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Abstract. A Domain-Specific Language (DSL) allows the succinct mod-
eling of phenomena in a problem domain. Modern DSL-tools make it easy
for a language designer to define the syntax of a new DSL, to specify code
generators or to build a new DSL on top of existing DSLs. Based on the
language specification, the DSL-tool then generates rich editors. Often,
these editors support features such as syntax highlighting, code comple-
tion or automatic refactoring.

In this paper, we describe an approach of adding verification support
for DSLs defined within the Eclipse-framework Xtext. Xtext provides
good support for checking the well-formedness rules of the DSL’s syn-
tax. In contrast, support for specifying the language’s semantics as well
as verification support have been rather neglected so far. Our approach
of incorporating semantic verification techniques is illustrated by a very
simple State-Transition-DSL, which has been fully implemented in Xtext.
The DSL’s editor verifies on the fly that the current model holds some
semantic properties such as deterministic execution and invariant preser-
vation. The verification services for this DSL are based on the theorem
prover Princess.
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1 Motivation

20 years ago, the three amigos of the UML were proud to win the war of notation.
They have successfully extracted the main modelling concepts of the predeces-
sors of the UML, such as OMG, Booch, Shlaer-Mellor, and created a graphical
language with 9 diagrams at the beginning. This language was supposed to be
applicable in many domains.

The nice thing about UML was (and still is) that, while being an open stan-
dard, it triggered many research activities, e.g. research groups mainly from
academia reported at the UML conference series (which was 2005 renamed into
MoDELS) on progress when working with models, i.e. their efficient creation,
understanding, reuse, and semantic analysis. These efforts enjoyed great interest
in the scientific community due to the large user base of UML.
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However, not only the general purpose modelling languages made progress,
but also Domain-specific languages (DSLs). Tool support for DSLs has concen-
trated so far in the easy definition of abstract and concrete syntax, and how to
define code generators that take a model as input (see [1] for an overview).

Tools for the semantic analysis of the model formulated in such a DSL have
been rather neglected. A typical example is the tool Yakindu [2], which imple-
ments a statechart DSL and provides an editor for editing and even simulating
statecharts. Internally, Yakindu is based on Xtext.

When editing a statechart, Yakindu’s editor gives very valuable feedback if
the user constructs a syntactically ill-formed model, e.g., if she adds a transition
ending in the start state or refers to a non-existing variable or event. However,
Yakindu’s editor does not offer any support if the model is semantically incorrect.
For example, it does not issue a warning if the model contains dead transitions. In
the simplest case, a transition is dead if it is annotated with a guard [false], but
any other unsatisfiable guard (e.g. [3 > 7]) would also lead to a dead transition.

The detection of dead transitions goes beyond syntactic checks. It requires
to interpret guards and - for example - to reduce a guard [3 > 7] to [false]
due to the standard interpretation of mathematical symbols 3, 7, >.

In this paper, we develop a DSL for describing simple state machines using
Xtext. The editor for this DSL offers semantic model checks, e.g. the detection of
dead transitions. Our semantic model checks are internally based on the theorem
prover Princess, which supports reasoning on integer arithmetic and first-order
logic. Princess works very fast and discards each proof obligation from the
example discussed in this paper within less than 10 ms. Thus, semantic checks
are not more expensive than ordinary syntactic checks and can be executed
on-the-fly by the DSL’s editor while the user enters the model.

2 The Framework Xtext

Xtext is a framework for the development of textual DSLs. It is implemented in
Java and is available in form of a plugin for the popular IDE Eclipse. Illustrative
examples on what can be achieved via Xtext can be found on its homepage [3].

In order to define a DSL, the user first has to define a grammar in an
EBNF-like syntax. Based on the grammar, the Eclipse plugin will then generate
the so-called language infrastructure, consisting of a textual editor, the Ecore-
metamodel, and the Java API for easy model access. This generation process as
well as the resulting tools can be customized by the user in numerous ways, e.g.
by implementing classes for presenting the syntax tree differently (so-called label
providers) or by defining additional constraints on the syntax tree (implemented
by a so-called validator).

