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Abstract Partial distance correlation measures association between two random
vectors with respect to a third random vector, analogous to, but more general than
(linear) partial correlation. Distance correlation characterizes independence of ran-
dom vectors in arbitrary dimension. Motivation for the definition is discussed. We
introduce a Hilbert space of U-centered distance matrices in which squared distance
covariance is the inner product. Simple computation of the sample partial distance
correlation and definitions of the population coefficients are presented. Power of
the test for zero partial distance correlation is compared with power of the partial
correlation test and the partial Mantel test.

Keywords Independence · Multivariate · Partial distance correlation · Dissimilar-
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1 Introduction

Distance correlation is amultivariatemeasure of dependencebetween randomvectors
in arbitrary, not necessarily equal dimension. Distance covariance (dCov) and the
standardized coefficient, distance correlation (dCor), are nonnegative coefficients that
characterize independence of random vectors; both are zero if and only if the random
vectors are independent. The problem of defining a partial distance correlation
coefficient analogous to the linear partial distance correlation coefficient had been
an open problem since the distance correlation was introduced in 2007 [11]. For the
definition of partial distance correlation, we introduce a new Hilbert space where
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the squared distance covariance is the inner product [15]. Our intermediate results
include methods for applying distance correlation to dissimilarity matrices.

For background, we first review the definitions of population and sample dCov
and dCor coefficients. In what follows, we suppose that X and Y take values in R

p

and R
q , respectively.

The distance covariance, V(X,Y ), of two random vectors X and Y is a scalar
coefficient defined by a weighted L2 norm measuring the distance between the joint
characteristic function φX,Y of X and Y , and the product φX φY of the marginal char-
acteristic functions of X and Y . V(X,Y ) is defined as the nonnegative square root of

V2(X, Y ) = ‖φX,Y (t, s) − φX (t)φY (s)‖2w (1)

:=
∫
Rp+q

|φX,Y (t, s) − φX (t)φY (s)|2w(t, s) dt ds,

wherew(t, s) := (|t |1+p
p |s|1+q

q )−1. The above integral exists if |X | and |Y | have finite
first moments. The choice of weight function is not unique, but when we consider
certain invariance properties that one would require for a measure of dependence
it can be shown to be unique [13]. This particular weight function may have first
appeared in this context in 1993 where Feuerverger [3] proposed a bivariate test of
independence based on an L2 norm (1).

The distance covariance coefficient can also be expressed in terms of expected
distances, based on the following identity established in Székely and Rizzo [12, The-
orem8, p. 1250]. The notation X ′ indicates that X ′ is an independent and identically
distributed (iid) copy of X . If (X,Y ), (X ′,Y ′), and (X ′′,Y ′′) are iid, each with joint
distribution (X,Y ), then

V2(X,Y ) = E |X − X ′||Y − Y ′| + E |X − X ′| · E |Y − Y ′| (2)

− E |X − X ′||Y − Y ′′| − E |X − X ′′||Y − Y ′|,

provided that X and Y have finite first moments. Definition (2) can be extended to
X and Y taking values in a separable Hilbert space. With that extension and our
intermediate results, we can define and apply partial distance covariance (pdcov)
and partial distance correlation (pdcor).

Distance correlation (dCor) R(X,Y ) is a standardized coefficient,

R(X,Y ) =
{ V(X,Y )√V(X,X)V(Y,Y )

, V(X, X)V(Y,Y ) > 0;
0, V(X, X)V(Y,Y ) = 0.

(See [11] and [12])
The distance covariance and distance correlation statistics are functions of the

double-centered distance matrices of the samples. For an observed random sample
{(xi , yi ) : i = 1, . . . , n} from the joint distribution of random vectors X and Y , Let
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(ai j ) = (|xi − x j |p) and (bi j ) = (|yi − y j |q) denote the Euclidean distance matrices
of the X and Y samples, respectively

Define the double-centered distance matrix of the X sample by

Âi j = ai j − āi. − ā. j + ā.. , i, j = 1, . . . , n, (3)

where

āi. = 1

n

n∑
j=1

ai j , ā. j ,= 1

n

n∑
i=1

ai j , ā.. = 1

n2

n∑
i, j=1

ai j .

