compute the solution at the final time T , we take T/h steps, thus more
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steps with smaller h, and the global error is (number of steps) × (error at each step)
= (1/h)h3 = h2, so we say the method is second order accurate.

We have examined accuracy by directly comparing the Taylor series of the exact
solution and of the approximation. Another approach is via the Baker-Campbell-
Hausdorff (BCH) formula:

C(hA,hB) = hA+ hB+
1
2
[hA,hB]+ · · · ,

which, given A and B, is an infinite series for the matrix C such that eC = ehAehB. In
nonlinear problems we want approximations that are symplectic. Then area in phase
space is conserved, and approximate solutions to nearby problems remain close. The
beautiful book of Hairer, Lubich, and Wanner [24] discusses the BCH formula and
its connection to splitting, and when splitting methods are symplectic for nonlinear
equations. Strang splitting is symplectic.

2.1 Gaining an Order of Accuracy by Taking an Average

The nonsymmetric splitting eh(A+B) ≈ ehAehB is only first order accurate. Of course,
applying the operations the other way around, as in ehBehA, is still only first order ac-
curate. However, taking the average of these two first order approximations recovers
a certain satisfying symmetry

eh(A+B) ≈ ehAehB + ehBehA

2
.

Symmetry is often associated with higher order methods. Indeed this symmetric
average is second order accurate. That is, we gain one order of accuracy by tak-
ing an average. Whilst this observation is for averages in a very simple setting, we
conjecture that it is closely related to the good experience reported in the setting
of finance, where a stochastic differential equation is solved with good accuracy
in the weak sense even if the order of operations is randomly determined by ‘coin
flipping’ [45].

2.2 Higher Order Methods

Naturally, we wonder about achieving higher accuracy with splitting methods. Per-
haps third order splitting schemes or even higher order splitting schemes are pos-
sible. Indeed they are, at least in theory. However, they are more complicated to
implement: third order or higher order splitting schemes require either substeps that
go backwards in time or forward in ‘complex time’ [3, 65, 24, 34, 13, 12]. For diffu-
sion equations, going backwards in time raises serious issues of numerical stability.
For reaction-diffusion equations, second order splitting is still the most popular.
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More generally, it is a meta-theorem of numerical analysis that second order
methods often achieve the right balance between accuracy and complexity. First
order methods are not accurate enough. Third order and higher order methods are
accurate, but they have their own problems associated with stability or with being
too complicated to implement. Dahlquist and Henrici were amongst the pioneers to
uncover these themes [5, 9, 10, 31].

2.3 Convection and Diffusion

Until now, the discussion has been concerned with ODEs: time but no space. How-
ever, a big application of splitting is to PDEs: space and time.

An example is a PDE in one space dimension that models convection and
diffusion. The continuous, exact solution u(x, t) is to be approximated by finite dif-
ferences. We compute a discrete approximation on a regular grid in space
x = . . . ,−2Δx,−Δx,0,Δx,2Δx, . . . One part of our PDE is convection du/dt =
du/dx. Convection is often represented by a one-sided finite difference matrix. For
example, the finite difference approximation du/dx ≈ (u(x+Δx)−u(x))/Δx comes
via the matrix

P =
1

Δx

⎡
⎢⎣

-1 1
-1 1

. . .
. . .

⎤
⎥⎦ .

Or we can approximate convection by a centered difference matrix:

Q =
1

2Δx

⎡
⎢⎣

0 1
-1 0 1

. . .
. . .

. . .

⎤
⎥⎦ .

Here we think of du/dx ≈ (u(x+Δx)− u(x−Δx))/2Δx ≈ Qu. Another part of our
PDE is diffusion: du/dt = d2u/dx2. The second spatial difference is often repre-
sented by the matrix

D =
1

Δx2

⎡
⎢⎣

-2 1
1 -2 1

. . .
. . .

. . .

⎤
⎥⎦ .

We will come back to this matrix at the end of the chapter in (3.8), where we change
signs to K =−D so that K is positive definite and K models −d2/dx2. In solving a
simple linear PDE with convection and diffusion terms

∂u
∂ t

=
∂u
∂x︸︷︷︸

convection

+
∂ 2u
∂x2︸︷︷︸

diffusion
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with finite differences we may thus arrive at the ODE

du
dt

= (P+D)u. (3.4)

Here in the ODE we think of u(t) as a column vector, with components storing
the values of the solution on the spatial grid [. . . ,u(−Δx),u(0),u(Δx), . . . ]T . (We
are abusing notation slightly by using the same u in the PDE and in its ODE app-
roximation.) This is a discrete-in-space and continuous-in-time, or semi-discrete
approximation. We recognize it as the same ODE that we introduced at the very
beginning (3.1), here with the particular choice A = D and B = P. The solution to
this semi-discrete approximation is the same u(t) = eh(P+D)u(0), and it is natural
to consider approximating this solution by splitting into convection P and diffusion
terms D.

In applying the splitting method (3.2), we somehow compute the approximation
ehPehDu(0). Conceivably, we might choose to compute each of the matrix exponen-
tials, ehP and ehD, in full, and then multiply these full matrices by the vector u(0).
In practice that is usually not a good idea. One reason is that the matrices are of-
ten sparse, as in the examples of D and P here, and we want to take advantage of
that sparsity, whereas the matrix exponential is typically full. Moreover, comput-
ing the matrix exponential is a classical problem of numerical analysis with many
challenges [43].

Usually we only want the solution vector u(t), not a whole matrix. For this pur-
pose, ODE-solvers, such as Runge-Kutta methods or Adams-Bashforth methods,
are a good choice [5, 31]. The point of this chapter is merely to observe that we can
still apply splitting methods. We proceed in two stages. First stage: starting from
u(0), solve du/dt = Du from time t = 0 to t = h for the solution w1/2. Second stage:
starting from this w1/2, solve du/dt = Pu from time t = 0 to t = h for the solu-
tion w2/2. Thus we have carried out a first order splitting: if our ODE-solvers were
exact at each of the two stages, then w2/2 = ehAehBu(0). Often, we treat the dif-
fusion term implicitly [1]. Hundsdorfer and Verwer discuss the numerical solution
of convection-diffusion-reaction problems, noting additional issues when applying
splitting methods to boundary value problems [30].

2.4 A Reaction-Diffusion PDE: Splitting Linear from Nonlinear

A typical example in mathematical biology is a reaction-diffusion PDE in the form

∂
∂ t

[
u
v

]
=

(
∇ ·

[
Du 0
0 Dv

]
∇
)

︸ ︷︷ ︸
diffusion

[
u
v

]
+

[
f (u,v)
g(u,v)

]
︸ ︷︷ ︸

reaction

. (3.5)

Here Du and Dv are positive diffusion constants for the concentrations of the two
species u and v, respectively. Commonly these are modeled as genuinely constant –
not spatially varying – and in the special case that Du = Dv = 1, then our diffusion
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operator simplifies to ∇ ·∇, which many authors would denote by ∇2, or in one
space dimension by ∂ 2/∂x2. The reactions are modeled by nonlinear functions f
and g. For example, in a Gierer-Meinhardt model, f (u,v) = a− bu+ u2/v2, and
g(u,v) = u2 − v [44, 39].

Diffusion is linear. Reactions are nonlinear. We split these two terms and solve
them separately. We solve the linear diffusion implicitly. The nonlinear reactions are
solved explicitly. By analysis of our linear test problem (3.1) we found the accuracy
of splitting approximations to be second order accurate, in the case of symmet-
ric Strang splitting. However, the questions of accuracy and of stability concerning
splitting approximations to the more general form

du
dt

= Au+ f (u)

where A is still linear but now f is nonlinear, such as arise in reaction-diffusion
PDEs, has no such simple answer [52, 1].

2.5 Stability of Splitting Methods

We have seen that splitting can be accurate. Now we wonder about stability.
Together, stability and consistency imply convergence. That is both a real theorem
for many fundamental examples, and also a meta-theorem of numerical analy-
sis [33]. Indeed it is sometimes suggested (together with its converse) as The Fun-
damental Theorem of Numerical Analysis [60, 63, 8, 55].

In this context those three keywords have special meanings. Accuracy means
that the computed approximation is close to the exact solution. A method is stable
if over many steps, the local errors only grow slowly in a controlled way and do
not come to dominate the solution. (A mathematical problem is well conditioned
if small perturbations in the input only result in correspondingly small perturba-
tions in the output. Stability for numerical algorithms is analogous to the idea of
conditioning for mathematical problems.) The method is consistent if, over a single
time step h, the numerical approximation is more and more accurate as h becomes
smaller. For instance, we saw that the local error of a single step with symmetric
Strang splitting (3.3), scales like h3 as h → 0, so that method is consistent. For a
consistent method, we hope that the global error, after many time steps, also goes to
zero as h → 0: if this happens then the numerical approximation is converging to the
true solution. Usually, finding a direct proof of convergence is a formidable task,
whereas showing consistency and showing stability separately is more attainable.
Then the theorem provides the desired assurance of convergence.

When we start thinking about the question of stability of splitting methods, typi-
cally we assume that the eigenvalues of A and of B all lie in the left half, Re(λ )≤ 0,
of the complex plane. Separately, each system is assumed stable.
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It is natural to wonder if the eigenvalues of (A+B) also lie in the left half plane.
This is not true in general. Turing patterns2 in mathematical biology are a famous
instance of this [44, 39]. Typically we linearize at a steady state. For example, if J is
the Jacobian matrix of the reaction terms in (3.5) at the steady state, then we study
the linear equation du/dt = (J+D)u, where u= [u v]T . Separately, the diffusion op-
erator D, and the Jacobian J each have eigenvalues with negative real part. Analysis
of Turing instability begins by identifying conditions under which an eigenvalue of
(J+D) can still have a positive real part.

With the assumption that all eigenvalues of M have negative real part, etM is
stable for large times t. If the matrix M is real symmetric then the matrix exponential
ehM is also well behaved for small times. Otherwise, whilst eigenvalues do govern
the long-time behavior of etM , the transient behavior can be different if there is
a significant pseudospectrum [61]. This can happen when the eigenvectors of the
matrix are not orthogonal, and the convection-diffusion operator is an important
example [49].

Even if the matrix exponentials et(A+B), etA, and etB are stable separately, we
don’t yet know about the stability of their multiplicative combination, as in say, first
order splitting, ehAehB. A sufficient condition for stability is that the symmetric parts

symmetric part Asym ≡ A+AT

2

of A and of B are negative definite. In that case we have stability of both ordi-
nary splitting and symmetric Strang splitting because separately ||ehA|| ≤ 1 and
||ehB|| ≤ 1. This result was proved by Dahlquist and the idea is closely related to
the log norm of a matrix. One way to show this is to observe that the deriva-
tive of ||ehAu||2 is ((A + AT )ehAu,ehAu) ≤ 0. Another way is to let A = Asym +

Aanti, and observe that ehA is the limit of ehAsym/nehAanti/nehAsym/n . . .ehAanti/n. Each
||ehAsym/n|| ≤ 1 since eigenvalues of Asym are negative and the matrix is symmet-
ric. Each ||ehAanti/n|| ≤ 1 since eigenvalues of ehAanti/n are purely imaginary and the
matrix is orthogonal.

Returning to the convection-diffusion example (3.4), we can now see that the
splitting method is stable. In that case, note that P = Q+ hD, where Q is the anti-
symmetric part and hD is the symmetric part. Observing that the diffusion matrix
D is symmetric negative definite, we see that such a splitting is strongly stable with
symmetric Strang splitting.

Having established that splitting is stable and accurate over finite times, we have
now investigated many of the concerns of the original paper on Strang splitting:

Surprisingly, there seem to be no recognized rules for the
comparison of alternative difference schemes. Clearly there
are three fundamental criteria -- accuracy, simplicity, and
stability -- and we shall evaluate each of the competing
schemes in these terms.

2 See, for example, Rauch’s notes on Turing instability [48].
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– “ On the Construction and Comparison of Difference Schemes”
Gilbert Strang, SIAM J. Numer. Anal., 1968.

Perhaps another criterion could have been added – how well the method transi-
tions from an early transient behavior to late stage steady state behavior. It turns out
that most splitting schemes do not exactly capture the all-important steady state. We
review next a new “balanced splitting” scheme that corrects this error.

2.6 Ordinary Splitting Does NOT Preserve the Steady State

Suppose u∞ is a steady state of (3.1). By definition

(A+B)u∞ = 0 and eA+Bu∞ = u∞.

In special cases, such as when Au∞ = Bu∞ = 0, both first order splitting (3.2) and
second order splitting (3.3) preserve steady states of the original ODE. However,
in general, standard splitting approximations do not preserve the steady state u∞:
ehAehBu∞ �= u∞ and e

1
2 hAehBe

1
2 hAu∞ �= u∞.

3 Balanced Splitting: A Symmetric Strang Splitting
That Preserves the Steady State

We again consider our linear ODE dv/dt = (A+B)v. In balanced splitting [53] a
constant vector, c, is computed at the beginning of each step. Then c is added to Av
and subtracted from Bv in the substages of the splitting approximation; the parts still
add to (A+B)v.

A first idea (simple balancing) is to choose c so that Av+ c = Bv− c. Then the
first stage solves

dv/dt = Av+ c, c =
1
2
(B−A)v0, v0 = u0, (3.6)

for the solution3 v+ = ehAv0+(ehA− I)A−1c, at time h. Now the second stage solves

dv/dt = Bv− c, v0 = v+,

for the solution ehBv+− (ehB − I)B−1c at time h. We call this method ‘nonsymmet-
ric balanced splitting’. By adding and subtracting a constant vector, we see this as

3 Here we assume A and B are invertible. The non-invertible case is treated by the variation-of-
parameters formula [58].
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a modification of first order splitting (3.2), but the modified version has an advan-
tage near steady state. Actually this choice of c = 1

2 (B− A)v frequently leads to
instability [53].

Of course there is also a simple modification of the second order splitting (3.3)
approximation, where we add and subtract a constant at each stage. In symmetric
balanced splitting, we solve the ‘A stage’ for a time step 1

2 h, then the ‘B stage’
for a time step h, and finally the ‘A stage’ again for a time step 1

2 h. That is, in the
‘symmetric balanced splitting method’, the first stage { dv/dt = Av+c, v0 = u0 }, is
the same as before except that we solve for the solution over a smaller interval h/2.

Then v+ = e
1
2 hAv0+(e

1
2 hA− I)A−1c, is the initial condition for the second stage. We

solve for v++ over the time interval h. The third stage is { dv/dt =Av+c, v0 = v++ }
over the remaining half step h/2. The output, v(h) = Rv(0), is the approximation at
the end of the whole step, where

R =
1
2

(
I −A−1B+ e

1
2 hAehBe

1
2 hA(I+A−1B)

+e
1
2 hA(ehB − I)(B−1A−A−1B)

)
. (3.7)

In the special case that A = B, the formula simplifies to R = e
1
2 hAehBe

1
2 hA so

symmetric balanced splitting is identical with symmetric Strang splitting in this
case. This is what we expect because in this case c = 0. To improve stability
we may choose different balancing constants, thereby moving from simple bal-
anced splitting to rebalanced splitting [53]. One good choice [53, equation 7.7]
is cn+1 = (−vn+1 + 2v++

n − 2v+n + vn)/2h+ cn, which involves all values from the
previous step.

3.1 Balanced Splitting Preserves the Steady State

Having introduced the method of balanced splitting, we now confirm its most imp-
ortant property. Recall that we are at a steady state if and only if the derivative is
zero. Hence we may check that a steady state, u∞, of the original system (3.1) is
also a steady state of the new balanced splitting approximation by direct substi-
tution and evaluation of the derivative. Suppose that we start at steady state, i.e.,
v0 = u(0) = u∞. The first stage of balanced splitting is

dv/dt = Au∞+ c = Au∞+
1
2
(B−A)u∞ =

1
2
(A+B)u∞ = 0,

where we have used the defining property of the steady state, i.e., (A+B)u∞ = 0.
Similarly for the second stage dv/dt = 0, so v(h) = u(0) = u∞. Thus a steady state of
the original ODE is also a steady state of the balanced splitting method. The same
observation shows that other variations of the balanced splitting method (such as
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symmetric balanced splitting) also preserve the steady state. This also gives the
intuition behind the particular choice of the constant c – it is chosen in just the right
way to ‘balance’ each substep.

Two special cases for which ordinary splitting may be preferable to balanced
splitting are:

• In the special case that A and B commute, ordinary splitting is exact. However,
balanced splitting does not share this property.

• In the special case that Au∞ = Bu∞ = 0, ordinary splitting preserves the steady
state, so balanced splitting does not offer an advantage in this case.

The eigenvalues of R in (3.7) will tell us about the stability of simple balanced
splitting – that remains an area of active interest [53], as does stability of opera-
tor splitting more generally [50]. The main message is that balanced splitting has
applications to important problems where ordinary splitting approximations fail to
capture the steady state [53].

3.2 Splitting Fast from Slow

Splitting fast processes from slow processes is very common in applied mathemat-
ics. After averaging away the fast processes, a simplified model is reached, which is
sometimes known as a quasi-steady-state approximation. The principles go further
than splitting, but splitting is the first step. Potentially, time-scale separation pro-
vides another application for balanced splitting: quasi-steady state approximations
are not always guaranteed to preserve the steady state of the original model. We
wonder if a balanced splitting can be extended to efficient simulation of stochastic
processes with fast and slow time-scales [6, 15, 46].

4 A Very Special Toeplitz-Plus-Hankel Splitting

We now describe a very special splitting: a Toeplitz-plus-Hankel splitting [59].
Unlike the previous examples, where exponentials of separate terms were computed
separately (e.g., in first order splitting (3.2)) as a computationally efficient approx-
imation, in the coming example (3.11) the exact solution is split into two parts,
merely to gain a novel perspective through the lens of splitting. We see solutions to
the wave equation as the sum of a Toeplitz solution and a Hankel solution. It tran-
spires that reflections at the boundary come from the Hankel part of the operator
(Figure 3.1).
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4.1 All Matrix Functions f (K) Are Toeplitz-Plus-Hankel

We begin with the N ×N tridiagonal, symmetric positive definite Toeplitz matrix
[64, 29]:

K =

⎡
⎢⎢⎢⎢⎢⎣

2 -1
-1 2 -1

. . .
. . .

. . .
-1 2 -1

-1 2

⎤
⎥⎥⎥⎥⎥⎦ h =

1
N + 1

. (3.8)

Perhaps this is the most studied matrix in all of computational mathematics [55, 56].
Its eigenvalues and eigenvectors are known:

Eigenvalues of K λk = 2− 2cos(kπh), k = 1, . . . ,N

Eigenvectors of K vk =
√

2
N+1

(
sin(kπh),sin(2kπh), . . . ,sin(Nkπh)

)T

Function of K f (K)m,n =
2

N+1 ∑N
k=1 f (λk)sin(mkπh)sin(nkπh)

They produce the spectral decomposition

Spectral theorem K = VΛV T =
N

∑
1

λkvkvT
k (3.9)

where the matrix K is constructed from its eigenvalues in the diagonal matrix Λ and
its eigenvectors in the columns of V . This diagonalization separates K into a sum
of rank one symmetric matrices λkvkvT

k . Now any matrix function [28] comes easily
via this diagonalization: f (K) =V f (Λ )V T = ∑N

1 f (λk)vkvT
k .

Entries of the rank one matrices vkvT
k are products of sines. By rewriting those

products sin(mθ )sin(nθ ) in terms of cos((m− n)θ ) (which leads to a Toeplitz part)
and cos((m+ n)θ ) (which leads to a Hankel part), we learn that the rank one matrix

vkvT
k = T k +Hk (3.10)

is Toeplitz-plus-Hankel, for all k [59]. Explicitly,

Toeplitz
(
T k

)
mn =

1
N + 1

cos
(
(m−n)kπh

)
Hankel

(
Hk

)
mn = − 1

N + 1
cos

(
(m+n)kπh

)
.
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This shows that K has the strong Toeplitz-plus-Hankel property: the rank one matri-
ces vkvT

k coming from the eigenvectors can be written as a sum of a Toeplitz matrix
and a Hankel matrix.

We quickly recall that Toeplitz matrices are those with constant diagonals (entries
depend on m− n). Hankel matrices have constant antidiagonals (entries depend on
m+ n). By applying a Toeplitz matrix and a Hankel matrix to the same input, you
see shifts in opposite directions. Toeplitz shifts the output forwards, while Hankel
shifts the output backwards:

Toeplitz

⎡
⎢⎢⎣

b a
c b a

c b a
c b

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

a
b a
c b

c

⎤
⎥⎥⎦ forward shift

Hankel

⎡
⎢⎢⎣

a b
a b c

a b c
b c

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

a
a b
b c
c

⎤
⎥⎥⎦ backward shift

Combining (3.10) with (3.9), we now see f (K) as the sum of a Toeplitz matrix
and a Hankel matrix:

Matrix function f (K) = V f (Λ )V T =
N

∑
1

f (λk)(T k +Hk)

=
N

∑
1

f (λk)T k︸ ︷︷ ︸
Toeplitz

+
N

∑
1

f (λk)Hk︸ ︷︷ ︸
Hankel

(3.11)

If we choose f (z) = z−1, then we split the inverse matrix into Toeplitz and Hankel
parts: K−1 = T +H. With N = 3, this T and H are

K−1 =
1
4

⎡
⎣ 3 2 1

2 4 2
1 2 3

⎤
⎦ =

1
8

⎡
⎣ 5 2 −1

2 5 2
−1 2 5

⎤
⎦ +

1
8

⎡
⎣ 1 2 3

2 3 2
3 2 1

⎤
⎦ .

In summary, the matrix K, and all functions of that matrix, are Toeplitz-plus-
Hankel [59]. In the sequel, we make the particular choice f (z) = exp(±it

√
z/Δx)

or its real part, f (z) = cos(t
√

z/Δx). Then f (K) solves a wave equation.
Before we proceed to the wave equation, we make one small observation about

the example of the convection-diffusion operator (P+D) in (3.4). It is an important
instance of a nonsymmetric matrix where the pseudospectra plays a role in the anal-
ysis [49]. That nonsymmetric matrix certainly does not have the strong Toeplitz-
plus-Hankel property. However, with the help of a simple diagonal matrix Z the
similar matrix S ≡ Z(P+D)Z−1 is symmetric, and S does have the strong Toeplitz-
plus-Hankel property. The ith diagonal entry zi = Zi,i is found by setting z1 = 1, and
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zi+1 = zi
√

bi/ai, where ai = Mi+1,i, and bi = Mi,i+1, and M = (P+D). We hope
to explore Toeplitz-plus-Hankel properties for convection-diffusion operators in the
future.

4.2 The Wave Equation Is Toeplitz-Plus-Hankel

Our model problem is on an interval −1 ≤ x ≤ 1 with zero Dirichlet boundary
conditions u(−1, t) = u(1, t) = 0. The second derivative uxx is replaced by sec-
ond differences at the mesh points x =−1, . . . ,−2Δx,−Δx,0,Δx,2Δx, . . . ,1, where
Δx = 2/(N − 1). The familiar wave equation can be approximated with the help of
the second difference matrix K:

Wave equation
∂ 2

∂ t2 u =
∂ 2

∂x2 u becomes
d2

dt2 u =− K
Δx2 u. (3.12)

Time remains continuous in this finite difference, semi-discrete approximation.
One solution to the semi-discrete approximation in (3.12) involves exponentials or
cosines of matrices:

Solution u(t) = f (K)u(0) = cos
(

t
√

K/Δx
)

u(0).

Our purpose here is to apply the Toeplitz-plus-Hankel splitting, so we again set
T =∑k f (λk)T k and H =∑k f (λk)Hk, with T k and Hk as in (3.10). Now with f (z) =
cos(t

√
z/Δx) in (3.11) we see this same solution as the sum of two parts:

u(t) = f (K)u(0) = T u(0)︸ ︷︷ ︸
Toeplitz

+ Hu(0).︸ ︷︷ ︸
Hankel

Unlike the approximate splitting into products of exponentials discussed in the pre-
vious sections of this chapter, here we see an exact splitting into a sum. Thus we
have split the wave equation into a Toeplitz part and a Hankel part. Now we can
separately investigate the behavior of the solutions coming from each part.

Figure 3.1 shows the exact solution to the wave equation via d’Alembert’s for-
mula, as if the equation was on the whole real line with no boundaries. We use
this as a reference to compare to the solution of the same problem with Dirichlet
boundary conditions. We see the consequences of the boundary in the differences
between these solutions. Figure 3.1 also shows, separately, the solutions coming
from the Toeplitz part (Tu(0)) and the Hankel part (Hu(0)). Their sum solves the
Dirichlet problem exactly. The most interesting behavior happens at the boundary.
Before reaching the boundary, the solution is essentially Toeplitz. After reaching the
boundary, the solution is essentially Hankel. The reflection at the boundary comes
from the Hankel part of the operator.



112 S. MacNamara and G. Strang

The Toeplitz-plus-Hankel splitting described here is very special, but in this
example the splitting does show reflections at the boundary in a new light: the reflec-
tions come from the Hankel part of the operator. The design of absorbing boundary
conditions, or perfectly matched layers, is a big subject in computational science,
that we will leave untouched [17, 27, 35]. We conjecture that Figure 3.1 can be
understood by the method of images [59, 23]. That would involve identifying the
solution of the Dirichlet boundary condition version of the problem here with the
solution of a closely related problem having periodic boundary conditions. Periodic
behavior is far from ideal when designing absorbing boundary conditions – we don’t
want the wave to come back to the domain later. Nevertheless, whilst the approx-
imation of the Sommerfeld boundary condition results in a small reflection here,
it is intriguing that the Toeplitz part of the solution is seemingly reflectionless in
Figure 3.1.

Outlook

This chapter introduced the basic ideas behind operator splitting methods. We
focused on the application of splitting methods to solve differential equations. His-
torically, that has been their greatest application, though by now the splitting idea
has found wide applications such as in optimization. We reviewed some of the main
applications in biology especially, such as splitting reaction terms from diffusion
terms in reaction-diffusion PDEs. Operator splitting is an old idea of numerical anal-
ysis, so it is pleasing that new ideas and new applications keep appearing even today.
Perhaps one of the biggest contemporary applications of splitting involves coupling
models across scales, such as appropriate coupling of mesoscopic reaction diffusion
master equation models to finer, microscopic models [19, 18, 26, 25]. On that front,
we are sure that more great work on splitting methods is still to come.
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Chapter 4
Convergence Rate Analysis of Several
Splitting Schemes∗

Damek Davis and Wotao Yin

Abstract Operator-splitting schemes are iterative algorithms for solving many types
of numerical problems. A lot is known about these methods: they converge, and in
many cases we know how quickly they converge. But when they are applied to
optimization problems, there is a gap in our understanding: The theoretical speed
of operator-splitting schemes is nearly always measured in the ergodic sense, but
ergodic operator-splitting schemes are rarely used in practice. In this chapter, we
tackle the discrepancy between theory and practice and uncover fundamental limits
of a class of operator-splitting schemes. Our surprising conclusion is that the re-
laxed Peaceman-Rachford splitting algorithm, a version of the Alternating Direction
Method of Multipliers (ADMM), is nearly as fast as the proximal point algorithm
in the ergodic sense and nearly as slow as the subgradient method in the noner-
godic sense. A large class of operator-splitting schemes extend from the relaxed
Peaceman-Rachford splitting algorithm. Our results show that this class of operator-
splitting schemes is also nearly as slow as the subgradient method. The tools we cre-
ate in this chapter can also be used to prove nonergodic convergence rates of more
general splitting schemes, so they are interesting in their own right.
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1 Introduction

Operator-splitting schemes are iterative algorithms for solving optimization prob-
lems (and more generally PDE) [39, 52, 32, 47, 27]. These algorithms are useful for
solving medium to large-scale problems1 in signal processing and machine learn-
ing (see [10, 51, 54]). Operator-splitting schemes converge, and in many cases, we
know how quickly they converge [4, 54, 9, 16, 50, 35, 22, 38, 41, 42, 43, 25, 26].
On the surface, we seem to have a complete understanding of these algorithms.
However, there is a missing piece hidden beneath the contributions in the liter-
ature: The theoretical speed of operator-splitting schemes is nearly always mea-
sured in the ergodic sense, but ergodic operator-splitting schemes are rarely used in
practice2.

In this chapter, we tackle the discrepancy between theory and practice and
uncover fundamental limits of a class of operator-splitting schemes. Many of the
most powerful operator-splitting schemes extend from a single algorithm called
the relaxed Peaceman-Rachford splitting algorithm (PRS). For most of the chap-
ter, we will only study relaxed PRS, but along the way, we develop tools that will
help us analyze other algorithms.3 These tools are key to analyzing the speed of
operator-splitting schemes in theory and in practice. We also determine exactly
how fast the relaxed PRS algorithm can be; these results uncover fundamental lim-
its on the speed of the large class operator-splitting schemes that extend relaxed
PRS [21, 23, 53, 14, 7, 8, 19, 6, 20, 48, 16].4

Relaxed PRS is an iterative algorithm for solving

minimize
x∈H

f (x)+ g(x) (4.1)

where H is a Hilbert space (e.g., Rn for some n ∈ N), and f ,g : H→ (−∞,∞] are
closed (i.e., lower semi-continuous), proper, and convex functions. The algorithm is
easy to state: given γ > 0, z0 ∈H, and (λ j) j≥0 ∈ [0,2], define

for all k ∈ N

⎧⎪⎪⎨
⎪⎪⎩

xk
g = argminx∈H

{
g(x)+ 1

2γ ‖x− zk‖2
}

;

xk
f = argminx∈H

{
f (x)+ 1

2γ ‖x− (2xk
g− zk)‖2

}
;

zk+1 = zk +λk(xk
f − xk

g).

(4.2)

Although there is no precise mathematical definition of the term operator-splitting
scheme, the iteration in (4.2) is a classic example of such an algorithm because it
splits the difficult problem (1) into the sequence of simpler xk

g and xk
f updates.

1 E.g., with gigabytes to terabytes of data.
2 By ergodic, we mean the final approximate solution returned by the algorithm is an average over
the history of all approximate solutions formed throughout the algorithm.
3 After the initial release of this chapter, we used these tools to study several more general algo-
rithms [25, 26, 27]
4 This list is not exhaustive. See the comments after Theorem 8 for more details.
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A large class of algorithms [21, 23, 53, 14, 7, 8, 19, 6, 20, 48, 16] extends
relaxed PRS, and we can demonstrate how the theoretical analysis of such algo-
rithm differs from how we use them in practice by measuring the convergence
speed with the objective error5 ( f + g)(xk)− ( f + g)(x∗) evaluated at a sequence
(x j) j≥0 ⊆ H. Because relaxed PRS is an iterative algorithm, it outputs the final
approximate solution xk after k ∈ N iterations of the algorithm. In practice, it is
common to output the nonergodic iterate xk ∈ {xk

g,x
k
f } as the final approximate so-

lution. But most theoretical analysis of splitting schemes assumes that the ergodic
iterate xk ∈ {(1/∑k

i=0 λi)∑k
i=0 xi

g,(1/∑k
i=0 λi)∑k

i=0 xi
f } is the final approximate so-

lution [16, 9, 41, 42, 43]. In many applications, the nonergodic iterates are qualita-
tively and quantitatively better approximate solutions to (1) than the ergodic iterates
(see [27, Figure 5.3(c)] for an example). The difference in performance is particu-
larly large in sparse optimization problems because, unlike the solution to (1), the
ergodic iterate is often a dense vector. In this chapter, we create some tools to an-
alyze the nonergodic convergence rate of the objective error in relaxed PRS. These
tools can also be used to prove nonergodic convergence rates of more general split-
ting schemes [25, 26], so they are interesting in their own right.

Though practical experience suggests that the nonergodic iterates are better ap-
proximate solutions than the ergodic iterates, our theoretical analysis actually pre-
dicts that they are quantitatively worse. The difference between the theoretical speed
of the two iterates is large: we prove that the ergodic iterates have a convergence rate
of ( f +g)(xk)−( f +g)(x∗) =O(1/(k+1)), while the best convergence rate that we
can prove for the nonergodic iterates is ( f + g)(xk)− ( f + g)(x∗) = o(1/

√
k+ 1).

Moreover, we provide examples of functions f and g which show that these two
rates are tight. This result proves that there are fundamental limits on how quickly
the ergodic and nonergodic iterates of operator-splitting schemes converge, at least
for the large class of algorithms that extend relaxed PRS. These results comple-
ment, but do not follow from, the well-developed lower bounds for (sub)gradient
algorithms [44, 45], which do not address the PRS algorithm.

Our analysis also applies to the Alternating Direction Method of Multipliers
(ADMM) algorithm, which is an iterative algorithm for solving:

minimize
x∈H1, y∈H2

f (x)+ g(y)

subject to Ax+By = b (4.3)

where H1,H2, and G are Hilbert spaces, b ∈ G, and A : H1 → G and B : H2 → G
are bounded linear operators. We present these results at the end of the chapter.

We prove several other theoretical results that are of independent interest: we
prove the fixed-point residual of the Krasnosel’skiı̆-Mann algorithm (KM) with
summable errors has convergence rate o(1/

√
k+ 1), and we show that the rate is

tight; we prove that relaxed PRS can converge arbitrarily slowly; we prove conver-
gence rates and lower bounds for the proximal point algorithm and the forward-
backward splitting algorithm (see Appendix A); and we give several examples of
our results on concrete applications (see Appendix D).

5 x∗ ∈H is a minimizer of (1).
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1.1 Notation

The symbols H,H1,H2,G denote (possibly infinite dimensional) Hilbert spaces.
Sequences (λ j) j≥0 ⊂ R+ denote relaxation parameters, and

Λk :=
k

∑
i=0

λi

denote kth partial sums. The reader may assume that λk ≡ (1/2) and Λk = (k+1)/2
in the DRS algorithm or that λk ≡ 1 and Λk = (k+ 1) in the PRS algorithm. Given
a sequence (x j) j≥0 ⊂ H, we let xk = (1/Λk)∑k

i=0 λixi denote its kth average with
respect to the sequence (λ j) j≥0.

Given a closed, proper, convex function f : H→ (−∞,∞], the set ∂ f (x) denotes
its subdifferential at x, and we let

∇̃ f (x) ∈ ∂ f (x), (4.4)

denotes an arbitrary subgradient; the actual choice of the subgradient ∇̃ f (x) will
always be clear from the context. (This notation was used in [5, Eq. (1.10)].)
The convex conjugate of a proper, closed, and convex function f is f ∗(y) :=
supx∈H {〈y,x〉− f (x)} . Let IH denote the identity map. For any x ∈H and scalar
γ ∈ R++, we let

proxγ f (x) := argmin
y∈H

{
f (y)+

1
2γ

‖y− x‖2} and reflγ f := 2proxγ f − IH,

be the proximal and reflection operators, and we define the PRS operator:

TPRS := reflγ f ◦ reflγg. (4.5)

1.2 Assumptions

Assumption 1. Every function we consider is closed, proper, and convex.

Unless otherwise stated, a function is not necessarily differentiable.

Assumption 2 (Differentiability). Every differentiable function we consider is
Fréchet differentiable [2, Definition 2.45].

Assumption 3 (Solution Existence). Functions f ,g :H→ (−∞,∞] satisfy zer(∂ f +
∂g) �= /0.

Note that this last assumption is slightly stronger than the existence of a mini-
mizer, because zer(∂ f + ∂g) �= zer(∂ ( f + g)), in general [2, Remark 16.7]. Never-
theless, this assumption is standard.
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1.3 The Algorithms

In this chapter we study the relaxed PRS algorithm:

Algorithm 1: Relaxed Peaceman-Rachford splitting (relaxed PRS)

input : z0 ∈H, γ > 0, (λ j) j≥0 ⊆ (0,1]
for k = 0, 1, . . . do

zk+1 = (1−λk)zk +λkreflγ f ◦ reflγg(zk);

The special cases λk ≡ 1/2 and λk ≡ 1 are called the DRS and PRS algorithms,
respectively. The relaxed PRS algorithm can be applied to problem (4.3). To this
end, we define the Lagrangian:

Lγ(x,y;w) := f (x)+ g(y)−〈w,Ax+By− b〉+ γ
2
‖Ax+By− b‖2.

Section 8 presents Algorithm 1 applied to the Lagrange dual of (4.3), which reduces
to the following algorithm:

Algorithm 2: Relaxed alternating direction method of multipliers (relaxed
ADMM)

input : w−1 ∈H,x−1 = 0,y−1 = 0,λ−1 = 1/2, γ > 0,(λ j) j≥0 ⊆ (0,1]
for k =−1, 0, . . . do

yk+1 = argminyLγ(xk,y;wk)+ γ(2λk − 1)〈By,(Axk +Byk − b)〉;
wk+1 = wk − γ(Axk +Byk+1 − b)− γ(2λk− 1)(Axk +Byk − b);
xk+1 = argminxLγ (x,yk+1;wk+1);

If λk ≡ 1/2, Algorithm 2 recovers the standard ADMM.
Each of the above algorithms is a special case of the Krasnosel’skiı̆-Mann (KM)

iteration [37, 40, 29]. An averaged operator is the average of a nonexpansive opera-
tor T : H→H and the identity mapping IH. That is, for all λ ∈ (0,1), the operator

Tλ := (1−λ )IH+λT (4.6)

is called λ -averaged and every λ -averaged operator is exactly of the form Tλ for
some nonexpansive map T .

Given a nonexpansive map T , we define the fixed-point iteration of the map Tλ :

Algorithm 3: Krasnosel’skiı̆-Mann (KM)

input : z0 ∈H,(λ j) j≥0 ⊆ (0,1]
for k = 0, 1, . . . do

zk+1 = Tλk
(zk);
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1.4 Basic Properties of Averaged Operators

The following properties are included in textbooks such as [2].

Proposition 1. Let H be a Hilbert space; let f ,g : H→ (−∞,∞] be closed, proper,
and convex functions; and let T : H→H be a nonexpansive operator

1. Let x ∈H. Then x+ = proxγ f (x) if, and only if, (1/γ)(x− x+) ∈ ∂ f (x+).
2. The operator reflγ f : H→H is nonexpansive. Therefore,

TPRS := reflγ f ◦ reflγg (4.7)

3. For all λ ∈ (0,1] and (x,y) ∈H×H, the operator Tλ (see (4.6)) satisfies

‖Tλ x−Tλ y‖2 ≤ ‖x− y‖2− 1−λ
λ

‖(IH−Tλ )x− (IH−Tλ )y‖2.

4. The operator proxγ f : H→H is 1
2 -averaged.

5. Tλ and T have the same set of fixed points.

2 Summable Sequence Lemma

Summable sequences of positive numbers always converge to 0. We can even deter-
mine how quickly they converge:

Lemma 1 (Summable Sequence Convergence Rates). Let nonnegative scalar se-
quences (λ j) j≥0 and (a j) j≥0 satisfy ∑∞

i=0 λiai < ∞. Let Λk := ∑k
i=0 λi for k ≥ 0.

1. Monotonicity: If (a j) j≥0 is monotonically nonincreasing, then

ak ≤ 1
Λk

(
∞

∑
i=0

λiai

)
and ak = o

(
1

Λk −Λ�k/2�

)
. (4.8)

In particular,

(a) if (λ j) j≥0 is bounded away from 0, then ak = o(1/(k+ 1));
(b) if λk = (k+ 1)p for some p ≥ 0 and all k ≥ 1, then ak = o(1/(k+ 1)p+1);
(c) as a special case, if λk = (k+ 1) for all k ≥ 0, then ak = o(1/(k+ 1)2).

2. Monotonicity up to errors: Let (e j) j≥0 be a sequence of scalars. Suppose that
ak+1 ≤ ak + ek for all k ≥ 0 and that ∑∞

i=0 Λiei < ∞. Then

ak ≤ 1
Λk

(
∞

∑
i=0

λiai +
∞

∑
i=0

Λiei

)
and ak = o

(
1

Λk −Λ�k/2�

)
. (4.9)
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The rates of ak in Parts 1(a), 1(b), and 1(c) continue to hold as long as
∑∞

i=0 Λiei <∞. In particular, the rates hold if ek =O(1/(k+1)q) for some q> 2,
q > p+ 2, and q > 3, in parts 1(a), 1(b), and 1(c), respectively.

3. Faster rates: Suppose that (b j) j≥0 and (e j) j≥0 are nonnegative scalar se-
quences, that ∑∞

i=0 b j <∞, and that ∑∞
i=0(i+1)ei < ∞, and that for all k ≥ 0 we

have λkak ≤ bk − bk+1 + ek. Then the following sum is finite:

∞

∑
i=0

(i+ 1)λiai ≤
∞

∑
i=0

bi +
∞

∑
i=0

(i+ 1)ei < ∞.

In particular,

(a) if (λ j) j≥0 is bounded away from 0, then ak = o(1/(k+ 1)2);
(b) if λk = (k+ 1)p for some p ≥ 0 and all k ≥ 1, then ak = o(1/(k+ 1)p+2).

4. No monotonicity: For all k ≥ 0, define the sequence of indices

kbest := argmin
i

{ai|i = 0, · · · ,k}.

Then (a jbest) j≥0 is monotonically nonincreasing and the above bounds continue
to hold when ak is replaced with akbest .

Proof. Fix k ≥ 0.
Part 1. For all i ≤ k, we have ak ≤ ai and λiai ≥ 0 and hence, Λkak ≤ ∑k

i=0 λiai ≤
∑∞

i=0 λiai. This shows the left part of (4.8). To prove the right part of (4.8), observe
that

(Λk −Λ�k/2�)ak =
k

∑
i=�k/2�+1

λiak ≤
k

∑
i=�k/2�+1

λiai
k→∞→ 0.

Part 1(a). Let λ := inf j≥0 λ j > 0. For every integer k ≥ 2, we have �k/2� ≤
(k+ 1)/2. Thus, Λk −Λ�k/2� ≥ λ (k−�k/2�) ≥ λ (k− 1)/2 ≥ λ (k+ 1)/6. Hence,
ak = o(1/(Λk −Λ�k/2�)) = o(1/(k+ 1)) follows from (4.8).

Part 1(b). For every integer k ≥ 3, we have �k/2�+ 1 ≤ (k+ 3)/2 ≤ 3(k+ 1)/4
and Λk −Λ�k/2� = ∑k

i=�k/2�+1 λi = ∑k
i=�k/2�+1(i + 1)p ≥ ∫ k

�k/2�(t + 1)pdt = (p +

1)−1((k + 1)p+1 − (�k/2�+ 1)p+1) ≥ (p+ 1)−1(1− (3/4)p+1)(k + 1)p+1. There-
fore, ak = o(1/(Λk −Λ�k/2�)) = o(1/(k+ 1)p+1) follows from (4.8).

Part 1(c) directly follows from Part 1(b).
Part 2. For every integer 0 ≤ i ≤ k, we have ak ≤ ai +∑k−1

j=i e j. Thus, Λkak =

∑k
i=0 λiak ≤∑k

i=0 λiai+∑k
i=0 λi(∑k−1

j=i e j)=∑k
i=0 λiai+∑k−1

i=0 ei(∑i
j=0 λ j)=∑k

i=0 λiai+

∑k−1
i=0 Λiei ≤ ∑∞

i=0 λiai +∑∞
i=0 Λiei, from which the left part of (4.9) follows. The

proof for the right part of (4.9) is similar to Part 1. The condition ek =O(1/(k+1)q)
for appropriate q is used to ensure that ∑∞

i=0 Λiei < ∞ for each setting of λk in the
previous Parts 1(a), 1(b), and 1(c).
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Part 3. Note that

λk(k+ 1)ak ≤ (k+ 1)bk − (k+ 1)bk+1+(k+ 1)ek

= bk+1 +((k+ 1)bk − (k+ 2)bk+1)+ (k+ 1)ek.

Thus, because the upper bound on (k+ 1)λkak is the sum of a telescoping term and
a summable term, we have ∑∞

i=0(i+1)λiai ≤∑∞
i=0 bi+∑∞

i=0(i+1)ei <∞. Parts 3(a)
and 3(b) are similar to Part 1(b).

Part 4 is straightforward, so we omit its proof. ��
Part 1 of Lemma 1 generalizes [36, Theorem 3.3.1] and [28, Lemma 1.2].

3 Iterative Fixed-Point Residual Analysis

In this section we determine how quickly the fixed fixed-point residual (FPR)
‖Tzk − zk‖2 converges to 0 in Algorithm 3.

Algorithm 3 always converges weakly to a fixed-point of T under mild condi-
tions on (λ j) j≥0 [18, Theorem 3.1] (also see [22, 38]). Because strong convergence
of Algorithm 3 may fail (when H is infinite dimensional), the quantity ‖zk − z∗‖,
where z∗ is a fixed point of T , may not converge to zero. However, the property
limk→∞ ‖Tzk − zk‖ = 0, known as asymptotic regularity [15], holds when a fixed
point of T exists. Thus, we can always measure the convergence rate of the FPR.

We measure ‖Tzk − zk‖2 when we could just as well measure ‖T zk − zk‖. We
choose to measure the squared norm because it naturally appears in our analysis. In
addition, it is summable and monotonic, which is analyzable by Lemma 1.

In first-order optimization algorithms, the FPR typically relates to the size of obj-
ective gradient. For example, in the unit-step gradient descent algorithm, defined for
all k ≥ 0 by the recursion zk+1 = zk −∇ f (zk), the FPR is given by ‖∇ f (zk)‖2. In the
proximal point algorithm, defined for all k ≥ 0 by the recursion zk+1 = prox f (z

k),

the FPR is given by ‖∇̃ f (zk+1)‖2 where ∇̃ f (zk+1) := (zk − zk+1) ∈ ∂ f (zk+1) (see
Part 1 of Proposition 1). When the objective is the sum of multiple functions, the
FPR is a combination of the (sub)gradients of those functions in the objective. In this
chapter we will use the subgradient inequality and bounds on the FPR to measure
how quickly f (zk)− f (x∗) converges to 0 for the minimizers x∗ of f .

3.1 o(1/(k+1)) FPR of Averaged Operators

In the following theorem, the little-o convergence rates in Equation (4.12) and Part 5
are new; the rest of the results can be found in [2, Proof of Proposition 5.14], [22,
Proposition 11], and [38].
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Theorem 1 (Convergence Rate of Averaged Operators). Let T : H → H be a
nonexpansive operator, let z∗ be a fixed point of T , let (λ j) j≥0 ⊆ (0,1] be a sequence
of positive numbers, let τk := λk(1−λk), and let z0 ∈H. Suppose that (z j) j≥0 ⊆H
is generated by Algorithm 3: for all k ≥ 0, let

zk+1 = Tλk
(zk), (4.10)

where Tλ is defined in (4.6). Then, the following results hold

1. ‖zk − z∗‖2 is monotonically nonincreasing;
2. ‖Tzk − zk‖2 is monotonically nonincreasing;
3. τk‖Tzk − zk‖2 is summable:

∞

∑
i=0

τi‖Tzi − zi‖2 ≤ ‖z0 − z∗‖2; (4.11)

4. if τk > 0 for all k ≥ 0, then the convergence rates hold:

‖Tzk − zk‖2 ≤ ‖z0 − z∗‖2

∑k
i=0 τi

(4.12)

and ‖Tzk − zk‖2 = o

⎛
⎝ 1

∑k
i=� k

2 �+1
τi

⎞
⎠ .

In particular, if (τ j) j≥0 ⊆ (ε,∞) for some ε > 0, then ‖Tzk − zk‖2 =
o(1/(k+ 1)).

5. Instead of Iteration (4.10), for all k ≥ 0, let

zk+1 := Tλk
(zk)+λkek (4.13)

for an error sequence (e j) j≥0 ⊆ H that satisfies ∑k
i=0 λi‖ei‖ < ∞ and ∑∞

i=0
(i+ 1)λ 2

i ‖ei‖2 < ∞. (Note that these bounds hold, for example, when for all
k ≥ 0 λk‖ek‖ ≤ ωk for a sequence (ω j) j≥0 that is nonnegative, summable, and
monotonically nonincreasing.) Then if (τ j) j≥0 ⊆ (ε,∞) for some ε > 0, we con-
tinue to have ‖Tzk − zk‖2 = o(1/(k+ 1)).

Proof. As noted before the Theorem, for Parts 1 through 4, we only need to
prove the little-o convergence rate. This follows from the monotonicity of (‖Tz j −
z j‖2) j≥0, Equation (4.11), and Part 1 of Lemma 1.

Part 5: We first show that the condition involving the sequence (ω j) j≥0 is suf-
ficient to guarantee the error bounds. We have ∑∞

i=0 λi‖ei‖ ≤ ∑∞
i=0 ωi < ∞ and

∑∞
i=0(i + 1)λ 2

i ‖ei‖2 ≤ ∑∞
i=0(i + 1)ω2

i < ∞, where the last inequality is shown as
follows. By Part 1 of Lemma 1, we have ωk = o(1/(k + 1)). Therefore, there
exists a finite K such that (k + 1)ωk < 1 for k > K. Therefore, ∑∞

i=0(i+ 1)ω2
i <

∑K
i=0(i+ 1)ω2

i +∑∞
i=K+1 ωi < ∞.



124 D. Davis and W. Yin

Fix k ≥ 0. For simplicity, introduce pk := T zk − zk, pk+1 := T zk+1 − zk+1, and
rk := zk+1 − zk. Then from (4.6) and (4.13), we have pk = 1

λk
(rk −λkek). Also intro-

duce qk := Tzk+1 −Tzk. Then, pk+1 − pk = qk − rk.

We will show: (i) ‖pk+1‖2 ≤ ‖pk‖2 +
λ 2

k
τk
‖ek‖2 and (ii) ∑∞

i=0 τi‖pi‖2 < ∞. Then,

applying Part 2 of Lemma 1 (with ak = ‖pk‖2, ek =
λ 2

k
τk
‖ek‖2, and λk = 1 for which

we have Λk = ∑k
i=0 λi = (k+ 1)) and noticing that τk ≥ ε uniformly, we obtain the

rate ‖Tzk − zk‖2 = o(1/(k+ 1)).
Part (i): We have

‖pk+1‖2 = ‖pk‖2 + ‖pk+1 − pk‖2 + 2〈pk+1 − pk, pk〉
= ‖pk‖2 + ‖qk − rk‖2 +

2
λk

〈qk − rk,rk −λkek〉.

By the nonexpansiveness of T , we have ‖qk‖2 ≤ ‖rk‖2 and thus

2〈qk − rk,rk〉= ‖qk‖2 −‖rk‖2 −‖qk − rk‖2 ≤−‖qk − rk‖2.

Therefore,

‖pk+1‖2 ≤ ‖pk‖2 − 1−λk

λk
‖qk − rk‖2 − 2〈qk − rk,ek〉.

= ‖pk‖2 − 1−λk

λk

∥∥∥∥qk − rk +
λ k

1−λk
ek

∥∥∥∥
2

+
λ k

1−λk
‖ek‖2

≤ ‖pk‖2 +
λ 2

k

τk
‖ek‖2.

Part (ii): First, ‖zk − z∗‖ is uniformly bounded because ‖zk+1 − z∗‖ ≤ (1 −
λk)‖zk−z∗‖+λk‖Tzk−z∗‖+λk‖ek‖≤ ‖zk−z∗‖+λk‖ek‖ by the triangle inequality
and the nonexpansiveness of T . From [2, Corollary 2.14], we have

‖zk+1 − z∗‖2 = ‖(1−λk)(z
k − z∗)+λk(T zk − z∗+ek)‖2

= (1−λk)‖zk − z∗‖2 +λk‖T zk − z∗+ek‖2 −λk(1−λk)‖pk +ek‖2

= (1−λk)‖zk − z∗‖2 +λk

(
‖T zk − z∗‖2 +2λk〈T zk − z∗,ek〉+λk‖ek‖2

)
−λk(1−λk)

(
‖pk‖2 +2〈pk,ek〉+‖ek‖2

)
≤ ‖zk − z∗‖2 − τk‖pk‖2 +λ 2

k ‖ek‖2 +2λk‖T zk − z∗‖‖ek‖+2τk‖pk‖‖ek‖︸ ︷︷ ︸
=:ξk

.

Because we have shown (a) ‖Tzk − z∗‖ and ‖pk‖ are bounded, (b) ∑∞
i=0 τi‖ei‖ ≤

∑∞
i=0 λi‖ei‖<∞, and (c) ∑∞

i=0 λ 2
i ‖ei‖2 <∞, we have ∑∞

i=0 ξk <∞ and thus ∑∞
i=0 τi‖T zi

− zi‖2 ≤ ‖z0 − z∗‖2 +∑∞
i=0 ξk < ∞. ��
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3.1.1 Notes on Theorem 1

The FPR, ‖Tzk − zk‖2, is a normalization of the successive iterate difference zk+1 −
zk = λk(T zk − zk). Thus, the convergence rates of ‖T zk − zk‖2 naturally imply con-
vergence rates of ‖zk+1 − zk‖2.

Note that o(1/(k+1)) is the optimal convergence rate for the class of nonexpan-
sive operators [12, Remarque 4]. In the special case that T =proxγ f for some closed,
proper, and convex function f , the rate of ‖Tzk − zk‖2 improves to O(1/(k+ 1)2)
[12, Théorème 9]. See Section 6 for more optimality results. Also, the (error free)
little-o convergence rate of the fixed-point residual associated with the resolvent of
a maximal monotone linear operator was shown in [12, Proposition 4]. Finally, we
mention the parallel work [24], which proves a similar little-o convergence rate for
the fixed-point residual of the relaxed proximal point algorithm.

In general, it is possible that the nonexpansive operator, T : H→H, is already
averaged, i.e., there exists a nonexpansive operator N : H→H and a positive con-
stant α ∈ (0,1] such that T = (1 −α)IH + αN, where T and N share the same
fixed point set. Thus, we can apply Theorem 1 to N = (1− (1/α))IH +(1/α)T .
Furthermore, Nλ = (1−λ/α)IH+(λ/α)T . Thus, when we translate this back to
an iteration on T , it enlarges the region of relaxation parameters to λk ∈ (0,1/α)
and modifies τk accordingly to τk = λk(1−αλk)/α . The same convergence results
continue to hold.

To the best of our knowledge, the little-o rates produced in Theorem 1 have
never been established for the KM iteration. See [22, 38] for similar big-O results.
Note that our rate in Part 5 is strictly better than the one shown in [38], and
it is given under a much weaker condition on the error because [38] proves an
O(1/(k + 1)) convergence rate only when ∑∞

i=0(i + 1)‖ei‖ < ∞, which implies
that mini=0,··· ,k{‖ei‖} = o(1/(k + 1)2) by Lemma 1. In contrast, any error se-
quence of the form ‖ek‖ = O(1/(k + 1)α) with α > 1 will satisfy Part 5 of our
Theorem 1. Finally, for Banach spaces, we cannot improve big-O rates to little-o
[22, Section 2.4].

3.2 o(1/(k+1)) FPR of Relaxed PRS

In this section, we apply Theorem 1 to the TPRS operator defined in (4.5). For the
special case of DRS ((1/2)-averaged PRS), it is straightforward to establish the rate
of the FPR

‖(TPRS)1/2zk − zk‖2 = O

(
1

k+ 1

)

from two existing results: (i) the DRS iteration is a proximal iteration applied to
a certain monotone operator [29, Section 4]; (ii) the convergence rate of the FPR
for proximal iterations is O(1/(k+ 1)) [12, Proposition 8] whenever a fixed point
exists. We improve this rate to o(1/(k+ 1)) for general relaxed PRS operators.
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Corollary 1 (Convergence Rate of Relaxed PRS). Let z∗ be a fixed point of TPRS,
let (λ j) j≥0 ⊆ (0,1] be a sequence of positive numbers, let τk := λk(1−λk) for all
k ≥ 0, and let z0 ∈H. Suppose that (z j) j≥0 ⊆H is generated by Algorithm 1. Then
the sequence ‖zk − z∗‖2 is monotonically nonincreasing,and if τ := inf j≥0 τ j > 0,
then the following convergence rates hold:

‖TPRSzk − zk‖2 ≤ ‖z0 − z∗‖2

τ(k+ 1)
and ‖TPRSzk − zk‖2 = o

(
1

k+ 1

)
. (4.14)

3.3 O(1/Λ2
k ) Ergodic FPR of Fejér Monotone Sequences

The following definition is often used in the analysis of optimization algorithms [17].

Definition 1. A sequence (z j) j≥0 ⊆H is Fejér monotone with respect to a nonempty
set C ⊆H if for all z ∈C, we have ‖zk+1 − z‖2 ≤ ‖zk − z‖2.

The following fact is trivial, but useful.

Theorem 2. Let (z j) j≥0 be a Fejér monotone sequence with respect to a nonempty
set C ⊆ H. Suppose that for all k ≥ 0, zk+1 − zk = λk(xk − yk) for a sequence
((x j,y j)) j≥0 ⊆H2 and a sequence of positive real numbers (λ j) j≥0. For all k ≥ 0,
let zk := (1/Λk)∑k

i=0 λizi, let xk := (1/Λk)∑k
i=0 λixi, and let yk := (1/Λk)∑k

i=0 λiyi.
Then the following bound holds for all z ∈C:

‖xk − yk‖2 ≤ 4‖z0 − z‖2

Λ2
k

.

Proof. Λk‖xk − yk‖= ∥∥∑k
i=0

(
zk+1 − zk

)∥∥=
∥∥zk+1 − z0

∥∥≤ 2
∥∥z0 − z

∥∥ . ��
Part 1 of Theorem 1 shows that any sequence (z j) j≥0 generated by Algorithm 3

is Fejér monotone with respect to the set of fixed-points of T . Therefore, Theorem 2
applies to iteration Equation (4.10) with the choice xk = T zk and yk = zk for all k ≥ 0.

The interested reader can proceed to Section 6 for several examples that show
the optimality of the rates predicted in this section.

4 Subgradients and Fundamental Inequalities

This section establishes fundamental inequalities that connect the FPR in Section 3
to the objective error of the relaxed PRS algorithm.

In first-order optimization algorithms, we only have access to (sub)gradients
and function values. Consequently, the FPR is usually a linear combination of
(sub)gradients. In simple first-order algorithms, like the (sub)gradient method, a
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(sub)gradient is drawn from a single point at each iteration. In splitting algorithms
for minimizing sums of convex functions, each function draws at subgradient at a
different point. There is no natural point at which we can evaluate the entire objec-
tive function; this complicates the analysis of the relaxed PRS algorithm.

In the relaxed PRS algorithm, the two operators reflγ f and reflγg are calculated
one after another at different points, neither of which equals zk or zk+1. Conse-
quently, the expression zk − zk+1 is more complicated, and the analysis for the stan-
dard (sub)gradient iteration does not carry through.

We let x f and xg be the points where subgradients of f and g are drawn,
respectively, and use Figure 4.1 to prove algebraic relations among points z, x f ,
and xg. We use these relations many times. Propositions 2 and 3 use these algebraic
relations to bound the objective error by the FPR. In these bounds, the objective
errors of f and g are measured at two points x f and xg such that x f �= xg. Later
we will assume that one of the objectives is Lipschitz continuous and evaluate both
functions at the same point (See Corollaries 2 and 3).

We conclude this introduction by combining the subgradient notation in Equa-
tion (4.4) and Part 1 of Proposition 1 to arrive at the expressions

proxγ f (x) = x− γ∇̃ f (proxγ f (x)) (4.15)

and reflγ f (x) = x− 2γ∇̃ f (proxγ f (x)).

4.1 A Subgradient Representation of Relaxed PRS

In this section we write the relaxed PRS algorithm in terms of subgradients.
Lemma 2, Table 4.1, and Figure 4.1 summarize a single iteration of relaxed PRS.

Lemma 2. Let z ∈ H. Define points xg := proxγg(z) and x f := proxγ f (reflγg(z)).
Then the identities hold:

xg = z− γ∇̃g(xg) and x f = xg − γ∇̃g(xg)− γ∇̃ f (x f ).

where ∇̃g(xg) := (1/γ)(z − xg) ∈ ∂g(xg) and ∇̃ f (x f ) := (1/γ)(2xg − z − x f ) ∈
∂ f (x f ). In addition, each relaxed PRS step has the following representation:

(TPRS)λ (z)− z = 2λ (x f − xg) =−2λγ(∇̃g(xg)+ ∇̃ f (x f )). (4.16)

Proof. Figure 4.1 provides an illustration. Equation (2) follows from reflγg(z) =

2xg − z = xg − γ∇̃g(xg) and Equation (4.15). Now, we can compute’
TPRS(z)− z:

TPRS(z)− z
(4.7)
= reflγ f (reflγg(z))− z = 2x f − reflγg(z)− z

= 2x f − (2xg − z)− z = 2(x f − xg).
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Fig. 4.1 A single relaxed PRS iteration, from z to (TPRS)λ (z).

The subgradient identity in (4.16) follows from (2). Finally, Equation (4.16) follows
from (TPRS)λ (z)− z = (1−λ )z+λTPRS(z)− z = λ (TPRS(z)− z). ��

Point Operator identity Subgradient identity

xs
g = proxγg(z

s) = zs − γ∇̃g(xs
g)

xs
f = proxγ f (reflγg(zs)) = xs

g − γ(∇̃g(xs
g)+ ∇̃ f (xs

f ))

(TPRS)λ (z
s) = (1−λ )zs +λTPRS(zs) = zs −2γλ (∇̃g(xs

g)+ ∇̃ f (xs
f ))

Table 4.1 Overview of the main identities used throughout the chapter. The letter s denotes a
superscript (e.g., s = k or s = ∗). See Lemma 2 for a proof.

4.2 Optimality Conditions of Relaxed PRS

The following lemma characterizes the zeros of ∂ f +∂g in terms of the fixed points
of the PRS operator.

Lemma 3 (Optimality Conditions of TPRS). The following identity holds:

zer(∂ f + ∂g) = {proxγg(z) | z ∈H,TPRSz = z}. (4.17)

That is, if z∗ is a fixed point of TPRS, then x∗ = x∗g = x∗f solves Problem 1 and

∇̃g(x∗) :=
1
γ
(z∗ − x∗) ∈ ∂g(x∗). (4.18)

Proof. See [2, Proposition 25.1] for the proof of Equation (4.17). Equation (4.18)
follows because x∗ = proxγg(z

∗) if, and only if, z∗ − x∗ ∈ γ∂g(x∗). ��
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4.3 Fundamental Inequalities

We now compute upper and lower bounds of the quantities f (xk
f )+g(xk

g)−g(x∗)−
f (x∗). Note that xk

f and xk
g are not necessarily equal, so this quantity can be negative.

The most important properties of the inequalities we establish below are:

1. The upper fundamental inequality has a telescoping structure in zk and zk+1.
2. They can be bounded in terms of ‖zk+1 − zk‖2.

Properties 1 and 2 will be used to deduce ergodic and nonergodic rates, respectively.

Proposition 2 (Upper Fundamental Inequality). Let z ∈H, let z+ := (TPRS)λ (z),
and let x f and xg be defined as in Lemma 2. Then for all x ∈ dom( f )∩dom(g)

4γλ ( f (x f )+g(xg)− f (x)− g(x))

≤ ‖z− x‖2 −‖z+− x‖2 +

(
1− 1

λ

)
‖z+− z‖2.

Proof. We use the subgradient inequality and (4.16) in the following derivation:

4γλ ( f (x f )+ g(xg)− f (x)− g(x))

≤ 4λγ
(
〈x f − x, ∇̃ f (x f )〉+ 〈xg − x, ∇̃g(xg)〉

)
= 4λγ

(
〈x f − xg, ∇̃ f (x f )〉+ 〈xg − x, ∇̃ f (x f )+ ∇̃g(xg)〉

)
= 2

(
〈z+− z,γ∇̃ f (x f )〉+ 〈z+− z,x− xg〉

)
(∵ −xg = γ∇̃g(xg)− z) = 2〈z+− z,x+ γ(∇̃g(xg)+ ∇̃ f (x f ))− z〉

= 2〈z+− z,x− 1
2λ

(z+− z)− z〉

= ‖z− x‖2 −‖z+− x‖2 +

(
1− 1

λ

)
‖z+− z‖2.

Proposition 3 (Lower Fundamental Inequality). Let z∗ be a fixed point of TPRS

and x∗ := proxγg(z
∗). For all x f ∈ dom( f ) and xg ∈ dom(g), the following bound

holds:

f (x f )+ g(xg)− f (x∗)− g(x∗)≥ 1
γ
〈xg − x f ,z

∗ − x∗〉. (4.19)

Proof. Let ∇̃g(x∗) = (z∗ − x∗)/γ ∈ ∂g(x∗) and let ∇̃ f (x∗) = −∇̃g(x∗) ∈ ∂ f (x∗).
Then the result follows by adding f (x f )− f (x∗) ≥ 〈x f − x∗, ∇̃ f (x∗)〉 and g(xg)−
g(x∗)≥ 〈xg − x f , ∇̃g(x∗)〉+ 〈x f − x∗, ∇̃g(x∗)〉. ��



130 D. Davis and W. Yin

5 Objective Convergence Rates

In this section we will prove ergodic and nonergodic convergence rates of relaxed
PRS when f and g are closed, proper, and convex functions that are possibly nons-
mooth. For concise notation, we let

h(x,y) := f (x)+ g(y)− f (x∗)− g(x∗). (4.20)

To ease notational memory, the reader may assume that λk = (1/2) for all k ≥ 0,
which implies that Λk = (1/2)(k+ 1), and τk = λk(1−λk) = (1/4) for all k ≥ 0.

Throughout this section the point z∗ denotes an arbitrary fixed point of TPRS, and
we define a minimizer of f + g by the formula (Lemma 3):

x∗ = proxγg(z
∗).

The constant (1/γ)‖z∗ − x∗‖ appears in the bounds of this section. This term is
independent of γ: For any fixed point z∗ of TPRS, the point x∗ = proxγg(z

∗) is a min-

imizer and z∗ −proxγg(z
∗) = γ∇̃g(x∗) ∈ γ∂g(x∗). Conversely, if x∗ ∈ zer(∂ f + ∂g)

and ∇̃g(x∗) ∈ (−∂ f (x∗))∩ ∂g(x∗), then z∗ = x∗ + γ∇̃g(x∗) is a fixed point. Note
that in all of our bounds, we can always replace (1/γ)‖z∗ − x∗‖= ‖∇̃g(x∗)‖ by the
infimum infz∗∈Fix(TPRS)(1/γ)‖z∗ −proxγg(z

∗)‖ (the infimum might not be attained).

5.1 Ergodic Convergence Rates

In this section, we analyze the ergodic convergence of relaxed PRS. The proof fol-
lows the telescoping property of the upper and lower fundamental inequalities and
an application of Jensen’s inequality.

Theorem 3 (Ergodic Convergence of Relaxed PRS). For all k ≥ 0, let λk ∈ (0,1].
Then we have the following convergence rate

− 2
γΛk

‖z0 − z∗‖‖z∗− x∗‖ ≤ h(xk
f ,x

k
g)≤

1
4γΛk

‖z0 − x∗‖2.

In addition, the following feasibility bound holds:

‖xk
g − xk

f ‖ ≤
2
Λk

‖z0 − z∗‖. (4.21)

Proof. Equation (4.21) follows directly from Theorem 2 because (z j) j≥0 is Fejér
monotone with respect to Fix(T ) and for all k ≥ 0, we have zk+1 − zk = λk(xk

f −xk
g).

Recall the upper fundamental inequality from Proposition 2:

4γλkh(xk
f ,x

k
g)≤ ‖zk − x∗‖2 −‖zk+1 − x∗‖2 +

(
1− 1

λk

)
‖zk+1 − zk‖2.
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Because λk ≤ 1, it follows that (1− (1/λk))≤ 0. Thus, we sum Equation (5.1) from
i = 0 to k, divide by Λk, and apply Jensen’s inequality to get

1
4γΛk

(‖z0 − x∗‖2 −‖zk+1 − x∗‖2)≥ 1
Λk

k

∑
i=0

λih(x
i
f ,x

i
g)≥ h(xk

f ,x
k
g).

The lower bound is a consequence of the fundamental lower inequality and (4.21)

h(xk
f ,x

k
g)

(4.19)
≥ 1

γ
〈xk

g − xk
f ,z

∗ − x∗〉 ≥ − 2
γΛk

‖z0 − z∗‖‖z∗ − x∗‖. ��

In general, xk
f /∈ dom(g) and xk

g /∈ dom( f ), so we cannot evaluate g at xk
f or f at

xk
g. But the conclusion of Theorem 3 is improved if f or g is Lipschitz continuous.

The following proposition is a sufficient condition for Lipschitz continuity on a ball:

Proposition 4 (Lipschitz Continuity on a Ball). Suppose that f : H→ (−∞,∞] is
proper and convex. Let ρ > 0 and let x0 ∈H. If δ = supx,y∈B(x0,2ρ) | f (x)− f (y)|<∞,
then f is (δ/ρ)-Lipschitz on B(x0,ρ).

Proof. See [2, Proposition 8.28]. ��
To use this fact, we need to show that the sequences (x j

f ) j≥0, and (x j
g) j≥0 are

bounded. Recall that xs
g = proxγg(z

s) and xs
f = proxγ f (reflγg(zs)), for s ∈ {∗,k}

(recall that ∗ is used for quantities associated with a fixed point). Proximal and
reflection maps are nonexpansive, so we have the following bound:

max{‖xk
f − x∗‖,‖xk

g − x∗‖} ≤ ‖zk − z∗‖ ≤ ‖z0 − z∗‖.

Thus, (x j
f ) j≥0,(x

j
g) j≥0 ⊆ B(x∗,‖z0 − z∗‖). By the convexity of the closed ball, we

also have (x j
f ) j≥0,(x

j
g) j≥0 ⊆ B(x∗,‖z0 − z∗‖).

Corollary 2 (Ergodic Convergence with Single Lipschitz Function). Let the no-
tation be as in Theorem 3. Suppose that f (respectively g) is L-Lipschitz continuous
on B(x∗,‖z0 − z∗‖), and let xk = xk

g (respectively xk = xk
f ). Then the following con-

vergence rate holds

0 ≤ h(xk,xk)≤ 1
4γΛk

‖z0 − x∗‖2 +
2L
Λk

‖z0 − z∗‖.

Proof. From Equation (4.21), we have ‖xk
g − xk

f ‖ ≤ (2/Λk)‖z0 − z∗‖. In addition,

(x j
f ) j≥0,(x

j
g) j≥0 ⊆ B(x∗,‖z0 − z∗‖). Thus, it follows that

0 ≤ h(xk,xk)≤ h(xk
f ,x

k
g)+L‖xk

f − xk
g‖

(4.21)
≤ h(xk

f ,x
k
g)+

2L
Λk

‖z0 − z∗‖.

The upper bound follows from this equation and Theorem 3. ��
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5.2 Nonergodic Convergence Rates

In this section, we prove the nonergodic convergence rate of Algorithm 1 whenever
τ := inf j≥0 τ j > 0. The proof uses Theorem 1 to bound the fundamental inequalities
in Propositions 2 and 3.

Theorem 4 (Nonergodic Convergence of Relaxed PRS). For all k ≥ 0, let λk ∈
(0,1). Suppose that τ := inf j≥0 λk(1−λk)> 0. Recall that the function h is defined
in (4.20). Then we have the convergence rates:

1. In general, we have the bounds:

−‖z0 − z∗‖‖z∗ − x∗‖
2γ

√
τ(k+ 1)

≤ h(xk
f ,x

k
g)≤

(‖z0 − z∗‖+ ‖z∗− x∗‖)‖z0 − z∗‖
2γ

√
τ(k+ 1)

and |h(xk
f ,x

k
g)|= o

(
1/

√
k+ 1

)
.

2. If H= R and λk ≡ 1/2, then for all k ≥ 0,

‖z0 − z∗‖‖z∗ − x∗‖√
2γ(k+ 1)

≤ h(xk+1
f ,xk+1

g )≤ (‖z0 − z∗‖+ ‖z∗− x∗‖)‖z0 − z∗‖√
2γ(k+ 1)

and |h(xk+1
f ,xk+1

g )|= o(1/(k+ 1)) .

Proof. We prove Part 1 first. For all λ ∈ [0,1], let zλ = (TPRS)λ (z
k). Evaluate the

upper inequality in Equation (2) at x = x∗ to get

4γλh(xk
f ,x

k
g)≤ ‖zk − x∗‖2 −‖zλ − x∗‖2 +

(
1− 1

λ

)
‖zλ − zk‖2.

Recall the following identity:

‖zk − x∗‖2 −‖zλ − x∗‖2 −‖zλ − zk‖2 = 2〈zλ − x∗,zk − zλ 〉.
By the triangle inequality, because ‖zλ −z∗‖≤ ‖zk−z∗‖, and because (‖z j−z∗‖) j≥0

is monotonically nonincreasing (Corollary 1), it follows that

‖zλ − x∗‖ ≤ ‖zλ − z∗‖+ ‖z∗− x∗‖ ≤ ‖z0 − z∗‖+ ‖z∗− x∗‖. (4.22)

Thus, we have the bound:

h(xk
f ,x

k
g)≤ inf

λ∈[0,1]
1

4γλ

(
2〈zλ − x∗,zk − zλ 〉+ 2

(
1− 1

2λ

)
‖zλ − zk‖2

)

≤ 1
γ
‖z1/2 − x∗‖‖zk − z1/2‖

(4.22)
≤ 1

γ
(‖z0 − z∗‖+ ‖z∗− x∗‖)‖zk − z1/2‖

(4.14)
≤ (‖z0 − z∗‖+ ‖z∗− x∗‖)‖z0 − z∗‖

2γ
√

τ(k+ 1)
.
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The lower bound follows from the identity xk
g − xk

f = (1/2λk)(zk − zk+1) and the
fundamental lower inequality in Equation (4.19):

h(xk
f ,x

k
g)≥

1
2γλk

〈zk − zk+1,z∗ − x∗〉 ≥ −‖zk+1 − zk‖‖z∗ − x∗‖
2γλk

(4.14)
≥ −‖z0 − z∗‖‖z∗− x∗‖

2γ
√

τ(k+ 1)
.

Finally, the o(1/
√

k+ 1) convergence rate follows from Equations (5.2) and (5.2)
combined with Corollary 1 because each upper bound is of the form (bounded
quantity)×√

FPR, and
√

FPR has rate o(1/
√

k+ 1).
Part 2 follows by the same analysis but uses Theorem 12 in Appendix (Page 150)

to estimate the FPR convergence rate. ��
Whenever f or g is Lipschitz, we can compute the convergence rate of f + g

evaluated at the same point. The next theorem is similar to Corollary 2 in the ergodic
case. The proof is a combination of the nonergodic convergence rate in Theorem 4
and the convergence rate of ‖xk

f − xk
g‖= (1/λk)‖zk+1 − zk‖ shown in Corollary 1.

Corollary 3 (Nonergodic Convergence with Lipschitz Assumption). Let the not-
ation be as in Theorem 4. Suppose that f (respectively g) is L-Lipschitz continuous
on B(x∗,‖z0 − z∗‖), and let xk = xk

g (respectively xk = xk
f ). Recall that the objective-

error function h is defined in (4.20). Then we have the convergence rates of the
nonnegative term:

1. In general, we have the bounds:

0 ≤ h(xk,xk)≤
(‖z0 − z∗‖+ ‖z∗− x∗‖+ γL

)‖z0 − z∗‖
2γ

√
τ(k+ 1)

and h(xk,xk) = o
(
1/

√
k+ 1

)
.

2. If H= R and λk ≡ 1/2, then for all k ≥ 0,

0 ≤ h(xk+1,xk+1)≤
(‖z0 − z∗‖+ ‖z∗− x∗‖+ γL

)‖z0 − z∗‖√
2γ(k+ 1)

and h(xk+1,xk+1) = o(1/(k+ 1)) .

Proof. We prove Part 1 first. Recall that ‖xk
g− xk

f ‖= (1/(2λk))‖zk+1 − zk‖. In addi-

tion, (x j
f ) j≥0,(x

j
g) j≥0 ⊆ B(x∗,‖z0 − z∗‖) (See Section 5.1). Thus, it follows that

h(xk,xk)≤ h(xk
f ,x

k
g)+L‖xk

f − xk
g‖= h(xk

f ,x
k
g)+

L‖zk+1 − zk‖
2λk

(4.14)
≤ h(xk

f ,x
k
g)+

L‖z0 − z∗‖
2
√

τ(k+ 1)
.
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Therefore, the upper bound follows from Theorem 4 and Equation (5.2). In addition,
the o(1/

√
k+ 1) bound follows from Theorem 4 combined with Equation (5.2) and

Corollary 1 because each upper bound is of the form (bounded quantity)×√
FPR,

and
√

FPR has rate o(1/
√

k+ 1).
Part 2 follows by the same analysis, but uses Theorem 12 in Appendix (Page

150) to estimate the FPR convergence rate. ��

6 Optimal FPR Rate and Arbitrarily Slow Convergence

In this section, we provide two examples in which the DRS algorithm converges
slowly. Both examples are special cases of the following example, which originally
appeared in [1, Section 7].

Example 1 (DRS Applied to Two Subspaces). Let H = �2
2(N) = {(z j) j≥0 | ∀ j ∈

N,z j ∈ R2,∑∞
i=0 ‖z j‖2

R2 < ∞}. Let Rθ denote counterclockwise rotation in R2 by
θ radians. Let e0 := (1,0) denote the standard unit vector, and let eθ := Rθ e0. Sup-
pose that (θ j) j≥0 is a sequence in (0,π/2] and θi → 0 as i → ∞. We define two
subspaces:

U :=
∞⊕

i=0

Re0 and V :=
∞⊕

i=0

Reθi

where Re0 = {αe0 : α ∈ R} and Reθi = {αeθi : α ∈ R}. Let T := (TPRS)1/2 be
applied to f = ιV and g = ιU . The next identities and properties were shown in [1,
Section 7]:

(PU)i =

[
1 0
0 0

]
and (PV )i =

[
cos2(θi) sin(θi)cos(θi)

sin(θi)cos(θi) sin2(θi)

]
;

T = c0Rθ0 ⊕ c1Rθ1 ⊕·· · ;

and (z j) j≥0, recursively defined for all k by zk+1 = T zk, converges in norm to z∗ = 0
for any initial point z0. ��

6.1 Optimal FPR Rates

The following theorem shows that the FPR estimates derived in Corollary 1 are
tight.

Theorem 5 (Lower FPR Complexity of DRS). There is a Hilbert space H and
two closed subspaces U and V with zero intersection, U ∩V = {0}, such that for
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every α > 1/2, there exists z0 ∈H such that if (z j) j≥0 is generated by T =(TPRS)1/2
applied to f = ιV and g = ιU , then for all k ≥ 1, we have the bound:

‖T zk − zk‖2 ≥ 1
(k+ 1)2α .

Proof. We assume the setting of Example 1. For all i ≥ 0 set ci = (i/(i+ 1))1/2.
Then for all i ≥ 0,

IR2 − cos(θi)Rθi =

[
sin2(θi) sin(θi)cos(θi)

−sin(θi)cos(θi) sin2(θi)

]
=

[
1

i+1

√
i

i+1

−
√

i
i+1

1
i+1

]
. (4.23)

Therefore, the point z0 = (
√

2αe((1/( j+ 1)α ,0)) j≥0 ∈H has image

w0 = (I−T )z0 =

(√
2αe

(
1

( j+ 1)α+1 ,
−√

j
( j+ 1)α+1

))
j≥0

.

and for all i ≥ 1, we have ‖w0
i ‖R2 =

√
2αe(i+ 1)−(1+2α)/2. Thus, for all k ≥ 1,

‖T zk − zk‖2 = ‖T kw0‖2 =
∞

∑
i=0

c2k
i ‖w0

i ‖2
R2 ≥

∞

∑
i=k

ik

(i+ 1)k

2αe
(i+ 1)1+2α ≥ 1

(k+ 1)2α . ��

Remark 1. In the proof of Theorem 5, if α = 1/2, then ‖z0‖= ∞.

6.1.1 Notes on Theorem 5

With this new optimality result in hand, we can make the following list of optimal
FPR rates, not to be confused with optimal rates in objective error, for a few standard
splitting schemes:

Proximal point algorithm (PPA): For the class of monotone operators, the
counterexample in [12, Remarque 4] shows that there is a maximal monotone op-
erator A such that when iteration (4.10) is applied to the resolvent JγA, the rate
o(1/(k+ 1)) is tight. In addition, if A = ∂ f for some closed, proper, and convex
function f , then the FPR rate improves to O(1/(k+ 1)2) [12, Théorème 9]. We im-
prove this result to o(1/(k+1)2) in Theorem 12 in Appendix (Page 150). This result
is new and is optimal by [12, Remarque 6].

Forward backward splitting (FBS): The FBS method reduces to the proximal
point algorithm when the differentiable (or single valued operator) term is trivial.
Thus, for the class of monotone operators, the o(1/(k+ 1)) FPR rate is optimal by
[12, Remarque 4]. We improve this rate to o(1/(k+1)2) in Theorem 12 in Appendix
(Page 150). This result is new, and is optimal by [12, Remarque 6].

Douglas-Rachford splitting/ADMM: Theorem 5 shows that the optimal FPR
rate is o(1/(k+ 1)). Because the DRS iteration is equivalent to a proximal point
algorithm (PPA) applied to a special monotone operator [29, Section 4], Theorem 5
provides an alternative counterexample to [12, Remarque 4]. In particular, Theorem 5
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shows that, in general, there is no closed, proper, convex function f such that
(TPRS)1/2 = proxγ f . In the one-dimensional case, we improve the FPR to
o(1/(k+ 1)2) in Theorem 13 in Appendix (Page 151).

Miscellaneous methods: By similar arguments we deduce the tight FPR ite-
ration complexity for the following methods, each of which has rate at least
o(1/(k+ 1)) by Theorem 1: Standard Gradient descent o(1/(k + 1)2): (the rate
follows from Theorem 12 in Appendix (Page 150). Optimality follows from the
fact that PPA is equivalent to gradient descent on Moreau envelope [2, Propo-
sition 12.29] and [12, Remarque 4]); Forward-Douglas Rachford splitting [13]:
o(1/(k+ 1)) (choose the zero cocoercive operator and use Theorem 5); Chambolle
and Pock’s primal-dual algorithm [16] o(1/(k+ 1)): (reduce to DRS (σ = τ = 1)
[16, Section 4.2] and apply Theorem 5 using the transformation zk = primalk+dualk
[16, Equation (24)] and the lower bound

‖zk+1 − zk‖2 ≤ 2‖primalk+1 − primalk‖2 + 2‖dualk+1 − dualk‖2;

Vũ/Condat’s primal-dual algorithm [53, 23] o(1/(k+ 1)): (extends from Chambolle
and Pock’s method [16]).

Note that the rate established in Theorem 1 has broad applicability, and this list
is hardly extensive. For PPA, FBS, and standard gradient descent, the FPR always
has rate that is the square of the objective value convergence rate. We will see that
the same is true for DRS in Theorem 8.

6.2 Arbitrarily Slow Convergence

In [1, Section 7], DRS applied to Example 1 is shown to converge in norm, but not
linearly. We improve this result and show that a proper choice of parameters yields
arbitrarily slow convergence in norm.

The following technical lemma will help us construct a sequence that converges
arbitrarily slowly. The proof idea follows from the proof of [30, Theorem 4.2],
which shows that the method of alternating projections can converge arbitrarily
slowly.

Lemma 4. Suppose that h : R+ → (0,1) is a function that is strictly decreasing to
zero such that {1/( j+ 1) | j ∈ N\{0}} ⊆ range(h). Then there exists a monotonic
sequence (c j) j≥0 ⊆ (0,1) such that ck → 1− as k → ∞ and an increasing sequence
of integers (n j) j≥0 ⊆ N∪{0} such that for all k ≥ 0,

ck+1
nk

nk + 1
> h(k+ 1)e−1.

Proof. Let h2 be the inverse of the strictly increasing function (1/h)− 1, let [x]
denote the integer part of x, and for all k ≥ 0, let

ck =
h2(k+ 1)

1+ h2(k+ 1)
.
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Note that because {1/( j+ 1) | j ∈ N\{0}} ⊆ range(h), ck is well defined. Indeed,
k + 1 ∈ dom(h2)∩N if, and only if, there is a y ∈ R+ such that (1/h(y))− 1 =
k+ 1 ⇐⇒ h(y) = 1/(k+ 2). It follows that (c j) j≥0 is monotonic and ck → 1−.

For all x ≥ 0, we have h−1
2 (x) = 1/h(x)− 1 ≤ [1/h(x)], thus, x ≤ h2([1/h(x)]).

To complete the proof, choose nk ≥ 0 such that nk + 1 = [1/h(k+ 1)] and note that

ck+1
nk

nk + 1
≥ h(k+ 1)

(
k+ 1

1+(k+ 1)

)k+1

≥ h(k+ 1)e−1. ��

Theorem 6 (Arbitrarily Slow Convergence of DRS). There is a point z0 ∈ �2
2(N),

such that for every function h : R+ → (0,1) that strictly decreases to zero and sat-
isfies {1/( j+ 1) | j ∈ N\{0}} ⊆ range(h), there are two closed subspaces U and
V with zero intersection, U ∩V = {0}, such that the relaxed PRS sequence (z j) j≥0

generated with the functions f = ιV and g = ιU and relaxation parameters λk ≡ 1/2
converges in norm but satisfies the bound

‖zk − z∗‖ ≥ e−1h(k).

Proof. We assume the setting of Example 1. Suppose that z0 = (z0
j ) j≥0, where for

all k ≥ 0, z0
k ∈ R2, and ‖z0

k‖R2 = 1/(k+ 1). Then it follows that ‖z0‖2 =∑∞
i=0 1/(k+

1)2 < ∞ and so z0 ∈H. Thus, for all k,n ≥ 0,

‖T k+1z0‖ ≥ ck+1
n ‖z0

n‖R2 =
1

n+ 1
ck+1

n .

Therefore, we can achieve arbitrarily slow convergence by picking (c j) j≥0, and a
subsequence (n j) j≥0 ⊆ N using Lemma 4. ��

7 Optimal Objective Rates

In this section we construct four examples that show the nonergodic and ergodic
convergence rates in Corollary 3 and Theorem 3 are optimal up to constant factors.

7.1 Ergodic Convergence of Minimization Problems

In this section, we will construct an example where the ergodic rates of convergence
in Section 5.1 are optimal up to constant factors. Our example only converges in
the ergodic sense and diverges otherwise. Throughout this section, we let γ = 1 and
λk ≡ 1, we work in the Hilbert space H = R, and we use the following objective
functions: for all x ∈ R, let

g(x) = 0 and f (x) = |x|.
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Recall that for all x ∈ R

proxg(x) = x and prox f (x) = max(|x|− 1,0)sign(x).

The proof of the following lemma is simple, so we omit it.

Lemma 5. The unique minimizer of f + g is equal to 0 ∈ R. Furthermore, 0 is the
unique fixed point of TPRS.

Because of Lemma 5, we will use the notation:

z∗ = 0 and x∗ = 0.

We are ready to prove our main optimality result.

Proposition 5 (Optimality of Ergodic Convergence Rates). Suppose that
z0 = 2− ε for some ε ∈ (0,1). Then the PRS algorithm applied to f and g with
initial point z0 does not converge. As ε goes to 0, the ergodic objective convergence
rate in Theorem 3 is tight, the ergodic objective convergence rate in Corollary 2 is
tight up to a factor of 5/2, and the feasibility convergence rate of Theorem 3 is tight
up to a factor of 4.

Proof. We compute the sequences (z j) j≥0, (x j
g) j≥0, and (x j

f ) j≥0 by induction: First

x0
g = proxγg(z

0) = z0 and x0
f = proxγ f

(
2x0

g − z0
)
=max

(|z0|− 1,0
)

sign(z0)=1−ε.
Thus, it follows that z1 = z0 + 2(x0

f − x0
g) = 2− ε + 2(1− ε − (2− ε)) = z0 = −ε .

Similarly, x1
g = z1 = −ε . Finally, x1

f = max(ε − 1,0)sign(−ε) = 0 and z2 = z1 +

2(x1
f − x1

g) = z1 + 2ε = ε . We only examined the base case, but it is clear that by
induction we have the following identities:

zk = (−1)kε, xk
g = (−1)kε, xk

f = 0, k = 1,2, . . . .

The sequences (z j) j≥0 and (x j
g) j≥0 do not converge; they oscillate around

0 ∈ Fix(T ).
We will now compute the ergodic iterates:

xk
g =

1
k+ 1

k

∑
i=0

xi
g
(7.1)
=

{
2−ε
k+1 if k is even;
2−2ε
k+1 otherwise.

xk
f =

1
k+ 1

k

∑
i=0

xi
f
(7.1)
=

1− ε
k+ 1

.

Let us use these formulas to compute the objective values:

f (xk
f )+ g(xk

f )− f (0)− g(0)
(7.1)
=

1− ε
k+ 1

f (xk
g)+ g(xk

g)− f (0)− g(0)
(7.1)
=

{
2−ε
k+1 if k is even;
2−2ε
k+1 otherwise.
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Theorem 3 upper bounds the objective error at xk
f by

|z0 − x∗|2
4(k+ 1)

=
4− 4ε

4(k+ 1)
+

ε2

4(k+ 1)
=

1− ε
k+ 1

+
ε2

4(k+ 1)
.

By taking ε to 0, we see that this bound is tight. Because f is 1-Lipschitz continuous,
Corollary 2 bounds the objective error at xk

g with

|z0 − x∗|2
4(k+ 1)

+
2|z0 − z∗|
(k+ 1)

(7.1)
=

1− ε
k+ 1

+
ε2

4(k+ 1)
+ 2

2− ε
k+ 1

=
5− 3ε
k+ 1

+
ε2

4(k+ 1)
.

As we take ε to 0, we see that this bound it tight up to a factor of 5/2. Finally,
consider the feasibility convergence rate:

|xk
g − xk

f |
(7.1)
=

{
1

k+1 if k is even;
1−ε
k+1 otherwise.

.

Theorem 3 predicts the following upper bound for Equation (7.1):

2|z0 − z∗|
k+ 1

= 2
2− ε
k+ 1

=
4− 2ε
k+ 1

.

By taking ε to 0, we see that this bound is tight up to a factor of 4. ��

7.2 Optimal Nonergodic Objective Rates

Our aim in this section is to show that if λk ≡ 1/2, then the non-ergodic convergence
rate of o(1/

√
k+ 1) in Corollary 3 is essentially tight. In particular, for every α >

1/2, we provide examples of f and g such that f is 1-Lipschitz and

h(xk
g,x

k
g) = Ω

(
1

(k+ 1)α

)
,

where h is defined in (4.20) and Ω gives a lower bound. Our example uses point-to-
set distance functions.

Proposition 6. Let C be a closed, convex subset of H and let dC : H → H be
defined by dC(·) := miny∈C ‖ ·−y‖. Then dC(x) is 1-Lipschitz and for all x ∈H,

proxγdC
(x) = θPC(x)+ (1−θ )x where θ =

{
γ

dC(x)
if γ ≤ dC(x);

1 otherwise.

Proof. Follows from the formula for the subgradient of dC [2, Example 16.49]. ��
Proposition 6 says that proxγdC

(x) reduces to a projection map whenever x
is close enough to C. Proposition 7 constructs a family of examples such that if γ
is chosen large enough, then DRS does not distinguish between indicator functions
and distance functions.
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Proposition 7. Suppose that V and U are linear subspaces of H, U ∩V = {0}, and
z0 ∈ H. If γ ≥ ‖z0‖ and λk = 1/2 for all k ≥ 0, then Algorithm 1 applied to the
either pair of objective functions ( f = ιV ,g = ιU) and ( f = dV ,g = ιU ) produces
the same sequence (z j) j≥0.

Proof. Let (z j
1) j≥0, (x j

g,1) j≥0, and (x j
f ,1) j≥0 be sequences generated by the function

pair ( f = ιV ,g = ιU ), and let (z j
2) j≥0, (x j

g,2) j≥0, and (x j
f ,2) j≥0 be sequences gen-

erated by the function pair ( f = dV ,g = ιU). Define operators TPRS,1 and TPRS,2

likewise. Observe that x∗ := 0 is a minimizer of both functions pairs and z∗ := 0
is a fixed point of (TPRS,1)1/2. To show that zk

1 = zk
2 for all k ≥ 0, we just need to

show that proxγdV
(reflg(zk)) = xk

f ,1 = xk
f ,2 = PV (reflg(zk)) for all k ≥ 0. In view of

Proposition 6, the identity will follow if

γ ≥ dV (reflg(z
k)) = ‖reflg(z

k)−PV(reflg(z
k))‖.

However, this is always the case because (reflg(z∗)−PV(reflg(z∗))) = 0 and

‖reflg(z
k)−PV(reflg(z

k))− (reflg(z
∗)−PV (reflg(z

∗)))‖2

+ ‖PV (reflg(z
k))−PV (reflg(z

∗))‖2

≤ ‖reflg(z
k)− reflg(z

∗)‖2 ≤ ‖zk − z∗‖2 ≤ ‖z0 − z∗‖2 = ‖z0‖2 ≤ γ2

because PV is 1
2 -averaged. ��

For the rest of this section, we define for all i ≥ 0,

θi := cos−1

(√
i

i+ 1

)
and ci := cos(θi) =

√
i

i+ 1
.

Theorem 7. Assume the notation of Theorem 5. Then for all α > 1/2, there exists a
point z0 ∈H such that if γ ≥ ‖z0‖ and (z j) j≥0 is generated by DRS applied to the
functions ( f = dV ,g = ιU ), then dV (x∗) = 0 and

dV (x
k
g) = Ω

(
1

(k+ 1)α

)
.

Proof. Fix k ≥ 0. Let z0 = ((1/( j+ 1)α ,0)) j≥0 ∈ H. Now, choose γ ≥ ‖z0‖ =(
∑∞

i=0 1/(i+ 1)2α)1/2
. Define w0 ∈H using Equation (4.23):

w0 = (I −T )z0 =

(
1

( j+ 1)α

(
1

j+ 1
,
−√

j
j+ 1

))
j≥0

.

Then ‖w0
i ‖= 1/(1+ i)(1+2α)/2.

Now we will calculate dV (xk
g) = ‖PV xk

g −xk
g‖. First, recall that T k =

⊕∞
i=0 ck

i Rkθi ,
where for all θ ∈ R,

Rθ =

[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]
.
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Thus,

xk
g := PU(z

k) =

([
1 0
0 0

]
ck

jRkθ

(
1

( j+ 1)α
,0

))
j≥0

=

([
1 0
0 0

]
ck

j
1

( j+ 1)α
(cos(kθ j),sin(kθ j))

)
j≥0

=

(
ck

j
cos(kθ j)

( j+ 1)α
(1,0)

)
j≥0

.

Furthermore, from the identity

(PV )i =

[
cos2(θi) sin(θi)cos(θi)

sin(θi)cos(θi) sin2(θi)

]
=

[
i

i+1

√
i

i+1√
i

i+1
1

i+1

]
,

we have

PV xk
g =

(
ck

j
cos(kθ j)

( j+ 1)α

(
j

j+ 1
,

√
j

j+ 1

))
j≥0

.

Thus, the difference has the following form:

xk
g −PV xk

g =

(
ck

j
cos(kθ j)

( j+ 1)α

(
1

j+ 1
,
−√

j
j+ 1

))
j≥0

.

Now we derive the lower bound:

d2
V (x

k
g) = ‖xk

g −PV xk
g‖2 =

∞

∑
i=0

c2k
i

cos2(kθi)

(i+ 1)2α+1

=
∞

∑
i=0

c2k
i

cos2
(

k cos−1
(√

i
i+1

))
(i+ 1)2α+1

≥ 1
e

∞

∑
i=k

cos2
(

k cos−1
(√

i
i+1

))
(i+ 1)2α+1 . (4.24)

The next three lemmas will focus on estimating the order of the sum in Equa-
tion (4.24). After which, Theorem 7 will follow from Equation (4.24) and Lemma 8,
below. ��
Lemma 6. Let h : R+ → R+ be a continuously differentiable function such that
h ∈ L1(R+) and ∑∞

i=1 h(i)< ∞. Then for all positive integers k,∣∣∣∣∣
∫ ∞

k
h(y)dy−

∞

∑
i=k

h(i)

∣∣∣∣∣≤
∞

∑
i=k

max
y∈[i,i+1]

∣∣h′(y)∣∣ .
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Proof. We just apply the Mean Value Theorem:∣∣∣∣∣
∫ ∞

k
h(y)dy−

∞

∑
i=k

h(i)

∣∣∣∣∣≤
∣∣∣∣∣

∞

∑
i=k

∫ i+1

i
(h(y)− h(i))dy

∣∣∣∣∣≤
∞

∑
i=k

∫ i+1

i
|h(y)− h(i)|dy

≤
∞

∑
i=k

max
y∈[i,i+1]

|h′(y)|. ��

The following lemma will quantify the deviation of integral from the sum.

Lemma 7. The following bound holds:∣∣∣∣∣∣∣
∞

∑
i=k

cos2
(
k cos−1

(√
i

i+1

))
(i+ 1)2α+1 −

∫ ∞

k

cos2
(
k cos−1

(√ y
y+1

))
(y+ 1)2α+1 dy

∣∣∣∣∣∣∣= O

(
1

(k+ 1)2α+ 1
2

)
.

(4.25)

Proof. We will use Lemma 6 with

h(y) =
cos2

(
k cos−1

(√
y

y+1

))
(y+ 1)2α+1 .

to deduce an upper bound on the absolute value. Indeed,

|h′(y)|=
∣∣∣∣∣∣
k sin

(
k cos−1

(√
y

y+1

))
cos

(
k cos−1

(√
y

y+1

))
√

y(y+1)(y+1)2α+1 −
cos2

(
k cos−1

(√
y

y+1

))
(y+1)2α+2

∣∣∣∣∣∣
= O

(
k

(y+1)2α+1+3/2
+

1
(y+1)2α+2

)
.

Therefore, we can bound Equation (4.25) by the following sum:

∞

∑
i=k

max
y∈[i,i+1]

|h′(y)|= O

(
k

(k+ 1)2α+3/2
+

1
(k+ 1)2α+1

)
= O

(
1

(k+ 1)2α+1/2

)
. ��

In the following lemma, we estimate the order of the oscillatory integral approx-
imation to the sum in Equation (4.24). The proof follows by a change of variables
and an integration by parts.

Lemma 8. The following bound holds:

∞

∑
i=k

cos2
(

k cos−1
(√

i
i+1

))
(i+ 1)2α+1 dy = Ω

(
1

(k+ 1)2α

)
. (4.26)
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Proof. Fix k ≥ 1. We first perform a change of variables u = cos−1(
√

y/(y+ 1)) on
the integral approximation of the sum:

∫ ∞

k

cos2
(

k cos−1
(√

y
y+1

))
(y+ 1)2α+1 dy

= 2
∫ cos−1

(√
k/(k+1)

)
0

cos2(ku)cos(u)sin4α−1(u)du. (4.27)

We will show that the right-hand side of Equation (4.27) is of order Ω
(
1/(k+ 1)2α).

Then Equation (4.26) will follow by Lemma 7.
Let ρ := cos−1(

√
k/(k+ 1)). We have

2
∫ ρ

0
cos2(ku)cos(u)sin4α−1(u)du =

∫ ρ

0
(1+ cos(2ku))cos(u)sin4α−1(u)du

= p1 + p2 + p3

where

p1 =

∫ ρ

0
1 · cos(u)sin4α−1(u)du =

1
4α

sin4α(ρ);

p2 =
1
2k

sin(2kρ)cos(ρ)sin4α−1(ρ);

p3 =− 1
2k

∫ ρ

0
sin(2ku)d(cos(u)sin4α−1(u));

and we have applied integration by parts for
∫ ρ

0 cos(2ku)cos(u)sin4α−1(u)du =
p2 + p3.

Because sin(cos−1(x)) =
√

1− x2, for all η > 0, we get

sinη (ρ) = sinη cos−1
(√

k/(k+ 1)
)
=

1

(k+ 1)η/2
.

In addition, we have cos(ρ)= coscos−1
(√

k/(k+ 1)
)
=
√

k/(k+ 1) and the trivial

bounds |sin(2kρ)| ≤ 1 and |sin(2ku)| ≤ 1.
Therefore, the following bounds hold:

p1 =
1

4α(k+ 1)2α and |p2| ≤
√

k/(k+ 1)

2k(k+ 1)2α−1/2
= O

(
1

(k+ 1)2α+1/2

)
.

In addition, for p3, we have d(cos(u)sin4α−1(u)) = sin4α−2(u)((4α − 1)cos2(u)−
sin2(u))du. Furthermore, for u ∈ [0,ρ ] and α > 1/2, we have sin4α−2(u)
∈ [0,1/(k+ 1)2α−1] and the following lower bound: (4α − 1)cos2(u)− sin2(u) ≥
(4α−1)cos2(ρ)− sin2(ρ) = (4α−1)(k/(k+1))−1/(k+ 1)> 0 as long as k ≥ 1.
Therefore, we have sin4α−2(u)((4α − 1)cos2(u)− sin2(u)) ≥ 0 for all u ∈ [0,ρ ],
and thus,
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|p3| ≤ 1
2k

cos(ρ)sin4α−1(ρ) =
√

k/(k+ 1)

2k(k+ 1)2α−1/2
= O

(
1

(k+ 1)2α+1/2

)
.

Therefore, p1 + p2 + p3 ≥ p1 −|p2|− |p3|= Ω
(
(k+ 1)−2α) . ��

We deduce the following theorem from the sum estimation in Lemma 8:

Theorem 8 (Lower Complexity of DRS). There exists closed, proper, and convex
functions f ,g : H→ (−∞,∞] such that f is 1-Lipschitz and for every α > 1/2, there
is a point z0 ∈H and γ ∈ R++ such that if (z j) j≥0 is generated by Algorithm 1 with
λk = 1/2 for all k ≥ 0, then

h(xk
g,x

k
g) = Ω

(
1

(k+ 1)α

)
,

where the objective-error function h is defined in (4.20).

Proof. Assume the setting of Theorem 7. Then f = dV and g= ιU , and by Lemma 8,
we have h(xk

g,x
k
g) = dV (xk

g) = Ω
(
1/(k+ 1)α

)
. ��

Theorem 8 shows that the DRS algorithm is nearly as slow as the subgradient
method. We use the word nearly because the subgradient method has complexity
O(1/

√
k+ 1), while DRS has complexity o(1/

√
k+ 1). To the best of our knowl-

edge, this is the first lower complexity result for DRS algorithm. Note that Theo-
rem 8 implies the same lower bound for the Forward-Douglas-Rachford splitting
algorithm [13] and the many primal-dual operator-splitting schemes [21, 23, 53, 14,
7, 8, 19, 6, 20, 16] (this list is not exhaustive) that contain Chambolle and Pock’s
algorithm [16] as a special case because the algorithm is known to contain Douglas-
Rachford splitting as a special case; see the comments in Section 6.1.1.

8 From Relaxed PRS to Relaxed ADMM

It is well known that ADMM is equivalent to DRS applied to the Lagrange dual
of Problem (4.3) [31].6 Thus, if we let d f (w) := f ∗(A∗w) and dg(w) := g∗(B∗w)−
〈w,b〉, then relaxed ADMM is equivalent to relaxed PRS applied to the following
problem:

minimize
w∈G

d f (w)+ dg(w).

We make two assumptions regarding d f and dg:

Assumption 4 (Solution Existence). Functions f ,g : H→ (−∞,∞] satisfy

zer(∂d f + ∂dg) �= /0.

This is a restatement of Assumption 3, which is used in our analysis of the primal
case.

6 A recent result reported in Chapter 5 [55] of this volume shows the direct (non-duality) equiva-
lence between ADMM and DRS when they are both applied to Problem (4.3).
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Assumption 5. The following differentiation rule holds:

∂d f (x) = A∗ ◦ (∂ f ∗)◦A and ∂dg(x) = B∗ ◦ (∂g∗)◦B− b.

See [2, Theorem 16.37] for conditions that imply this identity, of which the weakest
are 0 ∈ sri(range(A∗)− dom( f ∗)) and 0 ∈ sri(range(B∗)− dom(g∗)), where sri is
the strong relative interior of a convex set. This assumption may seem strong, but it
is standard in the analysis of ADMM. because it implies the dual proximal operator
identities in (4.33) on Page 154 below.

8.1 Primal Objective Convergence Rates in ADMM

With a little effort (see Appendix 3.3), we can show the following convergence rates
for ADMM.

Theorem 9 (Ergodic Primal Convergence of ADMM). Define the ergodic primal
iterates by the formulas: xk = (1/Λk)∑k

i=0 λixi and yk = (1/Λk)∑k
i=0 λiyi. Then

−2‖w∗‖‖z0 − z∗‖
γΛk

≤ h(xk,yk)≤ ‖z0 − (z∗ −w∗)‖2

4γΛk
,

where h is defined in (4.20).

The ergodic rate presented here is stronger and easier to interpret than the one
in [34] for the ADMM algorithm (λk ≡ 1/2). Indeed, the rate presented in [34,
Theorem 4.1] shows the following bound: for all k ≥ 1 and for any bounded set
D⊆ dom( f )× dom(g)×G, we have the following variational inequality bound

sup
(x,y,w)∈D

(
h(xk−1,yk)+ 〈wk

dg
,Ax+By− b〉− 〈Axk−1 +Byk − b,w〉

)

≤
sup(x,y,w)∈D ‖(x,y,w)− (x0,y0,w0

dg
)‖2

2(k+ 1)
.

If (x∗,y∗,w∗) ∈ D, then the supremum is positive and bounds the deviation of the
primal objective from the lower fundamental inequality.

Theorem 10 (Nonergodic Primal Convergence of ADMM). For all k ≥ 0, let τk =
λk(1−λk). In addition, suppose that τ = inf j≥0 τ j > 0. Recall that the objective-
error function h is defined in (4.20). Then

1. In general, we have the bounds:

−‖z0 − z∗‖‖w∗‖
2
√

τ(k+ 1)
≤ h(xk,yk)≤ ‖z0 − z∗‖(‖z0 − z∗‖+ ‖w∗‖)

2γ
√

τ(k+ 1)

and |h(xk,yk)|= o(1/
√

k+ 1).
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2. If G= R and λk ≡ 1/2, then for all k ≥ 0,

−‖z0 − z∗‖‖w∗‖√
2(k+ 1)

≤ h(xk+1,yk+1)≤ ‖z0 − z∗‖(‖z0 − z∗‖+ ‖w∗‖)√
2γ(k+ 1)

and |h(xk+1,yk+1)|= o(1/(k+ 1)).

The rates presented in Theorem 10 are new and, to the best of our knowledge, they
are the first nonergodic rate results for ADMM primal objective error.

9 Conclusion

In this chapter, we provided a comprehensive convergence rate analysis of the FPR
and objective error of several splitting algorithms under general convexity assump-
tions. We showed that the convergence rates are essentially optimal in all cases. All
results follow from some combination of a lemma that deduces convergence rates
of summable monotonic sequences (Lemma 1), a simple diagram (Figure 4.1), and
fundamental inequalities (Propositions 2 and 3) that relate the FPR to the objective
error of the relaxed PRS algorithm. The most important open question is whether
and how the rates we derived will improve when we enforce stronger assumptions,
such as Lipschitz differentiability and/or strong convexity, on f and g. This will be
the subject of future work.
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8. Boţ, R.I., Hendrich, C.: Solving monotone inclusions involving parallel sums of linearly com-
posed maximally monotone operators. arXiv:1306.3191 [math] (2013)



4 Convergence Rate Analysis of Several Splitting Schemes 147
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A Further Applications of the Results of Section 3

1.1 o(1/(k+1)2) FPR of FBS and PPA

In problem (1), let g be a C1 function with Lipschitz derivative. The forward-
backward splitting (FBS) algorithm is the iteration:

zk+1 = proxγ f (z
k − γ∇g(zk)), k = 0,1, . . . . (4.28)

The FBS algorithm generalizes and has the following subgradient representation:

zk+1 = zk − γ∇̃ f (zk+1)− γ∇g(zk) (4.29)

where ∇̃ f (zk+1) := (1/γ)(zk − zk+1 − γ∇g(zk)) ∈ ∂ f (zk+1), and zk+1 and ∇̃ f (zk+1)
are unique given zk and γ > 0.

In this section, we analyze the convergence rate of the FBS algorithm given in
Equations (4.28) and (4.29). If g = 0, FBS reduces to the proximal point algorithm
(PPA) and β = ∞. If f = 0, FBS reduces to gradient descent. The FBS algorithm
can be written in the following operator form:

TFBS := proxγ f ◦ (I− γ∇g).

Because proxγ f is (1/2)-averaged and I − γ∇g is γ/(2β )-averaged [46, Theorem
3(b)], it follows that TFBS is αFBS-averaged for

αFBS :=
2β

4β − γ
∈ (1/2,1)

whenever γ < 2β [2, Proposition 4.32]. Thus, we have TFBS = (1−αFBS)I+αFBST
for a certain nonexpansive operator T , and TFBS(zk)− zk = αFBS(T zk − zk). In par-
ticular, for all γ < 2β the following sum is finite:

∞

∑
i=0

‖TFBS(z
k)− zk‖2

(4.11)
≤ αFBS‖z0 − z∗‖2

(1−αFBS)
.

To analyze the FBS algorithm we need to derive a joint subgradient inequality
for f + g. First, we recall the following sufficient descent property for Lipschitz
differentiable functions.
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Theorem 11 (Descent Theorem [2, Theorem 18.15(iii)]). If g is differentiable and
∇g is (1/β )-Lipschitz, then for all x,y ∈H we have the upper bound

g(x)≤ g(y)+ 〈x− y,∇g(y)〉+ 1
2β

‖x− y‖2.

Corollary 4 (Joint Descent Theorem). If g is differentiable and ∇g is (1/β )-
Lipschitz, then for all points x,y ∈ dom( f ) and z ∈H, and subgradients ∇̃ f (x) ∈
∂ f (x), we have

f (x)+ g(x)≤ f (y)+ g(y)+ 〈x− y,∇g(z)+ ∇̃ f (x)〉+ 1
2β

‖z− x‖2. (4.30)

Proof. Inequality (4.30) follows from adding the upper bound

g(x)−g(y) ≤ g(z)−g(y)+ 〈x− z,∇g(z)〉+ 1
2β

‖z−x‖2 ≤ 〈x−y,∇g(z)〉+ 1
2β

‖z−x‖2

with the subgradient inequality: f (x) ≤ f (y)+ 〈x− y, ∇̃ f (x)〉. ��
We now improve the O(1/(k+ 1)2) FPR rate for PPA in [12, Théorème 9] by

showing that the FPR rate of FBS is actually o(1/(k+ 1)2).

Theorem 12 (Objective and FPR Convergence of FBS). Let z0 ∈ dom( f )∩dom(g)
and let x∗ be a minimizer of f +g. Suppose that (z j) j≥0 is generated by FBS (itera-
tion (4.28)) where ∇g is (1/β )-Lipschitz and γ < 2β . Then for all k ≥ 0,

h(zk+1,zk+1)≤ ‖z0 − x∗‖2

k+ 1
×
{

1
2γ if γ ≤ β ;(

1
2γ +

(
1

2β − 1
2γ

)
αFBS

(1−αFBS)

)
otherwise,

and
h(zk+1,zk+1) = o(1/(k+ 1)),

where the objective-error function h is defined in (4.20). In addition, for all k ≥ 0,
we have ‖TFBSzk+1 − zk+1‖2 = o(1/(k+ 1)2) and

‖TFBSzk+1 − zk+1‖2 ≤ ‖z0 −x∗‖2( 1
γ − 1

2β
)
(k+1)2

×
⎧⎨
⎩

1
2γ if γ ≤ β ;(

1
2γ +

( 1
2β − 1

2γ
) αFBS
(1−αFBS)

)
otherwise.

Proof. Recall that zk − zk+1 = γ∇̃ f (zk+1)+ γ∇g(zk) ∈ γ∂ f (zk+1)+ γ∇g(zk) for all
k ≥ 0. Thus, the joint descent theorem shows that for all x ∈ dom( f ), we have

f (zk+1)+ g(zk+1)− f (x)− g(x)
(4.30)
≤ 1

γ
〈zk+1 − x,zk − zk+1〉+ 1

2β
‖zk − zk+1‖2

=
1
2γ

(
‖zk−x‖2−‖zk+1−x‖2

)
+

(
1

2β
− 1

2γ

)
‖zk+1−zk‖2.

(4.31)
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If we set x = x∗ in Equation (4.31), we see that (h(z j+1,z j+1)) j≥0 is positive,
summable, and

∞

∑
i=0

h(z j+1,z j+1)≤
{

1
2γ ‖z0 − x∗‖2 if γ ≤ β ;(

1
2γ +

(
1

2β − 1
2γ

)
αFBS

(1−αFBS)

)
‖z0 − x∗‖2 otherwise.

(4.32)

In addition, if we set x = zk in Equation (4.31), then we see that (h(z j+1,z j+1)) j≥0

is decreasing: (
1
γ
− 1

2β

)
‖zk+1 − zk‖2 ≤ h(zk,zk)− h(zk+1,zk+1).

Therefore, the rates for h(zk+1,zk+1) follow by Lemma 1 Part (a), with ak =
h(zk+1,zk+1) and λk ≡ 1.

Now we prove the rates for ‖TFBSzk+1 − zk+1‖2. We apply Part 3 of Lemma 1
with ak = (1/γ− 1/(2β))‖zk+2 − zk+1‖2, λk ≡ 1, ek = 0, and bk = h(zk+1)− h(x∗)
for all k ≥ 0, to show that ∑∞

i=0(i+ 1)ai is less than the sum in Equation (4.32).
Part 2 of Theorem 1 shows that (a j) j≥0 is monotonically nonincreasing. Therefore,
the convergence rate of (a j) j≥0 follows from Part (b) of Lemma 1. ��

When f = 0, the objective error upper bound in Theorem 12 is strictly better
than the bound provided in [45, Corollary 2.1.2]. In FBS, the objective error rate is
the same as the one derived in [4, Theorem 3.1], when γ ∈ (0,β ], and is the same
as the one given in [11] in the case that γ ∈ (0,2β ). The little-o FPR rate is new
in all cases except for the special case of PPA (g ≡ 0) under the condition that the
sequence (z j) j≥0 strongly converges to a minimizer [33].

1.2 o(1/(k+1)2) FPR of One Dimensional DRS

Whenever the operator (TPRS)1/2 is applied in R, the convergence rate of the FPR
improves to o(1/(k+ 1)2).

Theorem 13. Suppose that H = R, and suppose that (z j) j≥0 is generated by the
DRS algorithm, i.e., Algorithm 1 with λk ≡ 1/2. Then for all k ≥ 0,

|(TPRS)1/2zk+1 − zk+1|2 = |z0 − z∗|2
2(k+ 1)2 and |(TPRS)1/2zk+1 − zk+1|2 = o

(
1

(k+ 1)2

)
.

Proof. Note that (TPRS)1/2 is (1/2)-averaged, and, hence, it is the resolvent of some
maximal monotone operator on R [2, Corollary 23.8]. Furthermore, every maxi-
mal monotone operator on R is the subdifferential operator of a closed, proper, and
convex function [2, Corollary 22.19]. Therefore, DRS is equivalent to the proximal
point algorithm applied to a certain convex function on R. Thus, the result follows
by Theorem 12 applied to this function. ��
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B Further Lower Complexity Results

2.1 Ergodic Convergence of Feasibility Problems

Proposition 8. The ergodic feasibility convergence rate in Equation (4.21) is opti-
mal up to a factor of two.

Proof. Algorithm 1 with λk = 1 for all k ≥ 0 (i.e., PRS) is applied to the functions
f = ι{(x1,x2)∈R2|x1=0} and g= ι{(x1,x2)∈R2|x2=0} with the initial iterate z0=(1,1)∈ R2.
Because TPRS =−IH, it is easy to see that the only fixed point of TPRS is z∗ = (0,0).
In addition, the following identities are satisfied:

xk
g =

{
(1,0) even k;

(−1,0) odd k.
zk =

{
(1,1) even k;

(−1,−1) odd k.
xk

f =

{
(0,−1) even k;

(0,1) odd k.

Thus, the PRS algorithm oscillates around the solution x∗ = (0,0). However, note
that the averaged iterates satisfy:

xk
g =

{
( 1

k+1 ,0) even k;

(0,0) odd k.
and xk

f =

{
(0, −1

k+1) even k;

(0,0) odd k.

It follows that ‖xk
g − xk

f ‖= (1/(k+ 1))‖(1,−1)‖= (1/(k+ 1))‖z0− z∗‖, ∀k ≥ 0.
��

2.2 Optimal Objective and FPR Rates with Lipschitz Derivative

The following examples show that the objective and FPR rates derived in Theo-
rem 12 are essentially optimal. The setup of the following counterexample already
appeared in [12, Remarque 6] but the objective function lower bounds were not
shown.

Theorem 14 (Lower Complexity of PPA). There exists a Hilbert space H, and a
closed, proper, and convex function f such that for all α > 1/2, there exists z0 ∈H
such that if (z j) j≥0 is generated by PPA, then

‖proxγ f (z
k)− zk‖2 ≥ γ2

(1+ 2α)e2γ(k+ γ)1+2α ,

f (zk+1)− f (x∗)≥ 1
4αe2γ(k+ 1+ γ)2α .

Proof. Let H= �2(R), and define a linear map A : H→H:

A(z1,z2, · · · ,zn, · · · ) =
(

z1,
z2

2
, · · · , zn

n
, · · ·

)
.
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For all z ∈H, define f (x) = (1/2)〈Az,z〉. Thus, we have the proximal identity for f
and

proxγ f (z) = (I + γA)−1(z) =

(
j

j+ γ
z j

)
j≥1

and (I −proxγ f )(z) =

(
γ

j+ γ
z j

)
j≥1

.

Now let z0 = (1/( j+ γ)α) j≥1 ∈H, and set T = proxγ f . Then we get the follow-
ing FPR lower bound:

‖zk+1 − zk‖2 = ‖T k(T − I)z0‖2 =
∞

∑
i=1

(
i

i+ γ

)2k γ2

(i+ γ)2+2α

≥
∞

∑
i=k

(
i

i+ γ

)2k γ2

(i+ γ)2+2α

≥ γ2

(1+ 2α)e2γ(k+ γ)1+2α .

Furthermore, the objective lower bound holds

f (zk+1)− f (x∗) =
1
2
〈Azk+1,zk+1〉= 1

2

∞

∑
i=1

1
i

(
i

i+ γ

)2(k+1) 1
(i+ γ)2α

≥ 1
2

∞

∑
i=k+1

(
i

i+ γ

)2(k+1) 1
(i+ γ)1+2α

≥ 1
4αe2γ(k+ 1+ γ)2α . ��

C ADMM Convergence Rate Proofs

Given an initial vector z0 ∈ G, Lemma 2 shows that at each iteration relaxed PRS
performs the following computations:⎧⎪⎪⎨

⎪⎪⎩
wk

dg
= proxγdg

(zk);

wk
d f

= proxγd f
(2wk

dg
− zk);

zk+1 = zk + 2λk(wk
d f
−wk

dg
).

In order to apply the relaxed PRS algorithm, we need to compute the proximal
operators of the dual functions d f and dg.

Lemma 9 (Proximity Operators on the Dual). Let w,v ∈ G. Then the update
formulas w+ = proxγd f

(w) and v+ = proxγdg
(v) are equivalent to the following

computations
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x+ = argminx∈H1

f (x)−〈w,Ax〉+ γ
2‖Ax‖2;

w+ = w− γAx+;{
y+ = argminy∈H2

g(y)−〈v,By− b〉+ γ
2‖By− b‖2;

v+ = v− γ(By+− b);
(4.33)

respectively. In addition, the subgradient inclusions hold: A∗w+ ∈ ∂ f (x+) and
B∗v+ ∈ ∂g(y+). Finally, w+ and v+ are independent of the choice of x+ and y+,
respectively, even if they are not unique solutions to the minimization subproblems.

We can use Lemma 9 to derive the relaxed form of ADMM in Algorithm 2.
Note that this form of ADMM eliminates the “hidden variable” sequence (z j) j≥0 in
Equation (C). This following derivation is not new, but is included for the sake of
completeness. See [31] for the original derivation.

Proposition 9 (Relaxed ADMM). Let z0 ∈ G, and let (z j) j≥0 be generated by the
relaxed PRS algorithm applied to the dual formulation in Equation (8). Choose
initial points w−1

dg
= z0,x−1 = 0 and y−1 = 0 and initial relaxation λ−1 = 1/2. Then

we have the following identities starting from k =−1:

yk+1 = argmin
y∈H2

g(y)−〈wk
dg
,Axk +By− b〉+

γ
2
‖Axk +By− b+(2λk− 1)(Axk +Byk − b)‖2

wk+1
dg

= wk
dg
− γ(Axk +Byk+1 − b)− γ(2λk− 1)(Axk +Byk − b)

xk+1 = argmin
x∈H1

f (x)−〈wk+1
dg

,Ax+Byk+1− b〉+ γ
2
‖Ax+Byk+1− b‖2

wk+1
d f

= wk+1
dg

− γ(Axk+1 +Byk+1 − b)

Proof. By Equation (C) and Lemma 9, we get the following formulation for the k-th
iteration: Given z0 ∈H⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yk = argminy∈H2
g(y)−〈zk,By− b〉+ γ

2‖By− b‖2;

wk
dg

= zk − γ(Byk − b);

xk = argminx∈H1
f (x)−〈2wk

dg
− zk,Ax〉+ γ

2‖Ax‖2;

wk
d f

= 2wk
dg
− zk − γAxk;

zk+1 = zk + 2λk(wk
d f
−wk

dg
).

We will use this form to get to the claimed iteration. First,

2wk
dg
− zk = wk

dg
− γ(Byk − b) and wk

d f
= wk

dg
− γ(Axk +Byk − b). (4.34)
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Furthermore, we can simplify the definition of xk:

xk = argmin
x∈H1

f (x)−〈2wk
dg
− zk,Ax〉+ γ

2
‖Ax‖2

(4.34)
= argmin

x∈H1

f (x)−〈wk
dg
− γ(Byk − b),Ax〉+ γ

2
‖Ax‖2

= argmin
x∈H1

f (x)−〈wk
dg
,Ax+Byk − b〉+ γ

2
‖Ax+Byk− b‖2.

Note that the last two lines of Equation (C) differ by terms independent of x.
We now eliminate the zk variable from the yk subproblem: because wk

d f
+ zk =

2wk
dg
− γAxk, we have

zk+1 = zk + 2λk(w
k
d f
−wk

dg
)

(4.34)
= zk +wk

d f
−wk

dg
+ γ(2λk − 1)(Axk +Byk − b)

= wk
dg
− γAxk − γ(2λk − 1)(Axk +Byk − b).

We can simplify the definition of yk+1 by applying the identity in Equation (C):

yk+1 = argmin
y∈H2

g(y)−〈zk+1,By−b〉+ γ
2
‖By−b‖2

(C)
= argmin

y∈H2

g(y)−〈wk
dg
− γAxk − γ(2λk −1)(Axk +Byk −b),By−b〉+ γ

2
‖By−b‖2

= argmin
y∈H2

g(y)−〈wk
dg
,Axk +By−b〉+ γ

2
‖Axk +By−b+(2λk −1)(Axk +Byk −b)‖2.

The result then follows from Equations (C), (4.34), (C), and (C), combined with the
initial conditions listed in the statement of the proposition. In particular, note that
the updates of x,y,wd f , and wdg do not explicitly depend on z. ��

Remark 2. Proposition 9 proves that wk+1
d f

= wk+1
dg

− γ(Axk+1 +Byk+1 − b). Recall

that by Equation (C), zk+1 − zk = 2λk(wk
d f
−wk

dg
). Therefore, it follows that

zk+1 − zk =−2γλk(Axk +Byk − b). (4.35)

3.1 Dual Feasibility Convergence Rates

We can apply the results of Section 5 to deduce convergence rates for the dual objec-
tive functions. Instead of restating those theorems, we just list the following bounds
on the feasibility of the primal iterates.



156 D. Davis and W. Yin

Theorem 15. Suppose that (z j) j≥0 is generated by Algorithm 2, and let (λ j) j≥0 ⊆
(0,1]. Then the following convergence rates hold:

1. Ergodic convergence: The feasibility convergence rate holds:

‖Axk +Byk − b‖2 =
4‖z0 − z∗‖2

γΛ2
k

.

2. Nonergodic convergence: Suppose that τ = inf j≥0 λ j(1−λ j)> 0. Then

‖Axk +Byk − b‖2 ≤ ‖z0 − z∗‖2

4γ2τ(k+ 1)
and ‖Axk +Byk − b‖2 = o

(
1

k+ 1

)
.

Proof. Parts 1 and 2 are straightforward applications of Corollary 1. and the FPR

identity: zk − zk+1 (4.35)
= 2γλk(Axk +Byk − b). ��

3.2 Converting Dual Inequalities to Primal Inequalities

The ADMM algorithm generates the following five sequences of iterates:

(z j) j≥0,(w
j
d f
) j≥0, and (wj

dg
) j≥0 ⊆ G and (x j) j≥0 ∈H1,(y

j) j≥0 ∈H2.

The dual variables do not necessarily have a meaningful interpretation, so it is de-
sirable to derive convergence rates involving the primal variables. In this section we
will apply the Fenchel-Young inequality [2, Proposition 16.9] to convert the dual
objective into a primal expression.

The following proposition will help us derive primal fundamental inequalities
akin to Proposition 2 and 3.

Proposition 10. Suppose that (z j) j≥0 is generated by Algorithm 2. Let z∗ be a fixed
point of TPRS and let w∗ = proxγd f

(z∗). Then the following identity holds:

4γλk(h(x
k,yk)) =−4γλk(d f (w

k
d f
)+ dg(w

k
dg
)− d f (w

∗)− dg(w
∗))

+

(
2

(
1− 1

2λk

)
‖zk − zk+1‖2 + 2〈zk − zk+1,zk+1〉

)
. (4.36)

Proof. We have the following subgradient inclusions from Proposition 9: A∗wk
d f

∈
∂ f (xk) and B∗wk

dg
∈ ∂g(yk). From the Fenchel-Young inequality [2, Proposition

16.9] we have the expression for f and g:

d f (w
k
d f
) = 〈A∗wk

d f
,xk〉− f (xk) and d f (w

k
dg
) = 〈B∗wk

dg
,yk〉− g(yk)−〈wk

dg
,b〉.
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Therefore,

−d f (w
k
d f
)− dg(w

k
dg
) = f (xk)+ g(yk)−〈Axk +Byk − b,wk

d f
〉− 〈wk

dg
−wk

d f
,Byk − b〉.

Let us simplify this bound with an identity from Proposition 9: from wk
d f
−wk

dg
=

−γ(Axk +Byk − b), it follows that

−d f (w
k
d f
)− dg(w

k
dg
) = f (xk)+ g(yk)+

1
γ
〈wk

d f
−wk

dg
,wk

d f
+ γ(Byk − b)〉. (4.37)

Recall that γ(Byk − b) = zk −wk
dg

. Therefore

wk
df
+γ(Byk−b)= zk+(wk

df
−wk

dg
)= zk+

1
2λk

(zk+1−zk)=
1

2λk
(2λk−1)(zk−zk+1)+zk+1,

and the inner product term can be simplified as follows:

1
γ
〈wk

d f
−wk

dg
,wk

d f
+ γ(Byk − b)〉= 1

γ
〈 1

2λk
(zk+1 − zk),

1
2λk

(2λk − 1)(zk − zk+1)〉

+
1
γ
〈 1

2λk
(zk+1 − zk),zk+1〉

=− 1
2γλk

(
1− 1

2λk

)
‖zk+1 − zk‖2

− 1
2γλk

〈zk − zk+1,zk+1〉. (4.38)

Now we derive an expression for the dual objective at a dual optimal w∗. First,
if z∗ is a fixed point of TPRS, then 0 = TPRS(z∗)− z∗ = 2(w∗

dg
−w∗

d f
) = −2γ(Ax∗+

By∗ − b). Thus, from Equation (4.37) with k replaced by ∗, we get

−d f (w
∗)− dg(w

∗) = f (x∗)+ g(y∗)+ 〈Ax∗+Bx∗− b,w∗〉= f (x∗)+ g(y∗). (4.39)

Therefore, Equation (4.36) follows by subtracting (4.39) from Equation (4.37),
rearranging and using the identity in Equation (4.38). ��

The following two propositions prove two fundamental inequalities that bound
the primal objective.

Proposition 11 (ADMM Primal Upper Fundamental Inequality). Let z∗ be a
fixed point of TPRS and let w∗ = proxγdg

(z∗). Then for all k ≥ 0, we have the bound:

4γλkh(xk,yk)≤ ‖zk − (z∗ −w∗)‖2 −‖zk+1 − (z∗ −w∗)‖2 +

(
1− 1

λk

)
‖zk − zk+1‖2,

(4.40)

where the objective-error function h is defined in (4.20).



158 D. Davis and W. Yin

Proof. The lower inequality in Proposition 3 applied to d f + dg shows that

−4γλk(d f (w
k
d f
)+ dg(w

k
dg
)− d f (w

∗)− dg(w
∗))≤ 2〈zk+1 − zk,z∗ −w∗〉.

The proof then follows from Proposition 10, and the simplification:

2〈zk − zk+1,zk+1 − (z∗ −w∗)〉+ 2

(
1− 1

2λk

)
‖zk − zk+1‖2

= ‖zk − (z∗ −w∗)‖2 −‖zk+1 − (z∗ −w∗)‖2 +

(
1− 1

λk

)
‖zk − zk+1‖2. ��

Remark 3. Note that Equation (4.40) is nearly identical to the upper inequality in
Proposition 2, except that z∗ −w∗ appears in the former where x∗ appears in the
latter.

Proposition 12 (ADMM Primal Lower Fundamental Inequality). Let z∗ be a
fixed point of TPRS and let w∗ = proxγdg

(z∗). Then for all x ∈H1 and y ∈H2 we
have the bound:

h(x,y)≥ 〈Ax+By− b,w∗〉, (4.41)

where the objective-error function h is defined in (4.20).

Proof. The lower bound follows from the subgradient inequalities:

f (x)− f (x∗)≥ 〈x− x∗,A∗w∗〉 and g(y)− g(y∗)≥ 〈y− y∗,B∗w∗〉.

We sum these inequalities and use Ax∗+By∗ = b to get Equation (4.41). ��
Remark 4. We use Inequality (4.41) in two special cases:

h(xk,yk)≥ 1
γ
〈wk

dg
−wk

d f
,w∗〉

h(xk,yk)≥ 1
γ
〈wk

dg
−wk

d f
,w∗〉.

These bounds are nearly identical to the fundamental lower inequality in Proposi-
tion 3, except that w∗ appears in the former where z∗ − x∗ appeared in the latter.

3.3 Converting Dual Convergence Rates to Primal
Convergence Rates

We can use the inequalities deduced in Section 3.2 to derive convergence rates for
the primal objective values. The structure of the proofs of Theorems 9 and 10 are ex-
actly the same as in the primal convergence case in Section 5, except that we use the
upper and lower inequalities derived in the Section 3.2 instead of the fundamental



4 Convergence Rate Analysis of Several Splitting Schemes 159

upper and lower inequalities in Propositions 2 and 3. This amounts to replacing the
term z∗ − x∗ and x∗ by w∗ and z∗ −w∗, respectively, in all of the inequalities from
Section 5. Thus, we omit the proofs.

D Examples

In this section, we apply relaxed PRS and relaxed ADMM to concrete problems and
explicitly bound the associated objectives and FPR terms with the convergence rates
we derived in the previous sections.

4.1 Feasibility Problems

Suppose that Cf and Cg are closed convex subsets of H, with nonempty intersection.
The goal of the feasibility problem is to find a point in the intersection of Cf and Cg.
In this section, we present one way to model this problem using convex optimization
and apply the relaxed PRS algorithm to reach the minimum.

In general, we cannot expect linear convergence of relaxed PRS algorithm for the
feasibility problem. We showed this in Theorem 6 by constructing an example for
which the DRS iteration converges in norm but does so arbitrarily slow. A similar
result holds for the alternating projection (AP) algorithm [3]. Thus, in this section
we focus on the convergence rate of the FPR.

Let ιCf and ιCg be the indicator functions of Cf and Cg. Then x ∈ Cf ∩Cg, if,
and only if, ιCf (x)+ ιCg(x) = 0, and the sum is infinite otherwise. Thus, a point is
in the intersection of Cf and Cg if, and only if, it is the minimizer of the following
problem:

minimize
x∈H

ιCf (x)+ ιCg(x).

The relaxed PRS algorithm applied to this problem, with f = ιCf and g = ιCg , has
the following form: Given z0 ∈H, for all k ≥ 0, let⎧⎪⎨

⎪⎩
xk

g = PCg(z
k);

xk
f = PCf (2xk

g − zk);

zk+1 = zk + 2λk(xk
f − xk

g).

Because f = ιCf and g = ιCg only take on the values 0 and ∞, the objective value
convergence rates derived earlier do not provide meaningful information, other than
xk

f ∈Cf and xk
g ∈Cg. However, from the FPR identity xk

f − xk
g = 1/(2λk)(zk+1 − zk),

we find that after k iterations, Corollary 1 produces the bound

max{d2
Cg
(xk

f ),d
2
Cf
(xk

g)} ≤ ‖xk
f − xk

g‖2 = o

(
1

k+ 1

)
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whenever (λ j) j≥0 is bounded away from 0 and 1. Theorem 5 showed that this rate
is optimal. Furthermore, if we average the iterates over all k, Theorem 3 gives the
improved bound

max{d2
Cg
(xk

f ),d
2
Cf
(xk

g)} ≤ ‖xk
f − xk

g‖2 = O

(
1

Λ2
k

)
,

which is optimal by Proposition 8. Note that the averaged iterates satisfy xk
f =

(1/Λk)∑k
i=0 λixi

f ∈ Cf and xk
g = (1/Λk)∑k

i=0 λixi
g ∈Cg, because Cf and Cg are con-

vex. Thus, we can state the following proposition:

Proposition 13. After k iterations the relaxed PRS algorithm produces a point in
each set with distance of order O(1/Λk) from each other.

4.2 Parallelized Model Fitting and Classification

The following general scenario appears in [10, Chapter 8]. Consider the following
general convex model fitting problem: Let M : Rn → Rm be a feature matrix, let
b ∈ Rm be the output vector, let l : Rm → (−∞,∞] be a loss function and let r : Rn →
(−∞,∞] be a regularization function. The model fitting problem is formulated as the
following minimization:

minimize
x∈Rn

l(Mx− b)+ r(x). (4.42)

The function l is used to enforce the constraint Mx = b+ν up to some noise ν in the
measurement, while r enforces the regularity of x by incorporating prior knowledge
of the form of the solution. The function r can also be used to enforce the uniqueness
of the solution of Mx = b in ill-posed problems.

We can solve Equation (4.42) by a direct application of relaxed PRS and ob-
tain O(1/Λk) ergodic convergence and o

(
1/

√
k+ 1

)
nonergodic convergence rates.

Note that these rates do not require differentiability of f or g. In contrast, the FBS al-
gorithm requires differentiability of one of the objective functions and a knowledge
of the Lipschitz constant of its gradient. The advantage of FBS is the o(1/(k+ 1))
convergence rate shown in Theorem 12. However, we do not necessarily assume
that l is differentiable, so we may need to compute proxγl(M(·)−b), which can be
significantly more difficult than computing proxγl . Thus, in this section we separate
M from l by rephrasing Equation (4.42) in the form of Problem (4.3).

In this section, we present several different ways to split Equation (4.42). Each
splitting gives rise to a different algorithm and can be applied to general convex
functions l and r. Our results predict convergence rates that hold for primal ob-
jectives, dual objectives, and the primal feasibility. Note that in parallelized model
fitting, it is not always desirable to take the time average of all of the iterates. In-
deed, when r enforces sparsity, averaging the current r-iterate with old iterates, all
of which are sparse, can produce a non-sparse iterate. This will slow down vector
additions and prolong convergence.
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4.2.1 Auxiliary Variable

We can split Equation (4.42) by defining an auxiliary variable for My− b:

minimize
x∈Rm,y∈Rn

l (x)+ r(y)

subject to My− x = b. (4.43)

The constraint in Equation (4.43) reduces to Ax+By = b where B = M and A =
−IRm . If we set f = l and g = r and apply ADMM, the analysis of Section 3.3
shows that

|l(xk)+ r(yk)− l(My∗ − b)− r(y∗)|= o

(
1√

k+ 1

)

‖Myk − b− xk‖2 = o

(
1

k+ 1

)
.

In particular, if l is Lipschitz, |l(xk)− l(Myk − b)|= o
(
1/

√
k+ 1

)
. Thus, we have

|l(Myk − b)+ r(yk)− l(My∗ − b)− r(y∗)|= o

(
1√

k+ 1

)
.

A similar analysis shows that

|l(Myk − b)+ r(yk)− l(My∗ − b)− r(y∗)|= O

(
1
Λk

)

‖Myk − b− xk‖2 = O

(
1

Λ2
k

)
.

In the next two splittings, we leave the derivation of convergence rates to the reader.

4.2.2 Splitting Across Examples

We assume that l is block separable: we have l(Mx− b) = ∑R
i=1 li(Mix− bi) where

M =

⎡
⎢⎣

M1
...

MR

⎤
⎥⎦ and b =

⎡
⎢⎣

b1
...

bR

⎤
⎥⎦ .

Each Mi ∈ Rmi×n is a submatrix of M, each bi ∈ Rmi is a subvector of b, and
∑R

i=1 mi = m. Therefore, an equivalent form of Equation (4.42) is given by

minimize
x1,··· ,xR,y∈Rn

R

∑
i=1

li(Mixi − bi)+ r(y)

subject to xr − y = 0, r = 1, · · · ,R. (4.44)
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We say that Equation (4.44) is split across examples. Thus, to apply ADMM to this
problem, we simply stack the vectors xi, i= 1, · · · ,R into a vector x=(x1, · · · ,xR)

T ∈
RnR. Then the constraints in Equation (4.44) reduce to Ax+By = 0 where A = IRnR

and By = (−y, · · · ,−y)T .

4.2.3 Splitting Across Features

We can also split Equation (4.42) across features, whenever r is block separable in
x, in the sense that there exists C > 0, such that r = ∑C

i=1 ri(xi), and xi ∈ Rni where
∑C

i=1 ni = n. This splitting corresponds to partitioning the columns of M, i.e., M =[
M1, · · · ,MC

]
, and Mi ∈ Rm×ni , for all i = 1, · · · ,C. For all y ∈ Rn, My = ∑C

i=1 Miyi.
With this notation, we can derive an equivalent form of Equation (4.42) given by

minimize
x,y∈Rn

l

(
C

∑
i=1

xi − b

)
+

C

∑
i=1

ri(yi)

subject to xi −Miyi = 0, i = 1, · · · ,C. (4.45)

The constraint in Equation (4.45) reduces to Ax+By = 0 where A = IRmC and By =
−(M1y1, · · · ,MCyC)

T ∈ RnC.

4.3 Distributed ADMM

In this section our goal is to use Algorithm 2 for

minimize
x∈H

m

∑
i=1

fi(x)

by using the splitting in [49]. Note that we could minimize this function by refor-
mulating it in the product space H m as follows:

minimize
x∈Hm

m

∑
i=1

fi(xi)+ ιD(x),

where D = {(x, · · · ,x) ∈H m | x ∈ H} is the diagonal set. Applying relaxed PRS
to this problem results in a parallel algorithm where each function performs a local
minimization step and then communicates its local variable to a central processor.
In this section, we assign each function a local variable but we never communicate
it to a central processor. Instead, each function only communicates with neighbors.

Formally, we assume there is a simple, connected, undirected graph G = (V,E)
on |V | = m vertices with edges E that describe a connection among the different
functions. We introduce a variable xi ∈H for each function fi, and, hence, we set
H1 =H m, (see Section 8). We can encode the constraint that each node communi-
cates with neighbors by introducing an auxiliary variable for each edge in the graph:
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minimize
x∈H m,y∈H|E|

m

∑
i=1

fi(xi)

subject to xi = yi j,x j = yi j, for all (i, j) ∈ E. (4.46)

The linear constraints in Equation (4.46) can be written in the form of Ax+By = 0
for proper matrices A and B. Thus, we reformulate Equation (4.46) as

minimize
x∈H m,y∈H|E|

m

∑
i=1

fi(xi)+ g(y)

subject to Ax+By = 0, (4.47)

where g : H|E| → R is the zero map.
Because we only care about finding the value of the variable x ∈ H m, the fol-

lowing simplification can be made to the sequences generated by ADMM applied to
Equation (4.47) with λk = 1/2 for all k ≥ 1 [51]: Let Ni denote the set of neighbors
of i ∈V and set x0

i = α0
i = 0 for all i ∈V . Then for all k ≥ 0,⎧⎨

⎩
xk+1

i = argminxi∈H fi(x)+
γ|Ni|

2 ‖xi − xk
i − 1

|Ni| ∑ j∈Ni
xk

j +
1

γ|Ni|αi‖2 + γ|Ni|
2 ‖xi‖2

αk+1
i = αk

i + γ
(
|Ni|xk+1

i −∑ j∈Ni
xk+1

j

)
.

The above iteration is truly distributed because each node i ∈V only requires infor-
mation from its local neighbors at each iteration.

In [51], linear convergence is shown for this algorithm provided that fi are
strongly convex and ∇ fi are Lipschitz. For general convex functions, we can de-
duce the nonergodic rates from Theorem 10∣∣∣∣∣

m

∑
i=1

fi(x
k
i )− f (x∗)

∣∣∣∣∣= o

(
1√

k+ 1

)

∑
i∈V
j∈Ni

‖xk
i − zk

i j‖2 + ∑
i∈V
i∈Nj

‖xk
j − zk

i j‖2 = o

(
1

k+ 1

)
,

and the ergodic rates from Theorem 9∣∣∣∣∣
m

∑
i=1

fi(x
k
i )− f (x∗)

∣∣∣∣∣= O

(
1

k+ 1

)

∑
i∈V
j∈Ni

‖xk
i − zk

i j‖2 + ∑
i∈V
i∈Nj

‖xk
j − zk

i j‖2 = O

(
1

(k+ 1)2

)
.

These convergence rates are new and complement the linear convergence results
in [51]. In addition, they complement the similar ergodic rate derived in [54] for a
different distributed splitting.



Chapter 5
Self Equivalence of the Alternating Direction
Method of Multipliers

Ming Yan and Wotao Yin

Abstract The alternating direction method of multipliers (ADM or ADMM) breaks
a complex optimization problem into much simpler subproblems. The ADM algo-
rithms are typically short and easy to implement yet exhibit (nearly) state-of-the-art
performance for large-scale optimization problems.

To apply ADM, we first formulate a given problem into the “ADM-ready” form,
so the final algorithm depends on the formulation. A problem like minimizex u(x)+
v(Cx) has six different “ADM-ready” formulations. They can be in the primal or
dual forms, and they differ by how dummy variables are introduced. To each “ADM-
ready” formulation, ADM can be applied in two different orders depending on how
the primal variables are updated. Finally, we get twelve different ADM algorithms!
How do they compare to each other? Which algorithm should one choose? In this
chapter, we show that many of the different ways of applying ADM are equiva-
lent. Specifically, we show that ADM applied to a primal formulation is equivalent
to ADM applied to its Lagrange dual; ADM is equivalent to a primal-dual algo-
rithm applied to the saddle-point formulation of the same problem. These results
are surprising since the primal and dual variables in ADM are seemingly treated
very differently, and some previous work exhibit preferences in one over the other
on specific problems.
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In addition, when one of the two objective functions is quadratic, possibly subject
to an affine constraint, we show that swapping the update order of the two primal
variables in ADM gives the same algorithm. These results identify the few truly dif-
ferent ADM algorithms for a problem, which generally have different forms of sub-
problems from which it is easy to pick one with the most computationally friendly
subproblems.

1 Introduction

The alternating direction method of multipliers (ADM or ADMM) is a very popular
algorithm with a wide range of applications in signal and image processing, machine
learning, statistics, compressive sensing, and operations research. Combined with
problem reformulation tricks, the method can reduce a complicated problem into
much simpler subproblems.

The vanilla ADM applies to a linearly constrained problem with a separable con-
vex objective function in the following “ADM-ready” form:{

minimize
x,y

f (x)+ g(y)

subject to Ax+By = b,
(P1)

where functions f ,g are proper, closed (i.e., lower semi-continuous), convex but
not necessarily differentiable. ADM reduces (P1) into two simpler subproblems
and then iteratively updates x, y, as well as a multiplier (dual) variable z. Given
(xk,yk,zk), ADM generates (xk+1,yk+1,zk+1) as follows

1. xk+1 ∈ argmin
x

f (x)+ (λ/2)‖Ax+Byk−b+λ−1zk‖2
2,

2. yk+1 ∈ argmin
y

g(y)+ (λ/2)‖Axk+1+By−b+λ−1zk‖2
2,

3. zk+1 = zk +λ (Axk+1 +Byk+1 −b),

where λ > 0 is a fixed parameter. We use “∈” since the subproblems do not neces-
sarily have unique solutions.

Since { f ,A,x} and {g,B,y} are in symmetric positions in (P1), swapping them
does not change the problem. This corresponds to switching the order that x and
y are updated in each iteration. But, since the variable updated first is used in the
updating of the other variable, this swap leads to a different sequence of variables
and thus a different algorithm.

Note that the order switch does not change the per-iteration cost of ADM. Also
note that one, however, cannot mix the two update orders at different iterations
because it will generally cause divergence, even when the primal-dual solution
to (P1) is unique. For example, let us apply ADMM with mixed update orders of
x and y and parameter λ = 1 to the problem

minimize
x,y

2|x− 10|+ |y| subject to x− y = 0,
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which has the unique primal-dual solution (x∗,y∗,z∗) = (10,10,1). Set initial values
(x0,y0,z0) = (3,2,2). At odd iterations, we apply the update order: x, y, and z; at
even iterations, we apply the update order: y, x, and z. Then we obtain (xk,yk,zk) =
(2,3,1) for odd k and (xk,yk,zk) = (3,2,2) for even k.

1.1 ADM Works in Many Different Ways

In spite of its popularity and vast literature, there are still simple unanswered ques-
tions about ADM: how many ways can ADM be applied? and which ways work
better? Before answering these questions, let us examine the following problem, to
which we can find twelve different ways to apply ADM:

minimize
x

u(x)+ v(Cx), (5.1)

where u and v are proper, closed, convex functions and C is a linear mapping.
Problem (5.1) generalizes a large number of signal and image processing problems,
inverse problems, and machine learning models.

We shall reformulate (5.1) into the form of (P1). By introducing dummy variables
in two different ways, we obtain two ADM-ready formulations of problem (5.1):{

minimize
x,y

u(x)+ v(y)

subject to Cx− y = 0
and

{
minimize

x,ȳ
u(x)+ v(Cȳ)

subject to x− ȳ = 0.
(5.2)

If C = I, these two formulations are exactly the same. In addition, we can derive the
dual problem of (5.1):

minimize
v

u∗(−C∗v)+ v∗(v), (5.3)

where u∗,v∗ are the convex conjugates (i.e., Legendre transforms) of functions u,v,
respectively, C∗ is the adjoint of C, and v is the dual variable. (The steps to de-
rive (5.3) from (5.1) are standard and thus omitted.) Then, we also reformulate (5.3)
into two ADM-ready forms, which use different dummy variables:{

minimize
u,v

u∗(u)+ v∗(v)

subject to u+C∗v = 0
and

{
minimize

ū,v
u∗(C∗ū)+ v∗(v)

subject to ū+ v = 0.
(5.4)

Clearly, ADM can be applied to all of the four formulations in (5.2) and (5.4), and
including the update order swaps, there are eight different ways to apply ADM.

Under some technical conditions such as the existence of saddle-point solutions,
all the eight ADM will converge to a saddle-point solution or solution for prob-
lem (5.1). In short, they all work.

It is worth noting that by the Moreau identity, the subproblems involving u∗ and
v∗ can be easily reduced to subproblems involving u and v, respectively. No signifi-
cant computing is required.
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The two formulations in (5.2), however, lead to significantly different ADM
subproblems. In the ADM applied to the left formulation, u and C will appear in
one subproblem and v in the other subproblem. To the right formulation, u will be
alone while v and C will appear in the same subproblem. This difference applies to
the two formulations in (5.4) as well. It depends on the structures of u,v,C to deter-
mine the better choices. Therefore, out of the eight, four will have (more) difficult
subproblems than the rest.

There are another four ways to apply ADM to problem (5.1). Every one of them
will have three subproblems that separately involve u,v,C, so they are all different
from the above eight. To get the first two, let us take the left formulation in (5.2) and
introduce a dummy variable s, obtaining a new equivalent formulation⎧⎪⎨

⎪⎩
minimize

x,y,s
u(s)+ v(y)

subject to Cx− y = 0,
x− s = 0.

(5.5)

It turns out that the same “dummy variable” trick applied to the right formulation
in (5.2) also gives (5.5), up to a change of variable names. Although there are three
variables, we can group (y,s) and treat x and (y,s) as the two variables. Then prob-
lem (5.5) has the form (P1). Hence, we have two ways to apply ADM to (5.5) with
two different update orders. Note that y and s do not appear together in any equation
or function, so the ADM subproblem that updates (y,s) will further decouple to two
separable subproblems of y and s; in other words, the resulting ADM has three sub-
problems involving {x,C}, {y,v}, {s,u} separately. The other two ways are results
of the same “dummy variable” trick applied to either formulation in (5.4). Again,
since now C has its own subproblem, these four ways are distinct from the previous
eight ways.

As demonstrated through an example, there are quite many ways to formulate
the same optimization problem into “ADM-ready” forms and obtain different ADM
algorithms. While most ADM users choose just one way without paying much att-
ention to the other choices, some show preferences toward a specific formulation.
For example, some prefer (5.5) over those in (5.2) and (5.4) since C, u, v all end up in
separate subproblems. When applying ADM to certain �1 minimization problems,
the authors of [24, 25] emphasize on the dual formulations, and later the authors
of [23] show a preference over the primal formulations. When ADM was proposed
to solve a traffic equilibrium problem, it was first applied to the dual formulation
in [13] and, years later, to the primal formulation in [12]. Regarding which one of
the two variables should be updated first in ADM, neither a rule nor an equivalence
claim is found in the literature. Other than giving preferences to ADM with simpler
subproblems, there is no results that compare the different formulations.
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1.2 Contributions

This chapter shows that, applied to certain pairs of different formulations of the
same problem, ADM will generate equivalent sequences of variables that can be
mapped exactly from one to another at every iteration. Specifically, between the seq-
uence of an ADM algorithm on a primal formulation and that on the corresponding
dual formulation, such maps exist. For a special class of problems, this mapping is
provided in [9].

We also show that whenever at least one of f and g is a quadratic function
(including affine function as a special case), possibly subject to an affine constraint,
the sequence of an ADM algorithm can be mapped to that of the ADM algorithm
using the opposite order for updating their variables.

Abusing the word “equivalence”, we say that ADM has “primal-dual equiva-
lence” and “update-order equivalence (with a quadratic objective function).”
Equivalent ADM algorithms take the same number of iterations to reach the same
accuracy. (However, it is possible that one algorithm is slightly better than the other
in terms of numerical stability, for example, against round-off errors.)

Equipped with these equivalence results, the first eight ways to apply ADM to
problem (5.1) that were discussed in Section 1.1 are reduced to four ways in light of
primal-dual equivalence, and the four will further reduce to two whenever u or v, or
both, is a quadratic function.

The last four ways to apply ADM on problem (5.1) discussed in Section 1.1,
which yield three subproblems that separately involve u, v, and C, are all equivalent
and reduce to just one due to primal-dual equivalence and one variable in them is as-
sociated with 0 objective (for example, variable x has 0 objective in problem (5.5)).

Take the �p-regularization problem, p ∈ [1,∞],

minimize
x

‖x‖p+ f (Cx) (5.6)

as an example, which is a special case of problem (5.1) with a quadratic function
u when p = 2. We list its three different formulations, whose ADM algorithms are
truly different, as follows. When p �= 2 and f is non-quadratic, each of the first two
formulations leads to a pair of different ADM algorithms with different orders of
variable update; otherwise, each pair of algorithms is equivalent.

1. Left formulation of (5.2): {
minimize

x,y
‖x‖p+ f (y)

subject to Cx− y = 0.

The subproblem for x involves �p-norm and C. The other one for y involves f .
2. Right formulation of (5.2):{

minimize
x,y

‖x‖p+ f (Cy)

subject to x− y = 0.
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The subproblem for x involves �p-norm and, for p = 1 and 2, has a closed-form
solution. The other subproblem for y involves f (C·).

3. Formulation (5.5): for any μ > 0,⎧⎪⎨
⎪⎩

minimize
x,y,s

‖s‖p + f (y)

subject to Cx− y = 0,
μ(x− s) = 0.

The subproblem for x is a quadratic program involving C∗C+μI. The subprob-
lem for s involves �p-norm. The subproblem for y involves f . The subproblems
for s and y are independent.

The best choice depends on which has the simplest subproblems.
The result of ADM’s primal-dual equivalence is surprising for three reasons.

Firstly, ADM iteration updates two primal variable, xk and yk in (P1) and one dual
variable, all in different manners. The updates to the primal variables are done in
a Gauss-Seidel manner and involve minimizing functions f and g, but the update
to the dual variable is explicit and linear. Surprisingly, ADM actually treats one
of the two primal variables and the dual variable equally as we will later show.
Secondly, most literature describes ADM as an inexact version of the augmented
Lagrangian method (ALM) [17], which updates (x,y) together rather than one after
another. Although ALM maintains the primal variables, under the hood ALM is the
dual-only proximal-point algorithm that iterates the dual variable. It is commonly
believed that ADM is an inexact dual algorithm. Thirdly, primal and dual problems
typically have different sizes and regularity properties, causing the same algorithm,
even if it is applicable to both, to exhibit different performance. For example, the
primal and dual variables may have different dimensions. If the primal function f
is Lipschitz differentiable, the dual function f ∗ is strongly convex but can be non-
differentiable, and vice versa. Such primal-dual differences often mean that it is
numerically advantageous to solve one rather than the other, yet our result means
that there is no such primal-dual difference on ADM.

Our maps between equivalent ADM sequences have very simple forms, as the
reader will see below. Besides the technical proofs that establish the maps, it is inter-
esting to mention the operator-theoretic perspective of our results. It is shown in [13]
that the dual-variable sequence of ADM coincides with a sequence of the Douglas-
Rachford splitting (DRS) algorithm [7, 18]. Our ADM’s primal-dual equivalence
can be obtained through the above ADM–DRS relation and the Moreau identity:
proxh +proxh∗ = I, applied to the proximal maps of f and f ∗ and those of g and g∗.
The details are omitted in this chapter. Here, proxh(x) := argmins h(s)+ 1

2‖s− x‖2.
Our results of primal-dual and update-order equivalence for ADM extends to

the Peaceman-Rachford splitting (PRS) algorithm. Let the PRS operator [19] be
denoted as TPRS = (2prox f − I) ◦ (2proxg − I). The DRS operator is the average
of the identity map and the PRS operator: TDRS = 1

2 I + 1
2 TPRS, and the relaxed

PRS (RPRS) operator is a weighted-average: TRPRS = (1−α)I +αTPRS, where
α ∈ (0,1]. The DRS and PRS algorithms that iteratively apply their operators to
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find a fixed point were originally proposed for evolving PDEs with two spatial
dimensions in the 1950s and then extended to finding a root of the sum of two
maximal monotone (set-valued) mappings by Lions and Mercier [18]. Eckstein
showed, in [8, Chapter 3.5], that DRS/PRS applied to the primal problem (5.1) is
equivalent to DRS/PRS applied to the dual problem (5.4) when C = I. We will show
that RPRS applied to (5.1) is equivalent to RPRS applied to (5.3) for all C.

In addition to the aforementioned primal-dual and update-order equivalence, we
obtain a primal-dual algorithm for the saddle-point formulation of (P1) that is also
equivalent to the ADM. This primal-dual algorithm is generally different from the
primal-dual algorithm proposed by Chambolle and Pock [3], while they become
the same in a special case. The connection between these two algorithms will be
explained.

Even when using the same number of dummy variables, truly different ADM
algorithms can have different iteration complexities (do not confuse them with the
difficulties of their subproblems). The convergence analysis of ADM, such as condi-
tions for sublinear or linear convergence, involves many different scenarios [6, 5, 4].
The discussion of convergence rates of ADM algorithms is beyond the scope of this
chapter. Our focus is on the equivalence.

1.3 Organization

This chapter is organized as follows. Section 2 specifies our notation, defini-
tions, and basic assumptions. The three equivalence results for ADM are shown in
Sections 4, 5, and 6: The primal-dual equivalence of ADM is discussed in Section 4;
ADM is shown to be equivalent to a primal-dual algorithm applied to the saddle-
point formulation in Section 5; In Section 6, we show the update-order equivalence
of ADM if f or g is a quadratic function, possibly subject to an affine constraint. Sec-
tions 4 to 6 do not require any knowledge of monotone operators. The primal-dual
and update-order equivalence of RPRS is shown in Section 7 based on monotone
operator properties. We conclude this chapter with the application of our results on
total variation image denoising in Section 8.

2 Notation, Definitions, and Assumptions

Let H1, H2, and G be (possibly infinite dimensional) Hilbert spaces. Bold lowercase
letters such as x, y, u, and v are used for points in the Hilbert spaces. In the example
of (P1), we have x∈H1, y∈H2, and b∈ G. When the Hilbert space a point belongs
to is clear from the context, we do not specify it for the sake of simplicity. The inner
product between points x and y is denoted by 〈x,y〉, and ‖x‖2 :=

√〈x,x〉 is the
corresponding norm; ‖ ·‖1 and ‖ ·‖∞ denote the �1 and �∞ norms, respectively. Bold
uppercase letters such as A and B are used for both continuous linear mappings and
matrices. A∗ denotes the adjoint of A. I denotes the identity mapping.

If C is a convex and nonempty set, the indicator function ιC is defined as follows:
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ιC(x) =
{

0, if x ∈ C,
∞, if x /∈ C.

Both lower and uppercase letters such as f , g, F , and G are used for functions. Let
∂ f (x) be the subdifferential of function f at x. The proximal operator prox f (·) of
function f is defined as

prox f (·)(x) = argmin
y

f (y)+
1
2
‖y− x‖2

2,

where the minimization problem has a unique solution. The convex conjugate f ∗ of
function f is defined as

f ∗(v) = sup
x
{〈v,x〉− f (x)}.

Let L : H→ G, the infimal postcomposition [1, Def. 12.33] of f : H→ (−∞,+∞]
by L is given by

L� f : s  → inf f (L−1(s)) = inf
x:Lx=s

f (x),

with dom(L� f ) = L(dom( f )).

Lemma 1. If f is convex and L is affine and expressed as L(·) = A ·+b, then L� f
is convex and the convex conjugate of L� f can be found as follows:

(L� f )∗(·) = f ∗(A∗·)+ 〈·,b〉.

Proof. Following from the definitions of convex conjugate and infimal postcompo-
sition, we have

(L� f )∗(v) = sup
y
〈v,y〉−L� f (y) = sup

x
〈v,Ax+b〉− f (x)

= sup
x
〈A∗v,x〉− f (x)+ 〈v,b〉= f ∗(A∗v)+ 〈v,b〉.

Definition 1. We say that an algorithm I applied to a problem is equivalent to
an algorithm II applied to either the same or an equivalent problem if, given
the set of parameters and a sequence of iterates {ξ k

2}k≥0 of algorithm II, i.e.,
ξ k+1

2 = A2(ξ k
2,ξ

k−1
2 , · · · ,ξ k−Δ1

2 ) with Δ1 ≥ 0, there exist a set of parameters and

a sequence of iterates {ξ k
1}k≥0 of algorithm I such that ξ k

1 = T (ξ k
2,ξ

k−1
2 , · · · ,ξ k−Δ

2 )
for some transformation T and Δ ≥ 0.

Definition 2. An optimization algorithm is called primal-dual equivalent if this
algorithm applied to the primal formulation is equivalent to the same algorithm
applied to its Lagrange dual.

It is important to note that most algorithms are not primal-dual equivalent. ALM
applied to the primal problem is equivalent to proximal point method applied to
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the dual problem [20], but both algorithms are not primal-dual equivalent. In this
chapter, we will show that ADM and RPRS are primal-dual equivalent.

We make the following assumptions throughout the chapter:

Assumption 1. All the functions in this chapter are assumed to be proper, closed,
and convex.

Assumption 2. The saddle-point solutions to all the optimization problems in this
chapter are assumed to exist.

3 Equivalent Problems

A primal formulation equivalent to (P1) is{
minimize

s,t
F(s)+G(t)

subject to s+ t = 0,
(P2)

where s, t ∈ G and

F(s) := min
x

f (x)+ ι{x:Ax=s}(x), (5.7a)

G(t) := min
y

g(y)+ ι{y:By−b=t}(y). (5.7b)

Remark 1. If we define L f and Lg as L f (x) = Ax and Lg(y) = By−b, respectively,
then

F = L f � f , G = Lg � g.

The Lagrange dual of (P1) is

minimize
v

f ∗(−A∗v)+ g∗(−B∗v)+ 〈v,b〉, (5.8)

which can be derived from minimize
v

(
−min

x,y
L(x,y,v)

)
with the Lagrangian defined

as follows:

L(x,y,v) = f (x)+ g(y)+ 〈v,Ax+By−b〉.

An ADM-ready formulation of (5.8) is{
minimize

u,v
f ∗(−A∗u)+ g∗(−B∗v)+ 〈v,b〉

subject to u− v = 0.
(D1)

When ADM is applied to an ADM-ready formulation of the Lagrange dual problem,
we call it Dual ADM. The original ADM is called Primal ADM.
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Following similar steps, the ADM ready formulation of the Lagrange dual of
(P2) is {

minimize
u,v

F∗(−u)+G∗(−v)

subject to u− v = 0.
(D2)

The equivalence between (D1) and (D2) is trivial since

F∗(u) = f ∗(A∗u),

G∗(v) = g∗(B∗v)−〈v,b〉,

which follows from Lemma 1.
Although there can be multiple equivalent formulations of the same problem

(e.g., (P1), (P2), (5.8), and (D1)/(D2) are equivalent), an algorithm may or may not
be applicable to some of them. Even when they are, on different formulations, their
behaviors such as convergence and speed of convergence are different. In particular,
most algorithms have different behaviors on primal and dual formulations of the
same problem. An algorithm applied to a primal formulation does not dictate the
behaviors of the same algorithm applied to the related dual formulation. The simplex
method in linear programming has different performance when applied to both the
primal and dual problems, i.e., the primal simplex method starts with a primal basic
feasible solution (dual infeasible) until the dual feasibility conditions are satisfied,
while the dual simplex method starts with a dual basic feasible solution (primal
infeasible) until the primal feasibility conditions are satisfied. The ALM also has
different performance when applied to the primal and dual problems, i.e., ALM
applied to the primal problem is equivalent to proximal point method applied to the
related dual problem, and proximal point method is, in general, different from ALM
on the same problem.

4 Primal-Dual Equivalence of ADM

In this section we show the primal-dual equivalence of ADM. Algorithms 1–3
describe how ADM is applied to (P1), (P2), and (D1)/(D2) [14, 15].

Algorithm 1 ADM on (P1)

initialize x0
1, z0

1, λ > 0
for k = 0,1, · · · do

yk+1
1 ∈ argmin

y
g(y)+(2λ )−1‖Axk

1 +By−b+λzk
1‖2

2

xk+1
1 ∈ argmin

x
f (x)+(2λ )−1‖Ax+Byk+1

1 −b+λzk
1‖2

2

zk+1
1 = zk

1 +λ−1(Axk+1
1 +Byk+1

1 −b)
end for
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Algorithm 2 ADM on (P2)

initialize s0
2, z0

2, λ > 0
for k = 0,1, · · · do

tk+1
2 = argmin

t
G(t)+(2λ )−1‖sk

2 + t+λzk
2‖2

2

sk+1
2 = argmin

s
F(s)+(2λ )−1‖s+ tk+1

2 +λzk
2‖2

2

zk+1
2 = zk

2 +λ−1(sk+1
2 + tk+1

2 )
end for

Algorithm 3 ADM on (D1)/(D2)

initialize u0
3, z0

3, λ > 0
for k = 0,1, · · · do

vk+1
3 = argmin

v
G∗(−v)+ λ

2 ‖uk
3 −v+λ−1zk

3‖2
2

uk+1
3 = argmin

u
F∗(−u)+ λ

2 ‖u−vk+1
3 +λ−1zk

3‖2
2

zk+1
3 = zk

3 +λ (uk+1
3 −vk+1

3 )
end for

The yk
1 and xk

1 in Algorithm 1 may not be unique because of the matrices A and
B, while Axk

1 and Byk
1 are unique. In addition, Axk

1 and Byk
1 are calculated for twice

and thus stored in the implementation of Algorithm 1 to save the second calcula-
tion. Following the equivalence of Algorithms 1 and 2 in Part 1 of the following
Theorem 1, we can view problem (P2) as the master problem of (P1). We can say
that ADM is essentially an algorithm applied only to the master problem (P2), which
is Algorithm 2; this fact has been obscured by the often-seen Algorithm 1, which
integrates ADM on the master problem with the independent subproblems in (5.7).

Theorem 1 (Equivalence of Algorithms 1–3). Suppose Ax0
1 = s0

2 = z0
3 and

z0
1 = z0

2 = u0
3 and that the same parameter λ is used in Algorithms 1–3. Then, their

equivalence can be established as follows:

1. From xk
1, yk

1, zk
1 of Algorithm 1, we obtain tk

2, sk
2, zk

2 of Algorithm 2 through:

tk
2 = Byk

1 −b, (5.9a)

sk
2 = Axk

1, (5.9b)

zk
2 = zk

1. (5.9c)

From tk
2, sk

2, zk
2 of Algorithm 2, we obtain yk

1, xk
1, zk

1 of Algorithm 1 through:

yk
1 = argmin

y
{g(y) : By−b = tk

2}, (5.10a)

xk
1 = argmin

x
{ f (x) : Ax = sk

2}, (5.10b)

zk
1 = zk

2. (5.10c)
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2. We can recover the iterates of Algorithms 2 and 3 from each other through

uk
3 = zk

2, zk
3 = sk

2. (5.11)

Proof. Part 1. Proof by induction.
We argue that under (5.9b) and (5.9c), Algorithms 1 and 2 have essentially
identical subproblems in their first steps at the kth iteration. Consider the fol-
lowing problem, which is obtained by plugging the definition of G(·) into the
tk+1
2 -subproblem of Algorithm 2:

(yk+1
1 , tk+1

2 ) = argmin
y,t

g(y)+ ι{(y,t):By−b=t}(y, t)+ (2λ )−1‖sk
2 + t+λzk

2‖2
2.

(5.12)

If one minimizes over y first while keeping t as a variable, one eliminates y and
recovers the tk+1

2 -subproblem of Algorithm 2. If one minimizes over t first while
keeping y as a variable, then after plugging in (5.9b) and (5.9c), problem (5.12)
reduces to the yk+1

1 -subproblem of Algorithm 1. In addition, (yk+1
1 , tk+1

2 ) obeys

tk+1
2 = Byk+1

1 −b, (5.13)

which is (5.9a) at k+ 1. Plugging t = tk+1
2 into (5.12) yields problem (5.10a) for

yk+1
1 , which must be equivalent to the yk+1

1 -subproblem of Algorithm 2. There-
fore, the yk+1

1 -subproblem of Algorithm 1 and the tk+1
2 -subproblem of Algo-

rithm 2 are equivalent through (5.9a) and (5.10a) at k+ 1, respectively.

Similarly, under (5.13) and (5.9c), we can show that the xk+1
1 -subproblem of

Algorithm 1 and the sk+1
2 -subproblem of Algorithm 2 are equivalent through the

formulas for (5.9b) and (5.10b) at k+ 1, respectively.
Finally, under (5.9a) and (5.9b) at k+ 1 and zk

2 = zk
1, the formulas for zk+1

1 and
zk+1

2 in Algorithms 1 and 2 are identical, and they return zk+1
1 = zk+1

2 , which is (5.9c)
and (5.10c) at k+ 1.

Part 2. Proof by induction. Suppose that (5.11) holds. We shall show that (5.11)
holds at k+ 1. Starting from the optimality condition of the tk+1

2 -subproblem of
Algorithm 2, we derive

0 ∈ ∂G(tk+1
2 )+λ−1(sk

2 + tk+1
2 +λzk

2)

⇐⇒ tk+1
2 ∈ ∂G∗(−λ−1(sk

2 + tk+1
2 +λzk

2))

⇐⇒ λ
[
λ−1(sk

2 + tk+1
2 +λzk

2)
]
− (λzk

2 + sk
2) ∈ ∂G∗(−λ−1(sk

2 + tk+1
2 +λzk

2))

⇐⇒ −λ
[
λ−1(sk

2 + tk+1
2 +λzk

2)
]
+(λuk

3 + zk
3) ∈ −∂G∗(−λ−1(sk

2 + tk+1
2 +λzk

2))

⇐⇒ 0 ∈ −∂G∗(−λ−1(sk
2 + tk+1

2 +λzk
2))−λ

[
uk

3 −λ−1(sk
2 + tk+1

2 +λzk
2)+λ−1zk

3

]
⇐⇒ vk+1

3 = λ−1(sk
2 + tk+1

2 +λzk
2) = λ−1(zk

3 + tk+1
2 +λzk

2),

where the last equivalence follows from the optimality condition for the vk+1
3 -

subproblem of Algorithm 3.
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Starting from the optimality condition of the sk+1
2 -subproblem of Algorithm 2,

and applying the update, zk+1
2 = zk

2+λ−1(sk+1
2 + tk+1

2 ), in Algorithm 2 and the iden-
tity of tk+1

2 obtained above, we derive

0 ∈ ∂F(sk+1
2 )+λ−1(sk+1

2 + tk+1
2 +λzk

2)

⇐⇒ 0 ∈ ∂F(sk+1
2 )+ zk+1

2

⇐⇒ 0 ∈ sk+1
2 − ∂F∗(−zk+1

2 )

⇐⇒ 0 ∈ λ (zk+1
2 − zk

2)− tk+1
2 − ∂F∗(−zk+1

2 )

⇐⇒ 0 ∈ λ (zk+1
2 − zk

2)+ zk
3 +λ (zk

2 − vk+1
3 )− ∂F∗(−zk+1

2 )

⇐⇒ 0 ∈ −∂F∗(−zk+1
2 )+λ (zk+1

2 − vk+1
3 +λ−1zk

3)

⇐⇒ zk+1
2 = uk+1

3 .

where the last equivalence follows from the optimality condition for the uk+1
3 -

subproblem of Algorithm 3. Finally, combining the update formulas of zk+1
2 and

zk+1
3 in Algorithms 2 and 3, respectively, as well as the identities for uk+1

3 and vk+1
3

obtained above, we obtain

zk+1
3 = zk

3 +λ (uk+1
3 − vk+1

3 ) = sk +λ (zk+1
2 − zk

2 −λ−1(sk
2 + tk+1

2 ))

= λ (zk+1
2 − zk

2)− tk+1
2 = sk+1

2 .