The implementation of customization classes is done in Xtend, a Java-based
language developed by the creators of Xtext. Using Xtend, many typical pro-
gramming tasks such as traversing a syntax tree, creating a net of objects, or
template-based string generation can be solved very elegantly.
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Fig. 1. ParkingTicketMachine (PTM) specified with Yakindu

2.1 Yakindu

Yakindu [2] is an open-source tool for the specification of statecharts [4]. It allows
the user to draw states, nested states, and transitions; in this respect Yakindu
is a tool for a graphical modelling language.

Since Yakindu is heavily based on Xtext, it is developed and maintained
mainly by software engineers from Itemis, the company also standing behind
Xtext. Yakindu allows the user to add to a transition an annotation consisting
of a guard, an event, and an action. The formalism to express the annotation is
internally defined as an Xtext-language.

An action can be a named action or an update of state variables with new
values. Events, named actions, and state variables have to be declared separately.
When specifying guards or updates, the user can take advantage of a pre-defined
language for arithmetical and logical expressions.

Yakindu checks the type rules for expressions and sub-expressions instantly
while a guard is typed in. Yakindu also executes additional syntax checks auto-
matically, for example to ensure that each statechart has a start-state.

Yakindu does not offer semantic checks, which could help to prevent non-
intended behaviour when executing the statechart. The only possibility for the
user to analyze the run-time behaviour of the specified system is to execute the
statechart in Yakindu’s simulator.
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2.2 Running Example ParkingTicketMachine (PTM)

In Fig. 1 we see a screenshot from Yakindu when editing a small statechart,
which models a ticket machine in a parking deck (called ParkingTicketMa-
chine (PTM)). The machine is waiting (state idle) for a customer inserting
her park ticketing card (event cardInserted). Now, the ticket machine changes
its state (to waitingForMoney) and the customer has to pay a certain amount
of money (variable bill). The machine now expects coins to be inserted (event
coinInserted) until the amount to be paid has been reached. For the sake of
simplicity, we assume all coins to have the same value and that the amount to
be paid is exactly the value of N many coins (N > 0). Once enough coins have
been inserted, the machine changes its state first to paid and then immediately
to idle (due to the pseudo-event always).

Unfortunately, the statechart has a semantic error: The machine collects the
money correctly only from the first customer! After the machine has walked
through the states idle - waitingForMoney - paid - idle, the state vari-
able collected has the same value as bill. So, after the next customer has
inserted her card, she can insert as many coins as she wants, but she will never
reach the state paid!

3 Adding Verification Support for DSLs

In this section, we will demonstrate how one can implement verification support
for DSLs implemented with Xtext. The verification support targets semantic
properties of model written in the DSL. For the sake of illustration, we explain
the verification techniques using the simple statechart introduced in Sect. 2.2.

Since our verification approach should serve as a blueprint for adding veri-
fication support to any textual DSL created with Xtext, we will start with the
development of a DSL, which is able to denote simple forms of Yakindu’s stat-
echarts, but in a purely textual notation. Our language is called SMINV and
models expressed in this language are called state machines in order to distin-
guish them easily from Yakindu’s statecharts.

3.1 SMINV– A Textual DSL for Encoding Simple State Machines

A language to denote state machines can be basically subdivided into two parts:
(1) The sublanguage for defining the ‘infrastructure’ of a state machine using
concepts like state, transition, event, state variable and (2) the expression lan-
guage for defining guards and updates of state variables.