Similarly, define the double-centered distance matrix of the Y sample by B̂i j =
bi j − b̄i. − b̄. j + b̄.., for i, j = 1, . . . , n.

A double-centered distance matrix Âi j has the property that all rows and columns
sum to zero. Below we will introduce a modified definition U-centering (“U” for
unbiased) such that a U-centered distance matrix Ãi j has zero expected values of its
elements E[ Ãi j ] = 0 for all i, j .

Sample distance covariance Vn(X, Y) is the square root of

V2
n (X, Y) = 1

n2

n∑
i, j=1

Âi j B̂i j (4)

and sample distance correlation is the standardized sample coefficient

R2
n(X, Y) =

{ V2
n (X,Y)√

V2
n (X)V2

n (Y)
, V2

n (X)V2
n (Y) > 0;

0, V2
n (X)V2

n (Y) = 0.
(5)

The distance covariance test of multivariate independence is consistent against all
dependent alternatives. Large values of the statistic nV2

n (X, Y) support the alternative
hypothesis that X and Y are dependent (see [11, 12]). The test is implemented in the
energy package [9] for R [8].

2 Partial Distance Correlation

To generalize distance correlation to partial distance correlation we require that
essential properties of distance correlation are preserved, that pdcor has a mean-
ingful interpretation as a population coefficient and as a sample coefficient, that
inference is possible, and the methods are practical to apply. This generalization is
not straightforward.

For example, one could try to follow the definition of partial correlation based on
orthogonal projections in a Euclidean space, but this approach does not succeed. For
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partial distance covariance orthogonality means independence, but the orthogonal
projection of a random variable onto the condition variable has a remainder that is
typically not independent of the condition.

Alternately, because the product moment type of computing formula for the sam-
ple distance covariance (4) may suggest an inner product, one may consider defining
the Hilbert space of double-centered distance matrices (3), where the inner product
is (4). However, this approach also presents a problem, because in general it is not
clear what the projection objects in this space actually represent. The difference of
double-centered distance matrices is not a double-centered distance matrix of any
sample except in some special cases. Although one could make the formal defin-
itions, inference is not possible unless the sample coefficients have a meaningful
interpretation as objects that arise from centering distance matrices of samples.

The sample coefficientV2
n (X, Y) is a biased estimator ofV2(X,Y ), so in a sensewe

could consider double centering to be a biased operation.Wemodify the inner product
approach by first replacing double centering with U-centering (1). The Hilbert space
is the linear span of n × n “U-centered” matrices. The inner product in this space
is unbiased dCov; it is an unbiased estimator of V2(X,Y ). An important property
of this space is that all linear combinations, and in particular all projections, are
U-centered matrices. (The corresponding property does not hold when we work with
double-centered matrices.)

A representation theorem ([15]) connects the orthogonal projections to random
samples in Euclidean space. With this representation result, methods for inference
based on the inner product are defined and implemented. To obtain this represen-
tation we needed results for dissimilarity matrices. In many applications, such as
community ecology or psychology, one has dissimilarity matrices rather than the
sample points available, and the dissimilarities are often not Euclidean distances.
Our intermediate results on dissimilarity matrices also extend the definitions, com-
puting formulas, and inference to data represented by any symmetric, zero diagonal
dissimilarity matrices.

2.1 The Hilbert Space of Centered Distance Matrices

Let A = (ai j ) be an n × n zero diagonal, symmetric matrix, n > 2 (a dissimilarity
matrix). The U-centered matrix Ãi, j is defined by

Ãi, j =
⎧⎨
⎩
ai, j − 1

n−2

n∑
�=1

ai,� − 1
n−2

n∑
k=1

ak, j + 1
(n−1)(n−2)

n∑
k,�=1

ak,�, i �= j;
0, i = j .

