
What You Always Wanted to Know
About Model Checking of Fault-Tolerant

Distributed Algorithms

Igor Konnov(B), Helmut Veith, and Josef Widder

TU Wien (Vienna University of Technology), Vienna, Austria
konnov@forsyte.tuwien.ac.at

Abstract. Distributed algorithms have numerous mission-critical appli-
cations in embedded avionic and automotive systems, cloud comput-
ing, computer networks, hardware design, and the internet of things.
Although distributed algorithms exhibit complex interactions with their
computing environment and are difficult to understand for human engi-
neers, computer science has developed only very limited tool support to
catch logical errors in distributed algorithms at design time.

In the last two decades we have witnessed a revolutionary progress in
software model checking due to the development of powerful techniques
such as abstract model checking, SMT solving, and partial order reduc-
tion. Still, model checking of fault-tolerant distributed algorithms poses
multiple research challenges, most notably parameterized verification:
verifying an algorithm for all system sizes and different combinations of
faults. In this paper, we survey our recent results in this area which
extend and combine abstraction, partial orders, and bounded model
checking. Our results demonstrate that model checking has acquired suf-
ficient critical mass to build the theory and the practical tools for the
formal verification of large classes of distributed algorithms.

1 Introduction

Fault-tolerant distributed algorithms (FTDA) are a central research area in dis-
tributed computing theory [2,28]. While such algorithms typically have been
used in safety critical applications in the automotive or avionic industries, new
application domains such as cloud computing provide additional motivation to
study fault-tolerant algorithms: with the huge number of computers involved in a
cloud, faults are the norm [30] rather than an exception. Together, this motivates
our research on automated verification techniques for fault-tolerant distributed
algorithms. We need to automatically verify such mechanisms for several hun-
dreds or even thousands of components. However, a straightforward application
of model checking to systems of such a scale suffers from combinatorial state
space explosion.

Supported by the Austrian Science Fund (FWF) through the National Research Net-
work RiSE (S11403 and S11405) and project P27722 (PRAVDA), and by the Vienna
Science and Technology Fund (WWTF) through project ICT15-103 (APALACHE).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 6–21, 2016.
DOI: 10.1007/978-3-319-41579-6 2

Model Checking of Fault-Tolerant Distributed Algorithms 7

A paradigmatic approach to verify very large systems is parameterized model
checking : if M(n) is a distributed or concurrent system consisting of n identical
components, and φ is a temporal logic formula, parameterized model checking
requires us to check whether ∀n.M(n) |= φ. Already for quite restricted classes
of concurrent systems the problem is undecidable, cf. our recent survey [4]. For
fault-tolerant distributed algorithms there are (at least) two more challenges that
we shall discuss below: (i) multiple parameters with arithmetic constraints and
(ii) parameterized code. Let us describe these challenges more precisely. First, in
addition to n there is a parameter t that expresses the assumed number of faulty
components, and algorithms are typically correct only under a resilience condi-
tion. A typical resilience condition in the case of Byzantine fault tolerance [14,31]
is n > 3t. Second, while the parameterized model checking problems discussed
in [4] assume that the process code and state space are independent of the para-
meters, FTDAs often count messages: Due to faults, processes cannot wait for
messages from specific (possibly faulty) senders. Therefore, most FTDAs use
counters, e.g., if a process receives a certain message from more than t distinct
senders, then it concludes that one of the senders must be non-faulty. We call
such conditions on counters threshold guards.

Algorithm 1. Core logic of the broad-
casting algorithm from [35].
Code for processes i if it is correct:
Variables

1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉

from at least t + 1 distinct
processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n − t

distinct processes then
8: accepti ← true;

qI

q1

q2

q3

q4

sv = V1

sv �= V1∧
nsnt0 =
nsnt ∧
sv0 = sv

nsnt0 = nsnt + 1

sv0 = SE

q5

q6

q7

q8

q9
qF

rcvd ≤ rcvd ′ ∧ rcvd ′ ≤ nsnt + f

(t+ 1 > rcvd ′) ∧
sv ′ = sv0 ∧
nsnt ′ = nsnt0

t + 1 ≤ rcvd ′

sv0 = V0

sv0 �= V0∧
nsnt ′ = nsnt0

nsnt ′ = nsnt0 + 1

n − t > rcvd ′
n − t ≤ rcvd ′

sv ′ = SE

sv ′ = AC

Fig. 1. A control flow automaton
of the Algorithm 1 for Byzantine
faults.