Sublanguage for Infrastructure. The grammar definition for SMINV starts1

with the start rule:

1 Due to the paper’s page limit, only the important parts of the grammar are presented
here. The full grammar is available from [5].
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SminvModel:

vd=VarDecl

sd=StateDecl

ed=EventDecl

td=TransDecl

A state machine is a sequence of declarations for variables, states, events, and
transitions. While a variable, state or event is just declared by its name (which
must be unique), the definition of a transition is a little bit more complex:

Transition:

pre=[State] ’=>’ post=[State]

(ev=[Event ])? (’[’ g=Term ’]’)? (’/’ act+= Update +)? ’;’

A transition connects two states (pre, post) and has optional annotations
for event, guard, and updates.

Sublanguage for Expressions. The sublanguage for expressions is defined as
usual in Xtext (see, for example, [6] for enlightening tutorial examples). Com-
pared to the language supported by Yakindu, our expressions are simpler. We
decided to allow only INT and BOOL as expression types. Thus, an expression
is either a formula (boolean) or a term of type INT. Note that variables always
have the type INT.

Running Example Formulated in SMINV. Despite its simplicity, our lan-
guage allows to formulate many interesting models, including the running exam-
ple PTM:

vars c o l l e c t e d b i l l
states s t a r t i d l e waitingForMoney paid
events ca rd In s e r t ed c o i n I n s e r t ed

transit ions
s t a r t => i d l e / c o l l e c t e d = 0 b i l l = 3 ;

i d l e => waitingForMoney ca rd In s e r t ed ;

waitingForMoney => waitingForMoney co i n In s e r t ed
[ c o l l e c t e d < b i l l − 1 ] / c o l l e c t e d += 1 ;

waitingForMoney => paid c o i n In s e r t ed
[ c o l l e c t e d == b i l l − 1 ] / c o l l e c t e d += 1 ;

paid => i d l e ;

Adding Invariants. The semantic problem of the PTM was due to the fact,
that it has been forgotten to set the value of collected to 0 when the transition
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from paid to idle is fired. In other words, the PTM only works correctly, if the
variable collected has the value 0 when the system is in the state idle.

The statechart language of Yakindu does not offer the possibility to formulate
invariants. In SMINV, the specification of state invariants is made possible by
adding an additional element to the start rule of our grammar. The complete
start rule of SMINV looks as follows:

SminvModel:

vd=VarDecl

sd=StateDecl

ed=EventDecl

td=TransDecl

(id=InvDecl)?;

The definition of invariants is enabled by the following rules of the grammar:

InvDecl:

{InvDecl} ’invariants ’ invs+=Inv*;

Inv: state =[State] ’:’ inv=Term ’;’;

An invariant is an arbitrary term that has been attached to a state. However,
this term must of type boolean, what is checked by an ordinary syntax check in
SMINV’s validator class.

Finally, we can now formulate the invariant for state idle formally.

invariants
i d l e : c o l l e c t e d == 0 ;

However, in order to be able to prove the invariant, we should first fix the
bug in PTM and add an update to the transition from paid to idle:

paid => i d l e / c o l l e c t e d = 0 ;

3.2 Semantic properties to be verified

The verification of statecharts and related formalisms has been and still is a
research topic for many authors [7,8]. The goal for this paper is to demonstrate
how a language designer can implement verification support according to her
needs for her user-defined DSL. For the language SMINV, we consider the fol-
lowing semantic model properties worth to be checked.

Invariant-Preserving Transitions. An state invariant is a boolean term
expressing a constraint on the values of state variables (e.g. v1 > 4). By attach-
ing a state invariant to a single state one claims, that a running state machine
will satisfy the constraint on the values of state variables, whenever the machine
is in the corresponding state. States without an attached invariant have always
the implicit invariant true. The start state must not have any invariant attached.

By a simple induction argument, one can prove that all invariants are satisfied
in all reachable states, if each transition establishes the invariant of the post-
state.
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Deterministic Transitions. It is also important to know whether the specified
state machine works deterministically (recall that generation of implementation
code from a state machine is in most cases meaningless when a specified state
machine can behave non-deterministically). A non-determinism occurs when the
system could change its state to more than one post-state upon receiving an
event. This could happen, if a state exists that has at least two outgoing tran-
sitions that are triggered by the same event and whose guards overlap.