��
Remark 2. Part 2 of the theorem (ADM’s primal-dual equivalence) can also be
derived by combining the following two equivalence results: (i) the equivalence
between ADM on the primal problem and the Douglas-Rachford splitting (DRS)
algorithm [7, 18] on the dual problem [13], and (ii) the equivalence result be-
tween DRS algorithms applied to the master problem (P2) and its dual problem
(cf. [8, Chapter 3.5] [9]). In this chapter, however, we provide an elementary alge-
braic proof in order to derive the formulas in Theorem 1 that recover the iterates of
one algorithm from another.

Part 2 of the theorem shows that ADM is a symmetric primal-dual algorithm. The
reciprocal positions of parameter λ indicates its function to “balance” the primal and
dual progresses.

Part 2 of the theorem also shows that Algorithms 2 and 3 have no difference,
in terms of per-iteration complexity and the number of iterations needed to reach
an accuracy. However, Algorithms 1 and 2 have difference in terms of per-iteration
complexity. In fact, Algorithm 2 is implemented for Algorithm 1 because Algo-
rithm 2 has smaller complexity than Algorithm 1. See the examples in Sections 4.2
and 4.3.
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4.1 Primal-Dual Equivalence of ADM on (5.1) with Three
Subproblems

In Section 1.1, we introduced four different ways to apply ADM on (5.1) with three
subproblems. The ADM-ready formulation for the primal problem is (5.5), and the
ADM applied to this formulation is

xk+1 = argmin
x

‖x− sk +λzk
s‖2

2 + ‖Cx− yk+λzk
y‖2

2, (5.14a)

sk+1 = argmin
s

u(s)+ (2λ )−1‖xk+1 − s+λzk
s‖2

2, (5.14b)

yk+1 = argmin
y

v(y)+ (2λ )−1‖Cxk+1 − y+λzk
y‖2

2, (5.14c)

zk+1
s = zk

s +λ−1(xk+1 − sk+1), (5.14d)

zk+1
y = zk

y +λ−1(Cxk+1 − yk+1). (5.14e)

Similarly, we can introduce a dummy variable t into the left formulation in (5.4) and
obtain a new equivalent formulation{

minimize
u,v,t

u∗(u)+ v∗(t)

subject to C∗v+u = 0, v− t = 0.
(5.15)

The ADM applied to (5.15) is

vk+1 = argmin
v

‖C∗v+uk +λ−1zk
u‖2

2 + ‖v− tk+λ−1zk
t‖2

2, (5.16a)

uk+1 = argmin
u

u∗(u)+
λ
2
‖C∗vk+1 +u+λ−1zk

u‖2
2, (5.16b)

tk+1 = argmin
t

v∗(t)+
λ
2
‖vk+1 − t+λ−1zk

t ‖2
2, (5.16c)

zk+1
u = zk

u +λ (C∗vk+1 +uk+1), (5.16d)

zk+1
t = zk

t +λ (vk+1 − tk+1). (5.16e)

Interestingly, as shown in the following theorem, ADM algorithms (5.14) and
(5.16) applied to (5.5) and (5.15) are equivalent.

Theorem 2. If the initialization for algorithms (5.14) and (5.16) satisfies z0
y = t0,

z0
s = u0, s0 =−z0

u, and y0 = z0
t . Then for k ≥ 1, we have the following equivalence

results between the iterations of the two algorithms:

zk
y = tk, zk

s = uk, sk =−zk
u, yk = zk

t .

The proof is similar to the proof of Theorem 1 and is omitted here.
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4.2 Example: Basis Pursuit

The basis pursuit problem seeks for the minimal �1 solution to a set of linear equa-
tions:

minimize
u

‖u‖1 subject to Au = b. (5.17)

Its Lagrange dual is

minimize
x

−bT x subject to ‖A∗x‖∞ ≤ 1. (5.18)

The YALL1 algorithms [24] implement ADMs on a set of primal and dual formu-
lations for basis pursuit and LASSO, yet ADM for (5.17) is not given (however, a
linearized ADM is given for (5.17)). Although seemingly awkward, problem (5.17)
can be turned equivalently into the ADM-ready form

minimize
u,v

‖v‖1 + ι{u:Au=b}(u) subject to u− v = 0. (5.19)

Similarly, problem (5.18) can be turned equivalently into the ADM-ready form

minimize
x,y

−bT x+ ιB∞
1
(y) subject to A∗x− y = 0, (5.20)

where B∞
1 = {y : ‖y‖∞ ≤ 1}.

For simplicity, let us suppose that A has full row rank so the inverse of AA∗
exists. (Otherwise, Au= b are redundant whenever they are consistent; and (AA∗)−1

shall be replaced by the pseudo-inverse below.) ADM for problem (5.19) can be
simplified to the iteration:

vk+1
3 = argmin

v
‖v‖1 +

λ
2
‖uk

3 − v+
1
λ

zk
3‖2

2, (5.21a)

uk+1
3 =vk+1

3 − 1
λ

zk
3 −A∗(AA∗)−1(A(vk+1

3 − 1
λ

zk
3)−b), (5.21b)

zk+1
3 =zk

3 +λ (uk+1
3 − vk+1

3 ). (5.21c)

And ADM for problem (5.20) can be simplified to the iteration:

yk+1
1 =PB∞

1
(A∗xk

1 +λzk
1), (5.22a)

xk+1
1 = (AA∗)−1(Ayk+1

1 −λ (Azk
1 −b)), (5.22b)

zk+1
1 = zk

1 +λ−1(A∗xk+1
1 − yk+1

1 ), (5.22c)

where PB∞
1

is the projection onto B∞
1 . Looking into the iteration in (5.22), we can

find that A∗xk
1 is used in both the kth and k+1st iterations. To save the computation,

we can store A∗xk
1 as sk

2. In addition, let tk
2 = yk

1 and zk
2 = zk

1, we have
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tk+1
2 =PB∞

1
(sk

2 +λzk
2), (5.23a)

sk+1
2 = A∗(AA∗)−1(A(tk+1

2 −λAzk
2)+λb)), (5.23b)

zk+1
2 = zk

2 +λ−1(sk+1
2 − tk+1

2 ), (5.23c)

which is exactly Algorithm 2 for (5.20). Thus, Algorithm 2 has smaller complex-
ity than Algorithm 1, i.e., one matrix vector multiplication A∗xk

1 is saved from
Algorithm 2.

The corollary below follows directly from Theorem 1 by associating (5.20)
and (5.19) as (P1) and (D2), and (5.22) and (5.21) with the iterations of Algorithms 1
and 3, respectively.

Corollary 1. Suppose that Au = b are consistent. Consider ADM iterations (5.21)
and (5.22). Let u0

3 = z0
1 and z0

3 = A∗x0
1. Then, for k ≥ 1, iterations (5.21) and (5.22)

are equivalent. In particular,

• From xk
1, zk

1 in (5.22), we obtain uk
3, zk

3 in (5.21) through:

uk
3 = zk

1, zk
3 = A∗xk

1.

• From uk
3, zk

3 in (5.21), we obtain xk
1, zk

1 in (5.22) through:

xk
1 = (AA∗)−1Azk

3, zk
1 = uk

3.

4.3 Example: Basis Pursuit Denoising

The basis pursuit denoising problem is

minimize
u

‖u‖1 +
1

2α
‖Au−b‖2

2 (5.24)

and its Lagrange dual, in the ADM-ready form, is

minimize
x,y

−〈b,x〉+ α
2
‖x‖2

2 + ιB∞
1
(y) subject to A∗x− y = 0. (5.25)

The iteration of ADM for (5.25) is

yk+1
1 =PB∞

1
(A∗xk

1 +λzk
1), (5.26a)

xk+1
1 = (AA∗+αλ I)−1(Ayk+1

1 −λ (Azk
1 −b)), (5.26b)

zk+1
1 = zk

1 +λ−1(A∗xk+1
1 − yk+1

1 ). (5.26c)

Looking into the iteration in (5.26), we can find that A∗xk
1 is used in both the kth and

k+ 1st iterations. To save the computation, we can store A∗xk
1 as sk

2. In addition, let
tk
2 = yk

1 and zk
2 = zk

1, we have
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tk+1
2 =PB∞

1
(sk

2 +λzk
2), (5.27a)

sk+1
2 = A∗(AA∗+αλ I)−1(A(tk+1

2 −λzk
2)+λb)), (5.27b)

zk+1
2 = zk

2 +λ−1(sk+1
2 − tk+1

2 ), (5.27c)

which is exactly Algorithm 2 for (5.25). Thus, Algorithm 2 has a lower per iteration
complexity than Algorithm 1, i.e., one matrix vector multiplication A∗xk

1 is saved
from Algorithm 2. In addition, if A∗A = I, (5.27b) becomes

sk+1
2 =(αλ + 1)−1(tk+1

2 −λzk
2 +λA∗b), (5.28)

and no matrix vector multiplications is needed during the iteration because λA∗b
can be precalculated.

The ADM-ready form of the original problem (5.24) is

minimize
u,v

‖v‖1 +
1

2α
‖Au−b‖2

2 subject to u− v = 0, (5.29)

whose ADM iteration is

vk+1
3 = argmin

v
‖v‖1 +

λ
2
‖uk

3 − v+
1
λ

zk
3‖2

2, (5.30a)

uk+1
3 = (A∗A+αλ I)−1(A∗b+αλvk+1

3 −αzk
3), (5.30b)

zk+1
3 = zk

3 +λ (uk+1
3 − vk+1

3 ). (5.30c)

The corollary below follows directly from Theorem 1.

Corollary 2. Consider ADM iterations (5.26) and (5.30). Let u0
3 = z0

1 and z0
3 =

A∗x0
1. For k ≥ 1, ADM on the dual and primal problems (5.26) and (5.30) are equiv-

alent in the following way:

• From xk
1, zk

1 in (5.26), we recover uk
3, zk

3 in (5.30) through:

uk
3 = zk

1, zk
3 = A∗xk

1.

• From uk
3, zk

3 in (5.30), we recover xk
1, zk

1 in (5.26) through:

xk
1 =−(Auk

3 −b)/α, zk
1 = uk

3.

Remark 3. Iteration (5.30) is different from that of ADM for another ADM-ready
form of (5.24)

minimize
u,v

‖u‖1 +
1

2α
‖v‖2

2 subject to Au− v = b, (5.31)
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which is used in [24]. In general, there are different ADM-ready forms and their
ADM algorithms yield different iterates. ADM on one ADM-ready form is equiva-
lent to it on the corresponding dual ADM-ready form.

5 ADM as a Primal-Dual Algorithm
on the Saddle-Point Problem

As shown in Section 4, ADM on a pair of convex primal and dual problems are
equivalent, and there is a connection between zk

1 in Algorithm 1 and dual variable
uk

3 in Algorithm 3. This primal-dual equivalence naturally suggests that ADM is
also equivalent to a primal-dual algorithm involving both primal and dual variables.

We derive problem (P1) into an equivalent primal-dual saddle-point problem
(5.33) as follows:

min
y,x

g(y)+ f (x)+ ι{(x,y):Ax=b−By}(x,y)

=min
y

g(y)+F(b−By)

=min
y

max
u

g(y)+ 〈−u,b−By〉−F∗(−u) (5.32)

=min
y

max
u

g(y)+ 〈u,By−b〉− f ∗(−A∗u). (5.33)

A primal-dual algorithm for solving (5.33) is described in Algorithm 4. Theorem 3
establishes the equivalence between Algorithms 1 and 4.

Algorithm 4 Primal-dual formulation of ADM on problem (5.33)

initialize u0
4, u−1

4 , y0
4, λ > 0

for k = 0,1, · · · do
ūk

4 = 2uk
4 −uk−1

4

yk+1
4 = argmin

y
g(y)+(2λ )−1‖By−Byk

4 +λ ūk
4‖2

2

uk+1
4 = argmin

u
f ∗(−A∗u)−〈u,Byk+1

4 −b〉+λ/2‖u−uk
4‖2

2

end for

Remark 4. Publication [3] proposed a primal-dual algorithm for (5.32) and obtained
its connection to ADM [10]: When B = I, ADM is equivalent to the primal-dual
algorithm in [3]; When B �= I, the primal-dual algorithm is a preconditioned ADM
as an additional proximal term δ/2‖y− yk

4‖2
2 − (2λ )−1‖By−Byk

4‖2
2 is added to

the subproblem for yk+1
4 . This is also a special case of inexact ADM in [6]. Our

Algorithm 4 is a primal-dual algorithm that is equivalent to ADM in the general
case.
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Theorem 3 (Equivalence between Algorithms 1 and 4). Suppose that Ax0
1 =

λ (u0
4 −u−1

4 )+b−By0
4 and z0

1 = u0
4. Then, Algorithms 1 and 4 are equivalent with

the identities:

Axk
1 = λ (uk

4 −uk−1
4 )+b−Byk

4, zk
1 = uk

4, (5.34)

for all k > 0.

Proof. By assumption, (5.34) holds at iteration k = 0.
Proof by induction. Suppose that (5.34) holds at iteration k ≥ 0. We shall estab-
lish (5.34) at iteration k+ 1. From the first step of Algorithm 1, we have

yk+1
1 =argmin

y
g(y)+ (2λ )−1‖Axk

1 +By−b+λzk
1‖2

2

=argmin
y

g(y)+ (2λ )−1‖λ (uk
4 −uk−1

4 )+By−Byk
4+λuk

4‖2
2,

which is the same as the first step in Algorithm 4. Thus we have yk+1
1 = yk+1

4 .
Combing the second and third steps of Algorithm 1, we have

0 ∈ ∂ f (xk+1
1 )+λ−1A∗(Axk+1

1 +Byk+1
1 −b+λzk

1) = ∂ f (xk+1
1 )+A∗zk+1

1 .

Therefore,

xk+1
1 ∈ ∂ f ∗(−A∗zk+1

1 )

=⇒ Axk+1
1 ∈ ∂F∗(−zk+1

1 )

⇐⇒ λ (zk+1
1 − zk

1)+b−Byk+1
1 ∈ ∂F∗(−zk+1

1 )

⇐⇒ zk+1
1 = argmin

z
F∗(−z)−〈z,Byk+1

1 −b〉+λ/2‖z− zk
1‖2

2

⇐⇒ zk+1
1 = argmin

z
f ∗(−A∗z)−〈z,Byk+1

4 −b〉+λ/2‖z−uk
4‖2

2,

where the last line is the second step of Algorithm 4. Therefore, we have zk+1
1 = uk+1

4
and Axk+1

1 = λ (zk+1
1 − zk

1)+b−Byk+1
1 = λ (uk+1

4 −uk
4)+b−Byk+1

4 . ��

6 Equivalence of ADM for Different Orders

In both problem (P1) and Algorithm 1, we can swap x and y and obtain Algorithm 5,
which is still an ADM algorithm. In general, the two algorithms are different. In this
section, we show that for a certain type of functions f (or g), Algorithms 1 and 5
become equivalent.
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Algorithm 5 ADM2 on (P1)

initialize y0
5, z0

5, λ > 0
for k = 0,1, · · · do

xk+1
5 = argmin

x
f (x)+(2λ )−1‖Ax+Byk

5 −b+λzk
5‖2

2

yk+1
5 = argmin

y
g(y)+(2λ )−1‖Axk+1

5 +By−b+λzk
5‖2

2

zk+1
5 = zk

5 +λ−1(Axk+1
5 +Byk+1

5 −b)
end for

The assumption that we need is that either proxF(·) or proxG(·) is affine (cf. (5.7)
for the definitions of F and G). The definition of affine mapping is given in
Definition 3.

Definition 3. A mapping T is affine if T (r)−T(0) is linear in r, i.e.,

T (αr1 +βr2)−T (0) = α[T (r1)−T(0)]+β [T(r2)−T (0)], ∀α,β ∈ R.
(5.35)

A mapping T is affine if and only if it can be written as a linear mapping plus a
constant, and the following proposition provides several equivalent statements for
proxG(·) being affine.

Proposition 1. Let λ > 0. The following statements are equivalent:

1. proxG(·) is affine;
2. proxλG(·) is affine;
3. aproxG(·) ◦ bI+ cI is affine for any scalars a, b and c;
4. proxG∗(·) is affine;
5. G is convex quadratic (or, affine or constant) and its domain dom(G) is either

G or the intersection of hyperplanes in G.

In addition, if function g is convex quadratic and its domain is the intersection of
hyperplanes, then function G defined in (5.7b) satisfies Part 5 above.

Proposition 2. If proxG(·) is affine, then the following holds for any r1 and r2:

proxG(·)(2r1 − r2) = 2proxG(·)r1 −proxG(·)r2. (5.36)

Proof. Equation (5.36) is obtained by letting α = 2 and β =−1 in (5.35). ��
Theorem 4 (Equivalence of Algorithms 1 and 5).

1. Assume that proxλG(·) is affine. Given the sequences yk
5, zk

5, and xk
5 of Algo-

rithm 5, if y0
5 and z0

5 satisfy −z0
5 ∈ ∂G(By0

5−b), then we can initialize Algorithm
1 with x0

1 = x1
5 and z0

1 = z0
5 +λ−1(Ax1

5 +By0
5 −b), and recover the sequences

xk
1 and zk

1 of Algorithm 1 through

xk
1 = xk+1

5 , (5.37a)

zk
1 = zk

5 +λ−1(Axk+1
5 +Byk

5 −b). (5.37b)
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2. Assume that proxλF(·) is affine. Given the sequences xk
1, zk

1, and yk
1 of Algo-

rithm 1, if x0
1 and z0

1 satisfy −z0
1 ∈ ∂F(Ax0

1), then we can initialize Algorithm 5
with y0

5 = y1
1 and z0

5 = z0
1 +λ−1(Ax0

1 +By1
1 −b), and recover the sequences yk

5
and zk

5 of Algorithm 5 through

yk
5 = yk+1

1 , (5.38a)

zk
5 = zk

1 +λ−1(Axk
1 +Byk+1

1 −b). (5.38b)

Proof. We prove Part 1 only by induction. (The proof for the other part is similar.)
The initialization of Algorithm 1 clearly follows (5.37) at k = 0. Suppose that (5.37)
holds at k ≥ 0. We shall show that (5.37) holds at k+1. We first show from the affine
property of proxλG(·) that

Byk+1
1 = 2Byk+1

5 −Byk
5. (5.39)

The optimization subproblems for y1 and y5 in Algorithms 1 and 5, respectively, are
as follows:

yk+1
1 = argmin

y
g(y)+ (2λ )−1‖Axk

1 +By−b+λzk
1‖2

2,

yk+1
5 = argmin

y
g(y)+ (2λ )−1‖Axk+1

5 +By−b+λzk
5‖2

2.

Following the definition of G in (5.7), we have

Byk+1
1 −b = proxλG(·)(−Axk

1 −λzk
1), (5.40a)

Byk+1
5 −b = proxλG(·)(−Axk+1

5 −λzk
5), (5.40b)

Byk
5 −b = proxλG(·)(−Axk

5 −λzk−1
5 ). (5.40c)

The third step of Algorithm 5 is

zk
5 = zk−1

5 +λ−1(Axk
5 +Byk

5 −b). (5.41)

(Note that for k = 0, the assumption −z0
5 ∈ ∂G(By0

5 −b) ensures the existence of
z−1

5 in (5.40c) and (5.41).) Then, (5.37) and (5.41) give us

Axk
1 +λzk

1
(5.37)
= Axk+1

5 +λzk
5 +Axk+1

5 +Byk
5 −b

= 2(Axk+1
5 +λzk

5)− (λzk
5 −Byk

5 +b)
(5.41)
= 2(Axk+1

5 +λzk
5)− (Axk

5 +λzk−1
5 ).

Since proxλG(·) is affine, we have (5.36). Once we plug in (5.36): r1 = −Axk+1
5 −

λzk
5, r2 = −Axk

5 − λzk−1
5 , and 2r1 − r2 = −Axk

1 −λzk
1 and then apply (5.40), we

obtain (5.39).
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Next, the third step of Algorithm 5 and (5.39) give us

Byk+1
1 −b+λzk

1
(5.39)
= 2(Byk+1

5 −b)− (Byk
5−b)+λzk

5 +(Axk+1
5 +Byk

5 −b)

= (Byk+1
5 −b)+λzk

5+(Axk+1
5 +Byk+1

5 −b)

= (Byk+1
5 −b)+λzk+1

5 .

This identity shows that the updates of xk+1
1 and xk+2

5 in Algorithms 1 and 5, respec-
tively, have identical data, and therefore, we recover xk+1

1 = xk+2
5 .

Lastly, from the third step of Algorithm 1 and the identities above, it follows that

zk+1
1 = zk

1 +λ−1(Axk+1
1 +Byk+1

1 −b)

= zk
1 +λ−1

(
Axk+2

5 +(Byk+1
5 −b+λzk+1

5 −λzk
1)
)

= zk+1
5 +λ−1(Axk+2

5 +Byk+1
5 −b).

Therefore, we obtain (5.37) at k+ 1. ��
Remark 5. We can avoid the technical condition−z0

5 ∈ ∂G(By0
5−b) on Algorithm 5

in Part 1 of Theorem 4. When it does not hold, we can use the always-true rel-
ation −z1

5 ∈ ∂G(By1
5 −b) instead; correspondingly, we shall add one iteration to the

iterates of Algorithm 5, namely, initialize Algorithm 1 with x0
1 = x2

5 and z0
1 = z1

5 +
λ−1(Ax2

5 +By1
5 −b) and recover the sequences xk

1 and zk
1 of Algorithm 1 through

xk
1 = xk+2

5 , (5.42a)

zk
1 = zk+1

5 +λ−1(Axk+2
5 +Byk+1

5 −b). (5.42b)

Similar arguments apply to the other part of Theorem 4.

7 Equivalence Results of Relaxed PRS

In this section, we consider the following convex problem:

minimize
x

f (x)+ g(Ax), (P3)

and its corresponding Lagrangian dual

minimize
v

f ∗(A∗v)+ g∗(−v). (D3)

In addition, we introduce another primal-dual pair equivalent to (P3)–(D3):

minimize
y

( f ∗ ◦A∗)∗(y)+ g(y), (P4)

minimize
u

f ∗(u)+ (g ◦A)∗(−u). (D4)
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Here (P4) is obtained as the dual of (D3) by reformulating (D3) as

minimize
v,v̄

f ∗(A∗v)+ g∗(−v̄) subject to v = v̄,

and (D4) is obtained as the dual of (P3) in a similar way. Lemma 2 below will
establish the equivalence between the two primal-dual pairs.

Remark 6. When A = I, we have ( f ∗ ◦A∗)∗ = f , and problem (P3) is exactly the
same as problem (P4). Similarly, problem (D3) is exactly the same as problem (D4).

Lemma 2. Problems (P3) and (P4) are equivalent in the following sense:

• Given any solution x∗ to (P3), y∗ = Ax∗ is a solution to (P4),
• Given any solution y∗ to (P4), x∗ ∈ argmin

x:Ax=y∗
f (x) is a solution to (P3).

The equivalence between problems (D3) and (D4) is similar:

• Given any solution v∗ to (D3), A∗v∗ is a solution to (D4),
• Given any solution u∗ to (D4), v∗ ∈ argmin

v:A∗v=u∗
g∗(−v) is a solution to (D3).

Proof. We prove only the equivalence of (P3) and (P4), the proof for the equivalence
of (D3) and (D4) is similar.

Part 1: If x∗ is a solution to (P3), we have 0 ∈ ∂ f (x∗)+A∗∂g(Ax∗). Assume that
there exists q such that −q ∈ ∂g(Ax∗) and A∗q ∈ ∂ f (x∗). Then we have

A∗q ∈ ∂ f (x∗)⇐⇒x∗ ∈ ∂ f ∗(A∗q)

=⇒Ax∗ ∈ A∂ f ∗(A∗q) = ∂ ( f ∗ ◦A∗)(q)
⇐⇒q ∈ ∂ ( f ∗ ◦A∗)∗(Ax∗).

Therefore,

0 ∈ ∂ ( f ∗ ◦A∗)∗(Ax∗)+ ∂g(Ax∗)

and Ax∗ is a solution to (P4).
Part 2: If y∗ is a solution to (P4), the optimality condition gives us

0 ∈ ∂ ( f ∗ ◦A∗)∗(y∗)+ ∂g(y∗).

Assume that there exists q such that −q ∈ ∂g(y∗) and q ∈ ∂ ( f ∗ ◦A∗)∗(y∗). Then
we have

q ∈ ∂ ( f ∗ ◦A∗)∗(y∗)⇐⇒y∗ ∈ ∂ ( f ∗ ◦A∗)(q). (5.43)

Consider the following optimization problem for finding x∗ from y∗

minimize
x

f (x) subject to Ax = y∗,
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and the corresponding dual problem

maximize
v

− f ∗(A∗v)+ 〈v,y∗〉.

It is easy to obtain from (5.43) that q is a solution of the dual problem. The
optimal duality gap is zero and the strong duality gives us

f (x∗) = f (x∗)−〈q,Ax∗ − y∗〉=− f ∗(A∗q)+ 〈q,y∗〉. (5.44)

Thus x∗ is a solution of minimize
x

f (x)−〈A∗q,x〉 and

A∗q ∈ ∂ f (x∗)⇐⇒ 0 ∈ ∂ f (x∗)−A∗q. (5.45)

Because −q ∈ ∂g(y∗) = ∂g(Ax∗),

0 ∈ ∂ f (x∗)+A∗∂g(Ax∗) = ∂ f (x∗)+ ∂ (g ◦A)(x∗) (5.46)

Therefore x∗ is a solution of (P3). ��
Next we will show the equivalence between the RPRS to the primal and dual

problems:

RPRS on (P3) ⇐⇒ RPRS on (D4)

RPRS on (P4) ⇐⇒ RPRS on (D3)

We describe the RPRS on (P3) in Algorithm 6, and the RPRS on other problems can
be obtained in the same way.

Algorithm 6 RPRS on (P3)

initialize w0, λ > 0, 0 < α ≤ 1.
for k = 0,1, · · · do

xk+1 = proxλ f (·)wk

wk+1 = (1−α)wk +α(2proxλg◦A(·)− I)(2xk+1 −wk)
end for

Theorem 5 (Primal-dual equivalence of RPRS). RPRS on (P3) is equivalent to
RPRS on (D4). RPRS on (P4) is equivalent to RPRS on (D3).

Before proving this theorem, we introduce a lemma, which was also given in
[8, Proposition 3.34]. Here, we prove it in a different way using the generalized
Moreau decomposition.

Lemma 3. For λ > 0, we have

λ−1(2proxλF(·)− I)w = (I− 2proxλ−1F∗(·))(w/λ )

= (2proxλ−1F∗(−·)− I)(−w/λ ). (5.47)



5 Self Equivalence of the Alternating Direction Method of Multipliers 189

Proof. We prove it using the generalized Moreau decomposition [11, Theorem
2.3.1]

w = proxλF(·)(w)+λproxλ−1F∗(·)(w/λ ). (5.48)

Using the generalized Moreau decomposition, we have

λ−1(2proxλF(·)− I)w = 2λ−1proxλF(·)(w)−w/λ
(5.48)
= 2λ−1(w−λproxλ−1F∗(·)(w/λ ))−w/λ

= w/λ − 2proxλ−1F∗(·)(w/λ )

= (I− 2proxλ−1F∗(·))(w/λ ).

The last equality of (5.47) comes from

proxλ−1F∗(−·)(−w/λ ) =−proxλ−1F∗(·)(w/λ ).

��
Proof (Proof of Theorem 5). We will prove only the equivalence of RPRS on (P3)
and (D4). The proof for the other equivalence is the same. The RPRS on (P3)
and (D4) can be formulated as

wk+1
1 = (1−α)wk

1 +α(2proxλg◦A(·)− I)(2proxλ f (·)− I)wk
1, (5.49)

and

wk+1
2 = (1−α)wk

2 +α(2proxλ−1(g◦A)∗(−·)− I)(2proxλ−1 f ∗(·)− I)wk
2, (5.50)

respectively. In addition, we can recover the variables xk (or vk) from wk
1 (or wk

2)
using the following:

xk+1 = proxλ f (·)w
k
1, (5.51)

vk+1 = proxλ−1 f ∗(·)w
k
2. (5.52)

Proof by induction. Suppose wk
2 = wk

1/λ holds. We next show that wk+1
2 = wk+1

1 /λ .

wk+1
2 = (1−α)wk

1/λ +α(2proxλ−1(g◦A)∗(−·)− I)(2proxλ−1 f ∗(·)− I)(wk
1/λ )

(5.47)
= (1−α)wk

1/λ +α(2proxλ−1(g◦A)∗(−·)− I)(−λ−1(2proxλ f (·)− I)wk
1)

(5.47)
= (1−α)wk

1/λ +αλ−1(2proxλ (g◦A)(−·)− I)(2proxλ f (·)− I)wk
1

= λ−1[(1−α)wk
1 +α(2proxλ (g◦A)(·)− I)(2proxλ f (·)− I)wk

1]

= wk+1
1 /λ .
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In addition we have

xk+1 +λvk+1 = proxλ f (·)w
k
1 +λproxλ−1 f ∗(·)w

k
2

= proxλ f (·)w
k
1 +λproxλ−1 f ∗(·)(w

k
1/λ ) = wk

1.

��
Remark 7. Eckstein showed in [8, Chapter 3.5] that DRS/PRS on (P3) is equivalent
to DRS/PRS on (D3) when A = I. This special case can be obtained from this the-
orem immediately because when A = I, (D3) is exactly the same as (D4) and we
have

DRS/PRS on (P3) ⇐⇒ DRS/PRS on (D4)

⇐⇒ DRS/PRS on (D3) ⇐⇒ DRS/PRS on (P4) .

Remark 8. In order to make sure that RPRS on the primal and dual problems are
equivalent, the initial conditions and parameters have to satisfy conditions described
in the proof of Theorem 5. We need the initial condition to satisfy w0

2 = w0
1/λ

and the parameter for RPRS on the dual problem has to be chosen as λ−1, see the
differences in (5.49) and (5.50).

Similar to the ADM, we can swap f and g ◦ A and obtain a new RPRS. The
iteration in Algorithm 6 can be written as

wk+1
1 = (1−α)wk

1 +α(2proxλg◦A(·)− I)(2proxλ f (·)− I)wk
1, (5.53)

and the RPRS after the swapping is

wk+1
3 = (1−α)wk

3 +α(2proxλ f (·)− I)(2proxλg◦A(·)− I)wk
3. (5.54)

We show below that for a certain type of function f (or g), (5.53) and (5.54) are
equivalent.

Theorem 6. 1. Assume that proxλ f (·) is affine. If (5.53) and (5.54) initially satisfy

w0
3 = (2proxλ f (·)− I)w0

1, then wk
3 = (2proxλ f (·)− I)wk

1 for all k.
2. Assume that proxλg◦A(·) is affine. If (5.53) and (5.54) initially satisfy

w0
1 = (2proxλg◦A(·)− I)w0

3, then wk
1 = (2proxλg◦A(·)− I)wk

3 for all k.

Proof. We only prove the first statement, as the second one can be proved in a
similar way. We apply proof by induction. Suppose wk

3 = (2proxλ f (·)− I)wk
1 holds.

From (5.54), we have

wk+1
3 = (1−α)(2proxλ f (·)− I)wk

1

+α(2proxλ f (·)− I)(2proxλg◦A(·)− I)(2proxλ f (·)− I)wk
1

= (2proxλ f (·)− I)
[
(1−α)wk

1 +α(2proxλg◦A(·)− I)(2proxλ f (·)− I)wk
1

]
= (2proxλ f (·)− I)wk+1

1 .
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The first equality holds because 2proxλ f (·) − I is affine, which comes from the
assumption that proxλ f (·) is affine and Lemma 2. The second equality comes
from (5.53). ��

8 Application: Total Variation Image Denoising

ADM (or split Bregman [16]) has been applied on many image processing appli-
cations, and we apply the previous equivalence results of ADM to derive several
equivalent algorithms for total variation denoising.

The total variation (ROF model [21]) applied on image denoising is

minimize
x∈BV (Ω)

∫
Ω
|∇x|+ α

2
‖x− b‖2

2

where x stands for an image, and BV (Ω) is the set of all bounded variation functions
on Ω . The first term is known as the total variation of x, minimizing which tends to
yield a piece-wise constant solution. The discrete version is as follows:

minimize
x

‖∇x‖2,1+
α
2
‖x−b‖2

2,

where ∇x is a finite difference approximation of the gradient, which can be expressed
as a linear operator. Without loss of generality, we consider the two-dimensional
image x, and the discrete total variation ‖∇x‖2,1 of image x is defined as

‖∇x‖2,1 =∑
i j
|(∇x)i j|,

where | · | is the 2-norm of a vector. The equivalent ADM-ready form [16, Equation
(3.1)] is

minimize
x,y

‖y‖2,1 +
α
2
‖x−b‖2

2 subject to y−∇x = 0, (5.55)

and its dual problem in ADM-ready form [2, Equation (8)] is

minimize
v,u

1
2α

‖div u+αb‖2
2 + ι{v:‖v‖2,∞≤1}(v) subject to u− v = 0, (5.56)

where ‖v‖2,∞ = max
i j

|(v)i j| and div u is the finite difference approximation of diver-

gence that satisfies 〈x,div u〉=−〈∇x,u〉 for any x and u. In addition, the equivalent
saddle-point problem is

minimize
x

maximize
v

1
2α

‖x−b‖2
2+ 〈v,∇x〉− ι{v:‖v‖2,∞≤1}(v). (5.57)
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We list the following equivalent algorithms for solving the total variation image
denoising problem. The equivalence result stated in Corollary 3 can be obtained
from Theorems 1–4.

1. Algorithm 1 (primal ADM) on (5.55) is

xk+1
1 = argmin

x

α
2
‖x−b‖2

2+(2λ )−1‖∇x− yk
1+λzk

1‖2
2, (5.58a)

yk+1
1 = argmin

y
‖y‖2,1+(2λ )−1‖∇xk+1

1 − y+λzk
1‖2

2, (5.58b)

zk+1
1 = zk

1 +λ−1(∇xk+1
1 − yk+1

1 ). (5.58c)

2. Algorithm 3 (dual ADM) on (5.56) is

uk+1
3 = argmin

u

1
2α

‖div u+αb‖2
2 +

λ
2
‖vk

3 −u+λ−1zk
3‖2

2, (5.59a)

vk+1
3 = argmin

v
ι{v:‖v‖2,∞≤1}(v)+

λ
2
‖v−uk+1

3 +λ−1zk
3‖2

2, (5.59b)

zk+1
3 = zk

3 +λ (vk+1
3 −uk+1

3 ). (5.59c)

3. Algorithm 4 (primal-dual) on (5.57) is

v̄k
4 = 2vk

4 − vk−1
4 , (5.60a)

xk+1
4 = argmin

x

α
2
‖x−b‖2

2+(2λ )−1‖∇x−∇xk
4+λ v̄k

4‖2
2, (5.60b)

vk+1
4 = argmin

v
ι{v:‖v‖2,∞≤1}(v)−〈v,∇xk+1

4 〉+ λ
2
‖v− vk‖2

2. (5.60c)

4. Algorithm 5 (primal ADM with order swapped) on (5.55) is

yk+1
5 = argmin

y
‖y‖2,1 +(2λ )−1‖∇xk

5 − y+λzk
5‖2

2, (5.61a)

xk+1
5 = argmin

x

α
2
‖x−b‖2

2+(2λ )−1‖∇x− yk+1
5 +λzk

5‖2
2, (5.61b)

zk+1
5 = zk

5 +λ−1(∇xk+1
5 − yk+1

5 ). (5.61c)

Corollary 3. Let x0
5 = b+α−1div z0

5. If the initialization for all algorithms (5.58)-
(5.61) satisfies y0

1 = −z0
3 = ∇x0

4 − λ (v0
4 − v−1

4 ) = y1
5 and z0

1 = v0
3 = v0

4 = z0
5 +

λ−1(∇x0
5 − y1

5). Then for k ≥ 1, we have the following equivalence results between
the iterations of the four algorithms:

yk
1 =−zk

3 = ∇xk
4 −λ (vk

4 − vk−1
4 ) = yk+1

5 ,

zk
1 = vk

3 = vk
4 = zk

5 +λ−1(∇xk
5 − yk+1

5 ).
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Remark 9. In any of the four algorithms, the ∇ or div operator is separated in a
different subproblem from the term ‖ · ‖2,1 or its dual norm ‖ · ‖2,∞. The ∇ or div
operator is translation invariant, so their subproblems can be solved by a diago-
nalization trick [22]. The subproblems involving the term ‖ · ‖2,1 or the indicator
function ι{v:‖v‖2,∞≤1} have closed-form solutions. Therefore, in addition to the
equivalence results, all the four algorithms have essentially the same per-iteration
costs.
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Chapter 6
Application of the Strictly Contractive
Peaceman-Rachford Splitting Method to
Multi-Block Separable Convex Programming

Bingsheng He, Han Liu, Juwei Lu, and Xiaoming Yuan

Abstract Recently, a strictly contractive Peaceman-Rachford splitting method
(SC-PRSM) was proposed to solve a convex minimization model with linear con-
straints and a separable objective function which is the sum of two functionals
without coupled variables. We show by an example that the SC-PRSM cannot be
directly extended to the case where the objective function is the sum of three or
more functionals. To solve such a multi-block model, if we treat its variables and
functions as two groups and directly apply the SC-PRSM, then at least one of
SC-PRSM subproblems involves more than one function and variable which might
not be easy to solve. One way to improve the solvability for this direct applica-
tion of the SC-PRSM is to further decompose such a subproblem so as to gener-
ate easier decomposed subproblems which could potentially be simple enough to
have closed-form solutions for some specific applications. The curse accompanying
this improvement in solvability is that the SC-PRSM with further decomposed sub-
problems is not necessarily convergent, either. We will show its divergence by
the same example. Our main goal in this chapter is to show that the convergence
can be guaranteed if the further decomposed subproblems of the direct applica-
tion of the SC-PRSM are regularized by the proximal regularization. As a result,
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an SC-PRSM-based splitting algorithm with provable convergence and easy imple-
mentability is proposed for multi-block convex minimization models. We analyze
the convergence for the derived algorithm, including proving its global convergence
and establishing its worst-case convergence rate measured by the iteration complex-
ity. The efficiency of the new algorithm is illustrated by testing some applications
arising in image processing and statistical learning.

1 Introduction

We first consider a convex minimization model with linear constraints and an objec-
tive function in form of the sum of two functions without coupled variables:

min{θ1(x)+θ2(y) | Ax+By = b, x ∈X,y ∈ Y}, (6.1)

where A∈ℜm×n1 , B∈ℜm×n2 , X⊂ℜn1 and Y⊂ℜn2 are closed convex sets, θ1 and
θ2 are convex but not necessarily smooth functions. A typical application of (6.1) is
that θ1 refers to a data-fidelity term and θ2 denotes a regularization term. Concrete
applications of the model (6.1) arise frequently in many areas such as image pro-
cessing, statistical learning, computer vision, etc., where θ1 and θ2 could be further
specified by particular physical or industrial elaboration for a given scenario.

A benchmark solver for (6.1) is the alternating direction method of multipliers
(ADMM) originally proposed in [23] (see also [6, 19]). Applying to the solution of
problem (6.1), ADMM reads as⎧⎪⎨
⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk − b)+ β

2 ‖Ax+Byk− b‖2
∣∣ x ∈X

}
,

yk+1 = argmin
{
θ2(y)− (λ k)T (Axk+1 +By− b)+ β

2 ‖Axk+1 +By− b‖2
∣∣ y ∈ Y

}
,

λ k+1 = λ k −β (Axk+1 +Byk+1 − b),
(6.2)

where λ k,λ k+1 ∈ ℜm are Lagrange multipliers and β > 0 is a penalty parameter.
Throughout we assume that the penalty parameter β is fixed. As analyzed inten-
sively in [18, 22] (and observed for the first time in [6]), the scheme (6.2) can be re-
garded as an application of the Douglas-Rachford splitting method (DRSM), which
is well known in the PDE literature (see [12, 34]). The ADMM algorithm can also
be regarded as a splitting version of the augmented Lagrangian method (ALM), in-
troduced in [31, 41]; and it outperforms the direct application of the ALM in that
the functions θ1 and θ2 are treated individually and thus the splitted subproblems
in (9.48) could be much easier than the original ALM subproblems. Recently, this
feature has found impressive applications in a variety of areas, and it has inspired a
“renaissance” of ADMM in the literature. We refer to [4, 13, 20] for some review
papers of the ADMM.

In addition to DRSM, some authors (see, e.g., [24, 33]) have also investigated
how to apply the Peacemen-Rachford splitting method (PRSM) (another well-
known operator-splitting method, introduced in [39] and further discussed in, e.g.,
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[34]) to the separable convex minimization model (6.1). This motivation was further
enhanced by the observation that “very often PRSM is faster than DRSM whenever
it converges”, as pointed out in [2, 21, 22]. More specifically, PRSM applied to the
solution of (6.1) leads to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk −b)+ β

2 ‖Ax+Byk −b‖2
∣∣ x ∈X

}
,

λ k+ 1
2 = λ k −β (Axk+1 +Byk −b),

yk+1 = argmin
{
θ2(y)− (λ k+ 1

2 )T (Axk+1 +By−b)+ β
2 ‖Axk+1 +By−b‖2

∣∣ y ∈ Y
}
,

λ k+1 = λ k+ 1
2 −β (Axk+1 +Byk+1 −b),

(6.3)

which differs from the DRSM scheme (6.2) in that it updates the Lagrange multi-
pliers twice at each iteration. The PRSM algorithm has the disadvantage of being
“less stable than DRSM”, although it does outperform it in most situations where it
is convergent (see [34, 21]). In [26], this disadvantage was explained by the fact that
the sequence generated by PRSM is not necessarily strictly contractive with respect
to the solution set of (6.1) (assuming that this set is nonempty), while the sequence
generated by DRSM is strictly contractive. Note that we follow the definition of a
strictly contractive sequence given in [3]. In [10], a counterexample showing that
the sequence generated by PRSM could maintain a constant distance to the solution
set was constructed. Thus, the PRSM algorithm (6.3) is not necessarily convergent.
To reinforce the robustness of the PRSM algorithm (6.3), with provable convergence
property, the following strictly contractive variant of (6.3) (denoted by SC-PRSM)
was proposed in [26]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk −b)+ β

2 ‖Ax+Byk −b‖2
∣∣ x ∈X

}
,

λ k+ 1
2 = λ k −αβ (Axk+1 +Byk −b),

yk+1 = argmin
{
θ2(y)− (λ k+ 1

2 )T (Axk+1 +By−b)+ β
2 ‖Axk+1 +By−b‖2

∣∣ y ∈ Y
}
,

λ k+1 = λ k+ 1
2 −αβ (Axk+1 +Byk+1 −b),

(6.4)

where α ∈ (0,1). It was shown in [26] that the parameter α plays the role of en-
forcing the sequence generated by (6.4) to be strictly contractive with respect to the
solution set of (6.1). Hence, the convergence of the SC-PRSM algorithm (6.4) can
be proved by standard techniques in the literature (e.g., [3]). In [26], the efficiency
of the SC-PRSM algorithm (6.4) was also verified numerically.

In addition to the model (6.1), we encounter numerous applications where the
objective function has a higher degree of separability such that it can be expressed
as the sum of more than two functionals without coupled variables. To expose our
main idea with easier notation, let us only focus on the case with three functionals
in the objective

min{θ1(x)+θ2(y)+θ3(z) | Ax+By+Cz= b, x ∈X,y ∈ Y,z ∈Z}, (6.5)

where A∈ℜm×n1 , B∈ℜm×n2 , C ∈ℜm×n3 , b∈ℜm, X⊂ℜn1 and Y⊂ℜn2 ,Z⊂ℜn3

are closed convex sets, θi (i = 1,2,3) are convex functions. Throughout, the solution
set of (6.5) is assumed to be nonempty. Some typical applications in the form of (6.5)
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include the robust principal component analysis model with noisy and incomplete
data in [44], the latent variable Gaussian graphical model selection in [7], the robust
alignment model for linearly correlated images in [40], the quadratic discriminant
analysis model in [36], and many others.

To solve (6.5), one natural idea is to directly extend the ADMM algorithm (6.2).
The resulting scheme is⎧⎪⎪⎨

⎪⎪⎩
xk+1 = argmin

{
Lβ (x,y

k,zk,λ k)
∣∣ x ∈X

}
,

yk+1 = argmin
{
Lβ (x

k+1,y,zk,λ k)
∣∣ y ∈ Y

}
,

zk+1 = argmin
{
Lβ (x

k+1,yk+1,z,λ k)
∣∣ z ∈Z

}
,

λ k+1 = λ k −β (Axk+1 +Byk+1 +Czk+1 − b),

(6.6)

where Lβ (x,y,z,λ ) is the augmented Lagrangian function of (6.5) defined as

Lβ (x,y,z,λ ) := θ1(x)+θ2(y)+θ3(z)−λT (Ax+By+Cz−b)+
β
2
‖Ax+By+Cz−b‖2

and where λ k,λ k+1 ∈ ℜm are Lagrange multipliers, β > 0 is a penalty parameter.
Algorithm (6.6) is a direct extension of the ADMM algorithm (6.2); from now on
we will denote (6.6) by E-ADMM; E-ADMM perfectly inherits the advantage of the
ADMM algorithm (6.2), and it can be obtained by simply decomposing the ALM
subproblem into 3 subproblems in Gauss-Seidel manner at each iteration. Empiri-
cally, it often works very well, see, e.g., [40, 44] for some applications. However, it
was shown in [9] that the E-ADMM (6.6) is not necessarily convergent. We refer to
[27, 28] for some methods whose main common idea is to ensure the convergence
via correcting the output of (6.6) appropriately.

Similarly, for solving the multi-block convex minimization model (6.5), we may
wish to consider directly extending the SC-PRSM scheme (6.4) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk +Czk −b)+ β

2 ‖Ax+Byk +Czk −b‖2
∣∣ x ∈X

}
,

λ k+ 1
3 = λ k −αβ(Axk+1 +Byk +Czk −b),

yk+1 = argmin
{
θ2(y)− (λ k+ 1

3 )T (Axk+1 +By+Czk −b)+ β
2 ‖Axk+1 +By+Czk −b‖2

∣∣ y ∈ Y
}
,

λ k+ 2
3 = λ k+ 1

3 −αβ(Axk+1 +Byk+1 +Czk −b),

zk+1 = argmin
{
θ3(z)− (λ k+ 2

3 )T (Axk+1 +Byk+1 +Cz−b)+ β
2 ‖Axk+1 +Byk+1 +Cz−b‖2

∣∣ z ∈Z
}
,

λ k+1 = λ k+ 2
3 −αβ(Axk+1 +Byk+1 +Czk+1 −b).

(6.7)

Hereafter, we denote algorithm (6.7) by E-SC-PRSM. Our first purpose is to show
that E-SC-PRSM is not necessarily convergent, as shown in Section 5.2, the method
to prove this property being similar to the one used in [9]. From this possible diver-
gence property, E-SC-PRSM (6.7) cannot be used directly to solve (6.5).

Alternatively, one may wish to use the original SC-PRSM algorithm (6.4) dir-
ectly by regarding θ2(y)+ θ3(z) as the second functional in (6.1) and regrouping
(y,z) and (B,C) as the second variable and coefficient matrix in (6.1), respectively.
The direct application of the SC-PRSM algorithm (6.4) to the solution of prob-
lem (6.5) leads to the following iterative method:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk +Czk −b)+ β

2 ‖Ax+Byk +Czk −b‖2
∣∣ x ∈X

}
,

λ k+ 1
2 = λ k −αβ(Axk+1 +Byk +Czk −b),

(yk+1,zk+1) = argmin

{
θ2(y)+θ3(z)− (λ k+ 1

2 )T (Axk+1 +By+Cz−b)

+ β
2 ‖Axk+1 +By+Cz−b‖2

∣∣ y ∈ Y, z ∈Z

}
,

λ k+1 = λ k+ 1
2 −αβ(Axk+1 +Byk+1 +Czk+1 −b).

(6.8)

Provided that the two minimization subproblems in (6.8) are solved exactly, this di-
rect application of SC-PRSM is successful, its convergence being guaranteed auto-
matically. This is the blessing of applying SC-PRSM directly to the solution of (6.5).
For many concrete applications of (6.5), such as the ones mentioned above, it is not
wise, however, to do so because the (y,z)-subproblem in (6.8) must treat θ2 and
θ3 aggregately even though both could be very simple. This is the curse accompa-
nying algorithm (6.8). Under the assumption that each function θi in (6.5) is well
structured or has some special properties in the sense that treating a minimization
problem involving only one of them is easy (e.g., when the resolvent operator of
∂θi has a closed-form solution, as it is the case if θi is a l1-norm term), a natu-
ral idea to overcome the curse associated with (6.8) is to further decompose the
(y,z)-subproblem in (6.8) in a Jacobian style. Thus, we solve approximately the
(y,z)-subproblem in (6.8) by replacing it with
{

yk+1 = argmin
{
θ2(y)− (λ k+ 1

2 )T (Axk+1 +By+Czk −b)+ β
2 ‖Axk+1 +By+Czk −b‖2

∣∣ y ∈ Y
}
,

zk+1 = argmin
{
θ3(z)− (λ k+ 1

2 )T (Axk+1 +Byk +Cz−b)+ β
2 ‖Axk+1 +Byk +Cz−b‖2

∣∣ z ∈Z
}
.

(6.9)

The two subproblems in (6.9) are in general easier to solve than the (y,z)-subproblem
in (6.8), since each of them only involves one θi in its objective function. Another
reason for implementing this Jacobian style decomposition is that the two subprob-
lems in (6.9) are well suited for parallel computation. This decomposition makes
some particular sense for large scale cases of the model (6.5) arising from high di-
mension statistical learning problems or some image processing applications. With
the further decomposition (6.9) for the (y,z)-subproblem in (6.8), the direct applica-
tion of the SC-PRSM (6.4) to the model (6.5) becomes
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk +Czk −b)+ β

2 ‖Ax+Byk +Czk −b‖2
∣∣ x ∈X

}
,

λ k+ 1
2 = λ k −αβ(Axk+1 +Byk +Czk −b),

yk+1 = argmin
{
θ2(y)− (λ k+ 1

2 )T (Axk+1 +By+Czk −b)+ β
2 ‖Axk+1 +By+Czk −b‖2

∣∣ y ∈ Y
}
,

zk+1 = argmin
{
θ3(z)− (λ k+ 1

2 )T (Axk+1 +Byk +Cz−b)+ β
2 ‖Axk+1 +Byk +Cz−b‖2

∣∣ z ∈Z
}
.

λ k+1 = λ k+ 1
2 −αβ(Axk+1 +Byk+1 +Czk+1 −b).

(6.10)

Compared with (6.8), algorithm (6.10) is much easier to implement because its sub-
problems are much simpler. The properties of θi’s, if any, can thus be fully exploited
by algorithm (6.10). However, it is easy to understand that despite of the guaran-
teed convergence of (6.8), the convergence of (6.10) might not hold because the
original (y,z)-subproblem in (6.8) is solved only approximately via (6.9). In Sec-
tion 5.1, we will use the same example showing the divergence of the E-SC-PRSM
algorithm (6.7) to prove the divergence of algorithm (6.10). Thus, it may be not



200 B. He et al.

reasonable to use either the E-SC-PRSM algorithm (6.7 ) or to apply directly the
SC-PRSM algorithm (6.10), with its decomposed subproblems, to the solution of
the multi-block convex minimization problem (6.5).

Our second goal is to show that the convergence of (6.10) can be guaranteed if
the decomposed y- and z-subproblems in (6.10) are further regularized by quadratic
proximal terms. This idea inspires us to propose the following SC-PRSM algorithm
with proximal regularization (SC-PRSM-PR)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
θ1(x)− (λ k)T (Ax+Byk +Czk −b)+ β

2 ‖Ax+Byk +Czk −b‖2
∣∣ x ∈X

}
,

λ k+ 1
2 = λ k −αβ(Axk+1 +Byk +Czk −b),

yk+1 = argmin

{
θ2(y)− (λ k+ 1

2 )T (Axk+1 +By+Czk −b)+
β
2 ‖Axk+1 +By+Czk −b‖2 + μβ

2 ‖B(y− yk)‖2

∣∣∣ y ∈ Y

}
,

zk+1 = argmin

{
θ3(z)− (λ k+ 1

2 )T (Axk+1 +Byk +Cz−b)+
β
2 ‖Axk+1 +Byk +Cz−b‖2 + μβ

2 ‖C(z− zk)‖2

∣∣∣ z ∈Z

}
,

λ k+1 = λ k+ 1
2 −αβ(Axk+1 +Byk+1 +Czk+1 −b),

(6.11)

where α ∈ (0,1) and μ > α . Note that the added quadratic proximal terms μβ
2

‖B(y − yk)‖2 and μβ
2 ‖C(z − zk)‖2 enjoy the same explanation than the original

proximal point algorithm which has been well studied in the literature, see e.g.
[10, 35, 42]. An intuitive illustration is that since the objective functions in (6.9)
are only approximation to the objective function in the (y,z)-subproblem in (6.8),
we use the quadratic terms to control the proximity of the new iterate to the previous
iterate. The requirement μ ≥ α is in certain sense to control such proximity. Note
that the subproblems in (6.11) are of the same difficulty as those in (6.10); while the
convergence of (6.11) can be rigorously proved (see Section 3).

As a customized application of the original SC-PRSM algorithm (6.4) to the
specific multi-block convex minimization problem (6.5), the SC-PRSM-PR algo-
rithm (6.11) is equally implementable as (6.4) in the sense that their subproblems
are of the same level of difficulty. Moreover, we will show that the SC-PRSM-PR al-
gorithm (6.11) is also globally convergent and its worst-case convergence rate mea-
sured by the iteration complexity in both the ergodic and a nonergodic senses can be
established. Thus, besides its implementability, the SC-PRSM-PR algorithm (6.11)
also fully inherits the theoretical properties of the original SC-PRSM algorithm (6.4)
established in [26]. This is the main goal of Sections 3 and 4. In Section 5, as men-
tioned, we will construct an example to show the divergence of the E-SC-PRSM
algorithm (6.7), and of the SC-PRSM algorithm (6.10) if applied directly. As men-
tioned already, the SC-PRSM-PR (6.11) is motivated by some practical applications,
particular cases of the abstract model problem (6.5). Indeed, the efficiency of algo-
rithm (6.11) will be tested in Section 6 via its application to the solution of useful
practical problems arising in Image Processing and Statistical Learning, with the
results of numerical experiments being reported. Finally, some concluding remarks
will be made in Section 7.
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2 Preliminaries

In this section, we summarize some known results in the literature which are use-
ful for our analysis later; we will also define some auxiliary variables which can
simplify the notation of our analysis.

2.1 The Variational Inequality Reformulation of (6.5)

We first reformulate the multi-block convex minimization problem (6.5) as a varia-
tional inequality (VI): Find w∗ = (x∗,y∗,z∗,λ ∗) such that

VI(Ω ,F,θ ) : w∗ ∈ Ω , θ (u)−θ (u∗)+ (w−w∗)T F(w∗)≥ 0, ∀w ∈ Ω ,
(6.12a)

where

u =

⎛
⎝ x

y
z

⎞
⎠ , w =

⎛
⎜⎜⎝

x
y
z
λ

⎞
⎟⎟⎠ , θ (u) = θ1(x)+θ2(y)+θ3(z),

F(w) =

⎛
⎜⎜⎝

−AT λ
−BT λ
−CT λ

Ax+By+Cz− b

⎞
⎟⎟⎠ and Ω :=X×Y×Z×ℜm. (6.12b)

Obviously, the mapping F(w) defined in (6.12b) is affine with a skew-symmetric
matrix; it is thus monotone. We denote by Ω ∗ the solution set of VI(Ω ,F,θ ), and it
is not empty under the nonempty assumption of the solution set of (6.5).

Note that xk is not required to generate the new (k + 1)-th iteration in all the
DRSM- or PRSM-based algorithms mentioned previously, see (6.2), (6.3), (6.4),
(6.6), (6.7), (6.8), (6.10), and (6.11). That is, such an algorithm only requires
(yk,zk,λ k) to generate the next new iterate. Thus, as mentioned in [4], x is an in-
termediate variable in all the mentioned DRSM- or PRSM-based schemes. For
this reason, in the following analysis, we use the notations vk = (yk,zk,λ k) and
V= Y×Z×ℜm, and we let

V∗ := {v∗ = (y∗,z∗,λ ∗) |w∗ = (x∗,y∗,z∗,λ ∗) ∈ Ω ∗}.

2.2 Some Notation

We define some auxiliary variables in this subsection which will help us alleviate
the notation in the convergence analysis and improve the presentation.
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First of all, we introduce a new sequence {w̃k} by

w̃k =

⎛
⎜⎜⎝

x̃k

ỹk

z̃k

λ̃ k

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

xk+1

yk+1

zk+1

λ k −β (Axk+1 +Byk +Czk − b)

⎞
⎟⎟⎠ , (6.13)

where (xk+1,yk+1,zk+1) is generated by the scheme (6.11) from (yk,zk,λ k). Accord-
ingly, we have

ṽk =

⎛
⎝ ỹk

z̃k

λ̃ k

⎞
⎠ , (6.14)

where (ỹk, z̃k, λ̃ k) is defined in (6.13).

In fact, using the definition of λ k+ 1
2 in (6.11), we have

λ k+1 = λ k − 2αβ
(
Axk+1 +

1
2

B(yk + yk+1)+
1
2

C(zk + zk+1)− b
)
.

According to (6.13), because

xk+1 = x̃k, yk+1 = ỹk zk+1 = z̃k,

we have

λ̃ k = λ k −β (Ax̃k +Byk +Czk − b) and λ k+ 1
2 = λ k −α(λ k − λ̃ k). (6.15)

By a manipulation, the updated form of λ k+1 (6.11) can be represented as

λ k+1 = λ k −α(λ k − λ̃ k)−αβ (Ax̃k +Bỹk +Cz̃k − b)

= λ k −α(λ k − λ̃ k)−αβ
[
(Ax̃k +Byk +Czk − b)−B(yk − ỹk)−C(zk − z̃k)

]
= λ k −α(λ k − λ̃ k)−α

[
(λ k − λ̃ k)−βB(yk − ỹk)−βC(zk − z̃k)

]
= λ k − [

2α(λ k − λ̃ k)−αβB(yk − ỹk)−αβC(zk − z̃k)
]
. (6.16)

In the following lemma, we establish the relationship between the iterates vk and
vk+1 generated by the SC-PRSM-PR algorithm (6.11) and the auxiliary variable ṽk

defined in (6.13).

Lemma 1. Let vk+1 be generated by the SC-PRSM-PR algorithm (6.11) with vk

given and ṽk defined by (6.14). Then, we have

vk+1 = vk −M(vk − ṽk), (6.17)
where

M =

⎛
⎜⎜⎝

I 0 0

0 I 0

−αβB −αβC 2αI

⎞
⎟⎟⎠ . (6.18)
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Proof. Together with yk+1 = ỹk and zk+1 = z̃k and using (6.16), we have the follow-
ing relationship:⎛

⎝ yk+1

zk+1

λ k+1

⎞
⎠=

⎛
⎝ yk

zk

λ k

⎞
⎠−

⎛
⎝ I 0 0

0 I 0
−αβB −αβC 2αI

⎞
⎠

⎛
⎝ yk − ỹk

zk − z̃k

λ k − λ̃ k

⎞
⎠ .

This can be rewritten as a compact form of (6.17), where M is defined in (6.18).

3 Global Convergence

In this section, we show that the sequence generated by the SC-PRSM-PR algo-
rithm (6.11) globally converges to a solution point of VI(Ω ,F,θ ). We first prove
some inequalities which are crucial for establishing the strict contraction for the
sequence generated by algorithm (6.11). We summarize them in several lemmas.

Lemma 2. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11) and denote (yk,zk,λ k) by vk; The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, then we have

θ (u)−θ (ũk)+ (w− w̃k)T F(w̃k)≥ (v− ṽk)T Q(vk − ṽk), ∀w ∈ Ω , (6.19)

where

Q =

⎛
⎜⎜⎝

(1+ μ)βBT B 0 −αBT

0 (1+ μ)βCTC −αCT

−B −C 1
β I

⎞
⎟⎟⎠ . (6.20)

Proof. Since x̃k = xk+1, deriving the first-order optimality condition of the x-
subproblem in (6.11), we have

θ1(x)−θ1(x̃
k)+ (x− x̃k)T {AT [β (Ax̃k +Byk +Czk − b)−λ k]} ≥ 0, ∀x ∈X.

Substituting λ̃ k = λ k−β (Ax̃k+Byk+Czk−b) (see (6.15)) into the above inequality,
we obtain

θ1(x)−θ1(x̃
k)+ (x− x̃k)T{−AT λ̃ k} ≥ 0, ∀x ∈X. (6.21)

Using λ k+ 1
2 = λ k −α(λ k − λ̃ k) (also see (6.15)), the y-minimization problem

in (6.11) can be written as

ỹk = argmin

{
θ2(y)− [λ k −α(λ k − λ̃ k)]T (Ax̃k +By+Czk − b)

+ β
2 ‖Ax̃k +By+Czk− b‖2 + μβ

2 ‖B(y− yk)‖2

∣∣∣ y ∈ Y

}
,
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and its first-order optimality condition gives us

θ2(y)−θ2(ỹ
k)+ (y− ỹk)T{−BT [λ k −α(λ k − λ̃ k)]

+βBT (Ax̃k +Bỹk +Czk − b)+ μβBTB(ỹk − yk)
} ≥ 0, ∀y ∈ Y. (6.22)

Again, using (6.15), we have

−[λ k −α(λ k − λ̃ k)]+β (Ax̃k +Bỹk +Czk − b)+ μβB(ỹk− yk)

= −[λ k −α(λ k − λ̃ k)]+β (Ax̃k +Byk +Czk − b)+ (1+ μ)βB(ỹk− yk)

= −[λ k −α(λ k − λ̃ k)]+ (λ k − λ̃ k)+ (1+ μ)βB(ỹk− yk)

= −λ̃ k +(1+ μ)βB(ỹk− yk)−α(λ̃ k −λ k).

Consequently, it follows from (6.22) that

θ2(y)−θ2(ỹ
k)+(y− ỹk)T {−BT λ̃ k +(1+μ)βBT B(ỹk − yk)−αBT (λ̃ k −λ k)} ≥ 0, ∀y ∈ Y.

(6.23)

Analogously, from the z-minimization problem in (6.11), we get

θ3(z)−θ3(z̃
k)+(z− z̃k)T {−CT λ̃ k +(1+μ)βCTC(z̃k − zk)−αCT (λ̃ k −λ k)} ≥ 0, ∀z ∈Z.

(6.24)

In addition, it follows from the last equation in (6.13) that

(Ax̃k +Bỹk +Cz̃k − b)−B(ỹk− yk)−C(z̃k − zk)+
1
β
(λ̃ k −λ k) = 0,

which can be rewritten as

λ̃ k ∈ℜm, (λ − λ̃ k)T {(Ax̃k +Bỹk+Cz̃k−b)−B(ỹk−yk)−C(z̃k −zk)+
1
β
(λ̃ k−λ k)}≥ 0, ∀λ ∈ℜm.

(6.25)

Combining (6.21), (6.23), (6.24), and (6.25) together, we get

w̃k ∈ Ω , θ (u)−θ (ũk)+

⎛
⎜⎜⎝

x− x̃k

y− ỹk

z− z̃k

λ − λ̃ k

⎞
⎟⎟⎠

T ⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

−AT λ̃ k

−BT λ̃ k

−CT λ̃ k

Ax̃k +Bỹk +Cz̃k − b

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

0
(1+ μ)βBT B(ỹk − yk)−αBT (λ̃ k −λ k)

(1+ μ)βCTC(z̃k − zk)−αCT (λ̃ k −λ k)

−B(ỹk − yk)−C(z̃k − zk)+ 1
β (λ̃

k −λ k)

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≥ 0, ∀w ∈ Ω .

From the definition of F(w) (see (6.12)) and of the matrix Q (see (6.20)), the asser-
tion (6.19) follows directly from the last inequality above, completing the proof of
the lemma.
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Before we proceed the proof, recall we have defined the matrix M by (6.18).
Then, together with the matrix Q defined in (6.20), let us define a new matrix H as

H = QM−1. (6.26)

Some useful properties of H are summarized in the following.

Proposition 1. The matrix H defined in (6.26) is symmetric and it can be written as

H =

⎛
⎜⎜⎜⎝

(1+ μ− 1
2α)βBT B − 1

2αβBTC − 1
2 BT

− 1
2αβCT B (1+ μ− 1

2α)βCTC − 1
2CT

− 1
2 B − 1

2C 1
2αβ I

⎞
⎟⎟⎟⎠ . (6.27)

Moreover, for any fixed α ∈ (0,1) and μ ≥ α , H is positive definite.

Proof. The proof requires some linear algebra knowledge. First, note that H =
QM−1. For the matrix M defined in (6.18), we have

M−1 =

⎛
⎜⎜⎝

I 0 0

0 I 0

β
2 B β

2 C 1
2α I

⎞
⎟⎟⎠ .

Then, by a manipulation, we obtain

H =

⎛
⎜⎜⎝

(1+ μ)βBT B 0 −αBT

0 (1+ μ)βCTC −αCT

−B −C 1
β I

⎞
⎟⎟⎠

⎛
⎜⎜⎝

I 0 0

0 I 0

β
2 B β

2 C 1
2α I

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

(1+ μ− 1
2α)βBT B − 1

2αβBTC − 1
2 BT

− 1
2αβCT B (1+ μ− 1

2α)βCTC − 1
2CT

− 1
2 B − 1

2C 1
2αβ I

⎞
⎟⎟⎟⎠ .

This is just the form of (6.27) and H is symmetric. The first part is proved.
To show the positive definiteness of matrix H, we need only to inspect the fol-

lowing 3× 3 matrix ⎛
⎜⎜⎜⎝

(1+ μ− 1
2α) − 1

2α − 1
2

− 1
2α (1+ μ− 1

2α) − 1
2

− 1
2 − 1

2
1

2α

⎞
⎟⎟⎟⎠ .
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Since α ∈ (0,1) and μ ≥ α , we have

1+ μ− 1
2
α > 0 and

∣∣∣∣∣∣
(1+ μ− 1

2α) − 1
2α

− 1
2α (1+ μ− 1

2α)

∣∣∣∣∣∣> 0.

Note that∣∣∣∣∣∣∣∣∣

(1+μ − 1
2 α) − 1

2 α − 1
2

− 1
2 α (1+μ − 1

2 α) − 1
2

− 1
2 − 1

2
1

2α

∣∣∣∣∣∣∣∣∣

= −1
2

∣∣∣∣∣∣
− 1

2 α − 1
2

(1+μ − 1
2 α) − 1

2

∣∣∣∣∣∣+
1
2

∣∣∣∣∣∣
(1+μ − 1

2 α) − 1
2

− 1
2 α − 1

2

∣∣∣∣∣∣+
1

2α

∣∣∣∣∣∣
(1+μ − 1

2 α) − 1
2 α

− 1
2 α (1+μ − 1

2 α)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(1+μ − 1

2 α) − 1
2

− 1
2 α − 1

2

∣∣∣∣∣∣+
1

2α
(
(1+μ − 1

2
α)2 − (

1
2
α)2)

=

∣∣∣∣∣∣
(1+μ) 0

− 1
2 α − 1

2

∣∣∣∣∣∣+
1

2α
(1+μ)(1+μ −α)

=
1

2α
(1+μ)(1+μ −2α).

Since α ∈ (0,1) and μ ≥ α , H is positive definite.

The assertion in Proposition 1 helps us present the convergence analysis in suc-
cinct notation. Now, with the defined matrices M, Q and H, we can further analyze
the conclusion proved in Lemma 2. More specifically, let us inspect first the right-
hand side of the inequality (6.19) and rewrite it as the sum of some quadratic terms
under certain matrix norms. This is done in the following lemma.

Lemma 3. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11) and denote (yk,zk,λ k) by vk. The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, we then have

(v− ṽk)T Q(vk − ṽk) =
1
2

(‖v− vk+1‖2
H −‖v− vk‖2

H

)
+

1
2
‖vk − ṽk‖2

G, (6.28)

with

G = QT +Q−MT HM, (6.29)

where the matrices M, Q, and H are defined in (6.18), (6.20), and (6.27), respec-
tively.
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Proof. The proof only requires some elementary manipulations. More specifically,
using the fact that Q = HM (see (6.26)) and the relation (6.17), the right-hand side
of (6.19) can be written as

(v− ṽk)T Q(vk − ṽk) = (v− ṽk)T H(vk − vk+1). (6.30)

Applying the identity

(a− b)T H(c− d) =
1
2
{‖a− d‖2

H −‖a− c‖2
H}+

1
2
{‖c− b‖2

H −‖d− b‖2
H},

to the right-hand side of (6.30) with

a = v, b = ṽk, c = vk, and d = vk+1,

we thus obtain

(v− ṽk)T Q(vk− ṽk) =
1
2

(‖v−vk‖2
H −‖v−vk+1‖2

H

)
+

1
2
(‖vk− ṽk‖2

H −‖vk+1− ṽk‖2
H).

(6.31)

For the last term in (6.31), we have

‖vk − ṽk‖2
H −‖vk+1 − ṽk‖2

H

= ‖vk − ṽk‖2
H −‖(vk − ṽk)− (vk − vk+1)‖2

H

(6.17)
= ‖vk − ṽk‖2

H −‖(vk − ṽk)−M(vk − ṽk)‖2
H

= 2(vk − ṽk)HM(vk − ṽk)− (vk − ṽk)MT HM(vk − ṽk)

(6.26)
= (vk − ṽk)T (QT +Q−MT HM)(vk − ṽk). (6.32)

By using (6.31), (6.32), and (6.29), the assertion of Lemma 3 is proved.

In Lemma 3, a new matrix G is introduced in order to improve the inequal-
ity (6.19) in Lemma 2. Let us hold on the proof temporarily and take a closer look at
the matrix G just defined in (6.29). Some properties of this matrix are summarized
in the following.

Proposition 2. The symmetric matrix G defined in (6.29) can be rewritten as

G =

⎛
⎜⎜⎜⎝

(1+ μ−α)βBT B −αβBTC −(1−α)BT

−αβCT B (1+ μ−α)βCTC −(1−α)CT

−(1−α)B −(1−α)C 2−2α
β I

⎞
⎟⎟⎟⎠ . (6.33)

Moreover, for a fixed α ∈ (0,1) and any μ ≥ α (resp. μ > α), G is positive semi-
definite (resp., positive definite).
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Proof. For the matrix G defined in (6.29), since Q = HM (see (6.26)), we have

G = QT +Q−MT HM = QT +Q−MT Q.

Using the matrices M and Q (see (6.18) and (6.20)), we obtain

G = (QT +Q)−

⎛
⎜⎜⎜⎜⎝

I 0 −αβBT

0 I −αβCT

0 0 2αI

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1+μ)βBT B 0 −αBT

0 (1+μ)βCTC −αCT

−B −C 1
β I

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
(2+2μ)βBT B 0 −(1+α)BT

0 (2+2μ)βCTC −(1+α)CT

−(1+α)B −(1+α)C 2
β I

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝
(1+μ +α)βBT B αβBTC −2αBT

−αβCT B (1+μ +α)βCTC −2αCT

−2αB −2αC 2α
β I

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
(1+μ −α)βBT B −αβBTC −(1−α)BT

αβCT B (1+μ −α)βCTC −(1−α)CT

−(1−α)B −(1−α)C 2−2α
β I

⎞
⎟⎟⎟⎟⎠ .

This is just the matrix G we announced in (6.33), which completes the first part of
the proof of the lemma.

To show the positive semi-definiteness (resp., positive definiteness) of G, we need
only to inspect the following 3× 3 matrix⎛

⎜⎜⎜⎝
(1+ μ−α) −α −(1−α)

−α (1+ μ−α) −(1−α)

−(1−α) −(1−α) 2(1−α)

⎞
⎟⎟⎟⎠ .

Since α ∈ (0,1) and μ ≥ α , we have

1+ μ−α > 0 and

∣∣∣∣∣
(1+ μ−α) −α

−α (1+ μ−α)

∣∣∣∣∣> 0.

Note that ∣∣∣∣∣∣∣∣
(1+μ −α) −α −(1−α)

−α (1+μ −α) −(1−α)

−(1−α) −(1−α) 2(1−α)

∣∣∣∣∣∣∣∣
= −(1−α)

∣∣∣∣∣
−α −(1−α)

(1+μ −α) −(1−α)

∣∣∣∣∣+(1−α)

∣∣∣∣∣
(1+μ −α) −(1−α)

−α −(1−α)

∣∣∣∣∣
+2(1−α)

∣∣∣∣∣
(1+μ −α) −α

−α (1+μ −α)

∣∣∣∣∣
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= 2(1−α)

∣∣∣∣∣
(1+μ −α) −(1−α)

−α −(1−α)

∣∣∣∣∣+2(1−α)

∣∣∣∣∣
(1+μ −α) −α

−α (1+μ −α)

∣∣∣∣∣
= 2(1−α)

∣∣∣∣∣
(1+μ) 0

−α −(1−α)

∣∣∣∣∣+2(1−α)
(
(1+μ −α)2 −α2)

= −2(1−α)2(1+μ)+2(1−α)(1+μ)(1+μ−2α)

= 2(1−α)(1+μ)(μ −α).

Thus, for a fixed α ∈ (0,1) and any μ ≥ α (resp. μ > α), G is positive semi-definite
(resp. positive definite). The proof is complete.

Now, with the proved propositions and lemmas, the inequality (6.19) in Lemma 2
can be significantly polished. We summarize it as a theorem and will use it later.

Theorem 1. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11) and denote (yk,zk,λ k) by vk; The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, we then have

θ (u)−θ (ũk)+(w−w̃k)T F(w̃k)≥ 1
2

(‖v−vk+1‖2
H −‖v−vk‖2

H

)
+

1
2
‖vk− ṽk‖2

G, ∀w∈Ω , (6.34)

where H and G are defined by (6.27) and (6.29), respectively.

Proof. It is trivial by combining the assertions (6.19) and (6.28).

Now we are ready to show that the sequence {vk} generated by the SC-PRSM-
PR algorithm (6.11) with α ∈ (0,1) and μ > α is strictly contractive with respect to
the solution of the VI (6.12a). Note that for this case the matrix G defined in (6.29)
is positive definite as proved in Proposition 2.

Theorem 2. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11); and denote (yk,zk,λ k) by vk. The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, we then have

‖vk+1 − v∗‖2
H ≤ ‖vk − v∗‖2

H −‖vk − ṽk‖2
G, ∀v∗ ∈ V∗, (6.35)

where H and G are defined by (6.27) and (6.29), respectively.

Proof. Setting w = w∗ in (6.34), we get

‖vk − v∗‖2
H −‖vk+1 − v∗‖2

H ≥ ‖vk − ṽk‖2
G + 2{θ (ũk)−θ (u∗)+ (w̃k −w∗)T F(w̃k)}.

(6.36)

By using the optimality of w∗ and the monotonicity of F , we have

θ (ũk)−θ (u∗)+ (w̃k −w∗)T F(w̃k)≥ θ (ũk)−θ (u∗)+ (w̃k −w∗)T F(w∗)≥ 0
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and thus

‖vk − v∗‖2
H −‖vk+1 − v∗‖2

H ≥ ‖vk − ṽk‖2
G. (6.37)

The assertion (6.35) follows directly.

The assertion (6.35) thus implies the strict contraction of the sequence {vk} gen-
erated by the SC-PRSM-PR algorithm (6.11). We can thus easily prove the conver-
gence based on this assertion, as stated in the following theorem. This assertion is
also the basis for establishing the worst-case convergence rate in a nonergodic sense
in Section 4.1.

Theorem 3. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11). The sequence {vk = (yk,zk,λ k)} converges to some v∞ which
belongs to V∗.

Proof. According to (6.35), the sequence {vk} is bounded and

lim
k→∞

‖vk − ṽk‖= 0. (6.38)

So, {ṽk} is also bounded. Let v∞ be a cluster point of {ṽk} and {ṽk j} a subsequence
which converges to v∞. Let {w̃k} and {w̃k j} be the sequences induced by {ṽk} and
{ṽk j}, respectively. It follows from (6.19) that

w̃k j ∈Ω , θ (u)−θ (u∞)+(w− w̃k j)T F(w̃k j )≥ (v−vkj)T Q(vkj − ṽk j), ∀ w ∈Ω .

Since the matrix Q is not singular, it follows from the continuity of θ and F that

w∞ ∈ Ω , θ (u)−θ (u∞)+ (w−w∞)T F(w∞)≥ 0, ∀ w ∈ Ω .

The above variational inequality indicates that w∞ is a solution of VI(Ω ,F). By
using (6.38) and lim j→∞ vkj = v∞, the subsequence {vkj} converges to v∞. Due
to (6.35), we have

‖vk+1 − v∞‖H ≤ ‖vk − v∞‖H

and thus {vk} converges to v∞. The proof is complete.

4 Worst-Case Convergence Rate

In this section, we establish the worst-case O(1/t) convergence rate measured by the
iteration complexity in both the ergodic and a nonergodic senses for the SC-PRSM-
PR algorithm (6.11), where t is the iteration counter. Note that as in the publications
[37, 38], and many others, a worst-case O(1/t) convergence rate measured by the
iteration complexity means that an approximate solution with an accuracy of O(1/t)
can be found based on t iterations of an iterative scheme; or equivalently, it requires
at most O(1/ε) iterations to find an approximate solution with an accuracy of ε .
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4.1 Worse-Case Convergence Rate in a Nonergodic Sense

We first establish the worst-case O(1/t) convergence rate in a nonergodic sense
for the SC-PRSM-PR algorithm (6.11). The starting point for the analysis is the
assertion (6.35) in Theorem 2, and the analytic framework follows from the work in
[30] for the ADMM scheme (6.2).

First, recall the matrices M, H, and G defined respectively by (6.18), (6.27),
and (6.29). Since both matrices G and MT HM are positive definite, there exists a
constant c > 0 such that

‖M(vk − ṽk)‖2
H ≤ c‖vk − ṽk‖2

G.

Substituting it into (6.35) and using (6.17), it follows that

‖vk+1 − v∗‖2
H ≤ ‖vk − v∗‖2

H − 1
c
‖vk − vk+1‖2

H , ∀v∗ ∈ V∗. (6.39)

In the following, we will show that the sequence {‖vk − vk+1‖2
H} is monotonically

non-increasing. That is, we have

‖vk+1 − vk+2‖2
H ≤ ‖vk − vk+1‖2

H , ∀k ≥ 0.

The following lemma establishes an important inequality for this purpose.

Lemma 4. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11), and denote (yk,zk,λ k) by vk. The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, we then have

(ṽk − ṽk+1)T Q{(vk − vk+1)− (ṽk − ṽk+1)} ≥ 0, (6.40)

where the matrix Q is defined by (6.20).

Proof. Setting w = w̃k+1 in (6.19), we have

θ (ũk+1)−θ (ũk)+ (w̃k+1 − w̃k)T F(w̃k)≥ (ṽk+1 − ṽk)T Q(vk − ṽk). (6.41)

Note that (6.19) is also true for k := k+ 1 and thus

θ (u)−θ (ũk+1)+ (w− w̃k+1)T F(w̃k+1)≥ (v− ṽk+1)T Q(vk+1 − ṽk+1), ∀w ∈ Ω .

Set w = w̃k in the above inequality, we obtain

θ (ũk)−θ (ũk+1)+ (w̃k − w̃k+1)T F(w̃k+1)≥ (ṽk − ṽk+1)T Q(vk+1 − ṽk+1). (6.42)

Adding (6.41) and (6.42) and using the monotonicity of F , we get (6.40) immedi-
ately.

One more inequality is needed; we summarize it in the following lemma.
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Lemma 5. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11), and denote (yk,zk,λ k) by vk. The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, we then have

(vk − ṽk)T MT HM{(vk − ṽk)− (vk+1 − ṽk+1)} ≥ 1
2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2

(QT +Q).

(6.43)

where the matrices M, H, and Q are defined by (6.18), (6.27), and (6.20), respectively.

Proof. Adding the equation

{(vk − vk+1)− (ṽk − ṽk+1)}T Q{(vk − vk+1)− (ṽk − ṽk+1)} = 1
2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2

(QT +Q)

to the both sides of (6.40), we get

(vk −vk+1)T Q{(vk −vk+1)− (ṽk − ṽk+1)} ≥ 1
2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2

(QT+Q). (6.44)

By using (see (6.17) and (6.26))

vk − vk+1 = M(vk − ṽk) and Q = HM,

to the term vk − vk+1 in the left-hand side of (6.44), we obtain

(vk− ṽk)T MT HM{(vk−vk+1)−(ṽk− ṽk+1)}≥ 1
2
‖(vk− ṽk)−(vk+1− ṽk+1)‖2

(QT +Q).

and the lemma is proved.

Now, we are ready to show that the sequence {‖M(vk− ṽk)‖2
H} is non-increasing.

Theorem 4. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11), and denote (yk,zk,λ k) by vk. The sequences {w̃k} and {ṽk}
being still defined by (6.13) and (6.14), respectively, we then have

‖M(vk+1 − ṽk+1)‖2
H ≤ ‖M(vk − ṽk)‖2

H , (6.45)

where the matrices M and H defined by (6.18) and (6.27), respectively.

Proof. Setting a = M(vk − ṽk) and b = M(vk+1 − ṽk+1) in the identity

‖a‖2
H −‖b‖2

H = 2aT H(a− b)−‖a− b‖2
H,

we obtain

‖M(vk − ṽk)‖2
H −‖M(vk+1 − ṽk+1)‖2

H

= 2(vk − ṽk)T MT HM{(vk − ṽk)− (vk+1 − ṽk+1)}−‖M(vk − ṽk)−M(vk+1 − ṽk+1)‖2
H .
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Inserting (6.43) into the first term of the right-hand side of the last equality, we
obtain

‖M(vk − ṽk)‖2
H −‖M(vk+1 − ṽk+1)‖2

H ≥ ‖(vk − ṽk)− (vk+1 − ṽk+1)‖2
(QT+Q−MT HM).

The assertion (6.45) follows from the above inequality and Lemma 2 immediately.

Now, according to (6.45) and (6.17), we have

‖vk+1 − vk+2‖2
H ≤ ‖vk − vk+1‖2

H . (6.46)

That is, the monotonicity of the sequence {‖vk − vk+1‖2
H} is proved. Then, with

(6.39) and (6.46), we can prove a worst-case O(1/t) convergence rate in a noner-
godic sense for the SC-PRSM-PR algorithm (6.11) with α ∈ [0,1). We summarize
the result in the following.

Theorem 5. Let {wk = (xk,yk,zk,λ k)} be the sequence generated by the SC-PRSM-
PR algorithm (6.11) and {vk = (yk,zk,λ k)}. Then we have

‖vk − vk+1‖2
H ≤ c

(k+ 1)
‖v0 − v∗‖2

H , ∀v∗ ∈ V∗, (6.47)

where the matrix H is defined by (6.27).

Proof. First, it follows from (6.35) that

1
c

∞

∑
t=0

‖vt − vt+1‖2
H ≤ ‖v0 − v∗‖2

H , ∀v∗ ∈ V∗. (6.48)

According to Theorem 4, the sequence {‖vt − vt+1‖2
H} is monotonically non-

increasing. Therefore, we have

(k+ 1)‖vk − vk+1‖2
H ≤

k

∑
i=0

‖vi − vi+1‖2
H . (6.49)

The assertion (6.47) follows from (6.48) and (6.49) immediately.

Notice that V∗ is convex and closed. Let d := inf{‖v0−v∗‖H |v∗ ∈Ω ∗}. Then, for
any given ε > 0, Theorem 5 shows that the scheme (6.11) needs at most !d2/ε" iter-
ations to ensure that ‖vk − vk+1‖2

H ≤ ε . Recall that wk+1 is a solution of VI(Ω ,F,θ )
if ‖vk − vk+1‖2

H = 0. A worst-case O(1/t) convergence rate in a nonergodic sense is
thus established for the SC-PRSM-PR algorithm (6.11) in Theorem 5.

4.2 Worse-Case Convergence Rate in the Ergodic Sense

In this subsection, we establish a worst-case O(1/t) convergence rate in the ergodic
sense for the SC-PRSM-PR algorithm (6.11). For this purpose, we only need the
positive semi-definiteness of the matrix G defined in (6.29). Thus, as asserted in



214 B. He et al.

Proposition 2, we just choose α ∈ (0,1) and μ ≥ α for the SC-PRSM-PR algo-
rithm (6.11). For the analysis, the starting point is Theorem 1, and its follows the
work in [29] for the ADMM algorithm (6.2).

Let us first recall Theorem 2.3.5 in [14], which provides us an insightful charac-
terization for the solution set of a generic VI. In the following theorem, we specific
the above theorem from [14] for the particular VI(Ω ,F,θ ) under consideration.

Theorem 6. The solution set of VI(Ω ,F,θ ) is convex and it can be characterized as

Ω ∗ =
⋂

w∈Ω

{
w̃ ∈ Ω :

(
θ (u)−θ (ũ)

)
+(w− w̃)T F(w)≥ 0

}
. (6.50)

Proof. The proof is an incremental extension of Theorem 2.3.5 in [14], or, alterna-
tively, see the proof of Theorem 2.1 in [29].

Theorem 6 thus implies that w̃ ∈ Ω is an approximate solution of VI(Ω ,F,θ )
with the accuracy ε > 0 if it satisfies

θ (u)−θ (ũ)+F(w)T (w− w̃)≥−ε, ∀w ∈ Ω ∩D(ũ),

where
D(ũ) = {u |‖u− ũ‖ ≤ 1}.

In the remainder, our purpose is to show that based on t iterations of the SC-PRSM-
PR algorithm (6.11), we can find w̃ ∈ Ω such that

θ (ũ)−θ (u)+ (w̃−w)T F(w)≤ ε, ∀w ∈ Ω ∩D(ũ), (6.51)

with ε = O(1/t). That is, an approximate solution of VI(Ω ,F,θ ) with an accuracy
of O(1/t) can be found based on t iterations of the SC-PRSM-PR (6.11).

For the coming analysis, let us slightly refine the assertion (6.34) in Theorem 1.
Using the fact (see the definition of F in (6.12b))

(w− w̃k)T F(w) = (w− w̃k)T F(w̃k),

then it follows from (6.34) that

θ (u)−θ (ũk)+ (w− w̃k)T F(w)+
1
2
‖v− vk‖2

H ≥ 1
2
‖v− vk+1‖2

H , ∀w ∈ Ω . (6.52)

Then, we summarize the worst-case convergence O(1/t) convergence rate in the
ergodic sense for the SC-PRSM-PR algorithm (6.11) in the following.

Theorem 7. Let {wk} be the sequence generated by the SC-PRSM-PR algorithm
(6.11), {w̃k} be defined by (6.13), and t be an integer. Let w̃t be defined as the
average of w̃k for k = 1,2, · · · t, i.e.,

w̃t =
1

t + 1

t

∑
k=0

w̃k. (6.53)
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Then, we have w̃t ∈ Ω and

θ (ũt)−θ (u)+ (w̃t −w)T F(w)≤ 1
2(t + 1)

‖v− v0‖2
H , ∀w ∈ Ω , (6.54)

where H is defined by (6.27).

Proof. First, from (6.13), it holds that w̃k ∈ Ω for all k ≥ 0. Together with the con-
vexity of X and Y, (6.53) implies that w̃t ∈ Ω . Summing the inequality (6.52) over
k = 0,1, . . . , t, we obtain

(t +1)θ (u)−
t

∑
k=0

θ (ũk)+
(
(t +1)w−

t

∑
k=0

w̃k
)T

F(w)+
1
2
‖v− v0‖2

H ≥ 0, ∀w ∈Ω .

Use the definition of w̃t , the above inequality can be written as

1
t + 1

t

∑
k=0

θ (ũk)−θ (u)+ (w̃t −w)T F(w)≤ 1
2(t + 1)

‖v− v0‖2
H , ∀w ∈ Ω . (6.55)

Since θ is convex and

ũt =
1

t + 1

t

∑
k=0

ũk,

we have that

θ (ũt)≤ 1
t + 1

t

∑
k=0

θ (ũk).

Substituting it in (6.55), the assertion of this theorem follows directly.

Remembering (6.51), relation (6.54) shows us that based on t iteration of the
SC-PRSM-PR algorithm (6.11), we can find w̃t , defined by (6.53), which is an
approximate solution of (6.5) with an accuracy of O(1/t). That is, a worst-case
O(1/t) convergence rate in the ergodic sense is established for the SC-PRSM-PR
algorithm (6.11) in Theorem 7.

5 A Divergence Example

It has been shown in the last section that the SC-PRSM-PR algorithm (6.11) is con-
vergent when α ∈ (0,1) and μ > α . In this section, we give an example showing
that both the direct extension of the SC-PRSM algorithm (6.7) and the direct appli-
cation of the SC-PRSM algorithm (6.10) are not necessarily convergent. Thus, the
motivation of considering the SC-PRSM-PR algorithm (6.11) for the multi-block
convex minimization model (6.5) is justified.

The example is inspired by the counter-example in [9], showing the divergence of
the E-ADMM algorithm (6.6). More specifically, we consider the following system
of linear equations:

Ax+By+Cz= 0, (6.56)
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where A,B,C ∈ℜ4 are linearly independent such that the matrix (A,B,C) is full rank
and x,y,z are all in ℜ. This is a special case of the model (6.5) with θ1 = θ2 = θ3 = 0,
m = 4, n1 = n2 = n3 = 1, X = Y =Z = ℜ; and the coefficients matrices are A, B,
and C, respectively. Obviously, the system of linear equation (6.56) has the unique
solution x∗ = y∗ = z∗ = 0. In particular, we consider

(A,B,C) =

⎛
⎜⎜⎝

1 1 1
1 1 2
1 2 2
1 2 2

⎞
⎟⎟⎠ . (6.57)

5.1 Divergence of the Direct Application of the SC-PRSM
Algorithm (6.10)

First, we show that the direct application of the SC-PRSM (6.10) is not necessarily
convergent.

Applying the scheme (6.10) to the homogeneous system of linear equation (6.56),
the resulting scheme can be written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

AT [β (Axk+1 +Byk +Czk)−λ k] = 0

αβ (Axk+1 +Byk +Czk)+λ k+ 1
2 −λ k = 0

BT [β (Axk+1 +Byk+1 +Czk)−λ k+ 1
2 ] = 0

CT [β (Axk+1 +Byk +Czk+1)−λ k+ 1
2 ] = 0

αβ (Axk+1 +Byk+1 +Czk+1)+λ k+1 −λ k+ 1
2 = 0.

(6.58)

It follows from the first equation in (6.58) that

xk+1 =
1

AT A
(−AT Byk −ATCz+AT λ k/β ). (6.59)

For simplicity, let us denote λ k/β by μk. Then, plugging (6.59) into the other equa-
tions in (6.58), we obtain

⎛
⎝BT B 0 0

0 CT C 0
αB αC I

⎞
⎠

⎛
⎝ yk+1

zk+1

μk+1

⎞
⎠

=

⎡
⎣
⎛
⎝ −αBT B −(α +1)BT C BT

−(α +1)CT B −αCT C CT

−αB −αC I

⎞
⎠− 1

AT A

⎛
⎝ (α +1)BT A

(α +1)CT A
2αA

⎞
⎠(−AT B,−AT C,AT )

⎤
⎦
⎛
⎝ yk

zk

μk

⎞
⎠ .

Let

L1 =

⎛
⎜⎝

BT B 0 0

0 CT C 0

αB αC I

⎞
⎟⎠ ,
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R1 =

⎛
⎜⎝

−αBT B −(α +1)BT C BT

−(α +1)CT B −αCTC CT

−αB −αC I

⎞
⎟⎠− 1

AT A

⎛
⎜⎝

(α +1)BT A

(α +1)CT A

2αA

⎞
⎟⎠(−AT B,−ATC,AT ) ,

and denote

M1 = L−1
1 R1.

Then, the scheme (6.58) can be written compactly as⎛
⎝ yk

zk

μk

⎞
⎠= Mk

1

⎛
⎝ y0

z0

μ0

⎞
⎠ .

Obviously, if the spectral radius of M1, denoted by ρ(M1) := |λmax(M1)| (the largest
eigenvalue of M1), is not smaller than 1, then the sequence generated by the scheme
above is not possible to converge to the solution point (x∗,y∗,z∗) = (0,0,0) of the
system (6.56) for any starting point.

Consider the example where (A,B,C) in (6.56) is given by (6.57). Then, with
trivial manipulation, we know that

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

10 0 0 0 0 0
0 13 0 0 0 0
α α 1 0 0 0
α 2α 0 1 0 0

2α 2α 0 0 1 0
2α 2α 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

R1 =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎝

36− 4α −2α − 2 −6α − 2 −6α − 2 2− 6α 2− 6α
−2α− 2 49− 3α −7α − 3 1− 7α 1− 7α 1− 7α

8α 10α 4− 2α −2α −2α −2α
8α 6α −2α 4− 2α −2α −2α
4α 6α −2α −2α 4− 2α −2α
4α 6α −2α −2α −2α 4− 2α

⎞
⎟⎟⎟⎟⎟⎟⎠
.

In Figure 6.1, we plot the values of ρ(M1) for different values of α varying from
0 to 1 with a 0.02 increment. It is obvious that ρ(M1) ≥ 1 for all tested cases, and
it is monotonically increasing with respect to α ∈ (0,1). Therefore, the sequence
generated by the above scheme is not convergent to the solution point of the sys-
tem (6.56) for any starting point. It illustrates thus that the direct application of the
SC-PRSM algorithm (6.10) is not always convergent.
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5.2 Divergence of the E-SC-PRSM Algorithm (6.7)

Now we turn our attention to the divergence of the E-SC-PRSM algorithm (6.7)
when it is applied to the solution of the same example involving (6.56). When al-
gorithm (6.7) is applied to the solution of the above particular problem, it can be
written as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

AT [β (Axk+1 +Byk +Czk)−λ k] = 0

αβ (Axk+1 +Byk +Czk)+λ k+ 1
3 −λ k = 0

BT [β (Axk+1 +Byk+1 +Czk)−λ k+ 1
3 ] = 0

αβ (Axk+1 +Byk+1 +Czk)+λ k+ 2
3 −λ k+ 1

3 = 0

CT [β (Axk+1 +Byk+1 +Czk+1)−λ k+ 2
3 ] = 0

αβ (Axk+1 +Byk+1 +Czk+1)+λ k+1 −λ k+ 2
3 = 0.

(6.60)

Similarly as in the last subsection, we can solve xk+1 first based on the first equa-
tion in (6.60) and then substitute it into the other equations. This leads to the fol-
lowing equation:

⎛
⎝ BT B 0 0

(1+α)CT B CT C 0
2αB αC I

⎞
⎠

⎛
⎝ yk+1

zk+1

μk+1

⎞
⎠

=

⎡
⎣
⎛
⎝−αBT B −(α +1)BT C BT

−αCT B −2αCTC CT

−αB −2αC I

⎞
⎠− 1

AT A

⎛
⎝ (α +1)BT A

(2α +1)CT A
3αA

⎞
⎠(−AT B,−ATC,AT )

⎤
⎦
⎛
⎝ yk

zk

μk

⎞
⎠ .

Then, we denote

L2 =

⎛
⎜⎝ BT B 0 0

(1+α)CT B CTC 0
2αB αC I

⎞
⎟⎠ ,

R2 =

⎛
⎜⎝−αBT B −(α +1)BT C BT

−αCT B −2αCTC CT

−αB −2αC I

⎞
⎟⎠− 1

AT A

⎛
⎜⎝ (α +1)BT A

(2α +1)CT A
3αA

⎞
⎟⎠(

−AT B,−ATC,AT
)
.

and

M2 = L−1
2 R2.

With the specific definitions of (A,B,C) in (6.57), we can easily show that

L2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

10 0 0 0 0 0
11α + 11 13 0 0 0 0

2α α 1 0 0 0
2α 2α 0 1 0 0
4α 2α 0 0 1 0
4α 2α 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
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Fig. 6.1 The magnitude of the spectral radius for M1 and M2 with respect to α ∈ (0,1)

and

R2 =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎝

36− 4α −2α − 2 −6α − 2 −6α − 2 2− 6α 2− 6α
40α + 42 49− 6α −14α− 3 1− 14α 1− 14α 1− 14α

14α 13α 4− 3α −3α −3α −3α
14α 5α −3α 4− 3α −3α −3α
10α 5α −3α −3α 4− 3α −3α
10α 5α −3α −3α −3α 4− 3α

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Hence, to check the spectral radius of ρ(M2) := λmax(M2) (the largest eigenvalue
of M2), we take different values of α varying from 0 to 1 with a 0.02 increment and
plot the values of ρ(M2). In Figure 6.1, we show that ρ(M2) ≥ 1 for all the tested
cases, and it is monotonically increasing with respect to α ∈ (0,1). Therefore, the
sequence generated by the scheme above is not convergent to the solution point of
the system (6.56). It thus illustrates that the E-SC-PRSM algorithm (6.7) does not
always converge.

6 Numerical Results

In this section, we test the proposed SC-PRSM-PR algorithm (6.11) for some appli-
cations arising from image processing and statistical learning domains, and report
the numerical results. Since the SC-PRSM-PR algorithm (6.11) can be regarded as
a customized application of the original SC-PRSM algorithm (6.4) to the specific
multi-block convex minimization problem (6.5) and that it is an operator-splitting
algorithm, we will mainly compare it with some methods of the same kind. In partic-
ular, as well justified in the literature (e.g., [40, 44]), the E-ADMM algorithm (6.6)
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often performs well despite of not being always convergent; we thus compare it with
the SC-PRSM-PR algorithm. Moreover, for the same reason than (6.6), it is inter-
esting to verify the empirical efficiency of the E-SC-PRSM algorithm (6.7), even
though its possible divergence has just been shown. In fact, as we shall report, for
the tested examples, the E-SC-PRSM algorithm does perform well too.

Our code was written in Matlab 2010b and all the numerical experiments were
performed on a Dell(R) laptop computer with 1.5GHz AMD(TM) A8 processor and
a 4GB memory. Since our numerical experiments were conducted on an ordinary
laptop without parallel processors, for the y- and z-subproblems in (6.11) at each
iteration (which are eligible for parallel computation), we only count the longer
time.

6.1 Image Restoration with Mixed Impulsive and Gaussian Noises

Let u ∈ ℜn represent a digital image with n = n1 × n2. Note that a two-dimensional
image can be represented by vectorizing it as a one-dimensional vector in certain
order, e.g., the lexicographic order. Suppose that the clean image u is corrupted
by both blur and noise. We consider the case where the noise is the mixture of an
additive Gaussian white noise and an impulse noise. The corrupted (also observed)
image is denoted by u0. Image restoration is to recover the clean image u from the
observed image u0.

We consider the following image restoration model for mixed noise removal
which was proposed in [32]:

min
u, f

{
τ‖u‖TV +

ρ
2
‖u− f‖2+ ‖PA(H f − u0)‖1

}
. (6.61)

In (6.61), ‖·‖ and ·‖1 denote the l2- and l1 norms, respectively; ‖·‖TV is the discrete
total variation defined by

‖u‖TV = ∑
1≤i, j≤n

√∣∣(∇1u) j,k

∣∣2 + ∣∣(∇2u) j,k

∣∣2,
where ∇1 : ℜn → ℜn and ∇2 : ℜn → ℜn are the discrete horizontal and vertical
partial derivatives, respectively; and we denote ∇ = (∇1,∇2), see [43]; thus ‖u‖TV

can be written as ‖∇u‖1; H is the matrix representation (convolution operator) of
a spatially invariant blur; A represents the set of pixels which are corrupted by
the impulsive noise (all the pixels outside A are corrupted by the Gaussian noise);
PA is the characteristic function of the set A, i.e., PA(u) has the value 1 for any
pixel within A and 0 for any pixel outside A; u0 is the corrupted image with blurry
and mixed noise; and τ and ρ are positive constants. To identify the set A, it was
suggested in [32] to apply the adaptive median filter (AMF) first to remove most of
the impulsive noise within A.
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We first show that the minimization problem (6.61) can be reformulated as a
special case of (6.5). In fact, by introducing the auxiliary variables w, v, and z, we
can reformulate (6.61) as

min τ||w||1 + ρ
2 ‖v‖2 + ‖PA(z)‖1

s.t. w = ∇u
v = u− f
z = H f − u0,

(6.62)

which is a special case of the abstract problem (6.5) with the following specifica-
tions:

• x := u, y := f and z := (w,v,z); X, Y and Z are all real spaces with appropriate
dimensionality;

• θ1(x) := 0, θ2(y) := 0 and θ3(z) := θ3(w,v,z) = τ||w||1 + ρ
2 ‖v‖2 + ‖PA(z)‖1;

• and

A :=

⎡
⎣∇

I
0

⎤
⎦ , B :=

⎡
⎣ 0
−I
H

⎤
⎦ , C :=

⎡
⎣−I 0 0

0 −I 0
0 0 −I

⎤
⎦ , b :=

⎡
⎣ 0

0
u0

⎤
⎦ . (6.63)

Thus, the methods “E-ADMM”, “E-SC-PRSM”, and “SC-PRSM-PR” are all appli-
cable to the minimization problem (6.62). Below we elaborate on the minimization
subproblems arising in the SC-PRSM-PR algorithm (6.11) and show that they all
have closed-form solutions. We skip the elaboration on the sub-problems of the E-
ADMM and E-SC-PRSM algorithms which can be easily found in the literature or
similar to those of the SC-PRSM-PR algorithm.

When the SC-PRSM-PR algorithm (6.11) is applied to the minimization prob-
lem (6.62), the first sub-problem (i.e., the u-subproblem) is

uk+1 = arg min
u∈Rn×n

{
‖∇u−wk − λ k

1

β
‖2 + ‖u− f k− vk − λ k

2

β
‖2
}
,

whose solution is given by

β (∇T ∇+ I)uk+1 = λ k
2 +β ( f k + vk)+∇T (λ k

1 +βwk),

which can be solved efficiently by the fast Fourier transform (FFT) or the discrete
cosine transform (DCT) (see, e.g., [25] for details). In fact, applying the FFT to
diagonalize ∇ such that ∇=F−1DF, where F is the Fourier transformation matrix
and D is a diagonal matrix, we can rewrite the equation above as

β (DT D+ I)Fuk+1 =Fλ k
2 +β (F f k +Fvk)+DT (Fλ k

1 +βFwk),

where Fuk+1 can be obtained by FFT and then uk+1 is recovered by inverse FFT.

After updating the Lagrange multiplier λ k+1/2
j for j = 1,2,3 according to (6.11),

the second subproblem (i.e., the f -subproblem) reads as

f k+1 = arg min
f∈ℜn×n

{
‖uk − f − vk −λ k+1/2

2 /β‖2 +‖H f − zk −u0 −λ k+1/2
3 /β‖2 +μ‖ f − f k‖2

}
,
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whose solution is given by

β (HT H+(μ+1)) f k+1 = HT (λ k+1/2
3 +β (zk +u0))+β (uk−vk)−λ k+1/2

2 +βμ f k.

For this system of equations, since the matrix H is a spatially convolution operator
which can be diagonalized by FFT, we can compute f k+1 efficiently, using a strategy
similar to the one we used to compute uk+1.

The third sub-problem (i.e., the (w,v,z)-subproblem) in the SC-PRSM-PR algo-
rithm (6.11) can be split into three smaller subproblems as follows:

wk+1 = arg minw

{
τ||w||1 + β

2 ‖∇uk+1 −w− λ k+1/2
1
β ‖2 + μβ

2 ‖w−wk‖2

}
= Shrink τ

β(1+μ)

(
1

μ+1(∇uk+1 −λ k+1/2
1 /β + μwk)

)
;

vk+1 = arg minv

{
ρ‖v‖2 +β‖uk+1− f k − v−λ k+1/2

2 /β‖2 + μβ‖v− vk‖2
}

= (β (uk+1 − f k)−λ k+1/2
2 + μβvk)/(ρ +(1+ μ)β )

zk+1 = arg minz

{
‖PA(z)‖1 +

β
2 ‖H f k − u0 −λ k

2/β‖2 + μβ
2 ‖z− zk‖2

}
,

with

(zk+1)i =

⎧⎨
⎩Shrink1/((1+μ)β )

(
1

μ+1(H f k − u0 −λ k+1/2
3 /β + μzk)

)
, if i ∈A;

1
μ+1(H f k − u0 −λ k+1/2

3 /β + μzk), otherwise.

and Shrinkσ (·) denotes the shrinkage operator (see e.g. [11]). That is:

Shrinkσ (a) = a/|a| ◦max{|a|−σ ,0},∀a ∈Rn,

with σ > 0, | · | is the Euclidian norm, and the operator “◦” stands for the compo-
nentwise scalar multiplication.

Finally, we update λ k+1 based on λ k+1/2 and the just-computed uk+1, f k+1 and
(wk+1,vk+1,zk+1).

For problem (6.62), we tested two images, namely: Cameraman.png and
House.png. Both are of size 256× 256. These two images were first convoluted by
a blurring kernel with radius 3 and then corrupted by impulsive noise with intensity
0.7 and Gaussian white noise with variance 0.01. We first applied the AMF (see,
e.g., [32]) with window size 19 to identify the corrupted index set A and remove
the impulsive noise and get the filtered images. The original, degraded, and filtered
images are shown in Figure 6.2.

We now numerically compare SC-PRSM-PR with E-ADMM and E-SC-PRSM.
We took τ = 0.02 and ρ = 1 in (6.62). For a fair comparison, we chose the same
values for the parameters common to various methods, that is β = 6 for all of them
and α = 0.15 for SC-PRSM-PR and E-SC-PRSM. For the additional parameter μ
of SC-PRSM-PR, we took μ = 0.16. We used as stopping criterion the one to be
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defined by (6.80), with ε = 4× 10−5 and the maximum iteration number was set to
be 1000. The initial iterates for all methods were the degraded images. We used the
signal-to-noise ratio (SNR) in the dB unit as the measure of the performance of the
restored images from all methods. The SNR is defined by

SNR = 10log10
‖u‖2

‖û− u‖2 ,

where u is the original image and û is the restored image. In the experiment, we use a
stopping criterion, which is popularly adopted in the literature of image processing,
namely:

Tol :=
‖ f k+1 − f k‖F

1+ ‖ f k‖F
< 4× 10−5. (6.64)

The images restored by SC-PRSM-PR are shown in Figure 6.2. In Figure 6.3, we
plotted the evolution curves of the SNR values with respect to the computing time
in seconds for the tested images. Table 6.1 reports some statistics of the comparison
between these methods, including the number of iterations (“Iter.”), computing time
in second (“CPU(s)”) and the SNR value in dB (“SNR(dB)”) of the restored image.
This set of experiment shows that: 1) the E-SC-PRSM algorithm (6.7), as we have
expected, does work well for the tested examples empirically even though its lack of
convergence has been demonstrated in Section 5.2; and 2) the proposed SC-PRSM-
PR algorithm with proved convergence is very competitive with, and sometimes is
even faster than, E-ADMM and E-SC-PRSM whose convergence is unproven. Note
that the SC-PRSM-PR algorithm (6.11) usually requires more iterations; but the two
sub-problems it contains can be solved in parallel at each iteration. This helps saving
computing time.

Table 6.1 Numerical Comparison for the image restoration problem (6.61).

Cameraman.png House.png
Algorithm Iter. CPU (s) SNR (dB) Iter. CPU (s) SNR (dB)
E-ADMM 901 31.73 19.20 814 28.49 23.84
E-SC-PRSM 767 31.47 19.19 695 27.81 23.84
SC-PRSM-PR 935 29.76 19.20 845 25.77 23.85

6.2 Robust Principal Component Analysis with Missing
and Noisy Data

It is worth mentioning that the problem (6.5) and the previous analysis are for vector
spaces. But without any difficulty, they can be trivially extended to the case where
matrix variables are considered and some linear mappings rather than matrices are
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Fig. 6.2 The original images (first column), the degraded images (second column), the filtered
images by AMF (third column), and the restored images by SC-PRSM-PR.
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Fig. 6.3 Image restoration from the mixture of noises (left: Cameraman.png and right: House.png
on the right): evolutions of the SNR (dB) with respect to the CPU time.

accompanying the variables in the constraints. In the upcoming subsections, we
will test two particular cases of problem (6.5) with matrix variables, both arising
in statistical learning.

We tested first the model of robust principal component analysis (RPCA) with
missing and noisy data. This model aims at decomposing a matrix M ∈ℜm×n as the
sum of a low-rank matrix R ∈ ℜm×n and a sparse matrix S ∈ ℜm×n; but not all the
entries of M are known and M is corrupted by a noisy matrix. More specifically, we
focus on the unconstrained problem studied in [44], namely:

min ||R||∗+ γ||S||1+ ν
2 ‖PΩ (M−R− S)‖2

F, (6.65)

where || · ||∗ is the nuclear norm defined as the sum of all singular values of a ma-
trix, || · ||1 is the sum of the absolute values of all the entries of a matrix, || · ||F is
the Frobenius norm which is the square root of the sum of the squares of all the
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entries of a matrix; γ > 0 is a constant balancing the low-rank and sparsity and
ν > 0 is a constant reflecting the Gaussian noise level; Ω is a subset of the index
set of the entries {1,2, · · · ,m}×{1,2, · · · ,n}, and we assume that only those en-
tries {Ci j,(i, j) ∈ Ω} can be observed; the incomplete observation information is
summarized by the operator PΩ : ℜm×n →ℜm×n, which is the orthogonal projection
onto the span of matrices vanishing outside of Ω so that the i j-th entry of PΩ (X)
is Xi j if (i, j) ∈ Ω and zero otherwise. Note that problem (6.65) is a generalization
of the matrix decomposition problem in [8] and of the robust principal component
analysis problem in [5].

Introducing an auxiliary variable Z ∈ ℜm×n, we can reformulate (6.65) as

min γ||S||1 + ||R||∗+ ν
2 ‖PΩ (Z)‖2

F ,
s.t. S+R+Z = M.

(6.66)

which is a special case of (6.5) with x = S, y = R, z = Z; A, B, and C are all
identity mappings; b = M; θ1(x) = γ||S||1, θ2(y) = ||R||∗, θ3(z) =

ν
2 ‖PΩ (Z)‖2

F ,
X = Y = Z = ℜm×n. Then, applying the SC-PRSM-PR algorithm (6.11) to the
solution of problem (6.66), and omitting some details, we can see that all the result-
ing subproblems have closed-form solutions. More specifically, the resulting SC-
PRSM-PR algorithm reads as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sk+1 = S 1
β
(−Rk −Zk +M+ 1

β λ k)

λ k+ 1
2 = λ k −αβ (Rk+1 + Sk +Zk −M)

Rk+1 = D γ
β(μ+1)

(
μ

μ+1 Sk − 1
μ+1 (S

k+1 +Zk −M− 1
β λ k+ 1

2 )
)

Zk+1 = Z̃k

λ k+1 = λ k+ 1
2 −αβ (Rk+1 + Sk+1+Zk+1 −M),

(6.67)

where Z̃k is given by

Z̃k
i j =

{ μβ
ν+(μ+1)β Zk − β

ν+(μ+1)β (S
k+1 +Rk+1 −M− 1

β λ k+ 1
2 ), if (i, j) ∈ Ω ;

μ
μ+1 Zk − 1

μ+1(S
k+1 +Rk+1 −M− 1

β λ k+ 1
2 ), otherwise.

.

Note that in (6.67), S 1
β

is the matrix version of the shrinkage operator defined

before, that is

(S 1
β
)i j = (1− 1

β
/|Xi j|)+ ·Xi j, 1 ≤ i ≤ m,1 ≤ j ≤ n, (6.68)

for β > 0. In addition, Dτ(X) with τ > 0 is the singular value soft-thresholding
operator defined as follows. If a matrix X with rank r has the singular value decom-
position (SVD)

X =UΛV ∗, Λ = diag({σi}1≤i≤r), (6.69)

then we define

Dτ(X) =UDτ(Λ)V ∗, Dτ(Λ) = diag({(σi − τ)+}1≤i≤r). (6.70)
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As tested in [5, 40, 44], one application of the RPCA model (6.66) is to extract
the background from a surveillance video. For this application, the low-rank and
sparse components, R and S, represent the background and foreground of the video
M, respectively. We test the surveillance video at the hall of an airport, which is
available at http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html. The video
consists of 200 frames of size of 114× 176. Thus, the video data can be realigned
as a matrix M ∈ ℜm×n with m = 25,344,n = 200. We obtain the observed subset Ω
by randomly generating 80% of the entries of D and add the Gaussian noise with
mean zero and variance 10−3 to D to obtain the observed matrix M. According to
[5], we took for regularization parameters γ = 1/

√
m and ν = 100. The 10th, 100th,

and 200th frames of the original and the corrupted video are displayed at the first
and second rows in Figure 6.4, respectively.

To implement E-ADMM, E-SC-PRSM, and SC-PRSM-PR, we set

β = 0.005|Ω |/‖M‖1

for all these methods, choosing α = 0.25 for E-SC-PRSM and SC-PRSM-PR. For
the additional parameter μ of SC-PRSM-PR we took μ = 0.26. The initial iterates
all start at zero matrices and the stopping criteria for all these methods were taken as

max

{‖Rk+1 −Rk‖F

1+ ‖Rk‖F
,
‖Sk+1 − Sk‖F

1+ ‖Sk‖F

}
< 10−2.

Some frames of the foreground recovered by SC-PRSM-PR are shown in the
third row of Figure 6.4. In Figure 6.5, we plotted the respective evolutions of the
primal and dual residuals for all the methods under comparison with respect to
both the computing time and number of iterations. Table 6.2 reports some quan-
titative comparisons among these methods, including the number of iterations
(“Iter”), computing time in seconds (“CPU(s)”), and rank of the recovery video
foreground (“rank(R̂)”) and the number of nonzero entries of the video background
(“|supp(Ŝ)|”). The statistics in Table 6.2 and curves in Figure 6.5 demonstrate that
SC-PRSM-PR outperforms the other two methods. This set of experiments further
verifies the efficiency of the proposed SC-PRSM-PR algorithm (6.11).

6.3 Quadratic Discriminant Analysis

Then we tested a quadratic discriminant analysis (QDA) problem. A rather new
and challenging problem in the statistical learning area, the QDA aims at classi-
fying two sets of normal distribution data (denoted by X1 and X2) with different
but close covariance matrices generalized from the linear discriminant analysis, see,
e.g., [15, 17, 36] for details. An assumption for the QDA problem is that the data
vector X1 ∈ℜn1×d is generated from N(μ1,Σ1), while the data vector X2 ∈ℜn2×d is
generated from N(μ2,Σ2), where d is the data dimension, n1 and n2 are the sample

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Fig. 6.4 The 10th, 100th, and 200th frames of the original surveillance video (first row), the cor-
rupted video (second row), and the sparse video recovered from SC-PRSM-PR (third row).

Table 6.2 Numerical Comparison for the RPCA problem (6.66)

Algorithm Iter. CPU(s) rank(R̂) |supp(Ŝ)|
E-ADMM 44 48.73 7 243,991
E-SC-PRSM 46 79.28 14 579,658
SC-PRSM-PR 33 40.97 9 301,387

size, respectively. We denote by Σ = Σ−1
1 −Σ−1

2 the difference between the inverse
covariance matrices Σ−1

1 and Σ−1
1 ; estimating Σ is important for classification in

high dimensional statistics. In order to estimate a high-dimensional covariance, a
QDA model usually assumes that Σ has some special features, one of these features
being sparsity, see, e.g., [15].

In this subsection, we propose a new model under the assumption that the matrix
Σ , the difference between the inverse covariance matrices Σ−1

1 and Σ−1
1 , is repre-

sented by Σ = S+R where S is a sparse matrix and R is a low-rank matrix. Consid-
ering the sparsity and low-rank features simultaneously is indeed important espe-
cially for some high-dimensional statistical learning problems, see, e.g., [1, 16]. Let
the sample covariance matrices of X1 and X2 be Σ̂1 = XT

1 X1/n1 and Σ̂2 = XT
2 X2/n2,
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Fig. 6.5 RPCA problem (6.66): evolution of the primal and dual residuals for E-ADMM, E-SC-
PRSM, and SC-PRSM-PR w.r.t. the number of iterations (first row) and computing time (second
row).

respectively. Obviously, we have Σ1ΩΣ2 = Σ2−Σ1. Assuming the sparsity and low-
rank features of Σ simultaneously and considering the scenarios with noise on the
data sets, we propose the following novel formulation to estimate Σ = S+R:

min γ||S||1 + ||R||∗
s.t. ||Σ̂1(S+R)Σ̂2 − (Σ̂2 − Σ̂1)||∞ ≤ r,

(6.71)

where again γ > 0 is a trade-off constant between the sparsity and low-rank fea-
tures, r > 0 is a tolerance reflecting the noise level, ‖ · ‖∗ and ‖ · ‖1 are defined as
before in (6.65), and ‖ ·‖∞ := maxi, j |Ui j| denotes the entry-wise maximum norm of
a matrix.

Introducing an auxiliary variable U , we can reformulate (6.71) as

min ||R||∗+ γ||S||1
s.t. U − Σ̂1(R+ S)Σ̂2 = Σ̂1 − Σ̂2,

||U ||∞ ≤ r,
(6.72)

which is a special case of (6.5) with x = U , y = S, z = R, A is the identity map-
ping, B and C are the mappings defined by Σ̂1 and Σ̂2, b = Σ̂1 − Σ̂2, X := {U ∈
ℜd×d , | ||U ||∞ ≤ r}, Y = Z = ℜd×d . To further see why problem (6.72) can be



6 SC-PRSM to Multi-Block Separable Convex Programming 229

casted into (6.5), we can vectorize the matrices R and S, and then write the con-
straint in (6.72) as

vec(U)− (Σ̂T
2 ⊗ Σ̂1)[vec(R)+ vec(S)] = vec(Σ̂1 − Σ̂2), (6.73)

where vec(X) denotes the vectorization of the matrix X ∈ ℜn×n by stacking the
columns of X into a single column vector in ℜn2

, and ⊗ is a Kronecker product.
Applying the SC-PRSM-PR algorithm (6.11) to the solution of problem (6.72)

we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = argmin||U ||∞<r{ β
2 ||U − Σ̂1(Rk +Sk)Σ̂2 − (Σ̂1 − Σ̂2)− 1

β λ k||2F}
λ k+ 1

2 = λ k −αβ (Uk+1 − Σ̂1(Rk +Sk)Σ̂2 − (Σ̂1 − Σ̂2))

Sk+1 = argmin{γ ||S||1 + β
2 ||Uk+1 − Σ̂1(Rk +S)Σ̂2 − (Σ̂1 − Σ̂2)− 1

β λ k+1/2||2F + μβ
2 ||Σ̂1(S−Sk)Σ̂2 ||2}

Rk+1 = argmin{||R||∗+ β
2 ||Uk+1 − Σ̂1(R+Sk)Σ̂2 − (Σ̂1 − Σ̂2)− 1

β λ k+1/2||2F + μβ
2 ||Σ̂1(R−Rk)Σ̂2 ||2}

λ k+1 = λ k+ 1
2 −αβ (Uk+1 − Σ̂1(Rk+1 +Sk+1)Σ̂2 − (Σ̂1 − Σ̂2)),

(6.74)

Now, let us elaborate on the sub-problems in (6.74). First, the U sub-problem
in (6.74) has a closed-form solution given by

Uk+1 =Tr

(
Σ̂1(R

k + Sk)Σ̂2 +(Σ̂1 − Σ̂2)+
1
β

λ k
)
, (6.75)

where (Tr(A))i j is defined as

(Tr(A))i j = sign(Ai j) ·max(|Ai j|,r).
The S- and R-sub-problems in (6.74) do not have closed-form solutions and must

be solved iteratively. Again, we just used the ADMM algorithm (6.2) to solve them.
For example, the S-sub-problem can be reformulated as

min γ ||S||1 + β
2 ||Uk+1 − Σ̂1(Rk +A)Σ̂2 − (Σ̂1 − Σ̂2)− 1

β λ k+1/2||2F + μβ
2 ||Σ̂1(A−Sk)Σ̂2||2

s.t. A−S = 0,
(6.76)

where A is an auxiliary variable. Applying the ADMM algorithm (6.2), with β = 1,
to the solution of problem (6.76), we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vec(Ak+1) =
(
[Σ̂T

2 Σ̂2]⊗ [(μ +1)Σ̂T
1 Σ̂1]+ Id2

)−1vec
(
Σ̂T

1 (Uk+1 − (Σ̂1 − Σ̂2)− 1
β λ k)Σ̂T

2

+μΣ̂T
1 Σ̂1RkΣ̂2Σ̂T

2 +Ak + 1
β λ k

S

)
,

Sk+1 = S γ
β
(Ak+1 − 1

β λ k
S ),

λ k+1
S = λ k

S − (Ak+1 −Sk+1).

(6.77)
Similarly, we can reformulate the R-subproblem in (6.74) as

min ||R||∗+ β
2 ||Uk+1 − Σ̂1(A+Sk)Σ̂2 − (Σ̂1 − Σ̂2)− 1

β λ k+1/2||2F + μβ
2 ||Σ̂1(A−Rk)Σ̂2||2

s.t. A−R = 0,
(6.78)
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where A is an auxiliary variable; and apply the ADMM algorithm (6.2), to the solu-
tion of problem (6.78). The resulting algorithm reads as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vec(Ak+1) =
(
[Σ̂T

2 Σ̂2]⊗ [(μ +1)Σ̂T
1 Σ̂1]+ Id2

)−1vec
(
Σ̂T

1 (Uk+1 − (Σ̂1 − Σ̂2)− 1
β λ k)Σ̂T

2

+μΣ̂T
1 Σ̂1SkΣ̂2Σ̂T

2 +Ak + 1
β λ k

R

)
,

Rk+1 = D 1
β
(Ak+1 − 1

β λ k
R),

λ k+1
R = λ k

R − (Ak+1 −Rk+1).

(6.79)

Note that the operators S γ
β

in (6.77) and D 1
β

in (6.79) are defined by (6.68)

and (6.70), respectively.
For generating the two d-dimensional normal distributions N(μ1,Σ1) and

N(μ2,Σ2), we set d = 20 and the mean vector as μ1 = μ2 = (0,0, . . . ,0)T . We first
generated a random matrix U ∈ℜ20×20 whose entries are i.i.d. N(0,1) and a random
diagonal matrix D ∈ ℜ20×20 whose diagonal elements are i.i.d uniform distribution
on [1,2], then let Σ1 = UT DU . To obtain a low rank semi-positive definite matrix,
we generated a random matrix R1 ∈ ℜ20×10 whose entries are i.i.d. N(0,1) and let
R = R1RT

1 . Therefore, we have rank(R) = 10. To obtain a sparse positive definite
matrix, we first generated a sparse symmetric matrix S1 ∈ ℜ20×20 with 50 nonzero
entries and each nonzero entries are i.i.d. N(0,1). In order to guarantee the posi-
tive definiteness of S, we let S = S1 +2|λmin(S1)|I20, where λmin(S1) is the smallest
eigenvalue of S1. Let Σ2 = (Σ−1

1 +S+R)−1; we then have Ω = Σ−1
1 −Σ−1

2 = S+R.
We generated n = 5000 data X1 ∈ ℜn×d ∼N(μ1,Σ1) and X2 ∈ ℜn×d ∼N(μ2,Σ2)
and obtained the sample covariance matrix Σ̂1 = XT

1 X1/d and Σ̂2 = XT
2 X2/d. We

set the regularization parameters γ = 0.5/
√

d and r = 2
√

d ≈ 8.944 in the prob-
lem (6.71).

To compare SC-PRSM-PR with the E-ADMM and E-SC-PRSM, we set β = 2
for all these algorithms; took α = 0.1 for SC-PRSM and SC-PRSM-PR; and μ =
0.11 for SC-PRSM-PR. All the initial values were zeros matrices, and the same
ADMM algorithm (6.2) with β = 1 was used for solving the sub-problems in all
three schemes. The algorithms used for the solution of the sub-problems are similar
to those in (6.77) and (6.79). As stopping criterion we used

Tol : = max{β‖Rk+1 −Rk‖,β‖Sk+1 − Sk‖, 1
β
‖λ k+1 −λ k‖} ≤ dε, (6.80)

with ε = 1× 10−2 and the maximum iteration number was set as 200. As in [4],
the quantities β‖Rk+1 − Rk‖ and β‖Sk+1 − Sk‖ measure the primal residual and
1
β ‖λ k+1 −λ k‖ measures the dual residual of the optimality of an iterate generated
by scheme (6.74).

In Figure 6.6, we plotted the evolution curves of the objective function values, the
primal and dual residuals with respect to the iteration number and computing time.
These curves show that E-ADMM and E-SC-PRSM are stuck in reducing the primal
and dual residuals (see the figures in the third and fourth columns in Figure 6.6), and
the stopping criterion (6.80) is not fulfilled after running out of the maximal num-
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Fig. 6.6 Quadratic discriminant analysis problem (6.72): evolution of (from left to right) the ob-
jective function value, the zoomed objective value after the 50th iteration, primal residual and dual
residual for E-ADMM, E-SC-PRSM, and SC-PRSM-PR w.r.t the number of iterations (first row)
and computing time (second row).

ber of iterations set beforehand. Moreover, from the zoomed figures (see the second
column in Figure 6.6), we see that the objective function values associated with the
iterations of E-ADMM and E-SC-PRSM are oscillating, which corresponds to the
curves showing that the reductions of the primal and dual residuals get stuck. In fact,
the curves in Figure 6.6 also further show the divergence of E-ADMM and E-SC-
PRSM. On the contrary, the proposed SC-RPSM-PR algorithm (6.11) shows good
convergence properties for reducing at once the objective function values, and the
primal and dual residuals. In Table 6.3, we reported some statistics on the compar-
ison of these three methods, when applied to the solution of problem (6.71); They
include the number of iterations (“Iter”), computing time (“CPU(s)”), the rank of R
(“rank(R̂)”), the number of nonzero entries of S (“|supp(Ŝ)|”), and, finally, the num-
ber of violation of the constraints ‖U‖∞. Recall that our simulated data set requires
that ‖U‖∞ ≤ r ≈ 8.944. Thus, according to Figure 6.6 and Table 6.3, although these
three methods perform almost similarly at recovering the rank of R and the sparsity
of S, E-SC-PRSM clearly outperforms the other algorithms at reducing the objective
function values and the constraint violations (which are exactly the measurement of
optimality) for the problem (6.71). These better convergence properties clearly show
the superiority of the proposed E-SC-PRSM algorithm.

Table 6.3 Numerical comparison for the QDA problem (6.71).

Algorithm Iter. CPU(s) rank(R̂) |supp(Ŝ)| ‖U‖∞
E-ADMM 200 288.732 17 67 9.29
E-SC-PRSM 200 318.59 17 69 9.30
SC-PRSM-PR 168 230.73 17 64 8.96
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7 Conclusions

In this chapter, we generalized the strictly contractive Peaceman-Rachford split-
ting method (SC-PRSM), which was recently proposed (see [26]) for the solution
of convex minimization problems with linear constraints and a separable objective
function which is the sum of two functionals without coupled variables. Our goal in
this chapter was to address the multi-block solution of convex minimization prob-
lems with a higher degree of separability, where the objective function is the sum of
more than two functionals. We showed, via a well-chosen example, that natural gen-
eralizations of the original SC-PRSM algorithm may diverge. In order to solve these
more general minimization problems, we advocated regrouping the functionals and
variables of the original multi-block problem as two blocks, then apply the origi-
nal SC-PRSM algorithm, the resulting dub-problems being split into smaller ones,
easier to solve in principle, and finally to regularize these sub-problems by prox-
imal regularization in order to insure convergence. The resulting algorithm, called
SC-PRSM with proximal regularization (SC-PRSM-PR), preserves the implementa-
tion simplicity of operator-splitting type methods, with easy to solve sub-problems,
and provable convergence (a big theoretical plus). We discussed also the worst-case
convergence rate measured by the iteration complexity. The efficiency of the SC-
PRSM-PR algorithm was verified by the numerical results obtained by applying this
novel algorithm to the solution of problems from Image Processing and Statistical
Learning.

This chapter illustrates the fact that a given operator-splitting method, with
proved convergence properties when applied to the solution of convex minimiza-
tion problems with a two-block separable structure, cannot always be applied di-
rectly to the solution of similar problems having a higher degree of separability. To
insure convergence, some tricky treatment of the sub-problems may be necessary,
such as our strategy of proximally regularizing the decomposed sub-problems. This
chapter can also be viewed as an example on how to design an algorithm for the
solution of some separable convex programming problems, starting from an algo-
rithm with proved convergence property applicable to the solution of simpler sep-
arable convex problems. The approach we took in this chapter may help designing
customized algorithms in other contexts. For example, we can apply directly the
original ADMM algorithm (6.2) to the solution of the multi-block convex mini-
mization problem (6.5). Then, just as we did for SC-PRSM-PR, we can further
decompose the resulting (y,z)-sub-problems and regularize the sub-sub-problems
by proximal terms. We can also consider employing an alternating decomposition
for the sub-problems in (6.8). The algorithmic design approach we follow in this
chapter, and the corresponding analytic framework, can be used to construct such a
variant and prove its convergence rigorously. To simplify our presentation, we fo-
cused on minimization problems with a three-block separable structure. However,
the approach we took in this chapter can be generalized to separable problems with
an arbitrary number of blocks; of course, we expect the convergence analysis to be
more complicated.
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Chapter 7
Nonconvex Sparse Regularization
and Splitting Algorithms

Rick Chartrand and Wotao Yin

Abstract Nonconvex regularization functions such as the �p quasinorm (0 < p < 1)
can recover sparser solutions from fewer measurements than the convex �1 regular-
ization function. They have been widely used for compressive sensing and signal
processing. This chapter briefly reviews the development of algorithms for noncon-
vex regularization. Because nonconvex regularization usually has different regular-
ity properties from other functions in a problem, we often apply operator splitting
(forward-backward splitting) to develop algorithms that treat them separately. The
treatment on nonconvex regularization is via the proximal mapping.

We also review another class of coordinate descent algorithms that work for both
convex and nonconvex functions. They split variables into small, possibly parallel,
subproblems, each of which updates a variable while fixing others. Their theory and
applications have been recently extended to cover nonconvex regularization func-
tions, which we review in this chapter.

Finally, we also briefly mention an ADMM-based algorithm for nonconvex reg-
ularization, as well as the recent algorithms for the so-called nonconvex sort �1 and
�1 − �2 minimization.

1 Early History of Nonconvex Regularization for Sparsity

The attempt to compute a sparse solution of a problem (such as a linear system of
equations) by minimizing a nonconvex penalty function can be traced back at least to
Leahy and Jeffs [31], who used a simplex algorithm (essentially a nonlinear version
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of linear programming) to minimize the �p norm1 subject to a linear constraint. They
describe the algorithm as similar to one of Barrodale and Roberts [3], where �p norm
minimization is considered in a different context.

The next algorithmic development came from Gorodnitsky and Rao, named
FOCUSS (for FOCal Underdetermined System Solver) [25]. In fact, the approach
was a much older method, iteratively reweighted least squares (IRLS) [30], applied
to �0 norm minimization. This was extended to general �p minimization by Rao and
Kreutz-Delgado [45]. Global convergence was erroneously claimed in [26], based
on Zangwill’s Global Convergence Theorem [65], which only provides that subse-
quential limits are local minima.

Attention to nonconvex regularization for sparsity was next spurred by the dev-
elopment of compressive sensing [12, 23], which mostly featured �1 minimization.
Generalization to �p minimization with p < 1 was carried out by Chartrand, ini-
tially with a projected gradient algorithm [15], followed by an IRLS approach with
Yin [18]. A crucial difference between this work and the earlier FOCUSS work
was the use of iterative mollification, where |x|p was replaced by (x2 + εn)

p/2 for a
sequence (εn) converging geometrically to zero. This approach, reminiscent of the
graduated nonconvexity approach of Blake and Zisserman [7] resulted in far bet-
ter signal reconstruction results, seemingly due to much better avoidance of local
minima. A similar approach was developed independently by Mohimani et al. [39],
except with iterative mollification of the �0 norm. In addition, Candès et al. [13]
developed a reweighted �1 algorithm, using a fixed mollifying ε . If the same itera-
tive mollification approach is used, empirical evidence suggests that reweighted �1

and IRLS are equally effective.

2 Forward-Backward Splitting and Thresholdings

First, let us examine the proximal mapping of the �0 norm:

proxλ‖·‖0
(x)

def
= argmin

w
‖w‖0 +

1
2λ ‖w− x‖2

2, (7.1)

where λ > 0. The optimization problem in (7.1) is clearly separable. For an input
component xi, since ‖w‖0 only depends on whether wi is nonzero, the minimizing
wi is clearly either 0 or xi. If wi = 0, the ith term of the objective function is x2

i /(2λ ),
while if wi = xi �= 0, the value is 1. We thus obtain

[
proxλ‖·‖0

(x)
]

i =

⎧⎪⎨
⎪⎩

0 if |xi|<
√

2λ ;

{0,xi} if |xi|=
√

2λ ;

xi if |xi|>
√

2λ .
(7.2)

1 We use “norm” loosely, to refer to such things as the �p quasinorm, or the �0 penalty function
(which has no correct norm-like name).
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This motivates the use of the mapping known as hard thresholding, defined compo-
nentwise as follows:

Ht(x)i =

{
0 if |xi| ≤ t;

xi if |xi|> t.
(7.3)

(Our choice of value at the discontinuity is arbitrary.) Thus H√
2λ (x) gives a (global)

minimizer of the problem in (7.1).
Now consider the following optimization problem:

min
x

‖x‖0 +
1

2λ ‖Ax− b‖2
2. (7.4)

Such a problem computes a sparse, approximate solution of the linear system
Ax = b, and is an �0 analog of basis pursuit denoising (BPDN) [20]. This is one
of the standard problems considered in compressive sensing, where A would be the
product of a measurement matrix and a sparse representation matrix (or dictionary),
and b the (possibly noisy) measurement data. If A is simply a dictionary, then (7.4)
is an example of sparse coding.

If we apply forward-backward splitting (FBS) to (7.4), we essentially obtain the
Iterative Hard Thresholding algorithm (IHT) of Blumensath and Davies [8, 9]:

xn+1 = Ht(x
n − μAT (Axn − b)). (7.5)

The one difference between FBS and IHT is that in IHT, the threshold value t is
adaptive, chosen so that the outcome of the thresholding has at most K nonzero
components, for some positive integer K.

The discontinuities of the �0 norm and hard thresholding are obstacles to good al-
gorithmic performance. For example, substituting hard thresholding for soft thresh-
olding in ADMM gives an algorithm that oscillates fiercely, though Dong and Zhang
[22] managed to tame the beast by using “double augmented Lagrangian” [48] and
using the mean of the iterates as the solution.

Using the �p norm, with p ∈ (0,1), provides a better-behaved alternative:

min
x

‖x‖p
p +

1
2λ ‖Ax− b‖2

2. (7.6)

Note that we use the pth power of the �p norm, because it is easier to compute with
and satisfies the triangle inequality.

We can try to compute the proximal mapping:

proxλ ‖ · ‖p
p(x) = argmin

w
‖w‖p

p +
1

2λ ‖w− x‖2
2. (7.7)
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As before, this is a separable problem; for simplicity, assume w and x are scalars, and
without loss of generality, assume x > 0. If we seek a nonzero minimizer, we need
to solve pwp−1 +(w− x)/2 = 0. Eliminating the negative exponent gives w2−p −
xw1−p + 2p = 0. This is not analytically solvable for general p. The cases where it
can be solved are p = 1/2, where we have a cubic equation in

√
w, and p = 2/3,

where we have a quartic equation in 3
√

w. While this may seem restrictive, there
is anecdotal, empirical evidence suggesting p = 1/2 is a good choice in at least a
broad range of circumstances [18, 49, 63].

The first paper to make use of these special cases is by Krishnan and Fer-
gus [29]. They consider a nonconvex generalization of TV-regularized deblurring,
with (anisotropic) TV replaced by the �p norm of the gradient, for p ∈ {1/2,2/3}.
Their approach generalizes the splitting approach of FTVd [54], with soft threshold-
ing replaced by the appropriate proximal mapping. They consider solving the cubic
or quartic equation by radicals, and by means of a lookup table, and report the latter
to be faster while giving the same quality.

Xu et al. [62] conduct further analysis of the �1/2 proximal mapping, considering
the solution of the cubic equation in terms of the cosine and arccosine functions.
Similarly, Cao et al. [14] develop a closed-form formula for the �2/3 proximal map-
ping. They show that the proximal mapping can be considered as a thresholding
mapping, in the sense of each component of the output being the same scalar func-
tion of the corresponding component of the input, and that the scalar function maps
all inputs of magnitude below some threshold to zero. They use the thresholding
mapping within an application of forward-backward splitting to the �1/2 generaliza-
tion of BPDN, as well as part of alternative approach to the algorithm of Krishnan
and Fergus.

Given the difficulty of computing proximal mappings for a wide range of noncon-
vex penalty functions, it is reasonable to consider reversing the process: specifying
a thresholding mapping, and then determining whether it is a proximal mapping of
a penalty function. Antoniadis considers a general class of thresholding functions,
and then shows that these are proximal mappings of penalty functions [1]:

Theorem 1 (Antoniadis). Let δλ :R→R be a thresholding function that is increas-
ing and antisymmetric such that 0 ≤ δλ (x)≤ x for x ≥ 0 and δλ (x)→ ∞ as x → ∞.
Then there exists a continuous positive penalty function pλ , with pλ (x) ≤ pλ (y)
whenever |x| ≤ |y|, such that δλ (z) is the unique solution of the minimization prob-
lem minθ (zθ )2 + 2pλ (|θ |) for every z at which δλ is continuous.

Such thresholding functions are considered in the context of thresholding of wavelet
coefficients, such as for denoising, and not for use with splitting algorithms.

Chartrand [16, 17] proves a similar theorem, but by making use of tools from
convex analysis in the proof, is able to add first-order information about the penalty
function to the conclusions:

Theorem 2 (Chartrand). Suppose s = sλ : R+ → R+ is continuous, satisfies
x ≤ λ ⇒ s(x) = 0 for some λ > 0, is strictly increasing on [λ ,∞), and s(x) ≤ x.
Define S = Sλ on R

n by S(x)i = s(|xi|)sign(xi) for each i. Then S is the proximal
mapping of a penalty function G(x) = ∑i g(xi) where g is even, strictly increasing
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and continuous on [0,∞), differentiable on (0,∞), and nondifferentiable at 0 with
∂g(0) = [−1,1]. If also x− s(x) is nonincreasing on [λ ,∞), then g is concave on
[0,∞) and G satisfies the triangle inequality.

The proximal mappings are considered for use in generalizations of ADMM. A new
thresholding function, a C∞ approximation of hard thresholding, is used to give a
state of the art image reconstruction result. Subsequently, however, the older and
simpler firm thresholding function of Gao and Bruce [24] was found to perform at
least as well.

It can be shown (cf. [58]) that when all of the hypotheses of Thm. 2 are satisfied,
the resulting mapping G is weakly convex (also known as semiconvex. This is the
property that G(x)+ρ‖x‖2

2 is convex for sufficiently large ρ . Bayram has shown [4]
that the generalization of FBS for weakly convex penalty functions converges to a
global minimizer of the analog of (7.6):

min
x

G(x)+ 1
2λ ‖Ax− b‖2

2. (7.8)

Theorem 3 (Bayram). Let A in (7.8) have smallest and largest singular values σm

and σM, respectively. Suppose G is proper, lower semi-continuous, and such that
G(x)+ρ‖x‖2

2 is convex for ρ ≥ 2σ2
m. Suppose also that the set of minimizers of (7.8)

is nonempty. Then if λ < 1/σ2
M, the sequence generated by FBS converges to a

global minimizer of (7.8) and monotonically decreases the cost.

3 Coordinate Descent Methods

Coordinate descent has been applied for problems with nonconvex regularization
functions. This section reviews the coordinate methods, as well as the work that
adapts them to nonconvex problems.

Coordinate descent is a class of method that solves a large problem by updat-
ing one, or a block of, coordinates at each step. The method works with smooth and
nonsmooth-separable functions, as well as convex and nonconvex functions. We call
a function separable if it has the form f (x) = f1(x1)+ · · ·+ fn(xn). (Coordinate de-
scent methods generally cannot handle functions that are simultaneously nonsmooth
and nonseparable because they can cause convergence to a non-critical point [57].)
There has been very active research on coordinate descent methods because their
steps have an small memory footprint, making them suitable for solving large-sized
problems. Certain coordinate descent methods can be parallelized. In addition, even
on small- and mid-sized problems, coordinate descent methods can run much faster
than the traditional first-order methods because each coordinate descent step can use
a much larger step size and the selection of updating coordinates can be chosen in
favor of the problem structure and data.
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Let us consider the problem of

minimize
x

f (x1, . . . ,xn).

At each step of coordinate descent, all but some ith coordinate of x are fixed. Let

x−i := (x1, . . . ,xi−1,xi+1, . . . ,xn),

collect all components of x but xi. The general framework of coordinate descent is:

For k = 0,1, . . . , perform:

1. Select a coordinate ik
2. Do {

update xk+1
ik

,

xk+1
j = xk

j, for all j �= ik,

3. Check stopping criteria.

In the algorithm, each update to xk+1
i can take one of the following forms:

xk+1
i ← argmin

xi

f (xi,x
k
−i), (7.9a)

xk+1
i ← argmin

xi

f (xi,x
k
−i)+

1
2ηk

‖xi − xk
i ‖2, (7.9b)

xk+1
i ← argmin

xi

〈∇i f (xk),xi〉+ 1
2ηk

‖xi − xk
i ‖2, (7.9c)

xk+1
i ← argmin

xi

〈∇i f diff(xk),xi〉+ f prox
i (xi)+

1
2ηk

‖xi − xk
i ‖2, (7.9d)

which are called direct update (first appeared in [57]), proximal update (first ap-
peared in [2]), gradient update, and prox-gradient update, respectively. The gradient
update (7.9c) is equivalent to the xi-directional gradient descent with step size ηk:

xk+1
i ← (

xk −ηk∇ f (xk)
)

i.

The prox-gradient update (7.9d) is also known as the prox-linear update and
forward-backward update. It is applied to the objective function of the following
form

f (x1, . . . ,xn) = f diff(x1, . . . ,xn)+
n

∑
i=1

f prox
i (xi),

where f diff is a differentiable function and each f prox
i is a proximal function. The

problem (7.6) is an example of this form. In addition to the four forms of updates
in (7.9), there are recent other forms of coordinate descent: a gradient ∇i f (xk) can
be replaced by its stochastic approximation and/or be evaluated at a point x̂k extrap-
olating xk and xk−1.
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Different forms of coordinate updates can be mixed up in a coordinate descent
algorithm, but each coordinate xi is usually updated by one chosen form through-
out the iterations. The best choice is based on the problem structure and required
convergence properties.

As a very nice feature, coordinate descent can select updating coordinates ik at
different orders. Such flexibilities lead to numerical advantages. The most common
choice is the cyclic order. Recently, random and shuffled cyclic orders are found
to be very efficient. On nonconvex problems, the stochasticity of these two orders
helps avoid low-quality local minimizers.

Although less common, the greedy order has started to gain popularity quickly
(e.g., [5, 32, 59, 21, 43, 40]). It chooses next coordinate that minimizes the objec-
tive function most. The Gauss-Southwell selection rule, a commonly used greedy
order with very long history, selects the coordinate with the largest component-wise
derivative. In general, greedy coordinate descent is only applicable when certain
scores can be quickly computed for all the coordinates and then used to choose the
next ik. The greedy order is more expensive at each iteration but also reduces the
total number of iterations. The tradeoff depends on the problem. For problems with
sparse solutions, the greedy order has been found highly effective because some
coordinates are kept always at zero. Other orders, however, will waste lots of com-
putation on updating these coordinates yet eventually setting them back to nearly
zero.

Parallel coordinate descent has been recently developed for multiple computing
nodes to perform coordinate descent simultaneously [10, 50, 43, 47, 36]. The selec-
tion of coordinates that update in parallel can also be deterministic (all coordinates
are updated), stochastic, or greedy. These parallel algorithms partition computation
into smaller subproblems, which are solved simultaneously and then synchronized
to ensure up-to-date information at all computing nodes.

The recent development [34, 33, 42], asynchronous parallel coordinate descent
or coordinate update, brings significant further improvement because every com-
puting node can perform a new update without waiting for other nodes to finish
their running updates. Asynchrony appears originally in solving linear equations
[19] and later introduced to optimization [6, 51]. On large-scale problems, asyn-
chrony greatly reduces processor idling, especially when the different computing
nodes take different amounts of time to finish their coordinate updates. Further-
more, asynchrony spreads out communication over time and thus avoids slowdown
due to communication congestion. On the downside, asynchrony causes computing
nodes to perform updates with possibly out-of-date information, thus potentially in-
creasing the total number of updates for convergence. Despite this, the tradeoff still
appears to vastly favor asynchrony over synchrony [34, 33, 42].

One must be cautious at applying coordinate descent to nonconvex functions,
for which the most natural form of update (7.9a) may not converge. Powell [44]
illustrated this through an example with a differentiable nonconvex objective:

f (x1,x2,x3) =−(x1x2 + x2x3 + x1x3)+
3

∑
i=1

max{|xi|− 1,0}2.
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The minimizers are (x1,x2,x3) = ±(1,1,1). However, the subproblem (7.9a) gen-
erates a sequence of points that approximately cycle near the other six points in
the set {(x1,x2,x3) : xi = ±1, i = 1,2,3}. Nonetheless, each of other forms of up-
dates in (7.9) has been shown to converge (under various conditions) for differen-
tiable nonconvex functions, which bring us to the next issue of nonsmooth functions.
Warga’s example [57],

f (x1,x2) =

{
x1 − 2x2, 0 ≤ x2 ≤ x1 ≤ 1,

x2 − 2x1, 0 ≤ x1 ≤ x2 ≤ 1,

is a convex, nonsmooth function, which has its minimizer at (x1,x2) = (1,1).
Starting from an arbitrary point (x1,x2) where x1 �= 1 and x2 �= 1, all the existing
coordinate descent algorithms will fail at a non-optimal point x1 = x2. Although
this example is simple, such a phenomenon generally occurs with many nonsmooth
functions that couple multiple variables. To deal with this problem, we need to apply
objective smoothing, variable splitting, or primal-dual splitting, which we do not
review here.

Regularity assumptions on the nonconvex objective function are required to show
convergence of coordinate descent algorithms. Grippo and Sciandrone [27] require
that f is component-wise strictly quasiconvex with respect to all but 2 blocks, or
that f is pseudoconvex and has bounded level sets. Tseng [52] requires that either
f is pseudoconvex in every coordinate-pair of among n− 1 coordinates or f has at
most one minimizer for each of (n− 2) coordinates, along with other assumptions.
Tseng and Yun [53] studied coordinate descent based on (7.9d) under an assumed
local error bound that holds if f diff is nonconvex quadratic or equals g(Ax) for a
strongly convex function g and matrix A. However, their local error bound requires
the regularization function to be convex and polyhedral, too strong for �p-norm and
other nonconvex regularization functions to hold.

The paper [60] considers multiconvex2 smooth functions plus separable proximal
functions in the objective. It analyzes the mixed use of different update forms, ex-
trapolation, as well as the functions satisfying the Kurdyka-Łojasiewicz (KL) prop-
erty, which improves subsequential convergence to global convergence. The BSUM
framework [46] aims at analyzing different forms of coordinate descent in a unified
approach. Their analysis has allowed the differentiable part of the objective to be
nonconvex, along with other conditions. Checking their conditions, piecewise lin-
ear regularization functions are permitted. However, the assumptions in the above
papers exclude other major nonconvex regularization functions.

The papers [38, 11] are among the first to apply coordinate descent to regularized
statistical regression problems with nonconvex regularization functions including
the minimax concave penalty (MCP) and the smoothly clipped absolute deviation
(SCAD). They require properties on the fitting terms such that the sum of fitting and
regularization terms is convex and the results from [53] can apply.

2 The objective is convex in each of coordinates while the other coordinates are fixed.
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Coordinate descent for nonconvex �p-norm minimization recently appeared in
[37], where the algorithm uses the update form (7.9d) and the cyclic order. Although
the proximal map of �p is set-valued in general, a single-valued selection is used.
The work establishes subsequential convergence and, under a further assumption of
scalable restricted isometry property, full sequential convergence to a local mini-
mizer. The algorithm in [35] analyzes a random prox-gradient coordinate descent
algorithm. It accepts an objective of the smooth+proximal form where both func-
tions can be nonconvex. More recently, the work [61] extends the analysis of the
previous work [60] by including nonconvex regularization functions such as the
minimax concave penalty (MCP), the smoothly clipped absolute deviation (SCAD),
and others. The work also analyzes both deterministic and randomly shuffled or-
ders and reports better performance using the latter order. Another recent work [66]
establishes that the support set converges in finitely many iterations and provides
new conditions to ensure convergence to a local minimizer. The papers [61, 66] also
apply the KL property for full sequential convergence.

Last but not least, to have strong performance, coordinate descent algorithms
rely on solving smaller, simpler subproblems that have low complexities and low
memory requirements. Not all problem structures are amenable for coordinate de-
scent. Hence, identifying coordinate friendly structures in a problem is crucial to
implementing coordinate descent algorithms effectively. See the recent work [41].

4 Other Methods

This section briefly mentions some other algorithms for problems with nonconvex
regularization functions.

The work [56] analyzes the convergence of the alternating direction method of
multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objec-
tive function, f (x1, . . . ,xp,y), subject to linear constraints. Unlike the majority of
coordinate descent algorithms, ADMM handles constraints by involving dual vari-
ables. The proposed ADMM in [56] sequentially updates the primal variables in
the order x1, . . . ,xp,y, followed by updating the dual variable. For convergence to
a critical point, the objective function on the y-block must be smooth (possibly
nonconvex) and the objective function of each xi-block can be smooth plus non-
smooth. A variety of nonconvex functions such as piecewise linear functions, �p

norm, Schatten-p norm (0 < p < 1), SCAD, as well as the indicator functions of
compact smooth manifolds (e.g., spherical, Stiefel, and Grassman manifolds), can
be applied to the xi variables.

The sorted �1 function [28] is a nonconvex regularization function. It is a
weighted �1 function where the weights have fixed values but are dynamically
assigned to the components under the principle that components with larger mag-
nitudes get smaller weights. This is the same principle in reweighted �2 and �1 al-
gorithms, where the assignments are fixed and the weights are dynamic. Sorted �1

regularization is related to iterative support detection [55] and iterative hard thresh-
olding [8].
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The difference of �1 and �2, ‖x‖1 −‖x‖2, favors sparse vectors [64], so it can
also serve as a nonconvex regularization function for generating sparse solutions.
The picture is courtesy of [64]. The authors analyzed the global solution and pro-
posed an iterative algorithm based on the difference of convex functions algorithm.
Their simulation suggests stronger performance when the sampling matrix in com-
pressed sensing is ill-conditioned (the restricted isometry property is not satisfied)
than other compared algorithms.
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Chapter 8
ADMM and Non-convex Variational Problems

Roland Glowinski

Abstract Our main goal in this chapter is to discuss the application of Alternating
Direction Methods of Multipliers (ADMM) to the numerical solution of non-convex
(and possibly non-smooth) variational problems. After giving a relatively detailed
history of the ADMM methodology, we will discuss its application to the solution of
problems from nonlinear Continuum Mechanics, nonlinear Elasticity, in particular.
The ADMM solution of the two-dimensional Dirichlet problem for the Monge-
Ampère equation will be discussed also. The results of numerical experiments will
be reported, in order to illustrate the capabilities of the methodology under consid-
eration

1 Introduction and Synopsis

To the best of our knowledge, ADMM was discovered accidentally in the mid-
seventies when R. Glowinski and A. Marrocco were investigating the numerical
solution of the following nonlinear (if s �= 2) Poisson problem:{

−∇ · (|∇u|s−2∇u) = f in Ω ,

u = 0 on Γ (= ∂Ω),
(8.1)

with s ∈ (1,+∞) in (8.1). If the function f is a constant and Ω is a bounded
domain of IR2, system (8.1) models, in an appropriate system of units, the steady
flow of a power-law incompressible viscous fluid in an infinitely long cylinder of
cross-section Ω , f being the pressure drop per unit length and u the axial velocity.
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Actually, (8.1) is the Euler-Lagrange equation of the following problem from Cal-
culus of Variations {

u ∈W 1,s
0 (Ω),

J(u)≤ J(v), ∀v ∈W 1,s
0 (Ω),

(8.2)

where (assuming that Ω ⊂ IRd) the Sobolev space W 1,s
0 (Ω) is defined by

W 1,s
0 (Ω) = {v|v ∈ Ls(Ω),

∂v
∂xi

∈ Ls(Ω),∀i = 1, . . . ,d,v = 0 on Γ }, (8.3)

and

J(v) =
1
s

∫
Ω
|∇v|s dx−< f ,v >; (8.4)

in (8.4), we have dx = dx1 . . .dxd , |z|=
√

∑d
i=1 z2

i , ∀z = {zi}d
i=1 ∈ IRd , and < ·, · >

denotes the duality pairing between the dual space W−1, s
s−1 (Ω) of W 1,s

0 (Ω) and

W 1,s
0 (Ω) which coincides with the canonical inner-product of L2(Ω) if the first ar-

gument is smooth enough. The derivatives in (8.1), (8.3), and (8.4) are in the sense
of distributions (see, e.g., [59] and [18] for this important notion).

Problem (8.2) is a well-posed (strictly) convex variational problem. In order to
solve it, Glowinski and Marrocco advocated an augmented Lagrangian approach
relying on the equivalence between (8.2) and{

{u,p} ∈ W,

j(u,p)≤ j(v,q), ∀{v,q} ∈ W,
(8.5)

where

W = {{v,q}|{v,q} ∈W 1,s
0 (Ω)× (Ls(Ω))d , ∇v−q = 0}, (8.6)

and

j(v,q) =
1
s

∫
Ω
|q|s dx−< f ,v > . (8.7)

Let us denote s
s−1 by s′; following Glowinski & Marrocco (see, e.g., [41] and [42]),

we associate with the minimization problem (8.5) the following augmented La-
grangian functional (where r > 0):

Lr(v,q;μ) = j(v,q)+
r
2

∫
Ω
|∇v−q|2 dx+

∫
Ω
(∇v−q) ·μ dx, (8.8)

where in (8.8): a · b = ∑d
i=1 aibi, a = {ai}d

i=1, b = {bi}d
i=1 ∈ IRd . Suppose that

{{u,p},λ} is a saddle-point of Lr over W 1,s
0 (Ω)× (Ls(Ω))d × (Ls′(Ω))d , that is⎧⎪⎨

⎪⎩
{{u,p},λ} ∈ (W 1,s

0 (Ω)× (Ls(Ω))d)× (Ls′(Ω))d ,

Lr(u,p;μ)≤Lr(u,p;λ )≤Lr(v,q;λ ),
∀{{v,q},μ} ∈ (W 1,s

0 (Ω),×(Ls(Ω))d)× (Ls′(Ω))d ,

(8.9)
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then, one can prove easily that u is the solution of problem (8.2) and that
p = ∇u. Natural candidates to capture a saddle-point solution of problem (8.9) are
provided by those Uzawa’s algorithms whose convergence is discussed in, e.g.,
[40, 29, 30, 31, 39], and [32]. Applied to the solution of problem (8.9), such an
Uzawa’s algorithm reads as follows (for simplicity, we have denoted W 1,s

0 (Ω) by
V , (Ls(Ω))d by Q, and (Ls′(Ω))d by Λ ):

λ 0 is given in Λ(λ 0 = 0, for example). (8.10)

For n ≥ 0, λ n →{un,pn}→ λ n+1 as follows:

{un,pn}= arg min{v,q}∈V×QLr(v, q;λ n), (8.11)

λ n+1 = λ n +ρ(∇un−pn), (8.12)

where ρ > 0 (ρ = r being a safe choice, in general). Actually, taking advantage of
the convexity and differentiability properties of the functional j(·, ·), one can prove,
as shown in, e.g., [42], that, ∀λ 0, the sequence {{un,pn}}n converges to {u,∇u}, if
0 < ρ < 2r. Of course, the main difficulty associated with algorithm (8.10)–(8.12)
(called ALG1 in the above reference, and in subsequent ones) is the solution of
problem (8.11). Following [13], an obvious choice to solve (8.11) was to use a (kind
of) block relaxation method, namely

un,0 = un−1. (8.13)

For n ≥ 0, un,k−1 → pn,k → un,k via the solution of

pn,k = arg minq∈QLr(u
n,k−1,q;λ n), (8.14)

and

un,k = arg minv∈VLr(v, pn,k;λ n). (8.15)

It follows from (8.8) that more explicit (and practical) formulations of problems
(8.14) and (8.15) are given by

|pn,k|s−2pn,k + rpn,k = r∇un,k−1 +λ n, (8.16)

and {
−r∇2un,k = f −∇ · (rpn,k −λn) in Ω ,

un,k = 0 on Γ ,
(8.17)

respectively. Problem (8.16) can be solved point-wise, while problem (8.17) is noth-
ing but a ‘nice’ linear Poisson problem.

When applying, algorithm (8.10)–(8.12), (8.13)–(8.15), with ρ = r, to the solu-
tion of problem (8.1), for various values of s, Glowinski and Marrocco observed
that the number of relaxation iterations was quickly converging to one, even for
a rather demanding tolerance in the stopping criterion of algorithm (8.13)–(8.15).
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This observation suggested limiting to one, from the start, the number of relaxation
iterations in (8.13)–(8.15), leading thus to the following variant (called ALG2, at the
time) of algorithm (8.10)–(8.12):

{u−1,λ 0} is given in V ×Λ . (8.18)

For n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn = arg minq∈QLr(u
n−1,q;λ n), (8.19)

and

un = arg minv∈VLr(v, pn;λ n), (8.20)

and

λ n+1 = λ n +ρ(∇un −pn). (8.21)

A nice property of algorithm (8.18)–(8.21) is clearly the decoupling that ALG2
realizes between the nonlinearity and the differential operators.

As far as we know, what we just described is the way ADMM was discovered,
indeed largely by accident. Actually, the authors of [41, 42] realized immediately the
applicability of algorithms such as ALG1 and ALG2 to variational problems such as

{
u ∈V,

J(u)≤ J(v), ∀v ∈V,
(8.22)

where in (8.22):

(i) V is a real Hilbert space for the inner product (·, ·) and the associated
norm ‖ · ‖ (defined by ‖v‖=√

(v, v).
(ii) J(v) = F(Bv)+G(v), with B ∈L (V,H), H being also a Hilbert space,

F : H → IR∪{+∞} (resp., G : V → IR∪{+∞}) being convex, proper and
lower semi-continuous (l.s.c.) with

dom(F ◦B)∩dom(G) �= /0.

(iii) lim
‖v‖→+∞

J(v) = +∞

If the above assumptions hold, the minimization problem (8.22) has a solution; if J
is strictly convex this solution is unique (as shown in, e.g., [50] and [27]). The two
following examples were provided in [42]:

Example 1. Let us consider the following constrained minimization problem{
u ∈ K,

J(u)≤ J(v), ∀v ∈ K,
(8.23)

where, in (8.23),

K = {v |v ∈ H1
0 (Ω), |∇v(x)| ≤ 1 a.e. in Ω}, (8.24)
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and

J(v) =
μ
2

∫
Ω
|∇v |2 dx−C

∫
Ω

vdx, (8.25)

with H1
0 (Ω) =W 1,2

0 (Ω) and

• μ is a positive constant.
• Ω is a bounded domain of IRd (with d ≥ 1).
• C is a constant.

The set K is clearly a closed convex nonempty subset of H1
0 (Ω). Problem (8.23) is

a particular case of (8.22), corresponding to

V = H1
0 (Ω), and H = (L2(Ω))d , (8.26)

G(v) =
μ
2

∫
Ω
|∇v |2 dx−C

∫
Ω

vdx, (8.27)

and
F(q) = IK (q) (8.28)

where, in (8.28), the set K is defined by

K = {q|q ∈ (L2(Ω))d , |q(x)| ≤ 1 a.e. in Ω}, (8.29)

and IK is the indicator functional of K , that is, IK is defined by

IK (q) =

{
0, if q ∈K ,

+∞, if q ∈ (L2(Ω))d \K ,
(8.30)

implying that the functional IK is proper, convex and lower semi-continuous. Since
Ω is bounded, the semi-norm v →√∫

Ω |∇v |2 dx defines a norm over H1
0 (Ω) which

is equivalent to the canonical H1(Ω)-norm (see, e.g., the Appendix 1 of [31] for
a proof); it follows from this norm equivalence that problem (8.23) is well posed
and can be solved by the variant of algorithm (8.18)–(8.21) associated with the
augmented Lagrangian functional Lr defined by

Lr(v ,q;μ) =
μ
2

∫
Ω
|∇v |2 dx−C

∫
Ω

v dx+ IK (q)+

r
2

∫
Ω
|∇v −q|2 dx+

∫
Ω

μ · (∇v −q)dx.

Other decompositions are possible; we can define, for example, the functional F
(resp., G) by

F(q) =
μ
2

∫
Ω
|q|2 dx+ IK (q) (resp., G(v) =−C

∫
Ω

v dx).

The algorithms of type ALG1 and ALG2 associated with the above two decomposi-
tions of problem (8.23) behave similarly.
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Remark 1. If Ω is a simply connected bounded domain of IR2, (8.23) models (in
an appropriate system of units) the torsion of an infinitely long cylinder of cross-
section Ω , made of an elastic-plastic material, μ being characteristic of the elasticity
properties of the material; in this model, C is the torsion angle per unit length, and
u a stress potential.

Example 2. It is the variant of problem (8.23) defined by{
u ∈V,

J(u)≤ J(v), ∀v ∈V,
(8.31)

where, in (8.31),

V = H1
0 (Ω), (8.32)

and
J(v) =

μ
2

∫
Ω
|∇v |2 dx+ τy

∫
Ω
|∇v |dx−C

∫
Ω

v dx, (8.33)

with

• Ω is a bounded domain of IR2.
• μ and τy are positive constants and C ∈ IR.

It follows from, e.g., [23, 26] and [44], that (8.31) models the flow of a Bingham in-
compressible visco-plastic fluid in an infinitely long cylindrical duct (pipe) of cross
section Ω , μ , τy and C being the fluid viscosity, the plasticity yield and the pressure
drop per unit length, respectively. The unique solution u of problem (8.31) is the
flow axial velocity.

Problem (8.31) is a particular case of (8.22), corresponding to

V = H1
0 (Ω), and H = (L2(Ω))2, (8.34)

G(v) =
μ
2

∫
Ω
|∇v |2 dx−C

∫
Ω

vdx, (8.35)

and

F(q) = τy

∫
Ω
|q|dx, (8.36)

as with Example 1, other decompositions are possible.
Problem (8.31) is well posed and can be solved by the variant of algorithm

(8.18)–(8.21) associated with the augmented Lagrangian functional Lr defined by

Lr(v ,q;μ) =
μ
2

∫
Ω
|∇v |2 dx−C

∫
Ω

v dx+ τy

∫
Ω
|q|dx+

r
2

∫
Ω
|∇v −q|2 dx+

∫
Ω

μ · (∇v −q)dx.

This algorithm, and other methods for the solution of problem (8.31), are discussed
in [23] and [44] (see also [46]).
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Back to problem (8.22), we associate with it the augmented Lagrangian func-
tional Lr defined by

Lr(v ,q;μ) = F(q)+G(v)+
r
2
|Bv − q|2 +[μ,Bv − q], (8.37)

where [·, ·] (resp.,| · |) denotes the inner-product over H (resp., its associated norm).
Assuming that Lr has a saddle-point over (V ×H)×H, it follows from the dis-
cussion concerning the solution of problem (8.2) that algorithms (8.10)–(8.12)
and (8.18)–(8.21) can be easily generalized in order to solve problem (8.22); we
obtain then:

λ 0 is given in H (λ 0 = 0, for example). (8.38)

For n ≥ 0, λ n →{un, pn}→ λ n+1 as follows:

{un, pn}= arg min{v ,q}∈V×HLr(v ,q;λ n), (8.39)

λ n+1 = λ n +ρ(Bun − pn), (8.40)

and
{u−1,λ 0} is given in V ×H. (8.41)

For n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn = arg minq∈HLr(u
n−1,q;λ n), (8.42)

and

un = arg minv∈VLr(v , pn;λ n), (8.43)

and
λ n+1 = λ n +ρ(Bun − pn). (8.44)

For simplicity we still call (8.38)–(8.40) (resp., (8.41)–(8.44)) ALG1 (resp.,
ALG2). More explicit formulations of the two above algorithms read, respectively,
as

Explicit formulation of ALG1:

λ 0 is given in H (λ 0 = 0, for example). (8.45)

For n ≥ 0, λ n →{un, pn}→ λ n+1 as follows:⎧⎪⎨
⎪⎩
{un, pn} ∈V ×H,

F(q)−F(pn)+G(un)−G(v)+ r[Bun − pn,B(v − un)− (q− pn)]+

[λ n,B(v − un)− (q− pn)]≥ 0, ∀{v ,q} ∈V ×H,

(8.46)

then

λ n+1 = λ n +ρ(Bun − pn), (8.47)

and
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Explicit formulation of ALG2:

{u−1,λ 0} is given in V ×H. (8.48)

For n ≥ 0, λ n → pn → un → λ n+1 via{
pn ∈ H,

F(q)−F(pn)+ r[pn,q− pn]≥ [λ n + rBun−1,q− pn], ∀q ∈ H,
(8.49)

and{
un ∈V,

G(v)−G(un)+ r[Bun,B(v − un)]≥ [rpn −λ n,B(v − un)], ∀v ∈V,
(8.50)

then
λ n+1 = λ n +ρ(Bun − pn). (8.51)

The variational problems (8.46), (8.49), and (8.50) are particular cases of those el-
liptic variational inequality problems discussed in, e.g., [40, 31] and [34].

Concerning the convergence of algorithm (8.45)–(8.47) (resp., (8.48)–(8.51)) it
has been proved in, e.g., [29, 30, 31] and [39] (see also [47]) that under mild as-
sumptions on operator B, and on the convex functionals F and G, then the following
convergence result holds:

lim
n→+∞

{un, pn}= {u,Bu} in V ×H, ∀λ 0 ∈ H, if 0 < ρ < 2r (8.52)

(resp.,⎧⎨
⎩

limn→+∞{un, pn}= {u,Bu} in V ×H, ∀{u−1,λ 0} ∈V ×H, if

0 < ρ <
1+

√
5

2
r).

(8.53)

Proving the convergence result (8.52) (essentially by an energy method) is relatively
easy as shown in, e.g., [29, 30, 31] and [39]. Proving (8.53) (still by an energy
method) is a bit more complicated, but the most complicated part of the convergence
analysis is to prove that if the assumptions on B, F , G, and ρ , implying (8.52)
and (8.53), hold then

lim
n→+∞

λ n = λ weakly in H, (8.54)

{{u,Bu},λ} being a saddle-point of Lr over (V ×H)×H. Indeed, to prove (8.54),
one can use the results on the convergence of multiplier sequences available in, e.g.,
the Appendix 2 of [40] and the Chapter 4 of [32].

Remark 2. The convergence results (8.52), (8.53), and (8.54) apply to the solution,
via ALG1 and ALG2, of the variational problems considered in Examples 1 and 2.
Focusing on Example 2, applying ALG2 to the solution of problem (8.31) we obtain
the following algorithm:
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{u−1,λ 0} is given in H1
0 (Ω)×Λ , (8.55)

with Λ = (L2(Ω))2.
For n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn(x) =
Xn(x)

r

[
1− τy

|Xn(x)|
]+

, a.e. in Ω , (8.56)

with Xn = λ n + r∇un−1 and ξ+ = max(0,ξ ), ∀ξ ∈ IR, followed by⎧⎪⎪⎨
⎪⎪⎩

un ∈ H1
0 (Ω),

(r+ μ)
∫

Ω
∇un ·∇v dx =C

∫
Ω

v dx+
∫
Ω
(rpn −λ n) ·∇v dx,

∀v ∈ H1
0 (Ω),

(8.57)

λ n+1 = λ n +ρ(∇un −pn). (8.58)

Problem (8.57) is a linear Poisson-Dirichlet problem written in variational form. On
the other hand, it follows from (8.56) that pn is obtained from Xn by application of
what those scientists of the Image Restoration community call a shrinking operator.

The augmented Lagrangian solution of problems from visco-plasticity, more
complicated than (8.31), is discussed in [44] (see also the references therein).

Remark 3. A natural variant of ALG2 reads as follows:

{u−1,λ 0} is given in V ×H. (8.59)

For n ≥ 0, {un−1,λ n}→ pn → λ n+1/2 → un → λ n+1 via

pn = arg minq∈HLr(u
n−1,q;λ n), (8.60)

λ n+1/2 = λ n +ρ(Bun−1− pn), (8.61)

un = arg minv∈VLr(v , pn;λ n+1/2), (8.62)

and

λ n+1 = λ n+1/2 +ρ(Bun − pn). (8.63)

Algorithm (8.59)–(8.63) was called ALG3 in [29, 30] and [39]. A more explicit
formulation of ALG3 is given by:

Explicit formulation of ALG3:

{u−1,λ 0} is given in V ×H. (8.64)



260 R. Glowinski

For n ≥ 0, λ n → pn → λ n+1/2 → un → λ n+1 via{
pn ∈ H,

F(q)−F(pn)+ r[pn,q− p]≥ [λ n + rBun−1,q− pn], ∀q ∈ H,
(8.65)

λ n+1/2 = λ n +ρ(Bun−1− pn), (8.66){
un ∈V,

G(v)−G(un)+ r[Bun,B(v − un)]≥ [rpn −λ n+1/2,B(v − un)], ∀v ∈V,
(8.67)

then
λ n+1 = λ n+1/2 +ρ(Bun − pn). (8.68)

Remark 4. Let us consider the particular case of problem (8.22) where H =V , B= I,
and where F and G are both differentiable with A1 = DF and A2 = DG. Assuming
that ρ = r, it follows from (8.48) to (8.51) that ALG2 reduces to:

{u−1,λ 0} is given in V ×H. (8.69)

For n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

rpn +A1(pn) = run−1 +λ n, (8.70)

run +A2(u
n) = rpn −λ n, (8.71)

λ n+1 = λ n +ρ(un − pn). (8.72)

By elimination of λ n and λ n+1, it follows from (8.70) to (8.72) that

r(pn+1 − un)+A1(pn+1)+A2(u
n) = 0, (8.73)

r(un+1 − un)+A1(pn+1)+A2(u
n+1) = 0. (8.74)

Denote pn+1 by un+1/2, it follows then from (8.73) and (8.74) that

r(un+1/2 − un)+A1(u
n+1/2)+A2(u

n) = 0, (8.75)

r(un+1 − un)+A1(u
n+1/2)+A2(u

n+1) = 0. (8.76)

It follows from (8.75) and (8.76) that in the particular case considered here, ALG2
coincides with the celebrated Douglas-Rachford alternating direction method (in-
troduced in [25]).