(1)
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Then

( Ã · B̃) := 1

n(n − 3)

∑
i �= j

Ãi, j B̃i, j (2)

is an unbiased estimator of squared population distance covariance V2(X,Y ).
The Hilbert space of U-centered matrices is defined as follows. LetHn denote the

linear span of U-centered n × n distance matrices, and for each pair (C, D) in Hn ,
define their inner product by

(C · D) = 1

n(n − 3)

∑
i �= j

Ci j Di j . (3)

It can be shown that every matrix C ∈ Hn is the U-centered distance matrix of
some n points in R

p, where p ≤ n − 2.
The linear span of all n × n U-centered matrices is a Hilbert spaceHn with inner

product defined by (3) [15].

2.2 Sample PdCov and PdCor

The projection operator (4) can now be defined in the Hilbert spaceHn , n ≥ 4. Then
partial distance covariance can be defined using projections in Hn . Suppose that
x, y, and z are samples of size n and Ã, B̃, C̃ are their U-centered distance matrices,
respectively. Define the orthogonal projection

Pz⊥(x) = Ã − ( Ã · C̃)

(C̃ · C̃)
C̃ (4)

of Ã(x) onto (C̃(z))⊥, and

Pz⊥(y) = B̃ − (B̃ · C̃)

(C̃ · C̃)
C̃, (5)

the orthogonal projection of B̃(y) onto (C̃(z))⊥. If (C̃ · C̃) = 0, PZ⊥(x) := Ã and
PZ⊥(y) := B̃. Then Pz⊥(x) and Pz⊥(y) are elements of Hn . Their inner product is
as defined in (3).

Definition 1 (Partial distance covariance)

pdCov(x, y; z) = (Pz⊥(x) · Pz⊥(y)), (6)
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where Pz⊥(x), and Pz⊥(y) are defined by (4) and (5), and

(Pz⊥(x) · Pz⊥(y)) = 1

n(n − 3)

∑
i �= j

(Pz⊥(x))i, j (Pz⊥(y))i, j . (7)

Definition 2 (Partial distance correlation). Sample partial distance correlation is
defined as the cosine of the angle θ between the ‘vectors’ Pz⊥(x) and Pz⊥(y) in the
Hilbert space Hn:

R∗(x, y; z) := cos θ = (Pz⊥(x) · Pz⊥(y))

|Pz⊥(x)||Pz⊥(y)| , |Pz⊥(x)||Pz⊥(y)| �= 0, (8)

and otherwise R∗(x, y; z) := 0.

2.3 Representation in Euclidean Space

If it is true that the projection matrices Pz⊥(x) and Pz⊥(y) are the U-centered
Euclidean distance matrices of samples of points in Euclidean spaces, then the sam-
ple partial distance covariance (7) is in fact the distance covariance (2) of those
samples.

Our representation theorem [15] holds that given an arbitrary element H of Hn ,
there exists a configuration of points U = [u1, . . . , un] in some Euclidean space Rq ,
for some q ≥ 1, such that the U-centered Euclidean distance matrix of sample U is
exactly equal to the matrix H . In general, every element inHn , and in particular any
orthogonal projection matrix, is the U-centered distance matrix of some sample of n
points in a Euclidean space.

The proof uses properties of U-centered distance matrices and results from clas-
sical multidimensional scaling.

Lemma 1 Let Ã be a U-centered distance matrix. Then

(i) Rows and columns of Ã sum to zero.
(ii) (̃ Ã) = Ã. That is, if B is thematrix obtainedbyU-centering an element Ã ∈ Hn,

B = Ã.
(iii) Ã is invariant to double centering. That is, if B is the matrix obtained by double

centering the matrix Ã, then B = Ã.
(iv) If c is a constant and B denotes the matrix obtained by adding c to the off-

diagonal elements of Ã, then B̃ = Ã.