Alive Transitions. A state machine should have only alive transitions, because
dead transitions are never executed. A transition is dead, if the constraints
expressed by the transition’s guard and the invariant of its pre-state are dis-
joint. In other words, it is not possible to find such values for the state variables
that both the invariant of the pre-state and the guard are evaluated to true.

3.3 Proof Obligations

All semantic model properties described above can be formulated in form of
proof obligations for model elements (for SMINV, either states or transitions). A
proof obligation is a first-order formula with interpreted symbols for arithmetic
operators. In the following, we formulate the proof obligation for each of the
above described semantic model properties formally.

Invariant-Preserving Transitions. In order to prove that an invariant IS for
state S holds, one has to show that for all transitions t, which are incoming in
state S, the update annotated on t is sufficient to establish the invariant IS .
Note that the start-state of the state machine must not be annotated by any
invariant (start-states always have implicitly the invariant true annotated).

One can assume that the invariant annotated to the pre-state of t holds as
well as the guard annotated to t. More formally:

Let Σ be the set of all states and S an element from Σ. For any such S, IS
denotes the invariant annotated to state S and IS [v ← update(t)] denotes the
substitution of all variables in IS according to the update annotated on transition
t. Furthermore, guard(t) denotes the guard annotated to t (true is taken when
no guard is specified). By pre(t), post(t) the pre/post-state of transition t is
denoted and ∀−→v means the all-quantification of all state variables v1, v2, . . . .

Then, one has to prove the following proof obligation for all transitions t:

∀−→v (Ipre(t) ∧ guard(t)) −→ Ipost(t)[v ← update(t)] (1)

Deterministic Transitions. In order to prove a state machine being deter-
ministic, one has to show for all transitions t1, t2 that have the same pre-state
and that are triggered by the same event:

∀−→v Ipre(t1) −→ ¬(guard(t1) ∧ guard(t2)) (2)
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Fig. 2. Semantic error messages in editor for SMINV

Alive Transitions. In order to prove a transition t being alive, one has to show
the satisfiability of its guard together with the invariant of the pre-state. More
formally:

∃−→v Ipre(t) ∧ guard(t) (3)

3.4 Implementation

The language SMINV as well as the corresponding toolset is free software, the
sources of this software are made available on GitHub and can be downloaded
from [5]. Figure 2 shows the editor running on the PTM-example, with some addi-
tional faulty transitions to cause some validation errors (note the error markers
in the text as well as in the view Problems).

The semantic proof obligations discussed above have been implemented by
@Check-annotated methods in the validator class of the language SMINV. The
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validator class is a standard class in the Xtext-framework to be implemented
by each DSL separately. The validator also contains all syntax checks for the
language.

The generation of proof obligations itself is delegated to another class, whose
implementation in Xtend is surprisingly short. For example, the proof obligation
for checking that transitions t1 and t2 (having the same pre-state and same
event) do not cause an non-determinism (i.e. they cannot fire both in the same
situation) is implemented as:

def getPO NonDeterminism(Transition t1, Transition t2) {
t1.pre.invariantsCopyConjunction

.implies(neg(t1.guardCopy.and (t2.guardCopy)))
}
The generated proof obligation is passed to an automatic theorem prover in

order to prove or disprove the obligation. Currently, SMINV supports only the
prover Princess [9,10], but other suitable provers could be integrated as well.