Algorithm 1 presents a threshold-based FTDA in pseudo code, as is typical for
the distributed algorithms literature. It uses threshold guards in lines 5 and 7. In
Fig. 1, we give a graphical representation of a control-flow automaton that serves
as a formal representation of the algorithm. For instance, the local variable rcvd

8 I. Konnov et al.

represents the number of received messages, which is implicitly assumed in the
pseudo code, while the global variable nsnt represents the number of messages
sent by the correct processes. Moreover, the local variable sv represents the local
control state of a process, which is implicit in the pseudo code in the phrases
“not sent <echo> before” and “accept i ← TRUE”. Note that the expressions
over the parameters are compared to the value of variable rcvd′, which contains
the number of received messages, including the messages received at the current
step. A system is then composed of n−f instances of the control-flow automaton
that run concurrently and represent the correct processes. The formal definition
and the semantics of control-flow automata can be found in [21].

We observe that the process code and state space depend on the parame-
ters (in our example on n and t). In addition to the parameterized number of
processes and faults, automatic verification of FTDAs has to deal with process
code which refers to parameters in a non-trivial way. We address this problem
by stacking different techniques that we will survey in the following section.

2 Verification Techniques

Figure 2 gives an overview of our techniques that we introduced in a series of
papers on parametrized model checking of FTDAs [21,23,24]. In Sect. 3, we dis-
cuss how these techniques interact with each other in the framework of our tool
ByMC. We deal with the parametrized code and state space by a parametrized
interval data abstraction [21] in Sect. 2.1. After that step, we have obtained
a more classic parametrized model checking problem where all processes are
uniform [4] and the system is thus symmetric. Symmetry allows us to change
representation into a counter representation (Sect. 2.2) which gives rise to dif-
ferent techniques, namely, counter abstraction (Sects. 2.3 and 2.4), and offline
partial order reduction with acceleration (Sects. 2.5 to 2.7).

2.1 Parametric Interval Data Abstraction (PIA Data)

In [21] we formalized threshold-guarded statements (e.g., the one from line 5 in
the pseudocode example given in Algorithm 1) using a special form of control
flow automata, e.g.:

q4 q5t + 1 ≤ rcvd ′

The above edge from q4 to q5 can be executed only if the number of received
messages rcvd′ is greater than or equal to t + 1. The central insight is that for
evaluating this condition, the precise value of rcvd′ is not important, it suffices to
know whether rcvd′ is above the threshold. Our case study in [21] contained an
additional threshold guard of n − t. This motivated an abstract domain of four
intervals I0 = [0, 1[and I1 = [1, t + 1[and I2 = [t + 1, n − t[and I3 = [n − t, n].
In our approach, the abstract domain is extracted from the guards automatically.

Recall that we want to get rid of parameterized process code. To this end, we
can now replace the guards that refer to unbounded variables and parameters by

Model Checking of Fault-Tolerant Distributed Algorithms 9

FMCAD’13 [21] CONCUR’14 [23] CAV’15 [24]

data abstraction

counter
representation

counter
abstraction &

refinement

state enumeration
or BDDs

SPIN, NuSMV-BDD

data abstraction

counter
representation

counter
abstraction &

refinement

partial orders
&

acceleration

bounded
model checking
NuSMV-SAT

data abstraction

counter
representation

counters in SMT

partial orders
&

acceleration

bounded
model checking

SMT

Fig. 2. Stacks of techniques

their abstraction. In our abstract domain, if the guard “t + 1 ≤ rcvd′” evaluates
to true, this means that rcvd′ is in the interval [t + 1, n − t[or [n − t, n]. These
intervals correspond to the abstract values I2 and I3, respectively. Thus, we can
replace the guard by:

q4 q5rcvd ′ = I2 ∨ rcvd ′ = I3

In this way we obtain a finite-state abstract process. Still, the resulting system
is a parallel composition of a parametric number of such processes.