Similarly, it follows from (8.64) to (8.68) that, if ρ = r, ALG3 reduces to

{u−1,λ 0} is given in V ×H. (8.77)

For n ≥ 0, {un−1,λ n}→ pn → λ n+1/2 → un → λ n+1 via
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rpn +A1(pn) = run−1 +λ n, (8.78)

λ n+1/2 = λ n + r(un−1 − pn). (8.79)

run +A2(u
n) = rpn −λ n+1/2, (8.80)

λ n+1 = λ n+1/2 + r(un − pn). (8.81)

By elimination of λ n, λ n+1/2 and λ n+1, it follows from (8.78)–(8.81) that

r(pn+1 − un)+A1(pn+1)+A2(u
n) = 0, (8.82)

r(un+1 − pn+1)+A1(pn+1)+A2(u
n+1) = 0. (8.83)

As above, denote pn+1 by un+1/2, it follows then from (8.82) and (8.83) that

r(un+1/2 − un)+A1(u
n+1/2)+A2(u

n) = 0, (8.84)

r(un+1 − un+1/2)+A1(u
n+1/2)+A2(u

n+1) = 0, (8.85)

showing that in the particular case considered here, ALG3 coincides with another
celebrated algorithm, namely the Peaceman-Rachford alternating direction method
(introduced in [56]).

The above observations justify the terminology Alternating Direction Methods
of Multipliers used to denote nowadays algorithms such as ALG2 and ALG3. To the
best of our knowledge this equivalence between some alternating direction meth-
ods and augmented Lagrangian algorithms was discovered, in 1975, by Chan and
Glowinski when solving numerically mildly nonlinear elliptic equations such as{

−∇2u+φ(u) = f in Ω ,

u = g on Γ ,
(8.86)

where, in (8.86), φ is a non-decreasing continuous function from IR into IR. The
circumstances of this discovery are reported with more details in [14, 33] and [34]
(see also [31]).

All the problems considered so far have been convex variational problems. Ac-
tually, albeit ADMM can be applied to the solution of non-convex problems, as one
will see shortly, one is still lacking a general convergence theory. Indeed, there are
only four pages dedicated to non-convex problems in [5], a very popular review
article on ADMM. To the best of our knowledge, the first significant non-convex ap-
plication of ADMM took place in the late seventies/early eighties when COFLEXIP,
a French company specialized in the manufacturing of flexible pipelines used in off-
shore Oil & Gas operations, asked our assistance for the numerical simulation of the
static and dynamic behaviors of its products. Considering these pipelines as inexten-
sible elastic beams (a reasonable assumption in practice), a very simple (but typical)
related problem reads as follows:{

x ∈ E,
J(x)≤ J(y), ∀y ∈ E,

(8.87)
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Fig. 8.1 Beam visualization and notation

where:

J(y) =
EI
2

∫ L

0
|y′′|2 ds−ρb

∫ L

0
g ·yds (8.88)

and

E = { y|y ∈ (H2(0,L))3, |y′(s)|= 1,∀s ∈ [0,L],y(0) = A,y(L) = B,

y′(0) = α ,y′(L) = β}. (8.89)

In (8.87)–(8.89):

• x (resp., y) denotes the equilibrium (resp., an admissible) displacement of the
beam.

• L (resp., EI and ρb) denotes the length (resp., the flexural stiffness and the linear
density) of the beam.

• g = {0,0,−g} denotes the gravity field.
• a ·b = ∑3

i=1 aibi, a = {ai}3
i=1, b = {bi}3

i=1 ∈ IR3.
• s is a curvilinear abscissa (here, the arc-length originating from A, as shown in

Figure 8.1).

• y′ =
dy
ds

, y′′ =
d2y
ds2 .

• The relation |y′(s)|
(
=

√
∑3

i=1 |y′i(s)|2
)
= 1, ∀s ∈ [0,L], models the inextensi-

bility condition.
• α,β ∈ IR3, |α|= |β |= 1.
• H2(0,L) = {φ |φ ∈C1[0,L],φ ′′ ∈ L2(0,L)}.
Above, we have assumed that the beam is sufficiently flexible so that the strain-

stress relation is linear, and the torsional effects have been neglected. Problem (8.87)
is related to the celebrated Euler’s Elastica problem.

If |−→AB|< L, the set E is non-empty and weakly closed in (H2(0,L))3, implying
the existence of solutions to problem (8.87).

From a computational point of view, the main difficulty is the inextensibility
condition

|y′(s)|= 1,∀s ∈ [0,L]⇔ |y′(s)|2
(
=

3

∑
i=1

|y′i(s)|2
)

= 1,∀s ∈ [0,L], (8.90)
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a point-wise nonlinear equality constraint. In order to handle the constraint (8.90)
several approaches are available: (i) One can treat (8.90) by penalty (as done for
example in [36]), or (ii) Introduce a Lagrange multiplier associated with (8.90)
and solve the resulting nonlinear Kuhn-Tucker system by a Newton’s or quasi-
Newton’s method. Actually, our method of choice was derived from the equivalence
between (8.87) and the following minimization problem:{

{x,p} ∈ W,

J(x,p)≤ J(y,q), ∀{y,q} ∈ W,
(8.91)

with

J(y,q) =
EI
2

∫ L

0
|y′′|2 ds−ρb

∫ L

0
g ·yds (8.92)

and

W = {{y,q} | y ∈ (H2(0,L))3,y(0) = A,y(L) = B,y′(0) = α,y′(L) = β ,
q ∈ (L2(0,L))3, |q(s)| = 1 a.e. on (0,L),y′ −q = 0}. (8.93)

We associate with (8.91)–(8.93) the sets

Yad = {y|y ∈ (H2(0,L))3,y(0) = A,y(L) = B,y′(0) = α,y′(L) = β}, (8.94)

S = {q|q ∈ (L2(0,L))3, |q(s)|= 1 a.e. on (0,L)}, (8.95)

and the augmented Lagrangian functional

Lr : (H2(0,L)×L2(0,L))3 × (L2(0,L))3 → IR

defined (with r > 0) by

Lr(y,q;μ) =
EI
2

∫ L

0
|y′′|2 ds−ρb

∫ L

0
g ·yds+

r
2

∫ L

0
|y′ −q|2 ds+

∫ L

0
μ · (y′ −q)ds. (8.96)

One can easily show that if {x,p;λ} is a saddle-point of Lr over (Yad × S)×
(L2(0,L))3, that is ⎧⎪⎨

⎪⎩
{{x,p},λ} ∈ (Yad ×S)× (L2(0,L))3,

Lr(x,p;μ)≤Lr(x,p;λ )≤Lr(y,q;λ ),
∀{{y,q},μ} ∈ (Yad ×S)× (L2(0,L))3,

(8.97)

then x is a solution of problem (8.87) and p = x′. This result, which is very easy
to prove, suggests using ALG1, ALG2, or ALG3 to solve the non-convex variational
problem (8.87). Focusing on ALG2, we obtain the following algorithm:

{x−1,λ 0} is given in Yad × (L2(0,L))3. (8.98)
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For n ≥ 0, {xn−1,λ n}→ pn → xn → λ n+1 via

pn = arg minq∈SLr(xn−1,q;λ n), (8.99)

and
xn = arg miny∈Yad

Lr(y,pn;λ n), (8.100)

and

λ n+1 = λ n +ρ(
d
ds

xn −pn). (8.101)

It follows from (8.96) that (8.99) reduces to

pn = arg minq∈S

[
r
2

∫ L

0
|q|2 ds−

∫ L

0
(r

d
ds

xn−1 +λ n) ·qds

]
,

that is, since
∫ L

0 |q|2 ds = L,

pn = arg maxq∈S

∫ L

0
(r

d
ds

xn−1 +λn) ·qds. (8.102)

Let us denote by Xn the vector-valued function r d
ds xn−1 + λ n; it follows then

from (8.102) that

pn(s) =
Xn(s)
|Xn(s)| if Xn(s) �= 0, a.e. on (0,L). (8.103)

It is worth mentioning that our many numerical experiments, with the discrete ana-
logues of algorithm (8.98)–(8.101), never encountered the situation Xn(s) = 0 when
taking ρ = r in (8.101) and r sufficiently large. The normalization operator as-
sociated with (8.103) plays, for problem (8.87), the role played by the shrinking
operator in (8.56) for problem (8.31).

Concerning problem (8.100), one can easily show that xn is also the unique solu-
tion of the following well-posed linear variational problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x ∈ Yad ,

EI
∫ L

0
d2xn

ds2 · d2y
ds2 ds+ r

∫ L
0

dxn

ds
· dy

ds
ds =∫ L

0
dxn

ds
(rpn −λ n) · dy

ds
ds+ρb

∫ L
0 g ·yds,∀y ∈ (H2

0 (0,L))
3.

(8.104)

Here H2
0 (0,L) = {φ |φ ∈ H2(0,L),φ(0) = φ(L) = 0,φ ′(0) = φ ′(L) = 0}. Those

scientists with some knowledge in elasticity will recognize immediately that the
linear variational problem (8.104) is a one-dimensional 4th order elliptic problem
of the Euler-Bernoulli type (see, e.g., [48] for the modeling and control of elastic
beams and plates). For the numerical implementation of algorithm (8.98)–(8.101),
and of its variants associated with other boundary conditions and external forces, we
systematically employed Hermite cubic based finite element approximations (see
[4, 29, 30, 39] and [36] for details).
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The numerical experiments reported in the five above references show that the
ADMM algorithm (8.98)–(8.101) is easy to implement, due its modularity, and has
good convergence properties if one takes ρ = r and r sufficiently large.

The generalization to time dependent variants of problem (8.87) is discussed in
the five above references, and in [33] and [34].

It is worth noticing that productions codes, used in Oil & Gas Industry, were de-
veloped in the eighties (and still used in the nineties), relying on algorithm (8.98)–
(8.101), and on its generalizations associated with more complicated models (in-
cluding, for example, acceleration terms, interaction with water, obstacles, and tor-
sional effects; see [4, 39], and the references therein for details).

As far as we know, the second encounter between ADMM and Nonlinear Elas-
ticity took place in 1979 during a visit of the author at UT Austin, where his former
(French) Master thesis student Patrick Le Tallec was working on a PhD thesis in
Aerospace and Mechanical Engineering, under the supervision of J.T. Oden. The
main topics of Le Tallec thesis were the analysis of Finite Elasticity models of the
Mooney-Rivlin type (a particular attention being given to incompressible materials),
and the computation of the solutions of the related equilibrium problems. It was
quickly realized that the ADMM based methodology used to solve (8.87) (another
Nonlinear Elasticity problem) could be easily adapted to the solution of problems
in incompressible Finite Elasticity, the incompressibility condition playing for these
problems the role played by the inextensibility condition |y′|= 1 in problem (8.87).
Taking advantage of the modularity of the ADMM methodology we were able to
develop, in just few days, a finite element code able to solve two-dimensional equi-
librium problems for Mooney-Rivlin incompressible elastic materials, including
nontrivial situations with cracks (developing a three-dimensional code took more
time, as expected). We will return in Section 2 to the ADMM based solution of Fi-
nite Elasticity equilibrium problems for incompressible Mooney-Rivlin materials. In
Section 3, we will discuss the ADMM solution of the Dirichlet problem for the two-
dimensional Monge-Ampère equation. Finally, in Section 4, we will apply ADMM
to the solution of a non-smooth nonlinear eigenvalue problem from visco-plasticity.

2 On the ADMM Based Solution of Equilibrium Problems
in Incompressible Finite Elasticity

2.1 Introduction. Problem Formulation

Section 2 is dedicated to what we consider to be one of the most dramatic applica-
tions of ADMM ever, namely the computation of the solutions of equilibrium Finite
Elasticity problems, for Mooney-Rivlin incompressible materials. However, in order
to avoid lengthy developments we will focus mostly on two-dimensional problems,
more general situations being discussed in, e.g., [38, 39] and [49].
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Following [37], we consider the deformation relative to a fixed reference config-
uration of an incompressible hyper-elastic body. The displacement of this body is
characterized by the displacement field u(x), where x = {xi}d

i=1 denotes the posi-
tion of a material particle in the reference configuration (d = 2 or 3, in practice);
we assume that the reference configuration of the body occupies Ω , a bounded do-
main of IRd . The body is subjected to body forces of intensity f per unit mass in the
reference configuration, and to (algebraic) surface tractions t per unit area in the
reference configuration; t (resp., u) is prescribed on a subset Γ1 (resp., Γ0) of the
boundary Γ of Ω , with Γ0 and Γ1 verifying

Γ = Γ0 ∪Γ1, Γ0 ∩Γ1 �= /0, meas.(Γi)> 0,∀i = 0,1. (8.105)

The internal elastic energy of the body is typically of the form

Ee(u) =
∫

Ω
σ(x,∇u)dx, (8.106)

where the stored energy function σ is of the Caratheodory type, that is,

• ∀v, the function x → σ(x,∇v) is measurable,
• ∀x, the function q → σ(x,q) is measurable and differentiable in IRd×d .

The specific form of σ(x,q) characterizes the material of which the body is made.
In the case of a Mooney-Rivlin material, the stored energy function σ is of the form

σ(x,q) =C1[|I+q|2 − d]+C2[|adj(I+q)|2 − d], (8.107)

where, in (8.107), I is the d × d identity matrix, C1 and C2 are two material depen-
dent positive constants, and where (with obvious notation)

|T|2 = trace(Tt T)

(
= ∑

1≤i, j≤d

t2
i j

)
,∀T ∈ IRd×d . (8.108)

In (8.107), adjT is the adjugate of T (that is, the transpose of its cofactor matrix).
Last (but not least), since we consider incompressible materials, the displacement

field u has to obey the local incompressibility condition; this condition reads as:

det (I+∇u) = 1 a.e. in Ω . (8.109)

For simplicity, we will assume that f and t verify the dead loading hypothesis, that
is, do not depend of u. It is thus reasonable to assume that stable equilibria are
solutions (local or global) of the following variational problem:{

u ∈ E,

J(u)≤ J(v), ∀u ∈ E,
(8.110)

where in (8.110):



8 ADMM and Non-convex Variational Problems 267

• The functional J is defined by

J(v) =
∫

Ω
σ(x,∇v)dx−

∫
Ω

ρ f ·vdx−
∫
Γ1

t ·vdΓ , (8.111)

with ρ the body density.
• The set E of admissible displacements is defined by

E = {v|v ∈ V,v = u0 on Γ0,det (I+∇v) = 1 a.e. in Ω}. (8.112)

We have, typically, V = (W 1,s(Ω))d in (8.112), with s depending of the stored en-
ergy function σ ; in order to have E �= /0, we assume that u0 is the trace on Γ0 of a
function ũ0 ∈ V verifying det (I+∇ũ0) = 1. If σ is of the Mooney-Rivlin type (i.e.,
is defined by (8.107)) then a natural choice for the space V in (8.112) is (W 1,s(Ω))d ,
with s = 2d − 2. We observe that for Mooney-Rivlin materials J is convex if d = 2;
this is a direct consequence of the relation |T| = |adjT|, ∀T ∈ IR2×2. On the other
hand J is non-convex if d = 3. The set E is non-convex if d ≥ 2. From now on, in
addition to the dead loading assumption, we will assume that the body is cylindrical
along Ox3 and made of a homogeneous Mooney-Rivlin incompressible material. If
f, t and u are parallel to the plane (Ox1,Ox2), it makes sense to look for solutions of
the form {u1,u2,0} (plane strain solutions). Below, we will denote by Ω the cross-
section of the elastic slab under consideration, which we assume thick enough so
that the two-dimensional simplification takes place. Taking into account the various
assumptions and simplifications we mentioned above, problem (8.110) reduces to:

u = arg minv∈E

[
C
2

∫
Ω
|I+∇v|2 dx−ρ

∫
Ω

f ·vdx−
∫
Γ1

t ·vdΓ
]
, (8.113)

where, in (8.113), C is a material dependent positive constant, and where

E = {v|v ∈ (H1(Ω))2,v = u0 on Γ0,det (I+∇v) = 1 a.e. in Ω}. (8.114)

From a computational point of view we will make things simpler by introducing the
vector-valued function ũ defined by

ũ(x) = x+u(x), a.e. in Ω . (8.115)

We have then

ũ = arg minv∈Ẽ

[
C
2

∫
Ω
|∇v|2 dx−ρ

∫
Ω

f ·vdx−
∫
Γ1

t ·vdΓ
]
, (8.116)

with

Ẽ = {v|v ∈ (H1(Ω))2,v = ũ0 on Γ0,det ∇v = 1 a.e. in Ω}. (8.117)

where ũ0(x) = x+u0(x), a.e. on Γ0. In the (relatively) simple situation under con-
sideration, proving the existence of solutions to problem (8.116) is fairly easy as
shown in the following subsection.
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2.2 On the Existence of Solutions to Problem (8.116)

Concerning the solutions to problem (8.116) we have the following

Theorem 1. Let assume that the linear functional v → ρ
∫

Ω
f · vdx+

∫
Γ1

t · vdΓ is

continuous over (H1(Ω))2. Then, problem (8.116) has a solution.

Proof. Let us denote by J̃ the functional in (8.116) and suppose that {un}n≥0 is a
minimizing sequence associated with the above problem; we have then

un ∈ Ẽ,∀n ≥ 0,and lim
n→+∞

J̃(un) = inf
v∈Ẽ

J̃(v); (8.118)

without loss of generality we can assume that

J̃(un)≤ J̃(un−1)≤ ·· · ≤ J̃(u1)≤ J̃(u0),∀n ≥ 2. (8.119)

Let observe that the functional v →√∫
Ω |∇v|2 dx defines over the space

V0 = {v|v ∈ (H1(Ω))2,v = 0 on Γ0}

a norm equivalent to the one induced by (H1(Ω))2; combining this property
with (8.119), we can easily show that the sequence {un}n≥0 is bounded in (H1(Ω))2.
The above space being a Hilbert space, it follows from the boundedness of {un}n≥0

that we can extract from the above sequence a subsequence -still denoted by
{un}n≥0- such that

lim
n→+∞

un = ũ weakly in (H1(Ω))2. (8.120)

Since the functional J̃ is convex and continuous over (H1(Ω))2, it is also weakly
lower semi-continuous, implying (from (8.120)) that

J̃(ũ)≤ liminfn→+∞J̃(un) = inf
v∈Ẽ

J̃(v). (8.121)

If we can prove that ũ ∈ Ẽ, then the proof will be complete. Actually, it follows from
Lemma 1, below, that Ẽ is weakly closed in (H1(Ω))2, which completes the proof
of our theorem.

Lemma 1. Assuming that Ω is bounded in IR2, the set Ẽ defined by (8.117) is weakly
closed in (H1(Ω))2.

Proof. Suppose that {v,φ} ∈ (C∞(Ω ))2 ×D(Ω), D(Ω) being the space of those
real-valued functions which are infinitely differentiable over Ω and have a compact
support in Ω . Integration by parts, taking advantage of the fact that φ vanishes in
the neighborhood of Γ , give us
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⎪⎪⎪⎪⎩

∫
Ω
(det ∇v)φ dx =

∫
Ω

(
∂v 1

∂x1

∂v2

∂x2
− ∂v1

∂x2

∂v2

∂x1

)
φ dx =

1
2

∫
Ω

v1

(
∂v2

∂x1

∂φ
∂x2

− ∂v2

∂x2

∂φ
∂x1

)
dx+

1
2

∫
Ω

v2

(
∂v1

∂x2

∂φ
∂x1

− ∂v1

∂x1

∂φ
∂x2

)
dx,

∀v = {v1,v2} ∈ (C∞(Ω))2, ∀φ ∈D(Ω).
(8.122)

The density of C∞(Ω) in H1(Ω), and the continuity of the functionals in rela-
tion (8.122), imply that (8.122) still holds if v belongs to (H1(Ω))2. Proving that
the set Ẽ is weakly closed is pretty easy now: indeed let us consider a sequence
{wn}n≥0 of elements of Ẽ converging weakly to w in (H1(Ω))2. Since wn ∈ Ẽ,
∀n ≥ 0, it follows from (8.122) that (with obvious notation)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2

∫
Ω

wn
1

(
∂wn

2

∂x1

∂φ
∂x2

− ∂wn
2

∂x2

∂φ
∂x1

)
dx+

1
2

∫
Ω

wn
2

(
∂wn

1

∂x2

∂φ
∂x1

− ∂wn
1

∂x1

∂φ
∂x2

)
dx

=
∫

Ω
(det ∇wn)φ dx =

∫
Ω

φ dx,∀n ≥ 0, ∀φ ∈D(Ω).

(8.123)

The weak convergence of {wn}n≥0 to w in (H1(Ω))2 implies

lim
n→+∞

∇wn = ∇w weakly in (L2(Ω))2×2, (8.124)

lim
n→+∞

wn = w in (L2(Ω))2, (8.125)

lim
n→+∞

wn|Γ = w|Γ in (L2(Γ ))2 (8.126)

(see, e.g., [1, 52, 53] and [62] for these results). It follows from relations (8.122)–
(8.126), and from wn|Γ0 = ũ0, ∀n ≥ 0, that

w|Γ0 = ũ0 (8.127)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω
(det ∇w)φ dx =

1
2

∫
Ω

w1

(
∂w2

∂x1

∂φ
∂x2

− ∂w2

∂x2

∂φ
∂x1

)
dx+

1
2

∫
Ω

w2

(
∂w1

∂x2

∂φ
∂x1

− ∂w1

∂x1

∂φ
∂x2

)
dx =∫

Ω
φ dx, ∀φ ∈D(Ω).

(8.128)

Relation (8.128) implies that det ∇w = 1 in the sense of distributions, that is a.e. in
Ω , which combined with (8.127) implies in turn that w ∈ Ẽ, which completes the
proof of the lemma.

Remark 5. Situations where problem (8.113) has multiple solutions, due to buckling
phenomena for example, are common in practice, as shown in, e.g., [37].
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2.3 On the ADMM Solution of Problem (8.116)

The mathematical structure of problem (8.116) is very close to those of the con-
vex and non-convex variational problems encountered in Section 1. As above, our
starting point is the equivalence between problem (8.116) and

{ũ, p̃}= arg min{v,q}∈E J̃(v,q), (8.129)

with

J̃(v,q) =
C
2

∫
Ω
|∇v|2 dx−ρ

∫
Ω

f ·vdx−
∫
Γ1

t ·vdΓ , (8.130)

and

E = {{v,q} | v ∈ (H1(Ω))2,q ∈ (L2(Ω))2×2,v = ũ0 on Γ0,

det q = 1 a.e. in Ω ,∇v−q = 0}. (8.131)

With r > 0, we associate with (8.130) and (8.131) the augmented Lagrangian func-
tional

Lr : ((H1(Ω))2 × (L2(Ω))2×2 × (L2(Ω))2×2 → IR

defined by

Lr(v,q;μ) =
C
2

∫
Ω
|∇v|2 dx−ρ

∫
Ω

f ·vdx−
∫
Γ1

t ·vdΓ

+
r
2

∫
Ω
|∇v−q|2 dx+

∫
Ω

μ :(∇v−q)dx; (8.132)

in (8.132), we have S : T = ∑
1≤i, j≤2

si jti j ∀S = (si j)1≤i, j≤2, T = (ti j)1≤i, j≤2 ∈ IR2×2.

Let us define now Vũ0 and Σ by

Vũ0 = {v|v ∈ (H1(Ω))2,v = ũ0 on Γ0}, (8.133)

Σ = {q|q ∈ (L2(Ω))2×2,det q = 1 a.e. in Ω}, (8.134)

respectively. Suppose now that {{ũ, p̃},λ} is a saddle-point of Lr over (Vũ0 ×Σ)×
(L2(Ω))2×2, that is⎧⎪⎨

⎪⎩
{{ũ, p̃},λ} ∈ (Vũ0 ×Σ)× (L2(Ω))2×2,

Lr(ũ, p̃;μ)≤Lr(ũ, p̃;λ )≤Lr(v,q;λ ),
∀{{v,q},μ} ∈ (Vũ0 ×Σ)× (L2(Ω))2×2,

(8.135)

then ũ is a solution to problem (8.116) and p̃ = ∇ũ, implying that ALG1, ALG2
and ALG3 are natural candidates for the solution of problem (8.116). Focusing on
ALG2, we obtain:

{u−1,λ 0} is given in Vũ0 × (L2(Ω))2×2. (8.136)
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For n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn = arg minq∈ΣLr(un−1,q;λ n), (8.137)

and

un = arg minv∈Vũ0
Lr(v,pn;λ n), (8.138)

and
λ n+1 = λ n +ρ(∇un −pn). (8.139)

The minimization problem (8.138) is well posed; indeed un is the unique solution
(from the Lax-Milgram theorem; see, e.g., Appendix 1 of [31] and Chapter 1 of [34])
of the following linear variational problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
un ∈ Vũ0 ,

(C+ r)
∫

Ω
∇un:∇vdx = ρ

∫
Ω

f ·vdx+
∫
Γ1

t ·vdΓ+∫
Ω
(rpn −λ n):∇vdx;∀v ∈ V0,

(8.140)

with V0 = {v|v∈ (H1(Ω))2,v = 0 on Γ0}. The elliptic problem (8.140) is a Poisson
system with mixed boundary conditions (of the Dirichlet-Neumann type). The two
components of un can be computed independently (and also in parallel).

The minimization problem (8.137) can be solved point-wise. Indeed, a.e. in Ω ,
we have to solve a quadratically constrained minimization problem in IR4, namely

pn = arg minG∈Σ4

[ r
2
|G|2 −Xn(x):G

]
, (8.141)

where, in (8.141), the set Σ 4 and the matrix-valued function Xn are defined by

Σ 4 = {G|G = (Gi j)1≤i, j≤2 ∈ IR2×2,G11G22 −G12G21 = 1},

and

Xn = r∇un−1 +λ n,

respectively. In order to facilitate the solution of problem (8.141), we introduce the
vector z = {zi}4

i=1 ∈ IR4 defined by{√
2 z1 = G11 +G22,

√
2 z2 = G11 −G22,√

2 z3 = G12 +G21,
√

2 z4 = G12 −G21.
(8.142)

We have then ⎛
⎜⎜⎝

pn
11(x)

pn
22(x)

pn
12(x)

pn
21(x)

⎞
⎟⎟⎠= S arg minz∈Z4

[ r
2
|z|2 −bn(x) · z

]
, (8.143)

where, in (8.143),
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S =
1√
2

⎛
⎜⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

bn
1(x)

bn
2(x)

bn
3(x)

bn
4(x)

⎞
⎟⎟⎠= S

⎛
⎜⎜⎝

Xn
11(x)

Xn
22(x)

Xn
12(x)

Xn
21(x)

⎞
⎟⎟⎠

and
Z4 = {z|z = {zi}4

i=1 ∈ IR4,z2
1 − z2

2 − z2
3 + z2

4 = 1}.
The minimization problem in (8.143) is clearly a generalized eigenvalue problem.
Let us denote by y a solution to the above minimization problem; introducing a
Lagrange multiplier λ associated with the constraint 1

2 (z
2
1 − z2

2 − z2
3 + z2

4 − 1) = 0,
the corresponding optimality system reads as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ry1 = b1 +λy1,

ry2 = b2 −λy2,

ry3 = b3 −λy3,

ry4 = b4 +λy4,

y2
1 − y2

2 − y2
3 + y2

4 = 1

(8.144)

which implies in turn that λ is solution to

b2
1 + b2

4

(r−λ )2 =
b2

2 + b2
3

(r+λ )2 + 1. (8.145)

The solution of the minimization problem (8.143), via (8.144), (8.145), is thor-
oughly discussed in [37] for which we refer also for the results of numerical exper-
iments showing that the ADMM algorithm (8.136)–(8.139) has good convergence
properties if r lies in an appropriate interval (see also [39]).

Remark 6. As shown in, e.g., [37, 38] and [39], the ADMM based methodol-
ogy, we discussed above, can be generalized in order to solve axisymmetric and
three-dimensional equilibrium problems for elastic bodies made of incompressible
Mooney-Rivlin materials. The finite element implementation of these algorithms is
discussed in the above three references, and their parallelization in [58].

Remark 7. The numerical experiments reported in, e.g., [39] show that a robust
strategy to solve equilibrium problems in Finite Elasticity is to use ALG1 with an
appropriate stopping criterion for the relaxation iterations. Indeed, this makes the
resulting algorithm less sensitive to initialization than ALG2 and ALG3. Most often,
the number of relaxation iterations reduces to one or two rather quickly. The fact that
ALG1 is more robust than ALG2 and ALG3 is not surprising: After all, ALG2 and
ALG3 are just ‘cheap’ approximations of ALG1 where one limits to one the number
of relaxation iterations used to solve the minimization problem (39) in algorithm
(38)-(40). To be more precise, what ALG1 does is to solve the dual problem

λ = arg maxμ∈H min
{v ,q}∈V×H

Lr(v ,q;μ)
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by a gradient ascent method with fixed step ρ , since the vector Bun − pn is nothing
but the gradient at λ n of the dual functional

μ → min
{v ,q}∈V×H

Lr(v ,q;μ).

On the other hand ALG2 and ALG3 rely on ascent vectors at λ n which have been
obtained from an incomplete (to say the least) solution of problem (8.39), leading
to mediocre approximations of the gradient (during the first iterations at least), and
thus to less robustness. Other evidences of the superior robustness of ALG1 are:
(i) the convergence condition (for convex problems) ρ ∈ (0,2r), compared to ρ ∈
(0, 1+

√
5

2 r) for ALG2, and (ii) the fact that the number of outer iterations necessary
to achieve convergence is a decreasing function of r (until round-off and truncation
errors catch up), while, for ALG2 and ALG3, r has to be neither too small nor too
large to obtain optimal speed of convergence (assuming that r is fixed). To be honest
these comments about ALG1 being more robust than ALG2 and ALG3 apply mostly
to convex problems (albeit they apply also to non-convex problems such as (8.110)).
One may find in [64] examples of non-convex problems for which ALG1 does not
converge to a solution while ALG2 does.

3 On the ADMM Based Solution of the Dirichlet Problem
for the Elliptic Monge-Ampère Equation in Dimension Two

3.1 Introduction. Synopsis

If f > 0, the two-dimensional canonical real Monge-Ampère equation

det D2u = f (8.146)

is certainly the simplest example of second order fully nonlinear elliptic equations.
In (8.146), D2u denotes the Hessian of the real-valued unknown function u, that is

D2u =

⎛
⎜⎜⎝

∂ 2u

∂x2
1

∂ 2u
∂x1∂x2

∂ 2u
∂x1∂x2

∂ 2u

∂x2
2

⎞
⎟⎟⎠

and therefore

det D2u =
∂ 2u

∂x2
1

∂ 2u

∂x2
2

−
∣∣∣∣ ∂ 2u
∂x1∂x2

∣∣∣∣
2

. (8.147)

Actually, equation (8.146) is trickier than what it looks like; to be convinced let us
consider the seemingly simple following boundary value problem
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det D2u = 1 in Ω
u = 0 on ∂Ω ,

(8.148)

with Ω = (0,1)2; problem (8.148) is a typical Dirichlet problem for the Monge-
Ampère equation (8.146). It is clear that problem (8.148) has no smooth solution
on Ω since, for such a solution, the condition u = 0 on ∂Ω implies that the product
∂ 2u

∂x2
1

∂ 2u

∂x2
2

and the cross derivative
∂ 2u

∂x1∂x2
vanish at the boundary, implying in turn

that det D2u is strictly less than 1 in some neighborhood of ∂Ω , which contradicts
det D2u = 1 in Ω . Actually, the non-existence of classical solutions to (8.148) stems
from the non-strict convexity of Ω , not from the fact that it has corners. In order to
overcome this type of difficulties, various generalizations of the concept of solution
were introduced, the most popular ones being the generalized solutions in the sense
of Alexandroff and the viscosity solutions. Generalized solutions to Monge-Ampère
and other fully nonlinear elliptic equations are discussed in, e.g., [11, 12, 45] and the
Chapter 4 of [63] (see also the many references therein); the third of the above refer-
ences contains a discussion of the intricate relations existing between these various
notions of generalized solutions. For years, the numeric of fully nonlinear elliptic
equations has been far behind their analysis, two notable exceptions being [55] and
[2]. Fortunately, these past few years have been witnessing a fast increasing interest
by the computational and applied mathematics community for the numerical anal-
ysis and solution of fully nonlinear elliptic equations, some recent and very recent
related publications being [3, 54, 7] and [8]. Actually, from 2000 to the present
days, a rather large variety of methods have been investigated to achieve the numer-
ical solution of fully nonlinear elliptic equations (finite differences, finite elements,
discontinuous Galerkin, mesh-less, viscosity solutions, vanishing moments, New-
ton’s, multilevel, least-squares, etc.); some of these methods are discussed in [28], a
review article which describes also various situations from Mechanics and Physics
leading to fully nonlinear elliptic equations, including some from Cosmology (see,
e.g., [6]). What about augmented Lagrangians and ADMM? As far as we know they
have been used in two instances:

(i) In [2], where ALG2 was used to solve a variant of the Monge-Ampère equa-
tion associated with the Monge-Kantorovich optimal transportation prob-
lem (this was the first time that, to the best of our knowledge, an augmented
Lagrangian algorithm had been applied to the solution of a Monge-Ampère
type problem).

(ii) In [20, 21, 22] and [35], where ALG2 (combined with mixed finite element
approximations) was applied to the solution of a nonlinearly constrained
minimization problem associated with the Monge-Ampère problem under
consideration (see also Section 3.1 of [28]). This approach will be discussed
in Sections 3.3 and 3.4.
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3.2 Problem Formulation

Let Ω be a bounded convex domain of IR2 ; from now on, we will denote by Γ the
boundary ∂Ω of Ω . The two-dimensional Dirichlet problem for the Monge-Ampère
equation (8.146) reads as follows:{

det D2u = f in Ω
u = g on ∂Ω ,

(8.149)

where f (> 0) and g are two given functions. Since (8.149) may have multiple so-
lutions (two at most actually, as shown in [19]), we will look for convex solutions
only. The existence and uniqueness of convex solutions (classical or generalized)
to (8.149) is discussed in, e.g., [12, 45] and [11] (see also the references therein).

3.3 An Augmented Lagrangian Approach for the Solution
of Problem (8.149)

Suppose that in (8.149) we have f (> 0) ∈ L1(Ω) and g ∈ H3/2(Γ ); it makes sense
then to attempt solving problem (8.149) in H2(Ω) by considering it as a nonlinear
bi-harmonic problem. A way to do so is to consider the following problem from
Calculus of Variations

u = arg minv∈E+
f g

1
2

∫
Ω
|∇2v |2 dx, (8.150)

with

E+
f g = {v |v ∈Vg,det D2v = f , v convex}

= {v |v ∈Vg,det D2v = f ,
∂ 2v
∂x2

1

> 0,
∂ 2v
∂x2

2

> 0}

and

Vg = {v |v ∈ H2(Ω), v = g on Γ }.
If problem (8.149) has a convex solution u in H2(Ω), it is unique and is also the
unique solution of problem (8.150). Problem (8.150) is in turn equivalent to

{u,D2u}= arg min{v ,q}∈E+
f g

1
2

∫
Ω
|∇2v |2 dx, (8.151)

with

E +
f g = {{v ,q}|v ∈Vg,q ∈ Q,D2v −q = 0,det q = f , q11 > 0,q22 > 0}

and
Q = {q|q = (qi j)1≤i, j≤2,q12 = q21, qi j ∈ L2(Ω), 1 ≤ i, j ≤ 2}.
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Following Section 1, we associate with problem (8.151):

(i) The augmented Lagrangian functionalLr : (H2(Ω)×Q)×Q→ IR defined,
with r > 0, by

Lr(v ,q;μ) =
1
2

∫
Ω
|∇2v |2 dx+

r
2

∫
Ω
|D2v −q|2 dx+

∫
Ω

μ :(D2v −q)dx,

(8.152)

with S : T = ∑
1≤i, j≤2

si jti j if S = (si j)1≤i, j≤2, T = (ti j)1≤i, j≤2, and |S| =
√

S : S.
(ii) The saddle-point problem⎧⎪⎨

⎪⎩
{{u,p},λ} ∈ (Vg ×Q+

f )×Q,

Lr(u,p;μ)≤Lr(u,p;λ )≤Lr(v ,q;λ ),
∀{{v ,q},μ} ∈ (Vg ×Q+

f )×Q,

(8.153)

with Q+
f = {q|q ∈ Q,det q = f ,q11 > 0,q22 > 0}.

One can easily show that if {{u,p},λ} is a solution of the saddle-point prob-
lem (8.153), then u is a convex solution of the Monge-Ampère problem (8.149),
p = D2u, and λ is a Lagrange multiplier associated with the relation D2u−p = 0.

From the structure of the saddle-point problem (8.153), an obvious candidate for
its iterative solution is clearly the algorithm ALG2 already considered in Section 1
(despite the fact that we are in a non-convex environment due to the non-convexity
of the set Q+

f ). Applying ALG2 to the solution of (8.153), we obtain:

{u−1,λ 0} is given in Vg ×Q. (8.154)

For n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via{
pn ∈ Q+

f ,

Lr(un−1,pn;λ n)≤Lr(un−1,q;λ n),∀q ∈ Q+
f ,

(8.155)

{
un ∈Vg,

Lr(un,pn;λ n)≤Lr(v ,pn;λ n),∀v ∈Vg,
(8.156)

λ n+1 = λ n +ρ(D2un −pn). (8.157)

Algorithm (8.154)–(8.157) deserves several comments, among them:

• Concerning the initialization of algorithm (8.154)–(8.157), we advocate taking
λ 0 = 0 and u−1 as the solution of the linear Poisson-Dirichlet problem{

∇2u = 2
√

f in Ω ,

u−1 = g on Γ .
(8.158)
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The rational of such a choice stems from the fact that if we denote by λ1 and λ2

the eigenvalues of D2u we have λ1 +λ2 = ∇2u and λ1λ2 = detD2u = f . Sup-
pose now that λ1 and λ2 are close to each other; it follows then from the identity
4λ1λ2 ≡ (λ1 +λ2)

2 − (λ1 −λ2)
2 that we have ∇2u ≈ 2

√
det D2u = 2

√
f , jus-

tifying (8.158). Actually, numerical experiments have persistently shown the
soundness of (8.158), even when λ1 and λ2 are not that close to each other.

• We always took ρ = r in (8.157) when applying the above algorithm (actually
its finite element analogues) to the numerical solution of the particular cases of
problem (8.149) we used as test problems.

• Algorithm (8.154)–(8.157) may seem a bit abstract, however, relations (8.155),
(8.156) can be reformulated, respectively, as

pn = arg minq∈Q+
f

[
1
2

∫
Ω
|q|2 dx−

∫
Ω
(D2un−1 +

1
r
λ n):qdx

]
, (8.159)

⎧⎪⎪⎨
⎪⎪⎩

un ∈Vg,∫
Ω

∇2un∇2v dx+ r
∫
Ω

D2un:D2v dx =

∫
Ω
(rpn −λ n):D2v dx,

∀v ∈V0

(8.160)

with V0 =H2(Ω)∩H1
0 (Ω). The solution of the sub-problems (8.159) and (8.160)

will be discussed just below.

On the solution of (8.159): The minimization problem (8.159) can be solved point-
wise; indeed, one has to solve for almost every x in Ω (in practice, for the interior
vertices of a finite element triangulation of Ω ) a tri-dimensional minimization prob-
lem of the following type:⎧⎨
⎩
{pn

11(x), pn
22(x), pn

12(x)}=
arg minz∈Z( f ,x)

[
1
2
(z2

1 + z2
2 + 2z2

3)− bn
1(x)z1 − bn

2(x)z2 − 2bn
3(x)z3

]
,

(8.161)

where

Z( f ,x) = {z|z = {zi}3
i=1 ∈ IR3,z1,z2 > 0,z1z2 − z2

3 = f (x)}
and ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bn
1(x) =

∂ 2un−1

∂x2
1

(x)+
1
r
λ11(x),

bn
2(x) =

∂ 2un−1

∂x2
2

(x)+
1
r
λ22(x),

bn
3(x) =

∂ 2un−1

∂x1∂x2
(x)+

1
r
λ12(x).

To transform the three-dimensional constrained minimization problem (8.161) into
an unconstrained two-dimensional one, we perform the following change of vari-
ables:

z1 =
√

f (x)eρ coshθ ,z2 =
√

f (x)e−ρ coshθ ,and z3 =
√

f (x) sinhθ .
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There is then equivalence between (8.161) and the following two-dimensional min-
imization problem: {

{ρn,θ n} ∈ IR2,

jn(ρn,θ n)≤ jn(ρ ,θ ),∀{ρ ,θ} ∈ IR2,
(8.162)

where

jn(ρ ,θ ) =
√

f (x)
2

(cosh2ρ cosh2θ + cosh2ρ + cosh2θ − 1)

−(bn
1(x)e

ρ + bn
2(x)e

−ρ)coshθ − 2bn
3(x)sinhθ .

This in turn leads to the solution of

D jn(ρn,θ n) = 0, (8.163)

where the vector-valued function D jn is the differential of the functional jn. To solve
the nonlinear system (8.163), we can use the Newton’s method; we obtain then (after
dropping the subscript and superscript n):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{ρ0,θ 0} is given in IR2.

For k ≥ 0,{ρk,θ k}→ {ρk+1,θ k+1} via the solution of

D2 j(ρk,θ k)

(
ρk+1 −ρk

θ k+1 −θ k

)
=−D j(ρk,θ k),

(8.164)

where D2 j(ρ ,θ ) is the Hessian of j at {ρ ,θ}.
An alternative to the above Newton’s method can be found in [60]; numerical

experiments show that this new algorithm is both faster and more robust than the
Newton’s algorithm (8.164). Detailed comparisons between the two algorithms can
be found in [10].
On the solution of (8.160): The sub-problems (8.160) are all members of the fol-
lowing family of well-posed linear variational problems:⎧⎨

⎩
u ∈Vg,∫

Ω
∇2u∇2v dx+ r

∫
Ω

D2u:D2v dx = L(v),∀v ∈V0,
(8.165)

with the functional L linear and continuous from H2(Ω) into IR; problem (8.165)
is clearly of the bi-harmonic type. The conjugate gradient solution of linear varia-
tional problems in Hilbert spaces, such as (8.165), has been discussed in the Chap-
ter 3 of [32] and in the Chapter 2 of [34]. Following the two above references,
we are going to solve (8.165) by a conjugate gradient algorithm operating in the
spaces V0 and Vg, both spaces being equipped with the inner product defined by



8 ADMM and Non-convex Variational Problems 279

{v ,w} →
∫

Ω
∇2v∇2wdx and the associated norm. When applied to the solution of

problem (8.165), this conjugate gradient algorithm reads as follows:

u0 is given in Vg; (8.166)

solve then⎧⎨
⎩

g0 ∈V0,∫
Ω

∇2g0∇2v dx =

∫
Ω

∇2u0∇2v dx+ r
∫
Ω

D2u0:D2v dx−L(v),∀v ∈V0.
(8.167)

If

∫
Ω
|∇2g0|2 dx∫

Ω
|∇2u0|2 dx

≤ tol2, take u = u0; otherwise, set

w0 = g0. (8.168)

Then, for k ≥ 0, uk, gk, wk being known, the last two different from 0, we compute
uk+1, gk+1, and if necessary wk+1, as follows:

Solve⎧⎨
⎩

gk ∈V0,∫
Ω

∇2gk∇2v dx =

∫
Ω

∇2wk∇2v dx+ r
∫
Ω

D2wk:D2v dx,∀v ∈V0,
(8.169)

and compute

ρk =

∫
Ω
|∇2gk|2 dx∫

Ω
∇2gk∇2wk dx

, (8.170)

uk+1 = uk −ρkwk, (8.171)

gk+1 = gk −ρkgk. (8.172)

If

∫
Ω
|∇2gk+1|2 dx

max

[∫
Ω
|∇2g0|2 dx,

∫
Ω
|∇2uk+1|2 dx

] ≤ tol2, take u = uk+1; else, compute

γk =

∫
Ω
|∇2gk+1|2 dx∫
Ω
|∇2gk|2 dx

, (8.173)

and
wk+1 = gk + γkwk. (8.174)

Do k+ 1 → k and return to (8.169).
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Concerning the choice of tol, see the two above references.
Numerical experiments have shown that algorithm (8.166)–(8.174) (in fact its

discrete variants) has excellent convergence properties when applied to the solution
of the Monge-Ampère problem (8.149); when combined with an appropriate mixed
finite element approximation of (8.149), it requires the solution of two discrete Pois-
son problems at each iteration. For more details, see [21, 22] and also the Chapter 9
of [34] where the least-squares/mixed finite elements solution of some fully nonlin-
ear elliptic equations (including (8.149)) is discussed.

3.4 Numerical Experiments

A mixed finite element implementation of the augmented Lagrangian algorithm
(8.154)–(8.157) has been discussed in [21] and [22]. Here, we summarize the main
numerical results and observations from the two above publications. Below, h de-
notes the mesh size and {uc

h,p
c
h} the computed mixed finite element approximation

of {u,p}. We consider below three test problems, all associated with Ω = (0,1)2,
the finite element grids used for these computations being uniform ones like the one
shown in Figure 8.2 (with h = 1/4).

Fig. 8.2 A uniform triangulation of the unit square (h = 1/4)

The first test problem is defined as follows (with |x|=
√

x2
1 + x2

2):⎧⎪⎪⎨
⎪⎪⎩

det D2u =
1
|x| in Ω

u =
(2|x|) 3

2

3
on Γ .

(8.175)
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The unique convex solution of (8.175) is given by u(x) =
(2|x|) 3

2

3
. If we set r = 1,

and use ‖D2
hun

h−pn
h‖0h ≤ 10−6 as as stopping criterion, then the discrete analogue of

algorithm (8.154)–(8.157) converges in about 150 iterations to an approximate solu-
tion uc

h verifying ‖uc
h −u‖0h = O(h2), which is generically optimal for second order

elliptic problems when using piecewise affine approximations (above, ‖·‖0h denotes
the approximation of ‖ · ‖L2(Ω), associated with the trapezoidal rule). Moreover, the

number of iterations required to achieve convergence increases slowly with h−1

(actually, much slower than h−1/2). It is worth noticing that, the function u defined

by u(x) =
1
3
(2|x|) 3

2 does not belong to C2(Ω), but since it belongs to W 2,p(Ω)

for all p ∈ [1,4), it has enough regularity-in principle-to be captured by algo-
rithm (8.154)–(8.157), which is indeed the case.

Test Problem 3

0.25

0.2

0.15

0.1

0.05

0
1

0.8
0.6

0.4
0.2 0.2

0.4
0.6

0.8
1

00

Fig. 8.3 Third test problem: Graph of −uc
h (h = 1/64)

The second test problem is⎧⎨
⎩det D2u =

R2

(R2 −|x|2)2 in Ω

u =−
√

R2 −|x|2 on Γ ,

(8.176)

with R ≥ √
2. The convex solution of problem (8.176) is given by u(x) =

−
√

R2 −|x|2. It is easy to check that u ∈ C∞(Ω) if R >
√

2, and u ∈ W 1,p(Ω)

for p ∈ [1,4) (which is sharp) if R =
√

2. We set again r = 1. For R = 2 and
R =

√
2+ 0.1, the number of iterations to achieve convergence is essentially in-

dependent of h and is close to 80 (resp., 120) for R = 2 (resp., R =
√

2+ 0.1); we
still have ‖uc

h − u‖0h = O(h2). On the other hand, if R =
√

2+ 0.01, the discrete
analogue of algorithm (8.154)–(8.157) does not converge, although u ∈C∞(Ω)(but
‘barely’).

The third test problem is {
det D2u = 1 in Ω ,

u = 0 on Γ .
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We recall that if Ω = (0,1)2 then, despite the smoothness of its data, the above
problem has no smooth solution, due the non-strict convexity of Ω . After applying,
for various values of h, the discrete variant of algorithm (8.154)–(8.157) discussed
in [21] and [22], the following phenomena were observed (we used ‖un

h−un−1
h ‖0h ≤

10−6 as stopping criterion).

(i) For r sufficiently small, but not too small (r = 1, here), the sequence
{{un

h,p
n
h}}n≥0 converges geometrically (albeit slowly since the number of

iterations required to achieve convergence increases as h−1/2) to a limit
{uc

h,p
c
h}, which is clearly (see Figure 8.3) the approximation of a function

in Vg. On the other hand, the sequence {λ n
h }n≥0 diverges arithmetically.

(ii) A close-up look at the graph of −uc
h with h = 1/64 shows (see Figure 8.3)

that the curvature of the graph becomes negative near the corners, which
(locally) violates the Monge-Ampère equation (we recall that the Gaussian
curvature K of the graph of a smooth two variable function ψ is given by

K =
det D2ψ

(1+ |∇ψ |2)2 ). Actually, the Monge-Ampère equation is also violated

along the boundary, as expected, evidences being that ‖D2
huc

h − pc
h‖0h,Ω =

1.8×10−2 if h= 1/32, 3.3×10−2 if h= 1/64, and 4.2×10−2 if h= 1/128,
while ‖D2

huc
h −pc

h‖0h,Ω1 = 2.7× 10−4 if h = 1/32, 4.1× 10−4 if h = 1/64,
and 4.9× 10−4 if h = 1/128, and finally ‖D2

huc
h − pc

h‖0h,Ω2 = 4.4× 10−5

if h = 1/32, 4.9× 10−5 if h = 1/64, and 5.1× 10−5 if h = 1/128. Above,
we have Ω1 = (1/8,7/8)2 and Ω2 = (1/4,3/4)2. These results show that
the condition detD2u = 1 is well approximated not too far away from the
boundary.

Since uc
h does not vary much with h, one might wonder what kind of gener-

alized solution is captured by algorithm (8.154)–(8.157). Since, in this particular
case, ALG2 is an Uzawa type algorithm applied to a problem where the constraint
set is empty, it was conjectured in [21] (by analogy with simpler situations) that
the sequence {{un

h,p
n
h}}n≥0 converges to a limit solving the Monge-Ampère prob-

lem (8.148) in a least-squares sense; actually, this was verified numerically, but
proving it theoretically seems to be out of reach at the moment.

The least-squares solution of the Monge-Ampère problem (8.149) (and of the
Pucci equation, another fully nonlinear elliptic equation) is discussed in the Chap-
ter 9 of [34].

Remark 8. One of the main difficulties we encountered, when using ALG2 to solve
problem (8.149), was finding the proper value of the augmentation parameter r.
With r large, the convergence may be very slow, while with r too small, the algo-
rithm may diverge. This behavior is typical of non-convex problems, and justifies
the search for methods adjusting r automatically (such a method is discussed in [24]
where it has been applied to the solution of an inverse problem from Geophysics).
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4 Application to the Solution of a Non-smooth Eigenvalue
Problem from Visco-plasticity

4.1 Formulation. Motivation

Our goal in this section is to discuss the augmented Lagrangian solution of a non-
smooth and non-convex problem from Calculus of Variations, namely:

Compute

γ = inf
v∈Σ

∫
Ω
|∇v |dx, (8.177)

where Ω is a bounded domain of IR2 and

Σ = {v |v ∈ H1
0 (Ω),

∫
Ω
|v |2 dx = 1}. (8.178)

Problem (8.177) has, clearly, the features of an eigenvalue problem.
Concerning γ , it has been proved in [61] that γ = 2

√
π , independently of the

shape and size of Ω (even if Ω is not simply connected). A question arising naturally
is then

Why solve numerically a problem whose exact solution is known?

The main reasons for doing so are:

(i) Since its exact solution is known, problem (8.177) is a good problem to
test and validate solution methods for non-smooth non-convex variational
problems.

(ii) The functional v →
∫

Ω
|∇v |dx arises in a variety of problems from image

processing and plasticity.
(iii) Since we expect the minimizing sequences associated with (8.177) to con-

verge to a limit outside of Σ , it is interesting, mathematically, to investi-
gate, via numerical methods, the limit of these sequences and what kind
of convergence will take place.

Actually, our main motivation for investigating (8.177) stems from the following
problem from visco-plasticity (unsteady flow of a Bingham fluid in an infinitely long
cylindrical pipe of cross-section Ω ):

Find u ∈ L2(0,T ;H1
0 (Ω))∩C0([0,T ];L2(Ω)) such that, a.e. on (0,T ),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ
〈

∂u
∂ t

(t),v − u(t)

〉
+ μ

∫
Ω

∇u(t) ·∇(v − u(t))dx

+τy[

∫
Ω
|∇v |dx−

∫
Ω
|∇u(t)|dx]≥C

∫
Ω
(v − u(t))dx,∀v ∈ H1

0 (Ω),

u(0) = u0,

(8.179)
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where: (i) Ω is a bounded domain of IR2. (ii) ρ(> 0) is the fluid density, τy(> 0)
is the fluid plasticity yield, and μ(> 0) is the fluid viscosity. (iii) u(t) denotes the
function x → u(x, t), u(x, t) being the axial velocity of the fluid at the point x of
the cross-section and at time t. (iv) C(t) is the pressure drop per unit length at time
t. (v) < ·, · > denotes the duality pairing between H−1(Ω) and H1

0 (Ω), verifying

< f ,v >=

∫
Ω

f v dx if f ∈ L2(Ω). (vi) u0 ∈ L2(Ω).

The parabolic variational inequality problem (8.179) is well posed as shown
in [26].

Suppose now that C ≡ 0 and T = +∞ in (8.179). We can easily prove (see, e.g.,
[31] and [23]) that

u(t) = 0,∀t ≥ Tc, (8.180)

with

Tc =
ρ

λ0μ
ln

(
1+

λ0μ
γτy

‖u0‖L2(Ω)

)
, (8.181)

λ0 being the smallest eigenvalue of−∇2 in H1
0 (Ω). As shown in the two above refer-

ences, a similar cut-off property holds if, after an appropriate finite element approx-
imation we use the backward Euler scheme for the time discretization of (8.179),
with λ0 and γ replaced by their discrete analogues λ0h and γh. Suppose that the
space discretization is achieved via a C0-piecewise linear finite element approxima-
tion like those discussed in, e.g., the Appendix 1 of [31]; we have then

|λ0h −λ0|= O(h2),

as shown in, e.g., [57], but what can we say about |γh − γ|? One of the goals of this
section is to find an answer to the above question.

4.2 Some Regularization Procedures

There are several ways to approximate the minimization problem (8.177)-at the con-
tinuous level- by a better posed and/or smoother variational problem. The most ob-
vious candidate is clearly

γε = inf
v∈Σ

∫
Ω

√
ε + |∇v |2 dx, (8.182)

with ε > 0. Problem (8.182) involves a regularization procedure which has been
quite popular in Image Processing. Assuming that the above problem has a mini-
mizer uε , this minimizer verifies the following Euler-Lagrange equation (reminis-
cent of the celebrated mean curvature equation)
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⎪⎪⎪⎪⎩
−∇ ·

(
∇uε√

ε + |∇uε |2

)
= γεuε in Ω ,

uε = 0 on Γ ,∫
Ω
|uε |2 dx = 1.

(8.183)

Problem (8.183) is clearly a nonlinear eigenvalue problem for a close variant of the
mean curvature operator, the eigenvalue being γε .

Another regularization, more sophisticated in some sense (since this time the
regularized problem has minimizers), is provided (with ε > 0) by

γε = inf
v∈Σ

[
ε
2

∫
Ω
|∇v |2 dx+

∫
Ω
|∇v |dx

]
. (8.184)

An associated Euler-Lagrange (multivalued) equation reads as follows:⎧⎪⎪⎨
⎪⎪⎩
−ε∇2uε + ∂ j(uε) � γεuε in Ω ,

uε = 0 on Γ ,∫
Ω
|uε |2 dx = 1.

(8.185)

where, in (8.185), ∂ j(uε ) is the sub-differential at uε of the functional j : H1
0 (Ω)→

IR defined by j(v ) =
∫

Ω
|∇v |dx. Problem (8.185) is clearly a nonlinear non-smooth

eigenvalue problem with γε the eigenvalue. The numerical solution of problems such
as (8.185) is discussed in [51]; the method used in the above reference is based on
operator-splitting, giving it the features of an inverse power method.

In order to avoid dealing simultaneously with two small parameters, namely ε
and h, we will address the solution of problem (8.177) without using any regu-
larization (unless one considers the space approximation of (8.177) as a kind of
regularization, which is indeed the case since the discrete analogues of (8.177) have
minimizers).

4.3 Finite Element Approximation of Problem (8.177)

In order to approximate problem (8.177), we will proceed as follows:

(i) First, we introduce a family {Ωh}h of polygonal approximations of Ω
verifying

lim
h→0

Ωh = Ω

(that is: (a) If U is an open set containing Ω , we have Ω h ⊂ U for
h sufficiently small; (b) if K is a compact set contained in Ω , we have
K ⊂ Ωh for h sufficiently small).
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(ii) With each Ωh we associate a finite element triangulation Th verifying the
usual assumptions of compatibility between triangles and of regularity
(see the Appendix 1 of [31] for details).

(iii) With each Th we associate the finite dimensional space V0h defined by

V0h = {v |v ∈C0(Ω h),v |K ∈ P1,∀K ∈ Th,v = 0 on ∂Ωh}, (8.186)

with P1 the space of the polynomials of two variables of degree ≤ 1.

We approximate then problem (8.177) by

γh = inf
v∈Σh

∫
Ωh

|∇v |dx, (8.187)

with

Σh = {v |v ∈V0h,

∫
Ωh

|v |2 dx = 1}. (8.188)

In [9] one proved the following

Theorem 2. The minimization problem in (8.187) has a solution, that is there exists
uh ∈ Σh such that

γh =

∫
Ωh

|∇uh|dx.

Moreover

lim
h→0

γh = γ(= 2
√

π). (8.189)

The existence of uh follows from the fact that the functional v →
∫

Ωh

|∇uh|dx defines

a norm over V0h (which implies its continuity) and from the compactness of Σh

in V0h. To prove (8.189), one can take advantage of the density of D(Ω) in H1
0 (Ω),

as done in the above reference.
From the non-smoothness of the problem, we do not expect |γh − γ|= O(h2). On

the other hand, we expect|γh − γ|= O(hα), with 0 < α < 2 and α depending of the
shape of Ω .

Remark 9. There is no difficulty at expressing Σh as a function of the values taken
by v at the vertices of Th (using the two-dimensional Simpson rule on each triangle
of Th ). However, we found more convenient, from a computational point of view,
to use the following approximation of Σ , derived from (8.178) by application of the
trapezoidal rule:

Σ∗
h = {v |v ∈V0h,‖v‖0h = 1}, (8.190)

with

‖v‖0h =

√√√√1
3

N0h

∑
i=1

|ωi||v(Qi)|2 (8.191)
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where: (a) {Qi}N0h
i=1 is the set of the vertices of Th interior to Ωh; we have then

N0h = dimV0h. (b) ωi is the polygonal union of those triangles of Th which have Qi

has a common vertex, and |ωi|= measure of ωi.

4.4 Applying ALG2 to the Solution of Problem (8.187)

When addressing the numerical solution of the minimization problem in (8.187), we
are going to privilege robustness, modularity and programming simplicity instead
of performances measured in number of elementary operations (this is not Image
Processing and/or real time).

4.4.1 An Equivalent Formulation and Its Associated Augmented Lagrangian

For formalism simplicity, we will use the continuous problem notation. We observe
that there is equivalence between

γ = inf
v∈Σ

∫
Ω
|∇v |dx,

and

γ = inf
{v ,q,z}∈E

∫
Ω
|q|dx, (8.192)

where E is defined by

E = {{v ,q,z} | v ∈ H1
0 (Ω),q ∈ (L2(Ω))2,z ∈ L2(Ω),∇v −q = 0,

v − z = 0,‖z‖L2(Ω) = 1}. (8.193)

We associate with (8.192) and (8.193) the following augmented Lagrangian func-
tional

Lr : (H1
0 (Ω)×Q×L2(Ω))× (Q×L2(Ω))→ IR

defined, with Q = (L2(Ω))2 and r = {r1,r2}(r1,r2 > 0), by⎧⎪⎨
⎪⎩
Lr(v ,q,z;μ1,μ2) =

∫
Ω
|q|dx+

r1

2

∫
Ω
|∇v −q|2 dx

+
r2

2

∫
Ω
|v − z|2 dx+

∫
Ω

μ1 · (∇v −q)dx+
∫
Ω

μ2(v − z)dx.
(8.194)

Next, we consider the following saddle-point problem⎧⎪⎨
⎪⎩
{{u,p,y},{λ1,λ2}} ∈ (H1

0 (Ω)×Q× S)× (Q×L2(Ω)) such that

Lr(u,p,y;μ1,μ2)≤Lr(u,p,y;λ 1,λ2)≤Lr(v ,q,z;λ 1,λ2),

∀{{v ,q,z},{μ ,μ2}} ∈ (H1
0 (Ω)×Q× S)× (Q×L2(Ω)),

(8.195)
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with
S = {z|z ∈ L2(Ω),‖z‖L2(Ω) = 1}. (8.196)

Suppose that the above saddle-point problem has a solution, then p = ∇u and
y = u, u being a solution of the minimization problem in (8.177) (actually such
a minimizer does not exist for (8.177), but exists for discrete analogues such
as (8.187), or its variant obtained by replacing Σh by Σ∗

h defined by (190)).

4.4.2 An ADMM Type Algorithm for the Solution of (8.177)

To solve the saddle-point problem (8.195) (and also its discrete analogues), we ad-
vocate one more time ALG2 (despite the non-convexity of the set S). We obtain then
the following algorithm:

{u−1,{λ 0
1,λ

0
2 }} is given in H1

0 (Ω)× (Q×L2(Ω)). (8.197)

For n ≥ 0, {un−1,{λ n
1,λ n

2 }}→ {pn,yn}→ un →{λ n+1
1 ,λ n+1

2 } via

{pn,yn}= arg min{q,z}∈Q×SLr(u
n−1,q,z;λ n

1,λ
n
2 ), (8.198)

un = arg minv∈H1
0 (Ω)Lr(v ,pn,yn;λ n

1,λ
n
2 ), (8.199){

λ n+1
1 = λ n

1 + r1(∇un −pn),

λ n+1
2 = λ n

2 + r2(un − yn).
(8.200)

Problem (8.199) is equivalent to the following well-posed linear variational problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un ∈ H1
0 (Ω),

r1

∫
Ω

∇un ·∇v dx+ r2

∫
Ω

unv dx =∫
Ω
(r1pn −λn

1) ·∇v dx+
∫
Ω
(r2yn −λ n

2 )v dx, ∀v ∈ H1
0 (Ω),

(8.201)

which implies in turn that un is the unique solution in H1
0 (Ω) of the following

Dirichlet problem{
−r1∇2un + r2un =−∇ · (r1pn −λ n

1)+ r2yn −λ n
2 in Ω ,

un = 0 in Γ .
(8.202)

The solution of the discrete analogues of problem (8.201), (8.202), by direct or
iterative methods, is routine nowadays.

Problem (8.198) decouples as

pn = arg minq∈Q

[
r1

2

∫
Ω
|q|2 dx+

∫
Ω
|q|dx−

∫
Ω
(r1∇un−1 +λn

1) ·qdx
]
, (8.203)

yn = arg minz∈S

[
r2

2

∫
Ω
|z|2 dx−

∫
Ω
(r2un−1 +λ n

2 )zdx
]
. (8.204)
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Both problems (8.203) and (8.204) have closed form solutions, namely

pn =
1
r1

(
1− 1

|Xn(x)|
)+

Xn(x), a.e. on Ω (8.205)

(with Xn = r1∇un−1 +λ n
1), and

yn =
r2un−1 +λ n

2

‖r2un−1 +λ n
2 ‖L2(Ω)

. (8.206)

The finite element implementation of algorithm (8.197)–(8.200) is discussed in [9];
it relies on the choice of (8.190) and (8.191) to approximate Σ .

Remark 10. One of the main issues (if not the main issue), concerning the implemen-
tation of algorithm (8.197)–(8.200), is the proper choice of the two augmentation
parameters r1 and r2; as we already know this is a general problem concerning the
use of ADMM type algorithms. In the particular case of algorithm (8.197)–(8.200),
the inspection of (8.201), (8.202) can give some hint concerning the choice of the
ratio r2/r1. An obvious (and standard) approach is to balance the contributions of
the operators −r1∇2 and r2I to the main diagonal of the stiffness matrix originating
from the finite element approximation of the elliptic problem (8.201), (8.202): this
will lead to r2/r1 = Ch2, with C of the order of 1. This strategy was the one em-
ployed in [9], but we think that it may be too ‘radical’, a ‘milder’ choice could have
been to take the geometric mean of the above Ch2 with the smallest eigenvalue of
−∇2 in H1

0 (Ω) (denoted by λ0 in Section 4.1); this alternative was not tested.

4.5 Numerical Experiments

4.5.1 Synopsis

In this section, we will present the results obtained when applying the augmented
Lagrangian/finite element methodology discussed in Sections 4.3 and 4.4 to a variety
of test problems. We will discuss in particular:

(i) The influence of the shape of Ω on the order of convergence to zero of
|γh − γ|.

(ii) The behavior of the minimizing sequences {uh}h as h → 0.

Concerning (ii), we will see that, if Ω is simply connected, then uh converges in
BV (Ω) to a limit u which is (modulo a multiplicative constant) the characteristic
function of a disk contained in Ω (BV (Ω) is the celebrated space of those functions
which have a bounded variation over Ω ).
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4.5.2 Numerical Results for Disk Shaped Domains

Fig. 8.4 A finite element triangulation of the unit disk

The first test problem that we consider concerns the case where Ω is the unit disk
centered at the origin, that is

Ω = {x|x = {x1,x2} ∈ IR2,x2
1 + x2

2 < 1}.

In Figure 8.4 we have visualized a (relatively coarse) finite element triangulation Th

of Ω ; this triangulation is unstructured but reasonably isotropic (as will be the other
ones associated with the smaller values of h). When applying the discrete analogue
of algorithm (8.197)–(8.200) to the solution of the approximate problem (8.187) we
used (with obvious notation) {λ 0

1h,λ 0
2h} = {0,0} and took for u−1

h the function of
V0h taking the value 1/

√
π at the vertices of Th contained in Ω . Concerning r, we

took r1 = 1 and r2 = 1,000

Using
√

∑N0h
i=1 |un

h(Qi)− un−1
h (Qi)|2 ≤ 10−5 as stopping criterion, around 2,000

iterations are needed to obtain convergence of the discrete analogue of algorithm
(8.197)–(8.200). In Table 8.1 we have reported the values of γh as a function of the
mesh size (here the size of the largest edge(s) of Th);

h γh

1.2446127×10−1 3.6245176
2.2604052×10−2 3.5578964
1.0673766×10−2 3.5528046
8.3407899×10−3 3.5489181

2
√

π = 3.5449077

Table 8.1 Unit disk test problem: Variation of γh versus the mesh size of the triangulation Th
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Fig. 8.5 Unit disk test problem: Variation of γh − γ versus h (log-log scale)

the results of Table 8.1 strongly support the convergence result (8.189). In Fig-
ure 8.5, we have visualized, using a log-log scale, the variations versus h of the
difference γh − γ; these results suggest γh − γ = O(h).

In Figure 8.6 we have visualized the contours of the computed solutions as-
sociated with the coarsest (left; h = 1.2446127× 10−1) and the finest (right; h =
8.3407899× 10−3) triangulations We observe that the solution is constant, except
in a numerical boundary layer whose thickness is of the order of h and where the
solution jumps from 0 to a constant value converging to 1/

√
π(= 0.564189 . . .) as

h → 0 (for the finest mesh, this constant value is 0.567243 . . . , which compares well
with 1/

√
π).

Fig. 8.6 Unit disk test problem: Contours of the computed solutions. Left: Coarse mesh solution

(h = 1.2446127×10−1). Right: Fine mesh solution (h = 8.3407899×10−3)

In Figure 8.7, we have visualized the graphs of the computed solutions associ-
ated with the coarsest (left) and finest (right) triangulations. We note that the finite
element approximation we use has no problem at handling the sharp discontinuity
taking place at the boundary of the disk: no overshots or undershots are observed
(actually, this property was already visible on Figure 8.6).
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Fig. 8.7 Unit disk test problem: Graphs of the computed solutions. Left: Coarse mesh solution
Right: Fine mesh solution

4.5.3 Numerical Results for Square Shaped Domains

The second test problem that we consider concerns the case where Ω is the unit
square (0,1)2.

In Figure 8.8 we have visualized a (relatively coarse) finite element triangulation
of Th of Ω ; this triangulation (of the ‘British flag’ type) is uniform, the finer ones
being obtained by refinement of this first one.

Fig. 8.8 A uniform triangulation of the unit square

When applying the discrete analogue of algorithm (8.197)–(8.200) to the solution
of the approximate problem (8.187) we used (with obvious notation) {λ 0

1h,λ 0
2h} =

{0,0} and took for u−1
h the function of V0h taking the value 1 at the vertices of Th

contained in Ω . Concerning r, we took r1 = 1 and r2 = 1,000, that is the same values
we used in Section 4.5.2. The number of iterations necessary to obtain convergence

(using again
√

∑N0h
i=1 |un

h(Qi)− un−1
h (Qi)|2 ≤ 10−5 as stopping criterion) is still about

2,000. In Table 8.2 we have reported the values of γh as a function of the mesh
size; the results in Table 8.2 support the convergence result (8.189). In Figure 8.9,
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we have visualized, using a log-log scale, the variations versus h of the difference
γh − γ; these results suggest γh − γ = O(

√
h).

h γh

7.0710651×10−2 3.6705782
1.7677653×10−2 3.6123807
8.8388053×10−3 3.5925411
5.8925086×10−3 3.5827775

2
√

π = 3.5449077

Table 8.2 Unit square test problem: Variation of γh versus the mesh size of the triangulation Th

In Figure 8.10 we have visualized the contours of the computed solutions as-
sociated with the coarsest (left; h = 7.0710651× 10−2) and the finest (right; h =
5.8925086× 10−3) triangulations

Finally, we have visualized in Figure 8.11, the graphs of the computed solutions
associated with the coarsest (left) and finest (right) triangulations. Here, again, we
observe the ability of our continuous piecewise affine finite element approximation
at capturing a sharp discontinuity without overshots or undershots.

SQUARE
comp
1/2
1

10
0

10
-1

10
-2

er
ro

r

h

10
-3

10
-3

10
-2

10
-1

Fig. 8.9 Unit square test problem: Variation of γh − γ versus h (log-log scale)

It is worth noting that the numerical results obtained with uniform triangulations
like the one in Figure 8.2 in Section 3.4, or unstructured isotropic ones, are quite
close to those reported in this subsection (obtained with uniform triangulations like
the one in Figure 8.8); in particular, the convergence property γh − γ = O(

√
h) is

still accurately verified.
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Fig. 8.10 Unit square test problem: Contours of the computed solutions. Left: Coarse mesh solu-

tion (h = 7.0710651×10−2). Right: Fine mesh solution (h = 5.8925086×10−3)

4.5.4 Further Comments and Remarks

The results of additional test problems can be found in [9]; they concern non-convex
domains ω , including domains with holes and reentrant corners.

From the results presented in Sections 4.5.2 and 4.5.3, it is quite clear that the
disk has the optimal shape concerning approximation accuracy; indeed, its shape
matches the shape of the support of the limit of the minimizing sequence {uh}h

as h → 0. An approach we did not follow, and even investigate, is to use adaptive
mesh refinement in order to: (i) follow accurately the line of discontinuity of the
gradient, and (ii) use a coarser mesh inside the support of the solution (the solution
being constant inside its support). Using this strategy should significantly improve
the convergence.

Fig. 8.11 Unit square test problem: Graphs of the computed solutions. Left: Coarse mesh solution
Right: Fine mesh solution
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Remark 11. The sequence {uh}h being bounded in BV (Ω) is pre-compact in L1(Ω);
actually, our numerical results strongly support the following stronger property:
{uh}h converges to its limit in Ls(Ω), ∀s ∈ [1,+∞) and in L∞(Ω)-weak *.

Remark 12. The results presented above required a large number of iterations (about
2,000). Several factors may explain this not so impressive behavior of the discrete
analogue of algorithm (8.197)–(8.200):

(i) ALG1, ALG2 and ALG3 were designed to solve, in Hilbert spaces, vari-
ational problems with the appropriate structure. The natural functional
space for problem (8.177) being BV(Ω), a close ‘relative’ to the space
W 1,1(Ω), it is not surprising that one has a slow convergence when ap-
plying a discrete analogue of algorithm (8.197)–(8.200) to a finite element
approximation of (8.177): indeed, for h sufficiently small, the approxi-
mate problems introduced in Section 4.3 retain many of the features of
the continuous problems they come from, despite their finite dimension-
ality.

(ii) No serious effort was made to adjust r1 and r2, beyond taking r2 substan-
tially larger than r1.

(iii) We did not take advantage, via a cascadic approach for example, of the
fact that we have been solving a (finite) sequence of problems indexed by
h1 > h2 > h3 > h4.

There is therefore a lot of room for improving the speed of convergence of
algorithm (8.197)–(8.200), the basis of the methodology we used to solve prob-
lem (8.177).

However, we would like to insist that our main goals here were to investigate:
(a) the order of convergence of the difference γh − γ as h → 0, and (b) the limit of
the minimizing sequences, knowing in advance that they will converge outside of
H1

0 (Ω). Owing to the modularity of our methodology, making it easy to implement,
we had very quick answers to the questions associated with (a) and (b).

5 Further Comments

Albeit a firm convergence theory is still missing, ADMM based algorithms are in-
creasingly applied to the solution of non-convex variational problems, some of them
considered in Chapter 7 of this volume. Let us mention, among others, the contribu-
tions of R. Chartrand and his collaborators to signal processing and medical imag-
ing, discussed in Chapter 7 of this volume and in [15, 16] and [17]. Personally, we
doubt that a general theory exits for the convergence of ADMM when applied to the
solution of non-convex problems. This belief stems from the few non-convex exam-
ples where convergence has been proved: each time, full advantage has been taken
of the very specific properties of the problem under consideration. From the very
large variety of non-convex problems encountered in applications, a general theory
covering the known existing cases will have to be quite large and highly technical,
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but we expect it not to be large and technical enough to handle some of the new
problems occurring on an almost daily basis. The likely non-existence of such a
general theory for non-convex problems is not shocking in itself: after all there is no
general theory for the existence of solutions of nonlinear partial differential equa-
tions, beyond the case of monotone operators (which is consistent with the fact that
the differential of a non-convex functional is not a monotone operator). At any rate,
one may find in Section 7 of Chapter 2 some comments and references concerning
the “ADMM for non-convex problems” issue.

To conclude on a personal note, let us mention [43], an article dedicated to
the numerical solution of a relatively complicated non-convex variational problem
(suggested by C. Sundberg, UT- Knoxville), namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Compute

γ = supv∈E

∫ 1

0

|v ′|4
v 6 dx

1+
∫ 1

0
|v ′′|2 dx

,

with

E = {v |v ∈ H2(0,1),v(0) = v(1),v ′(0) = v ′(1),v ≥ 1},

a problem with the features of an obstacle problem and of a nonlinear eigenvalue
problem, that one could handle via ADMM (using three augmentation parameters
and three Lagrange multipliers functions to treat the linear constraints v − q0 = 0,
v ′ − q1 = 0 , v ′′ − q2 = 0).
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52. Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967)
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Chapter 9
Operator Splitting Methods in Compressive
Sensing and Sparse Approximation

Tom Goldstein and Xiaoqun Zhang

Abstract Compressive sensing and sparse approximation have many emerging
applications, and are a relatively new driving force for the development of splitting
methods in optimization. Many sparse coding problems are well described by vari-
ational models with �1-norm penalties and constraints that are designed to promote
sparsity. Successful algorithms need to take advantage of the separable structure of
potentially complicated objectives by “splitting” them into simpler pieces and iter-
atively solving a sequence of simpler convex minimization problems. In particular,
isolating �1 terms from the rest of the objective leads to simple soft thresholding up-
dates or �1 ball projections. A few basic splitting techniques can be used to design
a huge variety of relevant algorithms. This chapter will focus on operator splitting
strategies that are based on proximal operators, duality, and alternating direction
methods. These will be explained in the context of basis pursuit variants and through
compressive sensing applications.

1 Introduction

Operator splitting and alternating direction methods are extremely useful in scien-
tific computing and image processing. Classical splitting methods were not orig-
inally developed for optimization purposes, but rather for solving other problems
in numerical analysis. For example, the coordinate descent method for quadratic
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minimization is equivalent to the Gauss-Seidel method for solving positive defi-
nite linear systems of equation. A more complex example is the Douglas-Rachford
method for function minimization, which has its roots in alternating direction im-
plicit methods for partial-differential equations [52].

More recently, splitting methods have been adapted to solve composite opti-
mization problems, which involve sums of convex functions composed with lin-
ear operators, by breaking them down into simple sub-problems. Such methods
have found widespread use in compressive sensing, image processing, and machine
learning applications. Some of the most versatile methods for minimizing large-
scale non-differentiable optimization problems are variants of the proximal point
method [116, 95], the method of multipliers [83, 110], and the alternating direc-
tion method of multipliers (ADMM) [71, 69]. There are close connections between
splitting methods for optimization and those used in scientific computing. For ex-
ample, ADMM is closely related to the Douglas-Rachford splitting [68, 57] (see
also Chapter 2, Section 3.3, Chapter 8, Section 1, and the references therein, for
details on these relations and their discovery) and involves alternately minimizing
an augmented Lagrangian in a Gauss-Seidel fashion. Applications of ADMM can
be found in [70, 54, 14, 74, 137, 16].

Recent applications have motivated many new improvements to splitting meth-
ods such as more parallelizable variants, generalized applicability, preconditioning,
adaptive parameters, and acceleration to improve convergence rates [75]. This chap-
ter will, however, focus on the splitting techniques themselves and also on how they
can be used to design effective algorithms for models in compressive sensing.

Sparse Models in Compressive Sensing

The �1 norm appears in many compressive sensing models because of its utility
in promoting sparsity and robustly handling outliers within a convex optimiza-
tion framework. Many successful sparse approximation models are built around �1

penalties and constraints. One of the most fundamental models in compressive sens-
ing is basis pursuit [39], which aims to find a sparse solution to an underdetermined
system of linear equations by solving

min
x

‖x‖1 s.t. Ax = b . (9.1)

Related formulations that allow for some noise in the measurements include the
unconstrained problem

min
x

λ‖x‖1 +
1
2
‖Ax− b‖2 , (9.2)

the Lasso problem [125]

min
x

1
2
‖Ax− b‖2 s.t. ‖x‖1 ≤ τ , (9.3)
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and the basis pursuit denoising problem [49, 27]

min
x

‖x‖1 s.t. ‖Ax− b‖2 ≤ σ . (9.4)

See [9] for a discussion of connections between these formulations.
In the context of compressive sensing, the measurement matrix A is constructed

so that �1 minimization is capable of stably recovering the sparse signal of inter-
est [26, 48]. Good measurement matrices should have no sparse vectors in their
nullspace, and in fact they should approximately behave like orthogonal matrices
when applied to sparse vectors. These principles can be quantified in terms of a
nullspace property [50, 138] and the Restricted Isometry Property (RIP) [28, 4] re-
spectively.

Other sparse approximation models may involve penalties of the form ‖Φx‖1 or
constraints of the form ‖Φx‖1 ≤ ε in any combination with other convex functions
and constraints. One illustrative example is total variation (TV) denoising [118],

min
u

λ‖u‖TV +
1
2
‖u− f‖2. (9.5)

The total variation regularizer ‖u‖TV = ‖∇u‖1 penalizes the �1 norm of the image
gradient to find an optimal piecewise constant image u� that well approximates the
noisy image f .

All of the models mentioned so far involve the �1 norm. Alternating direction
methods are well suited for such problems because they lead to iterative procedures
where the �1 terms can be separated from the other convex functions. They are then
able to take advantage of the simple, separable structure of the �1 norm.

Organization of This Chapter

We begin with some theoretical background on convex functions, including clas-
sification of convex functions and basic calculus of non-differentiable functions.
Using these preliminaries, we introduce the forward-backward splitting (also called
the proximal gradient method) for solving composite minimization problems with-
out constraints (see Section 3). Before moving on to discuss more complex splitting
methods, we first present a short review on duality in Section 4. Using duality theory,
we then derive the method of multipliers for solving problems with constraints in
Section 5. After discussing many different applications of formulations for the clas-
sical method of multipliers, we introduce the alternating direction method of multi-
pliers (ADMM) in Section 6. Finally, we study example applications of ADMM in
compressive sensing in Section 7.
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2 Preliminaries: Convex Functions

Most of this chapter is devoted to the minimization of convex functions. Throughout
this chapter, when we say convex function we mean a function F : Rn → (−∞,∞]
that is not only convex but additionally is closed, proper and has bounded sub-
level sets. A closed function is lower semicontinuous, which is equivalent to the
epigraph EpiF = {(x,z) : x ∈ R

n,z ∈ R,z ≥ F(x)} being closed. A proper function
is not identically infinity. We further assume the existence of a minimizer. This
assumption excludes, for example, the function F(x) = 1/x, which is convex but
has no minimizer. We refer the reader to [41] for an in-depth discussion of such
technicalities.

The remainder of this section discusses some important properties of convex
functions and their derivatives.

Smooth Functions: Gradients and Inequalities

The simplest strategy for minimizing a smooth function F is gradient descent, which
relies on the update

xk+1 = xk −α∇F(xk), (9.6)

where α is some positive stepsize parameter and ∇F(xk) is the gradient of F evalu-
ated at the iterate xk.

When F is convex and differentiable at some point x, the gradient satisfies the
following important identity:

F(y)≥ F(x)+ (y− x)T∇F(x), ∀y. (9.7)

In plain words, a convex function always lies above its linear approximation. One
simple result of (9.7) is that any stationary point of F (i.e., a point where the gradient
is zero) must be a global minimizer.

When the gradient of F is Lipschitz continuous, we can also generate an upper
bound for F. Let L be a Lipschitz constant for ∇F satisfying

‖∇F(x)−∇F(y)‖ ≤ L‖x− y‖,∀x,y.

We then have

F(y)≤ F(x)+ (y− x)T∇F(x)+
L
2
‖x− y‖2, ∀x,y. (9.8)

Equation (9.8) tells us that the Lipschitz constant L is an upper bound on the curva-
ture of F; the function F always lies below the quadratic function with curvature L
defined at the right-hand side of (9.8).
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Non-smooth Functions: Sub-differentials and Proximal Operators

When F is non-differentiable, gradient descent methods are unavailable. In this case,
we resort to methods that only require the existence of the sub-differential of F,
which is defined as

∂F(x) = {g| F(y)≥ F(x)+ (y− x)T g,∀y}. (9.9)

The sub-differential contains all vectors that behave like gradients, in that they sat-
isfy an inequality similar to (9.7). In the one-dimensional case, the sub-differential
contains the slopes of all lines that lower-bound F at x. A particular vector in the
sub-differential is referred as a sub-gradient.

As an alternative to gradient descent, many algorithms for non-differentiable
problems use the proximal mapping of F given by

proxF(z,α) = argmin
x

F(x)+
1

2α
‖x− z‖2. (9.10)

The proximal mapping (9.10) is sometimes called a backward gradient descent step.
To understand this terminology, we examine Equation (9.10). Any point x� that min-
imizes (9.10) must satisfy the optimality condition

0 = αg+(x�− z), (9.11)

where g∈ ∂F(x�) is some sub-gradient of F at x∗. Note that when F is differentiable
we simply have g = ∇F(x�). Equation (9.11) rearranges to

x� = proxF(z,α) = z−αg.

This shows that x� is obtained from z by marching down the sub-gradient of F at x∗.
For this reason, the proximal operator performs a gradient descent step. Because the
sub-gradient g is evaluated at the final point x� rather than the starting point z, this
is called backward gradient descent.

Equation (9.11) is equivalent to the set inclusion 0 ∈ α∂F(x�)+ (x�− z), which
rearranges to

z ∈ α∂F(x�)+ x� = (α∂F + I)x�.

For this reason, the proximal operator (9.10) is sometimes written

x� = (α∂F + I)−1z = Jα∂F(z),

where Jα∂F =(α∂F+I)−1 is the resolvent operator of α∂F. Regardless of notation,
the behavior of these operators is simple: the proximal/resolvent operator performs
a backward gradient descent step starting at z.

The use of a backward step for F is advantageous in several ways. First, it may
be difficult to choose a sub-gradient of F in cases where the sub-differential ∂F has
a complex form or contains many vectors. In contrast, it can be shown that problem
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(9.10) always has a unique, well-defined solution, and (as we will see later) it is
often possible to solve this problem in simple closed form.

A particularly important proximal operator arises when F(x) = ‖x‖1. In this case
we have

Sα(v) = argmin
x

‖x‖1 +
1

2α
‖x− v‖2 . (9.12)

The solution to (9.12) is the well-known soft thresholding or shrinkage formula,
which is defined component-wise as

Sα(v) j =

{
v j −α sign(v j) if |v j|> α
0 otherwise .

(9.13)

The orthogonal projection of a vector v onto the set {x : ‖x‖1 ≤ τ} is defined by

Π‖·‖1≤τ(v) = argmin
x

1
2
‖x− v‖2 s.t. ‖x‖1 ≤ τ (9.14)

and also amounts to soft thresholding. Although in this case the appropriate thresh-
old depends on the input, the overall projection can nonetheless be reduced to pro-
jection onto a simplex and computed in linear time [19].

A closed proper function can be minimized simply by repeated application of the
proximal operator. This process is called the proximal point algorithm (PPA). This
method iterates

xk+1 = proxF(x
k,αk) (9.15)

for some (fixed or adaptive) stepsize parameter αk > 0. The PPA minimizes F sim-
ply by backward gradient descent. The PPA is seldom used in its raw form, how-
ever we will see that many useful optimization schemes can be reduced to the PPA
(or its generalizations) by a change of variables. This fact is extremely useful for
analyzing algorithms, as the PPA converges under very general circumstances. In
particular, convergence is guaranteed if the convex function F has a minimizer and
if liminfk→∞ αk > 0 [113].

In the following, we will introduce splitting methods that are based on the PPA,
including the forward-backward splitting method, method of multipliers, and alter-
nating direction methods for �1 based convex optimization with separable struc-
tures. Finally we will present state-of-the-art algorithms for compressive sensing
and sparse approximation applications in signal and image processing.

3 Forward-Backward Splitting

The �1-�2 minimization problem in Equation (9.12) can be directly solved by the
soft thresholding formula, but problem (9.2) is not so simple because the variables
x are coupled by the matrix A. However, by separating A from the �1 norm, we can
minimize (9.2) by computing a sequence of soft thresholding steps. This is accom-
plished using the proximal gradient, or forward-backward splitting (FBS) method.
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In this section we present FBS in its classical form. We then explore various in-
terpretations and generalizations of FBS by relating it to majorization-minimization
(MM) algorithms from statistics as well as the classical proximal-point algorithm.

Forward-Backward Splitting Methods and IST

Forward-backward splitting (also called proximal gradient) methods solve general
minimization problems of the form [93, 105, 67, 42, 131, 41]

min
x

F(x)+G(x) , (9.16)

where F is a closed, proper convex function and G is differentiable with a Lipschitz
continuous gradient. The general FBS iteration is

xk+1 = argmin
x

F(x)+
1

2αk
‖x− xk +αk∇G(xk)‖2 . (9.17)

If L is the Lipschitz constant of ∇G, then the method can be shown to converge for
step sizes 0 < αk <

2
L [42].

The iterative soft thresholding (IST) method solves (9.2) using FBS with G =
1
2‖Ax− b‖2 and F = λ‖x‖1. The IST method can be written succinctly as

xk+1 = argmin
x

λ‖x‖1 +
1

2αk
‖x− xk +αkAT (Axk − b)‖2 (9.18)

= proxF(x
k −αkAT (Axk − b),αk) (9.19)

= Sλαk
(xk −αkAT (Axk − b)) . (9.20)

Variants of IST exist for solving the Lasso problem (9.3) and other constrained
problems. For such problems, it is sometimes helpful to work with convex functions
that take on infinite values. Let χC denote the indicator function for a closed convex
set C

χC =

{
0 x ∈C

∞ otherwise .

We can solve the Lasso problem (9.3) by replacing λ‖x‖1 in (9.18) with the indicator
function for C = {x : ‖x‖1 ≤ τ}. The resulting update is

xk+1 = argmin
x

1
2
‖x− xk +αkAT (Axk − b)‖2 s.t. ‖x‖1 ≤ τ , (9.21)

which corresponds to one iteration of FBS for solving (9.3). The iteration can equiv-
alently be written as

xk+1 = Π‖·‖1≤τ(x
k −αkAT (Axk − b)) ,
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where Π‖·‖1≤τ denotes the orthogonal projection onto the �1 ball of radius τ . As
with IST, by separating A from the �1 constraint, gradient projection can solve the
Lasso problem by a sequence of �1 ball projections that are easy to compute.

The fixed point interpretation of proximal gradient methods gives us a differ-
ent perspective on operator splitting. As explained in [78, 7, 103], we can de-
rive a forward backward splitting method for (9.16) through a fixed point itera-
tion designed to handle F implicitly and G explicitly. The optimality condition for
(9.16) is 0 ∈ ∂ (F(x)+G(x)). Assuming strict feasibility, this can simply be writ-
ten 0 ∈ ∂F(x)+∇G(x), which is equivalent to 0 ∈ x+α∂F(x)− x+α∇G(x). This
relation can be represented as x = (I +α∂F)−1(x−α∇G(x)), where the resolvent
(I+α∂F)−1 corresponds to proxαF , which is to say that given b,

(I +α∂F)−1(b) = argmin
x

F(x)+
1

2α
‖x− b‖2 .

FBS can then be seen as the fixed point iteration

xk+1 = (I +α∂F)−1(xk −α∇G(xk)) .

If F and G are both differentiable, we can think of FBS as a way of finding a
steady state of

dx(t)
dt

=−∇F(x(t))−∇G(x(t))

using the semi-implicit discretization

xk+1 − xk

α
=−∇F(xk+1)−∇G(xk)

that combines a backward Euler step for F with a forward Euler step for G.
There are many variants and interpretations of IST algorithms [51, 31, 61, 44,

42, 60, 58, 78, 6]. We will review some of these interpretations in the sequel.

Interpretation as Proximal Point Algorithm

Another useful interpretation of FBS is as a special case of the PPA, where Bregman
distances are used in place of quadratic penalties [29, 36]. The Bregman distance
[18] associated with a convex function J(x) is

Dp
J (x,y) = J(x)− J(y)−〈p,x− y〉, p ∈ ∂J(y) (9.22)

where ∂J(y) denotes the sub-differential of J, defined in (9.9). Although Dp
J (x,y)

is not in fact a distance function (because Dp
J (x,y) �= Dp

J (y,x)), it still satisfies
Dp

J (x,y) ≥ 0 and Dp
J (x,y) = 0 if x = y. Moreover, if J is strictly convex then

Dp
J (x,y) = 0 only if x = y. The Bregman distance can be used to define proximal
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penalties as an alternative to the squared �2-norm. Applying the Bregman variant of
the proximal point algorithm to (9.16) yields the iterations

xk+1 = argmin
x

F(x)+G(x)+Dpk

J (x,xk) , (9.23)

which converges to a minimizer if one exists and if J is strictly convex and dif-
ferentiable for pk = ∇J(xk) [36, 55]. Assuming ∇G has Lipschitz constant L, let
J(x) = 1

2αk
‖x‖2 −G(x) for αk <

1
L . Then J is convex and

Dpk

J (x,xk)=
1

2αk
‖x‖2− 1

2αk
‖xk‖2−〈 xk

αk
,x−xk〉−G(x)+G(xk)+〈∇G(xk),x−xk〉 .

With this choice of J, (9.23) reduces to the FBS update (9.17).
Iterative soft thresholding can also be viewed as an instance of the PPA for min-

imizing a convex function [116, 103]. The matrix norm ‖x‖2
M = 〈x,Mx〉 (for a sym-

metric positive definite matrix M) can be used to construct proximal point iterations.
The iterations

xk+1 = argmin
x

λ‖x‖1 +
1
2
‖Ax− b‖2+

1
2
‖x− xk‖2

Mk

are equivalent to iterative soft thresholding (9.18) if we let Mk =
1
αk

I −AT A with

αk <
1

‖AT A‖ to ensure positive definiteness.

Interpretation as Majorization-Minimization Algorithm

The FBS method is even further generalized by the majorization-minimization
(MM) algorithm. Majorization-minimization [62, 7], sometimes also described in
terms of surrogate functionals or optimization transfer [44, 90], is a particularly
useful perspective. Classical algorithms such as the proximal point algorithm [116]
and scaled gradient projection [12] have majorization minimization interpretations,
and the same technique can also be used in many other contexts, for example to turn
implicit updates into explicit ones in linearized variants of ADMM [137, 129].

MM algorithms solve the generic problem

min
x

F(x)

by iteratively minimizing simpler majorizing functions Gk(x). A function Gk is said
to majorize F at a point xk if Gk(xk) = F(xk) and Gk(x)≥ F(x) for all x. Successive
iterates are defined by

xk+1 = argmin
x

Gk(x) . (9.24)

It follows directly that

F(xk+1)≤ Gk(x
k+1)≤ Gk(x

k) = F(xk),
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so that the objective is monotonically nonincreasing. This iterative approach can be
advantageous when the functions Gk are easy to minimize. Often they can be chosen
to be convex quadratic functions.

In the context of iterative soft thresholding, let

F(x) = λ‖x‖1 +
1
2
‖Ax− b‖2.

Now, leave the �1 term alone and replace ‖Ax− b‖2 with its quadratic majorizer to
obtain

Gk(x) = λ‖x‖1 +
1
2
‖Axk − b‖2 + 〈x− xk,AT (Axk − b)〉+ 1

2αk
‖x− xk‖2 ≥ F(x)

for αk <
1

‖AT A‖ . With this definition of Gk(x), the majorization-minimization algo-
rithm (9.24) is equivalent to the IST method (9.18). Note, however that for the MM
interpretation to hold we need αk <

1
L for L = ‖AT A‖, while we know from the FBS

analysis that the method converges for any αk <
2
L .

Preconditioning

Iterative soft thresholding and gradient projection iterations can be slow when ∇G
is not well conditioned. It is possible to add preconditioning from the perspective
of either the MM, FBS, or fixed-point derivations. Consider the Bregman distance
generalization of the proximal point method (9.23) applied to (9.16), and choose
J(x) = 1

2αk
‖x‖2

Hk
−G(x) for some symmetric positive definite matrix Hk. Then the

resulting iterations would be

xk+1 = argmin
x

F(x)+G(x)+Dpk

J (x,xk)

= argmin
x

F(x)+
1

2αk
‖x− xk +αkHk

−1∇G(xk)‖2
Hk

. (9.25)

With the Lasso problem for example, this can be interpreted as scaled gradient pro-
jection [14]. As long as the choice of Hk does not make the minimization problem
too difficult to solve, it is beneficial to approximate the Hessian of G at xk, in which
case (9.25) becomes a proximal Newton method [11, 121, 91, 8]. In the case where
F(x) equals λ‖x‖1 or χ‖·‖1≤τ(x), a diagonal preconditioner Hk would preserve the
simplicity of the iterations since soft thresholding and �1 ball projections are still
straightforward to compute with a weighted �1 norm.
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4 Duality

Duality is a useful tool for representing convex functions in different ways and re-
formulating convex minimization problems so that they are easier to solve. Dual for-
mulations of convex problems can sometimes be simplified to remove constraints.
Dual formulations can also be smoother, enabling the use of gradient methods on
problems that are non-differentiable in their original form. For example, it is possi-
ble to write down unconstrained differentiable dual problems for basis pursuit (9.1).
The dual formulation is then easily solved using gradient descent. Dual formulations
can also be better suited for problems with separable structure.

Legendre-Fenchel Transform

There is more than one way to construct dual formulations of convex problems.
They are usually expressed in terms of Legendre-Fenchel transforms of the con-
vex functions in the primal objective. The Legendre-Fenchel transform, or convex
conjugate, of a closed proper convex function J is defined by

J∗(p) = sup
u
〈u, p〉− J(u) . (9.26)

When J is differentiable, p = ∇J(u∗) where the sup is attained at u∗. The conjugate
J∗ of a convex function is also proper, closed and convex, which can be seen by
interpreting it as a supremum of affine functions [113],

J∗(p) = sup
(u,z)∈EpiJ

〈u, p〉− z

where EpiJ = {(u,z)|J(u)≤ z} represents the epigraph of J. If J is closed, proper,
and convex then the biconjugate J∗∗ is simply the original function J (when these
conditions do not hold, the biconjugate is the convex hull of J). This can be thought
of as a dual way of representing J as a pointwise supremum of affine functions,
namely

J(u) = sup
(p,q)∈EpiJ∗

〈u, p〉− q .

Legendre transforms have several uses. First, they provide an alternative way of
writing optimality conditions. It follows directly from the definition (9.26) that p ∈
∂J(u) is equivalent to u ∈ ∂J∗(p). Also, properties of J can often be inferred by
examining J∗. For example, for finite-valued J, if J is strongly convex, then J∗ has
Lipschitzian gradient.

An important example is the convex conjugate of a norm. Let J(u) = ‖u‖ be
some arbitrary norm, and let ‖u‖∗ be the corresponding dual norm. Then
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J∗(p) = sup
u
〈u, p〉−‖u‖

=

{
0 if sup‖u‖≤1〈u, p〉 ≤ 1

∞ otherwise

=

{
0 if ‖p‖∗ ≤ 1

∞ otherwise ,

which is the indicator function χ‖·‖∗≤1 for the unit ball in the dual norm. The convex
conjugates of the �1 norm and the indicator function for the �1 ball of radius τ
can be used to construct dual problems for the unconstrained (9.2) and Lasso (9.3)
basis pursuit variants. If J(u) = ‖u‖1 then J∗(p) = χ‖·‖∞≤1(u). Conversely, if J(u) =
χ‖·‖1≤τ(u), then J∗(p) = τ‖p‖∞.

Moreau Decomposition

An extremely useful identity for converting between primal and dual problems is
the Moreau decomposition [97, 42]. For a convex function J and a symmetric pos-
itive definite matrix M, under suitable constraint qualification, a vector v can be
decomposed into the sum

v = A

(
argmin

p

{
J(p)+

1
2
‖Ap− v‖2

M

})

+M−1 argmin
u

{
J∗(AT u)+

1
2
‖u−Mv‖2

M−1

}
. (9.27)

This can be thought of as a generalization of decomposing v into a sum of projec-
tions onto orthogonal subspaces. For instance, if M = I, A = I and J is the indicator
function for a subspace L, then J∗ is the indicator function for the orthogonal com-
plement L⊥ and the Moreau decomposition becomes v = ΠL(v)+ΠL⊥(v).

Applying the Moreau decomposition to the �1-penalized least squares problem
(9.2) yields

b=A

(
argmin

x

{
λ‖x‖1 +

1
2
‖Ax− b‖2

})
+argmin

p

{
χ‖·‖∞≤λ (A

T p)+
1
2
‖p− b‖2

}
.

We can think of
min

p
χ‖·‖∞≤λ (A

T p)+
1
2
‖p− b‖2 (9.28)

as a dual problem for (9.2). The dual solution p∗ is related to a primal solution x∗
by p∗ = b−Ax∗. Similarly, applying the Moreau decomposition to (9.3) implies

b = A

(
argmin

x

{
χ‖·‖1≤τ +

1
2
‖Ax− b‖2

})
+ argmin

q

{
τ‖AT q‖∞+

1
2
‖q− b‖2

}
,

where again the dual and primal solutions are related by q∗ = b−Ax∗.
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Both dual objectives are strictly convex, so p∗, q∗, and Ax∗ are all uniquely de-
termined even though x∗ might not be unique. One insight that follows from com-
paring these dual problems is that a choice of λ that makes the problems equivalent
is λ = ‖AT q∗‖∞, where q∗ solves the Lasso dual problem

min
q

τ‖AT q‖∞+
1
2
‖q− b‖2 . (9.29)

With this choice of λ , p = q∗ is feasible for (9.28), but by the assumption that q∗
minimizes (9.29), there can be no feasible p such that ‖AT p‖∞ ≤ ‖AT q∗‖∞ and
‖p− b‖< ‖q∗− b‖. Thus q∗ also minimizes (9.28) if λ = ‖AT q∗‖∞.

The Moreau decomposition can also be used to derive the soft thresholding for-
mula (9.13). We write

Sα(v) = argmin
x

α‖x‖1 +
1
2
‖x− v‖2

= v− argmin
p

{
χ‖·‖∞≤α(p)+

1
2
‖p− v‖2

}
= v−Π‖·‖∞≤α(v) .

The elements of Sα(v) are then defined by

Sα(v)i = vi − vi

max
( |vi|

α ,1
)

=

{
(|vi|−α) vi

|vi| if |vi| ≥ α
0 otherwise .

The same derivation extends to mixed norms. When working with total variation
regularization or the �1 norm of complex valued vectors or other models requiring
group sparsity such as the group Lasso [135, 2], we replace ‖x‖1 = ∑ j |x j| with
∑g ‖xg‖, where xg are non-overlapping subsets of x indexed by g. The dual norm of
∑g ‖xg‖ is maxg ‖xg‖. Let

x∗ = argmin
x

α∑
g
‖xg‖+ 1

2
‖x− v‖2 .

Then for each vector x∗g, the soft thresholding formula is

x∗g =

{
(‖vg‖−α)

vg
‖vg‖ if ‖vg‖ ≥ α

0 otherwise .
(9.30)

This can also be seen by noting that x∗g has to be in the direction of vg. By replacing
xg with ‖xg‖ vg

‖vg‖ , the problem can be reduced to scalar soft thresholding.
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The PPA (9.15) for a general unconstrained convex minimization problems,
minu J(u), can be interpreted as a gradient descent method on the Moreau enve-
lope of J. The Moreau envelope of J is defined by the infimal convolution of J and
1
2‖ · ‖2

M−1 ,

EM(y) = min
u

J(u)+
1
2
‖u− y‖2

M−1 ,

where M is a symmetric positive definite matrix. Its Legendre transform is

E∗
M(p) = J∗(p)+

1
2
‖p‖2

M ,

which is strongly convex, meaning that EM is differentiable. Let g = ∇EM(y). Then
y ∈ ∂E∗

M(g). Using the definition of E∗
M , 0 ∈ ∂J∗(g)+Mg− y, which is exactly the

optimality condition for

g = argmin
p

J∗(p)+
1
2
‖p−M−1y‖2

M .

The Moreau decomposition (9.27) then implies that

g = M−1(y− argmin
u

J(u)+
1
2
‖u− y‖2

M−1) .

Let ū(y) = argminu J(u)+ 1
2‖u− y‖2

M−1. It follows that

0 ∈ ∂J(ū(y))+M−1(ū(y)− y) .

Since ∇EM(y) = M−1(y− ū(y)) ∈ ∂J(ū(y)), finding y such that ∇EM(y) = 0 yields
ū(y) that minimizes J. ∇EM is Lipschitz continuous whereas J is not necessarily
differentiable. If we apply PPA on minu J(u), we obtain the scheme

uk+1 = proxJ(u
k,αk).

For αk = 1, we obtain 0 ∈ ∂J(uk+1)+ uk+1 − uk. This can be interpreted as a gra-
dient descent method on EM with stepsize 1 and M = I, i.e., uk+1 = uk −∇EM(uk).
Different choices of M can also lead to improved proximal point methods such as
the variable metric proximal point algorithm [22], which is scaled gradient descent
applied to EM with its gradient scaled by an approximation to its inverse Hessian.

Lagrange Duality

Dual problems can also be derived from a Lagrangian perspective. Consider a
generic primal problem

min
u

J(u) s.t. Au = b . (P)
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Associated with (P) is a Lagrangian

L(u, p) = J(u)+ 〈p,b−Au〉 , (9.31)

where the dual variables p can be thought of as a vector of Lagrange multipliers for
the Au = b constraints. L(u, p) is a convex-concave function whose saddle points
characterize both primal and dual solutions. The dual function q(p) associated with
L is defined by

q(p) = inf
u

L(u, p) (9.32)

= 〈p,b〉− sup
u
〈AT p,u〉− J(u) (9.33)

= 〈p,b〉− J∗(AT p) . (9.34)

The dual function q(p) is concave and the associated dual problem is

max
p

q(p) . (D)

By weak duality, q(p)≤ J(u). Assuming J is convex and (P) has a solution u∗, and
strong duality holds (constraint qualification holds), which means a solution p∗ to
(D) exists and J(u∗) = q(p∗) [113, 12].

When the primal and dual problems are not easily solvable, the saddle point
characterization of the optimal point becomes useful. When strong duality holds, u∗
solves (P) and p∗ solves (D) if and only if (u∗, p∗) is a saddle point of L(u, p),

L(u∗, p)≤ L(u∗, p∗)≤ L(u, p∗) for all u, p .

From this we can also see that the necessary conditions for optimality are{
Au∗ = b

AT p∗ ∈ ∂J(u∗) or equivalently u∗ ∈ ∂J∗(AT p∗) .

As an example, we can define the same dual problem (9.28) for (9.2) by first
reformulating (9.2) to

min
x,z

λ‖x‖1 +
1
2
‖z‖2 s.t. z = b−Ax

and forming the Lagrangian

L(x,z, p) = λ‖x‖1 +
1
2
‖z‖2 + 〈p,b−Ax− z〉 .
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The dual function can then be defined by

q(p) = inf
x,z

L(x,z, p)

= 〈p,b〉−{sup
x
〈AT p,x〉−λ‖x‖1}−{sup

z
〈p,z〉− 1

2
‖z‖2}

=−χ‖·‖∞≤λ (A
T p)− 1

2
‖p‖2 + 〈p,b〉 .

A maximizer of q(p) can be equivalently found by minimizing (9.28). Note however
that the objective for (9.28) differs from q(p) by the constant 1

2‖b‖2.
Although converting a convex minimization problem into a saddle point problem

may seem to make things more difficult, it leads to useful algorithms. When the
primal problem has separable structure it can be reformulated in such a way that
iterative methods for finding saddle points of an associated Lagrangian also take
advantage of this structure. Constraints can be decoupled from the objective and
dealt with one at a time. If the objective is a sum of simpler functions, these can also
be decoupled.

Uzawa’s Method

One of the simplest strategies for finding a saddle point of L (9.31) is Uzawa’s
method [1], which iterates

uk+1 ∈ argmin
u

J(u)+ 〈pk,b−Au〉 (9.35)

pk+1 = pk + δ (b−Auk+1) . (9.36)

The optimality condition for the uk+1 subproblem is 0 ∈ ∂J(uk+1)−AT pk, which
is equivalent to uk+1 ∈ ∂J∗(AT pk). This means pk+1 ∈ pk + δ (b−A∂J∗(AT pk)). If
J∗ is differentiable, then ∂J∗ = ∇J∗ and pk+1 = pk + δ∇q(pk) is exactly a gradient
ascent step for maximizing the dual objective, 〈p,b〉− J∗(AT p). However, we need
strong convexity of J for this interpretation to hold. ∇J∗ is Lipschitz continuous
with constant 1

σ if and only if J is strongly convex with modulus σ , which means
J(u)− σ

2 ‖u‖2 is convex [117].
One way to introduce strong convexity is to change the objective slightly by

adding a small strongly convex term. This slightly smooths the dual objective so
that gradient ascent can be applied. The linearized Bregman method [134] for �1

minimization is simply an instance of Uzawa’s method – a relationship that was
explored in [23, 24, 132].

By adding 1
2α ‖u‖2 to J(u) in (P), Uzawa’s method becomes

⎧⎨
⎩ uk+1 = argminJ(u)+

1
2α

‖u−αAT pk‖2

pk+1 = pk + δ (b−Auk+1)

(9.37)
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for 0 < δ < 2
α‖AT A‖ . So in the case of basis pursuit (9.1) where J(u) = ‖u‖1,

linearized Bregman solves a slightly perturbed problem by a sequence of soft
thresholding steps. However, for α large enough the perturbed objective satisfies
an exact regularization property so that its solutions are the same as solutions of
the unperturbed basis pursuit problem [65, 132]. The linearized Bregman method
can also deal with objectives that have a special kind of separable structure. If
J(u) =∑g Jg(ug), where ug denotes nonoverlapping subsets of u, then the minimiza-
tion subproblem (9.35) decouples into separate minimization problems involving
each Jg separately.

5 Method of Multipliers

The method of multipliers [83, 110] can be viewed as a way to solve (P) by a dual
gradient ascent method without requiring strong convexity [10]. Based on the aug-
mented Lagrangian

Lδ (u, p) = J(u)+ 〈p,b−Au〉+ δ
2
‖Au− b‖2 ,

the method of multipliers iterates

{
uk+1 ∈ argmin

u
Lδ (u, pk)

pk+1 = pk + δ (b−Auk+1) .
(9.38)

It can be shown by examining the optimality conditions that each iteration is finding
a saddle point (uk+1, pk+1) of

L(u, p)− 1
2δ

‖p− pk‖2 .

From this, we can show that the pk+1 update is simply the proximal point iteration
for maximizing q(p) [115, 14]. The existence of a saddle point implies

min
u

max
p

L(u, p)− 1
2δ

‖p− pk‖2 = max
p

min
u

L(u, p)− 1
2δ

‖p− pk‖2 ,

which by the definition of the dual function is exactly the proximal iteration

max
p

q(p)− 1
2δ

‖p− pk‖2 .

The proximal point algorithm interpretation for the method of multipliers means
that it can be seen as a gradient ascent method on the Moreau envelope of q(p)
defined by

qδ (pk) = max
p

q(p)− 1
2δ

‖p− pk‖2 .
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As explained for example in [14], qδ (p) can be interpreted as an alternate dual
function for (P) defined via the augmented Lagrangian by

qδ (p) = inf
u

Lδ (u, p) .

The method of multipliers has many useful interpretations and advantages for
�1 minimization problems. These were largely studied and developed from the per-
spective of Bregman iteration [99, 134], which solves (P) by iterating⎧⎨

⎩uk+1 ∈ argmin
u

Dvk

J (u,uk)+
δ
2
‖Au− b‖2

vk+1 = vk + δAT (b−Auk+1) ∈ ∂J(uk+1) ,

(9.39)

where Dvk

J denotes the Bregman distance [18], and the vk+1 update ensures that
vk+1 ∈ ∂J(uk+1). The vector vk is related to the Lagrange multiplier pk in (9.38) by
vk = AT pk.

Bregman iteration (a special case of the method of multipliers) has numerous
useful properties when used to solve �1 regularized problems. When applied to the
equality constrained basis pursuit problem (9.1), the method of multipliers exhibits
finite convergence, something that holds when the proximal point method is applied
to linear programs such as the basis pursuit dual in this case [14]. Although this
application of Bregman iteration to basis pursuit will eventually find a solution that
satisfies Au = b, it is still effective for solving noisy basis pursuit problems. Often
only a handful of iterations are needed. Each iteration requires solving an uncon-
strained problem of the form (9.2). These iterations have the intriguing interpreta-
tion of solving unconstrained denoising problems and then adding the noise back
to the residual for the next iteration [99]. A stopping condition based on the norm
of the residual being sufficiently small can be justified by Morozov’s discrepancy
principle as a regularization approach for dealing with noise [64]. Another major
advantage for �1 minimization problems is an error cancellation property that holds
when the unconstrained subproblems are inexactly solved [133].

In addition to Bregman iteration (9.39), the method of multipliers has been stud-
ied under various other names and settings. This method is known as iteration refine-
ment in the field of inverse problems. The iterative refinement procedure has been
generalized to a time continuous formulation, known as the inverse scale space (ISS)
method [120, 20]. Many variants of the ISS method are also proposed in the context
of compressive sensing and sparse approximation [21, 96, 100].

Method of Multipliers for Composite Objectives

The method of multipliers can also be an effective method for more complicated
objectives of the form

∑
j

Fj(b j −A ju)+G(u) , (P1)
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where Fj and G are convex and G is also differentiable with Lipschitz continuous
gradient. This model can include linear equality constraints by letting Fj be the in-
dicator function of 0 (more general convex constraints are also possible). Introduce
new variables z j = b j −A ju and define the augmented Lagrangian

Lδ (u,z, p) = G(u)+∑
j

Fj(z j)+ 〈p j,b j −A ju− z j〉+ δ
2
‖b j −A ju− z j‖2 .

By explicitly minimizing with respect to z j, each Fj is replaced by its infimal con-
volution with δ

2 ‖ · ‖2. Let

F̃(y) = min
z

F(z)+
δ
2
‖z− y‖2 .

Then the augmented Lagrangian becomes

Lδ (u, p) = G(u)+∑
j

F̃j

( p j

δ
+ b j −A ju

)
− 1

2δ
‖p j‖2 .

This is related to the penalty Lagrangian formulation in [114] and a special case of
the generalized method of multipliers in [55]. The resulting iterations are⎧⎪⎪⎪⎨

⎪⎪⎪⎩
uk+1 ∈ argmin

u
G(u)+∑

j
F̃j

(
pk

j

δ
+ b j −A ju

)

pk+1
j = argmin

p
F∗

j (p)+
1

2δ
‖p− (pk

j + δ (b j −A ju
k+1))‖2 .

(9.40)

The minimization sub-problem for updating uk+1 has Lipschitz continuous gradi-
ent, and so gradient methods or even limited memory quasi Newton methods can be
used. If Fj is the indicator function for 0, then F̃j(

p j
δ +b j −A ju) = 1

2δ ‖p j +δ (b j −
A ju)‖2 and pk+1

j = pk
j + δ (b j − A juk+1), which are consistent with the standard

method of multipliers with linear equality constraints. Applying gradient methods
to solve for uk+1 naturally decouples the Fj since the gradients of F̃j can be com-
puted independently. These gradients are of the form

∇(F̃j(
pk

j

δ
+b j−A ju))|uk =−AT

j

(
argmin

p
F∗

j (p)+
1

2δ
‖p− (pk

j + δ (b j −A ju
k))‖2

)
,

and can thus be computed using the same proximal mappings needed to update
the dual variables. As an example application to (9.4), we could consider G = 0,
F1(z) = ‖z‖1, F2(z) = χ‖·‖≤σ (z) and solve minu F1(u)+F2(b−Au).
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Linearized Method of Multipliers

Sometime the u−subproblem in (9.38) does not have a closed form solution. This
is often the case when the matrix A is more complex than a simple identity. To
further split the matrix A from the constraint term, the method of multipliers can be
combined with some of the linearization (i.e., majorization) techniques described in
Section 3. Generalizing the proximal method of multipliers [115] and the Bregman
proximal point algorithm [29], it was shown in [55] that the Bregman distance could
be used to add a proximal term to the method of multipliers. Applied to (P), the
quadratic penalty δ

2 ‖Au− b‖2 can be linearized by adding the Bregman distance
between u and uk of 1

2α ‖u‖2 − δ
2 ‖Au− b‖2 for 0 < α < 1

δ‖AT A‖ . This Bregman
distance is given by

1
2α

‖u‖2 − 1
2α

‖uk‖2 −〈uk

α
,u−uk〉− δ

2
‖Au−b‖2 +

δ
2
‖Auk −b‖2 + 〈δAT (Auk −b),u〉

and is equivalent to the proximal penalty

1
2
〈u− uk,(

1
α

I− δAT A)(u− uk)〉 .

This modification results in the following linearized method of multipliers:⎧⎨
⎩ uk+1 = argmin

u
J(u)+

1
2α

‖u− uk+αδAT (Auk − b− pk

δ
)‖2

pk+1 = pk + δ (b−Auk+1) .

(9.41)

This algorithm was proposed as Bregman operator splitting (BOS) and split inexact
Uzawa method in [136, 137] and applied to sparse reconstruction and compressive
sensing problems. Every iteration is finding a saddle point (uk+1, pk+1) of

J(u)+ 〈p,b−Au〉− 1
2δ

‖p− pk‖2 +
1
2
‖u− uk‖2

D,

where D = 1
α I − δAT A is positive definite, so it can also be viewed as a minimax

application of the proximal point method [115].
As with linearized Bregman, BOS can also take advantage of the separable struc-

ture of J(u) = ∑g Jg(ug), where ug are non-overlapping subsets of u. In this case the
primal update decouples into separate proximal minimizations for each Jg. How-
ever, BOS can also solve much more complicated problems by a similar sequence
of iterations. Consider (P1) in the case when G = 0. This now has the form of a
monotropic programming problem [112, 13], and duality can be used to decouple
the Fj. Once again, introduce variables z j = b j −A ju and let A= [AT

1 , · · · ,AT
N ]

T . The
reformulated problem becomes

min
u,z ∑

j

Fj(z j) s.t. z j = b j −A ju . (9.42)
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Adding Lagrange multipliers for the equality constraints and minimizing the result-
ing Lagrangian with respect to the primal variables leads to the dual problem

min
p ∑

j
F∗

j (p j)−〈p j,b j〉 s.t. AT p = 0, (9.43)

where p = [pT
1 · · · pT

N ]
T . Lagrange multipliers for the AT p = 0 constraint correspond

to the primal variables u. Therefore we can solve the primal problem by applying
BOS to its dual, which has the kind of separable structure that allows proximal min-
imization steps for each F∗

j to be computed independently and in parallel. Other
related strategies of adding proximal penalties to the Lagrangian can achieve simi-
lar decoupling of separable objective functions, for example the predictor-corrector
proximal method [37].

More general Bregman distances can also be added to the method of multipli-
ers to linearize smooth objectives. This can be valuable even when nothing in the
original problem is smooth. Consider applying (9.40) to minu G(u) +F(b− Au),
which corresponds to basis pursuit denoising (9.4) when G(u) = ‖u‖1 and F(z) =
χ‖·‖≤σ(z). Note that G is no longer assumed to be differentiable. The primal update
requires solving

uk+1 = argmin
u

G(u)+ F̃

(
pk

δ
+ b−Au

)
.

Consider adding the Bregman distance between u and uk of 1
2α ‖u‖2 − F̃( pk

δ + b−
Au) for δα < 1

‖AT A‖ in order to linearize F̃ , which here can be interpreted as the
distance squared to the �2 ball of radius σ . Using the fact that

∇F̃

(
pk

δ
+ b−Au

)
|uk =−AT

(
pk + δ (b−Auk)−Π‖·‖≤δσ(pk + δ (b−Auk))

)
,

the overall iterations simplify to⎧⎪⎪⎨
⎪⎪⎩

uk+1 = Sα(u
k +αAT p̄k)

pk+1 = pk + δ (b−Auk+1)−Π‖·‖≤δσ(pk + δ (b−Auk+1))

p̄k+1 = pk+1 + δ (b−Auk+1)−Π‖·‖≤δσ(pk+1 + δ (b−Auk+1))

(9.44)

and amount to iterating one soft thresholding step followed by two �2 ball projec-
tions. Preconditioning can also be introduced as with (9.46) by using the Bregman

distance of 1
2α ‖u‖2

D − F̃( pk

δ + b−Au) for a positive definite matrix D and possibly
also using a matrix norm M when defining the infimal convolution F̃ .
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Preconditioning

Preconditioning can improve the convergence rate of Lagrangian methods when A
is ill-conditioned. Introduce symmetric positive definite matrices M and D and let
DM = 1

δ D−2 −αAMAT with α and δ chosen to ensure DM is positive definite. A
preconditioned application of BOS to (9.43) iteratively finds saddle points of

F∗(p)+ 〈p,Au− b〉+ 1
2
‖p− pk‖2

DM
− 1

2α
‖u− uk‖2

M−1 , (9.45)

leading to the iterations⎧⎨
⎩ pk+1

j =argmin
p

F∗
j (p)+

1
2δ

‖D−1(p− pk
j)+ δD(Auk − b+αAMAT pk

j)‖2

uk+1 =uk +αMAT pk+1.
(9.46)

These iterations are more efficient when D and M are chosen so that DAMAT D is
well conditioned. Depending on Fj, it is often the case that diagonal matrices D don’t
overly complicate the minimization problems. The difficulty of these proximal steps
is not affected by M. Related preconditioning strategies can be found in [136, 107].

As an example application, we consider applying dual BOS to the Lasso problem
(9.3) with D = I and M = I. This yields the iterations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pk+1
1 =

1
1+δ

(pk
1 −δA(uk +α(AT pk

1 + pk
2)−b)

pk+1
2 = pk

2 −δ (uk +α(AT pk+1
1 + p2))−Π‖·‖1≤τδ (pk

2 −δ (uk +α(AT pk+1
1 + p2)))

uk+1 = uk +α(AT pk+1
1 + pk+1

2 ) .
(47)

Although the iterations are simple to compute, more dual variables were introduced
than were really necessary to achieve this decoupling. Alternative approaches based
on ADMM will be discussed in Section 6.

6 Alternating Direction Methods

The alternating direction method of multipliers (ADMM) [71, 69] is a versatile
method for solving convex minimization problems of the form

min
u,z

H(u)+F(z) s.t. Au+Bz = b . (P2)

Although the objective is a sum of only two convex functions, we can often rewrite
more complicated problems in this way. For example, analogous to how (P1) was
written as (9.42), it can be written as (P2) with B = I and G replaced by a possibly
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nondifferentiable convex function H. Compared to dual BOS (9.46), ADMM’s more
implicit iterations can be more effective for some problems.

As with the method of multipliers, ADMM finds a saddle point of the augmented
Lagrangian

Lδ (u,z, p) = H(u)+F(z)+ 〈p,b−Bz−Au〉+ δ
2
‖Au+Bz− b‖2

= L(u,z, p)+
δ
2
‖Au+Bz− b‖2 ,

but it does so by alternately minimizing Lδ with respect to u and z in a Gauss-
Seidel fashion before updating the Lagrange multipliers p. Each iteration of ADMM
contains the updates ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
uk+1 ∈ argmin

u
Lδ (u,z

k, pk)

zk+1 ∈ argmin
z

Lδ (u
k+1,z, pk)

pk+1 = pk + δ (b−Bzk+1−Auk+1) .

(9.48)

Algorithm (9.48) is guaranteed to converge under fairly broad conditions. In particu-
lar, it is required that H(u) and F(z) are closed proper convex functions, there exists
a saddle point of L(u,z, p), all sub-problems in (9.48) have solutions, and δ > 0
[38, 45]. ADMM was shown in [68, 63] to be equivalent to Douglas-Rachford split-
ting on the dual problem

min
p

H∗(AT p)−〈p,b〉+F∗(BT p) . (D2)

The convergence of Douglas-Rachford splitting was shown in [93] from the per-
spective of finding zeros of sums of two maximal monotone operators. ADMM’s
interpretation as a proximal point algorithm in [54, 57] allowed the convergence
analysis to be generalized. More recent proximal point and gradient method inter-
pretations have led to preconditioned and accelerated generalizations [17, 106, 73].

Convex optimization algorithms based on ADMM were proposed for a wide va-
riety of applications in [70, 54, 14]. In the signal and image processing commu-
nity there was a lot of renewed interest in ADMM after it was shown to be a good
approach for general �1 minimization problems, including those involving total vari-
ation regularization. This made ADMM a perfect fit not only for emerging compres-
sive sensing applications but also for many types of regularized inverse problems
based on convex models with separable structure of some sort.

ADMM was proposed for �1 and TV minimization problems from the perspective
of split Bregman [74], which had many advantages over other popular approaches
at the time. For example, there is no need to smooth the objective as with lagged
diffusion [127, 34] or gradient descent. For moderate accuracy requirements it out-
performs the dual approach in [30] as well as primal-dual Newton method in [33],
although superlinearly convergent Newton-based methods [33, 89] can ultimately be
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more efficient when very high accuracy is needed. Split Bregman and other fast TV
minimization algorithms based on the primal-dual hybrid gradient (PDHG) [140]
and quadratic penalty [130] methods all showed the benefit of operator splitting for
such problems. However, PDHG had not been proved to converge at the time. Its
convergence is now better understood [59, 15, 81], but it is still not as generally
applicable. In addition, compared to the quadratic penalty approach in [130], split
Bregman and ADMM do not require penalty parameters to tend to infinity.

As an example application of ADMM to TV denoising, the objective in (9.5) can
be written in the form of (P2) by letting F(z) = λ‖z‖1,2, H(u) = 1

2‖u− f‖2, B = I,
A = −D and b = 0. Here, the ‖ · ‖1,2 notation denotes a mixed �1-�2 norm [123]
corresponding to a sum of �2 norms. For images with pixel indices (i, j), ‖Du‖1,2

corresponds to the discretization of

‖u‖TV =∑
i, j

1
h

∥∥∥∥
[

ui, j+1 − ui, j

ui+1, j − ui, j

]∥∥∥∥ ,
which equals ‖Du‖1,2 if D is a difference operator such that Du is a concatenation of

all 2×1 discrete gradients of the form

[
ui, j+1 − ui, j

ui+1, j − ui, j

]
. For the augmented Lagrangian

Lδ (u,z, p) = λ‖z‖1,2 +
1
2
‖u− f‖2+ 〈p,Du− z〉+ δ

2
‖Du− z‖2 ,

the ADMM iterations are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk+1 = (I+ δDT D)−1( f −DT pk + δDT zk)

zk+1 = argmin
z

λ‖z‖1,2 +
δ
2
‖z−Duk+1 − pk

δ
‖2

pk+1 = pk + δ (Duk+1 − zk+1) .

If D is defined using periodic or Neumann boundary conditions, then (I+δDT D)−1

can be efficiently applied using the fast Fourier transform or discrete cosine trans-
form respectively (see the example applications in Section 7). The zk+1 update can
be computed using soft thresholding (9.30).

There is a lot of flexibility in designing ADMM iterations so that the minimiza-
tion subproblems are easy to solve. For example, consider applying ADMM to a
TV-�1 image deblurring model

min
u

λ‖Du‖1,2 + ‖Ku− f‖1 ,

which can again be written in the form of (P2) by introducing z1 = Du and z2 =

Ku− f and letting B= I, A=

[−D
−K

]
and b=

[
0
− f

]
. The resulting ADMM iterations

require applying (DT D +KT K)−1 which may or may not be easy depending on
whether fast transforms can simultaneously diagonalize DT D and KT K. If not, it
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may still be the case that I+DT D and I+KT K are easy to invert, in which case we
could consider a reformulation of the problem where

B =

⎡
⎢⎢⎣

I 0 0
0 I 0
0 0 I
0 0 I

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣
−D 0

0 −K
−I 0
0 −I

⎤
⎥⎥⎦ , and b =

⎡
⎢⎢⎣

0
− f
0
0

⎤
⎥⎥⎦ .

Any problem of the form (P2) can always be reformulated so that AT A is as
simple of a block diagonal matrix as desired. While ADMM iterations can be sim-
plified in this way, adding too many extra variables and constraints can lead to less
efficient algorithms. Rather than introducing additional auxiliary variables, some
ADMM variants update more than two blocks in a Gauss-Seidel style. This ap-
proach sometimes converges considerably faster and uses less memory than stan-
dard ADMM applied to a formulation with many additional auxiliary variables and
constraints. However, the straightforward multi-block extension of ADMM is not
always guaranteed to converge [35] and requires additional assumptions to be ap-
plicable [85, 46]. ADMM algorithms can be generalized to handle three objective
terms (rather than two) by adding correction steps [80].

Alternative Interpretations of ADMM

The classical ADMM is fundamentally a two block method [56]. From its equiva-
lence to Douglas-Rachford splitting on a dual problem, ADMM can be interpreted
as a method for finding a fixed point of a composition of two nonexpansive map-
pings [56, 54, 57]. When the dual problem (D2) is a feasibility problem of finding a
point in the intersection of two convex sets, then Douglas-Rachford splitting has the
interesting geometric interpretation of averaged alternating reflections (AAR) [5].
Suppose the dual objective is a sum of indicator functions χC1 +χC2 for convex sets
C1 and C2. Then the Douglas-Rachford iterations are given by

yk+1 =
1
2
(RC1(RC2(y

k))+ yk) ,

where RC denotes the reflection defined by RC(y) = 2ΠC(y)−y. Using the definition
of RC and introducing pk+1 = ΠC2(y

k+1), the AAR iterations can be written as{
yk+1 = ΠC1(2pk − yk)− pk + yk

pk+1 = ΠC2(y
k+1) .

(9.49)

Generalizing from this feasibility problem to solving (D2), replace ΠC1( f ) by

argmin
p

H∗(AT p)−〈p,b〉+ 1
2
‖p− f‖2



326 T. Goldstein and X. Zhang

and replace ΠC2( f ) by

argmin
p

F∗(BT p)+
1

2α
‖p− f‖2

to obtain the Douglas-Rachford method for solving (D2). The equivalence between
ADMM on (P2) and Douglas-Rachford on (D2) can be derived by applying the
Moreau decomposition twice to (9.48) and letting yk = pk + δBzk.

There is also an alternating direction implicit (ADI) method interpretation of
ADMM [70]. Suppose F∗ and H∗ are differentiable. Then ADMM, via its Douglas-
Rachford interpretation, can be viewed as an ADI method for finding a steady
state of

dp(t)
dt

=−∇
(
F∗(BT p)+H∗(AT p)−〈p,b〉)

by iterating

qk − pk

δ
=−A∇H∗(AT qk)+ b−B∇F∗(BT pk)

pk+1 − pk

δ
=−A∇H∗(AT qk)+ b−B∇F∗(BT pk+1) ,

where qk = yk+1 − yk + pk with yk and pk having the same interpretation here as
(9.49) and (9.48). For nondifferentiable F∗ and H∗, ADMM can still be interpreted
as an analogous ADI method for a differential inclusion [70, 57].

Variants of ADMM

Strategies for designing ADMM algorithms with simple iterations have been pro-
posed for example in [54, 14, 70, 66] as well as in many more recent works. As with
the method of multipliers, ADMM can also be combined with linearization tech-
niques. ADMM-based methods that linearize the quadratic penalty terms include
the split inexact Uzawa (SIU) method in [137], the proximal alternating direction
based contraction methods in [79], and the alternating direction proximal method of
multipliers in [122]. There are also extensions that include linearizations of smooth
functions [43] as well as the addition of Bregman distances to ADMM minimization
subproblems [129].

A particularly useful modification is obtained by “linearizing” ADMM by adding
proximal penalties of the form 1

2‖u− uk‖2
Mu

and 1
2‖z− zk‖2

Mz
to the u and z updates

in (9.48). Choosing positive definite Mu = 1
α I − δAT A and Mz =

1
α I − δBT B will

effectively linearize the augmented Lagrangian quadratic penalty terms in those up-
dates. If only the uk+1 update is linearized, the resulting method is equivalent to
modified PDHG, so called in [59] because of its close resemblance to the PDHG
method in [140]. The method was proposed for an image segmentation application
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in [108] as a variant of a method in [109]. The method was further generalized in
[59, 32], accelerated and preconditioned in [32, 107], and shown to have a proximal
point method interpretation in [82]. Adaptive variants of the method that allow for
automated stepsize choices were studied in [72]. The combination of implicit and
explicit steps has made this a useful method in many applications.

Consider problems of the form (P1) but with G a possibly nondifferentiable con-
vex function. Rewriting as

min
u,z ∑

j

Fj(z j)+G(u) s.t. z j +A ju = b j

puts it in the form of (P2) with B = I and with its dual problem given by

min
p

G∗(AT p)+∑
j

F∗
j (p j)−〈p j,b j〉 .

Introduce q = AT p and consider an ADMM scheme based on the augmented
Lagrangian

Lα(p,q,u) = F∗(p)+G∗(q)−〈p,b〉+ 〈u,AT p− q〉+ α
2
‖AT p− q‖2

M

that updates p, then q and then u every iteration. If we linearize the p update by
adding 1

2 〈p− pk,(D−2

δ −αAMAT )(p− pk)〉 for some positive definite matrix D−2

δ −
αAMAT , then we obtain a preconditioned instance of modified PDHG that has the
form⎧⎪⎨
⎪⎩

uk+1 = argmin
u

G(u)−〈u,AT pk〉+ 1
2α

‖u− uk‖2
M−1

pk+1
j = argmin

p
F∗

j (p j)+ 〈A j(2uk+1 − uk)− b j, p j〉+ 1
2δ

‖p j − pk
j‖2

D−2 .
(9.50)

In this way the individual Fj functions are decoupled and their most recent proximal
minimizations are used in the proximal minimization of G.

As an example, consider applying ADMM and modified PDHG to the dual of
the Lasso problem. Letting F(z) = 1

2‖z‖2 and G(u) = χ‖·‖1≤τ(u) the lasso problem
(9.3) has the form of (P2). ADMM applied to (D2) can be written as{

uk+1 = Π‖·‖1≤τ(u
k +αAT pk)

pk+1 = pk +(I+αAAT )−1(b−A(2uk+1− uk)− pk) .
(9.51)

Applying (9.50) to the Lasso dual leads to very similar iterations given by⎧⎨
⎩

uk+1 = Π‖·‖1≤τ(u
k +αAT pk)

pk+1 = pk +
δ

δ + 1
(b−A(2uk+1− uk)− pk) .

(9.52)
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The modified PDHG application replaces (I +αAAT )−1 with δ
δ+1 and is therefore

equivalent to ADMM if AAT = I and α = 1
δ . Both methods are simpler than BOS

applied to the Lasso problem (47) and tend to work better in practice. For under-
determined matrices A, I +αAAT is smaller and often easier to invert in the dual
ADMM method than the matrix I + δAT A that would appear in a primal applica-
tion of ADMM to the Lasso problem. However, in either case the Woodbury matrix
identity could be used in order to work with the smaller of the two.

As another example, consider applying ADMM to the basis pursuit denoising
problem (9.4) based on the augmented Lagrangian

Lδ (u,z, p) = ‖u‖1 + δ‖·‖≤σ(z)+ 〈p,b− z−Au〉+ δ
2
‖Au+ z− b‖2 .

Linearizing the u update leads to the iterations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk+1 = Sα(u
k −αAT (pk + δ (b−Auk)− δ zk)

zk+1 = Π‖·‖≤σ (
pk

δ
+ b−Auk+1)

pk+1 = pk + δ (b−Auk+1− zk+1) .

(9.53)

This is closely related to the Bregman method of multipliers applied to the same
problem (9.44). If the z update is repeated after the p update using pk+1 in place of
pk, then the methods are equivalent.

There continues to be active research into extensions and generalizations of
ADMM and linearized ADMM. For example, as with accelerated gradient meth-
ods based on [98] and accelerated proximal gradient methods such as FISTA [6],
there has also been work to accelerate the convergence rate of ADMM and its vari-
ants [73, 102, 106, 106]. There are extensions to nonconvex problems that can still
guarantee convergence to a stationary point [126, 92]. From an operator splitting
perspective, multiblock ADMM [85, 46] as well as coordinate descent and stochas-
tic versions of ADMM [124, 84, 128, 101, 139] have a lot of potential for designing
efficient methods for large scale optimization problems where the objective contains
a sum of many simple functions.

7 Compressive Sensing Examples

Most compressive signal reconstruction problems are either of the analysis or syn-
thesis type. Both problem forms assume an unknown signal u is sparse under some
transform D. We thus expect Du to have small �1-norm. Suppose further that we ob-
tain linear measurements of the form b = Au+η , where A is a sensing matrix with
appropriate compressive properties and η is a vector of additive noise. If the spar-
sifying transform D is invertible (for example, if D is a wavelet or discrete cosine
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transform) then the signal can be written u = D−1v for some sparse v, and can be
recovered by solving the synthesis problem

v∗ = argmin
v

λ‖v‖1 + ‖AD−1v− b‖2 (9.54)

for some appropriately chosen scalar λ . However, if D is a non-invertible transform
(such as the discrete gradient operator or overcomplete wavelet transform), then we
must solve the analysis problem

u∗ = argmin
u

λ‖Du‖1 + ‖Au− b‖2. (9.55)

The synthesis problem (9.54) is very straightforward to solve using the forward-
backward splitting method described in Section 3. The analysis problem (9.55) is
considerably more flexible (as it allows for non-invertible D) and is often used in
image processing applications. However, analysis formulations generally require
more complex splitting methods than synthesis formulations. For this reason, we
focus here on numerous analysis problems in compressive sensing (for a recent
review of synthesis problems, see [75]).

The Single-Pixel Camera and the Stone Transform

Compressive imaging devices allow high-resolution images to be recovered from a
small amount of data. Unlike conventional cameras that measure each pixel with
a separate detector, compressive imaging devices acquire information about an
image/scene but measuring transform coefficients such as Fourier/Hadamard trans-
form modes of pixels. If the measurement transform is chosen appropriately, im-
ages can be reconstructed accurately from under-sampled measurements [25, 3].
However, the problem of reconstructing an image from under-sampled data requires
solving a variational reconstruction problem. Compressive imaging exploits the
tradeoff between measurement complexity and reconstruction complexity — com-
pressive methods speed up data acquisition (by reducing the number of measure-
ments needed for accurate reconstruction), but the resulting image reconstruction
problem becomes more computationally intense. Numerous compressive imaging
devices have been proposed [76, 53, 77, 111, 111, 94]. We will focus here on the
spatially multiplexing Single Pixel Camera (SPC) as described in [76, 53], however
the numerical methods discussed are broadly applicable.

An SPC consists of a lens, a Digital Micro-mirror Device (DMD), and a photo
detector (see Figure 9.1) [53]. Each mirror on the DMD modulates an individual
pixel by diverting light either towards or away from the detector. This results in a
combination coefficient for that pixel of +1 or −1, respectively.1 Because SPCs are
built around a single photodetector rather than a large photodetector array, they are

1 It is more correct to say light diverted towards/away from the detector results in a 0/1 coefficient.
In practice, 0/1 measurements are converted to +1/−1 measurements by subtracting the average
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advantageous in applications where sensor construction is extremely costly, such as
imaging in the Short-Wave Infrared (SWIR) spectrum.

A/D 
converter

Photo-detector

Digital micro-mirror 
device (DMD)

Objective 
lens

Scene
Focusing 

lens

Light from the 

Light from the 

In
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de
nt
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gh

t

SPC data
A B
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Fig. 9.1 Schematic diagram of a single-pixel camera. (A) Light from the scene is focused onto
a Micro Mirror Device (MMD), and then redirected onto a single detector. An analog-to-digital
converter reads out a measurement of light intensity impinging on the detector. (B) The MMD
contains an array of mirrors that can be individually “tilted” to produce different measurement
patterns.

An SPC obtains multiple measurements from a scene before image reconstruc-
tion. The ith measurement is an inner product 〈Ai,u〉 where u is the vectorized im-
age, and Ai is a vector of ±1’s encoding the orientation of the mirrors. Once M
measurements have been collected, the observed information can be written

Au = b+η , (9.56)

where A is a “measurement matrix” having the vectors {Ai} as its rows, b is the
vector of measurements, and η represents noise. If u contains N pixels, then A is an
M×N matrix.

The problem (9.56) is underdetermined. Therefore a prior is necessary to make
solutions to this problem unique. In the context of compressive sensing, we assume
the images are sparse in some transform domain. Images are then recovered by
solving

min λ‖Du‖1 +
1
2
‖Au− b‖2, (9.57)

where D is some transform that sparsifies the image, and λ is a regularization param-
eter that controls the strength of the �1 penalty. When D = ∇ is a discrete gradient
operator (which generates the differences between adjacent pixels), the regularizer
‖Du‖1 becomes the well-known total variation (TV) semi-norm. Another common
choice for D is a discrete wavelet transform.

image intensity. Measurement matrices with +1/− 1 coefficients are more well conditioned than
their 0/1 counterparts, and are easier to handle numerically.
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Choosing the Measurements Operator

There is a lot of flexibility when choosing a measurement operator A. Clearly,
the sensing matrix needs to be binary, otherwise it cannot be represented on the
DMD. In addition, the rows of A should be sub-sampled from an orthogonal matrix.
This condition guarantees that A will satisfy an uncertainty principle (with high-
probability), and thus will be an effective compressive sensing matrix [25]. Practi-
cal implementations further require the orthogonal matrix to have a fast transform
algorithm, such as the Hadamard transform, to enable fast reconstruction.

Finally, some practical sensing matrices are designed to enable reconstruction
via both compressive sensing and traditional Nyquist (one-pixel-per-measurement)
methods. Such measurement matrices can immediately reconstruct low-resolution
images using a single fast transform, or can optionally form high-resolution recon-
structions from the same data using the iterative methods discussed below. This was
originally accomplished with DSS matrices [119, 104] that allow reconstruction at
two resolutions, and later by the Stone transform [76] which allows reconstruction
at multiple resolutions and additionally has a fast transform.

Regardless of which measurement framework is chosen, all conventional mea-
surement matrices contain rows that are sub-sampled from orthogonal matrices. This
important property is exploited in our discussion of numerical methods.

Solving the Reconstruction Problem

As discussed above, most compressive imaging systems rely on subsampled orthog-
onal measurement matrices. In such cases, the image recovery problem (9.57) has
the form

min λ‖Du‖1+
1
2
‖RTu− b‖2, (9.58)

where T is some orthogonal transform (e.g., a Hadamard or Stone transform [76]),
and R is a row-selector matrix that selects the outputs from T that are measured by
the device and throws away the unmeasured entries.

Most modern compressive reconstructions rely on non-invertible sparsifying
transforms such as total variation, tight frames, or over-complete dictionaries. In
this case, variants of ADMM become a powerful tool. To apply ADMM, we begin
with (9.58) and make the change of variables z ← Du to arrive at

min
u,z

λ‖z‖1 +
1
2
‖RTu− b‖2 s.t. z = Du.

The augmented Lagrangian is then

λ‖z‖1 +
1
2
‖RTu− b‖2+ 〈p,z−Du〉+ δ

2
‖z−Du‖2. (9.59)



332 T. Goldstein and X. Zhang

The ADMM algorithm (9.48) requires that we minimize the augmented La-
grangian for u and then z. The u-update requires the inversion of (T T RT RT +
δDT D). If D is a tight frame, then DT D = I and this operator might be easily in-
verted. However, in general it happens that T and D do not share common properties
and this system cannot be directly inverted. For example, when T is a Hadamard or
Stone transform and D is a gradient operator, this system has no closed form solu-
tion. The authors of [53] proposed solving this system using a truncated conjugate
gradient method. However, one can avoid the difficulty of solving a system involv-
ing both T and D by decoupling the terms in the augmented Lagrangian (9.59) using
the linearized methods discussed in Section 6.

To decouple the data and sparsity terms in (9.59), we add the proximal penalty
1
2‖u− uk‖2

M to the augmented Lagrangian, where M = 1
α I − δDT D. The resulting

minimization sub-problems are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk+1 ∈ argmin
u

1
2
‖RTu− b‖2+ 〈pk,−Du〉+ δ

2
‖zk −Du‖2 +

1
2
‖u− uk‖2

M

zk+1 = argmin
z

λ‖z‖1 + 〈pk,z〉+ δ
2
‖z−Duk+1‖2 (

= Sλ/δ (Duk+1 − δ−1 pk)
)

pk+1 = pk + δ (zk+1 −Duk+1).
(9.60)

The z- and p-updates in this method are explicit. The u-update has the optimality
condition

(T T RT RT +
1
α

I)uk+1 = T T RT b+DT pk +
1
α

uk − δDT (Duk − zk). (9.61)

Thus, the u-update requires us to solve (T T RT RT + 1
α I)−1r, where r denotes the

right-hand side of (9.61). When T is an orthogonal transform, the solution is
given by

(T T RT RT +
1
α

I)−1r = (T T (RT R+
1
α

I)T )−1r = T T (RT R+
1
α

I)−1Tr.

Note the matrix (RT R + 1
α I) is a diagonal operator, and is thus easily inverted.

This preconditioned ADMM strategy is advantageous because every substep of the
method has a closed-form solution. The strategy described here is equivalent to the
PDHG method [59] which has been applied for reconstruction of compressive video
[76]. A drawback of this strategy is the need to choose two different stepsize param-
eters. This issue is addressed using adaptive stepsize selection in [72].

Applications Involving the Fourier Transform: Compressive
Fourier Sampling and Deblurring

Many problems in image processing and compressive sensing require the recon-
struction of images from under-sampled Fourier measurements. For example, in
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compressive magnetic resonance imaging (MRI) it is common to have a measure-
ment matrix of the form RF where F is a matrix representing the Fourier transform
operator. Reconstruction of images from such measurements is often achieved using
the variational formulation

min
u

λ‖∇u‖1+
1
2
‖RFu− b‖2, (9.62)

where λ is a regularization parameter that controls the tradeoff between the data
term and the total variation penalty. This is a special case of (9.58). However we
address it separately because it is possible to exploit the structure of the Fourier
transform.

Image deblurring is another problem class that relies of the special problem form
(9.62). In this case, we are given blurred measurements of the form f = Kx+η
where K is a linear blur operator, x is the true unknown image, and η is noise.
Image recovery relies on the total variation regularized problem

min
u

λ‖∇u‖1 +
1
2
‖Ku− f‖2. (9.63)

If we observe that convolution matrices are diagonalized by the Fourier transform,
we can write F−1RF where R is a diagonal matrix. If F is a unitary Fourier oper-
ator, then the �2 norm of a vector is invariant under F, and we have

1
2
‖Ku− f‖2 =

1
2
‖F−1RFu− f‖2 =

1
2
‖RFu−F f‖2.

Thus, problem (9.63) is equivalent to a problem of the form (9.62) with b = F f .
This property was utilized to solve TV based image deblurring problems in [130]
and [74].

Problem (9.62) is easily addressed using the ADMM updates (9.48). The result-
ing updates are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk+1 ∈ argmin
u

1
2
‖RFu− b‖2+ 〈pk,−∇u〉+ δ

2
‖zk −∇u‖2

zk+1 = argmin
z

λ‖z‖1 + 〈pk,z〉+ δ
2
‖z−∇uk+1‖2(= Sλ/δ(∇uk+1 − δ−1 pk)

)
pk+1 = pk + δ (zk+1 −∇uk+1).

(9.64)
The u update in this formulation is simply a quadratic minimization with optimality
condition

(FT RT RF+ δ∇T ∇)uk+1 = (FT RT RF− δΔ)uk+1 =FT RT b+∇T pk + δ∇T zk,

where Δ represents the discrete two-dimensional Laplace operator. When circulant
boundary conditions are used, the Laplacian operator is diagonalized by the Fourier
transform, and can be written Δ = FT KF for some (diagonal) Fourier kernel K.
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The system to be inverted thus has the from (FT RT RF− δFT KF) =FT (RT R−
δK)F, and the solution is given by

uk+1 =FT (RT R− δK)−1F(FT RT b+∇T pk + δ∇T zk).

Thus every step in (9.64) has a closed form solution, and the runtime is dominated
by the two fast Fourier transforms needed to update u.

This straightforward application of ADMM was made possible by the elegant
combination of total variation with the Fourier transform. When unusual boundary
conditions are used or more complex formulations are needed, then the steps of
(9.64) may not have closed form solutions. In this case linearized ADMM might be
required to simplify the iterations. We see one such situation in the next example.

Parallel MRI Reconstruction

The data acquisition step in conventional MRI is a relatively low-speed sampling
procedure. Parallel magnetic resonance image (pMRI) is a technique that has been
widely adopted in clinical radiology to accelerate the sampling speed of conven-
tional MRI. By surrounding the scanned objects by an array containing multiple
sensing coils, pMRI is able to extract spatial information from many coils in paral-
lel, resulting in accelerated data acquisition. Because of discrepancies between coils
in the Fourier domain, some aliasing artifacts will arise in the reconstructed image.
The total variation regularization for pMRI image reconstruction has been consid-
ered in [40, 88, 87] and here we will consider wavelet frame regularization [47] as
an illustrative example.

The most common image-domain-based parallel imaging method, namely Sen-
sitivity encoding (SENSE), is based on the following acquisition model : for j =
1 · · · ,J

RFS ju = b j +η , (9.65)

where u is the unknown image, b j is the vector of measured partial Fourier coeffi-
cients at the jth receiver, R is a diagonal sub-sampling operator, F is the Fourier
transform, η is the Gaussian noise, and J is the total number of coils. The operator
S j is a diagonal matrix sensitivity mapping for the jth receiver, as is used to com-
pensate for the decay of signal intensity with distance from each pixel. In practice,
the sensitivity map S j can be estimated in advance (see, e.g., [86]).

Denote A j =RFS j. The sparse reconstruction model has the analysis formulation

u∗ = argmin
u

λ‖Wu‖1+
1
2

J

∑
j=1

‖A ju− b j‖2. (9.66)

Here W denotes a wavelet frame transform satisfying W TW = I and λ is a weight pa-
rameter. As the operator ∑J

j=1 AT
j A j is not diagonalizable by the Fourier transform,



9 Operator Splitting Methods in Compressive Sensing and Sparse Approximation 335

we apply the linearized ADMM algorithm, i.e., split Inexact Uzawa method, to solve
this problem. By introducing a positive definite matrix M, the numerical scheme is
as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u

1
2

J

∑
j=1

‖A ju− b j‖2 + 〈pk,−Wu〉+ δ
2
‖zk −Wu‖2+

1
2
‖u− uk‖M

zk+1 = argmin
z

λ‖z‖1 + 〈pk,z〉+ δ
2
‖z−Wuk+1‖2

pk+1 = pk + δ (zk+1 −Wuk+1).
(9.67)

For the u subproblem, we observe that W TW = I and choose M =α−∑J
j=1 AT

j A j.
We arrive at the closed form solution⎧⎪⎪⎪⎨

⎪⎪⎪⎩
uk+1 =

αuk −∑J
j=1 AT

j (A juk − b j)+WT (pk + δ zk)

δ +α
zk+1 = Sλ/δ(Wuk+1 − δ−1 pk)

pk+1 = pk + δ (zk+1 −Wuk+1).

(9.68)

Note that alternative splitting methods could also be obtained using different
auxiliary variables and constraints. For example, by substituting v j = u and Fj(v j) =
‖A jv j − b j‖2 for the data term and using the composite objective scheme (P1), we
obtain a method that allows a parallel processing on each coil data.

In our experiments, the diagonal down-sampling operator R is implemented with
a downsampling ratio r = 2,4 along one dimension, i.e. the full data is half/quarter-
sampled. The test data can be found in the online MATLAB toolbox PULSAR [86],
where the data is acquired using an eight-channel head array. We refer the reader
to [86] for more details of the machine configuration. Figure 9.2 shows the eight
coils of the brain data by applying a direct inverse Fourier transform. The sensi-
tivity map S j is estimated by the built-in function in PULSAR. The wavelet tight
frame transform operator W we adopt for this simulation is associated with the
piecewise linear spline tight frame system (see e.g. [47]) with decomposition level
simply set to 1. Results from several other popular for pMRI reconstruction, in-
cluding image-domain-based and k-space-based methods like SENSE, SPACE-RIP,
GRAPPA, are shown in Figure 9.3. The computation time is also listed in Table 9.1.
From Figure 9.3 one may observe that, compared with other pMRI image recon-
struction methods, SIU with wavelet frames can achieve the best image reconstruc-
tion quality for both tests in a reasonable computing time. We note that the scheme
can be easily parallelized since each subproblem is completely decoupled.

Sampling ratio SENSE SPACE-RIP GRAPPA SIU
r = 2 7.08 173.78 61.82 5.32
r = 4 3.91 98.51 58.34 12.75

Table 9.1 Computation time (listed in seconds) of different method for the eight-channel brain
data with subsampling ratio r = 2,4. The size of the image is 256×256.
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Fig. 9.2 Full data of the brain image: (a)–(h) eight-channel brain data.

Fig. 9.3 Reconstruction results from the eight-channel brain data with subsampling ratio r = 2 and
r = 4.
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Chapter 10
First Order Algorithms in Variational Image
Processing

M. Burger, A. Sawatzky, and G. Steidl

Abstract The success of non-smooth variational models in image processing is
heavily based on efficient algorithms. Taking into account the specific structure of
the models as sum of different convex terms, splitting algorithms are an appropriate
choice. Their strength consists in the splitting of the original problem into a seq-
uence of smaller proximal problems which are easy and fast to compute.

Operator splitting methods were first applied to linear, single-valued operators
for solving partial differential equations in the 60th of the last century. More than 20
years later these methods were generalized in the convex analysis community to the
solution of inclusion problems, where the linear operators have to be replaced by
nonlinear, set-valued, monotone operators. Again after more than 20 years splitting
methods became popular in image processing. In particular, operator splittings in
combination with (augmented) Lagrangian methods and primal-dual methods have
been applied very successfully.

In this chapter we give an overview of first order algorithms recently used to solve
convex non-smooth variational problems in image processing. We present computa-
tional studies providing a comparison of different methods and also illustrating their
success in applications.
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1 Introduction

Variational methods in imaging are nowadays developing towards a quite universal
and flexible tool, allowing for highly successful approaches on tasks like denoising,
deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow
estimation. The overall structure of such approaches is of the form

D(Ku)+αR(u)→ min
u
,

where the functional D is a data fidelity term also depending on some input data
f and measuring the deviation of Ku from such and R is a regularization func-
tional. Moreover K is a (often linear) forward operator modeling the dependence of
data on an underlying image, and α is a positive regularization parameter. While D
is often smooth and (strictly) convex, the current practice almost exclusively uses
nonsmooth regularization functionals. The majority of successful techniques is us-
ing nonsmooth and convex functionals like the total variation and generalizations
thereof, cf. [28, 31, 41], or �1-norms of coefficients arising from scalar products
with some frame system, cf. [78] and references therein.

The efficient solution of such variational problems in imaging demands for
appropriate algorithms. Taking into account the specific structure as a sum of very
different terms to be minimized, splitting algorithms are a quite canonical choice.
Consequently this field has revived the interest in techniques like operator splittings
or augmented Lagrangians. In this chapter we shall provide an overview of meth-
ods currently developed and recent results as well as some computational studies
providing a comparison of different methods and also illustrating their success in
applications.

We start with a very general viewpoint in the first sections, discussing basic not-
ations, properties of proximal maps, firmly non-expansive and averaging operators,
which form the basis of further convergence arguments. Then we proceed to a dis-
cussion of several state-of-the-art algorithms and their (theoretical) convergence
properties. In this chapter we focus on the so-called first order methods involving
only subgradients of the functional, but no higher order derivatives. After a section
discussing issues related to the use of analogous iterative schemes for ill-posed prob-
lems, we present some practical convergence studies in numerical examples related
to PET and spectral CT reconstruction.

2 Notation

In the following we summarize the notations and definitions that will be used
throughout the present chapter:

• x+ :=max{x,0}, x ∈R
d , whereby the maximum operation has to be interpreted

componentwise.
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• ιC is the indicator function of a set C ⊆ R
d given by

ιC(x) :=

{
0 if x ∈C,

+∞ otherwise.

• Γ0(R
d) is a set of proper, convex, and lower semi-continuous functions mapping

from R
d into the extended real numbers R∪{+∞}.

• dom f := {x ∈ R
d : f (x)<+∞} denotes the effective domain of f .

• ∂ f (x0) := {p ∈R
d : f (x)− f (x0)≥ 〈p,x− x0〉 ∀x ∈ R

d} denotes the subdiffer-
ential of f ∈ Γ0(R

d) at x0 ∈ dom f and is the set consisting of the subgradients
of f at x0. If f ∈ Γ0(R

d) is differentiable at x0, then ∂ f (x0) = {∇ f (x0)}. Con-
versely, if ∂ f (x0) contains only one element then f is differentiable at x0 and
this element is just the gradient of f at x0. By Fermat’s rule, x̂ is a global mini-
mizer of f ∈ Γ0(R

d) if and only if

0 ∈ ∂ f (x̂).

• f ∗(p) := supx∈Rd{〈p,x〉 − f (x)} is the (Fenchel) conjugate of f . For proper
f , we have f ∗ = f if and only if f (x) = 1

2‖x‖2
2. If f ∈ Γ0(R

d) is positively
homogeneous, i.e., f (αx) = α f (x) for all α > 0, then

f ∗(x∗) = ιCf (x
∗), Cf := {x∗ ∈ R

d : 〈x∗,x〉 ≤ f (x) ∀x ∈ R
d}.

In particular, the conjugate functions of �p-norms, p ∈ [1,+∞], are given by

‖ · ‖∗p(x∗) = ιBq(1)(x
∗) (10.1)

where 1
p +

1
q = 1 and as usual p = 1 corresponds to q = ∞ and conversely, and

Bq(λ ) := {x ∈ R
d : ‖x‖q ≤ λ} denotes the ball of radius λ > 0 with respect to

the �q-norm.

3 Proximal Operator

The algorithms proposed in this chapter to solve various problems in digital image
analysis and restoration have in common that they basically reduce to the evaluation
of a series of proximal problems. Therefore we start with these kind of problems.
For a comprehensive overview on proximal algorithms we refer to [139].

3.1 Definition and Basic Properties

For f ∈ Γ0(R
d) and λ > 0, the proximal operator proxλ f : Rd → R

d of λ f is
defined by

proxλ f (x) := argmin
y∈Rd

{
1

2λ
‖x− y‖2

2+ f (y)

}
. (10.2)
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It compromises between minimizing f and being near to x, where λ is the trade-off
parameter between these terms. The Moreau envelope or Moreau-Yoshida regular-
ization λ f : Rd → R is given by

λ f (x) := min
y∈Rd

{
1

2λ
‖x− y‖2

2+ f (y)

}
.

A straightforward calculation shows that λ f = ( f ∗+ λ
2 ‖ · ‖2

2)
∗. The following theo-

rem ensures that the minimizer in (10.2) exists, is unique, and can be characterized
by a variational inequality. The Moreau envelope can be considered as a smooth
approximation of f . For the proof we refer to [8].

Theorem 1. Let f ∈ Γ0(R
d). Then,

i) For any x ∈ R
d, there exists a unique minimizer x̂ = proxλ f (x) of (10.2).

ii) The variational inequality

1
λ
〈x− x̂,y− x̂〉+ f (x̂)− f (y)≤ 0 ∀y ∈ R

d . (10.3)

is necessary and sufficient for x̂ to be the minimizer of (10.2).
iii) x̂ is a minimizer of f if and only if it is a fixed point of proxλ f , i.e.,

x̂ = proxλ f (x̂).

iv) The Moreau envelope λ f is continuously differentiable with gradient

∇
(λ f

)
(x) =

1
λ
(
x− proxλ f (x)

)
. (10.4)

v) The set of minimizers of f and λ f are the same.

Rewriting iv) as proxλ f (x) = x−λ∇
(λ f

)
(x) we can interpret proxλ f (x) as a gra-

dient descent step with step size λ for minimizing λ f .

Example 1. Consider the univariate function f (y) := |y| and

proxλ f (x) = argmin
y∈R

{
1

2λ
(x− y)2 + |y|

}
.

Then, a straightforward computation yields that proxλ f is the soft-shrinkage func-
tion Sλ with threshold λ (see Figure 10.1) defined by

Sλ (x) := (x−λ )+− (−x−λ )+ =

⎧⎨
⎩

x−λ for x > λ ,
0 for x ∈ [−λ ,λ ],

x+λ for x <−λ .
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Setting x̂ := Sλ (x) = proxλ f (x), we get

λ f (x) = |x̂|+ 1
2λ

(x− x̂)2 =

⎧⎪⎨
⎪⎩

x− λ
2 for x > λ ,

1
2λ x2 for x ∈ [−λ ,λ ],

−x− λ
2 for x <−λ .

This function λ f is known as Huber function (see Figure 10.1).

−λ λ

Sλ

λ
2

−λ λ1
2λ

x2

Fig. 10.1: Left: Soft-shrinkage function proxλ f = Sλ for f (y) = |y|. Right: Moreau envelope λ f .

Theorem 2 (Moreau Decomposition). For f ∈ Γ0(R
d) the following decomposi-

tion holds:

prox f (x)+ prox f ∗(x) = x,

1 f (x)+ 1f ∗(x) =
1
2
‖x‖2

2.

For a proof we refer to [148, Theorem 31.5].

Remark 1 (Proximal Operator and Resolvent). The subdifferential operator is a set-
valued function ∂ f : Rd → 2R

d
. For f ∈ Γ0(R

d), we have by Fermat’s rule and
subdifferential calculus that x̂ = proxλ f (x) if and only if

0 ∈ x̂− x+λ∂ f (x̂),

x ∈ (I +λ∂ f )(x̂),

which implies by the uniqueness of the proximum that x̂ = (I +λ∂ f )−1(x). In par-
ticular, Jλ∂ f := (I+λ∂ f )−1 is a single-valued operator which is called the resolvent
of the set-valued operator λ∂ f . In summary, the proximal operator of λ f coincides
with the resolvent of λ∂ f , i.e.,

proxλ f = Jλ∂ f .

The proximal operator (10.2) and the proximal algorithms described in Section 5
can be generalized by introducing a symmetric, positive definite matrix Q ∈R

d,d as
follows:
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proxQ,λ f := argmin
y∈Rd

{
1

2λ
‖x− y‖2

Q+ f (y)

}
, (10.5)

where ‖x‖2
Q := xTQx, see, e.g., [52, 57, 190].

3.2 Special Proximal Operators

Algorithms involving the solution of proximal problems are only efficient if the cor-
responding proximal operators can be evaluated in an efficient way. In the following
we collect frequently appearing proximal mappings in image processing. For epi-
graphical projections see [12, 50, 94].

3.2.1 Orthogonal Projections

The proximal operator generalizes the orthogonal projection operator. The orthogo-
nal projection of x ∈ R

d onto a nonempty, closed, convex set C is given by

ΠC(x) := argmin
y∈C

‖x− y‖2

and can be rewritten for any λ > 0 as

ΠC(x) = argmin
y∈Rd

{
1

2λ
‖x− y‖2

2+ ιC(y)
}
= proxλ ιC(x).

Some special sets C are considered next.

Affine set

C := {y ∈ R
d : Ay = b} with A ∈R

m,d , b ∈ R
m.

In case of ‖x−y‖2 → miny subject to Ay = b we substitute z := x−y which leads to

‖z‖2 → min
z

subject to Az = r := Ax− b.

This can be directly solved, see [20], and leads after back-substitution to

ΠC(x) = x−A†(Ax− b),

where A† denotes the Moore-Penrose inverse of A.
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Halfspace

C := {y ∈ R
d : aTy ≤ b} with a ∈ R

d , b ∈R.
A straightforward computation gives

ΠC(x) = x− (aTx− b)+
‖a‖2

2

a.

Box and Nonnegative Orthant

C := {y ∈ R
d : l ≤ y ≤ u} with l,u ∈R

d .
The proximal operator can be applied componentwise and gives

(ΠC(x))k =

⎧⎨
⎩

lk if xk < lk,
xk if lk ≤ xk ≤ uk,
uk if xk > uk.

For l = 0 and u=+∞ we get the orthogonal projection onto the non-negative orthant

ΠC(x) = x+.

Probability Simplex

C := {y ∈ R
d : 1Ty = ∑d

k=1 yk = 1, y ≥ 0}.
Here we have

ΠC(x) = (x− μ1)+,

where μ ∈ R has to be determined such that h(μ) := 1T(x − μ1)+ = 1. Now μ
can be found, e.g., by bisection with starting interval [maxk xk − 1,maxk xk] or by
a method similar to those described in subSection 3.2.2 for projections onto the
�1-ball. Note that h is a linear spline function with knots x1, . . . ,xd so that μ is
completely determined if we know the neighbor values xk of μ .

3.2.2 Vector Norms

We consider the proximal operator of f = ‖ · ‖p, p ∈ [1,+∞]. By the Moreau de-
composition in Theorem 2, regarding (λ f )∗ = λ f ∗(·/λ ) and by (10.1) we obtain

proxλ f (x) = x− proxλ f ∗(·/λ )(x)

= x−ΠBq(λ )(x),

where 1
p +

1
q = 1. Thus the proximal operator can be simply computed by the pro-

jections onto the �q-ball. In particular, it follows for p = 1,2,∞:
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p = 1, q = ∞:

For k = 1, . . . ,d,

(
ΠB∞(λ )(x)

)
k =

{
xk if |xk| ≤ λ ,

λ sgn(xk) if |xk|> λ , and proxλ‖·‖1
(x) = Sλ (x),

where Sλ (x), x ∈ R
d , denotes the componentwise soft-shrinkage with threshold λ .

p = q = 2 :

ΠB2,λ (x)=

{
x if ‖x‖2 ≤ λ ,

λ x
‖x‖2

if ‖x‖2 > λ , and proxλ‖·‖2
(x)=

{
0 if ‖x‖2 ≤ λ ,

x(1− λ
‖x‖2

) if ‖x‖2 > λ .

p = ∞, q = 1 :

ΠB1,λ (x) =

{
x if ‖x‖1 ≤ λ ,

Sμ(x) if ‖x‖1 > λ ,

and

proxλ‖·‖∞(x) =

{
0 if ‖x‖1 ≤ λ ,

x− Sμ(x) if ‖x‖1 > λ ,

with μ :=
|xπ(1) |+...+|xπ(m)|−λ

m , where |xπ(1)| ≥ . . . ≥ |xπ(d)| ≥ 0 are the sorted abso-
lute values of the components of x and m ≤ d is the largest index such that |xπ(m)|
is positive and

|xπ(1)|+...+|xπ(m)|−λ
m ≤ |xπ(m)|, see also [62, 67]. Another method fol-

lows similar lines as the projection onto the probability simplex in the previous
subsection.

Further, grouped/mixed �2-�p-norms are defined for x = (x1, . . . ,xn)
T ∈ R

dn with
x j := (x jk)

d
k=1 ∈ R

d , j = 1, . . . ,n by

‖x‖2,p := ‖(‖x j‖2)
n
j=1‖p.

For the �2-�1-norm we see that

proxλ‖·‖2,1
(x) = argmin

y∈Rdn

{
1

2λ
‖x− y‖2

2+ ‖y‖2,1

}
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can be computed separately for each j which results by the above considerations for
the �2-norm for each j in

proxλ‖·‖2
(x j) =

{
0 if ‖x j‖2 ≤ λ ,

x j(1− λ
‖x j‖2

) if ‖x j‖2 > λ .

The procedure for evaluating proxλ‖·‖2,1
is sometimes called coupled or grouped

shrinkage.

Finally, we provide the following rule from [56, Prop. 3.6].

Lemma 1. Let f = g+ μ | · |, where g ∈ Γ0(R) is differentiable at 0 with g′(0) = 0.
Then proxλ f = proxλg ◦ Sλ μ .

Example 2. Consider the elastic net regularizer f (x) := 1
2‖x‖2

2 + μ‖x‖1, see [192].
Setting the gradient in the proximal operator of g := 1

2‖ · ‖2
2 to zero we obtain

proxλg(x) =
1

1+λ
x.

The whole proximal operator of f can be then evaluated componentwise and we see
by Lemma 1 that

proxλ f (x) = proxλg

(
Sλ μ(x)

)
=

1
1+λ

Sμλ (x).

3.2.3 Matrix Norms

Next we deal with proximation problems involving matrix norms. For X ∈R
m,n, we

are looking for

proxλ‖·‖(X) = argmin
Y∈Rm,n

{
1

2λ
‖X −Y‖2

F + ‖Y‖
}
, (10.6)

where ‖ · ‖F is the Frobenius norm and ‖ · ‖ is any unitarily invariant matrix norm,
i.e., ‖X‖ = ‖UXV T‖ for all unitary matrices U ∈ R

m,m,V ∈ R
n,n. Von Neumann

(1937) [176] has characterized the unitarily invariant matrix norms as those matrix
norms which can be written in the form

‖X‖= g(σ(X)),

where σ(X) is the vector of singular values of X and g is a symmetric gauge func-
tion, see [182]. Recall that g : Rd → R+ is a symmetric gauge function if it is a
positively homogeneous convex function which vanishes at the origin and fulfills

g(x) = g(ε1xk1 , . . . ,εkxkd )
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for all εk ∈ {−1,1} and all permutations k1, . . . ,kd of indices. An analogous result
was given by Davis [63] for symmetric matrices, where V T is replaced by U T and
the singular values by the eigenvalues.
We are interested in the Schatten-p norms for p = 1,2,∞ which are defined for
X ∈ R

m,n and t := min{m,n} by

‖X‖∗ :=
t

∑
i=1

σi(X) = g∗(σ(X)) = ‖σ(X)‖1, (Nuclear norm)

‖X‖F := (
m

∑
i=1

n

∑
j=1

x2
i j)

1
2 = (

t

∑
i=1

σi(X)2)
1
2 = gF (σ(X)) = ‖σ(X)‖2, (Frobenius norm)

‖X‖2 := max
i=1,...,t

σi(X) = g2(σ(X)) = ‖σ(X)‖∞, (Spectral norm).

The following theorem shows that the solution of (10.6) reduces to a proximal prob-
lem for the vector norm of the singular values of X . Another proof for the special
case of the nuclear norm can be found in [37].

Theorem 3. Let X = UΣXV T be the singular value decomposition of X and ‖ · ‖ a
unitarily invariant matrix norm. Then proxλ‖·‖(X) in (10.6) is given by X̂ =UΣX̂V T,

where the singular values σ(X̂) in ΣX̂ are determined by

σ(X̂) := proxλg(σ(X)) = argmin
σ∈Rt

{1
2
‖σ(X)−σ‖2

2+λg(σ)} (10.7)

with the symmetric gauge function g corresponding to ‖ · ‖.

Proof. By Fermat’s rule we know that the solution X̂ of (10.6) is determined by

0 ∈ X̂ −X +λ∂‖X̂‖ (10.8)

and from [182] that

∂‖X‖= conv{UDV T : X =UΣXV T, D = diag(d), d ∈ ∂g(σ(X))}. (10.9)

We now construct the unique solution X̂ of (10.8). Let σ̂ be the unique solution of
(10.7). By Fermat’s rule σ̂ satisfies 0 ∈ σ̂ −σ(X)+λ∂g(σ̂) and consequently there
exists d ∈ ∂g(σ̂ ) such that

0 =U
(
diag(σ̂)−ΣX +λdiag(d)

)
V T

F ⇔ 0 =U diag(σ̂)V T −X +λU diag(d)V T.