In the proof, Lemma1(iv) is essential for our results, which shows that we cannot
apply double centering as in the original (biased) definition of distance covariance.
Invariance with respect to the additive constant c in (iv) does not hold for double-
centered matrices.
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Our representation theorem applies certain results from classical MDS and Cail-
liez [1, Theorem 1].

Theorem 1 Let H be an arbitrary element of the Hilbert space Hn of U-centered
distance matrices. Then there exists a sample v1, . . . , vn in a Euclidean space of
dimension at most n − 2, such that the U-centered distance matrix of v1, . . . , vn is
exactly equal to H.

For details of the proof and an illustration see [15]. The details of the proof reveal
why the simpler idea of a Hilbert space of double-centered matrices is not applicable
here. The diagonals of Â are not zero, so we cannot get an exact solution by MDS.
The inner product would depend on the additive constant c. Another problem is that
V2
n ≥ 0, but the inner product of projections in that space can be negative.
An application of our representation theorem also provides methods for zero

diagonal symmetric non-Euclidean dissimilarities. There exist samples in Euclidean
space such that their U-centered Euclidean distance matrices are equal to the dissim-
ilarity matrices. There are existing software implementations of classical MDS that
can obtain these sample points. The R function cmdscale, for example, includes
options to apply the additive constant of Cailliez [1] and to specify the dimension.

Using the inner product (3), we can define a bias corrected distance correlation
statistic

R∗
x,y :=

{
( Ã·B̃)

| Ã||B̃| , | Ã||B̃| �= 0;
0, | Ã||B̃| = 0,

(9)

where Ã = Ã(x), B̃ = B̃(y) are the U-centered distance matrices of the samples x
and y, and | Ã| = ( Ã · Ã)1/2.

Here we should note R∗ is a bias corrected statistic for the squared distance
correlation (5) rather than the distance correlation.

An equivalent computing formula for pdCor(x, y, z) is

R∗
x,y;z = R∗

x,y − R∗
x,z R

∗
y,z√

1 − (R∗
x,z)

2
√
1 − (R∗

y,z)
2
, (10)

(1 − (R∗
x,z)

2)(1 − (R∗
y,z)

2) �= 0.

2.4 Algorithm to Compute Partial Distance Correlation
R∗
x, y;z from Euclidean Distance Matrices

Equation (10) provides a simple and familiar form of computing formula for the
partial distance correlation. The following algorithm summarizes the calculations
for distance matrices A = (|xi − x j |), B = (|yi − y j |), and C = (|zi − z j |).



186 G.J. Székely and M.L. Rizzo

(i) Compute U-centered distance matrices Ã, B̃, and C̃ using

Ãi, j = ai, j − ai.
n − 2

− a. j

n − 2
+ a..

(n − 1)(n − 2)
, i �= j,

and Ãi,i = 0.
(ii) Compute inner products and norms using

( Ã · B̃) = 1

n(n − 3)

∑
i �= j

Ãi, j B̃i, j , | Ã| = ( Ã · Ã)1/2

and R∗
x,y , R

∗
x,z , and R∗

y,z using R∗
x,y = ( Ã·B̃)

| Ã||B̃| .
(iii) If R2

x,z �= 1 and R2
y,z �= 1

R∗
x,y;z = R∗

x,y − Rx,z R∗
y,z√

1 − (R∗
x,z)

2
√
1 − (R∗

y,z)
2
,

otherwise apply the definition (8).
In the above algorithm, it is typically not necessary to explicitly compute the

projections, when (10) is applied. This algorithm has a straightforward translation
into code. An implementation is provided in the pdcor package [10] (available upon
request) or in the energy package for R.

3 Population Coefficients

Definition 3 (Population partial distance covariance) Introduce the scalar coeffi-
cients

α := V2(X, Z)

V2(Z , Z)
, β := V2(Y, Z)

V2(Z , Z)
.