2.2 Counter Representation

A system that consists of concurrent anonymous (identical) processes can be
modeled as a counter system by exploiting the symmetry of the system: Instead
of recording which process is in which local state, we record for each local state,
how many processes are in this state. Thus, we need one counter per local state �,
which we denote by κ[�]. After the PIA data abstraction, abstract processes have
a fixed finite number of local states, hence we have a fixed number of counters.
A step by a process that goes from local state � to local state �′ is modeled by
decrementing κ[�] and incrementing κ[�′]. When we fix the number of processes,
e.g., by giving a concrete value to n, each counter is bounded by the number of
processes n.

10 I. Konnov et al.

κ[�1] = 5

κ[�3] = 1
nsnt = 0

s0

κ[�1] = 4
κ[�2] = 1
κ[�3] = 1
nsnt = 0

s1

κ[�1] = 3
κ[�2] = 2
κ[�3] = 1
nsnt = 0

s3

κ[�1] = 2
κ[�2] = 3
κ[�3] = 1
nsnt = 0

s′
3

κ[�1] = 1
κ[�2] = 4
κ[�3] = 1
nsnt = 0

s4

.

. . .

Fig. 3. An illustration of a counter representation for a system with n = 7, t = 1, f = 1.
States s3 and s′

3 correspond to the single abstract state ŝ3 in Fig. 4.

Figure 3 illustrates a transition system obtained by switching to a counter
representation of a system of six correct processes (hence, the sum of counters is
six in each state). Note that each transition decrements one counter and incre-
ments another one. As one can see, if the original system does not have self-loops,
the counter representation does not have them either. This is in sharp contrast
to counter abstraction, which is presented in Sect. 2.3.

However, as we are interested in the parametrized problem, we have to con-
sider systems for all values of n. That is, after changing the representation,
we have not reached a finite state representation. Thus another abstraction is
needed.

Remark. In the literature, “counter representation” is sometimes referred to as
“counter abstraction,” partly because such a system can be viewed as more
abstract due to absence of process identifiers. As the specifications of FTDAs
do not single out processes but refer to process states only using quantification
over the individual processes, for us this “counter representation” maintains all
information which is present in the parallel composition of processes. Thus, in
our setting, the counter representation is precise for the specifications of FTDAs
that quantify over all correct processes.

2.3 Parametric Interval Counter Abstraction (PIA Counter)

In the counter representation of Sect. 2.2, the unbounded counter values are the
only source of an unbounded state space. To get rid of this, the natural idea
is to replace integer counters by counters over a finite abstract domain. In our
work, we use the same domain as in the PIA data abstraction in Sect. 2.1, e.g.,
for Algorithm 1, we use the domain of four intervals I0 = [0, 1[and I1 = [1, t + 1[
and I2 = [t + 1, n − t[and I3 = [n − t;n]. Figure 4 illustrates counter abstraction
of counter representations for all parameter values. For instance, the abstract
states ŝ0, ŝ1, ŝ3, ŝ4 represent the concrete states s0, s1, s3, s

′
3, s4 from Fig. 3. The

Model Checking of Fault-Tolerant Distributed Algorithms 11

κ̂[�1] = I2

κ̂[�3] = I1
nsnt = I0

ŝ0

κ̂[�1] = I2
κ̂[�2] = I1
κ̂[�3] = I1
nsnt = I0

ŝ1

κ̂[�1] = I1
κ̂[�2] = I1
κ̂[�3] = I1
nsnt = I0

ŝ2

κ̂[�2] = I1
κ̂[�3] = I1
nsnt = I0

ŝ6

κ̂[�1] = I2
κ̂[�2] = I2
κ̂[�3] = I1
nsnt = I0

ŝ3

κ̂[�1] = I1
κ̂[�2] = I2
κ̂[�3] = I1
nsnt = I0

ŝ4

.

.

Fig. 4. A small part of the transition system obtained by counter abstraction of counter
representations for all parameters.

abstract state ŝ2 represents states that do not appear for the parameter values
in Fig. 3, but occur, e.g., for n = 4, t = 1, f = 1.