By (10.9) we see that X̂ :=U diag(σ̂)V T is a solution of (10.8). This completes the
proof. ��
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For the special matrix norms considered above, we obtain by the previous subsection

‖ · ‖∗ : σ(X̂) := σ(X)−ΠB∞,λ (σ(X)),

‖ · ‖F : σ(X̂) := σ(X)−ΠB2,λ (σ(X)),

‖ · ‖2 : σ(X̂) := σ(X)−ΠB1,λ (σ(X)).

4 Fixed Point Algorithms and Averaged Operators

An operator T : Rd →R
d is contractive if it is Lipschitz continuous with Lipschitz

constant L < 1, i.e., there exists a norm ‖ · ‖ on R
d such that

‖T x−Ty‖ ≤ L‖x− y‖ ∀x,y ∈ R
d .

In case L = 1, the operator is called nonexpansive. A function T : Rd ⊃ Ω → R
d

is firmly nonexpansive if it fulfills for all x,y ∈ R
d one of the following equivalent

conditions [12]:

‖T x−Ty‖2
2 ≤ 〈x− y,T x−Ty〉,

‖T x−Ty‖2
2 ≤ ‖x− y‖2

2−‖(I−T)x− (I−T )y‖2
2. (10.10)

In particular we see that a firmly nonexpansive function is nonexpansive.

Lemma 2. For f ∈Γ0(R
d), the proximal operator proxλ f is firmly nonexpansive. In

particular the orthogonal projection onto convex sets is firmly nonexpansive.

Proof. By Theorem 1ii) we have that

1
λ
〈x− proxλ f (x),z− proxλ f (x)〉+ f (proxλ f (x))− f (z)≤ 0 ∀z ∈R

d .

With z := proxλ f (y) this gives

〈x− proxλ f (x),proxλ f (y)− proxλ f (x)〉+λ f (proxλ f (x))−λ f (proxλ f (y))≤ 0

and similarly

〈y− proxλ f (y),proxλ f (x)− proxλ f (y)〉+λ f (proxλ f (y))−λ f (proxλ f (x)) ≤ 0.

Adding these inequalities we obtain

〈x−proxλ f (x)+proxλ f (y)−y,proxλ f (y)−proxλ f (x)〉 ≤ 0,

‖proxλ f (y)−proxλ f (x)‖2
2 ≤ 〈y−x,proxλ f (y)−proxλ f (x)〉.

��
The Banach fixed point theorem guarantees that a contraction has a unique fixed
point and that the Picard sequence

x(r+1) = T x(r) (10.11)
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converges to this fixed point for every initial element x(0). However, in many applica-
tions the contraction property is too restrictive in the sense that we often do not have
a unique fixed point. Indeed, it is quite natural in many cases that the reached fixed
point depends on the starting value x(0). Note that if T is continuous and (T rx(0))r∈N
is convergent, then it converges to a fixed point of T . In the following, we denote by
Fix(T ) the set of fixed points of T . Unfortunately, we do not have convergence of
(T rx(0))r∈N just for nonexpansive operators as the following example shows.

Example 3. In R
2 we consider the reflection operator

R :=

(
1 0
0 −1

)
.

Obviously, R is nonexpansive and we only have convergence of (Rrx(0))r∈N if x(0) ∈
Fix(R) = span{(1,0)T}. A possibility to obtain a ‘better’ operator is to average R,
i.e., to build

T := αI +(1−α)R =

(
1 0
0 2α − 1

)
, α ∈ (0,1).

By

T x = x ⇔ αx+(1−α)R(x) = x ⇔ (1−α)R(x) = (1−α)x, (10.12)

we see that R and T have the same fixed points. Moreover, since 2α − 1 ∈ (−1,1),

the sequence (T rx(0))r∈N converges to (x(0)1 ,0)T for every x(0) = (x(0)1 ,x(0)2 )T ∈ R
2.

An operator T : Rd →R
d is called averaged if there exists a nonexpansive mapping

R and a constant α ∈ (0,1) such that

T = αI +(1−α)R.

Following (10.12) we see that

Fix(R) = Fix(T ).

Historically, the concept of averaged mappings can be traced back to [112, 120,
156], where the name ‘averaged’ was not used yet. Results on averaged operators
can also be found, e.g., in [12, 36, 55].

Lemma 3 (Averaged, (Firmly) Nonexpansive and Contractive Operators). space

i) Every averaged operator is nonexpansive.
ii) A contractive operator T : Rd → R

d with Lipschitz constant L < 1 is averaged
with respect to all parameters α ∈ (0,(1−L)/2].

iii) An operator is firmly nonexpansive if and only if it is averaged with α = 1
2 .

Proof. i) Let T = αI +(1−α)R be averaged. Then the first assertion follows by

‖T (x)−T (y)‖2 ≤ α‖x− y‖2+(1−α)‖R(x)−R(y)‖2 ≤ ‖x− y‖2.
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ii) We define the operator R := 1
1−α (T −αI). It holds for all x,y ∈ R

d that

‖Rx−Ry‖2 =
1

1−α
‖(T −αI)x− (T −αI)y‖2,

≤ 1
1−α

‖T x−Ty‖2+
α

1−α
‖x− y‖2,

≤ L+α
1−α

‖x− y‖2,

so R is nonexpansive if α ≤ (1−L)/2.
iii) With R := 2T − I = T − (I−T ) we obtain the following equalities

‖Rx−Ry‖2
2 = ‖Tx−Ty− ((I−T )x− (I−T)y)‖2

2

= −‖x− y‖2
2+ 2‖Tx−Ty‖2

2+ 2‖(I−T)x− (I−T )y‖2
2

and therefore after reordering

‖x− y‖2
2−‖Tx−Ty‖2

2−‖(I−T)x− (I−T )y‖2
2

= ‖Tx−Ty‖2
2+ ‖(I−T)x− (I−T )y‖2

2 −‖Rx−Ry‖2
2

=
1
2
(‖x− y‖2

2+ ‖Rx−Ry‖2
2)−‖Rx−Ry‖2

2

=
1
2
(‖x− y‖2

2−‖Rx−Ry‖2
2).

If R is nonexpansive, then the last expression is ≥ 0 and consequently (10.10) holds
true so that T is firmly nonexpansive. Conversely, if T fulfills (10.10), then

1
2

(‖x− y‖2
2−‖Rx−Ry‖2

2

)≥ 0

so that R is nonexpansive. This completes the proof. ��
By the following lemma averaged operators are closed under composition.

Lemma 4 (Composition of Averaged Operators). space

i) Suppose that T : Rd →R
d is averaged with respect to α ∈ (0,1). Then, it is also

averaged with respect to any other parameter α̃ ∈ (0,α].
ii) Let T1,T2 : Rd → R

d be averaged operators. Then, T2 ◦T1 is also averaged.

Proof. i) By assumption, T = αI +(1−α)R with R nonexpansive. We have

T = α̃I +
(
(α − α̃)I +(1−α)R

)
= α̃I +(1− α̃)

(
α − α̃
1− α̃

I+
1−α
1− α̃

R

)
︸ ︷︷ ︸

R̃
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and for all x,y ∈ R
d it holds that

‖R̃(x)− R̃(y)‖2 ≤ α − α̃
1− α̃

‖x− y‖2+
1−α
1− α̃

‖R(x)−R(y)‖2 ≤ ‖x− y‖2.

So, R̃ is nonexpansive.
ii) By assumption there exist nonexpansive operators R1,R2 and α1,α2 ∈ (0,1) such
that

T2 (T1(x)) = α2T1(x)+ (1−α2)R2 (T1(x))

= α2 (α1x+(1−α1)R1 (x))+ (1−α2)R2 (T1 (x))

= α2α1︸ ︷︷ ︸
:=α

x+(α2 −α2α1︸ ︷︷ ︸
=α

)R1 (x)+ (1−α2)R2 (T1 (x))

= αx+(1−α)

(
α2 −α
1−α

R1 (x)+
1−α2

1−α
R2 (T1 (x))

)
︸ ︷︷ ︸

=:R

The concatenation of two nonexpansive operators is nonexpansive. Finally, the con-
vex combination of two nonexpansive operators is nonexpansive so that R is indeed
nonexpansive. ��
An operator T : Rd → R

d is called asymptotically regular if it holds for all x ∈ R
d

that (
T r+1x−Trx

)→ 0 for r →+∞.

Note that this property does not imply convergence, even boundedness cannot be
guaranteed. As an example consider the partial sums of a harmonic sequence.

Theorem 4 (Asymptotic Regularity of Averaged Operators).
Let T :Rd →R

d be an averaged operator with respect to the nonexpansive mapping
R and the parameter α ∈ (0,1). Assume that Fix(T ) �= /0. Then, T is asymptotically
regular.

Proof. Let x̂ ∈ Fix(T ) and x(r) = T rx(0) for some starting element x(0). Since T is
nonexpansive, i.e., ‖x(r+1)− x̂‖2 ≤ ‖x(r)− x̂‖2 we obtain

lim
r→∞

‖x(r)− x̂‖2 = d ≥ 0. (10.13)

Using Fix(T ) = Fix(R) it follows

lim
r→∞

sup‖R(x(r))− x̂‖2 = lim
r→∞

sup‖R(x(r))−R(x̂)‖2 ≤ lim
r→∞

‖x(r)− x̂‖2 = d. (10.14)

Assume that ‖x(r+1) − x(r)‖2 �→ 0 for r → ∞. Then, there exists a subsequence
(x(rl))l∈N such that

‖x(rl+1)− x(rl)‖2 ≥ ε
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for some ε > 0. By (10.13) the sequence (x(rl))l∈N is bounded. Hence there exists a

convergent subsequence (x
(rl j

)
) such that

lim
j→∞

x
(rl j

)
= a,

where a∈ S(x̂,d) := {x ∈R
d : ‖x− x̂‖2 = d} by (10.13). On the other hand, we have

by the continuity of R and (10.14) that

lim
j→∞

R(x
(rl j

)
) = b, b ∈ B(x̂,d).

Since ε ≤ ‖x
(rl j

+1)− x
(rl j

)‖2 = ‖(α − 1)x
(rl j

)
+ (1−α)R(x

(rl j
)
)‖2 we conclude by

taking the limit j → ∞ that a �= b. By the continuity of T and (10.13) we obtain

lim
j→∞

T (x
(rl j

)
) = c, c ∈ S(x̂,d).

However, by the strict convexity of ‖ · ‖2
2 this yields the contradiction

‖c− x̂‖2
2 = lim

j→∞
‖T (x

(rl j
)
)− x̂‖2

2 = lim
j→∞

‖α(x
(rl j

)− x̂)+ (1−α)(R(x
(rl j

)
)− x̂)‖2

2

= ‖α(a− x̂)+ (1−α)(b− x̂)‖2
2 < α‖a− x̂‖2

2 +(1−α)‖b− x̂‖2
2

≤ d2.

��
The following theorem was first proved for operators on Hilbert spaces by Opial
[133, Theorem 1] based on the results in [29], where convergence must be replaced
by weak convergence in general Hilbert spaces. A shorter proof can be found in the
appendix of [61]. For finite dimensional spaces the proof simplifies as follows.

Theorem 5 (Opial’s Convergence Theorem).
Let T : Rd →R

d fulfill the following conditions: Fix(T ) �= /0, T is nonexpansive and
asymptotically regular. Then, for every x(0) ∈ R

d, the sequence of Picard iterates
(x(r))r∈N generated by x(r+1) = T x(r) converges to an element of Fix(T ).

Proof. Since T is nonexpansive, we have for any x̂ ∈ Fix(T ) and any x(0) ∈R
d that

‖T r+1x(0)− x̂‖2 ≤ ‖T rx(0)− x̂‖2.

Hence (T rx(0))r∈N is bounded and there exists a subsequence (T rl x(0))l∈N
= (x(rl ))l∈N which converges to some x̃. If we can show that x̃ ∈ Fix(T ) we are
done because in this case

‖T rx(0)− x̃‖2 ≤ ‖T rl x(0)− x̃‖2, r ≥ rl

and thus the whole sequence converges to x̃.
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Since T is asymptotically regular it follows that

(T − I)(T rl x(0)) = T rl+1x(0)−Trl x(0) → 0

and since (T rl x(0))l∈N converges to x̃ and T is continuous we get that (T − I)(x̃) = 0,
i.e., x̃ ∈ Fix(T ). ��
Combining the above Theorems 4 and 5 we obtain the following main result.

Theorem 6 (Convergence of Averaged Operator Iterations). Let T : Rd →R
d be

an averaged operator such that Fix(T ) �= /0. Then, for every x(0) ∈R
d, the sequence

(T rx(0))r∈N converges to a fixed point of T .

5 Proximal Algorithms

5.1 Proximal Point Algorithm

By Theorem 1 iii) the minimizer of a function f ∈ Γ0(R
d), which we suppose to

exist, is characterized by the fixed point equation

x̂ = proxλ f (x̂).

The corresponding Picard iteration gives rise to the following proximal point al-
gorithm which dates back to [121, 147]. Since proxλ f is firmly nonexpansive by
Lemma 2 and thus averaged, the algorithm converges by Theorem 6 for any initial
value x(0) ∈ R

d to a minimizer of f if there exits one.

Algorithm 1 Proximal Point Algorithm (PPA)

Initialization: x(0) ∈ R
d , λ > 0

Iterations: For r = 0,1, . . .

x(r+1) = proxλ f (x
(r)) = argminx∈Rd

{
1

2λ ‖x(r) − x‖2
2 + f (x)

}

The PPA can be generalized for the sum ∑n
i=1 fi of functions fi ∈Γ0(R

d), i= 1, . . . ,n.
Popular generalizations are the so-called cyclic PPA [18] and the parallel PPA [53].

5.2 Proximal Gradient Algorithm

We are interested in minimizing functions of the form f = g+h, where g : Rd → R

is convex, differentiable with Lipschitz continuous gradient and Lipschitz constant
L, i.e.,

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 ∀x,y ∈R
d , (10.15)
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and h ∈ Γ0(R
d). Note that the Lipschitz condition on ∇g implies

g(x)≤ g(y)+ 〈∇g(y),x− y〉+ L
2
‖x− y‖2

2 ∀x,y ∈ R
d , (10.16)

see, e.g., [134]. We want to solve

argmin
x∈Rd

{g(x)+ h(x)}. (10.17)

By Fermat’s rule and subdifferential calculus we know that x̂ is a minimizer of
(10.17) if and only if

0 ∈ ∇g(x̂)+ ∂h(x̂),

x̂−η∇g(x̂) ∈ x̂+η∂h(x̂),

x̂ = (I +η∂h)−1 (x̂−η∇g(x̂)) = proxηh (x̂−η∇g(x̂)) . (10.18)

This is a fixed point equation for the minimizer x̂ of f . The corresponding Picard
iteration is known as proximal gradient algorithm or as proximal forward-backward
splitting.

Algorithm 2 Proximal Gradient Algorithm (FBS)

Initialization: x(0) ∈ R
d , η ∈ (0,2/L)

Iterations: For r = 0,1, . . .

x(r+1) = proxηh

(
x(r) −η∇g(x(r))

)

In the special case when h := ιC is the indicator function of a nonempty, closed,
convex set C ⊂ R

d , the above algorithm for finding

argmin
x∈C

g(x)

becomes the gradient descent re-projection algorithm, also known as “gradient pro-
jection algorithm”.

Algorithm 3 Gradient Descent Re-Projection Algorithm

Initialization: x(0) ∈ R
d , η ∈ (0,2/L)

Iterations: For r = 0,1, . . .

x(r+1) = ΠC

(
x(r) −η∇g(x(r))

)

It is also possible to use flexible variables ηr ∈ (0, 2
L ) in the proximal gradient algo-

rithm. For further details, modifications, and extensions see also [72, Chapter 12].
The convergence of the algorithm follows by the next theorem.
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Theorem 7 (Convergence of Proximal Gradient Algorithm). Let g : Rd → R be
a convex, differentiable function on R

d with Lipschitz continuous gradient and Lip-
schitz constant L and h ∈ Γ0(R

d). Suppose that a solution of (10.17) exists. Then,
for every initial point x(0) and η ∈ (0, 2

L ), the sequence {x(r)}r generated by the
proximal gradient algorithm converges to a solution of (10.17).

Proof. We show that proxηh(I−η∇g) is averaged. Then we are done by Theorem 6.
By Lemma 2 we know that proxηh is firmly nonexpansive. By the Baillon-Haddad

Theorem [12, Corollary 16.1] the function 1
L∇g is also firmly nonexpansive, i.e., it

is averaged with parameter 1
2 . This means that there exists a nonexpansive mapping

R such that 1
L ∇g = 1

2 (I+R) which implies

I−η∇g = I− ηL
2 (I+R) = (1− ηL

2 )I+ ηL
2 (−R).

Thus, for η ∈ (0, 2
L ), the operator I −η∇g is averaged. Since the concatenation of

two averaged operators is averaged again we obtain the assertion. ��
Under the above conditions a linear convergence rate can be achieved in the sense
that

f (x(r))− f (x̂) =O (1/r) ,

see, e.g., [49, 125]1.

Example 4. For solving

argmin
x∈Rd

{ 1
2
‖Kx− b‖2

2︸ ︷︷ ︸
g

+λ‖x‖1︸ ︷︷ ︸
h

}

we compute ∇g(x) = KT(Kx−b) and use that the proximal operator of the �1-norm
is just the componentwise soft-shrinkage. Then the proximal gradient algorithm
becomes

x(r+1) = proxλη‖·‖1

(
x(r)−ηKT(Kx(r)− b)

)
= Sηλ

(
x(r)−ηKT(Kx(r)− b)

)
.

This algorithm is known as iterative soft-thresholding algorithm (ISTA) and was de-
veloped and analyzed through various techniques by many researchers. For a general
Hilbert space approach of ISTA, see, e.g., [61].

The FBS algorithm has been recently extended to the case of non-convex functions
in [6, 7, 22, 52, 132]. The convergence analysis mainly rely on the assumption that
the objective function f = g+h satisfies the Kurdyka-Lojasiewicz inequality which
is indeed fulfilled for a wide class of functions as log−exp, semi-algebraic, and
subanalytic functions which are of interest in image processing.

1 There exist different notations for the convergence rate of algorithms in the literature. Sometimes
the notation of this chapter is also called “superlinear convergence” while ‖x̂− x(r)‖ ≤Cδ r , δ < 1
is used for the linear convergence. But if C =C(r) → 0 as r →+∞ in the last formula, this could
be also meant by “superlinear convergence”.
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5.3 Accelerated Algorithms

For large scale problems as those arising in image processing a major concern is
to find efficient algorithms solving the problem in a reasonable time. While each
FBS step has low computational complexity, it may suffer from slow linear conver-
gence [49]. Using a simple extrapolation idea with appropriate parameters τr, the
convergence can often be accelerated:

y(r) = x(r) + τr

(
x(r)− x(r−1)

)
,

x(r+1) = proxηh

(
y(r)−η∇g(y(r))

)
. (10.19)

By the next Theorem 8 we will see that τr =
r−1
r+2 appears to be a good choice.

Clearly, we can vary η in each step again. Choosing θr such that τr =
θr(1−θr−1)

θr−1
,

e.g., θr =
2

r+2 for the above choice of τr, the algorithm can be rewritten as follows:

Algorithm 4 Fast Proximal Gradient Algorithm

Initialization: x(0) = z(0) ∈R
d , η ∈ (0,1/L), θr =

2
r+2

Iterations: For r = 0,1, . . .
y(r) = (1−θr)x(r) +θrz(r)

x(r+1) = proxηh

(
y(r)−η∇g(y(r))

)
z(r+1) = x(r) + 1

θr

(
x(r+1) − x(r)

)

By the following standard theorem the extrapolation modification of the FBS algo-
rithm ensures a quadratic convergence rate see also [125, 171].

Theorem 8. Let f = g+ h, where g : Rd → R is a convex, Lipschitz differentiable
function with Lipschitz constant L and h ∈ Γ0(R

d). Assume that f has a minimizer
x̂. Then the fast proximal gradient algorithm fulfills

f (x(r))− f (x̂) =O (
1/r2) .

Proof. First we consider the progress in one step of the algorithm. By the Lipschitz
differentiability of g in (10.16) and since η < 1

L we know that

g(x(r+1))≤ g(y(r))+ 〈∇g(y(r)),x(r+1)− y(r)〉+ 1
2η

‖x(r+1)− y(r)‖2
2 (10.20)

and by the variational characterization of the proximal operator in Theorem 1ii) for
all u ∈R

d that
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h(x(r+1))≤ h(u)+
1
η
〈y(r)−η∇g(y(r))− x(r+1),x(r+1)− u〉

≤ h(u)−〈∇g(y(r)),x(r+1)− u〉+ 1
η
〈y(r)− x(r+1),x(r+1)− u〉. (10.21)

Adding the main inequalities (10.20) and (10.21) and using the convexity of g yields

f (x(r+1))≤ f (u)−g(u)+ g(y(r))+ 〈∇g(y(r)),u− y(r)〉︸ ︷︷ ︸
≤0

+
1

2η
‖x(r+1)− y(r)‖2

2 +
1
η
〈y(r)− x(r+1),x(r+1)− u〉

≤ f (u)+
1

2η
‖x(r+1)− y(r)‖2

2 +
1
η
〈y(r)− x(r+1),x(r+1)− u〉.

Combining these inequalities for u := x̂ and u := x(r) with θr ∈ [0,1] gives

θr

(
f (x(r+1))− f (x̂)

)
+(1−θr)

(
f (x(r+1))− f (x(r))

)
= f (x(r+1))− f (x̂)+ (1−θr)

(
f (x̂)− f (x(r))

)
≤ 1

2η
‖x(r+1)− y(r)‖2

2 +
1
η
〈y(r)− x(r+1),x(r+1)−θrx̂− (1−θr)x

(r)〉

=
1

2η

(
‖y(r)−θrx̂− (1−θr)x

(r)‖2
2 −‖x(r+1)−θrx̂− (1−θr)x

(r)‖2
2

)

=
θ 2

r

2η

(
‖z(r)− x̂‖2

2 −‖z(r+1)− x̂‖2
2

)
.

Thus, we obtain for a single step

η
θ 2

r

(
f (x(r+1))− f (x̂)

)
+

1
2
‖z(r+1)− x̂‖2

2 ≤ η(1−θr)

θ 2
r

(
f (x(r))− f (x̂)

)
+

1
2
‖z(r)− x̂‖2

2.

Using the relation recursively on the right-hand side and regarding that (1−θr)
θ2

r
≤ 1

θ2
r−1

we obtain

η
θ 2

r

(
f (x(r+1))− f (x̂)

)
≤ η(1−θ0)

θ 2
0

(
f (x(0))− f (x̂)

)
+

1
2
‖z(0)− x̂‖2

2 =
1
2
‖x(0)− x̂‖2

2.

This yields the assertion

f (x(r+1))− f (x̂)≤ 2
η(r+ 2)2 ‖x(0)− x̂‖2

2.

��
There exist many variants or generalizations of the above algorithm (with certain
convergence rates under special assumptions):
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- Nesterov’s algorithms [126, 128], see also [60, 171]; this includes approxima-
tion algorithms for nonsmooth g [14, 129] as NESTA,

- fast iterative shrinkage algorithms (FISTA) by Beck and Teboulle [13],
- variable metric strategies [24, 33, 57, 138], where based on (10.5) step (10.19)

is replaced by

x(r+1) = proxQr ,ηrh

(
y(r)−ηrQ

−1
r ∇g(y(r))

)
(10.22)

with symmetric, positive definite matrices Qr.

Line search strategies can be incorporated [89, 93, 127]. Finally we mention
Barzilei-Borwein step size rules [11] based on a Quasi-Newton approach and rela-
tives, see [79] for an overview and the cyclic proximal gradient algorithm related to
the cyclic Richardson algorithm [165].

6 Primal-Dual Methods

6.1 Basic Relations

The following minimization algorithms closely rely on the primal-dual formulation
of problems. We consider functions f = g+ h(A ·), where g ∈ Γ0(R

d), h ∈ Γ0(R
m),

and A ∈R
m,d , and ask for the solution of the primal problem

(P) argmin
x∈Rd

{g(x)+ h(Ax)} , (10.23)

that can be rewritten as

(P) argmin
x∈Rd ,y∈Rm

{g(x)+ h(y) s.t. Ax = y} . (10.24)

The Lagrangian of (10.24) is given by

L(x,y, p) := g(x)+ h(y)+ 〈p,Ax− y〉 (10.25)

and the augmented Lagrangian by

Lγ(x,y, p) := g(x)+ h(y)+ 〈p,Ax− y〉+ γ
2
‖Ax− y‖2

2, γ > 0,

= g(x)+ h(y)+
γ
2
‖Ax− y+

p
γ
‖2

2 −
1

2γ
‖p‖2

2. (10.26)

Based on the Lagrangian (10.25), the primal and dual problem can be written as

(P) argmin
x∈Rd ,y∈Rm

sup
p∈Rm

{g(x)+ h(y)+ 〈p,Ax− y〉}, (10.27)

(D) argmax
p∈Rm

inf
x∈Rd ,y∈Rm

{g(x)+ h(y)+ 〈p,Ax− y〉}. (10.28)
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Since
min
y∈Rm

{h(y)−〈p,y〉}=−max
y∈Rm

{〈p,y〉− h(y)}=−h∗(p)

and in (10.23) further

h(Ax) = max
p∈Rm

{〈p,Ax〉− h∗(p)},

the primal and dual problem can be rewritten as

(P) argmin
x∈Rd

sup
p∈Rm

{g(x)− h∗(p)+ 〈p,Ax〉} ,

(D) argmax
p∈Rm

inf
x∈Rd

{g(x)− h∗(p)+ 〈p,Ax〉} .

If the infimum exists, the dual problem can be seen as Fenchel dual problem

(D) argmax
p∈Rm

{−g∗(−AT p)− h∗(p)} . (10.29)

Recall that ((x̂, ŷ), p̂) ∈ R
dm,m is a saddle point of the Lagrangian L in (10.25) if

L((x̂, ŷ), p)≤ L((x̂, ŷ), p̂)≤ L((x,y), p̂) ∀(x,y) ∈ R
dm, p ∈ R

m.

If ((x̂, ŷ), p̂) ∈ R
dm,m is a saddle point of L, then (x̂, ŷ) is a solution of the primal

problem (10.27) and p̂ is a solution of the dual problem (10.28). The converse is
also true. However the existence of a solution of the primal problem (x̂, ŷ) ∈ R

dm

does only imply under additional qualification constraint that there exists p̂ such
that ((x̂, ŷ), p̂) ∈R

dm,m is a saddle point of L.

6.2 Alternating Direction Method of Multipliers

Based on the Lagrangian formulation (10.27) and (10.28), a first idea to solve the
optimization problem would be to alternate the minimization of the Lagrangian with
respect to (x,y) and to apply a gradient ascent approach with respect to p. This is
known as general Uzawa method [5]. More precisely, noting that for differentiable
ν(p) := infx,y L(x,y, p) = L(x̃, ỹ, p) we have ∇ν(p) = Ax̃− ỹ, the algorithm reads

(x(r+1),y(r+1)) ∈ argmin
x∈Rd ,y∈Rm

L(x,y, p(r)), (10.30)

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)), γ > 0.

Linear convergence can be proved under certain conditions (strong convexity of f )
[87]. The assumptions on f to ensure convergence of the algorithm can be relaxed
by replacing the Lagrangian by the augmented Lagrangian Lγ (10.26) with fixed
parameter γ:
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(x(r+1),y(r+1)) ∈ argmin
x∈Rd ,y∈Rm

Lγ (x,y, p(r)), (10.31)

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)), γ > 0.

This augmented Lagrangian method is known as method of multipliers [101, 141,
147]. It can be shown [35, Theorem 3.4.7], [17] that the sequence (p(r))r generated
by the algorithm coincides with the proximal point algorithm applied to −ν(p), i.e.,

p(r+1) = prox−γν

(
p(r)

)
.

The improved convergence properties came at a cost. While the minimization with

respect to x and y can be separately computed in (10.30) using 〈p(r),(A|− I)

(
x
y

)
〉=

〈
(

AT

−I

)
p(r),

(
x
y

)
〉, this is no longer possible for the augmented Lagrangian. A rem-

edy is to alternate the minimization with respect to x and y which leads to

x(r+1) ∈ argmin
x∈Rd

Lγ(x,y
(r), p(r)), (10.32)

y(r+1) = argmin
y∈Rm

Lγ (x
(r+1),y, p(r)), (10.33)

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)).

This is the alternating direction method of multipliers (ADMM) which dates back to
[82, 83, 88].

Algorithm 5 Alternating Direction Method of Multipliers (ADMM)

Initialization: y(0) ∈ R
m, p(0) ∈ R

m

Iterations: For r = 0,1, . . .

x(r+1) ∈ argminx∈Rd

{
g(x)+ γ

2‖ 1
γ p(r) +Ax− y(r)‖2

2

}
y(r+1) = argminy∈Rm

{
h(y)+ γ

2‖ 1
γ p(r) +Ax(r+1)− y‖2

2

}
= prox 1

γ h(
1
γ p(r) +Ax(r+1))

p(r+1) = p(r) + γ(Ax(r+1)− y(r+1))

Setting b(r) := p(r)/γ we obtain the following (scaled) ADMM:
A good overview on the ADMM algorithm and its applications is given in [27],
where in particular the important issue of choosing the parameter γ > 0 is addressed.
Convergence of the ADMM under various assumptions was proved, e.g., in [83, 96,
116, 170]. The ADMM can be considered for more general problems

argmin
xi∈Rdi

{
m

∑
i=1

gi(x) s.t. Aixi = c

}
. (10.34)
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Algorithm 6 Alternating Direction Method of Multipliers (scaled ADMM)

Initialization: y(0) ∈ R
m, b(0) ∈R

m

Iterations: For r = 0,1, . . .

x(r+1) ∈ argminx∈Rd

{
g(x)+ γ

2‖b(r) +Ax− y(r)‖2
2

}
y(r+1) = argminy∈Rm

{
h(y)+ γ

2‖b(r) +Ax(r+1)− y‖2
2

}
= prox 1

γ h(b
(r) +Ax(r+1))

b(r+1) = b(r) +Ax(r+1)− y(r+1)

Here we refer to [47] and the references therein. We will see that for our problem
(10.24) the convergence follows by the relation of the ADMM to the so-called
Douglas-Rachford splitting algorithm where convergence can be shown using av-
eraged operators. Few bounds on the global convergence rate of the algorithm can
be found in [68] (linear convergence for linear programs depending on a variety
of quantities), [102] (linear convergence for sufficiently small step size) and on the
local behavior of a specific variation of the ADMM during the course of iteration
for quadratic programs in [21]. Further global rates of the ADMM are given in the
recent preprints [64, 65].

Theorem 9 (Convergence of ADMM). Let g ∈ Γ0(R
d), h ∈ Γ0(R

m) and A ∈ R
m,d .

Assume that the Lagrangian (10.25) has a saddle point. Then, for r → ∞, the seq-

uence γ
(

b(r)
)

r
converges to a solution of the dual problem. If in addition the first

step (10.32) in the ADMM algorithm has a unique solution, then
(

x(r)
)

r
converges

to a solution of the primal problem.

There exist different modifications of the ADMM algorithm presented above:

- inexact computation of the first step (10.32) [48, 69] such that it might be han-
dled by an iterative method,

- variable parameter and metric strategies [27, 95, 96, 98, 111] where the fixed
parameter γ can vary in each step, or the quadratic term (γ/2)‖Ax− y‖2

2 within
the augmented Lagrangian (10.26) is replaced by the more general proximal
operator based on (10.5) such that the ADMM updates (10.32) and (10.33) rec-
eive the form

x(r+1) ∈ argmin
x∈Rd

{
g(x)+

1
2
‖b(r) +Ax− y(r)‖2

Qr

}
,

y(r+1) = argmin
y∈Rm

{
h(y)+

1
2
‖b(r) +Ax(r+1)− y‖2

Qr

}
,

respectively, with symmetric, positive definite matrices Qr. The variable param-
eter strategies might mitigate the performance dependency on the initial chosen
fixed parameter [27, 98, 111, 181] and include monotone conditions [96, 111]
or more flexible non-monotone rules [27, 95, 98].
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ADMM from the Perspective of Variational Inequalities

The ADMM algorithm presented above from the perspective of Lagrangian func-
tions has been also studied extensively in the area of variational inequalities (VIs),
see, e.g., [82, 95, 170]. A VI problem consists of finding for a mapping F : Rl →R

l

a vector ẑ ∈ R
l such that

〈z− ẑ,F(ẑ)〉 ≥ 0, ∀z ∈ R
l . (10.35)

In the following, we consider the minimization problem (10.24), i.e.,

argmin
x∈Rd ,y∈Rm

{g(x)+ h(y) s.t. Ax = y} ,

for g ∈ Γ0(R
d), h ∈ Γ0(R

m). The discussion can be extended to the more general
problem (10.34) [95, 170]. Considering the Lagrangian (10.25) and its optimality
conditions, solving (10.24) is equivalent to find a triple ẑ = ((x̂, ŷ), p̂) ∈ R

dm,m such
that (10.35) holds with

z =

⎛
⎝x

y
p

⎞
⎠ , F(z) =

⎛
⎝∂g(x)+AT p

∂h(y)− p
Ax− y

⎞
⎠ ,

where ∂g and ∂h have to be understood as any element of the corresponding subdif-
ferential for simplicity. Note that ∂g and ∂h are maximal monotone operators [12].
A VI problem of this form can be solved by ADMM as proposed by Gabay [82]
and Gabay and Mercier [83]: for a given triple (x(r),y(r), p(r)) generate new iterates
(x(r+1),y(r+1), p(r+1)) by

i) find x(r+1) such that

〈x−x(r+1),∂g(x(r+1))+AT(p(r) + γ(Ax(r+1)−y(r)))〉 ≥ 0, ∀x ∈R
d , (10.36)

ii) find y(r+1) such that

〈y−y(r+1),∂h(y(r+1))− (p(r)+ γ(Ax(r+1)−y(r+1)))〉 ≥ 0, ∀y ∈R
m, (10.37)

iii) update p(r+1) via
p(r+1) = p(r) + γ(Ax(r+1)− y(r+1)),

where γ > 0 is a fixed penalty parameter. To corroborate the equivalence of the
iteration scheme above to ADMM in Algorithm 5, note that (10.35) reduces to
〈ẑ,F(ẑ)〉 ≥ 0 for z = 2ẑ. On the other hand, (10.35) is equal to 〈ẑ,F(ẑ)〉 ≤ 0 when
z = −ẑ. The both cases transform (10.35) to find a solution ẑ of a system of equa-
tions F(ẑ) = 0. Thus, the VI sub-problems (10.36) and (10.37) can be reduced to
find a pair (x(r+1),y(r+1)) with

∂g(x(r+1))+AT(p(r) + γ(Ax(r+1)− y(r))) = 0,

∂h(y(r+1))− (p(r) + γ(Ax(r+1)− y(r+1))) = 0.



370 M. Burger et al.

The both equations correspond to optimality conditions of the minimization sub-
problems (10.32) and (10.33) of the ADMM algorithm, respectively. The theoretical
properties of ADMM from the perspective of VI problems were studied extensively
and a good reference overview can be found in [95].

Relation to Douglas-Rachford Splitting

Finally we want to point out the relation of the ADMM to the Douglas-Rachford
splitting algorithm applied to the dual problem, see [44, 69, 70, 82, 86, 164]. We
consider again the problem (10.17), i.e.,

argmin
x∈Rd

{g(x)+ h(x)},

where we assume this time only g,h ∈ Γ0(R
d) and that g or h is continuous at a

point in domg∩ domh. Fermat’s rule and subdifferential calculus imply that x̂ is a
minimizer if and only if

0 ∈ ∂g(x̂)+ ∂h(x̂) ⇔ ∃ξ̂ ∈ η∂g(x̂) such that x̂ = proxηh(x̂− ξ̂ ). (10.38)

The basic idea for finding such minimizer is to set up a ‘nice’ operator T : Rd →
R

d by
T := proxηh(2proxηg − I)− proxηg + I, (10.39)

whose fixed points t̂ are related to the minimizers as follows: setting x̂ := proxηg(t̂),

i.e., t̂ ∈ x̂+η∂g(x̂) and ξ̂ := t̂ − x̂ ∈ η∂g(x̂) we see that

t̂ = T (t̂) = proxηh(2x̂− t̂)− x̂+ t̂,

ξ̂ + x̂ = proxηh(x̂− ξ̂ )+ ξ̂ ,

x̂ = proxηh(x̂− ξ̂ ),

which coincides with (10.38). By the proof of the next theorem, the operator T
is firmly nonexpansive such that by Theorem 6 a fixed point of T can be found
by Picard iterations. This gives rise to the following Douglas-Rachford splitting
algorithm (DRS).

Algorithm 7 Douglas-Rachford Splitting Algorithm (DRS)

Initialization: x(0), t(0) ∈ R
d , η > 0

Iterations: For r = 0,1, . . .
t(r+1) = proxηh(2x(r) − t(r))+ t(r)− x(r),
x(r+1) = proxηg(t

(r+1)).
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The following theorem verifies the convergence of the DRS algorithm. For a recent
convergence result see also [97].

Theorem 10 (Convergence of Douglas-Rachford Splitting Algorithm). Let g,h∈
Γ0(R

d) where one of the functions is continuous at a point in domg∩domh. Assume
that a solution of argminx∈Rd{g(x)+h(x)} exists. Then, for any initial t(0),x(0) ∈R

d

and any η > 0, the DRS sequence (t(r))r converges to a fixed point t̂ of T in (10.39)
and (x(r))r to a solution of the minimization problem.

Proof. It remains to show that T is firmly nonexpansive. We have for Rηg :=
2proxηg − I and Rηh := 2proxηh − I that

2T = 2proxηh(2proxηg − I)− (2proxηg − I)+ I = Rηh ◦Rηg + I,

T = 1
2 I+ 1

2 Rηh ◦Rηg.

The operators Rηg,Rηh are nonexpansive since proxηg and proxηh are firmly non-
expansive. Hence Rηh ◦Rηg is nonexpansive and we are done. ��
For variety of (sharp) convergence rates of DRS we refer to [64, 65].
The relation of the ADMM algorithm and DRS algorithm applied to the Fenchel
dual problem (10.29), i.e.,

t(r+1) = proxηg∗◦(−AT)(2p(r)− t(r))+ t(r)− p(r),
p(r+1) = proxηh∗(t

(r+1)),
(10.40)

is given by the following theorem, see [69, 82].

Theorem 11 (Relation Between ADMM and DRS). The ADMM sequences
(

b(r)
)

r

and
(

y(r)
)

r
are related to the sequences (10.40) generated by the DRS algorithm

applied to the dual problem by η = γ and

t(r) = η(b(r) + y(r)),
p(r) = ηb(r).

(10.41)

Proof. First, we show that

p̂ = argmin
p∈Rm

{η
2
‖Ap− q‖2

2+ g(p)
}

⇒ η(Ap̂− q) = proxηg∗◦(−AT)(−ηq)

(10.42)

holds true. The left-hand side of (10.42) is equivalent to

0 ∈ ηAT(Ap̂− q)+ ∂g(p̂) ⇔ p̂ ∈ ∂g∗
(−ηAT(Ap̂− q)

)
.

Applying −ηA on both sides and using the chain rule implies

−ηAp̂ ∈−ηA∂g∗
(−ηAT(Ap̂− q)

)
= η ∂

(
g∗ ◦ (−AT)

)(
η(Ap̂− q)

)
.
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Adding −ηq we get

−ηq ∈ (
I+η ∂ (g∗ ◦ (−AT))

)(
η(Ap̂− q)

)
,

which is equivalent to the right-hand side of (10.42) by the definition of the resolvent
(see Remark 1).
Secondly, applying (10.42) to the first ADMM step with γ = η and q := y(r)− b(r)

yields

η(b(r) +Ax(r+1)− y(r)) = proxηg∗◦(−AT)(η(b
(r)− y(r))).

Assume that the ADMM and DRS iterates have the identification (10.41) up to some
r ∈ N. Using this induction hypothesis it follows that

η(b(r) +Ax(r+1)) = proxηg∗◦(−AT)(η(b
(r)− y(r))︸ ︷︷ ︸

2p(r)−t(r)

)+ ηy(r)︸︷︷︸
t(r)−p(r)

(10.40)
= t(r+1).(10.43)

By definition of b(r+1) we see that η(b(r+1)+y(r+1)) = t(r+1). Next we apply (10.42)
in the second ADMM step where we replace g by h and A by −I and use q :=
−b(r)−Ax(r+1). Together with (10.43) this gives

η(−y(r+1) + b(r) +Ax(r+1)) = proxηh∗(η(b
(r) +Ax(r+1))︸ ︷︷ ︸

t(r+1)

)
(10.40)
= p(r+1).(10.44)

Using again the definition of b(r+1) we obtain ηb(r+1) = p(r+1) which completes the
proof. ��
A recent work [186] shows that the ADMM is in some sense self-dual, i.e., it is
equivalent not only to the DRS applied to the dual problem, but also to the primal
one.

6.3 Primal Dual Hybrid Gradient Algorithms

The first ADMM step (10.32) requires in general the solution of a linear system of
equations. This can be avoided by modifying this step using the Taylor expansion
at x(r):

γ
2
‖1
γ

p(r) +Ax−y(r)‖2
2 ≈ const+ γ〈AT(Ax(r)−y(r) +

1
γ

p(r)),x〉+ γ
2
(x−x(r))TATA(x−x(r)),

approximating ATA ≈ 1
γτ I, setting γ := σ and using p(r)/σ instead of Ax(r)− y(r) +

p(r)/σ we obtain (note that p(r+1)/σ = p(r)/σ +Ax(r+1)− y(r+1)):
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x(r+1) = argminx∈Rd

{
g(x)+ 1

2τ ‖x−
(

x(r)− τAT p(r)
)
‖2

2

}
= proxτg

(
x(r)− τAT p(r)

)
,

y(r+1) = argminy∈Rm

{
h(y)+ σ

2 ‖ 1
σ p(r) +Ax(r+1)−y‖2

2

}
= prox 1

σ h

(
1
σ p(r) +Ax(r+1)

)
,

p(r+1) = p(r) +σ(Ax(r+1)−y(r+1)).
(10.45)

The above algorithm can be deduced in another way by the Arrow-Hurwicz method:
we alternate the minimization in the primal and dual problems (10.27) and (10.28)
and add quadratic terms. The resulting sequences

x(r+1) = argmin
x∈Rd

{
g(x)+ 〈p(r),Ax〉+ 1

2τ
‖x− x(r)‖2

2

}
,

= proxτg(x
(r)− τAT p(r)) (10.46)

p(r+1) = argmin
p∈Rm

{
h∗(p)−〈p,Ax(r+1)〉+ 1

2σ
‖p− p(r)‖2

2

}
,

= proxσh∗(p(r) +σAx(r+1)) (10.47)

coincide with those in (10.45) which can be seen as follows: For x(r) the relation is
straightforward. From the last equation we obtain

p(r) +σAx(r+1) ∈ p(r+1) +σ∂h∗(p(r+1)),

1
σ
(p(r)− p(r+1))+Ax(r+1) ∈ ∂h∗(p(r+1)),

and using that p ∈ ∂h(x)⇔ x ∈ ∂h∗(p) further

p(r+1) ∈ ∂h
( 1

σ
(p(r)− p(r+1))+Ax(r+1)

︸ ︷︷ ︸
y(r+1)

)
.

Setting

y(r+1) :=
1
σ
(p(r)− p(r+1))+Ax(r+1),

we get
p(r+1) = p(r) +σ(Ax(r+1)− y(r+1)) (10.48)

and p(r+1) ∈ ∂h(y(r+1)) which can be rewritten as

y(r+1) +
1
σ

p(r+1) ∈ y(r+1) +
1
σ

∂h(y(r+1)),

1
σ

p(r) +Ax(r+1) ∈ y(r+1) +
1
σ

∂h(y(r+1)),

y(r+1) = prox 1
σ h

(
1
σ

p(r) +Ax(r+1)
)
.
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There are several modifications of the basic “linearized” ADMM which improve its
convergence properties as

- the predictor corrector proximal multiplier method [48],
- the primal dual hybrid gradient method (PDHG) [191] with convergence proof

in [23],
- primal dual hybrid gradient method with extrapolation of the primal or dual

variable [43, 140], a preconditioned version [42] and a generalization [58],
Douglas-Rachford-type algorithms [25, 26] for solving inclusion equations, see
also [54, 177], as well an extension allowing the operator A to be nonlinear
[172].

A good overview on primal-dual methods is also given in [110]. Here is the algo-
rithm proposed by Chambolle, Cremers, and Pock [43, 140].

Algorithm 8 Primal Dual Hybrid Gradient Method with Extrapolation of Dual
Variable (PDHGMp)

Initialization: y(0),b(0) = b(−1) ∈ R
m, τ ,σ > 0 with τσ < 1/‖A‖2

2 and θ ∈ (0,1]
Iterations: For r = 0,1, . . .

x(r+1) = argminx∈Rd

{
g(x)+ 1

2τ ‖x− (x(r) − τσATb̄(r))‖2
2

}
y(r+1) = argminy∈Rm

{
h(y)+ σ

2 ‖b(r) +Ax(r+1)− y‖2
2

}
b(r+1) = b(r) +Ax(r+1)− y(r+1).

b̄(r+1) = b(r+1) +θ (b(r+1)−b(r))

Note that the new first updating step can be also deduced by applying the so-called
inexact Uzawa algorithm to the first ADMM step (see Section 6.4). Furthermore,
it can be directly seen that for A being the identity and θ = 1 and γ = σ = 1

τ , the
PDHGMp algorithm corresponds to the ADMM as well as the Douglas-Rachford
splitting algorithm as proposed in Section 6.2. The following theorem and conver-
gence proof are based on [43].

Theorem 12. Let g ∈ Γ0(R
d), h ∈ Γ0(R

m) and θ ∈ (0,1]. Let τ,σ > 0 fulfill

τσ < 1/‖A‖2
2. (10.49)

Suppose that the Lagrangian L(x, p) := g(x)− h∗(p)+ 〈Ax, p〉 has a saddle point.
Then the sequence {(x(r), p(r))}r produced by PDGHMp converges to a saddle point
of the Lagrangian.

Proof. We restrict the proof to the case θ = 1. For arbitrary x̄ ∈R
d , p̄ ∈R

m consider
according to (10.46) and (10.47) the iterations

x(r+1) = (I + τ∂g)−1
(

x(r)− τAT p̄
)
,

p(r+1) = (I +σ∂h∗)−1
(

p(r) +σAx̄
)
,
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i.e.,

x(r)− x(r+1)

τ
−AT p̄ ∈ ∂g

(
x(r+1)

)
,

p(r)− p(r+1)

σ
+Ax̄ ∈ ∂h∗

(
p(r+1)

)
.

By definition of the subdifferential we obtain for all x ∈ R
d and all p ∈ R

m that

g(x) ≥ g(x(r+1))+
1
τ
〈x(r)− x(r+1),x− x(r+1)〉− 〈AT p̄,x− x(r+1)〉,

h∗(p) ≥ h∗(p(r+1))+
1
σ
〈p(r)− p(r+1), p− p(r+1)〉+ 〈p− p(r+1),Ax̄〉

and by adding the equations

0 ≥ g(x(r+1))− h∗(p)−
(

g(x)− h∗(p(r+1))
)
−〈AT p̄,x− x(r+1)〉+ 〈p− p(r+1),Ax̄〉

+
1
τ
〈x(r)− x(r+1),x− x(r+1)〉+ 1

σ
〈p(r)− p(r+1), p− p(r+1)〉.

By

〈x(r)− x(r+1),x− x(r+1)〉= 1
2

(
‖x(r)− x(r+1)‖2

2 + ‖x− x(r+1)‖2
2 −‖x− x(r)‖2

2

)
this can be rewritten as

1
2τ

‖x− x(r)‖2
2 +

1
2σ

‖p− p(r)‖2
2

≥ 1
2τ

‖x(r)− x(r+1)‖2
2 +

1
2τ

‖x− x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p− p(r+1)‖2
2

+
(

g(x(r+1))− h∗(p)+ 〈p,Ax(r+1)〉
)
−
(

g(x)− h∗(p(r+1))+ 〈p(r+1),Ax〉
)

−〈p,Ax(r+1)〉+ 〈p(r+1),Ax〉− 〈p̄,A(x− x(r+1))〉+ 〈p− p(r+1),Ax̄〉
=

1
2τ

‖x(r)− x(r+1)‖2
2 +

1
2τ

‖x− x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p− p(r+1)‖2
2

+
(

g(x(r+1))− h∗(p)+ 〈p,Ax(r+1)〉
)
−
(

g(x)− h∗(p(r+1))+ 〈p(r+1),Ax〉
)

+ 〈p(r+1)− p,A(x(r+1)− x̄)〉− 〈p(r+1)− p̄,A(x(r+1)− x)〉.
For any saddle point (x∗, p∗) we have that L(x∗, p)≤ L(x∗, p∗)≤ L(x, p∗) for all x, p
so that in particular 0 ≤ L(x(r+1), p∗)−L(x∗, p(r+1)). Thus, using (x, p) := (x∗, p∗)
in the above inequality, we get

1
2τ

‖x∗ −x(r)‖2
2 +

1
2σ

‖p∗ − p(r)‖2
2

≥ 1
2τ

‖x(r)−x(r+1)‖2
2 +

1
2τ

‖x∗ −x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p∗ − p(r+1)‖2
2

+〈p(r+1)− p∗,A(x(r+1)− x̄)〉−〈p(r+1)− p̄,A(x(r+1)−x∗)〉.
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In the algorithm we use x̄ := x(r+1) and p̄ := 2p(r)− p(r−1). Note that p̄ = p(r+1)

would be the better choice, but this is impossible if we want to keep on an explicit
algorithm. For these values the above inequality further simplifies to

1
2τ

‖x∗ −x(r)‖2
2 +

1
2σ

‖p∗ − p(r)‖2
2

≥ 1
2τ

‖x(r)−x(r+1)‖2
2 +

1
2τ

‖x∗ −x(r+1)‖2
2 +

1
2σ

‖p(r)− p(r+1)‖2
2 +

1
2σ

‖p∗ − p(r+1)‖2
2

+ 〈p(r+1)−2p(r) + p(r−1),A(x∗ −x(r+1))〉.

We estimate the last summand using Cauchy-Schwarz’s inequality as follows:

〈p(r+1)− p(r)− (p(r)− p(r−1)),A(x∗ − x(r+1))〉
= 〈p(r+1)− p(r),A(x∗ − x(r+1))〉− 〈p(r)− p(r−1),A(x∗ − x(r))〉

− 〈p(r)− p(r−1),A(x(r)− x(r+1))〉
≥ 〈p(r+1)− p(r),A(x∗ − x(r+1))〉− 〈p(r)− p(r−1),A(x∗ − x(r))〉

− ‖A‖2‖x(r+1)− x(r)‖2 ‖p(r)− p(r−1)‖2.

Since

2uv ≤ αu2 +
1
α

v2, α > 0, (10.50)

we obtain

‖A‖2‖x(r+1) − x(r)‖2 ‖p(r) − p(r−1)‖2 ≤ ‖A‖2

2

(
α‖x(r+1)− x(r)‖2

2 +
1
α
‖p(r) − p(r−1)‖2

2

)

=
‖A‖2ατ

2τ
‖x(r+1)− x(r)‖2

2 +
‖A‖2σ
2ασ

‖p(r) − p(r−1)‖2
2.

With α :=
√

σ/τ the relation

‖A‖2ατ =
‖A‖2σ

α
= ‖A‖2

√
στ < 1

holds true. Thus, we get

1
2τ

‖x∗ − x(r)‖2
2 +

1
2σ

‖p∗ − p(r)‖2
2

≥ 1
2τ

‖x∗ − x(r+1)‖2
2 +

1
2σ

‖p∗ − p(r+1)‖2
2

+
1

2τ
(1−‖A‖2

√
στ)‖x(r+1) − x(r)‖2

2 +
1

2σ
‖p(r+1)− p(r)‖2

2 −
‖A‖2

√
στ

2σ
‖p(r) − p(r−1)‖2

2

+ 〈p(r+1) − p(r),A(x∗ − x(r+1))〉−〈p(r) − p(r−1),A(x∗ − x(r))〉. (10.51)

Summing up these inequalities from r = 0 to N −1 and regarding that p(0) = p(−1),
we obtain
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1
2τ

‖x∗ − x(0)‖2
2 +

1
2σ

‖p∗ − p(0)‖2
2

≥ 1
2τ

‖x∗ − x(N)‖2
2 +

1
2σ

‖p∗ − p(N)‖2
2

+ (1−‖A‖2
√

στ)

(
1

2τ

N

∑
r=1

‖x(r)− x(r−1)‖2
2 +

1
2σ

N−1

∑
r=1

‖p(r)− p(r−1)‖2
2

)

+
1

2σ
‖p(N)− p(N−1)‖2

2 + 〈p(N)− p(N−1),A(x∗ − x(N))〉

By

〈p(N)− p(N−1),A(x(N)− x∗)〉 ≤ 1
2σ

‖p(N)− p(N−1)‖2
2 +

‖A‖2
2στ

2τ
‖x(N)− x∗‖2

2

this can be further estimated as

1
2τ

‖x∗ − x(0)‖2
2 +

1
2σ

‖p∗− p(0)‖2
2

≥ 1
2τ

(1−‖A‖2
2στ)‖x∗ − x(N)‖2

2 +
1

2σ
‖p∗ − p(N)‖2

2

+ (1−‖A‖2
√

στ)

(
1

2τ

N

∑
r=1

‖x(r)− x(r−1)‖2
2 +

1
2σ

N−1

∑
r=1

‖p(r)− p(r−1)‖2
2

)
. (10.52)

By (10.52) we conclude that the sequence {(x(n), p(n))}n is bounded. Thus, there
exists a convergent subsequence {(x(n j), p(n j))} j which converges to some point
(x̂, p̂) as j → ∞. Further, we see by (10.52) that

lim
n→∞

(
x(n)− x(n−1)

)
= 0, lim

n→∞

(
p(n)− p(n−1)

)
= 0.

Consequently,

lim
j→∞

(
x(n j−1)− x̂

)
= 0, lim

j→∞

(
p(n j−1)− p̂

)
= 0

holds true. Let T denote the iteration operator of the PDHGMp cycles, i.e., T (x(r),
p(r)) = (x(r+1), p(r+1)). Since T is the concatenation of affine operators and proxi-

mation operators, it is continuous. Now we have that T
(

x(n j−1), p(n j−1)
)
=(

x(n j), p(n j)
)

and taking the limits for j → ∞ we see that T (x̂, p̂) = (x̂, p̂) so that

(x̂, p̂) is a fixed point of the iteration and thus a saddle point of L. Using this par-
ticular saddle point in (10.51) and summing up from r = n j to N − 1, N > n j we
obtain
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1
2τ

‖x̂− x(n j)‖2
2 +

1
2σ

‖ p̂− p(n j)‖2
2

≥ 1
2τ

‖x̂− x(N)‖2
2 +

1
2σ

‖ p̂− p(N)‖2
2

+ (1−‖A‖2
√

στ)

(
1

2τ

N−1

∑
r=n j

‖x(r+1)− x(r)‖2
2 +

1
2σ

N−1

∑
r=n j+1

‖p(r)− p(r−1)‖2

)

+
1

2σ
‖p(N)− p(N−1)‖2 − ‖A‖2

√
στ

2σ
‖p(n j)− p(n j−1)‖2

2

+ 〈p(N)− p(N−1),A(x̂− x(N))〉− 〈p(n j)− p(n j−1),A(x̂− x(n j))〉

and further

1
2τ

‖x̂− x(n j)‖2
2 +

1
2σ

‖ p̂− p(n j)‖2
2

≥ 1
2τ

‖x̂− x(N)‖2
2 +

1
2σ

‖ p̂− p(N)‖2
2

+
1

2σ
‖p(N)− p(N−1)‖2

2 −
‖A‖2

√
στ

2σ
‖p(n j)− p(n j−1)‖2

2

+ 〈p(N)− p(N−1),A(x̂− x(N))〉− 〈p(n j)− p(n j−1),A(x̂− x(n j))〉

For j →∞ this implies that (x(N), p(N)) converges also to (x̂, ŷ) and we are done. ��

6.4 Proximal ADMM

To avoid the computation of a linear system of equations in the first ADMM step
(10.32), we can more generally use the proximal ADMM algorithm [95, 190] that
can be interpreted as a preconditioned variant of ADMM. In this variant the mini-
mization step (10.32) is replaced by a proximal-like iteration based on the general
proximal operator (10.5),

x(r+1) = argmin
x∈Rd

{Lγ(x,y
(r), p(r))+

1
2
‖x− x(r)‖2

R} (10.53)

with a symmetric, positive definite matrix R ∈ R
d,d . The introduction of R provides

an additional flexibility to cancel out linear operators which might be difficult to
invert. In addition the modified minimization problem is strictly convex inducing a
unique minimizer. In the same manner the second ADMM step (10.33) can also be
extended by a proximal term (1/2)‖y− y(r)‖2

S with a symmetric, positive definite
matrix S ∈ R

m,m [190]. The convergence analysis of the proximal ADMM was pro-
vided in [190] and the algorithm can be also classified as an inexact Uzawa method.
A generalization, where the matrices R and S can non-monotonically vary in each
iteration step, was analyzed in [95], additionally allowing an inexact computation
of minimization problems.
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In case of the PDHGMp algorithm, it was mentioned that the first updating step can
be deduced by applying the inexact Uzawa algorithm to the first ADMM step. Using
the proximal ADMM, it is straightforward to see that the first updating step of the
PDHGMp algorithm with θ = 1 corresponds to (10.53) in case of R = 1

τ I −σATA
with 0 < τ < 1/‖σATA‖, see [43, 71]. Further relations of the (proximal) ADMM
to primal dual hybrid methods discussed above can be found in [71].

6.5 Bregman Methods

Bregman methods became very popular in image processing by a series papers of
Osher and co-workers, see, e.g., [91, 135]. Many of these methods can be interpreted
as ADMM methods and its linearized versions. In the following we briefly sketch
these relations.
The PPA is a special case of the Bregman PPA. Let ϕ : Rd →R∪{+∞} be a convex
function. Then the Bregman distance Dp

ϕ : Rd ×R
d → R is given by

Dp
ϕ(x,y) = ϕ(x)−ϕ(y)−〈p,x− y〉

with p ∈ ∂ϕ(y), y ∈ dom f . If ∂ϕ(y) contains only one element, we just write Dϕ .
If ϕ is smooth, then the Bregman distance can be interpreted as subtracting the first
order Taylor expansion of ϕ(x) at y.

Example 5. (Special Bregman Distances)

1. The Bregman distance corresponding to ϕ(x) := 1
2‖x‖2

2 is given by Dϕ(x,y) =
1
2‖x− y‖2

2.
2. For the negative Shannon entropy ϕ(x) := 〈1d,x logx〉, x > 0 we obtain the (dis-

crete) I-divergence or generalized Kullback-Leibler entropy Dϕ(x,y) = x log x
y −

x+ y.

For f ∈ Γ0(R
d) we consider the generalized proximal problem

argmin
y∈Rd

{
1
γ

Dp
ϕ(x,y)+ f (y)

}
.

The Bregman Proximal Point Algorithm (BPPA) for solving this problem reads as
follows:

Algorithm 9 Bregman Proximal Point Algorithm (BPPA)

Initialization: x(0) ∈ R
d , p(0) ∈ ∂ϕ(x(0)), γ > 0

Iterations: For r = 0,1, . . .

x(r+1) = argminy∈Rd

{
1
γ Dp(r)

ϕ (y,x(r))+ f (y)
}

p(r+1) ∈ ∂ϕ(x(r+1))
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The BPPA converges for any initialization x(0) to a minimizer of f if f ∈ Γ0(R
d)

attains its minimum and ϕ is finite, lower semi-continuous and strictly convex. For
convergence proofs we refer, e.g., to [107, 108]. We are interested again in the prob-
lem (10.24), i.e.,

argmin
x∈Rd ,y∈Rm

{Φ(x,y) s.t. Ax = y} , Φ(x,y) := g(x)+ h(y).

We consider the BPP algorithm for the objective function f (x,y) := 1
2‖Ax−y‖2 with

the Bregman distance

D(p(r)x ,p(r)y )
Φ

(
(x,y),(x(r),y(r))

)
= Φ(x,y)−Φ(x(r),y(r))−〈p(r)x ,x−x(r)〉−〈p(r)y ,y−y(r)〉,

where
(

p(r)x , p(r)y
) ∈ ∂Φ(x(r),y(r)). This results in

(x(r+1),y(r+1)) = argmin
x∈Rd ,y∈Rm

{1
γ

D
(p(r)x ,p(r)y )
Φ

(
(x,y),(x(r),y(r))

)
+

1
2
‖Ax− y‖2},

p(r+1)
x = p(r)x − γA∗(Ax(r+1)− y(r+1)), (10.54)

p(r+1)
y = p(r)y + γ(Ax(r+1)− y(r+1)), (10.55)

where we have used that the first equation implies

0 ∈ 1
γ
∂
(
Φ(x(r+1),y(r+1))−(

p(r)x , p(r)y
))

+
(
A∗(Ax(r+1)−y(r+1)),−(Ax(r+1)−y(r+1))

)
,

0 ∈ ∂Φ(x(r+1),y(r+1))−(
p(r+1)

x , p(r+1)
y

)
,

so that
(

p(r)x , p(r)y
) ∈ ∂Φ(x(r),y(r)). From (10.54) and (10.55) we see by induction

that p(r)x =−A∗p(r)y . Setting p(r) = p(r)y and regarding that

1
γ

Dp(r)

Φ

(
(x,y),(x(r),y(r))

)
+

1
2
‖Ax− y‖2

2

= const+
1
γ

(
Φ(x,y)+ 〈A∗p(r),x〉− 〈p(r),y〉

)
+

1
2
‖Ax− y‖2

2

= const+
1
γ

(
Φ(x,y)+

γ
2
‖ p(r)

γ
+Ax− y‖2

2

)

we obtain the following split Bregman method, see [91]:
Obviously, this is exactly the form of the augmented Lagrangian method in (10.31).
Concerning the elastic net example 2 we refer to [38, 114, 187] for convergence
results of the so-called linearized Bregman algorithm.
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Algorithm 10 Split Bregman Algorithm

Initialization: x(0) ∈ R
d , p(0) , γ > 0

Iterations: For r = 0,1, . . .

(x(r+1),y(r+1)) = argmin
x∈Rd ,y∈Rm

{
Φ(x,y)+ γ

2‖ p(r)

γ +Ax− y‖2
2

}
p(r+1) = p(r) + γ(Ax(r+1)− y(r+1))

7 Iterative Regularization for Ill-Posed Problems

So far we have discussed the use of splitting methods for the numerical solution of
well-posed variational problems, which arise in a discrete setting and in particular
for the standard approach of Tikhonov-type regularization in inverse problems in
imaging. The latter is based on minimizing a weighted sum of a data fidelity and
a regularization functional, and can be more generally analyzed in Banach spaces,
cf. [163]. However, such approaches have several disadvantages, in particular it has
been shown that they lead to unnecessary bias in solutions, e.g., a contrast loss
in the case of total variation regularization, cf. [136, 31]. A successful alternative
to overcome this issue is iterative regularization, which directly applies iterative
methods to solve the constrained variational problem

argmin
x∈X

{g(x) s.t. Ax = f} . (10.56)

Here A : X →Y is a bounded linear operator between Banach spaces (also nonlinear
versions can be considered, cf. [9, 105]) and f are given data. In the well-posed case,
(10.56) can be rephrased as the saddle-point problem

min
x∈X

sup
q
(g(x)−〈q,Ax− f 〉) (10.57)

The major issue compared to the discrete setting is that for many prominent exam-
ples the operator A does not have a closed range (and hence a discontinuous pseudo-
inverse), which makes (10.56) ill-posed. From the optimization point of view, this
raises two major issues:

• Emptyness of the constraint set: In the practically relevant case of noisy mea-
surements one has to expect that f is not in the range of A, i.e., the constraint
cannot be satisfied exactly. Reformulated in the constrained optimization view,
the standard paradigm in iterative regularization is to construct an iteration
slowly increasing the functional g while decreasing the error in the constraint.

• Nonexistence of saddle points: Even if the data or an idealized version Ax∗ to
be approximated are in the range of A, the existence of a saddle point (x∗,q∗)
of (10.57) is not guaranteed. The optimality condition for the latter would yield

A∗q∗ ∈ ∂g(x∗), (10.58)
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which is indeed an abstract smoothness condition on the subdifferential of g
at x∗ if A and consequently A∗ are smoothing operators, it is known as source
condition in the field of inverse problems, cf. [31].

Due to the above reasons the use of iterative methods for solving respectively ap-
proximating (10.56) has a different flavor than iterative methods for well-posed
problems. The key idea is to employ the algorithm as an iterative regularization
method, cf. [105], where appropriate stopping in dependence on the noise, i.e. a
distance between Ax∗ and f , needs to be performed in order to obtain a suitable
approximation. The notion to be used is called semiconvergence, i.e., if δ > 0 de-
notes a measure for the data error (noise level) and r̂(δ ) is the stopping index of the
iteration in dependence on δ , then we look for convergence

x(r̂(δ )) → x∗ as δ → 0, (10.59)

in a suitable topology. The minimal ingredient in the convergence analysis is the
convergence x(r) → x∗, which already needs different approaches as discussed
above. For iterative methods working on primal variables one can at least use the
existence of (10.56) in this case, while real primal-dual iterations still suffer from
the potential nonexistence of solutions of the saddle point problem (10.57).
A well-understood iterative method is the Bregman iteration

x(r+1) ∈ argmin
x∈X

(μ
2
‖Ax− f‖2 +Dp(r)

g (x,x(r))
)
, (10.60)

with p(r) ∈ ∂g(x(r)), which has been analyzed as an iterative method in [136], re-
spectively for nonlinear A in [9]. Note that again with p(r) = A∗q(r) the Bregman
iteration is equivalent to the augmented Lagrangian method for the saddle-point
problem (10.57). With such iterative regularization methods superior results com-
pared to standard variational methods can be computed for inverse and imaging
problems, in particular bias can be eliminated, cf. [31].
The key properties are the decrease of the data fidelity

‖Ax(r+1)− f‖2 ≤ ‖Ax(r)− f‖2, (10.61)

for all r and the decrease of the Bregman distance to the clean solution

Dp(r+1)

g (x∗,x(r+1))≤ Dp(r)
g (x∗,x(r)) (10.62)

for those r such that
‖Ax(r)− f‖ ≥ ‖Ax∗− f‖= δ .

Together with a more detailed analysis of the difference between consecutive Breg-
man distances, this can be used to prove semiconvergence results in appropriate
weak topologies, cf. [136, 163]. In [9] further variants approximating the quadratic
terms, such as the linearized Bregman iteration, are analyzed, however with further
restrictions on g. For all other iterative methods discussed above, a convergence
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analysis in the case of ill-posed problems is completely open and appears to be a
valuable task for future research. Note that in the realization of the Bregman it-
eration, a well-posed but complex variational problem needs to be solved in each
step. By additional operator splitting in an iterative regularization method one could
dramatically reduce the computational effort.
If the source condition is satisfied, i.e. if there exists a saddle-point (x∗,q∗), one can
further exploit the decrease of dual distances

‖q(r+1)− q∗‖ ≤ ‖q(r)− q∗‖ (10.63)

to obtain a quantitative estimate on the convergence speed, we refer to [30, 32] for
a further discussion.

8 Applications

So far we have focused on technical aspects of first order algorithms whose (fur-
ther) development has been heavily forced by practical applications. In this section
we give a rough overview of the use of first order algorithms in practice. We start
with applications from classical imaging tasks such as computer vision and image
analysis and proceed to applications in natural and life sciences. From the area of
biomedical imaging, we will present the Positron Emission Tomography (PET) and
Spectral X-ray CT in more detail and show some results reconstructed with first
order algorithms.
At the beginning it is worth to emphasize that many algorithms based on proxi-
mal operators such as proximal point algorithm, proximal forward-backward split-
ting, ADMM, or Douglas-Rachford splitting have been introduced in the 1970s, cf.
[83, 116, 146, 147]. However these algorithms have found a broad application in the
last two decades, mainly caused by the technological progress. Due to the ability of
distributed convex optimization with ADMM related algorithms, these algorithms
seem to be qualified for ‘big data’ analysis and large-scale applications in applied
statistics and machine learning, e.g., in areas as artificial intelligence, internet appli-
cations, computational biology and medicine, finance, network analysis, or logistics
[27, 139]. Another boost for the popularity of first order splitting algorithms was the
increasing use of sparsity-promoting regularizers based on �1- or L1-type penalties
[91, 151], in particular in combination with inverse problems considering nonlin-
ear image formation models [9, 172] and/or statistically derived (inverse) problems
[31]. The latter problems lead to non-quadratic fidelity terms which result from the
non-Gaussian structure of the noise model. The overview given in the following
mainly concentrates on the latter mentioned applications.
The most classical application of first order splitting algorithms is image analysis
such as denoising, where these methods were originally pushed by the Rudin, Osher,
and Fatemi (ROF) model [151]. This model and its variants are frequently used as
prototypes for total variation methods in imaging to illustrate the applicability of
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proposed algorithms in case of non-smooth cost functions, cf. [43, 70, 71, 91, 136,
164, 191]. Since the standard L2 fidelity term is not appropriate for non-Gaussian
noise models, modifications of the ROF problem have been considered in the past
and were solved using splitting algorithms to denoise images perturbed by non-
Gaussian noise, cf. [19, 43, 76, 153, 168]. Due to the close relation of total variation
techniques to image segmentation [31, 140], first order algorithms have been also
applied in this field of applications (cf. [42, 43, 90, 140]). Other image analysis tasks
where proximal based algorithms have been applied successfully are deblurring and
zooming (cf. [23, 43, 71, 166]), inpainting [43], stereo and motion estimation [46,
43, 188], and segmentation [10, 115, 140, 106].
Due to increasing noise level in modern biomedical applications, the requirement on
statistical image reconstruction methods has been risen recently and the proximal
methods have found access to many applied areas of biomedical imaging. Among
the enormous amount of applications from the last two decades, we only give the
following selection and further links to the literature:

• X-ray CT: Recently statistical image reconstruction methods have received in-
creasing attention in X-ray CT due to increasing noise level encountered in
modern CT applications such as sparse/limited-view CT and low-dose imag-
ing, cf., e.g., [173, 178, 179], or K-edge imaging where the concentrations
of K-edge materials are inherently low, see, e.g., [159, 158, 160]. In partic-
ular, first order splitting methods have received strong attention due to the
ability to handle non-standard noise models and sparsity-promoting regulariz-
ers efficiently. Beside the classical fan-beam and cone-beam X-ray CT (see,
e.g., [4, 45, 51, 104, 130, 145, 167, 173]), the algorithms have also found
applications in emerging techniques such as spectral CT, see Section 8.2 and
[85, 155, 185] or phase contrast CT [59, 131, 184].

• Magnetic resonance imaging (MRI): Image reconstruction in MRI is mainly
achieved by inverting the Fourier transform which can be performed efficiently
and robustly if a sufficient number of Fourier coefficients is measured. How-
ever, this is not the case in special applications such as fast MRI protocols, cf.,
e.g., [117, 142], where the Fourier space is undersampled so that the Nyquist
criterion is violated and Fourier reconstructions exhibit aliasing artifacts. Thus,
compressed sensing theory have found the way into MRI by exploiting sparsity-
promoting variational approaches, see, e.g., [15, 103, 118, 144]. Furthermore,
in advanced MRI applications such as velocity-encoded MRI or diffusion MRI,
the measurements can be modeled more accurately by nonlinear operators and
splitting algorithms provide the ability to handle the increased reconstruction
complexity efficiently [172].

• Emission tomography: Emission tomography techniques used in nuclear
medicine such as positron emission tomography (PET) and single photon emis-
sion computed tomography (SPECT) [183] are classical examples for inverse
problems in biomedical imaging where statistical modeling of the reconstruc-
tion problem is essential due to Poisson statistics of the data. In addition, in
cases where short time or low tracer dose measurements are available (e.g., us-
ing cardiac and/or respiratory gating [34]) or tracer with a short radioactive
half-life are used (e.g., radioactive water H2

15O [157]), the measurements
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suffer from inherently high noise level and thus a variety of first order split-
ting algorithms has been utilized in emission tomography, see, e.g., [4, 16, 122,
123, 143, 153].

• Optical microscopy: In modern light microscopy techniques such as stimulated
emission depletion (STED) or 4Pi-confocal fluorescence microscopy [99, 100]
resolutions beyond the diffraction barrier can be achieved allowing imaging at
nanoscales. However, by reaching the diffraction limit of light, measurements
suffer from blurring effects and Poisson noise with low photon count rates [66,
162], in particular in live imaging and in high resolution imaging at nanoscopic
scales. Thus, regularized (blind) deconvolution addressing appropriate Poisson
noise is quite beneficial and proximal algorithms have been applied to achieve
this goal, cf., e.g., [30, 81, 153, 166].

• Other modalities: It is quite natural that first order splitting algorithms have
found a broad usage in biomedical imaging, in particular in such applica-
tions where the measurements are highly perturbed by noise and thus regu-
larization with probably a proper statistical modeling are essential as, e.g., in
optical tomography [1, 80], medical ultrasound imaging [154], hybrid photo-
/optoacoustic tomography [84, 180], or electron tomography [92].

8.1 Positron Emission Tomography (PET)

PET is a biomedical imaging technique visualizing biochemical and physiologi-
cal processes such as glucose metabolism, blood flow, or receptor concentrations,
see, e.g., [183]. This modality is mainly applied in nuclear medicine and the data
acquisition is based on weak radioactively marked pharmaceuticals (so-called trac-
ers), which are injected into the blood circulation. Then bindings dependent on the
choice of the tracer to the molecules are studied. Since the used markers are radio-
isotopes, they decay by emitting a positron which annihilates almost immediately
with an electron. The resulting emission of two photons is detected and, due to the
radioactive decay, the measured data can be modeled as an inhomogeneous Poisson
process with a mean given by the X-ray transform of the spatial tracer distribution
(cf., e.g., [124, 174]). Note that, up to notation, the X-ray transform coincides with
the more popular Radon transform in the two dimensional case [124]. Thus, the
underlying reconstruction problem can be modeled as

M

∑
m=1

(
(Ku)m − fm log((Ku)m)

)
+αR(u)→ min

u≥0
, α > 0, (10.64)

where M is the number of measurements, f are the given data, and K is the system
matrix which describes the full properties of the PET data acquisition.
To solve (10.64), algorithms discussed above can be applied and several of them
have been already studied for PET recently. In the following, we will give a
(certainly incomplete) performance discussion of different first order splitting al-
gorithms on synthetic PET data and highlight the strengths and weaknesses of them
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which could be carried over to many other imaging applications. For the study
below, the total variation (TV) was applied as regularization energy R in (10.64)
and the following algorithms and parameter settings were used for the performance
evaluation:

• FB-EM-TV: The FB-EM-TV algorithm [153] represents an instance of the
proximal forward-backward (FB) splitting algorithm discussed in Section 5.2
using a variable metric strategy (10.22). The preconditioned matrices Q(r) in
(10.22) are chosen in a way that the gradient descent step corresponds to an
expectation-maximization (EM) reconstruction step. The EM algorithm is a
classically applied (iterative) reconstruction method in emission tomography
[124, 174]. The TV proximal problem was solved by an adopted variant of the
modified Arrow-Hurwicz method proposed in [43] since it was shown to be the
most efficient method for TV penalized weighted least-squares denoising prob-
lems in [152]. Furthermore, a warm starting strategy was used to initialize the
dual variables within the TV proximal problem and the inner iteration sequence
was stopped if the relative error of primal and dual optimality conditions was
below an error tolerance δ , i.e., using the notations from [43], if

max{d(r), p(r)} ≤ δ (10.65)

with

d(r) = ‖(y(r)− y(r−1))/σr−1 +∇(x(r)− x(r−1))‖/‖∇x(r)‖,
p(r) = ‖x(r)− x(r−1)‖/‖x(r)‖.

The damping parameter η(r) in (10.22) was set to η(r) = 1 as indicated in [153].
• FB-EM-TV-Nes83: A modified version of FB-EM-TV described above using

the acceleration strategy proposed by Nesterov in [128]. This modification can
be seen as a variant of FISTA [13] with a variable metric strategy (10.22). Here,
η(r) in (10.22) was chosen fixed (i.e. η(r) = η) but has to be adopted to the
predefined inner accuracy threshold δ (10.65) to guarantee the convergence of
the algorithm and it was to be done manually.

• CP-E: The fully explicit variant of the Chambolle-Pock’s primal-dual algo-
rithm [43] (cf. Section 6.3) studied for PET reconstruction problems in [3] (see
CP2TV in [3]). The dual step size σ was set manually and the primal one corre-
sponding to [43] as τσ(‖∇‖2 +‖K‖2) = 1, where ‖K‖ was pre-estimated using
the Power method.

• Precond-CP-E: The CP-E algorithm described above but using the diagonal
preconditioning strategy proposed in [42] with α = 1 in [42, Lemma 2].

• CP-SI: The semi-implicit variant of the Chambolle-Pock’s primal-dual algo-
rithm [43] (cf. Section 6.3) studied for PET reconstruction problems in [3] (see
CP1TV in [3]). The difference to CP-E is that a TV proximal problem has to
be solved in each iteration step. This was performed as in case of FB-EM-TV
method. Furthermore, the dual step size σ was set manually and the primal one
corresponding to [43] as τσ‖K‖2 = 1, where ‖K‖ was pre-estimated using the
Power method.
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• Precond-CP-SI: The CP-SI algorithm described above but using the diagonal
preconditioning strategy proposed in [42] with α = 1 in [42, Lemma 2].

• PIDSplit+: An ADMM based algorithm (cf. Section 6.2) that has been dis-
cussed for Poisson deblurring problems of the form (10.64) in [166]. However,
in case of PET reconstruction problems, the solution of a linear system of equa-
tions of the form

(I +KTK +∇T∇)u(r+1) = z(r) (10.66)

has to be computed in a different way in contrast to deblurring problems. This
was done by running two preconditioned conjugate gradient (PCG) iterations
with warm starting and cone filter preconditioning whose effectiveness has been
validated in [145] for X-ray CT reconstruction problems. The cone filter was
constructed as described in [73, 74] and diagonalized by the discrete cosine
transform (DCT-II) supposing Neumann boundary conditions. The PIDSplit+
algorithm described above can be accomplished by a strategy of adaptive aug-
mented Lagrangian parameters γ in (10.26) as proposed for the PIDSplit+ al-
gorithm in [27, 169]. The motivation behind this strategy is to mitigate the per-
formance dependency on the initial chosen fixed parameter that may strongly
influence the speed of convergence of ADMM based algorithms.

All algorithms were implemented in MATLAB and executed on a machine with 4
CPU cores, each 2.83 GHz, and 7.73 GB physical memory, running a 64 bit Linux
system and MATLAB 2013b. The built-in multi-threading in MATLAB was dis-
abled such that all computations were limited to a single thread. The algorithms
were evaluated on a simple object (image size 256× 256) and the synthetic 2D
PET measurements were obtained via a Monte-Carlo simulation with 257 radial
and 256 angular samples, using one million simulated events (see Figure 10.2). Due
to sustainable image and measurement dimensions, the system matrix K was pre-
computed for all reconstruction runs. To evaluate the performance of algorithms
described above, the following procedure was applied. First, since K is injective
and thus an unique minimizer of (10.64) is guaranteed [153], we can run a well-
performing method for a very long time to compute a “ground truth” solution u∗α for
a fixed α . To this end, we have run the Precond-CP-E algorithm for 100,000 itera-
tions for the following reasons: (1) all iteration steps can be solved exactly such that
the solution cannot be influenced by inexact computations (see discussion below);
(2) due to preconditioning strategy, no free parameters are available those may in-
fluence the speed of convergence negatively such that u∗α is expected to be of high
accuracy after 100,000 iterations. Having u∗α , each algorithm was applied until the
relative error

‖u(r)α − u∗α‖/‖u∗α‖ (10.67)

was below a predefined threshold ε (or a maximum number of iterations adopted
for each algorithm individually was reached). The “ground truth” solutions for three
different values of α are shown in Figure 10.3.
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Fig. 10.2: Synthetic 2D PET data. Left: Exact object. Middle: Exact Radon data. Right: Simulated
PET measurements via a Monte-Carlo simulation using one million events.
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Fig. 10.3: The “ground truth” solutions for regularization parameter values α = 0.04 (left), α =
0.08 (middle), and α = 0.20 (right).

Figures 10.4–10.8 show the performance evaluation of algorithms plotting the prop-
agation of the relative error (10.67) in dependency on the number of iterations and
CPU time in seconds. Since all algorithms have a specific set of unspecified parame-
ters, different values of them are plotted to give a representative overall impression.
The reason for showing the performance both in dependency on the number of it-
erations and CPU time is twofold: (1) in the presented case where the PET system
matrix K is pre-computed and thus available explicitly, the evaluation of forward
and backward projections is nearly negligible and TV relevant computations have
the most contribution to the run time such that the CPU time will be a good indicator
for algorithm’s performance; (2) in practically relevant cases where the forward and
backward projections have to be computed in each iteration step implicitly and in
general are computationally consuming, the number of iterations and thus the num-
ber of projection evaluations will be the crucial factor for algorithm’s efficiency. In
the following, we individually discuss the behavior of algorithms observed for the
regularization parameter α = 0.08 (10.64) with the “ground truth” solution shown
in Figure 10.3:

• FB-EM-TV(-Nes83): The evaluation of FB-EM-TV based algorithms is shown
in Figure 10.4. The major observation for any δ in (10.65) is that the inexact
computations of TV proximal problems lead to a restrictive approximation of
the “ground truth” solution where the approximation accuracy stagnates after
a specific number of iterations depending on δ . In addition, it can also be ob-
served that the relative error (10.67) becomes better with more accurate TV
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proximal solutions (i.e., smaller δ ) indicating that a decreasing sequence δ (r)

should be used to converge against the solution of (10.64) (see, e.g., [161, 175]
for convergence analysis of inexact proximal gradient algorithms). However, as
indicated in [119] and is shown in Figure 10.4, the choice of δ provides a trade-
off between the approximation accuracy and computational cost such that the
convergence rates proved in [161, 175] might be computationally not optimal.
Another observation concerns the accelerated modification FB-EM-TV-Nes83.
In Figure 10.4 we can observe that the performance of FB-EM-TV can actually
be improved by FB-EM-TV-Nes83 regarding the number of iterations but only
for smaller values of δ . One reason might be that using FB-EM-TV-Nes83 we
have seen in our experiments that the gradient descent parameter 0 < η ≤ 1
[153] in (10.22) has to be chosen smaller with increased TV proximal accuracy
(i.e., smaller δ ). Since in such cases the effective regularization parameter value
in each TV proximal problem is ηα , a decreasing η will result in poorer denois-
ing properties increasing the inexactness of TV proximal operator. Recently, an
(accelerated) inexact variable metric proximal gradient method was analyzed in
[52] providing a theoretical view on such a type of methods.
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Fig. 10.4: Performance of FB-EM-TV (dashed lines) and FB-EM-TV-Nes83 (solid lines) for dif-
ferent accuracy thresholds δ (10.65) within the TV proximal step. Evaluation of relative error
(10.67) is shown as a function of the number of iterations (left) and CPU time in seconds (right).

• (Precond-)CP-E: In Figure 10.5, the algorithms CP-E and Precond-CP-E are
evaluated. In contrast to FB-EM-TV-(Nes83), the approximated solution cannot
be influenced by inexact computations such that a decaying behavior of relative
error can be observed. The single parameter that affects the convergence rate is
the dual steplength σ and we observe in Figure 10.5(a) that some values yield
a fast initial convergence (see, e.g., σ = 0.05 and σ = 0.1), but are less suited
to achieve fast asymptotic convergence and vice versa (see, e.g., σ = 0.3 and
σ = 0.5). However, the plots in Figure 10.5(b) indicate that σ ∈ [0.2,0.3] may
provide an acceptable trade-off between initial and asymptotic convergence in
terms of the number of iterations and CPU time. Regarding the latter mentioned
aspect we note that in case of CP-E the more natural setting of σ would be
σ =

√‖∇‖2 + ‖K‖2 what is approximately 0.29 in our experiments providing
acceptable trade-off between initial and asymptotic convergence. Finally, no
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acceleration was observed in case of Precond-CP-E algorithm due to the regular
structure of linear operators ∇ and K in our experiments such that the perfor-
mance is comparable to CP-E with σ = 0.5 (see Figure 10.5(a)).
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(a) Evaluation of relative error for fixed dual step sizes s .

(b) Performance to get the relative error below the threshold å  as a function of dual step size s.

Fig. 10.5: Performance of Precond-CP-E (dashed lines in ((a))) and CP-E (solid lines) for different
dual step sizes σ . ((a)) Evaluation of relative error as a function of the number of iterations (left)
and CPU time in seconds (right). ((b)) Required number of iterations (left) and CPU time (right)
to get the relative error below a predefined threshold ε as a function of σ .

• (Precond-)CP-SI: In Figures 10.6 and 10.7, the evaluation of CP-SI and Precond-
CP-SI is presented. Since a TV proximal operator has to be approximated in
each iteration step, the same observations can be made as in case of FB-EM-
TV that depending on δ the relative error stagnates after a specific number of
iterations and that the choice of δ provides a trade-off between approximation
accuracy and computational time (see Figure 10.6 for Precond-CP-SI). In addi-
tion, since the performance of CP-SI not only depends on δ but also on the dual
steplength σ , the evaluation of CP-SI for different values of σ and two stopping
values δ is shown in Figure 10.7. The main observation is that for smaller σ a
better initial convergence can be achieved in terms of the number of iterations
but results in less efficient performance regarding the CPU time. The reason is
that the effective regularization parameter within the TV proximal problem is
τα (see (10.22)) with τ = (σ‖K‖2)−1 and a decreasing σ leads to an increasing
TV denoising effort. Thus, in practically relevant cases, σ should be chosen op-
timally in a way balancing the required number of iterations and TV proximal
computation.

• PIDSplit+: In Figure 10.8 the performance of PIDSplit+ is shown. It is well
evaluated that the convergence of ADMM based algorithms is strongly depen-
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Fig. 10.6: Performance of Precond-CP-SI for different accuracy thresholds δ (10.65) within the
TV proximal step. Evaluation of relative error as a function of number of iterations (left) and CPU
time in seconds (right).
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(a) Performance with TV proximal accuracy d = 0.05 (65).

(b) Performance with TV proximal accuracy d = 0.005 (65).

Fig. 10.7: Performance of Precond-CP-SI (dashed lines) and CP-SI (solid lines) for different dual
step sizes σ . Evaluation of relative error as a function of number of iterations (left) and CPU time in
seconds (right) for accuracy thresholds δ = 0.05 ((a)) and δ = 0.005 ((b)) within the TV proximal
problem.

dent on the augmented Lagrangian parameter γ (10.26) and that some values
yield a fast initial convergence but are less suited to achieve a fast asymptotic
convergence and vice versa. This behavior can also be observed in Figure 10.8
(see γ = 30 in upper row).

Finally, to get a feeling how the algorithms perform against each other, the required
CPU time and number of projection evaluations to get the relative error (10.67)
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Fig. 10.8: Performance of PIDSplit+ for fixed augmented Lagrangian penalty parameters γ
(10.26). Evaluation of relative error as a function of number of iterations (left) and CPU time
in seconds (right).

below a predefined threshold are shown in Table 10.1 for two different values of ε .
The following observations can be made:

• The FB-EM-TV based algorithms are competitive in terms of required number
of projection evaluations but have a higher CPU time due to the computation
of TV proximal operators, in particular the CPU time strongly grows with de-
creasing ε since TV proximal problems have to be approximated with increased
accuracy. However, in our experiments, a fixed δ was used in each TV denois-
ing step and thus the performance can be improved utilizing the fact that a rough
accuracy is sufficient at the beginning of the iteration sequence without influenc-
ing the performance regarding the number of projector evaluations negatively
(cf. Figure 10.4). Thus, a proper strategy to iteratively decrease δ in (10.65) can
strongly improve the performance of FB-EM-TV based algorithms.

• The CP-E algorithm is optimal in our experiments in terms of CPU time since
the TV regularization is computed by the shrinkage operator and thus is simply
to evaluate. However, this algorithm needs almost the highest number of projec-
tion evaluations that will result in a slow algorithm in practically relevant cases
where the projector evaluations are highly computationally expansive.

• The PIDSplit+ algorithm is slightly poorer in terms of CPU time than CP-E but
required a smaller number of projector evaluations. However, we remind that
this performance may probably be improved since two PCG iterations were
used in our experiments and thus two forward and backward projector evalua-
tions are required in each iteration step of PIDSplit+ method. Thus, if only one
PCG step is used, the CPU time and number of projector evaluations can be de-
creased leading to a better performing algorithm. However, in the latter case, the
total number of iteration steps might be increased since a poorer approximation
of (10.66) will be performed if only one PCG step is used. Another opportu-
nity to improve the performance of PIDSplit+ algorithm is to use the proximal
ADMM strategy described in Section 6.4, namely, to remove KTK from (10.66).
That will result in only a single evaluation of forward and backward projectors
in each iteration step but may lead to an increased number of total number of
algorithm iterations.
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Table 10.1: Performance evaluation of algorithms described above for α = 0.08 (see u∗α in Fig-
ure 10.3 (middle)). The table displays the CPU time in seconds and required number of forward
and backward projector evaluations (K/KT) to get the relative error (10.67) below the error toler-
ance ε . For each algorithm the best performance regarding the CPU time and K/KT evaluations
are shown where � means that the value coincides with the value directly above.

ε = 0.05 ε = 0.005

K/KT CPU K/KT CPU

FB-EM-TV (best K/KT) 20 40.55 168 4999.71

� (best CPU) � � 230 3415.74

FB-EM-TV-Nes83 (best K/KT) 15 14.68 231 308.74

� (best CPU) � � � �

CP-E (best K/KT) 48 4.79 696 69.86

� (best CPU) � � � �

CP-SI (best K/KT) 22 198.07 456 1427.71

� (best CPU) 25 23.73 780 1284.56

PIDSplit+ (best K/KT) 30 7.51 698 179.77

� (best CPU) � � � �

Finally, to study the algorithm’s stability regarding the choice of regularization pa-
rameter α , we have run the algorithms for two additional values of α using the
parameters shown the best performance in Table 10.1. The additional penalty pa-
rameters include a slightly under-smoothed and over-smoothed result respectively
as shown in Figure 10.3 and the evaluation results are shown in Tables 10.2 and 10.3.
In the following we describe the major observations:

• The FB-EM-TV method has the best efficiency in terms of projector evalua-
tions, independently from the penalty parameter α , but has the disadvantage
of solving a TV proximal problem in each iteration step which get harder to
solve with increasing smoothing level (i.e., larger α) leading to a negative com-
putational time. The latter observation holds also for the CP-SI algorithm. In
case of a rough approximation accuracy (see Table 10.2), the FB-EM-TV-Nes83
scheme is able to improve the overall performance, respectively at least the
computational time for higher accuracy in Table 10.3, but here the damping pa-
rameter η in (10.22) has to be chosen carefully to ensure the convergence (cf.
Table 10.2 and 10.3 in case of α = 0.2). Additionally based on Table 10.1, a
proper choice of η is dependent not only on α but also on the inner accuracy of
TV proximal problems.

• In contrast to FB-EM-TV and CP-SI, the remaining algorithms provide a supe-
rior computational time due to the solution of TV related steps by the shrinkage
formula but show a strongly increased requirements on projector evaluations
across all penalty parameters α . In addition, the performance of these algo-
rithms is strongly dependent on the proper setting of free parameters (σ in case
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of CP-E and γ in PIDSplit+) which unfortunately are able to achieve only a fast
initial convergence or a fast asymptotic convergence. Thus different parameter
settings of σ and γ were used in Tables 10.2 and 10.3.

Table 10.2: Performance evaluation for different values of α (see Figure 10.3). The table dis-
plays the CPU time in seconds and required number of forward and backward projector evalua-
tions (K/KT) to get the relative error (10.67) below the error tolerance ε = 0.05. For each α , the
algorithms were run using the following parameters: FB-EM-TV (δ = 0.1), FB-EM-TV-Nes83
(δ = 0.1, η = 0.5), CP-E (σ = 0.07), CP-SI (δ = 0.1, σ = 0.05), PIDSplit+ (γ = 10), which were
chosen based on the “best” performance regarding K/KT for ε = 0.05 in Table 10.1.

α = 0.04 α = 0.08 α = 0.2

K/KT CPU K/KT CPU K/KT CPU

FB-EM-TV 28 16.53 20 40.55 19 105.37

FB-EM-TV-Nes83 17 5.26 15 14.68 - -

CP-E 61 6.02 48 4.79 51 5.09

CP-SI - - 25 23.73 21 133.86

PIDSplit+ 32 8.08 30 7.51 38 9.7

Table 10.3: Performance evaluation for different values of α (see Figure 10.3) as in Table 10.2
but for ε = 0.005 and using the following parameters: FB-EM-TV (δ = 0.005), FB-EM-TV-Nes83
(δ = 0.005, η = 0.05), CP-E (σ = 0.2), CP-SI (δ = 0.005, σ = 0.3), PIDSplit+ (γ = 3).

α = 0.04 α = 0.08 α = 0.2

K/KT CPU K/KT CPU K/KT CPU

FB-EM-TV 276 2452.14 168 4999.71 175 12612.7

FB-EM-TV-Nes83 512 222.98 231 308.74 - -

CP-E 962 94.57 696 69.86 658 65.42

CP-SI 565 1117.12 456 1427.71 561 7470.18

PIDSplit+ 932 239.35 698 179.77 610 158.94

8.2 Spectral X-Ray CT

Conventional X-ray CT is based on recording changes in the X-ray intensity due to
attenuation of X-ray beams traversing the scanned object and has been applied in
clinical practice for decades. However, the transmitted X-rays carry more informa-
tion than just intensity changes since the attenuation of an X-ray depends strongly
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on its energy [2, 109]. It is well understood that the transmitted energy spectrum
contains valuable information about the structure and material composition of the
imaged object and can be utilized to better distinguish different types of absorbing
material, such as varying tissue types or contrast agents. But the detectors employing
in traditional CT systems provide an integral measure of absorption over the trans-
mitted energy spectrum and thus eliminate spectral information [39, 158]. Even so,
spectral information can be obtained by using different input spectra [77, 193] or us-
ing the concept of dual-layer (integrating) detectors [40]. This has limited the prac-
tical usefulness of energy-resolving imaging, also referred to as spectral CT, to dual
energy systems. Recent advances in detector technology towards binned photon-
counting detectors have enabled a new generation of detectors that can measure and
analyze incident photons individually [39] providing the availability of more than
two spectral measurements. This development has led to a new imaging method
named K-edge imaging [113] that can be used to selectively and quantitatively im-
age contrast agents loaded with K-edge materials [75, 137]. For a compact overview
on technical and practical aspects of spectral CT we refer to [39, 158].
Two strategies have been proposed to reconstruct material specific images from
spectral CT projection data and we refer to [158] for a compact overview. Either
of them is a projection-based material decomposition with a subsequent image re-
construction. This means that in the first step, estimates of material-decomposed
sinograms are computed from the energy-resolved measurements, and in the second
step, material images are reconstructed from the decomposed material sinograms. A
possible decomposition method to estimate the material sinograms fl , l = 1, . . . ,L,
from the acquired data is a maximum-likelihood estimator assuming a Poisson noise
distribution [150], where L is the number of materials considered. An accepted noise
model for line integrals fl is a multivariate Gaussian distribution [158, 159] lead-
ing to a penalized weighted least squares (PWLS) estimator to reconstruct material
images ul:

1
2
‖ f − (IL ⊗K)u‖2

Σ−1 +αR(u)→ min
u
, α > 0, (10.68)

where f = ( f T
1 , . . . , f T

L)
T, u = (uT

1, . . . ,u
T
L)

T, IL denotes the L× L identity matrix, ⊗
represents the Kronecker product, and K is the forward projection operator. The
given block matrix Σ is the covariance matrix representing the (multivariate) Gaus-
sian distribution, where the off-diagonal block elements describe the inter-sinogram
correlations, and can be estimated, e.g., using the inverse of the Fisher information
matrix [149, 159]. Since f is computed from a common set of measurements, the
correlation of the decomposed data is very high and thus a significant improvement
can in fact be expected intuitively by exploiting the fully populated covariance ma-
trix Σ in (10.68). In the following, we exemplary show reconstruction results on
spectral CT data where (10.68) was solved by a proximal ADMM algorithm with a
material independent total variation penalty function R as discussed in [155]. For a
discussion why ADMM based methods are more preferable for PWLS problems in
X-ray CT than, e.g., gradient descent based techniques, we refer to [145].
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Figures 10.10 and 10.11 show an example for a statistical image reconstruction
method applied to K-edge imaging. A numerical phantom as shown in Figure 10.9
was employed in a spectral CT simulation study assuming a photon-counting de-
tector. Using an analytical spectral attenuation model, spectral measurements were
computed. The assumed X-ray source spectrum and detector response function of
the photon-counting detector were identical to those employed in a prototype spec-
tral CT scanner described in [160]. The scan parameters were set to tube voltage
130 kVp, anode current 200 μA, detector width/height 946.38/1.14mm, number of
columns 1024, source-to-isocenter/-detector distance 570/1040 mm, views per turn
1160, time per turn 1 s, and energy thresholds to 25, 46, 61, 64, 76, and 91 keV.
The spectral data were then decomposed into ‘photo-electric absorption’, ‘Compton
effect’, and ‘ytterbium’ by performing a maximum-likelihood estimation [150]. By
computing the covariance matrix Σ of the material decomposed sinograms via the
Fisher information matrix [149, 159] and treating the sinograms as the mean and Σ
as the variance of a Gaussian random vector, noisy material sinograms were com-
puted. Figures 10.10 and 10.11 show material images that were then reconstructed
using the traditional filtered backprojection (upper row) and proximal ADMM algo-
rithm as described in [155] (middle and lower row). In the latter case, two strategies
were performed: (1) keeping only the diagonal block elements of Σ in (10.68) and
thus neglecting cross-correlations and decoupling the reconstruction of material im-
ages (middle row); (2) using the fully populated covariance matrix Σ in (10.68)
such that all material images have to be reconstructed jointly (lower row). The re-
sults suggest, best visible in the K-edge images in Figure 10.11, that the iterative re-
construction method, which exploits knowledge of the inter-sinogram correlations,
produces images that possess a better reconstruction quality. For comparison of iter-
ative reconstruction strategies, the regularization parameters were chosen manually
so the reconstructed images possessed approximately the same variance within the
region indicated by the dotted circle in Figure 10.9. Further (preliminary) results
that demonstrate advantages of exploiting inter-sinogram correlations on computer-
simulated and experimental data in spectral CT can be found in [155, 189].

Fig. 10.9: Software thorax phantom comprising sternum, ribs, lungs, vertebrae, and one circle and
six ellipsoids containing different concentrations of K-edge material ytterbium [137]. The phantom
was used to simulate spectral CT measurements with a six-bin photon-counting detector.
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Fig. 10.10: Reconstructions based on the thorax phantom (see Figure 10.9) using the traditional
filtered backprojection with Shepp-Logan filter (upper row) and a proximal ADMM algorithm
as described in [155] (middle and lower row). The middle row shows results based on (10.68)
neglecting cross-correlations between the material decomposed sinograms and lower row using the
fully populated covariance matrix Σ . The material images show the results for the ‘Compton effect’
(left column) and ‘photo-electric absorption’ (right column). The K-edge material ‘ytterbium’ is
shown in Figure 10.11.
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Fig. 10.11: Reconstructions of the K-edge material ‘ytterbium’ using the thorax phantom shown
in Figure 10.9. For details see Figure 10.10. To recognize the differences, the maximal intensity
value of original reconstructed images shown in left column was set down in the right column.
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Chapter 11
A Parameter Free ADI-Like Method
for the Numerical Solution of Large
Scale Lyapunov Equations

Danny C. Sorensen

Abstract This work presents an algorithm for constructing an approximate numer-
ical solution to a large scale Lyapunov equation in low rank factored form. The
algorithm is based upon a synthesis of an approximate power method and an al-
ternating direction implicit (ADI) method. The former is parameter free and tends
to be efficient in practice but there is little theoretical understanding of its conver-
gence properties. The ADI method has a well-understood convergence theory, but
the method relies upon selection of shift parameters and a poor shift selection can
lead to very slow convergence in practice. The algorithm presented here uses an
approximate power method iteration to obtain a basis update and then constructs a
re-weighting of this basis to provide a factorization update that satisfies ADI-like
convergence properties.

1 Introduction

This chapter is concerned with approximating solutions to large scale Lyapunov
equations of the form

AP+PAT +BBT = 0 (11.1)

where A ∈ R
n×n and B ∈ R

n×p with A stable (all eigenvalues in the open left half-
plane) and p ≤ n. It is well known that the solution P is symmetric and positive
semidefinite and that P is definite if and only if rank[λ I−A,B] = n for all λ ∈ C

(see e.g., [22]). However, even when P is positive definite, it is often the case that the
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eigenvalues of P decay rapidly so that P may be well approximated by a low rank
matrix [15, 3]. This decay is essential for obtaining a practical numerical solution
with an iterative method.

This rapid decay of eigenvalues arises in numerous applications involving control
of dynamical systems. In that setting, there is considerable interest in obtaining
approximate solutions P ≈ LLT in low rank factored form, meaning that L ∈ R

n×k

is a rank k matrix factor with k ( n. If such an approximation has been obtained, one
can efficiently construct an approximate balanced reduction of a large scale linear
time invariant system [1].

A number methods for the numerical solution of large Lyapunov equations
have been proposed and investigated. These include matrix sign function methods
[4, 10, 5] and Krylov Projection Methods [6, 18]. Two methods that are of par-
ticular interest are approximate power methods [9] and ADI or Smith methods
[19, 15, 11, 8]. Approximate power methods can be quite effective in practice but
very little is known about convergence. On the other hand, there is an elegant con-
vergence theory for ADI methods that is complete and well understood [11, 8].
Unfortunately, the performance of ADI methods is heavily dependent upon shift pa-
rameters and a poor shift selection can easily lead to very slow convergence. There
is a theory of optimal shift selection for the symmetric case and some results for
spectra in restricted regions of the complex plane discussed in Ellner and Wach-
spress [7]. A more practical suboptimal heuristic choice was suggested by Penzl
[15]. An extremely effective shift selection scheme was developed by J. Sabino in
his Ph.D. thesis [17].

The purpose of this chapter is to derive an algorithm that retains ADI conver-
gence properties without the need to select parameters. Parameter selection is done
automatically through the approximate power method. This can be an advantage
over explicit parameter selection schemes in the absence of detailed information
about the spectrum of A.

2 The Alternating Direction Implicit Method

This section will provide a brief derivation of the ADI or Smith method for Lya-
punov Equations.

From the original equation

AP+PAT +BBT = 0

Apply a real shift μ < 0 from left

P =−(A+ μI)−1 [P(A− μI)T +BBT ] (11.2)

Then, apply shift μ from right (Alternate Direction)

P =−[
(A− μI)P+BBT ](A+ μI)−T (11.3)
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Finally, substitute the formula for P in (11.2) into the right-hand side of (11.3) to
get a Stein Equation of the form

P = AμPAT
μ +BμBT

μ ⇐⇒ AP+PAT +BBT = 0, (11.4)

where
Aμ = (A− μI)(A+ μI)−1, Bμ =

√
2|μ |(A+ μI)−1B.

A convenient aspect of this formulation is that the analytic solution can be written
as an infinite matrix series

P =
∞

∑
j=0

A j
μBμBT

μ(A
j
μ)

T = LLT , (11.5)

where L = [Bμ , AμBμ , A2
μBμ , . . . ] and hence this expresses the solution in fac-

tored form. This formulation has two advantages. First, a solution constructed this
way is automatically positive definite when L has full rank. Second, in practice, the
successive terms usually decay rapidly and hence a low rank approximation to the
solution is naturally obtained. This is the key idea (going back to Penzl [15]) that
makes the approximation to solutions of large scale Lyapunov equations computa-
tionally tractable. Moreover, this formulation suggests the iteration

P j+1 = AμPjAT
μ +BμBT

μ , j = 0,1,2, . . . ,

with P0 = 0 as a means to construct an approximate solution.
The original formulation of ADI by Peaceman and Rachford [14] did not com-

bine the two steps (11.2) and (11.3) into the single step indicated in Equation (11.4).
In fact, the original ADI formulation was not explicitly expressed in terms of matrix
equations. Following the original formulation, the ADI iteration has traditionally
been expressed in “half-steps”. Thus, if Pj is the approximate solution at step j then
the approximate solution Pj+ 1

2
is obtained after solving the “split” Equation (11.2)

in the form

P j+ 1
2
=−(A+ μI)−1 [Pj(A− μI)T +BBT ] (11.6)

Then P j+1 is obtained by solving Equation (11.3) in the form

Pj+1 =−
[
(A− μI)Pj+ 1

2
+BBT

]
(A+ μI)−T . (11.7)

This iteration has been analyzed and used extensively throughout the numerical PDE
literature. However the one step formulation of Equation (11.4) exposes the insight
of the factored form of the solution in Equation (11.5) and also lends itself to some
fairly straightforward analysis.

For example, since A is asymptotically stable, it follows that the spectral radius
of Aμ is less than 1. Therefore, since

Pm =
m

∑
j=0

A j
μBμBT

μ(A
j
μ)

T



412 D.C. Sorensen

and

Pm+1 = AμPmAT
μ +BμBT

μ ,

it is easily shown that

Em+1 = AμEmAT
μ = Am+2

μ P(Am+2
μ )T → 0, (11.8)

where Em = P−Pm.

When the shift μ is complex with ρ = Real(μ)< 0, essentially the same deriva-
tion and analysis will be valid with

Aμ = (A− μ̄I)(A+ μI)−1, Bμ =
√

2|ρ |(A+ μI)−1B,

and with “transpose” replaced by “conjugate transpose” in the above equations.
The Low-Rank Smith method developed by Penzl [15] repeatedly updates the

factored form Pm = LmLT
m via

Lm+1 = [AμLm,Bμ ]

= [Am+1
μ Bμ ,Lm].

The second formulation of the update may be implemented by Z0 = B j , Zm+1 ←
AμZm Since L typically has many more columns than B, this is far less expensive
than the first formulation but is potentially unstable when A is highly non-normal.
Both formulations may require prohibitively large amounts of storage.

An asymptotic convergence rate is obtained from the spectral radius ρ(Aμ) and
one may attempt to select an optimal value of μ to minimize this spectral radius.
Usually a single shift μ is not sufficient to obtain a spectral radius significantly less
than one. Therefore multiple shifts are recommended. However each individual shift
requires a matrix factorization which must be stored or re-computed each time a par-
ticular shift is applied. In [8] a Modified Smith Method was developed to overcome
the storage difficulties and also to enable applications of multiple shifts with only
one matrix factorization per shift.

A full implementation of the multi-shift method, shown in Figure 11.1, propa-
gates a low rank SVD approximation to Lm and aggregates the shift application so
that all instances of a particular shift are applied before the next shift is brought in.
In addition, a stopping rule would be specified in place of a fixed number (ksteps)
of shift applications. Moreover, at each shift application, the SVD of L is updated
and truncated in a manner that limits storage but maintains sufficient accuracy of the
SVD approximation to L. The aggregated shift formulation may be derived from the
Residual Equation (11.8). This modified Smith method is much faster and requires
far less storage than the original method.
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Fig. 11.1 Modified Low Rank Smith (Multishift-Smith)

The key to performance, however, is still the selection of shifts to minimize the
spectral radius of the product Aμ1Aμ2 · · ·Aμk . The complete details of this imple-
mentation and its performance are available in [8].

3 The Approximate Power Method (APM)

A very different approach called the Approximate Power Method (APM) was sug-
gested by Hodel et al. [9]. The idea is to utilize a subspace iteration technique to
approximately compute the dominant invariant subspace of P. The difficulty with
such an approach is that the matrix P is not available and thus approximate matrix-
matrix products of the form Z = PU must be provided indirectly. The idea is to use
the structure of the Lyapunov equation and note that if P is a solution and U is any
n× k matrix then

APU+PAT U+BBT U = 0.

Simply adding and subtracting the term PUUT AT U gives

APU+PUUT AT U+BBT U+P(I−UUT )AT U = 0.

If we think of P(I−UUT )AT U as a small error term then

APU+PUHT +BBT U ≈ 0, where H = UT AU.

Thus, solving

AZ+ZHT +BBT U = 0 (11.9)

gives an approximation
Z ≈ PU

to the desired matrix-matrix product.
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The simplest form of the Approximate Power Method iterates this calculation
with

H j = UT
j AU j, [U j+1,S j+1,W j+1] = svd(Z j) for j = 1,2, ...

where Z j is obtained by solving (11.9). The APM iteration may be initialized
by setting U0 = Q where the n× k orthogonal matrix Q is obtained from a QR-
factorization of a random n × k matrix. Variants of the APM pose the results of
(11.9) as an update equation (see [2]).

This iteration can often provide very good results and convergence is rapid in
many cases. However, there is no assurance that the discarded error term P(I −
UUT )AT U is small and when it is not, the convergence may be slow or non-existent.
This difficulty has been addressed with some success in [23, 21]. However, the
approach put forth in the next section will finesse this difficulty.

4 A Parameter Free ADI Method

The ultimate goal of both the APM and the ADI methods is to construct a basis U
for the dominant invariant subspace of P corresponding its largest eigenvalues. The
shortcomings of each of these can be overcome by combining the two in a way that
automatically selects shifts for the ADI method and also overcomes the possible
effect of the troublesome error term in APM.

Observe that whenever U is a basis for an invariant subspace of P then PU = UP̂
(for some matrix P̂) and

0 = UT (APU+PAU+BBT U) = HP̂+ P̂HT + B̂B̂T ,

where H = UT AU and B̂ = UT B. This projected Lyapunov equation will play a key
role in a synthesis of the APM and ADI methods. It is combined with the Sylvester
equation of the APM.

This synthesis of the APM and ADI methods consists of a Parameter Free ADI
Iteration (PFADI) that has four basic steps. At the j-th iterate of an outer iteration,
an orthogonal basis U j for an approximate invariant subspace of P is assumed to
be available. This basis provides for an approximate factorization P j = L jLT

j with

L j = U jS j and P j(U j) = U jS2
j . Thus, U j is an orthonormal basis for the range of

P j and is at the same time the basis for the dominant invariant subspace of U j. A
selected subspace of Range(U) is spanned by the columns of an ortho-normal matrix
U j typically with fewer columns than U. Typically, we think of U j as a basis for the
dominant invariant subspace of P j, but other choices are possible. The number of
columns of U j is unspecified and can, for example, be a small number and vary at
each outer step j. At step j, the four inner iteration steps shown in Figure 11.2 are
performed. To begin the iteration, initialize L1 = 0 and B1 = B.
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Fig. 11.2 A Parameter Free Lyapunov Solver (PFADI)

The motivation for these steps resides in the following results. The re-scaling
at Step 4 provides an update to the factorization that will always maintain P ) P j.
The modification to B j at Step 4 provides an updated Lyapunov equation for the
difference P−Pj+1. Each subsequent iteration of these four basic steps provides
an incremental update to the approximate factorization such that P ) Pj+1 ) P j.
Hence, the iteration will automatically be convergent.

The reduced Lyapunov equation at Step 1 might not possess a stable matrix H j

(although this would be assured near convergence). Thus, the additional assumption
that A+AT is negative definite shall be made. This condition is often satisfied in
practice and it assures that H j = UT

j AU j is always stable. To see this, just note that
if H jx = xλ with x∗x = 1, then

0 > y∗(A+AT )y = y∗Ay+ y∗Ay = λ + λ̄ = 2Re(λ ),

since λ = x∗xλ = x∗Hx= y∗Ay with y = U jx. Hence Re(λ )< 0 for any eigenvalue
λ of H j.

The following lemmas will establish the convergence properties. In the following
discussion, it is assumed that P̂ is always positive definite. In fact, it is possible to
modify this algorithm to assure that cond(P̂) uniformly bounded. This amounts to
selecting a subspace corresponding to the leading eigenvalues of P̂ and projecting to
this subspace. The following results are also valid for this modification which will
be introduced in detail in Section 5 where implementation issues are discussed.

Lemma 1. Let Z j, P̂ j,B j and H j be defined as in Figure 11.2 in Steps 1–3, and let

G j = P̂
−1
j . Then

AZ jG jZT
j +Z jG jZT

j AT +B jBT
j = B j+1BT

j+1,

where B j+1 ≡ (I−Z jG jUT
j )B j .
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Proof: Set G j = P̂
−1
j and note G j = GT

j since P̂ j is symmetric. From the equations
in Steps 1 and 2 of Figure 11.2, we obtain

AZ jG jZT
j =−[Z jHT

j +B jBT
j U j]G jZT

j

after multiplication on the right by G jZT
j . Thus

AZ jG jZT
j +Z jG jZT

j AT = −Z j[HT
j G j +G jH j]ZT

j −B jBT
j U jG jZT

j −Z jG jUT
j B jBT

j

= Z j[G jUT
j B jBT

j U jG j]ZT
j −B jBT

j U jG jZT
j −Z jG jUT

j B jBT
j ,

and hence

AZ jG jZT
j + Z jG jZT

j AT +B jBT
j

= Z jG jUT
j B jBT

j U jG jZT
j −B jBT

j U jG jZT
j −Z jG jUT

j B jBT
j +B jBT

j

= (I−Z jG jUT
j )B jBT

j (I−U jG jZT
j )

= B j+1BT
j+1.

�
This result leads immediately to an equation for the difference P−Pj.

Lemma 2. Let the hypothesis of Lemma 1 hold. Then

AP j +PjAT +BBT = B jBT
j , (11.10)

and

A(P−Pj)+ (P−Pj)AT +B jBT
j = 0. (11.11)

As a consequence, P ) P j+1 ) P j ) 0 for j = 1,2, . . . .

Proof: The proof will be an induction. Since B1 = B and P1 = 0, Equations (11.10)
and (11.11) are trivially satisfied when j = 1. Assume that Equations (11.10) and
(11.11) are true for some j ≥ 1. It follows from Lemma 1 that

APj +PjAT +BBT = B jBT
j

= B j+1BT
j+1 − [AZ jG jZT

j +Z jG jZT
j AT ].

Hence,

A(P j +Z jG jZT
j )+ (Pj +Z jG jZT

j )A
T +BBT = B j+1BT

j+1

to establish

APj+1 +Pj+1AT +BBT = B j+1BT
j+1, (11.12)
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since P j+1 = P j +Z jG jZT
j . The update of Equation (11.11) readily follows from

Equation (11.12) since P solves the original Lyapunov equation and the induction is
complete.

Equation (11.11) implies P ) Pj for all j and clearly P j+1 ) P j ) 0 since G j is
positive definite for all j and this completes the proof. �

Lemma 11.11 establishes that the iteration will provide a sequence of symmetric
positive semidefinite matrices P j = L jLT

j which satisfy P ) P j+1 ) P j for all j =
1,2, . . . . The following lemma will establish that the sequence P j is convergent. This
lemma is proved in far greater generality for bounded symmetric linear operators in
Hilbert space in Riesz and SZ.-Nagy [16] where the result is attributed to J.P. Vigier
in his Ph.D. thesis.

Lemma 3. Suppose P� is a sequence of symmetric matrices such that P)P�+1 )P�,
Where P is a fixed symmetric matrix. Then lim�→∞ P� = Po * P exists.

Proof: Let ρ (�)
i j denote the i j-th element of P� and let ρi j denote the i j-th element

of P. The definition of the partial ordering ) implies that eT
j Pe j ≥ eT

j P�+1e j ≥
eT

j P�e j and hence that ρ j j ≥ ρ (�+1)
j j ≥ ρ (�)

j j . Thus {ρ (�)
j j } is an increasing sequence

bounded above and hence convergent to a limit ρ (o)
j j ≤ ρ j j for each j = 1,2, . . . ,n.

Moreover, the fact that μii + μ j j ≥ 2|μi j| for any symmetric positive semi-definite
matrix M = (μi j) will imply that

(ρ (�+1)
ii −ρ (�)

ii )+ (ρ (�+1)
j j −ρ (�)

j j )≥ 2|ρ (�+1)
i j −ρ (�)

i j |,

for all � and for all (i, j). Observe that

∞

∑
�=1

(ρ (�+1)
ii −ρ (�)

ii )+ (ρ (�+1)
j j −ρ (�)

j j )≤ (ρii −ρ (1)
ii )+ (ρ j j −ρ (1)

j j )

since the series is telescoping. Therefore, the series

∞

∑
�=1

|ρ (�+1)
i j −ρ (�)

i j | ≤ 1
2
[(ρii −ρ (1)

ii )+ (ρ j j −ρ (1)
j j )]

is convergent. Now, since

|ρ (m2)
i j −ρ (m1)

i j | ≤
m2−1

∑
�=m1

|ρ (�+1)
i j −ρ (�)

i j |

for any positive integers m1 < m2, it follows that the sequence {ρ (�)
i j } is Cauchy and

hence convergent for each (i, j). This concludes the proof. �

Another consequence of Lemma 1 is that the iteration is norm decreasing for B j

in the sense that ‖B j+1‖F < ‖B j‖F for all j.
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Lemma 4. Let the hypothesis of Lemma 1 hold, and let B j+1 be defined as in
Lemma 2 and let γmin ≤ vT (A + AT )v ≤ γmax < 0 for all v of norm one. Then
‖B j+1‖F ≤ ‖B j‖F + γmaxtrace(Z jG jZT

j )< ‖B j‖F for all j.

Proof: Let Z jG jZT
j =V jŜ jVT

j where Ŝ j is diagonal with positive diagonal elements
σ̂i and VT

j V j = I. From Lemma 1,

‖B j+1‖2
F = trace(B j+1BT

j+1)

= trace[AV jŜ jVT
j +V jŜ jVT

j AT ]+ trace(B jBT
j ).

However,

trace[AV jŜ jVT
j +V jŜ jVT

j AT ] = trace[VT
j AV jŜ j + Ŝ jVT

j AT V j]

=
k j

∑
i=1

vT
i (A+AT )viσ̂i

≤ γmaxtrace[Ŝ j]

< 0.

�

Lemma 5. Assume AX = XΛ is diagonalizable and let the hypothesis of Lemma 1
hold. Suppose also that B = b is a vector and that r = 1 throughout the iteration,
i.e., that U j = u j with P ju j = u jσ j the dominant eigenvector of P j. Let b j be the
rhs at step j. Then

‖b j+1‖ ≤ ρ j‖b j‖,
where ρ j = ρ((γ jI − A)(γ jI + A)−1) is the spectral radius, with γ j =

1
2 uT

j (A +

AT )u j < 0. Moreover, there is a constant ρ < 1 such that ρ j ≤ ρ for all j suffi-
ciently large.

Proof: From the definition of the quantities in the iteration, we have

Az j + z jγ j +b jβ j = 0 and γ jη̂ j + η̂ jγ j +β 2
j = 0,

where β j = uT
j b j and η j = P̂ j is used to emphasize that P j is a scalar in this case.

Thus

z j =−(γ jI+A)−1b jβ j and η̂ j =− β 2
j

2γ j
,
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so that

b j+1 = b j − z j(η̂ j)
−1uT

j b j

= b j − (γ jI+A)−1b jβ j(
2γ j

β 2
j

)β j

= b j − 2γ j(γ jI+A)−1b j

= (γ jI+A)−1[(γ jI+A)− 2γ jI]b j

= −(γ jI+A)−1(γ jI−A)b j.

Since A is stable and γ j < 0, the eigenvalues of A are mapped to the interior of
the unit disc under the Cayley transformation C j = (γ jI−A)(γ jI+A)−1. Hence,
the spectral radius satisfies ρ j = ρ((γ jI−A)(γ jI+A)−1) < 1 for all j. Since γ j →
γ < 0 is convergent and since ρ((γI−A)(γI+A)−1) < 1 there is a number ρ < 1
such that ρ j ≤ ρ for all j sufficiently large. Moreover, a standard argument will
show that ‖b j‖ ≤ ρ ( j−m)‖b‖ for all j > m, where m is a positive integer such that
cond(X)∏m

i=1 ρi < 1. This concludes the proof. �
Note that a consequence of this result is that b j → 0 and hence that P j → P (i.e.,

convergence to the true P at a linear rate).
A more general result will provide a direct relationship to the ADI method. In

fact, it can be shown that this parameter free method provides exactly the same
update as ADI would construct with shifts given by the eigenvalues of the projected
matrix H. The advantages of the parameter free approach is that these complex shifts
are automatically selected and they are applied indirectly through the solution of the
Sylvester equation which may be done in real arithmetic.

It is necessary to establish a formula for the update provided by ADI with a set
of shifts μ j, j = 1,2, . . .k. First, suppose that μ is a shift with ρ = Real(μ) < 0.
Then

P = AμPA∗
μ +BμB∗

μ and thus P = 2|ρ |
∞

∑
j=0

A j
μBμB∗

μ(A
j
μ)

∗,

where
Aμ = (A− μ̄I)(A+ μI)−1, Bμ = (A+ μI)−1B.

Let E = 2|ρ |BμB∗
μ . Then

A(P−E)+(P−E)AT = 2|ρ |
[

A

(
∞

∑
j=1

A j
μ Bμ BT

μ (A
j
μ )

∗
)

+

(
∞

∑
j=1

A j
μ Bμ BT

μ (A
j
μ )

∗
)

AT

]

= 2|ρ |Aμ

[
A

(
∞

∑
j=0

A j
μ Bμ BT

μ (A
j
μ )

∗
)

+

(
∞

∑
j=0

A j
μ Bμ BT

μ (A
j
μ )

∗
)

AT

]
A∗

μ

= Aμ
[
AP+PAT ]A∗

μ

= −Aμ
[
BBT ]A∗

μ
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Thus,
A(P−E)+ (P−E)AT +AμBBT A∗

μ = 0.

Now, define

Bμi ≡
(

i

∏
�=1

Aμ�

)
B, B(i) ≡

√
2|ρi|(A+ μiI)−1Bμi−1 , and Ei ≡ B(i)B(i)∗,(11.13)

with Bμ0 ≡ B. Then

A(P−Ei)+ (P−Ei)AT +BμiB
∗
μi
= 0, for i = 1,2, . . . ,k, (11.14)

where Ei ≡ E1 +E2 + · · ·+Ei.
The discussion leading to Equations (11.13), (11.14) are valid for arbitrary B.

However, when B is a vector it is possible to establish a direct relationship with the
ADI method.

Lemma 6. Suppose that B = b is a vector. Let H j =UT
j AU j ∈R

k×k and B̂ j =UT
j B j

where B j is the rhs at Step j. Then the update P j+1 = Pj +Z jP̂
−1

ZT
j is precisely the

same as the update that would be obtained by applying k steps of ADI with shifts
{μ1,μ2, . . . ,μk}= σ(H j) (the spectrum of H j).

Proof: From Equations (11.13), (11.14), the update obtained by applying shifts
{μ1,μ2, . . . , μk}= σ(H j) is of the form L jLT

j where

L j =
[
B(1),B(2), . . . ,B(k)

]
, with B(i) ≡

√
2ρi(A+ μ jI)−1

(
i−1

∏
�=1

Aμ�

)
B j,

and with ρi = |Real(μi)|.
Now, regardless of how the solution to AZ + ZHT

j +B jB̂ j
T
= 0 is obtained,

it is mathematically equivalent to the solution obtained by the ADI method. This
solution is given by Z j = L jL̂T

j where

B̂(i) ≡
√

2ρi(Ĥ j + μ jI)−1

(
i−1

∏
�=1

Ĥμi

)
B̂ j and L̂ j =

[
B̂(1), B̂(2), . . . , B̂(k)

]
.

Moreover, P̂ j = L̂ jL̂T
j is the solution to

H jP̂+ P̂HT
j + B̂ jB̂ j = 0.

Thus
Z j P̂

−1
ZT

j = L jLT
j

which is the same as would have been obtained by the ADI method with shifts μi.
This concludes the proof. �



11 PFADI 421

This result together with the fact that P j is convergent can be used to establish
a rate of convergence involving the spectral radius ρ(∏k

i=1 Aμi), where the {μi} are
the limits of the eigenvalues of H j. Unfortunately, the connection of the parameter
free iteration with ADI is not so straightforward in the case that B has m> 1 columns
and a rate of convergence has not yet been established for this case.

This automatic shift selection strategy is quite different than existing schemes
proposed in the literature such as the sophisticated scheme proposed in [12]. In
particular, for complex spectra, the Lu-Wachspress scheme [12] requires explicit
knowledge of all of the eigenvalues of the matrix A for an optimal shift selection.
At the very least, this theory requires that all eigenvalues of A lie within a cer-
tain “elliptic function domain”. Such information is generally not available in the
large scale setting. Moreover, if A is non-normal then its effective spectral proper-
ties with respect to iterative methods are determined by pseudo-spectra rather than
the traditional spectrum of A (see [20]). The PFADI scheme proposed here doesn’t
require any a priori knowledge of the spectrum of A. The shift parameters (which
are implicitly applied) are determined by the small projected matrix H whose spec-
trum is automatically determined and influenced by the pseudo-spectrum of A when
appropriate.

5 Implementation Details

There are a number of implementation details that must be specified in order to turn
the basic of PFADI into a complete algorithm (Figure 11.3). These details are briefly
outlined in this section.
Controlling the Condition of P̂: Computing the update ZGZT and the modifica-
tion B ← (I−ZGUT )B involves some delicate numerical issues that can introduce
instabilities into the algorithm if not properly handled. This problem arises when P̂
becomes ill-conditioned.

Recall that P̂ is obtained from the equation HP̂+ P̂HT + B̂B̂T = 0. The con-
vergence of Pj may be used to show that ZGUT B must be well behaved in exact

arithmetic even though G = P̂
−1

becomes arbitrarily large in norm as the iteration
progresses. However, in finite precision this term can be problematic and must be
handled with care.

One way to deal with this term is to control the conditioning of P̂. To do this,
one can just compute the eigensystem P̂ = QŜ2QT with σ̂1 ≥ σ̂2 ≥ ·· · ≥ σ̂m the
diagonal elements of Ŝ. The strategy is to maintain a uniformly bounded condition
number for P̂ via truncation. Namely, if σ̂k ≥ τσ̂1 ≥ σ̂k+1 then the search subspace
is reduced to order k using the leading k columns Qk of Q and the leading principal
order k submatrix Ŝk of Ŝ.

The Sylvester equation is then modified as follows:

1) Z j ← Z jQkŜ−1
k and 2) B j+1 = B j −Z jŜ−1

k QT
k UT

j B j
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The convergence theory will still be valid after this modification which should be
carried out prior to solving for Z.
Stopping Rules: The PFADI method has a very convenient and effective stopping
rule which follows directly from the equation

AP j +PjAT +BBT = B jBT
j .

Hence, ‖APj +PjAT +BBT‖ = ‖B j‖2 and thus with B j comes an immediate cal-
culation of the residual norm without having to explicitly compute the residual. This
suggest stopping the iteration when one or both of the following conditions are sat-
isfied:

1.
‖Pj+1−P j‖2
‖P j+1‖2

=
‖Z jP̂

−1/2
j ‖2

2

‖S j+1‖2
2

≤ tol

2.
‖B j‖2
‖B‖2

≤√
tol.

Fig. 11.3 A Parameter Free Lyapunov Solver (PFADI)

Solving the projected Sylvester equation:
In order to compute the update Z one must solve the projected Sylvester equation

AZ+ZHT +BB̂T = 0, where H = UT AU and B̂ = UT B.

To solve this equation, one could utilize a minor variant of the Bartels-Stewart algo-
rithm. If HT = QRQ∗ is a Schur decomposition of HT , then one may solve

AZ̃+ Z̃R+BB̃T = 0, where Z̃ = ZQ and B̃ = Q∗B̂.

Then put Z = Z̃Q∗. This takes the form
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for j = 1:k,

Solve (A−ρ j jI)z j = BB̃T e j −∑ j−1
i=1 ziρi, j;

end

where the elements of R have been denoted as ρi, j.
This approach has the advantage that the assumption that A+AT is negative

definite is no longer needed. The algorithm is valid regardless of the stability of H so
long as σ(A)∩σ(−H) = /0. On the other hand, each step requires the sparse direct
factorization of the matrix A−ρ j jI and this must be done in complex arithmetic
whenever an eigenvalue ρ j j of H is complex.

An alternative approach is to construct a basis [XT ,YT ]T for a block upper trian-
gular matrix: [

A M
0 −HT

][
X
Y

]
=

[
X
Y

]
R̂, (11.15)

where M = BB̂T . It is easily seen that the solution Z to the Sylvester equation is
recovered as Z = XY−1 whenever Y is nonsingular.

Notice that the spectrum of the block upper triangular matrix in Equation (11.15)
is σ(A)∪σ(−HT and it is easily seen that Y is nonsingular if and only if σ(R̂) =
σ(−HT ). This is established formally with the following lemma.

Lemma 7. In Equation (11.15), Y is nonsingular if and only if σ(R̂) = σ(−HT ).

Proof: The equation −HT Y = YR̂ follows directly from Equation 11.15. Thus,
whenever Y is nonsingular, σ(R̂) = σ(−HT ).

Now, suppose σ(R̂) = σ(−HT ). If Y is singular, let N be a basis for Null(Y)
and note Rank(N)≥ 1. Observe that

0 =−HT YN = YR̂N,

which shows each column of R̂N is in Null(Y). Hence R̂N = NK which implies the
spectrum σ(K)⊂ σ(R) = σ(−HT ). Now, it follows from Equation (11.15) that

XNK = XR̂N = AXN+MYN = AXN. (11.16)

Since

[
XN
0

]
=

[
X
Y

]
N is full rank, it follows that XN is full rank and hence Equa-

tion (11.16) implies σ(K)⊂ σ(A). This is a contradiction since σ(−HT )∩σ(A) =
which in turn implies Y must be nonsingular. �

The important consequence of this result is that the relevant invariant subspace
problem is highly structured. Since H is relatively small, its eigenvalues may be
computed directly and then used as a test and also as an aid to efficiently solve the
desired invariant subspace problem.

To illustrate some possibilities, define

Ã ≡
[

A M
0 −HT

]
.
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One could just apply an iterative eigenvalue method to compute a basis for the in-
variant subspace of Ã corresponding to the eigenvalues of −HT . The dimension of
this subspace and the eigenvalues are determined by H. Obviously such iterative
methods are accelerated by employing spectral transformations such as shift-invert
or Cayley transformations.

Now, consider a real positive shift μ ∈ (0,minRe(σ(−HT )). Since the eigen-
values of H may be computed directly, placement of μ can be done with precision
and the shift-invert operator (Ã− μI)−1 maps the eigenvalues of A into the open
left half plane and the eigenvalues of −HT into the open right half plane with the
eigenvalues of −HT closest to the imaginary axis mapped to extreme eigenvalues
of the shift-invert operator. Positive real shifts taken in the interior of the spectrum
of −HT could be used to enhance the magnitude of the interior eigenvalues.

Another very useful possibility for utilization of the shift μ is to consider a Cay-
ley transformation

CÃ,μ ≡ (μI− Ã)−1(μI+ Ã).

Under this transformation, an eigenvalue λ of Ã is mapped to an eigenvalue
ω = μ+λ

μ−λ of CÃ,μ . These eigenvalues have the same eigenvector. The eigenval-

ues of Ã consist of σ(C(A,μ))∪σ(C(−HT ,μ)). Since both A and H are stable,
the eigenvalues of A are mapped strictly to the interior of the unit disc while the
eigenvalues of −HT are mapped strictly to the exterior of the unit disc. An iterative
method (such as the implicitly restarted Arnoldi method available in ARPACK) may
be used to rapidly compute the k eigenvalues of largest magnitude for Cμ . This only
requires a single sparse direct factorization which can be done in real arithmetic.
The parameter μ may be chosen to enhance convergence of the iterative eigenvalue
method. When a sparse direct factorization is not affordable, one can resort to an
iterative approach to applying the Cayley transformation to approximate a matrix-
vector product with CÃ,μ as required.

Ryan Nong investigated effective choices of μ in his Ph.D. thesis [13]. The
results were quite encouraging and the reader is referred to the thesis for further
detail. Extensive computational results concerning the performance of PFADI and
the possible choices of a real shift μ are presented there.
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Chapter 12
Splitting Enables Overcoming the Curse
of Dimensionality

Jérôme Darbon and Stanley J. Osher

Abstract In this chapter we briefly outline a new and remarkably fast algorithm for
solving a large class of high dimensional Hamilton-Jacobi (H-J) initial value prob-
lems arising in optimal control and elsewhere [1]. This is done without the use of
grids or numerical approximations. Moreover, by using the level set method [8] we
can rapidly compute projections of a point in R

n, n large to a fairly arbitrary compact
set [2]. The method seems to generalize widely beyond what will we present here
to some nonconvex Hamiltonians, new linear programming algorithms, differential
games, and perhaps state dependent Hamiltonians.

1 Introduction

We begin with the Hamilton-Jacobi (HJ) initial value problem⎧⎨
⎩

∂ϕ
∂ t

(x, t)+H(∇xϕ(x, t)) = 0 in R
n × (0,+∞)

ϕ(x,0) = J(x) ∀x ∈R
n.

(12.1)

We assume J : Rn → R is convex and one coercive, i.e., lim‖x‖2→+∞
J(x)
‖x‖2

= +∞,
H : Rn → R is convex and positively one homogeneous (we sometimes relax all
these assumptions).
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A good example of this is

H(v) = ‖v‖2.

Here ‖v‖p =
(
Σn

i=1|vi|p
) 1

p for p ≥ 1 and 〈x,v〉= Σn
i=1xivi.

Let us consider a convex Lipschitz function J having the property that, for Ω a
convex compact set of Rn

⎧⎪⎨
⎪⎩

J(x)< 0 for any x ∈ int Ω
J(x) = 0 for any x ∈ (Ω \ int Ω)

J(x)> 0 for any x ∈ (Rn \Ω).

We call this level set initial data. Then the set of points for which ϕ(x, t) = 0, t > 0
are exactly those at a distance t, from the boundary of Ω . In fact given x̄ /∈ Ω , then
the closest point xopt from x̄ to (Ω \ int Ω) is exactly

xopt = x̄− t
∇ϕ(x̄, t)

‖∇ϕ(x̄, t)‖2
. (12.2)

To solve (12.1) we use the Hopf formula [5]

ϕ(x, t) = (J∗+ tH)∗(x) =−min
v∈Rn

{J∗(v)+ tH(v)−〈x,v〉},

where the Fenchel-Legendre transform f ∗ : Rn → R∪ (+∞) of the convex function
f is defined by

f ∗(v) = sup
x∈Rn

{〈v,x〉− f (x)}.

Moreover, for free we get that the minimizer satisfies

arg min
v∈Rn

{J∗(v)+ tH(v)−〈x,v〉}= ∇xϕ(x, t). (12.3)

whenever ϕ(·, t) is differentiable at x. Let us note here that our algorithm computes
ϕ(x, t) but also ∇xϕ(x, t).

Also, we can use the Hopf-Lax formula [5, 6] to solve (12.1).

ϕ(x, t) = min
z ∈ Rn

{
J(z)+ tH∗

(
x− z

t

)}
(12.4)

for convex H.
From (12.4) it is easy to show that if we have k different initial value problems

i = 1, . . .k ⎧⎨
⎩

∂ϕi

∂ t
(x, t)+H(∇xϕi(x, t)) = 0, in R

n × (0,+∞)

ϕi(x,0) = Ji(x) ∀x ∈R
n
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with the usual hypotheses, then (12.4) implies, for any x ∈ R
n, t > 0

ϕi(x, t) = min
z ∈ Rn

{
Ji(z)+ tH∗

(
x− z

t

)}
.

So

min
i=1,k

ϕi(x, t) = min
z ∈ Rn

{
min

i=1,...,k

{
Ji(z)+ tH∗

(
x− z

t

)}}
solves the initial value problem⎧⎪⎨

⎪⎩
∂ϕ
∂ t

(x, t)+H(∇xϕ(x, t)) = 0, in R
n × (0,+∞)

ϕ(x,0) = min
i=1,...,k

Ji(x) ∀x ∈ R
n.

(12.5)

This means that if Ω = ∪i=1,...,kΩi, where each Ωi is compact and convex and may
overlap, then we can easily compute the set of all points at distance t from Ω which
is exactly the solution to (12.5) where each Ji is a level set function for Ωi. Moreover,
at every point x̄ outside of Ω̄ for which there is one i such that ϕi(x̄, t)< ϕi′(x̄, t) for
any i �= i′, then the closest point xopt to x̄ and Ω is again

xopt = x̄− t
∇xϕi(x̄, t)
|∇xϕi(x̄, t)| .

If there are several i for which ϕi(x̄, t) is the minimum among all k of them, then
∇xϕ will be “multivalued”, i.e., it will have jumps, but any of the xopt defined above
will be a closest point on Ω to x̄.

2 Split Bregman

We solve the optimization problem (12.3) by using the split Bregman algorithm
[4, 3, 9] as follows

vk+1 = arg min
v∈Rn

{J∗(v)−〈x,v〉+ λ
2
‖dk − v− bk‖2

2}, (12.6)

dk+1 = arg min
d∈Rn

{
tH(d)+

λ
2
‖d− vk+1 − bk‖2

2

}
(12.7)

bk+1 = bk + vk+1 − dk+1. (12.8)

Here the sequences (vk)k∈N,(dk)k∈N both converge to ∇xϕ(x, t). Let us emphasize
again that our numerical algorithm not only computes the solution ϕ(x, t) but also
computes ∇xϕ(x, t) when ϕ(·, t) is differentiable.
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Both (12.6) and (12.7), up to change of variables, can be reformulated as finding
the unique minimizer of

argmin
w

{
α f (w)+

1
2
‖w− z‖2

2

}

which is the proximal map of f . Equation (12.6) can be solved if either J∗ or J have
easily computable proximal maps, which often occurs, especially if one of them is
smooth.

Equation (12.7) can be easily solved if H(d) = ‖d‖2 via the shrink2 operator
defined by

shrink2(z,α) =

{
z

‖z‖2
max(‖z‖2 −α,0) if z �= 0

0 if z = 0

and we have

argmin
w

{
α‖w‖2 +

1
2
‖w− z‖2

2

}
= shrink2(z,α)

If H(d) = ‖d‖1 we use shrink1 operator defined as follows for any i = 1, . . . ,n

(shrink1(z,α))i =

⎧⎪⎨
⎪⎩

zi −α if zi > α
0 if |zi| ≤ α
zi +α if zi <−α

and we have

argmin
w

{
α‖w‖1 +

1
2
‖w− z‖2

2

}
= shrink1(z,α).

To solve (12.7) for more general H(d) convex one homogeneous or to find the
proximal map for f of that type we use the fact that H∗ is the characteristic function
of a closed convex set C ⊂ R

n

H∗ = Ic.

By using the Moreau identity [7] we realize that the proximal map of H can be
obtained by projecting onto C. To do this projection, we merely solve the eikonal
equation with level set initial data for C via split Bregman as above in (12.6), (12.7),
(12.8) with H(d) = ‖d‖2. This is easy using the shrink2 operator. We then use (12.2)
to obtain the projection and repeat the entire iteration.

3 Numerical Experiments

Numerical experiments on an Intel Laptop Core i5-5300U running at 2.3 GHz are
now presented. We consider diagonal matrices D defined by Dii = 1+ 1+i

n for i =
1, . . . ,n. We also consider matrices A defined by Aii = 2 for i = 1, . . . ,n and Ai j = 1
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for i, j = 1, . . . ,n. Table 12.1 presents the average time (in seconds) to evaluate the
solution over 1,000,000 samples (x, t) uniformly drawn in [−10,10]n × [0,10]. The
convergence is remarkably rapid: 10−6 to 10−8 seconds on a standard laptop, per
function evaluation. Figure 12.1 depicts 2-dimensional slices at different times for
the (H-J) equation with a weighted �1 Hamiltonian H = ‖D · ‖1, initial data J =
1
2‖ · ‖2

2 and n = 8.

n ‖y‖1 ‖y‖2 ‖y‖∞ ‖y‖D ‖y‖A

4 6.36e-08 1.20e-07 2.69e-07 7.00e-07 8.83e-07
8 6.98e-08 1.28e-07 4.89e-07 1.07e-06 1.57e-06

12 8.72e-08 1.56e-07 7.09e-07 1.59e-06 2.23e-06
16 9.24e-08 1.50e-07 9.92e-07 2.04e-06 2.95e-06

Table 12.1 Time results in seconds for the average time per call for evaluating the solution of the
HJ-PDE with the initial data J = 1

2‖ · ‖2
2, several Hamiltonians and various dimensions n.
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Fig. 12.1 Evaluation of the solution φ ((x1,x2,0,0,0,0,0,0)†, t) of the HJ-PDE with initial data
J = 1

2‖ · ‖2
2 and Hamiltonian H = ‖D · ‖1 for (x1,x2) ∈ [−20,20]2 for different times t . Plots for

t = 0,3,5,8 and respectively depicted in (a), (b), (c), and (d). The level lines multiple of 10 are
superimposed on the plots.
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4 Summary and Future Work

We have derived a very fast and totally parallelizable method to solve a large class
of high dimensional, state independent H-J initial value problems. We do this su-
ing the Hopf formula and convex optimization via splitting, which overcomes the
“curse of dimensionality”. This is also done without the use of grids or numerical
approximations, yielding not only the solution, but also its gradient.

We also, as a step in this procedure, very rapidly compute the projections from a
point in R

n, n large, to a fairly arbitrary compact set.
In future work, we expect to extend this set of ideas to nonconvex Hamiltonians,

including some that arise in differential games, to new linear programming algo-
rithms, to fast methods for redistancing in level set methods and, hopefully, to a
wide class of state dependent Hamiltonians.

Acknowledgements Research supported by ONR grants N000141410683, N000141210838 and
DOE grant DE-SC00183838.
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Chapter 13
ADMM Algorithmic Regularization Paths
for Sparse Statistical Machine Learning

Yue Hu, Eric C. Chi, and Genevera I. Allen

Abstract Optimization approaches based on operator splitting are becoming popular
for solving sparsity regularized statistical machine learning models. While many
have proposed fast algorithms to solve these problems for a single regularization
parameter, conspicuously less attention has been given to computing regularization
paths, or solving the optimization problems over the full range of regularization pa-
rameters to obtain a sequence of sparse models. In this chapter, we aim to quickly
approximate the sequence of sparse models associated with regularization paths for
the purposes of statistical model selection by using the building blocks from a clas-
sical operator splitting method, the Alternating Direction Method of Multipliers
(ADMM). We begin by proposing an ADMM algorithm that uses warm-starts to
quickly compute the regularization path. Then, by employing approximations along
this warm-starting ADMM algorithm, we propose a novel concept that we term the
ADMM Algorithmic Regularization Path. Our method can quickly outline the se-
quence of sparse models associated with the regularization path in computational
time that is often less than that of using the ADMM algorithm to solve the problem
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for a single regularization parameter. We demonstrate the applicability and substan-
tial computational savings of our approach through three popular examples, sparse
linear regression, reduced-rank multi-task learning, and convex clustering.

1 Introduction

With the rise of Big Data and the subsequent explosion of statistical machine learn-
ing methods to analyze it, statisticians have become avid consumers of large-scale
optimization procedures to estimate sparse models. The estimation problem is often
cast as an optimization problem of the form:

minimize
ˇ

L(ˇ;W)+λP(ˇ), (13.1)

where ˇ is a parameter which specifies a statistical model, L(ˇ;W) is a smooth
loss function or data-fidelity term that quantifies the discrepancy between the data,
W, and the model specified by ˇ, and P(ˇ) is a nonsmooth penalty that encour-
ages sparsity in model parameter ˇ [3, 4, 15]. A regularization parameter, λ ≥ 0,
explicitly trades off the model fit and the model complexity.

Directly solving the optimization problem (13.1) is often challenging. Oper-
ator splitting methods, such as the Alternating Direction Method of Multipliers
(ADMM), have become popular because they convert solving the problem into solv-
ing a sequence of simpler optimization problems that involve only the smooth loss
or nonsmooth penalty. By breaking up the problem into smaller ones, ADMM may
end up taking more iterations than directly solving (13.1), but it often runs in less
total time since the subproblems are typically easy to solve. Clearly in the context of
Big Data, faster algorithms are indispensable, and the numerical optimization com-
munity has devoted a great deal of effort to solving (13.1) rapidly for a fixed value
of λ . This goal, however, is not necessarily aligned with the application of statistical
machine learning problems to real data.

In practice, statisticians are interested in finding the best sparse model that repre-
sents the data. Achieving this typically entails a two-step procedure: (i) model selec-
tion, or selecting the best sparse model or equivalently the best subset of parameters,
and (ii) model fitting, or fitting the model by minimizing the loss function over the
selected parameters [15]. The first step is often the most challenging computation-
ally as this entails searching the combinatorial space of all possible sparse models.
As this combinatorial search is infeasible for large-scale problems, many consider
convex relaxations through constraints or penalties as computationally feasible sur-
rogates to help search through the space of sparse models. Consider for example,
sparse linear regression, where the goal is to find the subset of variables or inputs
that best predicts the response or output. Searching over all possible subsets of vari-
ables, however, is an NP hard problem. Instead, many have employed the penalty
or constraint, P(ˇ) = ‖ˇ‖1, which is the tightest convex relaxation to perform-
ing best subset selection and whose solution can be computed in polynomial time.
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The nonsmooth penalty term, P(ˇ), then serves to translate an infeasible computa-
tional problem into a tractable one for model selection purposes.

Suppose now that we focus on selecting the best sparse model by means of pen-
alized statistical estimation as in (13.1). As λ varies, we trace out a continuous
parametric curve ˆ̌(λ ) ∈ R

p. Since this curve cannot be determined analytically in
general, the curve is estimated for a finite sequence of regularization parameters. To
choose the best model, statisticians inspect the sequence of sparse solutions to (13.1)
over the full range of regularization parameters: { ˆ̌(λn) : 0 ≤ λ1 ≤ ·· · ≤ λmax},
where λmax is the value of λ at which ˆ̌(λmax) = 0, the maximally sparse solution.
This sequence of sparse solutions is often called the regularization path [9, 10, 14].
For model selection purposes, however, the actual parameter values, ˆ̌(λ ), as λ
varies in the regularization paths are less important than identifying the nonzero
components of ˆ̌(λ ). (Note that the parameter values for the optimal model are
typically re-fit anyways in the second model fitting stage.) Instead, the support of
ˆ̌(λ ) or the sequence of active sets defined as A(λ ) = { j : β̂ j(λ ) �= 0}, are the

important items; these yield a good sequence of sparse models to consider that limit
computationally intensive exploration of a combinatorial model space. Out of this
regularization path or sequence of active sets, the optimal model can be chosen via a
number of popular techniques such as minimizing the trade-off in model complexity
as with the AIC and BIC, the prediction error as with cross-validation [15] or the
model stability as with stability selection [23].

To apply sparse statistical learning methods to large-scale problems, we need fast
algorithms not only to fit (13.1) for one value of λ , but also to estimate the entire se-
quence of sparse models in the model selection stage. Our objective in this chapter is
to study the latter, which has received relatively little attention from the optimization
community. Specifically, we seek to develop a new method to approximate the se-
quence of active sets associated with regularization paths that is (i) computationally
fast and (ii) comprehensively explores the space of sparse models at a sufficiently
fine resolution. In doing so, we will not try to closely approximate the parameter
values, ˆ̌(λ ), but instead try to closely approximate the sparsity of the parameters,
A(λ ), for the statistical learning problem (13.1).

To rapidly approximate the sequence of active sets associated with regularization
paths, we turn to the ADMM optimization framework. We first introduce a proce-
dure to estimate the regularization path by using the ADMM algorithm with warm
starts over a range of regularization parameters to yield a path-like sequence of solu-
tions. Extending this, we preform a one-step approximation along each point on this
path, yielding the novel method that we term ADMM Algorithmic Regularization
Paths. Our procedure can closely approximate active sets given by regularization
paths at a fine resolution, but dramatically reduces computational time. This new
approach to estimating a sequence of sparse models opens many interesting ques-
tions from both statistical and optimization perspectives. In this chapter, however,
we focus on motivating our approach and demonstrating its computational advan-
tages on several sparse statistical machine learning examples.
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This chapter is organized as follows. We first review, in Section 1.1, how ADMM
algorithms have been used in the statistical machine learning literature. Then, to
motivate our approach, we consider, in Section 1.2, application of ADMM to the fa-
miliar example of sparse linear regression. In Section 2, we introduce our novel
Algorithmic Regularization Paths for general sparse statistical machine learning
procedures. We then demonstrate how to apply our methods through some popu-
lar machine learning problems in Section 3; specifically, we consider three exam-
ples – sparse linear regression (Section 3.1), reduced-rank multi-task learning (Sec-
tion 3.2), and convex clustering (Section 3.3) – where our Algorithm Paths yield
substantial computational benefits. We conclude with a discussion of our work and
the many open questions it raises in Section 4.

1.1 ADMM in Statistical Machine Learning

The ADMM algorithm has become popular in statistical machine learning in recent
years because the resulting algorithms are typically simple to code and can scale ef-
ficiently to large problems. Although ADMM has been successfully applied over a
diverse spectrum of problems, there are essentially two thematic challenges among
the problems that ADMM has proven adept at addressing: (i) decoupling constraints
and regularizers that are straightforward to handle individually, but not in conjunc-
tion; and (ii) simplifying fusion type penalties. We make note of these two types of
problems because the ADMM Algorithmic Regularization Path we introduce in this
chapter can be applied to either type of problem.

An illustrative example of the first thematic challenge arises in sparse principal
component analysis (PCA). In [36] Vu et al. propose estimating sparse principal
subspace estimator B̂ of a symmetric input matrix S with the solution to the follow-
ing semidefinite program:

minimize
B

−〈S,B〉+λ‖B‖1 subject to B ∈Fd ,

where ‖B‖1 is 1-norm of the vectorization of B, the set Fd = {B : 0 * B * I, tr(B)
= d} is a closed and convex set called the Fantope, and λ ≥ 0 is a regularization pa-
rameter. The main algorithmic challenge is the interaction between the Fantope con-
straint and the �1-norm penalty. If only either the penalty or constraint were present
the problem would be straightforward to solve. Consider the following equivalent
problem to which ADMM can be readily applied:

minimize
B,Z

δFd (B)−〈S,B〉+λ‖Z‖1 subject to Z−B = 0,

where δC(Σ ) denotes the indicator function of the closed convex set C, namely the
function that is 0 on C and ∞ otherwise. By minimizing an augmented Lagrangian
over B and the copy variable Z, and updating the scaled dual variable U as outlined
in [3], we arrive at the following ADMM updates:
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Bk = argmin
B

1
2
‖B− (Zk−1 −Uk−1 +ρ−1S)‖2

F + δFd (B)

= PFd (Zk−1 −Uk−1 +ρ−1S)

Zk = argmin
Z

λ
ρ
‖Z‖1 +

1
2
‖Bk +Uk−1 −Z‖2

F = Sλ/ρ(B
k +Uk−1)

Uk = Uk−1 +Bk −Zk.

Thus, the penalty and constraint are effectively decoupled resulting in simple up-
dates: the update for B involves the projection onto the Fantope, denoted by PFd ,
which has a closed form solution given in [36], and the update for Z requires the
soft-thresholding operator, Sμ(x) = sign(x)(|x|− μ)+.

The literature abounds with many more examples of using the ADMM splitting
strategy to decouple an otherwise challenging optimization problem into simpler
subproblems. Boyd et al. [3] review many such applications. Other example appli-
cations include decoupling trace or nuclear norm penalties as in robust PCA [42],
latent variable graphical models [21], and tensor completion [20]; decoupling differ-
ent types of hierarchical constraints [2], decoupling a series of loss functions [18],
decoupling joint graphical models [6], and decoupling large linear programming
problems [1], among many others.

The second thematic challenge that ADMM algorithms have been used to solve
involve fusion or non-separable penalties. A good illustrative example of this chal-
lenge arises in total variation (TV) denoising [32]. Consider the simple version of
this problem, specifically finding a smooth estimate of a noisy one-dimensional sig-
nal y ∈ ℜn:

minimize
ˇ

1
2
‖y−ˇ‖2

2 +λ
n−1

∑
i=1

|βi −βi+1|,

where the tuning parameter λ ≥ 0 trades off the smoothness of the approximation
with the goodness of fit with the data y. What makes this problem challenging is
that the fusion penalty couples the non-smooth terms so that they are non-separable.
Note that this penalty can be written more compactly as ‖Ax‖1 where A is the
discrete first order differences operator matrix. More generally, this second class
of problems consist of problems of the form, L(ˇ;W)+ λP(Aˇ). In the machine
learning context these penalties arise because we often wish to impose structure, not
on a latent variable of interest directly, but rather on a linear transformation of it. In
the TV denoising example we seek sparsity in differences of adjacent time points of
the latent signal.

Previously, we could break the objective into a sum of simpler objectives. The
issue here is different; specifically the composition of the regularizer with a linear
mapping complicates matters. ADMM can again greatly simplify this problem if we
let the ADMM copy variable duplicate the linearly transformed parameters:

minimize
ˇ,z

L(ˇ;W)+λP(z) subject to z−Aˇ = 0.
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The ADMM subproblems for iteratively solving this problem then have the follow-
ing simple form:

ˇk ∈ argmin
ˇ

L(ˇ;W)+
ρ
2
‖Aˇ− zk−1 +uk−1‖2

2

zk = argmin
z

λP(z)+
ρ
2
‖z−Aˇk −uk−1‖2

2

uk = uk−1 +ˇk − zk.

Note that we have eliminated having to minimize any functions containing the trou-
blesome composition penalty. In the context of the TV denoising example, the ˇ
update requires solving a linear system of equations, and the z update involves a
straightforward soft-threshold.

The ADMM algorithm has been used to decouple fusion or non-separable types
of penalties in many statistical learning problems. These include more general
instances of total variation [37, 12], a convex formulation of clustering [5], joint
graphical model selection [24, 25], overlapping group lasso penalties [40], and more
generally for structured sparsity [22].

Overall, while the ADMM algorithm is gaining more widespread application in
statistics and machine learning, the algorithm is applied in the traditional sense to
solve a composite optimization problem for one value of the regularization param-
eter. In this chapter, we seek to investigate the ADMM algorithm for a different
purpose, namely to find a sequence of sparse models associated with regularization
paths.

1.2 Developing an Algorithmic Regularization Path:
Sparse Regression

Our goal is to quickly generate a sequence of candidate sparse solutions for model
selection purposes. To achieve this, we will propose a method of approximating the
sequence of active sets given by regularization paths, or the path-like sequence solu-
tions of penalized statistical models over the full range of regularization parameters.
To motivate our approach, we study the familiar example of sparse linear regression.
Suppose we observe a covariate matrix X ∈ ℜn×p consisting of n independent and
identically distributed (iid) observations of p variables and an associated response
variable y ∈ ℜn. We are interested in fitting the linear model y = Xˇ+ ε where
ε is independent noise, but assume that the linear coefficient vector ˇ is sparse,
‖ˇ‖0( p where ‖·‖0 is the �0 “norm” or the number of nonzero elements of ˇ.
Minimizing a criterion subject to a constraint of the form ‖ˇ‖0 ≤ k for some k, be-
comes a combinatorially hard task. To estimate a sparse model in reasonable time,
many have proposed to use the tightest convex relaxation, the �1-norm penalty, com-
monly called the LASSO [34] in the statistical literature:
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minimize
ˇ

1
2n

‖y−Xˇ‖2
2 +λ‖ˇ‖1 (13.2)

where λ ≥ 0 is the regularization parameter controlling the sparsity of ˇ.
The full regularization path of solutions for the LASSO is the set of regression co-

efficients { ˆ̌(λ ) : ∀ 0 ≤ λ ≤ λmax} where λmax =
1
n‖XT y‖∞ is the smallest amount

of regularization that yields the sparse solution ˆ̌ = 0. The regularization paths for
the LASSO have been well studied and, in particular, are continuous and piece-wise
linear [28, 8, 31]. These paths also outline a sequence of active sets or sparse models
that smoothly increase in sparsity levels as λ decreases from the fully sparse solu-
tion at λ = λmax to the fully dense solution at λ = 0. Hence for model selection,
one can limit exploration of the combinatorial space of sparse models to that of the
sequence of active sets outlined by the LASSO regularization paths.

Computing the full regularization paths, however, can be a computational chal-
lenge. Several path following algorithms for the LASSO [28, 31] and closely related
algorithms such as Least Angle Regression (LAR) [8] and Orthogonal Matching
Pursuit (OMP) [7] have been proposed; their computational complexity, however, is
O(p3) which is prohibitive for large-scale problems. Consequently, many have sug-
gested to closely approximate these paths by solving a series of optimization prob-
lems over a grid of regularization parameter values. Specifically, this is typically
done for a sequence of 100 log-spaced values from λmax to λ1 = 0. Statisticians
often employ homotopy, or warm-starts, to speed computation along the regulariza-
tion path [9]. Warm-starts use the solution from the previous value of λ j, ˆ̌(λ j),
as the initialization for the optimization algorithm to solve the problem at λ j+1. As
the coefficients, ˇ, change continuously in λ , warm-starts can dramatically reduce
the number of iterations needed for convergence as ˆ̌(λ j) is expected to be close
to ˆ̌(λ j+1) for small changes from λ j to λ j+1. Many consider shooting methods,
or coordinate descent procedures [9, 38], that use warm-starts and iterate over the
active set for 100 log-spaced values of λ [10] to be the fastest approximate solvers
of the LASSO regularization path.

We seek to further speed the computation of the sequence of active sets given
by the regularization path by using a single path approximating algorithm instead
of solving separate optimization problems over a grid of regularization parameter
values. Our approach is motivated by two separate observations: (i) the evolution
of the sparsity level of the iterates of the ADMM algorithm used to fit (13.2) for
one value of λ , and (ii) the behavior of a new version of the ADMM algorithm that
incorporates warm-starts to expedite computation of regularization paths. We study
each of these motivations separately, beginning with the first.

Consider using ADMM to solve the LASSO problem. First, we split the differen-
tiable loss function from the non-differentiable penalty term by introducing a copy
z of the variable ˇ in the penalty function, and adding an equality constraint forcing
them to be equal. The LASSO problem (13.2) can then be rewritten as:

minimize
ˇ,z

1
2n

‖y−Xˇ‖2
2 +λ‖z‖1 subject to ˇ = z,
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with its associated augmented Lagrangian:

L(ˇ,z,u) =
1
2n

‖y−Xˇ‖2
2 +λ‖z‖1 +

ρ
2
‖ˇ− z+u‖2

2.

Here, u is the scaled dual variable of the same dimension as ˇ and ρ is the algorithm
tuning parameter. The ADMM algorithm then follows three steps (subproblems) to
solve the LASSO:

ˇ-subproblem: ˇk = argmin
ˇ

1
2n

‖y−Xˇ‖2
2 +

ρ
2
‖ˇ− zk−1+uk−1‖2

2

z -subproblem: zk = argmin
z

λ‖z‖1 +
ρ
2
‖z−ˇk −uk−1‖2

2

Dual update: uk = uk−1+ˇk − zk .

The benefit of solving this reformulation is simpler iterative updates. These three
steps are iterated until convergence, typically measured by the primal and dual resid-
uals [3]. The ˇ-subproblem solves a linear regression with an additional quadratic
ridge penalty. Solving the z-subproblem introduces sparsity. Notice that this is the
proximal operator of the �1-norm applied to ˇk −uk which is solved analytically via
soft-thresholding.Finally, the dual update ensures that ˇ is squeezed towards z and
primal feasibility as the algorithm progresses.

Consider the sparsity of the z iterates, ‖zk‖0, for the LASSO problem. Notice
that as the algorithm proceeds, zk becomes increasingly sparse; this is illustrated for
a small simulated example in the left panel of Figure 13.1. Let us study why this
occurs and its implications. Regardless of λ , the ADMM algorithm begins with a
fully dense ˇ1 as this is the solution to a ridge problem with parameter ρ . Soft-
thresholding in the z-subproblem then sets coefficients of small magnitude to zero.
The first dual update, u1, has magnitude at most |λ |, meaning that the second ˇ2

update is essentially shrunken towards ˇ1. Smaller coefficients decrease further in
magnitude and soft-thresholding in the z-subproblem sets even more coefficients to
zero. The algorithm thus proceeds until the sparsity of the zk stabilizes to that of
the solution, ˆ̌(λ ). Hence, the support of the zk has approximated the active set of
the solution long before the iterates of the ˇ-subproblem; the latter typically does
not reach the sparsity of the solution until convergence when primal feasibility is
achieved. While Figure 13.1 only illustrates that zk quickly converges to the cor-
rect sparsity level, we have observed empirically in all our examples that the active
set outlined by ‖zk‖0 also quickly identifies the true nonzero elements of the solu-
tion, ˆ̌(λ ).

Interestingly then, the zk quickly explore a sequence of sparse models going
from dense to sparse, similar in nature to the sequence of sparse models outlined
by the regularization path. While from Figure 13.1 we can see that this sequence
of sparse models is not desirable as it does not smoothly transition in sparsity and
does not fully explore the sparse model space, we nonetheless learn two important
items from this: (i) We are motivated to consider using the algorithm iterates of the
z-subproblem, as a possible means of quickly exploring the sparse model space; and
(ii) we are motivated to consider a sequence of solutions going from dense to sparse
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as this naturally aligns with the sparsity levels observed in the ADMM algorithm it-
erates. Given these, we ask: Is it possible to use or modify the iterates of the ADMM
algorithm to achieve a path-like smooth transition in sparsity levels similar in nature
to the sparsity levels and active sets corresponding to regularization paths?
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Fig. 13.1 Sparsity levels outlining a sequence of active sets for a simulated sparse linear regression
example. (Left) Sparsity levels of the z-subproblem iterates of the ADMM algorithm, ‖zk‖0, fit for
one fixed value of λ . (Middle) Sparsity levels of the z-subproblem over the iterates of our path
approximating ADMM Algorithm with Warm Starts for a small range of �. Vertical lines denote
the start of the algorithm for an increased value of λ . (Right) Sparsity levels of the z-subproblem
over the iterates of our novel ADMM Algorithmic Regularization Path.

One possible solution would be to employ warm-starts in the ADMM algorithm
along a grid of regularization parameters similar to other popular algorithms for
approximating regularization paths. Recall that warm-starts use the solution ob-
tained at the previous value of λ as initialization for the next value of λ . We first
introduce this new extension of the ADMM algorithm for approximating regulariza-
tion paths in Algorithm 1 and then return to our motivation of studying the sequence
of active sets outlined by this algorithm.

Our ADMM algorithm with warm starts is an alternative algorithm for fitting
regularization paths. It begins with λ small corresponding to a dense model, fits
the ADMM algorithm to obtain the solution, and then uses the previous solution,
ˇ(λ j−1), and dual variable, u(λ j−1), to initialize the ADMM algorithm for λ j.

Before considering the sequence of active sets outlined by this algorithm, we
pause to discuss some noteworthy features. First, notice that the ADMM tuning pa-
rameter, ρ , does not appear in this algorithm. We have omitted this as a parameter
by fixing ρ = 1 throughout the algorithm. Fixing ρ stands in contrast with the bur-
geoning literature on how to dynamically update ρ for ADMM algorithms [3]. For
example, adaptive procedures that change ρ to speed up convergence are introduced
in [16]. Others have proposed accelerated versions of the ADMM algorithm that
achieve a similar phenomenon [11]. Changing the algorithm tuning parameter, how-
ever, is not conducive to achieving a path-like algorithm using warm-starts. Consider
the z-subproblem which is solving by soft-thresholding at the level λ j/ρ . Thus, if ρ
is changed in the algorithm, the sparsity levels of z dramatically change, eliminating
the advantages of using warm-starts to achieve smooth transitions in sparsity levels.
Second, notice that we have switched the order of the sub-problems by beginning
with the z-subproblem. While technically the order of the subproblems does not



442 Y. Hu et al.

Algorithm 1 ADMM with Warm Starts: Sparse Regression

1. Initialize β 0 = 0, u0 = 0, and M log-spaced values, λ = {λ1 < λ2 < · · ·< λM}, for λ1 = 0
and λM = λmax.

2. Precompute matrix inverse H = (XTX/n+ I)−1 and HXTy.
3. for j = 1 . . .M do

while ‖rk‖∧‖sk‖> ε tol do
zk

j = Sλ j
(β k−1

j +uk−1
j )

β k
j = HXTy+H(zk

j −uk−1
j )

uk
j = uk−1 +β k

j − zk
j

rk = β k
j − zk

j and sk = zk
j − zk−1

j
k = k+1

end while
end for

4. Output {β j : j = 1, · · · ,M} as the regularization path.

matter [39], we begin with the z-subproblem as this is where the sparsity is achieved
through soft-thresholding at the value, λ ; hence, the solution for z is what changes
when λ is increased.

Next, notice that our regularization paths go from dense to sparse, or λ small
to large, which is the opposite of other path-wise algorithms and algorithms that
approximate regularization paths over a grid of λ values [10]. Recall that our ob-
jective is to obtain a smooth path-like transition in sparsity levels corresponding
to a sequence of active sets that fully explores the space of sparse models. Our
warm-start procedure naturally aligns with the sparsity levels of the iterates of the
ADMM algorithm which go from dense to sparse, thus ensuring a smooth transition
in the sparsity level of z as λ is increased. Our warm-start procedure could certainly
be employed going in the reverse direction from sparse to dense, but we have ob-
served that this introduces discontinuities in the zk iterates and consequently their
active sets as well, thus requiring more iterations for convergence. This behavior
occurs as the solution of the ˇ-subproblem is always more dense than that of the
z-subproblem, even when employing warm-starts.

Now, let us return to our motivation and consider the sparsity levels and cor-
responding sequence of active sets achieved by the iterates of our new path-
approximating ADMM Algorithm. The sparsity of the iterates of the z-subproblems,
‖zk‖0, are plotted for 30 log-spaced values of λ for the same simulated example in
the middle panel of Figure 13.1. The iterates over all values of λ are plotted on the
x-axis with vertical lines denoting the increase to the next λ value. Carefully con-
sider the sparsity levels of the z iterates for each fixed value of λ in our ADMM
algorithm with warm starts. Notice that the sparsity levels of z typically stabilize to
that of the solution within the first few iterations after λ is increased. The remaining
iterations and a large proportion of the computational time are spent on squeez-
ing ˇ towards z to satisfy primal feasibility. This means that the z-subproblem has
achieved the sparsity associated with the active set of ˆ̌(λ ) within a few iterations
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of increasing λ . One could surmise that if the increase in λ were small enough,
then the z-subproblem could correctly approximate the active set corresponding to
λ within one iteration when using this warm-start procedure. The right panel of
Figure 13.1 illustrates the sparsity levels achieved by the z-subproblem for this se-
quence of one-step approximations to our ADMM algorithm with warm-starts. No-
tice that this procedure achieves a smooth transition in sparsity levels corresponding
to a sequence of active sets that fully explore the range of possible sparse mod-
els, but requires only a fraction of the total number of iterations and compute time.
This, then is the motivation for our new ADMM Algorithmic Regularization Paths
introduced in the next section.

2 The Algorithmic Regularization Path

Our objective is to use the ADMM splitting method as the foundation upon which
to develop a new approximation to the sequence of sparse solutions outlined by reg-
ularization paths. In doing so, we are not interested in estimating parameter values
by solving a statistical learning optimization problem with high precision. Instead,
we are interested in quickly exploring the space of sparse model at a fine resolution
for model selection purposes by approximating the sequence of active sets given by
the regularization path.

Again, consider the general sparse statistical machine learning problem of the
following form:

minimize
ˇ

L(ˇ;W)+λP(ˇ),

where W denotes the “data” (for the sparse linear regression example, W = {X,y}),
the loss function, L(ˇ;W) is a differentiable, convex function of ˇ, and the regular-
ization term, P : ℜp → ℜ+ is a convex and non-differentiable penalty function. As
before, λ ≥ 0 is the regularization parameter controlling the trade-off between the
penalty and loss function. Following the setup of the ADMM algorithm, consider
splitting the smooth loss from the nonsmooth penalty through the copy variable, z:

minimize
ˇ,z

L(ˇ;W)+λP(z) subject to ˇ = z, (13.3)

With scaled dual variable u, the augmented Lagrangian of general problem (13.3) is

L(ˇ,z,u) = L(ˇ;W)+λP(z)+
ρ
2
‖ˇ− z+u‖2

2.

Now following from the motivations discussed in the previous section, there
are three key ingredients that we employ in our Algorithmic Regularization Paths:
(i) warm-starts to go from a dense to a sparse solution, (ii) the sparsity patterns of
the z-subproblem iterates, and (iii) one-step approximations at each regularization
level. We put these ingredients together in Algorithm 2 to give our Algorithmic
Regularization Paths:
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Algorithm 2 Algorithmic Regularization Path for Sparse Statistical Learning

1. Initialize z0 = 0, u0 = 0, γ0 = ε , k = 1, and set t > 0.
2. While ‖zk‖ �= 0

γk = γk−1 + t (or γk = γk−1t)
ˇk = minimize

ˇ
L(ˇ;W)+ 1

2‖ˇ− zk−1+uk−1‖2
2

zk = minimize
z

γkP(z)+ 1
2‖z−ˇk −uk−1‖2

2 (Record zk at each iteration.)

uk = uk−1+ˇk − zk

k = k+1
end

3. Output {zk : k = 1, · · · ,K} as algorithmic regularization path.

Our Algorithmic Regularization Path, Algorithm Path for short, outlines a seq-
uence of sparse models going from fully dense to fully sparse. This can be used as
an approximation to the sequence of active sets given by regularization paths for
the purpose of model selection. Consider that the algorithm begins will the fully
dense ridge solution. It then gradually increases the amount of regularization, γ ,
performing one full iterate of the ADMM algorithm (ˇ-subproblem, z-subproblem,
and dual update) for each new level of regularization. The regularization level is
increased until the z-subproblem becomes fully sparse.

One may ask why we would expect our Algorithm Path to yield a sequence of
active sets that well approximate those of the regularization path? While a math-
ematical proof of this is beyond the scope of this chapter, we outline the intu-
ition stemming from our three key ingredients. (Note that we also demonstrate this
through specific examples in the next section).