If V2(Z , Z) = 0 define α = β = 0. The double-centered projections of AX and
BY onto the orthogonal complement of CZ in Hilbert space H are defined

PZ⊥(X) := AX (X, X ′) − αCZ (Z , Z ′), PZ⊥(Y ) := BY (Y,Y ′) − βCZ (Z , Z ′),

or in short PZ⊥(X) = AX − αCZ and PZ⊥(Y ) = BY − βCZ , where CZ denotes
double centered with respect to the random variable Z .
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The population partial distance covariance is defined by the inner product

(PZ⊥(X) · PZ⊥(Y )) := E[(AX − αCZ ) · (BY − βCZ )].

Definition 4 (Population pdCor) Population partial distance correlation is defined

R∗(X,Y ; Z) := (PZ⊥(X) · PZ⊥(Y ))

|PZ⊥(X)||PZ⊥(Y )| ,

where |PZ⊥(X)| = (PZ⊥(X) · PZ⊥(X))1/2. If |PZ⊥(X)||PZ⊥(Y )| = 0 we define
R∗(X,Y ; Z) = 0.

Theorem 2 (Population pdCor) The following definition of population partial dis-
tance correlation is equivalent to Definition4.

R∗(X,Y ; Z) = (1){ R2(X,Y )−R2(X,Z)R2(Y,Z)√
1−R4(X,Z)

√
1−R4(Y,Z)

, R(X, Z) �= 1 andR(Y, Z) �= 1;
0, R(X, Z) = 1 orR(Y, Z) = 1.

where R(X,Y ) denotes the population distance correlation.

We have proved that projections can be represented as a U-centered distance
matrix of some configuration of n points U in a Euclidean space R

p, p ≤ n − 2.
Hence a test for pdCov(X,Y ; Z) = 0 (or similarly a test for pdCor(X,Y ; Z) = 0)
can be defined by applying the distance covariance test statistic V2

n (U, V), where U
and V are a representation which exist by Theorem1. This test can be applied to
U, V using the dcov.test function of the energy package [9] or one can apply a
test based on the inner product (6), which is implemented in the pdcor package [10].

4 Power Comparison

The tests for zero partial distance correlation are implemented as permutation (ran-
domization) tests of the hypothesis of zero partial distance covariance. In these
examples we used the dcov.test method described above, although in exten-
sive simulations the two methods of testing this hypothesis are equivalent in their
average power over 10,000 tests. The simulation design for the following exam-
ples used R = 999 replicates for the permutation tests and the estimated p-value is
computed as

p̂ = 1 + ∑R
k=1 I (T

(k) ≥ T0)

1 + R
,
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Fig. 1 Power comparisons
for partial distance
covariance, partial Mantel
test, and partial correlation
test at significance level
α = 0.10 (correlated
standard normal data)
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where I (·) is the indicator function, T0 is the observed value of the test statistic, and
T (k) is the statistic for the k-th sample. In each example 10,000 tests are summarized
at each point in the plot, and the significance level is 10%.

Example 1 In this example, power of tests is compared for correlated trivariate
normal data with standard normal marginal distributions. The variables X , Y , and
Z are each correlated standard normal. The pairwise correlations are ρ(X,Y ) =
ρ(X, Z) = ρ(Y, Z) = 0.5. The power comparison summarized in Fig. 1 shows that
pdcov has higher power than pcor or partial Mantel tests.

Example 2 This example presents a power comparison for correlated non-normal
data. The variables X , Y , and Z are each correlated, X is standard lognormal, while
Y and Z are each standard normal. The pairwise correlations are ρ(log X,Y ) =
ρ(log X, Z) = ρ(Y, Z) = 0.5. The power comparison summarized in Fig. 2 shows
that pdcov has higher power than pcor or partial Mantel tests.
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Fig. 2 Power comparisons
for partial distance
covariance, partial Mantel
test, and partial correlation
test at significance level
α = 0.10 (correlated
non-normal data)
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