For decrementing and incrementing counters, a counter abstraction intro-
duces abstract operations. For instance, an increment of abstract value I1 should
overapproximate that a concrete value from the interval [1, t + 1[is incremented.
Note that increment can result in the same interval I1 or in the next interval I2.
Similarly, decrement either maintains or changes its abstract value. When decre-
ment and increment maintain the counter values, the abstract transitions form
self-loops, as one can see in Fig. 4. Hence, abstract increment is not determinis-
tic. In particular, applying an abstract increment to a counter does not have to
change the counter value ever, which introduces spurious behavior, i.e., abstract
paths that do not correspond to real paths.

Our PIA counter abstraction uses many ideas developed by Pnueli et al. [32].
Regarding the abstract domain, they focused on mutual exclusion and thus used
the well-known “(0, 1,more)” abstract domain, whereas we focus on FTDAs and
use intervals with parametric boundaries.

In this way, we arrive at a system of a fixed number of counters that range
over a finite domain, that is, a finite-state model checking problem. We have
used this in [21] (cf. [16] for technical details) to check safety and liveness of
classic fault-tolerant broadcasting algorithms under a number of fault models.
As in [32], abstraction makes liveness verification more challenging as it requires
to add justice constraints. Moreover, for liveness we had to deal with spurious
counterexamples, cf. Sect. 2.4.

2.4 Parametrized Abstraction Refinement

Our PIA abstraction maintains the relevant properties of threshold guards and
counters, so that the classic CEGAR approach [10], which consists of refining
the state space, is not suitable. However, the non-determinism due to abstract

12 I. Konnov et al.

Fig. 5. Spurious loop due to coarse abstraction in classic CEGAR [10] on the left,
and a spurious path due to many concrete systems that are mapped to one abstract
systems in parametrized model checking on the right.

operations on counters leads to spurious transitions that lead to spurious coun-
terexamples. Hence our abstraction refinement approach deals with removing
transitions.

Our main problem stems from the non-determinism due to abstract counters.
If a process moves from local state � to �′ we have to decrease the counter κ(�)
and increase κ(�′). However, abstract decrease may lead to a smaller abstract
value, while abstract increase maintains the counter value. Overall, processes
may be lost. As we use global variables to record the number of message sent,
we have the same effect there and messages “may be lost” due to abstraction.
As messages may be required to make progress, this generates challenges for the
verification of liveness properties.

Our current approach is to use an SMT solver to check whether abstract
transitions correspond to concrete ones. If this is not the case, we explicitly
remove these transitions from the transition relation of the counter abstraction.
See [16] for implementation details, where we also discuss how we refine unfair
loops that occur in some case studies.

We would like to mention that abstraction refinement in parametrized model
checking generates challenges different from classic CEGAR. As shown in Fig. 5,
abstract transitions that build a path in the abstract system may stem from

Model Checking of Fault-Tolerant Distributed Algorithms 13

different concrete systems for different parameter values. Currently, we deal
with such counterexamples by user-provided invariant candidates that our tool
checks to be invariants and which are then used for verification. To achieve more
automation, one has to detect spurious paths instead of individual spurious tran-
sitions. However, this is challenging in the parameterized case, as infinitely many
concrete systems are involved.

2.5 Threshold Automata

In Sects. 2.1–2.4, we used control-flow automata (CFA) as an input to our model
checking techniques (cf. Fig. 1). A CFA is a formal presentation that is close to
pseudo code and symbolically captures the transition relation of a single process
as a formula over input, output (primed), and temporary variables. A path
through the control-flow automaton (non-deterministically) computes a single
transition in the transition relation of the algorithm. For instance, the leftmost
path of the CFA shown in Fig. 1 computes the local transition from the local
state with the assignment sv �→ V0, rcvd �→ 0, and nsnt �→ 0 to the local
state with the assignment sv �→ V0, rcvd �→ f , and nsnt �→ 0 (once the target
state of the transition is computed, the primes are dropped). If we apply data
abstraction (see Sect. 2.1) to the local variables, we obtain an abstract control-
flow automaton. Likewise, a path through the abstract control-flow automaton
computes a single transition in the abstract transition relation. There is, however,
an important difference between the input CFA and the CFA that is created by
data abstraction: the domain of the local variables, e.g., rcvd, in the abstract
CFA is finite, and hence the local state space of each process is finite. This
observation allows us to use another representation of the abstract transition
relation, which we call a threshold automaton [23].