(i) Warm-starts from dense to sparse. Beginning with a dense solution and gradu-
ally increasing the amount of regularization ensures a smooth decrease in the
sparsity levels corresponding to a smooth pruning of the active set as this nat-
urally aligns with sparsity levels of the ADMM algorithm iterates.

(ii) z-subproblem iterates. The iterates of the z-subproblem encode the sparsity of
the active set, ˆ̌(λ ), quickly as compared to the ˇ-subproblem which achieves
sparsity only in the limit upon algorithm convergence.

(iii) One-step approximations. For a small increase in regularization when using
warm-starts, the iterates of the z-subproblem often achieve the sparsity level of
the active set within one-step.

Notice that if we iterated the three subproblems of our Algorithm Path fully un-
til convergence, then our algorithm would be equivalent to our ADMM Algorithm
with warm starts; thus, the one-step approximation is the major difference between
Algorithms 1 and 2. Because of this one-step approximation, we are not fully solv-
ing (13.1) and thus the parameter values, ˇ, will never stabilize to that of the regu-
larization path. Instead, our Algorithm Path quickly approximates the sequence of
active sets corresponding to the regularization path, as encoded in the z-subproblem
iterates.
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The astute reader will notice that we have denoted the regularization parameters
in Algorithm 2 as γ instead of λ as in (13.1). This was intentional since due to the
one-step approximation, we are not solving (13.1) and thus the level of regulariza-
tion achieved, γ , does not correspond to λ from (13.1). Also notice that we have
introduced a step size, t, that increases the regularization level, γ , at each iteration.
The sequence of γ’s can either be linearly spaced, as with additive t, or geometrically
spaced, as with multiplicative t. Again, if t is very small, then we expect the sparsity
patterns of our Algorithm Paths to well approximate the active sets of regularization
paths.

We will explore the behavior and benefits of our Algorithm Paths through demon-
strations on popular sparse statistical learning problems in the next section. Before
presenting specific examples, however, we pause to outline three important advan-
tages that are general to sparse statistical learning problems of the form (13.1).

1. Easy to implement. Our Algorithm Path is much simpler than other algorithms
to approximate regularization paths. The hardest parts, theˇ and z subproblems,
often have analytical solutions for many popular statistical learning methods.
Then, with only one loop, our algorithm can often be implemented in a few
lines of code. This is in contrast to other algorithm paths which require multiple
loops and much overhead to track algorithm convergence or the coordinates of
active sets [10].

2. Finer resolution exploration of the model space. Our Algorithm Path has the po-
tential to explore the space of sparse models at a much finer resolution than other
fast methods for approximating regularization paths over a grid of λ values.
Consider that as the later are computed over M, typically M = 100, λ values,
these can yield an upper bound of M distinct active sets; usually these yield
much less than M distinct models. In contrast, our Algorithm Path yields an
upper bound of K distinct models where K is the number of iterations needed,
depending on the step-size t, to fully explore the sequence of sparse models.
As K will often be much greater than M, our Algorithm Path will often explore
a sequence of many more active sets and at a finer resolution than comparable
methods.

3. Computationally fast. Our Algorithm Path has the potential to yield a sequence
of sparse solutions much faster than other methods for computing regulariza-
tion paths. Consider that our algorithm takes at most K iterations. In contrast,
regularization paths of a grid of M λ values require M times the number of it-
erations needed to fully estimate ˆ̌(λ j); often this will be much larger than K.
In each iteration of our algorithm, the ˇ and z subproblems require the most
computational time. The ˇ subproblem consists of the loss function with a
quadratic penalty which can be solved via an analytical form for many loss
functions. The z subproblem has the form of the proximal operator of P [29]:
proxλP(x) = argminu‖x−u‖2

2 + λP(u). For many popular convex penalty-
types such as the �1-norm, group lasso, and nuclear norm, the proximal operator
has an analytical solution. Thus, for a large number of statistical machine learn-
ing problems, the iterations of our Algorithm Path are inexpensive to compute.
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Overall, our Algorithmic Regularization Paths give a novel method for finding
a sequence of sparse solutions by approximating the active sets of regularization
paths. Our methods can be used in place of regularization paths for model selection
purposes with many sparse statistical learning problems. In this chapter, instead
of studying the mathematical and statistical properties of our new Algorithm Paths,
which we leave for future work, we study our method through applications to several
statistical learning problems in the next section.

3 Examples

To demonstrate the versatility and advantages of our ADMM Algorithmic Regu-
larization Paths, we present several example applications to sparse statistical learn-
ing methods: sparse linear regression, reduced-rank multi-task learning, and convex
clustering.

3.1 Sparse Linear Regression

As our first example, we revisit the motivating example of sparse linear regression
discussed in Section 1.2. We reproduce the problem here for convenience:

minimize
ˇ

1
2n

‖y−Xˇ‖2
2 +λ‖ˇ‖1

And, our Algorithmic Regularization Path for this example is presented in
Algorithm 3:

Algorithm 3 Algorithmic Regularization Path for Sparse Regression

1. Initialize z0 = 0, u0 = 0, γ0 = ε , k = 1, and set t > 0.
2. Precompute matrix inverse H = (XT X/n+ I)−1 and HXT y.
3. While ‖zk‖ �= 0

γk = γk−1 + t
ˇk = HXT y+H(zk−1−uk−1)
zk = Sγk (ˇk +uk−1) (Record zk at each iteration.)

uk = uk−1+ˇk − zk

k = k+1
end

4. Output {zk : k = 1, · · · ,K} as the algorithmic regularization path.
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Let us first discuss computational aspects of our Algorithm Path for sparse
linear regression. Notice that the ˇ-subproblem consists of solving a ridge-like
regression problem. Much of the computations involved, however, can be pre-
computed, specifically the matrix inversion, (XT X/n + I)−1, and matrix-vector
multiplication, XT y. In cases where p , n, inverting a p × p matrix is highly
computationally intensive, requiring O(p3) operations. We can reduce the compu-
tational cost to O(n3), however, by invoking the Woodbury Matrix Identity [13]:
(XT X/n+ Ip)

−1 = Ip−XT(nIn+XXT)−1 X and caching the Cholesky decompo-
sition of the smaller n-by-n matrix nIn +XXT. Thus, the iterative updates for ˇk

are reduced to O(n2), the cost of solving two n-by-n triangular linear systems of
equations. The z-subproblem is solved via soft-thresholding, which requires only
O(p) operations.

We study our Algorithmic Regularization Path for sparse linear regression through
a real data example. We use the publicly available 14-cancer microarray data from
[15] to form our covariate matrix. This consists of gene expression measurements
for n = 198 subjects and 16063 genes; we randomly sample p = 2000 genes to use
as our data matrix X. We simulate sparse true signal ˇ∗ with s= 16 nonzero features
of absolute magnitude 5–10, and with the signs of the nonzero signals assigned ran-
domly; the 16 nonzero variables were randomly chosen from the 2000 genes. The

response variable y is generated as y = Xˇ∗ + ε , where ε i.i.d.∼ N(0,1). A visual-
ization of regularization paths, stability paths, and our Algorithmic Regularization
Paths is given in Figure 13.2 for this example.

First, we verify empirically that our ADMM algorithm with warm starts is equiv-
alent to the regularization path (top left and top middle). Additionally, notice that, as
expected, our Algorithm Path with a tiny step size (bottom right) also well approx-
imates the sequence of active sets given by the regularization paths. With a larger
step-size, however, our algorithm path (bottom left) yields a sequence of sparse
models that differ markedly from the sparsity patterns of the regularization paths.
This occurs as the change in regularization levels of each step are large enough so
that the sparsity levels of the z-subproblem after the one-step approximation are not
equivalent to that of the solution to (13.2).

Despite this, Figure 13.2 suggests that our Algorithm Paths with larger step sizes
may have some advantages in terms of variable selection. Notice that regulariza-
tion paths select many false positives (blue and gray dashed lines) before the true
positives (red lines). This is expected as we used a real microarray data set for X
consisting of strongly correlated variables that directly violate the irrepresentable
conditions under which variable selection for sparse regression is achievable [4].
Our method, however, selects several true variables before the first false positive
enters the model. To understand this further, we compare our approach to the Sta-
bility Paths used for stability selection [23], a re-sampling scheme with some of the
strongest theoretical guarantees for variable selection. The stability paths, however,
also select several false positives. This as well as other empirical results that are
omitted for space reasons suggest that our Algorithm Path with moderate or larger
step sizes may perform better than convex optimization techniques in terms of vari-
able selection. While a theoretical investigation of this is beyond the scope of this
book chapter, the intuition for this is readily apparent. Our Algorithm Path starts
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Fig. 13.2 Comparisons of Algorithmic Regularization Paths (bottom panel) to regularization paths
(top left and middle) and stability paths (top right) for the sparse linear regression example. The
−− lines denote false variables, — lines denote true nonzero variables, and −− lines denote
some highlighted false positives. Regularization paths were computed via the popular shooting
method [10] (top left) and our ADMM algorithm with warm-starts (top middle). Our Algorithmic
Regularization Path with a tiny step size (bottom right) closely approximates the sparsity patterns
of the regularization paths, while our method with a larger step size (bottom left) dramatically dif-
fers from the regularization paths. Notice that sparse regression in this example does a poor job of
variable selection, selecting many false positives before any true features enter the model. Even the
stability paths (top right) select many false positives. Our Algorithmic Regularization Path with a
larger step-size, however, selects many of the true variables with much fewer false positives.

from a dense solution and uses a ridge-like penalty. Thus, coefficients of highly cor-
related variables are likely to be grouped and have similar magnitude coefficient
values. When soft-thresholding is performed in the z-subproblem, variables which
are strongly correlated are likely to remain together in the model for at least the first
several algorithm iterations. By keeping correlated variables together in the model
longer and otherwise eliminating irrelevant variables, this gives our algorithm a bet-
ter chance of selecting the truly nonzero variables out of a correlated set. Hence,
the fact that we start with a dense solution seems to help us; this is in contrast to
the LASSO, LAR, and OMP paths which are initialized with an empty active set
and greedily add variables most correlated with the response [28, 8]. We plan on
investigating our methods in terms of variable selection in future work.
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Table 13.1 Timing comparison (averaged over 50 replications) of our ADMM Algorithmic Reg-
ularization Paths, Regularization Paths obtained from the shooting method (coordinate descent),
and Stability Paths for different numbers of variables in the true model.

Time (seconds) Algorithmic Regularization Path Regularization Path Stability Path
s = 20, p = 4000 0.0481 0.1322 36.6813
s = 20, p = 6000 0.0469 0.1621 43.9320

Finally, we compare our Algorithm Paths to the state-of-the-art methods for com-
puting the sparse regression regularization paths in terms of computational time in
Table 13.1. The regularization paths were computed using the glmnet R package
[10] which is based on shooting (coordinate descent) routines [10]. This approach
and software is widely regarded as one of the fastest solvers for sparse regression.
Notice that our Algorithm Paths, coded entirely in Matlab, run in about a fifth of the
time as this state-of-the-art competitor. Also, our computational time is far superior
to the re-sampling schemes required to compute the stability paths.

Overall, our Algorithmic Regularization Path for sparse linear regression reveals
major computational advantages for finding a sequence of sparse models that ap-
proximate the active sets of regularization paths. Additionally, empirical evidence
suggests that our methods may also enjoy some important statistical advantages in
terms of variable selection that we will explore in future work.

3.2 Reduced-Rank Multi-Task Learning

Our ADMM Algorithmic Regularization Path applies generally to many convex
penalty types beyond the �1-norm. Here, we demonstrate our method in conjunction
with a reduced-rank multi-task learning problem also called multi-response regres-
sion. This problem has been studied by [27] among many others.

Suppose we observe n iid samples measured on p covariates and for q out-
comes, yielding a covariate matrix, X ∈ ℜn×p, and a response matrix Y ∈ ℜn×q.
Then, our goal is to fit the following statistical model: Y = XB+ε , where B is the
p× q coefficient matrix which we seek to learn, and ε is independent noise. As
often the number of covariates is large relative to the sample size, pq , n, many
have suggested to regularize the coefficient matrix B by assuming it has a low-
rank structure, rank(B)< p∧q. Thus, our model space of sparse solutions is given
by the space of all possible reduced-rank solutions. Exploring this space is an NP
hard computational problem; thus, many have employed the nuclear norm penalty,
‖B‖∗ = ∑p∧q

j=1 σ j(B), which is the sum (or �1-norm) of the singular values of B,
σ(B), and the tightest convex relaxation of the rank constraint. Thus, we arrive at
the following optimization problem:

minimize
B

1
2
‖Y−XB‖2

F +λ‖B‖∗ (13.4)
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Here, ‖·‖F is the Frobenious norm, λ ≥ 0 is the regularization parameter controlling
the rank of the solution and ‖·‖∗ is the nuclear norm penalty.

For model selection then, one seeks to explore the sequence of low-rank so-
lutions obtained as λ varies. To develop our Algorithm Path for approximating
this sequence of low-rank solutions, let us consider the ADMM sub-problems for
solving (13.4). The augmented Lagrangian, sub-problems, dual updates are anal-
ogous to that of the sparse linear regression example, and hence we omit these
here. Examining the Z-subproblem, however, recall that this is the proximal opera-
tor for the nuclear norm penalty: Zk = argmin

Z

1
2‖Z−(Bk +Uk)‖2

F + γ‖Z‖∗, which

can be solved by soft-thresholding the singular values: Suppose that A = UΣVT

is the SVD of A. Then singular-value thresholding is defined as SVTγ (A) =
U[diag((σ − γ)+)]VT, where σ denotes diag(Σ), and the solution for the Z sub-
problem is Zk = SVTγ (Bk+Uk).

Algorithm 4 Algorithmic Regularization Path for Reduced-Rank Regression

1. Initialize: Z0 = 0, U0 = 0, γ0 = ε , and step size t > 0.
2. Precompute: H = (XT X/n+ I)−1 and HXT Y.
3. While ‖Zk‖ �= 0

γk = γk−1 + t (or γk = γk−1t).
Bk = HXT Y+H(Zk−1−Uk−1).
Zk = SVTγk (Bk +Uk−1). (Record Zk at each iteration.)

Uk = Uk−1 +Bk −Uk

end
4. Output {Zk : k = 1, · · · ,K} as the algorithmic regularization path.

Then, following the framework of the sparse linear regression example, our
ADMM Algorithmic Regularization Path for the reduced-rank multi-task learning
(regression) is outlined in Algorithm 4. Notice that the algorithm has the same basic
steps as in the previous example except that solving the proximal operator for the Z
sub-problem entails singular value thresholding. This step is the most computation-
ally time consuming aspect of the algorithm as K total SVDs must be computed to
approximate the sequence of solutions. Also note that similarly to the sparse regres-
sion example, the inversion needed, (XT X/n+ I)−1, can be precomputed by using
the matrix inversion identities as previously discussed and cached as a convenient
factorization; hence, this is computationally feasible even when p , n.

To demonstrate the computational advantages of our approach, we conduct a
small simulation study comparing our method to the two most commonly used al-
gorithms for reduced-rank regression: proximal gradient descent and ADMM. First,
we generate data according to the model: Y = XB+ε , where X200×100 is generated
as independent standard Gaussians, B100×100 is an image of the Batman symbol, and
ε200×100 is independent standard Gaussian noise. We set the signal in the coefficient
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Fig. 13.3 Reduced Rank Regression simulated example. The true coefficient matrix, B∈ℜ100×100,
is an image of batman that is rank 38. Our Algorithm Path provides a sequence of low-ranks
solutions at a fine resolution (top left) that well approximate the low-rank signal; three such low-
rank solutions (top right and bottom panel) are shown from iterates of our Algorithm Path.

# Ranks Considered # SVDs Time in Seconds
Algorithm Path 90 476 2.354
Proximal Gradient 57 2519 12.424
ADMM 51 115,946 599.144

Table 13.2 Algorithm comparisons for reduced rank regression example.

matrix to be a low-rank image of the Batman symbol, rank(B) = 38, which can be
well-approximated by further reduced rank images. We applied our Algorithmic
Regularization Paths to this simulated example with 500 logarithmically spaced
values of γ . Results are given in Figure 13.3 and show that our Algorithm Path
smoothly explores the model space of reduced rank solutions and nicely approxi-
mates the true signal as a low-rank batman image. We also conduct a timing compar-
ison to implementations of proximal gradient descent and ADMM algorithms using
warm-starts for this same example; results are given in Table 13.2. Here, we see
that our approach requires much fewer SVD computations and is much faster than
both algorithms, especially the ADMM algorithm. Additionally, both the ADMM
and proximal gradient algorithm employed 100 logarithmically spaced values of the
regularization parameter, λ . With this, however, we see that not all possible ranks
of the model space are considered, with proximal gradient and ADMM considering
57 and 51 ranks out of 100 respectively. In contrast, our Algorithmic Regularization
Path yields a sequence of sparse solutions at a much finer resolution, considering 90
out of the 100 possible ranks. Thus, for proximal gradient and ADMM algorithms
to consider the same range of possible sparsity levels (ranks), a greater number of
problems would have to be solved over a much finer grid of regularization parame-
ters, further inflating compute times.
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Overall, our approach yields substantial computational savings for computing a
sequence of sparse solutions for reduced rank regression compared to other state-
of-the-art methods for this problem.

3.3 Convex Clustering

Our final example applies the ADMM Algorithmic Regularization path to an ex-
ample with fusion type or non-separable penalties, namely a recently introduced
convex formulation of cluster analysis [5, 17, 19]. Given n points y1, . . . ,yn in ℜp,
we pose the clustering problem as follows. Assign to each point yi its own clus-
ter center β i ∈ ℜp. We then seek an assignment of β i that minimizes the distances
between yi and β i and seeks sparsity between cluster center pairs β i and β j. Com-
puting all possible cluster assignments, however, is an NP hard problem. Hence, the
following relaxation poses finding the cluster assignments as a convex optimization
problem:

minimize
β1,...,β n

1
2

n

∑
i=1

‖yi −β i‖2
2 +λ ∑

i< j
wi j‖β i −β j‖2, (13.5)

where λ is a positive regularization parameter, and wi j is a nonnegative weight.
When λ = 0, the minimum is attained when β i = yi, and each point occupies a
unique cluster. As λ increases, the cluster centers begin to coalesce. Two points yi
and y j with β i = β j are said to belong to the same cluster. For sufficiently large λ all
points coalesce into a single cluster at y, the mean of the yi. Because the objective
in (13.5) is strictly convex and coercive, it possesses a unique minimizer for each
value of λ . This is in stark contrast to other typical criteria used for clustering,
which often rely on greedy algorithms that are prone to get trapped in suboptimal
local minima. Because of its coalescent behavior, the resulting solution path can be
considered a convex relaxation of hierarchical clustering [17].

This problem generalizes the fused LASSO [35], and as with other fused LASSO
problems, penalizing affine transformations of the decision variable makes mini-
mization challenging in general. The one exception is when a 1-norm is used in-
stead of the 2-norm in the fusion penalty terms. In this case, the problem reduces to
a weighted one-dimensional total variation denoising problem. Under other norms,
including the 2-norm, the situation, is salvageable if we adopt a splitting strategy
discussed earlier in Section 1.1 for dealing with fusion type or non-separable penal-
ties. Briefly, we consider using the 2-norm in the fusion penalty to be most broadly
applicable since the solutions to the convex clustering problem become invariant to
rotations in the data. Consequently, clustering assignments will also be guaranteed
to be rotationally invariant.

Let the variables zi j ∈ ℜp record the differences between the ith and jth points.
We denote the collections of variables {β i}n

i=1 and {zi j}i< j by β and z respectively.
Then the original problem can be reformulated as:
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minimize
β ,z

1
2

n

∑
i=1

‖yi −β i‖2
2 +λ ∑

i< j

wi j‖zi j‖2 subject to β i −β j − zi j = 0.

(13.6)

Consider the ADMM algorithm derived in [5] for solving (13.6). Let ui j ∈ ℜp

denote the Lagrange multiplier for the i jth equality constraint. Let u denote the
collection of variables {ui j}i< j. The augmented Lagrangian is given by:

L(β ,z,u) =
1
2

n

∑
i=1

‖yi −β i‖2
2 +λ ∑

i< j
wi j‖zi j‖2 +

1
2 ∑

i< j
‖β i −β j − zi j +ui j‖2

2.

Then, the three ADMM subproblems are given by:

β k+1 = argmin
β

1
2

n

∑
i=1

‖yi −β i‖2
2 +

1
2 ∑

i< j

‖β i −β j − zi j +ui j‖2
2

zk+1 = argmin
z

λ ∑
i< j

wi j‖zi j‖2 +
1
2 ∑

i< j
‖β i −β j − zi j +ui j‖2

2

uk+1
i j = uk

i j +[zk+1
i j − (β k+1

i −β k+1
j )].

Splitting the variables in this manner allows us to solve a series of straightforward
subproblems. Updating β involves solving a ridge regression problem. Despite the
fact that the quadratic penalty term is not separable in the β , after some algebraic
maneuvering, which is detailed in [5], it is possible to explicitly write down the
updates for each β separately:

β k+1
i =

[
1

1+ n
yi +

n
1+ n

y
]
+

1
1+ n

[
∑
j>i

[uk
i j + zk

i j]−∑
j<i

[uk
ji + zk

ji]

]
.

Updating z requires minimizing an objective that separates in each of the zi j ,

zk+1
i j = argmin

zi j

1
2
‖zi j − [β k+1

i −β k+1
j −uk

i j]‖2
2 +λwi j‖zi j‖2.

This step can be computed explicitly using the block-wise soft-thresholding opera-
tor, the proximal operator of the group LASSO [41], namely,

S(z,τ) = argmin
ζ

1
2
‖ζ − z‖2

2 + τ‖ζ‖2 =

[
1− τ

‖z‖2

]
+

z,

where a+ = max(a,0) and τ ≥ 0 controls the amount of shrinkage towards zero.
For model selection purposes, one typically studies the sequence of cluster as-

signments given by coalescent patterns of ˇ, or the sparse patterns in the first dif-
ferences of ˇ, as λ varies. We then seek to quickly approximate this sequence of
active sets given by the coalescent patterns of ˇ with our Algorithmic Regulariza-
tion Paths, summarized in Algorithm 5.
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Algorithm 5 Algorithmic Regularization Path for Convex Clustering

1. Initialize z0
i j = 0, u0

i j = 0, γ(0) = ε , k = 1, and set t > 0.

2. While ‖zk‖F > 0:
for all i do

β k+1
i =

[ 1
1+n Yi +

n
1+n y

]
+ 1

1+n

[
∑ j>i[u

k
i j + zk

i j]−∑ j<i[u
k
ji + zk

ji]
]

end for
for all i < j do

zk+1
i j = S

(
β k+1

i −β k+1
j −uk

i j,γ(k)wi j

)
uk+1

i j = uk
i j +[zk+1

i j − (β k+1
i −β k+1

j )],
end for
γ(k+1) = tγ(k)

3. Output
{

zk
i j

}
as the algorithm path.

As in the general case, we can use iterates of the z-subproblem to approximate
a sparse sequence of cluster assignments. Given z, we can determine a clustering
assignment in time that is linear in the number of data points n. We simply apply
breadth-first search to identify the connected components of the following graph
induced by the z. The graph identifies a node with every data point and places an
edge between the ith and jth node if and only if zi j = 0. Each connected component
corresponds to a cluster.

We now illustrate on a simulated “halfmoon” data set of n = 200 points in ℜ2,
that computing our Algorithm Path can lead to nontrivial computational cost sav-
ings for obtaining a sequence of clustering assignments. We first detail some pre-
liminaries. Although we do not take the space to discuss it here, in practice the
choice of weights is very important. This topic is explored in [5], and we use the
sparse kernel weights which were shown to work well empirically in that paper.
We created a geometric sequence of parameters λ (k) and γ(k), namely given a fixed
multiplicative factor t > 1, we set λ (k+1) = tλ (k). The sequence γ(k) was constructed
similarly, although we study our Algorithm Paths for several multiplicative factors,
t ∈ {1.1,1.05,1.01}.

In contrast to the regularization path, the Algorithm Path does not require any
convergence checks since only one step is taken at each grid point. Nonetheless, we
only report the number of rounds of ADMM updates taken by each approach. The
Algorithm Path took 259,1294, and 2,536 rounds of updates for the three step sizes
considered; in contrast, the regularization path even for a very modest tolerance
level, 10−4, required a grand total of 30,008 rounds of updates, substantially more
than our approach.

Figure 13.4 shows the ADMM Algorithmic Regularization paths and regular-
ization path respectively for this simulated example. For each data point i we plot
the sequence of the segments between consecutive estimates of its center, namely
β k+1

i and β k
i . These paths begin to overlap and merge into “trunks” when center

estimates for close-by data points begin to coincide as the parameters λ (k) and γ(k)
becomes sufficiently large. For sufficiently small step sizes for the regularization
levels the Algorithm Path and regularization path are strikingly similar, as expected
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and demonstrated previously in our other examples. For larger step sizes, however,
the paths differ markedly, but still appear to capture the same clustering assign-
ments. Overall, although the simulated data is relatively small, computing the whole
regularization path, even for a modest stopping tolerance can, requires an order of
magnitude more iterations and computational time than the Algorithm Path.
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Fig. 13.4 Convex clustering on simulated data: In the first three panels (from left to right, top to
bottom), lines trace the ADMM Algorithmic Regularization path of the individual cluster centers
as the algorithm path parameter γ increases for t = 1.1 (large), 1.05 (medium), and 1.01 (small). In
the panel in the lower right corner, the lines trace the regularization path of the individual cluster
centers as the regularization parameter λ increases.

4 Discussion

In this chapter, we have presented a novel framework for approximating the se-
quence of active sets associated with regularization paths of sparse statistical learn-
ing problems. Instead of solving optimization problems over a grid of penalty pa-
rameters as in traditional regularization paths, our algorithm performs a series of
one-step approximations to an ADMM algorithm employing warm-starts with the
goal of estimating a good sequence of sparse models. Our approach has a number of
advantages including easy implementation, exploration of the sparse model space at
a fine resolution, and most importantly fast compute times; we have demonstrated
these advantages through several sparse statistical learning examples.
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In our demonstrations, we have focused simply on computing the full sequence
of active sets corresponding to the regularization path which is the critical compu-
tationally intensive step in the process of model selection. Once the sequence of
sparse models has been found, common methods for model selection such as AIC,
BIC, cross-validation, and stability selection can be employed to choose the optimal
model. We note that with regularization paths, model selection procedures typically
choose the optimal λ which indexes the optimal sparse model. For our Algorithm
Paths which do not directly solve regularized statistical problems, model selection
procedures should be used to choose the optimal iteration, k, and the corresponding
sparse model given by the active set of zk. While this chapter has focused on finding
the sequence of sparse models via our Algorithm Paths, we plan to study using these
paths in conjunction with common model selection procedures in future work.

As the ADMM algorithm has been widely used for sparse statistical learn-
ing problems, the mechanics are in place for broad application of our Algorithm
Paths which utilize the three standard ADMM subproblems. Indeed, our approach
could potentially yield substantial computational savings for any ADMM applica-
tion where the ˇ and z can be solved efficiently. Furthermore, there has been much
recent interest in distributed versions of ADMM algorithms [30, 26]. Thus, there is
the potential to use these in conjunction with our problem to distribute computation
in the ˇ and z subproblems and further speed computations for Big-Data prob-
lems. Also, we have focused on developing our Algorithm Path for sparse statistical
learning problems that can be written as a composite of a smooth loss function
and a non-smooth, convex penalty. Our methods, however, can be easily extended
to study constrained statistical learning problems, such as that of the support vec-
tor machines. Finally, our framework utilizes the ADMM splitting method, but the
strategies we develop could also be useful for computing a sequence of sparse mod-
els using other operator splitting algorithms.

Our work raises many questions from statistical and optimization perspectives.
Further work needs to be done to characterize and study the mathematical properties
of the Algorithm Paths as well as relate them to existing optimization procedures and
algorithms. For example, ADMM is just one of many variants of proximal methods
[29]. We suspect that other variants, such as proximal gradient descent, used to fit
sparse models will also benefit from an Algorithm Path approach in expediting the
model selection procedure. We leave this as future work.

In our demonstrations in Section 3, we suggested empirically that our Algorithm
Paths with a tiny step size closely approximate the sequence of active sets associated
with regularization paths. Further work needs to be done to verify this connection
mathematically. Along these lines, a key practical question is how to choose the
appropriate step size for increasing the amount of regularization as the algorithm
progresses. As we have demonstrated, changing the step size yields paths with very
different solutions and behaviors that warrant further investigation. For now, our
recommendation is to employ a fairly small step size as these well approximate the
traditional regularization paths in all of the examples we have studied. Additionally,
our approach may be related to other new proposals for computing regularization
paths based on partial differential equations, for example [33]; these potential con-
nections merit further investigation.
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Our work also raises a host of interesting statistical questions as well. The sparse
regression example suggested that Algorithm Paths may not simply yield computa-
tional savings, but may also perform better in terms of variable selection. This raises
an interesting statistical prospect that we plan to carefully study in future work.

To conclude, we have introduced a novel approach to approximating the sequence
of active sets associated with regularization paths for large-scale sparse statistical
learning procedures. Our methods yield substantial computational savings and raise
a number of interesting open questions for future research.
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Chapter 14
Decentralized Learning for Wireless
Communications and Networking

Georgios B. Giannakis, Qing Ling, Gonzalo Mateos, Ioannis D. Schizas,
and Hao Zhu

Abstract This chapter deals with decentralized learning algorithms for in-network
processing of graph-valued data. A generic learning problem is formulated and
recast into a separable form, which is iteratively minimized using the alternating-
direction method of multipliers (ADMM) so as to gain the desired degree of par-
allelization. Without exchanging elements from the distributed training sets and
keeping inter-node communications at affordable levels, the local (per-node) learn-
ers consent to the desired quantity inferred globally, meaning the one obtained if the
entire training data set were centrally available. Impact of the decentralized learn-
ing framework to contemporary wireless communications and networking tasks is
illustrated through case studies including target tracking using wireless sensor net-
works, unveiling Internet traffic anomalies, power system state estimation, as well
as spectrum cartography for wireless cognitive radio networks.
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1 Introduction

This chapter puts forth an optimization framework for learning over networks, that
entails decentralized processing of training data acquired by interconnected nodes.
Such an approach is of paramount importance when communication of training data
to a central processing unit is prohibited due to, e.g., communication cost or privacy
reasons. The so-termed in-network processing paradigm for decentralized learning
is based on successive refinements of local model parameter estimates maintained at
individual network nodes. In a nutshell, each iteration of this broad class of fully de-
centralized algorithms comprises: (i) a communication step where nodes exchange
information with their neighbors through, e.g., the shared wireless medium or In-
ternet backbone; and (ii) an update step where each node uses this information to
refine its local estimate. Devoid of hierarchy and with their decentralized in-network
processing, local, e.g., estimators should eventually consent to the global estimator
sought, while fully exploiting existing spatiotemporal correlations to maximize es-
timation performance. In most cases, consensus can formally be attained asymptot-
ically in time. However, a finite number of iterations will suffice to obtain results
that are sufficiently accurate for all practical purposes.

In this context, the approach followed here entails reformulating a generic learn-
ing task as a convex constrained optimization problem, whose structure lends itself
naturally to decentralized implementation over a network graph. It is then possible
to capitalize upon this favorable structure by resorting to the alternating-direction
method of multipliers (ADMM), an iterative optimization method that can be traced
back to [33] (see also [31]), and which is specially well suited for parallel process-
ing [7, 9]. This way simple decentralized recursions become available to update each
node’s local estimate, as well as a vector of dual prices through which network-wide
agreement is effected.

Problem Statement. Consider a network of n nodes in which scarcity of power
and bandwidth resources encourages only single-hop inter-node communications,
such that the i-th node communicates solely with nodes j in its single-hop neighbor-
hood Ni. Inter-node links are assumed symmetric, and the network is modeled as an
undirected graph whose vertices are the nodes and its edges represent the available
communication links. As it will become clear through the different application do-
mains studied here, nodes could be wireless sensors, wireless access points (APs),
electrical buses, sensing cognitive radios, or routers, to name a few examples. Node
i acquires mi measurements stacked in the vector yi ∈ R

mi containing information
about the unknown model parameters in s ∈ R

p, which the nodes need to estimate.
Let y := [y-1 , . . . ,y

-
n ]

- ∈R∑i mi collect measurements acquired across the entire net-
work. Many popular centralized schemes obtain an estimate ŝ as follows

ŝ ∈ argmin
s

∑n
i=1 fi(s;yi). (14.1)
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In the decentralized learning problem studied here though, the summands fi are
assumed to be local cost functions only known to each node i. Otherwise sharing
this information with a centralized processor, also referred to as fusion center (FC),
can be challenging in various applications of interest, or, it may be even impossible
in e.g., wireless sensor networks (WSNs) operating under stringent power budget
constraints. In other cases such as the Internet or collaborative healthcare studies,
agents may not be willing to share their private training data yi but only the learning
results. Performing the optimization (14.1) in a centralized fashion raises robustness
concerns as well, since the central processor represents an isolated point of failure.

In this context, the objective of this chapter is to develop a decentralized algo-
rithmic framework for learning tasks, based on in-network processing of the locally
available data. The described setup naturally suggests three characteristics that the
algorithms should exhibit: c1) each node i = 1, . . . ,n should obtain an estimate of s,
which coincides with the corresponding solution ŝ of the centralized estimator (14.1)
that uses the entire data {yi}n

i=1; c2) processing per node should be kept as simple as
possible; and c3) the overhead for inter-node communications should be affordable
and confined to single-hop neighborhoods. It will be argued that such an ADMM-
based algorithmic framework can be useful for contemporary applications in the
domain of wireless communications and networking.

Prior Art. Existing decentralized solvers of (14.1) can be classified in two cate-
gories: C1) those obtained by modifying centralized algorithms and operating in the
primal domain; and C2) those handling an equivalent constrained form of (14.1)
(see (14.2) in Section 2), and operating in the primal-dual domain.

Primal-domain algorithms under C1 include the (sub)gradient method and its
variants [57, 62, 85, 37], the incremental gradient method [60], the proximal gradi-
ent method [16], and the dual averaging method [24, 77]. Each node in these meth-
ods averages its local iterate with those of neighbors and descends along its local
negative (sub)gradient direction. However, the resultant algorithms are limited to in-
exact convergence when using constant stepsizes [57, 85]. If diminishing stepsizes
are employed instead, the algorithms can achieve exact convergence at the price of
slowing down speed [37, 60, 24]. A constant-stepsize exact first-order algorithm is
also available to achieve fast and exact convergence, by correcting error terms in the
distributed gradient iteration with two-step historic information [72].

Primal-dual domain algorithms under C2 solve an equivalent constrained form
of (14.1), and thus drive local solutions to reach global optimality. The dual de-
composition method is hence applicable because (sub)gradients of the dual function
depend on local and neighboring iterates only, and can thus be computed without
global cooperation [61]. ADMM modifies the dual decomposition by regularizing
the constraints with a quadratic term, which improves numerical stability as well
as rate of convergence, as will be demonstrated later in this chapter. Per ADMM
iteration, each node solves a subproblem that can be demanding. Fortunately, these
subproblems can be solved inexactly by running one-step gradient or proximal gra-
dient descent iterations, which markedly mitigate the computation burden [43, 15].
A sequential distributed ADMM algorithm can be found in [79].
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Chapter Outline. The remainder of this chapter is organized as follows. Section 2
describes a generic ADMM framework for decentralized learning over networks,
which is at the heart of all algorithms described in the chapter and was pioneered
in [67, 70] for in-network estimation using WSNs. Section 3 focuses on batch esti-
mation as well as (un)supervised inference, while Section 4 deals with decentralized
adaptive estimation and tracking schemes where network nodes collect data sequen-
tially in time. Internet traffic anomaly detection and spectrum cartography for wire-
less CR networks serve as motivating applications for the sparsity-regularized rank
minimization algorithms developed in Section 5. Fundamental results on the con-
vergence and convergence rate of decentralized ADMM are stated in Section 6.

2 In-Network Learning with ADMM in a Nutshell

Since local summands in (14.1) are coupled through a global variable s, it is not
straightforward to decompose the unconstrained optimization problem in (14.1).
To overcome this hurdle, the key idea is to introduce local variables S := {si}n

i=1
which represent local estimates of s per network node i [67, 70]. Accordingly, one
can formulate the constrained minimization problem

{ŝi}n
i=1 ∈ argmin

S
∑n

i=1 fi(si;yi), s. to si = s j , j ∈Ni. (14.2)

The “consensus” equality constraints in (14.2) ensure that local estimates coincide
within neighborhoods. Further, if the graph is connected then consensus naturally
extends to the whole network, and it turns out that problems (14.1) and (14.2) are
equivalent in the sense that ŝ = ŝ1 = . . . = ŝn [70]. Interestingly, the formulation
in (14.2) exhibits a separable structure that is amenable to decentralized minimiza-
tion. To leverage this favorable structure, the alternating direction method of mul-
tipliers (ADMM), see, e.g., [7, pg. 253–261], can be employed here to minimize
(14.2) in a decentralized fashion. This procedure will yield a distributed estimation
algorithm whereby local iterates si(k), with k denoting iterations, provably converge
to the centralized estimate ŝ in (14.1); see also Section 6.

To facilitate application of ADMM, consider the auxiliary variablesZ:={z j
i } j∈Ni ,

and reparameterize the constraints in (14.2) with the equivalent ones

{ŝi}n
i=1 ∈ argmin

S
∑n

i=1 fi(si;yi),

s. to si = z j
i and s j = z j

i , i = 1, . . . ,n, j ∈Ni, i �= j. (14.3)

Variables z j
i are only used to derive the local recursions but will be eventually elim-

inated. Attaching Lagrange multipliers V := {{v̄ j
i } j∈Ni ,{ṽ j

i } j∈Ni}n
i=1 to the con-

straints (14.3), consider the augmented Lagrangian function
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Lc[S,Z,V] =
n

∑
i=1

fi(si;yi)+
n

∑
i=1

∑
j∈Ni

[
(v̄ j

i )
-(si − z j

i )+ (ṽ j
i )

-(s j − z j
i )
]

+
c
2

n

∑
i=1

∑
j∈Ni

[
‖si − z j

i ‖2 + ‖s j − z j
i ‖2

]
(14.4)

where the constant c> 0 is a penalty coefficient. To minimize (14.2), ADMM entails
an iterative procedure comprising three steps per iteration k = 1,2, . . .

[S1] Multiplier updates:

v̄ j
i (k) = v̄ j

i (k− 1)+ c[si(k)− z j
i (k)]

ṽ j
i (k) = ṽ j

i (k− 1)+ c[s j(k)− z j
i (k)].

[S2] Local estimate updates:

S(k+ 1) = arg min
S

Lc [S,Z(k),V(k)] .

[S3] Auxiliary variable updates:

Z(k+ 1) = arg min
Z

Lc [S(k+ 1),Z,V(k)]

where i = 1, . . . ,n and j ∈ Ni in [S1]. Reformulating the generic learning prob-
lem (14.1) as (14.3) renders the augmented Lagrangian in (14.4) highly decompos-
able. The separability comes in two flavors, both with respect to the sets S and
Z of primal variables, as well as across nodes i = 1, . . . ,n. This in turn leads to
highly parallelized, simplified recursions corresponding to the aforementioned steps
[S1]-[S3]. Specifically, as detailed in, e.g., [70, 68, 69, 29, 51, 48], it follows that
if the multipliers are initialized to zero, the ADMM-based decentralized algorithm
reduces to the following updates carried out locally at every node

In-network learning algorithm at node i, for k = 1,2, . . .:

vi(k) = vi(k− 1)+ c ∑
j∈Ni

[si(k)− s j(k)] (14.5)

si(k+ 1) = argmin
si

{
fi(si;yi)+ v-i (k)si + c ∑

j∈Ni

∥∥∥∥si − si(k)+ s j(k)

2

∥∥∥∥
2
}

(14.6)

where vi(k) := 2∑ j∈Ni
v̄ j

i (k), and all initial values are set to zero.
Recursions (14.5) and (14.6) entail local updates, which comprise the general

purpose ADMM-based decentralized learning algorithm. The inherently redundant
set of auxiliary variables in Z and corresponding multipliers have been eliminated.
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Each node, say the i-th one, does not need to separately keep track of all its non-
redundant multipliers {v̄ j

i (k)} j∈Ni , but only to update the (scaled) sum vi(k). In the
end, node i has to store and update only two p-dimensional vectors, namely {si(k)}
and {vi(k)}. A unique feature of in-network processing is that nodes communicate
their updated local estimates {si} (and not their raw data yi) with their neighbors, in
order to carry out the tasks (14.5)–(14.6) for the next iteration.

As elaborated in Section 6, under mild assumptions on the local costs one can
establish that limk→∞ si(k) = ŝ, for i = 1, . . . ,n. As a result, the algorithm asymptoti-
cally attains consensus and the performance of the centralized estimator [cf. (14.1)].

3 Batch In-Network Estimation and Inference

3.1 Decentralized Signal Parameter Estimation

Many workhorse estimation schemes such as maximum likelihood estimation
(MLE), least-squares estimation (LSE), best linear unbiased estimation (BLUE), as
well as linear minimum mean-square error estimation (LMMSE) and the maximum
a posteriori (MAP) estimation, all can be formulated as a minimization task similar
to (14.1); see, e.g., [38]. However, the corresponding centralized estimation algo-
rithms fall short in settings where both the acquired measurements and computa-
tional capabilities are distributed among multiple spatially scattered sensing nodes,
which is the case with WSNs. Here we outline a novel batch decentralized opti-
mization framework building on the ideas in Section 2, that formulates the desired
estimator as the solution of a separable constrained convex minimization problem
tackled via ADMM; see, e.g., [7, 9, 70, 68] for further details on the algorithms
outlined here.

Depending on the estimation technique utilized, the local cost functions fi(·)
in (14.1) should be chosen accordingly; see, e.g., [38, 70, 68]. For instance, when s
is assumed to be an unknown deterministic vector, then:

• If ŝ corresponds to the centralized MLE then fi(s;yi) = − ln[pi(yi;s)] is the
negative log-likelihood capturing the data probability density function (pdf),
while the network-wide data {yi}n

i=1 are assumed statistically independent.
• If ŝ corresponds to the BLUE (or weighted least-squares estimator) then

fi(s;yi) = (1/2)‖˙−1/2
yi (yi −His)‖2, where ˙yi denotes the covariance of the

data yi, and Hi is a known fitting matrix.

When s is treated as a random vector, then:

• If ŝ corresponds to the centralized MAP estimator then fi(s;yi) =−(ln[pi(yi|s)]
+n−1 ln[p(s)]) accounts for the data pdf, and p(s) for the prior pdf of s, while
data {yi}n

i=1 are assumed conditionally independent given s.
• If ŝ corresponds to the centralized LMMSE then fi(s;yi) = (1/2)‖s−n˙syiu

i‖2
2,

where˙syi denotes the cross-covariance of s with yi, while ui stands for the i-th
mi × 1 block subvector of u =˙−1

y y.
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Substituting in (14.6) the specific fi(s;yi) for each of the aforementioned estimation
tasks, yields a family of batch ADMM-based decentralized estimation algorithms.
The decentralized BLUE algorithm will be described in this section as an example
of decentralized linear estimation.

Recent advances in cyber-physical systems have also stressed the need for de-
centralized nonlinear least-squares (LS) estimation. Monitoring the power grid for
instance is challenged by the nonconvexity arising from the nonlinear AC power
flow model; see, e.g., [82, Ch. 4], while the interconnection across local transmis-
sion systems motivates their operators to collaboratively monitor the global sys-
tem state. Interestingly, this nonlinear (specifically quadratic) estimation task can
be convexified to a semidefinite program (SDP) [8, pg. 168], for which a decentral-
ized semidefinite programming (SDP) algorithm can be developed by leveraging the
batch ADMM; see also [80] for an ADMM-based centralized SDP precursor.

3.1.1 Decentralized BLUE

The minimization involved in (14.6) can be performed locally at sensor i by employ-
ing numerical optimization techniques [8]. There are cases where the minimization
in (14.6) yields a closed-form and easy to implement updating formula for si(k+1).
If for example network nodes wish to find the BLUE estimator in a distributed fash-

ion, the local cost is fi(s;yi) = (1/2)‖˙−1/2
yi (yi −His)‖2, and (14.6) becomes a

strictly convex unconstrained quadratic program which admits the following closed-
form solution (see details in [70, 54])

si(k+1)=
(

H-
i ˙

−1
yi

Hi+2c|Ni|Ip

)−1
[

H-
i ˙

−1
yi

yi−vi(k)+c ∑
j∈Ni

(si(k)+s j(k))

]
.

(14.7)

The pair (14.5) and (14.7) comprise the decentralized (D-) BLUE algorithm
[67, 70]. For the special case where each node acquires unit-variance scalar obser-
vations yi, there is no fitting matrix and s is scalar (i.e., p = 1); D-BLUE offers a de-
centralized algorithm to obtain the network-wide sample average ŝ = (1/n)∑n

i=1 yi.
The update rule for the local estimate is obtained by suitably specializing (14.7) to

si(k+ 1) = (1+ 2c|Ni|)−1

[
yi − vi(k)+ c ∑

j∈Ni

(si(k)+ s j(k))

]
. (14.8)

Different from existing distributed averaging approaches [4, 22, 83, 84], the ADMM-
based one originally proposed in [67, 70] allows the decentralized computation of
general nonlinear estimators that may not be available in closed form and cannot be
expressed as “averages.” Further, the obtained recursions exhibit robustness in the
presence of additive noise in the inter-node communication links.
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3.1.2 Decentralized SDP

Consider now that each scalar y�i in yi adheres to a quadratic measurement model
in s plus additive Gaussian noise, where the centralized MLE requires solving a
nonlinear least-squares problem. To tackle the nonconvexity due to the quadratic
dependence, the task of estimating the state s can be reformulated as that of estimat-
ing the outer-product matrix S := ss-. In this reformulation y�i is a linear function
of S, given by Tr(H�

i S) with a known matrix H�
i [87]. Motivated by the separable

structure in (14.3), the nonlinear estimation problem can be similarly formulated as

{Ŝi}n
i=1 ∈ argmin

n

∑
i=1

∑
�

[
y�i −Tr(H�

i S)
]2

,

s. to Si = Z j
i and S j = Z j

i , i = 1, . . . ,n, j ∈Ni, i �= j

Si ) 0 and rank(Si) = 1, i = 1, . . . ,n (14.9)

where the positive-semidefiniteness and rank constraints ensure that each matrix
Si is an outer-product matrix. By dropping the non-convex rank constraints, the
problem (14.9) becomes a convex semidefinite program (SDP), which can be solved
in a decentralized fashion by adopting the batch ADMM iterations (14.5) and (14.6).

This decentralized SDP approach has been successfully employed for monitoring
large-scale power networks [32]. To estimate the complex voltage phasor all nodes
(a.k.a. power system state), measurements are collected on real/reactive power and
voltage magnitude, all of which have quadratic dependence on the unknown states.
Gauss-Newton iterations have been the ‘workhorse’ tool for this nonlinear estima-
tion problem; see, e.g., [1, 82]. However, the iterative linearization therein could
suffer from convergence issues and local optimality, especially due to the increas-
ing variability in power grids with high penetration of renewables. With improved
communication capabilities, decentralized state estimation among multiple control
centers has attracted growing interest; see Figure 14.1 illustrating three intercon-
nected areas aiming to achieve the centralized estimation collaboratively.

Fig. 14.1 (Left:) Schematic of collaborative power system state estimation among control centers
of three interconnected networks (IEEE 118-bus test case). (Right:) Local state estimation error vs.
iteration number using the decentralized SDP-based state estimation method.
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A decentralized SDP-based state estimator has been developed in [87] with re-
duced complexity compared to (14.9). The resultant algorithm involves only internal
voltages and those of next-hop neighbors in the local matrix S(i); e.g., in Figure 14.1
S(1) is identified by the dashed lines. Interestingly, the positive-semidefiniteness
constraint for the overall S decouples nicely into that of all local {Si}, and the
estimation error converges to the centralized performance within only a dozen it-
erations. The decentralized SDP framework has successfully addressed a variety
of power system operational challenges, including a distributed microgrid optimal
power flow solver in [18]; see also [32] for a tutorial overview of these applications.

3.2 Decentralized Inference

Along with decentralized signal parameter estimation, a variety of inference tasks
become possible by relying on the collaborative sensing and computations per-
formed by networked nodes. In the special context of resource-constrained WSNs
deployed to determine the common messages broadcast by a wireless AP, the rela-
tively limited node reception capability makes it desirable to design a decentralized
detection scheme for all sensors to attain sufficient statistics for the global problem.
Another exciting application of WSNs is environmental monitoring for, e.g., infer-
ring the presence or absence of a pollutant over a geographical area. Limited by the
local sensing capability, it is important to develop a decentralized learning frame-
work such that all sensors can collaboratively approach the performance as if the
network wide data had been available everywhere (or at a FC for that matter). Given
the diverse inference tasks, the challenge becomes how to design the best inter-node
information exchange schemes that would allow for minimal communication and
computation overhead in specific applications.

3.2.1 Decentralized Detection

Message Decoding. A decentralized detection framework is introduced here for
the message decoding task, which is relevant for diverse wireless communications
and networking scenarios. Consider an AP broadcasting a p× 1 coded block s to a
network of sensors, all of which know the codebookC that s belongs to. For simplic-
ity assume binary codewords, and that each node i = 1, . . . ,n receives a same-length
block of symbols yi through a discrete, memoryless, symmetric channel that is con-
ditionally independent across sensors. Sensor i knows its local channel from the AP,
as characterized by the conditional pdf p(yil |sl) per bit l. Due to conceivably low
signal-to-noise-ratio (SNR) conditions, each low-cost sensor may be unable to re-
liably decode the message. Accordingly, the need arises for information exchanges
among single-hop neighboring sensors to achieve the global (that is, centralized)
error performance. Given yi per sensor i, the assumption on memoryless and inde-
pendent channels yields the centralized maximum-likelihood (ML) decoder as
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ŝDEC = argmax
s∈C

p({yi}n
i=1|s) = argmin

s∈C ∑p
l=1 ∑n

i=1 [− log p(yil |sl)] . (14.10)

ML decoding amounts to deciding the most likely codeword among multiple can-
didate ones and, in this sense, it can be viewed as a test of multiple hypotheses.
In this general context, belief propagation approaches have been developed in [66],
so that all nodes can cooperate to learn the centralized likelihood per hypothesis.
However, even for linear binary block codes, the number of hypotheses, namely
the cardinality of C, grows exponentially with the codeword length. This introduces
high communication and computation burden for the low-cost sensor designs.

The key here is to extract minimal sufficient statistics for the centralized de-
coding problem. For binary codes, the log-likelihood terms in (14.10) become
log p(yil |sl) =−γilsl + log p(yil |sl = 0), where

γil := log

(
p(yil |sl = 0)
p(yil |sl = 1)

)
(14.11)

is the local log-likelihood ratio (LLR) for the bit sl at sensor i. Ignoring all constant
terms log p(yil |sl = 0), the ML decoding objective ends up only depending on the
sum LLRs, as given by ŝML = argmins∈C∑p

l=1(∑
n
i=1 γil)sl . Clearly, the sufficient

statistic for solving (14.10) is the sum of all local LLR terms, or equivalently, the
average γ̄l = (1/n)∑n

i=1 γil for each bit l. Interestingly, the average of {γil}n
i=1 is one

instance of the BLUE discussed in Section 3.1.1 when ˙y,i = H j = Ip×p, since

γ̄l = argminγ ∑n
i=1(γil − γ)2. (14.12)

This way, the ADMM-based decentralized learning framework in Section 2 allows
for all sensors to collaboratively attain the sufficient statistic for the decoding prob-
lem (14.10) via in-network processing. Each sensor only needs to estimate a vector
of the codeword length p, which bypasses the exponential complexity under the
framework of belief propagation. As shown in [89], decentralized soft decoding is
also feasible since the a posteriori probability (APP) evaluator also relies on LLR
averages which are sufficient statistics, where extensions to non-binary alphabet
codeword constraints and random failing inter-sensor links are also considered.

The bit error rate (BER) versus SNR plot in Figure 14.2 demonstrates the perfor-
mance of ADMM-based in-network decoding of a convolutional code with p = 60
and |C| = 40. This numerical test involves n = 10 sensors and AWGN AP-sensor
channels with σ2

i = 10−SNRi/10. Four schemes are compared: (i) the local ML de-
coder based on per-sensor data only (corresponds to the curve marked as k = 0 since
it is used to initialize the decentralized iterations); (ii) the centralized benchmark ML
decoder (corresponds to k = ∞); (iii) the in-network decoder which forms γ̄l using
“consensus-averaging” linear iterations [83]; and (iv) the ADMM-based decentral-
ized algorithm. Indeed, the ADMM-based decoder exhibits faster convergence than
its consensus-averaging counterpart; and surprisingly, only 10 iterations suffice to
bring the decentralized BER very close to the centralized performance.
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Fig. 14.2 BER vs. SNR (in dB) curves depicting the local ML decoder vs. the consensus-averaging
decoder vs. the ADMM-based approach vs. the centralized ML decoder benchmark.

Message Demodulation. In a related detection scenario the common AP message
s can be mapped to a space-time matrix, with each entry drawn from a finite alphabet
A. The received block yi per sensor i typically admits a linear input/output relation-
ship yi = Hi s+ ε i. Matrix Hi is formed from the fading AP-sensor channel, and ε i

stands for the additive white Gaussian noise of unit variance, that is assumed uncor-
related across sensors. Since low-cost sensors have very limited budget on number
of antennas compared to the AP, the length of yi is much shorter than s (i.e., mi < p).
Hence, the local linear demodulator using {yi,Hi} may not even be able to identify
s. Again, it is critical for each sensor i to cooperate with its neighbors to collectively
form the global ML demodulator

ŝDEM = arg max
s∈AN

−∑n
i=1 ‖yi −His‖2= arg max

s∈AN

{
2
(

∑n
i=1 ri

)-
s−s-

(
∑n

i=1 Ri

)
s
}

(14.13)

where ri := H-
i yi and Ri := H-

i Hi are the sample (cross-)covariance terms. To
solve (14.13) locally, it suffices for each sensor to acquire the network-wide average
of {ri}n

i=1, as well as that of {Ri}n
i=1, as both averages constitute the minimal suffi-

cient statistics for the centralized demodulator. Arguments similar to decentralized
decoding lead to ADMM iterations that (as with BLUE) attain locally these aver-
age terms. These iterations constitute a viable decentralized demodulation method,
whose performance analysis in [88] reveals that its error diversity order can ap-
proach the centralized one within only a dozen of iterations.

As demonstrated by the decoding and demodulation tasks, the cornerstone of
developing a decentralized detection scheme is to extract the minimal sufficient
statistics for the centralized hypothesis testing problem. This leads to significant
complexity reduction in terms of communications and computational overhead.
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3.2.2 Decentralized Support Vector Machines

The merits of support vector machines (SVMs) in a centralized setting have been
well documented in various supervised classification tasks including surveillance,
monitoring, and segmentation, see, e.g., [71]. These applications often call for de-
centralized supervised learning solutions, when limited training data are acquired at
different locations and a central processing unit is costly or even discouraged due to,
e.g., scalability, communication overhead, or privacy reasons. Noteworthy examples
include WSNs for environmental or structural health monitoring, as well as diagno-
sis of medical conditions from patient’s records distributed at different hospitals.

In this in-network classification task, a labeled training set Ti := {(xil,yil)}
of size mi is available per node i, where xil ∈ R

p is the input data vector and
yil ∈ {−1,1} denotes its corresponding class label. Given all network-wide train-
ing data {Ti}n

i=1, the centralized SVM seeks a maximum-margin linear discriminant
function ĝ(x) = x-ŝ+ b̂, by solving the following convex optimization problem [71]

{ŝ, b̂}= arg min
s, b,{ξil}

1
2
‖s‖2 +C

n

∑
i=1

mi

∑
l=1

ξil

s. to yil(s
-xil + b)≥ 1− ξil, i = 1, . . . ,n, l = 1, . . . ,mi

ξil ≥ 0, i = 1, . . . ,n, l = 1, . . . ,mi

(14.14)

where the slack variables ξil account for nonlinearly separable training sets, and C
is a tunable positive scalar that allows for controlling model complexity. Nonlinear
discriminant functions g(x) can also be accommodated after mapping input vectors
xil to a higher- (possibly infinite)-dimensional space using, e.g., kernel functions,
and pursuing a generalized maximum-margin linear classifier as in (14.14). Since
the SVM classifier (14.14) couples the local datasets, early distributed designs ei-
ther rely on a centralized processor so they are not decentralized [47], or, their per-
formance is not guaranteed to reach that of the centralized SVM [56].

A fresh view of decentralized SVM classification is taken in [29], which refor-
mulates (14.14) to estimate the parameter pair {s,b} from all local data Ti after
eliminating slack variables ξil , namely

{ŝ, b̂}= argmin
s, b

1
2
‖s‖2 +C

n

∑
i=1

mi

∑
l=1

max{0,1− yil(s
-xil + b)}. (14.15)

Notice that (14.15) has the same decomposable structure that the general decen-
tralized learning task in (14.1), upon identifying the local cost fi(s̄;yi) =

1
2n ‖s‖2 +

C∑mi
l=1 max{0,1− yil(s-xil + b)}, where s̄ := [s-,b-]-, and yi := [yi1, . . . ,yimi ]

-.
Accordingly, all network nodes can solve (14.15) in a decentralized fashion via it-
erations obtained following the ADMM-based algorithmic framework of Section 2.
Such a decentralized ADMM-DSVM scheme is provably convergent to the central-
ized SVM classifier (14.14), and can also incorporate nonlinear discriminant func-
tions as detailed in [29].
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Fig. 14.3 Decision boundary comparison among ADMM-DSVM, centralized SVM, and local
SVM results for synthetic data generated from two Gaussian classes, and a network of n = 30
nodes.

To illustrate the performance of the ADMM-DSVM algorithm in [29], consider
a randomly generated network with n = 30 nodes. Each node acquires labeled train-
ing examples from two different classes, which are equiprobable and consist of ran-
dom vectors drawn from a two-dimensional (i.e., p = 2) Gaussian distribution with
common covariance matrix ˙x = [1, 0; 0, 2], and mean vectors μ1 = [−1, −1]-
and μ2 = [1, 1]-, respectively. The Bayes optimal classifier for this 2-class prob-
lem is linear [25, Ch. 2]. To visualize this test case, Figure 14.3 depicts the global
training set, along with the linear discriminant functions found by the centralized
SVM (14.14) and the ADMM-DSVM at two different nodes after 400 iterations.
Local SVM results for two different nodes are also included for comparison. It is
apparent that ADMM-DSVM approaches the decision rule of its centralized coun-
terpart, whereas local classifiers deviate since they neglect most of the training ex-
amples in the network.

3.2.3 Decentralized Clustering

Unsupervised learning using a network of wireless sensors as an exploratory infras-
tructure is well motivated for inferring hidden structures in distributed data collected
by the sensors. Different from supervised SVM-based classification tasks, each node
i = 1, . . . ,n has available a set of unlabeled observations Xi := {xil , l = 1, . . . ,mi},
drawn from a total of K classes. In this network setting, the goal is to design local
clustering rules assigning each xil to a cluster k ∈ {1, . . . ,K}. Again, the desiderata
is a decentralized algorithm capable of attaining the performance of a benchmark
clustering scheme, where all {Xi}n

i=1 are centrally available for joint processing.
Various criteria are available to quantify similarity among observations in a cen-

tralized setting, and a popular selection is the deterministic partitional clustering
(DPC) one entailing prototypical elements (a.k.a. cluster centroids) per class in or-
der to avoid comparisons between every pair of observations. Let μk denote the
prototype element for class k, and νilk the membership coefficient of xil to class k.
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Fig. 14.4 Average performance of hard-DKM on a real data set using a WSN with n = 20 nodes
for various values of η and K (left). Clustering with K = 3 and η = 5 (right) at k = 400 iterations.

A natural clustering problem amounts to specifying the family of K clusters with
centroids {μk}K

k=1, such that the sum of squared-errors is minimized; that is

min
{νilk∈V},{μk}

n

∑
i=1

mi

∑
l=1

K

∑
k=1

νρ
ilk ‖xil − μk‖2 (14.16)

where ρ ≥ 1 is a tuning parameter, and V := {νilk : ∑k νρ
ilk = 1, νilk ∈ [0,1], ∀i, l}

denotes the convex set of constraints on all membership coefficients. With ρ = 1 and
{μk} fixed, (14.16) becomes a linear program in νilk. Consequently, (14.16) admits
binary {0,1} optimal solutions giving rise to the so-termed hard assignments, by
choosing the cluster k for xil whenever νilk = 1. Otherwise, for ρ > 1 the optimal co-
efficients generally result in soft membership assignments, and the optimal cluster is
k∗ := argmaxk νρ

ilk for xil . In either case, the DPC clustering problem (14.16) is NP-
hard, which motivates the (suboptimal) K-means algorithm that, on a per iteration
basis, proceeds in two-steps to minimize the cost in (14.16) w.r.t.: (S1) V with {μk}
fixed; and (S2) {μk} with V fixed [44]. Convergence of this two-step alternating-
minimization scheme is guaranteed at least to a local minimum. Nonetheless, K-
means requires central availability of global information (those variables that are
fixed per step), which challenges in-network implementations. For this reason, most
early attempts are either confined to specific communication network topologies, or
they offer no closed-form local solutions; see, e.g., [58, 81].

To address these limitations, [30] casts (14.16) [yet another instance of (14.1)] as
a decentralized estimation problem. It is thus possible to leverage ADMM iterations
and solve (14.16) in a decentralized fashion through information exchanges among
single-hop neighbors only. Albeit the non-convexity of (14.16), the decentralized
DPC iterations in [30] provably approach a local minimum arbitrarily closely, where
the asymptotic convergence holds for hard K-means with ρ = 1. Further extensions
in [30] include a decentralized expectation-maximization algorithm for probabilistic
partitional clustering, and methods to handle unknown number of classes.

Clustering of Oceanographic Data. Environmental monitoring is a typical ap-
plication of WSNs. In WSNs deployed for oceanographic monitoring, the cost
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of computation per node is lower than the cost of accessing each node’s obser-
vations [2]. This makes the option of centralized processing less attractive, thus
motivating decentralized processing. Here we test the decentralized DPC schemes
of [30] on real data collected by multiple underwater sensors in the Mediterranean
coast of Spain [10], with the goal of identifying regions sharing common physical
characteristics. A total of 5,720 feature vectors were selected, each having entries
for the temperature (◦C) and salinity (psu) levels (p = 2). The measurements were
normalized to have zero mean, unit variance, and they were grouped in n= 20 blocks
(one per sensor) of mi = 286 measurements each. The algebraic connectivity of the
WSN is 0.2289 and the average degree per node is 4.9. Figure 14.4 (left) shows the
performance of 25 Monte Carlo runs for the hard-DKM algorithm with different
values of the parameter c := η . The best average convergence rate was obtained for
η = 5, attaining the average centralized performance after 300 iterations. Tests with
different values of K and η are also included in Figure 14.4 (left) for comparison.
Note that for K = 2 and η = 5 hard-DKM hovers around a point without converging.
Choosing a larger η guarantees convergence of the algorithm to a unique solution.
The clustering results of hard-DKM at k = 400 iterations for η = 5 and K = 3 are
depicted in Figure 14.4 (right).

4 Decentralized Adaptive Estimation

Sections 2 and 3 dealt with decentralized batch estimation, whereby network nodes
acquire data only once and then locally exchange messages to reach consensus on
the desired estimators. In many applications, however, networks are deployed to
perform estimation in a constantly changing environment without having available
a complete statistical description of the underlying processes of interest, e.g., with
time-varying thermal or seismic sources. This motivates the development of decen-
tralized adaptive estimation schemes, where nodes collect data sequentially in time
and local estimates are recursively refined “on-the-fly”. In settings where statistical
state models are available, it is prudent to develop model-based tracking approaches
implementing in-network Kalman or particle filters. Next, the scope of Section 2
is broadened to facilitate real-time (adaptive) processing of network data, when the
local costs in (14.1) and unknown parameters are allowed to vary with time.

4.1 Decentralized Least-Mean Squares

A decentralized least-mean squares (LMS) algorithm is developed here for adap-
tive estimation of (possibly) nonstationary parameters, even when statistical infor-
mation such as ensemble data covariances are unknown. Suppose network nodes
are deployed to estimate a signal vector s(t) ∈ R

p×1 in a collaborative fashion
subject to single-hop communication constraints, by resorting to the linear LMS



476 G.B. Giannakis et al.

criterion; see, e.g., [74, 46, 69]. Per time instant t = 0,1,2, . . ., each node has
available a regression vector hi(t) ∈ R

p×1 and acquires a scalar observation yi(t),
both assumed zero-mean without loss of generality. Introducing the global vector
y(t) := [y1(t) . . .yn(t)]

- ∈ R
n×1 and matrix H(t) := [h1(t) . . .hn(t)]

- ∈ R
n×p, the

global time-dependent LMS estimator of interest can be written as [74, 46, 69, p. 14]

ŝ(t) := argmin
s

E
[‖y(t)−H(t)s‖2]= argmin

s
∑n

i=1E
[
(yi(t)−h-

i (t)s)
2
]
. (14.17)

For jointly wide-sense stationary {x(t),H(t)}, solving (14.17) leads to the well-
known Wiener filter estimate ŝW = ˙−1

H ˙Hy, where ˙H := E[H-(t)H(t)] and
˙Hy := E[H-(t)y(t)]; see e.g., [74, p. 15].

For the cases where the auto- and cross-covariance matrices ˙H and ˙Hy are
unknown, the approach followed here to develop the decentralized (D-) LMS algo-
rithm includes two main building blocks: (i) recast (14.17) into an equivalent form
amenable to in-network processing via the ADMM framework of Section 2; and
(ii) leverage stochastic approximation iterations [40] to obtain an adaptive LMS-
like algorithm that can handle the unavailability/variation of statistical information.
Following those algorithmic construction steps outlined in Section 2, the following
updating recursions are obtained for the multipliers vi(t) and the local estimates
si(t + 1) at time instant t + 1 and i = 1, . . . ,n

vi(t) = vi(t − 1)+ c ∑
j∈Ni

[si(t)− s j(t)] (14.18)

si(t + 1) = argmin
si

{
E

[
(yi(t + 1)−h-

i (t + 1)si)
2
]
+ v-i (t)si

+c ∑
j∈Ni

∥∥∥∥si − si(t)+ s j(t)

2

∥∥∥∥
2
}
. (14.19)

It is apparent that after differentiating (14.19) and setting the gradient equal to zero,
si(t + 1) can be obtained as the root of an equation of the form

E['(si,yi(t + 1),hi(t + 1))] = 0 (14.20)

where ' corresponds to the stochastic gradient of the cost in (14.19). However,
the previous equation cannot be solved since the nodes do not have available any
statistical information about the acquired data. Inspired by stochastic approximation
techniques (such as the celebrated Robbins-Monro algorithm; see, e.g.,[40, Ch. 1])
which iteratively find the root of (14.20) given noisy observations {'(si(t),yi(t+1),
hi(t+1))}∞

t=0, one can just drop the unknown expected value to obtain the following
D-LMS (i.e., stochastic gradient) updates

si(t + 1) = si(t)+ μ

[
hi(t + 1)ei(t + 1)− vi(t)− c ∑

j∈Ni

[si(t)− s j(t)]

]
(14.21)

where μ denotes a constant step-size, and ei(t + 1) := 2[yi(t + 1)−h-
i (t + 1)si(t)]

is twice the local a priori error.
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Fig. 14.5 Tracking with D-LMS. (left) Local MSE performance metrics both with and without
inter-node communication noise for sensors 3 and 12; and (right) True and estimated time-varying
parameters for a representative node, using slow and optimal adaptation levels.

Recursions (14.18) and (14.21) constitute the D-LMS algorithm, which can be
viewed as a stochastic-gradient counterpart of D-BLUE in Section 3.1.1. D-LMS is
a pioneering approach for decentralized online learning, which blends for the first
time affordable (first-order) stochastic approximation steps with parallel ADMM
iterations. The use of a constant step-size μ endows D-LMS with tracking capa-
bilities. This is desirable in a constantly changing environment, within which, e.g.,
WSNs are envisioned to operate. The D-LMS algorithm is stable and converges
even in the presence of inter-node communication noise (see details in [69, 55]).
Further, closed-form expressions for the evolution and the steady-state mean-square
error (MSE), as well as selection guidelines for the step-size μ can be found in [55].

Here we test the tracking performance of D-LMS with a computer simulation.
For a random geometric graph with n = 20 nodes, network-wide observations yi are
linearly related to a large-amplitude slowly time-varying parameter vector s0(t) ∈
R

4. Specifically, s0(t) =�s0(t − 1)+�(t), where � = (1− 10−4)diag(θ1, . . . ,θp)
with θi ∼ U[0,1]. The driving noise is normally distributed with ˙ζ = 10−4Ip. To
model noisy links, additive white Gaussian noise with variance 10−2 is present at
the receiving end. For μ = 5× 10−2, Figure 14.5 (left) depicts the local perfor-
mance of two representative nodes through the evolution of the excess mean-square
error EMSEi(t) = E[(h-

i (t)[si(t − 1)− s0(t − 1)])2] and the mean-square deviation
MSDi(t) = E[‖si(t)− s0(t)‖2] figures of merit. Both noisy and ideal links are con-
sidered, and the empirical curves closely follow the theoretical trajectories derived
in [55]. Steady-state limiting values are also extremely accurate. As intuitively ex-
pected and suggested by the analysis, a performance penalty due to non-ideal links
is also apparent. Figure 14.5 (right) illustrates how the adaptation level affects the
resulting per-node estimates when tracking time-varying parameters with D-LMS.
For μ = 5×10−4 (slow adaptation) and μ = 5×10−2 (near optimal adaptation), we
depict the third entry of the parameter vector [s0(t)]3 and the respective estimates
from the randomly chosen sixth node. Under optimal adaptation the local estimate
closely tracks the true variations, while – as expected – for the smaller step-size
D-LMS fails to provide an accurate estimate [55, 74].
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4.2 Decentralized Recursive Least-Squares

The recursive least-squares (RLS) algorithm has well-appreciated merits for reduc-
ing complexity and storage requirements, in online estimation of stationary signals,
as well as for tracking slowly varying nonstationary processes [74, 38]. RLS is es-
pecially attractive when the state and/or data model are not available (as with LMS),
and fast convergence rates are at a premium. Compared to the LMS scheme, RLS
typically offers faster convergence and improved estimation performance at the cost
of higher computational complexity. To enable these valuable tradeoffs in the con-
text of in-network processing, the ADMM framework of Section 2 is utilized here
to derive a decentralized (D-) RLS adaptive scheme that can be employed for dis-
tributed localization and power spectrum estimation (see also [54, 52] for further
details on the algorithmic construction and convergence claims).

Consider the data setting and linear regression task in Section 4.1. The RLS esti-
mator for the unknown parameter s0(t) minimizes the exponentially weighted least-
squares (EWLS) cost; see, e.g., [74, 38]

ŝewls(t) := argmin
s

t

∑
τ=0

n

∑
i=1

γt−τ
[
yi(τ)−h-

i (τ)s
]2

+ γtsT˚0s (14.22)

where γ ∈ (0,1] is a forgetting factor, while the positive definite matrix ˚0 is in-
cluded for regularization. Note that in forming the EWLS estimator at time t, the
entire history of data {yi(τ),hi(τ)}t

τ=0 for i = 1, . . . ,n is incorporated in the on-
line estimation process. Whenever γ < 1, past data are exponentially discarded thus
enabling tracking of nonstationary processes.

Again to decompose the cost function in (14.22), in which summands are coupled
through the global variable s, we introduce auxiliary variables {si}n

i=1 that represent
local estimates per node i. These local estimates are utilized to form the convex
constrained and separable minimization problem in (14.3), which can be solved
using ADMM to yield the following decentralized iterations (details in [54, 52])

vi(t) = vi(t − 1)+ c ∑
j∈Ni

[si(t)− s j(t)] (14.23)

si(t + 1) =˚−1
i (t + 1) i(t + 1)− 1

2
˚−1

i (t + 1)vi(t) (14.24)

where˚i(t + 1) := ∑t+1
τ=0 γt+1−τhi(τ)h-

i (τ)+ n−1γt+1˚0 and

˚−1
i (t + 1) = γ−1˚−1

i (t)− γ−1˚−1
i (t)hi(t + 1)h-

i (t + 1)˚−1
i (t)

γ +h-
i (t + 1)˚−1

i (t)hi(t + 1)
(14.25)

 i(t + 1) :=
t+1

∑
τ=0

γt+1−τhi(τ)yi(τ) = γ i(t)+hi(t + 1)yi(t + 1). (14.26)

The D-RLS recursions (14.23) and (14.24) involve similar inter-node communica-
tion exchanges as in D-LMS. It is recommended to initialize the matrix recursion
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with ˚−1
i (0) = n˚−1

0 := δ Ip, where δ > 0 is chosen sufficiently large [74]. The
local estimates in D-RLS converge in the mean-sense to the true s0 (time-invariant
case), even when information exchanges are imperfect. Closed-form expressions for
the bounded estimation MSE along with numerical tests and comparisons with the
incremental RLS [45] and diffusion RLS [13] algorithms can be found in [52].

Decentralized Spectrum Sensing Using WSNs. A WSN application where the
need for linear regression arises is spectrum estimation for the purpose of environ-
mental monitoring. Suppose sensors comprising a WSN deployed over some area of
interest observe a narrowband source to determine its spectral peaks. These peaks
can reveal hidden periodicities due to, e.g., a natural heat or seismic source. The
source of interest propagates through multi-path channels and is contaminated with
additive noise present at the sensors. The unknown source-sensor channels may in-
troduce deep fades at the frequency band occupied by the source. Thus, having each
sensor operating on its own may lead to faulty assessments. The available spatial
diversity to effect improved spectral estimates can only be achieved via sensor col-
laboration as in the decentralized estimation algorithms presented in this chapter.

Let θ (t) denote the evolution of the source signal in time, and suppose that θ (t)
can be modeled as an autoregressive (AR) process [76, p. 106]

θ (t) =−
p

∑
τ=1

ατθ (t − τ)+w(t)

where p is the order of the AR process, while {ατ} are the AR coefficients and w(t)
denotes driving white noise. The source propagates to sensor i via a channel mod-
eled as an FIR filter Ci(z) = ∑Li−1

l=0 cilz−l , of unknown order Li and tap coefficients
{cil} and is contaminated with additive sensing noise ε̄i(t) to yield the observation

yi(t) =
Li−1

∑
l=0

cilθ (t − l)+ ε̄i(t).

Since yi(t) is an autoregressive moving average (ARMA) process, then [76]

yi(t) =−
p

∑
τ=1

ατyi(t − τ)+
m

∑
τ ′=1

βτ ′η̃i(t − τ ′) (14.27)

where the MA coefficients {βτ ′} and the variance of the white noise process η̃i(t)
depend on {cil}, {ατ} and the variance of the noise terms w(t) and ε̄i(t). For the
purpose of determining spectral peaks, the MA term in (14.27) can be treated as
observation noise, i.e., εi(t) := ∑m

τ ′=1 βτ ′ η̃i(t − τ ′). This is very important since this
way sensors do not have to know the source-sensor channel coefficients as well as
the noise variances. Accordingly, the spectral content of the source can be estimated
provided sensors estimate the coefficients {ατ}. To this end, let s0 := [α1 . . .αp]

-
be the unknown parameter of interest. From (14.27) the regression vectors are given
as hi(t) = [−yi(t −1) . . .− yi(t − p)]-, and can be acquired directly from the sensor
measurements {yi(t)} without the need of training/estimation.



480 G.B. Giannakis et al.

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

Frequency ω (rads/sec)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

True spectrum

D−LMS (ση
2=0)

L−LMS

D−LMS (ση
2=4*10−3)

0 50 100 150 200 250 300

10
−2

10
−1

Iteration index t

G
lo

ba
l M

S
E

D−LMS

D−RLS

Fig. 14.6 D-LMS in a power spectrum estimation task. (left) The true narrowband spectra is com-
pared to the estimated PSD, obtained after the WSN runs the D-LMS and (non-cooperative) L-LMS
algorithms. The reconstruction results correspond to a sensor whose multipath channel from the
source introduces a null at ω = π/2= 1.57. (right) Global MSE evolution (network learning curve)
for the D-LMS and D-RLS algorithms.

Performance of the decentralized adaptive algorithms described so far is illus-
trated next, when applied to the aforementioned power spectrum estimation task.
For the numerical experiments, an ad hoc WSN with n = 80 sensors is simulated as
a realization of a random geometric graph. The source-sensor channels correspond-
ing to a few of the sensors are set so that they have a null at the frequency where
the AR source has a peak, namely at ω = π/2. Figure 14.6 (left) depicts the actual
power spectral density (PSD) of the source as well as the estimated PSDs for one of
the sensors affected by a bad channel. To form the desired estimates in a distributed
fashion, the WSN runs the local (L-) LMS and the D-LMS algorithm outlined in
Section 4.1. The L-LMS is a non-cooperative scheme since each sensor, say the ith,
independently runs an LMS adaptive filter fed by its local data {yi(t),hi(t)} only.
The experiment involving D-LMS is performed under ideal and noisy inter-sensor
links. Clearly, even in the presence of communication noise D-LMS exploits the
spatial diversity available and allows all sensors to estimate accurately the actual
spectral peak, whereas L-LMS leads the problematic sensors to misleading esti-
mates.

For the same setup, Figure 14.6 (right) shows the global learning curve evolution
MSE(t) = (1/n)∑n

i=1 ‖yi(t)− h-
i (t)si(t − 1)‖2. The D-LMS and the D-RLS algo-

rithms are compared under ideal communication links. It is apparent that D-RLS
achieves improved performance both in terms of convergence rate and steady state
MSE. As discussed in Section 4.2 this comes at the price of increased computational
complexity per sensor, while the communication costs incurred are identical.
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4.3 Decentralized Model-Based Tracking

The decentralized adaptive schemes in Sections 4.1 and 4.2 are suitable for track-
ing slowly time-varying signals in settings where no statistical models are available.
In certain cases, such as target tracking, state evolution models can be derived and
employed by exploiting the physics of the problem. The availability of such mod-
els paves the way for improved state tracking via Kalman filtering/smoothing tech-
niques, e.g., see [3, 38]. Model-based decentralized Kalman filtering/smoothing as
well as particle filtering schemes for multi-node networks are briefly outlined here.

Initial attempts to distribute the centralized KF recursions (see [59] and refer-
ences in [68]) rely on consensus-averaging [83]. The idea is to estimate across nodes
those sufficient statistics (that are expressible in terms of network-wide averages) re-
quired to form the corrected state and corresponding corrected state error covariance
matrix. Clearly, there is an inherent delay in obtaining these estimates confining the
operation of such schemes only to applications with slow-varying state vectors s0(t),
and/or fast communications needed to complete multiple consensus iterations within
the time interval separating the acquisition of consecutive measurements yi(t) and
yi(t + 1). Other issues that may lead to instability in existing decentralized KF ap-
proaches are detailed in [68].

Instead of filtering, the delay incurred by those inner-loop consensus iterations
motivated the consideration of fixed-lag decentralized Kalman smoothing (KS)
in [68]. Matching consensus iterations with those time instants of data acquisition,
fixed-lag smoothers allow sensors to form local MMSE optimal smoothed estimates,
which take advantage of all acquired measurements within the “waiting period.” The
ADMM-enabled decentralized KS in [68] also overcomes the noise-related limita-
tions of consensus-averaging algorithms [84]. In the presence of communication
noise, these estimates converge in the mean sense, while their noise-induced vari-
ance remains bounded. This noise resiliency allows sensors to exchange quantized
data further lowering communication cost. For a tutorial treatment of decentral-
ized Kalman filtering approaches using WSNs (including the decentralized ADMM-
based KS of [68] and strategies to reduce the communication cost of state estimation
problems), the interested reader is referred to [63]. These reduced-cost strategies ex-
ploit the redundancy in information provided by individual observations collected at
different sensors, different observations collected at different sensors, and different
observations acquired at the same sensor.

On a related note, a collaborative algorithm is developed in [17] to estimate
the channel gains of wireless links in a geographical area. Kriged Kalman filter-
ing (KKF) [64], which is a tool with widely appreciated merits in spatial statistics
and geosciences, is adopted and implemented in a decentralized fashion leveraging
the ADMM framework described here. The distributed KKF algorithm requires only
local message passing to track the time-variant so-termed “shadowing field” using a
network of radiometers, yet it provides a global view of the radio frequency (RF) en-
vironment through consensus iterations; see also Section 5.3 for further elaboration
on spectrum sensing carried out via wireless cognitive radio networks.
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To wrap-up the discussion, consider a network of collaborating agents (e.g.,
robots) equipped with wireless sensors measuring distance and/or bearing from a
target that they wish to track. Even if state models are available, the nonlineari-
ties present in these measurements prevent sensors from employing the clairvoyant
(linear) Kalman tracker discussed so far. In response to these challenges, [27] de-
velops a set-membership constrained particle filter (PF) approach that: (i) exhibits
performance comparable to the centralized PF; (ii) requires only communication of
particle weights among neighboring sensors; and (iii) it can afford both consensus-
based and incremental averaging implementations. Affordable inter-sensor commu-
nications are enabled through a novel distributed adaptation scheme, which consid-
erably reduces the number of particles needed to achieve a given performance. The
interested reader is referred to [36] for a recent tutorial account of decentralized PF
in multi-agent networks.

5 Decentralized Sparsity-Regularized Rank Minimization

Modern network data sets typically involve a large number of attributes. This fact
motivates predictive models offering a sparse, broadly meaning parsimonious, rep-
resentation in terms of a few attributes. Such low-dimensional models facilitate
interpretability and enhanced predictive performance. In this context, this section
deals with ADMM-based decentralized algorithms for sparsity-regularized rank
minimization. It is argued that such algorithms are key to unveiling Internet traf-
fic anomalies given ubiquitous link-load measurements. Moreover, the notion of RF
cartography is subsequently introduced to exemplify the development of a paradigm
infrastructure for situational awareness at the physical layer of wireless cognitive ra-
dio (CR) networks. A (subsumed) decentralized sparse linear regression algorithm
is outlined to accomplish the aforementioned cartography task.

5.1 Network Anomaly Detection via Sparsity and Low Rank

Consider a backbone IP network, whose abstraction is a graph with n nodes (routers)
and L physical links. The operational goal of the network is to transport a set of F
origin-destination (OD) traffic flows associated with specific OD (ingress-egress
router) pairs. Let xl,t denote the traffic volume (in bytes or packets) passing through
link l ∈ {1, . . . ,L} over a fixed time interval (t, t +Δ t). Link counts across the en-
tire network are collected in the vector xt ∈ R

L, e.g., using the ubiquitous SNMP
protocol. Single-path routing is adopted here, meaning a given flow’s traffic is car-
ried through multiple links connecting the corresponding source-destination pair
along a single path. Accordingly, over a discrete time horizon t ∈ [1,T ] the mea-
sured link counts X := [xl,t ] ∈ R

L×T and (unobservable) OD flow traffic matrix
Z := [z f ,t ] ∈ R

F×T , are thus related through X = RZ [41], where the so-termed
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routing matrix R := [rl, f ] ∈ {0,1}L×F is such that rl, f = 1 if link l carries the flow
f , and zero otherwise. The routing matrix is ‘wide,’ as for backbone networks the
number of OD flows is much larger than the number of physical links (F , L).
A cardinal property of the traffic matrix is noteworthy. Common temporal patterns
across OD traffic flows in addition to their almost periodic behavior, render most
rows (respectively columns) of the traffic matrix linearly dependent, and thus Z typ-
ically has low rank. This intuitive property has been extensively validated with real
network data; see Figure 14.7 and, e.g., [41].
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Fig. 14.7 Volumes of 6 representative (out of 121 total) OD flows, taken from the operation of
Internet-2 during a seven-day period. Temporal periodicities and correlations across flows are ap-
parent. As expected, in this case Z can be well approximated by a low-rank matrix, since its nor-
malized singular values decay rapidly to zero.

It is not uncommon for some of the OD flow rates to experience unexpected
abrupt changes. These so-termed traffic volume anomalies are typically due to (un-
intentional) network equipment misconfiguration or outright failure, unforeseen be-
haviors following routing policy modifications, or, cyber attacks (e.g., DoS attacks)
which aim at compromising the services offered by the network [86, 41, 53]. Let
a f ,t denote the unknown amount of anomalous traffic in flow f at time t, which one
wishes to estimate. Explicitly accounting for the presence of anomalous flows, the
measured traffic carried by link l is then given by yl,t =∑ f rl, f (z f ,t +a f ,t)+εl,t , t =
1, . . . ,T , where the noise variables εl,t capture measurement errors and unmodeled
dynamics. Traffic volume anomalies are (unsigned) sudden changes in the traffic of
OD flows, and as such their effect can span multiple links in the network. A key
difficulty in unveiling anomalies from link-level measurements only is that often-
times, clearly discernible anomalous spikes in the flow traffic can be masked through
“destructive interference” of the superimposed OD flows [41]. An additional chal-
lenge stems from missing link-level measurements yl,t , an unavoidable opera-
tional reality affecting most traffic engineering tasks that rely on (indirect) mea-
surement of traffic matrices [65]. To model missing link measurements, collect
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the tuples (l, t) associated with the available observations yl,t in the set Ω ⊆
[1,2, . . . ,L]× [1,2, . . . ,T ]. Introducing the matrices Y := [yl,t ],E := [εl,t ] ∈ R

L×T ,
and A := [a f ,t ] ∈ R

F×T , the (possibly incomplete) set of link-traffic measurements
can be expressed in compact matrix form as

PΩ (Y) =PΩ (X+RA+E) (14.28)

where the sampling operator PΩ (.) sets the entries of its matrix argument not in
Ω to zero, and keeps the rest unchanged. Since the objective here is not to estimate
the OD flow traffic matrix Z, (14.28) is expressed in terms of the nominal (anomaly
free) link-level traffic rates X := RZ, which inherits the low-rank property of Z.
Anomalies in A are expected to occur sporadically over time, and last for a short
time relative to the (possibly long) measurement interval [1,T ]. In addition, only a
small fraction of the flows is supposed to be anomalous at a any given time instant.
This renders the anomaly matrix A sparse across rows (flows) and columns (time).

Recently, a natural estimator leveraging the low rank property of X and the spar-
sity of A was put forth in [48], which can be found at the crossroads of compressive
sampling [23] and timely low-rank plus sparse matrix decompositions [11, 14]. The
idea is to fit the incomplete data PΩ (Y) to the model X+RA [cf. (14.28)] in the
LS error sense, as well as minimize the rank of X, and the number of nonzero en-
tries of A measured by its �0-(pseudo) norm. Unfortunately, albeit natural both rank
and �0-norm criteria are in general NP-hard to optimize. Typically, the nuclear norm
‖X‖∗ := ∑k σk(X) (σk(X) denotes the k-th singular value of X) and the �1-norm
‖A‖1 are adopted as surrogates [28, 12], since they are the closest convex approxi-
mants to rank(X) and ‖A‖0, respectively. Accordingly, one solves

min
{X,A}

‖PΩ (Y−X−RA)‖2
F +λ∗‖X‖∗+λ1‖A‖1 (14.29)

where λ∗,λ1 ≥ 0 are rank- and sparsity-controlling parameters. While a non-smooth
optimization problem, (14.29) is appealing because it is convex. An efficient ac-
celerated proximal gradient algorithm with quantifiable iteration complexity was
developed to unveil network anomalies [50]. Interestingly, (14.29) also offers a
cleansed estimate of the link-level traffic X̂, that could be subsequently utilized for
network tomography tasks. In addition, (14.29) jointly exploits the spatio-temporal
correlations in link traffic as well as the sparsity of anomalies, through an optimal
single-shot estimation-detection procedure that turns out to outperform the algo-
rithms in [41] and [86] (the latter decouple the estimation and detection steps); see
Figure 14.8.

5.2 In-Network Traffic Anomaly Detection

Implementing (14.29) presumes that network nodes continuously communicate
their link traffic measurements to a central monitoring station, which uses their
aggregation in PΩ (Y) to unveil anomalies. While for the most part this is the
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Fig. 14.8 Unveiling anomalies from Internet-2 data. (Left) ROC curve comparison be-
tween (14.29) and the PCA methods in [41, 86], for different values of the rank(Z). Leveraging
sparsity and low rank jointly leads to improved performance. (Right) In red, the estimated anomaly
map Â obtained via (14.29) superimposed to the “true” anomalies shown in blue [49].

prevailing operational paradigm adopted in current networks, it is prudent to re-
flect on the limitations associated with this architecture. For instance, fusing all this
information may entail excessive protocol overheads. Moreover, minimizing the ex-
changes of raw measurements may be desirable to reduce unavoidable communica-
tion errors that translate to missing data. Solving (14.29) centrally raises robustness
concerns as well, since the central monitoring station represents an isolated point of
failure.

These reasons prompt one to develop fully decentralized iterative algorithms for
unveiling traffic anomalies, and thus embed network anomaly detection function-
ality to the routers. As in Section 2, per iteration node i carries out simple com-
putational tasks locally, relying on its own link count measurements (a submatrix
Yi within Y := [Y-

1 , . . . ,Y
-
n ]

- corresponding to router i’s links). Subsequently, lo-
cal estimates are refined after exchanging messages only with directly connected
neighbors, which facilitates percolation of local information to the whole network.
The end goal is for network nodes to consent on a global map of network anomalies
Â, and attain (or at least come close to) the estimation performance of the central-
ized counterpart (14.29) which has all data PΩ (Y) available.

Problem (14.29) is not amenable to distributed implementation because of the
non-separable nuclear norm present in the cost function. If an upper bound rank(X̂)≤
ρ is a priori available [recall X̂ is the estimated link-level traffic obtained via (14.29)],
the search space of (14.29) is effectively reduced, and one can factorize the decision
variable as X = PQ-, where P and Q are L×ρ and T ×ρ matrices, respectively.
Again, it is possible to interpret the columns of X (viewed as points in R

L) as be-
longing to a low-rank nominal subspace, spanned by the columns of P. The rows of
Q are thus the projections of the columns of X onto the traffic subspace. Next, con-
sider the following alternative characterization of the nuclear norm (see, e.g., [75])

‖X‖∗ := min
{P,Q}

1
2

(‖P‖2
F + ‖Q‖2

F

)
, s. to X = PQ- (14.30)
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where the optimization is over all possible bilinear factorizations of X, so that the
number of columns ρ of P and Q is also a variable. Leveraging (14.30), the fol-
lowing reformulation of (14.29) provides an important first step towards obtaining
a decentralized algorithm for anomaly identification

min
{P,Q,A}

n

∑
i=1

[
‖PΩi(Yi −PiQ-−RiA)‖2

F +
λ∗
2n

(
n‖Pi‖2

F + ‖Q‖2
F

)
+

λ1

n
‖A‖1

]
(14.31)

which is non-convex due to the bilinear terms PiQ-, and where R :=
[
R-

1 , . . . ,R
-
n

]-
is partitioned into local routing tables available per router i. Adopting the separable
Frobenius-norm regularization in (14.31) comes with no loss of optimality rela-
tive to (14.29), provided rank(X̂) ≤ ρ . By finding the global minimum of (14.31)
[which could entail considerably less variables than (14.29)], one can recover the
optimal solution of (14.29). But since (14.31) is non-convex, it may have stationary
points which need not be globally optimum. As asserted in [48, Prop. 1], however,
if a stationary point {P̄,Q̄, Ā} of (14.31) satisfies ‖PΩ (Y− P̄Q̄-− Ā)‖< λ∗, then
{X̂ := P̄Q̄-, Â := Ā} is the globally optimal solution of (14.29).

To decompose the cost in (14.31), in which summands inside the square brackets
are coupled through the global variables {Q,A}, one can proceed as in Section 2
and introduce auxiliary copies {Qi,Ai}n

i=1 representing local estimates of {Q,A},
one per node i. These local copies along with consensus constraints yield the decen-
tralized estimator

min
{Pi,Qi,Ai}

n

∑
i=1

[
‖PΩi(Yi −PiQ-

i −RiAi)‖2
F +

λ∗
2n

(
n‖Pi‖2

F + ‖Qi‖2
F

)
+

λ1

n
‖Ai‖1

]
(14.32)

s. to Qi = Q j, Ai = A j, i = 1, . . . ,n, j ∈Ni, i �= j

which follows the general form in (14.2), and is equivalent to (14.31) provided the
network topology graph is connected. Even though consensus is a fortiori imposed
within neighborhoods, it carries over to the entire (connected) network and local
estimates agree on the global solution of (14.31). Exploiting the separable struc-
ture of (14.32) using the ADMM, a general framework for in-network sparsity-
regularized rank minimization was put forth in [48]. In a nutshell, local tasks per
iteration k = 1,2, . . . entail solving small unconstrained quadratic programs to re-
fine the normal subspace Pi[k], in addition to soft-thresholding operations to update
the anomaly maps Ai[k] per router. Routers exchange their estimates {Qi[k],Ai[k]}
only with directly connected neighbors per iteration. This way the communication
overhead remains affordable, regardless of the network size n.

When employed to solve non-convex problems such as (14.32), so far ADMM
offers no convergence guarantees. However, there is ample experimental evidence
in the literature that supports empirical convergence of ADMM, especially when the
non-convex problem at hand exhibits “favorable” structure [9]. For instance, (14.32)
is a linearly constrained bi-convex problem with potentially good convergence
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properties – extensive numerical tests in [48] demonstrate that this is indeed the
case. While establishing convergence remains an open problem, one can still prove
that upon convergence the distributed iterations attain consensus and global opti-
mality, thus offering the desirable centralized performance guarantees [48].

5.3 RF Cartography via Decentralized Sparse Linear Regression

In the domain of spectrum sensing for CR networks, RF cartography amounts to
constructing in a distributed fashion: i) global power spectral density (PSD) maps
capturing the distribution of radiated power across space, time, and frequency; and
ii) local channel gain (CG) maps offering the propagation medium per frequency
from each node to any point in space [17]. These maps enable identification of
opportunistically available spectrum bands for re-use and handoff operation; as well
as localization, transmit-power estimation, and tracking of primary user activities.
While the focus here is on the construction of PSD maps, the interested reader is
referred to [39] for a tutorial treatment on CG cartography.

A cooperative approach to RF cartography was introduced in [5], that builds on
a basis expansion model of the PSD map Φ(x, f ) across space x ∈ R

2, and fre-
quency f . Spatially distributed CRs collect smoothed periodogram samples of the
received signal at given sampling frequencies, based on which the unknown ex-
pansion coefficients are determined. Introducing a virtual spatial grid of candidate
source locations, the estimation task can be cast as a linear LS problem with an aug-
mented vector of unknown parameters. Still, the problem complexity (or effective
degrees of freedom) can be controlled by capitalizing on two forms of sparsity: the
first one introduced by the narrow-band nature of transmit-PSDs relative to the broad
swaths of usable spectrum; and the second one emerging from sparsely located ac-
tive radios in the operational space (due to the grid artifact). Nonzero entries in the
parameter vector sought correspond to spatial location-frequency band pairs corre-
sponding to active transmissions. All in all, estimating the PSD map and locating
the active transmitters as a byproduct boils down to a variable selection problem.
This motivates well employment of the ADMM and the least-absolute shrinkage
and selection operator (Lasso) for decentralized sparse linear regression [51, 48], an
estimator subsumed by (14.29) when X = 0L×T , T = 1, and matrix R has a specific
structure that depends on the chosen bases and the path-loss propagation model.

Sparse total LS variants are also available to cope with uncertainty in the re-
gression matrix, arising due to inaccurate channel estimation and grid-mismatch
effects [39]. Nonparametric spline-based PSD map estimators [6] have been also
shown effective in capturing general propagation characteristics including both
shadowing and fading; see also Figure 14.9 for an actual PSD atlas spanning 14
frequency sub-bands.
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Fig. 14.9 Spline-based RF cartography from real wireless LAN data. (Left) Detailed floor plan
schematic including the location of N = 166 sensing radios; (Right-bottom) original measure-
ments spanning 14 frequency sub-bands; (Right-center) estimated maps over the surveyed area;
and (Right-top) extrapolated maps. The proposed decentralized estimator is capable of recovering
the 9 (out of 14 total) center frequencies that are being utilized for transmission. It accurately re-
covers the power levels in the surveyed area with a smooth extrapolation to zones were there are
no measurements, and suggests possible locations for the transmitters [6].

6 Convergence Analysis

In this section we analyze the convergence and assess the rate of convergence for
the decentralized ADMM algorithm outlined in Section 2. We focus on the batch
learning setup, where the local cost functions are static.

6.1 Preliminaries

Network Model Revisited and Elements of Algebraic Graph Theory. Recall
the network model briefly introduced in Section 1, based on a connected graph
composed of a set of n nodes (agents, vertices), and a set of L edges (arcs, links).
Each edge e = (i, j) represents an ordered pair (i, j) indicating that node i com-
municates with node j. Communication is assumed bidirectional so that per edge
e = (i, j), the edge e′ = ( j, i) is also present. Nodes adjacent to i are its neighbors
and belong to the (neighborhood) set Ni. The cardinality of |Ni| equals the de-
gree di of node i. Let As ∈ R

Lp×np denote the block edge source matrix, where
the block [As]e,i = Ip ∈ R

p×p if the edge e originates at node i, and is null oth-
erwise. Likewise, define the block edge destination matrix Ad ∈ R

Lp×np where
the block [Ad ]e, j = Ip ∈ R

p×p if the edge e terminates at node j, and is null
otherwise. The so-termed extended oriented incidence matrix can be written as
Eo = As −Ad , and the unoriented incidence matrix as Eu = As +Ad . The extended
oriented (signed) Laplacian is then given by Lo = (1/2)E-

o Eo, the unoriented (un-
signed) Laplacian by Lu = (1/2)E-

u Eu, and the degree matrix D = diag(d1, . . . ,dn)
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is D = (1/2)(Lo +Lu). With Γu denoting the largest eigenvalue of Lu, and γo the
smallest nonzero eigenvalue of Lo, basic results in algebraic graph theory establish
that both Γu and γo are measures of network connectedness.

Compact Learning Problem Representation. With reference to the optimiza-
tion problem (14.3), define s := [s-1 . . . s-n ]- ∈ R

np concatenating all local esti-
mates si, and z := [z-1 . . .z-L ]- ∈ R

Lp concatenating all auxiliary variables ze = z j
i .

For notational convenience, introduce the aggregate cost function f : Rnp → R as
f (s) := ∑n

i=1 fi(si;yi). Using these definitions along with the edge source and desti-
nation matrices, (14.3) can be rewritten in compact matrix form as

min
s

f (s), s. to Ass− z = 0, Ads− z = 0.

Upon defining A := [A-
s A-

d ]
- ∈ R

2Lp×np and B := [−ILp − ILp]
-, (14.33) reduces

to
min

s
f (s), s. to As+Bz = 0.

As in Section 2, consider Lagrange multipliers v̄e = v̄ j
i associated with the con-

straints si = s j
i , and ṽe = v̄ j

i associated with s j = s j
i . Next, define the supervectors

v̄ := [v̄-1 . . . v̄-L ]- ∈ R
Lp and ṽ := [ṽ-1 . . . ṽ-L ]- ∈ R

Lp, collecting those multipliers
associated with the constraints Ass− z = 0 and Ads− z = 0, respectively. Finally,
associate multipliers v := [v̄- ṽ-]- ∈ R

2Lp with the constraint in (14.33), namely
As+Bz = 0. This way, the augmented Lagrangian function of (14.33) is

Lc(s,z,v) = f (s)+ v-(As+Bz)+
c
2
‖As+Bz‖2

where c > 0 is a positive constant [cf. (14.4) back in Section 2].

Assumptions and Scope of the Convergence Analysis. In the convergence anal-
ysis, we assume that (14.3) has at least a pair of primal-dual solutions. In addition,
we make the following assumptions on the local cost functions fi.

Assumption 1. The local cost functions fi are closed, proper, and convex.

Assumption 2. The local cost functions fi have Lipschitz gradients, meaning there
exists a positive constant Mf > 0 such that for any node i and for any pair of points
s̃a and s̃b, it holds that ‖∇ fi(s̃a)−∇ fi(s̃b)‖ ≤ Mf ‖s̃a − s̃b‖.

Assumption 3. The local cost functions fi are strongly convex; that is, there exists
a positive constant m f > 0 such that for any node i and for any pair of points s̃a and
s̃b, it holds that (s̃a − s̃b)

-(∇ fi(s̃a)−∇ fi(s̃b))≥ m f ‖s̃a − s̃b‖2.

Assumption 1 implies that the aggregate function f (s) :=∑n
i=1 fi(si;yi) is closed,

proper, and convex. Assumption 2 ensures that the aggregate cost f has Lipschitz
gradients with constant Mf ; thus, for any pair of points sa and sb it holds that

‖∇ f (sa)−∇ f (sb)‖ ≤ Mf ‖sa − sb‖. (14.33)
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Assumption 3 guarantees that the aggregate cost f is strongly convex with constant
m f ; hence, for any pair of points sa and sb it holds that

(
sa − sb

)-(∇ f (sa)−∇ f (sb)
)≥ m f ‖sa − sb‖2. (14.34)

Observe that Assumptions 2 and 3 imply that the local cost functions fi and the ag-
gregate cost function f are differentiable. Assumption 1 is sufficient to prove global
convergence of the decentralized ADMM algorithm. To establish linear rate of con-
vergence however, one further needs Assumptions 2 and 3.

6.2 Convergence

In the sequel, we investigate convergence of the primal variables s(k) and z(k) as
well as the dual variable v(k), to their respective optimal values. At an optimal
primal solution pair (s∗,z∗), consensus is attained and s∗ is formed by n stacked
copies of s̃∗, while z∗ also comprises L stacked copies of s̃∗, where s̃∗ = ŝ is an
optimal solution of (14.1). If the local cost functions are not strongly convex, then
there may exist multiple optimal primal solutions; instead, if the local cost functions
are strongly convex (i.e., Assumption 3 holds), the optimal primal solution is unique.

For an optimal primal solution pair (s∗,z∗), there exist multiple optimal Lagrange
multipliers v∗ := [(v̄∗)- (ṽ∗)-]-, where v̄∗ =−ṽ∗ [42, 73]. In the following conver-
gence analysis, we show that v(k) converges to one of such optimal dual solutions
v∗. In establishing linear rate of convergence, we require that the dual variable is ini-
tialized so that v(0) lies in the column space of Eo; and consider its convergence to a
unique dual solution v∗ := [(v̄∗)- (ṽ∗)-]- in which v̄∗ and ṽ∗ also lie in the column
space of Eo. Existence and uniqueness of such a v∗ are also proved in [42, 73].

Throughout the analysis, define

u :=

[
s
v̄

]
, H :=

[ c
2 Lu 0
0 1

c ILp

]
.

We consider convergence of u(k) to its optimum u∗ := [(s∗)- (v̄∗)-]-, where (s∗, v̄∗)
is an optimal primal-dual pair. The analysis is based on several contraction inequal-
ities, in which the distance is measured in the (pseudo) Euclidean norm with respect
to the positive semi-definite matrix H.

To situate the forthcoming results in context, notice that convergence of the
centralized ADMM for constrained optimization problems has been proved in,
e.g., [26], and its ergodic O(1/k) rate of convergence is established in [34, 78].
For non-ergodic convergence, [35] proves an O(1/k) rate, and [20] improves the rate
to o(1/k). Observe that in [35, 20] the rate refers to the speed at which the difference
between two successive primal-dual iterates vanishes, different from the speed that
the primal-dual optimal iterates converge to their optima. Convergence of the decen-
tralized ADMM is presented next in the sense that the primal-dual iterates converge
to their optima. The analysis proceeds in four steps:
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S1. Show that ‖u(k)−u∗‖2
H is monotonic, namely, for all times k ≥ 0 it holds that

‖u(k+ 1)−u∗‖2
H ≤ ‖u(k)−u∗‖2

H −‖u(k+ 1)−u(k)‖2
H. (14.35)

S2. Show that ‖u(k+ 1)−u(k)‖2
H is monotonically non-increasing, that is

‖u(k+ 2)−u(k+ 1)‖2
H ≤ ‖u(k+ 1)−u(k)‖2

H. (14.36)

S3. Derive an O(1/k) rate in a non-ergodic sense based on (14.35) and (14.36),
i.e.,

‖u(k+ 1)−u(k)‖2
H ≤ 1

k+ 1
‖u(0)−u∗‖2

H. (14.37)

S4. Prove that u(k) := [s(k)- v̄(k)-]- converges to a pair of optimal primal and
dual solutions of (14.33).

The first three steps are similar to those discussed in [35, 20]. Proving the last
step is straightforward from the KKT conditions of (14.33). Under S1-S4, the main
result establishing convergence of the decentralized ADMM is as follows.

Theorem 1. If for iterations (14.5) and (14.6) the initial multiplier v(0) :=
[v̄(0)- ṽ(0)-]- satisfies v̄(0) = −ṽ(0), and z(0) is such that Eus(0) = 2z(0), then
with the ADMM penalty parameter c > 0 it holds under Assumption 1 that the it-
erates s(k) and v̄(k) converge to a pair of optimal primal and dual solutions of
(14.33).

Theorem 1 asserts that under proper initialization, convergence of the decen-
tralized ADMM only requires the local costs fi to be closed, proper, and convex.
However, it does not specify a pair of optimal primal and dual solutions of (14.33),
which (s(k), v̄(k)) converge to. Indeed, s(k) can converge to one of the optimal pri-
mal solutions s∗, and v̄(k) can converge to one of the corresponding optimal dual
solutions v̄∗. The limit (s∗, v̄∗) is ultimately determined by the initial s(0) and v̄(0).
Indeed, the conditions in Theorem 1 also guarantee ergodic and non-ergodic o(1/k)
convergence rates in terms of objective error and successive iterate differences, as
proved in the recent paper [19].

6.3 Linear Rate of Convergence

Linear rate of convergence for the centralized ADMM is established in [21], and
for the decentralized ADMM in [73]. Similar to the convergence analysis of the last
section, the proof includes the following steps:

S1’. Show that ‖u(k)−u∗‖2
H is contractive, namely, for all times k ≥ 0 it holds that

‖u(k+ 1)−u∗‖2
H ≤ 1

1+ δ
‖u(k)−u∗‖2

H (14.38)
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where δ > 0 is a constant [cf. (14.40)]. Note that the contraction inequal-
ity (14.38) implies Q-linear convergence of ‖u(k)−u∗‖2

H.
S2’. Show that ‖s(k+ 1)− s∗‖2

H is R-linearly convergent since it is upper-bounded
by a Q-linear convergent sequence, meaning

‖s(k+ 1)− s∗‖2 ≤ 1
m f

‖u(k)−u∗‖2
H (14.39)

where m f is the strong convexity constant of the aggregate cost function f .

We now state the main result establishing linear rate of convergence for the de-
centralized ADMM algorithm.

Theorem 2. If for iterations (14.5) and (14.6) the initial multiplier v(0) :=
[v̄(0)- ṽ(0)-]- satisfies v̄(0) = −ṽ(0); the initial auxiliary variable z(0) is such
that Eus(0) = 2z(0); and the initial multiplier v̄(0) lies in the column space of Eo,
then with the ADMM parameter c > 0, it holds under Assumptions 1–3 that the it-
erates s(k) and v̄(k) converge R-linearly to (s∗, v̄∗), where s∗ is the unique optimal
primal solution of (14.33), and v̄∗ is the unique optimal dual solution lying in the
column space of Eo.

Theorem 2 requires the local cost functions to be closed, proper, convex, strongly
convex, and have Lipschitz gradients. In addition to the initialization dictated by
Theorem 1, Theorem 2 further requires the initial multiplier v̄(0) to lie in the column
space of Eo, which guarantees that v̄(k) converges to v̄∗, the unique optimal dual
solution lying in the column space of Eo. The primal solution s(k) converges to s∗,
which is unique since the original cost function in (14.1) is strongly convex.

Observe from the contraction inequality (14.38) that the speed of convergence is
determined by the contraction parameter δ : A larger δ means stronger contraction
and hence faster convergence. Indeed, [73] give an explicit expression of δ , that is

δ = min

{
(μ − 1)γo

μΓu
,

2cm f γo

c2Γuγo + μM2
f

}
(14.40)

where m f is the strong convexity constant of f , Mf is the Lipschitz continuity con-
stant of ∇ f , γo is the smallest nonzero eigenvalue of the oriented Laplacian Lo, Γu

is the largest eigenvalue of the unoriented Laplacian Lu, c is the ADMM penalty
parameter, and μ > 1 is an arbitrary constant.

As the current form of (14.40) does not offer insights on how the properties of
the cost functions, the underlying network, and the ADMM parameter influence the
speed of convergence, [42, 73] finds the largest value of δ by tuning the constant μ
and the ADMM parameter c. Specifically, [42, 73] shows that

c = Mf

√
μ

Γuγo
and

√
1
μ
=

√√√√1
4

m2
f

M2
f

ΓL

γL
+ 1− 1

2
m f

Mf

√
ΓL

γL

maximizes the right-hand side of (14.40), so that
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δ =
m f

Mf

⎡
⎣
√√√√1

4

m2
f

M2
f

+
γo

Γu
− 1

2
m f

Mf

⎤
⎦ . (14.41)

The best contraction parameter δ is a function of the condition number Mf /m f

of the aggregate cost function f , and the condition number of the graph Γu/γo. Note
that we always have δ < 1, while small values of δ result when Mf /m f , 1 or
when Γu/γo , 1; that is, when either the cost function or the graph is ill conditioned.
When the condition numbers are such that Γu/γo , M2

f /m2
f , the condition number

of the graph dominates, and we obtain δ ≈ γo/Γu, implying that the contraction
is determined by the condition number of the graph. When M2

f /m2
f , Γu/γo, the

condition number of the cost dominates and we have δ ≈ (m f /Mf )
√

γo/Γu. In the
latter case the contraction is constrained by both the condition number of the cost
function and the condition number of the graph.
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Chapter 15
Splitting Methods for SPDEs: From Robustness
to Financial Engineering, Optimal Control,
and Nonlinear Filtering

Christian Bayer and Harald Oberhauser

Abstract In this survey chapter we give an overview of recent applications of the
splitting method to stochastic (partial) differential equations, that is, differential
equations that evolve under the influence of noise. We discuss weak and strong
approximations schemes. The applications range from the management of risk, fin-
ancial engineering, optimal control, and nonlinear filtering to the viscosity theory of
nonlinear SPDEs.

1 Introduction

The theory of (ordinary/partial) differential equations has been very successful in
modeling quantities that evolve over time. Many of these quantities can be pro-
foundly affected by stochastic fluctuations, noise, and randomness. The theory of
stochastic differential equations aims for a qualitative and quantitative understand-
ing of the effects of such stochastic perturbations. This requires insights from pure
mathematics and to deal with them in practice requires us to revisit and extend clas-
sic numerical techniques. Splitting methods turn out to be especially useful since
they often allow to separate the problem into a deterministic and a stochastic part.
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White Noise and Brownian Motion

The arguably simplest case of such a stochastic perturbation is an ODE driven by a
vector field V that is affected by noise. Let us model this perturbation by a sequence
of random variables N = (Nt )t≥0 which are picked up by a vector field W ,

dyt

dt
=V (yt)+W (yt)Nt︸ ︷︷ ︸

Noise

.

Often a reasonable assumption is that N = (Nt )t≥0 is white noise, that is

1. (independence) ∀s �= t, Nt and Ns are independent,
2. (stationarity) ∀t1 ≤ ·· · ≤ tn the law of (Nt1+t , · · · ,Ntn+t) does not depend on t,
3. (centered) E [Nt ] = 0, ∀t ≥ 0.

Above properties imply that the trajectory t  → Nt cannot be continuous, and even
worse if we assume that E[N2

t ] = 1 then (ω , t)  → Nt(ω) is not even measurable
(see [60, 41]). Putting mathematical rigor aside, let us rewrite the above differential
equation as an integral equation, i.e., we work with Bt =

∫ t
0 Nrdr and since integra-

tion smoothes out we expect B = (Bt)t≥0 to have nicer trajectories than N. In this
case the above becomes

dyt =V (yt)dt +W (yt)dBt resp. yt =
∫ t

0
V (yr)dr+

∫ t

0
W (yr)dBr. (15.1)

It turns out that B = (Bt)t≥0 can be rigorously defined as a stochastic process —
i.e., a collection of (ω , t)-measurable random variables carried on some probability
space (Ω ,F,P). This process B is the well-known Brownian motion1.

Definition 1. We call a real-valued stochastic process B=(Bt)t≥0 defined on a prob-
ability space (Ω ,P) a one-dimensional Brownian motion if

1. B0 = 0 and t  → Bt is continuous (a.s.),
2. ∀t1 < · · ·< tn and n ∈ N, Bt2 −Bt1 , . . . ,Btn −Btn−1 are independent,
3. ∀s, t, t − s > 0, Bt −Bs ∼N(0, t − s).

The trajectories t  → Bt(ω) are “degenerate”: they are highly oscillatory, of infi-
nite length, (statistically) self-similar, and possess a rich fractal structure; see Fig-
ure 15.1. Developing a theory that can deal with such trajectories is what makes
stochastic calculus such a fascinating and rich subject. Finally, let us note that while
Brownian motion is probably the most important stochastic process, there are many
other classes of noise that appear in the real-world and are not covered by the

1 Named after the botanist Robert Brown who observed in 1827 that pollen grains suspended
in water execute continuous but jittery motions. The physical explanation was given by Albert
Einstein in 1905 (his “annus mirabilis”: small water molecules hit the pollen) and a little earlier
Marian Smoluchowski had already emphasized the importance of this process for physics. Further
important contributions are due to Louis Bachelier, Andrey Kolmogorov, Paul Lévy, Joseph Doob,
Norbert Wiener, and finally Kyoshi Ito
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Brownian (e.g., the so-called fractional Brownian motion [56]) and many of the
methods we present here are not limited to the Brownian or even semimartingale
setting.

Fig. 15.1 The piecewise linear interpolation between the points of a two-dimensional Brownian
motion started at t = 0 at (0,0) (green circle), stopped at t = 1 (red circle) and sampled at time
steps of size {10−2,10−3,10−4,10−5} .

Stochastic Integrals

The Gaussianity of Brownian increments implies Bt −Bs ∼N
√

t − s for N ∼N(0,1),
hence we can expect at best a Hölder-modulus of 1/2 and the problem of giving
meaning to

∫ t
0 W (yr)dBr appears. To see what goes wrong with Riemann–Stieltjes

integrals consider integrating a one-dimensional Brownian trajectory against itself:
with dyadic partitions of [0,1], tn

i = i.2−n a direct calculation shows that

∑
i

B tni+1+tni
2

(Btn
i+t

−Btn
i
) and ∑

i

Btn
i
(Btn

i+1
−Btn

i
) (15.2)

both converge (for a.e. Brownian trajectory B(ω)) but to different limits. The differ-
ence of their limits equals 1/2 times the n → ∞ limit of

∑
i

(Btn
i+1

−Btn
i
)2 (15.3)
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and the quantity (15.3) is the so-called quadratic variation process ([B]t)t≥0 of the
Brownian motion B. Kyoshi Ito developed a powerful integration theory by gener-
alizing the above limit construction (15.2). He gave meaning to

∫ t
0 φrdBr for a large

class of stochastic processes φ by taking the L2(Ω)-limit of ∑i φtn
i
(Btn

i+1
−Btn

i
) as

n → ∞. A crucial ingredient is that the integrand φ does not “look into the future
evolution of B”2. For many applications like mathematical finance this is a desirable
property. Instead of the right sum in (15.2) one can also use the left sum, i.e., the
mid-points φ(tn

i +tn
i+1)/2, to arrive at a different notion of stochastic integration called

the Stratonovich integral, denoted
∫ t

0 φr ◦ dBr. Above approaches to stochastic inte-
gration are not limited to Brownian motion and can be extended to the class of semi-
martingales. Ito and his successors (especially the “Ecole de Strasbourg”) developed
a complete theory that gives existence and uniqueness for stochastic equations of the
form (15.1); see [64, 44, 61, 60].

Ito’s Change of Variable Formula

Stochastic calculus is not a first order calculus: the change of variable formula,
called “Ito’s Lemma”, reads as

f (t,Bt ) = f (0,B0)+

∫ t

0

∂ f
∂ t

(r,Br)dr+
∫ t

0

∂ f
∂x

(r,Br)dBr +
1
2

∫ t

0

∂ 2 f
∂x2 (r,Br)d[B]r.

(15.4)

A big advantage of the Stratonovich integral is that it follows a first order calculus,

f (t,Bt) = f (0,B0)+
∫ t

0

∂ f
∂ t

(r,Br)dr+
∫ t

0

∂ f
∂x

(r,Br)◦ dBr. (15.5)

All this is only the starting point for one of the most exciting mathematical develop-
ments of the twentieth century and to make the above rigorous requires much more
care — we refer the reader to the many excellent introductory texts [62, 60, 42, 64].

A Drawback: Discontinuity of the Solution Map

While stochastic calculus had tremendous impact on theory and applications it has
several shortcomings; two which are relevant for this article are that it is, firstly,
limited to the class of semimartingales as noise (this for example excludes fractional
Brownian motion) and secondly, that a very basic object, namely the solution map
associated with (15.1),

B  → Y,

2 More precisely, the relevant property of the Brownian motion here is that B is a martingale.
Geometrically, this is an orthogonality relation between the increments Bt −Bs and the path up to
time s. Hence, the construction works in a geometric L2(Ω) sense which allows to take advantage
of this structure.
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is not continuous in uniform norm (or any other reasonable norm). Over the last 20
years, Terry Lyons and collaborators [55, 53, 50, 33, 36] developed a robust and
completely analytic/algebraic approach to such differential equations; this is the so-
called “theory of rough paths”. It is not meant to replace stochastic calculus but it
complements it where it runs into trouble; especially in view of splitting results this
robustness becomes very useful and gives for example continuity of the solution
map.

Structure of This Chapter

In Section 2 we introduce the main topic of this chapter, namely that splitting
schemes can be derived from robustness of the solution map. In Section 3 we re-
call some key results from the theory of rough paths which give a quantitative and
qualitative understanding of the regularity of this solution map.

Splitting methods for S(P)DEs are naturally divided in strong and weak schemes.
The goal of strong schemes is to approximate the solution Y of a S(P)DE (or a func-
tion of it, f (Y )) for a given realization of the noise. On the other hand, for many
applications it is sufficient to only approximate the expected value E[ f (Y )]. Strong
approximations are discussed in Section 4 and applications to nonlinear filtering
and optimal control are given in Section 5. In Section 6 we discuss weak split-
ting schemes for S(P)DEs and their rate of convergence; we recall a popular weak
approximation scheme called “cubature on Wiener space” and show that it has a nat-
ural interpretation as a splitting scheme. In Section 7 we present three applications
of splitting schemes in financial engineering: efficient implementations for popular
stochastic local volatility models [2]; a calibration of the Gatheral Double Mean
Reverting model to market data [3]; and finally the Heath–Jarrow–Morton interest
rate model [24].

Background

This chapter is inspired by a view on stochastic differential equations that emerged
over the last 15 years, namely the theory of rough paths due to Terry Lyons and
collaborators; for further developments and introduction see [55, 52, 53, 36, 33,
51, 30]). This theory complements classic Ito-calculus and provides new, if not
revolutionary insights, on how differential equations react to complex input sig-
nals. One of the earliest new applications was the so-called “cubature on Wiener
space” of Kusuoka–Lyons–Victoir [54, 47]. Bayer, Dörsek, Teichmann among
others [24, 68, 23, 5] then showed that these methods can be applied to the
infinite-dimensional setting that is needed by SPDEs. More recently more appli-
cations were developed both in finite and in infinite dimensions (we survey some of
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these in Section 7). In a somewhat different direction, the work of Friz–Oberhauser
[31] combined robustness from rough path theory with viscosity PDE methods to
derive splitting schemes for strong approximations of (nonlinear) SPDEs.

Of course, splitting-up methods have appeared much earlier in stochastic calcu-
lus and we emphasize that these techniques remain highly relevant and form the
basis of much of the recent developments that we present here. However, instead of
giving a “horizontal” historical account we decided to give a “vertical” snapshot of
what we believe are some exciting current developments in theory and applications.
Unfortunately, this implies that we cannot do full justice to the existing rich liter-
ature. Nevertheless, we would like to point the reader to some classic articles as a
starting point: one of the earliest motivations comes from the theory of nonlinear fil-
tering and we mention pars pro toto the work of Bensoussan and Glowinski [6] and
Bensoussan, Glowinski and Răşcanu [7, 8], Elliott and Glowinski [25], Florchinger
and Le Gland [48, 28], Gyöngy and Krylov [37], Nagase [57], Sun and Glowin-
ski [66], and Lototsky, Mikulevicius, and Rozovskii [49]. The more general field
of splitting is overwhelmingly large, so that we again cannot hope to give a bal-
anced literature review. Some general works we want to mention are Jentzen and
Kloeden [43], Debussche [20], Gyöngy and Krylov [38], Răşcanu, and Tudor [63]
Hausenblas [39] and, finally, Yan [69]. Let us finally stress that we consider partial
differential equations driven by a temporal (possibly also spacial) noise, not partial
differential equations with spacial noise, another very active research field in applied
mathematics (see, for instance, Schwab and Gittelson [65]).

2 From Robustness to Splitting Schemes

On an abstract level, we have to understand how the output path (the solution of
a differential equation) of a complex system (a differential equation) responds to
an input path (e.g., time and noise). In this section we show that if a continuous
dependence between output and input signal holds, then splitting results follow
immediately.

A Toy Example

Let us consider the simple example of a quantity y whose evolution over time is
described by the differential equation

dyt

dt
=V (yt)+W (yt) , y0 ∈ R

e

where V,W are Lipschitz continuous vector fields onRe. We identify this differential
equation as a special case of the integral equation
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yt = y0 +

∫ t

0
V (yr)dar +

∫ t

0
W (yr)dbr, y0 ∈ Rc (15.6)

where a and b are continuous, real-valued paths that are regular enough that above
integrals have meaning. While finite 1-variation as recalled in Definition 2 is suf-
ficient for the Riemann–Stieltjes integrals, we will treat paths having much less
regularity in later parts of this chapter. Equations of type (15.6) are often called con-
trolled (differential/integral) equations and a,b are referred to as the controls or also
as the driving paths/signals. Such equations arise naturally in the engineering sci-
ences and have been very well studied (see the seminal work of Brockett, Sussmann,
Fliess, et al. [11, 27, 67]). We henceforth use the shorthand/differential notation

dyt =V (yt)dat +W (yt)dbt , y0 ∈ R
e (15.7)

to denote (15.6). A basic question is the regularity of the solution map

(a,b)  → y. (15.8)

Obviously, the answer depends on what norms we use to measure distances between
paths. What might be somewhat surprising is that the above mapping, defined on
smooth paths

C1 ([0,T ] ,R2)→C1 ([0,T ] ,Re) ,

is not even continuous under the usual uniform norm |a|∞ = supt∈[0,T ] |at |; we invite
the reader to find an example for this discontinuity and come back to this issue in
detail in Example 1. Motivated by this, we introduce a cascade of metrics that are
stronger than the uniform norm.

Definition 2. Let x be a continuous path defined on [0,T ] that takes values in a
complete metric space (E,d). For every p≥ 1 the p-variation norm of x is defined as

|x|p−var = sup
n∈N,(t1,...,tn):

0≤t1<···<tn≤T

(
n

∑
i=1

d(xti+1 ,xti)
p

)1/p

We denote the subset of C ([0,T ] ,E) of paths finite p-variation norm by Cp−var

([0,T ] ,E).

Standard arguments show that
(

Cp−var ([0,T ] ,E) , |.|p−var

)
is a Banach space. We

now see that the p-variation norm resolves the non-continuity of the uniform norm.

Theorem 1 (Robustness [33]). Let V,W : Re → R
e be Lipschitz continuous and

(a,b)∈C1−var
(
[0,T ] ,R2

)
. Then there exists a unique solution y∈C1−var ([0,T ] ,Re)

to the controlled differential equation

dyt =V (yt)dat +W (yt)dbt , y0 ∈ R
d

and the map (a,b)  → y is continuous in 1-variation norm |.|1−var.
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Lie and Strang Splitting

The connection with splitting is now immediate: Fix Δ > 0 and divide [0,T ] into
intervals of size Δ > 0; further, denote tΔ =

⌊
t
Δ
⌋
Δ , tΔ = tΔ + Δ and define two

time-changes (real-valued increasing paths) φΔ ,ϕΔ ,

φΔ
t =

⎧⎨
⎩

tΔ + 2(t − tΔ ) , if t ∈
[
tΔ ,

tΔ+tΔ

2

]
tΔ , if t ∈

[
tΔ+tΔ

2 , tΔ
] , ϕΔ

t = φΔ
t+ Δ

2
. (15.9)

In other words, we approximate t  → (t, t) with t  → (
φΔ

t ,ϕΔ
t

)
as Δ → 0, as depicted

in Figure 15.2. Basic arguments show that this convergence holds in p-variation
norm for every p > 1 (for p = 1 it is not true).

Fig. 15.2 (Lie-Splitting) The two-dimensional path t  → (
φΔ ,ϕΔ) approximates the identity t  →

(t, t) and exactly one of dφΔ
t

dt , dϕΔ
t

dt is 0 for any given time t ≥ 0. This gives rise to the so-called
Lie-splitting scheme.

This particular choice of control paths immediately implies a splitting result
since by composition of a (resp. b) with φΔ (resp. ϕΔ ) we flow at any moment
in time either along V or along W . This approach is quite different from applying
the Trotter–Kato formula to semigroups but it has already been used several times
in the literature; see the work of Le Gland [48], Gyöngy and Krylov [38]).

The above choice of aΔ ,bΔ yields the classic Lie-splitting but obviously other
choices are possible, for example we recover the Strang-Splitting scheme by using

φ̃Δ
t = φΔ

t+ Δ
4

and ϕ̃Δ
t = φ̃Δ

t+ Δ
2

To state it precisely, we introduce the notion of solution operators (Figure 15.3).
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Fig. 15.3 (Strang-Splitting) The two-dimensional path t  → (
φ̃ Δ , ϕ̃Δ) approximates the identity

t  → (t, t) better than t  → (
φΔ

t ,ϕΔ
t

)
as depicted in Figure 15.2. Therefore it should be not surprising

that Strang-splitting leads to better rates than Lie-splitting.

Definition 3. For every y0 ∈ R
e denote by PΔ ,V

t y0 the solution at time t of the con-
trolled differential equation

dyΔ
t =V

(
yΔ

t

)
d(a ◦φΔ)t

started at yΔ
0 = y0. Similarly denote by QΔ ,W

t y0 the solution at time t of the controlled
differential equation

dyΔ
t =W

(
yΔ

t

)
d(b ◦ϕΔ)t

started at yΔ
0 = y0.

Corollary 1 (Splitting). We have ∀t > 0

lim
Δ→0

∣∣∣∣(PΔ ,V
Δ QΔ ,W

Δ

)!t/Δ"
y0 − yt

∣∣∣∣= 0

where y is the solution of the differential equation (15.6) started at time 0 with y0.
Moreover, the convergence even holds uniformly in t.

Proof. A simple calculation shows that the path
(
a ◦φΔ ,b ◦ϕΔ) converges to the

path t  → (t, t) with uniform 1-variation bounds, i.e., supΔ>0 |aΔ |1−var + supΔ>0
|bΔ |1−var <∞. The claim then follows from a slight variation of Theorem 1; see [31].

Highly Oscillatory Paths and the Lie Brackets of Vector Fields

We now replace the path b in (15.6) by one with highly oscillatory trajectories
(which is typical for many stochastic processes).
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Example 1. Consider the sequence of paths (an
t ,b

n
t )n =

( 1
n cos2πn2t, 1

n sin2πn2t
)

and note that it converges for the uniform norm to
(
a0,b0

)
= (0,0) as n → ∞ .

Define the vector fields W (y1,y2,y3) := (1,0, −y2

2 )T and V (y1,y2,y3) := (0,1, y1

2 )
T

and denote by yΔ the solution of

dyΔ
t =V

(
yΔ

t

)
daΔ

t +W
(

yΔ
t

)
dbΔ

t with yΔ
0 = y0 ∈ R

3. (15.10)

A simple calculation then shows that yΔ
1 does not converge as Δ → 0 to y0 (the

solution of (15.10) applied with Δ ≡ 0).

In the above Example 1, the highly oscillatory motions of the driving signals affect
the evolution of y not directly via V or W but via their Lie bracket [V,W ] =V ·W −
W ·V which picks up the signed area (recall the Green/Stokes formula)

(s, t)  → 1
2

(∫ t

s
an

r dbn
r −

∫ t

s
bn

r dan
r

)

swept out by (an,bn) during the time interval (s, t). To sum up, the highly oscilla-
tory behavior of the driving signal leads to a subtle interplay between the iterated
integrals of the driving signal and the Lie brackets of the involved vector fields that
can destroy continuity of the solution map. However, was central to our derivation
above of the Lie and Strang-splittings. Below we show how the theory of rough
paths provides the needed continuity and gives us a very robust way to solve differ-
ential equations driven by such highly oscillatory paths.

3 Rough Path Theory

We still have to give meaning to differential equations driven by non-smooth paths
and study the properties of the associated solution map. Example 1 suggests that the
iterated integrals∫

s<r1<t
dxr1 ,

∫
s<r1<r2<t

dxr1 ⊗ dxr2, . . . ,

∫
s<r1<···<rn<t

dxr1 ⊗·· ·⊗ dxrn .

of the driving signal x (resp. their linear combinations) play a special role when
the path is highly oscillatory. In general, these integrals will not make sense as
Riemann–Stieltjes integrals if x is of unbounded variation. However, the theory of
rough paths shows that it is enough to find a sequence of tensors that “behaves alge-
braically” like such a sequence of iterated integrals to derive the well posedness of
differential equations driven by this “iterated integrals”.
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The Space of Iterated Integrals

The sequence of iterated integrals has a rich algebraic structure. Let us first give the
definition for the case of a bounded variation path.

Definition 4. For every u,v such that 0 ≤ u ≤ v ≤ T define Δ1
u,v = {(s, t) : u ≤ s ≤

t ≤ v} . Let x ∈ C1−var
(
[0,T ] ,Rd

)
, (s, t) ∈ Δ0,T and k ∈ N. We define the iterated

integrals
∫
Δ k

s,t
dx⊗·· ·⊗ dx ∈ (

R
d
)⊗k

recursively as

∫
Δ1

s,t

dx := x(t)− x(s) and
∫

Δ k
s,t

dx⊗·· ·⊗ dx︸ ︷︷ ︸
k times

:=
∫ t

s

∫
Δ k−1

s,r

dx⊗·· ·⊗ dx︸ ︷︷ ︸
(k−1) times

⊗dxr.

Recall that the space
(
R

d
)⊗k

used above is the space of k-tensors which has as basis
(ei1 ⊗·· ·⊗ e j)i, j∈{1,...,d}.

Definition 5. Let x ∈ C1−var
(
[0,T ] ,Rd

)
and (s, t) ∈ Δ1

0,T . The signature of x over

[s, t], denoted by S (x)s,t , is the element of
⊕∞

k=0

(
R

d
)⊗k

given as

S (x)s,t =

(
1,

∫
Δ1

s,t

dx,
∫

Δ2
s,t

dx⊗ dx, . . .

)

with the convention that
(
R

d
)⊗0

= {1}. Similarly, we define for n ∈N the truncated

signature of x over [s, t], denoted Sn (x)s,t , as the element of
⊕n

k=0

(
R

d
)⊗k

given as

Sn (x)s,t =

⎛
⎝1,

∫
Δ1

s,t

dx,
∫

Δ2
s,t

dx⊗ dx, . . . ,
∫

Δn
s,t

dx⊗·· ·⊗ dx︸ ︷︷ ︸
n times

⎞
⎠ .

We call the path t  → Sn (x)0,t the step-n lift of x.

The above definition is not efficient concerning the state space since it does not
account for the recursive structure of Sn (x) and we can hope to work with a

much smaller subspace of
⊕n

k=0

(
R

d
)⊗k

. With slight abuse of notation denote by

⊗ :
⊕n

k=0

(
R

d
)⊗k → ⊕n

k=0

(
R

d
)⊗k

the natural extension of the tensor multiplica-

tion to the graded space
⊕n

k=0

(
R

d
)⊗k

, i.e. for

g =
n

∑
k=0

∑
i1,...,ik

gi1...ik ei1 ⊗·· ·⊗ eik ,h =
n

∑
k=0

∑
i1,...,ik

hi1...ik ei1 ⊗·· ·⊗ eik ∈
n⊕

k=0

(
R

d
)⊗k

define

g⊗ h =
n

∑
k=0

∑
l,m:l+m=k

gi1...il hi1...imei1 ⊗·· ·⊗ eik ⊗ ei1 ⊗·· ·⊗ eim .
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We can now describe the algebraic structure of the subspace of
⊕n

k=0

(
R

d
)⊗k

that
contains the iterated integrals.

Theorem 2 ([33]). For n ≥ 1 and d ≥ 1 define Gn,d :=
{

S (x)0,1 : x ∈C1−var(
[0,T ] ,Rd

)}
. Then

1.
(
Gn,d ,⊗

)
is a Lie group,

2. Gn,d = expgn,d where (gn,d , [·, ·]) is Lie algebra and
3. gn,d = R

d ⊕ [
R

d ,Rd
]⊕·· ·⊕ [

R
d ,
[
R

d ,
[· · · ,[Rd ,Rd

] · · ·]]]
We call Gn,d the free step-n Lie group with d generators and gn,d the free step-n Lie
algebra with d generators. The geodesic (so-called Carnot–Caratheodory) distance
dCC turns (Gn,d ,dCC) in a metric space.

(Weak) Geometric Rough Paths

Since (Gn,d ,dCC) is a complete metric space, Definition 2 applies and we can speak
of paths of bounded p-variation — this is exactly the definition of a weak geometric
p-rough path.

Definition 6. Let p≥ 1 and n= !p". We define the space of weak geometric p rough
paths as

Cp−var([0,T ],Gn,d) :=
{

x ∈C([0,T ],Gn,d) : dp−var(0,x)< ∞
}

(here 0 denotes constant path that takes the value of the neutral element of the group
Gn,d).

Example 2 (The Brownian Rough Path). Let B be a two-dimensional Brownian mo-
tion. This gives rise to the G2,2-valued path

Bt =

(
1,Bt ,

∫ t

0
dB⊗ dB

)
︸ ︷︷ ︸

∈G2,2

= exp

(
B1

t e1 +B2
t e2 +

1
2

(∫ t

0
B1

r dB2
r −

∫ t

0
B2

r dB1
r

)
(e1 ⊗ e2 − e2 ⊗ e1)

)
︸ ︷︷ ︸

∈g2,2

where the integrals are understood as (Stratonovich) stochastic integrals. One can
show that B ∈Cp−var([0,T ],G2,2) for any p > 2, see [55, 33].
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Differential Equations Driven by Rough Paths

Ito’s approach to differential equations driven by highly oscillatory stochastic pro-
cesses exploits the underlying probabilistic structure of the driving signal. Lyons
[55, 52, 51] developed a different approach that relies only on analytic and alge-
braic methods; most important for us, it comes with a cascade of metrics which
provide the needed continuity of the solution map.

Theorem 3 (“Universal Limit Theorem”: Existence, Uniqueness and Continu-
ity of RDEs; See [55, 33]). Let p ∈ (2,3), d ≥ 1, x ∈ Cp−var([0,T ],G2,d) and
Vi ∈ C3

b(R
e,Re). There exists a y ∈ Cp−var([0,T ],Re) such that for every sequence

(xn)n ⊂C1−var([0,T ],Rd) such that dp−var(S2(x),x)→ 0, the solutions of the ODE

dyn
t =V (yn

t )dxn
t ≡∑

i
Vi(y

n
t )d(x

n)i
t

converge uniformly to y. We say that y is a solution of the RDE driven by x and write

dyt =V (yt)dxt .

The solution map is uniformly continuous on compact sets, that is for every R > 0
the map

(y0,x)  → y

R
e ×{

dp−var(x,0)< R
} → Cp−var ([0,T ] ,G2,d

)
is uniformly continuous in dp−var-metric.

Summary

Rough path theory provides us with a machinery to solve differential equations
driven by non-smooth signals (like Brownian motion, semimartingales but also
many other classes of noise that are not covered by classic stochastic calculus).
As opposed to the Ito-theory it not only requires the trajectory of the driving signal
as input but also its “iterated integrals”; to be precise, it requires a set of tensors
that “behave like” classical Riemann–Stieltjes iterated integrals. Finding efficient
state spaces for these “enhanced paths” required us to work with nonlinear spaces,
i.e., Lie groups. In return we get a completely analytic and algebraic approach that
provides the well posedness of such differential equations, and the rough path the-
ory comes with a cascade of metrics which makes the solution map continuous (the
metric dp−var for p ≥ 1). Such a robustness is in stark contrast with Ito’s theory and
allows us to translate our simple splitting proof from the toy example in Section 2
to the case of S(P)DEs.



512 C. Bayer and H. Oberhauser

4 Strong Splitting Schemes for SPDEs

In this section we extend the splitting method to parabolic PDEs that evolve under
the influence of noise. A large class of such stochastic partial differential equations
(SPDEs) is of the form{

du = F
(
t,x,u,Du,D2u

)
dt +∑d

i=1 Λi (t,x,u,Du)dzi
t on [0,T ]×R

n

u(0,x) = u0 (x) on R
n

(15.11)
where u = u(t,x) is scalar-valued, F denotes a nonlinear, (possibly degenerate) el-
liptic differential operator, Λ is affine linear in (u,Du), and z ∈ C

(
[0,T ] ,Rd

)
is a

multidimensional path with the same (or worse) regularity properties as Brownian
trajectories.

Several issues appear: firstly, even if Λ ≡ 0, then the nonlinearity of F implies
that we cannot hope for a smooth solution u ∈ C1,2 ([0,T ]×R

n,R). Therefore we
have to work with a suitable concept of generalized solutions. Secondly, the path
z is not differentiable and similar to our toy example, we have to give appropriate
meaning to Λ (t,x,u,Du) ◦ dzt . Put simply, we solve the first problem by working
with the theory of viscosity solutions and the second problem with the theory of
rough paths.

Approximating Time

As in our toy example in Section 2, we now want to look at equation (15.11) as a
special case of{

duΔ = F
(
t,x,uΔ ,DuΔ ,D2uΔ )d(a◦φΔ )t +∑d

i=1 Λ
(
t,x,uΔ ,DuΔ )◦d(zi ◦ϕΔ )t ,

uΔ (0,x) = u0 (x) .
(15.12)

However, the situation is more subtle.

Example 3. Consider n= 1, F
(
t,x,u,Du,D2u

)
=D2u and Λ ≡ 0 in which the above

reduces to the one-dimensional heat equation: duΔ = D2uΔ d(a ◦ φΔ )t . Then one
cannot hope for continuity of (a,z)  → u since this requires to give meaning to the

heat equation when d(a◦φΔ )t
dt < 0, i.e., when time is run backwards which is in general

not well posed.

We simply resolve the above issue by replacing C1−var by a smaller class of paths.

Proposition 1 ([31]). Define

C1,+
0 ([0,T ] ,R) =

{
ξ ∈C1 ([0,T ] ,R) : ξT = T, ξ̇t > 0 ∀t

}
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and its closure C1−var,+
0 ([0,T ] ,R) :=C1,+

0 ([0,T ] ,R)
|.|∞ where |a|∞ ≡ supt∈[0,T ] |at |.

Then

C1−var,+
0 ([0,T ] ,R) =

{
ξ ∈C0 ([0,T ] ,R) : ξT = T and ∃ξ cont ∈ L1 ([0,T ] ,R) ,

∃ξ sing ∈C1−var ([0,T ] ,R≥0) ,ξ sing = 0 a.s. and ξt = ξ sing
t +

∫ t

0
ξ cont

r dr

}

and C1−var,+
0 ([0,T ] ,R)�C1−var

0 ([0,T ] ,R).

Viscosity Solutions of PDEs

Given a map
F : [0,T ]×R

n ×R×R
n×S

n →R

(with S
n denoting the set of symmetric (n× n)-matrices) that is proper in the sense

that

F (t,x,r, p,A) ≤ F (t,x,r,A+B) ∀A ∈ S
n and B ≥ 0

r  → F (t,x,r,A) is increasing,

then the theory of viscosity solutions provides well posedness for parabolic PDEs
of the form {

∂t u−F
(
t,x,u,Du,D2u

)
= 0 on [0,T ]×R

n,
u(0,x) = u0 (x) on R

n.
(15.13)

More precisely, if u : [0,T ]×R
n →R is bounded and uniformly continuous then we

call u a subsolution of the PDE (15.13) if for every ϕ ∈C1,2 ([0,T ]×R
n,R) it holds

that whenever (t̂, x̂) is a local maximum of

(t,x)  → u(t,x)−ϕ (t,x)

then
∂tϕ (t̂, x̂)−F

(
t̂, x̂,ϕ ,Dϕ ,D2ϕ

)≤ 0. (15.14)

Similarly, we define supersolutions and call u a solution if it is a sub- and superso-
lution. Viscosity theory provides comparison results, that is given a subsolution v
and a supersolution w of (15.13) this guarantees that

v ≤ w

(note that this immediately implies uniqueness of solutions), see [15, 26].
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Robustness for (Nonlinear) SPDEs

We can now have an educated guess of a good solution concept for the non-
linear SPDE (15.11): let us approximate t  → (t,zt) by a sequence (ξ n,zn)n ⊂
C1

(
[0,T ] ,Rd

)
of smooth paths. Then for every fixed n ∈ N we can speak of a vis-

cosity solution un ∈ BUC ([0,T ]×R
n) — the space of real-valued, bounded, and

uniformly continuous functions — of{
dun = F

(
t,x,un,Dun,D2un

)
dξ n +∑d

i=1 Λ (t,x,un,Dun)dzn;i
t on [0,T ]×R

n,
un (0,x) = u0 (x) on R

n.
(15.15)

We expect that (un)n converges to a function u ∈ BUC([0,T ]×R
n) as n → ∞ and it

is natural to identify this function u as the solution of the SPDE (15.11). It turns out
that it is natural to define convergence of the sequence (ξ n,zn)n to (t,zt) if

sup
n
‖S(zn)‖p−var;[0,T ] + sup

n
|ξ n|1−var < ∞ (15.16)

d0 (z,S(z
n))+ |ξ n

t − t|∞ →n 0

holds. Here d0(x,y)≡ sup∑ti dCC(xti,ti+1 ,yti,ti+1) where the sup is taken over all par-
titions (ti) and we use the notation xti,ti+1 ≡ x−1

ti xti+1 for increments in the group. Let
us take this as definition of a solution.

Definition 7. Let z ∈C0,p−var
0

(
[0,T ] ,G[p],d

)
,ξ ∈C1−var,+

0 ([0,T ] ,R). Let

(zn,ξ n)n ⊂C0,p−var
0

(
[0,T ] ,G[p],d

)×C1−var,+
0 ([0,T ] ,R)

be a sequence that converges to (t,zt) in the sense of (15.16) and assume that there
exists for every n a unique viscosity solution un of the PDE (15.15). We call every
accumulation point (in the metric of uniform convergence on compacts) of (un) a
solution of the RPDE{

du = F
(
t,x,u,Du,D2u

)
dξt +Λ (t,x,u,Du)◦ dzt on [0,T ]×R

n,
u(0,x) = u0 (x) on R

n.
(15.17)

If this limit is unique and does not depend on the choice of the approximating se-
quence (ξ n,zn)n and the solution map

(ξ ,z)  → u

is continuous then we say that (15.17) is robust in the rough path sense.

It is clear that the above robustness in rough path sense immediately gives a splitting
result when use the time changes (φ1/n,ϕ1/n) from Section 2 to define the approxi-
mating sequence (

ξ ◦φ1/n,z◦ϕ1/n
)

n
.

In Section 5 below we show that large classes of SPDEs are robust in rough path
sense as defined above.
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5 Applications of Strong Schemes to Nonlinear Filtering
and Optimal Control

Nonlinear Filtering

In many areas of science, the quantities of interest are not available for direct mea-
surement. Fortunately, we can make reasonable inferences about them by combining
mathematical models that describe their evolution with partial observations of these
quantities. These partial observations are typically corrupted by noise and we need
to account for this. Applications range from cryptography, tracking and guidance,
the study of the global climate, to the management of risk in a economic context
(see for example [17, 10, 29, 35]). Consider a Markov process (X ,Y ) that takes its
values in R

dsig+dobs with its dynamics given by{
dXt = μ (Xt)dt +σ (Xt)dBt (signal),
dYt = h(Xt)dt + dB̃t (observation).

Here, B and B̃ are multidimensional Brownian motions that are defined on some
probability space (Ω ,F,P). The goal is to compute for a given real-valued function
f the conditional expectation

πt f ≡ E [ f (Xt) |Yt ] ,

i.e., to find the best estimate for f (Xt) given the observation σ -algebra3 Yt =
σ ({Yr,r ∈ [0, t]})∨N with N denoting the P-null-sets. From basic principles it
follows that there exists a measurable map φ f

t : C
(
[0, t] ,RdY

)→ R such that

φ f
t

(
Y |[0,t]

)
= πt f P− a.s. (15.18)

and our problem reduces to effectively calculate this functional φ f
t .

Clark’s Robustness Problem

In practice, only a finite number of observations (Yti)i of Y is available and we eval-
uate φ f

t along some continuous interpolation of these points, Y interpolated. Of course
we expect that

φ f
t

(
Y interpolated|[0,t]

)/ φ f
t

(
Y |[0,t]

)
but this is not guaranteed by (15.18), as the interpolation is a path of bounded vari-
ation, hence a null-set under the Wiener measure or any equivalent measure, see
[16] for a detailed discussion. Clark [13] sketched a proof (a rigorous argument was
given later by Clark and Crisan [14]) that if B and B̃ are uncorrelated, then there ex-
ists a functional φ f ,robust

t that is continuous in supremum norm and fulfills (15.18).
In the correlated case, such a functional cannot exist but recently (see [16]), it was

3 There are some subtle measure-theoretic issues which we gloss over but refer the reader to [1]
for more details.
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shown that in the correlated case there exists also a functional φ f ,robust
t defined on

the space of rough paths such that

φ f ,robust
t (Y ) = πt f P− a.s and Y  → φ f ,robust

t (Y )

is continuous in rough path metric. This solves Clark’s robustness problem (for
semimartingale piecewise linear approximations converge in the appropriate rough
path metric).

The Kallianpur–Striebel and Zakai Equations

Theorem 4 (Kallianpur–Striebel). There exists a probability measure P̃ on (Ω ,F)
such that

1. P̃ is equivalent to P,

2. dP̃
dP |Ft= exp

(
−∫ t

0 h(Xs) ·dBs− 1
2

∫ t
0 |h(Xs)|2 ds

)
,

3. the observation process Y is a Brownian motion under P̃,
4. for every f ∈ B

(
R

dsig
)
—the space of real-valued, bounded, measurable func-

tions on R
d—and every fixed t > 0

πt f =
Ẽ

[
f (Xt)exp

(∫ t
0 h(Xs) ·dYs − 1

2

∫ t
0 |h(Xs)|2 ds

)
|Yt

]
Ẽ

[
exp

(∫ t
0 h(Xs) ·dYs − 1

2

∫ t
0 |h(Xs)|2 ds

)] P and P̃ a.s.

Proof. This can be found in every text book on nonlinear filtering; see for example
[1, 17].

It turns out that it is advantageous to work with a non-normalized version of the
inferred probability measure π . Indeed, if we define for every f ∈ B

(
R

dsig
)

ρt f = πt f · Ẽ
[

exp

(∫ t

0
h(Xs) ·dYs − 1

2

∫ t

0
|h(Xs)|2 ds

)]

then obviously πt f = ρt f
ρt 1

. The Fokker–Planck/Kolmogorov forward equation is a
PDE given by the generator of X that describes the time evolution of the density of
the diffusion X via a parabolic PDE with the elliptic differential operator

A =∑
i, j
(σT ·σ)i, j ∂ 2

∂xi∂x j
+∑

i
μ i ∂

∂xi
.

The Zakai equation can be seen as an extension that incorporates the additional
information we get from the observation process Y . Indeed, set h ≡ 0 in Theorem
below to recover the Fokker–Planck equation.
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Theorem 5 (The Zakai SDE; Uncorrelated Case). Under standard assumptions4

we have P̃-a.s. for every t ≥ 0 and every f ∈ B
(
R

dsig
)

that

(ρt f ) = π0 f +
∫ t

0
ρs (A f )ds+

∫ t

0
ρs

(
f hT )dYs.

Proof. See for example [1, Chapter 3].

The above applies to the case when B and B̃ are uncorrelated. In the correlated case a
slight variation of the above Zakai SDE holds (an extra differential operator appears
in the stochastic integral against Y ).

Splitting for the Zakai SPDE

It is advantageous to work with densities instead of measures. Indeed, under well-
known conditions ρ has a density u and we can write

ρt (A) =
∫

A
u(t,x)dx

for some u ∈ BUC([0,T ]×R
n). In this case we can rewrite the above (infinite-

dimensional) Zakai SDE from Theorem 5 for the unnormalized measure ρ as a
SPDE for the density u. Since the generator of the signal X is linear, second or-
der parabolic it is not surprising that the resulting SPDE will be linear (with linear
noise). In fact, our setup is more general than needed by the nonlinear filtering ap-
plication and below we treat general semi-linear PDEs (of which the SPDE for the
density u is a special case).

Assumption 1. Let

L(t,x,r, p,M) = Tr [M (x) ·X ]+ b(x) · p+ f (x,r)

with M (x) = σ (x)σT (x), σ : Rn → R
n×m and b : Re → R

e bounded, Lipschitz in
x. Further, let f : Rn ×R→ R be continuous, bounded whenever r is bounded and
with a lower Lipschitz bound, i.e.

f (x,r)− f (x,s)≥ c(r− s) ∀r ≥ s,x ∈ R
n.

Assumption 2. Let

Λ (t,x,r, p) = p ·σk (t,x)+ r ·νk (t,x)+ gk (t,x)

where σ ,ν and g are Lipγ for γ > p+ 2.

4 For example E
[∫ t

0 |h(Xs)|2ds
]
< ∞,E

[∫ t
0 Zs|h(Xs)|2ds

]
< ∞ and P̃

[∫ t
0 [ρs(|h|)]2ds < ∞

]
= 1 is

sufficient where Zs = exp
(−∑i

∫ s
0 hi(Xr)dBi

r − 1
2

∫ s
0 hi(Xr)

2dr
)
; see [1, Chapter 3]
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Theorem 6 (Well Posedness of Linear RPDEs). Let z ∈ C0,p−var
(
[0,T ] ,Rd

)
and

let L and Λ fulfill assumption (1) resp. (2). Then{
du = L

(
t,x,u,Du,D2u

)
dt +∑d

i=1 Λ (t,x,u,Du)◦ dzi
t on [0,T ]×R

n,
u(0,x) = u0 (x) on R

n.
(15.19)

is robust in rough path sense.

Proof. We only sketch the idea of the proof for the case{
du = σ2(t,x)D2udt +∑d

i=1 Vi (x)Du ◦ dzi
t on [0,T ]×R

n,
u(0,x) = u0 (x) on R

n.
(15.20)

First assume that z is a smooth path and denote by φ the ODE flow

dφ(t,x) =V (φ(t,x))dzt ,φ(0,x) = x ∈ R
n. (15.21)

Then (at least formally) we see that the function v(t,x) := u(t,φ(t,x)) solves the
standard parabolic heat equation{

dv = σ2
φ (t,x)D

2vdt on [0,T ]×R
n,

v(0,x) = u0 (x) on R
n,

where σ2
φ (t,x) := σ2(t,φ(t,x)).

(15.22)
An obvious idea for the case that z is no longer a smooth path is to approximate z
by a sequence of smooth paths (zn). For each fixed n ∈ N one can solve the ODE
flow φn (the ODE (15.21) with z replaced by zn) and subsequently the corresponding
simple PDE (15.22) to arrive at the sequence of PDE solutions (vn). Since the flow
φn will be a diffeomorphism we also know that

un(t,x) = vn(t,(φn
t )

−1(x)) (15.23)

where un denotes the solution of (15.20) where the driving signal z is replaced by zn.
Obviously we expect that (vn)n as well as (φn)n converge as n → ∞: for (vn)n this
should follow from the robust approximations of operators from viscosity theory
and for (φn)n this should follow if we consider convergence in rough path metric—
recall Sections 2 and 3 on the problems caused by highly oscillatory driving signals
z. If this holds, then (15.23) implies that (un)n converges to some u and this function
is a natural candidate for a solution. Of course, all the above was completely formal
and the convergence can go wrong. However, with more care it can be made rigorous
even for fully nonlinear operators; for the detailed argument see [12, 22, 32].

Corollary 2 (Splitting for the Zakai SPDE). Denote by {Pt , t ≥ 0} the solution
operator

ϕ  → v where v is the viscosity solution of dv = L
(
t,x,Dv,D2v

)
dt, v(0, ·) = ϕ (·)

and by
{

Qs,t ,0 ≤ s ≤ t
}

the solution operator

ϕ  → v where v is the SDE solution of dy =Λ (t,x,Dv)◦ dBt , y(0, ·) = ϕ (·) .
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Then for a.e. ω

un (t,x) :=
!t/n"−1

∏
i=0

[
Qi/n,i/n+1/n ◦P1/n

]
(u0 (x))

converges locally uniformly (in (t,x)) as n → ∞ to the unique solution u of (15.19)
given by Theorem 6 with zt = Bt (ω)≡ (

1,Bt (ω) ,
(∫ t

0 B⊗◦dB
)
(ω)

)
.

Pathwise Optimal Control

Consider the SDE

dXt = a(Xt ,αt )dt + b(Xt ,αt )◦ dBt + c(Xt)◦ dB̃t

where t  → αt is a path, B and B̃ are multi-dimensional, independent Brownian mo-
tions and (a,b,c) are (sufficiently regular) vector fields. In applications (engineer-
ing, economics, etc.) one often faces the problem that one can influence the evo-
lution of X by controlling the path α . The aim is then to minimize a cost function
(consisting of a terminal cost g and a running cost f ) of the form

v(t,x) = inf
α
E

[
g
(
Xt,x

T

)
+

∫ T

t
f
(
Xt,x

s ,αs
)

ds|B̃
]
. (15.24)

It turns out that we can use the Bellman principle to describe the change in the cost
function over time by a SPDE, the so-called Hamilton–Jacobi–Bellman (S)PDE. In-
deed, a formal computation (see [21] for a rigorous derivation from basic principles)
shows that after the time reversal u(t,x) := v(T − t,x), we get a SPDE of the form{

du|t,x + infα [b(x,αt )Du|t,x+Lαu|t,x+ f (x,αt )]dt +Du|t,x·c(x) ◦dB̃t = 0 on [0,T ]×R
n,

u(0,x) = g(x) on R
n,

(15.25)
where Lα is the linear differential operator with (a,b). Using

Corollary 3. Let z ∈C0,p−var
(
[0,T ] ,Rd

)
. The SPDE (15.25) is robust in rough path

sense.

The proof is a slight modification of the proof of Theorem 6 since the usual com-
parison results from viscosity theory is stable under taking infα .

6 Weak Splitting Schemes for SPDEs

In the previous sections we have concentrated on strong approximation of (partial)
differential equations driven by random signals, i.e., on the approximation of the
solution yT = yT (ω) of the rough or stochastic (partial) differential equation as a
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random variable, ω-for-ω (resp. rough path by rough path). However, in many ap-
plications one is only interested in the law of the solution yT of the equation. Indeed,
if the quantity of interest is just the expectation of a functional of the solution, say

E [ f (yT )] ,

then it is sufficient to only approximate the law of yT . This corresponds to the notion
of weak convergence of random variables, and hence schemes for approximating
the law of the solution of a stochastic (partial) differential equations are referred
to as weak schemes. More precisely, let us consider the solution yT of a stochastic
differential equation defined on the Banach space X (which is infinite-dimensional
in the case of an SPDE) and let us consider a sequence of approximations yN taking
values in X indexed by N ∈ N. Fix a space of sufficiently regular test functions
f : X → R (classically chosen to be Cb(X) in theoretical probability theory, but
more flexibility is needed in numerics). Then we say that yN converges to yT in the
weak sense if for any test function f we have

E [ f (yN)]
N→∞−−−→ E [ f (yT )] .

In particular, note that weak schemes — unlike strong ones — do not have to operate
on the same probability space as the true solution.

Of course, if the space of test functions is a subspace of the Lipschitz continuous
functions, then strong convergence (i.e., convergence in L1(Ω ;X)) implies weak
convergence, and the rate of weak convergence is at least as good as the rate of
strong convergence. However, in many cases the weak rate of convergence is, in
fact, much better than the strong one.

Cubature on Wiener Space

For simplicity, let us concentrate on the finite-dimensional case first — we will come
back to the infinite-dimensional (SPDE) setting at the end of this section. Consider
the stochastic differential equation

dyt =V0(yt)dt +
d

∑
i=1

Vi(yt)◦ dBi
t , (15.26)

with y0 ∈ R
e fixed, B denoting a d-dimensional standard Brownian motion and “◦”

indicating that the stochastic integral is understood in the Stratonovich sense. We
furthermore introduce the notation B0

t ≡ t to simplify the presentation.

Assumption 3. We assume that the vector fields V0, . . . ,Vd : Re → R
e are C∞-

bounded, i.e., they are smooth and all the derivatives are bounded (but not necessar-
ily the functions themselves). Moreover, the test function f is smooth and bounded.
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Remark 1. Of course, these assumptions can be relaxed. For instance, the bound-
edness requirements can be removed by working with properly weighted norms
[23, 46]. Moreover, assuming a (hypo-)ellipticity condition for the vector fields, we
can actually rely on the smoothing property of the diffusion equation and drop the
smoothness assumption for the test function f – at the cost of possibly having to
work with nonuniform grids, see [54].

In order to derive appropriate weak splitting schemes for the equation (15.26),
we first recall the short time behavior of the solution using the stochastic Taylor
expansion, see for instance [45]. By iterating the Ito-formula for the Stratonovich-
SDE (15.26) m times, we obtain

f (yt) = f (y0)+
m

∑
k=1

∑
(i1,...,ik)∈{0,...,d}k

Vi1 · · ·Vik f (y0)
∫

0<t1<···<tk<t
◦dBi1

t1 · · · ◦dBik
tk +O

(
t(m+1)/2

)
,

(15.27)

where we iteratively use the geometrical notion V f (x)≡∇ f (x) ·V (x) for a function
f and a vector field V . We also denote

BI
t = B(i1,...,ik)

t ≡
∫

0<t1<···<tk<t
◦dBi1

t1 · · · ◦ dBik
tk , I = (i1, . . . , ik) ∈ {0, . . . ,d}k.

(15.28)

Remark 2. We once again see that the short-time behavior of the solution y is con-
trolled by the truncated signature.

Remark 3. As a matter of fact, sharper versions of (15.27) are possible, in so far
that (15.27) ignores the different scaling of t = B0

t and B1
t , . . . ,B

d
t . Once again, we

refer to [54].

Remark 4. Of course, analogous stochastic Taylor expansions can also be formu-
lated in terms of the Ito integral, which would then lead to the Ito-signature. We
prefer the geometrically more intuitive Stratonovich versions in this chapter.

This motivates the following methodology for constructing higher order weak
approximation schemes termed the ODE method (originally introduced as cubature
on Wiener space by [54] and, independently, [47]).

Theorem 7. In the setting of Assumption 3, we are given a time-grid 0 = t0 < t1 <
· · · < tN = T with corresponding increments Δ ti, i = 1, . . . ,N. Let Wi : [0,Δ ti] →
R

d+1 be a (d + 1)-dimensional path of bounded variation satisfying

∀0 ≤ k ≤ m, I ∈ {0, . . . ,d}k : E
[
BI

Δ ti

]
= E

[
W I

i (Δ ti)
]
.

Moreover, let W : [0,T ]→ R
d+1 be the bounded-variation process obtained by con-

catenating the processes W1, . . . , WN. Finally, let yN ≡ yT (W ) be defined as the
solution of the ODE

dy(W )t

dt
=V0(y(W )t)Ẇ

0
t +

d

∑
i=1

Vi(y(W )t )Ẇ
i

t (15.29)
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formally obtained from (15.26) by replacing B by W . Then there is a constant C > 0
such that

|E [ f (yT )]−E [ f (y(W )T ]| ≤C

(
max

i=1,...,N
Δ ti

)(m−1)/2

.

Proof. We do not give a detailed proof, as the underlying argument is quite standard
in numerical analysis. Indeed, by (15.27) the local error of the approximation is of
order (Δ ti)

(m+1)/2. Thus, by summing up the local errors we obtain that the global
error is of order (maxi Δ ti)

(m−1)/2

Remark 5. The above theorem is somewhat imprecise, as the constant C depends
on T , f , the vector fields V0, . . . ,Vd and the method of constructing the processes
W1, . . . ,WN , but not on the grid. E.g., in the case of the Ninomiya-Victoir method
introduced below, C will only depend on T , f , V0, . . . ,Vd .

6.1 The Ninomiya–Victoir Splitting

If liberally interpreted — e.g., for Euler schemes, when the path W is actually a
step-function — Theorem 7 encompasses a large class of discretization schemes
for the stochastic differential equation (15.26). In particular, it allows for a simple
construction of stochastic splitting schemes, as we shall exemplify by the arguably
most popular version, the Ninomiya–Victoir scheme [59]. In that case, the paths of
the process W are axis-paths, i.e., the paths are continuous and piecewise-parallel to
the axis in R

d+1, similar to the construction used in Definition 3, see (15.9). More
precisely, choose 1 ≤ i ≤ N and a sequence of independent (of all other sources of
randomness) random variables Λi, i = 1, . . . ,N with P(Λi = 1) = P(Λi =−1)= 1/2.
Construct a process Wi on [0,Δ ti] in the following way: set δi ≡ Δ ti/(d + 1) and
when Λi =+1, set

Ẇi(t) =

⎧⎪⎨
⎪⎩

Δ ti/δie0, 0 ≤ t < 1/2δi,

ΔB j
i /δie j, (1/2+( j− 1))δi ≤ t < (1/2+ j)δi, 1 ≤ j ≤ d,

Δ ti/δie0, Δ ti − 1/2δi ≤ t ≤ Δ ti,

(15.30a)

where we recall that ΔB j
i ≡ B j

ti −B j
ti−1

and where we denote by (e0,e1, . . . ,ed) the
standard basis of Rd+1. In the other case (Λi =−1), we define Wi by

Ẇi(t) =

⎧⎪⎨
⎪⎩

Δ ti/δie0, 0 ≤ t < 1/2δi,

ΔBd− j+1
i /δied− j+1, (1/2+( j− 1))δi ≤ t < (1/2+ j)δi, 1 ≤ j ≤ d,

Δ ti/δie0, Δ ti − 1/2δi ≤ t ≤ Δ ti.
(15.30b)

As in the general construction, the independent processes W1, . . . ,WN are then con-
catenated to form the process W defined on [0,T ].
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Inserting the process W just constructed into the general methodology (15.29),
we see that the Ninomiya–Victoir method boils down to solving the ODEs driven
by the individual vector fields V0, . . . ,Vd on R

e. Indeed, let esVix denote the flow
associated with the vector field Vi at time s, i.e., esVix = z(s) solution to

ż(t) =Vi(z(t)), z(0) = x ∈ R
e,

then the solution yl ≡ y(W )tl , l = 0, . . . ,N, of (15.29) for the Ninomiya–Victoir
process W satisfies y0 = y0 and

yl =

{
e

Δtl
2 V0eΔBd

l Vd · · ·eΔB1
l V1e

Δtl
2 V0yl−1, Λl =+1,

e
Δtl
2 V0eΔB1

l V1 · · ·eΔBd
l Vd e

Δtl
2 V0yl−1, Λl =−1,

(15.31)

l = 1, . . . ,N. This explains from the SDE side, why we consider the Ninomiya–
Victoir scheme a stochastic splitting scheme for the SDE (15.26).

Theorem 8. Under Assumption 3, the Ninomiya–Victoir scheme is a weak scheme
of second order, i.e., there is a constant C > 0 (depending on T, f ,V0, . . . ,Vd, but not
on the grid) such that

|E [ f (yT )]−E [ f (y(W )T ]| ≤C

(
max

i=1,...,N
Δ ti

)2

.

Proof. We show that E
[
S5

0,t(B)
]
= E

[
S5

0,t(W )
]

for t = Δ ti and any W =Wi, which

implies the conclusion by Theorem 7.
Let us first consider the (Stratonovich) signature of the Brownian motion. By the

construction of the Stratonovich integral in terms of the Ito integral, we have

B(i1,...,ik)
t =

∫
0<t1<···<tk<t

◦dBi1
t1 · · · ◦ dBik

tk

=

{∫ t
0 B

(i1,...,ik−1)
tk dBik

tk +
1
2

∫ t
0 B

(i1,...,ik−2)
s dsδikik−1 , ik �= 0,∫ t

0 B
(i1,...,ik−1)
tk dBik

tk , ik = 0.

Using the Ito isometry, the expectation of the iterated Stratonovich integral is itera-
tively given by

E
[
B(i1,...,ik)

t

]
=

⎧⎨
⎩

1
2

∫ t
0 E

[
B
(i1,...,ik−2)
s

]
dsδikik−1 , ik �= 0,∫ t

0 E
[
B
(i1,...,ik−1)
s

]
ds, ik = 0.

As regards the Ninomiya–Victoir cubature formula defined above, we see that

Ẇ j
i (t) = ΔB j

i /δi1A j
i
(t), j = 0, . . . ,d, i = 1, . . . ,N,
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where we tacitly let ΔB0
i = Δ ti and define the set A j

i by

A0
i = [0,1/2δi[∪[Δ ti − 1/2δi,Δ ti],

A j
i =

{
[( j− 1/2)δi,( j+ 1/2)δi], Λi =+1,

[(d− j+ 1/2)δi,(d − j+ 3/2)δi], Λi =−1,
j = 1, . . . ,d.

So we have the general formula

E
[
W (i1,...,ik)

i (Δ ti)
]
= E

[
ΔBi1

i · · ·ΔBik
i

]
E

[∫
0<t1<···<tk

1
A

i1
i
(t1) · · ·1A

ik
i
(tk)dt1 · · ·dtk

]
,

where the last expectation is necessary due to the random choice of intervals above,
and, in fact, only involves the two alternatives Λi =±1.

The verification of the theorem now boils down to a simple, but tedious exercise.
For instance, for multi-indices of length 3, we see that the only nonzero components
of the expectation of the signature restricted to multi-indices of length 3 for either B
and Wi are

E
[
B(0,0,0)

Δ ti

]
=

Δ t3
i

6
= E

[
W (0,0,0)

i (Δ ti)
]
,

E
[
B(0, j, j)

Δ ti

]
=

Δ t2
i

4
= E

[
W (0, j, j)

i (Δ ti)
]
,

E
[
B( j, j,0)

Δ ti

]
=

Δ t2
i

4
= E

[
W ( j, j,0)

i (Δ ti)
]
,

j = 1, . . . ,d,

A Path-Wise Interpretation of the Ninomiya–Victoir
Splitting Scheme

Interpreting the Ninomiya–Victoir scheme in the Lie/Strang splitting picture drawn
in (15.9) and below, we define functions aΔ ti , bΔ ti

1 , . . . ,bΔ ti
d on the interval [0,Δ ti] by

ȧΔ ti(t) =
Δ ti
δi

1[0,δi/2[(t),

ḃΔ ti
j (t) =

ΔB j
i

δi
1[(1/2+ j−1)δi,(1/2+ j)δi[(t), j = 1, . . . ,d,

ċΔ ti(t) =
Δ ti
δi

1[Δ ti−δi/2,Δ ti](t).



15 The Splitting Method for SPDEs 525

After concatenating these paths, we could immediately construct a Lie-type splitting
following Definition 3 (in fact, we would not need to split the time component in the
a and c paths) or a Strang-type splitting. However, taking the scaling of Brownian
motion into account, we realize that we need to take care of Lie brackets of order
up to 5 in order to obtain a high order scheme. Hence, we need even more “re-
orderings” than in the ordinary Strang splitting. Thus, we further define paths

˙b̃Δ ti
j (t) =

ΔB j
i

δi
1[(1/2+d− j)δi,(1/2+d− j+1)δi[(t), j = 1, . . . ,d.

The two alternatives (15.30a) and (15.30b) of Wi(t) are then given by

Wi(t) = (aΔ ti(t)+ cΔ ti(t))e0 +
d

∑
j=1

(
bΔ ti

j (t)1Λi=+1 + b̃Δ ti
j (t)1Λi=−1

)
e j,

and the corresponding splitting scheme is indeed given by (15.31), taking into ac-
count that the solutions of the ODEs driven by bΔ ti

j and b̃Δ ti
j eventually coincide at

time Δ ti.

The Ninomiya–Victoir Scheme as a Splitting Scheme for PDEs

It is well known that the function u(t,y)≡ E [ f (yt)] with y0 = y satisfies the linear
Cauchy problem

∂
∂ t

u(t,y) = Lu(t,y), u(0,y) = f (y), (15.32)

for t > 0 and y ∈ R
e, respectively. Here, the partial differential operator L is de-

fined by

Lg(y) =V0g(y)+
1
2

d

∑
i=1

V 2
i g(y), (15.33)

where we recall that for any vector field V : Re → R
e and any smooth function

g : Re → R we set Vg(y) ≡ ∇g(y) ·V (y). Iterating this procedure also defines V 2g,
with V 2 a second order differential operator. Hence, for any weak approximation yN
of yT , we have that

E [ f (yN)]≈ E [ f (yT )] = u(T,y0), (15.34)

and the order of the weak approximation is the order of the approximation in the
solution of the PDE (15.32). In semi-group notation, we can denote the solution
operator associated with L by Pt ≡ exp(tL), i.e.,

u(t,y) = Pt f (y).