Princess has been chosen for

– its excellent results for proof tasks on integer arithmetic
– its support of ordinary first-order predicate logic with uninterpreted symbols
– its ability to provide counterexamples for non-provable tasks

The input syntax of Princess is quite similar to the syntax for expressions
in SMINV, only some logical operators have to be substituted (e.g. && by &).
An example for the Princess input from a proof obligation generated for the
PTM-example is:

\universalConstants{ int collected; int bill;}
\problem{true -> ! ( collected < bill−1 & collected =

bill−1)}
The experimental results obtained when using Princess are very encourag-

ing. All proof obligations generated for the PTM example could be proved/dis-
proved within 2 ms – 8 ms on a Windows8 notebook (1.8 GHz, 8 GB RAM). Thus,
the DSL editor can give instant feedback to the user also for semantic checks.

4 Discussion and Related Work

In the past, providing verification support for modelling languages was rather a
task for either research groups or for companies selling tools for general purpose
languages. The effort of implementing verification techniques only pays off when
a language has a broad user base. In contrast, DSLs developed in industry for a
very specific purpose often have very few users. One cannot expect tool builders
to offer any dedicated support for single DSLs. Consequently, tool support has
to be provided by the creator of the language herself.

There is another reason why verification support is less common for DSLs
than for general purpose languages. It is not always clear what a (formal) seman-
tics of a DSL could look like, though some DSLs has been recently made avail-
able, whose purpose is to define the semantics of other DSLs formally. For Xtext,
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such a DSL is Xsemantics [11]; the corresponding DSL for Spoofax [12] is called
DynSem [13]). For general purpose languages, a common understanding of the
language is evolving over time. This process eventually results in commonly
accepted documents describing an informal or even formal semantics [14]. During
this process, bugs, mistakes, and inconsistencies might be found by the broad
user community. The semantics evolves over time. For DSLs, writing up the
semantics might result in similar inconsistencies as in case of writing up the
semantics of general purpose languages.

5 Conclusion and Future Work

DSLs allow to model succinctly for a certain purpose, but this flexibility also
often means to abandon classical semantics for modelling languages. Conse-
quently, semantic checks are currently neglected by DSL-definition frameworks
such as Xtext, while syntax checks are very common and widely used.

The goal of this paper is to demonstrate that Xtext allows to implement DSL-
specific semantic checks with moderate effort. Technically, semantic checks are
realized analogously to syntax checks within the DSL’s validator class. Thanks
to the speed of the used theorem prover Princess, also semantic checks can give
instant feedback to the user. From the user’s perspective, semantic checks make
an editor much more intelligent, since they can detect semantic errors the user
has made.

In future, we plan to address the following issues. Firstly, an integration into
the tool Yakindu would make this tool much more usable. One challenge here is
to extend the verification support to the expression language used by Yakindu,
which is more expressive than those of SMINV. Secondly, we plan to extend
SMINV and to include other language constructs, e.g. nested states and else-
guards for transitions. This will result in a more user-friendly DSL to describe
state machines. Finally, besides Princess, other theorem provers supporting
arithmetics and first-order logic should be integrated.

References

1. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F.,
Johannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M.,
Thiele, M., Wende, C., Wilke, C.: Dropsbox: the Dresden open software toolbox
- domain-specific modelling tools beyond metamodels and transformations. Softw.
Syst. Model. 13(1), 133–169 (2014)

2. Yakindu: Homepage. http://statecharts.org/
3. Xtext: Homepage. http://www.eclipse.org/Xtext/
4. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)
5. Baar, T.: SSMA - Simple State Machine Analyzer. https://github.com/thomas-

baar/simplesma
6. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt

Publishing, Birmingham (2013)

http://statecharts.org/
http://www.eclipse.org/Xtext/
https://github.com/thomasbaar/simplesma
https://github.com/thomasbaar/simplesma


60 T. Baar

7. Ghezzi, C., Menghi, C., Sharifloo, A.M., Spoletini, P.: On requirement verification
for evolving statecharts specifications. Requir. Eng. 19(3), 231–255 (2014)

8. Prashanth, C.M., Shet, K.C.: Efficient algorithms for verification of UML state-
chart models. JSW 4(3), 175–182 (2009)
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