In a nutshell, a threshold automaton is a graph, whose nodes correspond
to the abstract local states of a process, and the edges correspond to the local
transitions. The edges are annotated with linear arithmetic constraints over the
parameters and the shared variables, e.g., nsnt ≥ (n−t)−f , as well as with incre-
ments of the shared variables, e.g., nsnt′ = nsnt + 1. Note the three important
differences of a threshold automaton from a CFA:

1. The nodes of a threshold automaton correspond to the local states, whereas
the nodes of a CFA correspond to the locations in the control flow of the code
computing the next state of the algorithm;

2. An atomic step of the algorithm is represented by an edge of a threshold
automaton, as opposite to a path of a CFA;

3. The edges of a threshold automaton are annotated only with shared variables
and parameters, whereas the values of the local variables are implicit in the
automata nodes.

Figure 6 illustrates a threshold automaton that is constructed automatically
from the CFA shown in Fig. 1 by our tool. For instance, if a process is in local
state 00 and nsnt ≥ (n − t) − f , then the process may go to the local state 22.
In doing so, it increases nsnt.

14 I. Konnov et al.

00

33

10

22

01

02

12

Fig. 6. A threshold automaton for the CFA shown in Fig. 1. The nodes correspond to
the local states of the processes, while the edges correspond to the guarded transitions.
The edges are annotated with guards as follows: the bold gray edge is guarded with
true; the dotted edges are guarded with nsnt ≥ 1− f ; the solid edges are guarded with
nsnt ≥ (t+ 1) − f ; the dashed edges are guarded with nsnt ≥ (n− t) − f . Finally, nsnt
is incremented by the edges from the local states 00, 10, and 01 to the local states 12,
22, and 33, whereas all other edges do not change nsnt.

In our case studies, all increments of shared variables in threshold automata
are outside of loops. This is a consequence of the class of FTDAs under con-
sideration: each correct process sends a message of each type at most once, and
thus increases each shared variable at most once. The partial order reduction
techniques in Sects. 2.6 and 2.7 exploit this property to guarantee completeness
of bounded model checking.

2.6 Checking Reachability by Bounded Model Checking Using
Offline Partial Order Reduction and Acceleration

In [23], we apply SAT-based bounded model checking to verify reachability
properties of the finite model obtained by counter abstraction of FTDAs (see
Sect. 2.3). It is well-known that to make bounded model checking complete for
reachability properties, one has to analyze executions of length up to the diam-
eter of the transition system [3].

To this end, we first compute an upper bound on the diameter of the counter
representation, that is, an upper bound on the minimal number of steps required
to reach any configuration σ′ from a configuration σ. From the bound on the
counter representation we obtain a diameter bound on the counter abstraction.
In the following we discuss why, surprisingly, the diameter is bounded.

Assume σ′ is reached from σ by steps of two processes where each process
transitions from local state � to local state �′. In classic interleaving semantics,
this run has length 2. However, we might also model this as a single update on
the counters, that is we may decrease the counter κ(�) and increase κ(�′) by two,
respectively. This idea is illustrated in Fig. 7. In general, we may move arbitrarily

Model Checking of Fault-Tolerant Distributed Algorithms 15

κ[�1] = 5

κ[�3] = 1
nsnt = 0

s0

κ[�1] = 4
κ[�2] = 1
κ[�3] = 1
nsnt = 0

s1

κ[�1] = 3
κ[�2] = 2
κ[�3] = 1
nsnt = 0

s3

κ[�1] = 2
κ[�2] = 3
κ[�3] = 1
nsnt = 0

s′
3

κ[�1] = 1
κ[�2] = 4
κ[�3] = 1
nsnt = 0

s4

.

. . .

Fig. 7. A counter system in Fig. 3 extended with accelerated transitions (dashed)

many process at once, and call such runs of counter systems accelerated. In this
example, 2 would be the acceleration factor. In the context of parametrized model
checking, the important property is that because we may move arbitrarily many
process at a time, there is potential to bound the diameter independently of the
value of the parameters!