Remark 6. Obviously, solving the SDE (15.26) is only one step for the solution of
the PDE (15.32): in addition, one needs to approximate the expectation in (15.34).
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In principle, for the Ninomiya–Victoir method this is a numerical integral in dimen-
sion d ×N. As this dimension is typically quite high, one usually resorts to Monte
Carlo or Quasi Monte Carlo methods for computing the integral. Numerically, the
computational cost of the integration step is often much higher than the computa-
tional cost of the discretization of the SDE, as the rate of convergence of the inte-
gration schemes is only 1

2 (for Monte Carlo) or (at best) 1 (for Quasi Monte Carlo).
Nonetheless, higher order weak approximation methods can reduce the overall com-
putational cost considerably as compared to low order methods, partly because they
actually lead to a considerable reduction of the dimension of the integration prob-
lem in the second step. The advantages of using higher order schemes have been
observed in many numerical studies, for instance [59, 2, 4, 46].

Remark 7. As compared to classical numerical solvers for the Cauchy problem
(15.32), the stochastic approximation scheme presented here has some very dif-
ferent features. On the one hand, most standard numerical methods such as finite
element or finite difference schemes produce approximate solutions u(t,y) for all
values of t and y simultaneously – within a certain region in time and space, and
up to interpolation. On the other hand, using the stochastic representation (15.34),
one only obtains an approximation of u(t,y) for one particular t and one particu-
lar y. Moreover, the stochastic method crucially relies on the performance of the
(Q)MC approximation for the expected values, and shares its strengths and weak-
nesses. Hence, for low-dimensional problems classical numerical PDE solvers are
typically more efficient, whereas for high dimensions e , 1, the stochastic method
is competitive or superior, as it does not suffer from the curse of dimensionality.

In light of (15.32), the question arises whether the Ninomiya–Victoir scheme can
be naturally associated with a (PDE) splitting scheme for (15.32). To this end let
us first consider the situation when there is only one time-step. Let Qi

t , i = 1, . . . ,d,
be the semi-groups corresponding to the second order differential operators 1

2V 2
i ,

i = 1, . . . ,d, respectively. Formally, we write Qi
t = e

t
2 V 2

i . Moreover, we denote by
Q0

t the semi-group associated with the operator V0, i.e.,

Q0
t f (x) = f

(
etV0x

)
.

While the correspondence between etV0 and Q0
t is obvious, we note that Qi

t is in
some sense the expectation of eBi

tVi . More precisely, stochastic Taylor expansion
shows that for any C∞-bounded test function f and any initial value y ∈R

e we have

Qi
t f (y) = E

[
f
(

eBi
tViy

)]
.

Hence, in the case with only one time-step (with Δ t = T , ΔB = BT ) we obtain that

E [ f (y1)] =
1
2

E
[

f
(

e
Δ t
2 V0 eΔBdVd · · ·eΔB1V1 e

Δ t
2 V0 y

)]
+

1
2

E
[

f
(

e
Δ t
2 V0 eΔB1V1 · · ·eΔBdVd e

Δ t
2 V0 y

)]
=

1
2

Q0
Δ t/2Qd

Δ t · · ·Q1
Δ t Q

0
Δ t/2 f (y)+

1
2

Q0
Δ t/2Q1

Δ t · · ·Qd
Δ t Q

0
Δ t/2 f (y) ≡ QΔ t f (y).

Note that the weight “ 1
2 ” comes from the probability 1

2 to choose either of the two
alternatives in (15.31).
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Iterating this construction along a discretization of the time interval [0,T ] as
above, we recover a well-known splitting scheme from the PDE literature, some-
times referred to as “symmetrically weighted sequential splitting” scheme, see [18].
In terms of the solution operator Pt = exp(tL), Theorem 8 thus says that

∣∣PT f (y)−QΔ tN · · ·QΔ t1 f (y)
∣∣≤C

(
max

i=1,...,N
Δ ti

)2

. (15.35)

The Ninomiya–Victoir Stochastic Splitting for SPDEs

The stochastic splitting methodology introduced above can be directly generalized
to the infinite-dimensional case, i.e., to the case of SPDEs instead of SDEs. This was
first done by Bayer and Teichmann [5] for the abstract formulation of Theorem 7 un-
der strong regularity conditions. Later on, Dörsek and Teichmann [23] have given a
careful analysis of the Ninomiya–Victoir splitting and other splitting techniques for
weak approximation of SPDEs under weaker assumptions. We will mainly follow
their approach here.

Consider a stochastic partial differential equation of the form

dyt = (Ayt +V (yt))dt +
d

∑
i=1

Vi(yt)dBi
t , y0 ∈ X , (15.36)

that is we assume that the stochastic fluctuation only depend on yt , but not on deriva-
tives of yt . The state space X of the equation (15.36) is assumed to be a separable
Hilbert space and the vector fields V,V1, . . . ,Vd : X → X are Frechet-differentiable
and Lipschitz continuous, whereas the operator A : D(A) ⊂ X → X is the genera-
tor of a strongly continuous, pseudo-contractive semigroup on X — more regularity
conditions on the coefficients are deferred until later. Then, a mild solution yt of the
SPDE exists. For details of the solution theory of this class of SPDEs we refer to the
monograph [19].

As mild solutions to SPDEs of the form (15.36) are generally not semi-
martingales, we cannot rewrite (15.36) in Stratonovich form from the beginning,
but have to work with the Ito formulation. Nonetheless, if we use the Ninomiya–
Victoir stochastic splitting approach, all the resulting (simpler) SPDEs can, in fact,
be written in Stratonovich form, hence we proceed just as above. Indeed, define

esViy = zs, where żt =Vi(zt), z0 = y ∈ X , i = 1, . . . ,d.

Moreover, set V0(y) ≡ V (y)− 1
2 ∑d

i=1 DVi(y) ·Vi(y), y ∈ X , which would precisely
correspond to the Stratonovich drift if it actually were to exist, and define es(A+V0)y
analogously, i.e., as solution zs at time s of the Cauchy problem

∂
∂ t

zt = Azt +V0(zt), z0 = y ∈ X ,
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which may be represented in terms of the semi-group exp(tA) generated by A as

es(A+V0)y = zs = exp(sA)y+
∫ s

0
exp((s− t)A)V0(zt)dt.

Now we can define the Ninomiya–Victoir splitting essentially as in (15.31), i.e.,
we set y0 = y0 and

yl =

{
e

Δtl
2 (A+V0)eΔBd

l Vd · · ·eΔB1
l V1e

Δtl
2 (A+V0)yl−1, with prob. 1

2 ,

e
Δtl
2 (A+V0)eΔB1

l V1 · · ·eΔBd
l Vd e

Δtl
2 (A+V0)yl−1, else,

(15.37)

l = 1, . . . ,N.
We formulate assumptions given in [23], which can, in fact, be weakened using

suitably weighted spaces.

Assumption 4. Consider the coefficients A,V,V1, . . . ,Vd of the SPDE (15.36) and a
function f : X → R. We assume that

• A : D(A) ⊂ X → X generates a strongly continuous, pseudo-contractive semi-
group on X and has a compact resolvent.

• V,V1, . . . ,Vd ∈C6(X ,X) and have bounded derivatives.
• V,V1, . . . ,Vd are Lipschitz when considered as mapsD(Al)→D(Al), l = 1, . . . ,5,

where D(Al) is equipped with the graph norm, i.e., the Hilbert norm given by

‖x‖2
D(Al) ≡ ‖x‖2

X +∑l
k=1

∥∥Akx
∥∥2

X .

• f ∈C6
b(X).

Theorem 9 ([23, Cor. 7.11, Th. 7.20]). Under Assumption 4, there is a constant C
such that

|E [ f (yT )]−E [ f (yN)]| ≤C

(
max

i=1,...,N
Δ ti

)2

.

Remark 8. The theorem can also be re-formulated completely deterministically in
the fashion of (15.35), i.e., as a deterministic splitting method for a PDE on an
infinite-dimensional state space. This is the version actually given in [23].

7 Applications of Weak Schemes in Financial Engineering

Given a financial model of the form (15.26), where yt could be a (one- or multi-
dimensional) vector of asset (forward) prices, or a vector of asset prices and stochas-
tic volatilities, or the individual factors of a multi-factor model, . . . . Disregarding
financial technicalities (discounting, change to the pricing measure), we are con-
cerned in computing a European option price with payoff function f : Re → R and
maturity T , i.e., our quantity of interest is

E [ f (yT )] .
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This simple option pricing problem is mostly relevant for calibration purposes, i.e.,
for identifying the model parameters which provide the best fit to the observed mar-
ket prices. Hence, the speed of the pricing algorithm is extremely important for
this application — more important than accuracy, due to the usually non-negligible
model error.5 In this section we give an overview of some successful applications
of weak stochastic splitting methods in this context. We begin with two numerical
studies on the performance of the Ninomiya–Victoir scheme for two popular (finite-
dimensional) models often used in financial engineering — the SABR model and the
CEV model, a special case of the former [2, 4]. Then we report the performance of
the Ninomiya–Victoir method in an actual calibration routine for yet another related
model, the double-mean-reverting model, [3]. Finally, we present the performance
of the weak stochastic splitting method for SPDEs, again in the context of a calibra-
tion problem, this time for an interest rate model, the Heath–Jarrow–Morton model,
see [24] and [40].

Option Pricing in High Dimensions

The SABR model is a prominent example of a stochastic interest rate model. We
consider the following generalizations of the classical SABR model (cf. [2]).

dy1(t) =ay2(t)
αy1(t)

β dB1
t ,

dy2(t) =κ(θ − y2(t))dt + by2(t)

(
ρdB1

t +
√

1−ρ2dB2
t

)
,

(15.38)

with X1(0) = x1 and X2(0) = x2. We assume that the parameters satisfy 1
2 ≤ β ≤ 1,

θ ,κ ≥ 0, α > 0, a,b > 0, −1 < ρ < 1. Here, the first component y1(t) models the
(discounted) price of a stock, and y2(t) can be interpreted as some kind of stochastic
volatility. In fact, the dynamics of y1 depend in a nonlinear way on y1 (local volatil-
ity) and on a second stochastic process y2 (stochastic volatility). Hence, models
of this kind are known as stochastic local volatility models. Moreover, note that this
model can be easily generalized to the multi-asset case by just adding new processes
y with the same kind of dynamics, but driven by correlated Brownian motions for
every new asset to be included in the model, see [2] for more details. We concentrate
on the one-asset case for ease of presentation.

For the SABR model (15.38), the Stratonovich drift vector field and the diffusion
vector fields are given by

V0(y) =

(
− 1

2 a2βy2α
2 y2β−1

1 − 1
2 αabρyα

2 yβ
1

κθ − (
κ + 1

2 b2
)

y2

)
, V1(y) =

(
ayα

2 yβ
1

bρy2

)
, V2(y) =

(
0

b
√

1−ρ2y2

)
.

(15.39)

5 That is, even without any numerical error, it is generally not possible to obtain a perfect fit to
market prices, due to the model limitations.
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Quite typically for models in financial engineering, the Stratonovich drift vector
field is considerably more complicated than the Ito drift vector field or the diffusion
vector fields which can be seen as a consequence of the Stratonovich correction
V0 = V − 1

2 ∑d
i=1 DVi ·Vi, noting that models in financial engineering are typically

formulated in Ito form. As a consequence, it is not surprising that we have ex-
plicit formulas for the flow of the diffusion vector field, but not for the flow of
the Stratonovich vector field V0. In fact, we have

esV1y =

(
g1(s)

y2 exp(bρs)

)
, esV2y =

(
y1

y2 exp
(

b
√

1−ρ2s
))

,

where

g1(s) =

⎧⎨
⎩
[
(1−β )ayα

2
eαbρs−1

αbρ + y1−β
1

]1/(1−β )

+
, 1

2 ≤ β < 1,

y1 exp
(

axα
2

eαbρs−1
αbρ

)
, β = 1.

Of course, it is possible to compute esV0y numerically, but for efficiency (and of-
ten also for geometrical reasons) it is preferable to have explicit solutions whenever
possible.6 We therefore propose to slightly adjust the Ninomiya–Victoir splitting
formula, taking the Stratonovich drift correction into account. That means, we re-
place the splitting L =V0 +

1
2 ∑d

i=1 V 2
i by the splitting

L =V (γ)
0 +

1
2

d

∑
i=1

(
V 2

i + 2γiVi
)
, where V (γ)

0 =V0 −
d

∑
i=1

γiVi,

and γ ∈ R
d is chosen such that the flow of V (γ)

0 has an explicit solution. Note that
1
2V 2

i + γiVi corresponds to the stochastic equation

dzt = γiVi(zt)dt +Vi(zt )◦ dBi
t =Vi(zt)◦ d

(
Bi

t + γit
)
,

i.e., the stochastic weak splitting scheme actually looks exactly like the standard
Ninomiya–Victoir scheme (15.31), but with ΔBi

l replaced by ΔBi
l + γiΔ tl and V0

replaced by V (γ)
0 :

yl =

⎧⎨
⎩e

Δtl
2 V (γ)

0 e(ΔBd
l +γdΔ tl )Vd · · ·e(ΔB1

l +γ1Δ tl)V1e
Δtl
2 V (γ)

0 yl−1, with prob. 1
2 ,

e
Δtl
2 V

(γ)
0 e(ΔB1

l +γ1Δ tl )V1 · · ·e(ΔBd
l +γdΔ tl )Vd e

Δtl
2 V

(γ)
0 yl−1, else,

(15.40)

see [2]. As a matter of fact, we can easily find such a choice of γ for the generalized
SABR model given by

γ1 =−1
2
αbρ , γ2 =

αbρ2 − 2κ/b− b

2
√

1−ρ2
,

6 By which we do not mean difficult-to-evaluate series expansions, Bessel functions or similar
solutions. Instead, we mean formulas with comparable complexity to the vector fields themselves.
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leading to

V (γ)
0 (y) =

(
− 1

2 a2βy2α
2 y2β−1

1
κθ

)
, esV

(γ)
0 y =

(
g0(s;y)
κθ s+ y2

)
,

with

g0(s;y) =

⎧⎪⎪⎨
⎪⎪⎩
(
−a2β (1−β )P(s;y)+ y2(1−β )

1

) 1
2(1−β)

+
, 1

2 < β < 1,

y1 exp
(− 1

2 a2P(s;y)
)
, β = 1,

− 1
4 a2P(s;y)+ y1, β = 1

2 ,

and
P(s;y) =

1
(2α + 1)κθ

(
(κθ s+ y2)

2α+1 − y2α+1
2

)
.

Finally, let us present the results from one of the numerical experiments in [2]
with real-world data. The parameters there were chosen to be β = 1.0, θ = 0.3,
κ = 2.0, α = 0.5, a = 1.0, b = 0.5, ρ = −0.7, y1 = 1.0, and y2 = 0.2. The option
has strike price K = 1.05 and time to maturity T = 1.0 years. The estimated “true
result” is 0.1767505855. Note that the expectation is computed by quasi Monte
Carlo based on Sobol numbers.

In Figure 15.4 the discretization error is plotted against the number of time steps
for three different schemes: the standard Euler scheme, the classical Ninomiya–
Victoir splitting (15.31) (where esV0 is computed by a standard second order Taylor
expansion) and our adjusted Ninomiya–Victoir scheme (15.40). We clearly see the
second order weak convergence of the Ninomiya–Victoir scheme in both variants as
compared to the first order weak convergence of the standard Euler scheme.
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Fig. 15.4 Order of convergence for the generalized SABR model. Figure from [2].
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Note that the error of the Euler scheme changes its sign at around two time steps,
which explains the visible kink of the error of the Euler scheme in Figure 15.4. We
consider this a numerical artifact which we disregard for the comparison.

Method K M Rel. Error Time
Euler 32 8192000 0.00174 91.94 sec
Ninomiya–Victoir 4 2048000 0.00204 13.93 sec
NV with drift 4 1024000 0.00104 2.88 sec

Table 15.1 Computational time for the generalized SABR model

In Table 15.1 the computational times are reported for the generalized SABR
model. Here, the computational parameter N (the number of uniform time-steps) is
chosen such that the weak error is of order 10−3. We see that the computational time
needed for the adjusted splitting method (15.40) is indeed considerably smaller than
the time for the classical one (15.31). The other numerical parameter (the number
M of samples for the quasi Monte Carlo integration, restricted to be a power of 2)
was chosen such that the integration error (i.e., the error in the computation of the
expected value) is of order 10−5. Indeed, we focus on the discretization problem
here, and we do not want our results to be overshadowed by the integration error.
Note that in the case of the Euler scheme, one has to compute a 64-dimensional
integral, whereas in the case of the Ninomiya–Victoir scheme (with or without drift),
the integration only needs to be performed on an eight-dimensional space. This
explains why the M can be chosen smaller for the Ninomiya–Victoir splitting as
compared to the Euler scheme, as quasi Monte Carlo is known to work better when
the dimension is smaller – despite not suffering from the curse of dimensionality.

In [2] similar results were reported for the multi-asset case. More precisely, the
authors of [2] also applied it to the case of four assets, meaning an eight-dimensional
model. But, in fact, the stochastic splitting method can be used in even higher di-
mensions. For instance, we used it in [4] in order to obtain reference solutions for
options depending on up to 100 assets for a pure local volatility model, coupled with
quasi Monte Carlo or Monte Carlo methods for the integration step. In that case, it is
difficult if not impossible to obtain reliable reference values, but the method seems
to perform very well.

Calibration of the Double Mean Reverting Model

The double mean reverting model goes back to Jim Gatheral [34]. Its main advan-
tage is that it allows joint calibration to market data for option prices on an index
like the S & P 500 index (SPX) and a corresponding implied volatility index (like
the VIX). The model is given by
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dSt =
√

vtStdW 1
t , (15.41a)

dvt = κ1(v
′
t − vt)dt + ξ1vα1

t dW 2
t , (15.41b)

dv′t = κ2(θ − v′t)dt + ξ2v′t
α2dW 3

t , (15.41c)

where the Brownian motions Wi are all correlated with E[dW i
t dW j

t ] = ρi jdt. Again,
it is natural to interpret vt as the (stochastic) volatility of the (discounted) asset price
process St – or rather, as the stochastic variance. Conforming to stylized facts about
the volatility, vt is a mean-reverting process due to the form of the drift, but un-
like traditional stochastic volatility models, the long-term mean v′t is itself a (mean-
reverting) stochastic process, hence the name “double mean reverting” model.

Typically, one of the most numerically challenging tasks in financial engineering
is the calibration of a model such as (15.41), i.e., the fitting of the model parameters
(κ1, κ2, ξ1, ξ2, α1, α2, ρ12, ρ13, ρ23, but also v0 and v′0 which, unlike S0, are not
directly observable) to market data, in particular to market option prices. Indeed,
even though the model itself assumes these parameters to be constant, in reality they
typically change frequently, which means that the model has to be re-calibrated on
a regular bases, say daily.

In the case of the double mean reverting model, practical experience seems to
show that θ , κ1, κ2, ρ23 α1 and α2 are fairly constant in time, implying that they can
be excluded from the daily re-calibration. In fact, [3] found that the data available
did not suffice to successfully estimate α2. Hence, it was assumed to have the same
value as α1, which was calibrated to α1 = 0.94. Hence, for the purpose of their
numerical study, [3] assumed θ , κ1, κ2, ρ23 α1 and α2 to be given (by parameters
which where themselves, of course, calibrated to the market data) – leaving us with
the task of fast calibration of the parameters ξ1, ξ2, ρ12 and ρ13. In the context of
[3], “market data” mean the prices of vanilla (i.e., European put and call options) on
SPX and on VIX. The general calibration procedure proposed was the following:

1. Given a time series of VIX data, linear regression allows to construct time series
for the processes vt and v′t . Out of these, a least-square optimization is used to
estimate θ , κ1 and κ2. Moreover, the correlation between vt and v′t gives ρ23.
A similar regression on VIX time series data gives an estimate for α1.

2. Note that options on VIX depend only on vt and v′t now, but not on St . Hence,
one can calibrate ξ1 and ξ2 directly to VIX options, without needing to simu-
late the St component, i.e., without adding any constraints to ρ12 and ρ13. The
calibration boils down to a least-squares minimization of misfits of VIX-option
prices from the model to the quoted market prices. The minimization was done
using a Levenberg-Marquardt algorithm, for the option pricing algorithm the
authors of [3] tested the Euler scheme and a variant of the Ninomiya–Victoir
scheme for the discretization of the SDE and both classical and quasi Monte
Carlo for the computation of the expected value.

3. Having obtained ξ1 and ξ2 from the previous step, they used options on the SPX
to calibrate the remaining parameters ρ12 and ρ13. The procedure is very similar
to the calibration of ξ1 and ξ2, except that now the full three-dimensional SDE
needs to be solved.
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In [3] the calibration was done for two particular days, namely April 3, 2007 (be-
fore the financial crisis) and September 15, 2011 (after the financial crisis). The fits
to SPX options are quite good, especially for maturities which are not too small. The
fit to VIX options is slightly worse, but in that time VIX options were also less liq-
uid than today. Regarding the numerical algorithms, the Ninomiya–Victoir splitting
method (with an additional splitting in the drift, not unlike the one presented in [2])
performs much better for the calculation of VIX options, where the classical Euler
method would requires 500 time-steps as compared to 30 time-steps for the split-
ting method in order to achieve the required accuracy. Thereby, for this example, the
Ninomiya–Victoir scheme reduces the calibration time for the VIX-step by a factor
of around five. For the SPX options, the Euler scheme surprisingly gave sufficiently
accurate results already for 30 time-steps, which implies that for this case the Eu-
ler scheme turned out to be seemingly preferable to the Ninomiya–Victoir scheme,
taking costs into account. Note, however, that the error plots in Figure 15.5 reveal
that this conclusion is deceptive, as the weak approximation error changes its sign
around the critical number of 30 time-steps. Even though this effect was persistent
in both for both market data (and the accordingly calibrated parameters), the picture
might change in other regime, leading to added benefits for applying the Ninomiya–
Victoir splitting scheme also for the SPX-data calibration step. In total, the authors
of [3] report that their implementation can do the re-calibration to market data in
about 5 seconds using the Ninomiya–Victoir splitting scheme.

Calibration of the Heath–Jarrow–Morton Model

Finally, we want to present an application of the Ninomiya–Victoir weak splitting
method to a true SPDE given by Dörsek and Teichmann [24], namely the fast cali-
bration of a general, infinite-dimensional Heath–Jarrow–Morton model for interest
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Fig. 15.5 Errors for the Euler and the Ninomiya Victoir schemes for three different SPX options.
(Data from September 15, 2011, dotted lines indicate Monte Carlo confidence intervals. Figure
taken from [3].)
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rate dynamics, see [40]. We should also note alternative numerical treatments of the
full, infinite dimensional HJM model in [9] and [58].

We start with a short description of the model. Let P(t,T ) denote the price of a
zero-coupon bond with maturity T at time t. Of course, this entity only makes sense
if t ≤ T . The (instantaneous) forward rate at time t for the maturity T is defined by

f (t,T ) =− ∂
∂T

logP(t,T ),

implying the natural inverse relation P(t,T )= exp
(
−∫ T

t f (t,u)du
)

, which explains

why we call f an interest rate. Unlike many other models, in which only the short
rate f (t, t) or only the rates f (t,T1), . . . , f (t,Tn) for finitely many maturities are
modeled, [40] propose an infinite-dimensional model for the whole forward rate
curve ( f (t,T ))T∈[t,∞[. In order to avoid working with time-dependent state spaces,
we introduce the parametrization rt(x) = f (t, t+x) in time to maturity x= T −t ≥ 0.
Then the HJM model corresponds to the SPDE

drt =

(
∂
∂x

rt +αHJM(rt)

)
dt +

d

∑
i=1

σi(rt)dBi
t . (15.42)

Here, we restrict ourselves to a finite number d of driving Brownian motions, which
can be justified empirically, but is not strictly necessary for the HJM model. More-
over, we note that there are inherent restrictions on the vector fields imposed by
no-arbitrage constraints, which boil down to the relation

αHJM(h)(x) =
d

∑
i=1

σi(h)(x)
∫ x

0
σi(h)(y)dy,

where x ≥ 0 and h takes values in the state space H, a suitably weighted Sobolev
space, see [24] for details on H and on further regularity requirements on σi.

Next, we describe the splitting. Note that the diffusion vector fields do not pose
any additional complications as compared to the finite dimensional case, as they
are (assumed to be) continuous vector fields on H. This is evidently not the case
for the Stratonovich drift vector field σ0(h) =

∂
∂x h+αHJM(h)− 1

2 Dσi(h) · σi(h),

where the unbounded operator ∂
∂x appears. (Recall that the solution rt cannot, in

fact, be written in Stratonovich form.) Hence, they additionally split σ0 = σ0,1+σ0,2

with σ0,1 = ∂
∂x and σ0,2 = αHJM − 1

2 Dσi ·σi. Here we note that the flow of σ0,1 is
obviously given by the shift operator St(h)(x) = h(x+ t), so that the esσ0,1 = Ss is
given in closed form. Regarding the diffusion vector fields, the authors suggest to
use the parametric form

σ j(h,v)(x) =
(
α j,0 +α j,1x

)
e−β x tanh

(
c je

v
∫ t j

0
h(s)ds

)
,

which includes a stochastic volatility component v, and α j,i, β , c j, and t j are param-
eters, which need to be estimated. Moreover, they choose d = 3.
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The authors of [24] calibrate against 120 market prices of caplets, again using
a Levenberg-Marquardt type algorithm for the optimization. In total, they report
that it takes about half a second to compute these 120 option prices to the required
accuracy (on a workstation with 16 cores), and the total calibration can be done in
14.5 minutes.

Acknowledgements Harald Oberhauser is grateful for the support of the ERC (grant agreement
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1. Bain, A., Crişan, D.: Fundamentals of stochastic filtering. Applications of mathematics.
Springer (2008)

2. Bayer, C., Friz, P., Loeffen, R.: Semi-closed form cubature and applications to financial diffu-
sion models. Quant. Finance 13(5), 769–782 (2013). DOI 10.1080/14697688.2012.752102.
URL http://dx.doi.org/10.1080/14697688.2012.752102

3. Bayer, C., Gatheral, J., Karlsmark, M.: Fast Ninomiya-Victoir calibration of the double-mean-
reverting model. Quantitative Finance 13(11), 1813–1829 (2013)

4. Bayer, C., Laurence, P.: Asymptotics beats Monte Carlo: The case of correlated CEV baskets.
Comm. Pure Appl. Math. 67(10), 1618–1657 (2014)

5. Bayer, C., Teichmann, J.: Cubature on Wiener space in infinite dimension. Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 464(2097), 2493–2516 (2008). DOI 10.1098/rspa.2008.0013.
URL http://dx.doi.org/10.1098/rspa.2008.0013

6. Bensoussan, A., Glowinski, R.: Approximation of Zakai equation by the splitting up method.
In: Stochastic systems and optimization (Warsaw, 1988), Lecture Notes in Control and Inform.
Sci., vol. 136, pp. 257–265. Springer, Berlin (1989)
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Chapter 16
Application of Operator Splitting Methods
in Finance

Karel in ’t Hout and Jari Toivanen

Abstract Financial derivatives pricing aims to find the fair value of a financial con-
tract on an underlying asset. Here we consider option pricing in the partial differ-
ential equations framework. The contemporary models lead to one-dimensional or
multidimensional parabolic problems of the convection-diffusion type and general-
izations thereof. An overview of various operator splitting methods is presented for
the efficient numerical solution of these problems.

Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed
for multidimensional problems, e.g., given by stochastic volatility (SV) models. For
jump models Implicit-Explicit (IMEX) methods are considered which efficiently
treat the nonlocal jump operator. For American options an easy-to-implement oper-
ator splitting method is described for the resulting linear complementarity problems.

Numerical experiments are presented to illustrate the actual stability and conver-
gence of the splitting schemes. Here European and American put options are consid-
ered under four asset price models: the classical Black–Scholes model, the Merton
jump-diffusion model, the Heston SV model, and the Bates SV model with jumps.
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1 Introduction

In the contemporary international financial markets option products are widely
traded. The average daily turnover in the global over-the-counter derivatives mar-
kets is huge. For example, in the foreign exchange market this was approximately
equal to 337 billion US dollars in April 2013 [5]. In addition to standard call and
put options, the so-called vanilla options, a broad range of exotic derivatives exists.
One of the primary goals of financial mathematics is to determine the fair values
of these derivatives as well as their sensitivities to underlying variables and pa-
rameters, which are crucial for hedging. To this purpose, advanced mathematical
models are employed nowadays, yielding initial-boundary value problems for time-
dependent partial differential equations (PDEs) and generalizations thereof, see,
e.g., [4, 14, 59, 75, 77, 85]. These problems are in general multidimensional and
of the convection-diffusion kind. In some cases analytical formulas in semi-closed
form for the exact solutions have been obtained in the literature. For the majority
of option valuation problems, however, such formulas are not available. In view of
this, one resorts to numerical methods for their approximate solution. To banks and
other financial institutions, the efficient, stable, and robust numerical approximation
of option values and their sensitivities is of paramount importance.

A well-known and versatile approach to the numerical solution of time-dependent
convection-diffusion equations is given by the method of lines. It consists of two
general, consecutive steps. In the first step the PDE is discretized in the spatial vari-
ables, e.g., by finite difference, finite volume, or finite element methods. This leads
to a so-called semidiscrete system of ordinary differential equations. In the second
step the obtained semidiscrete system is numerically solved by applying a suitable,
implicit time-discretization method. If the PDE is multidimensional, then the latter
task can be computationally very intensive when standard application of classical
implicit methods, such as the Crank–Nicolson scheme, is used. In the recent years,
a variety of operator splitting methods have been developed that enable a highly ef-
ficient and stable numerical solution of semidiscretized multidimensional PDEs and
generalizations thereof that arise in financial mathematics.

The aim of this chapter to give an overview of main classes of operator splitting
methods with applications in finance. Here we have chosen to consider a variety
of, increasingly sophisticated, models that are well known in the financial option
valuation literature.

We deal in the following with two basic types of options, involving a given so-
called strike price K > 0 and a given maturity time T > 0, where today is always
denoted by time 0. A European call (put) option is a contract between two parties,
the holder and the writer, which gives the holder the right to buy from (sell to) the
writer a prescribed asset for the price K at the future date T . An American call (put)
option is the same, except that the holder can exercise at any time between today and
the maturity date. An option is a right and not an obligation. The underlying asset
can be a stock, a foreign currency, a commodity, etc. For a detailed introduction to
financial options we refer to [45]. Clearly, an option has value and a central question
in financial mathematics is what its fair value is.



16 Application of Operator Splitting Methods in Finance 543

2 Models for Underlying Assets

2.1 Geometric Brownian Motion

The seminal papers by Black & Scholes [7] and Merton [63] present a key equation
for the fair values of European call and put options. In these papers the dynamics of
the underlying asset price is modeled by the stochastic differential equation (SDE)

dS(t) = μS(t)dt +σS(t)dW(t) (t ≥ 0). (16.1)

Here W (t) denotes the Wiener process or standard Brownian motion, and μ , σ are
given real parameters that are called the drift and the volatility, respectively. The
volatility is a degree for the uncertainty of the return realized on the asset.

The SDE (16.1) describes a so-called geometric Brownian motion, which sat-
isfies S(t) ≥ 0 whenever S(0) ≥ 0. Under this asset price model and several addi-
tional assumptions, Black, Scholes, and Merton derived the famous partial differen-
tial equation (PDE)

∂u
∂ t

=
1
2
σ2s2 ∂ 2u

∂ s2 + rs
∂u
∂ s

− ru (s > 0, 0 < t ≤ T ). (16.2)

Here u(s, t) represents the fair value at time T − t of a European vanilla option if
S(T − t) = s. The quantity r in (16.2) is the risk-free interest rate and is given. A
main consequence of the Black, Scholes, and Merton analysis is that the drift μ
actually does not appear in the option pricing PDE. This observation has led to the
important risk-neutral valuation theory. It is beyond the scope of the present chapter
to discuss this theory in more detail, but see, e.g., [45, 75].

In formulating (16.2) we have chosen t as the time till maturity. Thus the time
runs in the opposite direction compared to (16.1). Accordingly, the payoff function
φ , which defines the value of the option contract at maturity time T , leads to an
initial condition

u(s,0) = φ(s) (s ≥ 0). (16.3)

For a European vanilla option with given strike price K there holds

φ(s) =
{

max(s−K,0) for s ≥ 0 (call),
max(K − s,0) for s ≥ 0 (put),

(16.4)

and at s = 0 one has the Dirichlet boundary condition

u(0, t) =

{
0 for 0 ≤ t ≤ T (call),
e−rtK for 0 ≤ t ≤ T (put).

(16.5)

Equation (16.2) is called the Black–Scholes PDE or Black–Scholes–Merton PDE.
It is fully deterministic and it can be viewed as a time-dependent convection-
diffusion-reaction equation. For European vanilla options, an analytical solution u
in semi-closed form was derived in [7], constituting the well-known Black–Scholes
formula.
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The Black–Scholes PDE is generic in the sense that it is valid for a wide range of
European-style options. The initial and boundary conditions are determined by the
specific option. As an example, for a European up-and-out call option with given
barrier B > K, the PDE (16.2) holds whenever 0 < s < B, 0 < t ≤ T . In this case,
the initial condition is

u(s,0) = max(s−K,0) for 0 ≤ s < B

and one has the Dirichlet boundary conditions

u(0, t) = u(B, t) = 0 for 0 ≤ t ≤ T.

The homogeneous condition at s = B corresponds to the fact that, by construction,
an up-and-out call option becomes worthless whenever the underlying asset price
moves above the barrier.

For many types of options, including (continuous) barrier options, semi-analytical
pricing formulas have been obtained in the literature in the Black–Scholes frame-
work, see e.g. [45]. At present it is well known, however, that each of the assump-
tions underlying this framework are violated to a smaller or larger extent in practice.
In particular, the interest rate r and the volatility σ are not constant, but vary in time.
In view of this, more advanced asset pricing models have been developed and, as
a consequence, more advanced option valuation PDEs are obtained. In this chap-
ter we do not enter into the details of the mathematical connection between asset
price SDEs and option valuation PDEs, but mention that a main tool is the cele-
brated Feynman–Kac theorem, see, e.g., [75]. In the following we discuss typical,
contemporary instances of more advanced option valuation PDEs.

2.2 Stochastic Volatility and Stochastic Interest Rate Models

Heston [38] modeled the volatility itself by an SDE. The Heston stochastic volatility
model is popular especially in the foreign exchange markets. The corresponding
option valuation PDE is

∂u
∂ t

= 1
2 s2v

∂ 2u
∂ s2 +ρσsv

∂ 2u
∂ s∂v

+ 1
2σ2v

∂ 2u
∂v2 + rs

∂u
∂ s

+κ(η − v)
∂u
∂v

− ru (16.6)

for s > 0, v > 0, and 0 < t ≤ T . Here u(s,v, t) represents the fair value of a
European-style option if at t time units before maturity the asset price equals s and
the variance equals v. We note that by definition the variance is the square of the
volatility. The positive parameters κ and η are the mean-reversion rate and long-
term mean, respectively, of the variance, σ > 0 is the volatility-of-variance, and
ρ ∈ [−1,1] denotes the correlation between the two underlying Brownian motions.
Equation (16.6) is called the Heston PDE. It can be viewed as a time-dependent
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convection-diffusion-reaction equation on an unbounded, two-dimensional spatial
domain. If the correlation ρ is nonzero, which almost always holds in practice, then
the Heston PDE contains a mixed spatial derivative term.

For a European vanilla option under the Heston model, one has an initial con-
dition as well as a boundary condition at s = 0 that are the same as in the Black–
Scholes case discussed above. In the Heston case there is also a boundary v = 0.
Observe that as v ↓ 0, then all second-order derivative terms vanish in (16.6). It
has been proved in [25] that for the fair option value function u the Heston PDE is
fulfilled if v = 0, which constitutes the (nonstandard) boundary condition at v = 0.

For the Heston asset pricing model (which we did not explicitly formulate) the
so-called Feller condition 2κη ≥ σ2 is often considered in the literature. This condi-
tion determines whether or not the variance process can attain the value zero (given
a strictly positive initial variance): it cannot attain zero if and only if Feller holds.
The situation where the Feller condition is violated is well-known to be challenging
when numerically solving the Heston asset pricing model. For the Heston option
valuation PDE (16.6), on the other hand, it turns out that this issue is not critical in
the numerical solution.

A refinement of the Heston model is obtained by considering also a stochastic
interest rate, see, e.g., [32, 33, 35, 36]. As an illustration we consider the case where
the interest rate is described by the well-known Hull–White model [45, 46]. This
leads to the following so-called Heston–Hull–White (HHW) PDE for the option
value function u = u(s,v,r, t):

∂u
∂ t

= 1
2 s2v

∂ 2u
∂ s2 + 1

2σ2
1 v

∂ 2u
∂v2 + 1

2σ2
2
∂ 2u
∂ r2 +ρ12σ1sv

∂ 2u
∂ s∂v

+ρ13σ2s
√

v
∂ 2u
∂ s∂ r

+ρ23σ1σ2
√

v
∂ 2u
∂v∂ r

+ rs
∂u
∂ s

+κ(η− v)
∂u
∂v

+ a(b(T − t)− r)
∂u
∂ r

− ru

(16.7)

for s > 0, v > 0, −∞ < r < ∞, and 0 < t ≤ T . Here κ , η , σ1, a, and σ2 are given
positive real constants and b denotes a given deterministic, positive function of
time. Further, there are given correlations ρ12, ρ13, ρ23 ∈ [−1,1]. Clearly, the HHW
PDE is a time-dependent convection-diffusion-reaction equation on an unbounded,
three-dimensional spatial domain with three mixed derivative terms. For a Euro-
pean vanilla option, initial and boundary conditions are the same as in the Heston
case above. Note that if v ↓ 0, then all second-order derivative terms, apart from the
∂ 2u/∂ r2 term, vanish in (16.7).

The Heston and HHW models are two of many instances of asset pricing models
that lead to multidimensional option valuation PDEs. Multidimensional PDEs are
also obtained when considering other types of options, e.g., options on a basket of
assets. Then, in the Black–Scholes framework, the dimension of the PDE is equal to
the number of assets. In general, analytical solutions in (semi-)closed form to these
PDEs are not available.
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2.3 Jump Models

Sometimes the value of the underlying asset changes so rapidly that this would have
very tiny probability under the above Brownian motion based models. For example,
the stock price during a market crash or after a major news event can move very fast.
Already in 1976, Merton proposed in [64] to add a jump component in the model
of the underlying asset price. In his model, the jumps are log-normally distributed
and their arrival times follow a Poisson process. After a jump the value of the asset
is obtained by multiplying the value before the jump by a random variable with the
probability density function (PDF)

f (y) =
1

yδ
√

2π
exp

(
− (logy− γ)2

2δ 2

)
(16.8)

for y > 0, where γ is the mean of the normal distribution and δ is its standard devia-
tion. Kou proposed in [56] a log-double-exponential distribution defined by the PDF

f (y) =

{
qα2yα2−1, 0 < y < 1,

pα1y−α1−1, y ≥ 1,
(16.9)

where p,q,α1 > 1, and α2 are positive constants such that p+q = 1. These models
have finite jump activity which is denoted by λ here. There are also many popular
infinite jump activity models like the CGMY model [11]. In the following we shall
consider only finite activity models.

The value u(s, t) of a European option satisfies the partial integro-differential
equation (PIDE)

∂u
∂ t

= 1
2σ2s2 ∂ 2u

∂ s2 +(r−λζ )s
∂u
∂ s

− (r+λ )u+λ
∫ ∞

0
u(sy, t) f (y)dy (16.10)

for s > 0 and 0 < t ≤ T , where ζ is the mean jump size given by

ζ =

∫ ∞

0
(y− 1) f (y)dy. (16.11)

For the Merton and Kou models the mean jumps are ζ = eγ+δ 2/2−1 and ζ = qα2
α2+1 +

pα1
α1−1 − 1, respectively.

Bates proposed to combine the Heston stochastic volatility model and the Merton
jump model in [6]. Under this model the value u(s,v, t) of a European option satisfies
the PIDE

∂u
∂ t

= 1
2 s2v

∂ 2u
∂ s2 +ρσsv

∂ 2u
∂ s∂v

+ 1
2σ2v

∂ 2u
∂v2 +(r−λζ )s

∂u
∂ s

+κ(η − v)
∂u
∂v

− (r+λ )u+λ
∫ ∞

0
u(sy,v, t) f (y)dy

(16.12)
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for s > 0, v > 0, and 0 < t ≤ T , where the PDF f is given by (16.8). For an extensive
discussion on jump models in finance see, e.g., [16].

3 Linear Complementarity Problem for American Options

Unlike European-style options, American-style options can be exercised at any time
up to the maturity date. Hence, the fair value of an American option is always greater
than or equal to the instantaneous payoff,

u ≥ φ . (16.13)

Due to this early exercise constraint, the P(I)DE does not hold everywhere anymore.
Instead, a linear complementarity problem (LCP) or partial (integro-)differential
complementarity problem is obtained in general for the fair value of an American
option: ⎧⎪⎪⎨

⎪⎪⎩
∂u
∂ t

≥Au, u ≥ φ ,(
∂u
∂ t

−Au

)
(u−φ) = 0,

(16.14)

where A stands for the pertinent spatial differential operator. For example, for the
Black–Scholes model,

Au =
1
2
σ2s2 ∂ 2u

∂ s2 + rs
∂u
∂ s

− ru.

The above inequalities and equation hold pointwise. The equation in (16.14) is the
complementarity condition. It states that at each point one of the two inequalities has
to be an equality. The paper [44] discusses the LCP formulation for American-style
options under various asset price models and studies the structure and properties of
the obtained fully discrete LCPs.

We note that the penalty approach is a popular alternative for LCPs. Here a
penalty term is added to the P(I)DE for a European option with the aim to enforce
the early exercise constraint (16.13). The resulting problems are nonlinear and their
efficient numerical solution is considered in [27], for example. For several other
alternative formulations and approximations for LCPs, we refer to [80].

4 Spatial Discretization

In this chapter we employ finite difference (FD) discretizations for the spatial deriva-
tives. An alternative approach would be to use finite element discretizations; see e.g.
[1, 74]. It is common practice to first truncate the infinite s-domain [0,∞) to [0,Smax]
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with a sufficiently large, real Smax. Typically one wishes Smax to be such that the er-
ror caused by this truncation is a small fraction of the error due to the discretization
of the differential (and integral) operators. Similarly, with multidimensional models
including the variance v or the interest rate r, their corresponding infinite domains
are truncated to sufficiently large bounded domains. The truncation requires addi-
tional boundary conditions to be specified. For an actual choice of these conditions
for the models considered in Sections 2, 3 we refer to Section 7.

Let the grid in the s-direction be defined by the m1 + 1 grid points 0 = s0 <
s1 < · · ·< sm1 = Smax. The corresponding grid sizes are denoted by Δsi = si − si−1,
i = 1,2, . . . ,m1. For multidimensional models, we use tensor product grids. For ex-
ample, in the case of a stochastic volatility model, if a grid for the variance v is given
by 0 = v0 < v1 < · · ·< vm2 =Vmax, then (m1 + 1)× (m2+ 1) spatial grid points are
defined by (si,v j) with i = 0,1, . . . ,m1 and j = 0,1, . . . ,m2. In financial applica-
tions nonuniform grids are often preferable over uniform grids. The use of suitable
nonuniform grids will be illustrated in Section 7.

For discretizing the first derivative ∂ui
∂ s and the second derivative ∂ 2ui

∂ s2 at s = si,
we employ in this chapter the well-known central FD schemes

∂ui

∂ s
≈ −Δsi+1

Δsi(Δsi +Δsi+1)
ui−1 +

Δsi+1 −Δsi

ΔsiΔsi+1
ui +

Δsi

(Δsi +Δsi+1)Δsi+1
ui+1 (16.15)

and

∂ 2ui

∂ s2 ≈ 2
Δsi(Δsi +Δsi+1)

ui−1 − 2
ΔsiΔsi+1

ui +
2

(Δsi +Δsi+1)Δsi+1
ui+1. (16.16)

With multidimensional models the analogous schemes are used for the other spatial

directions, thus, e.g., for
∂u j
∂v and

∂ 2u j

∂v2 at v = v j. For the mixed derivative
∂ 2ui, j
∂ s∂v at

(s,v) = (si,v j) we consider the 9-point stencil obtained by successively applying
the central FD schemes for the first derivative in the s- and v-directions. With suffi-
ciently smooth varying grid sizes, the above central FDs give second-order accurate
approximations for the derivatives.

We mention that in financial applications other FD schemes are employed as
well, such as upwind discretization for first derivative terms or alternative discretiza-
tions for mixed derivative terms.

With the jump models the integral term needs to be discretized at grid points si.
First the integral is divided into two parts

∫ ∞

0
u(siy, t) f (y)dy =

∫ Smax/si

0
u(siy, t) f (y)dy+

∫ ∞

Smax/si

u(siy, t) f (y)dy,

which correspond to the values of u in the computational domain [0,Smax] and out-
side of it, respectively. The second part can be estimated using knowledge about u
in the far field [Smax,∞). For example, for put options u is usually assumed to be
close to zero for s ≥ Smax and, thus, the second integral is approximated by zero in
this case. The PDFs f are smooth functions apart from the potential jump at y = 1
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in the Kou model. Due to the smoothness of the integrand the trapezoidal rule leads
to second-order accuracy with respect to the grid size. This gives the approximation

∫ Smax/si

0
u(siy, t) f (y)dy ≈

m1

∑
j=1

Δs j

2si

(
u(s j−1, t) f (s j−1/si)+ u(s j, t) f (s j/si)

)
.

For example, the papers [71] and [78] describe more accurate quadrature rules for
the Merton and Kou jumps models, respectively. The discretization of the integral
term leads to a dense matrix. The integral can be transformed into a convolution
integral and due to this FFT can be used to compute it more efficiently; see [2, 3,
22, 77], for example. In the case of the Kou model, efficient recursion formulas can
be used [12, 78].

5 Time Discretization

5.1 The θ -Method

For any P(I)DE from Section 2, the spatial discretization outlined in Section 4 leads
to an initial value problem for a system of ordinary differential equations,

U̇(t) = A(t)U(t)+G(t) (0 ≤ t ≤ T ), U(0) =U0. (16.17)

Here A(t) for 0 ≤ t ≤ T is a given square real matrix and G(t) is a given real vector
that depends on the boundary conditions. The entries of the solution vector U(t)
represent approximations to the exact solution of the option valuation P(I)DE at the
spatial grid points, ordered in a convenient way. The vector U0 is given by direct
evaluation of the option’s payoff function at these grid points.

The semidiscrete system (16.17) is stiff in general and, hence, implicit time dis-
cretization methods are natural candidates for its numerical solution. Let parameter
θ ∈ (0,1] be given. Let time step Δ t = T/N with integer N ≥ 1 and temporal grid
points tn = nΔ t for integers 0 ≤ n ≤ N. The θ -method forms a well-known implicit
time discretization method. It generates approximationsUn to U(tn) successively for
n = 1,2, . . . ,N by

Un =Un−1 +(1−θ )Δ t A(tn−1)Un−1 +θΔ t A(tn)Un +Δ t Gn−1+θ , (16.18)

where Gn−1+θ denotes an approximation to G(t) at t = (n−1+θ )Δ t. This can also
be written as

(I−θΔ tA(tn))Un = (I+(1−θ )Δ t A(tn−1))Un−1 +Δ t Gn−1+θ ,

with I the identity matrix of the same size as A(t). For θ = 1 one obtains the first-
order backward Euler method and for θ = 1

2 the second-order Crank–Nicolson
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method or trapezoidal rule. For simplicity we consider in this chapter only constant
time steps, but most of the presented time discretization methods can directly be ex-
tended to variable time steps.

When applying the Crank–Nicolson method, it is common practice in finance to
first perform a few backward Euler steps to start the time stepping. This is often
called Rannacher smoothing [67]. It helps to damp high-frequency components in
the numerical solution, due to the nonsmooth initial (payoff) function, which are
usually not sufficiently damped by the Crank–Nicolson method itself.

Clearly, in order to compute the vector Un defined by (16.18), one has to solve a
linear system of equations with the matrix I−θΔ tA(tn). When the option valuation
PDE is multidimensional, the size of this matrix is usually very large and it possesses
a large bandwidth. For a PIDE, this matrix is dense. In these situations, the solution
of the linear system can be computationally demanding when standard methods,
like LU decomposition, are applied. Time discretization methods based on operator
splitting can then form an attractive alternative. The key idea is to split the matrix
A(t) into several parts, each of which is numerically handled more easily than the
complete matrix itself.

5.2 Operator Splitting Methods Based on Direction

For multidimensional PDEs, splitting schemes of the Alternating Direction Implicit
(ADI) type are often applied in financial practice. To illustrate the idea, the two-
dimensional Heston PDE and three-dimensional HHW PDE, given in Section 2.2,
are considered. For the Heston PDE the semidiscrete system (16.17) is autonomous;
we split

A = A0 +A1 +A2.

Next, for the HHW PDE,

A(t) = A0 +A1 +A2 +A3(t).

Here A0 is chosen as the part that represents all mixed derivative terms. It is nonzero
whenever (one of) the correlation factor(s) is nonzero. The parts A1, A2, and A3(t)
represent all spatial derivatives in the s-, v-, and r-directions, respectively. The lat-
ter three matrices have, possibly up to permutation, all a fixed small bandwidth.
The vector G(t) in the semidiscrete system is split in a similar way. For notational
convenience, define functions F j by

F j(t,V ) = A jV +G j ( j = 0,1,2) and F3(t,V ) = A3(t)V +G3(t)

for 0 ≤ t ≤ T , V ∈ R
m. Set F = ∑k

j=0 F j with k = 2 for Heston and k = 3 for HHW.
We discuss in this section four contemporary ADI-type splitting schemes:
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Douglas (Do) scheme⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y0 =Un−1 +Δ t F(tn−1,Un−1),

Yj = Yj−1 +θΔ t (F j(tn,Yj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Un = Yk.

(16.19)

Craig–Sneyd (CS) scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 =Un−1 +Δ t F(tn−1,Un−1),

Yj = Yj−1 +θΔ t (F j(tn,Yj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Ỹ0 = Y0 +
1
2Δ t (F0(tn,Yk)−F0(tn−1,Un−1)),

Ỹj = Ỹj−1 +θΔ t (F j(tn,Ỹj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Un = Ỹk.

(16.20)

Modified Craig–Sneyd (MCS) scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 =Un−1 +Δ t F(tn−1,Un−1),

Yj = Yj−1 +θΔ t (F j(tn,Yj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Ŷ0 = Y0 +θΔ t (F0(tn,Yk)−F0(tn−1,Un−1)),

Ỹ0 = Ŷ0 +( 1
2 −θ )Δ t (F(tn,Yk)−F(tn−1,Un−1)),

Ỹj = Ỹj−1 +θΔ t (F j(tn,Ỹj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Un = Ỹk.

(16.21)

Hundsdorfer–Verwer (HV) scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 =Un−1 +Δ t F(tn−1,Un−1),

Yj = Yj−1 +θΔ t (F j(tn,Yj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Ỹ0 = Y0 +
1
2Δ t (F(tn,Yk)−F(tn−1,Un−1)),

Ỹj = Ỹj−1 +θΔ t (F j(tn,Ỹj)−F j(tn,Yk)) ( j = 1,2, . . . ,k),

Un = Ỹk.

(16.22)
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In the Do scheme (16.19), a forward Euler predictor step is followed by k im-
plicit but unidirectional corrector steps that serve to stabilize the predictor step. The
CS scheme (16.20), the MCS scheme (16.21), and the HV scheme (16.22) can be
viewed as different extensions to the Do scheme. Indeed, their first two lines are
identical to those of the Do scheme. They next all perform a second predictor step,
followed by k unidirectional corrector steps. Observe that the CS and MCS schemes
are equivalent if (and only if) θ = 1

2 .
Clearly, in all four ADI schemes the A0 part, representing all mixed derivatives,

is always treated in an explicit fashion. In the original formulation of ADI schemes
mixed derivative terms were not considered. It is a common and natural use in the
literature to refer to the above, extended schemes also as ADI schemes. In the spe-
cial case where F0 = 0, the CS scheme reduces to the Do scheme, but the MCS
scheme (with θ �= 1

2 ) and the HV scheme do not. Following the original ADI ap-
proach, the A1, A2, A3(t) parts are treated in an implicit fashion. In every step of
each scheme, systems of linear equations need to be solved involving the matrices
(I− θ Δ t A j) for j = 1,2 as well as (I− θ Δ t A3(tn)) if k = 3. Since all these ma-
trices have a fixed, small bandwidth, this can be done very efficiently by means of
LU decomposition, cf. also Section 6.1. Because for j = 1,2 the pertinent matrices
are further independent of the step index n, their LU decompositions can be com-
puted once, beforehand, and then used in all time steps. Accordingly, for each ADI
scheme, the number of floating point operations per time step is directly proportional
to the number of spatial grid points, which is a highly favorable property.

By Taylor expansion one obtains (after some elaborate calculations) the classical
order of consistency1 of each ADI scheme. For any given θ , the order of the Do
scheme is just one whenever A0 is nonzero. This low order is due to the fact that
the A0 part is treated in a simple, forward Euler fashion. The CS scheme has order
two provided θ = 1

2 . The MCS and HV schemes are of order two for any given θ .
A virtue of ADI schemes, compared to other operator splitting schemes based on
direction, is that the internal vectors Yj, Ỹj form consistent approximations to U(tn).

The Do scheme can be regarded as a generalization of the original ADI schemes
for two-dimensional diffusion equations by Douglas & Rachford [23] and Peaceman
& Rachford [66] to the situation where mixed derivative terms are present. This gen-
eralization was first considered by McKee & Mitchell [61] for diffusion equations
and subsequently in [62] for convection-diffusion equations.

The CS scheme was developed by Craig & Sneyd [18] with the aim to obtain
a stable second-order ADI scheme for diffusion equations with mixed derivative
terms.

The MCS scheme was constructed by In ’t Hout & Welfert [43] so as to arrive at
more freedom in the choice of θ as compared to the second-order CS scheme.

The HV scheme was designed by Hundsdorfer [47] and Verwer et al. [83] for
the numerical solution of convection-diffusion-reaction equations arising in atmo-
spheric chemistry, cf. also [48]. The application of the HV scheme to equations
containing mixed derivative terms was first studied in [42, 43].

1 That is, the order for fixed nonstiff ODE systems.
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The Do and CS schemes are well known for PDEs in finance, see, e.g., [4, 59].
More recently, the MCS and HV schemes have gained interest, see, e.g., [14, 20, 24,
35, 36, 39, 54].

The formulation of the ADI schemes (16.19)–(16.22) is analogous to the type of
formulation used in [47]. In the literature, ADI schemes are also sometimes referred
to as Stabilizing Correction schemes, and are further closely related to Approximate
Matrix Factorization methods and Implicit-Explicit (IMEX) Runge–Kutta methods,
cf., e.g., [48].

In [40, 41, 42, 43] comprehensive stability results in the von Neumann sense
have been derived for the four schemes (16.19)–(16.22) in the application to mul-
tidimensional convection-diffusion equations with mixed derivative terms. These
results concern unconditional stability, that is, without any restriction on the time
step Δ t. For each ADI scheme, lower bounds on θ guaranteeing unconditional sta-
bility have been obtained, depending in particular on the spatial dimension. Based
on these theoretical stability results and the numerical experience in [35, 36, 39] the
following values are found to be useful for k = 2,3:

• Do scheme with θ = 1
2 (if k = 2) and θ = 2

3 (if k = 3)
• CS scheme with θ = 1

2
• MCS scheme with θ = 1

3 (if k = 2) and θ = max{ 1
3 ,

2
13(2γ + 1)} (if k = 3)

• HV scheme with θ = 1
2 +

1
6

√
3.

Here γ = max{|ρ12|, |ρ13|, |ρ23|} ∈ [0,1], which is a measure for the relative size of
the mixed derivative coefficients.

In addition to ADI schemes, there exists a variety of well-known alternative
operator splitting schemes based on direction, called Locally One-Dimensional
(LOD) methods, fractional step methods, or componentwise splitting schemes.
These schemes originate in the 1960s in the work by Dyakonov, Marchuk, Samarskii,
Yanenko, and others. Some of them are related to Strang splitting schemes, devel-
oped at the same time. For a general overview and analysis of such methods we refer
to [48, 60]. Applications in financial mathematics of these schemes are considered
in, for example, [50, 79].

5.3 Operator Splitting Methods Based on Operator Type

For the jump models considered in Section 2.3 the matrix A can be written in the
form

A = D+ J, (16.23)

where D and J correspond to the differential operator and integral operator, respec-
tively. The matrix D is sparse while in general J is a dense matrix or has dense
blocks. In view of the different nature of these two matrices it can be preferable to
employ an operator splitting method based on them.
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In [3], Andersen and Andreasen describe a generalized θ -method

(I−θDΔ tD−θJΔ tJ)Un = (I+(1−θD)Δ tD+(1−θJ)Δ tJ)Un−1 (16.24)

assuming here G = 0. The standard choice θD = 1 and θJ = 0 corresponds to the
IMEX Euler method: it treats the stiff differential part implicitly, using the back-
ward Euler method, and the nonstiff integral part explicitly, using the forward Euler
method. This choice yields first-order consistency. The benefit is that it is not neces-
sary to solve dense linear systems involving the matrix J. Instead, in each time step
only one multiplication with J is required. This approach has been considered and
analyzed in [17].

In [26] an extrapolation approach is advocated based on the IMEX Euler method.
Here approximations at a given fixed time are computed for a decreasing sequence
of step sizes and then linearly combined so as to achieve a high order of accuracy.

In [3] second-order consistency is obtained through an alternating treatment of
the D and J parts. They propose to take a Δ t/2 substep with θD = 1 and θJ = 0
followed by a Δ t/2 substep with θD = 0 and θJ = 1. Here linear systems involving
the dense matrix J need to be solved, for which the authors employ FFT.

In [22] the original θ -method is analyzed, where the linear system in each time
step is solved by applying a fixed-point iteration on the jump part following an idea
in [77].

The following, second-order IMEX midpoint scheme has been considered in, e.g.,
[26, 57, 58, 72],

(I−Δ tD)Un = (I+Δ tD)Un−2+ 2Δ tJUn−1+ 2Δ tGn−1. (16.25)

The scheme (16.25) can be viewed as obtained from the semidiscrete system (16.17)
at tn−1 by the approximations DUn−1 ≈ 1

2 D(Un+Un−2) and U̇n−1 ≈ 1
2Δ t (Un−Un−2).

Two subsequent second-order IMEX methods are the IMEX–CNAB scheme(
I− Δ t

2 D
)

Un =
(
I+ Δ t

2 D
)

Un−1 +
Δ t
2 J(3Un−1 −Un−2)+Δ tGn−1/2 (16.26)

and the IMEX–BDF2 scheme(3
2 I−Δ tD

)
Un = 2Un−1 − 1

2Un−2 +Δ tJ(2Un−1 −Un−2)+Δ tGn. (16.27)

These schemes have recently been applied for option pricing in [73] and can be
regarded as obtained by approximating the semidiscrete system (16.17) at tn−1/2 =
1
2(tn + tn−1) and at tn, respectively.

The IMEX schemes (16.25), (16.26), and (16.27) were studied in a general
framework, without application to option valuation, in [28]. Here it was noted that
such schemes can be considered as starting with an implicit method and then replac-
ing the nonstiff part of the implicit term by an explicit formula using extrapolation
based on previous time steps. An overview of IMEX methods is given in [48].

In general, IMEX methods are only conditionally stable, that is, they are sta-
ble for a sufficiently small time step Δ t. For example, the IMEX midpoint scheme
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(16.25) and the IMEX–CNAB scheme (16.26) are stable whenever λΔ t < 1 and the
λu term in (16.10) is included in D; see [73]. Recall that λ denotes the jump activity.

The schemes discussed in this section are of the linear multistep type. For IMEX
schemes of Runge–Kutta type applied to jump models we mention [10].

5.4 Operator Splitting Method for Linear Complementarity
Problems

The fully discrete LCPs obtained by spatial and temporal discretization of (16.14)
for American-style options are more difficult to solve than the corresponding sys-
tems of linear equations for the European-style counterparts. It is desirable to
split these LCPs into simpler subproblems. Here we describe the operator split-
ting method considered in [49, 53] which was motivated by splitting methods for
incompressible flows [13, 31]. To this purpose, we reformulate LCPs with Lagrange
multipliers.

The θ -method discretization (16.18) naturally gives rise to the following, fully
discrete LCP{

BUn −CUn−1 −Δ tGn−1+θ ≥ 0,

Un ≥U0, (BUn −CUn−1 −Δ tGn−1+θ)
T (Un −U0) = 0,

(16.28)

where B = I − θΔ tA, C = I + (1− θ )Δ tA, and A is assumed to be constant in
time. By introducing a Lagrange multiplier vector λn, the LCP (16.28) takes the
equivalent form

{
BUn −CUn−1 −Δ tGn−1+θ = Δ tλn ≥ 0,

Un ≥U0, (λn)
T (Un −U0) = 0.

(16.29)

The basic idea of the operator splitting method proposed in [49] is to decouple
in (16.29) the first line from the second line. This is accomplished by approximating
the Lagrange multiplier λn in the first line by the previous Lagrange multiplier λn−1.
This leads to the system of linear equations

BŨn = CUn−1 +Δ tGn−1+θ +Δ tλn−1. (16.30)

After solving this system, the intermediate solution vector Ũn and the Lagrange
multiplier λn are updated to satisfy the (spatially decoupled) equation and comple-
mentarity conditions⎧⎨

⎩
Un −Ũn = Δ t(λn −λn−1),

λn ≥ 0, Un ≥U0, (λn)
T (Un −U0) = 0.

(16.31)
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Thus, this operator splitting method for American options leads to the solution of
linear systems (16.30), which are essentially the same as for European options, and
a simple update step (16.31). This update can be performed very fast, at each spatial
grid point independently, with the formula

(Un,i , λn,i) =

⎧⎪⎨
⎪⎩

(
Ũn,i −Δ tλn−1,i , 0

)
, if Ũn,i −Δ tλn−1,i >U0,i ,(

U0,i , λn−1,i +
1
Δ t

(
U0,i −Ũn,i

))
, otherwise.

(16.32)

The above operator splitting approach has been studied for more advanced time
discretization schemes of both linear multistep and Runge–Kutta type in [49, 53].
Moreover, it has recently been effectively combined with IMEX schemes in [72] for
the case of jump models and with ADI schemes in [37] for the case of the Heston
model. For instance, the pertinent adaptations of the IMEX–CNAB scheme and the
MCS scheme are(

I− Δ t
2 D

)
Ũn =

(
I+ Δ t

2 D
)

Un−1 +
Δ t
2 J(3Un−1 −Un−2)+Δ tGn−1/2+Δ t λn−1,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 =Un−1 +Δ t F(tn−1,Un−1)+Δ t λn−1,

Yj = Yj−1 +θΔ t (F j(tn,Yj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Ŷ0 = Y0 +θΔ t (F0(tn,Yk)−F0(tn−1,Un−1)),

Ỹ0 = Ŷ0 +( 1
2 −θ )Δ t (F(tn,Yk)−F(tn−1,Un−1)),

Ỹj = Ỹj−1 +θΔ t (F j(tn,Ỹj)−F j(tn−1,Un−1)) ( j = 1,2, . . . ,k),

Ũn = Ỹk,

respectively, followed by the update (16.32). The other three ADI schemes from
Section 5.2 are adapted analogously. Note that only a Δ tλn−1 term has been added
to the first line of the MCS scheme (16.21). Accordingly, like for the θ -method,
the amount of computational work per time step is essentially the same as for the
corresponding European-style option.

6 Solvers for Algebraic Systems

The implicit time discretizations described in Section 5 lead, in each time step, to
systems of linear equations of the form

BU =Ψ (16.33)
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or LCPs of the form {
BU ≥Ψ , U ≥ Φ,

(BU −Ψ)T (U −Φ) = 0
(16.34)

with given matrix B and given vectors Φ , Ψ . For models without jumps, semidis-
cretization by finite difference, finite volume, and finite element methods yields
sparse matrices B. For one-dimensional models, the central FDs (16.15) and (16.16)
lead to tridiagonal B. For higher dimensional models they give rise to matrices B
with a large bandwidth whenever classical (non-splitting) time stepping schemes
are applied. On the other hand, for the operator splitting methods based on direction
(cf. Section 5.2) one also acquires tridiagonal matrices (possibly after renumber-
ing the unknowns). Wider FD stencils lead to additional nonzero diagonals. Time
discretization of jump models with an implicit treatment of jumps makes B dense.

6.1 Direct Methods

The system of linear equations (16.33) can be solved by a direct method using LU
decomposition. This method first forms a lower triangular matrix L and an upper
triangular matrix U such that B = LU. After this the solution vector U is obtained
by solving first LV =Ψ and then UU =V .

Let m denote the dimension of the matrix B. For tridiagonal B, or more generally
matrices with a fixed small bandwidth, the LU decomposition yields optimal com-
putational cost in the sense that the number of floating point operations is of order m.
Hence, it is very efficient for one-dimensional models and for higher-dimensional
models when operator splitting schemes based on direction are applied.

For two-dimensional models with classical time stepping schemes, a LU decom-
position can be formed by order m3/2 floating point operations if a nested dissection
method can be used and then the computational cost of the solution is of order
m logm, see [21, 29]. For higher-dimensional models with classical time stepping
schemes, the computational cost is less favorable.

For a general matrix B, solving the LCP (16.34) requires iterative methods. How-
ever, in the special case that B is tridiagonal, the solution vector satisfies Ui = Φi

(1 ≤ i ≤ i0), Ui > Φi (i0 < i ≤ m) for certain i0 and some additional assumptions
hold, the Brennan–Schwartz algorithm [9] gives a direct method to solve the LCP;
see also [1, 51, 55]. After inverting the numbering of the unknowns to be from right
to left, represented by a permutation matrix P, this algorithm is equivalent to apply-
ing the LU decomposition method to the corresponding linear system with matrix
PBP where the projection step is carried out directly after computing each compo-
nent in the back substitution step with U. More precisely the back substitution step
reads after the renumbering of unknowns:
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Um = max{Vm/Um,m , Φm},
Ui = max{(Vi −Ui,i+1Ui+1)/Ui,i , Φi} (i = m− 1,m− 2, . . .,1).

(16.35)

The Brennan–Schwartz algorithm is essentially as fast as the LU decomposition
method for linear systems and, thus, it has optimal computational cost.

6.2 Iterative Methods

There are many iterative methods for solving systems of linear equations. The
two most important method categories are the stationary iterative methods and the
Krylov subspace methods. Well-known Krylov subspace methods for the, typically
asymmetric, system (16.33) are the generalized minimal residual (GMRES) method
[70] and the BiCGSTAB method [84]. In the following we discuss a stationary it-
erative method in some more detail which is familiar in finance applications. The
successive over-relaxation (SOR) method reads

U (k+1)
i =U (k)

i +
ω

Bi,i

(
Ψi −

i−1

∑
j=1

Bi, jU
(k+1)
j −

m

∑
j=i

Bi, jU
(k)
j

)
(16.36)

for i = 1,2, . . . ,m, k = 0,1,2, . . ., where ω is a relaxation parameter. This method
reduces to the Gauss–Seidel method in the case ω = 1. The convergence rate of the
iteration (16.36) can be improved significantly by an optimal choice of ω . Still the
number of iterations to reach a given accuracy typically grows with m, that is, when
the spatial grid is refined the convergence slows down.

The SOR iteration can be generalized for LCPs by performing a projection after
each update [19]; see also [30]. This method is called the projected SOR (PSOR)
method and it reads

U (k+1)
i = max

{
U (k)

i +
ω

Bi,i

(
Ψi −

i−1

∑
j=1

Bi, jU
(k+1)
j −

m

∑
j=i

Bi, jU
(k)
j

)
, Φi

}
(16.37)

(i = 1,2, . . . ,m, k = 0,1,2, . . .). As can be expected, the PSOR method suffers from
the same drawback as the SOR method mentioned above.

6.3 Multigrid Methods

The aim of multigrid methods for solving linear systems (16.33) is to render the
number of iterations essentially independent of the problem size m. The station-
ary iterative methods typically reduce high frequency errors quickly, while low fre-
quency errors are reduced much more slowly. The idea of multigrid methods is
to compute efficiently corrections to these slowly varying errors on coarser spa-
tial grids. The multigrid methods can be divided into geometrical and algebraic
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methods. With the geometrical methods discretizations are explicitly constructed
on a sequence of grids and transfer operators between these grids are explicitly de-
fined. Algebraic multigrid (AMG) methods [69, 76] build the coarse problems and
the transfer operators automatically using the properties of the matrix B. The details
of these methods are beyond the scope of this chapter and we refer to, e.g., [82] for
details and extensive literature on this.

Several versions of multigrid methods also exist for LCPs. Brandt and Cryer in-
troduced in [8] a projected full approximation scheme (PFAS) multigrid method
for LCPs. American options under stochastic volatility were priced using the PFAS
method in [15, 65]. A projected multigrid (PMG) method for LCPs introduced in
[68] resembles more closely a classical multigrid method for linear problems. This
method has been used to price American options in [52, 68]. Recently, an AMG
method was generalized for LCPs in [81]. The resulting method is called the pro-
jected algebraic multigrid (PAMG) method and resembles the PMG method in the
treatment of the complementarity conditions.

7 Numerical Illustrations

In the following we price European and American put options under a hierarchy of
models: Black–Scholes, Merton, Heston, and Bates. The interest rate, the maturity
time, and the strike price are always taken as

r = 0.03, T = 0.5, and K = 100.

For the purpose of illustration, Figures 16.1 and 16.2 show fair values of Euro-
pean and American options, respectively, under the four considered models with the
model parameters described in the following sections.

7.1 Black–Scholes Model

In the case of the Black–Scholes model, we price American put options. The volatil-
ity in the model (16.1) is taken as

σ = 0.2

and the following boundary conditions are employed:

u(0, t) = K for 0 < t ≤ T, (16.38)

us(Smax, t) = 0 for 0 < t ≤ T. (16.39)

The Neumann boundary condition (16.39) introduces a modeling error as it is not
exactly fulfilled by the actual option price function. If Smax is taken sufficiently
large, however, this error will be small in the region of interest.
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Fig. 16.1 The fair values of European put options for the asset prices 75≤ s≤ 125 and the volatility
σ = 0.2 (the variance v = 0.04) under the four considered models.
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Fig. 16.2 The fair values of American put options for the asset prices 75 ≤ s ≤ 125 and the volatil-
ity σ = 0.2 (the variance v = 0.04) under the four considered models.

For the spatial discretization of the Black–Scholes PDE (16.2), we apply FD
formulas on nonuniform grids such that a large fraction of the grid points lie in the
region of interest, that is, in the neighborhood of s = K.

For the construction of the spatial grid we adopt [36]. Let integer m1 ≥ 1, constant
c > 0, and 0 < Sleft < K < Sright < Smax be given. Let equidistant points ξmin = ξ0 <
ξ1 < .. . < ξm1 = ξmax be given with distance Δξ and
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ξmin = sinh−1
(−Sleft

c

)
,

ξint =
Sright − Sleft

c
,

ξmax = ξint + sinh−1
(

Smax − Sright

c

)
.

Then we define a nonuniform grid 0 = s0 < s1 < .. . < sm1 = Smax by the transfor-
mation

si = ϕ(ξi) (0 ≤ i ≤ m1), (16.40)

where

ϕ(ξ ) =

⎧⎪⎨
⎪⎩

Sleft + c · sinh(ξ ) (ξmin ≤ ξ ≤ 0),

Sleft + c ·ξ (0 < ξ < ξint),

Sright + c · sinh(ξ − ξint) (ξint ≤ ξ ≤ ξmax).

The grid (16.40) is uniform inside [Sleft,Sright] and nonuniform outside. The param-
eter c controls the fraction of grid points si that lie inside [Sleft,Sright]. The grid is
smooth in the sense that there exist real constants C0,C1,C2 > 0 such that the grid
sizes Δsi = si − si−1 satisfy

C0 Δξ ≤ Δsi ≤C1 Δξ and |Δsi+1 −Δsi| ≤C2 (Δξ )2 (16.41)

uniformly in i and m1. For the parameters in the grid we make the (heuristic) choice

Smax = 8K, c =
K
10

, Sleft = max
(

1
2 ,e

−T/10
)

K , Sright = min
(

3
2 ,e

T/10
)

K.

The semidiscretization of the initial-boundary value problem for the Black–
Scholes PDE is then performed as follows. At the interior grid points each spatial
derivative appearing in (16.2) is replaced by its corresponding second-order central
FD formula described in Section 4. At the boundary s = Smax the Neumann con-
dition (16.39) gives ∂u/∂ s. Next, ∂ 2u/∂ s2 is approximated by the central formula
with the value at the virtual point Smax +Δsm1 defined by linear extrapolation us-
ing (16.39).

Concerning the initial condition, we always replace the value of the payoff func-
tion φ at the grid point si nearest to the strike K by its cell average,

1
h

∫ si+1/2

si−1/2

max(K − s,0)ds,

where

si−1/2 =
1
2(si−1 + si), si+1/2 =

1
2 (si + si+1), h = si+1/2 − si−1/2.

This reduces the dependency of the discretization error on the location of the strike
relative to the s-grid, see, e.g., [77].
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The time discretization is performed by the Crank–Nicolson method with Ran-
nacher smoothing. The time stepping is started by taking two backward Euler steps
using the time step 1

2Δ t. With this choice all time steps are performed with the
same coefficient matrix I− 1

2Δ tA. Furthermore, halving the time step with the Eu-
ler method helps to reduce the additional error caused by this method. Note that we
count these two Euler steps as one time step in order to keep the notations conve-
nient.

We define the temporal discretization error to be

ê(m1,N) = max
{ |UN,i −Ui(T )| : 1

2 K < si <
3
2 K

}
, (16.42)

where UN,i denotes the component of the vector UN associated to the grid point si.
We study the temporal discretization errors on the grids (m1,N) = (160,2k) for
k = 0,1, . . . ,10. The reference price vector U(T ) is computed using the space-time
grid (160,5000). Figure 16.3 compares the temporal errors of the smoothed Crank–
Nicolson method with and without the operator splitting method for LCPs described
in Section 5.4. For larger time steps the Crank–Nicolson method without splitting
is more accurate. In this example the convergence rate of the splitting method is
slightly less than second-order and a bit higher than the convergence rate of the
non-splitting method. Thus, for smaller time steps the operator splitting method is
slightly more accurate.
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Fig. 16.3 The temporal discretization errors for the American option under the Black–Scholes
model for the smoothed Crank–Nicolson method with and without the operator splitting method
for LCPs.
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7.2 Merton Model

Under the Merton jump diffusion model, we price European and American put op-
tions. For the jump part of the model, the jump activity, the mean of the normal
distribution, and its standard deviation are taken as

λ = 0.2, δ = 0.4, and γ =−0.5, (16.43)

respectively; see (16.8). The boundary condition at s = 0 is given by (16.5) for the
European put option and by (16.38) for the American put option. At the truncation
boundary s = Smax, we use the Neumann boundary condition (16.39).

The same space-time grids are considered as with the Black–Scholes model in
Section 7.1 and also the spatial derivatives are discretized in the same way. For the
integral term, we use a linear interpolation for u between grid points and take u to
be zero for s > Smax. The formulas for the resulting matrix J are given in [71], for
example.

For the time discretization, we apply the IMEX–CNAB scheme, which is always
smoothed by two Euler steps with the time step 1

2Δ t. In these first steps the backward
Euler method is used for the discretized differential part D and the forward Euler
method is used for the discretized integral part J. For European options, these steps
are given by (

I− Δ t
2 D

)
U1/2 =U0 +

Δ t
2 JU0 +

Δ t
2 G1/2,(

I− Δ t
2 D

)
U1 =U1/2 +

Δ t
2 JU1/2 +

Δ t
2 G1.

In the absence of jumps, these steps reduce to the same Rannacher smoothing used
with the Black–Scholes model. After these two steps the IMEX–CNAB scheme
defined by (16.26) is employed.

We study the temporal discretization errors for European and American options
on the same grids (m1,N) = (160,2k), k = 0,1, . . . ,10, and using the same error
measure (16.42) as before. Figure 16.4 shows the temporal errors for the European
option using the IMEX–CNAB scheme and the Crank–Nicolson method with clas-
sical Rannacher smoothing. We observe that the temporal errors for the two methods
are essentially the same and they exhibit second-order convergence.

Figure 16.5 shows the same temporal errors for American options using the
IMEX–CNAB scheme with operator splitting for LCPs and the Crank–Nicolson
method without splitting. The convergence result for the two methods is very sim-
ilar to the case of the Black–Scholes model in Section 7.1. Thus, for larger time
steps the Crank–Nicolson method is more accurate while for smaller time steps the
IMEX–CNAB scheme with splitting is more accurate.

In order to gauge the effectiveness of the proposed discretizations, we report the
total discretization errors for the European option on the space-time refining grids
(m1,N) = 2k(10,2), k = 0,1, . . . ,6. The total discretization error is defined by

e(m1,N) = max

{
|UN,i − u(si,T )| :

1
2

K < si <
3
2

K

}
. (16.44)
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Fig. 16.4 The temporal discretization errors for the European option under the Merton model with
the IMEX–CNAB scheme and the Crank–Nicolson method, both with smoothing.
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Fig. 16.5 The temporal discretization errors for the American option under the Merton model with
the IMEX–CNAB scheme together with the operator splitting method for LCPs, and the Crank–
Nicolson method, both with smoothing.

The reference price function u is computed on the space-time grid (10240,2048).
Figure 16.6 shows the total error for the European option using the IMEX–CNAB
scheme and the Crank–Nicolson method. As with the temporal errors the total errors
for both methods are essentially the same and both show a second-order convergence
behavior.
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Fig. 16.6 The total discretization errors for the European option under the Merton model with the
IMEX–CNAB scheme and the Crank–Nicolson method, both with smoothing.

7.3 Heston Model

Under the Heston stochastic volatility model we consider European and American
put options as well. For the mean-reversion rate, the long-term mean, the volatility-
of-variance and the correlation the following values are taken:

κ = 2, η = 0.04, σ = 0.25, and ρ =−0.5. (16.45)

The spatial domain is truncated to [0,Smax]× [0,Vmax] with Smax = 8K and Vmax = 5.
The following boundary conditions are imposed:

u(0,v, t) = df ·K for 0 ≤ v ≤Vmax, 0 < t ≤ T, (16.46)

us(Smax,v, t) = 0 for 0 ≤ v ≤Vmax, 0 < t ≤ T, (16.47)

uv(s,Vmax, t) = 0 for 0 ≤ s ≤ Smax, 0 < t ≤ T, (16.48)

where df = e−rt in the European case and df = 1 in the American case. At the
degenerate boundary v = 0 the Heston PDE holds in the European case and it is
assumed that the Heston LCP holds in the American case. The two conditions at
s = Smax and v = Vmax introduce a modeling error, as they are not exactly fulfilled
by the actual option price function, but in our experiments this error is small on the
region of interest in the (s,v)-domain.

For the spatial discretization of the Heston PDE and Heston LCP we apply FD
formulas on Cartesian grids. Here nonuniform grids are used in both the s- and
v-directions such that a large fraction of the grid points lie in the neighborhoods
of s = K and v = 0, respectively. This is the region in the (s,v)-domain where one



566 K. in ’t Hout and J. Toivanen

wishes to obtain option prices. Next, the application of such nonuniform grids can
greatly improve the accuracy of the FD discretization as compared to using uni-
form grids. This is related to the facts that the initial function (16.4) possesses a
discontinuity in its first derivative at s = K and that for v ≈ 0 the Heston PDE
is convection-dominated. The grid in the s-direction is taken identical to that in
Section 7.1.

To construct the grid in the v-direction, let integer m2 ≥ 1 and constant d > 0 and
let equidistant points be given by ψ j = j ·Δψ for j = 0,1, . . . ,m2 with

Δψ =
1

m2
sinh−1

(
Vmax

d

)
.

Then a smooth, nonuniform grid 0 = v0 < v1 < .. . < vm2 =Vmax is defined by

v j = d · sinh(ψ j) (0 ≤ j ≤ m2). (16.49)

The parameter d controls the fraction of grid points v j that lie near v = 0. We heuris-
tically choose

d =
Vmax

500
.

The semidiscretization of the initial-boundary value problem for the Heston PDE
and Heston LCP is performed as follows. In view of the Dirichlet condition (16.46),
the grid in [0,Smax]× [0,Vmax] is given by {(si,v j) : 1≤ i ≤ m1, 0 ≤ j ≤ m2}. At this
grid, each spatial derivative is replaced by its corresponding second-order central
FD formula described in Section 4 with a modification for the boundaries v = 0,
s = Smax, and v =Vmax.

At the boundary v= 0 the derivative ∂u/∂v is approximated using a second-order
forward formula. All other derivative terms in the v-direction vanish at v = 0, and
therefore do not require further treatment.

At the boundary s = Smax the spatial derivatives in the s-direction are dealt with
as in Section 7.1. Note that the Neumann condition (16.47) at s = Smax implies that
the mixed derivative ∂ 2u/∂ s∂v vanishes there.

At the boundary v = Vmax the spatial derivatives in the v-direction need to be
considered. This is done fully analogously to those in the s-direction at s = Smax

using now the Neumann condition (16.48).
Define the temporal discretization error by

ê(m1,m2,N) = max
{ |UN,l −Ul(T )| : 1

2 K < si <
3
2 K, 0 < v j < 1

}
, (16.50)

where the index l corresponds to the grid point (si,v j). The reference vector
U(T ) is computed using (m1,m2,N) = (160,80,5000). We study these errors for
(m1,m2,N) = (160,80,2k) with k = 0,1, . . . ,10 and three methods: the Do scheme
with θ = 1

2 and smoothing, the MCS scheme with θ = 1
3 without smoothing, and

the Crank–Nicolson scheme with smoothing.
Figure 16.7 displays the obtained results for the European put option. As a first

observation, for all three methods the temporal errors are bounded from above by a
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moderate value and decrease monotonically as N increases. The error graphs for the
MCS and Crank–Nicolson schemes are almost identical and reveal a second-order
convergence behavior. The Do scheme only shows first-order convergence. Clearly,
the convergence orders observed for the three methods agree with their respective
classical orders of consistency. Additional experiments by substantially changing
(m1,m2) indicate that for all three methods the temporal errors are almost unaf-
fected, which is a desirable property and suggests convergence in the so-called stiff
sense. Whereas their results are not displayed, we mention that the CS scheme with
θ = 1

2 and smoothing and the HV scheme with θ = 1
2 +

1
6

√
3 without smoothing

behave similarly to the MCS scheme in this experiment, with slightly larger errors.
Figure 16.8 displays the obtained results for the American put option. Our obser-

vations are analogous to those made above in the case of the European option. It is
interesting to note, however, that the Do scheme often has temporal errors that are
almost the same as for the MCS and Crank–Nicolson schemes. But if N gets suffi-
ciently large, then a first-order convergence behavior for this method indeed sets in.
For the Crank–Nicolson scheme a small deviation from second-order is seen when
N is large. This disappears however when other values (m1,m2) are considered. Ad-
ditional experiments by substantially changing (m1,m2) indicate that for all three
methods the temporal errors are at most mildly affected.

We next consider, in the European put option case, the total discretization error
defined by

e(m1,m2,N) = max
{ |UN,l − u(si,v j,T )| : 1

2 K < si <
3
2 K, 0 < v j < 1

}
, (16.51)

with index l corresponding to the grid point (si,v j). Here exact solution values u
are computed by a suitable implementation of Heston’s semi-closed form analytical
formula [38]. Note that the modeling error, which is due to the truncation of the
domain of the Heston PDE to a bounded set, is also contained in e(m1,m2,N). In
our experiment, this contribution is negligible.

Figure 16.9 displays the total discretization errors for (m1,m2,N) = 2k(10,5,2)
with k = 0,1, . . . ,6 and the three schemes under consideration in this section. With
the MCS and Crank–Nicolson schemes the total errors are essentially the same and
a second-order convergence behavior is observed. With the Do scheme, the total
errors are almost same as these two schemes up to k = 4, but then the convergence
drops to the expected first-order.

For a more extensive numerical study of ADI schemes in the (two-dimensional)
Heston model we refer to [39] for European-style options and to [37] for American-
style options. For three-dimensional PDEs in finance, such as the HHW PDE, the
numerical convergence of ADI schemes has been investigated in [35, 36] and for
a four-dimensional PDE in [34]. In these references a variety of parameter sets has
been considered, including long maturity times and cases where the Feller condition
is strongly violated, together with various barrier options and the approximation of
hedging quantities.



568 K. in ’t Hout and J. Toivanen

10
−3

10
−2

10
−1

10
0

10
−7

10
−5

10
−3

10
−1

10
1

1/N

T
em

po
ra

l e
rr

or

smoothed Do
smoothed CN
MCS

Fig. 16.7 Temporal discretization errors in the case of the European put option under the Heston
model. The time discretization methods are: the Do scheme with θ = 1

2 and smoothing, the MCS
scheme with θ = 1

3 without smoothing, and the Crank–Nicolson scheme with smoothing.
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Fig. 16.8 Temporal discretization errors in the case of the American put option under the Heston
model. The time discretization methods are: the Do scheme with θ = 1

2 and smoothing, the MCS
scheme with θ = 1

3 without smoothing, and the Crank–Nicolson scheme with smoothing.
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Fig. 16.9 Total discretization errors in the case of the European put option under the Heston model.
The time discretization methods are: the Do scheme with θ = 1

2 and smoothing, the MCS scheme
with θ = 1

3 without smoothing, and the Crank–Nicolson scheme with smoothing.

7.4 Bates Model

We price European and American put options under the Bates model. The boundary
conditions are given by (16.46)–(16.48). For the stochastic volatility part of the
model the parameters are taken the same as for the Heston model and they are
given by (16.45). For the jump part, the parameters are the same as for the Merton
model and they are given by (16.43). The discretizations are based on the same
grids and the spatial derivatives are discretized in the same way as with the Heston
model in Section 7.3. For the jump integral, the same discretization is used as with
the Merton model in Section 7.2. We consider here the IMEX–CNAB scheme and
Crank–Nicolson method both applied with smoothing as for the Merton model.

As with the Heston model, we consider the temporal discretization errors on the
grids (m1,m2,N) = (160,80,2k), k = 0,1, . . . ,10. The reference price vector U(T )
is computed using the space-time grid (160,80,5000). The temporal discretization
errors ê(m1,m2,N) are shown for the European option in Figure 16.10 and for the
American option in Figure 16.11. The plots show the errors for the IMEX–CNAB
scheme and the Crank–Nicolson method. For the American option the operator split-
ting method for LCPs is used with the IMEX–CNAB scheme. As with other models,
the temporal errors for the European option are very similar for both methods and
they both exhibit second-order convergence. For the American option, the difference
between the methods is less pronounced than with the Black–Scholes and Merton
models. Still the Crank–Nicolson method is slightly more accurate than the opera-
tor splitting method for large time steps and the reverse is true for small time steps.
In this example the convergence rates seem to be between 1.5 and 2.0.
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We computed the total discretization errors e(m1,m2,N) for the European op-
tion on the grids (m1,m2,N) = 2k(10,5,2), k = 0,1, . . . ,6. The reference prices are
computed on the space-time grid (2560,1280,512). Figure 16.12 shows the total
errors for the IMEX–CNAB scheme and the Crank–Nicolson method. As with the
other models, the total errors for both methods are virtually the same and both have
second-order convergence of the total error.
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Fig. 16.10 The temporal discretization errors for the European option under the Bates model with
the IMEX–CNAB scheme and the Crank–Nicolson method, both with smoothing.

8 Conclusions

We have discussed numerical solution methods for financial option valuation prob-
lems in the contemporary partial(-integro) differential equations framework. These
problems are often multidimensional and can involve nonlocal integral operators
due to jumps incorporated in the underlying asset price models. The early exercise
feature of American-style options gives rise to linear complementarity problems,
which are nonlinear. All these properties add complexity to the discrete problems
obtained by classical implicit numerical methods and renders their efficient solution
a challenging task. The efficient computation of option values is, however, crucial
in many applications. In this chapter an overview has been given of various types
of operator splitting methods for the discretization in time, which yield in each time
step a sequence of discrete subproblems that can be handled much more easily and
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Fig. 16.11 The temporal discretization errors for the American option under the Bates model with
the IMEX–CNAB scheme together with the operator splitting method for LCPs, and the Crank–
Nicolson method, both with smoothing.
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Fig. 16.12 The total discretization errors for the European option under the Bates model with the
IMEX–CNAB scheme and the Crank–Nicolson method, both with smoothing.

efficiently without essentially influencing the accuracy of the underlying discretiza-
tion. The following highlights the different operator splitting methods presented in
this chapter.

For multidimensional models the directional splitting methods of the ADI type
offer a fast, accurate, and easy-to-implement way for the numerical time stepping.
They are adapted to effectively deal with mixed spatial derivative terms, which are
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ubiquitous in finance. ADI schemes lead to a sequence of sparse linear subproblems
that can be solved by LU decomposition at optimal computational cost, that is, the
number of required operations is directly proportional to the number of unknowns.
The MCS and HV schemes, with a proper choice of their parameter θ , are recom-
mended as these show stability and second-order convergence and reveal a better
inherent smoothing than second-order CS.

The spatial discretization of jumps models for the underlying asset price yields
dense matrices. All classical implicit time discretization schemes require solving
systems with these dense matrices. By employing an IMEX method like the IMEX–
CNAB scheme advocate here, with an explicit treatment of (finite activity) jumps
and an implicit treatment of the remainder of the operator, each time step involves
only multiplications with these dense matrices. This is computationally a much eas-
ier task and can be often performed very fast using FFT. The accuracy and stability
of the IMEX–CNAB scheme are good when the jump activity is not very high, e.g.,
less than several jumps per year.

Iterative methods like the PSOR method for solving LCPs resulting from the
pricing of American-style options often converge slowly. We discussed an operator
splitting method based on a Lagrange multiplier formulation, treating in each time
step the early exercise constraint and complementarity condition in separate sub-
problems, where the main subproblem is essentially the same as for the European-
style counterpart. With this approach it is easy to adapt a European option pricer to
American options. We presented such an adaptation for ADI and IMEX methods.
Also, it is applicable for most models of underlying asset prices. Numerical experi-
ence with this operator splitting method indicates that the accuracy stays essentially
the same as in the case of the original LCP, but there can be a major reduction in
computational time.
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Chapter 17
A Numerical Method to Solve Multi-Marginal
Optimal Transport Problems with Coulomb
Cost

Jean-David Benamou, Guillaume Carlier, and Luca Nenna

Abstract In this chapter, we present a numerical method, based on iterative Bregman
projections, to solve the optimal transport problem with Coulomb cost. This prob-
lem is related to the strong interaction limit of Density Functional Theory. The first
idea is to introduce an entropic regularization of the Kantorovich formulation of the
Optimal Transport problem. The regularized problem then corresponds to the pro-
jection of a vector on the intersection of the constraints with respect to the Kullback-
Leibler distance. Iterative Bregman projections on each marginal constraint are ex-
plicit which enables us to approximate the optimal transport plan. We validate the
numerical method against analytical test cases.

1 Introduction

1.1 On Density Functional Theory

Quantum mechanics for a molecule with N electrons can be studied in terms of
the many-electron Schrödinger equation for a wave function ψ ∈ L2(R3N ;C) (in
this chapter, we neglect the spin variable). The practical limitation of this approach
is computational: in order to predict the chemical behavior of H2O (10 electrons)
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using a 10 gridpoints discretization of R, we need to solve the Schrödinger equation
at 1030 gridpoints. This is why Hohenberg, Kohn, and Sham introduced, in [20]
and [22], the Density Functional Theory (DFT) as an approximate computational
method for solving the Schrödinger equation at a more reasonable cost.

The main idea of the DFT is to compute only the marginal density for one
electron

ρ(x1) =

∫
γN(x1,x2 · · · ,xN)dx2 · · ·dxN ,

where γN = |ψ(x1, · · · ,xN)|2 is the joint probability density of electrons at positions
x1, · · · ,xN ∈R

3, instead of the full wave function ψ . One scenario of interest for the
DFT is when the repulsion between the electrons largely dominates over the kinetic
energy. In this case, the problem can, at least formally, be reformulated as an Op-
timal Transport (OT) problem as emphasized in the pioneering works of Buttazzo,
De Pascale, and Gori-Giorgi [6] and Cotar, Friesecke, and Klüppelberg [11].

1.2 Optimal Transport

Before discussing the link between DFT and OT, let us recall the standard optimal
transport problem and its extension to the multi-marginal framework. Given two
probability distributions μ and ν (on R

d , say) and a transport cost c: Rd ×R
d → R,

the optimal transport problem consists in finding the minimal cost to transport μ to ν
for the cost c. A transport map between μ and ν is a Borel map T such that T#μ = ν ,
i.e., ν(A) = μ(T−1(A)) for every Borel subset A of Rd . The Monge problem (which
dates back to 1781 when Monge [27] formulated the problem of finding the optimal
way to move a pile of dirt to a hole of the same volume) then reads

min
T#μ=ν

∫
Rd

c(x,T (x))μ(dx). (17.1)

This is a delicate problem since the mass conservation constraint T#μ = ν is highly
nonlinear (and the feasible set may even be empty for instance if μ is a Dirac mea-
sure and ν is not). This is why, in 1942, Kantorovich [21] proposed a relaxed for-
mulation of (17.1) which allows mass splitting

min
γ∈Π(μ,ν)

∫
Rd×Rd

c(x,y)γ(dx,dy) (17.2)

where γ ∈ Π(μ ,ν) consists of all probability measures on R
d ×R

d having μ and ν
as marginals, that is:

γ(A×R) = μ(A), ∀A Borel subset of Rd , (17.3)

γ(R×B) = ν(B), ∀B Borel subset of Rd . (17.4)
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Note that this is a linear programming problem and that there exists solutions under
very mild assumptions (e.g., c continuous and μ and ν compactly supported). A so-
lution γ of (17.2) is called an optimal transport plan and it gives the probability that
a mass element in x be transported in y. Let us remark that if T is a transport map
then it induces a transport plan γT (x,y) := μ(x)δ (y−T (x)); so if an optimal plan
of (17.2) has the form γT (which means that no splitting of mass occurs and γ is
concentrated on the graph of T ) then T is actually an optimal transport map, i.e., a
solution to (17.1). The linear problem (17.2) also has a convenient dual formulation

max
u,v|u(x)+v(y)≤c(x,y)

∫
Rd

u(x)μ(dx)+
∫
Rd

v(y)ν(dy) (17.5)

where u(x) and v(y) are the so-called Kantorovich potentials. OT theory for two
marginals has developed very rapidly during the 25 last years; there are well-known
conditions on c, μ , and ν which guarantee that there is a unique optimal plan which
is in fact induced by a map (e.g., c = |x− y|2 and μ absolutely continuous, see Bre-
nier [4]) and we refer to the textbooks of Villani [38, 39] for a detailed exposition.

Let us now consider the multi-marginal problems, i.e., OT problems involving N
marginals μ1, · · · ,μN and a cost c : RdN →R, which leads to the following general-
ization of (17.2)

min
γ∈Π(μ1,··· ,μN)

∫
R×N

c(x1, · · · ,xN)γ(dx1, · · · ,dxN) (17.6)

where Π(μ1, · · · ,μN) is the set of probability measures on (Rd)N having μ1, · · · ,μN

as marginals. The corresponding Monge problem then becomes

min
Ti#μ1=μi, i=2,··· ,N

∫
Rd

c(x1,T2(x1), · · · ,TN(x1))μ1(dx1). (17.7)

Such multi-marginals problems first appeared in the work of Gangbo and Świȩch
[17] who solved the quadratic cost case and proved the existence of Monge so-
lutions. In recent years, there has been a lot of interest in such multi-marginal
problems because they arise naturally in many different settings such as economics
[7, 32], polar factorization of vector fields and theory of monotone maps [18] and,
of course, DFT [6, 11, 9, 15, 25, 12], as recalled below. Few results are known about
the structure of optimal plans for (17.7) apart from the general results of Brendan
Pass [31], in particular the case of repulsive costs such as the Coulomb’s cost from
DFT is an open problem.

The chapter is structured as follows: In Section 2, we recall the link between Den-
sity Functional Theory and Optimal Transportation and we present some analytical
solutions of the OT problem (e.g., optimal maps for radially symmetric marginals,
for 2 electrons). In Section 3, we introduce a numerical method, based on iterative
Bregman projections, and an algorithm which aims at refining the mesh where the
transport plan is concentrated. In Section 4 we present some numerical results.
Section 5 concludes.
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2 From Density Functional Theory to Optimal Transportation

2.1 Optimal Transportation with Coulomb Cost

In Density Functional Theory [20] the ground state energy of a system (with N elec-
trons) is obtained by minimizing the following functional w.r.t. the electron den-
sity ρ(x):

E[ρ ] = min
ρ∈R

FHK [ρ ]+
∫
R3

vext (x)ρ(x)dx (17.8)

where R= {ρ : R3 →R|ρ ≥ 0,
√ρ ∈ H1(R3),

∫
R3 ρ(x)dx = N},

vext := − Z
|x−R| is the electron-nuclei potential (Z and R are the charge and the

position of the nucleus, respectively) and FHK is the so-called Hohenberg-Kohn
functional, which is defined by minimizing over all wave functions ψ which yield ρ :

FHK [ρ ] = min
ψ→ρ

h̄2T [ψ ]+Vee[ψ ], (17.9)

where h̄2 is a semiclassical constant factor,

T [ψ ] =
1
2

∫
· · ·

∫ N

∑
i=1

|∇xiψ |2dx1 · · ·dxN

is the kinetic energy and

Vee =

∫
· · ·

∫ N

∑
i=1

N

∑
j>i

1
|xi − x j| |ψ |2dx1 · · ·dxN

is the Coulomb repulsive energy operator.
Let us now consider the Semiclassical limit

lim
h̄→0

min
ψ→ρ

h̄2T [ψ ]+Vee[ψ ]

and assume that taking the minimum over ψ commutes with passing to the limit
h̄ → 0 (Cotar, Friesecke and Klüppelberg in [11] proved it for N = 2), we obtain the
following functional

V SCE
ee [ρ ] = min

ψ→ρ

∫
· · ·

∫ N

∑
i=1

N

∑
j>i

1
|xi − x j| |ψ |2dx1 · · ·dxN (17.10)

where V SCE
ee is the minimal Coulomb repulsive energy whose minimizer character-

izes the state of Strictly Correlated Electrons (SCE).
Problem (17.10) gives rise to a multi-marginal optimal transport problem as (17.6)

by considering that

• according to the indistinguishability of electrons, all the marginals are equal
to ρ ,
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• the cost function c originates from the electron-electron Coulomb repulsion,
that is

c(x1, . . . ,xN) =
N

∑
i=1

N

∑
j>i

1
|xi − x j| , (17.11)

• γN = |ψ(x1, · · · ,xN)|2 (which is the joint probability density of electrons at
positions x1, · · · ,xN ∈ R

3) is the transport plan.

The Coulomb cost function (17.11) is different from the costs usually considered in
OT as it is not bounded at the origin and it decreases with distance. So it requires a
generalized formal framework, but this framework is beyond the scope of this work
(see [6] and [11]). Finally (17.10) can be re-formulated as a Kantorovich problem

V SCE
ee [ρ ] = min

πi(γN )=ρ ,i=1,··· ,N

∫
R3N

c(x1, · · · ,xN)γN(x1, · · · ,xN)dx1 · · ·dxN (17.12)

where

πi(γN) =

∫
R3(N−1)

γN(x1, · · · ,xi, · · · ,xN)dx1, · · · ,dxi−1,dxi+1, · · · ,dxN

is the i-th marginal. As mentioned in Section 1.2, if the optimal transport plan γN

has the following form

γN(x1, · · · ,xN) = ρ(x1)δ (x2 − f �2 (x1)) · · ·δ (xN − f �N(x1)) (17.13)

then the functions f �i : R3 →R
3 are the optimal transport maps (or co-motion func-

tions) of the Monge problem

V SCE
ee [ρ ] = min

{ fi:R3→R3}N
i=1

∫ N

∑
i=1

N

∑
j>i

1
| fi(x)− f j(x)|ρ(x)dx

s.t. fi#ρ = ρ , i = 2, . . . ,N, f1(x) = x.

(17.14)

Remark 1. Physical Meaning of the Co-motion Function The quantity fi(x) deter-
mines the position of the i-th electron in terms of x which is the position of the
“1st”electron: V SCE

ee defines a system with the maximum possible correlation be-
tween the relative electronic positions.

In full generality, problem (17.14) is delicate and proving the existence of the co-
motion functions is difficult. However, the co-motion functions can be obtained via
semianalytic formulations for spherically symmetric atoms and strictly 1D systems
(see [11, 37, 24, 9]) and we will give some examples in the following section.

Problem (17.12) admits a useful dual formulation in which the so-called Kan-
torovich potential u plays a central role

V SCE
ee = max

u
{N

∫
u(x)ρ(x)dx s.t.

N

∑
i=1

u(xi)≤ c(x1, . . . ,xN)}. (17.15)
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Because c is invariant under permutations, there is a single dual Kantorovich po-
tential for all marginal constraints. Moreover, this potential u(x) is related to the
co-motion functions via the classical equilibrium equation (see [37])

∇u(x) =−
N

∑
i=2

x− fi(x)
|x− fi(x)|3 . (17.16)

Remark 2. (Physical Meaning of (17.16)) The gradient of the Kantorovich potential
equals the total net force exerted on the electron in x by electrons in f2(x), · · · , fN(x).

2.2 Analytical Examples

2.2.1 The Case N = 2 and d = 1

In order to better understand the problem we have formulated in the previous sec-
tion, we recall some analytical examples (see [6] for the details).

Let us consider 2 particles in one dimension and marginal densities

ρ1(x) = ρ2(x) =

{
a i f |x| ≤ a/2

0 otherwise.
(17.17)

After a few computations, we obtain the following associated co-motion function

f (x) =

{
x+ a

2 i f x ≤ 0

x− a
2 otherwise

. (17.18)

If we take

ρ1(x) = ρ2(x) =
a−|x|

a2 de f ined in [−a,a], (17.19)

we get

f (x) =
x
|x| (

√
2a|x|− x2− a) on [−a,a] (17.20)

Figure 17.1 shows the co-motion functions for (17.17) and (17.19).

2.2.2 The Case N > 2 and d = 1

In [9], the authors proved the existence of optimal transport maps for problem (17.14)
in dimension d = 1 and provided an explicit construction of the optimal maps. Let ρ
be the normalized electron density and −∞= x0 < x1 < · · ·< xN =+∞ be such that



17 A Numerical Method to Solve Multi-Marginal Optimal Transport... 583

1

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1
-1 -0.5 0.5 -0.5 0.5 10

0

x
-1

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

1

f

10
x

0f

Fig. 17.1 Right: Co-motion function for (17.17) with a = 2. Left: Co-motion function for (17.19)
with a = 1.

∫ xi+1

xi

ρ(x)dx = 1/N ∀i = 0, · · · ,N − 1.

Thus, there exists a unique increasing function f̃ : R→ R on each interval [xi,xi+1]
such that for every test-function ϕ one has∫

[xi,xi+1]
ϕ( f̃ (x))ρ(x)dx =

∫
[xi+1,xi+2]

ϕ(x)ρ(x)dx ∀i = 0, · · · ,N − 2, (17.21)
∫
[xN−1,xN ]

ϕ( f̃ (x))ρ(x)dx =
∫
[x0,x1]

ϕ(x)ρ(x)dx, (17.22)

The optimal maps are then given by

f2(x) = f̃ (x) (17.23)

fi(x) = f (i)2 (x) ∀i = 2, · · · ,N, (17.24)

where f (i)2 stands for the i-th composition of f2 with itself. Here, we present an
example given in [6]. We consider the case where ρ is the Lebesgue measure on the
unit interval I = [0,1], the construction above gives the following optimal co-motion
functions

f2(x) =

{
x+ 1/3 i f x ≤ 2/3

x− 2/3 i f x > 2/3
,

f3(x) = f2( f2(x)) =

{
x+ 2/3 i f x ≤ 1/3

x− 1/3 i f x > 1/3
.

(17.25)

Furthermore, we know that the Kantorovich potential u satisfies the relation (here
we take N = 3)

u′(x) =−
N

∑
i=2

x− fi(x)
|x− fi(x)|3 (17.26)
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and by substituting the co-motion functions in (17.26) (and integrating it) we get

u(x) =

⎧⎪⎨
⎪⎩

45
4 x 0 ≤ x ≤ 1/3

15
4 1/3 ≤ x ≤ 2/3

− 45
4 x+ 45

4 2/3 ≤ x ≤ 1

(17.27)

Figure 17.2 illustrates this example.
When N ≥ 4 similar arguments as above can be developed and we can similarly

compute the co-motion functions and the Kantorovich potential.

Fig. 17.2 Right: co-motion function f2 for (17.25). Center: co-motion function f3 for (17.25). Left:
Kantorovich Potential u(x) (17.27).

2.2.3 The Radially Symmetric Marginal Case for N = 2, d ≥ 2

We discuss now the radial d−dimensional (d ≥ 2) case for N = 2. We assume
that the marginal ρ is radially symmetric, then we recall the following theorem
from [11]:

Theorem 1. [11] Suppose that ρ(x) = ρ(|x|), then the optimal transport map is
given by

f �(x) =
x
|x|g(|x|), x ∈ R

d , (17.28)

with g(r)=−F−1
2 (F1(r)), F1(t) :=C(d)

∫ t
0 ρ(s)sd−1ds, F2(t) :=C(d)

∫ ∞
t ρ(s)sd−1ds

where C(d) denotes the measure of Sd−1, the unit sphere in R
d.

Example 1. (Spherical Coordinates System) If ρ is radially symmetric ρ(x) =
ρ(|x|), it is convenient to work in spherical coordinates and then to set for every
radius r > 0

λ (r) =C(d)rd−1ρ(r) (17.29)

so that for every test-function ϕ we have

∫
Rd

ϕ(x)ρ(|x|)dx =
∫ +∞

0

(∫
Sd−1

ϕ(r,ω)
dσ(ω)

Cd

)
λ (r)dr
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with C(d) the measure of Sd−1 and σ the d−1 measure on Sd−1 which in particular
implies that λ := |.|#ρ i.e.

∫
Rd

ϕ(|x|)ρ(|x|)dx =
∫ +∞

0
ϕ(r)λ (r)dr, ∀ϕ ∈Cc(R+). (17.30)

The radial part of the optimal co-motion function a(r) =−g(r) can be computed by
solving the ordinary differential equation

a′(r)λ (a(r)) = λ (r)

which gives ∫ a(r)

0
λ (s)ds = 2−

∫ r

0
λ (s)ds. (17.31)

We define R(r) =
∫ r

0 λ (s)ds, since r  → R(r) is increasing, its inverse R−1(w) is well
defined for w ∈ [0,1). Thus, we see that a(r) has the form

a(r) = R−1(2−R(r)). (17.32)

2.2.4 Reducing the Dimension Under Radial Symmetry

In the case where the marginal ρ(x) = ρ(|x|) is radially symmetric, the multi-
marginal problem with Coulomb cost

M(ρ) := inf
γ∈Π(ρ ,··· ,ρ)

∫
RdN

c(x1, · · · ,xN)dγ(x1, · · · ,xN) (17.33)

with c the Coulomb cost given by (17.11) involves plans on R
dN , which is very

costly to discretize. Fortunately, due to the symmetries of the problem, it can actu-
ally be solved by considering a multi-marginal problem only on R

N
+. Let us indeed

define for every (r1, · · · ,rN) ∈ (0,+∞)N :

c̃(r1, · · · ,rN) := inf{c(x1, · · · ,xN) : |x1|= r1, · · · , |xN |= rN}. (17.34)

Defining λ by (17.29) (or equivalently (17.30)) and defining Π(λ , · · · ,λ ) as the set
of probability measures on R

N
+ having each marginal equal to λ , consider

M̃(λ ) := inf
γ̃∈Π(λ ,··· ,λ )

∫
R

N
+

c̃(r1, · · · ,rN)dγ̃(r1, · · · ,rN). (17.35)

We then have

Lemma 1. M(ρ) = M̃(λ ).
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Proof. The inequality M(ρ) ≥ M̃(λ ) is easy: take γ ∈ Π(ρ , · · · ,ρ) and define its
radial component γ̃ by

∫
R

N
+

F(r1, · · · , rN)dγ̃(r1, · · · , rN) :=
∫
RdN

F(|x1|, · · · , |xN |)dγ(x1, · · · ,xN), ∀F ∈Cc(R
N
+), (17.36)

it is obvious that γ̃ ∈ Π(λ , · · · ,λ ) and since c(x1, · · · ,xN) ≥ c̃(|x1|, · · · , |xN |), the
inequality M(ρ) ≥ M̃(λ ) easily follows. To show the converse inequality, we use
duality. Indeed, by standard convex duality, we have

M(ρ) = K(ρ) := sup
u

{
N
∫
Rd

u(x)ρ(x)dx :
N

∑
i=1

u(xi)≤ c(x1, · · · ,xN)
}

(17.37)

and similarly

M̃(λ ) = K̃(λ ) := sup
v

{
N
∫
R+

v(r)λ (r)dr :
N

∑
i=1

v(ri)≤ c̃(r1, · · · ,rN)
}
. (17.38)

Now since ρ is radially symmetric and the constraint of (17.37) is invariant by
changing u by u ◦R with R a rotation (see (17.11)), there is no loss of generality
in restricting the maximization in (17.37) to potentials of the form u(xi) = w(ri),
but then the constraint of (17.37) implies that w satisfies the constraint of (17.38).
Then we have M(ρ) = K(ρ)≤ K̃(λ ) = M̃(λ ).

Note that γ ∈ Π(ρ , · · · ,ρ) solves (17.33) if and only if its radial component γ̃
solves (17.33) and c(x1, · · · ,xN)= c̃(|x1|, · · · , |xN |) γ-a.e. Therefore (17.33) gives the
optimal radial component, whereas the extra condition c(x1, · · · ,xN) =
c̃(|x1|, · · · , |xN |) γ-a.e. gives an information on the angular distribution of γ .

3 Iterative Bregman Projections

Numerics for multi-marginal problems have so far not been extensively developed.
Discretizing the multi-marginal problem leads to the linear program (17.41) where
the number of constraints grows exponentially in N, the number of marginals.

In a recent paper, Carlier, Oberman, and Oudet studied the matching for teams
problem and they managed to reformulate the problem as a linear program whose
number of constraints grows only linearly in N [8].

Here, we present a numerical method which is not based on linear programming
techniques, but on an entropic regularization and the so-called alternate projection
method. It has recently been applied to various optimal transport problems in [13]
and [2].
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The initial idea goes back to von Neumann [28, 29] who proved that the sequence
obtained by projecting orthogonally iteratively onto two affine subspaces converges
to the projection of the initial point onto the intersection of these affine subspaces.
Since the seminal work of Bregman [3], it is by now well known that one can extend
this idea not only to several affine subspaces (the extension to convex sets is due to
Dyskstra but we won’t use it in the sequel) but also by replacing the Euclidean
distance by a general Bregman divergence associated with some suitable strictly
and differentiable convex function f (possibly with a domain) where we recall that
the Bregman divergence associated with f is given by

D f (x,y) = f (x)− f (y)−〈∇ f (y),x− y〉. (17.39)

In what follows, we shall only consider the Bregman divergence (also known as
the Kullback-Leibler distance) associated with the Boltzmann/Shannon entropy
f (x) := ∑i xi(logxi − 1) for non-negative xi. This Bregman divergence (restricted
to probabilities, i.e., imposing the normalization ∑i xi = 1) is the Kullback-Leibler
distance or relative entropy:

D f (x,y) =∑
i

xi log
(xi

yi

)
.

Bregman distances are used in many other applications most notably image pro-
cessing, see [19] for instance.

3.1 The Discrete Problem and Its Entropic Regularization

In this section we introduce the discrete problem solved using the iterative Bregman
projections [3]. From now on, we consider the problem (17.12)

min
γN∈C

∫
(Rd)N

c(x1, · · · ,xN)γN(x1, · · · ,xN)dx1 · · ·dxN , (17.40)

where N is the number of marginals (or electrons), c(x1, . . . ,xN) is the Coulomb cost,
γN the transport plan, is the probability distribution over (Rd)N and C :=

⋂N
i=1Ci

with Ci := {γN ∈ Prob{(Rd)N}|πiγN = ρ} (we remind the reader that electrons are
indistinguishable so the N marginals coincide with ρ).

In order to discretize (17.40), we use a discretization with Md points of the sup-
port of the kth electron density as {x jk} jk=1,··· ,Md . If the densities ρ are approximated
by ∑ jk ρ jkδx jk

, we get

min
γ∈C ∑

j1,··· jN
c j1,··· , jN γ j1,··· , jN , (17.41)

where c j1,··· , jN = c(x j1 , · · · ,x jN ) and the transport plan support for each coordinate
is restricted to the points {x jk}k = 1, · · · ,Md thus becoming a (Md)

N matrix again
denoted γ with elements γ j1,··· , jN . The marginal constraints Ci becomes
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Ci := {γ ∈ R
(Md)

N

+ | ∑
j1,..., ji−1, ji+1,..., jN

γ j1,..., jN = ρ ji , ∀ ji = 1, · · · ,Md}. (17.42)

Recall that the electrons are indistinguishable, meaning that they have same densi-
ties : ρ jk = ρ jk′ , ∀ j, ∀k �= k′.

The discrete optimal transport problem (17.41) is a linear program problem and
is dual to the discretization of (17.15)

max
u j

M

∑
j=1

Nu jρ j

s.t.
N

∑
i=1

u ji ≤ c j1··· jN ∀ ji = 1, · · · ,Md

(17.43)

where u j = u ji = u(x ji). Thus the primal (17.41) has (Md)
N unknowns and Md ×N

linear constraints and the dual (17.43) only Md unknowns but still (Md)
N con-

straints. They are computationally not solvable with standard linear programming
methods even for small cases in the multi-marginal case.

A different approach consists in computing the problem (17.41) regularized by
the entropy of the joint coupling. This regularization dates to E. Schrödinger [36]
and it has been recently introduced in machine learning [13] and economics [16] (we
refer the reader to [2] for an overview of the entropic regularization and the iterative
Bregman projections in OT). Thus, we consider the following discrete regularized
problem

min
γ∈C ∑

j1,··· jN
c j1,··· , jN γ j1,··· , jN + εE(γ), (17.44)

where E(γ) is defined as follows

E(γ) =

{
∑ j1,··· jN γ j1,··· , jN log(γ j1,··· , jN ) if γ ≥ 0

+∞ otherwise.
(17.45)

After elementary computations, we can rewrite the problem as

min
γ∈C

KL(γ|γ̄) (17.46)

where KL(γ|γ̄) = ∑i1,...,iN γi1,...,iN log

(
γi1,...,iN

γ̄i1,...,iN

)
is the Kullback-Leibler distance

and

γ̄i1,...,iN = e
−

c j1,··· , jN
ε . (17.47)

As explained in Section 1.2, when the transport plan γ is concentrated on the
graph of a transport map which solves the Monge problem, after discretization of
the densities, this property is lost. However we still expect the γ matrix to be sparse.
The entropic regularization will spread the support and this helps to stabilize the
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computation: it defines a strongly convex program with a unique solution γε which
can be obtained through elementary operations (we detail this in Section 3.3 for both
the continuous and discrete framework). The regularized solutions γε then converge
to γ�, the solution of (17.41) with minimal entropy, as ε → 0 (see [10] and [23]
in our case for detailed proofs of convergence). We also remark that the choice
of the regularization parameter ε is quite delicate for two reasons: (i) some of the
quantities in the proposed algorithms could become smaller than machine precision
whenever ε is small; (ii) the convergence speed deteriorates significantly as ε → 0,
see Tables 17.1 and 17.2.

3.2 Alternate Projections

The main idea of the iterative Bregman projections (we call it Bregman as the
Kullback-Leibler distance is also called Bregman distance, see [3]) is to construct a
sequence γn (which converges to the minimizer of (17.46)) by alternately projecting
on each set Ci with respect to the Kullback-Leibler distance. Thus, the iterative KL
(or Bregman) projections can be written{

γ0 = γ̄
γn = PKL

Cn
(γn−1) ∀n > 0

(17.48)

where we have extended the indexing of the set by N−periodicity such that Cn+N =
Cn ∀n ∈ N and PKL

Cn
denotes the KL projection on Cn.

The convergence of γn to the unique solution of (17.46) is well known, it actually
holds for large classes of Bregman distances and in particular the Kullback-Leibler
divergence as was proved by Bauschke and Lewis [1]

γn → PKL
C (γ̄) as n → ∞.

Remark 3. If the convex sets Ci are not affine sub-sets (that is not our case), γn

converges toward a point of the intersection which is not the KL projection of γ̄
anymore so that a correction term is needed as provided by Dykstra’s algorithm (we
refer the reader to [2]).

The KL projection on Ci i = 1, . . . ,N can be computed explicitly as detailed in the
following proposition

Proposition 1. For γ̄ ∈ (R+)
Md

N
the projection PKL

Ci
(γ̄) is given by

PKL
Ci

(γ̄) j1,..., jN = ρ ji
γ̄ j1,..., jN

∑k1,...,ki−1,ki+1,...,kN
γ̄k1,...,kN

∀ ji = 1, . . . ,Md . (17.49)
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Proof. Introducing Lagrange multipliers λ ji associated with the constraint Ci

∑
j1,..., ji−1, ji+1,..., jN

γ j1,..., jN = ρ ji (17.50)

the KL projection is given by the optimality condition :

log

(
γ j1,..., jN

γ̄ j1,..., jN

)
−λ ji = 0 (17.51)

so that
γ j1,..., jN =Cji γ̄ j1,..., jN , (17.52)

where Cji = eλ ji . If we substitute (17.52) in (17.50), we get

Cji = ρ ji
1

∑k1,...,ki−1,ki+1,...,kN
γ̄k1,...,kN

(17.53)

which gives (17.49).

3.3 From the Alternate Projections to the Iterative Proportional
Fitting Procedure

The alternate projection procedure (17.48) is performed on MN
d matrices. Moreover

each projection (17.49) involves computing partial sum of this matrix. The total op-
eration cost of each Bregman iteration scales like O(M2N−1

d ).

In order to reduce the cost of the problem, we use an equivalent formulation
of the Bregman algorithm known as the Iterative Proportional Fitting Procedure
(IPFP). Let us consider the problem (17.46) in a continuous measure setting and,
for simplicity, 2-marginals framework

min
{γ|π1(γ)=ρ ,π2(γ)=ρ}

∫
log

(
dγ
dγ̄

)
dγ, (17.54)

where ρ , γ , and γ̄ are nonnegative measures. The aim of the IPFP is to find the KL
projection of γ̄ on Π(ρ ,ρ) (see (17.47) for the definition of γ̄ which depends on the
cost function).

Under the assumption that the value of (17.54) is finite, Rüschendorf and Thom-
sen (see [34]) proved that a unique KL-projection γ∗ exists and that it is of the form

γ∗(x,y) = a(x)b(y)γ̄(x,y), a(x)≥ 0, b(y)≥ 0. (17.55)
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From now on, we consider (with a slightly abuse of notation) Borel measures with
densities γ , γ̄ and ρ w.r.t. the suitable Lebesgue measure. The functions a and b can
be uniquely determined by the marginal condition as follows

a(x) =
ρ(x)∫

γ̄(x,y)b(y)dy
,

b(y) =
ρ(y)∫

γ̄(x,y)a(x)dx
.

(17.56)

Then, IPFP is defined by the following recursion

b0 = 1, a0 = ρ ,

bn+1(y) =
ρ(y)∫

γ̄(x,y)an(x)dx
,

an+1(x) =
ρ(x)∫

γ̄(x,y)bn+1(y)dy
.

(17.57)

Moreover, we can define the sequence of joint densities (and of the corresponding
measures)

γ2n(x,y) := an(x)bn(y)γ̄(x,y) γ2n+1 := an(x)bn+1(y)γ̄(x,y), n ≥ 0. (17.58)

Rüschendorf proved (see [33]) that γn converges to the KL-projection of γ̄ . We can,
now, recast the IPFP in a discrete framework, which reads as

γi j = aib j γ̄i j, b0
j = 1, a0

i = ρi, (17.59)

bn+1
j =

ρ j

∑i γ̄i jan
i
,

an+1
i =

ρi

∑ j γ̄i jbn+1
j

,
(17.60)

γ2n
i j = an

i γ̄i jb
n
j γ2n+1

i j = an
i γ̄i jb

n+1
j . (17.61)

By definition of γn
i j , notice that

γ̄i jb
n
j =

γ2n−1
i j

an−1
i

and an
i γ̄i j =

γ2n
i j

bn
j

and if (17.61) is rewritten as follows

γ2n
i j = ρi

γ̄i jbn
j

∑k γ̄ikbn
k

γ2n+1
i j = ρ j

γ̄i jan
i

∑k γ̄k jan
k

(17.62)
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then we obtain

γ2n
i j = ρi

γ2n−1
i j

∑k γ2n−1
ik

γ2n+1
i j = ρ j

γ2n
i j

∑k γ2n
k j

.

(17.63)

Thus, we exactly recover the Bregman algorithm described in the previous section,
for 2 marginals.

The extension to the multi-marginal framework is straightforward but cumber-
some to write. It leads to a problem set on N Md-dimensional vectors a j,i(·) , j =
1, · · · ,N, i(·) = 1, · · · ,Md . Each update takes the form

an+1
j,i j

=
ρi j

∑i1,i2,...i j−1,i j+1,...,iN γ̄i1,...,iN an+1
1,i1

an+1
2,i2

. . .an+1
j−1,i j−1

an
j+1,i j+1

. . .an
N,iN

, (17.64)

Where each ik takes values in {1, · · · ,Md}.

Note that we still need a constant MN
d cost matrix γ̄ . Thanks to the symmetry

and separability properties of the cost function (see (17.11) and (17.47)), it is pos-
sible to replace it by a N (N − 1)/2 product of M2

d matrices. This is already a big
improvement from the storage point of view. Further simplifications are under inves-
tigations but the brute force IPFP operational cost therefore scales like O(N MN+1

d )
which provides a small improvement over the Bregman iterates option.

3.4 A Heuristic Mesh Refinement Strategy

We will use a heuristic mesh refinement strategy allowing to obtain more accuracy
without increasing the computational cost and memory requirements. This idea was
introduced in [30] and [35] for the adaptative resolution of the pure linear program-
ming formulation of the Optimal Transportation problem, i.e., without the entropic
regularization. It can also be remotely connected to the multiscale approach in [26]
which does not use the linear programming approach at all.

If the optimal transport plan is supported by a lower dimensional set, we ex-
pect the entropic regularization to be concentrated on a mollified version of this set.
Its width should decrease with the entropic parameter ε if the discretization is fine
enough. Working with a fixed ε , the idea is to apply coarse to fine progressive reso-
lution and work with a sparse matrix γ . At each level, values below a threshold are
filtered out (set to 0), then new positive values are interpolated on a finer grid (next
level) where γ is strictly positive.

To simplify the exposition, we describe the algorithm for 2−marginals in 1D and
take a

√
M gridpoints discretization of I = [a,b] ∈R:

1. we start with a cartesian M gridpoints mesh on I × I to approximate transport
plan γε , obtained by running the IPFP on a coarse grid.
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2. we take mc( j) = maxiγε
i j and mr(i) = max jγε

i j which are the maximum values
over the rows and over the columns respectively, and we define

m = min[min
j
(mc( j)),min

i
(mr(i))].

We will refine the grid only inside the level curve γε = ξm where we expect the
finer solution is supported, see Figure 17.3.

3. In order to keep approximately the same number of elements in the sparse ma-
trix γ at each level we refine the grid as follows : Let T := {(i, j)|γε

i j ≥ ξm}
and MT := �T and r := MT/M, then the size of the grid at the next level is
Mnew = M/r.

4. We compute the interpolation γMnew of the old transport plan γM on the finer
grid.

5. Elements of γMnew below the fixed threshold ξm are filtered out, i.e., are fixed to
0 and are not used in the IPFP sum computations, see Figure 17.3.

6. Finally, a new IPFP computation is performed and it can be initialized with an
interpolation of the data at the previous level (γ̄ can be easily recomputed on
the gridpoints where γMnew is strictly positive).

Fig. 17.3 Left: T is the set of grid points inside the level curve γ = ξ m (ξ = 0.9) (the bold line
curve). Center: The new grid after the refinement. Right: The transport Plan after a new IPFP
computation

4 Numerical Results

4.1 N = 2 Electrons: Comparison Between Numerical
and Analytical Results

In order to validate the numerical method, we now compare some numerical re-
sults for 2 electrons in dimension d = 1,2,3 with the analytical results from Sec-
tion 2.2. Let us first consider a uniform density (as (17.17) with a = 2) in 1D. In
Table 17.1, we analyze the performance of the numerical method by varying the
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parameter ε . We notice that the error becomes smaller by decreasing the regularizing
parameter, but the drawback is that the method needs more iterations to converge.
Figure 17.4 shows the Kantorovich potential, the co-motion function which can be
recovered from the potential by using (17.16) and the transport plan. The simulation
is performed with a discretization of (17.17) with a = 2, M = 1000 (gridpoints) and
ε = 0.004.

As explained in Section 2.2.3, we can also compute the co-motion for a radi-
ally symmetric density. We have tested the method in 2D and 3D, Figures 17.5
and 17.6 respectively, by using the normalized uniform density on the unit ball.
Moreover, in the radial case we have proved that the OT problem can be reduced to
a 1−dimensional problem by computing c̃ which is trivial for the 2 electrons case:
let us set the problem in 2D in polar coordinates (r1,θ1) and (r2,θ2), for the first and
the second electron respectively (without loss of generality we can set θ1 = 0), then
it is easy to verify that the minimum is achieved with θ2 = π . Figure 17.5 shows
the Kantorovich potential (the radial component v(r) as defined in Section 2.2.4),
the co-motion and the transport plan for the 2−dimensional case, the simulation is
performed with M = 1000 and ε = 0.002. In Figure 17.6 we present the result for
th 3−dimensional case, the simulation is performed with M = 1000 and ε = 0.002.

Remark 4. One can notice that, in the case of a uniform density, the transport plan
presents a concentration of mass on the boundaries. This is a combined effect of the
regularization and of the fact that the density has a compact support.

ε Error (‖uε −u‖∞/‖u‖∞) Iteration CPU time (s)

0.256 0.1529 11 0.4017
0.128 0.0984 16 0.5977
0.064 0.0578 25 0.9282
0.032 0.0313 38 1.4411
0.016 0.0151 66 2.4297
0.008 0.0049 114 4.2674
0.004 0.0045 192 7.0638

Table 17.1 Numerical results for uniform density in 1D. uε is the numerical Kantorovich potential
and u is the analytical one.

4.2 N = 2 Electrons in Dimension d = 3: Helium Atom

Once we have validated the method with some analytical examples, we solve the
regularized problem for the Helium atom by using the electron density computed in
[14]. In Figure 17.7, we present the electron density, the Kantorovich potential, and
the transport plan. The simulation is performed with a discretization of [0,4] with
M = 1000 and ε = 510−3. We can notice the potential correctly fits the asymptotic

behavior from [37], namely v(r) ∼ N − 1
|r| for r → ∞, where N is the number of

electrons.
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Support of γ̃ .

4.3 N = 3 Electrons in Dimension d = 1

We present now some results for the 1−dimensional multi-marginal problem with
N = 3. They are validated against the analytical solutions given in Section 2.2.2. We
recall that splitting ρ into three tertiles ρi with equal mass, we will have ρ1 → ρ2,
ρ2 → ρ3 and ρ3 → ρ1.

In Table 17.2, we present the performance of the method for a uniform density on
[0,1] by varying ε and, as expected, we see the same behavior as in the 2 marginals
case. Figure 17.8 shows the Kantorovich potential and the projection of the trans-
port plan onto two marginals (namely γ2 = π12(γε)). The support gives the relative
positions of two electrons.

The simulation is performed on a discretization of [0,1] with a uniform density,
M = 1000 and ε = 0.02. If we focus on the support of the projected transport plan we
can notice that the numerical solution correctly reproduces the prescribed behavior.
The concentration of mass is again due to the compact support of the density, which
is not the case of the Gaussian as one can see in Figure 17.9. In Figure 17.9 we
present the numerical results for ρ(x) = e−x2

/
√

π . The simulation is performed on
the discretization of [−2.5,2.5] with M = 1000 and ε = 0.008.
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Fig. 17.5 Top-Left: Kantorovich Potential v(r). Top-Right: Numerical co-motion function (solid
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Support of γ̃ .

ε Error (‖uε −u‖∞/‖u‖∞) Iteration CPU time (s)

0.32 0.0658 15 5.8372
0.16 0.0373 27 20.061
0.08 0.0198 64 55.718
0.04 0.0097 178 194.22
0.02 0.0040 374 542.63

Table 17.2 Numerical results for uniform density in 1D and three electrons. uε is the numerical
Kantorovich potential and u is the analytical one.

4.4 N = 3 Electrons in Dimension d = 3 Radial
Case: Lithium Atom

We finally perform some simulations for the radial 3−dimensional case for N = 3.
As for the 3−dimensional case with 2 marginals we solve the reduced problem: let
us consider the spherical coordinates (ri,θi,φi) with i = 1, · · · ,3 and we fix θ1 = 0
and φ1 = φ2 = 0 (the first electrons defines the z axis and the second one is on the
xz plane). We then notice that φ3 = 0 as the electrons must be on the same plane
of the nucleus to achieve compensation of forces (one can see it by computing the
optimality conditions), so we have to minimize on θ2 and θ3 in order to obtain c̃.
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Figure 17.10 shows the electron density of the Lithium (computed in [5]), the
Kantorovich Potential (and the asymptotic behavior) and the projection of the trans-
port plan onto two marginals γ̃2 = π12(γ̃ ε). The support gives the relative positions
of two electrons.

The simulation is performed on a discretization of [0,8] with M = 300 and
ε = 0.007. Our results show (taking into account the regularization effect) a con-
centrated transport plan for this kind of density and they match analogous result
obtained in [37].

5 Conclusion

We have presented a numerical scheme for solving multi-marginal OT problems
arising from DFT. This is a challenging problem, not only because of the unusual
features of the Coulomb cost which is singular and repulsive but also due to the high
dimension of the space of transport plans.

Using an entropic regularization gives rise to a Kullback-Leibler projection prob-
lem onto the intersection of affine subsets given by the marginal constraints. Because
each projection is explicit, one can use Bregman’s iterative projection algorithm to
approximate the solution.
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The power of such an iterative projection approach was recently emphasized in
[13, 2] for the entropic regularization of optimal transport problems. We showed that
it is also well suited to treat the multi-marginal OT problem with Coulomb cost and
leads to the same benefits in terms of convexification of the problem and simplicity
of implementation. However, the general DFT problem in dimension 3 for a large
number of electrons is unfeasible due to computational cost and we need to use
radial symmetry simplification and also a heuristic refinement mesh strategy.

The choice of the regularization parameter ε remains to be investigated both from
the analysis ([23] may be of help here) and numerical points of view when combined
with the necessary refinement strategy.
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Chapter 18
Robust Split-Step Fourier Methods
for Simulating the Propagation of Ultra-Short
Pulses in Single- and Two-Mode Optical
Communication Fibers

Ralf Deiterding and Stephen W. Poole

Abstract Extensions of the split-step Fourier method (SSFM) for Schrödinger-type
pulse propagation equations for simulating femto-second pulses in single- and two-
mode optical communication fibers are developed and tested for Gaussian pulses.
The core idea of the proposed numerical methods is to adopt an operator split-
ting approach, in which the nonlinear sub-operator, consisting of Kerr nonlinearity,
the self-steepening and stimulated Raman scattering terms, is reformulated using
Madelung transformation into a quasilinear first-order system of signal intensity
and phase. A second-order accurate upwind numerical method is derived rigorously
for the resulting system in the single-mode case; a straightforward extension of this
method is used to approximate the four-dimensional system resulting from the non-
linearities of the chosen two-mode model. Benchmark SSFM computations of pro-
totypical ultra-fast communication pulses in idealized single- and two-mode fibers
with homogeneous and alternating dispersion parameters and also high nonlinear-
ity demonstrate the reliable convergence behavior and robustness of the proposed
approach.
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1 Introduction

As computational capabilities are continuously rising, so is the demand for enhanced
networking speed. One possible approach for increasing data throughput is the de-
sign of networks with transmission speeds well in the Tb/s range. While the maximal
single channel communication speed in demonstrated wavelength division multi-
plexing systems is generally below 100Gb/s, cf. [7], we are in here concerned with
the modeling of single- and two-mode optical fibers that are suitable in particular
for long-distance data transmission.

At present, computational models for investigating the propagation of light pulses
in fibers have been developed primarily for pulses with a temporal half width well
in the pico-second regime. Pulses with half widths T0 , 1ps are sufficient for rep-
resenting even on-off-key modulated bit streams with up to 100Gb/s frequency.
However, bit streams in the Tb/s regime can only be represented with ultra-fast
pulses satisfying T0 < 100fs. Yet, in the ultra-fast pulse regime nonlinear pulse self-
steepening and nonlinear stimulated Raman scattering are not negligible anymore
and an extended version of the Schrödinger-type pulse propagation equation has to
be considered.

Numerical solutions of the Schrödinger-type pulse propagation equation are pri-
marily obtained with split-step Fourier schemes that perform spatial propagation
steps considering firstly only the linearities in the equation by discrete Fourier trans-
formation and then secondly only the nonlinear terms. While the construction of
such split-step Fourier methods (SSFM) is very well established, cf. [1, 10], the
topic of how to incorporate both self-steepening and Raman scattering reliably into
the SSFM has received little attention. Here, we will describe a new class of ex-
tended SSFM that properly consider the hyperbolic nature of the nonlinear sub-
operator for single- and coupled two-mode optical communication fibers.

The chapter is organized as follows: In Section 2, we recall the governing equa-
tions of pulse propagation in single-mode fibers. Section 3 first discusses the con-
struction principles of split-step Fourier methods and then proceeds by describing
our new type of single-mode SSFM for ultra-fast pulses as first- and second-order
accurate numerical schemes, cf. [5]. An ultra-fast Gaussian pulse benchmark con-
firming robust second-order accuracy of the overall SSFM and demonstrating its ap-
plication for simulating pulse propagation through an idealized dispersion-managed
single-mode communication line are given. In Section 4, we describe an extended
two-mode model for considering the simultaneous and fully coupled propagation
of two ultra-fast pulses in a single fiber cable. The subsequent Section 5 presents a
fractional step approach for effectively extending the derived single-mode nonlin-
ear sub-operator to the corresponding system in the two-mode case. A two-mode
benchmark of two interacting ultra-fast Gaussian communication pulses confirms
the reliability of the method and its straightforward applicability in the dispersion-
managed case is also shown. The conclusions are given in Section 6.
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2 Governing Equation for Ultra-Fast Pulses
in a Single-Mode Fiber

The most general equation representing single-mode pulse propagation in a one-
dimensional optical fiber reads

∂A
∂ z

+
α
2

A+

(
∑
k≥1

βk
ik−1

k!
∂ k

∂ tk

)
A = iγ

(
1+

i
ω0

∂
∂ t

)
×
[

A
∫ ∞

−∞
R(t ′)|A(t − t ′)|2dt ′

]
.

(18.1)

Equation (18.1) is derived from the electric field of the Maxwell equations, cf.
[1], and describes the evolution of the slowly varying field envelope A(z, t) of the
complex-valued signal over the propagation distance z and time t. The coefficients
βk model signal dispersion. Since the refractive index n of the fiber material is de-
pendent on the light’s circular frequency ω , different spectral components asso-
ciated with a pulse travel at slightly different velocities, given by c/n(ω), with c
denoting the speed of light in vacuum. This effect is mathematically modeled by
expressing the mode propagation constant β in a Taylor series about the central
frequency ω0 = 2πc/λ0 as

β (ω) = n(ω)
ω
c
= ∑

k≥0

1
k!

βk(ω −ω0)
k. (18.2)

Here, the wavelength of the injected laser light is denoted by λ0 and the parameters
α and γ model linear signal loss and fiber nonlinearity, respectively. The function
R(t) represents intrapulse Raman scattering, a nonlinear effect transferring energy
from higher to lower light frequencies. Using R(t) = (1− fR)δ (t)+ fRhR(t) with
fR = 0.18 [4] as Raman response function, applying a Taylor series expansion and
neglecting higher order terms, Eq. (18.1) eventually becomes
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∂ |A|2
∂ t

)
.

(18.3)

In general, Eq. (18.4) is widely accepted as a valid model for modeling the propa-
gation of pulses with a half width T0 > 10fs [1]. For λ0 = 1550nm, a typical value
for the Raman response parameter is TR = 3fs. The first nonlinear term on the right-
hand side of Eq. (18.3) is called the Kerr nonlinearity and the second represents
nonlinear pulse self-steepening.

Introducing the signal group velocity v with β1 = 1/v and using the transforma-
tion T ≡ t − z/v into retarded time T , Eq. (18.3) is transformed into the frame of
reference of the pulse to read

∂A
∂ z

+
α
2

A+ i
β2

2
∂ 2A
∂T 2 − β3

6
∂ 3A
∂T 3 = iγ

(
A|A|2 + iS

∂
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(
A|A|2)−TRA

∂ |A|2
∂T

)
,

(18.4)
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where we have also introduced S = ω−1
0 . For T0 , 1ps, the last two terms can be

neglected and Eq. (18.4) reduces to

∂A
∂ z

+
α
2

A+ i
β2

2
∂ 2A
∂T 2 − β3

6
∂ 3A
∂T 3 = iγA|A|2, (18.5)

where β3 ≡ 0 can be employed if λ0 is not close to the zero-dispersion wavelength.

3 Numerical Methods for Ultra-Fast Pulses
in Single-Mode Fibers

3.1 Split-Step Fourier Approach

In order to develop a numerical solution method, Eq. (18.4) is commonly written in
the form
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N

A,

(18.6)

where we denote with D(A) the operator of all terms linear in A and with N(A) the
operator of all nonlinearities. Using these definitions, we write Eq. (18.6) in short as

∂A
∂ z

= (D+N)A. (18.7)

If one assumes D and N to be independent of z, Eq. (18.7) can be integrated exactly
and the solution at z+ h reads

A(z+ h,T) = exp(h(D+N))A(z,T ). (18.8)

The last expression forms the basis of split-step numerical methods [1]. Note, how-
ever, that the operators D and N in general do not commute and that it corresponds
to an O(h) approximation to replace Eq. (18.8) with exp(hD)exp(hN)A(z,T ). A
commonly used symmetric approximation is [24, 6]

A(z+ h,T) = exp

(
h
2

D

)
exp(hN)exp

(
h
2

D

)
A(z,T ). (18.9)

Utilizing the Baker-Campbell-Hausdorff formula for expanding two non-commuting
operators, Eq. (18.9) can be proven to be an O(h2) approximation [19]. Comprehen-
sive descriptions of the split-step approach for simulating pulse propagation in fibers
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are given for instance by Agrawal [1] and Hohage & Schmidt [10]. The efficiency
of the SSFM, especially for longer propagation distances, as required for modeling
optical communication lines, can be improved by taking solution adaptive steps in
space as proposed by Sinkin et al. [21].

Alternatively, one may also construct a fractional step splitting method by solving

∂A
∂ z

= DA ,
∂A
∂ z

= N(A)A = N̄(A) (18.10)

successively, which we approximate with the symmetric fractional step method

A∗ = exp

(
h
2

D

)
A(z,T ) , (18.11a)

A∗∗ = A∗+ hN̄(A∗) , (18.11b)

A(z+ h,T) = exp

(
h
2

D

)
A∗∗. (18.11c)

Note that step (18.11b) is written here as a simple explicit Euler method to motivate
the fundamental idea but schemes described below are in fact more complicated.

3.2 Linear Sub-steps

Since the dispersion parameters β2 and β3 are very small, discretization of the tem-
poral derivatives in D by finite differences and approximation in physical time is
no viable option. Instead, Fourier transformation into frequency space is commonly
applied. The linear operator then becomes

exp

(
h
2

D

)
A(z,T ) = F−1 exp

[
h
2

(
i
β2

2
ω2 − i

β3

6
ω3 − α

2

)]
FA(z,T ), (18.12)

where F and F−1 denote Fourier and inverse Fourier transformation, respectively.
In the practical implementation, discrete Fourier transformation needs to be used
and for ω we employ the discrete frequency spectrum

{ jΔω : j ∈ Z ∧ −N ≤ j ≤ N − 1} (18.13)

with spectral width Δω = π/(NΔT ). Here, it is assumed that the temporal window
traveling with the pulse is discretized with 2N points (note that discrete Fourier
transformation algorithms are specially efficient if the number of points is a power
of 2), ΔT denotes the temporal discretization width and the temporal window has
the extensions [−NΔT,(N − 1)ΔT ].
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3.3 Nonlinear Sub-steps

The nonlinear operator N of the split-step method (18.9) is discretized in physical
space. Utilizing |A|2 = AĀ to eliminate 1/A, we write N(A) in the form

N(A) = iγ
(
|A|2 + iSĀ

∂A
∂T

+[iS−TR]
∂ |A|2
∂T

)
. (18.14)

A consistent numerical method can be constructed by simply approximating the
temporal derivatives in Eq. (18.14) by complex-valued first-order central differences
and applying Eq. (18.9). The resulting split-step scheme would be second-order ac-
curate in time and space. However, it is also clear that central finite differences
will result in Gibbs phenomena (cf. [13]) when strong self-steepening occurs or the
propagation of an initially discontinuous signal needs to be simulated.

An alternative approach for handling N(A) is to apply forward and inverse
Fourier transformation individually to the derivatives, cf. [16]. For instance, in

(18.14) one simply replaces Ā∂T A and ∂ |A|2
∂T with ĀF−1(iωF(A)) and F−1

(iωF(|A|2), respectively, thereby neglecting the dependence of Ā on T . The result
is class of numerical operators that would generally not be consistent in the strict
mathematical sense with N(A) and that are not uniquely defined, with different au-
thors arriving at slightly different discretizations of Eq. (18.14), cf. [16] and [2].
Therefore, we have opted to pursue a different approach, which can handle self-
steepening and arbitrary signal shapes without artificial numerical oscillations. This
method is based on solving

∂A
∂ z

=

(
−α

2
− i

β2

2
∂ 2

∂T 2 +
β3

6
∂ 3

∂T 3

)
︸ ︷︷ ︸

D

A+ iγ
(

A|A|2 + iS
∂
∂T

(
A|A|2)−TRA

∂ |A|2
∂T

)
︸ ︷︷ ︸

N̄(A)

(18.15)

within the fractional step method (18.11). Specific to our approach is that we dis-
cretize and numerically solve the complete sub-operator

∂A
∂ z

= N̄(A) = iγ
(

A|A|2 + iS
∂
∂T

(
A|A|2)−TRA

∂ |A|2
∂T

)
(18.16)

directly. Using the Madelung transformation [17, 23] A(z, t) =
√

I(z, t)eiφ(z,t), one
can transform Eq. (18.16) into the equivalent system of partial differential equations

∂ I
∂ z

+ 3γSI
∂ I
∂T

= 0, (18.17a)

∂φ
∂ z

+ γSI
∂φ
∂T

+ γTR
∂ I
∂T

= γI (18.17b)
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of the real-valued quantities intensity I and phase φ . If we write the latter in the
form

∂
∂ z

[
I
φ

]
+

[
3γSI 0
γTR γSI

]
∂

∂T

[
I
φ

]
=

[
0
γI

]
, (18.18)

its structure as a hyperbolic advection problem

∂q
∂ z

+M(q)
∂q
∂T

= s(q) (18.19)

with q=(I,φ)T becomes apparent. The matrix M(q) has the eigenvalues λ1 = 3γSI,
λ2 = γSI and a unique eigendecomposition for I �= 0. Here we propose a numerical
method for (18.18) that considers the characteristic information, i.e., the sign of the
eigenvalues of M(q) for constructing one-sided (aka “upwinded”) differences for
the temporal derivatives, as it is required for a reliable and robust method following
the theory of hyperbolic problems (cf. [22]).

Again, we adopt an operator splitting technique and, instead of discretizing
(18.19) directly, alternate between solving the homogeneous partial differential
equation

∂zq+M(q)∂T q = 0 (18.20)

and the ordinary differential equation

∂zq = s(q) (18.21)

successively, using the updated data from the preceding step as initial condition. A
first-order accurate upwind scheme for (18.20) can be derived easily based on the
discrete update formula [15]

qn+1
j = qn

j −
h

ΔT

(
M̂−(q j+1,q j)Δqn

j+1/2 + M̂+(q j,q j−1)Δqn
j−1/2

)
(18.22)

with Δqn
j+1/2 = qn

j+1 −qn
j , where we assume a computational grid with equidistant

mesh widths ΔT in time indexed with j ∈Z, where −N ≤ j ≤N−1, cf. Section 3.2.
The spatial update steps are indexed by n ∈ N0. In general, the matrices M̂+ and
M̂− indicate decompositions of M with only positive and negative eigenvalues, re-
spectively. However, in the case of Eq. (18.18) the eigenvalues have the same sign,
which depends solely on the sign of γ (since I ≥ 0). Based on (18.22), we construct
a straightforward upwind scheme for Eq. (18.18) that reads

In+1
j = In

j −
h

ΔT

[
3γSĨn

j Δ In
j

]
, (18.23a)

φ̄n+1
j = φn

j −
h

ΔT

[
γTRΔ In

j + γSĨn
j Δφn

j

]
, (18.23b)

φn+1
j = φ̄n+1

j + hγIn+1
j (18.23c)
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with

Ĩn
j =

1
2

(
In

j + In
j−1

)
, Δ In

j = In
j − In

j−1 for γ > 0,

Ĩn
j =

1
2

(
In

j + In
j+1

)
, Δ In

j = In
j+1 − In

j for γ < 0.

When computing the phase difference Δφn
j , it is of crucial importance to remember

that phase is given only modulo 2π . Here, we have obtained reliable and stable
results by ensuring that the smallest possible difference Δφn

j modulo 2π is applied
in (18.23b). Using the auxiliary variable

Δθ =

{
φn

j −φn
j−1, for γ > 0,

φn
j+1 −φn

j , for γ < 0.
(18.24)

and Δτn
j = min

{
|Δθ n

j |, |Δθ n
j + 2π |, |Δθ n

j − 2π |
}

we evaluate Δφn
j as

Δφn
j =

⎧⎨
⎩

Δθ n
j , if |Δθ n

j |= Δτn
j ,

Δθ n
j + 2π , if |Δθ n

j + 2π |= Δτn
j ,

Δθ n
j − 2π , if |Δθ n

j − 2π |= Δτn
j .

(18.25)

The scheme (18.23) is of first-order accuracy and thereby entirely free of producing
numerical oscillations in the approximation of Eq. (18.15) provided that the stability
condition

3|γ|Smax
j

{
In

j

} h
ΔT

≤ 1 (18.26)

is satisfied. Our present implementation guarantees (18.26) under all circumstances
by having the ability to adaptively take k steps with step size Δz with h= kΔz within
the central, nonlinear sub-step (18.11b) when required. Note, however, that for all
computations presented in here the stability conditions (18.26) was always already
satisfied for k = 1.

To complete the algorithmic description we remark that we set I0
j := |A∗

j |2
and φ0

j := arg(A∗
j) after sub-step (18.11a) and compute A∗∗

j =
√

Ik
j e

iφ k
j before

step (18.11c). Periodic boundary conditions could be implemented by one layer of
halo points. But note that thanks to the directional dependence, inherent to (18.23)
and (18.24), it suffices to update only the upstream halo point, that is the one with
index j = −N − 1 for γ > 0 and the one with j = N in case γ < 0 before applying
the upwind scheme.

3.4 High-Resolution Upwind Scheme

To enable overall second-order numerical accuracy of the fractional step method
(18.11), in case the solution is smooth and differentiable, it is necessary to extend
the homogeneous nonlinear update (18.22) to a high-resolution scheme. For this
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purpose, we have developed a special MUSCL-type slope-limiting technique of
the solution vector q. Originally proposed by van Leer for hyperbolic equations in
conservation law form [14], application to quasilinear systems is not apparent. In-
spired by Ketcheson & LeVeque [12], we formulate our high-resolution method as

qn+1
j =qn

j −
h

ΔT

(
M̂−Δq�

j+1/2+M̂+Δq�
j−1/2+M̂Δq�

j

)
(18.27)

with Δq�
j+1/2 = ql

j+1 − qr
j, Δq�

j−1/2 = ql
j − qr

j−1, and Δq�
j = qr

j − ql
j . Here, ql/r

j
refers to slope-limited values constructed for each component of q separately as

qr
j = q̄ j +

1
4σ j, ql

j = q̄ j − 1
4σ j (18.28)

with reconstructed linear local slope

σ j = Φ

(
Δ j− 1

2

Δ j+ 1
2

)
Δ j+ 1

2
+Φ

(
Δ j+ 1

2

Δ j− 1
2

)
Δ j− 1

2
(18.29)

with Δ j−1/2 = q̄ j − q̄ j−1, Δ j+1/2 = q̄ j+1 − q̄ j. In the latter, Φ(·) is a typical limiter
function, where we utilize in here exclusively the van Albada limiter

Φ(r) = max
(
0,(r2 + r)/(1+ r2)

)
. (18.30)

To permit second-order accuracy overall, we do not utilize in (18.28) the discrete
values from the previous step qn but instead intermediate values q̄ computed as

q̄ j = qn
j −

h
2ΔT

(
M̂−Δqn

j+1/2 + M̂+Δqn
j−1/2

)
. (18.31)

The consecutive application of (18.27) and (18.31) corresponds to an explicit 2-
step Runge-Kutta method in the spatial update. Finally, a second-order accurate
symmetric operator splitting [24, 6] is employed to integrate Eq. (18.21) before and
after the high-resolution scheme. Thanks to the simplicity of s(q) using an explicit
Euler method for this step is equivalent to an explicit 2-step Runge-Kutta update.

We want to point out that the first-order method (18.23) as well as the MUSCL-
based second-order scheme are equally applicable for TR = 0 and especially in the
singular case S = 0, which allows deactivation of Raman scattering and/or self-

steepening if desired. Note that for S = 0 or max
j

{
In

j

}
= 0, the stability condi-

tion (18.26) is trivially satisfied.

3.5 Simulation of a Propagating Pulse

In order to demonstrate the described numerical method we simulate the propaga-
tion of a Gaussian pulse with initial shape

A(0,T ) =
√

P0 exp

(
−1+ iC

2
T 2

T 2
0

)
(18.32)
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Fig. 18.1 Simulated signal
at Lmax = 1km (temporal
window enlarged) for Bench-
mark 1. The initially Gaussian
pulse, cf. Eq. (18.32), with
half width T0 = 80fs has
broadened severely because
of second-order dispersion.
Asymmetric high-frequency
oscillations have been added
by third-order dispersion ef-
fects. Maximal signal strength
is reduced by a factor of
∼ 13.9.
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in a homogeneous fiber. The fiber is assumed to be lossless (α = 0) for simplic-
ity as the omitted linear weakening of the signal is unproblematic for any nu-
merical scheme. We use the SSFM in line with Eq. (18.11) with second-order ac-
curate upwind-based nonlinear operator, cf. Section 3.4, and Van Albada slope-
limiter (18.30).

Used parameters correspond to a typical ultra-short communication pulse with
P0 = 0.625mW, T0 = 80fs, and no chirp, i.e., C = 0. The central wavelength is
set to λ0 = 1550nm, from which one computes the self-steepening parameter S =
λ0/2πc, with c denoting the speed of light in vacuum. Raman scattering is activated
with TR = 3fs. Realistic fiber parameters β2 = 0.5ps2 km−1, β3 = 0.07ps3 km−1 and
γ = 0.1W/m are used. For this configuration, the second-order dispersion length is
just Ld = T 2

0 /|β2| ≈ 12.8m, the third-order dispersion length is T 3
0 /|β3| ≈ 7.31m,

and the nonlinear length is Lnl = (γP0)
−1 = 16km. The pulse is assumed to travel a

distance of just Lmax = 1km and the simulated temporal window moving with the
pulse has the width [−30ps,30ps−ΔT ].

Figure 18.1 shows the computed solution using a temporal discretization of
2N points for N = 2048 and after taking M = 100 spatial steps of equal size of
h= 10m. Because of the very small second- and third-order dispersion lengths, typ-
ical for ultra-fast pulses, the final signal shape is clearly dominated by dispersion
effects. Second-order dispersion has introduced severe pulse broadening, reducing
the maximum in power by a factor of ∼ 13.9; third-order dispersion has added high-
frequency oscillations.

A detailed numerical analysis verifies the convergence and expected order of
accuracy of the scheme. Starting from N = 512 and h= 40m (M = 25 steps), in each
successive computation the number of Fourier modes and spatial steps is doubled.
The numerical error at Lmax is measured for the intensity of the signal in the discrete
maximum norm

E∞ = max
j∈{−N,N−1}

|I j − Iref( jΔT )|, (18.33)

where a highly resolved result with N = 131,072 and M = 6400 is used as refer-
ence solution Iref. Figure 18.2 visualizes the numerical error E∞ over h and it is
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Fig. 18.2 Numerical error E∞ over h for Benchmark 1. The dotted line corresponds to ideal second
order approximation accuracy.
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Fig. 18.3 Benchmark 2: Maximal power over distance with and without dispersion management.

eminent that the method achieves almost perfect second-order approximation ac-
curacy and reliable, robust convergence. A more detailed numerical study of the
second-order accurate upwind-based SSFM including comparisons with several al-
ternative numerical methods can be found in [5].

3.6 Spatially Dependent Fiber Parameters

Continued propagation of the pulse of Figure 18.1 will invariably lead to a signal
which has broadened to such an extent that it cannot be used for digital communica-
tion. Yet, this problem can be compensated surprisingly easily by combining fiber
sections with positive and negative dispersion characteristics into a single commu-
nication line. This technique is called dispersion management and has been studied
extensively both theoretically and numerically because of its practical significance
for long-distance fiber optical communication [18, 20, 3]. Instead of Eq. (18.15),
one considers the extended variant
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Fig. 18.4 Benchmark 2: Pulse shape and spectrum after propagating 100km or experiencing 25
soliton-like oscillations from alternating signs of dispersion parameters.

∂A
∂ z

=

(
−α(z)

2
− i

β2(z)
2

∂ 2

∂T 2 +
β3(z)

6
∂ 3

∂T 3

)
A

+ iγ(z)
(

A|A|2 + iS
∂
∂T

(
A|A|2)−TRA

∂ |A|2
∂T

)
(18.34)

as governing equation. Adopting the practical viewpoint that the spatial numerical
steps of any SSFM will be significantly larger than the spatial extension correspond-
ing to the used temporal simulation window moving with the pulse, a straightfor-
ward numerical method for Eq. (18.34) can be constructed by simply averaging the
spatially dependent parameters between discrete propagation steps, i.e., by using

β̄{2,3}, j =
2
h

z j+
h
2∫

z j

β{2,3}(ξ )dξ , ᾱ j =
2
h

z j+
h
2∫

z j

α(ξ )dξ (18.35)

in the linear numerical operator (18.12) and by using

γ̄ j =
1
h

z j+h∫
z j

γ(ξ )dξ (18.36)

in the nonlinear operator approximating (18.16).
In practice, very sophisticated dispersion management designs might be em-

ployed (for instance, Guo & Huang [8] propose an exponential decrease of |β2|
to accommodate better for linear loss). Here, we simply extend the example of Sec-
tion 3.5 and alternate the sign of β2 and β3 every 2km. All other parameters are unal-
tered and for an example computation we use N = 4096 and h = 40m (M = 2500)
to simulate a pulse propagation over a distance of 100km. In the fiber sections with
negative dispersion parameters, the pulse deterioration is effectively reversed and
the pulse shape mostly recovered. The pulse is undergoing a soliton-like oscilla-
tion with a period of 4km, which can be inferred from Figure 18.3. This graphic
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compares the pulse power peak over distance in the simulation with periodic disper-
sion management and when the computation of the previous section is continued to
a length of 10km. In Figure 18.4 are compared the shape and spectra of the initial
Gaussian pulse and of the signal after propagating for 100km. The observed slight
signal delay and spectral modification is the combined effects of the nonlinearities.
If γ = 0 is used, the initial signal is exactly recovered.

4 Governing Equations for Two Interacting Ultra-Fast Pulses

Data throughput can be increased significantly if multiple optical fields of differ-
ent wavelengths propagate simultaneously inside the fiber. However, these fields
would interact with one another through all the fiber nonlinearities. Additionally
if three or more fields are initially present, even new signal fields can be induced
(aka four-wave mixing [1]). Therefore, we consider in the following only the case
of two interacting signal fields propagating through an optical fiber, for which there
is already some agreement about the structure of the governing equations in the lit-
erature [11]. Extensions of the ultra-fast pulse propagation equation (18.3) to three
or more interacting fields are still a topic of active research.

We assume two pulses at carrier frequencies ω(1)
0 , ω(2)

0 , and two nonlinear con-
stants γ1, γ2. It is further assumed that the cross-phase modulation of each frequency
can be expressed for all higher order nonlinear terms by positive factors B1, B2,
the cross-phase modulation in the Kerr nonlinearity by factors C1, C2. Extending
Eq. (18.3) accordingly, we use the model equations

∂A1

∂ z
=− α1

2
A1 −β (1)

1
∂A1

∂ t
− i

β (1)
2

2
∂ 2A1

∂ t2 +
β (1)

3

6
∂ 3A1

∂ t3 + iγ1
(|A1|2 +C1|A2|2

)
A1

− γ1

ω(1)
0

[
∂
(|A1|2A1

)
∂ t

+B1
∂
(|A2|2A1

)
∂ t

]
− iγ1TR

[
∂ |A1|2

∂ t
+B1

∂ |A2|2
∂ t

]
A1,

(18.37a)

∂A2

∂ z
=− α2

2
A2 −β (2)

1
∂A2

∂ t
− i

β (2)
2

2
∂ 2A2

∂ t2 +
β (2)

3

6
∂ 3A2

∂ t3 + iγ2
(|A2|2 +C2|A1|2

)
A2

− γ2

ω(2)
0

[
∂
(|A2|2A2

)
∂ t

+B2
∂
(|A1|2A2

)
∂ t

]
− iγ2TR

[
∂ |A2|2

∂ t
+B2

∂ |A1|2
∂ t

]
A2.

(18.37b)

Note that (18.37) encompasses the model actually adopted for simulation by

Kalithasan et al. in [11]. Using β ( j)
1 = 1/v j and the transformation T ≡ t − β ( j)

1 z
into retarded time yields



616 R. Deiterding and S.W. Poole

∂A1

∂ z
=− α1

2
A1 − i

β (1)
2

2
∂ 2A1

∂T 2 +
β (1)

3

6
∂ 3A1

∂T 3 + iγ1
(|A1|2 +C1|A2|2

)
A1

− γ1S1

[
∂
(|A1|2A1

)
∂T

+B1
∂
(|A2|2A1

)
∂T

]
− iγ1TR

[
∂ |A1|2

∂T
+B1

∂ |A2|2
∂T

]
A1,

(18.38a)

∂A2

∂ z
=− α2

2
A2 − δ

∂A2

∂T
− i

β (2)
2

2
∂ 2A2

∂T 2 +
β (2)

3

6
∂ 3A2

∂T 3 + iγ2
(|A2|2 +C2|A1|2

)
A2

− γ2S2

[
∂
(|A2|2A2

)
∂T

+B2
∂
(|A1|2A2

)
∂T

]
− iγ2TR

[
∂ |A2|2

∂T
+B2

∂ |A1|2
∂T

]
A2,

(18.38b)

with δ = (v1 − v2)/(v1v2) representing the group velocity mismatch between both

fields. As before we use Sk = 1/ω(k)
0 for k = 1,2.

In the regime of pico-second pulses, that is for pulses with T0 , 1ps, two-mode
extensions of Eq. (18.5) are well established. Setting Sk = 0, TR = 0 and using Ck = 2
in (18.38), we obtain the frequently used [1] cross-phase modulation model

∂A1

∂ z
=

(
−α1

2
− i

β (1)
2

2
∂ 2

∂T 2 +
β (1)

3

6
∂ 3

∂T 3

)
︸ ︷︷ ︸

D(1)

A1+ iγ1
(|A1|2 + 2|A2|2

)
︸ ︷︷ ︸

N(1)

A1,

(18.39a)

∂A2

∂ z
=

(
−α2

2
− δ

∂
∂T

− i
β (2)

2

2
∂ 2

∂T 2 +
β (2)

3

6
∂ 3

∂T 3

)
︸ ︷︷ ︸

D(2)

A2+ iγ2
(|A2|2 + 2|A1|2

)
︸ ︷︷ ︸

N(2)

A2,

(18.39b)

which we write as

∂A1

∂ z
=

(
D(1) +N(1)(A1,A2)

)
A1,

∂A2

∂ z
=

(
D(2) +N(2)(A1,A2)

)
A2. (18.40)

5 Numerical Methods for Two Interacting Ultra-Fast Pulses

5.1 Extended Split-Step Fourier Method

Taking advantage of the fact that the linear operators D(k) only need to be applied to
each field Ak, an SSFM for approximating solutions of system (18.39) – in line with
Eq. (18.9) – is easily constructed as
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A∗
1 = exp

(
h
2

D(1)
)

A1, A∗
2 = exp

(
h
2

D(2)
)

A2, (18.41a)

A∗∗
1 = exp

(
hN(1)(A∗

1,A
∗
2)
)

A∗
1, A∗∗

2 = exp
(

hN(2)(A∗∗
1 ,A∗

2)
)

A∗
2 (18.41b)

A1(z+ h) = exp

(
h
2

D(1)
)

A∗∗
1 , A2(z+ h) = exp

(
h
2

D(2)
)

A∗∗
2 . (18.41c)

Obviously, the numerical operators of (18.41b) and (18.41c) acting on each fields
can be executed consecutively. The linear operator D(1) is identical to (18.12). For
D(2) we have

exp

(
h
2

D(2)
)

A2 = F−1 exp

[
h
2

(
−iδω + i

β (2)
2

2
ω2 − i

β (2)
3

6
ω3 − α2

2

)]
FA2.

(18.42)
A second-order accurate scheme can be expected if (18.41b) is replaced with a sym-
metric splitting scheme such as

A�
1 = exp

(
h
2

N(1)(A∗
1,A

∗
2)

)
A∗

1, (18.43a)

A∗∗
2 = exp

(
hN(2)(A�

1,A
∗
2)
)

A∗
2, (18.43b)

A∗∗
1 = exp

(
h
2

N(1)(A�
1,A

∗∗
2 )

)
A�

1. (18.43c)

5.2 Nonlinear Sub-steps

While the derivation of an SSFM for the simplified system (18.39) is apparently
a straightforward task, formulation of a reliable numerical method for the sys-
tem of propagation equations for two coupled ultra-fast pulsed signals, (18.38), is
more involved. In particular, when the equations of (18.38) are written in the form
∂zAk = (D(k) +N(k))Ak one quickly finds that due to the cross-phase coupling the
factor 1/Ak of the self-steepening term cannot be eliminated from N(k) as it was done
to obtain Eq. (18.14). This leaves a singularity in the operator for vanishing signals
and neither the centered difference method nor particularly an ad hoc Fourier trans-
formation technique, sketched both in the beginning of Section 3.3, are available
anymore for numerical method construction. However, we will demonstrate subse-
quently how our upwind-based discretization technique of Section 3.3 can be easily
extended to (18.38), yielding a reliable and robust numerical method.



618 R. Deiterding and S.W. Poole

We start the derivation of the method by inserting the linear operators from (18.39)
into (18.38) to obtain

∂Ak

∂ z
= D(k)Ak + iγk

(|Ak|2 +Ck|Al |2
)

Ak

−γkSk

[
∂
(|Ak|2Ak

)
∂T

+Bk
∂
(|Al |2Ak

)
∂T

]
− iγkTR

[
∂ |Ak|2
∂T

+Bk
∂ |Al |2
∂T

]
Ak

(18.44)
for k, l ∈ {1,2} and k �= l. In analogy to Section 3.3, we assume a fractional step
approach in the spirit of Eq. (18.11) that considers the linear operators with the
update steps (18.41a) and (18.41c) and approximates the nonlinear sub-operator
equations

∂Ak

∂ z
= N̄(k)

(Ak,Al) = iγk
(|Ak|2 +Ck|Al |2

)
Ak

−γkSk

[
∂
(|Ak|2Ak

)
∂T

+Bk
∂
(|Al |2Ak

)
∂T

]
− iγkTR

[
∂ |Ak|2
∂T

+Bk
∂ |Al |2
∂T

]
Ak.

(18.45)

Using again Madelung transformation for each field, i.e., Ak(z, t) =
√

Ik(z, t)eiφk(z,t),
we obtain the transport equations for the intensities Ik and the phases φk instead
of (18.45) as

∂ Ik

∂ z
+ γkSk

[
(3Ik +BkIl)

∂ Ik

∂T
+ 2BkIk

∂ Il

∂T

]
= 0, (18.46a)

∂φk

∂ z
+ γkSk (Ik +BkIl)

∂φk

∂T
+ γkTR

[
∂ Ik

∂T
+Bk

∂ Il

∂T

]
= γk (Ik +CkIl) . (18.46b)

The latter defines a single system of advection equations that couples the fields Ak

and Al . Using the state vector u = (I1,φ1, I2,φ2)
T , this system reads

∂u
∂ z

+B(u)
∂u
∂T

= r(u), (18.47)

with matrix

B(u) =

⎡
⎢⎢⎣

γ1S1(3I1 +B1I2) 0 2γ1S1B1I1 0
γ1TR γ1S1(I1 +B1I2) γ1TRB1 0

2γ2S2B2I2 0 γ2S2(3I2 +B2I1) 0
γ2TRB2 0 γ2TR γ2S2(I2 +B2I1)

⎤
⎥⎥⎦

(18.48)

and right-hand side

r(u) = (0,γ1 (I1 +C1I2) ,0,γ2 (I2 +C2I1))
T . (18.49)
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In order to verify the hyperbolicity of Eq. (18.47) and for constructing an upwind
scheme, one would require the eigendecomposition B = RΛR−1. However, the
necessary linear algebra is very involved and is additionally complicated by the
singular cases Ik = 0, which have to be considered separately in order to construct
a generally robust numerical scheme. To simplify the latter, we have opted to use
a splitting approach and update the fields Ak and Al successively. Instead of solv-
ing the combined system (18.47) we construct an approximation to (18.46) under
the assumption that Il is independent of z. Proceeding then as in Section 3.3, we
write (18.46) as the advection system

∂q(k)

∂ z
+M(k)(q(k))

∂q(k)

∂T
= s(k)(q(k)), (18.50)

with vector of state q(k) = (Ik,φk, Il)
T , matrix

M(k)(q(k)) =

⎡
⎣ γkSk(3Ik +BkIl) 0 2γkSkBkIk

γkTR γkSk(Ik +BkIl) γkTRBk

0 0 0

⎤
⎦ (18.51)

and source term
s(k)(q(k)) = (0,γk (Ik +CkIl) ,0)

T . (18.52)

The nonzero eigenvalues of M(k) are γkSk(3Ik + BkIl) and γkSk(Ik + BkIl). Since
Bk ≥ 0 and Ik/l ≥ 0 hold true, both eigenvalues have again the same sign, solely
determined by the sign of γk. Following the upwind approach again we construct a
first-order accurate method for (18.50) as

In+1
k, j = In

k, j −
h

ΔT
γkSk

[
(3Ĩn

k, j +BkĨn
j,l)Δ In

k, j + 2BkĨn
k, jΔ In

l, j

]
, (18.53a)

φ̄n+1
k, j = φn

k, j −
h

ΔT
γk

[
TR(Δ In

k, j +BkΔ In
l, j)+ Sk(Ĩ

n
k, j +BkĨn

l, j)Δφn
k, j

]
, (18.53b)

φn+1
k, j = φ̄n+1

k, j + hγk

(
In+1
k, j +CkIn

l, j

)
, (18.53c)

where

Ĩn
k/l, j =

1
2

(
In
k/l, j + In

k/l, j−1

)
, Δ In

k/l, j = In
k/l, j − In

k/l, j−1 for γk > 0,

Ĩn
k/l, j =

1
2

(
In
k/l, j + In

k/l, j+1

)
, Δ In

k/l, j = In
k/l, j+1 − In

k/l, j, for γk < 0.

As before, Δφn
k, j is evaluated modulo 2π using Eqs. (18.24) and (18.25) and the

stability condition reads

|γk|Skmax
j

{
3Ik, j +BkIl, j

} h
ΔT

≤ 1. (18.54)
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By construction, the single-field upwind method (18.53) computes only new values
for Ik and φk, while the intensity of the other field, Il , is assumed to remain un-
changed. In order to achieve an update of both fields, and thereby approximation of
(18.47), we apply the single-field upwind scheme within a symmetric fractional-step
splitting method, i.e.

A�
1 = A∗

1 +
h
2

N̄(1)
(A∗

1,A
∗
2), (18.55a)

A∗∗
2 = A∗

2 + hN̄(2)
(A�

1,A
∗
2), (18.55b)

A∗∗
1 = A�

1 +
h
2

N̄(1)
(A�

1,A
∗∗
2 ). (18.55c)

A symmetric SSFM is obtained by applying expressions (18.41a), (18.55), and
(18.41c) after another. Finally, the high-resolution technique, described in Sec-
tion 3.4, is adopted to implement a second-order accurate approximation to N̄(k),
where we presently apply slope-limited reconstruction to Ik and φk but not to Il .

5.3 Simulation of Two Interacting Propagating Pulses

We use a configuration with very strong nonlinearity and thereby nonlinear pulse
interaction to assess the reliability of the derived two-mode method. A fiber without

linear loss and third-order dispersion is assumed, i.e., α1,2 = 0 and β (1,2)
3 = 0, and

Raman scattering is also deactivated by setting TR = 0. To enforce a strong influ-

ence of the nonlinearities we use β (1,2)
2 = 4×10−5 ps2 km−1, γ1 = 1W/m, and γ2 =

1.2W/m. Two unchirped pulses in the range of ultra-short communication pulses

with T (1,2)
0 = 80fs and power levels of P(1)

0 = 0.625mW and P(2)
0 = 0.3125mW

are used. The first central wavelength is set to λ (1)
0 = 1550nm and the second to

λ (2)
0 = 1300nm. The group velocity mismatch parameter is set to δ = 0.015625fs/m

and the cross-phase modulation parameters read B1,2 =C1,2 = 2.
For this configuration, the second-order dispersion length is Ld = 160km and the

nonlinear lengths L(1)
nl = 1.6km and L(2)

nl = 2.667km, respectively. The approximate

optical shock distances [1], z(1,2)s =
√

eL(1,2)
nl ω(1,2)

0 T0/(3
√

2) are ∼ 60.491km and
∼ 120.216km, respectively. We use a propagation distance of Lmax = 64km, yield-
ing a temporal shift of the second pulse by exactly 1ps, and the temporal window
has the width [−4ps,4ps−ΔT ].

In Figure 18.5 is shown the computed solution using a temporal discretization
of 2N points for N = 2048 and after taking M = 3200 spatial steps of equal size
of h = 20m. Additionally are shown the solutions if each pulse travels individually.
These solutions are computed by keeping all other parameters unchanged while

setting P(2)
0 ≡ 0 and P(1)

0 ≡ 0, respectively. If only a single field is present, our two-
mode SSFM is identical to the previously developed single-mode SSFM, which
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Fig. 18.5 Benchmark 3: Pulse shape and spectrum after propagating 64km of two individual
highly nonlinear ultra-short single-mode pulses (solid lines) and when the two pulses are in-
teracting with one another in a two-mode fiber. The upper row corresponds to Pulse 1 with

P(1)
0 = 0.625mW; the lower row to Pulse 2 with P(2)

0 = 0.3125mW and δ = 0.015625fs/m causing
the pulse to arrive 1ps earlier.

was confirmed to be second-order accurate in Section 3.5. Note that the single-
mode solution of Pulse 1 was also used as a detailed computational benchmark in
[5] and is thereby available as a reference. From Figure 18.5 it can be seen that the
two non-interacting single-mode pulses exhibit a very similar shape and spectrum.
However, in the two-mode model particularly the faster and weaker second pulse is
significantly altered. Pulse 2, visualized in the lower row of Figure 18.5, experiences
considerable signal steepening from cross-phase modulation, which can be inferred
especially from its spectrum.

We use the same technical approach as in Section 3.5 to quantify the numeri-
cal error and order of accuracy of the two-mode SSFM. We double the temporal
resolution consecutively starting from N = 512 up to N = 16,384 and simultane-
ously divide the spatial step size by a factor of 2 respectively, starting with h = 80m
(M = 800 steps). The numerical error at Lmax is measured for I(1,2) in the maximum
norm, cf. Eq. (18.33), where results computed with N = 32,768 and h = 1.25m
(M = 51,200) are used as respective reference solutions. The computational errors
of a series of fully coupled two-mode results as well as the errors of single-mode
computations (cf. Figure 18.5) of both individual pulses are plotted in Figure 18.6.
In general, the example confirms that the proposed two-mode SSFM converges
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Fig. 18.6 Numerical error E∞ over h for Benchmark 3. The respective error of Pulse 1 is marked
with solid lines, the respective error of Pulse 2 with dotted lines. Single-pulse simulation results
are indicated with open squares, the fully coupled simulations are marked with closed circles. The
upper broken line corresponds to an order of accuracy ∼ 1.47, the lower one to an order of accuracy
of ∼ 2.20.

reliably and robustly even for a highly nonlinear coupled problem and performs
identical beside round-off errors to the single-mode method of Section 3.4 for un-
coupled individual pulses. While the single-mode SSFM with limiter (18.30) ac-
tually achieves slight super-convergence in this test case (the measured order of
accuracy is ∼ 2.20), the two-mode SSFM of Section 5.2 with same limiter yields
an approximate order of accuracy of ∼ 1.47. One might attribute this behavior to
the fractional splitting treatment of the nonlinear operator, (18.55). Note, however,
that increasing the number of spatial steps up to a factor of 8 in order to reduce
the splitting error of the nonlinear sub-operator resulted only in marginally smaller
numerical errors for this case, suggesting that the reduction of the order of accuracy
could also have a different origin.

5.4 Spatially Dependent Fiber Parameters

As final test case, the coupled propagation of the two Gaussian pulses of the
previous benchmark through the dispersion-managed communication line of Sec-
tion 3.6 is considered. Like in Section 3.6 we assume an optical communica-

tion line of 100km length with dispersion parameters |β (1,2)
2 | = 0.5ps2 km−1 and

|β (1,2)
3 | = 0.07ps3 km−1, which all change sign every 2km, and α(1,2) = 0, γ(1,2 =

0.1W/m, and TR = 3fs. As before, the parameters of the two unchirped Gaussian

pulses are P(1)
0 = 0.625mW, P(2)

0 = 0.3125mW, and T (1,2)
0 = 80fs. The wavelengths

are again λ (1)
0 = 1550nm and λ (1)

0 = 1300nm. The group velocity mismatch is
δ = 0.015625fs/m and cross-phase modulation parameters are B1,2 = C1,2 = 2.
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Fig. 18.7 Pulse shape and spectrum of two coupled pulses after propagating 100km through the
idealized dispersion-managed fiber of Benchmark 2.

The same computational parameters are used as in Section 3.6: The temporal win-
dow has the width [−30ps,30ps−ΔT ] and N = 4096, h = 40m are applied.

During propagation both pulses are experiencing almost undisturbed soliton-like
oscillations every 4km. Figure 18.7 compares the final signal shapes and spectra
with the respective initial ones, where Pulse 2 has been shifted for visualization by
−1.5625ps. Both pulses are delayed by roughly 10fs but the signal shape is quite
well preserved; the spectral alteration being rather moderate in both cases. In the left
graphic of Figure 18.7 Pulse 1 and 2 are easily distinguished; in the right graphic
the final spectra of Pulse 1 and 2 are specially indicated.

Finally, we comment on typical run times of the proposed split-step Fourier
methods. Our implementation is in FORTRAN 90 and uses the Netlib NAPACK
Fast Fourier Transformation (FFT) routines, which are coded in FORTRAN 77 [9].
Compiled with usual optimizations, the two-mode computation of Figure 18.5 re-
quired ∼ 48 seconds on a single Intel Xeon E5 CPU with 2.1GHz. Dependence on
the number of Fourier modes N as well as the number of spatial steps M is linear
and each computation of the convergence analysis of Figure 18.6 is therefore four
times more expensive than the next coarser one. On the same CPU, the dispersion-
managed two-mode simulation of Figure 18.7 ran for ∼ 100 seconds, its single-
mode analogue of Figure 18.4 required ∼ 40 seconds. These moderate run times
and the given results provide evidence for the relevance of the proposed numerical
methods for practical long-distance fiber optical communication line design.

6 Conclusions

Reliable extensions of the classical SSFM into the regime of ultra-fast pulses have
been derived and demonstrated for typical Gaussian communication pulses in highly
nonlinear and dispersion-managed long-distance optical fibers. The primary diffi-
culty in this regime lies in the appropriate mathematical treatment of the additional
nonlinear terms modeling signal self-steepening and stimulated Raman scattering.



624 R. Deiterding and S.W. Poole

For the case of the single-mode equation (18.3) and the two-mode system (18.37) it
was shown that under Madelung transformation all nonlinearities can be effectively
combined into an inhomogeneous system of advection equations of the signal inten-
sities and phases. Following upwind and slope-limiting ideas, originally developed
in the context of supersonic hydrodynamics, a robust numerical method is then de-
rived for the single-mode nonlinear sub-operator and incorporated into a symmetric
SSFM. Reliable convergence and numerical approximation accuracy of second or-
der is demonstrated for the overall method. While it would be principally feasible
to apply the exact same approach to the two-mode case and the correspondingly
derived four-dimensional system (18.47), we have opted for now for a mathemat-
ically less involved fractional step approach and apply two single-field nonlinear
sub-operators successively to approximate the solution of (18.47). This single-field
sub-operator is derived as a straightforward extension of the slope-limited upwind
method for the single-mode case. When the fractional step method for (18.47) is
used in a two-mode SSFM, the overall numerical scheme converges reliably, yet,
in a highly nonlinear test case only an order of accuracy of 1.5 has been mea-
sured. Future work will concentrate on developing an unsplit scheme for (18.47). It
is expected that such a method should obtain an order of accuracy close to 2 while
being of comparable computational expense and robustness as the two-mode SSFM
proposed in here.
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Chapter 19
Operator Splitting Methods with Error
Estimator and Adaptive Time-Stepping.
Application to the Simulation of Combustion
Phenomena

Stéphane Descombes, Max Duarte, and Marc Massot

Abstract Operator splitting techniques were originally introduced with the main
objective of saving computational costs. A multi-physics problem is thus split in
subproblems of different nature with a significant reduction of the algorithmic
complexity and computational requirements of the numerical solvers. Nevertheless,
splitting errors are introduced in the numerical approximations due to the separate
evolution of the split subproblems and can compromise a reliable simulation of the
coupled dynamics. In this chapter we present a numerical technique to estimate such
splitting errors on the fly and dynamically adapt the splitting time steps according
to a user-defined accuracy tolerance. The method applies to the numerical solution
of time-dependent stiff PDEs, illustrated here by propagating laminar flames inves-
tigated in combustion applications.
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1 Context and Motivation

Let us consider a scalar reaction–diffusion equation

∂t u− ∂ 2
x u = f (u), x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,

}
(19.1)

and represent the solution u(., t) as Ttu0, where Tt is the semi-flow associated
with (19.1). Given v0 and w0, an operator splitting approach amounts to consider
the following subproblems:

∂t v− ∂ 2
x v = 0, x ∈ R, t > 0,

v(x,0) = v0(x), x ∈ R,

}
(19.2)

and
∂tw = f (w), x ∈ R, t > 0,

w(x,0) = w0(x), x ∈ R.

}
(19.3)

We denote by Xtv0 and Ytw0, respectively, the solutions of (19.2) and (19.3). The
Lie (or Lie–Trotter [55]) splitting approximations to the solution of problem (19.1)
are thus given by

L t
1 u0 = XtY tu0, L t

2 u0 = YtXtu0. (19.4)

Lie approximations are of first order in time; second order can be achieved by using
symmetric Strang (or Marchuk [41]) formulas [53] to obtain

S t
1 u0 = Xt/2YtXt/2u0, S t

2 u0 = Yt/2XtY t/2u0. (19.5)

Even though higher order splitting schemes have been also developed, more sophis-
ticated numerical implementations are required and their applicability is currently
limited to specific linear or non-stiff problems (see, e.g., [17, 11, 33, 9] and discus-
sions therein). The main advantage of such a splitting approach is that problems of
different mathematical nature, in this case diffusion and reaction equations, can be
solved separately with dedicated numerical methods. The latter involves a signifi-
cant reduction of the algorithmic complexity of the overall method to advance the
fully coupled problem with a potential reduction of computational requirements.

However, the separate time evolution of the split subproblems during a given
splitting time step Δ t introduces the so-called splitting errors. These errors have
been mathematically characterized in the literature for general nonlinear problems
and sufficiently small splitting time steps, relying mainly on the Baker–Campbell–
Hausdorff formula on composition of exponentials together with Lie derivative
calculus (see, e.g., [31] for ODEs and [36] for PDEs). In particular, Lanser & Ver-
wer explicitly derived in [40] the splitting errors arising in the solution of reaction–
diffusion–convection equations. Within this theoretical framework and considering
an appropriate functional space, the following estimates can be thus derived for the
scalar nonlinear reaction–diffusion equation (19.1).
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Theorem 1. Given C∞
b (R), the space of functions of class C∞ on R and bounded

over R, let us introduce the Schwartz space S(R) defined by

S(R) = {g ∈ C∞(R) | sup
v∈R

|vα1∂α2
v g(v)|< ∞ for all integers α1,α2}

and define the space S1(R) made out of functions v belonging to C∞
b (R) such that v′

belongs to S(R).
Assume that u0 belongs to S1(R) and that f belongs to C∞(R). For Δ t small

enough, the following asymptotics hold

TΔ t u0 −LΔ t
2 u0 =

Δ t2

2
f ′′(u0)(∂xu0)

2 +O(Δ t3), (19.6)

and

T Δ tu0 −SΔ t
2 u0 =

Δ t3

24

[
f ′(u0) f ′′(u0)+ f (u0) f (3)(u0)

]
(∂xu0)

2

−Δ t3

12
f (4)(u0)(∂xu0)

4 − Δ t3

3
f (3)(u0)(∂xu0)

2∂ 2
x u0

−Δ t3

6
f ′′(u0)(∂ 2

x u0)
2 +O(Δ t4). (19.7)

Proof. It suffices to consider the Baker–Campbell–Hausdorff formula (see [31, 36])
and compute the corresponding Lie brackets (commutators in the case of linear op-
erators) containing the Lie derivatives associated with the nonlinear function f and
the Laplace operator Δ (see [20]). ��
Similar estimates can be derived for LΔ t

1 u0 and SΔ t
1 u0. More refined estimates that

characterize the dependences with respect to the norms of the initial data and the
nonlinearity can be also obtained using exact error representations. The following
theorem shows, for instance, the representation of T Δ tu0 −LΔ t

2 u0.

Theorem 2. Let us denote by D2 the derivative with respect to the initial condition,
under the same assumptions of Theorem 1 we have

T Δ t u0 −LΔ t
2 u0 =

∫ Δ t

0

∫ s

0
D2Tt−s(Y sXsu0)exp

(∫ s−r

0
f ′(Y σ+rXsu0)dσ

)
×

f ′′(Y rXsu0)exp

(
2
∫ r

0
f ′(Y σXsu0)dσ

)
(∂xXsu0)

2 drds.

Similar representations can be derived for LΔ t
1 u0, SΔ t

1 u0, and SΔ t
2 u0. These results

are due to a long series of papers and especially those of Michelle Schatzman, a
great contributor to operator splitting methods. Originally introduced in [49] for
linear operators, these exact representations of the local errors have been extended
in a more general functional setting in [24, 22] and in the nonlinear case in [23, 19].
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Even though theoretical estimates of splitting errors can be formally established
for general problems like (19.1), computing them in practice in multi-dimensional
configurations or for more complex models may rapidly become cumbersome. De-
veloping a splitting error estimator based on these theoretical estimates can hence
be inappropriate except for particular configurations like, for example, linear prob-
lems as proposed in [2]. On the other hand, splitting solvers that do not account for
splitting errors may yield numerical approximations that poorly reproduce the cou-
pled physical dynamics of the problem under investigation. The latter is even more
relevant if one takes into account that practical considerations often suggest the use
of relatively large splitting time steps in order to ease heavy computational costs
related to the numerical simulation of complex applications. In what follows we
present a numerical strategy to estimate splitting errors on the fly and hence adapt
splitting time steps to guarantee numerical approximations within a user-defined ac-
curacy tolerance. The scheme was originally introduced in [20] along with its cor-
responding mathematical analysis. Throughout this chapter we consider the scalar
nonlinear reaction–diffusion equation (19.1), although the same ideas are easily ex-
tended to multi-dimensional or more complex configurations, as well as to other
time-dependent stiff PDEs.

2 Splitting Error Estimator and Adaptive Time-stepping

In general an adaptive time-stepping technique relies on a dynamic numerical es-
timate of local errors; time steps are consequently set according to a predefined
accuracy tolerance. In our case estimating the splitting errors, for instance, (19.6)
and (19.7), constitutes the key issue since the physics of the problem may be sub-
stantially altered by the splitting procedure. Inspired by ODE solvers one way to
compute such an estimate considers a lower order scheme, embedded if possible in
the main numerical integration solver (see, e.g., [32]). This is a standard approach,
for instance, for Runge–Kutta methods.

Based on the S2-scheme in (19.5), let us consider the shifted Strang formula
introduced in [20],

SΔ t
2,εu0 = Y (1/2−ε)Δ tXΔ tY (1/2+ε)Δ tu0, (19.8)

for ε in (−1/2,0)∪ (0,1/2). To simplify the notations, we will denote St
2 by St

and St
2,ε by St

ε . Similar to Theorem 1 the following one was demonstrated in [20].

Theorem 3. Assume that u0 belongs to S1(R) and that f belongs to C∞(R). For Δ t
and ε small enough, the following asymptotic holds
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T Δ tu0 −SΔ t
ε u0 = −εΔ t2 f ′′(u0)(∂xu0)

2

Δ t3

24

[
f ′(u0) f ′′(u0)+ f (u0) f (3)(u0)

]
(∂xu0)

2

−Δ t3

12
f (4)(u0)(∂xu0)

4 − Δ t3

3
f (3)(u0)(∂xu0)

2∂ 2
x u0

−Δ t3

6
f ′′(u0)(∂ 2

x u0)
2 +O(εΔ t3)+O(Δ t4). (19.9)

Proof. See [20] Theorem 3.2. ��
Therefore, just like Lie schemes, the shifted Strang formula (19.8) yields first or-
der approximations. For ε equal to −1/2 (resp., 0) estimate (19.9) becomes (19.6)
(resp., (19.7)). In particular, from (19.7) and (19.9), we have that

SΔ tu0 −SΔ t
ε u0 = εΔ t2 f ′′(u0)(∂xu0)

2 +O(εΔ t3).

Given u0, we can thus compute two splitting approximations,(
SΔ t u0

SΔ t
ε u0

)
=

(
YΔ t/2XΔ tY Δ t/2u0

Y (1/2−ε)Δ tXΔ tY (1/2+ε)Δ tu0

)
, (19.10)

where the Sε -scheme is a lower order, embedded method with respect to the stan-
dard S-scheme. Embedding is accomplished as long as ε is different from −1/2,
i.e., St

2,ε is not Lt
2. Taking into account that

SΔ t u0 −SΔ t
ε u0 = SΔ tu0 −TΔ tu0 +TΔ t u0 −SΔ t

ε u0

= O(Δ t3)+O(Δ t2)≈ O(Δ t2), (19.11)

we define a splitting error estimator, err, and for a given accuracy tolerance, η , the
following must be verified

err =
∥∥SΔ tu0 −SΔ t

ε u0
∥∥≤ η ,

to assure local splitting errors bounded by η . Supposing that err ≈ CΔ t2 follow-
ing (19.11), we define a new splitting time step, Δ tnew, such that η ≈CΔ t2

new. There-
fore, the adaptive time-stepping is defined by

Δ tnew = υ Δ t

√
η

err
, (19.12)

with a security factor υ > 0, close to 1.
To summarize, given the numerical approximation un at a given time and the

splitting time step Δ tn, the time-stepping technique for a given η is performed as
follows:

1. Compute both splitting approximations:SΔ tn un and SΔ tn
ε un, following (19.10).
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2. Compute the splitting error estimator: err = ‖SΔ tnun −SΔ tn
ε un‖, and the new

splitting time step, Δ tnew, with (19.12).
3. If err ≤ η , the solution SΔ tnun is accepted: un+1 =SΔ tnun and Δ tn+1 = Δ tnew.

Otherwise, the solution is rejected and the time-stepping technique is restarted
with Δ tn = Δ tnew.

Notice that whenever a lower order, embedded scheme is used to estimate
local errors, the error estimator is actually measuring the numerical errors associated
with the low order approximation, computed here by the Sε -scheme. The splitting
error in the numerical solution is therefore over-estimated since the S-scheme is
formally of higher order. However, this is a safety choice to guarantee numerical
approximations within the user-defined accuracy tolerance. In particular a comple-
mentary numerical procedure was developed in [20] in order to dynamically choose
ε such that the estimator err yields closer estimates to the actual splitting errors
‖TΔ tnun −SΔ tn un‖, even for relatively large splitting time steps.

The shifted Strang formula (19.8) could also become the L1-scheme, if we let
ε be equal to 1/2. In this case the L1-scheme in (19.4) acts as the lower order,
embedded method for the S2-scheme, as proposed in [38] for non-stiff problems.
Nevertheless, it is well known in the context of stiff PDEs that order reductions
may arise, due to short-life transients associated with the fastest variables, when
one considers splitting time steps larger than the fastest scales. In particular it has
been mathematically proved in [52, 21, 39] that better performances are expected
when the splitting scheme ends with the stiffest operator. Having the Sε -scheme
as the embedded scheme, built analogously to the standard Strang formula with
the same stiffest operator as the ending step, involves similar behaviors in terms
of order reduction and overall numerical performance for relatively large splitting
time steps. Finally, the mathematical analysis was conducted in [20] in the case
of the scalar nonlinear reaction–diffusion equation (19.1); however, the asymptotic
estimate (19.9) would in general remain of O(εΔ t2) when considering other PDEs.

3 Dedicated Splitting Solver for Stiff PDEs

An operator splitting approach allows one to use appropriate solvers for each split
subproblems. In particular for splitting schemes resulting from composition meth-
ods like (19.4)–(19.5), the numerical stability of the splitting scheme is assured de-
pending on the stability properties of these solvers. That is, if the numerical solvers
used to advance each split subproblems are stable during a given splitting time step,
then the splitting approximation will remain stable. The latter involves that rela-
tively large splitting time steps can be considered without having any numerical
issue; however, the validity of results may be undermined by the splitting errors.
The technique summarized in Section 2 aims at tracking these errors, but it relies in
practice on a splitting solver that must be capable to cope with stiff PDEs.
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Let us make the following observations on splitting schemes for stiff PDEs:

1. The exact solutions of the split subproblems are considered in the classical anal-
ysis of splitting schemes, given here by the semi-flows Xt · and Yt ·, associated
with equations (19.2) and (19.3), respectively. This is also the case for the Sε -
scheme introduced in [20].

2. For sufficiently large splitting time steps, the intermediate splitting approxi-
mations may drift away from the coupled dynamics. The latter may introduce
potentially fast transients or boundary layers immediately after a split operator
has been applied [58, 46].

3. As previously said, for relatively large splitting time steps, better performances
are expected with splitting schemes that end with the stiffest operator
[52, 21, 39].

We consider here the dedicated splitting solver developed in [28] to address the
latter three remarks. This solver was originally conceived for stiff reaction–diffusion
models, but the same ideas can be extended to other configurations.

In terms of the numerical methods used to solve the split subproblems, we con-
sider one-step and high order schemes with appropriate stability properties and time-
stepping features, based on the following precepts [28]:

• One-step schemes are preferred over multi-step ones because of the initial pro-
cedure needed by the latter to start the algorithm. For splitting schemes this
starting procedure would be performed at least once at every splitting time step
and might coincide with the fast transient regimes, hence involving more com-
putational effort (see, e.g., the study conducted in [56]).

• Integration schemes of approximation order higher than the splitting method
are chosen such that the corresponding integration errors remain lower than the
splitting ones. In this way integration errors do not interfere with the splitting
ones and the global accuracy of the method is set by the splitting scheme as
considered in the corresponding mathematical analysis.

• Methods with time-stepping features based on stability or a user-defined accu-
racy tolerance are preferred, computing as many time steps as necessary within
a given splitting time step. The latter is particularly relevant to adapt time steps
during short non-physical transients that may arise within splitting time steps.
The splitting time step can be therefore defined independently of the numeri-
cal integration of the split subproblems avoiding stability constraints associated
with mesh size or stiff source time scales. When only one integration time step
is needed and it is therefore equal to the splitting one, the higher order solver
yields numerical errors potentially lower than the splitting ones.

• When implicit methods are used to cope with the stiffness of a given subprob-
lem, L-stable schemes should be considered to rapidly damp out potentially fast
transients. As before one-step schemes are favored as multi-step methods can-
not be L-stable with an order higher than 2 [14].

Further discussions on these aspects can be found in [25].



634 S. Descombes et al.

As an illustration, the splitting technique proposed in [28] to solve stiff reaction–
diffusion equations like (19.1) considers the following solvers: Radau5 [32] for the
reaction subproblem (19.3) and the ROCK4 method [1] for the diffusion one (19.2).
Radau5 is a fifth order implicit Runge–Kutta method exhibiting A- and L-stability
properties to efficiently solve stiff systems of ODEs. However, the high performance
of implicit Runge–Kutta methods for stiff ODEs is adversely affected when applied
to large systems of nonlinear equations arising in the numerical integration of semi-
discrete stiff PDEs. Significant effort is actually required to achieve numerical im-
plementations that solve the corresponding algebraic problems at reasonable com-
putational expenses. A splitting approach offers a much simpler alternative since the
split subproblem (19.3) becomes a system of ODEs which can be separately solved
point-wise over the computational domain. On the other hand, ROCK4 is a fourth
order stabilized explicit Runge–Kutta method with extended stability domain along
the negative real axis, well suited to numerically treat mildly stiff elliptic operators.
The diffusion equation (19.2) is thus solved over the entire domain with an explicit
scheme and therefore with a limited memory requirement with respect to an im-
plicit one. Both methods implement adaptive time-stepping techniques to guarantee
computations within a prescribed accuracy tolerance.

Within this framework one can prescribe relatively fine tolerances for the nu-
merical solvers, Radau5 and ROCK4, and the only input parameter of the splitting
solver is the splitting time step. In [28] a constant splitting time step was considered
to simulate propagating reaction waves. In this case the wavefront velocity is re-
tained as the key physical parameter to define a splitting time step that guarantees a
sufficiently accurate resolution of the coupled dynamics. The numerical solvers are
thus in charge of solving the split subproblems during the given splitting time step,
assuring the numerical stability of the computations and coping with the stiffness of
the equations. The performance of this strategy was assessed in the context of multi-
dimensional chemical waves [28] and for a model of human ischemic stroke with
several variables and complex mechanisms in the stiff source terms [27, 29]. In both
cases the S2-scheme that ends with the reaction operator was used according to the
theoretical insights derived in [21] for stiff nonlinear reaction–diffusion equations.
Notice that localized reacting fronts are simulated in the case of propagating waves;
therefore, intense computation of the stiff reaction problem (19.3) is required only
along the fronts where important reactive activity is present. Consequently, Radau5
adapts its time steps only where it is necessary with important computational en-
hancements, yielding local time steps that may substantially differ according to the
vicinity of the fronts. The latter cannot be done in the same simple way without
splitting the original model.

While preliminary studies were required to determine an appropriate constant
time step for propagating waves (as shown in [28, 27]), they are no longer necessary
if one considers the adaptive splitting technique with error estimator introduced in
[20] and previously described in Section 2. These methods complement each other
since the adaptive strategy also requires a dedicated splitting solver to guarantee the
theoretical framework of the analysis and to efficiently handle in practice stiffness
and stability issues. As a result we end up with an adaptive, dedicated splitting solver
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for stiff PDEs. The only input parameter now is the splitting tolerance accuracy
η , noting that the accuracy parameters of the numerical solvers must be set lower
than η . Notice that lower order schemes for the split subproblems could be also used
with the adaptive splitting technique as long as these solvers implement adaptive
time-stepping with error control and their accuracy tolerances are set lower than
the splitting one. However, for a given prescribed accuracy, higher order solvers as
proposed in [28] yield solutions with potentially larger time steps.

4 Operator Splitting for Combustion Problems

Operator splitting methods have been used in the literature for decades, and were
widely implemented and exploited for combustion problems to overcome classical
restrictions on computational resources (see, e.g., [30, 15, 59, 44, 48, 50, 51, 47, 13,
45]). A good example is given by the numerical strategy developed in [37, 43] for re-
active flows in a low Mach number formulation with detailed chemical kinetics and
transport parameters. The splitting scheme introduced by these authors combines
the implicit multi-step VODE solver [10] for stiff ODEs for the chemical reaction
terms with a second order explicit RKC scheme [35, 57] for the diffusion problem.
In this way important gains of computational efficiency are achieved with a splitting
time step not limited by the stiff reactive scales and set according to the extended
stability domain of the RKC solver (when convective stability constraints are less re-
strictive). Moreover, another efficient low Mach solver was introduced in [16] with
an operator splitting method coupled with an AMR (Adaptive Mesh Refinement)
technique [3, 8]. The problem is thus solved level-wise throughout a set of grids with
different resolution, with splitting time steps set by the corresponding CFL condi-
tion associated with each grid size. Reaction terms are locally solved with VODE.
With these bases, further developments in terms of algorithm implementation and
parallel computing techniques led to the effective simulation of three-dimensional
turbulent premixed flames with detailed chemistry (see, e.g., [5, 4]), a remarkable
achievement for laboratory-scale turbulent flames (see, e.g., [7, 6]).

Considering the state of art and these recent advances, one may note as previ-
ously remarked that splitting schemes favor the use of dedicated numerical solvers
of different nature as well as straightforward coupling with other techniques, with
important gains in computational efficiency. Nevertheless, there are some open is-
sues related to the construction of splitting schemes and the interaction of splitting
errors with those originating from the inner implicit–explicit solvers (the influence
of the latter ones on the global integration error was numerically illustrated, for in-
stance, in [37, 43]). In particular a critical matter underlined in the literature is the
lack of precise criteria to properly choose the splitting time steps according to the
physical decoupling capabilities of the problem and for a given accuracy. Another
question is the extension of these strategies to highly dynamic problems for which
neither a constant nor a stability-based variable splitting time step is adequate, tak-
ing into account that the explicit schemes are intended to handle the slow, non-stiff
part of the equations.
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To address these problems the adaptive operator splitting scheme, briefly recalled
in Section 2, was considered in [26] combined with a dedicated splitting solver for
stiff time dependent PDEs built in practice under the precepts described in Section 3.
Additionally, this splitting solver was coupled in [28] with a dynamic mesh refine-
ment technique based on multiresolution (MR) analysis [34, 12, 42]. For a given
semi-discretized problem, the MR mathematical background allows a better moni-
toring of numerical errors introduced by the compressed spatial representations with
respect to the original uniform grid discretization. The resulting time–space adaptive
solution scheme was thus described and analyzed in [26] and constitutes a funda-
mental building block for solvers used in combustion simulations. It provides an ef-
ficient algorithm in terms of both memory storage and computational performance,
which allows multi-dimensional simulations assuring a given error tolerance, fixed
in advance by the user.

The study conducted in [26] considered multi-dimensional laminar flames inter-
acting with vortex structures, including the propagation of flame fronts and self-
ignition processes of reactive mixtures. In what follows we recall some interesting
aspects resulting from the numerical simulation of the ignition process and genera-
tion of a diffusion flame, investigated in [26].

5 Numerical Illustration

Let us consider the mathematical model derived in [54] to investigate the ignition
dynamics of a diffusion flame, formed while a reactive layer is being rolled–up
in a vortex. The hydrodynamics is decoupled from species and energy transport
equations by adopting the standard thermo-diffusive approximation, leading to a
reaction–diffusion–convection model. A two-dimensional computational domain is
considered where pure and fresh hydrogen at temperature TF,0 initially occupies the
upper half part, while the remaining lower part of the domain is occupied by hot air
at TO,0. By defining a Schvab–Zeldo’vich variable Z and a reduced temperature θ
given by

θ =
T −TO,0

TF,0 −TO,0
,

the mathematical model is given by a system of equations of the form [54]:

∂tZ + vx∂xZ + vy∂yZ − (
∂ 2

x Z + ∂ 2
y Z

)
= 0,

∂tθ + vx∂xθ + vy∂yθ − (
∂ 2

x θ + ∂ 2
y θ

)
= F(Z,θ ),

⎫⎬
⎭

where F(Z,θ ) is a highly nonlinear function. The velocity field (vx,vy) is given by a
single vortex centered on the planar interface between the two media, which varies
strongly in time and space.

The physics of the phenomenon can be briefly described as follows. A rotat-
ing vortex is introduced immediately at t = 0. The resulting forced convection
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superposes to the diffusive mechanisms and accelerates the mixture of the gases.
As a consequence, a diffusion flame ignites along the contact surface of both media,
taking into account the important difference of temperatures in those regions. If the
velocity field is sufficiently strong, it will entrain fresh gases into the vortex core
which will react with an intensity set by the mixing temperature of gases of about
(TF,0 + TO,0)/2. These locally lower temperatures result in a delayed ignition of
the core unless air of sufficiently high temperature is initially considered. Once the
flame is completely ignited, it propagates outwards from the center of the computa-
tional domain. The complete phenomenon encompasses thus very different physical
regimes like mixing, ignition, propagation, which can be characterized depending
on the initial reactants configuration and on the imposed velocity field, as studied in
detail in [54].

As an illustration we recall a configuration investigated in [26] with fresh fuel
initially at TF,0 equal to 300K and hot air at a temperature TO,0 of 1000K, with a
strongly varying velocity field. Figure 19.1 shows three different stages of the ig-
nition phenomenon in terms of the heat release rate F(Z,θ ). The adaptive splitting
scheme of Section 2 with a predefined accuracy tolerance of η = 10−3, yields split-
ting time steps as shown in Figure 19.1. An initial splitting time step of Δ t = 10−8

is chosen to properly handle the inclusion of the vortex and the fast variation of
the velocity field. The splitting step increases until t ≈ 6.5× 10−5 (Δ t ≈ 2× 10−5)
during the mixing phase, and one then finds a series of rejected steps. The splitting
time step is thus reduced down to the time scale needed to guarantee the prescribed
accuracy: Δ t ≈ 10−7. This behavior naturally coincides with the sudden ignition of
the flame and the subsequent fast propagation along the contact surface, once a cer-
tain temperature is locally reached after the initial mixing of reactants. The last part
shown in Figure 19.1 corresponds to the beginning of the propagation stage with
Δ t ≈ 10−5, where the core has not ignited yet.

A dynamic adaptation of the splitting time step is hence mandatory to identify
these changes in the physical behavior of the phenomenon and to suitably describe
the entire process. In particular it takes approximately 207.5 minutes to solve this
problem with an adaptive splitting technique on a uniform grid, compared to 674.7
minutes with a constant splitting time step of 10−7, of the order of the convective
time steps. Greater gains are observed for longer periods of time integration as the
impact of the initial transients and hence small splitting time steps is less important
on the overall computational performance. Using dynamic grid adaptation combined
with the adaptive splitting solver further reduces the CPU time to 8.9 minutes, tak-
ing into account the highly localized flame fronts in this particular problem. Most
importantly, with this time–space adaptive technique time integration errors can be
tracked and controlled as well as those originating from the compressed spatial rep-
resentations.
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Fig. 19.1 Instantaneous heat release rate F at t = 5 × 10−5 (top left), 10−4 (top right), and
1.5×10−4 (bottom left). Bottom right: time evolution of splitting time steps and maximum temper-
ature T , deduced from θ . Rejected time steps are indicated with black bullets (•), while maximum
temperatures for previous snapshots are marked with (◦).

6 Conclusion

In this chapter we have introduced operator splitting methods with error estimators
and a time adaptive technique. The latter was further coupled with a space adaptive,
finite volume multiresolution method. Numerical results obtained with this time-
space adaptive technique support the conclusions that different multi-scale physical
configurations can be successfully simulated and that numerical errors can be effec-
tively controlled. The time and space adaptive techniques are clearly independent
allowing the compatibility with any space discretization scheme such as finite vol-
umes, finite elements, or discontinuous Galerkin methods. The method allows us
also to exploit the current computational resources and to obtain high efficiency in
terms of load balancing on parallel architectures as it is shown in [18], where a task-
based parallelism is used on multi-core architectures in conjunction with a work
stealing approach.
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Chapter 20
Splitting Methods for Some Nonlinear
Wave Problems

Annalisa Quaini and Roland Glowinski

Abstract The main goal of this chapter is to discuss the numerical solution of non-
linear wave equations associated with the first of the celebrated Painlevé transcen-
dent ordinary differential equations and the Bratu problem nonlinearity. In order
to solve numerically the above equations, whose solutions blow up in finite time
in most cases, we advocate a numerical methodology based on the Strang’s sym-
metrized operator-splitting scheme. With this approach, we can decouple nonlinear-
ity and differential operators. The resulting schemes, combined with a finite element
space discretization and adaptive time-stepping to monitor possible blow-up of the
solution, provide a robust and accurate solution methodology, as shown by the re-
sults of the numerical experiments reported here.

1 Introduction

In this chapter, we discuss the numerical solution of two nonlinear wave equations.
The first equation under consideration is the following one:

∂ 2u
∂ t2 − c2∇2u = 6u2 + t in Ω × (0,Tmax). (20.1)

A. Quaini (�)
Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, TX 77204, USA
e-mail: quaini@math.uh.edu

R. Glowinski
Department of Mathematics, University of Houston, Houston, TX 77204, USA
e-mail: roland@math.uh.edu

© Springer International Publishing Switzerland 2016
R. Glowinski et al. (eds.), Splitting Methods in Communication, Imaging, Science,
and Engineering, Scientific Computation, DOI 10.1007/978-3-319-41589-5_20

643

mailto:quaini@math.uh.edu
mailto:roland@math.uh.edu


644 A. Quaini and R. Glowinski

Eq. (20.1) is a classical wave equation with forcing term given by the first Painlevé
equation, that is

d2y
dt2 = 6y2 + t. (20.2)

Although discovered from purely mathematical considerations, the six Painlevé
‘transcendent’ ordinary differential equations arise in a variety of important phys-
ical applications (from plasma physics to quantum gravity). There is an abundant
literature concerning the Painlevé equations (see, for example, [14, 23, 5] and the
references therein). Surprisingly very few of the related publications are of numeri-
cal nature, notable exceptions being [6] and [5], which contain also additional refer-
ences on the numerical solution of the Painlevé equations. Actually, we are going to
consider the numerical solution of two initial/boundary value problems associated
with (20.1), namely we supplement (20.1) with initial conditions and pure homoge-
neous Dirichlet boundary conditions (resp., mixed Dirichlet-Sommerfeld boundary
conditions), that is ⎧⎪⎨

⎪⎩
u = 0 on ∂Ω × (0,Tmax),

u(0) = u0,
∂u
∂ t

(0) = u1,

(20.3)

(resp., ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u = 0 on Γ0 × (0,Tmax),
1
c

∂u
∂ t

+
∂u
∂n

= 0 on Γ1 × (0,Tmax),

u(0) = u0,
∂u
∂ t

(0) = u1).

(20.4)

In (20.1)–(20.4):

- c (> 0) is the speed of propagation of the linear waves solutions of the equation

∂ 2u
∂ t2 − c2∇2u = 0.

- Ω is a bounded domain of Rd , ∂Ω being its boundary.
- Γ0 and Γ1 are two disjoint non-empty subsets of ∂Ω verifying Γ0 ∪Γ1 = ∂Ω .
- φ(t) denotes the function x → φ(x, t).
- (0,Tmax) is the solution existence interval.

Problems (20.1), (20.3) and (20.1), (20.4) are of multi-physics (reaction-
propagation type) and multi-time scales natures. Thus, it makes sense to apply an
operator-splitting method for their numerical solution, in order to decouple nonlin-
earity and differential operators and to treat the resulting sub-initial value problems
with appropriate (and necessarily variable) time discretization sub-steps. Among
the available operator-splitting methods, we have chosen the Strang’s symmetrized
operator-splitting scheme (introduced in [20]), because it provides a good compro-
mise between accuracy and robustness as shown in, e.g., [9, 3, 13, 11] and other
chapters of this book (see also the references therein).
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In the second part of the chapter, we extend the methodology adopted for prob-
lems (20.1), (20.3) and (20.1), (20.4) to achieve the numerical solution of a slightly
more challenging wave equation, namely:

∂ 2u
∂ t2 +

k
ε + t

∂u
∂ t

− c2∇2u = λeu in Ω × (0,Tmax), (20.5)

where k,ε,λ > 0. Eq. (20.5) is of the Euler-Poisson-Darboux type and the forcing
term is given by the celebrated Bratu problem nonlinearity (see, e.g., [2] for ap-
plications to solid combustion). The differences between eq. (20.5) and eq. (20.1)
are an extra damping term in eq. (20.5) and the nonlinear forcing term, which
in eq. (20.5) does not depend on t explicitly. Eq. (20.5) is completed with initial
conditions and homogeneous Dirichlet conditions (20.3). The extension to mixed
Dirichlet-Sommerfeld (20.4) conditions is straightforward. The existence of solu-
tions to nonlinear wave equations very close to (20.5) has been investigated by J.B.
Keller in [15], assuming that u1 = 0 in (20.3). In order to solve (20.5), we advo-
cate a five-stage operator splitting scheme of the Strang symmetric type, which is
an extension of the three-stage scheme used for (20.1).

This chapter is structured as follows: In Section 2, we discuss the time dis-
cretization of problems (20.1), (20.3) and (20.1), (20.4) by the Strang’s symmetrized
scheme. In Sections 3 and 4, we discuss the solution of the initial value subproblems
originating from the splitting; the discussion includes the finite element approxima-
tion of the linear wave steps and the adaptive in time solution of the nonlinear ODE
steps. In Section 5 and 6, we discuss the time discretization of problem (20.5), (20.3)
by the Strang’s symmetrized scheme and its realization. In Section 7, we present the
results of numerical experiments validating the numerical methodologies discussed
in the previous sections.

Remark 1. Strictly speaking, it is the solution of the Painlevé equations which is
transcendent, not the equations themselves.

Remark 2. The numerical methodology discussed here would apply more or less
easily to other nonlinear wave equations of the following type

∂ 2u
∂ t2 +

k
ε + t

∂u
∂ t

− c2∇2u = f

(
u,

∂u
∂ t

,x, t

)
.

Remark 3. The analysis of quasilinear parabolic equations with blow-up has moti-
vated a substantial number of publications (see, e.g., [19] and references therein).
Similarly, much literature has been devoted to the analysis and numerical analy-
sis of nonlinear Schrödinger equations with blow-up (see, e.g., [16] and references
therein). Concerning the Euler-Poisson-Darboux problem, J.B. Keller has proved
blow-up in finite time properties and has provided an estimate of the blow-up time
(see [15] for details). Albeit bearing the name of some of the most famous mathe-
maticians of all times, the Euler-Poisson-Darboux problem has not attracted much
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attention from a numerical standpoint, a notable exception being [7] which focuses
on linear cases. We are not aware of any publication addressing the numerical solu-
tion of the nonlinear Euler-Poisson-Darboux problem.

2 Application of the Strang’s Symmetrized Operator-Splitting
Scheme to the Solution of Problems (20.1), (20.3) and (20.1),
(20.4)

2.1 A Brief Discussion on the Strang’s Operator-Splitting Scheme

Although the Strang’s symmetrized scheme is quite well known, it may be useful
to present briefly this scheme before applying it to the solution of problems (20.1),
(20.3) and (20.1), (20.4). Our presentation closely follows the ones in [9] (Chapter 6)
and [10]. See also Chapters 1, 2, and 3 of this volume.

Let us consider the following non-autonomous abstract initial value problem
(taking place in a Banach space, for example):⎧⎪⎨

⎪⎩
dφ
dt

+A(φ , t)+B(φ , t) = 0 on (0,Tmax),

φ(0) = φ0,

(20.6)

where in (20.6) the operators A and B can be nonlinear and even multivalued (in
which case one has to replace = 0 by � 0 in (20.6)). Let Δ t be a time-step (fixed,
for simplicity) and let us denote (n+α)Δ t by tn+α . When applied to the time dis-
cretization of (20.6), the basic Strang’s symmetrized scheme reads as follows:

- Step 0: Set

φ0 = φ0. (20.7)

For n ≥ 0, φn being known, compute φn+1 as follows:

- Step 1: Set φn+1/2 = φ(tn+1/2), φ being the solution of

⎧⎪⎨
⎪⎩

dφ
dt

+A(φ , t) = 0 on (tn, tn+1/2),

φ(tn) = φn.

(20.8)

- Step 2: Set φ̂n+1/2 = φ(Δ t), φ being the solution of

⎧⎪⎨
⎪⎩

dφ
dt

+B(φ , tn+1/2) = 0 on (0,Δ t),

φ(0) = φn+1/2.

(20.9)
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- Step 3: Set φn+1 = φ(tn+1), φ being the solution of

⎧⎪⎨
⎪⎩

dφ
dt

+A(φ , t) = 0 on (tn+1/2, tn+1),

φ(tn+1/2) = φ̂n+1/2.

(20.10)

If the operators A and B are “smooth” functions of their arguments, the above
scheme is second order accurate. In addition to [20, 9, 3, 13, 10], useful information
about the operator-splitting solution of partial differential equations can be found in
[4, 1, 17, 18, 21] (and references therein) and in various chapters of this book.

Remark 4. The generalization to decompositions involving more than two operators
is not difficult in principle. Focusing on the three-operator situation, that is⎧⎪⎨

⎪⎩
dφ
dt

+A(φ , t)+B(φ , t)+C(φ , t) = 0 on (0,Tmax),

φ(0) = φ0,

we return immediately to the two-operator situation by observing that, for example,

A+B+C = A+(B+C) or A+B+C = (A+B)+C. (20.11)

The first decomposition in (20.11) leads to a five-stage scheme, namely:

- Step 0: Set

φ0 = φ0.

For n ≥ 0, φn being known, compute φn+1 as follows:

- Step 1: Set φn+1/5 = φ(tn+1/2), φ being the solution of

⎧⎪⎨
⎪⎩

dφ
dt

+A(φ , t) = 0 on (tn, tn+1/2),

φ(tn) = φn.

- Step 2: Set φn+2/5 = φ
(

Δ t
2

)
, φ being the solution of

⎧⎪⎪⎨
⎪⎪⎩

dφ
dt

+B(φ , tn+1/2) = 0 on

(
0,

Δ t
2

)
,

φ(0) = φn+1/5.
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- Step 3: Set φn+3/5 = φ(Δ t), φ being the solution of

⎧⎪⎨
⎪⎩

dφ
dt

+C(φ , tn+1/2) = 0 on (0,Δ t),

φ(0) = φn+2/5.

- Step 4: Set φn+4/5 = φ (Δ t), φ being the solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dφ
dt

+B(φ , tn+1/2) = 0 on

(
Δ t
2
,Δ t

)
,

φ
(

Δ t
2

)
= φn+3/5.

- Step 5: Set φn+1 = φ(tn+1), φ being the solution of

⎧⎪⎨
⎪⎩

dφ
dt

+A(φ , t) = 0 on (tn+1/2, tn+1),

φ(tn+1/2) = φn+4/5.

Using the second decomposition in (20.11) would lead to a seven-stage scheme.

2.2 Application to the Solution of the Nonlinear Wave
Problem (20.1), (20.3)

In order to apply the symmetrized scheme to the solution of (20.1), (20.3) we refor-
mulate the above problem as a first order in time system by introducing the function

p =
∂u
∂ t

. We obtain:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂ t

− p = 0 on Ω × (0,Tmax),

∂ p
∂ t

− c2∇2u = 6u2 + t in Ω × (0,Tmax),

(20.12)

with boundary and initial conditions⎧⎨
⎩

u = 0 on ∂Ω × (0,Tmax),

u(0) = u0, p(0) = u1.
(20.13)

Clearly, formulation (20.12), (20.13) is equivalent to (20.1), (20.3).
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With Δ t as in Section 2.1, we introduce α,β ∈ (0,1) such that α +β = 1. Ap-
plying scheme (20.7)–(20.10) to the solution of (20.12), (20.13), we obtain

- Step 0: Set

u0 = u0, p0 = u1. (20.14)

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:

- Step 1: Set un+1/2 = u(tn+1/2), pn+1/2 = p(tn+1/2), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

−α p = 0 in Ω × (tn, tn+1/2),

∂ p
∂ t

= 6u2 + t in Ω × (tn, tn+1/2),

u(tn) = un, p(tn) = pn.

(20.15)

- Step 2: Set ûn+1/2 = u(Δ t), p̂n+1/2 = p(Δ t), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

−β p = 0 in Ω × (0,Δ t),

∂ p
∂ t

− c2∇2u = 0 in Ω × (0,Δ t),

u = 0 on ∂Ω × (0,Δ t),

u(0) = un+1/2, p(0) = pn+1/2.

(20.16)

- Step 3: Set un+1 = u(tn+1), pn+1 = p(tn+1), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

−α p = 0 in Ω × (tn+1/2, tn+1),

∂ p
∂ t

= 6u2 + t in Ω × (tn+1/2, tn+1),

u(tn+1/2) = ûn+1/2, p(tn+1/2) = p̂n+1/2.

(20.17)

By partial elimination of p, (20.14)–(20.17) reduce to:

- Step 0 as in (20.14).
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For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:

- Step 1: Set un+1/2 = u(tn+1/2), pn+1/2 =
1
α

∂u
∂ t

(tn+1/2), u being the solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2u
∂ t2 = α(6u2 + t) in Ω × (tn, tn+1/2),

u(tn) = un,
∂u
∂ t

(tn) = α pn.

(20.18)

- Step 2: Set ûn+1/2 = u(Δ t), p̂n+1/2 =
1
β

∂u
∂ t

(Δ t), u being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ 2u
∂ t2 −βc2∇2u = 0 in Ω × (0,Δ t),

u = 0 on ∂Ω × (0,Δ t),

u(0) = un+1/2,
∂u
∂ t

(0) = β pn+1/2.

(20.19)

- Step 3: Set un+1 = u(tn+1), pn+1 =
1
α

∂u
∂ t

(tn+1), u being the solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2u
∂ t2 = α(6u2 + t) in Ω × (tn+1/2, tn+1),

u(tn+1/2) = ûn+1/2,
∂u
∂ t

(tn+1/2) = α p̂n+1/2.

(20.20)

2.3 Application to the Solution of the Nonlinear Wave
Problem (20.1), (20.4)

Proceeding as in Section 2.2, we introduce p =
∂u
∂ t

in order to reformulate (20.1),

(20.4) as a first order in time system. We obtain system (20.12) supplemented with
the following boundary and initial conditions⎧⎪⎨

⎪⎩
u(0) = 0 on Γ0 × (0,Tmax),

p
c
+

∂u
∂n

= 0 on Γ1 × (0,Tmax),

u(0) = u0, p(0) = u1.

(20.21)

Applying scheme (20.7)–(20.10) for the solution of the equivalent problem
(20.12), (20.21), we obtain

- Step 0: as in (20.14).
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For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:

- Step 1: as in (20.18).

- Step 2: Set ûn+1/2 = u(Δ t), p̂n+1/2 =
1
β

∂u
∂ t

(Δ t), u being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ 2u
∂ t2 −βc2∇2u = 0 in Ω × (0,Δ t),

u = 0 on Γ0 × (0,Δ t),
1
βc

∂u
∂ t

+
∂u
∂n

= 0 on Γ1 × (0,Δ t),

u(0) = un+1/2,
∂u
∂ t

(0) = β pn+1/2.

(20.22)

- Step 3: as in (20.20).

3 On the Numerical Solution of the Sub-initial Value
Problems (20.19) and (20.22)

Since problem (20.19) is the particular case of (20.22) corresponding to Γ1 = /0, we
are going to consider the second problem only. The linear wave problem is itself a
particular case of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ 2φ
∂ t2 −βc2∇2φ = 0 in Ω × (t0, t f ),

φ = 0 on Γ0 × (t0, t f ),
1
βc

∂φ
∂ t

+
∂φ
∂n

= 0 on Γ1 × (t0, t f ),

φ(t0) = φ0,
∂φ
∂ t

(t0) = φ1.

(20.23)

Assuming that φ0 and φ1 have enough regularity, a variational (weak) formulation
of problem (20.23) is given by: Find φ(t) ∈V0, a.e. on (t0, t f ), such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
∂ 2φ
∂ t2 ,θ

〉
+βc2

∫
Ω

∇φ ·∇θdx+ c
∫
Γ1

∂φ
∂ t

θdΓ = 0, ∀θ ∈V0,

φ(t0) = φ0,
∂φ
∂ t

(t0) = φ1,

(20.24)
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where in (20.24):

- V0 is the Sobolev space defined by

V0 = {θ |θ ∈ H1(Ω), θ = 0 on Γ0}. (20.25)

- 〈·, ·〉 is the duality pairing between V ′
0 (the dual of V0) and V0, coinciding with the

canonical inner product of L2(Ω) if the first argument is smooth enough.
- dx = dx1 . . .dxd .

3.1 A Finite Element Method for the Space Discretization
of the Linear Wave Problem (20.23)

From now on, we are going to assume that Ω is a bounded polygonal domain
of R2. Let Th be a classical finite element triangulation of Ω , as considered in,
e.g., [8] (Appendix 1) and related references therein. We approximate the space V0

in (20.25) by

V0h = {θ |θ ∈C0(Ω ), θ |Γ0 = 0, θ |K ∈ P1, ∀K ∈ Th}, (20.26)

where P1 is the space of the polynomials of two variables of degree ≤ 1. If Γ1 �= /0,
the points at the interface of Γ0 and Γ1 have to be (for consistency reasons) vertices
of Th at which any element of V0h has to vanish. It is natural to approximate the
wave problem (20.24) as follows: Find φh(t) ∈V0h, a.e. on (t0, t f ], such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

∂ 2φh

∂ t2 θdx+βc2
∫

Ω
∇φh ·∇θdx+ c

∫
Γ1

∂φh

∂ t
θdΓ = 0, ∀θ ∈V0h,

φh(t0) = φ0h,
∂φh

∂ t
(t0) = φ1h,

(20.27)

where φ0h and φ1h belong to V0h and approximate φ0 and φ1, respectively.
In order to formulate (20.27) as a second order in time system of linear ordinary

differential equations, we introduce first the set Σ0h = {Pj}N0h
j=1 of the vertices of Th

which do not belong to Γ 0 and associate with it the following basis of V0h:

B0h = {wj}N0h
j=1,

where the basis function wj is defined by

wj ∈V0h, wj(Pj) = 1,wj(Pk) = 0, ∀k ∈ {1, . . . ,N0h}, k �= j.
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Expanding the solution φh of (20.27) over the above basis, we obtain:

φh(t) =
N0h

∑
j=1

φh(Pj, t)wj .

Denoting φh(Pj, t) by φ j(t) and the N0h-dimensional vector {φ j(t)}N0h
j=1 by Φh(t), we

can easily show that the approximated problem (20.27) is equivalent to the following
ordinary differential system⎧⎨

⎩
MhΦ̈h +βc2AhΦh + cChΦ̇h = 0 on (t0, t f ),

Φh(t0) = Φ0h(= (φ0h(Pj))
N0h
j=1),Φ̇h(t0) = Φ1h(= (φ1h(Pj))

N0h
j=1),

(20.28)

where the mass matrix Mh, the stiffness matrix Ah, and the damping matrix Ch are
defined by

Mh = (mi j)1≤i, j≤N0h , with mi j =

∫
Ω

wiwjdx,

Ah = (ai j)1≤i, j≤N0h , with ai j =

∫
Ω

∇wi ·∇wjdx,

Ch = (ci j)1≤i, j≤N0h , with ci j =

∫
Γ1

wiwjdΓ ,

respectively.
The matrices Mh and Ah are sparse and positive definite, while matrix Ch is

‘very’ sparse and positive semi-definite. Indeed, if Pi and Pj are not neighbors, i.e.,
they are not vertices of a same triangle of Th, we have mi j = 0, ai j = 0, and ci j = 0.
All these matrix coefficients can be computed exactly, using, for example, the two-
dimensional Simpson’s rule for the mi j and the one-dimensional Simpson’s rule for
the ci j; since ∇wi and ∇wj are piecewise constant, computing ai j is (relatively) easy.
See, e.g., [9] (Chapter 5) for more details on these calculations.

Remark 5. Using the trapezoidal rule, instead of the Simpson’s one, to compute the
mi j and ci j brings simplification: the resulting Mh and Ch will be diagonal matrices,
retaining the positivity properties of their Simpson’s counterparts. The drawback is
some accuracy loss associated with this simplification.

3.2 A Centered Second Order Finite Difference Scheme for the
Time Discretization of the Initial Value Problem (20.28)

Let Q be a positive integer (≥ 3, in practice). We associate with Q a time discretiza-
tion step τ = (t f − t0)/Q. After dropping the subscript h, a classical time discretiza-
tion for problem (20.28) reads as: Set
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Φ0 = Φ0, Φ1 −Φ−1 = 2τΦ1, (20.29)

then for q = 0, . . . ,Q, compute Φq+1 from Φq−1 and Φq via

M(Φq+1 +Φq−1 − 2Φq)+βc2τ2AΦq + c
τ
2

C(Φq+1 −Φq−1) = 0. (20.30)

It follows from, e.g., [9] (Chapter 6), that the above second order accurate scheme
is stable if the following condition holds:

τ <
2

c
√

βλmax
, (20.31)

where λmax is the largest eigenvalue of M−1A.

Remark 6. To obtain Φq+1 from (20.30), one has to solve a linear system associated
with the symmetric positive definite matrix

M+
τ
2

cC. (20.32)

If the above matrix is diagonal from the use of the trapezoidal rule (see remark 5),
computing Φq+1 is particularly easy and the time discretization scheme (20.30) is
fully explicit. Otherwise, scheme (20.30) is not explicit, strictly speaking. However,
matrix (20.32) being well conditioned, a conjugate gradient algorithm with diago-
nal preconditioning will have a very fast convergence, particularly if one uses Φq to
initialize the computation of Φq+1.

Remark 7. In order to initialize the discrete analogue of the initial value prob-
lem (20.20), we will use

ΦQ and
α
β

ΦQ+1 −ΦQ−1

2τ
. (20.33)

Remark 8. As the solution of the nonlinear wave problem under consideration gets
closer to blow-up, the norms of the corresponding initial data in (20.29) will go to
infinity. In order to off-set (partly, at least) the effect of round-off errors we suggest
the following normalization strategy:

1. Denote by ||φ0h||0h and ||φ1h||0h the respective approximations of

(∫
Ω
|φ0h|2 dx

)1/2

and

(∫
Ω
|φ1h|2 dx

)1/2

obtained by the trapezoidal rule.

2. Divide by max[1,
√
||φ0h||20h + ||φ1h||20h] the initial data Φ0 and Φ1 in (20.29).

3. Apply scheme (20.30) with normalized initial data to compute ΦQ−1, ΦQ, and
ΦQ+1.



20 Splitting Methods for Some Nonlinear Wave Problems 655

4. Prepare the initial data for the following nonlinear sub-step by multiplying

(20.33) by the normalization factor max[1,
√
||φ0h||20h + ||φ1h||20h].

4 On the Numerical Solution of the Sub-initial Value
Problems (20.18) and (20.20)

From n = 0 until blow-up, we have to solve the initial value sub-problems (20.18)
and (20.20) for almost every point of Ω . Following what we discussed in Section 3
(whose notation we keep) for the solution of the linear wave equation subproblems,
we will consider only those nonlinear initial value sub-problems associated with the
N0h vertices of Th not located on Γ 0. Each of these sub-problem is of the follow-
ing type: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d2φ
dt2 = α(6φ2 + t) on (t0, t f ),

φ(t0) = φ0,
dφ
dt

(t0) = φ1,

(20.34)

with initial data in (20.34) as in algorithm (20.14), (20.18), (20.22), (20.20), after
space discretization. A time discretization scheme of (20.34), with automatic adjust-
ment of the time step will be discussed in the following section.

4.1 A Centered Scheme for the Time Discretization of
Problem (20.34)

Let M be a positive integer (> 2 in practice). With M, we associate a time dis-
cretization step σ = (t f − t0)/M. For the time discretization of the initial value
problem (20.34) we suggest the following nonlinear variant of (20.30): Set

φ0 = φ0, φ1 −φ−1 = 2σφ1,

then for m = 0, . . . ,M, compute φm+1 from φm−1 and φm via

φm+1 +φm−1 − 2φm = ασ2(6|φm|2 + tm), (20.35)

with tm = t0 +mσ .
Considering the blowing-up properties of the solutions of the nonlinear wave

problems (20.1), (20.3) and (20.1), (20.4), we expect that at one point in time, the
solution of problem (20.34) will start growing very fast before becoming infinite. In
order to track such a behavior we have to decrease σ in (20.35), until the solution
reaches some threshold at which one decides to stop computing . A practical method
for the adaptation of the time step σ is described below.
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4.2 On the Dynamical Adaptation of the Time Step σ

The starting point of our adaptive strategy will be the following observation: if φ is
the solution of (20.34), at a time t before blow-up and for σ sufficiently small we
have (Taylor’s expansion):

φ(t+σ )= φ(t)+σφ̇(t)+
σ 2

2
φ̈(t)+

σ 3

6

...
φ (t+θσ )

= φ(t)+σφ̇(t)+
σ 2

2
α(6|φ(t)|2+t)+σ 3α

(
2φ(t+θσ )φ̇(t+θσ )+

1
6

)
,

(20.36)

with 0 < θ < 1. Suppose that we drop the σ3-term in the above expansion and that
we approximate by finite differences the resulted truncated expansion at t = tm; we
obtain then

φm+1 = φm +σ
φm+1 −φm−1

2σ
+

σ2

2
α(6|φm|2 + tm),

that is the explicit scheme (20.35). Moreover, from expansion (20.36) we can derive
the following estimator of the relative error at t = tm+1:

Em+1 = σ3α

∣∣∣∣(φm+1 +φm)
(φm+1 −φm)

σ

∣∣∣∣+ 1
6

max[1, |φm+1|] . (20.37)

Another possible estimator would be

σ3α

∣∣∣∣(φm+1 +φm)
(φm+1 −φm)

σ

∣∣∣∣+ 1
6

max

[
1,

1
2
|φm +φm+1|

] .

In order to adapt σ using Em+1, we may proceed as follows: If φm+1 obtained
from scheme (20.35) verifies

Em+1 ≤ tol, (20.38)

keep integrating with σ as time discretization step. If criterion (20.38) is not verified,
we have two possible situations, one for m = 0 and one for m ≥ 1. If m = 0:

- Divide σ by 2 as many times as necessary to have

E1 ≤ tol
5
. (20.39)

Each time σ is divided by 2, double M accordingly.
- Still calling σ the first time step for which (20.39) holds after successive divisions

by 2, apply scheme (20.35) to the solution of (20.34), with the new σ and the
associated M.
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If m ≥ 1:

- Go to t = tm−1/2 = t0 +(m− 1/2)σ .

- tm−1/2 → t0,
φm−1 +φm

2
→ φ0,

φm −φm−1

σ
→ φ1.

- σ → σ/2.
- 2(M−m)+ 1 → M.
- Apply scheme (20.35) on the new interval (t0, t f ). If criterion (20.38) is not veri-

fied, then proceed as above, according to the value of m (that is, m = 0 or m ≥ 1).

For the numerical results reported in Section 5, we used tol = 10−4.

Remark 9. In order to initialize the discrete analogues of the initial value prob-
lems (20.18) and (20.19), we will use

φM and
φM+1 −φM−1

2σ
,

and

φM and
β
α

φM+1 −φM−1

2σ
,

respectively.

5 Application of the Strang’s Symmetrized Operator-Splitting
Scheme to the Solution of Problem (20.5), (20.3)

In this section, we extend the methodology discussed in Section 2.2 for prob-
lem (20.1), (20.3) to problem (20.5), (20.3). We will use the same notation as in
Section 2.2.

First, we introduce p =
∂u
∂ t

to reformulate the above problem as a first order in

time system on which we will apply the Strang’s symmetrized scheme repeatedly.
This first order system reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

− p = 0 on Ω × (0,Tmax),

∂ p
∂ t

+
k

ε + t
p− c2∇2u = λeu in Ω × (0,Tmax),

u = 0 on ∂Ω × (0,Tmax),

u(0) = u0, p(0) = u1.

(20.40)
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Inspired by the three-operator situation discussed in Section 2.2, we suggest the
following five-stage operator splitting scheme for the time-discretization of prob-
lem (20.40):

- Step 0: Set

u0 = u0, p0 = u1. (20.41)

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:

- Step 1: Set un+1/5 = u(tn+1/2), pn+1/5 = p(tn+1/2), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

−α p = 0 in Ω × (tn, tn+1/2),

∂ p
∂ t

= λeu in Ω × (tn, tn+1/2),

u(tn) = un, p(tn) = pn.

(20.42)

- Step 2: Set un+2/5 = u

(
Δ t
2

)
, pn+2/5 = p

(
Δ t
2

)
, {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

= 0 in Ω ×
(

0,
Δ t
2

)
,

∂ p
∂ t

+
k

ε + tn+1/2
p = 0 in Ω ×

(
0,

Δ t
2

)
,

u(0) = un+1/5, p(0) = pn+1/5.

(20.43)

- Step 3: Set un+3/5 = u(Δ t), pn+3/5 = p(Δ t), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

−β p = 0 in Ω × (0,Δ t),

∂ p
∂ t

− c2∇2u = 0 in Ω × (0,Δ t),

u = 0 on ∂Ω × (0,Δ t),

u(0) = un+2/5, p(0) = pn+2/5.

(20.44)
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- Step 4: Set un+4/5 = u(Δ t), pn+4/5 = p(Δ t), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

= 0 in Ω ×
(

Δ t
2
,Δ t

)
,

∂ p
∂ t

+
k

ε + tn+1/2
p = 0 in Ω ×

(
Δ t
2
,Δ t

)
,

u

(
Δ t
2

)
= un+3/5, p

(
Δ t
2

)
= pn+3/5.

(20.45)

- Step 5: Set un+1 = u(tn+1), pn+1 = p(tn+1), {u, p} being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

−α p = 0 in Ω × (tn+1/2, tn+1),

∂ p
∂ t

= λeu in Ω × (tn+1/2, tn+1),

u(tn+1/2) = un+4/5, p(tn+1/2) = pn+4/5.

(20.46)

By partial elimination of p, (20.41)–(20.46) reduce to:

- Step 0 as in (20.41).

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:

- Step 1: Set un+1/5 = u(tn+1/2), pn+1/5 =
1
α

∂u
∂ t

(tn+1/2), u being the solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2u
∂ t2 = αλeu in Ω × (tn, tn+1/2),

u(tn) = un,
∂u
∂ t

(tn) = α pn.

(20.47)

- Step 2: Set un+2/5 = un+1/5, pn+2/5 = p

(
Δ t
2

)
, p being the solution of

⎧⎪⎪⎨
⎪⎪⎩

∂ p
∂ t

+
k

ε + tn+1/2
p = 0 in Ω ×

(
0,

Δ t
2

)
,

p(0) = pn+1/5.

(20.48)



660 A. Quaini and R. Glowinski

- Step 3: Set un+3/5 = u(Δ t), pn+3/5 =
1
β

∂u
∂ t

(Δ t), u being the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ 2u
∂ t2 −βc2∇2u = 0 in Ω × (0,Δ t),

u = 0 on ∂Ω × (0,Δ t),

u(0) = un+2/5,
∂u
∂ t

(0) = β pn+2/5.

(20.49)

- Step 4: Set un+4/5 = un+3/5, pn+4/5 = p(Δ t), p being the solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ p
∂ t

+
k

ε + tn+1/2
p = 0 in Ω ×

(
Δ t
2
,Δ t

)
,

p

(
Δ t
2

)
= pn+3/5.

(20.50)

- Step 5: Set un+1 = u(tn+1), pn+1 =
1
α

∂u
∂ t

(tn+1), u being the solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2u
∂ t2 = αλeu in Ω × (tn+1/2, tn+1),

u(tn+1/2) = un+4/5,
∂u
∂ t

(tn+1/2) = α pn+4/5.

(20.51)

Sub-problem (20.49) is the particular case of (20.23) corresponding to Γ1 = /0.
Thus, we refer to Section 3 for a discussion of the numerical solution of sub-
problem (20.49). The numerical solution of the initial value sub-problems (20.47)
and (20.51) will be discussed in the next section, generalizing what we already
presented in Section 4. The sub-problems (20.48) and (20.50) are new in the con-
text of these nonlinear wave problems. Fortunately, they have closed-form solutions
given by:

pn+2/5 = e
− kΔt

2(ε+tn+1/2) pn+1/5, pn+4/5 = e
− kΔt

2(ε+tn+1/2) pn+3/5,

respectively.

6 On the Numerical Solution of the Sub-initial Value
Problems (20.47) and (20.51)

From n = 0 until blow-up, we have to solve the initial value sub-problems (20.47)
and (20.51) for almost every point of Ω . Each of these sub-problem is of the fol-
lowing type:
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⎪⎪⎪⎩

d2ψ
dt2 = αλeψ on (t0, t f ),

ψ(t0) = ψ0,
dψ
dt

(t0) = ψ1.

(20.52)

For the time discretization of (20.52), we adopt the same centered scheme with
automatic adjustment of the time-step discussed in Section 4.1. Keeping the same
notation as in Section 4.1, the time discrete problem reads: Set

ψ0 = ψ0, ψ1 −ψ−1 = 2σψ1,

then for m = 0, . . . ,M, compute ψm+1 from ψm−1 and ψm via

ψm+1 +ψm−1 − 2ψm = ασ2λeψm
,

with tm = t0 +mσ .
For the adaptation of the time-step σ , we will use the method described in Sec-

tion 4.2, where the estimator of the relative error is given by:

Em+1 =
σ3

6
αλ

e
ψm+1+ψm

2

∣∣∣∣ψm+1 −ψm

σ

∣∣∣∣
max[1, |ψm+1|] ,

instead of eq. (20.37).

7 Numerical Experiments

In this section, we are going to report on the results of numerical experiments con-
cerning the solution of the nonlinear wave problems (20.1), (20.3) and (20.1), (20.4),
and (20.5), (20.3). The role of these experiments is twofold: (i) validate the numeri-
cal methodologies discussed in Sections 2 to 6, and (ii) investigate how c influences
the solutions. We will also check how the boundary conditions influence the solution
of eq. (20.1) and how the value of k impacts the solution of problem (20.5), (20.3).

For all the problems, we took Ω = (0,1)2. For problem (20.1), (20.4), we took
Γ1 = {{x1,x2},x1 = 1,0 < x2 < 1}. The simplicity of the geometry suggests the
use of finite differences for the space discretization. Actually, the finite difference
schemes we employ can be obtained via the finite element approximation discussed
in Section 3, combined with the trapezoidal rule to compute the mass matrix Mh and
the damping matrix Ch; this supposes that the triangulations we employ are uniform
like the one depicted in Figure 20.1.
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Fig. 20.1 A uniform triangu-
lation of Ω .

x2

x1

7.1 Numerical Experiments for the Nonlinear Wave
Problem (20.1), (20.3)

Using well-known notation, let us assume that the directional space discretization
steps Δx1 and Δx2 are equal and we denote by h their common value. We also as-
sume that h = 1/(I+1), I being a positive integer. For 0 ≤ i, j ≤ I+1, we denote by
Mi j the point {ih, jh} and ui j(t) / u(Mi j, t). Using finite differences, we obtain the
following continuous in time, discrete in space analogue of problem (20.1), (20.3):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui j(0) = u0(Mi j), 0 ≤ i, j ≤ I + 1, and u̇i j(0) = u1(Mi j), 1 ≤ i, j ≤ I,

üi j(t)+
(c

h

)2
(4ui j − ui+1 j − ui−1 j − ui j+1 − ui j−1)(t) = 6|ui j(t)|2 + t

on (0,Tmax), 1 ≤ i, j ≤ I,

ukl(t) = 0 on (0,Tmax) if Mkl ∈ ∂Ω .

(20.53)

In (20.53), we assume that u0 (resp., u1) belongs to C0(Ω )∩H1
0 (Ω) (resp., C0(Ω)).

The application of the discrete analogue of the operator-splitting scheme (20.14),
(20.18)–(20.20) to problem (20.53) leads to the solution at each time step of:

- a discrete linear wave problem of the following type⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φi j(t0) = φ0(Mi j), 0 ≤ i, j ≤ I+ 1, and φ̇i j(t0) = φ1(Mi j), 1 ≤ i, j ≤ I,

φ̈i j(t)+β
( c

h

)2
(4φi j −φi+1 j −φi−1 j −φi j+1 −φi j−1)(t) = 0

on (t0, t f ), 1 ≤ i, j ≤ I,

φkl(t) = 0 on (t0, t f ) if Mkl ∈ ∂Ω .
(20.54)
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- 2I2 nonlinear initial value problems (2 for each interior grid point Mi j) like (20.34).

The numerical solution of problem (20.34) has been addressed in Sections 4.1
and 4.2. Concerning problem (20.54), it follows from Section 3 that its time
discrete analogue reads as follows: Set

φ0
i j = φ0(Mi j), 0 ≤ i, j ≤ I + 1 and φ1

i j −φ−1
i j = 2τφ1(Mi j), 1 ≤ i, j ≤ I,

then, for q = 0, . . . ,Q, 1 ≤ i, j ≤ I, we have

⎧⎪⎨
⎪⎩

φq+1
i j +φq−1

i j − 2φq
i j +β

(τ
h

c
)2

(4φq
i j −φq

i+1 j −φq
i−1 j −φq

i j+1 −φq
i j−1) = 0,

φq+1
kl = 0 if Mkl ∈ ∂Ω ,

(20.55)

with τ = (t f − t0)/Q. In the particular case of scheme (20.55), the stability condi-
tion (20.31) takes the following form:

τ <
h

c
√

2β
, (20.56)

For the numerical results presented below, we took:

- u0 = 0 and u1 = 0.
- c ranging from 0 to 1.5.
- α = β = 1/2.
- Q = 3.
- For h = 1/100: Δ t = 10−2 for c ∈ [0,0.6], Δ t = 8 × 10−3 for c = 0.7,0.8,

Δ t = 5× 10−3 for c = 0.9,1,1.25, Δ t = 10−3 for c = 1.5.
- For h = 1/150: Δ t = 6× 10−3 for c ∈ [0,0.6], Δ t = 4× 10−3 for c = 0.7,0.8,

Δ t = 3× 10−3 for c = 0.9,1,1.25, Δ t = 6× 10−4 for c = 1.5.

We initialized with M = 3 (see Section 4.1) and then adapted M following the pro-
cedure described in Section 4.2.

We considered that the blow-up time was reached as soon as the maximum value
of the discrete solution reached 104. Let us remark that the numerical results ob-
tained with h = 1/100 and h = 1/150 (and the respective associated values of Δ t)
are essentially identical.

In Figure 20.2, we reported the results obtained by our methodology when c = 0.
They compare quite well with the results reported by Wikipedia [22].
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Fig. 20.2 Case c = 0: results
obtained by our methodology.
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In Figure 20.3, we visualized for c = 0.8 and t ∈ [0,14.4] (the blow-up time
being close to Tmax / 15.512) the evolution of the computed approximations of the
functions
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Fig. 20.3 Case c = 0.8, pure Dirichlet boundary conditions: Evolution of quantities (a) uln and (b)
pln. The caption in (c) is common to (a) and (b).

uln = sgn(u) ln(1+ |u|) and pln = sgn(p) ln(1+ |p|), (20.57)

restricted to the segment {{x1,x2},0 ≤ x1 ≤ 1,x2 = 1/2}. The oscillatory behavior
of the solution appears clearly in Figure 20.3(b). In Figure 20.4, we reported the
graph of the computed approximations of u and p for c = 0.8 at t = 15.512, very
close to the blow-up time.

In Figure 20.5, we showed for c = 1 the approximated evolution for t ∈ [0,35.03]
of the function

t → max
{x,1,x2}∈Ω

u(x1,x2, t) (20.58)

The computed maximum value is always achieved at {0.5,0.5}. The explosive na-
ture of the solution is obvious from this figure.

In order to better understand the evolution of the function (20.58), we analyzed its
restriction to the time interval [0,28] in both the time and frequency domains (see
Figure 20.6). Actually, concerning the frequency domain we spectrally analyzed



20 Splitting Methods for Some Nonlinear Wave Problems 665

0

0.5

1

0

0.5

1
0

5000

10000

15000

0

0.5

1

0

0.5

(a) u (b) p

1
0

5

10

15

x 10
5

Fig. 20.4 Case c = 0.8, pure Dirichlet boundary conditions: Computed approximations for (a) u
and (b) p at t = 15.512.

Fig. 20.5 Case c = 1, pure
Dirichlet boundary con-
ditions: Evolution of the
computed approximation
of the function (20.58) for
t ∈ [0,35.03].
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the modulation of the above function, that is the signal obtained after subtracting
from the function (20.58) its convex component. Figure 20.6(b) suggests that the
modulation observed in Figure 20.6(a) is quasi-monochromatic, with f / 0.9 Hz.
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Fig. 20.6 Case c = 1, pure Dirichlet boundary conditions: (a) Evolution of the computed approxi-
mation of the function (20.58) for t ∈ [0,28] and (b) spectrum of the modulation.
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Finally, Figure 20.7 reports the variation of the blow-up time of the approximated
solution as a function of c. As mentioned above, the results obtained with h= 1/100
and h = 1/150 match very accurately.

Fig. 20.7 The blow-up time
as a function of c (semi-log
scale).
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7.2 Numerical Experiments for the Nonlinear Wave
Problem (20.1), (20.4)

The time discretization by operator-splitting of the nonlinear wave problem (20.1),
(20.4) has been discussed in Section 2.3, where we showed that at each time step
we have to solve two nonlinear initial value problems such as (20.34) and one linear
wave problem such as (20.23).

The simplicity of the geometry of this test problem (see Figure 20.1) suggests
the use of finite differences for the space discretization. Using the notation of Sec-
tion 7.1, at each time level we will have to solve 2I(I + 1) initial value problems
such as (20.34): two for each grid point Mi j, with 1 ≤ i ≤ I + 1, 1 ≤ j ≤ I. The so-
lution method discussed in Section 4 still applies. By discretizing problem (20.23)
by finite difference method, we obtain: Set

φ0
i j = φ0(Mi j), 0 ≤ i, j ≤ I+1 and φ1

i j −φ−1
i j = 2τφ1(Mi j), 1 ≤ i ≤ I+1,1 ≤ j ≤ I,

then, for q = 0, . . . ,Q, 1 ≤ i ≤ I + 1,1 ≤ j ≤ I, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φq+1
i j +φq−1

i j − 2φq
i j +β

(τ
h

c
)2

(4φq
i j −φq

i+1 j −φq
i−1 j −φq

i j+1 −φq
i j−1) = 0,

φq+1
kl = 0 if Mkl ∈ Γ0,

1
βc

φq+1
I+1l −φq−1

I+1l

2τ
+

φq
I+2l −φq

Il

2h
= 0, 1 ≤ l ≤ I,

(20.59)
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where τ =(t f −t0)/Q and the “ghost” value φq
I+2l has been introduced to impose the

Sommerfeld condition at the discrete level. Upon elimination of φq
I+2l , we can derive

a more practical formulation of the fully discrete problem, namely for q = 0, . . . ,Q,
1 ≤ i ≤ I,1 ≤ j ≤ I, instead of (20.59) we have

⎧⎪⎨
⎪⎩

φq+1
i j +φq−1

i j − 2φq
i j +β

(τ
h

c
)2

(4φq
i j −φq

i+1 j −φq
i−1 j −φq

i j+1 −φq
i j−1) = 0,

φq+1
kl = 0 if Mkl ∈ Γ0,

(20.60)
and for q = 0, . . . ,Q, i = I + 1, 1 ≤ j ≤ I, we have(

1+
τ
h

c
)

φq+1
I+1 j +

(
1− τ

h
c
)

φq−1
I+1 j − 2φq

I+1 j

+β
(τ

h
c
)2

(4φq
I+1 j − 2φq

I j −φq
I+1 j+1 −φq

I+1 j−1) = 0. (20.61)

Via (20.61), the discrete Sommerfeld boundary condition has been included in the
discrete wave equation.

We chose the same values for u0, u1, c, α , β , Q, h, and Δ t as in Section 7.1. Once
again, the results obtained with h = 1/100 and h = 1/150 match very accurately.

In Figure 20.8, we visualized for c = 0.8 and t ∈ [0,6.4] (the blow-up time being
close to Tmax / 7.432) the evolution of the computed approximations of the quan-
tities in (20.57) restricted to the segment {{x1,x2},0 ≤ x1 ≤ 1,x2 = 1/2}. These
results (and the ones below) show that the blow-up occurs sooner that in the pure
Dirichlet boundary condition case. In Figure 20.9, we reported the graph of the com-
puted approximations of u and p for c = 0.8 at t = 7.432, very close to the blow-up
time.
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Fig. 20.8 Case c = 0.8, mixed Dirichlet-Sommerfeld boundary conditions: Evolution of quantities
(a) uln and (b) pln. The caption in (c) is common to (a) and (b).
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Fig. 20.9 Case c = 0.8, mixed Dirichlet-Sommerfeld boundary conditions: Computed approxima-
tions for (a) u and (b) p at t = 7.432.

Figure 20.10 reports the graph of the computed approximations of u and p for
c = 0.3 at t = 2.44, very close to the blow-up time. Figures 20.9 and 20.10 show
that for c sufficiently small (resp., large), the blow-up takes place inside Ω (resp.,
on Γ1).
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Fig. 20.10 Case c = 0.3, mixed Dirichlet-Sommerfeld boundary conditions: Computed approxi-
mations for (a) u and (b) p at t = 2.44.

In Figure 20.11(a), we reported for c = 1 the approximated evolution of the
function (20.58) for t ∈ [0,15.135]. In order to have a better view of the expected
modulation of the above function, we reported in Figure 20.11(b) its evolution for
t ∈ [0,13.5]. These figures show the dramatic growth of the solution as t nears Tmax.

Finally, we reported in Figure 20.12 the variation versus c of the blow-up time for
both the pure Dirichlet and the mixed Dirichlet-Sommerfeld boundary conditions.
It is interesting to observe how the presence of a boundary condition with (rather)
good transparency properties decreases significantly the blow-up time, everything
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Fig. 20.11 Case c = 1, mixed Dirichlet-Sommerfeld boundary conditions: (a) Evolution of the
computed approximation of the function (20.58) for t ∈ [0,15.135] and (b) zoomed view for t ∈
[0,13.5].

else being the same. Also, the above figure provides a strong evidence of the very
good matching of the approximate solutions obtained for h = 1/100 and h = 1/150
(and the related time discretization steps).

Fig. 20.12 The blow-up time
as a function of c for both
the pure Dirichlet and the
mixed Dirichlet-Sommerfeld
boundary conditions.
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7.3 Numerical Experiments for the Nonlinear Wave
Problem (20.5), (20.3)

We consider now problem (20.5), (20.3). We take the same values for u0, u1, α , β ,
and h as in Section 7.1. Moreover, let us start by setting k = 0 and λ = 1 in (20.5).
For c small enough, we observe the same explosive nature of the solutions that we
have seen in Sections 7.1 and 7.2; see Table 20.1 for the blow-up times. For c= 0.32,
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Figure 20.13 reports the evolution of the computed approximation of the function

in (20.58) for t ∈ [0,2.94] and the computed approximation for p =
∂u
∂ t

at t = 2.94

(very close to blow-up).

Table 20.1 Bratu, k = 0: Blow-up times for different values of c.

c 0.1 0.2 0.3 0.31 0.32 0.33

blow-up time 1.99 1.99 2.48 2.66 2.94 3.72
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Fig. 20.13 Bratu, λ = 1, k = 0, c = 0.32: (a) Evolution of the computed approximation of the
function in (20.58) for t ∈ [0,2.94] and (b) Computed approximation of p at t = 2.94.

For c above a critical value ccr, the solution to (20.5), (20.3) does not blow-up
anymore. For k = 0 and λ = 1, the numerical results suggest that 0.33< ccr < 0.34.
In Figure 20.14(a), we show the evolution of the computed approximation of the
function in (20.58) for c = 0.34. Figure 20.14(b) suggests that the modulation for
c= 0.34 observed in Figure 20.14(a) is a quasi-monochromatic signal, with f / 0.22
Hz. It is possible to get a good estimate of the critical value ccr by considering the
static version of the equation under consideration, that is:⎧⎪⎨

⎪⎩
−∇2u =

λ
c2 eu in Ω ,

u = 0 on ∂Ω .

It is well known that the above problem possesses a turning point for
λ
c2 / 6.81

(see, e.g., [9], Chapter 3). This means that ccr can be estimated by ccr /
√

λ/6.81.
So, for λ = 1 we get ccr / 0.38, which is not too far from the value suggested by
the numerical experiments.
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Fig. 20.14 Bratu, λ = 1, k = 0, c = 0.34: (a) Evolution of the computed approximation of the
function in (20.58) and (b) Spectrum of the modulation.

If we solve problem (20.5), (20.3) with k = 0, λ = 1, and c = 0.4, the oscillations
of the function in (20.58) have smaller amplitude and higher frequency than for
c = 0.34, which is closer to ccr (see Figure 20.15). Again, the spectral power den-
sity (in Figure 20.15(b)) suggests that the modulation of function (20.58) in Fig-
ure 20.15(a) is a quasi-monochromatic signal, with f / 0.32 Hz in this case.
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Fig. 20.15 Bratu, λ = 1, k = 0: Comparison between c= 0.34 and c= 0.4 in terms of (a) Evolution
of the computed approximation of the function in (20.58) and (b) Spectrum of the modulation.

Next, let us set k = 1 and ε = 0.1 (it was shown in [12] that the value of ε has
little impact on the solution), while keeping λ = 1. As for k = 0, for small values
of c the solution to (20.5), (20.3) displays an explosive nature. See Table 20.2 for
the blow-up times, which are higher than in the non-damped case (compare with the
times in Table 20.1). Also, a higher k has the effect of reducing the value of ccr: the
numerical results suggest that for k = 1 we have 0.31 < ccr < 0.32.
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Table 20.2 Bratu, λ = 1, k = 1: Blow-up times for different values of c.

c 0.1 0.2 0.3 0.31

blow-up time 2.52 2.57 3.82 4.63

In Figure 20.16(a), we show the evolution of the computed approximation of the
function in (20.58) for c = 0.32 and c = 0.4. Figure 20.16(b) reports the spectrum of
the modulations in 20.16(a): the damped oscillations of the function in (20.58) have
frequency f / 0.18 Hz for c = 0.32 and f / 0.33 Hz for c = 0.4. Notice that the
effective damping coefficient in (20.5) is k/(ε + t), so as t → ∞ it approaches zero.
We let the simulations whose results are reported in Figure 20.16 run till t = 1000.
For c = 0.32 (resp., 0.4) the amplitude of the oscillations is 0.12 (resp., 0.035) at
t = 200 and 0.055 (resp., 0.016) at t = 1000.
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Fig. 20.16 Bratu, λ = 1, k = 1: Comparison between c= 0.32 and c= 0.4 in terms of (a) Evolution
of the computed approximation of the function in (20.58) and (b) Spectrum of the modulation.

Next, we set k = 10, while keeping λ = 1. The value of ccr is further reduced:
the numerical results suggest that we have 0.3 < ccr < 0.31. See Table 20.3 for
the blow-up times for c = 0.1,0.2,0.3. In Figure 20.17(a), we show the evolution
of the computed approximation of the function in (20.58) for c = 0.31 and c =
0.4. Unlike the cases k = 0 and k = 1, the function in (20.58) does not display
an oscillatory behavior. The computed solution u approaches a steady state (which
is clearly the solution of the associated steady Bratu’s problem) after the initial
transitory phase. Figure 20.17(b) shows the computed approximation of u at t = 70
(close to the steady state) for c = 0.4.
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Table 20.3 Bratu, λ = 1, k = 10: Blow-up times for different values of c.

c 0.1 0.2 0.3

blow-up time 4.85 5.22 10.02

2

1.5

0.5

1

c = 0.4
0.4

0.3

0.2

0.1

0

0 0

0.50.5
1

1

c = 0.31

m
ax

(u
)

0
0 10 20 30 40 50 60 70

t

(a) the function in (58) (b) u at t = 70 for c = 0.4

Fig. 20.17 Bratu, λ = 1, k = 10: (a) Comparison between c = 0.31 and c = 0.4 in terms of evo-
lution of the computed approximation of the function in (20.58) and (b) Computed approximation
of u at t = 70 for c = 0.4.

Figure 20.16(a) and 20.17(a) suggests that there is a critical value of k between
1 and 10 at which the oscillatory behavior of the function in (20.58) disappears.
To estimate such a value, we fixed λ = 1, c = 0.4, and progressively increased the
value of k. For k = 2, the function in (20.58) is still oscillating at t = 1000 with
amplitude 5 · 10−4. For k = 3, amplitude 5 · 10−4 is already reached at t = 100,
while at t = 1000 the amplitude is 2 ·10−5. For k = 8, at t = 50 the amplitude of the
oscillations is 10−6, whereas for k = 9 there are no oscillations. Thus, the critical
value of k is between 8 and 9.

Figure 20.18 is a zoom of Figure 20.15(a), 20.16(a), and 20.17(a), that is it shows
the evolution of the computed approximation of the function in (20.58) for k =
0,1,10 over the interval [0,2], when the damping coefficient k/(ε + t) is large.

Fig. 20.18 Bratu, λ = 1,
c = 0.4: evolution of the
computed approximation of
the function in (20.58) for
k = 0,1,10 over the interval
[0,2]. This figure is a zoom
of the corresponding curves
in Figure 20.15(a), 20.16(a),
and 20.17(a).
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Finally, we replaced the time dependent damping coefficient k/(ε + t) by k to
check how the solution u varies. So, instead of (20.5), we now consider

∂ 2u
∂ t2 + k

∂u
∂ t

− c2∇2u = λeu in Ω ∈ (0,Tmax). (20.62)

Problem (20.62) can be easily solved using a three-stage operator-splitting scheme
of the Strang’s type; however, for commonality we still used a five-stage operator-
splitting scheme, namely, the one obtained by replacing k/(ε+tn+1/2) by k in (20.48)
and (20.50). Therefore, steps 1, 3, and 5 are still given by (20.47), (20.49), and

(20.51), while step 2 becomes: Set un+2/5 = un+1/5, pn+2/5 = p

(
Δ t
2

)
, p being the

solution of ⎧⎪⎪⎨
⎪⎪⎩

∂ p
∂ t

+ kp = 0 in Ω ×
(

0,
Δ t
2

)
,

p(0) = pn+1/5;

(20.63)

and step 4 becomes: Set un+4/5 = un+3/5, pn+4/5 = p(Δ t), p being the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ p
∂ t

+ kp = 0 in Ω ×
(

Δ t
2
,Δ t

)
,

p

(
Δ t
2

)
= pn+3/5.

(20.64)

The solutions to sub-problems (20.63) and (20.64) are given by:

pn+2/5 = e−
kΔt

2 pn+1/5, pn+4/5 = e−
kΔt
2 pn+3/5, (20.65)

respectively.
In Figure 20.19, we show the evolution of the computed approximation of the

function in (20.58) for c = 0.4 and k = 1. Since the damping coefficient is constant,
the oscillations are damped out quickly (compare Figure 20.19 with the dashed line
in Figure 20.16(a)).
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Fig. 20.19 Evolution of the computed approximation of the function in (20.58) where u is the
solution to (20.62)–(20.3) for λ = 1, c = 0.4, and k = 1.
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8 Conclusions

We have investigated the numerical solution of two nonlinear wave equations: a
classical wave equation with a forcing term given by the first Painlevé equation and
a wave equation of the Euler-Poisson-Darboux type with a forcing term given by
the Bratu problem nonlinearity. Depending on the respective values of the various
parameters in the model and on the nonlinearity, solutions can blow-up in finite
time or evolve to a limit cycle. The key ingredient to capture the solutions has been
a three-stage (for the classical wave equation) or five-stage (for the Euler-Poisson-
Darboux equation) symmetrized splitting scheme for the time discretization cou-
pled to a well-chosen time-step adaptation technique for treating the fractional steps
associated with the nonlinear forcing term of the equation.

The methods discussed in this chapter can be generalized to the coupling of the
linear wave equation with nonlinear equations.
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Chapter 21
Operator Splitting Algorithms for Free Surface
Flows: Application to Extrusion Processes

Andrea Bonito, Alexandre Caboussat, and Marco Picasso

Abstract We investigate the benefits of operator splitting methods in the context
of computational fluid dynamics. In particular, we exploit their capacity at han-
dling free surface flows and a large variety of physical phenomena in a flexible
way. A mathematical and computational framework is presented for the numerical
simulation of free surface flows, where the operator splitting strategy allows to sep-
arate inertial effects from the other effects. The method of characteristics on a fine
structured grid is put forward to accurately approximate the inertial effects while
continuous piecewise polynomial finite element associated with a coarser subdivi-
sion made of simplices is advocated for the other effects. In addition, the splitting
strategy also allows modularity, and in a straightforward manner rheological model
change for the fluid. We will emphasize this flexibility by treating Newtonian flows,
visco-elastic flows, multi-phase, and multi-density immiscible incompressible New-
tonian flows. The numerical framework is thoroughly presented; the test case of the
filling of a cylindrical tube with potential die swell in an extrusion process is taken
as the main illustration of the advantages of operator splitting.
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1 Introduction

Complex free surface phenomena involving multi-phase Newtonian and/or Non-
Newtonian flows are nowadays a topic of active research in many fields of physics,
engineering, and bioengineering. Numerous mathematical models and associated
numerical approximations for complex liquid-gas free surfaces problems are also
available.

The purpose of this chapter is to present a comprehensive review of a compu-
tational methodology developed in the group of Jacques Rappaz at Ecole polytech-
nique fédérale de Lausanne (EPFL), called cfsFlow and commercialized by a spin-
off company of EPFL named Ycoor Systems S.A. [40]. Originally proposed for
two-dimensional cases by Maronnier, Picasso, and Rappaz [25], it evolved to han-
dle three-dimensional flows [26], account for surrounding compressible gas [11, 12]
and surface tension [8], allow complex rheology [6], include space adaptive inter-
face tracking [9], and recently integrate multi-phase fluids [19]. Besides the typical
fluid flows applications, it is worth noting that these methods have been also applied
successfully to predict the evolution of glaciers [20, 21, 33].

Many algorithms are available to approximate free boundary problems, see for
instance [2, 29, 31, 37, 38]. The novelty in cfsFlow is to use a time splitting ap-
proach [15] and a two-grids method to decouple advection and diffusion regimes.
This allows the use of well-suited numerical techniques for each of the two regimes
separately. In particular, the advection phenomenon describing the evolution of each
liquid phases is approximated on structured grids by the forward method of charac-
teristics [34] on the volume-of-fluid representation of each phase. On the other hand,
finite element approximations on simplices determined as liquid are implemented to
handle diffusion-like phenomena.

We start by discussing in Section 2 the basic model for Newtonian fluids with
free surface. The type of operator splitting strategies considered and their applica-
tions to free boundary problems are presented in Section 3, the associated numerical
algorithms being presented in Section 4. Fluids verifying more complex rheology
are discussed in Section 5, where the upper convected Maxwell constitutive relation
for the extra stress tensor is chosen as our model problem. Multi-phase fluids are
considered in Section 6 and perspectives on emulsion processes are put forward in
Section 7.

The filling of a cylindrical tube with potential die swell in an extrusion process is
taken as the main illustration of the advantages of the presented numerical algorithm
and is used throughout this chapter to evaluate the effect of each component in the
final model. We note in passing that the numerical simulations of extrusion is of
great importance for instance in industrial processes involving pasta dough [22] or
textile products [1].
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2 Mathematical Modeling of Newtonian Fluids with Free
Surfaces

We present in this section the mathematical model used to describe the evolution
of an incompressible Newtonian fluid with a free surface, neglecting the effect of
the ambient fluid. A simple model for the treatment of the ambient fluid has been
proposed in [12] and the addition of surface tension effects has been described in
[8, 9].

The computational domain is denoted by Λ ⊂ R
d , d = 2,3, and T > 0 stands

for the final time. We describe in Section 2.1 the Navier-Stokes equations for fluids
subject to free boundaries and detail in Section 2.2 the Eulerian approach used to
track the liquid domain evolution.

2.1 Navier-Stokes System

We denote by Ω(t)⊂Λ the domain occupied by the liquid at time t ∈ [0,T ] and by

Q := {(x, t) ∈Λ × (0,T ] | x ∈ Ω(t)} ,

the space-time liquid domain. The fluid is assumed to be incompressible and New-
tonian so that its velocity u : Q → R

d and pressure p : Q → R are the solutions to
the Navier-Stokes equations:⎧⎪⎨

⎪⎩
ρ
(

∂
∂ t

u+(u ·∇)u
)
− 2∇ · (μD(u))+∇p = f in Q,

∇ ·u = 0 in Q,

(21.1)
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where f : Q → R
d is a given external force (typically f := ρg, where g is the grav-

itational acceleration), D(u) := 1
2 (∇u+∇ut) is the symmetric part of the velocity

gradient and ρ > 0, μ > 0 are respectively the fluid density and viscosity. Notice
that the Navier-Stokes equations are only defined in the liquid domain Q, the effect
of the outside fluid being neglected. Hence, the velocity and pressure outside Q are
not defined.

We now discuss the boundary/interface conditions associated with the above sys-
tem and refer to Figure 21.1 for an illustration in the die swell context. We separate
the boundary of the computational domain in two disjoint open sets ΓD and ΓN such
that ∂Λ =ΓD∪ΓN. The velocity is prescribed on ΓD (Dirichlet boundary condition),
i.e. for a given gD : ΓD× [0,T ]→ R

d , we have

u = gD on ∂QD := {(x, t) ∈ ΓD× [0,T ] | x ∈ ∂Ω(t)} . (21.2)

On the other hand, a force is applied on ΓN (Neumann boundary condition), i.e. for
a given gN : ΓN× [0,T ]→ R

d , we have

(2μD(u)− pI)n = gN on ∂QN := {(x, t) ∈ ΓN× [0,T ] | x ∈ ∂Ω(t)} , (21.3)

where n(., t) is the outward pointing unit vector normal to ∂Ω(t) and I is the identity
tensor. More general boundary conditions such as slip boundary conditions could
be considered in a similar way but are not included here to keep the presentation as
simple as possible.

Regarding the free interface condition, we assume that no force is exerted to the
liquid, that is

(2μD(u)− pI)n = 0 on F := {(x, t) ∈Λ × (0,T ] | x ∈ ∂Ω(t)\ ∂Λ} , (21.4)

and, since the interface evolves with the fluid velocity, that the interface velocity uF

satisfies
uF = u on F. (21.5)

Finally, an initial condition u0 : Ω(0)→ R
d is provided for the velocity

u(.,0) = u0 on Ω(0). (21.6)

2.2 Implicit Representation of the Liquid Domain

The liquid domain Ω(t) is mathematically represented during the evolution via its
characteristic function φ : Λ × [0,T ]→{0,1}, implying that

Ω(t) = {x ∈Λ | φ(x, t) = 1} , t ∈ [0,T ]. (21.7)

In view of the interface velocity condition (21.5), we interpret the evolution of Ω(t)
as the transport of its characteristic function with the fluid velocity:
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Fig. 21.1 Boundary conditions in the context of die swell. The liquid enters the cavity with an
initial velocity u, the horizontal component is a parabolic profile and the vertical component van-
ishes. The velocity is imposed to vanish on the rest of the boundary. Another setup would be to
enforce slip boundary conditions on the lateral walls of the extruder, implying a constant, instead
of parabolic, profile of velocities in the tube.

∂
∂ t

φ +u ·∇φ = 0 in Q, φ = 0 in Λ \Q, (21.8)

where u is the fluid velocity only defined on the space-time fluid domain Q as noted
in Section 2.1. An illustration is provided in Figure 21.2.

∂
∂t + ·∇ = 0

(tn) = 1

t = tn

(tn)

t = tn+1

(tn+1) = 1

(tn+1)

f f

f

f

W

W

u

Fig. 21.2 Deformation of the liquid domain Ω(t) for t ∈ [tn, tn+1] deduced from the transport of
the characteristic function φ with the liquid velocity u according to (21.8).

Remark 1 (Ambient Fluid and Computational Cost). As the effect of the outside
fluid is neglected, the Navier-Stokes relations (21.1) for the velocity-pressure pair
are only considered in the space-time liquid domain Q. As a consequence, the ve-
locity is only defined on Q and so is the transport equation for the characteristic
function in (21.8). A possible equivalent alternative would consist in finding an ex-
tension of the velocity field to Λ × (0,T ], thereby extending the transport relation
to the entire space-time computational domain Λ × (0,T ]. However, the numerical
scheme described in Section 4 takes full advantage of the representation (21.8) in
order to reduce the overall computational cost.
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We supplement the transport equation in (21.8) by the value of the characteristic
function φ at the inflow boundary

∂Qinflow := {(x, t) ∈ ∂Λ × (0,T ] | x ∈ ∂Ω(t) and u ·n < 0} , (21.9)

namely,
φ = 1 on ∂Qinflow. (21.10)

The initial value of the characteristic equation is chosen to match the initial given
domain Ω(0) := Ω ,

φ(.,0) = 1 on Ω(0) and φ(.,0) = 0 elsewhere. (21.11)

3 Operator Splitting Algorithm

We take advantage of an operator splitting scheme to separate the numerical issues
inherent to the approximation of the diffusion and advection operators in the ap-
proximation of the system of equations (21.1) and (21.8). In this context, it allows
to treat separately Stokes systems on given non-moving liquid domains and trans-
port equations for the velocity and the liquid characteristic function.

Several operator splitting algorithms are available in the literature, starting from
the early works of Peaceman and Rachford [32], Douglas and Rachford [14],
Marchuk [23, 24], and Yanenko [39]. We refer to Glowinski [15] for a survey of
these methods. In Section 3.1, we review a particular version of the so-called Lie
scheme and we detail in Section 3.2 its application to free boundary problems.

3.1 The Lie Scheme

We advocate in this work a particular version of the Lie scheme and follow the
description provided in [15, 16] (see also Chapters 1 and 2 in this book). Assume
that we are interested in the solution of the Cauchy problem⎧⎨

⎩
d
dt

v+A(v, t) = 0, t ∈ (0,T ],

v(0) = v0,

where the operator A can be decomposed as the sum of q operators

A =
q

∑
i=1

Ai. (21.12)
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The scheme starts with a subdivision 0 =: t0 < t1 < .. . < tN := T of the time
interval [0,T ]. Over each sub-interval In+1 := (tn, tn+1] the approximation of v(tn+1)
(an approximation of v(tn) being given) is obtained in q steps (corresponding to q
alternating “directions”):

set v0 = v0 and w0(t)≡ v0 for t ∈ [0, t1];

for n = 0, . . . ,N − 1
for i = 1, . . . ,q

find wn+i/q(t) as the solution of
d
dt

v+Ai(v, t) = 0 on (tn, tn+1]

and satisfying the initial condition v(tn) = wn+(i−1)/q(tn+1);
end for
set vn+1 := w(tn+1)

end for

It turns out that if the operators Ai are linear, time independent, and they commute,
then vn = v(tn) for n = 0, . . . ,N. However, in generic situations, the above scheme
is, at most, first order accurate [15]. Nevertheless, this motivates the introduction of
first order discretizations in time and space for each sub-step of the algorithm, as
described in Sections 4.1 and 4.2.

3.2 Application to Free Surface Flows

In the context of fluid flows with free boundaries, we set up a splitting of type (21.12)
using two alternating “directions” (q= 2). We call these two steps the prediction and
correction steps which are now described on each time subinterval In+1 := (tn, tn+1].
They consist in separating the hyperbolic regime from the parabolic regime in order
to apply numerical methods well suited to each situation; see Section 4.

We assume that an approximation of the liquid characteristic function φn is given,
and therefore so is an approximation of the liquid domain Ω n via the relation

Ω n := {x ∈Λ | φn(x) = 1} .

This relation corresponds to (21.7) after approximating the liquid characteristic
function at time t = tn. We also assume to be given a velocity approximation un(x)
of u(x, tn). The prediction step determines an approximation of the liquid domain at
time tn+1 together with a prediction of the velocity on the new domain. The correc-
tion step provides an update of the velocity and pressure on the liquid domain that
remains unchanged. Figure 21.3 provides an illustration of the process for the die
swelling example.
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t = tn

t = tn+1/2

Prediction step

t = tn+1

Correction step

n := { n = 1}, n, pn

n = 0

n+1/2 := { n+1/2 = 1}, n+1/2

n+1/2 = 0

n+1 := n+1/2, n+1, pn+1
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f

f

f

f

Fig. 21.3 Alternating direction splitting applied to free boundary problems. Given approximations
φ n and un of the liquid domain characteristic function φ and velocity u at time t = tn, the first step
consists in finding updated approximations of the characteristic function φ (and thus of the liquid
domain Ω ) as well as of the fluid velocity u. On the new liquid domain, the second step determines
a velocity correction together with its associated pressure. In particular, the liquid domain does not
change during the correction step.

3.2.1 The Prediction Step

The prediction step encompasses the advection components of (21.1) and (21.8). It
consists in simultaneously finding approximations of the characteristic function φ
and the velocity field u satisfying

∂
∂ t

φ +u ·∇φ = 0 and
∂
∂ t

u+(u ·∇)u = 0 in Qn+1 := Q∩ (
Λ × In+1) .

(21.13)
The numerical scheme proposed here relies on the so-called method of characteris-
tics and is detailed now. For any point x ∈ Ω n in the liquid domain, we define the
characteristic trajectory y(.;x) starting at x by

d
dt

y(t;x) = u(y(t;x), t), for t ∈ In+1, and y(tn;x) = x. (21.14)

Along this characteristic trajectory, the transport relations in (21.8) read

d
dt

φ(y(t;x), t) = 0 and
d
dt

u(y(t;x), t) = 0.
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Hence, from the initial conditions φ(tn) = φn and u(tn) = un on Ω n, we obtain

φ(y(t;x), t) = φn(x) = 1 and u(y(t;x), t) = un(x) (21.15)

as long as y(t;x) ∈ Λ . We set φ(x, t) = 0 whenever x ∈ Λ \ {y(t;x) | x ∈ Ωn} so
that these relations defines φ on Λ × In+1 (and the associated liquid domain) as well
as the velocity u on the liquid domain. As pointed out earlier, the algorithm does not
need the velocity u(x, t) whenever x ∈ Λ \ {y(t;x) | x ∈ Ω n}. The prediction step
ends upon setting

φn+ 1
2 := φ(tn+1) in Λ ,

and consequently

Ω n+ 1
2 :=

{
x ∈Λ | φn+ 1

2 (x) = 1
}

:=
{

y(tn+1,x) | x ∈ Ω n}∩Λ (21.16)

as well as
un+ 1

2 := u(tn+1) in Ω n+ 1
2 .

3.2.2 The Correction Step

After the prediction step, the approximation of the liquid domain remains un-
changed. In the framework of the splitting scheme described in Section 3.1, the
“corrected” characteristic function satisfies

∂
∂ t

φ = 0 in Ω n+ 1
2 × In+1 with φ(tn) = φn+ 1

2 in Ω n+ 1
2 .

As a consequence, we set φn+1 := φn+ 1
2 , Ω n+1 := Ω n+ 1

2 and we note that the pre-

dicted velocity is now defined over Ω n+1, i.e., un+ 1
2 : Ω n+1 → R

d .
Then, the updated velocity u : Ω n+1 × In+1 →R

d as well as the associated pres-
sure p : Ω n+1× In+1 →R are defined as the solution to the following Stokes system
on a given non-moving domain:⎧⎪⎨

⎪⎩
ρ

∂
∂ t

u− 2∇ · (μD(u))+∇p= f

∇ ·u = 0

in Ω n+1 × In+1, (21.17)

supplemented by the boundary conditions

u = gD on ∂Ω n+1 ∩ΓD, (2μD(u)− pI)nn+1 = gN on ∂Ω n+1 ∩ΓN,

and the free interface condition

(2μD(u)− pI)nn+1 = 0 on ∂Ω n+1 \ ∂Λ ,
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where nn+1 is the outer pointing unit vector normal to ∂Ω n+1. Finally, we define
the corrected velocity approximation un+1 : Ω n+1 →R

d by un+1 := u(tn+1) and the
associated pressure by pn+1 : Ω n+1 →R by pn+1 := p(tn+1).

4 Numerical Approximation of Free Surface Flows

We are now in a position to describe the numerical algorithm for the approximation
of the solution to the free boundary problem (21.1) and (21.8). It takes full advan-
tage of the splitting into prediction and correction steps discussed in Section 3.2.
The time and space discretizations are presented in Sections 4.1 and 4.2 respec-
tively. This section ends with Section 4.3, where numerical illustrations are given,
in particular, in the context of die swell.

4.1 Time Discretization

We recall that the time interval [0,T ] is decomposed in N subintervals
In := (tn, tn+1], n= 0, . . . ,N−1 and we denote the associated time steps by δ tn+1 :=
tn+1 − tn. In what follows, we discuss the algorithm over the time interval In.

4.1.1 Prediction Step

An explicit Euler approximation Yn+1 of the characteristic curve y(tn+1;x) in (21.14)
is advocated for the prediction step. For all x ∈ Ω n, we set

Yn+1(x) := x+ δ tn+1un(x). (21.18)

In view of (21.16), the approximation of the liquid domain Ω n+ 1
2 , denoted Ω n+ 1

2
N ,

is defined as

Ω n+ 1
2

N :=
{

Yn+1(x) | x ∈ Ω n}∩Λ .

The characteristic curves Yn+1 determine also the approximations Φn+ 1
2 and Un+ 1

2

of φn+ 1
2 and un+ 1

2 according to the relations

Φn+ 1
2 (Yn+1(x)) = φn(x) := 1, Un+ 1

2 (Yn+1(x)) = un(x), (21.19)

whenever Yn+1(x) ∈Λ . In addition, we set Φn+ 1
2 (x) = 0 for x ∈Λ \Ω n+ 1

2
N .
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4.1.2 Correction Step

The approximation of the liquid domain characteristic function is not modified in
this step, i.e.,

Φn+1 := Φn+ 1
2 and Ω n+1

N := Ω n+ 1
2

N .

An implicit Euler method is advocated for the solution of the Stokes system (21.17).
This consists in seeking Un+1 : Ω n+1

N →R
d and Pn+1 : Ω n+1

N → R satisfying⎧⎪⎪⎨
⎪⎪⎩

ρ
Un+1 −Un+ 1

2

δ tn+1 − 2∇ · (μD(Un+1))+∇Pn+1 = f(., tn+1),

∇ ·Un+1 = 0,

(21.20)

in Ω n+1
N , subject to the boundary conditions

Un+1 = gD(., t
n+1) on ∂Ω n+1

N ∩ΓD,

(2μD(Un+1)−Pn+1I)nn+1
N = gN(., t

n+1) on ∂Ω n+1
N ∩ΓN,

and to the free interface condition

(2μD(Un+1)−Pn+1I)nn+1
N = 0 on ∂Ω n+1

N \ ∂Λ .

Here nn+1
N is the outer pointing unit vector normal to ∂Ω n+1

N .

4.2 Two-Grid Spatial Discretization

The space discretization takes also full advantage of the alternating splitting de-
scribed above. The prediction and correction steps are approximated using differ-
ent subdivisions and numerical techniques. On the one hand, a subdivision made
of structured cells is advocated for the characteristic relation (21.18) coupled with
a Simple Linear Interface Calculation (SLIC) [28] procedure in order to limit the
numerical diffusion when approximating the volume fraction of liquid in (21.19).
On the other hand, a standard stabilized finite element method is proposed for the
approximation of the solution of the Stokes system (21.20). We start with the de-
scription of the two subdivisions and define the associated discrete approximation
spaces. Then we detail the numerical techniques tailored to each discrete spaces.

4.2.1 Two Subdivisions and Associated Discrete Spaces

The prediction and correction steps rely on two different subdivisions. A volume-of-
fluid type method on a structured grid is advocated for the prediction step consisting
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of two transport equations (21.19). The computational domain Λ is bounded and
therefore can be included into a structured grid of cells Ci, i = 1, . . . ,M. We de-
note by TS := {Ci, i = 1, . . . ,M} the collection of all those structured cells and by
h := maxC∈TS diameter(C) the typical size of the elements. An example of such
mesh is shown in Figure 21.4.

Fig. 21.4 Structured subdivision used for the space discretization during the prediction step.

We denote by V
S the approximation space which consists of all piecewise con-

stant functions associated with the partition TS:

V
S :=

{
v : Λ →R | v|C is constant ∀C ∈ TS} .

Note that VS will be used as the approximation space for the liquid characteristic
function Φn and the predicted velocity Un+ 1

2 . In particular, the approximation of the
former does not necessarily take values in {0,1} but in R.

The second discretization considered is a typical conforming finite element sub-
division made of triangles when d = 2 or tetrahedra when d = 3. The collection of
these elements is denoted TFEM and we denote by H := maxT∈TFEM diameter(T )
the typical size of the elements. An example of such a discretization is shown in
Figure 21.5.

Fig. 21.5 Finite element subdivision used for the space discretization during the correction step.

For any subset τ ⊂ TFEM , we denote by V(τ) the collection of vertices in τ and
by V

FEM(τ) the space of globally continuous, piecewise polynomials of degree ≤ 1
associated with the subdivision τ:
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V
FEM(τ) :=

{
V :

⋃
T∈τ

T → R | V continuous, V |T is a polynomial of degree 1,∀T ∈ τ

}

and
V

FEM
0 (τ) :=

{
V ∈V

FEM(τ) | V |ΓD∩∂T = 0 ∀T ∈ τ
}
.

In the sequel, the subset τ will represent the “liquid” elements, i.e., an approximate
subdivision of Ω(t) at a given time t.

In order to fully exploit the potentialities of this two-grid method, we consider
a structured grid T S that is finer than the finite element mesh T FEM. This allows
us to improve the accuracy on the approximation of the transport equations (21.18),
without having a computationally prohibitive approximation of the diffusion prob-
lem (21.20). As it turns out, this allows choices of relatively large CFL, see Sec-
tion 4.3. Typically the value of H is between 5h and 10h, namely the structured grid
is five to ten times finer than the finite element mesh. Further comments about the
choice of the sizes of both discretizations can be found in [12, 26].

To alternate between the prediction and correction steps, we need projection op-
erators to map functions in V

S into functions in V
FEM(τ) and vice versa. We start

with the projection πS→FEM : VS → V
FEM(τ) mapping the structured grid into the

finite element mesh. Note that a function in V
FEM(τ) is uniquely determined by its

values on the vertex set V(τ) and it is thus sufficient for the projection operator to
set these values. Hence, for any V ∈ V

S and any v ∈ V(τ), we define

(πS→FEMV )(v) :=
∑T∈τ : v∈V(T )∑C∈TS, C⊂T φv(center(C))V (center(C))

∑T∈τ : v∈V(T)∑C∈TS, C⊂T φv(center(C))
, (21.21)

where center(C) denotes the (barycentric) center of the cell C and φv denotes the
Lagrange piecewise linear basis function associated with the vertex v. The notation
C ⊂ T indicates that center(C) ∈ T . We denote identically the projection of a scalar-
valued function or of a vector-valued function for which the projection is applied
component-wise. In Figure 21.6, we have depicted a sketch in two dimensions of
the set of cells of T S appearing in the above summation for the calculation of the
value at a vertex of V(τ) in a typical structured subdivision.

The projection from the finite element subdivision to the structured mesh is
defined for any V ∈ V

FEM(τ) as follows. First, we extend the function V to the
entire computational domain Λ by 0. Then, for each cell C ∈ T S, we denote by
T (C) ∈T FEM the element in the finite element subdivision containing the center of
the cell C and define

(πFEM→SV )|C := ∑
v∈V(T (C))

φv(center(C))V (v). (21.22)

If the cell center is exactly at the boundary of several elements of the finite ele-
ment mesh, then one arbitrary (but fixed) element is chosen among the possible
elements. Again, we denote identically the projection of a scalar-valued function or
of a vector-valued function (computed component-wise).
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v

Fig. 21.6 The shaded cells correspond to all the cells appearing in the average projection (21.21)
in order to determine the value of the function in V

FEM at the node v. The Lagrange basis function
φv is the piecewise linear function (subordinate to the finite triangular subdivision) with value 1 at
v and 0 at the other vertices.

Remark 2 (Implementation). The two projection operators (21.21) and (21.22) re-
quire a data structure mapping each cell of the structured mesh to an element of
the finite element subdivision (the element containing the cell center). This array of
indices is computed once and for all at the beginning of the simulation. However,
when allowing for mesh adaptations an updated array is required after each mesh
modification.

4.2.2 Prediction Step

The prediction steps start with given approximations Φn
M ∈ V

S and Un
M ∈ (VS)d of

the liquid fraction and velocity respectively, on the structured grid of cells (recall
that M denotes the number of structured cells in the subdivision). As noted ear-
lier, although φ(x, t) ∈ {0,1}, its approximation takes values in R. However, the
resulting numerical diffusion is counter-balanced by the SLIC and decompression
algorithms described below.

We define the approximation Yn+1
M ∈ (VS)d of the characteristic trajectories Yn+1

as follows. As Yn+1
M is constant over each cell, it suffices to determine its values at

the centers xi of each cell Ci, i = 1, . . . ,M and we set

Yn+1
M (xi) := xi + δ tn+1Un

M(xi). (21.23)

The image via Yn+1
M of each cell Ci is denoted C̃i, i.e., C̃i := Yn+1

M (Ci), so that{
C ∈ TS : Ci ∩C̃ �= /0

}
corresponds to all the cells (at least partially) transported to the cell Ci. As a conse-

quence, the approximation Φn+ 1
2

M (xi) of the liquid characteristic function Φn+ 1
2 (xi)
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defined by (21.15) is obtained by adding the (weighted) contribution from cells
transported to Ci, that is

Φn+ 1
2

M (xi) := ∑
C∈TS

Φn
M(center(C))|Ci ∩C̃|, (21.24)

where |Ci ∩C̃| denotes the measure of Ci ∩C̃. Due to the Cartesian properties of the
structured grid TS, this measure is straightforward to compute as Ci ∩ C̃ are paral-
lelepiped rectangles. Figure 21.7 illustrates the transport of one (two-dimensional)
cell C into C̃, which overlaps four other cells.

Ci
C̃

C

Fig. 21.7 Approximation of Φn+ 1
2 using the method of characteristics. The cell C is transported

to C̃ and the quantity Φn
M(x j) is distributed among the intersecting cells. The contribution to

Φn+ 1
2

M (xi) from Φn
M(center(C)) is Φn

M(center(C))|Ci ∩ C̃| according to relation (21.24). The ele-
ments Ci ∩C̃ are rectangles, making the computation of |Ci ∩C̃| straightforward.

We emphasize again that in view of relation (21.24) the liquid domain charac-

teristic approximation Φn+ 1
2

M values are thus not necessarily 0 or 1 but could be any
positive real number. In fact, this numerical diffusion (values strictly between 0 and
1) and numerical compression (values strictly larger than 1) are the two drawbacks
of the projection formula (21.7), and are addressed now.

Numerical diffusion manifests itself when cells are partially filled, i.e., 0 <

Φn+ 1
2

M (center(C)) < 1 for some C ∈ TS. Since the exact volume fraction of liq-
uid φ is a step function and discontinuous at the free surface, numerical diffusion
around the interfaces has to be controlled by the numerical scheme. It is reduced

by the so-called SLIC algorithm [28], where the contribution to Φn+ 1
2

M (center(Ci))

of partially filled cell Ci is still proportional to |C̃∩Ci| but depends in addition on
the values of the Φn

M on the neighboring cells of C. More precisely, before being
transported along the characteristics, the quantities Φn

M(center(C)) are concentrated



692 A. Bonito et al.

near the boundary of the cell C instead of being spread out in the entire cell. This
procedure is illustrated in Figure 21.8 (bottom), and allows to reduce the error due
to the projection of the transported quantity in C̃ across several cells Ci. The way the
quantity Φn

M(center(Ci)) is pushed towards the boundary of the cell depends on the
neighboring values of the volume fraction. Examples in two dimensions of space are
illustrated in Figure 21.8 (top). We refer to [25, 26] for a more detailed description
of the algorithm.

0 0

0

1

1
16

1
4

9
16

1
4

3
16

1
4

3
16

1
4

ϕn = 1
4

1
41

(a) (b) (c) (d)

Fig. 21.8 (Top) Effect of the two dimensional SLIC algorithm on the cell center for four possible
interfaces. The quantity Φn

M(x j), in blue, is pushed back to the sides of C depending on the values
of Φn

M in the neighboring cells, in black. (Bottom) An example of two dimensional advection and
projection when the volume fraction of liquid in the cell is Φn

M(x j) =
1
4 . Left: without SLIC, the

volume fraction of liquid is advected and projected on four cells, with contributions (from the
top left cell to the bottom right cell) 3

16
1
4 , 1

16
1
4 , 9

16
1
4 , 3

16
1
4 . Right: with SLIC, the volume fraction

of liquid is first pushed at one corner, then it is advected and projected on one cell only, with
contribution 1

4 .

Let us discuss the compression case, i.e., Φn+ 1
2

M (C) > 1 for some cell C. In that

case, the excess Φn+ 1
2

M (C)− 1 is stored in a buffer and redistributed into partially

filled cells in order to decompress the field Φn+ 1
2

M . Our algorithm redistributes the
excess of liquid in a global way into cells that are in a neighborhood of the interface
first (cells that are partially filled). Therefore it allows to conserve the mass in a
global sense, in a way that is similar to global repair algorithms [35].
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More precisely, we proceed in two steps: first, we compute the excess of liquid

Φn+ 1
2

M (C)− 1 in each cell C after advection and projection onto TS; second, we re-
distribute these amounts into partially filled cells, starting with cells that are nearly
full. The detailed algorithm can be found in [25, 26] and is illustrated in Figure 21.9
whenTS is a single layer of cells. Although this figure represents a one-dimensional,
over-simplified situation, it illustrates the rebalancing principle that allows to con-
serve the mass at each time step.

�

0.9 1.0 1.0 1.0 0.4

0.5 0.9 1.7 0.8 0.4

n+ 1
2

M before the decompression algorithm

n+ 1
2

M after the decompression algorithmF

F

Fig. 21.9 Decompression algorithm. The volume fraction in excess in some cells is redistributed
into the partially filled cells. Here the excess of 0.7 in the middle cell is redistributed in the partially
filled cells, starting with the ones that are nearly full (0.9,0.8 and 0.5 in order).

Similarly to (21.24), the velocity approximation U
n+ 1

2
M is given by the formula

U
n+ 1

2
M (xi) := ∑

C∈TS

Un
M(center(C))|Ci ∩C̃|; (21.25)

but the SLIC and decompression algorithm are not applied to the approximation of
the velocity.

At the end of the prediction step, the projection onto the finite element space

Φn+ 1
2

K ∈ V
FEM of Φn+ 1

2
M is computed using the operators defined in Section 4.2.1

Φn+ 1
2

K := πS→FEMΦn+ 1
2

M ∈ V
FEM. (21.26)

The latter is used to define the liquid domain: An element T ∈ T FEM is said to

be liquid if maxx∈T Φn+1/2
K (x)≥ 1/2, the set of all liquid elements is then denoted

by τn+ 1
2

K , and the liquid domain Ω n+ 1
2

K is the union of all liquid elements. The choice
of the value 1/2 for the threshold is arbitrary. It has been empirically discussed in
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[26], but results have shown little sensitivity with respect to the value of this param-

eter. However, this definition of the liquid domain Ω n+ 1
2

K implies an approximation
error of the order O(H) on the approximation of the free surface. Mesh refinement
techniques have been designed to address this drawback [9], but are not developed
further here.

The velocity is not directly projected onto the finite element space as the projec-

tion would depend on the values of the velocity outside Ω n+ 1
2

K (which do not exist).

Instead, we project Φn+ 1
2

M U
n+ 1

2
M and recover the velocity U

n+ 1
2

K ∈ V
FEM(τn+ 1

2
K )d at

each vertex v ∈ V(τn+ 1
2

K ) as follows:

U
n+ 1

2
K (v) :=

(πS→FEM(Φn+ 1
2

M U
n+ 1

2
M ))(v)

Φn+ 1
2

K (v)
(21.27)

if v �∈ ΓD and U
n+ 1

2
K (v) = gD(v) otherwise. Notice that the above expression defines

U
n+ 1

2
K only on Ω n+ 1

2
K but only these values are needed in the correction step.

4.2.3 Correction Step

As already mentioned, the liquid characteristic function is not modified during this
step; so we set

Φn+1
K (v) := Φn+ 1

2
K (v)

for all v ∈ V(τn+ 1
2

K ), and

Ω n+1
K := Ω n+ 1

2
K and τn+1

K := τn+ 1
2

K .

Then, the Stokes system (21.20) on the fixed liquid domain Ω n+1
K and with vanishing

Dirichlet boundary condition gD ≡ 01 reads as follows.
Seek Un+1

K ∈ V
FEM
0 (τn+1

K )d and Pn+1
K ∈V

FEM(τn+1
K ) satisfying

Bn+1((Un+1
K ,Pn+1

K ),(V,R))+ Sn+1((Un+1
K ,Pn+1

K ),(V,R)) = Ln+1(V) (21.28)

for any (V,R)∈V
FEM
0 (τn+1

K )d ×V
FEM(τn+1

K ). The bilinear functional Bn+1 : (VFEM
0

(τn+1
K )d ×V

FEM(τn+1
K ))× (VFEM

0 (τn+1
K )d ×V

FEM(τn+1
K ))→ R is defined as

Bn+1((U,P),(V,R)) :=
ρ

δ tn+1

∫
Ωn+1

K

U ·V dx+ 2μ
∫

Ωn+1
K

D(U) :: D(V) dx

−
∫
Ωn+1

K

R ∇ ·V dx+
∫
Ωn+1

K

P ∇ ·V dx,

1 The case of non-vanishing Dirichlet boundary conditions reads similarly upon defining a lifting
of the boundary conditions.
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where A :: B := ∑d
i, j=1 Ai jBi j, for A,B ∈ R

d×d . The right-hand side Ln+1 : VFEM
0

(τn+1
K )d → R is given by

Ln+1(V) :=
ρ

δ tn+1

∫
Ωn+1

K

Un ·V dx+
∫
Ωn+1

K

f(tn+1) ·V dx.

The functionals Sn+1 in (21.28) are the Galerkin Least-Square stabilization terms to
cope with the fact that the choice of the finite element spaces is not inf-sup stable.
They are given by:

Sn+1((U,P),(V,R)) := ∑
T⊂Ωn+1

K

αT

∫
T

(
ρ

U−Un

δ tn+1 +∇P− f(tn+1)

)
·∇R dx,

where αT is the stabilization coefficient locally defined as:

αT :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CSUPG
diam(T )2

12μ
if 0 ≤ ReT ≤ 3

CSUPG
diam(T )2

4ReT μ
if 3 ≤ ReT

where the local Reynolds number is defined by ReT := ρ diam(T ) maxx∈T |Un|
2μ and CSUPG

is an dimensionless constant typically set to 1.0.
At the end of the correction step, the velocity is projected onto the structured grid

Un+1
M := πFEM→SUn+1

K ∈ (VS)d ,

while the volume fraction of liquid remains unchanged

Φn+1
M := Φn+ 1

2
M ∈ V

S.

4.3 Numerical Results for Newtonian Flows

The example that serves as a guideline in this work is the experiment of the die
swell with contraction in an extrusion process. This benchmark not only illustrates
the advantages of the splitting approach presented in this work, but it is also worth
noting that numerical simulation of extrusion is of great importance in industrial
processes, for instance for pasta dough in food engineering [22].

We consider an axisymmetric capillary die with a contraction at the entrance.
The fluid is injected into the die and then expands at the exit. The behavior of the
fluid depends strongly on the fluid rheology. In this section, we consider Newtonian
fluids and refer to Sections 5 and 6 for more complex fluids.
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4.3.1 Extrusion with Initial Contraction: Computational Domain

We describe the computational domain used for the subsequent extrusion experi-
ments with initial contraction. The computational domain Λ is depicted in Figures
21.10 and 21.11, together with the finite element mesh used for (most of) the sim-
ulations presented in this work. It consists of three cylinder as depicted in Figure
21.10. The first cylinder of diameter 0.010 m and length 0.005 m is where the liquid
is injected. Then, the liquid enters the die, a second cylinder of diameter 0.001 m
(contraction) and length 0.010 m. When, exiting the die, the liquid enters the third
cylinder of diameter 0.010 m and length 0.015 m. The total length of the domain
is therefore 0.030 m. The size of the finite elements in the die is characterized by
H = 0.0001 m. The structured grid consists of a subdivision made of cubic cells of
length 0.000025 m.

Injection Region

�

e3

0.001 m

0.005 m

0.010 m

0.015 m

0.01 m

Fig. 21.10 Extrusion with Initial Contraction: Dimensions of the computational domain.

4.3.2 Slip Boundary Conditions

We consider a Newtonian fluid with density ρ = 1300 kg m−3, and viscosity
μ = 10 kg(ms)−1. The fluid is injected with a constant speed of 0.00023 ms−1, such
that the speed in the die is approximately 0.05 ms−1. No-slip boundary conditions
are imposed at the bottom of the domain and slip boundary conditions are imposed
on the other parts of ∂Λ . We postpone to Section 4.3.3 for a discussion on the ef-
fect of different types of boundary conditions. Gravity forces, g = −9.81e3 ms−2

are oriented along the die (see Figure 21.10). The time step is constant and equal to
δ t = 0.005 s, which implies a CFL number of about 10 during the prediction step
and of about 2.5 during the correction step. At time t = 0.9 s approximately, the
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Fig. 21.11 Extrusion with Initial Contraction: Computational domain and finite element mesh.

jet hits the bottom of the computational domain and the fluid buckles. Figure 21.12
visualizes, in a medium plane inside the tube, snapshots of the volume fraction of
liquid Φ and of the corresponding velocity field U. Figure 21.13 visualizes the buck-
ling of the jet of Newtonian fluid once it hits the bottom of the computational do-
main.

In this case, we observe that the operator splitting scheme does not introduce
any additional error as long as the flow is laminar and does not touch the bottom
of the domain. This allows to consider large time steps if needed, without any CFL
condition. Little oscillations in the jet are observed due to the spatial discretization
and the unstructured finite element mesh. The buckling effect when the flow touches
the boundary requires smaller time steps to retain accuracy.

4.3.3 No-Slip Boundary Conditions

When enforcing slip boundary conditions on the lateral side as in the previous test
case, the liquid has a constant velocity (until it hits the bottom) so that the operator
splitting produces the exact solution for any value of the time step; see Figure 21.12.
For this simulation, we impose no-slip boundary condition on ∂Λ except at the
inflow where we keep the constant velocity profile of magnitude 0.00023 ms−1. A
Poiseuille profile is observed for the velocity in the die with a slight perturbation due
to the contraction. Figure 21.14 shows the results obtained with the setup described
in Sections 4.3.1 and 4.3.2 but with no-slip boundary conditions in the cavity before
the die and in the die; compare with Figure 21.12.

The effect of boundary conditions is amplified for liquids with larger viscosities.
Figure 21.15 provides a similar simulation when the viscosity is 10 times larger
(μ = 100 kg(ms)−1). It demonstrates the effect of no-slip boundary conditions on
the shape of the liquid front and on the free surface front velocity, which decreases
as the viscosity increases.
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Fig. 21.12 Die swell with extrusion of a Newtonian fluid. Snapshots of the solution at times t = 0,
0.3, 0.6, and 0.9 s on a plane located in the middle of the tubes. Top: representation of volume
fraction of liquid Φ ; bottom: speed |U|.

Fig. 21.13 Die swell with extrusion of a Newtonian fluid. Snapshots of the buckling of the jet at
times t = 1.0,1.2,1.4, and 1.6 s (left to right).

Figures 21.16 and 21.17 show snapshots of the buckling effects for μ = 10
kg(ms)−1 and μ = 100 kg(ms)−1 respectively, and no-slip boundary conditions. The
boundary conditions change drastically the shape of the liquid during the buckling.
In addition, larger viscosities slow the liquid front propagation and reduce the buck-
ling effect as it was already noted in the simple cavity setting [6, 36].
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Fig. 21.14 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 10 kg(ms)−1). Snapshots of the solution at times t = 0,0.3,0.6, and 0.9 s on a plane
located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ; bottom:
speed |U|.

5 Visco-Elastic Flows with Free Surfaces

We now discuss an extension to liquids with more complex rheology and in particu-
lar the modification of the Navier-Stokes system (21.1) to account for visco-elastic
effects. The upper-convected Maxwell model is chosen to describe the complex rhe-
ology but the algorithm presented here is not restricted to specific models.

5.1 Mathematical Modeling of Visco-Elastic Flows with
Free Surfaces

Visco-elastic fluids are characterized by the presence of an extra-stress tensor

denoted by σ ∈R
d(d+1)

2 /R
d×d
sym , the space of d×d symmetric tensors, supplement-

ing the Cauchy stress tensor 2μD(u)− pI in (21.1). Hence, the velocity u, pressure
p and visco-elastic stress σ satisfy in Q:
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Fig. 21.15 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 100 kg(ms)−1). Snapshots of the solution at times t = 0,0.3,0.6, and 0.9 s on a plane
located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ; bottom:
speed |U|. Compare with Figure 21.14 representing the same setting but with a fluid of smaller
viscosity.

Fig. 21.16 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 10 kg(ms)−1). Snapshots of the buckling of the jet at times t = 1.0,1.2,1.4, and 1.6 s (left
to right).

⎧⎪⎨
⎪⎩

ρ
(

∂
∂ t

u+(u ·∇)u
)
−∇ · (2μD(u))+∇p−∇ ·σ = f,

∇ ·u = 0.

(21.29)
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Fig. 21.17 Die swell with extrusion of a Newtonian fluid, with no-slip boundary conditions in the
die (μ = 100 kg(ms)−1). Snapshots of the buckling of the jet at times t = 1.0,1.2,1.4, and 1.6 s
(left to right).

The Dirichlet condition (21.2) on the velocity field remains unchanged but the Neu-
mann (21.3) as well as the interface (21.4) conditions are modified to account for
the presence of the visco-elastic stress

(2μD(u)− pI+σ)n = gN on ∂QN, (21.30)

(2μD(u)− pI+σ)n = 0 on F. (21.31)

As model problem, we consider the upper-convected Maxwell model to provide the
constitutive relation for σ , namely the extra-stress σ satisfies:

σ +λ
(

∂
∂ t

σ +(u ·∇)σ −∇u σ −σ∇ut
)
= 2μpD(u) in Q, (21.32)

where λ is the fluid relaxation time, μp is the so-called polymer viscosity [4, 5, 30].
The problem is thus coupled via the introduction of the extra-stress σ in the Navier-
Stokes equations, and reciprocally, the velocity u in the constitutive equation for σ .

The values of the stress tensor are set to a given tensor G : ∂Qin f low → R
d(d+1)

2 on
the inflow boundary of the domain:

σ = G, on ∂Qin f low.

Similar to the initial conditions (21.6) for the velocity field, the initial viscoelastic
stress is set to be

σ(0) = σ0 on Ω(0)

for a given σ0 : Ω(0)→ R
d(d+1)

2 .
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5.2 Extension of the Operator Splitting Strategy

The prediction and correction steps described in Section 3.2 extend naturally. The
constitutive relation (21.32) for σ also contains a transport relation which is ac-
counted for in the prediction step.

5.2.1 The Prediction Step

The prediction step (21.13) becomes: find the characteristic function φ , the velocity
field u, and the extra-stress σ satisfying

∂
∂ t

φ +u ·∇φ = 0

∂
∂ t

u+(u ·∇)u = 0

∂
∂ t

σ +(u ·∇)σ = 0

in Qn+1 := Q∩ (
Λ × In+1) . (21.33)

It ends upon setting

σn+ 1
2 := σ(tn+1) in Ω n+ 1

2 ,

in addition to the values for φn+ 1
2 and un+ 1

2 . As for the velocity, the method of char-
acteristics transports each component of the symmetric tensor (namely six fields
when d = 3 and three fields when d = 2). Their values are obtained from the char-
acteristics lines as in (21.15).

After space discretization, and using the notations introduced in Section 4, the

prediction Σ n+ 1
2

M ∈ (VS)
d(d+1)

2 of σ(tn+1) is given at each cell center xi by

Σn+ 1
2

M (xi) := ∑
C∈TS

Σn
M(center(C))|Ci ∩C̃|;

compare with (21.24).

At the end of the prediction step, the projection of the tensor Σn+ 1
2

M into the finite

element space into the finite element space V
FEM(τn+1

K )
d(d+1)

2 is computed accord-

ing to a formula similar to (21.27): i.e., for every v ∈ V(τn+ 1
2

K )

Σn+ 1
2

K (v) :=
(πS→FEM(Φn+ 1

2
M Σn+ 1

2
M ))(v)

Φn+ 1
2

K (v)
(21.34)

if v is not a vertex at the inflow boundary, and Σn+ 1
2

K (v) = G(v) otherwise.
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5.2.2 The Correction Step

After incorporation of the extra-stress related terms, the correction step reads as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂
∂ t

u−∇ · (2μD(u))+∇p−∇ ·σ = f

∇ ·u = 0

σ +λ
(

∂
∂ t

σ −∇u σ −σ∇ut
)
= 2μpD(u)

in Ω n+1 × In+1, (21.35)

supplemented by the appropriate boundary conditions and free interface conditions.
As in Section 4, the volume fraction and liquid domain remain unchanged during

the correction step. Problem (21.35) allows to obtain a correction of the velocity u,
the extra-stress tensor σ , and the pressure p. This correction step consists in two sub-
steps decoupling the velocity-pressure corrections and the extra-stress correction.
The first sub-step consists of solving a Stokes problem of the (21.28) type with a
modified functional Ln+1(.) accounting for the extra-stress tensor term:

Ln+1(V) :=
ρ

δ tn+1

∫
Ωn+1

K

Un
K ·V dx+

∫
Ωn+1

K

f(tn+1) ·V dx−
∫
Ωn+1

K

Σ n+ 1
2

K :: D(V) dx.

This corresponds to an explicit treatment of the visco-elastic effect Σ n+ 1
2

K in the
first equation in (21.35). We then solve the third relation of (21.35) to update the

extra-stress tensor Σn+ 1
2

K . The time discretization considered consists of an explicit
treatment of the nonlinear terms, while continuous piecewise linear finite elements

are used for the space discretization: Seek Σ n+1
K ∈ (VFEM(τn+1

K ))
d(d+1)

2 , the subspace
of (VFEM(τn+1

K ))d×d consisting in those symmetric matrices, satisfying

∫
Ωn+1

K

(
δ tn+1Σ n+1

K +λΣn+1
K

)
:: Θ dx

=
∫

Ωn+1
K

(
Σn+ 1

2
K + δ tn+1Σn+ 1

2
K

+ δ tn+1∇Un+1
K Σn+ 1

2
K + δ tn+1Σ n+ 1

2
K (∇Un+1

K )t
)

:: Θ dx

+ 2μpδ tn+1
∫

Ωn+1
K

D(Un+1
K ) :: Θ dx, ∀Θ ∈V

FEM
M (τn+1

K )
d(d+1)

2 .

In addition, the Elastic Viscous Stress Splitting (EVSS) stabilization procedure
could be activated to compensate for possible small viscosities μ . Details can be
found in [6].
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5.3 Numerical Results for Visco-Elastic Flows

We first consider again the extrusion with initial contraction experiment presented
in Section 4.3.1. The goal of this section is to discuss the visco-elastic influence, via
the presence of the extra-stress σ33.

5.3.1 Extrusion with Die Swell and Contraction

Let us consider a visco-elastic fluid, which has density ρ = 1300 kg m−3, and
viscosity μ = 0. Its relaxation time is λ = 0.1 s and the polymer viscosity is
μp = 10 kg(ms)−1. The boundary condition at the inflow boundary is a Poiseuille
flow with velocity given by u=(0,0,uz) and uz(r) =−100(r2−0.012) ms−1 (where
r is the radial distance to the central axis of the die). Slip boundary conditions are
imposed on the lateral sides of ∂Λ and no-slip boundary conditions are applied on
the bottom plate. Gravity forces, g = −9.81e3 ms−2 are oriented along the die. The
time step is constant and equal to δ t = 0.005 s.

Figure 21.18 provides the volume fraction Φ , extra-stress σ33, and speed |U|
fields in a median cut in the middle of the domain at various times. Figure 21.19
visualizes the buckling effect. Since slip boundary conditions are applied along the
die, no die swell occurs after exiting the die. However, when the jet hits the wall
we observe a different buckling behavior compared to the Newtonian case; compare
Figures 21.13 and 21.19.

5.3.2 Influence of the Polymer Viscosity and Relaxation Time

The influence of the polymer viscosity μp and relaxation time λ is now investigated,
keeping slip boundary conditions along the die. Figures 21.20 and 21.21 represent
the volume fraction Φ , extra-stress σ33, and speed |U| fields in a median cut in the
middle of the domain at various times, as well as the buckling effect of the liquid
domain, for a relaxation time λ = 1 s. and a polymer viscosity μp = 10 kg(ms)−1

(larger relaxation time compared to the simulations in Section 5.3.1). Figures 21.20
and 21.21 illustrate the same quantities, for a relaxation time λ = 0.1 s. and a poly-
mer viscosity μp = 100 kg(ms)−1 (larger viscosity compared to the simulations in
Section 5.3.1). Clearly, both polymer viscosity μp and the relaxation time λ have a
significant influence on the jet shape during buckling.

5.3.3 Influence of Boundary Conditions

In this section, we discuss the influence of the boundary conditions (typically slip
vs. no-slip boundary conditions) on the die boundary, on the buckling phenomena,
and on the visco-elastic fluid behavior. The polymer viscosity and relaxation time
are kept as in Figures 21.20–21.23, μp = 100 kg(ms)−1, λ = 0.1 s, whereas no-slip
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Fig. 21.18 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s
on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

boundary conditions now apply along the die. The shape of the jet is significantly
different as shown in Figures 21.24 and 21.25. The die swell is significant, therefore
we decrease the value of the relaxation time to λ = 0.005 s, still keeping the same
polymer viscosity μp = 100 kg(ms)−1. The swelling of the die is now much smaller
as shown in Figures 21.26 and 21.27. Figures 21.28 and 21.29 illustrate the same
quantities, for a smaller relaxation time, λ = 0.002 s, still keeping the same poly-
mer viscosity μp = 100 kg(ms)−1. We therefore conclude that the type of boundary
conditions applied along the die has a significant impact on the extrusion process.
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Fig. 21.19 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and 1.6 s.
Representation of the liquid domain and buckling effect.

5.3.4 Bended Die

Finally, to conclude the discussion on viscoelastic effects, we study quantitatively
the influence of the bend of the die on the extrusion. In particular, the distribution
of the extra-stress and the differences of amplitude are fundamental in industrial
processes, as they induce a different behavior of the visco-elastic material at the exit
of the die, and thus a different final production.

We consider a geometry that is similar to the one before, with the addition of a
ninety degree angle bend in the die. All the other geometrical dimensions remain
the same. Figure 21.30 illustrates the geometry together with the associated finite
element mesh.

As before, the visco-elastic fluid has density ρ = 1300 kg m−3, and viscos-
ity μ = 0. Its relaxation time is λ = 0.1 s and the polymer viscosity is μp =
10 kg(ms)−1. The boundary condition at the inflow boundary is a Poiseuille flow,
slip boundary conditions are imposed along the die, as well as at the exit of the do-
main. Gravity forces with amplitude |g|= 9.81 ms−2 are oriented along the inflow.
The time step is constant and equal to δ t = 0.005 s.
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Fig. 21.20 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s on
a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

Figure 21.31 illustrates representations of the volume fraction Φ , speed |U|, and
extra-stress σ33 fields in a median cut in the middle of the domain at various instants
of time. Figure 21.32 illustrates snapshots of the liquid domain. These results should
be compared with those of Figures 21.18 and 21.19 which correspond to a straight
die. One can observe a significant buckling effect as the liquid is switching direc-
tions. This behavior is caused by the variation of the extra stress inside the curved
die. Figure 21.33 illustrates snapshots of the liquid domain in the same situation but
for a relaxation time λ = 0.02 s. One can observe larger effects due to the shorter
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Fig. 21.21 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 10 kg(ms)−1, λ = 1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and 1.6 s.
Representation of the liquid domain and buckling effect.

relaxation time. We therefore conclude that memory effects due to the shape of the
cavity before the die may strongly affect the shape of the jet after the die. This ob-
servation can be very important in industrial applications such as pasta processing
for instance.

6 Multiphase Flows with Free Surfaces

6.1 Mathematical Modeling of Multiphase Flows with Free
Surfaces

We extend here the previous model to the case of multiple liquid phases with a free
surface. More precisely, we consider P liquid phases, and the ambient gas is the
phase numbered P+ 1. We assume that the liquid phases are incompressible and
immiscible, and thus rely on the density-dependent Navier-Stokes equations for the
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Fig. 21.22 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s
on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

modeling of the global set of liquid phases. This model is based on [10, 19]. In [19],
the emphasis has been put on the simulation of landslide-generated impulse waves.
Here we show that the applications are numerous and that our algorithm can apply
at different time and space scales.

We denote by Ω�(t) ⊂ Λ , � = 1, . . . ,P, the domain occupied by the �th liquid
phase at time t ∈ [0,T ] and by Ω(t) =

⋃P
�=1 Ω�(t) the global liquid domain. The

subdomain Ω�(t) is defined by its characteristic function φ� : Λ × [0,T ]→ {0,1}:

Ω�(t) = {x ∈Λ | φ�(x, t) = 1} , �= 1, . . . ,P. (21.36)

As a consequence, φ := ∑P
�=1 φ� is the characteristic function of Ω(t).
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Fig. 21.23 Die swell with extrusion of a visco-elastic fluid, with slip boundary conditions in the
die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and 1.3 s.
Representation of the liquid domain and buckling effect.

All phases being considered to be Newtonian, incompressible, and immiscible,
the Navier-Stokes equations are satisfied for each of them, with physical properties
such as density and viscosity varying from one liquid phase to the other. We denote
by ρl and μl , l = 1, . . . ,P, the respective densities and viscosities. In this setting the
velocity and pressure are related through the Navier-Stokes relations (21.1), where
the mass density is recovered as ρ := ∑P

�=1 φ� ρ�, and similarly for the viscosity
μ := ∑P

�=1 φ� μ�.
The boundary conditions, interface conditions, and initial conditions are imposed

in a similar way as in the single liquid phase case. At the interfaces between liq-
uid phases, natural continuity conditions are imposed so that no forces are applied.
Figure 21.34 illustrates a 2D sketch of multiple liquid phases in the case of die swell
extrusion.

The evolution of each domain Ω�(t) is governed by the transport of its character-
istic function with the fluid velocity, that is:

∂
∂ t

φ�+u ·∇φ� = 0 in Q�, φ� = 0 in Λ \Q�, (21.37)
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Fig. 21.24 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0,0.4,0.6, and 0.8 s
on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid Φ ;
middle: speed |U|; bottom: representation of extra-stress σ33.

where
Q� := {(x, t) ∈Λ × (0,T ] | x ∈ Ω�(t)}

and where u is the fluid velocity only defined on the space-time fluid domain Q.
The inflow boundary conditions supplementing the equations (21.37) have to be

imposed for each liquid phase on the boundary of Λ , the same way it is imposed for
one liquid phase. The initial value of the characteristic functions φ� are chosen to
match the initial given domains Ω�(0),

φ�(.,0) = 1 on Ω�(0) and φ�(.,0) = 0 otherwise. (21.38)
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Fig. 21.25 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.1 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and
1.6 s. Representation of the liquid domain and buckling effect.

6.2 Extension of the Operator Splitting Strategy

The extension of the operator splitting method to multiphase flows includes mainly
the transport of multiple volume fractions, which is a natural extension of the trans-
port of a single phase. However a significant step of the algorithm involves the re-
construction of the interfaces and the numerical methods to avoid artificial diffusion
and compression, which have to be re-designed in the context of multiphase flows.

The operator splitting algorithm to approximate the system of equations (21.1)
and (21.37) again decouples the approximation of the diffusion and advection oper-
ators. In this case, the diffusion operators correspond to a Stokes problem on a sta-
tionary domain with piecewise constant density and viscosity fields. The advection
operator includes the transport equations for the Navier part of the incompressible
fluid, as well as for the transport of the P characteristic functions.

The time splitting scheme reads as follows. We assume to be given an approxi-
mation of the liquid domain characteristic functions φn

� , �= 1, . . . ,P at time tn. This
entails an approximation of the liquid domains Ω n

� and of the global liquid domain
Ω n via the relations:
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Fig. 21.26 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.005 s.). Snapshots of the solution at times t = 0,0.4,0.6, and
0.8 s on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid
Φ ; middle: speed |U|; bottom: representation of extra-stress σ33.

Ω n
� := {x ∈Λ | φn

� (x) = 1} , Ω n :=
P⋃

�=1

Ω n
� .

We also assume to be given a velocity approximation un(x) of u(x, tn). The pre-
diction step determines the new approximation of the liquid domain at time tn+1,
together with a prediction of the velocity on the new domain. The correction step
provides an update of the velocity and pressure while the liquid domain remains
unchanged.
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Fig. 21.27 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.005 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and
1.6 s. Representation of the liquid domain and buckling effect.

6.2.1 The Prediction Step

The projection step encompasses the advection components of (21.1) and (21.37).
It consists in solving the P+ 1 transport equations:

∂
∂ t

φ�+u ·∇φ� = 0, �= 1, . . . ,P,

∂
∂ t

u+(u ·∇)u = 0

(21.39)

in Qn+1 :=Q∩(
Λ × In+1

)
. Outside the liquid domain Ω n

� , we set φ�(x, t) = 0 when-
ever x ∈ Λ \{y(t;x) | x ∈ Ω n

�

}
and u is not required outside Ω n. Eventually, we

end up setting φn+1
� := φ�(tn+1) in Λ , and consequently

Ω n+1
� :=

{
x ∈Λ | φn+1

� (x) = 1
}
, Ω n+1 =

P⋃
�=1

Ω n+1
� , (21.40)
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Fig. 21.28 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.002 s.). Snapshots of the solution at times t = 0,0.4,0.6, and
0.8 s on a plane located in the middle of the tubes. Top: representation of volume fraction of liquid
Φ ; middle: speed |U|; bottom: representation of extra-stress σ33.

as well as un+ 1
2 := u(tn+1) in Ω n+1. At the continuous level, these problems are

highly similar to those encountered for one single phase. However, after space dis-
cretization, the complexity is quite different.

Indeed, the prediction steps starts with given approximations Φn
�,M ∈ V

S, � =

1, . . . ,P, and Un
M ∈ (VS)d of the liquid fractions and velocity respectively. The pre-

dictions Φn+ 1
2

�,M and U
n+ 1

2
M , in V

S and (VS)d respectively, are computed as in (21.24)

by transport of the quantities in each cell C and projection on the grid TS. Notice
that each of the transport equations for Φn

�,M are solved in parallel for each liquid
phase, and the redistribution is achieved sequentially. Details can be found in [19].
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Fig. 21.29 Die swell with extrusion of a visco-elastic fluid, with no-slip boundary conditions in
the die (μp = 100 kg(ms)−1, λ = 0.002 s.). Snapshots of the solution at times t = 0.8,1.0,1.2, and
1.6 s. Representation of the liquid domain and buckling effect.

Fig. 21.30 Die swell with a bend, for the extrusion of a visco-elastic fluid. Visualization of the
geometrical domain and finite element mesh.
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Fig. 21.31 Die swell of a visco-elastic fluid for a die with a 90 degrees bend. Snapshots of the
solution at times t = 0,0.4,0.8, and 1.2 s (left to right). Top: volume fraction of liquid Φ in a
median cut in the middle of the domain; middle: speed |U| in a median cut in the middle of the
domain; bottom: Extra-stress field σ33 in a median cut in the middle of the domain.

Fig. 21.32 Die swell of a visco-elastic fluid for a die with a 90 degrees bend. Snapshots of the
solution at times t = 0,0.4,0.8, and 1.2 s (left to right).

Fig. 21.33 Die swell of a visco-elastic fluid for a die with a 90 degrees bend. Snapshots of the
solution at times t = 0,0.4,0.8, and 1.2 s (left to right) for λ = 0.02 s.
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Ω1(t)
Ω2(t)

Ω(t)

Λ

Γ(t)

∂Λ ∩ ∂Ω(t)

Fig. 21.34 Die swell with two liquid phases (phase 1 pushing phase 2). Geometrical notation
for the VOF formulation for two liquid phases with free surface included into the computational
domain Λ .

6.2.2 Numerical Diffusion vs Numerical Compression

As in the single phase case, the advected fields Φn+ 1
2

�,M (and as a matter of fact Φn+ 1
2

M
as the sum of all liquid fractions) do not necessarily have values that are exactly zero
or one. To cope with this numerical diffusion and compression, we use multiphase
versions of SLIC and decompression algorithms [12, 26, 28].

The multiphase version of the SLIC algorithm consists of a sequential use of the
SLIC algorithm for each liquid phase. It is illustrated in Figure 21.35 (middle and
right, for one liquid phase or two liquid phases). Each of the liquid phases is pushed
against the sides/corners of the cell to be transported. The transport and projection
of the cell are then made for each phase independently and sequentially. Thus the
numerical diffusion can be reduced for each phase in parallel. More precisely, on
the example illustrated in Figure 21.35 (right), the advected quantity of the first
liquid phase lies in one cell only, thus no numerical diffusion is introduced for that
particular phase. The advected quantity for the second liquid phase is redistributed
over two cells, which means that some diffusion is introduced but limited over two
cells instead of four.

Remark 3 (SLIC vs PLIC). The SLIC procedure has been preferred for instance over
the higher order PLIC procedure for its handling simplicity within the two-grid
framework. The rationale behind this approach is to use a low order interface recon-
struction technique, like SLIC, on a very fine mesh. The mesh size guarantees the
accuracy of the algorithm and compensates for the low order of the reconstruction
technique. Replacing the SLIC algorithm with a PLIC algorithm on the structured
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Fig. 21.35 An example of two dimensional advection and projection when the volume fraction of
liquid in the cell is Φn

M = 1
4 . Left: without SLIC and with one liquid phase, the volume fraction

of liquid is advected and projected on four cells, with contributions (from the top left cell to the
bottom right cell) 3

16
1
4 , 1
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1
4 , 9
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1
4 , 3

16
1
4 . Middle: with SLIC and with one liquid phase, the volume

fraction of liquid is first pushed at one corner, then it is advected and projected on one cell only,
with contribution 1

4 . Right: with SLIC and with two liquid phases, the volume fractions of liquid are
first pushed along one side of the cell, then they are advected. The first liquid phase (corresponding
to a volume of 1

8 ) is projected on one cell only, with contribution 1 1
8 ; the second liquid phase

(corresponding also to a volume of 1
8 ) is projected on two cells, with contribution 1 1

16 and 1 1
16 .

grid of small cells is not a fundamental problem, but a technical difficulty. Moreover,
the PLIC procedure applied before transport of a cell, and coupled with a projection
operator on the finite element mesh would be of little benefit, and expensive from
the computational viewpoint.

Note that the sequential treatment of liquid phases implicitly requires them to be
sorted; the arbitrary phase ordering influences the reconstruction of the interfaces,
as already stated in [13] for three phases. However, numerical experiments show
that the effect of the ordering of phases is not a crucial factor for the final results,
especially at the limit when the mesh size tends to zero.

After the interface reconstruction and advection steps, it may happen that some

cell Ci in the grid TS is over-filled, i.e., Φn+ 1
2

M = ∑�Φ
n+ 1

2
�,M > 1. Such physically

non-admissible values can indeed occur even if Φn
�,M ∈ [0,1] since the transport-

and-project algorithm is not a divergence-free process.

We thus need to decompress the fields Φn+ 1
2

�,M and Φn+ 1
2

M with a numerical tech-
nique that allows to conserve the mass in a global sense [19, 26]. This algorithm is
applied after the solution of the transport equations, but before the solution of the
diffusion equations. It proceeds in two steps: first, we compute the excess of each
liquid phase in each cell after advection and projection onto TS; second, we redis-
tribute these amounts proportionally to the amount already included in the cell in a
given arbitrary order, in a way that is similar to global repair algorithms [35]. This
method is robust, but requires to order the liquid phases (arbitrarily) to know which
phase is redistributed first into the other cells. Numerical experiments have shown
in our case that, besides guaranteeing the mass conservation globally, the error due
to this decompression algorithm is reduced as the time step decreases. This heuristic
algorithm can be found in [19] and is not detailed more extensively here.
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This multiphase decompression algorithm is illustrated in Figure 21.36, when
TS is a single layer of cells, for the case of two liquid phases. The rebalancing
principle that allows to conserve the mass in each phase at each time step is detailed
in this pseudo 1D configuration, but can be extended in three space dimensions in a
straightforward manner.

After the decompression, the approximations Φn+ 1
2

�,M , � = 1, . . . ,P and U
n+ 1

2
M are

projected into the finite element spaces

Φn+1
�,K := πS→FEMΦn+ 1

2
�,M ∈V

FEM, �= 1, . . . ,P,

and U
n+ 1

2
K ∈ V(τn+1

K ) is defined according to formula (21.27) and where τn+1
K is the

collection of liquid tetrahedra, see Section 4.2.

n+ 1
2

1,M
n+ 1

2
2,M

0.5 0.9 0.9 0.0 0.0 0.0 0.0 0.8 0.8 0.4

n+ 1
2

M := n+ 1
2

1,M + n+ 1
2

2,M before decompression

0.5 0.9 1.7 0.8 0.4

n+ 1
2

1,M −E1
(excess E1 = 0.37)

Remove excess in overfilled cells n+ 1
2

2,M −E2
(excess E2 = 0.33)

n+ 1
2

1,M
n+ 1

2
2,M

Distribute excess into partially empty cells

n+ 1
2

M := n+ 1
2

1,M + n+ 1
2

2,M after decompression

�

0.5 0.9 0.53 0.0 0.0 0.0 0.0 0.47 0.8 0.4

0.77 1.0 0.53 0.0 0.0 0.0 0.0 0.47 1.0 0.53

0.77 1.0 1.0 1.0 0.53

Fig. 21.36 Decompression algorithm in the case of two liquid phases. The volume fractions in
excess in some cells are redistributed into the under filled cells, proportionally to the contribu-

tion of each phase. The total liquid volume fraction is given by Φn+ 1
2
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2

1,M +Φn+ 1
2

2,M . The
excesses are first removed in overfilled cells proportionally to the contribution of each phase
(0.37 = 0.7 · (0.9/1.7) and 0.33 = 0.7 · (0.8/1.7)). The excesses are then redistributed into each

phase independently before recalculating the total liquid volume fraction Φn+ 1
2

M = Φn+ 1
2

1,M +Φn+ 1
2

2,M .



21 Operator Splitting Algorithms for Free Surface Flows 721

6.2.3 The Correction Step

After the prediction step, the approximations of the liquid domains Ωn+1
K and the

set of liquid elements τn+1
K are defined as in the single phase case. Note that the

approximation of the liquid domains Ω n+1
�,K can be defined similarly, but they are not

used explicitly in the correction step. Indeed the global Stokes system is defined and
solved on the global liquid domain, and the interfaces between phases are implicitly
taken into account in a diffuse modeling via the density and viscosity fields. In fact,
the velocity and pressure correction Un+1

K ∈ (VFEM(τn+1
K ))d , Pn+1

K ∈ V
FEM(τn+1

K )
are defined as the solution to (21.28) upon redefining on each tetrahedral element
T ∈ τn+1

K the density and viscosity as

ρ |T := ρn+1
∣∣
T :=

1
d + 1

d+1

∑
i=1

∑P
�=1 Φn+1

�,K (vT
i )ρ�

∑P
�=1 Φn+1

�,K (vT
i )

,

μ | := μn+1
∣∣
T :=

1
d + 1

d+1

∑
i=1

∑P
�=1 Φn+1

�,K (vT
i )μ�

∑P
�=1 Φn+1

�,K (vT
i )

,

where
{

vT
i , i = 1, . . . ,d+ 1

}
denotes the vertices of T .

6.3 Numerical Results for Multiphase Flows

We consider again the extrusion with initial contraction described in Section 4.3.1.
The computational domain is still the one reported in Figure 21.11.

6.3.1 Successive Phases

We consider three incompressible and immiscible liquid phases, each of them a
Newtonian fluid, with equal densities ρ1 = ρ2 = ρ3 = 1300 kg m−3, and correspond-
ing (equal) viscosities μ1 = μ2 = μ3 = 10 kg(ms)−1. As the goal of this example is
to study the accuracy of the splitting algorithm, the choice of the three phases is ar-
tificial. The liquids are initially located in a successive sequence such that the liquid
1 is pushing the liquid 2 and then the liquid 3. The boundary conditions at the inflow
boundary are u = 0.00023 ms−1, such that the order of magnitude of the velocity in
the die is approximately 0.05 ms−1. There is only a liquid from phase 1 that flows
inside the computational domain. Slip boundary conditions are imposed on ∂Λ , ex-
cept at the bottom of the computational domain where no-slip boundary conditions
are enforced. Gravity forces, with amplitude |g|= 9.81 ms−2 are oriented along the
die. The time step is constant and equal to δ t = 0.005 s.

Figure 21.37 illustrates, in a medium plane inside the tube, snapshots of the vol-
ume fractions of liquid Φ� and of the magnitude of the corresponding speed |U|. We
observe that the operator splitting algorithm does not introduce any additional error
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as long as the flow is laminar (i.e., does not hit the boundary of the computational
domain and starts to buckle). The liquid 1 is perfectly pushing the liquids 2 and 3.
The velocity is perfectly aligned with the direction of the die, even when using dif-
ferent values of the time step if needed, without the drawback of a CFL condition.
The mass in each phase is conserved.

The previous results have been obtained when the three phases have the same
densities and viscosities. We now provide a short sensitivity analysis with respect
to the value of the viscosities, all the other physical quantities remaining the same.
More precisely, we consider again three successive liquid phases. The initial config-
uration, denoted (a), with μ1 = μ2 = μ3 = 10, is compared with two cases, namely
(b) μ1 = 10, μ2 = 1, μ3 = 0.1, and (c) μ1 = 10, μ2 = μ3 = 0.1. Figure 21.38 illus-
trates in a medium plane inside the tube, snapshots of the volume fractions of liquid

Fig. 21.37 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Snapshots of the solution at times t = 0,0.5 and 1.0 s on a plane located
in the middle of the tubes. Top: representation of volume fractions of liquid Φ�; bottom: velocity
field U.

Φ� for the three configurations. One can observe that, when the two liquid phases
at the front of the jet have a smaller viscosity, they are crashed by the more viscous
phases when the jet hits the boundary of the domain; in that particular case, the
less viscous liquid phases do not contribute to the buckling effect. The difference
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between configurations (b) and (c) is not remarkable. Before touching the boundary
of the domain, the laminar behavior of the three liquid phases is identical to that
illustrated in Figure 21.37.

Fig. 21.38 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Snapshots of the solution at times t = 1.2,1.3, and 1.4 s on a plane
located in the middle of the tubes. First row: (a) μ1 = μ2 = μ3 = 10; Second row: (b) μ1 = 10,
μ2 = 1, μ3 = 0.1; Third row: (c) μ1 = 10, μ2 = μ3 = 0.1.
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6.3.2 Parallel Phases

Finally, let us consider the configuration where the three liquid phases (with equal
viscosities) are next to each other. The initial configuration is illustrated in Figure
21.39 and shows that each phase is contained in one-third of the total angle along
the die direction. Figure 21.40 shows that the three phases remain parallel when
advected through the operator splitting algorithm (the red phase is ’hidden’ behind
the two other phases!). The velocities are parallel and the reconstruction of the in-
terface does not jeopardize the approximation of the location of each liquid phase.
Figure 21.41 shows the buckling effect when the jet hits the boundary of the domain;
as all phases have the same viscosity, this effect is quite similar as in the case of one
single Newtonian liquid.

Fig. 21.39 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Initial configuration of the three phases, each having one-third of the
total volume.

7 Perspectives: Application to Emulsion in Food Engineering

The simulation of emulsion in microfluidic devices is a stringent application, as
the physical process involves instabilities and strong influence from surface tension
effects. Thus the numerical method requires an accurate approximation of the inter-
faces and of those surface tension effects. Further details about microfluidic emul-
sions can be found in [3, 7, 27] and references therein. Applications of interest exist
in food engineering when producing types of mayonnaise for instance [17, 18]. Fur-
thermore, from the numerical viewpoint, adaptive mesh refinement techniques help
tremendously to increase the accuracy of the method and sharpen the approxima-
tion of the interfaces. Details about an adaptive method making a first attempt into
this direction can be found in [9] when discussing the mesh refinement between
one liquid phase and a vacuum. The same type of techniques have been extended in
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Fig. 21.40 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue, liquid
2 in red, liquid 3 in green). Snapshots of the solution at times t = 0,0.5, and 1.0 s on a plane located
in the middle of the tubes. Top: representation of volume fraction of liquid Φ�; bottom: velocity
field U.

Fig. 21.41 Die swell with extrusion of a Newtonian fluid with three phases (liquid 1 in blue,
liquid 2 in red, liquid 3 in green). Snapshots of the approximation of the liquid domain at times
t = 1.2,1.4, and 1.6 s.

subsequent work to mesh refinement around interfaces between two liquid phases.
The results presented in this section have been obtained by P. Clausen while staying
at EPFL on a postdoctoral position. Details of the method will be presented in a
forthcoming paper.
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In order to illustrate such a situation, we consider a microfluidic device com-
posed by a tube intersected by another tube. The geometrical domain, as well as
the corresponding finite element mesh TFEM , are shown in Figure 21.42. A liquid
from phase 1 is introduced at the longitudinal entrance, while a phase 2 liquid is in-
jected transversally and “cuts” the flow of the liquid 1 to form droplets of one liquid
phase trapped into the other. This phenomenon is called droplet breakup, and is re-
peated periodically by the process leading to the formation of a sequence of droplets.
The velocity is initialized with a parabolic velocity profile at each of the three en-
trances (a zero tangential velocity is prescribed, and the normal velocity is given by
a parabolic profile). Along the channel, no-slip boundary conditions are prescribed.
At the outlet, zero tangential velocity and zero normal stress are enforced.

Fig. 21.42 Microfluidic emulsion simulation. Description of the geometry and representation of
the finite element mesh TFEM

In an emulsion, two motions are interacting: first the movement initiated by the
flow induced by the inlet velocities; second the displacements induced by the surface
tension effects at the interfaces. These two effects are on different time scales, and
the time step we choose has to take into account the smallest of these two scales.
Despite the fact that our method does not suffer from a CFL condition, here we
observe that the treatment of the surface tension effects impose a constraint on the
time step to prevent instabilities.

For illustration, we consider the injection of oil in water. Oil has density
1000 kg m−3 and viscosity 0.5 kg(ms)−1, while water has density 1000 kg m−3

and viscosity 0.001 kg(ms)−1. The surface tension coefficient is given by γ =
0.02 Nm−1. Oil is introduced with a maximum velocity of umax,oil = 0.01 ms−1,
while water is injected with a maximum velocity of umax,water = 0.02 ms−1.

Figure 21.43 illustrates, in a medium plane inside the tube, snapshots of the two
liquid phases and the corresponding velocity field.

The results of these numerical experiments show the difficulty of producing a
regular succession of droplet breakings, which is controlled by the balance between
surface energy and viscosity effects. Numerical difficulties include droplets gener-
ated with different sizes and volume losses when the stabilization terms are large.
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Fig. 21.43 Microfluidic emulsion simulation. Snapshots of the solution at times t = 0.2,
0.5,0.8,1.1,1.4, and 1.7 s on a plane located in the middle of the longitudinal tube. Left: repre-
sentation of volume fraction of liquid ; right velocity field.
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Chapter 22
An Operator Splitting Approach to the Solution
of Fluid-Structure Interaction Problems
in Hemodynamics

Martina Bukač, Sunčica Čanić, Boris Muha, and Roland Glowinski

Abstract We present a loosely coupled partitioned method for the numerical
simulation of a class of fluid-structure interaction problems in hemodynamics. This
method is based on a time discretization by an operator-splitting scheme of the Lie’s
type. The structure is assumed to be thin and modeled by the Koiter shell or mem-
brane equations, while the fluid is modeled by the 3D Navier-Stokes equations for
an incompressible viscous fluid. The fluid and structure are coupled via a full two-
way coupling taking place at the moving fluid-structure interface, thus giving rise
to a nonlinear moving-boundary problem. The Lie splitting decouples the fluid and
structure sub-problems and is designed in such a way that the resulting partitioned
scheme is unconditionally stable, without the need for any sub-iterations at every
time step. Unconditional stability of the scheme is discussed using energy estimates,
and several numerical examples are presented, showing that the scheme is first-order
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accurate in time. Implementation simplicity, computational efficiency, modularity,
and unconditional stability make this scheme particularly appealing for solving FSI
in hemodynamics.

1 Introduction

We consider the flow of an incompressible, viscous fluid in a 3D domain, see
Figure 22.1, with compliant (elastic/viscoelastic) walls, which are assumed to be
thin. The fluid flow is modeled by the 3D Navier-Stokes equations, while the elas-
todynamics of the structure, i.e., the elastic walls, is modeled by the Koiter shell, or
membrane equations. The fluid and structure are coupled via a two-way coupling:

Fig. 22.1 Domain sketch and notation.

the fluid influences the motion of the structure via the normal fluid stress, while the
structure influences the motion of the fluid through the motion of the fluid domain
boundary. This coupling is assumed through two coupling conditions: the kinematic
coupling condition stating the continuity of velocity at the fluid-structure interface
(the no-slip condition), and the dynamic coupling condition stating the second New-
ton’s law of motion describing the elastodynamics of the thin structure loaded by the
normal fluid stress. The resulting fluid-structure interaction (FSI) problem is a non-
linear moving-boundary problem.

This is a classical problem in hemodynamics describing the interaction between
blood flow and elastic/viscoelastic arterial walls. The main difficulty in studying this
problem stems from the fact that the fluid and structure have comparable densities,
which is associated with the well-known added mass effect. The structure moves
within the fluid as if an additional mass was added to it due to the presence of
the surrounding fluid. Mathematically, this gives rise to a highly nonlinear moving-
boundary problem, where the geometric nonlinearity due to the motion of the rela-
tively light structure driven by the fluid of comparable density, needs to be resolved
carefully. It is now well known that this is the main reason for the instabilities in
Dirichlet-Neumann loosely coupled schemes that are based on numerically solving
this FSI problem by iterating once between the fluid and structure sub-problems
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[14], employing the Dirichlet boundary condition in the fluid sub-problem. The
added mass effect, the associated geometric nonlinearities, and the multi-physics
nature of the problem incorporating different physical effects (wave propagation
vs. diffusion) taking place at disparate time scales, are the main reasons why this
class of FSI problems remains to be challenging, both from the computational and
theoretical points of view.

The development of numerical solvers for fluid-structure interaction problems
has become particularly active since the 1980s [67, 68, 26, 34, 55, 59, 40, 39, 42,
41, 23, 47, 46, 53, 54, 71, 69, 3, 74, 25, 27, 51, 52, 20, 33].

Until recently, only monolithic algorithms seemed applicable to blood flow sim-
ulations [33, 36, 66, 76, 6, 7]. These algorithms are based on solving the entire
nonlinear coupled problem as one monolithic system. They are, however, generally
quite expensive in terms of computational time, programming time, and memory
requirements, since they require solving a sequence of strongly coupled problems
using, e.g., fixed point and Newton’s methods [57, 66, 22, 31, 46, 72].