Exploiting commutativity arguments not given in detail here, by swapping
two neighboring transitions in a run, we obtain the same final state. To combine
this with acceleration, one would like to swap transitions in such a way that
many neighboring transitions can be accelerated. Importantly, one has to ensure
that after swapping the guard of a transition still evaluates to true. Ensuring
this has great influence on the actual bound and is the key technical argument
from [23], where we also show that the resulting bounds are sufficiently small to
check several case studies. Note that our method can be seen as a form of partial
order reduction that is applied before model checking, i.e., an offline partial order
reduction.

2.7 Bounded Model Checking Using SMT

Our final method avoids counter abstraction and directly encodes runs of the
counter representation in SMT. A global system state, which contains basically
one counter per local state, can be represented as a vector of integer variables
(one for each local state). As in SAT-based bounded model checking, one can
then encode the transition relation, and the subsequent global state using a fresh
vector of integer variables (or fresh integer variables for the counters that have
actually been updated).

While the technique of Sect. 2.6 conceptually enumerates all runs of length
up to the diameter, in [24] we only encode a small set of “schemas”, and show that
the (representative) runs generated from the schemas span the reachable state

16 I. Konnov et al.

Input: a CFA,
an LTL property

Data
abstraction

Counter
representation

Counter
abstraction

Finite-state
model checking

Spin, NuSMV (BDD),

NuSMV (BMC)

Property holds

Abstraction
refinement

A counterexample
(possibly spurious)

Fig. 8. Parameterized verification of FTDAs with data and counter abstractions [16,
21,23]

space. A schema is essentially a sequence of scheduling constraints containing
guards. The schemas are obtained by an improvement of the partial order ideas
that we used in [23] to bound the diameter. Thus, we obtain a more aggressive
offline partial order reduction, and significantly better experimental results that
are discussed in Sect. 4.

To illustrate schemas, consider the threshold automaton depicted in Fig. 6.
The automaton has three guards: ϕ1 ≡ nsnt ≥ 1 − f , ϕ2 ≡ nsnt ≥ t + 1 − f ,
and ϕ3 ≡ nsnt ≥ n − t − f . Consider the following transitions of the threshold
automaton: the transition r1 from 01 to 02; the transition r2 from 02 to 22,
the transition r3 from 22 to 33. Then, a schema {}r1{ϕ1, ϕ2}r1r2r3{ϕ1, ϕ2, ϕ3}
generates runs for various parameter values, where the transition r1 is executed
by several processes first and makes the guards ϕ1 and ϕ2 true; after that the
transitions r1, r2, and r3 are executed by several processes one after the other
and make the guard ϕ3 true.

The number of different threshold guards in the typical distributed algo-
rithms in the literature varies from one to ten, which results in a reasonably
large number of schemas that have to be checked, typically several thousand
schemas [24]. Note that the schemas can be verified independently, and thus, in
parallel.

3 Implementation: Byzantine Model Checker

We have implemented the techniques described in Sect. 2 in our tool ByMC:
Byzantine Model Checker1. Figures 8 and 9 illustrate two different workflows
that combine our techniques within ByMC.

In the first workflow depicted in Fig. 8, our tool computes data and counter
abstractions and invokes a model checker to verify a finite-state abstract sys-
tem. Depending on the choice of the model checker, ByMC can verify either
safety properties, or both safety and liveness: the explicit-state model checker

1 http://forsyte.at/software/bymc/.

http://forsyte.at/software/bymc/

Model Checking of Fault-Tolerant Distributed Algorithms 17

Input:
a CFA,
an LTL
formula

(safety only)

Data abstraction
(threshold automata)

Counter
representation

Complete
bounded

model checking
with SMT

(infinite-state)

Property holds, or
a counterexample

Fig. 9. Parameterized verification of FTDAs with data abstraction and SMT-based
bounded model checking [24]

Spin [18] or the BDD-based symbolic algorithms in NuSMV/nuXmv [7] allow us
to verify safety and liveness as described in [21]; the SAT-based bounded model
checker implemented in NuSMV/nuXmv allows us to verify safety properties2 as
described in [23]. When a model checker reports a counterexample, ByMC checks
whether the counterexample is spurious, and when it finds spurious behavior,
ByMC refines the counter abstraction.