The multi-physics nature of the blood flow problem strongly suggests to employ
partitioned (or staggered) numerical algorithms, where the coupled fluid-structure
interaction problem is separated into a fluid and a structure sub-problem. The fluid
and structure sub-problems are integrated in time in an alternating way, and the cou-
pling conditions are enforced asynchronously. When the density of the structure is
much larger than the density of the fluid, as is the case in aeroelasticity, it is suf-
ficient to solve, at every time step, just one fluid sub-problem and one structure
sub-problem to obtain a solution. The classical loosely coupled partitioned schemes
of this kind typically use the structure velocity in the fluid sub-problem as Dirich-
let data for the fluid velocity (enforcing the no-slip boundary condition at the fluid-
structure interface), while in the structure sub-problem the structure is loaded by the
fluid normal stress calculated in the fluid sub-problem. These Dirichlet-Neumann
loosely coupled partitioned schemes work well for problems in which the struc-
ture is much heavier than the fluid. Unfortunately, when fluid and structure have
comparable densities, which is the case in blood flow applications, the simple strat-
egy of separating the fluid from the structure suffers from severe stability issues
[14, 58] associated with the added mass effect. The added mass effect reflects itself
in Dirichlet-Neumann loosely coupled partitioned schemes by causing poor approx-
imation of the total energy of the coupled problem at every time step of the scheme.
A partial solution to this problem is to iterate several times between the fluid and
structure sub-solvers at every time step until the energy of the continuous prob-
lem is well approximated. These strongly coupled partitioned schemes, however,
are computationally expensive and may suffer from convergence issues for certain
parameter values [14].

To get around these difficulties, and to retain the main advantages of loosely
coupled partitioned schemes such as modularity, implementation simplicity, and low
computational costs, several new loosely coupled algorithms have been proposed
recently. In general, they behave quite well for FSI problems containing a thin fluid-
structure interface with mass [4, 10, 8, 43, 66, 28, 32, 29, 30, 1, 2, 5, 69, 64, 22, 21].
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Recently, a novel loosely coupled partitioned scheme, called the Kinematically
Coupled β -Scheme, was introduced by Bukač, Čanić et al. in [10, 8], and applied to
2D FSI problems with thin elastic and viscoelastic structures, modeled by the mem-
brane or shell equations. This method was then extended to thick structure problems
modeled by the equations of 2D elasticity [9], to 2D FSI problems with composite
structures composed of multiple structural layers [63, 11], to 2D FSI problems with
multiple poroelastic layers [12], FSI problems involving endovascular stents [60],
and to an FSI problem with non-Newtonian fluids [56, 48]. This scheme deals suc-
cessfully with the stability issues associated with the added mass effect in a way
different from those reported above. Stability is achieved by combining the struc-
ture inertia with the fluid sub-problem to mimic the energy balance of the contin-
uous, coupled problem. It was shown in [13] by considering a simplified problem,
first used in [14] to study stability of loosely coupled schemes, that our scheme is
unconditionally stable for all 0 ≤ β ≤ 1, even for the parameters associated with
blood flow applications. Additionally, Muha and Čanić showed that a version of this
scheme with β = 0 converges to a weak solution of the fully nonlinear FSI problem
[61]. The case β = 0 considered in [61] corresponds to the classical kinematically
coupled scheme, first introduced in [43]. Parameter β was introduced in [10] to in-
crease the accuracy of the scheme. A different approach to increasing the accuracy
of the classical kinematically coupled scheme was recently proposed by Fernández
et al. [28, 32, 29]. Their modified kinematically coupled scheme called “the incre-
mental displacement-correction scheme” treats the structure displacement explicitly
in the fluid sub-step and then corrects it in the structure sub-step. Fernández et al.
showed that the accuracy of the incremental displacement-correction scheme is first-
order in time. The results were obtained for a FSI problem involving a thin elastic
structure.

These recent results indicate that the kinematically coupled scheme and its mod-
ifications provide an appealing way to study multi-physics problems involving FSI.

While all the results so far related to the kinematically coupled β -scheme have
been presented in 2D, here we show that this scheme, in combination with the Ar-
bitrary Lagrangian-Eulerian approach, can successfully be extended to three space
dimensions, and to problems without axial symmetry. We consider a FSI problem
which consists of the 3D Navier-Stokes equations for an incompressible, viscous
fluid, coupled with the linearly elastic Koiter membrane/shell equations. We show
an energy estimate for the fully coupled nonlinear problem with β = 0, which,
together with the convergence result of Muha and Čanić in [62], implies uncon-
ditional stability of the scheme. Using FreeFem++ [44, 45] we implemented the
scheme for a few examples in 3D geometries: a 3D straight tube, a 3D curved tube,
and a complex stenotic geometry which is not axially symmetric. We tested our
solver against a monolithic solver on a 2D benchmark problem in blood flow [35],
showing excellent agreement. Based on numerical results we show that the scheme
has at least 1st-order accuracy in time both in 2D and 3D.
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2 Model Description

We consider the flow of an incompressible, viscous fluid in a three-dimensional
cylindrical domain which is not necessarily axially symmetric. See Figure 22.1. We
will be assuming that the lateral boundary of the cylinder is deformable and that its
location is not known a priori. The motion of the lateral boundary is fully coupled
via a two-way coupling to the flow of the incompressible, viscous fluid occupying
the fluid domain. Furthermore, it will be assumed that the lateral boundary is a thin,
isotropic, homogeneous structure, whose displacement depends on both the axial
variable z and on the azimuthal angle θ , thereby accounting for both axially symmet-
ric and non-axially symmetric displacements. Additionally, for simplicity, we will
be assuming that only the radial component of displacement is non-negligible. The
radial displacement from the reference configuration will be denoted by η(t,z,θ ).
See Figure 22.1. This is a common assumption in blood flow modeling [71]. Neither
the fluid flow nor the displacement of the lateral boundary of the fluid domain will
be required to satisfy the conditions of axial symmetry.

Remark on notation: We will be using (z,x,y) to denote the Cartesian coor-
dinates of points in R

3, and (z,r,θ ) to denote the corresponding cylindrical coor-
dinates. We will be working with the fluid flow equations written in Cartesian co-
ordinates, while the structure equations will be given in cylindrical coordinates. A
function f given in Cartesian coordinates defines a function

f̃ (z,r,θ ) = f (z,x,y)

defined in cylindrical coordinates. Since no confusion is possible, to simplify no-
tation we will omit the superscript ˜ and both functions, f and f̃ , will be denoted
by f .

The structural problem: Consider a clamped cylindrical shell of thickness h,
length L, and reference radius of the middle surface equal to R. See Figure 22.1.
This reference configuration, which we denote by Γ , can be defined via the
parameterization

ϕ : ω →R
3, ϕ(z,θ ) = (Rcosθ ,Rsinθ ,z)t ,

where ω = (0,L)× (0,2π) and R > 0. Therefore, the reference configuration is

Γ = {x = (Rcosθ ,Rsinθ ,z) ∈R
3 : θ ∈ (0,2π),z ∈ (0,L)}. (22.1)

The associated covariant Ac and contravariant Ac metric tensors of this (undeformed)
cylinder are given by:

Ac =

(
1 0
0 R2

)
, Ac =

(
1 0
0 1

R2

)
,

and the area element along cylinder Γ is dS =
√

ady :=
√

detAcdy = Rdy. The
corresponding curvature tensor in covariant components is given by
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Bc =

(
0 0
0 R

)
.

Under the action of force, the Koiter shell is deformed. The displacement
from the reference configuration Γ of the deformed shell will be denoted by
� = �(t,z,θ ) = (ηz,ηθ ,ηr). We will be assuming that only the radial compo-
nent of the displacement is different from zero, and will be denoting that com-
ponent of the displacement by η(t,z,θ ) := ηr(t,z,θ ), so that � = ηer, where
er = er(θ ) = (cosθ ,sinθ ,0)t is the unit vector in the radial direction.

The cylindrical Koiter shell is assumed to be clamped at the end points, giving
rise to the following boundary conditions:

η =
∂η
∂n

= 0 on ∂ω .

Deformation of a given Koiter shell depends on its elastic properties. The elas-
tic properties of our cylindrical Koiter shell are defined by the following elasticity
tensor A:

A E =
4λμ

λ + 2μ
(Ac ·E)Ac + 4μAcEAc, E ∈ Sym(M2), (22.2)

where μ and λ are the Lamé coefficients. Using the following relationships between
the Lamé constants and the Young’s modulus of elasticity E and Poisson ratio σ :

2μλ
λ +2μ

+2μ = 4μ
λ +μ
λ +2μ

=
E

1−σ 2 ,
2μλ

λ +2μ
= 4μ

λ +μ
λ +2μ

1
2

λ
λ +μ

=
E

1−σ 2 σ ,

(22.3)

the elasticity tensor A can also be written as:

A E =
2Eσ

1−σ2 (A
c ·E)Ac +

2E
1+σ

AcEAc, E ∈ Sym(M2).

A Koiter shell can undergo stretching of the middle surface, and flexure (bending).
Namely, the Koiter shell model accounts for both the membrane effects (stretch-
ing) and shell effects (flexure). Stretching of the middle surface is measured by the
change of metric tensor, while flexure is measured by the change of curvature tensor.
By assuming only the radial component of displacement η = η(t,r,θ ) to be differ-
ent from zero, the linearized change of metric tensor � , and the linearized change
of curvature tensor �, are given by the following:

�(η) =
(

0 0
0 Rη

)
, �(η) =

( −∂ 2
z η −∂ 2

zθη
−∂ 2

zθη −∂ 2
θ η +η

)
. (22.4)

With the corresponding change of metric and change of curvature tensors we can
now formally write the corresponding elastic energy of the deformed shell [17, 18,
16, 50]:
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Eel(η) =
hs

4

∫
ω
A�(η) : �(η)Rdzdθ +

h3

48

∫
ω
A�(η) : �(η)Rdzdθ , (22.5)

where hs is the thickness of the shell, and : denotes the Frobenius inner product

A : B := Tr
(
ABT ) A,B ∈ M2(R)∼= R

4. (22.6)

Given a force f = f er, with surface density f (the radial component), the loaded
shell deforms under the applied force, and the corresponding displacement η is a
solution to the following elastodynamics problem for the cylindrical linearly elastic
Koiter shell, written in weak form: Find η ∈ H2

0 (ω) such that ∀ψ ∈ H2
0 (ω):

ρKhs

∫
ω

∂ 2
t ηψRdzdθ +

hs

2

∫
ω
A�(η) : �(ψ)Rdzdθ +

h3
s

24

∫
ω
A�(η) : �(ψ)Rdzdθ

=
∫

ω
fψRdzdθ .

(22.7)
The operator accounting for the elastic membrane and shell effects in the above
equation will be denoted by L:

∫
ω
LηψRdzdθ :=

hs

2

∫
ω
A�(η) : �(ψ)Rdzdθ +

h3
s

24

∫
ω
A�(η) : �(ψ)Rdzdθ ,

(22.8)
for all ψ ∈ H2

0 (ω), so that the above weak formulation can be written as

ρKhs

∫
ω

∂ 2
t ηψ Rdzdθ +

∫
ω
Lηψ Rdzdθ =

∫
ω

fψ Rdzdθ , ∀ψ ∈ H2
0 (ω). (22.9)

A calculation shows that the operator L, written in differential form, reads:

Lη =
h3

s μ
3R3(λ + 2μ)

(
(λ + μ)∂ 4

θ η +R4(λ + μ)∂ 4
z η + 2R2(λ + μ)∂ 2

z ∂ 2
θ η

− R2λ∂ 2
z η − 2(λ + μ)∂ 2

θ η +(λ + μ)η
)
+

4hs

R
(λ + μ)μ
λ + 2μ

η .

(22.10)
In terms of the Young’s modulus of elasticity, and the Poisson ratio, operator L can
be written as:

Lη =
h3

s E
12R4(1−σ2)

(
∂ 4

θ η +R4∂ 4
z η + 2R2∂ 2

z ∂ 2
θ η − 2∂ 2

θη +η
)

+
h3

s Eσ
6R2(1−σ2)

∂ 2
z η +

hsE
R2(1−σ2)

η .
(22.11)

Thus, the elastodynamics of the cylindrical Koiter shell with only radial displace-
ment different from zero, and without the assumption of axial symmetry, is mod-
eled by

ρKhs
∂ 2η
∂ t2 +Lη = f , (22.12)
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where L is defined by (22.11), and η and f are functions of t, z, and θ , where η
denotes the radial component of displacement.

If only the membrane effects are taken into account, the resulting cylindrical
Koiter membrane model is given by:

ρKhs
∂ 2η
∂ t2 +

hE
R2(1−σ2)

η = f . (22.13)

It was stated in [66, 19] that the general Koiter membrane model in Cartesian
coordinates, with only normal displacement different from zero, takes the form:

ρKhs
∂ 2η
∂ t2 +Cη = f , (22.14)

where η here is the normal component of displacement in Cartesian coordinates,
and the coefficient C is given by

C :=
hsE

1−σ2 (4κ2
1 − 2(1−σ)κ2), (22.15)

where κ1 and κ2 are the mean and Gaussian curvature, respectively.
We mention one more reduced (thin-structure) model which has been used in

modeling fluid-structure interaction in hemodynamics. The model was introduced
in [33] by integrating the equations of linear elasticity defined on a cylindrical do-
main in 3D, with respect to the radial direction, after assuming that the material
is homogeneous, isotropic, and that all the physical quantities, including the radial
stress, are constant in the radial direction. In [33] this model was included in the fluid
solver and solved using the so-called coupled momentum method. The model was
also studied in [19, 75]. It was shown in [75] that this model is well approximated
by the following simplified membrane shell model:

ρKhs
∂ 2η
∂ t2 +Cη − Ehs

2(1+σ)

∂ 2η
∂ z2 = f , (22.16)

where C is given by (22.15), and η denoted the normal component of displacement
in Cartesian coordinates. The model captures the membrane effects in Cartesian
coordinates by the “spring term” Cη , as well as wave propagation modeled by the
second-order derivative term.

While the membrane models (22.13), (22.14) do not allow any boundary condi-
tions to be imposed on the displacement at the “inlet” or “outlet” boundaries of the
tube, model (22.16) requires two boundary conditions. This model will be consid-
ered in Section 5 where we impose zero displacement η = 0, both at the inlet and
outlet of the tube.

The fluid problem: The fluid domain, which depends on time and is not known
a priori, will be denoted by

Ωη(t) = {(z,x,y) ∈ R
3 :

√
x2 + y2 < R+η(t,z,θ ), z ∈ (0,L)},
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and the corresponding lateral boundary by

Γη(t) = {(z,x,y) ∈ R
3 :

√
x2 + y2 = R+η(t,z,θ ), z ∈ (0,L)}.

The corresponding reference cylinder is

Ω = {(z,x,y) ∈ R
3 :

√
x2 + y2 < R, z ∈ (0,L)}.

The lateral boundary of this cylinder, Γ , is defined in (22.1). The inlet and outlet
sections of the fluid domain boundary will be denoted by Γin = {0}× (0,R), Γout =
{L}× (0,R). See Figure 22.1.

The flow of an incompressible, viscous fluid in Ωη(t) is modeled by the Navier-
Stokes equations, which read, in Cartesian coordinates, as follows:

ρ f (∂t u+u ·∇u) = ∇ ·σ ,
∇ ·u = 0,

}
in Ωη(t), t ∈ (0,T ), (22.17)

where ρ f denotes the fluid density, u the fluid velocity, p the fluid pressure,

σ =−pI+ 2μFD(u)

is the fluid Cauchy stress tensor, μF is the kinematic viscosity coefficient, and
D(u) = 1

2(∇u+∇tu) is the symmetrized gradient of u.
At the inlet and outlet boundary we prescribe the normal stress via:

�nin =−pin(t)nin on Γin × (0,T ), (22.18)

�nout =−pout(t)nout on Γout × (0,T ), (22.19)

where nin and nout are the outward normals to the inlet and outlet fluid boundaries,
respectively. Even though not physiologically optimal, these boundary conditions
are common in blood flow modeling [4, 65].

Another set of boundary conditions, often helpful in the analysis of this FSI prob-
lem, is the dynamic pressure data with zero tangential velocity:

p+
ρ f

2
|u|2 = Pin/out(t),

u× ez = 0,

}
on Γin/out , (22.20)

where Pin/out ∈ L2
loc(0,∞) are given. It was shown in [62] that the FSI problem we

study in this chapter, with the dynamics pressure data given by (22.20), has a weak
solution.

Remark on the inlet and outlet data: In this chapter we will be using the normal
stress inlet and outlet data in all the numerical examples, while the analysis of the
stability of the scheme will be performed with the dynamic pressure inlet and outlet
data.

The coupling between the fluid and structure is defined by two sets of bound-
ary conditions satisfied at the lateral boundary Γη(t). They are the kinematic and
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dynamic lateral boundary conditions describing continuity of velocity (the no-slip
condition), and balance of contact forces (i.e., the Second Newton’s Law of motion).
Written in the Lagrangian framework, with (z,θ ) ∈ ω , and t ∈ (0,T ), they read:

• The kinematic condition:

∂tη(t,z,θ )er(θ ) = u(t,z,R+η(t,z,θ ),θ ), (22.21)

where er(θ ) = (cosθ ,sinθ ,0)t is the unit vector in the radial direction.
• The dynamic condition:

ρKhs∂ 2
t η +Lη =−J(t,z,θ )(σn)|(t,z,R+η(t,z,θ)) · er(θ ), (22.22)

where L is defined by (22.10), or equivalently by (22.11), and

J(t,z,θ ) =
√
(1+ ∂zη(t,z,θ )2)(R+η(t,z,θ ))2 + ∂θη(t,z,θ )2

denotes the Jacobian of the composition of the transformation from Eulerian
to Lagrangian coordinates and the transformation from cylindrical to Cartesian
coordinates.

System (22.17)–(22.22) is supplemented with the following initial conditions:

u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0. (22.23)

For regularity purposes, used in the existence proof presented in [62], we will be
assuming that the initial data satisfies the following compatibility conditions:

u0(z,R+η0(z),θ ) ·n(z,θ ) = v0(z,θ )er(θ ) ·n(z,θ ), z ∈ (0,L), θ ∈ (0,2π),
η0 = 0, on ∂ω ,

R+η0(z,θ )> 0, z ∈ [0,L], θ ∈ (0,2π).
(22.24)

Notice that the last condition requires that the initial displacement is such that the
fluid domain has radius strictly greater than zero (i.e., the lateral boundary never
collapses).

In summary, we study the following fluid-structure interaction problem:

Problem 1. Find u=(uz(t,z,x,y),ux(t,z,x,y),uy(t,z,x,y)), p(t,z,x,y), and η(t,z,θ )
such that

ρ f
(
∂tu+(u ·∇)u

)
= ∇ ·σ

∇ ·u = 0

}
in Ωη(t), t ∈ (0,T ), (22.25)

u = ∂tηer,
ρKhs∂ 2

t η +Lη = −Jσn · er,

}
on Γ , t ∈ (0,T ), (22.26)

�nin = −pin(t)nin,
�nout = −pout(t)nout ,

}
on Γin/out , t ∈ (0,T ), (22.27)
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u(0, .) = u0,
η(0, .) = η0,

∂tη(0, .) = v0.

⎫⎬
⎭at t = 0. (22.28)

This is a nonlinear, moving-boundary problem in 3D, which captures the full,
two-way fluid-structure interaction coupling. The nonlinearity in the problem is rep-
resented by the quadratic term in the fluid equations, and by the nonlinear coupling
between fluid and structure defined at the lateral boundary Γη(t), which is one of
the unknowns in the problem.

2.1 Energy Inequality

To simplify notation, we introduce the following energy norms defined by the mem-
brane and flexural effects of the linearly elastic Koiter shell:

‖ f‖γ :=
∫

ω
A�( f ) : �( f )Rdzdθ , ‖ f‖σ :=

∫
ω
A� ( f ) : � ( f )Rdzdθ . (22.29)

Notice that norm ‖.‖γ is equivalent to the standard L2(ω) norm, and that norm ‖.‖σ
is equivalent to the standard H2

0 (ω) norm. Assuming sufficient regularity, and the
inlet and outlet data given by a prescribed dynamic pressure, see (22.20), the fol-
lowing energy inequality holds:

Proposition 1. Assuming sufficient regularity, and the inlet and outlet data given by
a prescribed dynamic pressure, the solutions of (22.25), (22.26), and (22.28) satisfy
the following energy estimate:

d
dt

(Ekin(t)+Eel(t))+D(t)≤C(Pin(t),Pout(t)), (22.30)

where

Ekin(t) :=
1
2

(
ρ f ‖u‖2

L2(Ωη (t))
+ρKhs‖∂tη‖2

L2(Γ )

)
,

Eel(t) :=
hs

4
‖η‖γ +

h3
s

48
‖η‖σ ,

(22.31)

denote the kinetic and elastic energy of the coupled problem, respectively, and the
term D(t) captures viscous dissipation in the fluid:

D(t) := μF‖D(u)‖2
L2(Ωη (t))

. (22.32)

The constant C(Pin(t),Pout(t)) depends only on the inlet and outlet pressure data,
which are both functions of time.

The proof of inequality (22.30) is standard (see, e.g., [61]), so we omit it here.
This says that if a smooth solution to the coupled fluid-structure interaction prob-
lem (22.25) - (22.28) exists, then it satisfies the energy inequality (22.30). This
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inequality states that the rate of change of the kinetic energy of the fluid, and the
elastic energy of the structure, plus the viscous dissipation of the fluid, is balanced
by the work done by the inlet and outlet data.

2.2 ALE Formulation

Since the fluid-structure coupling studied here is preformed along the moving fluid-
structure interface, the fluid domain Ω(t) is not fixed. This is a problem from many
points of view. In particular, defining the time discretization of the time derivative
∂u/∂ t, for example ∂u/∂ t ≈ (u(tn+1, .)−u(tn, .))/(tn+1 − tn), is not well-defined
since u(tn+1, .) and u(tn, .) are not defined on the same domain at two different
time-steps. To resolve this difficulty, a classical approach is to map the fluid domain
Ωη(t) onto a fixed, reference domain Ω via a smooth, invertible ALE mapping [23]:

Aη : Ω → Ωη(t).

An example of such a mapping is the harmonic extension of the boundary ∂Ωη (t)
onto the fluid domain. This will be used in our numerical simulations. By using
the chain rule, one can see that the time derivative of the transformed fluid velocity
will contain an additional advection term with its coefficient given by the domain
velocity wη := (Aη)t ◦ (Aη)

−1, where (Aη)t denotes the time derivative of Aη .
Another example is an ALE mapping Aη defined by:

Aη(t) : Ω → Ωη(t), Aη(t)(z,r,θ ) :=

⎛
⎝ z

(R+η(t,z,θ ))r
θ

⎞
⎠ , (z,r,θ ) ∈ Ω ,

(22.33)
where (z,r,θ ) denote the cylindrical coordinates in the reference domain Ω . We will
be using this explicit formula for ALE mapping in the energy estimate associated
with the stability of our splitting scheme, proved in Section 3.2. Since we work with
the Navier-Stokes equations written in Cartesian coordinates, it is useful to write an
explicit form of the ALE mapping Aη in Cartesian coordinates as well:

Aη(t)(z,x,y) :=

⎛
⎝ z

(R+η(t,z,θ ))x
(R+η(t,z,θ ))y

⎞
⎠ , (z,x,y) ∈ Ω . (22.34)

Mapping Aη (t) is a bijection, and its Jacobian is given by

|det∇Aη(t)|= (R+η(t,z,θ ))2. (22.35)

Composite functions with the ALE mapping will be denoted by

uη (t, .) = u(t, .)◦Aη(t) and pη(t, .) = p(t, .)◦Aη(t). (22.36)
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The derivatives of composite functions satisfy:

∇u = ∇uη (∇Aη)
−1 =: ∇ηuη , ∂tu = ∂tuη − (wη ·∇η )uη ,

where the ALE domain velocity, wη , is given by:

wη = ∂tη

⎛
⎝0

x
y

⎞
⎠ . (22.37)

The following notation will also be useful:

ση =−pηI+ 2μDη(uη ), Dη(uη ) =
1
2
(∇ηuη +(∇η)τuη ).

Finally, the mapped fluid equations in Ωη read:

ρF (∂tu+((u−wη) ·∇η)u) = ∇η ·� η

∇η ·u = 0

}
in Ωη(t)× (0,T ). (22.38)

Here, the notation � η reflects the dependence of Dη(u) = 1
2 (∇

ηu+∇η T u) on η .
Existence of a weak solution for problem (22.38), (22.26), (22.20), (22.28), was
shown in [62]. In this chapter we focus on the design of a computational scheme
for this problem. The computational scheme will follow the main steps in the proof,
presented in [62], which is based on the Lie operator splitting approach.

The actual numerical simulations at each time step are typically performed on the
current (fixed) domain Ωη(tn), at a given fixed time tn, with only the time-derivative
calculated on Ω , thereby avoiding the need to calculate the transformed gradients
∇�. The corresponding continuous problem in ALE form can be written as follows:

Problem 2. Find u, p, and η such that:

ρF (∂tu|Ω +((u−wη) ·∇)u) = ∇ ·�
∇ ·u = 0

}
in Ωη(t)× (0,T ), (22.39)

u = ∂tηer,
ρKhs∂ 2

t η +Lη = −Jσn · er,

}
on Γ , t ∈ (0,T ), (22.40)

�nin = −pin(t)nin,
�nout = −pout(t)nout ,

}
on Γin/out , t ∈ (0,T ), (22.41)

u(0, .) = u0,
η(0, .) = η0,

∂tη(0, .) = v0.

⎫⎬
⎭at t = 0. (22.42)

Here, ∂tu|Ω denotes the time derivative calculated on a reference domain Ω .
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3 The Splitting Scheme

3.1 Description of the Splitting Scheme

To solve problem (22.39)–(22.42), we use the Lie or Marchuk-Yanenko splitting
strategy. The Lie splitting is particularly useful for multi-physics problems like the
one we are studying here. The coupled problem is split so that the different physics
in the problem can be solved separately. The main difficulty is to design the Lie
splitting strategy so that the resulting numerical scheme is stable and sufficiently ac-
curate. We present here a splitting which leads to an unconditionally stable loosely
coupled partitioned scheme. This splitting was first designed in [10] where a 2D
benchmark problem was solved. In this chapter we extend this scheme to 3D prob-
lems, which, additionally, do not have to satisfy the property of axial symmetry.

It follows from [37] Chapter 6 that the Lie splitting scheme can be described
as follows, the differential problem being written as a first-order system in time,
namely:

∂φ
∂ t

+F(φ) = 0 in (0,T ), (22.43)

φ(0) = φ0, (22.44)

where F is an operator from a Hilbert space into itself. Operator F is then split, in a
nontrivial decomposition as

F =
I

∑
i=1

Fi. (22.45)

The problem is discretized in time by choosing the time step �t > 0 and denoting
tn = n�t, and φn = φ(tn). The initial approximation is given by the initial data
φ0 = φ0. For n ≥ 0, φn+1 is computed by solving

∂φi

∂ t
+Fi(φi) = 0 in (tn, tn+1), (22.46)

φi(t
n) = φn+(i−1)/I, (22.47)

then set φn+i/I = φi(tn+1), for i = 1, . . . .I. Thus, the value at t = tn+1 of the solution
of the i-th problem is taken as the initial data for the (i+1)-st problem on (tn, tn+1).

This method is first-order accurate in time. More precisely, if (22.43) is defined
on a finite-dimensional space, and if operators Fi are smooth enough, then ‖φ(tn)−
φn‖= O(Δ t) [37].

To solve the FSI problem (22.39)–(22.42), we split the problem into two sub-
problems as follows:

1. An elastodynamics problem for the structure, and
2. A fluid problem with suitable boundary conditions involving structure velocity

and fluid stress at the boundary.
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The structure and the fluid sub-problems are defined in such a way that the energy
of the discretized problem approximates well the energy of the continuous problem.
To achieve this goal, a key role is played by the kinematic coupling condition, which
will be enforced implicitly in both steps of the splitting scheme, keeping the two sub-
problems tightly coupled at all times. Indeed, we show below an energy estimate
of the semi-discretized problem which is associated with unconditional stability of
the scheme, and shows that the energy of the discretized problem mimics well the
energy of the continuous problem.

More precisely, we begin by rewriting our coupled problem in first-order form
with respect to time. For this purpose we introduce v to denote the trace of the fluid
velocity at the moving interface Γ (t):

ver := u|Γ (t).

The kinematic coupling condition (no-slip) then reads ∂tη = v. The system in ALE
form is now rewritten by using the above-mentioned notation, and by employing the
kinematic coupling condition in the thin structure model. This way the kinematic
coupling condition will be enforced implicitly everywhere, in all the steps of the
splitting scheme. The resulting coupled problem in first-order ALE form is given by
the following:

Problem 3. Find u, p, η , and v such that:

ρF (∂tu|Ω +((u−wη) ·∇)u) = ∇ ·� ,
∇ ·u = 0,

}
on Ωη(t), t ∈ (0,T ), (22.48)

u = ver,
v = ∂tη ,

ρKhs∂t v+Lη = −Jσn · er,

⎫⎬
⎭ on Γ , t ∈ (0,T ), (22.49)

�nin = −pin(t)nin,
�nout = −pout(t)nout ,

}
on Γin/out , t ∈ (0,T ), (22.50)

uη (0, .) = u0,η(0, .) = η0,v(0, .) = v0, at t = 0. (22.51)

We are now ready to split the problem. For this purpose, observe that the portion
ρKhs∂t v =−J�n ·er of the dynamic coupling condition is formulated in terms of the
trace v of the fluid velocity on Γ (recall that � depends on v); we can, therefore, use
this as the lateral boundary condition for the fluid sub-problem. This observation is
crucial because keeping the structure inertia term ρKhs∂t v together with the inertia
of the fluid in the fluid sub-problem is of paramount importance for designing a sta-
ble and convergent scheme. This mimics the added mass effect associated with the
coupled physical problem, in which the coupled FSI solution dynamics corresponds
to structure having combined fluid and structure inertia.

To achieve higher accuracy, we apply the following strategy: the normal fluid
stress is split into two parts:
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�n = �n+β pn︸ ︷︷ ︸
(I)

−β pn︸ ︷︷ ︸
(II)

,

where β ∈ [0,1], and part (I) is used in the fluid sub-problem, while part (II) in the
structure sub-problem. The higher accuracy for β > 0 is achieved because the new
splitting enhances the communication between the fluid and structure by loading the
structure with a β portion of the normal fluid stress, which is not present for β = 0.
For β = 0 we recover the classical kinematically coupled scheme, first introduced
in [43]. In this chapter, β = 1 is used for the numerical simulations since it provides
the highest accuracy. The choice of β does not influence the stability of the scheme
[10].

The operators F1 and F2 in the operator splitting scheme are defined by the fol-
lowing two differential sub-problems:

Problem F1 : STRUCTURE
∂tη = v,

ρKhs∂t v+Lη = β p̂n,

}
on Γ ,

Problem F2 : FLUID
∂tu|Ω +((û−wη) ·∇)u = ∇ ·� ,

∇ ·u = 0,

}
in Ωη(t),

u|R+η = ver,
ρKhs∂t v+ J�n|R+η = −β p̂n|R+η .

}
on Γ .

Here û is the value of u from the previous time step, p̂ is the value of p from the
previous time step, and wη , which is the domain velocity (the time derivative of the
ALE mapping), is obtained from the just calculated Problem F1. The initial data for
u in the fluid domain is given by the solution from the previous time step, while the
initial data for the trace v of the fluid velocity on Γ in Problem F2 is given by the
just calculated velocity of the thin structure ∂tη in Problem F1. The corresponding
operator splitting scheme is given by the block diagram shown in Figure 22.2.

This is different from the classical loosely coupled schemes. In classical Dirichlet-
Neumann loosely coupled scheme, the boundary condition for the fluid subproblem
is the Dirichlet condition for the fluid velocity v on Γ given in terms of the structure
velocity ∂η/∂ t, namely v = ∂η/∂ t, where ∂η/∂ t is calculated at the previous time
step! This inclusion of the structure inertia from the previous time step (explicitly)
makes the fluid subproblem unstable for certain parameters values [14]. The main
reason for this is that the kinetic energy at this time step includes only the fluid ki-
netic energy from the current time step, and not the structure kinetic energy, since
the thin structure velocity enters in an explicit way.

Therefore, our above-mentioned splitting strategy, that is to keep the thin struc-
ture inertia together with the fluid inertia in the fluid sub-step, respects the physical
property of added mass effect in FSI problem where the fluid and structure have
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Fig. 22.2 A block diagram showing the main steps of the Kinematically Coupled β -Scheme.

comparable densities, and will give rise to the kinetic energy of the discretized prob-
lem which approximates well the kinetic energy of the continuous problem, as we
will show next.
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3.2 Unconditional Stability of the Splitting Scheme

We will show that the nonlinear FSI problem (22.39)–(22.42), semi-discretized via
the Lie operator splitting described above, and summarized in the block diagram,
shown in Figure 22.2, satisfies an energy estimate associated with unconditional
stability of the operator splitting scheme. Combined with the compactness argu-
ment obtained in [62], which shows that the approximating (sub-)sequences of this
splitting algorithm converge to a weak solution of problem (22.39)–(22.42), this
estimate provides unconditional stability of the splitting scheme. This stability es-
timate is obtained for the problem containing the dynamic inlet and outlet pressure
data (22.20).

To do this, we map the entire problem onto a fixed domain Ω via the ALE
mapping (22.34), and perform the operator splitting, described above. The result-
ing structure elastodynamics problem and the fluid dynamics problem, written in
weak form, are given by the following.

3.2.1 Problem F1: The Structure Elastodynamics Problem

The weak form of a semi-discrete version of Problem F1 reads as follows:

• In this problem u does not change, and so

un+ 1
2 = un;

• The functions (vn+ 1
2 ,ηn+ 1

2 ) ∈ H2
0 (ω)×H2

0 (ω) are defined as solutions of the
following problem, written in weak form, where we denote by dω the measure
dω = Rdzdθ :

∫
ω

ηn+ 1
2 −ηn

Δ t
φ dω =

∫
ω

vn+ 1
2 φ dω ,

ρKhs

∫
ω

vn+ 1
2 − vn

Δ t
ψdω +

hs

2

∫
ω
A�(ηn+ 1

2 ) : �(ψ)dω

+
h3

s

24

∫
ω
A�(ηn+ 1

2 ) : �(ψ)dω = 0,

(22.52)

for all (φ ,ψ) ∈ L2(ω)× H2
0 (ω). The first equation is a weak form of the

semi-discretized kinematic coupling condition, while the second equation cor-
responds to a weak form of the semi-discretized elastodynamics equation.

We will assume that the Lamé coefficients are such that operator A is coercive,
e.g. λ ,μ > 0. It was shown in [62] that the following existence result and energy
estimate hold for this problem.

Proposition 2. For each fixed Δ t > 0, problem (22.52) with λ ,μ > 0 has a unique

solution (vn+ 1
2 ,ηn+ 1

2 )∈ H2
0 (ω)×H2

0 (ω). Moreover, the solution of problem (22.52)
satisfies the following discrete energy equality:
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En+ 1
2 +

1
2

(
ρKhs‖vn+ 1

2 − vn‖2 +
hs

2
‖ηn+ 1

2 −ηn‖2
γ+

h3
s

24
‖ηn+ 1

2 −ηn‖2
σ

)
= En,

(22.53)
where En denotes the kinetic energy of the fluid and structure, and the elastic energy
of the Koiter shell of the n-th approximate solution:

En =
1
2

(
ρ f

∫
Ω
(R+ηn)2|un|2dx+ρKhs‖vn‖2

L2(ω)
+

hs

2
‖ηn‖2

γ +
h3

s

24
‖ηn‖2

σ

)
,

(22.54)
while En+1/2 is defined by:

En+ 1
2 =

1
2

(
ρ f

∫
Ω
(R+ηn)2|un+ 1

2 |2dx+ρKhs‖vn+ 1
2 ‖2

L2(ω)+
hs

2
‖ηn+ 1

2 ‖2
γ +

h3
s

24
‖ηn+ 1

2 ‖2
σ

)
.

(22.55)

Notice how the three terms in (22.53) that are not included in the expressions En

and En+1/2 account for the kinetic and elastic energy due to the motion of the fluid
domain.

3.2.2 Problem F2: The Fluid Problem

We start by defining the solution space for the fluid velocity on the moving domain
Ωη(t) [15]:

VF(t) = {u = (uz,ux,uy) ∈ H1(Ωη(t))
3 : ∇ ·u = 0,

u× er = 0 on Γ (t), u× ez = 0 on Γin/out}, (22.56)

and then define the solution space for the fluid velocity defined on the mapped, fixed
domain Ω by the following:

Vη
F = {uη(t, ·) = u(t, ·)◦Aη (t) : u ∈ VF(t)}.

It was shown in [62] that Vη
F is a Hilbert space with the scalar product:

(uη ,vη)Vη
F
=

∫
Ω
(R+η)2(uη ·vη +∇ηuη : ∇ηvη)dx

=
∫

Ωη (t)
(u ·v+∇u : ∇v)dx = (u,v)H1(Ωη (t)).

The weak form of a semi-discrete version of Problem F2 reads as follows:

• In this problem η does not change, and so

ηn+1 = ηn+ 1
2 ;
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• The function (un+1,vn+1) ∈ Vηn

F × L2(ω) is defined as a solution of the fluid
sub-problem, written in weak form:

ρ f

∫
Ω
(R+ηn)2

(
un+1 −un+ 1

2

Δt
·q+

1
2

[
(un −wn+ 1

2 ) ·∇ηn
]

un+1 ·q

−1
2

[
(un −wn+ 1

2 ) ·∇ηn
]

q ·un+1
)

dx+ρ f

∫
Ω
(R+

ηn +ηn+1

2
)vn+ 1

2 un+1 ·q dx

+2μ
∫

Ω
(R+ηn)2Dηn

(un+1) : Dηn
(q) dx+RρKhs

∫
ω

vn+1 − vn+ 1
2

Δt
ψdzdθ

= Pn
in

∫
Γin

(qz)|z=0dx dy−Pn
out

∫
Γout

(qz)|z=Ldx dy,

with ∇ηn ·un+1 = 0, un+1
|Γ = vn+1er,

(22.57)

for all (q,ψ) ∈ Vηn

F ×L2(ω) such that q|Γ = ψer.

Here Pn
in/out =

1
Δ t

∫ (n+1)Δ t

nΔ t
Pin/out(t)dt and wn+ 1

2 , which is the domain velocity

defined via the ALE mapping (22.37), is given by

wn+ 1
2 = vn+ 1

2

⎛
⎝0

x
y

⎞
⎠ .

It was shown in [62] that the following existence result and energy estimate hold
for this sub-problem:

Proposition 3. Let Δ t > 0, and assume that ηns are such that R+ ηn ≥ Rmin >
0,n = 0, . . . ,N. Then, the fluid sub-problem defined by (22.57) has a unique weak
solution (un+1,vn+1) ∈ Vηn

F ×L2(ω). Moreover, the solution of (22.57) satisfies the
following energy estimate:

En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn+ 1

2 ‖2
L2(ω)

+Dn+1 ≤ En+ 1
2 +CΔ t((Pn

in)
2 +(Pn

out)
2),

(22.58)

where Pn
in and Pn

out are the average inlet and outlet dynamic pressure data, given

over the time interval (tn, tn+1): Pin/out =
1
Δ t

∫ (n+1)Δ t
nΔ t Pin/out(t)dt, En is the kinetic

and elastic energy defined in (22.54), and Dn, the contribution from fluid dissipation
is defined by

Dn+1 = Δ tμF

∫
Ω
(R+ηn)2|Dηn

(un+1)|2dx, n = 0, . . . ,N − 1. (22.59)

The constant C depends only on the parameters in the problem, and not on Δ t.
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By combining these two results we obtain an energy estimate for the semi-
discretized problem in the following way. We begin by bounding the kinetic energy
and the elastic energy at time step tn+1:

En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn‖2

L2(ω)

+
hs

4
‖ηn+1 −ηn‖2

γ +
h3

s

48
‖ηn+1 −ηn‖2

σ +Dn+1

≤ En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn+ 1

2 ‖2
L2(ω)

+
ρKhs

2
‖vn+ 1

2 − vn‖2 +
hs

4
‖ηn+1 −ηn‖2

γ+
h3

s

48
‖ηn+1 −ηn‖2

σ +Dn+1.

We use the fact that ηn+1 = ηn+ 1
2 in the last line to obtain that the above expression

equals:

= En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn+ 1

2 ‖2
L2(ω)

+
ρKhs

2
‖vn+ 1

2 − vn‖2 +
hs

4
‖ηn+ 1

2 −ηn‖2
γ+

h3
s

48
‖ηn+ 1

2 −ηn‖2
σ +Dn+1.

From the energy inequality (22.58) we can estimate the first line in the above ex-
pression by

En+ 1
2 +

ρKhs

2
‖vn+ 1

2 − vn‖2 +
hs

4
‖ηn+ 1

2 −ηn‖2
γ+

h3
s

48
‖ηn+ 1

2 −ηn‖2
σ

+CΔ t((Pn
in)

2 +(Pn
out)

2),

and by the energy equality (22.53), the above expression is equal to

= En +CΔ t((Pn
in)

2 +(Pn
out)

2). (22.60)

Therefore, we have just shown that the split, semi-discretized problem satisfies the
following energy estimate:

En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn‖2

L2(ω)

+
hs

4
‖ηn+1 −ηn‖2

γ +
h3

s

48
‖ηn+1 −ηn‖2

σ +Dn+1

≤ En +CΔ t((Pn
in)

2 +(Pn
out)

2).

(22.61)

By using this estimate to further bound the right-hand side from the time level
n all the way down to 0, and by recalling that Pn

in and Pn
out are the average inlet and

outlet data over the time interval (nΔ t,(n+ 1)Δ t), one obtains
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En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn‖2

L2(ω)

+
hs

4
‖ηn+1 −ηn‖2

γ +
h3

s

48
‖ηn+1 −ηn‖2

σ +Dn+1

≤ E0 +C

{
Δ t

N−1

∑
n=0

(
1
Δ t

∫ (n+1)Δ t

nΔ t
Pin(t)dt

)2

+Δ t
N−1

∑
n=0

(
1
Δ t

∫ (n+1)Δ t

nΔ t
Pin(t)dt

)2
}

≤ E0 +C‖Pin‖2
L2(0,T)

+ ‖Pout‖2
L2(0,T )

.

(22.62)

We have just shown an energy estimate associated with the unconditional stabil-
ity of the splitting scheme for the semi-discretized nonlinear FSI problem. Namely,
the following theorem holds:

Theorem 1. Under the assumption that the diameter of the fluid domain Ωη(t) is
greater than zero, the solutions of the semi-discrete splitting algorithm summarized
in the block diagram of Figure 22.2 satisfy the following energy estimate:

En+1 +
ρ f

2

∫
Ω
(R+ηn)2|un+1 −un|2dx+

ρKhs

2
‖vn+1 − vn‖2

L2(ω)

+
hs

4
‖ηn+1 −ηn‖2

γ +
h3

s

48
‖ηn+1 −ηn‖2

σ +Dn+1

≤ E0 +C‖Pin‖2
L2(0,T) + ‖Pout‖2

L2(0,T),

(22.63)

where the constant C > 0 depends only on the parameters of the problem, E0 is the
kinetic and elastic energy of the initial data, and En+1 denotes the kinetic and elastic
energy of the semi-discretized solution at tn+1 = (n+ 1)Δ t, defined by (22.54).

Combined with the compactness arguments in [62], which show that the approx-
imating sequence of the Lie splitting scheme converges strongly to a weak solution
of the nonlinear FSI, the energy estimate (22.63) provides unconditional stability of
the splitting scheme studied in this chapter.

4 The Numerical Implementation of the Scheme

In this section we present the details of the numerical scheme. As mentioned in
Section 2 (Remark on the inlet and outlet data), in this section we use the normal
stress inlet and outlet data (22.18), (22.19), to drive the problem.

4.1 The Structure Sub-problem

The structure problem is discretized using the Backward Euler scheme, giving rise
to the weak formulation of the structure sub-problem which is similar to the one
presented in (22.52), except that (22.52) is presented for β = 0 for which uncondi-
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tional stability is proved, and here we present this scheme for a general β ∈ [0,1].
More precisely, the structure sub-problem reads:

• In this sub-problem the fluid velocity in Ω(tn) does not change, and so

un+ 1
2 = un.

• Using the notation introduced in (22.8), the weak formulation for the cylindrical
Koiter shell can be written as: Find (vn+ 1

2 ,ηn+ 1
2 ) ∈ L2(ω)×H2

0 (ω) such that
∀(φ ,ψ) ∈ L2(ω)×H2

0 (ω):

∫
ω

ηn+ 1
2 −ηn

Δ t
φRdzdθ =

∫
ω

vn+ 1
2 φRdzdθ ,

ρKhs

∫
ω

vn+ 1
2 − vn

Δ t
ψRdzdθ +

∫
ω
Lηn+ 1

2 ψRdrdz =
∫

ω
β p̃nJnψRdzdθ ,

(22.64)

with vn = un|Γ n ,

where ω is the reference domain for the structure, L is defined in (22.8), and Jn

is the Jacobian of the transformation from Eulerian to Lagrangian coordinates.
Here, by p̃n we denoted the trace of the fluid pressure, calculated at time tn, de-
fined on the reference configuration ω via the ALE mapping An : Ω →Ωηn(tn)
as follows:

p̃n = pn ◦An. (22.65)

In the numerical implementation of the scheme, however, to avoid calculating
the Jacobian Jn, the integral on the right-hand side can be calculated along the
current configuration of the structure Γ n = Γ (tn), so that∫

ω
β p̃nJnψRdzdθ =

∫
Γ n

β pnψdSn, (22.66)

where dSn is the surface element of Γ n, and the functions p and p̃, are related
through the ALE mapping An via (22.65). The same holds for the test functions:
the ψ on the left-hand side is defined on ω , while the test function ψ on the
right-hand side is defined on Γ n.

In the case when the Koiter shell equations are reduced to the membrane equa-
tion, all the terms multiplying h3

s/24 are considered negligible, and the only term
that survives is the non-differentiated term Cη , so that the weak formulation reads:
Find (ηn+ 1

2 ,vn+ 1
2 ) ∈ L2(ω)×L2(ω) such that ∀(φ ,ψ) ∈ L2(ω)×L2(ω):

∫
ω

ηn+ 1
2 −ηn

Δ t
φRdrdz =

∫
ω

vn+ 1
2 φRdrdz,

ρKhs

∫
ω

vn+ 1
2 − vn

Δ t
ψRdrdz+

∫
ω

Cηn+ 1
2 ψRdrdz =

∫
ω

β p̃nJnψRdrdz, (22.67)

with vn = un|Γ n .
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where ω is the reference domain for the structure, and u|Γ n is the trace of the fluid
velocity on the fluid-structure interface calculated in the previous time-step. For the
cylindrical Koiter membrane, the coefficient C is given by

C =
hsE

R2(1−σ2)
.

For a smooth enough domain which is not necessarily cylindrical, the weak form
in Cartesian coordinates reads: Find (ηn+ 1

2 ,vn+ 1
2 ) ∈ L2(Γ )×L2(Γ )

∫
Γ

ηn+ 1
2 −ηn

Δ t
φdS =

∫
Γ

vn+ 1
2 φdS, ∀φ ∈ L2

0(Γ ),

ρKhs

∫
Γ

vn+ 1
2 − vn

Δ t
dS+

∫
Γ

Cηn+ 1
2 ψdS =

∫
Γ

β p̃nJnψdS, ∀ψ ∈ L2
0(Γ ), (22.68)

with vn = un|Γ n ,

where Γ is the reference configuration of the structure in Cartesian coordinates, and
u|Γ n is the trace of the fluid velocity on the fluid-structure interface calculated in the
previous time-step. The coefficient C is given by (see [66, 19]):

C :=
hsE

1−σ2 (4κ2
1 − 2(1−σ)κ2), (22.69)

with κ1 and κ2 being the mean and Gaussian curvature, respectively. Function η
here is the normal component of displacement written in Cartesian coordinates. As
before, to avoid calculating the Jacobian Jn, the right-hand side of equation (22.68)
can be calculated by converting everything to the current domain so that∫

Γ
β p̃nJnψdS =

∫
Γ n

β pnψdSn. (22.70)

In the examples that follow, we will be using the membrane models, first in cylin-
drical coordinates, and then in Cartesian coordinates for a stenotic geometry which
is not axially symmetric.

Since the structure displacement does not change in the fluid sub-problem, we
define:

ηn+1 = ηn+ 1
2 .

4.2 Calculation of the ALE Mapping and ALE Velocity wn+1

Using the just-calculated new position of the thin structure we calculate the ALE
mapping An+1 associated with the new structure position as a harmonic extension
of the boundary to the entire fluid domain:
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∇2An+1 = 0 in Ω,

An+1|Γ = ηn+1,

An+1|∂Ω f \Γ = 0.

Using this ALE mapping we calculate the new ALE velocity w via

wn+1 =
∂An+1

∂ t
=

∂x
∂ t

≈ xn+1 − xn

Δ t
,

which remains unchanged in the fluid sub-problem, below.

4.3 The Fluid Sub-problem

We discretize the fluid problem using the Backward Euler scheme, giving rise to
the following weak formulation: Find (un+1, pn+1) ∈ V f (tn)×Q(tn) and vn+1 ∈
L2(Γ ) such that for all (',q) ∈ V f (tn)×Q(tn) and ψ ∈ L2(Γ ) satisfying '|Γ n =
['◦ (An)−1]|Γ = ψn f , the following holds:

ρ f

∫
Ω f (tn)

un+1 −un+ 1
2

Δ t
·'dx+ρ f

∫
Ω f (tn)

((un+ 1
2 −wn+1) ·∇)un+1 ·'dx

+2μ f

∫
Ω f (tn)

D(un+1) : D(')dx−
∫
Ω f (tn)

pn+1∇ ·'dx+
∫

Ω f (tn)
q∇ ·un+1dx

+ρshs

∫
Γ

vn+1 − vn+ 1
2

Δ t
·ψdS =−

∫
Γ

Jnβ p̃nψdS

+
∫
Γin

pin(t
n+1)'|z=0 ·n f dx dy−

∫
Γout

pout(t
n+1)'|z=L ·n f dx dy. (22.71)

Here, again, we can use (22.70) to simplify the calculation of the pressure integral
over Γ in terms of the integral over Γ n without the Jacobian Jn:∫

Γ
β p̃nJnψdS =

∫
Γ n

β pnψdSn.

We employed FreeFem++ [44, 45] to solve this problem in 3D, using a finite el-
ement approach. Finite dimensional spaces of globally continuous piecewise affine
functions (P1) were used for the space approximation of the structure sub-problem
(written in terms of velocity). Concerning the space approximation of the fluid
sub-problems (the fluid advection and a quasi-Stokes problem), we proceeded as
follows:

(i) Let us denote by Th the finite element mesh used to approximate the fluid
sub-problem (since we are in 3D, Th consists of tetrahedra).



756 M. Bukač et al.

(ii) We divided each element of T h into four tetrahedra by joining its center
of mass to each of its four vertices, the resulting mesh being denoted
by Th/4.

(iii) To approximate the pressure (resp. the velocity) we used globally contin-
uous functions, piecewise affine over the elements of Th (resp., Th/4).

The resulting approximation of the Stokes problem is known as the P1 + bubble/P1,
and does not require stabilization (a detailed discussion of the P1 + bubble/P1 ap-
proximation, for 2D incompressible viscous flow, can be found in e.g., [37]; see also
the references therein). For our simulations, the number of elements of T h was of
the order of 8,000.

However, for the first example presented below, which is a 2D benchmark prob-
lem, we used our custom-made code. For this 2D problem, P1 elements based
approximations were used for the structure sub-problem, while the Bercovier-
Pironneau method (also known as P1-iso-P2/P1) was used to approximate the fluid
sub-problem; again, no stabilization is needed with this approach where each trian-
gle of the pressure mesh T h is divided into four sub-triangles (by joining the edge
mid-points) to define the twice finer mesh T h/2 used to approximate the velocity
(see Chapter 5 of [37] for more details).

5 Numerical Examples

We begin by presenting a benchmark problem in hemodynamics. Our solver will be
validated on this benchmark problem against a monolithic scheme, and the classical
kinematically coupled scheme (β = 0). We show that the accuracy of our operator
splitting scheme with β = 1 is comparable to the accuracy of the monolithic scheme,
and has higher accuracy than the classical kinematically coupled scheme (β = 0).
This benchmark problem is in 2D. The remaining examples presented here will be
in 3D.

5.1 Example 1: A 2D Benchmark Problem

We consider a classical test problem proposed by Formaggia et al. in [35]. This
problem has been used in several works as a benchmark problem for testing the
results of fluid-structure interaction algorithms in hemodynamics [4, 65, 5, 70, 43,
10]. The structure model for this benchmark problem is of the form

ρshs
∂ 2ηr

∂ t2 − kGhs
∂ 2ηr

∂ z2 +
Ehs

1−σ2

ηr

R2 − γ
∂ 3ηr

∂ z2∂ t
= f , (22.72)

with absorbing boundary conditions at the inlet and outlet boundaries:
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∂ηr

∂ t
−
√

kG
ρs

∂ηr

∂ z
= 0 at z = 0 (22.73)

∂ηr

∂ t
+

√
kG
ρs

∂ηr

∂ z
= 0 at z = L. (22.74)

Here G = E
2(1+σ)

is the shear modulus and k is the Timoshenko shear correction
factor. The flow is driven by the time-dependent pressure data:

pin(t) =

{ pmax
2

[
1− cos

(
2πt
tmax

)]
if t ≤ tmax

0 if t > tmax
, pout(t) = 0 ∀t ∈ (0,T ), (22.75)

where pmax = 2× 104 (dynes/cm2) and tmax = 0.005 (s). The values of all the pa-
rameters in this model are given in Table 22.1. The problem was solved over the
time interval [0,0.012] s, which is the time it takes the inlet pressure wave to reach
the end of the tube.

Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6
Fluid density ρ f (g/cm3) 1 Dyn. viscosity μ (poise) 0.035
Wall density ρs(g/cm3) 1.1 Wall thickness hs (cm) 0.1
Young’s mod. E(dynes/cm2) 0.75×106 Poisson’s ratio σ 0.5
Shear mod. G(dynes/cm2) 0.25×106 Viscoelasticity γ (poise cm) 0.01
Timoshenko factor k 1

Table 22.1 Geometry, fluid, and structure parameters for Example 5.1.

Propagation of the corresponding pressure pulse in 2D is shown in Figure 22.6.
The numerical results obtained using the kinematically coupled β scheme with

β = 1 were compared with the numerical results obtained using the classical kine-
matically coupled scheme (i.e., β = 0) proposed in [43], and the monolithic scheme
proposed in [70]. Figures 22.3, 22.4, and 22.5 show the comparison between tube
diameter, flow rate, and mean pressure, respectively, at six different times.

These results were obtained with the same mesh as the one used for a monolithic
scheme in [70], containing 31× 11 P1 fluid velocity vertices. More precisely, we
used an iso-parametric version (thoroughly discussed in [37] Chapter 5; see also
[38]) of the Bercovier-Pironneau element spaces, also known as P1-iso-P2/P1 ap-
proximation of the Stokes problem in which a coarse mesh (mesh size hp) is used to
approximate the pressure, and a twice finer mesh (mesh size hv = hp/2) is used for
the velocity.

The time step used was �t = 10−4 which is the same as the time step used
for the monolithic scheme, while the time step used for the kinematically coupled
scheme in [43] was �t = 5× 10−5. It is well known that splitting schemes require
smaller time step due to the splitting error. However, the splitting studied in this
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Fig. 22.3 Example 1: Diameter of the tube computed with the kinematically coupled scheme (β =
0) with time step �t = 5× 10−5 (dash-dot line), implicit scheme used by Quaini in [70] with the
time step �t = 10−4 (dashed line), and the kinematically coupled β -scheme (β = 1) with the time
step �t = 10−4 (solid line).
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Fig. 22.4 Example 1: Flow rate computed with the kinematically coupled scheme (β = 0) with
time step �t = 5×10−5 (dash-dot line), the implicit scheme used by Quaini in [70] with the time
step �t = 10−4 (dashed line), and our kinematically coupled β -scheme (β = 1) with the time step
�t = 10−4 (solid line).
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Fig. 22.5 Example 1: Mean pressure computed with the kinematically coupled scheme with time
step �t = 5× 10−5 (dash-dot line), implicit scheme used by Quaini in [70] with the time step
�t = 10−4 (dashed line) and our scheme with the time step �t = 10−4 (solid line).
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Fig. 22.6 Example 1: Propagation of the pressure wave.

chapter allows us to use the same time step as in the monolithic method, obtaining
comparable accuracy, as it will be shown next. This is exciting since we obtain the
same accuracy while retaining the main benefits of the partitioned schemes, such as
modularity, implementation simplicity, and low computational cost.

Figure 22.7 shows a comparison between the time convergence of the kinemat-
ically coupled β -scheme (with β = 1), the classical kinematically coupled scheme
(i.e., β = 0), and the monolithic scheme used in [70]. The reference solution was
defined to be the one obtained with �t = 10−6. We calculated the absolute L2 error
for the velocity, pressure, and displacement between the reference solution and the
solutions obtained using �t = 5× 10−6,10−5, 5× 10−5 and 10−4. Figure 22.7 and
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Fig. 22.7 Example 1: Log-log plot of errors for the three schemes. Left: Error for fluid velocity at
t=10 ms. Middle: Error for fluid pressure at t=10 ms. Right: Error for displacement at t=10 ms.

�t ||p− pre f ||L2 L2 order ||u−ure f ||L2 L2 order ||�−�re f ||L2 L2 order

10−4 4.01e+03 - 5.97 - 0.003 -
(5.65e+04) - (136.32) - (0.0446) -

5×10−5 1.57e+03 1.35 4.05 0.56 0.0014 1.1
(3.36e+04) (0.75) (77.91) (0.80) (0.0264) (0.75)

10−5 296.36 1.04 1.0 0.87 3.17e−04 0.92
(7.27e+03) (0.95) (16.27) (0.97) (0.00576) (0.95)

5×10−6 134.33 1.14 0.46 1.12 1.45e−04 1.13
(3.3e+03) (1.14) (7.36) (1.14) (0.0026) (1.14)

Table 22.2 Example 1: Convergence in time calculated at t = 10 ms. The numbers in the paren-
thesis show the convergence rate for the kinematically coupled scheme (β = 0) presented in [43].

Table 22.2 show first-order in time convergence for the velocity, pressure, and dis-
placement obtained by the kinematically coupled scheme, monolithic scheme, and
our scheme. Notice how the error of our method is comparable to the error obtained
by the monolithic scheme on this 2D benchmark problem.
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5.2 Example 2: A 3D Straight Tube Test Case

Here we study the flow in a straight, compliant 3D tube, whose elastodynamics is
modeled by the cylindrical membrane shell equation (22.16). Notice that, in relation
to the previous example, since the reference configuration is a straight cylinder, this
model can be written as

ρshs
∂ 2η
∂ t2 −Ghs

∂ 2η
∂ z2 +

Ehs

1−σ2

η
R2 = f , (22.76)

where G = E
2(1+σ) is the shear modulus, as in the previous example, and η denotes

the radial component of displacement. We impose the zero-displacement boundary
conditions η = 0 at the “inlet” and “outlet” boundary of the cylinder.

The flow is driven by the time-dependent pressure (normal stress) data:

pin(t) =

{ pmax
2

[
1− cos

( 2πt
tmax

)]
if t ≤ tmax

0 if t > tmax
, pout(t) = 0 ∀t ∈ (0,T ), (22.77)

where pmax = 1.3333× 104 (dyne/cm2) and tmax = 0.003 (s). The values of all the
parameters in this model are given in Table 22.3.

Fluid Parameters Values

Tube length L(cm) 5
Tube radius R(cm) 0.5
Fluid density ρ(g/cm3) 1
Fluid viscosity μ(poise) 0.035

Structure Parameters Values

Thickness hs(cm) 0.1
Density ρ(g/cm3) 1.1
Young’s modulus E(dyns/cm2) 106

Poisson ratio σ 0.5

Table 22.3 Example 1: The structure parameters for Example 1.

The value of the time step is Δ t = 10−4, and the finite element approximation
contains 8571 degrees of freedom.

In contrast with the previous example, the cylindrical membrane model does not
contain the bending rigidity term(s), described by the second-order spatial derivative
term in (22.72), which is associated with wave propagation phenomena, making
equation (22.72) of hyperbolic type (assuming γ = 0). As a result, the pressure wave
and displacement look slightly different in this example when compared with the
previous example, as shown in Figures 22.8–22.11.

In particular, Figure 22.8 shows the 3D tube with the corresponding pressure
wave propagation at four different times within the time interval from t = 0 until
t = 14 milliseconds, which is the time it takes the pressure wave to reach the outlet
boundary. The corresponding values of the pressure along the symmetry axis of the
tube are shown in Figure 22.9.
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Similarly, Figure 22.10 shows the magnitude of displacement along the 3D tube,
at the same four time snap-shots as used in Figures 22.8 and 22.9. The correspond-
ing values of the displacement along the symmetry axis of the tube are shown in
Figure 22.11. One can see how the energy dissipates very quickly in this case,
and the amplitude of displacement decreases along the tube. The results in Fig-
ures 22.8–22.11 are very similar to the results reported in [66], where a pressure
wave propagation was shown in a semicircular tube, modeled by the membrane
model (22.14), (22.15).

Fig. 22.8 Example 2: Pressure wave propagation in a 3D cylindrical tube, modeled by the cylin-
drical membrane equation (22.72).

We studied the time-convergence of the scheme solving this 3D problem by
refining the time step from Δ t = 10−4,5× 10−5,10−5, with the reference solution
corresponding to the one obtained with Δ t = 5×10−6. Figure 22.12 shows the log-
log plot of the error for the fluid velocity versus the time step. A table with the
corresponding numbers, showing an “almost” second order convergence, is given in
Table 22.4.

�t ||u−ure f ||L2 Conv. Order

10−4 0.71614 –
5×10−5 0.201347 1.83

10−5 0.0122303 1.74

Table 22.4 Example 2: A table showing an “almost” second order convergence.
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Fig. 22.9 Example 2: Pressure along the axis of symmetry of the tube corresponding to
Figure 22.8.

Fig. 22.10 Example 2: Displacement of the 3D cylindrical elastic tube from Figure 22.8.

5.3 Example 3: A 3D Curved Cylinder

Here we consider the structure model (22.16) with C given by (22.15), where η de-
notes the normal component of displacement. For completeness, we state the model
here:

ρKhs
∂ 2η
∂ t2 − Ehs

2(1+σ)

∂ 2η
∂ z2 +

hsE
1−σ2 (4κ2

1 − 2(1−σ)κ2)η = f , (22.78)
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Fig. 22.11 Example 2: Displacement along the tube axis corresponding to Figure 22.10.

10−6 10−5 10−4 10−310−3

10−2

10−1

100

log Δ t

lo
g 

|| 
u 

−
 u

re
f|| L2

1st order

Fig. 22.12 Example 2: The time-convergence test showing the accuracy of order larger than 1. The
dashed line in the figure shows the slope corresponding to 1st-order accuracy.

where κ1 and κ2 are the mean and Gaussian curvature, respectively. The reference
domain is now a semicircular tube, approximating an idealized geometry of the
ascending/descending aorta.
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Fig. 22.13 Example 3: Pressure wave propagation along the axis of symmetry of the curved tube.

Fig. 22.14 Example 3: Displacement of the curved tube.

The diameter of the cylinder is constant and equal to R = 0.5cm, while the two
principal curvatures are given by 4cos(θ )/(2+ cos(θ )) for θ ∈ [0,2π) (Gaussian
curvature), and 2(1+ cos(θ ))/(2+ cos(θ )),θ ∈ [0,2π) (mean curvature) for the
portion of the domain that corresponds to a torus [49]. The other parameters are the
same as in the above example and are given in Table 22.3. Figures 22.13 and 22.14
show the pressure and displacement in the curved cylinder. They are very similar to
the results obtained by Nobile and Vergara in [66] using the membrane model as a
Robin boundary condition in the fluid problem.

5.4 Example 4: Stenosis

In this example we consider a stenotic geometry which is not axially symmetric. Fig-
ure 22.15 shows two views of the geometry: the axial view and the cross-sectional
view, cut by plane A, shown in Figure 22.15. The corresponding computational
mesh is also shown in this figure. The cross-section in Figure 22.15(b) shows around
50% stenosis of the vessel lumen.

The structure elastodynamics is modeled by equation (22.79), where the coeffi-
cients now depend on the spatial variable x, since the radius and curvature of the
reference configuration are not constant:

ρKhs
∂ 2η
∂ t2 − Ehs

2(1+σ)

∂ 2η
∂ z2 +

hsE
1−σ2 (4κ1(x)

2 − 2(1−σ)κ2(x))η = f , (22.79)
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Fig. 22.15 Example 4: Stenotic geometry and computational mesh: longitudinal view (left) and
cross-sectional view (right) obtained from the figure on the left by cutting the mesh geometry by
the plane denoted in the figure on the left by A, and looking at the mesh from the center of the
longitudinal axis, shown by the arrow in the figure on the left.

Thus, the structure model and the coupling conditions have to be modified ac-
cordingly, as studied in [73]. The remaining values of the fluid and structure param-
eters are the same as in the previous example, and are shown in Table 22.3. The time
step for the simulation is Δ t = 10−4.

Figures 22.16, 22.17, 22.18, and 22.19 show the numerical solution for the ve-
locity, pressure, and displacement, at different times. In particular, Figure 22.16
shows 2D velocity snap shots taken at 4 different times. The 2D velocity snap shots
are taken at the cross-section of the 3D domain by the plane denoted by B in Fig-

Fig. 22.16 A 2D cut of the 3D velocity through an asymmetric compliant stenotic region at four
different times. The 2D cut plane is denoted in Figure 22.15 by B. The corresponding pressure
plots are shown in Figure 22.18.
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Fig. 22.17 A 2D cut of the 3D velocity at the stenotic throat at t = 7 ms. The 2D cut plane is
denoted in Figure 22.15 by A.

ure 22.15. Figure 22.17 shows the velocity at the throat, taken at t = 7 ms when the
velocity reaches its maximum at the throat. The 2D velocity cross-section is taken
in the plane denoted by A in Figure 22.15. Figure 22.16 shows the beginning rush of
fluid into the tube (t = 4 ms), the acceleration of the fluid at the proximal throat lo-
cation (t = 7 ms), the high velocity region at the distal location of the stenotic throat
(t = 10 ms), and the velocity ahead of the pressure wave exiting the tube (t = 13
ms). The corresponding pressure wave propagation is shown in Figure 22.18.

Finally, Figure 22.19 shows the displacement of the structure at four different
times. Notice how due to the high pressure in the proximal region to stenosis, the
highest displacement can be observed exactly in that region. Within the stenotic re-
gion, the smallest displacement is observed at the most narrow part of the channel in
the stenotic throat (visible at the bottom part of the stenotic throat in Figure 22.19),
where the velocity is highest. Notice also that the overall displacement at the distal
site to stenosis if much smaller compared to that at the proximal region. The high

Fig. 22.18 Pressure in the asymmetric compliant stenotic region from Figure 22.15, shown at four
different times. The flow is from left to right.
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Fig. 22.19 Displacement in the asymmetric compliant stenotic region from Figure 22.15, shown
at four different times. The flow is from left to right.

pressure and high displacement in the region proximal to stenosis is an important
piece of information from the clinical point of view. Namely, it has been reported
in the medical literature (see, e.g., [24]) that the region most prone to the vulner-
able plaque rupture is exactly the region proximal to the most stenotic region in a
coronary artery.

6 Conclusions

In this chapter we presented a review of the kinematically coupled β -scheme as it
applies to 3D fluid-structure interaction (FSI) problems between an incompressible,
viscous, Newtonian fluid, and a thin, elastic structure modeled by the Koiter shell or
membrane equations. This class of problems arises in computational hemodynam-
ics modeling blood flow in compliant arteries. The proposed scheme is a loosely
coupled partitioned scheme, which is based on the Lie operator splitting approach
(or Marchuk-Yanenko scheme). Using this operator splitting approach, the multi-
physics FSI problem is partitioned into a fluid and a structure sub-problem, which
communicate in a way that makes the underlying partitioned scheme uncondition-
ally stable, without the need for sub-iterations between the two sub-problems at
each time step. It was shown on a simplified problem that the kinematically coupled
β -scheme is unconditionally stable for β ∈ [0,1], even in the critical case of com-
parable fluid and structure densities. Several numerical examples were presented,
including a 2D benchmark problem by Formaggia et al. [35], a pressure wave driven
flow in a 3D straight tube, a pressure-driven flow in a 3D curved tube, and a problem
describing a complex, stenotic geometry in 3D. Using numerical simulations it was
shown that the kinematically coupled β -scheme with β = 1 is first-order accurate
in time. Modularity, low computational cost, and implementation simplicity make
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this scheme particularly appealing for the use in biofluidic FSI problems. Future
developments include extensions of this scheme to study FSI with heart valves, FSI
involving endovascular stents, and FSI involving composite structures.
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Chapter 23
On Circular Cluster Formation in a Rotating
Suspension of Non-Brownian Settling Particles
in a Fully Filled Circular Cylinder: An Operator
Splitting Approach to the Numerical Simulation

Suchung Hou and Tsorng-Whay Pan

Abstract In this chapter, we investigate, via direct numerical simulation, the
circular cluster formation taking place in a circular cylinder rotating around its axis
and fully filled with fluid–rigid particle mixtures. The phenomenon is modeled by
the Navier–Stokes equations coupled to the Euler–Newton equations describing the
rigid solid motion of non-neutrally buoyant particles. The formation of circular clus-
ters studied in this chapter is mainly caused by the interaction between the particles
themselves. Within a circular cluster, the part of the cluster formed by the particles
moving from the front to the back through the upper portion of the cylinder becomes
more compact due to the particle interaction strengthened by the speedup of the par-
ticle speeds, first by rotation and later by rotation and gravity. The part of a cluster
formed by the particles moving from the back to the front through the lower portion
of the cylinder is always loosening up and spreading out due to the slowdown of
the particle motion, first by rotation and then by rotation and the counter effect of
gravity. To have a compact circular cluster, particles have to interact among them-
selves continuously through the entire circular cluster at an angular speed such that
the separation of particles can be balanced by their aggregation.
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1 Introduction

Non-equilibrium systems often self-organize into interesting spatio-temporal struc-
tures or patterns. Examples include patterns in pure fluid flow systems, such as the
Taylor–Couette flow between two concentric rotating cylinders and well-defined pe-
riodic clusters of particles in a partially or fully filled horizontally rotating cylinder.
Particulate flows exhibiting circular clusters in a partially filled horizontal rotating
cylinder are in part attributed to the presence of the free surface caused by the partial
filling of the cylinder (e.g., see [12, 25, 26]). In a fully filled horizontally rotating
cylinder, cluster and other pattern formations were also found in the suspensions
of non-Brownian settling particles in [2, 15, 16, 17, 18, 19, 23]. For probably the
most complete overview in the literature on the pattern formation and segregation in
rotating-drum flows, see the recent extensive review article by Seiden and Thomas
[22]. Lee and Ladd [13, 14] addressed the experimental observations made by Mat-
son et al. [17, 18, 19] in creeping flow regime. The ratio of the particle diameter and
the inner cylinder diameter in [13, 14, 17, 18, 19] is about 1%. In [13, 14], numeri-
cal simulations within the Stokes-flow approximation have been used to investigate
the mechanism underlying circular cluster formation. The numerical results show
that the formation of circular clusters is correlated with an inhomogeneous particle
distribution in the radial plane, which is itself driven by the competition between
gravity and the viscous drag. The circular cluster structure develops during the tran-
sition between a low-frequency segregated phase and a high-frequency dispersed
phase. In this chapter, we have focused on the understanding of cluster formations
similar to those observed in [16, 23]; however the values of the Reynolds number,
Re= 2aU/ν , and Ekman number, E= ν/ΩR2, for the cases considered here are
in a different regime (here a is the ball radius, U = ΩR is the characteristic ve-
locity; Ω being the cylinder angular speed, R the cylinder radius, and ν the fluid
kinematic viscosity). Thus the numerical simulations discussed in this publication
are, strictly speaking, not comparable with the experiments reported in [16, 23].
The fluid–particle mixtures considered here are not in the creeping flow regime as
considered computationally by Lee and Ladd in [13, 14]. In [15], Lipson used a hori-
zontal rotating cylinder filled with an over-saturated solution to grow crystal without
any interaction with a substrate and found that crystals accumulate in well-defined
periodic clusters, normal to the axis of rotation. Lipson and Seiden [16] just sug-
gested, with no further discussion, that this could be due to the interaction between
particles and fluid in the cylinder. In [23], Seiden et al. did an experimental inves-
tigation of the dependence of the formation of clusters on particle characteristics,
tube diameter and length, and fluid viscosity. They suggested that the segregation
of particles occurs as a result of mutual interaction between the particles and iner-
tial waves excited in the bounded fluid. In [24] Seiden et al. believed according to
their general dimensionless analysis that the axial pressure gradient associated with
an inertial-mode excitation within a bounded fluid is responsible for the formation
of clusters. A single ball motion was discussed by solving the equation of motion
for the ball with a one-way coupling in a filled and horizontally rotating cylinder;
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a stability analysis and a phase diagram based on one ball motion are addressed; but
[24] did not consider the effect of the ball on the fluid and the interaction between
particles themselves.

Using a distributed Lagrange multiplier/fictitious domain method combined with
time discretization by operator splitting, we have observed via direct numerical sim-
ulations that the formation of circular clusters is mainly caused by the interaction
between particles themselves. In our simulations, the particles form a layer inside a
horizontally rotating cylinder similar to the one in Figure 7 in [23]. These particles
are partially coated on the inner wall of the rotating cylinder under the influence of
a strong centrifugal force. Within a circular cluster, the part of the cluster formed
by the particles moving from the front to the back through the upper portion of the
cylinder becomes more compact due to the particle interaction strengthened by the
speedup of the particle speeds first by rotation and then later by rotation and grav-
ity. The part of a cluster formed by the particles moving from the back to the front
through the lower portion of the cylinder is always loosening up and spreading out
due to the slowdown of the particle motion first by rotation and then by rotation
and the counter effect of gravity. To have a compact circular cluster, particles have
to interact among themselves continuously through the entire circular cluster at a
angular speed such that the separation of these particles can be balanced by their
aggregation. Hence the balance of gravity, angular speed, fluid flow inertia, and the
number of particles is important for the formation of circular clusters in a fully filled
cylinder.

The content of this chapter is as follows: We discuss the models and numerical
methods in Section 2. In Section 3, we study the effect of the particle number, the
angular speed, and the initial gap size on the formation of circular clusters and then
present the flow field development under the influence of the particle interaction.
The conclusions are summarized in Section 4.

2 Governing Equations

To perform the direct numerical simulation of the interaction between rigid bodies
and fluid, we have developed a methodology which combines a distributed volume
Lagrange multiplier based fictitious domain method with operator splitting and finite
element methods (e.g., see [6, 7, 8, 20, 21, 27]). For a ball B moving in a Newtonian
viscous incompressible fluid, of viscosity μ and density ρ f , contained in a truncated
cylinder C under the effect of gravity, as depicted in Figure 23.1, the flow is modeled
by the Navier–Stokes equations, namely,

ρ f

[∂u
∂ t

+(u ·5)u
]
−μΔu+5p = ρ f g in {(x, t)|x ∈C\B(t), t ∈ (0,T )}, (23.1)

5 ·u(t) = 0 in {(x, t)|x ∈C \B(t), t ∈ (0,T )}, (23.2)
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Fig. 23.1 Flow region with a ball B in a truncated cylinder C.

u(0) = u0(x), (with 5 ·u0 = 0), (23.3)

u = g0 on Γ0 × (0,T ), (with
∫
Γ0

g0 ·ndΓ = 0), (23.4)

where Γ0 is the entire surface of cylinderC, g denotes gravity, g0 is the given velocity
field, u0 is the initial condition of the flow field, and n is the unit normal vector
pointing outward to the flow region. We assume a no-slip condition on γ(= ∂B).
The motion of the rigid body B satisfies the Euler–Newton’s equations, namely

v(x, t) = V(t)+!(t)×G(t)x, ∀x ∈ B(t), ∀t ∈ (0,T ), (23.5)

dG
dt

= V, (23.6)

Mp
dV
dt

= Mp g+FH, (23.7)

Ip
d!
dt

= TH , (23.8)

with the resultant and torque of the hydrodynamical forces given by, respectively,

FH =−
∫

γ
�ndγ, TH =−

∫
γ

Gx×�ndγ, (23.9)

with � = μ(5u+5ut)− pI. Equations (23.1)–(23.9) are completed by the follow-
ing initial conditions

G(0) = G0, V(0) = V0, !(0) =!0,B(0) = B0. (23.10)

Above, Mp, Ip, G, V, and ! are the mass, inertia, center of mass, velocity of the
center of mass, and angular velocity of the rigid body B, respectively. The gravity is
pointed downward in the direction of z.
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In order to take a full advantage of the fictitious domain approach we will embed
the truncated cylinder C in a rectangular parallelepiped (denoted by D) with a square
cross section whose edge length is slightly larger than the diameter of the cylinder
C as shown in Figure 23.1. The region outside C is denoted by A = D \C and the
boundary of D is denoted by Γ . Also we assume that g0 defined on Γ0 is nothing
but the velocity field on the surface of a horizontal rotating cylinder; hence we can
easily extend it on A according to the angular velocity of the cylinder. For extended
value on Γ , we still use g0 in the following. To solve numerically the coupled prob-
lem (23.1)–(23.10), we have first applied a distributed Lagrange multiplier-based
fictitious domain method (see, [7] and [8] for details) and obtain then an equivalent
formulation of (23.1)–(23.10) defined on the whole domain D, namely

For a.e. t > 0, find u(t) ∈ Wg0(t), p(t) ∈ L2
0(D), V(t) ∈ IR3, G(t) ∈ IR3, !(t) ∈

IR3, �(t) ∈Λ(t), �A ∈ΛA such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
D

[
∂u
∂ t

+(u ·5)u
]
·vdx−

∫
D

p5 ·vdx

+μ f

∫
D
5u : 5vdx −< �,v−Y−	×Gx >Λ(t) −< �A,v >ΛA

+(1− ρ f

ρs
)[Mp

dV
dt

·Y+ Ip
d!
dt

·	]−Fr ·Y
= (1− ρ f

ρs
)Mp g ·Y+ρ f

∫
D

g ·vdx, ∀v ∈ W0, ∀Y ∈ IR3, ∀	 ∈ IR3,

(23.11)∫
D

q5 ·u(t)dx = 0, ∀q ∈ L2(D), (23.12)

< μ,u(t)−V(t)−!(t)×G(t)x>Λ(t)= 0, ∀μ ∈Λ(t), (23.13)

< μA,u(t)− g0(t)>ΛA= 0, ∀μA ∈ΛA, (23.14)

dG
dt

= V, (23.15)

V(0) = V0, !(0) =!0, G(0) = G0,B(0) = B0, (23.16)

u(x,0) = ũ0(x) =

⎧⎪⎨
⎪⎩

u0(x), ∀x ∈C \B(0),

V0 +!0 ×G0x, ∀x ∈ B(0),

g0(0), ∀x ∈ A,

(23.17)

with the following functional spaces

W = (H1(D))3, W0 = (H1
0 (D))3, Wg0(t) = {v|v ∈ W, v = g0(t) on Γ },

L2
0(D) = {q|q ∈ L2(D),

∫
D

qdx = 0},
Λ(t) = (H1(B(t)))3, ΛA = {μ|μ ∈ (H1(A))3}.

In (23.11), (23.13), and (23.14),< ·, ·>Λ(t) and < ·, ·>ΛA are inner product on Λ(t)
and ΛA, respectively. Various examples are given in [6] (Chapter 8) and [8]. The
velocity field inside A is enforced in (23.11) and (23.14) via the Lagrange multiplier
�A supported by A. The second gravity term in the right-hand-side of the (23.11) can
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be combined with the pressure. Hence in the following, we will not use this term
anymore. The numerical solution of other examples of particulate flow problems is
discussed in Section 4 of Chapter 2 of this volume.

3 Time and Space Discretization

3.1 A First Order Operator-Splitting Scheme: Lie’s Scheme

Many operator-splitting schemes can be applied to problem (23.11)–(23.17). One
of the advantages of operator-splitting schemes is that we can decouple difficulties
such as (i) the incompressibility condition, (ii) the nonlinear advection term, (iii)
the diffusion and prescribed flow condition outside the cylinder, (iv) the particle
motion and collision, and (v) the rigid body motion, so that each one of them can be
handled separately, and in principle optimally. Let �t be a time discretization step
and tn+s = (n+s)�t. The Lie’s scheme is a first order operator-splitting scheme [3]
(see also Chapters 1 and 2 of this volume), which, when applied to problem (23.11)–
(23.17), yields:

u0 = ũ0, G0 = G0, V0 = V0, !
0 =!0 given; (23.18)

for n ≥ 0,un(/ u(tn)), Gn, Vn and !n being known, we first compute un+ 1
6 , pn+ 1

6

via the solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
D

∂u
∂ t

·vdx−
∫

D
p5 ·vdx = 0, ∀v ∈ W0, a.e. on (tn, tn+1),∫

D
q5 ·udx = 0, ∀q ∈ L2(D),

u(tn) = un,

u(t) ∈ W, u(t) = g0(tn+1) on Γ × (tn, tn+1), p(t) ∈ L2
0(D),

(23.19)

and set un+ 1
6 = u(tn+1), pn+ 1

6 = p(tn+1).

Next, compute un+ 2
6 via the solution of⎧⎪⎪⎨

⎪⎪⎩

∫
D

∂u
∂ t

·vdx+
∫

D
(un+ 1

6 ·5)u ·vdx = 0, ∀v ∈ Wn+1,−
0 , a.e. on (tn, tn+1),

u(tn) = un+ 1
6 ,

u(t) ∈ W, u(t) = g0(tn+1) on Γ n+1
− × (tn, tn+1),

(23.20)

and set un+ 2
6 = u(tn+1).
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Then, compute un+ 3
6 via the solution of⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ f

∫
D

∂u
∂ t

·vdx+αμ f

∫
D
5u : 5vdx

=< �A,v >ΛA ,∀v ∈ W0, a.e. on (tn, tn+1),

< μA,u− g0(tn+1)>ΛA= 0, ∀μA ∈ΛA,

u(tn) = un+ 2
6 , u(t) ∈ W,

(23.21)

and set un+ 3
6 = u(tn+1).

Now predict the motion of the center of mass of the particle via

dG
dt

= V(t)/2, (23.22)

(1− ρ f

ρs
)Mp

dV
dt

= Fr/2, (23.23)

G(tn) = Gn, V(tn) = Vn, (23.24)

for tn < t < tn+1. Then set Gn+ 4
6 = G(tn+1) and Vn+ 4

6 = V(tn+1).

Using Gn+ 4
6 obtained in the above step, we enforce the rigid body motion in the

region occupied by Bn+ 4
6 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
D

∂u
∂ t

·vdx+βμ f

∫
D
5u : 5vdx +(1− ρ f

ρs
)Mp

dV
dt

·Y

+(1− ρ f

ρs
)Ip

d!
dt

·	 = (1− ρ f

ρs
)Mpg ·Y

+< �, v−Y−	×
−−−−→
Gn+ 4

6 x >
Λn+ 4

6
,

∀v ∈ W0, Y ∈ IR3, 	 ∈ IR3, a.e. on (tn, tn+1),

u(tn) = un+ 3
6 , V(tn) = Vn+ 4

6 , !(tn) =!n,

u ∈ W, u(t) = g0(tn+1) on Γ × (tn, tn+1),

� ∈Λn+ 4
6 , V ∈ IR3, ! ∈ IR3,

(23.25)

< μ, u−V−!×
−−−−→
Gn+ 4

6 x >
Λn+ 4

6
= 0, ∀μ ∈Λn+ 4

6 , (23.26)

and set un+1 = u(tn+1), Vn+ 5
6 = V(tn+1), !n+1 =!(tn+1).

Correct the motion of the center of mass of the particle via

dG
dt

= V(t)/2, (23.27)

(1− ρ f

ρs
)Mp

dV
dt

= Fr/2, (23.28)

G(tn) = Gn+ 4
6 , V(tn) = Vn+ 5

6 , (23.29)

for tn < t < tn+1. Then set Gn+1 = G(tn+1) and Vn+1 = V(tn+1).
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In (23.18)–(23.29),Γ n+1
− = {x|x∈Γ , g0(tn+1)(x) ·n(x)< 0} and Wn+1,−

0 = {v|v∈
W, v = 0 on Γ n+1

− }, Λn+ 4
6 = (H1(Bn+ 4

6 ))3, Bn+ 4
6 is the region occupied by the ball

B according to Gn+ 4
6 , and α+β = 1. In the numerical simulation, we usually choose

α = 1 and β = 0 to lower the computational cost when solving (23.25) and (23.26).

3.2 Space Discretization

We assume that D ⊂ IR3 and is a rectangular parallelepiped. Concerning the finite
element approximation of problems (23.11)–(23.17), we have

Wh = {vh|vh ∈ (C0(D))3,vh|T ∈ (P1)
3,∀T ∈ Th,}, (23.30)

W0h = {vh|vh ∈ Wh, vh = 0 on Γ }, (23.31)

L2
h = {qh|qh ∈C0(D), qh|T ∈ P1, ∀T ∈T2h}, (23.32)

L2
0h = {qh|qh ∈ L2

h,

∫
D

qh dx = 0} (23.33)

where Th is a tetrahedral partition of D, T2h is twice coarser than Th, and P1 is
the space of the polynomials in three variables of degree ≤ 1. A finite dimensional
space approximating Λ(t) is as follows: let {
i}N

i=1 be a set of points from B(t)
which cover B(t) (uniformly, for example); we define then

Λh(t) = {μh|μh =∑N
i=1μ iδ (x−
i), μ i ∈ IR3, ∀i = 1, . . . ,N}, (23.34)

where δ (·) is the Dirac measure at x = 0. Then we shall use < ·, ·>Λh(t) defined by

< μh,vh >Λh(t)=∑N
i=1μ i ·vh(
i), ∀μh ∈Λh(t), vh ∈ Wh. (23.35)

A typical choice of points for defining (23.34) is to take the grid points of the ve-
locity mesh internal to the particle B and whose distance to the boundary of B is
greater than, e.g., h/2 (used in the simulation), and to complete with selected points
from the boundary of B(t). As we did for Λh(t) and < ·, · >Λh(t), we define the fi-
nite dimensional space ΛAh and the inner product < ·, · >ΛAh

via a set of points of

the velocity mesh internal to the region A and whose distance to the surface of the
cylinder C is greater than, e.g., h, and a set of the points chosen from the surface of
the surface of the cylinder C. In practice, we have chosen D so that its square cross
section is slightly larger than the cross section of the cylinder in order to have col-
location points between the surface of the cylinder C and Γ so that the enforcement
of the constraint over A can be done much more easily.

Remark 1. The inner product like bracket < ·, · >Λh(t) in (23.35) makes little sense
for the continuous problem, but it is meaningful for the discrete problem; it amounts
to forcing the rigid body motion of B(t) via a collocation method. A similar tech-
nique has been used to enforce Dirichlet boundary conditions by F. Bertrand et al.
in [1]. ��
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Using the above finite dimensional spaces and the backward Euler’s method
for most of the subproblems in schemes (23.18)–(23.29), we obtain the following
scheme after dropping some of the subscripts h (similar ones are discussed in [8]):

u0 = ũ0, G0 = G0, V0 = V0, !
0 =!0 given; (23.36)

for n ≥ 0,un(/ u(tn)), Gn, Vn, and !n being known, we compute un+ 1
6 , pn+ 1

6 via
the solution of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ρ f

∫
D

un+ 1
6 −un

�t
·vdx−

∫
D

pn+ 1
6 5 ·vdx = 0, ∀v ∈ W0h,∫

D
q5 ·un+ 1

6 dx = 0, ∀q ∈ L2
h,

un+ 1
6 ∈ Wh, un+ 1

6 = gn+1
0h on Γ , pn+ 1

6 ∈ L2
0h.

(23.37)

Next, compute un+ 2
6 via the solution of⎧⎪⎪⎨

⎪⎪⎩

∫
D

∂u
∂ t

·vdx+
∫

D
(un+ 1

6 ·5)u ·vdx = 0,∀v ∈ Wn+1,−
0h , a.e. on (tn, tn+1),

u(tn) = un+ 1
6 ,

u(t) ∈ Wh, u(t) = gn+1
0h on Γ n+1

− × (tn, tn+1),

(23.38)

and set un+ 2
6 = u(tn+1).

Then, compute un+ 3
6 and �

n+ 3
6

Ah
via the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
D

un+ 3
6 −un+ 2

6

�t
·vdx+αμ f

∫
D
5un+ 3

6 : 5vdx

=< �
n+ 3

6
Ah

,v >ΛAh
,∀v ∈ W0h,

< μA,u
n+ 3

6 − gn+1
0h >ΛAh

= 0, ∀μA ∈ΛAh ;

un+ 3
6 ∈ Wh,�

n+ 3
6

Ah
∈ΛAh .

(23.39)

Now predict the motion of the center of mass of the particle via

dG
dt

= V(t)/2, (23.40)

(1− ρ f

ρs
)Mp

dV
dt

= Fr/2, (23.41)

G(tn) = Gn, V(tn) = Vn, (23.42)

for tn < t < tn+1. Then set Gn+ 4
6 = G(tn+1) and Vn+ 4

6 = V(tn+1).

With the center Gn+ 4
6 obtained at the above step, we enforce the rigid body motion

in the region Bn+ 4
6 occupied by the particle
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
D

un+1 −un+ 4
6

�t
·vdx+βμ f

∫
D
5un+1 : 5vdx

+(1− ρ f

ρs
)Mp

Vn+ 5
6 −Vn+ 4

6

�t
·Y+(1− ρ f

ρs
)Ip
!n+1 −!n

�t
·	

= (1− ρ f

ρs
)Mpg ·Y+< �n+ 4

6 , v−Y−	×
−−−−→
Gn+ 4

6 x >
Λ

n+ 4
6

h

,

∀v ∈ W0h, Y ∈ IR3, 	 ∈ IR3;

un+1 ∈ Wh, un+1 = gn+1
0h on Γ , �n+ 4

6 ∈Λn+ 4
6

h , Vn+ 5
6 ∈ IR3, !n+1 ∈ IR3,

(23.43)

< μ, un+1 −Vn+ 5
6 −!n+1 ×

−−−−→
G

n+ 4
6

j x >
Λ

n+ 4
6

h

= 0, ∀μ ∈Λn+ 4
6

h . (23.44)

Correct the motion of the center of mass of the particle via

dG
dt

= V(t)/2, (23.45)

(1− ρ f

ρs
)Mp

dV
dt

= Fr/2, (23.46)

G(tn) = Gn+ 4
6 , V(tn) = Vn+ 5

6 , (23.47)

for tn < t < tn+1. Then set Gn+1 = G(tn+1) and Vn+1 = V(tn+1).
In (23.36)–(23.47), Γ n+1

− = {x|x ∈ Γ , gn+1
0h (x) ·n(x)< 0} and Wn+1,−

0h = {v|v ∈
Wh, v = 0 on Γ n+1

− }, Λn+s
h =Λh(tn+s), gn+1

0h is an approximation of gn+1
0 belonging

to
γWh = {zh|zh ∈ (C0(Γ ))3, zh = z̃h|Γ with z̃h ∈ Wh}

and verifying
∫
Γ

gn+1
0h ·ndΓ = 0.

3.3 On the Solution of Subproblems (23.37), (23.38), (23.39),
(23.40)–(23.42), and (23.43)–(23.44)

The degenerated quasi-Stokes problem (23.37) is solved by an Uzawa/
preconditioned conjugate gradient algorithm as in [6]. The advection problem
(23.38) for the velocity field is solved by a wave-like equation method as in [4, 6].

Systems (23.40)–(23.42) and (23.45)–(23.47) are systems of ordinary differen-
tial equations, thanks to operator splitting. For their solution one can use a time-
marching scheme with a time step smaller than �t (i.e., we can divide �t into
smaller steps) to compute the translation velocity of the center of mass and the po-
sition of the center of mass and then the regions occupied by each particle so that
the repulsion forces can be effective to prevent particle–particle and particle–wall
overlapping; see, e.g., [8].

In (23.43)–(23.44), the hydrodynamical forces and gravity acting on the particles
are also taken into account in order to update the translation and angular velocities
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of the particles. At the same time the rigid body motion is enforced in Bn+4/6, via
equation (23.44). To solve (23.43)–(23.44), we use a conjugate gradient algorithm
as discussed in [7]. Since we take β = 0 in (23.43) for the simulation, we actually
do not need to solve any nontrivial linear systems for the velocity field; this saves a
lot of computing time.

Problem (23.39) is a classical saddle-point problem, which is a particular case of⎧⎪⎪⎨
⎪⎪⎩

α
∫

D
u ·vdx+ μ

∫
D
5u:5vdx =

∫
D

f ·vdx+< �,v >, ∀v ∈ W0h,

< μ ,u− g >= 0, ∀μ ∈Λ ,

u ∈ Wh, u = g on Γ , � ∈Λ .

(23.48)

To solve problem (23.48), we have applied the following conjugate gradient method:

�0 ∈Λ is given, (23.49)

solve ⎧⎨
⎩α

∫
D

u0 ·vdx+ μ
∫

D
5u0:5vdx =

∫
D

f ·vdx+< �0,v >,

∀v ∈ W0h; u0 ∈ Wh, u = g on Γ ,
(23.50)

then solve
< μ ,g0 >=< μ ,u0 − g >, ∀μ ∈Λ ; g0 ∈Λ , (23.51)

and set
w0 = g0. (23.52)

For m ≥ 0, assuming that �m,um, wm, gm are known, compute �m+1, um+1,
wm+1, gm+1 as follows:

Solve ⎧⎨
⎩α

∫
D

um ·vdx+ μ
∫

D
5um:5vdx =< wm,v >,

∀v ∈ W0h; um ∈ W0h,
(23.53)

and set
< μ,gm >=< μ ,um >, ∀μ ∈Λ ; gm ∈Λ . (23.54)

Then compute
ρm =< gm,gm > / < gm,wm >, (23.55)

and set

�m+1 = �m −ρmwm, um+1 = um −ρmum, gm+1 = gm −ρmgm. (23.56)

If < gm+1,gm+1 > / < g0,g0 >≤ ε , then take u = um+1. If not, compute

γm =< gm+1,gm+1 > / < gm,gm >, (23.57)
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and set
wm+1 = gm+1 + γmwm. (23.58)

Do m = m+ 1 and go back to (23.53).

Remark 2. The above conjugate gradient algorithm is similar to the one discussed in
[9, 10]; here a distributed Lagrange multiplier has been used instead of the boundary
Lagrange multiplier used in [9, 10]. Those distributed volume multipliers are also
considered in [6].

4 Numerical Experiments and Discussion

To investigate and reproduce the cluster formations observed in experiments for a
settling suspension of uniform non-Brownian particles in a fully filled horizontal
rotating cylinder, we have applied the methodology discussed in the above sections
to simulate the motion of up to 128 balls in a truncated cylinder rotating around its
central axis. We have first considered the cases of two balls to find out the interaction
between two balls in a fully filled horizontal rotating cylinder and then we have
studied (i) the effect of the angular speed and of the number of particles on the
formation of the clusters by placing the balls in positions which cannot be achieved
by laboratory experiments and (ii) the effect of ball clusters in the fluid flow field.

4.1 The Interaction of Two Balls Side by Side Initially

In this test case, we consider the simulation of the motion of two balls in a
truncated cylinder rotating around its central axis. The computational domain is
D = (0,1.0625) × (0,4) × (0,1.0625). The diameter of the rotating cylinder is 1
and its length is 4. The central axis of the cylinder is located at x = 0.53125 and
z = 0.53125. The fluid density is ρ f = 1 and the fluid viscosity is μ f = 0.15. The
density of the balls is ρs = 1.25. The diameters of the balls are 0.15. The gravity
force is pointed downward (in the negative z direction). The initial positions of the
two ball mass centers are (0.13125,2.109375,0.53125)t and (0.13125, 1.890625,
0.53125)t, respectively. Thus they are initially side by side at the front of the cylin-
der. The flow field initial condition is u0(x,y,z) = (−Ω(z − 0.53125),0,Ω(x−
0.53125))t with Ω = 8 and 12, respectively. Hence u0 is also the extension of the
boundary condition to the region outside the cylinder used in the simulation. To
check the convergence, we have chosen the following three pairs of mesh size and
time step {hv,�t}={1/64,0.001}, {1/96,0.001}, and {1/128,0.001}. The mesh
size of the pressure grid is always hp = 2hv. The histories of the mass centers ob-
tained from three different pairs of mesh size and time step are shown in Figure 23.2.
We have obtained a good agreement between the corresponding computational
results.
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Fig. 23.2 Side view of the trajectories of two ball mass centers (left) and history of the y-coordinate
of the mass centers of two balls (right) at Ω = 8 and 12 rad/sec (from top to bottom). The blue
solid line corresponds to the results associated with h = 1/64, the green dashed lines with the
results associated with h = 1/96, and the red dash-dotted lines with the results associated with
h = 1/128.

For the case of Ω = 8, the two balls rotate side by side at about the same speed
with respect to the central axis of the cylinder (see Figure 23.2); but in the y direction
they attract and expel each other in a way that the distance between the two balls
decreases when they move from the upper-front region of cylinder to the back of
cylinder and the distance between the two balls increases when they move from the
back of cylinder to the upper-front region of cylinder (see Figure 23.2). We also
obtained similar results for the case of Ω = 12, but the distance is smaller when the
rotation speed becomes higher (see Figure 23.2). The averaged particle Reynolds
numbers of the two balls are 2.24 and 4.09, respectively, for Ω=8 and 12 based on
the averaged velocity for 2.5 ≤ t ≤ 3.
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Fig. 23.3 Side view (left) and front view (right) of the initial position of 16 balls (top) and position
obtained at the angular speeds Ω = 8 (middle) and 12 (bottom) rad/sec at t = 40 seconds.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1 t=0

Ω

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1 t=60

X
Z Z

Y 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1 t=60

Fig. 23.4 Side view (left) and front view (right) of the initial position of 24 balls (top) and position
obtained at the angular speeds Ω = 8 (middle) and 12 (bottom) rad/sec at t = 60 seconds.
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Fig. 23.5 Side view (left) and front view (right) of the initial position of 32 balls (top) and position
obtained at the angular speeds Ω = 8 (middle) and 12 (bottom) rad/sec at t = 60 seconds.
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Fig. 23.6 Side view (left) and front view (right) of the initial position of 64 balls (top) and position
obtained at the angular speeds Ω = 8 (middle) and 12 (bottom) rad/sec at t = 60 seconds.
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Fig. 23.7 Histories of the y-coordinate of the mass centers of 16, 24, 32, and 64 balls (from top to
bottom) at Ω = 8 (left) and 12 (right) rad/sec.

4.2 The Effect of the Angular Speed and of the Number of Particles

To investigate the circular cluster formation for the suspensions of particles in a
fully filled horizontally rotating cylinder, we have studied first the formation of a
single circular cluster in the cases of 16, 24, 32, and 64 balls of radius a =0.075
cm and density ρp = 1.25 g/cm3 in a truncated cylinder of diameter 2R = 1 cm and
length 4 cm filled with a fluid of density 1 g/cm3 and kinematic viscosity ν = 0.15
cm2/sec. The solid fractions are 0.9%, 1.35%, 1.8%, and 2.7%, respectively, for the
cases of 16, 24, 32, and 64 balls. The initial positions of the ball mass centers are on
the circles of radius 0.35 cm centered at the cylinder central axis with eight balls in
each circle (see Figures 23.3–23.6). We have perturbed each mass center randomly
in the direction of the cylinder axis to break the symmetry of the initial pattern. The
distance between two neighboring circles is about 2.25a hence the initial gap size
dg between balls in the cylinder axis direction is about a/4. In the simulations, the
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Fig. 23.8 Trajectories and top view of the trajectories of 32 balls at the angular speeds Ω = 8 (left
two) and 12 (right two) rad/sec for 59 ≤ t ≤ 60 seconds. The length unit is cm.

cylinder rotates around the cylinder axis parallel to the y–axis in a clockwise direc-
tion with angular speed Ω of either 8 or 12 rad/sec (see Figure 23.1). The Reynolds
numbers, Re= 2aU/ν , with the characteristic velocity U = ΩR are 4 and 6, re-
spectively, for Ω= 8 and 12 rad/sec. The Reynolds numbers of the cases considered
here are about two orders less than those considered in [23]. The Ekman numbers,
E= ν/ΩR2, are 0.075 and 0.05, respectively, for Ω = 8 and 12 rad/sec and both are
an order larger than those considered in [23]. Both numbers for the cases considered
here are in a different regime, thus the numerical simulation is, strictly speaking, not
comparable with the experiments reported in [16, 23] even though the circular clus-
ter formation is similar to those observed in the two above publications. Since the
thickness of the Ekman boundary layer is the order of E1/2, our meshes can resolve
the Ekman boundary layer for the cases studied in this chapter.

The histories of the y–coordinate of the particle mass centers and the positions
of 16 balls at t = 40 seconds obtained with the angular speed Ω = 8 and 12 rad/sec
in Figures 23.3 and 23.7 clearly show that the 16 balls spread out in the cylinder
axis direction and do not form a circular cluster at all. For the cases of 24 balls, the
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formation of the circular cluster is still not clear yet. In Figures 23.4 and 23.7, the
24 balls spread out in the cylinder axis direction at the angular speed Ω = 8 rad/sec.
When the angular speed is 12 rad/sec, the 24 balls do form a loose circular cluster.
For the cases of 32 balls, the formation of the circular cluster is clearly shown in
Figures 23.5 and 23.7. The one obtained at the angular speed Ω =12 rad/sec is
very compact. For the case of 64 balls, they split into two loose circular clusters at
Ω = 8 rad/sec since this is not fast enough to produce strong particle interaction to
sustain the whole group of particles as shown in Figures 23.6 and 23.7. But at the
angular speed Ω = 12 rad/sec, there is just one compact circular cluster in which the
particles are well organized in the middle of the cluster due to the pushing from the
outside balls. The particles form a layer inside the cylinder which is different from
those observed in [17, 18, 19], but close to those in [16, 23]. These results give us a
simple observation which is that there is a need to have enough particles so that the
particles within a circular cluster can continuously interact among themselves. For
the case of 64 balls shown in Figure 23.6 (resp., Figure 23.14), there are 33 and 31
balls (resp., 29 and 35 in Figure 23.14) in two clusters, respectively. The threshold
for forming a circular cluster is about 30 balls for the conditions considered in this
chapter. The particle Reynolds numbers Rep = 2aUp/ν based on the average speed
Up of particles are about 2.28 and 4.28, for, respectively, Ω = 8 and 12 rad/sec.

Observing the trajectories of 32 balls in Figure 23.8, we have found that the balls
aggregate when the balls move from the front (x = 1) to the back (x = 0) through the
upper portion of the cylinder and then they separate (spreading out in the direction of
the cylinder axis) when the balls move from the back to the front through the lower
portion of the cylinder. To analyze the aggregation and separation of the particles,

we define the speed as Vr =
√

V 2
1 +V 2

3 in the xz-plane from the particle translation

velocity V = (V1,V2,V3). The speed Vr tell us how fast each particle moves in the
plane perpendicular to the cylinder axis directions, especially how it moves within
a cluster when it is part of such a cluster. When each particle moves up from the
front of the cylinder to the top of the cylinder, the speed in the x-direction, |V1|, is
increasing by the rotation and the one in the z-direction, |V3|, is suppressed by the
rotation and the gravity. Once it passes the top position and moves into the back por-
tion of the cylinder, the speed in the z-direction is increasing dramatically since the
rotation and the gravity work together even the one in the x-direction is decreasing
to zero. This explains when the balls of a cluster move through the upper portion of
the cylinder, their speeds Vr are increasing as shown in Figure 23.9 (the left ones).
When one ball enters the wake of another ball which is speeding up, it experiences
reduced drag and drafts closer to the leading ball (e.g., see [5, 11] for the drafting,
kissing, and tumbling between two balls). Thus the group of balls with increasing
speeds can aggregate due to the hydrodynamical interaction between balls. For the
part of a circular cluster formed by the balls moving from the back to the front
through the lower portion of the cylinder, the balls separate and spread out due to
the slowdown of the speed Vr (see Figure 23.9). The slowdown is caused by the
rotation when each ball moves from the back to the bottom of the cluster since the
gravity cannot compete with the rotation. Once the ball starts moving up from the



23 Circular Cluster Formation in a Rotating Cylinder 791

0

0.5

1

0

0.5

1

0

1

2

3

4

x
z

V
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x

V
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x

V
3

0

0.5

1

0

0.5

1

0

2

4

6

8

xz

V
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x

V
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x

V
3

Fig. 23.9 Speed Vr =
√

V 2
1 +V 2

3 (left) of particles in the xz–plane versus the particle’s x and

z–coordinates, V1 (middle) and V3 (right) for the cases of Ω = 8 (top) and 12 (bottom) rad/sec
for 59 ≤ t ≤ 60 seconds. The blue solid (resp., red dashed) lines are associated with the parti-
cles whose average mass centers are located to the right (resp., left) of the average mass center of
all particles in the cylinder axis direction. The black dotted lines (in the left figure) are the pro-
jected particle trajectories in the xz–plane and the black line in the xz–plane is the boundary of the
cylinder.
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Fig. 23.10 Particle speed V2 in the cylinder central axis direction versus the particle z–coordinate
for the cases of Ω = 8 (left) and 12 (right) rad/sec for 59 ≤ t ≤ 60 seconds. The blue solid (resp.,
red dashed) lines are associated with the particles whose average mass centers are located to the
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Fig. 23.11 Histories of the y-coordinate of the mass centers of 64 balls with initial gap sizes a/4,
a, and 2a (from top to bottom): Ω = 8 (left) and 12 (right) rad/sec.

bottom to the front, the speed is suppressed further by the rotation and the counter
effect of the gravity as in Figure 23.9. Due to these effects of the speedup and slow-
down, the particle speed V2 in the cylinder central axis direction does have different
sign as shown in Figure 23.10. Consider those particles whose average mass centers
are located to the right of the average mass center of all particles in the cylinder
central axis direction: when they move from the front to the back through the upper
(resp., lower) portion of the cylinder, the speed V2 is negative (resp., positive). For
those located to the left of the average mass center of all particles, the speeds V2 are
opposite to those located to the right. Hence the balls aggregate during the speedup
of Vr when the balls move from the front to the back through the upper portion of the
cylinder and they separate because of the slowdown of the speed Vr when the balls
move from the back to the front through the lower portion of the cylinder. Therefore
the histories of the y–coordinate of the particle mass centers in Figures 23.7, 23.11
and 23.15 show oscillations in the y-direction. To have a stabilized and compact cir-
cular cluster, a sufficiently large number of balls and a fast enough angular speed are
needed in order to balance both effects, e.g., the results of the 32 ball cases in Fig-
ures 23.5 and 23.8 show that at the angular speed Ω = 8 rad/sec, the particle speeds
are just fast enough to have the aggregation which can overcome the separation. But
at the angular speed Ω = 12 rad/sec, the particle interaction is stronger so that a
compact circular cluster is formed. Similarly for the 64 ball case at lower angular
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speed Ω = 8 rad/sec in Figures 23.6 and 23.7, the balls spread out a little bit and
segregate into two loose circular clusters; but at Ω = 12 rad/sec the particle interac-
tion can pull all 64 balls together in one compact circular cluster. Thus the particle
segregation also depends on the relative motion between the particles and the rotat-
ing flow field. Actually the distance between particles does matter concerning the
formation of the circular clusters. In Figure 23.11, the histories of the y-coordinate
of the particle mass centers are shown for different values of the initial gap size dg.
The particle interaction at Ω =8 rad/sec cannot pull all 64 balls into one circular
cluster. The balls split into two groups for all three initial gap sizes and form circu-
lar clusters except for one group of balls for the case dg = 2a. At the angular speed
Ω =12 rad/sec, the threshold of the initial gap size for forming a circular cluster is
dg = a. There are two circular clusters formed for 64 balls with dg = 2a, but 64 balls
with the initial gap size dg = a interact and finally come together to form a circular
cluster at t = 60 seconds as in Figure 23.11. The formation of a circular cluster of
64 balls with the initial gap size dg = a is much slower than the one with dg = a/4
at Ω =12 rad/sec. These results show that the particle interaction has short range
effect on the formation of circular clusters.

4.3 The Cluster Effect on the Fluid Flow Field
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Fig. 23.12 Projection of the velocity field on the vertical plane passing through the central axis of
the cylinder for the case of 32 balls (left) and front view of the position of 32 balls (right) at t =
0.2, 5, and 30 seconds (from top to bottom) with Ω = 12 rad/sec.

Despite that fact that in [23] the Reynolds numbers and Ekman numbers are in
regimes different from those in this chapter, we have obtained circular clusters like
those reported in the above reference. In the experiments, it is not easy to set up the
initial positions of the particles like those chosen in direct numerical simulations; but
those initial positions help us to understand the formation of circular clusters and the
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Fig. 23.13 Projection of the velocity field on the vertical plane at the middle of the circular cluster
(left) and on the vertical plane passing through the central axis of the cylinder (right) for the case
of 32 balls at t =60 seconds: Ω = 8 (top) and 12 (bottom) rad/sec.

development of the flow field inside the cylinder. For the case of 32 balls at Ω = 12
rad/sec studied in the previous subsection, the projections of the velocity field on the
vertical plane passing through the central axis of the cylinder at different time are
shown in Figure 23.12. The circulation of the velocity field is created by the particle
motion and is concentrated in the middle portion of the cylinder. To show how the
velocity field in the middle of the cluster differs slightly from those observed in [23],
we have shown the cross sections of the flow field at the middle of a circular cluster
of 32 balls and the projection of the velocity field on the vertical plane passing
through the cylinder central axis of the cylinder in Figure 23.13. For the case of
Ω = 8 rad/sec, due to the center of rotation of the flow field (the left top figure in
Figure 23.13) located to the right of the cylinder central axis, the velocity projected
on the vertical plane through the cylinder central axis points downward at the center
of the cluster, which is as in [23]. But for the other case where Ω = 12 rad/sec, the
center of rotation of the flow field (the left bottom figure in Figure 23.13) is almost
under the cylinder central axis so that the velocity on the vertical plane through the
cylinder central axis does not point downward at the center of the cluster as in [23].
The distances of the rotating center to the cylinder central axis are �R=0.073 and
0.058 cm for Ω =8 and 12 rad/sec, respectively. Then the Rossby numbers Ro=
U/ΩR, where U = Ω�R is the relative velocity of the secondary flow associated
with the clusters as considered in [18], are 0.146 and 0.116. For both angular speeds,
the Rossby numbers are not small and the inertial effect cannot be ignored as in [23].

The evolution of the flow field related to two circular clusters in the case of
64 balls with initial gap size dg = 2a and the angular speed Ω = 12 rad/sec are
shown in Figures 23.14 and 23.15. We have observed no specific pattern concerning
the flow field from the beginning as in Figure 23.14. The particles break into two
circular clusters between t = 16 and 19 seconds and then the two clusters move
away from each other as in Figure 23.15. The projected velocity fields at t = 19
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Fig. 23.14 Projection of the velocity field on the vertical plane passing through the central axis of
the cylinder for the case of 64 balls (top four pictures) and front view of the positions of 64 balls
(lower four pictures) at t = 1, 16, 19, and 100 seconds (from top to bottom) with Ω = 12 rad/sec;
the initial gap size dg = 2a.
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Fig. 23.15 Histories of the y-coordinate of the mass centers of the 64 balls with the initial gap size
dg = 2a (top) and 128 balls with the initial gap size dg = a/4 (bottom).

and 100 seconds in Figure 23.14 show that the two circulations move apart since
the two circular clusters move away from each other. The projected velocity field
at t = 100 seconds in Figure 23.14 is similar to the one obtained experimentally in
[23], but the development of the flow field shows that the circulation of the flow field
is caused by the motion of the particles in the two circular particle clusters and there
are no secondary flows occurring and helping the formation of the circular clusters.
For the case of 128 balls in a truncated cylinder of length L =8 cm at the angular
speed Ω = 12 rad/sec with the initial gap size dg = a/4, the particles are initially
placed on 16 circles in the middle of the cylinder as in the previous subsection. Later
they break into two compact circular clusters as shown in Figures 23.15 and 23.16.
There are 63 and 65 particles in these two circular clusters, respectively, which are
consistent with the results of the 64 particles at the angular speed Ω = 12 rad/sec
discussed in the previous subsection. The figure of the circulation of the flow field at
t = 0.4 seconds in Figure 23.16 clearly shows that there is only one large circulation.
Two small circulations next to the large one at t =0.4 seconds are created by the
strong advection due to the particle motion and stay there all the time even when
the balls split into two clusters as the one at t =40 seconds. These secondary flows
are very weak for both cases. For both clusters in Figure 23.16, the cross section of
the flow field at the middle of each circular cluster shows that the center of rotation
of the flow field is located to the left of the cylinder central axis, and the velocity
projected on the vertical plan through the cylinder central axis points upward at the
center of the cluster as shown in the middle pictures of Figure 23.16.
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Fig. 23.16 Projection of the velocity field on the vertical plane passing through the central axis of
the cylinder for the case of 128 balls at t = 0.4 (top picture) and 40 seconds (second picture from
top), projection of the velocity field on two cluster middle planes, y = 3.21875 and y = 5, at t = 40
seconds (third pictures from top), and front view of the position of 128 balls (bottom picture) at
t = 40 seconds.

To produce circular clusters like those observed in [16, 23], we have consid-
ered the case of 128 balls in a truncated cylinder of length L =4 cm. We have first
placed 128 balls on 16 circles in the middle of the cylinder with the initial gap
size dg = 0.25a as in the previous subsection and then let them settle at zero an-
gular speed. The balls settle down at the bottom of the cylinder after 2 seconds as
shown in Figures 23.17 and 23.18. Then we rotate the cylinder at the angular speed
Ω =12 rad/sec. First the 128 balls move up and down inside the rotating cylinder
and interact with the fluid. At t = 5 seconds, there is no specific flow field pattern
in the cylinder. About t = 20 seconds, two outer clusters next to the two ends of
the cylinder start forming. Gradually three circular clusters, which are similar to
the one obtained experimentally in [16, 23], are formed as shown in Figures 23.17
and 23.18. The wavelength between two left clusters at t = 150 seconds is 3.25R
and the distance from the leftmost cluster to the left end of the cylinder is also about
half of the above wavelength. The right circular cluster has been pushed to the right
end of the cylinder with no room to move. The wavelength is in a good agreement
with the wavelengths obtained in [23], which are between 3.2R and 3.3R, for the
case of L/R = 8. The cross sections of the flow field at the middle of each circular
clusters (y =0.875, 2.5, and 3.75 cm) are shown in Figure 23.19. We observe that
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Fig. 23.17 Projection of the velocity field on the vertical plane passing through the central axis of
the cylinder for the case of 128 balls at t = 5, 20, 44, and 150 seconds (from top to bottom) with
Ω = 12 rad/sec.

the centers of rotation of the flow field of each cross section are located either to
the left of the cylinder central axis or right under the cylinder central axis. Thus the
velocity projected on the vertical plan through the cylinder central axis points either
upward or really hard to tell at the center of the cluster as shown in the lower left
one in Figures 23.17 and 23.18. The distances of the rotating center to the cylinder
central axis are �R=0.0572, 0.0473, and 0.0481 cm, respectively, for y =0.875, 2.5,
and 3.75 cm. The Rossby numbers Ro= U/ΩR are 0.1144, 0.0946, and 0.0962,
respectively, for y =0.875, 2.5, and 3.75 cm. The Ekman number for this case is
0.05 as discussed at the beginning of Section 3.1. Since both Ekman number and
Rossby number are not too small, the inertial effect and diffusion cannot be ignored
for the perturbation analysis in [23].

5 Conclusion

In this chapter we have applied a distributed Lagrange multiplier fictitious domain
method combined with finite element and operator splitting methods to simulate ro-
tating suspension of particles and then to study the interaction between balls and
fluid in a fully filled and horizontally rotating cylinder. The formation of circular
clusters studied in this chapter is mainly caused by the interaction between particles
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Fig. 23.18 Front view of the position of 128 balls (right) at t = 2, 5, 20, 44, and 150 seconds
(from top to bottom) with Ω = 12 rad/sec.
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Fig. 23.19 Projection of the velocity field on the vertical plane at the middle of each circular
clusters for the case of 128 balls at t =150 seconds: y =0.875, 2.5, and 3.75 cm (from left to right).
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themselves. Within a circular cluster, at larger enough speed, the part of the cluster
formed by the particles moving from the front to the back through the upper por-
tion of the cylinder becomes more compact due to the particle interaction strength-
ened by the speedup of the particle speeds first by rotation and later by rotation and
gravity. The part of a cluster formed by the particles moving from the back to the
front through the lower portion of the cylinder is always loosening up and spreading
out due to the slowdown of the particle motion first by rotation and later by rota-
tion and the counter effect of gravity. To have a compact circular cluster, particles
have to interact among themselves continuously through the entire circular cluster
at an angular speed large enough so that the separation of particles can be balanced
by their aggregation, which means that the balance of gravity, angular speed, fluid
flow inertia, and the number of particles are important on the formation of circular
clusters.
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A
Accelerated algorithms. See Nesterov’s

algorithms
Accuracy, 105
Adaptive median filter (AMF), 223
Adaptive mesh refinement (AMR) techniques,

635, 724
ADI method. See Alternating direction implicit

(ADI) method
ADM algorithms. See Alternating direction

method of multipliers (ADMM)
ADMM. See Alternating direction methods of

multipliers (ADMM)
Affine mapping, 186
Algebraic multigrid (AMG) method, 559
Algorithmic regularization paths, ADMM

advantages, 445–446
convex clustering, 452–455
decoupling constraints and regularizers, 436
Fantope constraint, 436, 437
fusion type penalties, 436
�1-norm penalty, 436
one-step approximation, 435, 444, 445
PCA, 436
reduced-rank multi-task learning, 449–452
regularization level, 444
semidefinite program, 436
sparse regression, 446

advantages, 449
Algorithm Path, 449
β−subproblem, 447
computational time, 449
LASSO, 438–441
n-by-n triangular linear systems, 447
real data example, 447
regularization path, 447, 448
smooth path-like transition, 442

smooth transition, 443
Stability Paths, 447, 448
tuning parameter, 441, 442

TV denoising, 437, 438
warm-start procedure, 441–444
z-subproblem iterates, 444, 445

ALE. See Arbitrary Lagrange-Euler (ALE)
methods

Alternating direction implicit (ADI)
method

approximate solution, 411
conjugate transpose, 412
infinite matrix series, 411
low-rank Smith method, 412
matrix factorization, 413
modified Smith method, 413
multi-shift Smith method, 413, 414
PFADI

approximate factorization, 414
automatic shift selection strategy, 421
convergence properties, 415–420
dominant invariant subspace, 414
elliptic function domain, 421
implementation details, 421–426
inner iteration steps, 414, 415
ortho-normal matrix, 414
pseudo-spectrum, 421
reduced Lyapunov equation, 415
updated Lyapunov equation, 415

real shift, 410
Stein equation, 411
SVD approximation, 413

Alternating direction methods of multipliers
(ADMM), 1

algorithmic regularization paths (see
Algorithmic regularization paths,
ADMM)
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Alternating direction methods of multipliers
(ADMM) (cont.)

alternative interpretations, 325–326
augmented Lagrangian with fixed parameter,

366–367
constrained minimization problem, 254–256
contributions, 171–173
convergence, 368
convergence of Douglas-Rachford splitting,

323
convex minimization problems, 322
convex optimization algorithms, 323
Dirichlet problem, elliptic Monge-Ampère

equation
augmented Lagrangian approach, 275–280
boundary value problem, 274
Monge-Kantorovich optimal transporta-

tion problem, 275
nonlinearly constrained minimization

problem, 275
numerical experiments, 280–283
problem formulation, 275
second order fully nonlinear elliptic

equations, 274
two-dimensional canonical real

Monge-Ampère equation, 274
discovery

ALG1, 253, 254
ALG2, 254
augmented Lagrangian approach, 252
block relaxation method, 253
calculus of variations, 252
Euler-Lagrange equation, 251, 252
nonlinear Poisson problem, 251
saddle-point solution of problem, 253
Sobolev space, 252
Uzawa’s algorithm, 253

DRS algorithm (see Douglas-Rachford
splitting (DRS) algorithm)

equivalence, different orders
affine mapping, 186
proxλG(.), affine property, 186, 187
technical condition, 188

equivalence results, relaxed PRS
generalized Moreau decomposition,

190–192
optimality condition, 189
optimization problem, 189
primal-dual pair equivalent, 188
proxλ f (.), affine, 192–193

equivalent problems, 175–176
general Uzawa method, 366
global rates, 368

incompressible Finite Elasticity equilibrium
problems, Mooney-Rivlin type, 265

admissible displacements, 267
ADMM solution of problem, 270–273
dead loading hypothesis, 267
displacement field, 266
existence of solutions to problem, 268–270
incompressible hyper-elastic body, 266
internal elastic energy, 266
local incompressibility condition, 266–267
stored energy function, 266
vector-valued function, 267–268

mildly nonlinear elliptic equations, 261
modifications, 368
non-convex variational problems

ALG2, 264
augmented Lagrangian functional, 263
COFLEXIP, 261
Euler’s elastica problem, 262
Hermite cubic based finite element

approximations, 265
inextensibility condition, 262–263
inextensible elastic beam visualization and

notation, 262
point-wise nonlinear equality constraint,

263
strain-stress relation, 262
well-posed linear variational problem,

264–265
nonlinear elasticity, 265
non-smooth eigenvalue problem solution,

visco-plasticity
ALG2, 287–289
finite element approximation, 286–287
numerical experiments, 290–298
problem formulation, 281–285
regularization procedures, 285–286

notation, definitions, and assumptions,
173–175

organization, 173
PDHG, 324
periodic/Neumann boundary conditions, 324
perspective of variational inequalities,

369–370
primal-dual algorithm, saddle-point

problem, 184–185
primal-dual equivalence

basis pursuit denoising, 182–184
basis pursuit problem, 181–182
master problem, 177
optimality condition, 178, 179
three subproblems, 180

primal-dual Newton method, 323
proximal ADMM, 378–379
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proximal point algorithm, 367
reformulation of problem, 325
saddle point of augmented Lagrangian, 323
scaled ADMM, 368
total variation image denoising, 193–195
TV denoising, 324
TV-�1 image deblurring model, 324
variant of problem

augmented Lagrangian functional,
256–257

Bingham incompressible visco-plastic
fluid, 256

explicit formulation of ALG1, 257
explicit formulation of ALG2, 258–259
explicit formulation of ALG3, 259–261
flow axial velocity, 256

variants of, 326–328
works, many different ways, 169–170

Anisotropic Eikonal equation
acoustics, 32–33
eigenvalue computation, 30–31
synopsis, 30

Approximate Matrix Factorization methods,
553

Approximate power method (APM), 413–414
Arbitrary Lagrange-Euler (ALE) methods, 43,

742–743, 745, 746, 748, 750, 753–755
Asymptotic regularity, 124
Asynchronous parallel, 243
Augmented Lagrangian algorithms, 10
Augmented Lagrangian method (ALM), 14,

68–82, 172, 175, 176, 198, 200, 367,
380, 382. See also Method of multipliers

Autoregressive moving average (ARMA)
process, 479

Autoregressive (AR) process, 479
Auxiliary variable, 163–164
Averaged operator, 121, 122, 125–127,

355–358, 360, 362

B
Backward Euler scheme, 6, 22, 284, 752, 755
Baker–Campbell–Hausdorff (BCH) formula,

102, 606, 628
Banach fixed point theorem, 355
Banach space, 35, 127, 381, 505, 520, 646
Basis pursuit, 181–182, 239, 302, 311, 312,

317, 318, 321, 328
Basis pursuit denoising, 182–184, 239, 303,

321, 328
Bates model, 569–571
Bercovier-Pironneau element spaces, 757
Best linear unbiased estimation (BLUE),

466–468

BiCGSTAB method, 558
Black–Scholes PDE, 543, 544, 560
Bose-Einstein condensate (BEC), 52
Bratu problem, 645
Bregman distance, 308, 310, 320–321
Bregman divergence. See Kullback-Leibler

distance
Bregman methods, 14–15
Bregman operator splitting (BOS), 320–321
Bregman proximal point algorithm, 320
Brownian motion, 500–502, 511, 515, 516,

520, 523, 529, 533, 537, 543, 546
BSUM framework, 544

C
Chambolle-Pock’s primal-dual algorithm, 386
Chan-Vese segmentation model, 65
Circular cluster formation, rotating cylinder

advection problem, 782
cluster effect, fluid flow field, 793–798
governing equations, 775–778
Lie’s scheme, 778–780
particulate flows, 774
quasi-Stokes problem, 782
saddle-point problem, 783
space discretization, 780–782
Stokes-flow approximation, 774
suspensions of particles

ball mass centers, 786–788
Ekman numbers, 789
particle speed, 791, 792
Reynolds numbers, 789
single circular cluster formation, 786
solid fractions, 788
speed, 790, 791
y–coordinate histories, 789, 792, 793

two balls interaction, 784–785
Clark’s robustness problem, 515–516
Cluster effect, fluid flow field, 793–798
Clustering, decentralized, 473–475
Collocation method, 780
Combustion, 99, 635–636
Co-motion function, 581–585, 594–597
Compressive sensing, 538
Conjugate gradient algorithm, 654
Consistent method, 105
Contractive operator, 356–357
Controlled (differential/integral) equations,

505
Convergence analysis

decentralized ADMM algorithm
algebraic graph theory, 488–489
assumptions and scope, 489–490
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Convergence analysis (cont.)
compact learning problem representation,

489
linear rate, 492–494
network model, 488
non-ergodic convergence, 491
primal-dual pair, 490, 491

decentralized learning
algebraic graph theory, 488–489
assumptions and scope, 489–490
compact learning problem representation,

489
linear rate, 492–493
network model, 488
non-ergodic convergence, 491
primal-dual pair, 490, 491

SC-PRSM, 200
Convergence rate analysis

ADMM, 147–148, 156–158
dual feasibility, 158–159
dual inequalities to primal inequalities

conversion, 159–161
arbitrarily slow convergence, 139–140
basic properties, averaged operators, 122
distributed ADMM, 165–166
ergodic convergence of feasibility problems,

154–155
ergodic convergence rates, 132–134
feasibility problems, 162–163
Fréchet differentiable function, 120
iterative fixed-point residual analysis

asymptotic regularity, 124
averaged operators, 125–127
ergodic, Fejér Monotone sequences, 128
FBS and PPA, 151–154
one dimensional DRS, 154
relaxed PRS, 127, 128

Lipschitz derivative, 155–156
lower fundamental inequality, 132, 161
nonergodic convergence rates, 134–136
notation, 120
optimal FPR rates, 137, 138
optimal objective rates

ergodic convergence, minimization
problem, 140–141

nonergodic convergence, 142–147
parallelized model fitting and classification,

163–165
relaxed PRS algorithm, 121
subgradients and fundamental inequalities

optimality conditions, relaxed PRS, 130,
131

relaxed PRS, 129, 130
summable sequence lemma, 122–124

upper fundamental inequality, 131, 160
Convex conjugate function, 174
Coordinate descent methods

asynchronous parallel update, 243
greedy order, 243
KL property, 244
nonconvex problems, 241
nonsmooth function, 244
numerical advantages, 243
proximal, gradient, prox-gradient update,

242
separable function, 241
smooth+proximal form, 245
stochastic approximation, 242

Coulomb cost, 580–582, 585, 587, 597, 598
Coupled momentum method, 738
Craig–Sneyd (CS) scheme, 551–553
Crank–Nicolson scheme, 542, 566–569
Cross-phase modulation model, 616
Cubature on Wiener space, 503, 520–522
Cyclic order, 243

D
Decentralized adaptive estimation

LMS, 475–480
model-based tracking, 481–482
RLS, 478–481

Decentralized learning
adaptive estimation

LMS, 475–478
model-based tracking, 481–482
RLS, 478–481

convergence analysis
algebraic graph theory, 488–489
assumptions and scope, 489–490
compact learning problem representation,

489
linear rate, 492–493
network model, 488
non-ergodic convergence, 491
primal-dual pair, 490, 491

decentralized inference
decentralized clustering, 473–475
message decoding, 469–471
message demodulation, 471
SVMs, 472–473

decentralized signal parameter estimation
BLUE, 466–468
SDP, 468

in-network learning with ADMM
auxiliary variable updates, 465
constrained minimization problem, 464
Lagrangian function, 465
local estimate updates, 465
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multiplier updates, 465
node, 465, 466

sparsity-regularized rank minimization
in-network traffic anomaly detection,

485–487
network anomaly detection via sparsity

and low rank, 482–484
RF cartography via decentralized sparse

linear regression, 487–488
De-centralized supervised learning solutions,

472
Decomposition-coordination methods

abstract problem formulation, 35–36
primal-dual problems, ADMM algorithms

ALG2 and ALG3, 38, 39
augmented Lagrangian function, 37
convergence, ALG1, 37
least-squares sense property, 40
linearly constrained optimization problem,

37
relaxation method, 38
speed of convergence, 39
Uzawa algorithm, 37, 38

Density functional theory (DFT)
marginal density, one electron, 578
to OT

case N = 2 and d = 1, 582
case N > 2 and d = 1, 583–584
with coulomb cost, 580–582
radially symmetric marginal case for

N = 2, d ≥ 2, 584–585
reducing dimension under radial

symmetry, 585–586
Schrödinger equation, 578

Deterministic partitional clustering (DPC), 473
Diagonal matrices, 430, 653
Die swelling

boundary conditions, 680, 681
free boundary problems, 683, 684
liquid domain deformation, 680–681
Newtonian fluid flow

extrusion with initial contraction, 696, 697
no-slip boundary conditions, 697–701
slip boundary conditions, 696–698

visco-elastic flow
bended die, 706–708, 716, 717
boundary conditions, 704–710
extrusion with die swell and contraction,

698, 704, 706
no-boundary conditions, 704, 705,

711–716
polymer viscosity and relaxation time,

704, 707, 708
Difference of convex functions, 246

Digital micro-mirror device (DMD), 329
Dirichlet boundary condition, 694
Dirichlet problem, elliptic Monge-Ampère

equation
augmented Lagrangian approach

augmented Lagrangian functional, 276
conjugate gradient algorithm, 279–280
convex solution, 277
Lagrange multiplier, 277
mixed finite element approximation,

280
Newton’s method, 278–279
nonlinear bi-harmonic problem, 275–276
saddle-point problem, 276
two-dimensional minimization problem,

278
well-posed linear variational problems,

279
boundary value problem, 274
Monge-Kantorovich optimal transportation

problem, 275
nonlinearly constrained minimization

problem, 275
numerical experiments

discrete variant of algorithm, 282–283
first test problem, 281
least-squares solution, 283
second test problem, 281–282
third test problem, 282
uniform triangulation of unit square, 280,

281
Uzawa type algorithm, 283

problem formulation, 275
second order fully nonlinear elliptic

equations, 274
two-dimensional canonical real Monge-

Ampère equation, 274
Dispersion management, 613
Distributed Lagrange multiplier, 784
Double augmented Lagrangian, 239
Double mean reverting model, 532–534
Douglas-Rachford scheme, 8, 9, 26–28
Douglas-Rachford splitting (DRS) algorithm,

138, 172, 173, 367–368
and ADMM relationship, 371–372
convergence, 371
Fermat’s rule and subdifferential calculus,

370
Douglas-Rachford splitting method (DRSM),

198, 199
Douglas (Do) scheme, 551–553
Droplet breakup phenomenon, 726
DRS algorithm. See Douglas-Rachford

splitting (DRS) algorithm
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Duality
Lagrange duality, 314–316
Legendre-Fenchel transform, 311–312
Moreau decomposition, 312–314
Uzawa’s method, 316–317

Dummy variable, 170
Dynamic coupling condition, 732

E
Eigenvalues of Toeplitz matrix, 111
Eigenvectors of Toeplitz matrix, 111
Eikonal equation, 430
Elastic Viscous Stress Splitting (EVSS)

stabilization procedure, 703
Entropic regularization, 586–588, 592, 597,

598
Error estimator, 630, 634, 638
Euler-Lagrange equation, 285
Euler–Newton’s equations, 776
Euler-Poisson-Darboux problem, 645
Euler scheme, 6, 22, 69, 284, 522, 531–534,

752, 755
Explicit 2-step Runge-Kutta method, 611
Exponential operator-splitting schemes, 6

F
Fast Fourier transform (FFT), 55, 223, 224
Fast-sweeping methods, 32
FBS method. See Forward-backward splitting

(FBS) method
Fejér monotone, 128
Fenchel dual problem, 366
Fenchel-Legendre transform, 428
FFT. See Fast Fourier transform (FFT)
Fictitious domain method, 775, 777
Finance, operator splitting

algebraic systems
AMG method, 559
BiCGSTAB method, 558
GMRES method, 558
Krylov subspace methods, 558
LU decomposition, 557–558
multigrid methods, 558–559
PAMG method, 559
PFAS multigrid method, 559
PMG method, 559
PSOR methods, 558
SOR methods, 558

Feller condition, 545
geometric Brownian motion, 543–544
Heston stochastic volatility, 544–545
HHW PDE, 545
jump models, 546–547
LCP for American options, 547

numerical models
Bates model, 569–570
Black–Scholes model, 559–562
Heston stochastic volatility model,

565–569
Merton jump diffusion model, 563–565

spatial discretization, 547–549
time discretization

Craig–Sneyd scheme, 551–553
Douglas scheme, 551–553
Heston PDE, 550
HHW PDE, 550
Hundsdorfer–Verwer scheme, 551–553
LCPs, 555–556
modified Craig–Sneyd scheme, 551–553
operator type, 553–555
θ -method, 549–550

Financial engineering, SPDEs
double mean reverting model, 532–534
Heath–Jarrow–Morton model, 534–536
option pricing in high dimensions, 529–532

Firm thresholding function, 241
First-order accurate upwind scheme, 609
First order splitting algorithms

applications
big data analysis, 383
deblurring and zooming, 384
distributed convex optimization, 383
emission tomography techniques, 384–385
image analysis, 383
MRI, 384
optical microscopy, 385
PET (see Positron emission tomography

(PET))
sparsity-promoting regularizers, 383
spectral X-ray CT (see Spectral X-ray CT)
statistics and machine learning, 383
X-ray CT, 384

averaged operators
asymptotic regularity, 358–359
Banach fixed point theorem, 355–356
composition, 357–358
convergence of iterations, 360
nonexpansive and contractive operators,

356–357
Opial’s convergence theorem, 359–360

firmly nonexpansive operator, 355
ill-posed problems, iterative regularization

Bregman iteration, 382–383
constrained variational problem solution,

381
dual distances, 383
emptyness of constraint set, 381
nonexistence of saddle points, 381–382
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semiconvergence, 382
stopping index of iteration, 382

nonexpansive operator, 355
notations and definitions, 346–347
Picard sequence, 355–356
primal-dual methods

ADMM (see Alternating direction
methods of multipliers (ADMM))

basic relations, 365–366
Bregman methods, 379–381
hybrid gradient algorithms (see

Primal-dual hybrid gradient (PDHG)
algorithms)

proximal algorithms
accelerated algorithms, 363–365
proximal gradient algorithm, 360–362
proximal point algorithm, 360

proximal operator
definition, 347–348
Huber function, 349
matrix norms, 353–355
minimizers, 348
Moreau decomposition, 349
Moreau envelope, 348
orthogonal projections, 350–351
positive definite matrix, 349–350
resolvent, 349
soft-shrinkage function, 348–349
variational inequality, 348
vector norms, 351–353

reflection operator, 356
set of fixed points, 356

Fisher information matrix, 395, 396
FOCal Underdetermined System Solver

(FOCUSS), 238
Fokker–Planck equation, 516, 517
FORTRAN 77, 623
FORTRAN 90, 623
Forward-backward splitting (FBS) method,

138
and IST, 307–308
MM algorithm, 309–310
PPA, 308–309
preconditioning, 310
soft thresholding sequence, 306

Forward Euler scheme, 69
Fourier coefficients, 384
4Pi-confocal fluorescence microscopy, 385
4th order Strang-Richardson scheme, 6
FPR analysis. See Iterative fixed-point residual

(FPR) analysis
Fractional Brownian motion, 501
Fractional θ -scheme, 28–29
Fractional-step time discretization scheme, 4

Free surface flows
multiphase flows

mathematical modeling, 708–711, 718
numerical results, 721–724
operator splitting method, 712–721

Newtonian fluid
computational domain, 679, 696, 697
Eulerian approach, 679
liquid domain, implicit representation,

680–682
Navier-Stokes system, 679–680
no-slip boundary conditions, 697–701
operator splitting algorithm, 682–686
slip boundary conditions, 696–698
time discretization, 686–687
two-grid spatial discretization, 687–695

visco-elastic flow
bended die, 706–708, 716, 717
boundary conditions, 704–710
extrusion with die swell and contraction,

698, 704, 706
mathematical modeling, 699–701
no-boundary conditions, 704, 705,

711–716
operator splitting strategy, 702–703
polymer viscosity and relaxation time,

704, 707, 708

G
Galerkin least-square stabilization, 695
Gauss–Seidel manner, 172
Gauss-Southwell selection rule, 243
Generalized minimal residual (GMRES)

method, 558
Generalized Moreau decomposition, 190–192
Gibbs phenomena, 608
Global convergence

matrix, 207, 208
sequence generation, 205, 208–209,

211–212
symmetric matrix, 210–211
y-minimization problem, 206

Global repair algorithms, 692
Graduated nonconvexity approach, 238
Gross-Pitaevskii equation

BEC, 52
bi-harmonic problem, 56
boundary and initial conditions, 53
closed-form solution, 54
FFT, 55
linear eigenvalue problem, 55
linear Schrödinger problem, 54
time-discretization scheme, 56
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H
Hamilton–Jacobi–Bellman (S)PDE, 519
Hamilton–Jacobi (HJ) initial value

convex analysis, 428–430
convex Lipschitz function, 428
Fenchel-Legendre transform, 428
Hopf formula, 428
Hopf-Lax formula, 428
numerical experiments, 430–431
optimization problem, 429

Hankel matrices, 112
Hard thresholding, 239
Heath–Jarrow–Morton model, 534–536
Hemodynamics, FSI problem

ALE formulation, 742–743
coupled fluid-structure interaction problem,

733
Dirichlet boundary condition, 733
Dirichlet-Neumann loosely coupled

partitioned schemes, 732–733
endovascular stents, 734
energy inequality, 741–742
FreeFem++, 734
geometric nonlinearity, 732
incremental displacement-correction

scheme, 734
kinematically couled β -scheme, 734, 746,

747
monolithic algorithms, 733
multi-physics nature, 733
nonlinear moving-boundary problem, 732
non-Newtonian fluids, 734
numerical scheme

ALE mapping, 754–755
ALE velocity wn+1, 754–755
fluid sub-problem, 755–756
structure sub-problem, 752–754

numerical solvers, 733
splitting scheme

differential sub-problems, 746
dynamic coupling condition, 745
elastodynamics problem, 744
fluid sub-problems, 745
kinematic coupling condition, 745
Lie splitting, 744
unconditional stability, 478–752

stenosis, 765–768
thin fluid-structure interface, 733
3D curved cylinder, 763–765
3D Navier-Stokes equations, 734
3D straight tube test case, 761–763
2D benchmark problem

boundary conditions, 756–757
flow rate, 757, 758

geometry, fluid, and structure parameters,
757

mean pressure, 757, 759
pressure wave propagation, 757, 759
structure model, 756
time convergence, 759, 760
time step, 757
tube diameter, 757, 758

2D elasticity, 734
viscous fluid flow, three-dimensional

cylindrical domain
Cartesian coordinates, 735
fluid problem, 738–739
inlet and outlet data, 739–740
lateral boundary motion, 735
radial displacement, 735
structural problem, 735–738

Heston–Hull–White (HHW) model, 545, 550,
567

Heston PDE, 545, 550, 565–567
Heston stochastic volatility, 544
Heuristic refinement mesh strategy, 592–593
HHW model. See Heston–Hull–White (HHW)

model
High-resolution upwind scheme, 610–611
Hilbert spaces, 173
HJ initial value. See Hamilton–Jacobi (HJ)

initial value
Hohenberg-Kohn function, 580
Hölder-modulus, 501
Hopf-Lax formula, 428
Huber function, 349
Hull–White model, 545
Hundsdorfer–Verwer (HV) scheme, 551–553

I
Image denoising, 63
Image restoration, mixed impulsive and

Gaussian noise
AMF, 223
Cameraman.png and House.png images,

224–225
FFT, 223, 224
image corruption, impulsive noise, 222, 223
image filtering, 225, 226
minimization problem, 223
SNR, 225, 226
(w, v, z)-subproblem, 224

IMEX–CNAB scheme, 554–556, 563–565,
569–572

IMEX Euler method, 554
Implicit-Explicit (IMEX) Runge–Kutta

methods, 553
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Incompressible finite elasticity equilibrium
problems, Mooney-Rivlin type, 265

admissible displacements, 267
ADMM solution of problem, 270–273
dead loading hypothesis, 267
displacement field, 266
existence of solutions to problem, 268–270
incompressible hyper-elastic body, 266
internal elastic energy, 266
local incompressibility condition, 266–267
stored energy function, 266
vector-valued function, 267–268

Indicator function, 174
Infimal postcomposition, 174
In-network traffic anomaly detection, 485–487
Inverse power method, 286
Inverse scale space (ISS) method, 318
IPFP. See Iterative Proportional Fitting

Procedure (IPFP)
Iterated integrals, 508–511
Iterative Bregman projections

alternate projections to IPFP, 590–592
discrete problem and entropic regularization,

587–589
heuristic refinement mesh strategy, 592–593
KL projections, 589–590
Kullback-Leibler distance, 587–589

Iterative fixed-point residual (FPR) analysis
asymptotic regularity, 124
averaged operators, 125–127
ergodic, Fejér Monotone sequences, 128
FBS and PPA, 151–154
one dimensional DRS, 154
relaxed PRS, 127, 128

Iterative hard thresholding (IHT) algorithm,
239

Iteratively reweighted least squares (IRLS),
238

Iterative mollification, 238
Iterative proportional fitting procedure (IPFP),

590–593
Iterative soft thresholding (IST) method,

307–308
Ito’s Lemma, 502

J
Jacobian matrix, 106
Jensen’s inequality, 132, 133
Jump models, 546–547

K
Kallianpur–Striebel equations, 516
Kalman filtering/smoothing technique, 481
Kantorovich potential, 579, 582, 584, 594–599

Kerr nonlinearity, 605, 615
Kinematic coupling condition, 732
Koiter shell, 736–738, 741, 749, 753
Krasnosel’skiı̌-Mann algorithm (KM), 119,

122
Kriged Kalman filtering (KKF), 481, 482
Krylov subspace methods, 558
Kuhn-Tucker multiplier, 43
Kullback-Leibler distance, 587–589
Kurdyka-Łojasiewicz (KL) property, 244

Lie’s scheme, 3–4, 22–23, 682–683, 778–780
Linear complementarity problem (LCP), 547,

555, 557, 565, 566, 572
Linearized method of multipliers, 320–321
Link-traffic measurements, 484
Lipschitz continuity, 133
Lipschitz function, ergodic convergence,

133–134
Little-o convergence, 125, 127
�p norm minimization, 238

L
Lagrange duality, 314–316
Lagrange multiplier, 13, 40, 44, 45, 71, 72,

199, 224, 263, 272, 277, 297, 315, 318,
321, 323, 453, 465, 489, 555, 572, 590,
777, 784, 798

Large scale Lyapunov equation
ADI method

approximate solution, 411
conjugate transpose, 412
infinite matrix series, 411
low-rank Smith method, 412
matrix factorization, 413
modified Smith method, 413
multi-shift Smith method, 413, 414
PFADI (see Parameter free ADI iteration

(PFADI))
real shift, 410
Stein equation, 411
SVD approximation, 413

APM, 413–414
low rank factored form, 410

Lasso problem, 302
Lax-Milgram theorem, 271
LCP. See Linear complementarity problem

(LCP)
Least-mean squares (LMS) algorithm,

475–480
Legendre-Fenchel transform, 311–312
Levenberg-Marquardt algorithm, 533, 536
Lie and Strang splitting, 506–507, 524,

525
Lie brackets of vector fields, 508
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LU decomposition, 550, 552, 557, 558, 572
Lyapunov equation, 410, 411, 413–415, 417

M
Madelung transformation, 608, 618
Magnetic resonance imaging (MRI), 384
Majorization-minimization (MM) algorithm,

309–310
Marchuk-Yanenko operator-splitting scheme,

6, 23, 34
Matrix exponentials, 104, 106
Mesh refinement, 694, 724, 725
Method of multipliers

ADMM (see Alternating direction methods
of multipliers (ADMM))

augmented Lagrangian, 317, 318
Bregman iteration, 318
composite objectives, 318–319
dual gradient ascent method, 317
linearization techniques, 320–321
preconditioning, 322
proximal point algorithm interpretation, 317
saddle point, 317

Microfluidic emulsion simulation, 724–727
Minimax concave penalty (MCP), 244
Model-based tracking, 481–482
Modified Craig–Sneyd (MCS) scheme,

551–553
Monge-Ampère equation, 265, 274–280
Monge-Kantorovich optimal transportation

problem, 275
Monotonicity, 212–215
Monte Carlo, 98, 387, 388, 477, 526, 532, 534
Mooney-Rivlin, 265–267, 273
Moreau decomposition, 312–314, 349
Moreau envelope, 138, 314, 317, 348, 349
Moreau identity, 170, 172, 430
Moreau-Yoshida approximation. See Moreau

envelope
Moreau-Yoshida regularization, 348
Morozov’s discrepancy principle, 318
Multi-block separable convex programming.

See Strictly contractive Peaceman-
Rachford splitting method (SC-PRSM)

Multiconvex, 244
Multimarginal optimal transport. See Optimal

transport (OT)
Multiphase flows

mathematical modeling, 708–711, 718
numerical results, 721–724

parallel phases, 724, 725
successive phases, 721–723

operator splitting method, 712–721
advection operators, 712

correction step, 721
diffusion operators, 712
numerical diffusion vs. numerical

compression, 718–720
prediction step, 714–715
time splitting scheme, 712–713

Multiresolution (MR) analysis, 636
Multi-step VODE solver, 635
MUSCL-type slope-limiting technique,

610–611

N
Navier-Stokes equations, 28, 43, 87, 775
Navier-Stokes system, 679–680, 699
Nesterov’s algorithms, 363–365
Netlib NAPACK fast Fourier transformation

(FFT) routines, 623
Neumann problem, 78
Newtonian fluid

computational domain, 679, 696, 697
Eulerian approach, 679
liquid domain, implicit representation,

680–682
Navier-Stokes system, 679–680
no-slip boundary conditions, 697–701
operator splitting algorithm, 682–686
slip boundary conditions, 696–698
time discretization, 686–687
two-grid spatial discretization, 687–695

Ninomiya–Victoir splitting
cubature formula, 523
in financial engineering, 529–532, 534
Ito isometry, 523
path-wise interpretation of, 524–525
for PDEs, 525–527
SPDEs, 522–528
stochastic splitting schemes, 522, 523
Stratonovich integral, 523

Nonconvex sparse regularization
ADMM, 247
coordinate descent methods

asynchronous parallel update, 243
greedy order, 243
KL property, 244
nonconvex problems, 241
nonsmooth function, 244
numerical advantages, 243
proximal, gradient, prox-gradient update,

242
separable function, 241
smooth+proximal form, 245
stochastic approximation, 242

early history, 237–238
forward-backward splitting and

thresholdings, 238–241
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iterative algorithm, 245
Nonexpansive operator, 121, 122, 125, 127
Nonlinear filtering, SPDE

Clark’s robustness problem, 515–516
Kallianpur–Striebel equations, 516–517
splitting for Zakai, 517–519
Zakai equations, 517

Nonlinear self-steepening pulse, 605
Nonlinear wave problems

Bratu problem nonlinearity, 645
Euler-Poisson-Darboux problem, 645
initial/boundary value problems, 644
numerical experiments

blow-up time, 663, 666, 669–671
computed approximation, 669–675
damping coefficient, 673, 674
directional space discretization steps, 662
Dirichlet boundary conditions, 664, 665
discrete linear wave problem, 662
finite element approximation, 661
frequency domain, 664–665
mixed Dirichlet-Sommerfeld boundary

conditions, 667–669
space discretization, 666
spectral power density, 671
stability condition, 663
time dependent damping coefficient, 674
uniform triangulation, 662

operator-splitting method, 644
Painlevé equation, 644, 645
quasilinear parabolic equation analysis, 645
Strang’s symmetrized operator-splitting

scheme
closed-form solutions, 660
first order problem, 648–651
first order system, 657
five-stage scheme, 647–648, 658–659, 674
non-autonomous abstract initial value

problem, 646
three-operator situation, 647, 674
time discretization, 647
two-operator situation, 647

sub-initial value problems
centered second order finite difference

scheme, 653–655
finite element method, 652–653
relative error estimator, 661
Sobolev space, 652
time discretization scheme, 655
time step σ adaptation, 656–657
variational formulation, 651

Non-smooth eigenvalue problem solution,
visco-plasticity

ALG2, 287–289

finite element approximation, 286–287
numerical experiments

adaptive mesh refinement, 295
convergence of algorithm, 296
discrete analogue of algorithm, 295
disk shaped domains, 290–292
non-convex domains, 294
square shaped domains, 292–294
unit square test problem, 295

problem formulation, 283–285
regularization procedures, 285–286

Nuclear norm penalty, 450

O
Oceanographic data, clustering, 474–475
ODEs. See Ordinary differential equations

(ODEs)
One-dimensional Simpson’s rule, 653
Operator splitting

adaptive time-stepping technique, 630–632
ADI methods

ADMM, 10
Douglas-Rachford scheme, 8, 9
fractional θ -scheme, 8
monotonicity hypotheses, 8
Peaceman-Rachford scheme, 7–8

advantage, 628
augmentation parameters, 82
augmented Lagrangian algorithms

alternating direction methods and ALG2,
ALG3 relationship, 40–41

decomposition-coordination methods (see
decomposition-coordination methods)

Baker–Campbell–Hausdorff formula, 628
balanced splitting

fast process from slow process, 109
nonsymmetric, 107
steady state preservation, 108–109
symmetric, 108

Bregman methods, 14–15
for combustion problems, 635–636
Douglas-Kim scheme, 86
dynamic grid adaptation, 637
exponential operator-splitting scheme,

83–84
finance (see Finance, operator splitting)
fluid-structure interaction problem (see

Hemodynamics, FSI problem)
4th order Strang-Richardson scheme, 83
ignition phenomenon, 637
instantaneous heat release rate, 637, 638
Lie approximations, 628
Lie’s scheme, 3–4
multiphase flows
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Operator splitting (cont.)
advection operators, 712
correction step, 721
diffusion operators, 712
numerical diffusion vs. numerical

compression, 718–720
prediction step, 714–715
time splitting scheme, 712–713

multiplicative methods, 7
Newtonian fluid, 682–686
nonlinear problems

Gross-Pitaevskii equation (see Gross-
Pitaevskii equation)

nonlinear Schrödinger equations, 52
Zakharov systems, 57–61

optimization
ADMM, 12
classes of problems, 11
convergence, 13
homotopy techniques, 13
monotropic program, 11
proximal mapping and duality, 12
regularization path, 13
sparse optimization, 10–11

ordinary differential equations
BCH formula, 102
convection and diffusion, 103–104
first order splitting, 100
higher order methods, 102, 103
linear, 99
local vs. global error, 101
order of accuracy, 102
reaction-diffusion PDE, 104–105
second order splitting, 101
splitting approximation, 100
stability, 105–107
steady state, 107
Taylor series, 100

particulate flow
averaged solid fraction distribution, 48, 51
Bercovier-Pironneau finite element

approximation, 46–47
direct formulation, 41–43
fictitious domain formulation, 44–46
flow visualization, 47, 50
horizontal velocity distribution, 48, 52
neutrally buoyant models, 47
particles position, 51
relative positions, three balls, 47, 49
rigid body motion, 46
x1x3-plane projections, 48

principles, 98
reaction–diffusion–convection model, 636

scalar nonlinear reaction–diffusion equation,
628

splitting error estimator, 630–632
splitting errors, 628–630
splitting time step, 637
for stiff PDEs, 632–635
Strang’s symmetrized scheme, 5–6
sub-initial value problems, 6–7
symmetric Strang formulas, 628
time discretization, initial value problem

anisotropic Eikonal equation, 30–33
Douglas-Rachford ’s alternating direction

method, 26–28
fractional θ -scheme, 28–29
generalities, 21–22
Lie’s scheme, 22–23
parallel splitting scheme, 34
Peaceman-Rachford’s alternating direction

method, 25–26
Strang’s symmetrized scheme, 23–25

Toeplitz-plus-Hankel splitting
matrix functions, 111–113
solutions of wave equation, 109, 110
wave equation, 113, 114

variational models, image processing
binary level set, 66
Chan-Vese segmentation model, 65
computational domain, 62
continuous min-cut and max-flow

problems, ALM, 73–74
Euler’s Elastica energy, 64, 76–79
Heaviside function, 65
image graph mean curvature, 64–65
L1-mean curvature model, 79–82
minimization problem, 62
parallel splitting schemes, ROF model,

69–71
segmentation models, higher order

regularization, 67–68
split-Bregman method, 71–76
total variation and ROF model, 63
TV2 regularization, 63–64

visco-elastic flow, 702–703
Opial’s convergence theorem, 359–360
Optimal transport (OT)

with coulomb cost, 580–582
Iterative Bregman projections (see Iterative

Bregman projections)
Kantorovich potentials, 579
lithium atom, 596–597
mass splitting, 578
Monge problem, 578, 579
N = 2 and d = 1, 582
N > 2 and d = 1, 583–584
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numerical results
and analytical results comparison,

593–597
helium atom, 594, 598
lithium atom, radial 3-dimension,

596–597, 599
one dimensional, N = 3 electrons, 595,

598, 599
optimal transport plan, 579
radial d–dimensional (d ≥ 2), 584–585
radial symmetry, 585–586

Ordinary differential equations (ODEs)
BCH formula, 102
convection and diffusion, 103–104
first order splitting, 100
higher order methods, 102, 103
linear, 99
local vs. global error, 101
order of accuracy, 102
reaction-diffusion PDE, 104–105
second order splitting, 101
splitting approximation, 100
stability, 105–107
steady state, 107
Taylor series, 100

Origin-destination (OD) traffic flows, 482–484
OT. See Optimal transport (OT)

P
Painlevé equation, 644, 645
Parallel magnetic resonance image (pMRI)

reconstruction
brain image, 335, 336
closed form solution, 335
computation time, 335
diagonal down-sampling operator, 335
positive definite matrix, 335
results, 335, 336
SENSE, 334
sensitivity mapping, 334
sparse reconstruction model, 334

Parameter free ADI iteration (PFADI)
approximate factorization, 414
automatic shift selection strategy, 421
convergence properties, 415–420
dominant invariant subspace, 414
elliptic function domain, 421
implementation details

Cayley transformations, 424
controlling the condition of P, 421–422
invariant subspace problem, 423
iterative eigenvalue method, 424
projected Sylvester equation, 422–423
stopping rules, 422

inner iteration steps, 414, 415
ortho-normal matrix, 414
pseudo-spectrum, 421
reduced Lyapunov equation, 415
updated Lyapunov equation, 415

Particulate flow
averaged solid fraction distribution, 48, 51
Bercovier-Pironneau finite element

approximation, 46–47
direct formulation, 41–43
fictitious domain formulation, 44–46
flow visualization, 47, 50
horizontal velocity distribution, 48, 52
neutrally buoyant models, 47
particles position, 51
relative positions, three balls, 47, 49
rigid body motion, 46
x1x3-plane projections, 48

PDHG algorithms. See Primal-dual hybrid
gradient (PDHG) algorithms

Peaceman-Rachford alternating direction
method, 261

Peaceman-Rachford splitting (PRS) algorithm,
172–173

Peaceman-Rachford’s scheme, 7–8, 25–26
Penalized weighted least squares (PWLS)

estimator, 395
PET. See Positron emission tomography (PET)
PFADI. See Parameter free ADI iteration

(PFADI)
Picard sequence, 355–356
pMRI reconstruction. See Parallel magnetic

resonance image (pMRI) reconstruction
Poisson noise, 385
Positron emission tomography (PET), 384

biochemical and physiological processes,
385

CP-E algorithms, 386, 389–390, 392
CP-SI algorithm, 386, 390, 391
data acquisition, 385
FB-EM-TV algorithm, 386, 388–389, 392
FB-EM-TV-Nes83, 386, 388–389
ground truth solutions, 387, 388
inhomogeneous Poisson process, 385
nuclear medicine, 385
performance evaluation of algorithms,

392–394
PIDSplit+, 387, 391, 392
precond-CP-E algorithm, 386, 387, 389–390
precond-CP-SI algorithm, 387, 390, 391
reconstruction problem, 385
synthetic 2D PET data, 387, 388

Power spectral density, 480, 487, 488
Power system state estimation, 468, 469
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PPA. See Proximal point algorithm
(PPA)

Primal-dual equivalence, 41, 171–173
basis pursuit denoising, 182–184
basis pursuit problem, 181–182
master problem, 177
optimality condition, 178, 179
three subproblems, 180

Primal-dual hybrid gradient (PDHG)
algorithms, 324, 327

Arrow-Hurwicz method, 373
convergence properties, 374
inexact Uzawa algorithm, 374
PDHGMp, 374
Taylor expansion, 372
theorem and convergence,

374–378
Primal-dual methods

ADMM
augmented Lagrangian with fixed

parameter, 366–367
convergence, 368
DRS algorithm (see Douglas-Rachford

splitting (DRS) algorithm)
general Uzawa method, 366
global rates, 368
modifications, 368
perspective of variational inequalities,

369–370
proximal ADMM, 378–379
proximal point algorithm, 367
scaled ADMM, 368

basic relations, 365–366
Bregman methods, 379–381
hybrid gradient algorithms (see Primal-dual

hybrid gradient (PDHG) algorithms)
Principal component analysis (PCA), 436
Projected algebraic multigrid (PAMG) method,

559
Projected full approximation scheme (PFAS)

multigrid method, 559
Projected multigrid (PMG) method, 559
Projected SOR (PSOR) method, 558
Proximal gradient method. See Forward-

backward splitting (FBS) method
Proximal mapping, 239–241
Proximal operator prox f (.), 174
Proximal point algorithm (PPA), 138, 202,

306, 308–309, 317, 367
PRS. See Relaxed Peaceman-Rachford

splitting algorithm (PRS)
Pseudospectra, 112
Pulse broadening, 612

Q
θ -scheme. See Fractional θ -scheme
Quadratic discriminant analysis (QDA)

problem
evolution curves, objective function values,

232
matrix vectorization, 231
normal distribution data, 229
random matrix generation, 232
R-sub-problem reformulation, 232
sparsity and low rank features, 230
S-sub-problem reformulation, 231
statistics, 233
stopping criterion, 232

Quadratic variation process, 502
Quasilinear systems, 611
Quasi Monte Carlo, 526, 532
Quasi-steady state approximations, 109

R
Radau5 method, 634
Raman scattering, 604, 605, 611, 612, 620
Random and shuffled cyclic orders, 243
Reaction–diffusion–convection model, 636
Recursive least-squares (RLS) algorithm,

478–481
Reflection operators, 120
Relaxed alternating direction method of

multipliers (relaxed ADMM), 121
Relaxed Peaceman-Rachford splitting

algorithm (PRS), 118, 121
generalized Moreau decomposition,

190–192
iterative fixed-point residual analysis, 127,

128
nonergodic convergence, 134–135
optimality conditions, 130, 131, 189
optimization problem, 189
primal-dual pair equivalent, 188
proxλ f (.), affine, 192–193
subgradients and fundamental inequalities,

129, 130
Resolvent operator, 305
Retarded time transformation, 605
Reweighted �1 algorithm, 240
RF cartography, 487–488
Riemann–Stieltjes integrals, 501, 505, 508,

511
Robbins-Monro algorithm, 476
Robustness, SPDE

nonlinear, 514
to splitting schemes

controlled (differential/integral) equations,
505
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differential equations, by rough paths, 511
highly oscillatory paths, 507–508
Lie and Strang splitting, 506–507
Lie brackets of vector fields, 508
rough path theory, 508
space of iterated integrals, 509–510
weak geometric rough paths, 510

ROCK4 method, 634
Rough path theory, 508
Routing matrix, 483
Rudin, Osher, and Fatemi (ROF) model, 383
Runge–Kutta methods, 23, 24, 634

S
SABR model, 529–532
Saddle-point problem, 783
Schrödinger-type pulse propagation equation,

604
SC-PRSM. See Strictly contractive Peaceman-

Rachford splitting method (SC-PRSM)
Second-order accurate symmetric operator

splitting, 611
Semiconvex. See Weakly convex mapping
Semidefinite program (SDP), 468–469
Semi-discrete approximation, 104
Sensitivity encoding (SENSE), 334
Separable function, 241
Shadowing field, 482
Short-wave infrared (SWIR) spectrum, 330
Shrink2 operator, 430
Signal reconstruction, 238
Signal-to-noise ratio (SNR), 225
Simple Linear Interface Calculation (SLIC)

algorithm, 691–693, 718–719
Single-field upwind method, 620
Single photon emission computed tomography

(SPECT), 384
Single pixel camera (SPC), 329–330
Singular value decomposition (SVD), 228
SLIC algorithm. See Simple Linear Interface

Calculation (SLIC) algorithm
Smith method. See Alternating direction

implicit (ADI) method
Smoothly clipped absolute deviation (SCAD),

244
Sobol numbers, 531
Soft thresholding, 239, 240
Soliton-like oscillation, 614
SOR method. See Successive over-relaxation

(SOR) method
Sorted �1 function, 245
Space, iterated integrals, 509–510
Sparse coding, 239
Sparse representation matrix/dictionary, 239

Sparse statistical machine learning
active sets, 435
ADMM (see Algorithmic regularization

paths, ADMM)
continuous parametric curve, 435
model fitting, 434
model selection, 434
regularization paths, 435
sparse linear regression, 434

Sparsity-regularized rank minimization
decentralized ADMM algorithm

in-network traffic anomaly detection,
485–487

network anomaly detection via sparsity
and low rank, 482–484

RF cartography via decentralized sparse
linear regression, 487–488

SPDE. See Stochastic partial differential
equation (SPDE)

Spectral decomposition, 111
Spectral X-ray CT

Compton effect, 396
dual-layer detectors, 394
Fisher information matrix, 395, 396
K-edge imaging, 395–398
material-decomposed sinograms, 395
numerical phantom, 395, 396
photo-electric absorption, 396
projection-based material decomposition,

395
PWLS estimator, 395
statistical image reconstruction method,

395, 397, 398
ytterbium, 396–398

Spectrum sensing, 479, 482, 487
S & P 500 index (SPX), 532–533
Spline-based RF cartography, 487–488
Split Bregman algorithm, 429–430
Split-step Fourier method (SSFM)

single-mode fiber, ultra-fast pulses
efficiency, 606–607
fractional step splitting method, 607
Gaussian pulse propagation, 611–613
high-resolution upwind scheme, 610–611
linear sub-steps, 607
nonlinear sub-steps, 608–610
slowly varying field envelope, 605
spatially dependent fiber parameters,

613–615
symmetric approximation, 606
symmetric fractional step method, 607

two interacting ultra-fast pulses
computational errors, 621
nonlinear sub-steps, 617–620
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Split-step Fourier method (SSFM) (cont.)
numerical error, 621–622
optical shock distances, 620
order of accuracy, 621
second-order accurate scheme, 617
spatially dependent fiber parameters,

622–623
temporal discretization, 620, 621

Splitting error estimator, 630–632
Splitting methods

classical methods, 301–302
composite optimization problems, 302
compressive sensing

analysis problem, 328–329
compressive Fourier sampling and

deblurring, 332–334
pMRI reconstruction, 334–336
sparse models in, 302–303
SPC, 329–331
Stone/Hadamard transform, 331–332
synthesis problem, 328–329

convex functions
closed function, 304
duality (see Duality)
gradients and inequalities, 304
proper function, 304
sub-differentials and proximal operators,

305–306
FBS method

and IST, 307–308
MM algorithm, 309–310
PPA, 308–309
preconditioning, 310
soft thresholding sequence, 306

method of multipliers (see Method of
multipliers)

SSFM. See Split-step Fourier method
(SSFM)

Stabilizing Correction schemes, 553
Stable method, 105
Stimulated emission depletion (STED), 385
Stochastic integrals, 501–502
Stochastic local volatility models, 529
Stochastic partial differential equation (SPDE)

Brownian motion, 500–501
financial engineering

double mean reverting model, 532–534
Heath–Jarrow–Morton model, 534–536
option pricing in high dimensions,

529–532
Ito’s change of variable formula, 502
nonlinear filtering

Clark’s robustness problem, 515–516
Kallianpur–Striebel equations, 516

splitting for Zakai, 517–519
Zakai equations, 517

pathwise optimal control, 519
robustness to splitting schemes

controlled (differential/integral) equations,
505

differential equations, by rough paths, 511
highly oscillatory paths, 507–508
Lie and Strang splitting, 506–507
Lie brackets of vector fields, 508
rough path theory, 508
space of iterated integrals, 509–510
weak geometric rough paths, 510

solution map discontinuity, 502–503
stochastic integrals, 501–502
strong splitting schemes

partial differential equations, 512
robustness for (nonlinear), 514
time approximation, 512–513
viscosity solutions, PDEs, 513

weak splitting schemes
cubature on Wiener space, 520–522
Ninomiya–Victoir splitting (see

Ninomiya–Victoir splitting)
white noise, 500

Stokes-flow approximation, 774
Stone/Hadamard transform, 331–332
Strang formula, 631, 632
Strang’s symmetrized operator-splitting

scheme
closed-form solutions, 660
first order problem, 648–651
first order system, 657
five-stage scheme, 647–648, 657–659, 674
non-autonomous abstract initial value

problem, 646
three-operator situation, 647, 674
time discretization, 646
two-operator situation, 647

Strang’s symmetrized scheme, 5–6, 23–25
Stratonovich integral, 502, 523
Strictly contractive Peaceman-Rachford

splitting method (SC-PRSM)
auxiliary variable, 204, 205
convergence analysis, 203
convex minimization model, 198
divergence

direct application, 218–220
E-SC-PRSM algorithm, 220–221

DRSM, 198, 199
empirical efficiency, 222
global convergence

matrix, 207, 208
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sequence generation, 205, 208–209,
211–212

symmetric matrix, 210–211
y-minimization problem, 206

image restoration, mixed impulsive and
Gaussian noise

AMF, 223
Cameraman.png and House.png images,

224–225
FFT, 223, 224
image corruption, impulsive noise, 222,

223
image filtering, 225, 226
minimization problem, 223
SNR, 225, 226
(w, v, z)-subproblem, 224

iterative method, 200–201
Jacobian style decomposition, 201
proximal regularization, 202
QDA problem

evolution curves, objective function
values, 233–234

matrix vectorization, 231
normal distribution data, 229
random matrix generation, 232
R-sub-problem reformulation, 232
sparsity and low rank features, 230
S-sub-problem reformulation, 231
statistics, 233
stopping criterion, 232

RPCA, missing and noisy data
auxiliary variable, 227
matrix decomposition, 226–227
matrix variables, statistical learning, 226
number of iterations vs. computing time,

228, 230
numerical comparison, 228, 229
SVD, 228
video surveillance, 228, 229

separable convex minimization model, 199
variational inequality reformulation, 203
worst-case convergence rate

ergodic sense, 216–217
nonergodic sense, 213–215

Strictly correlated electrons (SCE), 580
Strong splitting schemes

partial differential equations, 512
robustness for (nonlinear), 514
time approximation, 512–513
viscosity solutions, PDEs, 513

Subdifferential operator, 154
Successive over-relaxation (SOR) method, 558
Summable sequence, 122–124
Support vector machines (SVMs), 472–473

Symmetrically weighted sequential splitting,
527

Symmetry, 102

T
Target tracking, 481
Thresholding functions, 240
Thresholding mapping, 240
Traffic volume anomalies, 483
Trotter–Kato formula, 506
Two-grid spatial discretization

advantage, 687
cell center, 689
correction step, 694–695
finite element subdivision, 688, 689
piecewise constant functions, 688
prediction steps

approximation error, 693–694
Cartesian properties, 691
characteristic trajectories, 690
decompression algorithm, 690, 693
liquid domain characteristic approxima-

tion, 687
numerical compression, 691
numerical diffusion, 691
SLIC algorithm, 691–693
two-dimensional cell transport, 691

projection mapping, 689
scalar-valued function/vector-valued

function, 689
structured subdivision, 688
volume-of-fluid type method, 687

Two interacting ultra-fast pulses
governing equations, 615–616
SSFM

computational errors, 621
nonlinear sub-steps, 617–620
numerical error, 621–622
optical shock distances, 620
order of accuracy, 621
second-order accurate scheme, 617
spatially dependent fiber parameters,

622–623
temporal discretization, 620, 621

U
Ultra-fast pulses, single-mode fiber

governing equation, 605–606
SSFM

efficiency, 606–607
fractional step splitting method, 607
Gaussian pulse propagation, 611–613
high-resolution upwind scheme,

610–611
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Ultra-fast pulses, single-mode fiber (cont.)
linear sub-steps, 607
nonlinear sub-steps, 608–610
spatially dependent fiber parameters,

613–615
symmetric approximation, 606
symmetric fractional step method, 607

Uzawa’s algorithms, 253
Uzawa’s method, 316–317

V
van Albada limiter, 611
Variational image processing model

binary level set, 66
Chan-Vese segmentation model, 65
computational domain, 62
continuous min-cut and max-flow problems,

ALM, 73–74
Euler’s Elastica energy, 64, 76–79
Heaviside function, 65
image graph mean curvature, 64–65
L1-mean curvature model, 79–82
minimization problem, 62
parallel splitting schemes, ROF model,

69–71
segmentation models, higher order

regularization, 67–68
split-Bregman method, 71–76
total variation and ROF model, 63
TV2 regularization, 63–64

Variational methods in imaging
splitting algorithms, 344 (see also First

order splitting algorithms)
structure, 346

Visco-elastic flow
bended die, 706–708, 716, 717
boundary conditions, 704–710
extrusion with die swell and contraction,

698, 704, 706
mathematical modeling, 699–701

no-boundary conditions, 704, 705, 711–716
operator splitting strategy, 702–703
polymer viscosity and relaxation time, 704,

707, 708
Visco-plasticity, 76, 259, 265, 283–289
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