In the second workflow depicted in Fig. 9, our tool computes only data
abstraction (Sect. 2.1), constructs a threshold automaton (Sect. 2.5) and com-
putes a complete set of schemas (Sect. 2.7) as described in [24]. Each schema is
encoded as an SMT formula in linear integer arithmetic and checked with an
SMT solver, e.g., Z3 [11] or MathSAT [9]. As this technique maintains precise
process counters, it does not produce spurious counterexamples that are caused
by counter abstraction in the first workflow. Thus, the refinement loop is not
required in our experiments.

4 Evaluation and Case Studies

In Figs. 10 and 11 we show how our techniques allowed us to check more and
more involved distributed algorithms.

We are currently able to verify FTDAs that use threshold guards and work
in asynchronous systems:

Broadcast. Reliable broadcast is a problem that can be solved in asynchronous
systems, and we have verified the core of several such algorithms: Folklore
reliable broadcast (“first forward to all then accept”, e.g., given in [8]), Consis-
tent Broadcast [35], Asynchronous Byzantine agreement [5]. Also the problem
called “Condition-based consensus” can be solved in asynchronous systems
and bears some similarities to broadcasting. We verified the condition-based
consensus algorithm from [29]. After we published our verification results, a
broadcasting algorithm very similar to [35] but with a different threshold was
published in [19], and our tool easily checked its correctness.

2 Although NuSMV implements bounded model checking for LTL, our present results
guarantee completeness only for safety properties.

18 I. Konnov et al.

1 s

10 s

100 s

10 m

1 h

5 h

1 d

0 5 10 15 20 25
Number of checked benchmarks

SMT @ cav15
NuSMV-SAT @ concur14
NuSMV-BDD @ fmcad13

SPIN @ fmcad13

Fig. 10. Time to verify instances of fault-tolerant distributed algorithms (Color figure
online)

FTDAs using Failure Detectors. The impossibility of solving non-blocking
atomic commitment in asynchronous systems can be circumvented by using
oracular mechanisms like failure detectors. They can be easily encoded in
linear temporal logic. Thus, we verified such atomic commitment algorithms
from [17,33].

Fast Consensus Algorithms. The idea of this class of algorithms is to have a
quick (cheap) distributed preprocessing to a more expensive consensus algo-
rithm: the algorithm terminates quickly in average runs, e.g., if there are no
faults, if the system is not “too asynchronous”, or if all processes have the
same initial value. In case the preprocessing does not lead to a conclusive
result, a “more-expensive” fall-back consensus algorithm is started with spe-
cific initial values. Our tool can check the correctness of this preprocessing of
the algorithms BOSCO [34], C1CS [6], and CF1S [12].

Our techniques are currently limited to the class of asynchronous FTDAs
that use only threshold guards. In particular, as consensus cannot be solved in
asynchronous systems [15], we cannot completely verify algorithms for consensus,
atomic broadcast, state machine replication, non-blocking atomic commitment,
and similar hard problems. For that we need to restrict the interleavings and
move from asynchronous systems to partially synchronous systems [14]. Only
then, famous FTDAs like in [14] or Paxos [25] can be verified automatically in
their entirety.

Our tool uses an extension of Promela as a front-end for CFA [16,22]. Their
source code and the code of the threshold automata are freely available.3

3 https://github.com/konnov/fault-tolerant-benchmarks/.

https://github.com/konnov/fault-tolerant-benchmarks/

Model Checking of Fault-Tolerant Distributed Algorithms 19

0.1 GB

1 GB

10 GB

32 GB

0 5 10 15 20 25
Number of checked benchmarks

SMT @ cav15
NuSMV-SAT @ concur14
NuSMV-BDD @ fmcad13

SPIN @ fmcad13

Fig. 11. Memory to verify instances of fault-tolerant distributed algorithms (Color
figure online)

5 Conclusions and Future Work

Automatic verification of fault-tolerant distributed algorithms is a challenging
task. To the best of our knowledge, besides our own work, there are only few
papers that deal with parameterized verification of FTDAs [1,13]. The main
complications stem from multiple parameters, that are related by resilience con-
ditions, as well as the fact that not only the number of processes, but also the
code of each process is parameterized.

To make progress in automatic verification, our first steps have focused on
domain-specific abstractions for a large class of fault-tolerant distributed algo-
rithms with threshold guards. These guards are quite natural constructs in the
distributed algorithms literature: for instance, majority voting on a value is a
natural technique to achieve agreement. The algorithms we address with our
technique operate in the standard interleaving semantics (with fairness con-
straints). In terms of distributed algorithms literature, they are asynchronous. In
the future, we will address also other computational models such as completely
synchronous, partially synchronous, timed systems, and round-based systems.

Further, we want to develop more domain-specific techniques for increas-
ingly larger classes of FTDAs. We are currently developing a tool4 that imple-
ments these techniques and applies them to the popular TLA+ specification
language [27]. This will give us a framework and a toolset for verification of
complex distributed algorithms such as Paxos [26].

4 http://forsyte.at/apalache/.

http://forsyte.at/apalache/

20 I. Konnov et al.

Acknowledgements. We are grateful to Annu Gmeiner and Ulrich Schmid for their
contributions to several papers [16,20–22] of our research agenda.

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
JSAT 8(1/2), 29–61 (2012)

2. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. Wiley, New York (2004)
3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

5. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

6. Brasileiro, F., Greve, F.G.P., Mostéfaoui, A., Raynal, M.: Consensus in one com-
munication step. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001)

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, heidelberg
(2014)

8. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225–267 (1996)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

11. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Dobre, D., Suri, N.: One-step consensus with zero-degradation. In: DSN,
pp. 137–146 (2006)

13. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014)

14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

16. Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tutorial on parame-
terized model checking of fault-tolerant distributed algorithms. In: Bernardo, M.,
Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS, vol.
8483, pp. 122–171. Springer, Heidelberg (2014)

17. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distrib. Comput. 15(1), 17–25 (2002)

Model Checking of Fault-Tolerant Distributed Algorithms 21

18. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Boston (2003)
19. Imbs, D., Raynal, M.: Simple and efficient reliable broadcast in the presence

of Byzantine processes. CoRR abs/1510.06882 (2015). http://arxiv.org/abs/1510.
06882

20. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Brief announcement: para-
meterized model checking of fault-tolerant distributed algorithms by abstraction.
In: PODC, pp. 119–121 (2013)

21. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD,
pp. 201–209 (2013)

22. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards model-
ing and model checking fault-tolerant distributed algorithms. In: Bartocci, E.,
Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 209–226. Springer,
Heidelberg (2013)

23. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. In: Baldan, P., Gorla, D.
(eds.) CONCUR 2014. LNCS, vol. 8704, pp. 125–140. Springer, Heidelberg (2014)

24. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction:
parameterized model checking of threshold-based distributed algorithms. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102.
Springer, Heidelberg (2015)

25. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

26. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
27. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

28. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)
29. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN, pp. 541–550 (2003)
30. Netflix: 5 lessons we have learned using AWS (2010). http://techblog.netflix.com/

2010/12/5-lessons-weve-learned-using-aws.html
31. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J. ACM 27(2), 228–234 (1980)
32. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-counter abstraction. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

33. Raynal, M.: A case study of agreement problems in distributed systems: non-
blocking atomic commitment. In: HASE, pp. 209–214 (1997)

34. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008)

35. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80–94 (1987)

http://arxiv.org/abs/1510.06882
http://arxiv.org/abs/1510.06882
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

	What You Always Wanted to Know About Model Checking of Fault-Tolerant Distributed Algorithms
	1 Introduction
	2 Verification Techniques
	2.1 Parametric Interval Data Abstraction (PIA Data)
	2.2 Counter Representation
	2.3 Parametric Interval Counter Abstraction (PIA Counter)
	2.4 Parametrized Abstraction Refinement
	2.5 Threshold Automata
	2.6 Checking Reachability by Bounded Model Checking Using Offline Partial Order Reduction and Acceleration
	2.7 Bounded Model Checking Using SMT

	3 Implementation: Byzantine Model Checker
	4 Evaluation and Case Studies
	5 Conclusions and Future Work
	References

